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Résumé de la thèse

Ce mémoire de thèse rapporte les résultats obtenus au cours de mes trois années de docto-
rat au Centre de Physique Théorique de l’Université d’Aix-Marseille. L’objectif final de ce
mémoire est la construction de théories de jauge basées sur les connexions généralisées dé-
finies sur les algébroïdes de Lie transitifs. Ce résumé suit le déroulement de la présentation
de ma thèse.

Avant-propos : la physique-mathématique

La physique-mathématique est la discipline de l’étude de systèmes physiques indissociables,
par nature, de leurs cadres mathématiques descriptifs. Pour la plupart des domaines de la
physique, tels que la mécanique du solide, la mécanique des fluides et l’optique physique,
les mathématiques sont un outil de modélisations ou d’aide à la résolution d’équations.
Ainsi, la mécanique du solide est l’étude des déformations subies par un matériaux sous
l’action de pressions et de forces, la mécanique des fluides étudie les phénomènes macro-
scopiques émergeant des interactions entre particules fluides et l’optique physique étudie
des propriétés de la lumière en fonction de son milieu. Dans ces exemples, les mathéma-
tiques jouent un rôle significatif dans l’investigation scientifique, bien que l’objet de ces
investigations soient extérieurs et indépendants des mathématiques qui la modélisent. A
l’inverse, la relativité générale d’Einstein et la mécanique quantique sont deux exemples
qui s’accordent avec la discipline de la physique-mathématique. En effet, la relativité gé-
nérale d’Einstein ne peut pas être étudiée sans faire référence à la géométrie riemannienne
et il n’y a pas de sens à essayer de comprendre la mécanique quantique en ignorant le
formalisme des vecteurs d’états dans les espaces de Hilbert. Ces deux exemples illustrent,
d’une certaine façon, une indissociabilité entre la physique et les mathématiques.

Parmi les disciplines de la physique-mathématique, nous nous intéressons aux théories
de jauge associées aux groupes de symétries.

Établi dans les années 50, le modèle standard de la physique des particules repose sur
deux piliers fondateurs qui sont, d’une part, l’existence de groupes de symétries agissant
sur des espaces internes, et d’autre part, la construction de théories dites invariantes de
jauge.

Les groupes de symétries sont associés aux forces fondamentales de la Nature. En
physique des particules, les groupes de symétrie U(1), SU(2) et SU(3) sont respectivement
associés aux interactions électromagnétiques, faibles et nucléaires fortes. Ces symétries
sont dites “internes” au sens où les groupes qui leurs sont associés agissent en tout point
de l’espace-temps, sur des espaces abstraits ne possédant pas “d’extensions spatiales”. Le
cadre mathématique associé à cette formulation est le cadre de la géométrie différentielle
et de la théorie des fibrés.

Par ailleurs, les théories de jauge s’intéressent aux quantités invariantes sous l’action
de groupes de transformations, appelés les groupes de jauge. Une quantité présente dans
une théorie de jauge est une observable physique, du moins potentiellement, si celle-ci est
invariante sous l’action du groupe de jauge de la théorie.
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Le point de départ de la construction décrite dans ce mémoire de thèse est de conserver
le principe de jauge en tant qu’ingrédient fondamental pour la construction de théorie
physique et de substituer le formalisme de la théorie des fibrés par un nouveau cadre
mathématique : les algébroïdes de Lie transitifs. Le résultat de cette construction est la
définition d’une théorie de jauge, qui associe à la fois la géométrie différentielle usuelle et
une description algébrique nouvelle. Cette théorie donne un modèle de théorie des champs
de type Yang-Mills-Higgs, décrivant la propagation de bosons vecteurs de jauge couplés à
un champ tensoriel scalaire dynamique plongé, dans un potentiel quartique.

Rappels d’éléments de la géométrie différentielle

La géométrie différentielle est utilisée pour la description de calculs différentiels sur un
espace topologique. Cet espace topologique ou variété est composé d’un atlas de cartes
(Ui, ϕi)i∈I tels que ∪

i∈I
Ui = M et ϕi : Ui → O soit un homéomorphisme d’un ouvert Ui vers

un ouvert de O de R
m. Un atlas permet de décrire une variété topologique de dimension

m comme une collection d’espaces “plats”, euclidiens ou minkowskiens, qui se recollent les
uns aux autres pour former une variété globale de courbure non-nulle.

Les champs de vecteurs sur la variété assignent à chaque point p de M un élément
Xp du plan tangent TpM. L’ensemble des plans tangents forme le fibré tangent TM et
les champs de vecteurs sont alors vus comme des sections sur ce fibré. Les champs de
vecteurs forment un espace vectoriel muni d’un crochet de Lie définie par le commutateur
de deux champs de vecteurs. En tant qu’espace vectoriel, l’espace des champs de vecteurs
se décompose, dans une carte locale (x1, . . . , xm), sur la base (∂1, ∂2, . . . , ∂m).

On définit le fibré dual T ∗M dont les sections sont des covecteurs sur M. Les covecteurs
α ∈ Γ(T ∗M) sont duaux des champs de vecteurs X ∈ Γ(TM) dans le sens où α(X) ∈
C∞(M). Dans la même carte que précédemment, les covecteurs se décomposent sur la
base (dx1, dx2, . . . , dxm), où les éléments dxµ sont définis par la relation dxµ(∂ν) = δµ

ν

avec δν
µ le symbole de Kronecker.

D’un point de vue géométrique, l’espace des q-formes différentielles sur M est l’espace
des sections sur le fibré dual ∧qT ∗M. Nous privilégions une formulation plus algébrique de
ces formes, qui sont alors vues comme des applications C∞(M)-multilinéaires antisymé-
triques qui prennent pour argument r champs de vecteurs sur M pour donner un élément
de C∞(M). Les formes différentielles de degré r forment l’espace Ωr(M).

Le complexe différentiel (Ω•(M), d) est une algèbre différentielle graduée dont le com-
plexe totale s’écrit sous la forme Ω•(M) = C∞(M) ⊕ Ω1(M) ⊕ Ω2(M) ⊕ . . ., et dont
l’opérateur différentiel gradué d : Ωr(M) → Ωr+1(M) augmente le degré de forme de 1
en utilisant à la fois la représentation de Γ(TM) sur C∞(M) et la structure d’algèbre de
Lie de Γ(TM). Cette différentielle est définie pour tout ω ∈ Ωr(M) par la relation

dω(X1, . . . , Xr+1) =
r+1∑

i=1

(−1)i+1Xi·ω(X1, . . . , ∨i, . . . , Xr+1)

+
∑

1≤i<j≤r+1

ω([Xi, Xj ], X1, . . . , ∨i, . . . , ∨j, . . . , Xr+1)

Cette opération de dérivation définit la dérivée de Koszul sur la variété M. Par un calcul
direct, on montre que d2 : Ωr(M) → Ωr+2(M) vaut 0 quelque soit le degré de forme r.

Les fibrés principaux P(M, G) sont des fibrés au dessus de M dont chaque fibre est
homéomorphe au groupe de structure G. Celui-ci agit “verticalement”, de façon transitive,
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sur la fibre. Dans le cas général, un fibré principal ne peut pas s’écrire sous la forme du
produit cartésien P = M × G, à moins que celui-ci soit trivial. Cependant, localement, au
dessus d’un ouvert U de M, le fibré est localement trivialisable de tel sorte que P ≃

loc
U ×G.

Les sections sur les fibrés principaux sont des fonctions locales si : Ui → P, où Ui

désigne un ouvert de M, et qui se recollent d’un ouvert Ui à un ouvert Uj par l’intermédiaire
de fonctions de recollement gij : Uij → G, où Uij = Ui ∩Uj . Dans le cas des fibrés vectoriels
associés E = P ×ℓ F où F est un espace vectoriel et ℓ est une représentation de G sur
F , les sections donnent des applications locales s : U → F . Ici, le formalisme en terme de
sections correspond à celui des champs de jauge en théorie des champs.

En tant que variété, les fibrés principaux sont munis de champs de vecteurs Γ(TP),
définis comme les sections sur le fibré tangent TP. On définit le complexe différentiel
(Ω•(P), dP) comme l’espace des formes différentielles définies sur P et à valeurs dans
C∞(P), muni de l’opérateur différentiel dP : Ωr(P) → Ωr+1(P), définie par la dérivée de
Koszul sur P. Soit g l’algèbre de Lie du groupe de structure G, on note (Ω•(P, g), d̂P) le
complexe différentiel des formes définies sur P à valeurs dans l’espace tensorielC∞(P)⊗g.

L’application T ∗π projettent les champs de vecteurs (invariants à droite) de P vers les
champs de vecteurs sur M . Le noyau de cette application forme les champs de vecteurs
dits verticaux Γ(V P) sur P. L’appellation “verticale” provient du fait que les champs de
vecteurs verticaux réalisent un déplacement infinitésimal des points de P le long de leur
fibre associée. Alors que la “verticalité” des champs de vecteurs est correctement définie,
il n’en est pas de même pour les champs de vecteurs dits “horizontaux”, qui constituent
l’espace complémentaire à Γ(V P) dans Γ(TP), autrement dit, tels que Γ(TP) = Γ(HP)⊕
Γ(V P), où Γ(HP) désignent les champs de vecteurs horizontaux. En terme de fibré tangent
à P, on aurait TuP = HuP ⊕ VuP pour tout u ∈ P.

Pour définire sans ambiguïté les champs de vecteurs horizontaux, on utilise une connexion
sur P. Du point de vue des fibrés, une connexion définie la décomposition du plan tangent
TuP, en chaque point u, en sa partie verticale et sa partie horizontale. Elle permet éga-
lement de définir les relèvements horizontaux des courbes sur M. D’un point de vue plus
algébrique, une connexion sur P est donnée par une 1-forme différentielle ω ∈ Ω1(P, g)
définie sur P à valeurs dans l’algèbre de Lie g. On la nomme la 1-forme de connexion de
Ehresmann. Celle-ci joue un rôle essentiel dans la construction de théorie invariante de
jauge de type Yang-Mills. Une 1-forme de connexion réalise la décomposition des champs
de vecteurs sur P selon Γ(TP) ≃ ker(ω) ⊕ Im(ω) où ker(ω) et Im(ω) s’identifient aux
champs de vecteurs horizontaux et verticaux, respectivement. Cette décomposition per-
met de définir l’opérateur h : Γ(TP) → Γ(HP) qui projette tout champ de vecteur de P
sur sa composante horizontale.

En utilisant un système de trivialisations locales du fibré principal, la 1-forme de
connexion ω ∈ Ω1(P, g) est envoyée vers un élément A ∈ Ω1(U , g) et définie sur Γ(TU) à
valeurs dans g. Cette 1-forme de connexion locale s’écrit dans la base (dxµ)µ=1,...,m comme
A = Aa

µdxµ ⊗ Ea où Aa
µ ∈ C∞(U) et (Ea) désigne les éléments de la base de g. Dans les

théories Yang-Mills, cette 1-forme de connexion décrit les bosons de jauge des théories de
jauge du modèle standard. Cette construction établit les liens qui existent entre le groupe
de symétrie, les connexions et les bosons médiateurs de la physique des particules.

En conservant le point de vue algébrique, on définit la courbure R = dω + 1
2 [ω, ω] de

la connexion comme une 2-forme définie sur P à valeurs dans g. Cette courbure s’écrit
localement sous la forme R = Ra

µνdxµ∧dxν ⊗Ea où Rµν = 1
2(∂µAa

ν −∂νAa
µ+Ab

µAc
νCa

bc) avec
Cc

ab les constantes de structures de l’algèbre de Lie g. Ce terme, dit cinétique, correspond
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au field strength des théories de jauge non abéliennes. Dans le cas G = U(1), le tenseur
Rµν ∈ C∞(U) ⊗ C est le tenseur de Maxwell-Faraday de l’électromagnétisme classique.

Le groupe de jauge du fibré principal agit sur l’espace des connexions de façon active ou
passive. La forme active correspond à l’action du groupe des automorphismes verticaux
Aµ Ô→ g−1Aµg + g−1∂µg, où g : U → G est un élément du groupe de jauge. La forme
passive correspond aux transformations de Aµ par changement de trivialisations de P. Le
principe de jauge appliqué aux transformations de jauge passives se traduit par le fait
que les observables physiques doivent être indépendantes de la trivialisation locale de P
choisie.

En munissant les constructions précédentes d’une métrique sur la variété et d’une
métrique de Killing sur l’algèbre de Lie g, on définit l’opérateur de Hodge avec lequel on
construit une théorie de jauge de type Yang-Mills sous la forme

LY M = (R, ⋆ R) =
1

4

∑

a

Ra
µνRµν a,

invariante sous l’action du groupe de jauge (active et passive) associé au fibré principal.
D’après le principe de jauge, cette théorie correspond à une “observable” en physique.1

Elles s’interprètent comme des théories des champs décrivant la propagation des bosons
de jauge non-massifs.

Mathématiques / Physique des particules

Connexion ω ↔ Bosons de jauge Aµ

Courbure R ↔ Field strength Rµν

Au final, les théories de jauge de type Yang-Mills découlent de la théorie des connexions
sur P. Les champs scalaires et les champs spinoriels n’émergent pas de la théorie des
connexions. L’introduction de tels champs dans les théories de jauge de type Yang-Mills
nécessite des structures géométriques supplémentaires. Ainsi, les champs de matière sca-
laire sont des sections sur un fibré associé et les spineurs sont des sections sur un fibré de
Dirac.

Mathématiques / Physique des particules

Sections sur fibré associé ↔ Champs de matière scalaire φ

Sections sur fibré de Dirac ↔ Spineurs Ψ

À elles-seules, les théories Yang-Mills en permettent pas de rendre compte de l’obser-
vation des masses des bosons vecteurs W ±

µ et Z0, médiateurs de l’interaction faible. Pour
cela, on invoque le mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble (BEHHGK,
prononcé “beck”) de brisure spontanée de symétrie. Le mécanisme BEHHGK consiste à
coupler une théorie de jauge U(1)×SU(2) de type Yang-Mills à un champ scalaire extérieur
φ plongé dans un potentiel scalaire quartique. En analogie avec les matériaux ferromagné-
tiques, ce champ est spontanément polarisé dans une direction, l’état du vide de la théorie,
ce qui provoque une brisure spontanée de la symétrie U(1) × SU(2) → U(1), ainsi que
l’apparition de termes de masses sur les bosons W ± et Z0.

1 La partie “observable” du Lagrangien sont les équations du mouvement du système.
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A proprement parler, ce champ n’est pas issu de la théorie des connexions sur fibré
principal. Il s’agit d’un champ ad hoc de la théorie, plongé dans un potentiel défini de façon
quasi-empirique. Bien qu’à l’heure actuelle la légitimité de l’existence d’un tel champ ne
fasse pratiquement plus aucun doute, le fait qu’il ne trouve pas sa place dans le cadre
unificateur de la théorie des connexions peut sembler déroutant aux yeux du physicien
mathématicien.

La théorie des connexions généralisées sur les algébroïdes de Lie transitifs étend le for-
malisme purement géométrique de la géométrie différentielle et de la théorie des connexions,
en incluant des éléments algébriques. Appliquée à un modèle de théories de jauge, ces
éléments algébriques amènent l’existence de champs analogues au champ scalaire du mé-
canisme de BEHHGK.

La théorie des algébroïdes de Lie transitifs

Les algébroïdes de Lie sont la version infinitésimale des groupoïdes de Lie. Il s’agit d’un
fibré vectoriel A définie au dessus d’une variété M de dimension m, appelée la variété de
base, muni d’un ancre ρ : Γ(A) → Γ(TM) et équipé d’un crochet de Lie tel que, pour
tout X,Y ∈ Γ(A) et f ∈ C∞(M), on ait

[X, f ·Y] = f ·[X,Y] + (ρ(X)·f)·Y et ρ([X,Y]) = [ρ(X), ρ(Y)].

En s’inspirant du formalisme de la géométrie non-commutative, on privilégie l’aspect “sec-
tion” des algébroïdes de Lie afin de se rapprocher des constructions de la théorie des
champs. Ainsi, nous notons A l’espace C∞(M)-module des sections sur A i.e. des appli-
cations M → A.

Si l’ancre ρ est surjectif, alors l’algébroïde de Lie est dit transitif et on note L le noyau
de ρ, aussi appelé le noyau de A. Par commodité, on voit L comme un algébroïde de Lie
qui se projette, par l’application ρ, sur 0. L’espace L s’injecte dans A par le morphisme
injectif C∞(M)-linéaire d’algèbres de Lie ι : L → A. Un algébroïde de Lie transitif est
défini par la suite exacte courte de C∞(M)-modules suivante :

0 //L
ι //A

ρ //Γ(TM) //0

De ce point de vue, A est une généralisation des champs de vecteurs sur M car il contient
à la fois la géométrie des champs de vecteurs de la variété ainsi qu’un espace purement
algébrique L.

Un algébroïde de Lie trivial TLA(M, g) défini sur M et modélisé sur g est un algébroïde
de Lie transitif dont l’espace A s’écrit sous la forme de la somme directe A = Γ(TM) ⊕
Γ(M × g). Le crochet de Lie s’écrit alors [X ⊕ γ, Y ⊕ η] = [X, Y ] ⊕ (X·η − Y ·γ + [γ, η])
pour tout X ⊕ γ, Y ⊕ η ∈ TLA(M, g). La dénomination “trivial” provient du fait que la
description géométrique et algébrique de l’espace total A est ici explicite. En tant que fibré,
tout algébroïde de Lie transitif est localement trivialisable, ainsi chaque élément X ∈ A

peut s’écrire localement sous la forme X ⊕ γ où X = ρ(X) et γ est une fonction définie
sur U à valeurs dans g. Un atlas d’algébroïdes de Lie est définie par la donnée, au dessus
de chaque ouvert de M, d’une trivialisation locale de A.

Un exemple classique d’algébroïde de Lie transitif est l’algébroïde de Lie d’Atiyah
associé à un fibré principal P(M, G). Ici, l’espace ΓG(P) des champs de vecteurs invariant
à droite se projette sur les champs de vecteurs de M par l’application induite T ∗π tandis
que le crochet de Lie est donné par le commutateur de deux champs de vecteurs. Le
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noyau de l’algébroïde de Lie d’Atiyah est l’espace ΓG(P, g) des applications G-équivariantes
v : P → g i.e. telles que v(u·g) = g−1v(u)g pour tout u ∈ P, g ∈ G. Géométriquement, cet
espace est la version infinitésimale du groupe de jauge associé à P. L’application injective
ι : ΓG(P, g) → ΓG(P) est similaire à l’application qui fait correspondre à tout élément
λ ∈ g le vecteur verticale associé λ#.

Les complexes différentielles sur A

Les algébroïdes de Lie transitifs se représentent sur les sections d’un fibré vectoriel E ,
défini au-dessus de M par l’application φ : A → D(E), où D(E) représente les opérateurs
différentiels du premier ordre sur Γ(E).

Plutôt que de définir le fibré dual A∗, on définit les q-formes différentielles sur A en tant
qu’applications C∞(M)-mutlilinéaire antisymétrique ∧q

A → Γ(E). On note (Ω•(A, E), d̂φ)
le complexe différentiel total où l’opérateur différentiel dφ utilise, d’une part, la représenta-
tion φ de A sur Γ(E) et, d’autre part, le crochet de Lie sur A. En prenant Γ(E) = C∞(M)
ou L, on obtient, respectivement, les complexes différentiels (Ω•(A), d̂A) et (Ω•(A, L), d̂).

Dans l’exemple des q-formes différentielles définies sur A à valeurs dans L, on définit
l’opérateur différentiel gradué d̂ : Ωq(A, L) → Ωq+1(A, L) par la relation suivante :

d̂ω(X1, . . . ,Xr+1) =
r+1∑

i=1

(−1)i+1[Xi, ω(X1, . . . , ∨i, . . . ,Xr+1)]

+
∑

1≤i<j≤r+1

ω([Xi,Xj ],X1, . . . , ∨i, . . . , ∨j, . . . ,Xr+1)

Dans le cas des algébroïdes de Lie triviaux, les complexes différentiels (Ω•
TLA

(M), δ)

(resp. (Ω•
TLA

(M, g), d̂TLA)) définissent l’espace des formes différentielles définies sur ∧•(Γ(TM)⊕
Γ(M × g)) à valeurs dans C∞(M) (resp. Γ(M × g)). Les opérateurs différentiels gradués
δ et d̂TLA se décomposent en la somme de deux opérateurs différentiels

δ = d + s d̂TLA = d + s′

où d est la différentielle de de Rham, s est la différentielle de Chevalley-Eilenberg et s′ est la
différentielle de Chevalley-Eilenberg munie de la représentation adjointe de l’algèbre de Lie
g sur elle-même. Un système de trivialisations locales de A permet d’établir, localement,
un isomorphisme de complexes différentiels entre (Ω•(A)|U , d̂A) (resp. (Ω•(A, L)|U , d̂)) et
(Ω•

TLA
(U), δ) (resp. (Ω•

TLA
(U , g), d̂TLA)).

Connexions ordinaires et connexions généralisés

Une connexion ordinaire sur A est un splitting de C∞(M)-modules ∇ : Γ(TM) → A

compatible avec l’ancre ρ dans le sens ρ ◦ ∇ = IdΓ(T M).

0 //L
ι //A

ρ //Γ(TM) //

∇

bb 0

On définit la 1-forme de connexion ω ∈ Ω1(A, L) comme ω(X) = X−∇ρ(X) pour tout X ∈ A.
Par construction, cette 1-forme est normée sur L, c’est-à-dire telle que ω◦ι(ℓ) = −ℓ quelque
soit ℓ ∈ L. Ici, le signe − est conventionnel. De façon équivalente, une connexion ordinaire
sur A peut être définie soit par la donnée d’une 1-forme sur A à valeurs dans L normées
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sur L, ou bien par la donnée d’une application ∇ tel que ρ ◦ ∇ = IdΓ(T M). L’aspect
“géométrique” de la connexion sur A est ainsi transcrit sous une forme plus algébrique.
Sur un algébroïde de Lie d’Atiyah associé à un fibré principal, on montre que les 1-formes
de connexion normées sur L sont équivalentes aux 1-formes de connexion de Ehresmann
définissant l’horizontalité des champs de vecteurs.

Localement, la 1-forme de connexion s’écrit comme ωloc = A − θ où A ∈ Ω1(U , g) est
la composante géométrique de ω, et θ : Γ(U × g) → Γ(U × g), avec θ(γ) = γ pour tout
γ ∈ Γ(U × g), est la composante algébrique de ω. La première composante représente une
1-forme de connexion locale sur U , la 1-forme θ ∈ g∗ ⊗ g correspond à l’expression locale
de la 1-forme de Maurer-Cartan. Cette décomposition indique que les degrés de libertés
de ω sont seulement portés par sa “composante” géométrique.

La dérivée covariante associée à une connexion ordinaire agit sur les sections s d’un
espace de représentation de A. Elle est définie comme l’application Dφ : A → D(E),
donnée par Dφs = dφs + φ(ι ◦ ω)s. La dérivée covariante est L-horizontale par rapport à
l’opération de Cartan (L, i, L) et ne “voit” donc pas les éléments “algébriques” issus de
L. Localement, cette dérivée covariante donne la dérivée covariante géométrique usuelle
Dlocs = ds + φ(A)s, où d désigne la dérivée de de Rham et A désigne la composante
géométrique locale de ω.

La courbure associée à une connexion ordinaire ∇ sur A est définie comme l’obstruc-
tion pour ∇ d’être un morphisme d’algèbres de Lie i.e. R(X, Y ) = [∇X , ∇Y ] − ∇[X,Y ].
Elle s’écrit en fonction de la 1-forme de connexion ordinaire ω comme F = d̂ω + 1

2 [ω, ω] ∈
Ω2(A, L) où d̂ est la différentiel associée au complexe (Ω•(A, L), d̂) et [·, ·] est le crochet de
Lie gradué sur Ω•(A, L). A l’instar de la dérivée covariante, la courbure F est également
L-horizontale et, en utilisant une trivialisation locale, on montre qu’elle s’écrit uniquement
en fonction des composantes locales A sous la forme Floc = dA + 1

2 [A, A] où d est la diffé-
rentielle de de Rham. Les termes “algébriques” θ se simplifient, et on trouve l’expression
locale de la courbure géométrique associée à une 1-forme de connexion de Ehresmann.

Une 1-forme de connexion généralisée ̟ sur A est une 1-forme sur A à valeurs dans L,
qui n’est à priori pas normée sur L. Ainsi, les connexions ordinaires forment un sous-espace
des connexions généralisées. On associe à toute connexion généralisée ̟ un paramètre
algébrique τ : L → L qui mesure l’obstruction à ce que la connexion généralisée soit une
connexion ordinaire. Ce paramètre se définit, pour tout ℓ ∈ L, comme

τ(ℓ) = ̟ ◦ ι(ℓ) + ℓ.

On nomme ce paramètre le reduced kernel endomorphism associé à la connexion généralisé
̟. Cet élément représente la partie “algébrique” de ̟ dans le sens où, si τ = 0, alors la
connexion ̟ est ordinaire, et donc géométrique. En se donnant une connexion de “référen-
ce” ω̊, qui est une 1-forme de connexion ordinaire sur A, on extrait la partie “géométrique”
de ̟. Celle-ci est représentée par la connexion ordinaire induite associée à ̟ et définie
comme ω = ̟ + τ(ω̊). On vérifie directement que cette connexion est normée sur L. Ainsi,
au moyen de ω̊, toute connexion généralisée ̟, se décompose selon (ω, τ) par la relation :

̟ = ω − τ(ω̊)

La dérivée covariante Dφ : A → Diff1(E) associée à la connexion généralisée ̟ agit sur
un espace de représentation E de A par la relation D̂φs = dφs + φ ◦ ι(̟)s. En prenant la
décomposition (ω, τ) de ̟, on voit que la dérivée covariante généralisée étend la dérivée
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covariante “géométrique” ‘Dφ par la relation D̂φ = Dφ −φ◦ι(τ(ω̊)). Ainsi, dans le contexte
des connexions généralisées, la dérivée covariante “usuelle” est étendue par un élément
purement algébrique τ .

La courbure associée à une connexion généralisée est définie en fonction de la 1-forme
̟ comme F̂ = d̟̂ + 1

2 [̟, ̟]. En considérant la décomposition de ̟ en (ω, τ), la courbure
prend une forme notablement plus complexe, qu’il est commode d’écrire comme

F̂ = ρ∗R̂ − (ρ∗Dτ) ◦ ω̊ + ω̊∗Rτ ,

où chaque terme possède sa signification géométrique et algébrique

• Le premier terme ρ∗R̂ := F − τ ◦ F̊ , où F et F̊ correspondent aux courbures asso-
ciées respectivement à la 1-forme de connexion ordinaire induite ω et la 1-forme de
connexion de référence ω̊. Par un calcul direct, on voit que ρ∗R̂ est L-horizontal et
correspond donc à un objet géométrique défini seulement sur les champs de vecteurs
de M.

• Le second terme (ρ∗Dτ) ◦ ω̊ := [ρ∗∇, τ ◦ ω̊] − τ([ρ∗∇̊, ω̊]), où ∇ et ∇̊ sont les deux
connexions ordinaires sur A, données par la connexion ordinaire induite ω et la
connexion ordinaire de référence ω̊, respectivement. Dans ce terme se mêle une com-
posante purement géométrique, celle liée aux connexions ordinaires, et une compo-
sante mixte, celle liée à la connexion de référence ω̊. Cette connexion de référence
joue un rôle important dans la description local de F̂ .

• Le dernier terme ω̊∗Rτ := 1
2 (τ([ω̊, ω̊]) − [τ ◦ ω̊, τ ◦ ω̊]) s’interprète comme l’obstruc-

tion à ce que le reduced kernel endomorphisme τ soit un endomorphisme d’algèbre
de Lie sur L.

En utilisant une trivialisation locale de A, on montre que la courbure F̂ peut s’écrire en
fonction de la composante géométrique A de la connexion ordinaire induite ω et du champ
tensoriel τ . La composant géométrique Å de la connexion de référence joue le rôle d’une
connexion de fond, et ne sera pas considéré comme un champ dynamique à proprement
parler. En tant qu’objet définie sur TLA(U , g), la 2-forme F̂ se décompose sur la base
(dxµ, ω̊a

loc) selon

F̂loc = (ρ∗R̂)a
µν dxµ ∧ dxν ⊗ Ea + (ρ∗Dτ)b

µa dxµ ∧ ω̊a
loc ⊗ Eb + (Rτ )c

ab ω̊a
loc ∧ ω̊b

loc ⊗ Ec

où le symbole ∧ désigne le produit tensoriel gradué de forme, et où chaque composante
(ρ∗R̂)a

µν , (ρ∗Dτ)b
µa et (Rτ )c

ab sont des éléments de C∞(U) correspondant aux trois termes
de la courbure. Écris dans cette base, ces trois termes possèdent les “bonne lois” de recol-
lements par changement de trivialisations.

Métrique, produit de Hodge et intégrale sur A

On souhaite définir une métrique ĝ sur A qui tienne compte, de façon non-naïve, de la
dualité entre le côté géométrique et algébrique des algébroïdes des Lie transitifs. Soient g
une métrique sur la variété de base M et h une métrique sur l’espace L. Une métrique ĝ de
A est dite inner-non dégénérée si la métrique correspondante sur L, de la forme h = ι∗ĝ, est
non dégénérée. On montre qu’une métrique ĝ est inner-non dégénérée si, et seulement si,
il existe une unique 1-forme de connexion ordinaire ω̊ (normée du L), telle que la métrique
ĝ puisse s’écrire selon

ĝ(X,Y) = g(ρ(X), ρ(Y)) + h(ω̊(X), ω̊(Y))
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pour tout X,Y ∈ A. Ainsi la donnée d’une métrique inner non-dégénérée sur A est équi-
valente à la donnée du triplet (g, h, ∇̊) où ∇̊ : Γ(TM) → A est la connexion métrique sur
A associée à ω̊. La 1-forme de connexion métrique ω̊ sert de connexion de référence pour
la définition de la connexion ordinaire induite.

On utilise la 1-forme de connexion métrique ω̊ comme une connexion de référence
pour définir la forme volume ωvol ∈ Ωn(A). Localement, cette forme volume s’écrit comme
ωvol ≃

√
det(h) ω̊1 ∧ . . . ∧ ω̊n, où h désigne la métrique sur Γ(U × g). Sur les intersections

d’ouverts de M, on s’assure que les expressions locales de ωvol se recollent correctement
entre elles.

Localement, la 1-forme de connexion métrique s’écrit comme ω̊a
loc = Aa

µdxµ−θa. Au lieu
de décomposer localement les formes différentielles définies sur A dans la base (dxµ, θa),
on opte pour une décomposition dans la base (dxµ, ω̊a

loc) en utilisant la relation θa =
ω̊a

loc − Aa
µdxµ. Cette nouvelle base est plus adaptée aux changements de trivialisations des

composantes d’objets définies globalement sur A. Ainsi, toute q-forme différentielle, telles
que q > n, peut s’écrire sous la forme

ωloc = ωm.i. ⊗ ωvol + . . .

où les points de suspension représentent les termes de degrés de forme algébrique stricte-
ment inférieurs à n. Par recollements, on voit que ωm.i. est une (q − n)-forme différentielle
globalement définie sur M à valeurs dans C∞(M). La notation m.i. correspond à maximal
inner.

L’intégrale inner définie sur Ω•(A) “sélectionne” le ωm.i. associé à chaque élément
Ωq(A). Elle est définie comme :

∫

inner
: Ωq(A) → Ωq−n(M) ; ω Ô→ ωm.i.

L’action de cette intégrale donne un résultat nul sur l’espace des formes différentielles de
degré strictement inférieur à n. En composant l’intégrale inner avec une intégrale sur M,
définie dans le formalisme de la géométrie différentielle, on associe à tout élément de Ω•(A)
un élément scalaire. L’intégrale sur A est définie sur les formes de Ω•(A) comme

∫

A

: Ωq(A) → R ;

∫

A

ω =

∫

M
◦

∫

inner
ω

Toutefois, le noyau de cette construction semble “trop gros” pour obtenir une information
“suffisante” de Ω•(A). En effet, l’intégrale sur A donne une résultat non-nul uniquement
pour les formes de degré q = m + n.

L’espace L est dit orientable si les fonctions de recollement des sections locales de la
fibre L, en tant qu’endomorphismes sur g, sont de déterminant strictement positifs. On
dit que l’algébroïde de Lie A est orientable si sa variété de base M est orientable, ainsi que
son noyau L. Associé à tout algébroïde de Lie orientable, on définit un opérateur de Hodge
sur Ω•(A), qui réalise un isomorphisme d’espaces vectoriels ⋆ : Ωp(A) → Ωm+n−p(A), où
m = dim(M) et n = dim(L), et qui se généralise facilement au complexe différentiel
Ω•(A, L). On utilise cet opérateur de Hodge pour définir un produit scalaire sur l’espace
des formes différentielles de Ω•(A). Soit ω ∈ Ωq(A) et η ∈ Ωr(A), alors on a :

〈ω, η〉 =

∫

A

ω ∧ ⋆ η
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Les éléments de Ω•(A) de degré de forme distincts i.e. pour lesquels q Ó= r, sont ortho-
gonaux entre eux par rapport à ce produit scalaire. En tenant compte de la métrique la
métrique h sur L, on étend ce produit scalaire à Ω•(A, L) par la relation :

〈ω, η〉h =

∫

A

h(ω, ⋆ η)

Action infinitésimale du groupe de jauge

Sur les fibrés principaux, le groupe de jauge est défini par l’action du groupe des automor-
phismes verticaux. Sur les algébroïdes de Lie transitifs, le “groupe” de jauge n’existe pas,
dans le cas général, et il est remplacé une action infinitésimale du noyau L.

On définit l’action géométrique de L sur l’espace des formes différentielles définies sur A

par l’action de la dérivée de Lie associée à l’opération de Cartan (L, i, L). Toutefois, cette
action géométrique, appliquée à l’espace des connexions généralisées sur A, amène des
transformations confuses. Notamment, on montre que la dérivée covariante D̂φ, associée
à la connexion généralisée ̟, et agissant sur un espace de représentation E , n’est pas
compatible avec la représentation de L sur cet espace i.e. on trouve D̂ξsξ Ó= (D̂s)ξ, où ξ ∈ L

est le paramètre infinitésimal de l’action de L. Également, les transformations de jauge de
la courbure de ̟ ne permettent pas de retrouver les transformations dites homogènes,
associées habituellement aux courbures des connexions.

Afin de retrouver, la compatibilité de la dérivée covariante avec l’action de L ainsi que
les transformations de jauge homogènes pour la courbure, on définit l’action algébrique de
L. Par définition, cette action infinitésimale algébrique de L est représentée sur l’espace
des connexions généralisées ̟ par la formule ̟ξ = ̟ − [ξ, ̟] + d̂ξ. De par cette transfor-
mation, on déduit les transformations de jauge infinitésimales de la connexion ordinaire
induite ω et du morphisme τ . On trouve alors ωξ = ω − [ξ, ω] + d̂ξ et τ ξ = τ − [ξ, τ ].
La courbure associée à la connexion généralisée se transforme de façon homogène sous
l’action algébrique de L comme F̂ ξ = F̂ − [ξ, F̂ ]. Les actions géométriques et algébriques
définissent deux représentations distinctes de L. Toutefois, elles coïncident uniquement sur
l’espace des connexions ordinaires.

Sur un algébroïde de Lie d’Atiyah associé à un fibré principal P(M, G), le groupe de
jauge G agit “algébriquement” sur la connexion généralisée selon ̟g = g−1̟g + g−1d̂g et
les transformations de jauge de la connexion ordinaire induite et du reduced kernel endo-
morphism sont données par ωg = g−1ωg + g−1d̂g et τ g = g−1τg. Ces transformations sont
les versions globales des transformations obtenues par l’action algébrique infinitésimale
de L.

Théories de jauge de type Yang-Mills-Higgs

On construit une théorie de jauge à partir d’une connexion généralisée sur un algébroïde
de Lie transitif orientable, muni d’une métrique inner-non dégénérée ĝ = (g, h, ∇̊), dont
la métrique inner h est une métrique de Killing sur L. L’action fonctionnelle Sgauge[̟] est
définit comme la “norme” de la courbure associée à la connexion généralisée ̟ :

SGauge[̟] = 〈F̂ , F̂ 〉h

Sous cette forme compacte, on voit directement que cette action est invariante sous l’action
algébrique infinitésimale de L.
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Les théories de jauge de la physique des particules sont usuellement décrites en fonc-
tion du lagrangien associé à l’action. Ici, on définit la densité lagrangienne (ou simplement
lagrangien) L[̟] par la relation L[̟]dvol =

∫
inner h(F̂ , ⋆ F̂ ) , où dvol désigne la forme

volume sur M. Pour obtenir une expression plus explicite de la théorie de jauge corres-
pondant à ce lagrangien, on écrit la courbure F̂ en fonctions des champs de jauge Aµ,
associés à la connexion ordinaire induite, et des champs tensoriels scalaires τ b

a, issues de le
composante algébrique de ̟. En appliquant directement la définition du produit scalaire
〈·, ·〉h, on trouve :

L[A, τ ] = λ1 gµ1µ2gν1ν2 ha1a2

(
∂µ1

Aa1

ν1
− ∂ν1

Aa1

µ1
+ Ab1

µ1
Ac1

ν1
Ca1

b1c1
− τa1

b1

(
∂µ1

Åb1

ν1
− ∂ν1

Åb1

µ1
+ Åd1

µ1
Åe1

ν1
Cb1

d1e1

))
·

(
∂µ2

Aa2

ν2
− ∂ν2

Aa2

µ2
+ Ab

µ2
Ac

ν2
Ca2

bc − τa2

b2

(
∂µ2

Åb2

ν2
− ∂ν2

Åb2

µ2
+ Åd1

µ2
Åe1

ν2
Cb2

d1e1

))

+ λ2 gµ2µ1ha2a1hb1,b2

(
∂µ1

τ b1

a1
+ Ac1

µ1
τd1

a1
Cb1

c1d1
− Åc1

µ1
τ b1

d1
Cd1

c1a1

)
·
(
∂µ2

τ b2

a2
+ Ac2

µ2
τd2

a2
Cb2

c2d2
− Åc2

µ2
τ b2

d2
Cd2

c2a2

)

+ λ3hc1c2
ha1a2hb1b2

(
τ c1

d1
Cd1

a1b1
− τd1

a1
τ e1

b1
Cc1

d1e1

)
·
(
τ c2

d2
Cd2

a2b2
− τd2

a2
τ e2

b2
Cc2

d2e2

)

où λ1 = 1
4m(m−1) , λ2 = 1

mn
et λ3 = 1

4n(n−1) sont des coefficients combinatoires et Cc
ab ∈ R

sont les constantes de structures de l’algèbre de Lie g, dont on choisit la base de telle sorte
que ces constantes soient réelles.

Le premier terme, factorisé par λ1, représente la partie Yang-Mills de la théorie. C’est
le terme cinétique, défini comme le “carré” du field strength associé aux bosons de jauge
Aµ. La composante géométrique Åµ de la connexion métrique joue le rôle d’une connexion
de fond, habituel en théorie des champs. Usuellement, ce terme est mis à zéro (possible
seulement localement) et on obtient alors le terme Yang-Mills usuel. Le second terme est
la dérivée covariante du champ tensoriel scalaire τ b

a, qui s’interprète en théorie des champs
comme un couplage minimal entre les bosons de jauge Aµ et le champ scalaire τ b

a. Ici
encore, la description de la dérivée covariante est donnée en présence de la connexion de
fond Åµ. Le dernier terme est un terme potentiel quartique dans lequel est plongé le champ
tensoriel scalaire τ b

a. Ce terme potentiel possède une interaction algébrique univoque : il
s’agit de l’obstruction pour le paramètre τ de préserver le crochet de Lie sur L. Le résultat
finale est donc une théorie de jauge de type Yang-Mills-Higgs décrivant des bosons de
jauge Aµ en interaction avec une “famille” de champ scalaire τ b

a.

En prenant le paramètre τ égal à 0, autrement dit en considérant l’espace des connexions
ordinaires, normées sur L, la théorie se ramène au “carré” de la courbure de la composante
géométrique de ω.

L[A, τ = 0] = λ1 gµ1µ2gν1ν2 ha1a2

(
∂µ1

Aa1

ν1
− ∂ν1

Aa1

µ1
+ Ab1

µ1
Ac1

ν1
Ca1

b1c1

)
·

(
∂µ2

Aa2

ν2
− ∂ν2

Aa2

µ2
+ Ab

µ2
Ac

ν2
Ca2

bc

)

On obtient alors une théorie de jauge non-abélienne de type Yang-Mills qui décrit la
propagation de bosons de jauge non-massifs.

Dans l’esprit de la théorie des champs, on identifie les sous-espaces de Ω1(A, L) qui
correspondent à des espaces de “solutions” de la théorie, c’est-à-dire pour lesquels le terme

17



potentiel est minimal, c’est-à-dire nul. Cette identification est similaire au “choix du vide”
pour le champ scalaire φ du mécanisme de BEHHGK. Ici, le potentiel est minimal si, et
seulement si, le paramètre τ de la théorie est un endomorphisme d’algèbres de Lie sur L.
De ce point de vue, les théories Yang-Mills usuelles de la théorie des champs, ici associées
à τ = 0, correspondent à une classe de solutions d’une théorie des champs plus générale,
basée sur les connexions généralisées sur les algébroïdes de Lie transitifs. Également, on
montre que cet espace de solution est préservé par l’action algébrique (et géométrique)
de L.

L’espace des connexions généralisées dont le champ tensoriel scalaire associé à la com-
posante algébrique de ̟ est de la forme τ b

a = δb
a (ou encore τ = IdL) correspond à une

seconde classe de solution de la théorie. Celle-ci fait apparaître des termes de masse pour
les champs de jauge Aµ, écrits sous la forme mabA

a
µAµ b, où la matrice de masse est fonc-

tion des dimensions m et n, de la métrique h et des constantes de structures Cc
ab et qui

s’écrit comme :
mab =

1

mn
ha1a2hb1b2

Cb1

aa1
Cb2

ba2

On suppose que la métrique h est localement constante i.e. hb
a ∈ R pour tout a, b =

1, . . . , n, de telle sorte que ce terme de masse ne dépende pas du point. Ainsi, ce sous-
espace de solutions, décrit la propagation de champs vectoriel massifs Aµ. Toutefois, ce
sous-espace n’est pas invariant sous l’action de jauge de L.

Nouvelle méthode de brisure de symétrie.

Dans le mécanisme de BEHHGK, le champ scalaire φ est introduit à la main dans la
théorie. Il est plongé dans un potentiel (dont la forme varie en fonction de l’énergie) et se
polarise spontanément dans un état de vide qui minimise ce terme potentiel. Le groupe
de symétrie initial de la théorie est alors spontanément réduit à un de ses sous-groupes,
celui-ci laissant invariant cet état de vide. Les perturbations du champ φ autour de l’état
de vide donnent les bosons de Higgs de la théorie.

Dans notre modèle, le champ scalaire φ est remplacé par un champ tensoriel scalaire
τ b

a, spécifique à l’espace des connexions généralisées sur A. Le potentiel quartique associé
à ce champ découle également du formalisme des algébroïdes de Lie transitifs. Il est défini
sous une forme algébrique et sa “forme” ne varie pas en fonction des paramètres libres de la
théorie. Cet écart par rapport au modèle usuel de brisure de symétrie incite à substituer la
méthode de “polarisation spontanée” du champ τ b

a par une nouvelle méthode de réduction
de symétrie.

Dans l’esprit du mécanisme de Goldstone de la théorie des champs, il est possible de
“transfèrer” une partie des degrés de liberté de τ vers les bosons de jauge Aµ, ce afin
de construire des champs composites invariant sous l’action du groupe de jauge. Cette
méthode est illustrée dans le cas des algébroïdes de Lie d’Atiyah.

Sur un algébroïde de Lie d’Atiyah associé à un fibré principal P(M, G), on considère
l’espace AIdL

des connexions généralisées sur ΓG(P) dont le reduced kernel endomorphism
τ est de la forme τ(ℓ) = Adu−1ℓ, pour tout ℓ ∈ L, où u : P → G est un élément du groupe
de jauge G. En prenant G un groupe de Lie simple, alors les degrés de libertés dynamiques
de jauge de τ sont tous contenus dans le champ u, ceux-ci se transformant sous l’action
de G de jauge comme ug = g−1u.

Dans l’espace fonctionnel des champs de la théorie, on réalise le changement de va-
riables (A, τ = Adu−1) ↔ (Â, u) où Â = u−1Au+u−1du est un champ composite, invariant
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sous l’action du groupe de jauge. En utilisant la métrique de Killing h de la théorie, on
montre que le lagrangien L[A, τ ] s’écrit uniquement en fonction des champs Â, le champ
u n’apparaissant plus explicitement dans la théorie dès lors, celui-ci n’est plus un champ
dynamique de la théorie. Dans les nouvelles variables, le lagrangien L[Â] s’écrit donc

L[Â, ŝ] = λ1 gµ1µ2gν1ν2 ha1a2

(
∂µ1

Âa1

ν1
− ∂ν1

Âa1

µ1
+ Âb1

µ1
Âc1

ν1
Ca1

b1c1
− ∂µ1

Åa1

ν1
+ ∂ν1

Åa1

µ1
− Åd1

µ1
Åe1

ν1
Ca1

d1e1

)
·

(
∂µ2

Âa2

ν2
− ∂ν2

Âa2

µ2
+ Âb

µ2
Âc

ν2
Ca2

bc − ∂µ2
Åa2

ν2
+ ∂ν2

Åa2

µ2
− Åd1

µ2
Åe1

ν2
Ca2

d1e1

)

+ λ2 gµ2µ1ha2a1hb1,b2

(
Âc1

µ1
Cb1

c1a1
− Åc1

µ1
Cb1

c1a1

)
·
(
Âc2

µ2
Cb2

c2a2
− Åc2

µ2
Cb2

c2a2

)

Le champ τ n’est plus présent dans la théorie, la totalité de ses degrés de libertés ont
été redistribué sur Aµ pour former le champ composite Âµ. En tant que champs invariant
sous l’action du groupe de jauge, les champs Âµ constituent des observables physiques. Le
comptage des degrés de libertés de la théorie, avant et après la définition des champs com-
posites, montrent que cette méthode repose simplement sur un changement de variables
approprié dans l’espace fonctionnel des champs de la théorie. Au final, cette méthode a
pour effet “d’éliminer” la représentation du groupe de jauge, le groupe de symétrie est
toujours présent dans la théorie, il est toutefois neutralisé.

Cette neutralisation du groupe de symétrie s’accompagne de termes de masses pour
les champs Âµ. En effet, on peut lire dans le lagrangien précédent le terme de masse
mab = 1

mn
ha1a2hb1b2

Cb1
aa1

Cb2

ba2
. Finalement, cette méthode de “changement de variables”

permet de passer d’une théorie de jauge décrivant la propagation de bosons de jauge Aµ,
en interactions avec un champ scalaire tensoriel τ b

a, à une théorie Yang-Mills décrivant la
propagation de bosons vecteurs massifs Âµ et dont le groupe de symétrie n’agit plus sur
les champs de la théorie.
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Introduction

Domains of the modern physics can be separated into two distinct subsets accordingly to
the nature of their objects. The first subset is composed of domains which are related
to the study of natural phenomena, where mathematics play the role of nothing more
than a “tool”. The second subset is related to the study of physical objects which are
deeply rooted in a mathematical framework. This subset is related to the discipline of
mathematical physics. We consider that the mathematical physics as some sort of non-
splittable mix between mathematical description and physical content.

Mathematics are present in domains of physics, from solid mechanics to general relativ-
ity. However, physics domains are not all concerned with mathematical physics. Indeed,
it would be too wide to simply define mathematical physics as the discipline of the math-
ematical analysis of physical phenomena. Mathematics in physics should not be restricted
to a powerful tool used to model physical systems and to solve equations. For example,
solid mechanics, fluid mechanics and optical physics are concerned with, respectively, lo-
cal forces applied to a continuous medium, interactions between fluid particles and optical
properties of light. In these cases, the corresponding physical system exists independently
of the formalism. At the opposite, quantum mechanics and general relativity are parts
of mathematical physics in the sense that these domains cannot be understood without
making references neither to vectors of an Hilbert space nor to the riemannian geometry,
respectively.

It is important to determine what mathematical physics is, but also what it is not:
mathematical physics is neither mathematics nor physics. Mathematics are related to
the investigation of the properties of abstract objects and their classifications, whereas
the purpose of physics is to establish predictive and repetitive laws concerning natural
phenomena. But mathematical physics is neither concerned with the study of concrete
problems or experiences, nor with the classification of mathematical objects and general-
izations of results.

We consider that the mathematical framework carries a conceptual information con-
cerning the meaning of physics. Then, the investigation and the generalization of the
mathematics underlying a physical theory can lead to the prediction of new physical ob-
servations and/or measurable quantities. This assertion can be illustrated by some of the
greatest results of the 20th century such as the prediction of anti-matter particles by Paul
Dirac and the prediction of the gyro-magnetic factor of the electron using the Quantum
ElectroDynamic formalism (these two examples are present in almost every textbook re-
lated to the quantum field theory, see [PS95; IZ85; Wei95]). Nevertheless, we do not ignore
how many elegant mathematical models have been infirmed by experiences. The best ex-
ample is the first unification theory between general relativity and electromagnetism by H.
Weyl. Another one is the adding of a fifth dimension of spacetime in the Kaluza’s theory.
An historical description of these first attempts to the unification can be found in [OS99].
Facts and observations are final judges in physics, and theories find no legitimacy in the
beauty of their mathematical construction.
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Introduction

Among many subjects of the mathematical physics, we are interested in gauge theories
associated to groups of symmetry.

Since the special relativity of 1905, every objects have to be formulated under a co-
variant form to get the correct transformations with respect to the action of the Lorentz
group. These objects are the famous quadri-vectors “xµ”, these Greek indices are related
to their external degrees of freedom i.e. the degrees of freedom associated to their position
in spacetime.

Besides, the standard model (SM) of particles physics considers the existence of sym-
metry groups as part of the fundamental ingredients in the description of the infinitesimal
world. Here, each of these symmetry groups is associated to a fundamental force in
physics: the groups of symmetry U(1), SU(2) and SU(3) are associated to the electro-
magnetic interactions, weak interactions and strong interactions, respectively. They act
on some representation spaces, e.g. vectors or tensorial fields, and affect only their inner
degrees of freedom, usually denoted by Latin indices. These groups of symmetry are not
related to some “external” displacements of particles in the spacetime, they do not affect
the external degrees of freedom of the system. Then, any microscopical system can be
equipped with both external degrees of freedom (related to its position in the spacetime)
and internal degrees of freedom (related to its microscopic invariance with respect to a
given interaction). Groups of inner symmetries do act on Latin indices, leaving invariant
the Greek indices, whereas Lorentz group does act only on Greek indices.

This “duality” is illustrated by covariant derivatives used in particle physics. Initially,
the covariant derivative was defined in order to add a minimal coupling between a scalar
field φ and an external source Aµ. This could be done by substituting the derivative
∂µφ (related to some “external” displacements of φ) with a covariant derivative (∂µ +
Aµ)φ where Aµ is a matrix-valued field in the representation of φ. Then, the external
infinitesimal displacement is “corrected” by action on the inner components of φ.

How can this duality be depicted in one global mathematical framework?

The theory of fiber bundles is related to the description of an upper space, defined
“above” a manifold M. The total space contains additional degrees of freedom so that it
results in a scheme which “mixes” both the geometry of spacetime and some inner space.
This inner space has no extension on the manifold, it can be seen as a space “perpen-
dicular” to M. Then, it should be considered as a set of new degrees of freedom which
cannot be directly “seen” by physics. For principal bundles, a Lie group G moves points
of P vertically, along their fibers. This corresponds to the so-called inner group of symme-
try. Here, external and inner degrees of freedom are present in one global mathematical
framework. The external degrees of freedom will be refereed to as the geometric degrees
of freedom.

In 1954, C. N. Yang and R. L. Mills built the so-called Yang-Mills (YM) theories which
generalize the Maxwell U(1)-theory of electromagnetism to higher groups of symmetry
(they are isotopic groups in [YM54]). The construction of the YM models consists in
taking into account, for any fields which are in a representation of a group of symmetry,
that infinitesimal displacements on spacetime are related to some an external and inner
infinitesimal displacement. In the formalism of fiber bundles, this leads to equip the
principal bundle P with a connection.

The role of connections on P are similar to Christoffel symbols in general relativity.
On a curved Riemannian manifold, the usual “flat” derivative is corrected by Christoffel

24



Introduction

Scalar fields in
YM models

Infinitesimal
variations

External degrees
of freedom

φ = φ(x1, . . . , xm) dφ = ∂µφ(x1, . . . , xm) ⊗ dxµ

Inner degrees
of freedom

φ = φa ⊗ Ea A·φ = Aa
b φb ⊗ Ea

Table 1: Infinitesimal variations of scalar fields in both external and inner directions.

symbols to take into account the curvature of the manifold. On a principal bundle P,
connections correct the “trajectories” of fields defined on spacetime, taking into account
these inner degrees of freedom. It results in the definition of covariant derivatives. Local
trivializations of covariant derivatives are symbolically denoted as (d + A) where d is
related to external infinitesimal displacements (related by the partial derivative ∂µ) and
A = Aa

µdxµ ⊗ g acts on the inner components of the fields. See Table 1.

The components Aa
µ come from the local trivialization of the connection 1-form ω

defined on P. In gauge field theories of the particle physics, these correspond to the so-
called gauge bosons, mediators of the interaction associated to this group. Connections
also define geometric curvatures, and YM theories are simply obtained by the “norm” of
curvatures. This norm corresponds to the kinetic term in particle physics.

What is the role of gauge theories in this geometrical context?

Gauge theories are theories which involves fields defined on a manifold M equipped
with both inner and external degrees of freedom and which support a representation of a
symmetry group, called the gauge group, which acts only on the inner components of these
fields. Then, these so-called gauge fields form a multiplet with respect to the symmetry
group. As a gauge principle, we claim that physical observables have to be gauge-invariant
quantities i.e. every “inner configurations” of the multiplet which are related by the action
of the gauge group are equivalent with respect to the physical observation. According to
this gauge principle, gauge fields whose components are not invariant with respect to the
action of a gauge group are not observables.

We stress the distinction between the so-called active and passive gauge transforma-
tions. The former corresponds to an action of the gauge group on the inner components of
the fields of a gauge theory. If the gauge theory is associated to a principal bundle, active
transformations are encoded into vertical automorphisms of principal bundle. By moving
points along their fibers, objects defined on P undergo some geometric transformations.
The latter corresponds to transformations which occur by changes of local trivializations
of principal bundle e.g. from an open set U ⊂ M to another. With respect to the passive
gauge transformations, the gauge principle states that observables in physics have to be
independent of the choice of trivialization of P. In general case, mathematical expres-
sions of active and passive transformations are the same. These two expressions will be
distinguished in chapter 6.

How are transitive Lie algebroids related to gauge theories?

The theory of Lie algebroids was originally defined as the infinitesimal version of the Lie
groupoids (the full aspect of the theory of Lie groupoids and Lie algebroids is presented in
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[Mac05], a quick survey of the theory can be found in [Wei96]). They were first introduced
by J. Pradines in 1967 [Pra67]. A Lie algebroid is a vector bundle A defined over a
manifold M, equipped a C∞(M)-linear pointwise map ρ : A → TM, called the anchor,
which projects elements of A to elements of the tangent bundle TM, and a Lie bracket
defined on the space of sections A = Γ(A) such that, for any X,Y ∈ A and f ∈ C∞(M),
one has

[X, f ·Y] = f ·[X,Y] + (ρ(X)·f)·Y
If the anchor ρ is surjective, A is said to be a transitive Lie algebroid. The kernel of ρ is
denoted by L and we denote the space of sections of this vector bundle as L = Γ(L). Lie
algebroids are usually used in connection of mechanics when they are mostly described
in terms of fiber bundles (for a review concerning the relations and applications to the
Poisson mechanics, see [KS08] and references therein)

Here, in order to get closer to the formalism of gauge theories, we adopt the sectional
point of view of A. Then, we consider the finite projective C∞(M)-module A as the Lie
algebroid so that elements of A are maps X : M → A. This description is similar to
the formalism used in the noncommutative geometry (NCG) of A. Connes (we refer the
reader to the standard book [Con94; CM08a]). Transitive Lie algeboids are considered as
a generalization of the tangent bundle TM. Obviously, for ρ = Id, we obtain A = TM,
and then the Lie algebroid is exactly the tangent bundle of M. In our description, the
anchor ρ projects only a “part” of A to elements of the tangent bundle. In this sense,
the complementary part represents a generalization of TM. From the point of view of
sections, transitive Lie algebroids are generalizations of vector fields on M. The part of
A which projects to Γ(TM) is called the geometric component of A and the kernel of the
anchor is called the algebraic component of A.

We are interested in defining global gauge field theories based on transitive Lie al-
gebroids. We expect to generalize the YM type models defined in differential geometry.
Then, the study of new terms, specific to the formalism of transitive Lie algebroids could
possibly lead to new theoretical predictions and/or observations.

The first step consists into exploring the structures of transitive Lie algebroids to
correctly understand how they extend objects and constructions related to vector fields
on M. The extended part of transitive Lie algebroids is explicit on trivial Lie algebroids,
which are written as the direct sum of the space of vector fields on M and the space of
functions on M with values in g i.e. as where A = TLA(M, g) = Γ(TM) ⊕ Γ(M × g).
In non-trivial situations, these two spaces are "melted" in A. Local trivializations of A

are defined by using local isomorphisms of Lie algebroids from A to trivial Lie algebroids
TLA(U , g) on U ⊂ M modeled over a Lie algebra g.

The formalism in terms of sections is compatible with the the definition of differential
complexes on A. Two differential complexes are relevant: the graded algebra of differential
forms on A with values in C∞(M), and the graded Lie algebra of differential forms on A

with values in L. The former has already been studied by several authors as a generaliza-
tion of the de Rham differential complex (notable results related to this space are given
by K. Kubarski in [Kub98; Kub99; KM03]). The latter plays here a significant role in
constructions of gauge invariant theories. By using local trivializations of transitive Lie
algebroids, differential complexes defined on A are locally isomorph to differential com-
plexes defined on TLA(U , g). These would correspond to the “local version” of the “global”
differential forms.

On transitive Lie algebroids, we define the space of ordinary connections, in terms of
a differential form defined on A with values in L. On Atiyah Lie algebroids, the space of
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ordinary connections 1-forms are in 1 : 1 correspondence with the Ehresmann connections
on a principal fiber bundle P (see the works of S. Lazzarini and T. Masson in [LM12a]).
Ordinary connections are geometrical objects in the sense that they do not see the algebraic
component of A. This is transcripted into the relation ω ◦ ι(ℓ) = −ℓ for any ℓ ∈ L,
this corresponds to the normalization of ω on L. By relaxing this constraint, ordinary
connections are easily extended to the space of generalized connections on A.

Given a background connection, we show that any generalized connections can be
explicitly written as the sum of an ordinary connection and a purely algebraic term, the
reduced kernel endomorphism τ : L → L, which does not exist in the differential geometry
approach. This algebraic term goes with the induced ordinary connection throughout the
following constructions.

Finally, transitive Lie algebroids support an infinitesimal gauge action defined by a
representation of the kernel L. In the case of Atiyah Lie algebroids, this representation
of L is exactly the infinitesimal version of the action of the gauge group. On the space of
generalized connections, the kernel L can be represented either by the Cartan operation
associated to L, or by an algebraic operation, compatible with the covariant derivative
associated to ̟.

What is the outcome of all this?

All these ingredients are implemented into a gauge theory constructed using a spe-
cific metric on A, a Hodge star operator and an integral operator over A. It results in
the definition of a Lagrangian density L[A, τ ] which depends only on the geometric lo-
cal connection A = Aa

µdxµ ⊗ Ea, and on some scalar fields τ b
a, coupled to the gauge

bosons A, embedded into a potential term. Obviously, this theory is related to the
well-known Yang-Mills-Higgs (YMH) models associated to Brout-Englert-Higgs-Hagen-
Guralnik-Kibble (BEHHGK, pronounced “beck”) mechanism of spontaneous symmetry
breaking (also known as the Higgs mechanism, see [PS95; IZ85] for the full theory of spon-
taneous symmetry breaking, including the quantization of the associated theory). This
mechanism is an essential feature to get massive vector bosons.

This gauge theory is the main result of this PhD thesis. It proves that transitive
Lie algebroids equipped with generalized connections contain scalar fields, as algebraic
parameters, not present in differential geometry, whose role is similar to the scalar field in
BEHHGK mechanism. By putting this element to zero, generalized connections become an
ordinary connection 1-forms, and the gauge field theory based on transitive Lie algebroids
becomes exactly a YM theory.

Scalar fields are not introduced by hand in the theory, as for the BEHHGK mecha-
nism. From the mathematical point of view, this construction stays in the geometry of
the (generalized) connections on A. Analogies and differences between YMH models based
on generalized connections and YMH models based on the BEHHGK mechanism will be
discussed in the body of the text.

In particular, in the BEHHGK mechanism, the scalar field φ is embedded into a poten-
tial term with possibly non-zero minimum, called the vacuum configurations. The “shape”
of this potential term depends on dynamical parameters related to the energy scale of the
system. In analogy with ferromagnetic materials, the field φ can be spontaneously polar-
ized in one direction. Then, the initial symmetry group is reduced to one of its subgroup
in order to preserve the polarization of φ. In YMH models based on transitive Lie alge-
broids, the free parameters of the theory do come from the formulation of A. They do not
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correspond to dynamical parameters. Then, the “shape” of the potential is invariant and
is simply written as an algebraic constraint on τ .

There exists several methods of symmetry reduction. In addition of the BEHHGK
mechanism, the symmetry group can be reduced using gauge-fixing term or reduction of
fiber bundles (This last point is a mathematical result of the differential geometry, see
[KN96a]). Here, procedures of symmetry reduction are substituted by a new method of
“neutralization” of the symmetry group. To this purpose, we restrict the theory to a
suitable subspace of generalized connections. Then, we show that degrees of freedom of τ
can be “moved” to the gauge boson Aµ in order to form a gauge invariant composite field
Âµ. It results in a theory where the representation of the gauge group is trivial on fields
of the theory. Moreover, gauge invariant composite fields Âµ acquire mass terms. Under
its final form, the theory describes a YM type theory with massive vector fields.

I now announce the plan of my PhD thesis.

In chapter 1, we expose the main definitions of differential geometry and theory of fiber
bundles. This topic is far too wide to be fully detailed in a PhD thesis and we refer the
reader to [KN96a; KN96b; Ste60] for mathematical descriptions of differential geometry
and to [TS87; Nak03; CN87; Fel87] for applications to physics. Instead, we establish the
usual gauge construction into a more algebraic description. This description will be in
correspondence with the formalism of the transitive Lie algebroids.

In chapter 2, we give the general theory of the (transitive) Lie algebroids, mainly in
terms of sections defined on M with values in A. Actually, Lie algebroids are usually
describe in terms of fiber bundles and are strongly related to Poisson mechanics. Here, we
adopt the point of view of the gauge field theory and the NCG. We insist on the coexistence
of both the geometric and the algebraic degrees of freedom of A. This point becomes
explicit in the case of trivial Lie algebroids. We also illustrate transitive Lie algebroids
by defining Atiyah Lie algebroids associated to a principal bundle P (see [Ati57]). Local
trivializations of transitive Lie algebroids are defined in terms of isomorphisms of Lie
algebroids between generic transitive Lie algebroids A and trivial Lie algebroids defined
on U ⊂ M.

In chapter 3, we define graded differential algebras of forms defined on A with values
in a representation space E equipped with differential operators associated to their cor-
responding representation of A. These objects generalize differential structures defined
on M (Classical results of algebraic topology can be found in [BT10; ES05]). Examples
of graded differential algebras are given by Γ(E) = C∞(M) and Γ(E) = L. It results in
the definition of the differential complexes (Ω•(A), d̂A) and (Ω•(A, L), d̂). Locally, these
two differential complexes are isomorph to the differential complexes (ΩTLA(U), δ) and
(ΩTLA(U , g), d̂TLA) (their “local” versions), respectively.

Chapter 4 gives the general theory of ordinary and generalized connections on transi-
tive Lie algebroids. The notion of ordinary connections defined on transitive Lie algebroid
is close to the notion of ordinary connections defined in NCG (see [MS05]). Ordinary
connections “inject” the geometry of vector fields into the Lie algebroid A. They are
equivalently defined by differential 1-forms in Ω1(A, L) which are normalized on L. Ordi-
nary connections are also related the definition of some “horizontal” subspace in A. By
relaxing the normalization on L, we define the space of generalized connections on tran-
sitive Lie algebroids. Given a background connection, any generalized connection ̟ can
be decomposed into an ordinary connection 1-form and a reduced kernel endomorphism
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τ associated to ̟. For both ordinary and generalized connections, covariant derivatives
and curvatures are well-defined.

In chapter 5, we give all the necessary tools in order to define a scalar product on
differential of forms on A. To do so, we define some metrics ĝ on A, an inner integral
operator acting on Ω•(A), an integral over A and we generalize the Hodge star product to
transitive Lie algebroids in order to take into account both the geometric and the algebraic
degrees of forms of Ω•(A). Finally, we obtain a scalar product 〈·, ·〉 : Ω•(A) × Ω•(A) → R.
With respect to this scalar product, differential forms of distinct degrees are orthogonal.

To construct gauge invariant theories based on transitive Lie algebroids, we define in
chapter 6 the infinitesimal gauge action of L on both ordinary and generalized connections
on A and on their associated objects i.e. covariant derivatives and curvatures. In partic-
ular, on the space of generalized connections on A, the infinitesimal action of L can be
defined either as the Lie derivative associated to the Cartan operation (L, i, L) or as a new
“algebraic” action of L. With respect to the latter, covariant derivatives and curvatures,
associated to generalized connections, have homogeneous gauge transformations.

Chapter 7 is devoted to the computation of the gauge invariant action functional,
defined as the “norm” of the curvature associated to any generalized connections on A.
The Lagrangian associated to this action describes a YMH type theory where the usual
scalar field of the SM is substituted with scalar fields τ b

a, embedded into an algebraic
potential term. Some mathematical and physical discussions will be present to illustrate
the relevance of the obtained result.

Chapter 8 is an application of a general method of symmetry reduction based on a
change of variables in the functional space of the fields of the theory (full theory detailed
in [FFLM13]). Application to gauge theories on Atiyah Lie algebroids gives a description
of massive vector fields.
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Chapter 1

Differential geometry

This chapter is devoted to the basic definitions, notations, and constructions of both the
differential geometry and the theory of fiber bundles. Although this formalism is well-
known for most of the theoretical physicists (see [KN96a; KN96b; Nak03; TS87; CN87]),
we will rather focus on a description in terms of algebraic objects defined as modules
over C∞(M) than in terms of geometric bundles, dual bundles, etc. This approach is
close to the formalism of the NCG which consists into describing geometric objects in
terms of module structures (see [Con94; CM08a]). Moreover, this algebraic language is
well-adapted to the constructions of gauge field theories based on M.

In chapter 2, transitive Lie algebroids are considered as a generalization of the space
of vector fields on M. Then, many constructions presented here will be generalized to
this new framework. The “algebraic” formalism we will use in this chapter will permit to
make comparisons between corresponding objects.

1.1 Differentiable manifolds

1.1.1 Manifolds

A manifold is a topological space which can be seen locally as a “flat” surface e.g. euclidean
or minkowskian. However, globally, this flatness is lost to the benefit of some intrinsic
curvature.

Differentiable manifolds, or simply manifolds, are topological spaces M which are
covered by a finite number of open sets (Ui)i∈I , with ∪

i∈I
Ui = M, such that, for each open

set Ui, there exists an invertible homeomorphism ϕi : Ui → O where O is an open set
of R

m where m is the dimension of the manifold. Thus, manifolds are considered as a
collection of “flat” spaces, glued together to form the total space.

Each pair (Ui, ϕi) represents a chart of M. The union of all the charts of M forms an
atlas of M. Each chart permits to describe the neighborhood of any point p in terms of
coordinates in R

m. We denote by (e1, e2, ...., em) a basis of Rm. With respect to this basis,
any element p ∈ Ui can be locally described in O ∈ R

m as ϕi(p) = x1
i e1+x2

i e2+. . .+xm
i em =

xµ
i eµ where xµ

i ∈ R are the coordinates of p.

On Uij = Ui ∩ Uj ,1 the map ϕij = ϕi ◦ ϕ−1
j is an invertible homeomorphisms from

ϕj(Ui ∩ Uj) to ϕi(Ui ∩ Uj). 2 If every Uij are diffeomorphic to R
m, the cover (Ui)i∈I is said

1 Through all this PhD thesis, we denote by Uij the non-empty intersection of the open sets Ui and Uj .
We respect the Čech convention Uij = −Uji.

2 Note that the index of the target space is located at the left of the index of the source space. This
convention will be adopted through all this PhD thesis (except in subsection 2.2.2, where we use a vertical
disposition of the indices).
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Chapter 1 – Differential geometry

to be good cover (of finite type).3 The set of homeomorphisms ϕij , for i, j ∈ I, fulfills the
structure conditions





ϕji = ϕ−1
ij

ϕii = Idϕi(Ui)

On Uijk = Ui ∩ Uj ∩ Uk, one has ϕkj ◦ ϕji = ϕki

(1.1.1)

We denote by C∞(M) the space of functions f : M → R of class C∞. 4 Locally,
with respect to a chart (Ui, ϕi) of M, we use the same letter to define both the maps
f : M → R and f : ϕi(Ui) → R so that we have f(p) = f(x1

i , x2
i , . . . , xm

i ) for any p ∈ Ui.
This will not lead to ambiguous notations. Let f, g ∈ C∞(M), the product f ·g is defined
as (f ·g)(p) = f(p)g(p) for any p ∈ M.

On the open set Uij , any point p can be either written in the coordinates (y1, y2, . . . , ym),
with respect to the chart (Uj , ϕj), or in the coordinates (x1, x2, . . . , xm), with respect to
the chart (Ui, ϕi). The determinant of the Jacobian matrix Jij ∈ C∞(M) is defined, at
p ∈ Uij , as

Jij(p) =

∣∣∣∣∣∣∣∣

∂y1

∂x1 . . . ∂y1

∂xm

...
...

∂ym

∂x1 . . . ∂ym

∂xm

∣∣∣∣∣∣∣∣
(p) (1.1.2)

A manifold M is said to be orientable if there exists an atlas of M which fulfills the
condition Jij(p) > 0 for any i, j ∈ I.

1.1.2 Vector fields on M

On manifolds, tangent vectors, or simply vectors, are defined as the “derivations”, at one
point p, of an equivalence class of curves passing through this point. Let Φt(p) be a curve
on M parametrized by an index t ∈ [−1; 1] such that Φ0(p) = p. The tangent vector Xp,
associated to this curve, is defined at the point p as:

Xp : C∞(M) → C∞(M) ; (Xp·f)(p) =
d
dt |t=0

f(Φt(p)) (1.1.3)

The set of all the tangent vectors at the point p is a vector space of rank m. It is
denoted by TpM and is called the tangent space of M at the point p. The union of every
tangent spaces TpM forms the tangent vector bundle, or tangent bundle, and is denoted
by TM = ∪

p∈M
TpM.

The space of vector fields are defined as the space of sections of TM i.e. by the set
of maps X : M → TM, defined as X : p Ô→ Xp ∈ TpM. Vector fields can also be seen
as a smooth assignment of a vector to each point of M. The flow of a vector field X is a
parametrized map ΦX : M × R → M defined at p ∈ M as:

Xp =
d
dt |t=0

ΦX,t(p) and ΦX,0(p) = p (1.1.4)

for any p ∈ M. Vector fields acts on C∞(M) as X·f = d
dt |t=0

φ∗
X,tf , for any f ∈ C∞(M).

3 This will be the case in all this PhD thesis.
4 Every functions defined on manifolds will be of class C∞.
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1.1 – Differentiable manifolds

With respect to a chart (Ui, ϕi), we denote by (∂i, 1, ∂i, 2, . . . , ∂i, m) a basis of the tangent
space at p ∈ Ui. Then, locally, any vector field X ∈ Γ(TUi) can be written as X = Xµ∂i, µ

where Xµ ∈ C∞(Ui) are the components of X, so that X·f = Xµ∂i, µf where ∂i, k stands
for ∂/∂xk

i . On Uij , the elements (∂/∂xµ) are related to elements (∂/∂yµ),by changes of
charts, as

∂

∂xµ
=

∂yν

∂xµ

∂

∂yν
. (1.1.5)

Then, on the open subset Uij , any tangent vector Xp can be written either as Xp =
Xµ

p (∂/∂xµ), with respect to the chart (Ui, ϕi), or as Xp = Y µ
p (∂/∂yµ), with respect to the

chart (Uj , ϕj). Then, the components Y µ
p and Xµ

p are related as Y µ
p =

(
∂yµ

∂xν

)
(p) Xν

p .

The space Γ(TM) is equipped with a C∞(M)-linear antisymmetric Lie bracket [·, ·] :
Γ(TM) × Γ(TM) → Γ(TM). It is defined, for any f ∈ C∞(M), X, Y ∈ Γ(M), as the
commutator

[X, Y ]·f = X·(Y ·f) − Y ·(X·f). (1.1.6)

Equivalently, we define the Lie bracket on Γ(TM) in terms of the flows. Let ΦX,t(p) and
ΦY,s(p) be the flows associated to the vectors X, Y ∈ TpM, respectively. Then, the Lie
bracket is defined as:

[X, Y ]p =
d
dt |t=0

(
d
ds |s=0

(ΦX,−t ◦ ΦY,s ◦ ΦX,t(p))

)
. (1.1.7)

1.1.3 Differential forms on M

From the geometric point of view, differential forms of degree q are sections of the fiber
bundle ∧q(T ∗M), where T ∗M denotes the cotangent bundle over M and ∧q denotes the
multi-linear antisymmetric tensorial product of q vector spaces. By definition, one has the
equality

Γ(∧q(T ∗M) = ∧qΓ(T ∗M) (1.1.8)

Here, we rather use an “algebraic” definition of differential forms than a description in
terms of sections of cotangent bundles. We define the space of differential forms of degree
q as the vector space of the C∞(M)-multilinear antisymmetric maps : ∧qΓ(TM) →
C∞(M). This space is a module over C∞(M) and we denote it by Ωq(M). A differential
q-form ω is completely antisymmetric in the sense that

ω(X1, . . . , Xi, . . . , Xj , . . . , Xq) = −ω(X1, . . . , Xj , . . . , Xi, . . . , Xq) (1.1.9)

for any X1, . . . , Xq ∈ Γ(TM) and i, j = 1, . . . , n. Geometrically, the space Ω1(M) corre-
sponds to the space of covectors on M i.e. the space of sections on the cotangent bundle
T ∗M.

With respect to the chart (Ui, ϕi), we denote by (dx1
i , dx2

i , . . . , dxm
i ) a basis of T ∗Ui.

Any element dxµ
i is dual to the element ∂i, ν in the sense that dxµ

i (∂i, ν) = δµ
ν where δν

µ is
the Kronecker symbol. Then, any 1-form ω ∈ Ω1(M) can be written as ω = ωµdxµ where
ωµ ∈ C∞(M) are the components of ω, so that ω(X) = ωµXµ, for any X ∈ Γ(TM), and
any differential q-form ω can be written as

ω =
1

q!
ωµ1µ2...µq dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµq (1.1.10)

where ωµ1µ2...µn ∈ C∞(Ui) is completely antisymmetric. Then, one has

ω(X1, . . . , Xq) = ωµ1µ2...µq Xµ1 . . . Xµq (1.1.11)
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Chapter 1 – Differential geometry

From the antisymmetric property of the q-form ω, it vanishes if q > m where m is the
dimension of M.

We use the multiplication in C∞(M) to define a graded tensorial product on Ωq(M).
Let ω ∈ Ωq(M) and η ∈ Ωr(M), then ω ∧ η is a (q + r)-form defined on M with values in
C∞(M), such that ω ∧ η = (−1)q+rη ∧ ω, and defined as

(ω ∧ η)(X1, . . . , Xq+r) =
1

q!r!
ǫa1a2...aq+r

ω(Xa1 , . . . , Xaq )·η(Xaq+1 , . . . , Xaq+r ) (1.1.12)

for any X1, . . . , Xq+r ∈ Γ(TM) and ǫa1a2...aq+r
is the completely antisymmetric Levi-Civita

tensor. On Uij , differential q-forms ω can be locally written either accordingly to the basis
(dx1, . . . , dxq), with respect ot the chart (Ui, ϕi), or accordingly to the basis (dy1, . . . , dyq),
with respect to the chart (Uj , ϕj). With respect to these two decompositions, the compo-
nents ωi, µ1...µq and ωj, µ1...µq are related as

ωj, µ1...µq =
∂xν1

∂yµ1
. . .

∂xνq

∂yµq
ωi, ν1...νq . (1.1.13)

The graded differential complex (Ω•(M), d) of differential forms defined on M with val-
ues in C∞(M), is defined as the graded space Ω•(M) = ⊕k=0Ωk(M), where Ω0(M) =
C∞(M), equipped with a differential operator d which increases the degree of forms by
1. This differential is the Koszul derivative, defined by using the representation of vector
fields on C∞(M) and also the Lie bracket on Γ(TM). Let ω be a q-form, then dω is a
(n + 1)-form obtained from the Koszul formula as

(dω)(X1, . . . , Xq+1) =
q+1∑

i

(−1)i+1Xi·ω(X1, . . . , ∨i, . . . , Xq+1)

+
∑

1≤i<j≤q+1

(−1)i+jω([Xi, Xj ], X1, . . . , ∨i, . . . , ∨j, . . . , Xq+1)

for any X1, . . . , Xq+1 ∈ Γ(TM) and where the symbols ∨i and ∨j denote the missing indices.
The Koszul derivative is nilpotent is the sense that (d◦d)ω = 0 for any n-form ω. In chapter
2, differential forms defined on transitive Lie algebroids preserve the same structure e.g.
a space of module, a Lie bracket defined on the source space and a representation.

1.1.4 Integration over M

A volume form on M is a differential m-form ωvol ∈ Ωm(M) which vanishes nowhere on
M. Such a form exists if and only if M is orientable. With respect to the local chart
(Ui, ϕi), this volume form can be locally decomposed as ωi, 12...mdx1 ∧dx2 ∧ . . .∧dxm where
ωi, 12...m ∈ C∞(Ui). The integration of a volume form over an open set Ui, is given by the
formula: ∫

Ui

ω =

∫

ϕi(Ui)
ωi,12...mdx1dx2 . . . dxm ∈ R (1.1.14)

Let (ρi)i∈I : Ui → R be a partition function of the unity. The m-form ρiω is defined
on Ui and is 0 elsewhere, for any i ∈ I . The integration of a volume form over M is given
by the formula: ∫

M
ω =

∑

i∈I

∫

ϕi(Ui)
(ρiω) (1.1.15)
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1.2 – Principal fiber bundles

1.1.5 Metric on M

A metric g on M is a bilinear symmetric map g : Γ(TM) × Γ(TM) → C∞(M). It is
non-degenerate if g(X, Y ) = 0 for any Y ∈ Γ(TM) if and only if X = 0. A metric g on
M is positive-definite if g(X, X) > 0 for any X ∈ Γ(TM).

In a chart (Ui, ϕi), the metric g can be written in terms of its components as gµν =
g(∂µ, ∂ν), where (∂1, . . . , ∂m) denotes a basis of Γ(TM). Over Uij , the metric g can be
either written as gi, µν with respect to the chart (Ui, ϕi) or as gj, µν with respect to the
chart (Ui, ϕi). These two components are related by the formula gi, µν = ∂yρ

∂xµ
∂yσ

∂xν gj, ρσ

1.1.6 Hodge Isomorphism

Let M be an orientable manifold equipped with a metric g. The Hodge star operator
⋆ : Ωq(M) → Ωm−q(M) realizes an isomorphism of vectorial spaces between differential
forms of degree p and differential forms of degree (m − p). The inverse of the Hodge star
operation is defined by the relation ⋆ ⋆ ω = (−1)q(m−q)ω, for any ω ∈ Ωq(M).

We denote by (dx1
i , dx2

i , . . . , dxm
i ) a basis of the cotangent bundle T ∗Ui. To obtain

an explicit expression of the Hodge star operator, we decompose locally the q-form ω ∈
Ωq(M), with respect to the chart (Ui, ϕi), as ωi = 1

q!ωi, µ1µ2...µq dxµ1 ∧ dxµ2

i ∧ . . . ∧ dx
µq

i

where ωi, µ1µ2...µq ∈ C∞(Ui). Then, the Hodge star operator acts on ωi as

⋆ωi =
1

(m − q)!
ωi, µ1µ2...µq ǫν1ν2...νmδµ1ν1δµ2ν2 . . . δµqνq dxνq+1 ∧dxνq+2 ∧ . . .∧dxνm (1.1.16)

where ǫν1ν2...νm is the completely antisymmetric Levi-Civita tensor with ǫ12...m = 1 and δab

is the Kronecker symbol. Here, ⋆ωi is a (m − q)-form defined on Ui. Over Uij , by changes
of charts, we obtain ⋆ωi = ⋆ωj , for any i, j ∈ I, so that the (m − q)-form ⋆ω is globally
defined on M.

With a Hodge star operator and an integration over M, we define the scalar product
on Ω•(M). Let ω ∈ Ωq(M) and η ∈ Ωr(M), then:

〈ω, η〉 =

∫

M
ω ∧ ⋆η ∈ R (1.1.17)

With respect to this scalar product, differential forms of distinct degrees, i.e. for q Ó= r,
are orthogonal.

1.2 Principal fiber bundles

The theory of principal bundles is an essential feature to construct YM models of gauge
field theories. These are related to both the theory of connections on principal bundles and
the action of the gauge group. On transitive Lie algebroids, these two points are adapted
to a more general scheme. Constructions presented in this section will be refereed, in the
next chapters, as the “usual” ones.

1.2.1 Definition

A principal fiber bundle P(M, G), or principal bundle, is a fiber bundle P → M, equipped
with a structure group G, which is a Lie group, so that G acts freely on P on the right as
P × G ∋ (u, g) Ô→ Rgu = u·g.5 The structure group acts “vertically”, or “along the fiber”,
so that, with respect to the map π : P → M, one has π ◦ Rg = π for any g ∈ G.

5 Then, u·g = u·g′ if and only if g = g′.
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Chapter 1 – Differential geometry

The base manifold M can be seen as the quotient of the principal bundle P with the
structure group G i.e. M = P/G. From our point of view, we consider that the manifold
M “already exists”, and P is then an additional “upper” structure which encodes some
inner degrees of freedom. As manifolds, principal bundles can be described with respect
to local charts. Such descriptions are not considered in this PhD thesis, we reserve these
local charts only for the base manifold M.

1.2.2 Local trivializations of P

Local sections of P permit to locally describe objects, globally defined on P, in terms of
fields on M, i.e. functions defined on an open set U ⊂ M with values in an arbitrary
space. These local descriptions are given by the local trivializations of P, and changes
of trivializations are related to what will be called the passive gauge transformations
associated to P.

The local trivialization of a principal bundle over an open set Ui is given by an invertible
diffeomorphism φi : Ui × G → π−1(Ui). It is easier to describe local trivialization in terms
of local maps φi, p : G → P for any p ∈ Ui, as φi, p(g) = φi(p, g). Over the open set
Uij , we denote by gi = φ−1

i,p (u) and gj = φ−1
j,p (u), with p = π(u). Transition functions

gij : Uij → G are defined as gij(p) = gj ·g−1
i for any p ∈ Uij . The transitions functions gij

fulfill the structure conditions




gii = e

gji = g−1
ij

On Uijk, one has gkj ◦ gji = gki

(1.2.1)

These relations are similar to (1.1.1). Local cross-sections, or sections, of P are given by
the maps si : Ui → P defined as si(p) = φi, p(e). This description, in terms of maps locally
defined on the base manifold with values in a fiber, is close to the formalism of gauge field
theories. Any element u ∈ π−1(Ui) can be written as u = si(p)gi(p), where p = π(u). Over
Uij , one uses the transitions functions gij : Uij → G to obtain the gluing relation

si = sj ·gij (1.2.2)

The set of every local cross-sections (si)i∈I forms a system of local cross-sections of P.

1.2.3 Associated vector bundle

In gauge field theories, scalar fields defined on M with values in a vector space are geo-
metrically interpreted as sections of an associated fiber bundle.

Let F be a vector space equipped with a representation of G, i.e. a map ℓ : G →
End(F) which preserves the multiplication i.e. ℓg1g2

= ℓg1
◦ ℓg2

, for any g1, g2 ∈ G. The
associated vector bundle EP is defined as the quotient fiber bundle (P × F)/G where F is
a vector space for the right action ℓ of G. This quotient is defined by identifying elements
(u, f) ∈ P × F with elements (u, f)·g = (u·g, ℓg−1f) for any g ∈ G. This associated fiber
bundle can be also denoted by EP = P ×ℓ F . Written under this form, associated vector
bundles are given by pairs of elements (u, f) identified by the relation (u·g, f) = (u, ℓgf)
for any g ∈ G. The equivalents pairs (u, f) ∈ P × F are written under the form [(u, f)].

Let s be a G-equivariant map P → F i.e. such that s : P → F with s(u·g) = ℓg−1s(u)
for any g ∈ G. This map denotes a global section of the associated vector bundle. Such a
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1.2 – Principal fiber bundles

G-equivariant map defines a global section σ of the associated fiber bundle EP as σ(p) =
[(u, s(u))] for any u ∈ P. It is obvious that the quantity [(u, s(u))] does not depend on
u = π−1(p).

The G-equivariant map s : P → F can be locally trivialized over Ui to a local map
s̃i : Ui → F by using the pull-back by a local section σi of P. This map can be written as
s̃i(p) = s(σi(p)) for any p ∈ Ui. This map corresponds exactly to the gauge scalar fields
in gauge fields theories.

1.2.4 Vector fields on P

We define on a principal bundle P(M, G) the space of vector fields Γ(TP) as the assign-
ment of a vector Xu ∈ TuP to any point u ∈ P. Vector fields are defined, at u ∈ P, in
terms of flows as Xu = d

dt |t=0
ΦX,t(u), where ΦX,t(u) ∈ P with t ∈ [−1, 1], and ΦX,0(u) = u

is the flow associated to the vector Xu ∈ TuP.

We denote by C∞(P) the set of functions f : P → R defined in the neighborhood of
u ∈ P. Vector fields are represented on C∞(P) through the pull-back action by the flow
i.e.

(X·f)(u) =
d
dt |t=0

f(ΦX,t(u)) (1.2.3)

for any X ∈ Γ(TP) and f ∈ C∞(P). The Lie bracket [·, ·] : Γ(TP) × Γ(TP) → Γ(TP)
is defined on Γ(TP) by the commutators of two vector fields. In terms of flows, this Lie
bracket is defined as

([X, Y ])u =
d
dt |t=0

(
d
ds |s=0

ΦX,−t ◦ ΦY,s ◦ ΦX,t(u)

)
(1.2.4)

for any X, Y ∈ Γ(TP) and u ∈ P.

On principal bundles, linear tangent applications are defined as applications between
tangent spaces of P. Here, we take the point of view of the sections. Then, linear tangent
applications are substituted by C∞(P)-linear homeomorphisms on the space of vector
fields of P.

The structure group acts by right-action on vector fields Γ(TP) as T∗Rg : Γ(TP) →
Γ(TP) . This right-action of G on any X ∈ Γ(TP) is defined as

(T∗Rg·X)u·g =
d
dt |t=0

ΦX,t(u)·g (1.2.5)

for any u ∈ P and g ∈ G, where ΦX,t(u) is the flow associated to X. A vector field
X ∈ Γ(TP) is said to be a right-invariant vector field if, for any u ∈ P, the flow ΦX,t(u)
associated to the vector Xu is such that ΦX,t(u·g) = ΦX,t(u)·g, for any g ∈ G. An
equivalent formulation consists in defining the right-invariant vector fields X ∈ Γ(TP)
as the set of vector fields X such that (T∗Rg·X)u·g = Xu·g, for any u ∈ P and g ∈ G.
Right-invariant vector fields form a vector space, and a C∞(M)-module, which is denoted
by ΓG(P).

The map π : P → M acts on vector fields of P by using the linear application
T∗π : Γ(TP) → Γ(TM), defined as :

(T∗π·X)p =
d
dt |t=0

π(ΦX,t(u)) (1.2.6)
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such that p = π(u) with p ∈ M and u ∈ P. With respect to the composition law
T∗π ◦ T∗Rg = T∗(π ◦ Rg) = T∗π, only right-invariant vector fields X ∈ ΓG(P) can be
projected to Γ(TM). This result will be used to define the Atiyah Lie algebroids in
section 2.1.4.

The space of vertical vector fields is defined as the kernel of the map T ∗π. We denote it
by Γ(V P). Their associated flows ΦX,t fulfill the conditions ΦX,t(u) = u·gt where gt ∈ G
is a connected path in G parametrized by t ∈ [−1, 1]. Vertical vector fields form a vector
space, and is also a Lie algebra for the commutator of vector fields and

Assume that G is a connected Lie group with Lie algebra g. By using the exponential
map exp : g → G, any element g ∈ G can be written as g = exp(tλ) where t ∈ R and
λ ∈ g. 6 Then, vertical vector fields Xu can be written in terms of flows as

Xu =
d
dt |t=0

u· exp(tλ) (1.2.7)

Then, the fundamental vector field λ# ∈ Γ(V P), associated to λ ∈ g, is the unique vertical
vector field defined in terms of flows as

λ#
u =

d
dt |t=0

u· exp(tλ) (1.2.8)

for any u ∈ P.

Locally, over the open set Ui, we defined the push-forward by a local cross-section
si : Ui → P of vectors defined on Ui to vectors defined on P. To any X ∈ TpUi, the local
tangent application si ∗ : TpUi → Tsi(p)P is defined in terms of flows as

(si ∗X)si(p) =
d
dt |t=0

si(ΦX,t(p))

where ΦX,t(p) is the flow associated to the vector Xp.

1.2.5 Differential forms on P

Differential q-forms are C∞(P)-multilinear antisymmetric maps ∧∗Γ(TP) → C∞(P). We
denote the associated graded differential complex by (Ω•(P), dP), where dP is the Koszul
derivative which increases by 1 the degree of forms in Ωr(P), associated to the represen-
tation of Γ(TP) on C∞(P).

Let g be the Lie algebra of G. We denote by Ωq(P, g) the set of C∞(P)-multilinear
antisymmetric maps ∧∗Γ(TP) → C∞(P) ⊗ g. The differential complex Ω•(P, g) can be
written as Ω•(P)⊗g. Then, the Koszul differential is well-defined on Ω•(P, g), it increases
by 1 the degree of forms Ωr(P, g), where the representation of Γ(TP) is only defined on
the “Ω•(P)-part” of Ω•(P, g).

The induced right-action of an element g ∈ G on a differential q-form ω ∈ Ωq(P) is
defined by the map T ∗Rg : Ωq(P) → Ωq(P) as

(T ∗Rgω)(X1, . . . , Xq) := ω(T∗Rg·X, . . . , T∗Rg·X) (1.2.9)

6 If we consider matricial group, the exponential map can be conveniently written as

exp(tλ) =
∑

m=0

1

m!
(tλ)m

∀λ ∈ g, t ∈ R
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for any X1, . . . , Xq ∈ Γ(TP). Let ρ : G → Aut(g) be a representation, possibly trivial, of
G on its Lie algebra g. The induced right-action of G on elements of Ωq(P, g) is defined
as

(T ∗Rgω)(X1, . . . , Xq) := ρ(g)·ω(T∗Rg·X, . . . , T∗Rg·X) (1.2.10)

for any X1, . . . , Xq ∈ Γ(TP).

1.3 Theory of connections on P

We give the definition of connections on P in terms of elements of Ω1(P, g). Covariant
derivatives associated to connection 1-forms on P are defined in terms of 1-forms defined
on P with values in the space of first order derivatives of sections of a fiber bundle E .
Also, the curvature of a connection on P is defined as an element of Ω2(P, g). Both the
passive and the active actions of the gauge group are also detailed.

1.3.1 Connections on principal fiber bundles

The subspace of vertical vector fields is defined as the kernel of T∗π. However, its comple-
mentary space in Γ(TP), the so-called horizontal subspace, cannot be uniquely defined: it
is related to a choice of a connection on P. From the geometric point of view, a connection
on P is the assignment of a subspace HP of the tangent bundle TP such that, for any
u ∈ P, we have:

• TuP = VuP ⊕ HuP.

• HuP is a right invariant vector i.e. TuRg : HuP ≃→ Hu·gP, for any u ∈ P.

Then, given a connection, any vector field X ∈ Γ(TP) can be decomposed as X = XH +
XV , where XH ∈ Γ(HP) and XV ∈ Γ(V P) are the horizontal and the vertical components
of X, respectively.

From a more algebraic point of view, connections on P are equivalently defined, by
differential 1-forms ω defined on Γ(TP) with values in g. Those are called the Ehresmann
connection 1-forms, or connection 1-forms, on P. A connection 1-form ω satisfies the
following conditions:

• Let λ# be the fundamental vector field associated to λ ∈ g. Then, for any λ, we
have ω(λ#) = λ.

• Let g ∈ G, the induced right action of G on ω is given by:

T ∗Rg·ω = Adg−1 ◦ ω (1.3.1)

Conversely, any element of Ω1(P, g) which fulfills these two conditions defines a connection
on P. The space of horizontal vector fields Γ(HP) is defined as the kernel of the connection
1-form ω i.e. Γ(HP) = {X ∈ Γ(TP)| ω(X) = 0}.

39



Chapter 1 – Differential geometry

1.3.2 Covariant derivative and curvatures

Let h : Γ(TP) → Γ(HP) be a projector on the horizontal subspace associated to a
connection on P. Let α be a differential q-form on P with values in sections of a fiber
bundle E . The covariant derivative associated to this connection is a map D acting on
q-forms α as

(Dα)(X1, . . . , Xq) = (dα)(h ◦ X1, . . . , h ◦ Xq) (1.3.2)

for any X1, . . . , Xq ∈ Γ(TP). Obviously, the covariant derivative vanishes for vertical
vector fields, due to the presence of the projector h. This definition will be used in chapter
4 to define the covariant derivative in the context of transitive Lie algebroids.

The curvature R associated to a connection 1-form is an element of Ω2(P, g) which
can be defined by two equivalent distinct ways. The former consists in defining R as the
covariant derivative of the connection 1-form i.e. as R(X, Y ) = (dω)(h ◦ X, h ◦ Y ), for any
X, Y ∈ Γ(TP). The latter is given in terms of the connection 1-form ω, by the Cartan
equation structure, as

R(X, Y ) = dω(X, Y ) + [ω(X), ω(Y )] (1.3.3)

for any X, Y ∈ Γ(TP). Here the Lie bracket is a graded Lie bracket defined on the space
of differential forms Ω•(P, g). 7 By construction, R is horizontal, i.e. R(X, Y ) = 0 if any
of the vector fields X or Y are vertical vector fields.

1.3.3 Local expression of a connection 1-form

Connection 1-forms are locally trivialized as elements of Ω1(Ui, g) by using local cross-
sections (si)i∈I on P. Then, the local trivialization of ω over Ui is given by the C∞(Ui)-
linear map ωloc, i : Γ(TUi) → g as

ωloc, i(X) = (s∗
i ω)(X) = ω(si ∗X) (1.3.4)

for any X ∈ Γ(TUi). Over the open set Uij , the gluing transformations of the connection
1-form are

ωloc, i = g−1
ij ωloc, igij + g−1

ij dgij (1.3.5)

where d is the Koszul derivative and g−1
ij dgij is a g-valued 1-form defined on Uij . We define

the local trivialization of the curvature of ω over Ui as

Rloc, i = dωloc, i +
1

2
[ωloc, i, ωloc, i] (1.3.6)

where the differential operator d is the Koszul derivative acting on Ω•(M). The local
expressions Rloc, i and Rloc, j of the curvature R, associated to ω, are related over Uij by
the homogeneous passive gauge transformation

Rloc, i = g−1
ij Rloc, jgij (1.3.7)

These gauge transformations are induced by changes of local trivialization of P. They
form the set of the passive gauge transformation.

7 The graded Lie bracket on Ω•(P, g) is defined as [ω1 ⊗ X1, ω2 ⊗ X2] = ω1 ∧ ω2 ⊗ [X1, X2] for any
ω1, ω2 ∈ Ω•(P) and X1, X2 ∈ g.
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1.3.4 Active gauge transformations on P

The gauge group G associated to a principal bundle P(M, G) is defined as the group of
vertical automorphisms f : P → P, along the fiber P, compatible with the action of G in
the sense that f(u·a) = f(u)·a for any a ∈ G and (π ◦ f) = π. This automorphism can
be written in terms of maps g : P → G as f(u) = u·g(u), for any u ∈ P. With respect
to the right-action of G, the map g : P → G transforms as g(u·a) = a−1g(u)a, for any
a ∈ G. This transformation indicates that g defines a section of the associated fiber bundle
P ×β G, where β acts by conjugacy on G as βgg′ = g−1g′g for any g, g′ ∈ G. We denote by
G the section of the associated fiber bundle P ×β G. Depending on the context, elements
of the gauge group are either G-equivariant maps P → G, or, given a local section of P,
a field U → G (see subsection 1.2.3 for the correspondence).

The gauge group G acts on connection 1-forms ω as

ω Ô→ ωg = g−1ωg + g−1dg (1.3.8)

where g ∈ G. This transformation corresponds to an active gauge transformation of G. It
its straightforward to check that ωg still defines a connection 1-form on P. In this sense,
we say that the space of connection 1-forms is compatible with the action of the gauge
group. Gauge transformations of ω induce gauge transformations of the curvature R. It
transforms as Rg = g−1Rg for any g ∈ G.

In the theory of fiber bundles, active and passive gauge transformations have the
same mathematical expression. We will see that it is no longer true in section 6.3: on
transitive Lie algebroids, we define an “algebraic” infinitesimal action of the gauge group,
distinct from the “geometric” one. This is motivated by the introduction of generalized
connections.
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Chapter 2

The theory of Lie algebroids

The theory of Lie algebroids was initially constructed as the infinitesimal version of the Lie
groupoids. Lie algebroids were introduced by Pradines [Pra67] and I refer the reader to
[Mac05] for the full development of the theory (a pedagogical construction, from groupoids
to algebroids, is presented in [Wei96]). Here, I give an algebraic definition of Lie algebroids
so that it will be easier to construct algebraic structures on it. It also permits to establish
conceptual links with the differential structures of the “usual” geometry already exhib-
ited in the chapter 1. Indeed, through this chapter, we consider the framework of the
Lie algebroids as an extension of the geometry of manifolds. This extension is given by
the consideration of algebraic degrees of freedom in addition to the geometric degrees of
freedom defined by the geometry of the vector fields. Nevertheless, in the general case,
this extension is not canonically identified and a system of local trivializations of Lie al-
gebroids is required to give a concrete description of these two spaces. For the reader who
is already familiar with the Lie algebroids, this chapter is the opportunity for me to stress
the basic facts needed for the upcoming constructions of the next chapters. Commentaries
and discussions will highlight the relevance of these structures.

2.1 Basic notions

2.1.1 Definitions

One gives the definition of a Lie algebroid defined over a manifold M, used in [Mac05].

A Lie algebroid A defined over M is a vector bundle A π→ M equipped with a vector
bundle map ρ : A → TM called the anchor of A, and a Lie bracket [·, ·] defined on
the space of the section Γ(A) which is R-linear, antisymmetric and respects the Jacoby
identity. This Lie bracket [·, ·] : Γ(A) × Γ(A) → Γ(A) fulfills the relation

[X, f ·Y] = f ·[X,Y] + (ρ(X)·f)·Y and ρ([X,Y]) = [ρ(X), ρ(Y)] (2.1.1)

for any X,Y ∈ Γ(A) and f ∈ C∞(M). The anchor ρ is a morphism of Lie algebras.
Usually, one uses distinguished symbols to denote the Lie bracket over Γ(TM) and the
Lie bracket on Γ(A). Here, I use the same symbol [·, ·] for both of them since the context
is sufficiently clear.

One denotes by A = Γ(A) the space of sections of the vector bundle A i.e. the space of
maps X : M → A. The space A is a module over the space of functions C∞(M) and the
anchor ρ is naturally extended to a map of C∞(M)-modules ρ : A → Γ(TM). In the rest
of this PhD thesis, one considers directly the space of sections of A, so that one abusively
calls A

ρ→ Γ(TM) a Lie algebroid over M.

This definition shows that Lie algebroids are connected to the differential geometry of
M in the sense that the map ρ identifies elements of A with vector fields on M. However,
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given a Lie algebroid, it is not possible to canonically identify the elements which are
related to these vector fields. This remark is similar to the statement that, in the theory of
the fiber bundles, we cannot globally split the inner degrees of freedom from the geometric
degrees of freedom. To do so, one needs a system of local trivializations of the fiber bundle.
Local trivialization of Lie algebroids will be detailed in section 2.2. A Lie algebroid can
be restricted over any open set U ⊂ M and this restriction is denoted by A|U = Γ(A|U )
where A|U is the restriction of the vector bundle A over U . Accordingly to this restriction,
the map ρ is restricted to ρU : A|U → Γ(TU) so that the Lie bracket preserves A|U .

Depending on the nature of the map ρ : A → Γ(TM) (surjective, null or of locally
constant rank), one defines different kinds of Lie algebroids. We are concerned with the
case where ρ is surjective, then we can think of Ap as a "fiber space" over the tangent space
TpM, for any p ∈ M.

A transitive Lie algebroid is a Lie algebroid A
ρ→ Γ(TM) whose anchor ρ is surjective.

The kernel of the map ρ is denoted by L and is called the kernel of the transitive Lie
algebroid. The Lie bracket on L inherits from the Lie bracket on A and one has:

[·, ·] : L × L → L ; [ℓ, f ·ℓ′] = f ·[ℓ, ℓ′] (2.1.2)

for any f ∈ C∞(M) and ℓ, ℓ′ ∈ L. Here, I use the same bracket notations for both A and
L.

Actually, the kernel L can be defined as the space of sections of the vector bundle L,
which is the kernel of ρ : A → TM. The vector bundle L will be concerned with the
section 5.2.5 so that the reader should keep in mind the existence of this underlying space.

It is more convenient to see L as a totally intransitive Lie algebroid defined over M
i.e. with anchor ρ = 0. The Lie algebroid L is injected in the transitive Lie algebroid A

by the injective morphism of Lie algebras ι : L → A. We summarize the definition of a
transitive Lie algebroid by the following short exact sequence of C∞(M)-modules

0 //L
ι //A

ρ //Γ(TM) //0 (2.1.3)

Elements in the kernel of ρ will be considered either as elements of A or as elements of L,
so that their descriptions are given modulo the map ι.

With respect to the Lie bracket, Lie algebroids A and L obeys the following relations

[A, A] ⊂ A ; [A, L] ⊂ L ; [L, L] ⊂ L (2.1.4)

By convention, for any ℓ ∈ L and X ∈ A, the element [ℓ,X] is the unique element in L such
that ι([ℓ,X]) = [ι(ℓ),X]. The kernel L is an ideal in A.

Contrary to elements of A related to the space of vector fields Γ(TM) by the anchor
map, the space L is explicitly identified as the kernel of ρ, so that it can be canonically
exhibited as a sub Lie algebra of A. This remark is analogous to the case of vertical vector
fields on a principal bundle P π→ M. These are defined as the kernel of the linear tangent
operator T∗π : Γ(TP) → Γ(TM) and then they form a well-defined subspace of Γ(TP).
This is not the case for its complementary space in Γ(TP), the horizontal subspace, which
cannot be canonically identified without use of a connection.

In the context of transitive Lie algebroids, this duality between "vertical" and "hori-
zontal" spaces is directly encoded in the definition of the maps ι and ρ. Indeed, the map
ι is an injective map from L to A whereas ρ is a surjective map from A to Γ(TM), as
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depicted in the sequence (2.1.3). In section 4.1.1, we will see that a connection defined
on A is merely defined as a splitting of this short exact sequence i.e. a map going from
Γ(TM) to A such that ρ ◦ ∇ = IdΓ(T M).

0 //L
ι //A

ρ //Γ(TM) //

∇

bb 0 (2.1.5)

2.1.2 Morphism of Lie algebroids

This section gives the definition of the isomorphism between two transitive Lie algebroids A

and B. Such isomorphisms will be used for the local description of transitive Lie algebroids
in section 2.2.

Let A
ρA−→ Γ(TM) and B

ρB−→ Γ(TM) two transitive Lie algebroids with kernels LA

and LB and with injective maps ιA and ιB, respectively. A morphism of Lie algebroids
ϕ : A → B is a C∞(M)-linear morphism of Lie algebras which is base-preserving and
compatible with the anchors i.e.

ϕ([X,Y]) = [ϕ(X), ϕ(Y)] ; ρB ◦ ϕ = ρA (2.1.6)

for any X,Y ∈ A. A morphism of Lie algebroids ϕL : LA → LB is induced on the respective
kernels by the relation ιB ◦ ϕL(ℓA) = ϕ ◦ ιA(ℓA), with ℓA ∈ LA. Then, one has the following
commutative diagram:

0 //LA

ιA //

ϕL

��

A
ρA //

ϕ

��

Γ(TM) //0

0 //LB

ιB //B
ρB //Γ(TM) //0

(2.1.7)

An isomorphism of Lie algebroids is a morphism of Lie algebroids ϕ : A → B which is
invertible i.e. it is a C∞(M)-linear isomorphism of Lie algebras which is base-preserving
and compatible with the anchors.

2.1.3 Trivial Lie algebroids

As a first example of transitive Lie algebroids, one defines the trivial Lie algebroids.

A transitive Lie algebroid is trivial in the sense that both the geometry of vector fields
on M and the algebraic degrees of freedom of the kernel of ρ are described in distinct
vector spaces. Then, trivial Lie algebroids are defined as a vectorial sum of Γ(TM) and
the space of sections of a trivial Lie algebra bundle. The "triviality" of a Lie algebroid
is similar with the triviality of a principal bundle when it can be globally defined as the
cartesian product between M and the structure group G. Trivial Lie algebroids are an
essential structure that will take part in local trivializations of objects defined on transitive
Lie algebroids.

One denotes by Γ(M×g) the space of sections on the trivial Lie algebra bundle M×g

i.e. a trivial vector bundle with typical fiber a Lie algebra g. Elements of Γ(M × g) are
given by the maps γ : M → g. Both the spaces Γ(TM) and Γ(M × g) are C∞(M)-
modules so that one defines the trivial Lie algebroid on M modeled over g by the short
exact sequence of C∞(M)-modules:

0 //Γ(M × g)
ι //Γ(TM) ⊕ Γ(M × g)

ρ //Γ(TM) //0 (2.1.8)
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with the maps ι and ρ are defined as:

ι : Γ(M × g) → Γ(TM) ⊕ Γ(M × g) ; ι : γ Ô→ 0 ⊕ γ (2.1.9)

ρ : Γ(TM) ⊕ Γ(M × g) → Γ(TM) ; ρ : X ⊕ γ Ô→ X (2.1.10)

Trivial Lie algebroid are denoted as TLA(M, g) = Γ(TM)⊕Γ(M×g) and the correspond-
ing Lie bracket is defined as

[X ⊕ γ, Y ⊕ η] = [X, Y ] ⊕ (X·η − Y ·γ + [γ, η]) (2.1.11)

for any X ⊕ γ, Y ⊕ η ∈ TLA(M, g). The action of vector fields on Γ(M × g) is defined
as in (1.1.2). Here, one has used the Lie bracket on Γ(TM). It is easy to verify that the
commutating relations (2.1.4) are fulfilled.

Trivial Lie algebroids give a concrete picture, on the one hand, of the description of
the geometric degrees of freedom and, on the other hand, of the description of algebraic
degrees of freedom. However, the Lie bracket (2.1.11) defined on TLA(M, g) "mixes" these
two kinds of degrees of freedom. This comes from the fact that vector fields on M are
represented on Γ(M × g), but the inverse is not true. Thus, the geometric component of
a trivial Lie algebroid does not "see" its associated algebraic component. This point will
be taken into account in the computation of the gluing relations of global objects.

2.1.4 Atiyah Lie algebroids

A second example of transitive Lie algebroids is the Atiyah Lie algebroid associated to a
principal bundle P(M, G). Here, the principal bundle P permits to interpret the objects
defined on transitive Lie algebroids as objects defined on P. For instance, connections
defined on A in section 4.1.1 are exactly the Ehresmann connections on P. Moreover,
constructions on transitive Lie algebroids come from constructions on P, such as the
infinitesimal action of the gauge group. We will see in the chapter 4.2 that transitive Lie
algebroids are equipped with some algebraic structures which cannot be interpreted in
terms of the geometry of P.

On Atiyah Lie algebroids, one does not look at all the vector fields on P but only at
those which can be projected to vector fields on M i.e. the space of the right-invariant
vector fields on P. In [LM12b], it is shown that right-invariant vector fields form a basis
for the vector fields on P so that any vector field X ∈ Γ(TP) can be uniquely decomposed
as X = f iXi where f i ∈ C∞(P) and Xi ∈ ΓG(P). Then, Atiyah Lie algebroids are not
concerned with the whole space Γ(TP) but only with elements of the basis ΓG(P).

Algebraic degrees of freedom of the Atiyah Lie algebroid are encoded in the space
ΓG(P, g) of sections on the associated fiber bundle P×Adg, where g denotes the Lie algebra
of G and Ad denotes the adjoint action of G on g given by the relation Adgγ = gγg−1 ∈ g,
for any g ∈ G and γ ∈ g. The space of sections on P ×Ad g is given by the set of maps
ΓG(P, g) = {v : P → g | v(u·g) = Adg−1v(u), ∀u ∈ P and g ∈ G}. This space is identified
with the infinitesimal description of the gauge group.

The vector spaces ΓG(P) and ΓG(P, g) are C∞(M)-modules so that one defines the
Atiyah Lie algebroid by the short exact sequence of C∞(M)-modules

0 //ΓG(P, g)
ι //ΓG(P)

ρ //Γ(TM) //0 (2.1.12)
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with the maps ι : ΓG(P, g) → ΓG(P) and ρ : ΓG(P) → Γ(TM) are defined as:

ι : v Ô→
(

ι(v) : u Ô→ ι(v)u =
d
dt |t=0

u·e−tv(u), ∀u ∈ P
)

, ∀ v ∈ ΓG(P, g) (2.1.13)

ρ : X Ô→
(

ρ(X) : p Ô→ ρ(X)p =
d
dt |t=0

π(ΦX,t(u)), ∀u ∈ π−1(p)

)
, ∀ X ∈ ΓG(P)

(2.1.14)

where ΦX,t(u) is the flow associated to the right-invariant vector field X. Up to a minus
sign, the injective map ι : ΓG(P, g) → ΓG(P) gives the fundamental vector field associated
to elements of ΓG(P, g) i.e. (ι ◦ v)u = (−v(u))#|u, for any v ∈ ΓG(P, g) and u ∈ P.

With geometric computations, it is straightforward to verify that the commutating
relations (2.1.4) are fulfilled. In particular, one computes the Lie bracket of a right-
invariant vector field X ∈ ΓG(P) with a vertical vector field ι ◦ v ∈ ΓG(P). For any u ∈ P,
one has:

[X, ι ◦ v]u = (ι ◦ (X·v))u (2.1.15)

This also proves that the space ι ◦ ΓG(P, g) is an ideal in ΓG(P), as expected.

2.2 Local trivializations of Lie algebroids

The local trivialization of a Lie algebroid realizes an isomorphism of between a Lie alge-
broid A|U , restricted over the open set U , and a trivial Lie algebroid TLA(U , g) over U
modeled on g. The geometric and the algebraic degrees of freedom of an element X of
a Lie algebroid A are then identified as two distinct subspaces and can be written under
the form X ⊕ γ ∈ TLA(U , g). Then, transitive Lie algebroids can either be described as
a global construction over M, which would correspond to a first level of description, or,
locally, as a set of trivial Lie algebroids modeled on g which would correspond to a second
level of description. This point will be concretely illustrated in the following sections.
Providing a local chart of M, we wan define a third level of description of A in terms of
elements of Rm.

As a globally-defined object on A, a section X is locally described by a collection of
elements (Xi ⊕ γi)i∈In which are not equals for any i ∈ I (otherwise, A would be trivial).
Thus, over the open set Uij , the elements Xi ⊕ γi and Xj ⊕ γj can be related by the
corresponding gluing relations associated to the system of local trivializations.

Gluing relations of local trivializations of objects defined on a principal bundle P are
well-known (see [KN96a]): they are given by the map gij : Uij → G. In the context of the
Lie algebroids, such a Lie group G is not defined in the general case so that one computes
new gluing relations which are specific to Lie algebroids.

2.2.1 Local trivializations of Lie algebroids

A local trivialization of Lie algebroid over an open set U ⊂ M is given by a local iso-
morphism of Lie algebroids S : TLA(U , g) → A|U where TLA(U , g) denotes the trivial Lie
algebroid over U modeled on the Lie algebra g and A|U denotes the space of sections of
the vector bundle A restricted over U .

With abuse of notation, we use the same symbol ρ to represent the anchor ρ : A|U →
Γ(TU) and the anchor ρ : TLA(U , g) → Γ(TU). As an isomorphism of Lie algebroids, the
two maps S : TLA(U , g) → A|U and S−1 : A|U → TLA(U , g) are morphisms of Lie algebroids
which are compatible with the anchors in the sense that ρ ◦ S = ρ and ρ ◦ S−1 = ρ.
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The map S can be restricted either to the space of vector fields Γ(TU) or to the space
of sections Γ(U × g). At the level of A, the restriction of S−1 is only possible on L since
its complementary subspace is not canonically defined without connection. At the level of
TLA(U , g), the map S splits in two maps ∇0 : Γ(TU) → A|U and Ψ : Γ(U × g) → L|U . The
first map is the restriction of the map S to elements of TLA(U , g) which are of the form
X ⊕ 0 i.e.

∇0 : Γ(TU) → A|U ; ∇0
X = S(X ⊕ 0), (2.2.1)

for any X ∈ Γ(TU). This map has the following properties

• [∇0
X , ∇0

Y ] = ∇0
[X,Y ] for any X, Y ∈ Γ(TU).

• ∇0
f ·X = f ·∇0

X for any f ∈ C∞(U) and X ∈ Γ(TU).

• ρ ◦ ∇0
X = X for any X ∈ Γ(TU).

The second map Ψ : Γ(U × g) → L|U is defined by the relation:

ι ◦ Ψ(γ) = S(0 ⊕ γ) (2.2.2)

for any X ⊕ γ ∈ TLA(U , g). This map has the following properties

• Ψ([γ, η]) = [Ψ(γ), Ψ(η)] for any γ, η ∈ Γ(U × g).

• Ψ(f ·γ) = f ·Ψ(γ) for any f ∈ C∞(U) and γ ∈ Γ(U × g).

Finally, the local trivialization of an element X ∈ A can be either given by the map S or
by the pair of elements (∇0, Ψ). These two formulations are related by

S(X ⊕ γ) = ∇0
X + ι ◦ Ψ(γ) (2.2.3)

for any X ⊕ γ ∈ TLA(U , g). One says that an element X ∈ A is locally trivialized as X ⊕ γ
if X = S(X ⊕ γ) and one uses the notation X ≃

loc
X ⊕ γ

The fact that S is an isomorphism of Lie algebroids induces that the inverse map
Ψ−1 exists and is defined as Ψ−1(ℓ) = S−1(ι ◦ ℓ), for any ℓ ∈ L, so that the map Ψ is
a C∞(U)-linear isomorphism of Lie algebras. The inverse map Ψ−1 exists since the map
S−1 can be restricted to L but, without a connection on A, it cannot be restricted to its
complementary space so that the map (∇0)−1 is not mathematically well-defined.

In section 2.1.3, one has noted that the Lie bracket on a trivial Lie algebroid mixes the
geometric and the algebraic components of TLA(M, g). In the case of the local trivializa-
tion of a transitive Lie algebroid, this observation results in the existence of a compatibility
relation between the maps ∇0 and Ψ defined as

[∇0
X , ι ◦ Ψ(γ)] = ι ◦ Ψ(X·γ) (2.2.4)

for any X ⊕ γ ∈ TLA(U , g).

An atlas of Lie algebroids consists in the data of the pairs (Ui, Si)i∈I = (Ui, ∇0
i , Ψi)i∈I .

One assumes that the charts (Ui)i∈I of the atlas of Lie algebroids coincide with the charts
of the atlas on M. However, changes of local trivializations of transitive Lie algebroids
and changes of local charts are distinct operations i.e. these have to be computed inde-
pendently.
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2.2.2 Changes of trivializations

To complete the local description of a transitive Lie algebroid in terms of trivial Lie
algebroids, one needs to define the gluing relations associated to the atlas of Lie algebroids
(Ui, Si)i∈I . Over the open set Uij , these gluing relations give the relations between the
trivializations Xi ⊕ γi and Xj ⊕ γj of the same element X ∈ A. Conversely, the gluing
relations permit to identify a family of pairs (Xi ⊕ γi)i∈I as the local trivializations of a
global element of A.

Consider (U , S) and (U , S′) two local trivializations of A over the same open set U .
Then, there exists two maps α ∈ Ω1(g) ⊗ g and χ ∈ Ω1(U) ⊗ g such that

(S−1 ◦ S′)(X ⊕ γ) = X ⊕ (α(γ) + χ(X)) (2.2.5)

for any X ⊕ γ ∈ TLA(U , g). Since S and S′ are isomorphisms of Lie algebroids, it is direct
to check that ρ◦ (S−1 ◦S′) = ρ, then the tangent vector X ∈ Γ(TU) is invariant by change
of local trivializations. By changes of trivializations of A, the “geometric component” of
X stays the same. However, the algebraic component γ is “moved” by an endomorphism
α : g → g, then"lifted" by the action of the associated vector field X.

On the open set Uij , an element X ∈ A can be trivialized either as X ≃
loc

X ⊕ γi ∈
TLA(Ui, g), with respect to the chart (Ui, Si), or as X ≃

loc
(X⊕γj) ∈ TLA(Uj , g), with respect

to the chart (Uj , Sj). The vector field X ∈ Γ(TUij) is the same for both trivializations of
X and elements γi and γj are related by the formula:

γi = αi
j(γj) + χij(X) (2.2.6)

where αi
j : Γ(Uij × g) → Γ(Uij × g) and χij : Γ(TUij) → Γ(Uij × g). The maps αi

j and χij

are called the gluing functions of the Lie algebroid. By convention, one designates with
an upper index the image space of α and by a lower index its source space. Concerning
the map χ, one puts the index of the space of arrival to the left of the index of the source
space. With these notations, it is straightforward to check the compatibility relations

αi
i = Idg ; αj

i = αi
j

−1
; αk

j ◦ αj
i = αk

i (2.2.7)

Concerning the map χij , one has

αi
j ◦ χji + χij = 0 ; χii = 0 ; χkj + αk

j ◦ χij = χik (2.2.8)

The representation of Γ(TM) on the maps αj
i gives the relation

(X·αi
j)(γj) − αi

j(X·γj) = [αi
j(γj), χij(X)] (2.2.9)

for any X ∈ Γ(TUij) and γj ∈ Γ(Uij × g).

Given an atlas of Lie algebroid (Ui, Si)i∈I , an element X of A is defined either as a
global object on the Lie algebroid or as a family of pairs (X ⊕ γi)i∈I where X = ρ(X) and
γi : Ui → g which fulfills the relation X ⊕ γi = X ⊕ αi

j(γj) + χij(X). Conversely, given a
family of pairs (X ⊕γi)i∈I , if there exist two maps αi

j : g → g and χij : Γ(TM) → g which
fulfill the relations (2.2.7),(2.2.8) and (2.2.9), then they are the local trivializations of a
global object defined of a Lie algebroid A

ρ→ Γ(TM). One uses the notation sj
i to designate

the transition from TLA(Ui, g) to TLA(Uj , g) defined as sj
i (X ⊕ γi) = X ⊕ αj

i (γi) + χji(X).
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The set of maps sj
i should fulfill the compatibility relations sj

i = (si
j)−1, si

i = Id and

sl
k ◦ sj

k ◦ sj
i = sl

i.

Over the open set Uij , the C∞(M)-linear map αi
j ∈ Ω1(g)|Uij

⊗ g is represented on the

Lie algebra g as a matrix-valued function {(Gij)b
a} : Uij → Mn×n(R) with a, b = 1, . . . , n.

Then, the gluing functions αj
i act on the basis (Ea)a=1,...,n of the Lie algebra g as αi

j(Ea) =

(Gij)b
aEb.

One has established the conditions which permit to describe a Lie algebroid in terms
of a family of trivial Lie algebroids. In section 3.3, we will see that this system of local
trivializations are compatible with the differential structures defined on A.

A last thing to do is to establish the gluing relations between two local trivializations
of A in terms of the maps ∇0 and Ψ. By writing Sj(X ⊕ γj) and Si(X ⊕ γi) in terms of
the triples (Uj , Ψj , ∇0

j ) and (Ui, Ψi, ∇0
i ), respectively, and using (2.2.6), one finds:

∇0
j = ∇0

i + ι ◦ Ψi ◦ χij and Ψj = αj
i ◦ Ψi. (2.2.10)

Consider a set of elements (γi)i∈I ∈ Γ(Ui × g) defined on each open set (Ui)i∈I of M
such that, on any open set Uij , there exist a map αi

j , which fulfills the relations (2.2.7),
such that γi = αi

j ◦ γj , then, elements (γi)i∈I are the local trivializations of a global object
defined on L.

2.2.3 Example: Atiyah Lie algebroid

A system of local trivializations of an Atiyah Lie algebroid can be related to a system of
local trivializations (Ui, si)i∈I of P, where (si)i∈I denotes the set of the local cross-sections
si : Ui → P|Ui

of P. Over the open subset Uij , one recalls that the transition functions
are encoded in the maps gij : Uij → G as si = sj ·gij .

Consider an Atiyah Lie algebroid associated to a principal fiber bundle P(M, G). For
any X ∈ Γ(TUi) and u = si(p)·g ∈ P, where p ∈ Ui and g ∈ G, one defines the map

∇0
i : Γ(TUi) → ΓG(P)|Ui

; (∇0
i, X)u = (T∗Rg·s∗

i X)si(p)·g. (2.2.11)

It is straightforward to show that it results in right-invariant vector fields so that ∇0
i, X ∈

ΓG(P), for any X ∈ Γ(TUi). Using direct computations, one shows that ∇0
i fulfills the

conditions of the section 2.2.1. Moreover, a geometric computation gives the expression
of χij in terms of gij as χij = gijdg−1

ij , which corresponds to the local expression of the
Maurer-Cartan 1-form. Then, to any X ∈ Γ(TUij), the two maps (∇0

j, X) and (∇0
i, X) are

related by the formula

(∇0
j, X) = (∇0

i, X) + (ι ◦ (g−1
ij X·gij))u (2.2.12)

The second map Ψ : Γ(Ui × g) → ΓG(P|Ui
, g) is also related to the cross-section si as

(Ψi(γi))(u) = Adg−1γi(p) (2.2.13)

for any γi ∈ Γ(Ui × g) and u = si(p)·g. The map Ψi(γi) is a G-equivariant map P → g,
compatible with the relations of the section 2.2.1. Over the open set Uij , the map αi

j :

g → g is given in terms of gij as αi
j(γj) = Adgij

(γj), for any γ ∈ Γ(Uj × g). Then, the
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algebraic component γj of the local trivialization X ⊕ γj transforms over the open set Uij

as
γj = Adg−1

ij
γi + g−1

ij (X·gij) (2.2.14)

With these definitions, one verifies directly that the relations (2.2.7), (2.2.8) and (2.2.9)
are fulfilled. In particular, this last relation can be written as

X·(g−1
ij γjgij) = g−1

ij

(
X·γj + [gijX·g−1

ij , γj ]
)

gij . (2.2.15)

These formulaes show that the gluing functions related to an atlas of Lie algebroids
generalize the gluing functions gij given by the theory of fiber bundles. In the general case,
the gluing functions are given by an algebraic endomorphism αj

i on g and a geometric 1-
form χji defined on Uij . In the particular case of the Atiyah Lie algebroids, these two gluing
functions become the adjoint action of the gluing function gij and the local expression of
a Maurer-Cartan 1-form, respectively. In this sense, the maps αj

i and χi
j appears to be

more fundamental objects. In chapter 4.2, these computations will be used to generalize
the gluing relations of local expressions of connection 1-forms.
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Chapter 3

Differential structures on transitive Lie
algebroids

In the previous chapter, we have stressed that transitive Lie algebroids encode both geo-
metric and algebraic degrees of freedom and correspond, in this sense, in a generalization
of the differential geometry on M. One has also established two equivalent descriptions
of transitive Lie algebroids, global or local. Then, we can either consider global objects
on A or we can look at their local trivializations over the trivial Lie algebroid TLA(U , g).
These two descriptions establish a local isomorphism of vector spaces between A|Ui

and
TLA(Ui, g). This chapter is devoted to the construction of differential structures on transi-
tive Lie algebroids and their local descriptions. In terms of fiber bundles, differential forms
are sections of the (multi-)dual fiber bundle ∧•A∗. Differential calculus on Lie algebroids
are presented in [Mar08]. In this chapter, we use a description of differential forms in
terms of C∞(M)-multilinear antisymmetric applications defined on A with values in an
arbitrary space.

In differential geometry, differential forms are defined on M with values C∞(M). In
this sense, they involve only geometric degrees of freedom. On this space of differential
forms, the Koszul derivative is defined using the representation of vector fields on C∞(M)
and the Lie bracket structure on Γ(TM). Lie algebroids extend the geometry of vector
fields by an additional algebraic component, then differential forms defined on A take into
account both its geometric and its algebraic degrees of freedom. Differential forms defined
on A are valued either in C∞(M), or in the kernel L if A is transitive. The set of differential
forms with values in L will play an important role in chapter 4.

Locally, the geometric and the algebraic degrees of freedom of A are described sepa-
rately. Then, locally, any differential operator defined on A should take into account this
distinction. Actually, we show that these differential operators can be written as the sum
of two differential operators: the first one is the Koszul derivative related to the repre-
sentation of Γ(TU) and the other one is the Chevalley-Eilenberg derivative related to an
adapted representation of g. These derivatives are compatible with the gluing relations as-
sociated to changes of trivializations. Thus, it results in a local isomorphism of differential
complexes between forms defined on A|U and forms defined on TLA(U , g).

3.1 Representation space

The general scheme associated to the construction of differential forms on A the definition
of representations of Lie algebroids on a given space [Mac05]. A representation of Lie
algebroids is given by a map defined on A with values in the space of derivations of
a vector bundle E defined over M. This map preserves the Lie bracket on A so that
the differential calculus associated to this representaion is nilpotent. On M, the Koszul
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derivative is associated to the natural representation of vector fields on C∞(M). In the
context of Lie algebroids, this process is extended to various representations of A.

3.1.1 Representation of Lie algebroids

In addition to a transitive Lie algebroid A
ρ→ Γ(TM), one considers (E , π, M, F) a vector

bundle over M with typical fiber a vector space F . One denotes by End(E) the space
of endomorphisms of E and by Diff1(E) the set of maps {D : Γ(E) → Γ(E)| D linear,
D(f ·a) − f ·D(a) ∈ End(E) for any f ∈ C∞(M) and any a ∈ Γ(E)}. The symbol map
σ : Diff1(E) → HomC∞(M)(T

∗M, End(E)) is defined as:

σ(D)(fdg)(a) = f ·(D(g·a) − g·D(a)) (3.1.1)

for any f, g ∈ C∞(M) and a ∈ Γ(E) where d is the Koszul derivative. One sees that
σ(D) = 0 for any D ∈ End(E).

With the identification HomC∞(M)(T
∗M, End(E)) ≃ Γ(TM ⊗ End(E)), we can inject

Γ(TM) into Γ(TM⊗End(E)) by the relation Γ(TM) → Γ(TM)⊗IdE ∈ Γ(TM⊗End(E)).
One defines the space D(E) = σ−1(Γ(TM)) so that one has a transitive Lie algebroid
defined by the short exact sequence of C∞(M)-modules:

0 //Γ(End(E))
ι //D(E)

σ //Γ(TM) //0 (3.1.2)

where ι denotes the injection of Γ(End(E)) → σ−1(0) ⊂ Γ(Diff1(E)).

A representation of Lie algebroids A on a vector bundle E is a morphism of Lie al-
gebroids φ : A → D(E). We define the induced morphism of Lie algebroids φL : L →
Γ(End(E)) as ι ◦ φL(ℓ) = φ(ι ◦ ℓ), for any ℓ ∈ L. With abuse of notations, the same symbol
ι is used in both the Lie algebroids A and D(E). This construction is summarized in the
commutative diagram

0 //L
ι //

φL

��

A
ρ //

φ

��

Γ(TM) //0

0 //Γ(End(E))
ι //D(E)

σ //Γ(TM) //0

(3.1.3)

Given a local trivialization of Lie algebroids (U , ∇0, Ψ), a representation of Lie al-
gebroids φ : A → D(E) can be locally trivialized over the open set U . Then, the rep-
resentation of TLA(U , g) on E is defined through the pull-back of the maps ∇0 and Ψ
as

φloc = φ ◦ ∇0 + ι ◦ φL ◦ Ψ φL, loc = φL ◦ Ψ. (3.1.4)

3.1.2 Representation of A on itself

This first example gives an illustration of the previous construction. We consider the
representation of A on itself where the map φ : A → Diff1(A) is given by the adjoint action
φ : A → Diff1(A) with φ(X)(Y) = [X,Y] for any X,Y ∈ A. We now show that the map φ
is a representation of A.

To do so, we check that the adjoint action on A is correctly valued into Diff1(A) and
that the map σ ◦ φ is compatible with the anchor.

• For any X,Y ∈ A and f ∈ C∞(M), [X, f ·Y]−f ·[X,Y] = (ρ(X)·f)Y is C∞(M)-linear
with respect to Y, so that φ(X) ∈ Diff1(A).
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• For any f, g ∈ C∞(M) and X,Y ∈ A, σ(φ(X))(fdg)(Y) = f · ([X, g·Y] − g·[X,Y]) =
−f ·(ρ(X)·g)Y. The contraction of ρ(X) ∈ Γ(TM) with (fdg) ∈ Ω1(M), gives
ρ(X)(fdg) = f ·(ρ(X)·g). Thus, we read σ ◦ φ = ρ, which the compatibility relation
between φ and σ.

The commutating relations (2.1.4) shows that L is an ideal in A. Thus, the restriction
of the representation of A on L is also well-defined.

3.1.3 Representation of Atiyah Lie algebroids on an associated vector bundle

On a principal bundle P(M, G), the representation of the structure group G is encoded in
the definition of an associated vector bundles. Then, Atiyah Lie algebroids can be a repre-
sented on a space of sections of an associated vector bundle. In this case, a representation
of right-invariant vector fields ΓG(P) is given by a geometric construction.

Let EP = (P ×F)/G be an associated fiber bundle to the principal bundle with typical
fiber a space F . The action of G on F is given by a representation of the structure group
ℓ : G → Aut(F). The space of sections Γ(EP) of this associated fiber bundle is given
by the G-equivariant maps {s : P → F | s(u·g) = ℓg−1 ·s(u) ∀ g ∈ G}. The Atiyah Lie
algebroid ΓG(P, g) is represented on Γ(EP) by the map φ : ΓG(P, g) → Diff1(EP) defined
as

(φ(X)s)(u) = (X·s)(u) =
d
dt |t=0

s(ΦX,t(u)) (3.1.5)

for any s ∈ Γ(EP) and u ∈ P, where ΦX,t(u) is the flow associated to X ∈ ΓG(P). We
make sure that φ(X)s ∈ Γ(EP), for any X ∈ ΓG(P). To do so, we use the fact that X

is a right-invariant vector field on P so that we obtain (φ(X)s)(u·g) = g−1(φ(X)s)(u)g,
for any g ∈ G. The following results show that the representation of ΓG(P) defines a
representation of Lie algebroids.

• For any X ∈ ΓG(P), s ∈ Γ(EP), f ∈ C∞(P) and u ∈ P one has:

X·(f ·s)(u) − f(u)·(X·s)(u) = (X·f)(u)s(u). (3.1.6)

The right-hand term is C∞(M)-linear with respect to s, then φ(X) ∈ Diff1(EP).

• We denote by π∗f, π∗g ∈ C∞(P) the pull-back of the functions f, g ∈ C∞(M). For
any X ∈ ΓG(P) and s ∈ Γ(EP), one has:

σ(φ(X))(fdg)(s) = (π∗f)· (X·(π∗g·s) − (π∗g)·(X·s))

= (π∗f)·(X·(π∗g))·s

A direct computation shows that

X·(π∗g)(u) = g
(
π

(
d
dt |t=0

ΦX,t(u)
))

= g
(

d
dt |t=0

π (ΦX,t(u))
)

= (T∗πX·g)(π(u))

for any u ∈ P. Then, for any f, g ∈ C∞(M), one has σ(φ(X))(fdg) = (T∗πf)·(T∗πX·g)
with T∗πX = ρ(X), so that we obtain σ ◦ φ = ρ.
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3.2 Differential forms on transitive Lie algebroids

From a geometric point view, dual forms and differentials forms are given in terms of
sections of the (multi-)cotangent bundle A∗. Here, we do not define the dual bundle A∗.
Instead, we define differential forms in terms of C∞(M)-multilinear antisymmetric maps
defined on the C∞(M)-module A with values in a space of representation space E → M.
The correspondence between the “fiber” and the “module” points of view are given by the
formula

{C∞(M)-multilinear ω : ∧•
A → Γ(E)} = Γ(∧•A∗ ⊗ E) (3.2.1)

A differential complex defined on transitive Lie algebroids A is a graded differential
algebra over C∞(M) of differential forms with values in a representation space E . With
respect to this representation, this graded algebra is equipped with a differential operator,
denoted as dφ, which increases the degree of forms by 1. In the first subsection, one gives
the general scheme which define this differential complex of forms. Then, in the following
subsections, we introduce the differential complexes of forms defined on A with values in
C∞(M) and in L. The differential complexes defined on trivial Lie algebroids will also
be detailed. In the trivial case, the geometric and algebraic degrees of freedom of the Lie
algebroid are described in distinct spaces so that the representation can be restricted to
one space or the other. Then, associated differential operators are written as the sum of
a Koszul derivative and a Chevalley-Eilenberg derivative.

3.2.1 Representation space valued differential complex on A

Given a differential complex of forms defined on A with values in a representation space
E , we establish the general scheme to define a differential operator of degree +1 on this
algebra of forms. In [LM12a] is defined a differential complex for forms defined on A with
values in Γ(End(E)).

Let A
ρ→ M be a Lie algebroid (not necessarily transitive) equipped with a representa-

tion φ : A → D(E) defined as in 3.1.1. We denote by Ω•(A, E) the differential complex of
forms defined on A with values in Γ(E). A differential q-form is a C∞(M)-linear antisym-
metric map defined on ∧q

A with values in Γ(E). As a graded vector space, this differential
complex can be written as

Ω•(A, E) =
⊕

q≥0

Ωq(A, E) = Ω0(A, E) ⊕ Ω1(A, E) ⊕ . . . ⊕ Ωq(A, E) ⊕ . . . (3.2.2)

where Ωq(A, E) denotes the space of q-forms on A with values in Γ(E). By convention,
we take Ω0(A, E) = Γ(E). With respect to the representation φ, the differential complex
Ω•(A, E) can be equipped with a differential operator d̂φ which increases the degree of
forms by +1 as

(d̂φω)(X1, . . . ,Xq+1) =
q+1∑

i=1

(−1)i+1φ(Xi)·ω(X1, . . . , ∨i, . . . ,Xq+1)

+
∑

1≤i<j≤q+1

(−1)i+jω([Xi,Xj ], X1, . . . , ∨i, . . . , ∨j, . . . ,Xq+1) (3.2.3)

for any X1, . . . ,Xq+1 ∈ A. Since φ : A → Diff1(E) is a morphism of Lie algebras, one has
d̂φ ◦ d̂φ = 0.
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If there exist a multiplicative operation on E , then the differential complex Ω•(A, E)
forms a graded algebra of differential forms. Indeed, let ω ∈ Ωp(A, E) and η ∈ Ωq(A, E),
then the multiplicative operator · on Ω•(A, E) is defined as

Ωp+q(A, E) ∋ (ω·η)(X1, . . . ,Xp+q) =
1

p!q!
ǫa1a2...ap+q

ω(Xa1 , . . . ,Xap)·η(Xap+1 , . . . ,Xap+q )

(3.2.4)
for any X1, . . . ,Xp+q ∈ A and where ǫa1a2...ap+q

denotes a completely antisymmetric tensor
with ǫ12...(p+q) = +1. A similar formula is obtained by taking ω (or η) a p-form (q-form)
defined on A with values in a right-module (left-module) over E and it results in a graded
module structure.

As a (p + q)-form defined on A with values in Γ(E), the differential operator d̂φ acts
on ω·η as:

d̂φ(ω·η) = (d̂φω)·η + (−1)pω·(d̂φη) (3.2.5)

This relation indicates that the differential d̂φ is a graded differential operator on Ω•(A, E).

3.2.2 Differential complex on A with values in functions

The differential complex of forms defined on A with values in C∞(M) has been studied in
[Kub98], [Kub99] and [KM03]. Similarly to the Koszul differential, the differential operator
d̂ associated to this differential complex is given by the representation of the vector fields
on M on the space of functions C∞(M) and the Lie bracket structure on M.

Let A
ρ→ M be a Lie algebroid (not necessarily transitive). One denotes by Ω•(A) the

differential complex of forms defined on A with values in C∞(M). As a graded vector
space, Ω•(A) can be written as

Ω•(A) =
⊕

q≥0

Ωq(A) = Ω0(A) ⊕ Ω1(A) ⊕ . . . ⊕ Ωq(A) ⊕ . . . (3.2.6)

where Ωq(A) denotes the space of q-forms on A with values in C∞(M). By convention,
one takes Ω0(A) = C∞(M). The representation of A on C∞(M) is given by the anchor
ρ : A → Γ(TM). Then, vector fields act naturally on the space of functions C∞(M) so
that the differential complex Ω•(A) can be equipped with a differential operator d̂A defined
as

(d̂Aω)(X1, . . . ,Xq+1) =
q+1∑

i=1

(−1)i+1ρ(Xi)·ω(X1, . . . , ∨i, . . . ,Xq+1)

+
∑

1≤i<j≤q+1

(−1)i+jω([Xi,Xj ], X1, . . . , ∨i, . . . , ∨j, . . . ,Xq+1) (3.2.7)

for any X1, . . . ,Xq+1 ∈ A. Since ρ : A → Γ(TM) is a morphism of Lie algebra, one has
d̂A ◦ d̂A = 0. The space Ω•(A) forms a graded algebra of forms on the Lie algebroid A. Let
ω ∈ Ωp(A) and η ∈ Ωq(A), the multiplicative operator ∧ is defined then as

(ω ∧ η)(X1, . . . ,Xp+q) =
1

p!q!
ǫa1a2...ap+q

ω(Xa1 , . . . ,Xap)·η(Xap+1 , . . . ,Xap+q ) (3.2.8)

for any X1, . . . ,Xp+q ∈ A and where · denotes the multiplication in C∞(M). As a (p + q)-
form on A, the differential operator d̂A acts on ω ∧ η as:

d̂A(ω ∧ η) = (d̂Aω) ∧ η + (−1)pω ∧ (d̂Aη) (3.2.9)

This indicates that d̂A is a graded differential operator on Ω•(A).
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3.2.3 Differential complex on A with values in L.

The definition of a differential complex on A with values in L involves an additional al-
gebraic element, not present for differential forms with values in C∞(M). This element
plays an important role in the construction of gauge theories. Here, the target space of
these differential forms is the Lie algebroid L so that the representation of A on L is given
by the Lie bracket. Moreover, in section 3.3.2, we will see that the trivialization and the
gluing relations associated to this space of forms take into account the algebraic structure
of L. This differential complex forms a graded Lie algebra where the Lie bracket defined
on L is extended to a graded Lie bracket for forms on A with values in L.

Let A
ρ→ M be a transitive Lie algebroid with kernel L. One denotes by Ω•(A, L)

the differential complex of forms defined on A with values in L. As a graded differential
complex, it can be written as

Ω•(A, L) =
⊕

q≥0

Ωq(A, L) = Ω0(A, L) ⊕ Ω1(A, L) ⊕ . . . ⊕ Ωq(A, L) ⊕ . . . (3.2.10)

where Ωq(A, L) denotes the space of q-forms on A with values in L. By convention, one takes
Ω0(A, L) = L. With respect to the representation of A on L given by the Lie bracket, the
differential complex Ω•(A, L) can be equipped with a differential operator d̂ which increases
the degree of forms by +1. This definition is similar with the Koszul differential for forms
defined on M. In particular, on Atiyah Lie algebroids, this differential is equivalent with
the differential operator of the de Rham calculus restricted to the space of right-invariant
vector fields ΓG(P). For any ω ∈ Ωq(A, L), the differential operator d̂ is defined as

(d̂ω)(X1, . . . ,Xq+1) =
q+1∑

i=1

(−1)i+1[Xi, ω(X1, . . . , ∨i, . . . ,Xq+1)]

+
∑

1≤i<j≤q+1

(−1)i+jω([Xi,Xj ], X1, . . . , ∨i, . . . , ∨j, . . . ,Xq+1) (3.2.11)

for any X1, . . . ,Xq+1 ∈ A. The adjoint representation of L on A is a morphism of Lie
algebra so that the one has d̂ ◦ d̂ = 0. The space Ω•(A, L) forms a graded Lie algebra.
Let ω ∈ Ωp(A, L) and η ∈ Ωq(A, L), the Lie bracket defined on L is extended to forms with
values in L so that the element [ω, η] ∈ Ωp+q(A, L) is defined by the relation

[ω, η](X1, . . . ,Xp+q) =
1

p!q!
ǫa1a2...ap+q

[ω(Xa1 , . . . ,Xap), η(Xap+1 , . . . ,Xap+q )] (3.2.12)

for any X1, . . . ,Xp+q ∈ A. Form this definition, one proves following relations. For any
ω1 ∈ Ωk1(A, L), ω2 ∈ Ωk2(A, L) and ω3 ∈ Ωk3(A, L), the graded Lie bracket on Ω•(A, L)
fulfill the following relations

• [ω1, ω2] = (−1)k1·k2+1[ω2, ω1]

• [ω1, [ω2, ω3]] = [[ω1, ω2], ω3] + (−1)k1·k2 [ω2, [ω1, ω3]].

These relations prove that the Lie bracket defined on the differential complex of forms is
a graded Lie bracket on Ω•(A, L). As a differential form of degrees p + q defined on A with
values in L, the differential operator d̂ acts on [ω, η] as d̂[ω, η] = [d̂ω, η] + (−1)p[ω, d̂η].
This indicates that d̂ is a graded differential operator on ω•(A, L).
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The differential complex Ω•(A, L) is a left-module over C∞(M) and this it is also a
left-module over the differential complex Ω•(A). Let ω ∈ Ωp(A) and η ∈ Ωq(A, L), the left
action of Ω•(A) on Ω•(A, L) is given by the relation

Ωp+q(A, L) ∋ (ω·η)(X1, . . . ,Xp+q) =
1

p!q!
ǫa1a2...ap+q

ω(Xa1 , . . . ,Xap)·η(Xap+1 , . . . ,Xap+q )

(3.2.13)
for any X1, . . . ,Xp+q ∈ A. As a (p + q)-form defined on A with values in L, the differential
operator d̂ acts on [ω, η] as: d̂(ω·η) = (d̂Aω·η + (−1)p(ω·d̂η). This indicates that d̂ is a
graded differential operator on ω•(A, L).

3.2.4 Cartan operation on Ω•(A, L)

A Cartan operation ([Car50b; Car50a]) defined on a differential complex permits to dis-
tinguish different subspaces such as the horizontal subspace, the invariant subspace and
the basic subspace. Here, we consider only a Cartan operation on Ω•(A, L). This opera-
tion is defined by the data of an inner operation i, a differential operator which decreases
the degree of forms by 1, and a Lie derivative. Initially, the Lie derivative was defined
as a geometric operation defined on vector fields of M and on the dual space Γ(T ∗M).
Here, we give an algebraic definition of the Lie derivative which uses both the differential
operator d̂ and the inner operation i.

We consider L as a totally intransitive Lie agebroid. Then, the Cartan operation defines
an infinitesimal gauge action of the kernel L on the transitive Lie algebroid A. In section
(6.2.1), we will see that the Lie derivative of L, applied to connection 1-forms defined on
an Atiyah Lie algebroids, gives exactly the infinitesimal version of the action of the gauge
group given by the space of vertical automorphisms on P. This correspondence leads to
consider the Lie derivative along L as the infinitesimal geometric gauge action for gauge
theories defined on transitive Lie algebroids.

Let A
ρ→ M be a transitive Lie algebroid over M equipped with the differential complex

(Ω•(A, L), d̂) and let L
0→ M be the totally intransitive Lie algebroid corresponding to

the kernel of A. The Cartan operation of L on the differential complex (Ω•(A, L), d̂)
is defined by the inner operation iℓ : Ωq(A, L) → Ωq−1(A, L) and by a Lie derivative
Lℓ : Ωq(A, L) → Ωq(A, L), for any ℓ ∈ L.

• The inner operation i is defined on any ω ∈ Ω•(A, L) as (iℓω)(X1, . . . ,Xq−1) =
ω(ι ◦ ℓ,X1, . . . ,Xq−1), for any ℓ ∈ L and X1, . . . ,Xq−1 ∈ A. This inner operation is
graded differential operator in the sense that iℓ(ω·η) = (iℓω)·η+(−1)qω·(iℓη) for any
ω ∈ Ωq(A), η ∈ Ω•(A, L) and ℓ ∈ L.

• The Lie derivative along L is defined as Lℓ = d̂ ◦ iℓ + iℓ ◦ d̂ for any ℓ ∈ L. It acts on
Ω•(A, L) as a derivation i.e. Lℓ(ω·η) = (Lℓω)·η + ω·(Lℓη).

The inner operation and the Lie derivative fulfill the following relations

i(f ·γ) = f ·iγ ; iγ ·iη + iη·iγ = 0 ; [Lγ , iη] = i[γ,η] ; [Lγ , Lη] = L[γ,η] (3.2.14)

for any γ, η ∈ L and f ∈ C∞(M). One denotes (L, i, L) the Cartan operation on
(Ω•(A, L), d̂) and we use the following terminology

• Horizontal forms in Ω•(A, L) are elements ω ∈ Ω•(A, L) such that iℓω = 0, for any
ℓ ∈ L. One denotes by Ω•(A, L)hor the space of horizontal forms with respect to the
Cartan operation.
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• Invariant forms in Ω•(A, L) are elements ω ∈ Ω•(A, L) such that Lℓω = 0, for any
ℓ ∈ L. One denotes by Ω•(A, L)inv the space of invariant forms with respect to the
Cartan operation.

• Basic forms in Ω•(A, L) are elements ω ∈ Ω•(A, L) such that iℓω = 0 and LLω = 0,
for any ℓ ∈ L. One denotes by Ω•(A, L)basic the space of basic forms with respect to
the Cartan operation.

3.2.5 Differential complex on TLA(M, g) with values in functions

On trivial Lie algebroids, the distinction between the geometric and the algebraic degrees
of freedom is also apparent in the study of differential complexes. Indeed, as graded
vector spaces, differential complexes can be decomposed with respect to their degrees
of forms. Then, homogeneous terms turn out to be decomposed with respect to their
geometric degrees of forms and their algebraic degrees of forms. The important point of
this decomposition is the bi-graduation of the total complex which permits to decompose
any element of this differential complex on a graded tensorial product of basis.

Moreover, the distinction between the two spaces Γ(TM) and Γ(M × g) induces two
separate representations, one for each space. The associated differential operator defines
on TLA(U , g) inherits this structure. For the space of forms defined on TLA(M, g) with
values in C∞(M), vector fields defined on M are represented by their geometric action on
the space of functions whereas algebraic elements Γ(M×g) are trivially represented on it.
It results in the decomposition of the total differential operator δ as the sum of a Koszul
derivative associated to the geometric representation of Γ(TM) and a Chevalley-Eilenberg
derivative.

Let TLA(M, g) be a trivial Lie algebroid over M modeled on the Lie algebra g. One
denotes by Ω•

TLA
(M) the differential complex of forms defined on TLA(M, g) with values

in C∞(M). As a graded vector space, it can be decomposed as

Ω•
TLA(M) =

⊕

q=0

Ωq
TLA

(M) = Ω0
TLA(M) ⊕ Ω1

TLA(M) ⊕ . . . ⊕ Ωq
TLA

(M) ⊕ . . . (3.2.15)

where Ωq
TLA

(M) denotes the space of q-form on TLA(M, g) with values in C∞(M) and, by
convention, one takes Ω0

TLA
(M) = C∞(M). Each of the terms of homogeneous degree have

a bi-graduation which comes from the decomposition of TLA(M, g) into Γ(TM) ⊕ Γ(M ×
g). Then, this differential complex is also considered as a "trivial" differential complex of
Lie algebroids in the sense that geometric degrees of forms and algebraic degrees of forms
are separated. The differential complex Ω•

TLA
(M) can be written as

Ω•
TLA(M) = Ω•(M) ⊗ Ω•(g) (3.2.16)

where Ω•(M) denotes the space of the de Rham forms, Ω•(g) denotes the space of the
Chevalley-Eilenberg forms and the symbol ⊗ denotes a graded tensorial product. The
Koszul differential acts on Ω•(M) and the Chevalley-Eilenberg differential acts on Ω•(g).
These two differentials induce the existence of a global differential operator δ, acting on
the graded tensorial product of these two spaces. Then, Ω•

TLA
(M) forms a graded tensorial

product of differential algebras.
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The differential operator δ uses both the representation of vector fields on C∞(M)
and the trivial representation of the Lie algebra g. It is defined as:

(δω)(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1) =
q+1∑

i=1

(−1)i+1Xi·ω(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)

+
∑

1≤i<j≤q+1

(−1)i+jω([Xi ⊕ γi, Xj ⊕ γj ], X1 ⊕ γ1, . . . , ∨i, . . . , ∨j, . . . , Xq+1 ⊕ γq+1)

(3.2.17)

for any X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1 ∈ TLA(M, g). Obviously, one has δ ◦ δ = 0.

As it has been already noticed in (3.2.16), the distinction of representations of δ leads
to decompose the differential operator δ as the sum of two differential operators

δ = d + s (3.2.18)

where d is the Koszul derivative associated to the representation of vector fields Γ(TM)
on C∞(M) defined on ΩTLA(M) as

(dω)(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1) =
q+1∑

i=1

(−1)i+1Xi·ω(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)

+
∑

1≤i<j≤q+1

(−1)i+jω([Xi, Xj ] ⊕ (Xi·γj − Xj ·γi), X1 ⊕ γ1, . . . , ∨i, . . . , ∨j, . . . , Xq+1 ⊕ γq+1)

(3.2.19)

for any X1⊕γ1, . . . , Xq+1 ⊕γq+1 ∈ TLA(M, g), and s is the Chevalley-Eilenberg derivative,
associated to the trivial representation of g on C∞(M), defined as

(sω)(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1) =

∑

1≤i<j≤q+1

(−1)i+jω(0 ⊕ [γi, γj ], X1 ⊕ γ1, . . . , ∨i, . . . , ∨j, . . . , Xq+1 ⊕ γq+1) (3.2.20)

for any X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1 ∈ TLA(M, g). These two differential operators increase
the total degree of forms of Ω•

TLA
(M). They act separately on the geometric degrees

of forms and the algebraic degrees of forms. With respect to the decomposition of the
differential complex along its bi-graduation, one has

{
d : Ω•(M) ⊗ Ω•(g) → Ω•+1(M) ⊗ Ω•(g)

s : Ω•(M) ⊗ Ω•(g) → Ω•(M) ⊗ Ω•+1(g)
(3.2.21)

These two differential operators are nilpotent and we show that they commute d◦s+s◦d =
0.

Locally, one uses a local chart of M to decompose differential forms on the graded
tensorial product of elements of the basis of the cotangent bundler T ∗U with elements of
the basis of the dual Lie algebra g∗. We denote by (dx1, dx2, . . . , dxm) a basis for the
cotangent bundle T ∗U and we denote by (θ1, θ2, . . . , θn) a basis of the dual Lie algebra g∗.
Straightforwardly, we show that each homogeneous q-form ω ∈ Ωq

TLA
(U) can be written as

ω =
∑

r+s=q

ωµ1µ2...µra1a2...asdxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr ⊗ θa1 ∧ θa2 ∧ . . . ∧ θas (3.2.22)
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where the summation over the repetitive indices is implicit. The multi-index field ωµ1...as ∈
C∞(U) is a totally antisymmetric field. With respect to this local decomposition, the
action of the differential graded operator δ = d+s is summarized in the following relations

d : f Ô→ ∂µfdxµ d : dxµ Ô→ 0 d : θa Ô→ 0

s : f Ô→ 0 s : dxµ Ô→ 0 s : θa Ô→ −1
2 Ca

bc θb ∧ θc
(3.2.23)

With these rules, the computation of the differential calculus on Ω•
TLA

(U) is implemented
at the level of its local decomposition along a graded tensorial product of basis. In this
description, the degrees of freedom of the a q-form ω are all contained in the local com-
ponents.

3.2.6 Differential complex on TLA(M, g) with values in Γ(M × g)

One uses the same scheme to define the differential complex of forms defined on TLA(M, g)
with values in Γ(M × g). Here, similarly to the previous case, the distinction between the
geometric and the algebraic degrees of forms occurs explicitly. However, here, ΓG(P, g),
the target space of these differential forms, supports both the representation of Γ(TM)
and the adjoint representation of g on the g-component.

On Ω•(A, L), each of the terms of homogeneous degree have a bi-graduation which
comes from the decomposition of TLA(M, g) into Γ(TM)⊕Γ(M×g). This bi-graduation
leads to the decomposition of Ω•

TLA
(M, g) as

Ω•
TLA(M, g) = Ω•(M) ⊗ Ω•(g) ⊗ g (3.2.24)

where Ω•(M) denotes the differential complex of the de Rham forms equipped with the
Koszul derivative, Ωs(g) denotes the differential complex of the Chevalley-Eilenberg forms
equipped with the Chevalley-Eilenberg derivative and g denotes the Lie algebra. The
space Ω•

TLA
(M, g) is a graded Lie algebra with respect to the graded Lie bracket defined

in section 3.2.12.

The differential complex Ω•
TLA

(M, g) is equipped with a differential operator d̂TLA

which increases the degree of forms by 1. This differential operator uses both the repre-
sentation of vector fields on Γ(M × g) and the adjoint representation of the Lie algebra g

on itself. It is defined as:

(d̂TLAω)(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1) =

q+1∑

i=1

(−1)i+1Xi·ω(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)

+
q+1∑

i=1

(−1)i+1[γi, ω(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)]

+
∑

1≤i<j≤q+1

(−1)i+jω([Xi ⊕ γi, Xj ⊕ γj ], X1 ⊕ γ1, . . . , ∨i, . . . , ∨j, . . . , Xq+1 ⊕ γq+1)

(3.2.25)

for any X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1 ∈ TLA(M, g). Obviously, one has d̂TLA ◦ d̂TLA = 0.

As it has been already noticed in (3.2.16), the differential operator d̂TLA is decomposed
as the sum of two differential operators as:

d̂TLA = d + s′ (3.2.26)
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where d is the Koszul derivative associated to the representation of vector fields Γ(TM) on
Γ(M×g) defined on Ω•

TLA
(M, g) as in (3.2.19) and s′ is the Chevalley-Eilenberg derivative

associated to the adjoint representation of g on Γ(M × g) defined as

(s′ω)(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1) =
q+1∑

i=1

(−1)i+1[γi, ω(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)]

∑

1≤i<j≤q+1

(−1)i+jω([γi, γj ], X1 ⊕ γ1, . . . , ∨i, . . . , ∨j, . . . , Xq+1 ⊕ γq+1) (3.2.27)

for any X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1 ∈ TLA(M, g). These two differential operators increase
the total degree of forms of Ω•

TLA
(M, g) by acting separately on the geometric degrees of

forms and the algebraic degrees of forms. Indeed, with respect to the decomposition of
the differential complex along its bi-graduation, one has

{
d : Ω•(M) ⊗ Ω•(g) ⊗ g → Ω•+1(M ⊗ Ω•(g) ⊗ g

s : Ω•(M) ⊗ Ω•(g) ⊗ g → Ω•(M) ⊗ Ω•+1(g) ⊗ g
(3.2.28)

These two differential operators are nilpotent and one shows that they anticommute d ◦
s′ + s′ ◦ d = 0

With respect to a local chart (U , ϕ) of M. Each homogeneous q-form ω ∈ Ωq
TLA

(U , g)
can be written as

ω =
∑

r+s=q

ωa
µ1µ2...µra1a2...asdxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr ⊗ θa1 ∧ θa2 ∧ . . . ∧ θas ⊗ Ea (3.2.29)

where the summation over the repetitive indices is implicit. The action of the differential
graded operator d̂TLA is summarized in the following relations

d : f Ô→ ∂µfdxµ d : dxµ Ô→ 0 d : θa Ô→ 0 d : Ea Ô→ 0

s′ : f Ô→ 0 s′ : dxµ Ô→ 0 s′ : θa Ô→ −1
2 Ca

bcθ
b ∧ θc s′ : Ea Ô→ θb[Eb, Ea]

(3.2.30)

With these rules, the computation of the differential complex ΩTLA(U , g) is implemented
at the level of its local decomposition along a graded tensorial product of basis. In this
description, the degrees of freedom of the a q-form ω are all contained in the local com-
ponents.

3.3 Local trivializations of differential complexes

By using an atlas of Lie algebroids (Ui, ∇0
i , Ψi)i∈I , we locally trivialize differential com-

plexes defined on A to differential complexes defined on TLA(U , g). In the previous sec-
tions, one has seen that differential complexes defined on TLA(M, g) make apparent the
bi-graduation of forms associated to the separation between Γ(TM) and Γ(M × g). This
separation gives rise to two differential operators: the Koszul derivative and the Chevalley-
Eilenberg derivative. Moreover,with respect to a local chart, elements of the differential
complexes are decomposed on the graded tensorial product of basis of T ∗M, g∗ and g.

This section shows how a differential complex defined on A with values either in
C∞(M), or in L, is locally trivialized to a differential complex defined on TLA(U , g) with
values either in C∞(M) or in Γ(U × g), respectively. In both situations, we will see that
this local trivialization realizes a local isomorphism of differential complexes (this local
isomorphism has been depicted in [FLM13]).
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The local trivialization of differential complexes on A is an important point in the
construction of gauge theories as physical models. In the spirit of the YM theories, we
define a differential complex defined on a transitive Lie algebroid equipped with a gauge
action. Since the "physics is on M", the gauge theory has to be locally trivialized. As local
trivializations of global objects, their geometric and algebraic properties inherite from an
upper, global, structure.

3.3.1 Local trivialization of forms on A with values in functions

Let A
ρ→ M a Lie algebroid (not necessarily transitive) equipped with an atlas of Lie

algebroids (Ui, Si)i∈I = (Ui, ∇0
i , Ψi)i∈I . Any element X of A can be locally trivialized

over the open set Ui as X ⊕ γi. Then, the local trivialization of the differential complex
(Ω•(A), d̂A) over Ui is defined as the pull-back action of the map Si on elements of Ω•(A).
Indeed, as Si maps elements of TLA(Ui, g) to elements of A|Ui

, the pull-back action of Si

maps the differential complexes in the opposite direction.

A|Ui
Ω•(A)|Ui

S∗

i

��
TLA(Ui, g)

Si

OO

Ω•
TLA

(Ui)

Then, the local trivialization of ω ∈ Ωq(A) is given by the relation

ωloc, i = S∗
i ω ; ωloc, i(X1 ⊕ γi, 1, . . . , Xq ⊕ γi, q) = ω(Si(X1 ⊕ γi, 1), . . . , Si(Xq ⊕ γi, q))

(3.3.1)
for any X1 ⊕ γi, 1, . . . , Xq ⊕ γi, q ∈ TLA(Ui, g). We denote by ωij the restriction of the
q-form ω ∈ Ωq(A) to the open set Uij . Over the open subset Uij , this q-form can be locally
trivialized either as ωloc, i = ω◦Si, with respect to the local trivialization (Ui, Si), or locally
trivialized as ωloc, j = ω ◦ Sj , with respect to the local trivialization (Uj , Sj). These two
objects are related by the formula ωloc, i = ωloc, j ◦ sj

i where the map sj
i : TLA(Uij , g) →

TLA(Uij , g) is the morphism of Lie algebroids defined as in 2.2.2.

With an atlas of Lie algebroids (Ui, Si)i∈I , any element ω of the differential com-
plex Ω•(A) is locally described on the base manifold as a family of elements (ωloc, i)i∈I ∈
Ω•

TLA
(Ui, g). Locally, each of map (Si)i∈I : TLA(Ui, g) → A|Ui

establishes a local isomor-
phism of vector spaces between Ω•(A)|Ui

and Ω•
TLA

(Ui).

Conversely, consider a family of q-forms (ηi)i∈I ∈ ΩTLA(Ui) defined on each open set
(Ui)i∈I of M and a set of isomorphisms sj

i : TLA(Ui, g) → TLA(Uj) such that on any open
set Uij , the forms ηi and ηj are related as ηi = ηj ◦ sj

i . Then, the family of differential
q-forms (ηi)i∈I are the local trivializations of a global form η ∈ Ωq(A).

With respect to an atlas of manifold (Ui, ϕi)i∈I , over the open set Ui ⊂ M, we de-
note by (dx1, dx2, . . . , dxm) a basis for the cotangent bundle T ∗U and one denotes by
(θ1, θ2, . . . , θn) a basis of the dual Lie algebra g∗. The differential complex Ω•

TLA
(U) is

locally decomposed with respect to its bi-graduation as in the section 3.2.5.

With respect to this decomposition, all the degrees of freedom of ω defined on A

are locally contained in the fields (ωloc)µ1µ2...µra1a2...as . The geometric and the algebraic
degrees of freedom of ωloc are related to the Greek indices and Latin indices, respectively.
The local component of a q-form ω which has only Greek indices is said to be purely
geometric and the local component which has only Latin indices is said to be purely
algebraic. For q > n, the (n − q)-form which factorizes the basis θ1 ∧ . . . ∧ θn is said to be
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3.3 – Local trivializations of differential complexes

the maximal inner component of ω. In section 5.2.4, this maximal inner component will
play an important role in the definition of an integration over the algebraic component of
forms defined on A.

Locally, the space of differential 1-forms defined on A takes into account the separation
between the geometric and the algebraic degrees of freedom of TLA(U , g). Over Ui, one
decomposes the map Si into the pair (∇0

i , Ψi) so that the 1-form ω ∈ Ω1(A) is locally
trivialized as

ωloc, i = ω ◦ ∇0
i + ω ◦ ι ◦ Ψi = ai + bi (3.3.2)

where we have denoted by ai := ω ◦ ∇0
i ∈ Ω1(Ui, ) and bi := ω ◦ Ψi ∈ Ω1(Ui × g) the

geometric part and the algebraic part of ωloc, i, respectively. On the open set Uij , the
geometric part aj and the algebraic part bj are related to ai and bi as:

aj = ai + bi ◦ χij ; bj = bi ◦ αi
j (3.3.3)

where χij ∈ Ω1(Uij) ⊗ g and αj
i ∈ Ω1(g)|Uij

⊗ g are defined as in the section 2.2.2. In
the theory of fiber bundles, the local trivialization of a 1-form defined on a principal
bundle P gives a 1-form Ω1(U). This would correspond to the geometric part of the
previous decomposition. The second part, the algebraic one, is not defined in the theory
of fiber bundles and consists in an algebraic extension which is proper to the context of
the algebraic forms on Lie algebroids.

The following computation shows that, locally, the differential complex on A is com-
patible with the differential complex on TLA(U , g). It results in an local isomorphism
of differential complexes between (Ω•(A)|Ui

, d̂A) and (Ω•
TLA

(Ui), δ). Actually, the gluing
functions αi

j and χij associated to the Lie algebroid atlas (Ui, ∇0
i , Ψi) commute with the

differential calculus and then, trivializations of Ω•(A) are also glued from one open set Ui

to the other open Uj . This isomorphism establishes an equivalence between the description
of a differential calculus on A and a set a differential on (TLA(Ui, g)i∈I .

For any (X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1) ∈ TLA(U , g), the local trivialization of d̂Aω ∈
Ωq+1(A) over an open set U is

(d̂Aω)loc(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1) = (d̂Aω)(S(X1 ⊕ γ1), . . . , S(Xq+1 ⊕ γq+1))

=
q+1∑

i

(−1)i+1ρ(S(Xi ⊕ γi))·ω(S(X1 ⊕ γ1), . . . , ∨i, . . . , S(Xq+1 ⊕ γq+1))

+
∑

1≤i<j≤q+1

(−1)i+jω([S(Xi ⊕ γi), S(Xj ⊕ γj)], . . . , ∨i, . . . , ∨j, . . . , S(Xq+1 ⊕ γq+1))

=
q+1∑

i

(−1)i+1Xi·ωloc(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)

+
∑

1≤i<j≤q+1

(−1)i+jωloc([Xi ⊕ γi, Xj ⊕ γj ], . . . , ∨i, . . . , ∨j, . . . , Xq+1 ⊕ γq+1)

= (δωloc)(X1 ⊕ γ1, . . . , Xq ⊕ γq+1)

So that we obtain
(d̂Aω)loc = δωloc (3.3.4)
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Chapter 3 – Differential structures on transitive Lie algebroids

where ωloc is the local trivialization of ω. Moreover, over the open set Uij , we use the fact
that the map sj

i is an isomorphism of Lie algebras to establish the following relation

(d̂Aω)loc, i = (d̂Aω)loc, j ◦ sj
i (3.3.5)

The study of the local trivializations of the differential complex (Ω•(A), d̂A) is summa-
rized in the following commutative diagram

(Ω•(A), d̂A)
d̂A // (Ω•+1(A), d̂A)

Sj

��

(Ω•(A), d̂A)

l
l

l
l

l
l

l
l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l

d̂A //

Si

��

Uj

��

(Ω•+1(A), d̂A)

l
l

l
l

l
l

l
l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l

��

∏
i∈I

(Ω•
TLA

(Ui), δ) δ //
∏
i∈I

(Ω•+1
TLA

(Ui), δ)

∏
i∈I

(Ω•
TLA

(Ui), δ) δ //

si
j

∗ 77
n

n
n

n
n

n
n

n
n

n
n

n ∏
i∈I

(Ω•+1
TLA

(Ui), δ)

si
j

∗

77
n

n
n

n
n

n
n

n
n

n
n

3.3.2 Local trivialization of forms on A with values in the kernel

We repeat the same process in order to locally trivialize the differential complex of forms
with values in the kernel L of A

ρ→ M. Here, the fact that the forms are valued in the
algebraic space L modifies slightly the calculi and the expressions of the gluing relations.
Similarly with the previous case, one shows that the data of a atlas of Lie algebroids
(Ui, Si)i∈I results in the formulation of a local isomorphism of differential complexes be-
tween (Ω•(A, L)|Ui

, d̂) and (Ω•
TLA

(Ui, g), d̂TLA).

Let A
ρ→ M be a transitive Lie algebroid with kernel L equipped with a atlas of Lie

algebroids (Ui, Si)i∈I = (Ui, ∇0
i , Ψi)i∈I Over the open set Ui, the local trivialization of the

differential complex (Ω•(A, L), d̂) is defined as follow. To any ω ∈ Ωq(A, L), one has:

ωloc = Ψ−1 ◦ ω ◦ S (3.3.6)

where Ψ : Γ(U × g) → LU is the vector bundle isomorphism associated to S. Contrary to
the previous case, the form ω is L-valued so that one needs the map Ψ−1 in order to get
ωloc with values in Γ(Ui × g).

Over the open set Uij , any element ω can be either locally trivialized as ωloc, i =
Ψ−1

i ◦ω◦Si, with respect to the local trivialization (Ui, Si), or locally trivialized as ωloc, j =
Ψ−1

j ◦ ω ◦ Sj ,with respect to the local trivialization (Uj , Sj). These two local expressions
are related by the formula

ωloc, i = (Ψ−1
i ◦ Ψj) ◦ Ψ−1

j ◦ ωloc, j ◦ Sj ◦ (S−1
j ◦ Si) = α̂i

j(ωloc, j) (3.3.7)

where the map α̂i
j : Ω•

TLA
(Uij , g) → Ω•

TLA
(Uij , g) is defined as

α̂j
i (η) = αj

i ◦ η ◦ si
j (3.3.8)
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3.3 – Local trivializations of differential complexes

for any η ∈ Ω•
TLA

(Uij) where αj
i = Ψ−1

j ◦Ψi : Γ(Uij ×g) → Γ(Uij ×g) and sj
i : TLA(Uij , g) →

TLA(Uij , g). Contrary to the local expression of forms with values in C∞(U), the gluing
relations of the local expressions of forms with values in L take into account the gluing
relations of the target space. Thus, both the source space and the target space of ω
transform accordingly to the geometry of the Lie algebroid.

Conversely, consider a set of q-forms (ηi)i∈I ∈ ΩTLA(Ui, g) defined on each opens (Ui)i∈I

of M with values in g and a family of pairs (αj
i , sj

i )i,j∈I defined on the open sets Uij as
defined in section 2.2.2 such that, on any open sets Uij , the form ηi is related to ηj as
ηi = αi

j ◦ηj ◦sj
i . Then, the family of forms (ηi)i∈I are the corresponding local trivializations

of a global form η ∈ Ωq(A, L).

With respect to a local chart of M, we denote by (dx1, dx2, . . . , dxm) a basis for
the cotangent bundle T ∗U , by (E1, E2, . . . , En) a basis of the Lie algebra g and by
(θ1, θ2, . . . , θn) a basis of the dual Lie algebra g∗. These basis are used to decompose
elements of the differential complex Ω•

TLA
(U , g) on the graded tensorial product of basis

as depicted in the expression (3.2.29). Then, any q-form ω ∈ Ωq(A, L) can be locally
trivialized as

ωloc =
∑

r+s=q

(ωloc)
a
µ1µ2...µra1a2...asdxµ1 ∧dxµ2 ∧ . . .∧dxµr ⊗θa1 ∧θa2 ∧ . . .∧θas ⊗Ea (3.3.9)

where the tensor field (ωloc)
a
µ1µ2...µra1a2...as ∈ C∞(U) is a totally antisymmetric multi-

indices field and corresponds to the local components of ω. One uses the same termi-
nology as section 3.3.1 to designate the purely geometric component, the purely algebraic
component and the maximal inner form of ω ∈ Ωq(A, L).

For 1-forms defined on A with values in L, one defines their geometric part and their
algebraic counter part as previously. Let ω ∈ Ω1(A, L). With respect to the decomposition
(2.2.3), the local trivialization of ω can be written as

ωloc = Ψ−1 ◦ ω ◦ ∇0 + Ψ−1 ◦ ω ◦ Ψ = A + B (3.3.10)

where one has denoted A = Ψ−1 ◦ ω ◦ ∇0 ∈ Ω1(U , g) and B = Ψ−1 ◦ ω ◦ Ψ ∈ Ω1(g, g)
the geometric part and the algebraic part of ωloc, respectively. On the open set Uij , the
mapsAj and Bj are related to the maps Ai and Bi as:

Aj = αj
i ◦ Ai + αj

i ◦ Bi ◦ χij ; Bj = αj
i ◦ Bi ◦ αi

j (3.3.11)

where χij ∈ Ω1(Uij) ⊗ g and αj
i ∈ Ω1(g)|Uij

⊗ g.

The gluing relations (3.3.8) are compatible with the differential calculus defined on
Ω•

TLA
(M, g). Here, the computations are more cumbersome than in the previous section,

due to the presence of the image space Γ(U × g) of ωloc. The following computation
shows that the gluing functions associated to the atlas of Lie algebroids have the good
properties which permit to establish an isomorphism of differential complexes between
(Ω•(A, L), d̂) and (Ω•

TLA
(M, g), d̂TLA). For any (X1 ⊕ γ1, . . . , Xq ⊕ γq+1) ∈ TLA(U , g), the
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Chapter 3 – Differential structures on transitive Lie algebroids

local trivialization of d̂ω ∈ Ωq+1(A, L) over U gives

(d̂ω)loc(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1)

=Ψ−1 ◦ (d̂ω)(S(X1 ⊕ γ1), . . . , S(Xq+1 ⊕ γq+1))

=
q+1∑

i=1

(−1)i+1Ψ−1 ◦ [S(Xi ⊕ γi)), ω(S(X1 ⊕ γ1), . . . , ∨i, . . . , S(Xq+1 ⊕ γq+1))]

+
∑

1≤i<j≤q+1

(−1)i+jΨ−1 ◦ ω([S(Xi ⊕ γi), S(Xj ⊕ γj)], . . . , ∨i, . . . , ∨j, . . .)

At this point, it is convenient to compute independently the quantity Ψ−1 ◦ [S(X ⊕ γ), ℓ].
Using the relation (2.2.4), one shows that Ψ−1 ◦ [S(X ⊕ γ), ℓ] = X·(Ψ−1(ℓ)) + [γ, Ψ−1(ℓ)]
for any X ∈ Γ(TU) and ℓ ∈ L, so that one obtains

(d̂ω)loc(X1 ⊕ γ1, . . . , Xq ⊕ γq+1)

=
q+1∑

i=1

(−1)i+1Xi·ωloc(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)

+
q+1∑

i=1

(−1)i+1[γi, ωloc(X1 ⊕ γ1, . . . , ∨i, . . . , Xq+1 ⊕ γq+1)

+
∑

1≤i<j≤q+1

(−1)i+jωloc([Xi ⊕ γi, Xj ⊕ γj ], . . . , ∨i, . . . , ∨j, . . . , Xq+1 ⊕ γq+1)

=d̂TLAωloc(X1 ⊕ γ1, . . . , Xq ⊕ γq+1).

Finally
(d̂ω)loc = d̂TLAωloc (3.3.12)

for any ω ∈ Ω•(A, L) where ωloc is the associated local trivialization. It is also straight-
forward to establish the following relation that the gluing relations and the derivative on
Ω•

TLA
(U , g) commutes so that one has

(d̂ω)loc, i = α̂i
j ◦ (d̂ω)loc, j (3.3.13)

The study of the local trivializations of the differential complex (Ω•(A, L), d̂) is summarized
in the following commutative diagram

(Ω•(A, L), d̂)
d̂ // (Ω•+1(A, L), d̂)

Sj

��

(Ω•(A, L), d̂)

l
l

l
l

l
l

l
l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l

d̂ //

Si

��

Uj

��

(Ω•+1(A, L), d̂)

l
l

l
l

l
l

l
l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l

��

∏
i∈I

(Ω•
TLA

(Ui, g), d̂TLA) d̂TLA //
∏
i∈I

(Ω•+1

TLA
(Ui, g), d̂TLA)

∏
i∈I

(Ω•
TLA

(Ui, g), d̂TLA) d̂TLA //

α̂
j

i

77
n

n
n

n
n

n
n

n
n

n
n

n ∏
i∈I

(Ω•+1

TLA
(Ui, g), d̂TLA)

α̂
j

i

77
n

n
n

n
n

n
n

n
n

n
n

n
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3.3 – Local trivializations of differential complexes

Cohomological properties of Lie algebroids have been studied in [CM08b] to study some
deformations of the Lie bracket, and in [Fer02] to define characteristic classes. The local
isomorphism between the differential complex (Ω•(A, L), d̂) and (ΩTLA(U , g), d̂TLA) allows
to “bring” the computation of the “upper” cohomology classes in terms of local com-
putations. This is done by defining a generalized Čech-de Rham bicomplex, associated
to a Mayer-Vietoris sequence (see appendix A for explicits computations). It results
that the cohomology of (Ω•(A, L), d̂) is isomorph to the cohomology of the total complex
(K•(U ,F), D) where K•(U ,F) is a generalized Čech-de Rham complex.
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Chapter 4

Theory of connections on transitive Lie
algebroids

As one can see in the construction of YM models, the role of the connections is deeply
rooted in the construction of geometric gauge invariant theories. Historically, the first
physical gauge theory was the Maxwell theory of electromagnetism. In the language of
the theory of the fiber bundles, this theory is based on the existence of a connection on
a U(1)-principal bundle over M3,1. In differential geometry, connections on a principal
bundle are used to define a complementary subspace of the vertical vectors: the so-called
horizontal subspace. There, the choice of a horizontal subspace is equivalent to the data of
a 1-form of connection defined on Γ(TP) with values in the Lie algebra g of the structure
group. Locally, by using a local trivialization of P, this connection 1-form gives an element
A of Ω1(U , g).

Given a connection, the covariant derivative on P is defined as the Koszul derivative
acting on a representation space and restricted to the horizontal vector fields. Elegantly,
the local trivialization of this covariant derivative extends the geometric derivative ∂µ by
a infinitesimal inner displacement Aµ ∈ C∞(U) ⊗ g. This gives the geometric origin of
the minimal coupling between matter fields and gauge bosons. This covariant derivative
on P also defines the curvature of the connection which gives the field strength associated
to the gauge bosons Aµ.

Transitive Lie algebroids are considered as an extension of the theory of fiber bundles.
To construct connections on transitive Lie algebroids, we keep the spirit of the previous
geometric constructions. We have discussed in section 2.1.1 that, contrary to the kernel L,
the geometry of vector fields Γ(TM) is not canonically identified in A. Then, a connection
on A is related to the definition of a "horizontal" subspace of A i.e. a subspace which
represents the "vector fields" part of A. Geometrically, a connection on A is given by an
"arrow" ∇ going from Γ(TM) to A i.e. in the opposite direction of ρ. Similarly to the
decomposition of the vector fields on P as the sum of vertical and horizontal vector fields,
it results in the vectorial splitting of A as L ⊕ Im(∇).

The geometry of ∇ is encoded into the definition of connection 1-forms ω ∈ Ω1(A, L)
called the ordinary connection 1-forms associated to ∇. These ordinary connection 1-
forms are induced by a purely geometric object and, according to this, the restriction of ω
on L gives the constraint ω ◦ ℓ = −ℓ, for any ℓ ∈ L. This is the condition of normalization
of ω on L.

A connection on a transitive Lie algebroid is defined within the framework of the dif-
ferential complex so that the previously seen structures (differential, trivialization, Cartan
operation, etc) can be applied on it. Moreover, this connection 1-form is also used to
define covariant derivatives and curvatures on transitive Lie algebroids. Locally, using a
atlas of Lie algebroids, the ordinary connection 1-form is simply written as A − θ where

71



Chapter 4 – Theory of connections on transitive Lie algebroids

A ∈ Ω1(U)⊗g and θ ∈ Ω1(g)⊗g. The former is the geometric part of ω which corresponds
to the YM gauge bosons. The algebraic part θ is the identity map on g and has no degrees
of freedom: it is reminiscent of the normalization of ω on L. On transitive Lie algebroids,
it is more convenient to use an algebraic description of a connection as a connection 1-form
normalized on L

This algebraic description of connections on A is used to extend the space of ordinary
connections to the space of generalized connections. This extension is obtained from the
space of ordinary connections by relaxing the normalization constraint on L. By doing so,
we define the space of generalized connection 1-forms ̟ on A. Without this constraint,
the generalized connection is seen as a connection 1-form equipped with both geometric
and algebraic degrees of freedom. The algebraic component of the generalized connection
is given by a field τ : L → L which measures the obstruction for ̟ to be normalized on L.
For τ = 0, the generalized connection is normalized on L and then, it describes a geometric
object. Given a background connection on A, this generalized connection is decomposed,
symbolically, as ω ⊕ τ where ω denotes an induced ordinary connection and τ its algebraic
component. These results are also presented in [FLM13].

These two aspects, ordinary connections and algebraic fields, are encapsulated in one
single object which supports a differential calculus. This leads to the definition of a
covariant derivative and a curvature associated to generalized connection on A. These two
objects generalize their corresponding geometric definitions. Their local description is also
detailed.

4.1 Ordinary connections

A connection on A is geometrically defined as an splitting of C∞(M)-modules ∇ which
maps vector fields on M to the Lie algebroid A, such that ρ◦∇ = IdΓ(T M). For Atiyah Lie
algebroids, this application is related to the choice of a horizontal subspace on a principal
bundle. The data of a connection A is equivalent with the data of a 1-form ω defined
on A with values in L. This corresponds to the algebraic definition of connections on A.
The local trivialization of this 1-form shows that the degrees of freedom of connections
are only contained in its geometric component. Also, covariant derivatives and curvatures
associated to the connections on A are defined either with respect to the geometric map
∇ or with respect to the algebraic 1-form ω. This will give the pure geometric objects of
the theory of fiber bundles, as expected.

4.1.1 Splitting of Lie algebroids

Let A
ρ→ M be a transitive Lie algebroid with kernel L. A connection on the transitive Lie

algebroid A is given by a C∞(M)-linear map ∇ : Γ(TM) → A which realizes a splitting
on the short exact sequence of C∞(M)-modules which defines A i.e.

0 //L
ι //A

ρ //Γ(TM) //

∇

bb 0 (4.1.1)

The C∞(M)-linear map ∇ is compatible with the anchor ρ in the sense that ρ ◦ ∇X = X
for any X ∈ Γ(TM). This implies that ∇ is an injective map and also that no elements
of L can be in the image of ∇. Then, the connection ∇ maps vector fields on M to the
quotient vector space A/L. In analogy with the theory of fiber bundles, one calls the image
space of ∇ the horizontal subspace of A.
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4.1 – Ordinary connections

The connection also gives rise to the definition of a map Θ : A → A which extracts
the horizontal part of any element on A. This morphism on A is called the covariant
connection on A associated to the connection ∇. The map Θ is a C∞(M)-linear map
which maps any element X into Im(∇) as

Θ : A → A with Θ(X) = ρ∗∇(X) = ∇ρ(X) (4.1.2)

Directly, one shows that Θ ◦ Θ = Θ so that Θ is a projector on A. Then, the transitive
Lie algebroid A, as a vector space, can be written A = Im(Θ) ⊕ ker(Θ). Obviously, the
map Θ vanishes on L so that L ⊂ ker(Θ). Moreover, for any X ∈ ker(Θ), one shows that
0 = Θ(X) = ∇ρ(X) ↔ ρ(X) = 0 and then X ∈ L. Thus, ker(Θ) = L and we obtain the
decomposition

A = Im(Θ) ⊕ L (4.1.3)

The kernel L represents the vertical part of the Lie algebroid A so that this decomposition
is strictly analog to the decomposition of TP into a horizontal bundle HP and a vertical
bundle V P. Thus, the connection map ∇ establishes the explicit distinction between
elements of A which projects to Γ(TM) and elements of the kernel L. Note that this
distinction is globally defined i.e. without using a local trivialization of A. Moreover,
this decomposition is not a decomposition of Lie algebras since Im(Θ) is not, a priori, a
Lie algebra. This consideration is related to the definition of the curvature associated to
connections on A.

4.1.2 Ordinary connection 1-forms

The connection ∇ is equivalently described as an algebraic object called the ordinary
connection 1-form, which is an element of Ω1(A, L). We will show how the geometric
aspect of the connection ∇ is reflected on its connection 1-form by a constraint equation.

Let Θ be the covariant connection associated to ∇. For any X ∈ A, we directly see that
the difference Θ(X) − X is in the kernel of ρ and depends only on X. Then, this implies
that there exist a C∞(M)-linear map ω ∈ Ω1(A, L) defined as

ι ◦ ω(X) = Θ(X) − X. (4.1.4)

The 1-form ω is the connection 1-form associated to the connection ∇.

0 //L
ι //A

ω

^^
ρ //Γ(TM) //

∇

bb 0 (4.1.5)

Directly, one shows that the restriction of ω to the subspace L gives ω◦ι(ℓ) = −ℓ for any ℓ ∈
L. The 1-form ω is a surjective map A → L which is said to be normalized on L. The sign
” − ” is conventional. This normalization is reminiscent of the geometric definition of the
connection. Indeed, the connection ∇ only "sees" the vector fields on M and thus, it says
nothing about the inner degrees of freedom of A. Then, the connection 1-form associated
to this connection inherits of this specificity under the forme of a constraint equation. The
normalization on L "kills" the algebraic degrees of freedom of the connection 1-form. This
interpretation is also apparent by looking at local trivializations of connections.

Conversely, one shows that the data of a 1-form defined on A with values in L normal-
ized on L is equivalent to the data of a connection ∇. Any 1-forms are called ordinary
connection 1-forms on A. Given an ordinary connection ω, we define the map Θ : A → A

as Θ(X) = X+ι◦ω(X). It vanishes on L, then there exist a map ∇ : Γ(TM) → A such that
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Θ = ρ∗∇ and ρ◦∇ = IdΓ(T M). It results that the map ∇ is a splitting of C∞(M)-modules
on the sort exact sequence that defines A.

A connection on a transitive Lie algebroids can be seen either with respect to a splitting
of C∞(M)-modules on the short exact sequence that defines A or with respect to the data
of a 1-form on A with values in L normalized on L.

Given a connection 1-form ω, the horizontal subspace of A is defined as the kernel
of ω. Let X ∈ ker(ω), then X = Θ(X) so that ker(ω) ⊂ Im(Θ). Moreover, one com-
putes ω(Θ(X)) = Θ(X) − Θ(Θ(X)) = 0 so that Im(Θ) ⊂ ker(ω) and then, we obtain
ker(ω) = Im(Θ). The horizontal subspace of A can be defined either as the target space
of the covariant connection Θ, or as the kernel of the ordinary connection 1-form ω. This
equivalence is also apparent in the theory of connections on principal fiber bundles. It is
interesting to remark that ordinary connections define a short exact sequence of C∞(M)-
modules in the "opposite" direction which defines A

0 Loo A
ωoo Γ(TM)

∇oo 0oo (4.1.6)

4.1.3 Local trivialization of ordinary connection 1-forms

We consider a connection on A defined by an ordinary connection 1-form ω. As an element
of the differential complex Ω•(A, L), we use an atlas of Lie algebroids to give a local
description of this connection 1-form. This local trivialization of ω will be related to the
local description of the usual YM connections on M.

Over Ui ⊂ M, the local trivialization of ω ∈ Ω1(A, L) is defined as in 3.3.2 so that we
write

ωloc,,i = Ψ−1
i ◦ ω ◦ Si = Ai + Bi (4.1.7)

where Ai ∈ Ω1(Ui, g) and Bi ∈ Ω1(g, g). The algebraic part Bi of ω is defined as Ψ−1
i ◦

ω ◦ ι ◦ Ψ. Then, the normalization of ω on L implies that Bi = −θi, where θi denotes the
identity map over Γ(Ui × g). Note that the geometric part Ai is not concerned with this
normalization. Then, ordinary connections are locally trivialized over Ui as:

ωloc, i = Ai − θi so that ωloc, i(X ⊕ γi) = Ai(X) − γi (4.1.8)

One sees that the degrees of freedom of ω is carried only by its geometric component Ai.
This is a clear illustration of the fact that ω comes from a geometric object and thus,
doesn’t carry any algebraic degrees of freedom. With respect to our terminology, one says
that the ordinary connection ω is a pure geometric object.

In differential geometry, the local expression of connections are identified by the gluing
transformations induced by changes of trivializations. On Lie algebroids, the usual gluing
functions are generalized to more abstract objects. With respect to the gluing functions
αj

i and χji, the geometric and the algebraic parts of ωloc transform on Uij as

Aj = αj
i ◦ Ai + χji ; θj = θi (4.1.9)

The gluing relation between the geometric parts Ai and Aj extends the usual transfor-
mations of the YM connections. In the case of Atiyah Lie algebroids, we recover the
well-known compatibility relations Aj = g−1

ij Aigij + g−1
ij dgij . The second gluing relation

implies that the map θ is globally defined on M. Actually, the family (θi)i∈I describes
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the local trivializations of IdL. The local maps (θi)i∈I admits an extension to TLA(Ui, g)
given by the relation θi(X ⊕ γi) = θi(γi) = γi, for any X ⊕ γi ∈ TLA(Ui, g). Then, over
Uij , we obtain the following gluing relation

θi(X ⊕ γi) = αi
jθj(X ⊕ γj) + χij(X). (4.1.10)

This shows that the extended maps (θi)i∈I , as defined on TLA(Ui, g), do not define a global
object on M. In the following, one will specify if the local maps (θi)i∈I are either the local
expressions of IdL or denote a family of maps TLA(U , g) → Γ(U × g).

With respect to the local trivialization of ω, the covariant connection Θ : A → A

associated to the connection ∇ is locally written in terms of the geometric component A
as

Θloc, i : TLA(Ui, g) → TLA(Ui, g) ; Θloc, i(X ⊕ γi) = X ⊕ Ai(X). (4.1.11)

Then, the elements X ⊕ A(X) correspond to the horizontal elements in TLA(U , g). Here,
the algebraic component is given by a differential 1-form defined on U . Directly, one checks
that ωloc, i ◦ Θloc, i = 0.

4.1.4 Covariant derivative on a representation space

In gauge theories, covariant derivatives result in a “minimal coupling term” between gauge
bosons Aµ and vector scalar fields. In [KN96a], they are geometrically defined as deriva-
tives of sections α of an associated vector bundle restricted to the horizontal vector fields
of P. On transitive Lie algebroids, the notions of derivative, representation space and
horizontality are well-defined so that the covariant derivative associated to the connection
∇ can be geometrically defined in a similar way.

Let A
ρ→ M be equipped with a representation of Lie algebroid φ : A → D(E), with

E a representation space of A. For any s ∈ Γ(E), the covariant derivative associated
to the connection ∇ : Γ(TM) → A and the representation φ : A → D(E) is a map
Dφ : Γ(E) → Ω1(A, E) defined as:

(Dφs)(X) = (d̂φs)(Θ(X)), (4.1.12)

for any X ∈ A. The covariant derivative restricts to the horizontal elements of A so that,
by writing Θ = ρ∗ ◦ ∇, one sees that it is a geometric object defined only on Γ(TM).

In gauge field theories, covariant derivatives result in a derivation which is extended
by an action of a connection ω. This action of ω is interpreted as a minimal coupling with
the gauge bosons. Explicitly, for any X ∈ A, the formula (4.1.12) can be written as

Dφs(X) = φ(X + ι ◦ ω(X))s = φ(X)s + φL(ω(X))s (4.1.13)

so that a covariant derivative associated to a connection ω can be written under the form

Dφs = d̂φs + φL(ω)s, (4.1.14)

where ω is the ordinary connection 1-form associated to the connection ∇.We see clearly
that the usual derivative of s is extended by the representation of ω. This expression will
play an important role in chapter 6 for the construction of gauge invariant quantities.

As in the previous sections, local trivializations of the covariant derivative associated
to a connection on A illustrates its geometric dependency. As a 1-form defined on A with
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values in the derivation of Γ(E), the covariant derivative is locally trivialized over the open
set U ⊂ M as

Dlocs(X ⊕ γ) = φloc(X ⊕ A(X))s, (4.1.15)

for any X ⊕ γ ∈ TLA(U , g) and s ∈ Γ(E), where A is the geometric part of ω. Obviously,
Dlocs(0 ⊕ γ) = 0, for any γ ∈ Γ(U × g) and s ∈ Γ(E) so that the covariant derivative
vanishes on the vertical component of TLA(U , g). Even if the local trivialization of the
covariant derivative is defined on Γ(TU) ⊕ Γ(U × g), it does "see" only the vector fields
part and then, it is not concerned with the algebraic component of trivial Lie algebroids.

As a local 1-form defined on TLA(U , g), the covariant derivative can be decomposed,
with respect to a local chart, on the basis (dx1, . . . , dxm) of T ∗U and the dual basis
(θ1, . . . , θn) of the Lie algebra g. Directly, we show that the covariant derivative is decom-
posed only on the geometric part dxµ so that we obtain

(D̂φ)loc = (D̂φ)µdxµ (4.1.16)

where (D̂φ)µ is an element of D(E) which is written as (D̂φ)µ = ∂µ + Aa
µ φL, loc(Ea), where

(E1, . . . , En) denotes a basis of g.

As an illustration, we give the expression of the covariant derivative in the case of the
Atiyah Lie algebroid associated to a principal bundle P(M, G). The representation space
is given by sections on the associated fiber bundle EP = P ×ℓ F with fiber F . A section
s ∈ Γ(E) is given by a G-equivariant map P → F . The representation is defined as in
3.1.3 and the expression of the covariant derivative then becomes

Ds(X) = X·s + ℓ∗(ω(X))s (4.1.17)

for any X ∈ ΓG(P), where ℓ∗ is the induced left action of g on Γ(E).

We have seen in section 3.1.3 that local trivializations of an Atiyah Lie algebroid was
explicitly given in terms of local cross-sections of P. Over the open set U ⊂ M, one
denotes by σ : U → P|U a local cross-section of P. Then, any point u ∈ P|U can be
written as u = σ(p)·g, with p = π(u). One defines the local trivialization of the section
s : P → F as sloc = s ◦ σ : U → F so that one has (∇0

X ·sloc)(p) = (X·sloc)(p), for any
up ∈ P and X ∈ Γ(TU), and φL ◦ Ψ(A(X))sloc(p) = ℓ∗(A(X))sloc(p). Finally, one obtains

Dlocsloc(X ⊕ γ) = X·sloc + ℓ∗(A(X))sloc (4.1.18)

Then, local expressions of covariant derivatives defined on an Atiyah Lie algebroid give
the usual definition of the covariant derivative on M. Over the open set Uij , one checks
that the gluing relations are compatible with these local expression , in the sense that we
obtain Dloc, isloc, i = ℓ(gij)Dloc, jsloc, j .

4.1.5 Curvature associated to an ordinary connection

The curvature associated to a connection plays an essential role in both the geometry of
fiber bundles and in the construction of gauge field theories. From a geometric point of
view, it gives the measure of the obstruction for the horizontal lift of a closed curve in
M to be a connected path on P. For the point of view of gauge field theories, it is the
simplest covariant object which contains first order derivatives in the gauge bosons Aµ.
This curvature of a connection gives the field strength associated to these gauge bosons.

On transitive Lie algebroids, the curvature associated to an ordinary connection have
three equivalent definitions. The first one considers the curvature as the obstruction for

76



4.1 – Ordinary connections

the map ∇ (or Θ) to preserves the Lie bracket from Γ(TM) to A. The second one, similarly
to the definition given by [KN96a], defines the curvature as the covariant derivative of the
connection 1-form ω. The last definition is given by the Cartan structure equation.

Let A be a transitive Lie algebroid over M and ∇ be a connection on A. The curvature
associated to this connection is a 2-form R defined on Γ(TM) with values in L defined as
the obstruction for ∇ to be a morphism of Lie algebras i.e.

R(X, Y ) = [∇X , ∇Y ] − ∇[X,Y ], (4.1.19)

for any X, Y ∈ Γ(TM). The curvature R is also related to the obstruction for the covariant
connection Θ associated to ∇ to preserve the Lie bracket on A. One defines the element
F ∈ Ω2(A, L) as

F (X,Y) = [Θ(X), Θ(Y)] − Θ([X,Y]) (4.1.20)

for any X,Y ∈ A. The curvature R and the 2-form F are related by the pull-back
application of the anchor. Indeed, for any X,Y ∈ A, one computes

ρ∗R(X,Y) = R(ρ(X), ρ(Y)) = [∇ρ(X), ∇ρ(Y)]−∇[ρ(X),ρ(Y)] = [ρ∗∇(X), ρ∗∇(Y)]−ρ∗∇([X,Y])
(4.1.21)

By definition, ρ∗∇ = Θ so that one has ρ∗R(X,Y) = [Θ(X), Θ(Y)]−Θ([X,Y]) = F (X,Y).
This proves that F and R are related by the formula F = ρ∗R. Since it describes the same
object, the 2-form F is also called the curvature associated to the connection on A.

The curvature F can be defined as the covariant derivative of the connection 1-form
ω. For the covariant derivative, we use the differential operator d̂ : Ω•(A, L) → Ω•+1(A, L)
associated to the adjoint representation of A on L. The covariant derivative associated to
this representation is denoted by D and we have

F (X,Y) = Dω(X,Y) = d̂ω(Θ(X), Θ(Y)). (4.1.22)

for any X,Y ∈ A. By taking the explicit expression of the covariant connection Θ in terms
of the connection 1-form ω, we obtain the Cartan structure equation

F = d̂ω +
1

2
[ω, ω] (4.1.23)

where [·, ·] is the graded Lie bracket on Ω•(A, L).

As an element of the differential complex Ω•(A, L), the 2-form F can be locally trivi-
alized over U as Floc = Ψ−1 ◦ F ◦ S. To obtain an explicit expression of Floc in terms of
the ωloc, one considers the expression (4.1.23) so that we obtain

Floc = d(A − θ) + s′(A − θ) +
1

2
[A − θ, A − θ] (4.1.24)

where A ∈ Ω1(U , g) is the geometric component of ωloc and θ denotes the identity map
on Γ(U × g). The expression of Floc is given in terms of the Koszul derivative d and the
Chevalley-Eilenberg derivative s′, with the adjoint representation on g, are coming from
the local expression of the differential d̂ on Ω•(A, L). Using the calculation rules (3.2.30),
we obtain

Floc = dA +
1

2
[A, A] (4.1.25)

It results that the local expression of the curvature associated to an ordinary connection
on A is a purely geometric object. The action of the Chevalley-Eilenberg derivative is
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counterbalanced by the component "−θ" of the local trivialization of the connection 1-
form. Then, the local curvature depends only on the geometric component A of ω. As an
element of Ω2

TLA
(U , g), we decompose F on the basis (dx1, dx2, . . . , dxm), a basis of the

space of covectors Γ(T ∗U). Then, we obtain

Floc =
1

2
Fµνdxµ ∧ dxν where Fµν = (∂µAν − ∂νAµ + [Aµ, Aν ]) (4.1.26)

where the symbol ∧ denotes the external product on Γ(TUi). Here, the components in
factor of the graded tensorial basis dxµ ⊗θa and θa ∧θb vanish so that the only component
left is the purely geometric component Fµν ∈ C∞(U) ⊗ g. In field theory, the tensor Fµν

gives exactly the field strength associated to the gauge bosons Aµ.

Over the open set Uij , we directly check that the local components Fµν, i are related
to the Fµν, j ’s by the formula Fµν, j = αj

i ◦ Fµν, i for any i, j = 1, . . . , I.

4.2 Generalized connections on transitive Lie algebroids

Within the formalism of the transitive Lie algebroids, any ordinary connection ∇ is equiv-
alently defined as a geometric application defined on Γ(TM) or as an algebraic 1-form
of Ω1(A, L). The geometric origin of the map ∇ results in the normalization of ω on L.
This normalization is seen as a constraint equation which "kills" the algebraic degrees of
freedom of ω. The local description of an ordinary connection 1-form makes apparent that
its degrees of freedom are purely geometric. The geometric nature of ω is also apparent in
the definition of the covariant derivative and the curvature associated to this connection.

A generalized connection on A is obtained by dropping out the normalization constraint
on L. Basically, a generalized connection ̟ is an element of the space Ω1(A, L).Then,
this space contains the space of ordinary connections as a subspace. Then, generalized
connections on A extend the ordinary connections by a non-geometric element. The non-
geometric component of ̟ is quantified by the map τ : L → L which measures its obstruc-
tion to be normalized on L i.e. to be an ordinary connection. For τ = 0, the associated
generalized connection is geometric. In this sense, τ measures the “algebraic” component
of ̟.

Given a background (ordinary) connection on A, we show that to any generalized con-
nection, we can associate an ordinary connection on A. Contrary to τ , the latter measures
the “geometric” component of ̟. Then, the generalized connection ̟ is decomposed into
the sum of an induced ordinary connection ω and an algebraic parameter τ . This duality
is also apparent in the local trivialization of ̟.

We adapt the algebraic definition of the covariant derivative and the curvatures of sec-
tion 4.1.5 and 4.1.4, to the context of the generalized connection. To do so, we substitute
the connection 1-form ω by ̟. In both cases, the algebraic element τ gives additional
terms to these objects. Then, the geometric covariant derivative is extended by the rep-
resentation of the component τ and the curvature is extended by additional terms, whose
interpretations are more tricky and require more detailed computations. In order to inter-
pret these new terms, one we need to use some mixed local basis. This mixed local basis
is an essential feature which permits to decompose the curvature associated to a gener-
alized connection as a sum of three globally defined objects. Locally, these three objects
correspond to the three degrees of forms of the curvature.
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4.2.1 Decomposition of a generalized connection on A

In this section, we see how, starting from the definition of a generalized connection, we
can isolate its algebraic component τ and its geometric component ω.

Let A
ρ→ M be a transitive Lie algebroid over a manifold M, of dimension m, with

kernel L, of dimension n. A generalized connection over A is defined as a 1-form ̟ ∈
Ω1(A, L). Obviously, the space of ordinary connection 1-forms is a subspace of the space
of generalized connections on A. We define the reduced kernel endomorphism τ : L → L

associated to the generalized connection ̟ as

τ(ℓ) = ̟ ◦ ι(ℓ) + ℓ, (4.2.1)

for any ℓ ∈ L. The parameter τ is an endomorphism on L which measures the obstruction
for ̟ to be normalized on L. Indeed, for τ = 0, one has ̟ ◦ ι(ℓ) = −ℓ, so that ̟ is an
ordinary connection.

A generalized connection cannot be defined as a splitting Γ(TM) → A on the short
exact sequence which defines A. However, for τ Ó= 0, the covariant connection Θ : A → A

can be generalized to a map Θ̂ : A → A, defined as Θ̂(X) = X + ι ◦ ̟(X), for any X ∈ A.
This map is called the generalized covariant connection on A. Here, Θ̂ is not a projector
on A. The obstruction for Θ̂ to be a projector on A is measured by the parameter τ .
Indeed, by a direct computation, one shows that

Θ̂2(X) = Θ̂(X + ι ◦ ̟(X))

= X + ι ◦ ̟(X) + ι ◦ ̟(X + ι ◦ ̟(X))

= X + ι ◦ ̟(X) + ι ◦ ω(X) − ι ◦ ̟(X) − τ ◦ ω̊(X) + τ ◦ ̟(X)

= X + ι ◦ ω(X) − τ ◦ ω̊(X) + τ ◦ ̟(X)

= Θ̂(X) + τ ◦ ̟(X)

Then, we obtain Θ̂2 = Θ̂+τ ◦̟. Only for τ = 0, we recover the usual covariant connection.
The generalized covariant connection doesn’t vanish on L anymore. Instead, one shows
that ker(Θ̂) = ker(τ) instead of ker(Θ) = L.

Let ω̊ be an ordinary connection 1-form on A associated to a background connection
∇̊. Given a generalized connection ̟ and its associated reduced kernel endomorphism τ ,
the 1-form ω defined as

ω = ̟ + τ(ω̊), (4.2.2)

is normalized on L. It is called the induced ordinary connection 1-form associated to ̟,
with respect to the background connection ω̊. For τ = 0, one sees that ̟ and its associated
induced ordinary connection are the same object. Then, given a background connection on
A, any generalized connection ̟ can be decomposed as the sum of an ordinary connection
1-form on A and an algebraic parameter τ . Then, one has the following decomposition

̟
ω̊←→ (ω, τ) (4.2.3)

This decomposition shows the repartition of the geometric and the algebraic degrees of
freedom of ̟.

With respect to this decomposition, the generalized covariant connection Θ̂ associated
to ̟ can be related to the covariant connection Θ associated to the induced ordinary
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connection ω. One obtains the explicit generalization of the covariant connection by a
non-geometric parameter τ . A direct computation shows that the map Θ̂ : A → A can be
written as

Θ̂ = Θ − ι ◦ τ ◦ ω̊. (4.2.4)

For τ = 0, the algebraic extension of Θ vanishes.

Consider that A is equipped with an atlas of Lie algebroids (Ui, Ψi, ∇0
i )i∈I . As an

element of Ω1(A, L), the generalized connection ̟ is locally trivialized over the open set Ui

as ̟loc, i = Âi+B̂i, where Âi denotes the geometric part of ̟loc and B̂i denote its algebraic
part. However, Âi and B̂i are not directly identified with the geometric component ω and
the algebraic component τ . Indeed, the computation of the local trivialization of ̟ leads
to 




Âi = Ai − τloc, i(Åi)

B̂i = −θi + τloc, i

(4.2.5)

where Ai and Åi denote the geometric components of ωloc and ω̊loc, respectively, and τloc, i

denotes the local trivialization of τ on Ui as τloc, i = Ψ−1
i ◦ τ ◦ Ψi. The local description of

the endomorphism τ on L belongs to the space C∞(Ui) ⊗ g∗ ⊗ g. Note that, for τloc = 0,
one obtains the local trivialization of an ordinary connection 1-form. On the open set Uij ,
the local parts Ãi and B̃i of ̟ transform as in (3.3.11). From these transformations, one
computes the gluing relations of the geometric components Ai of the induced ordinary
connection and the reduced local endomorphism τloc, i. Then, one obtains





Ai = αi
j ◦ Aj + χij

τloc, i = αi
j ◦ τloc, j ◦ αj

i ,
(4.2.6)

where the maps αi
j and χij are defined as in (2.2.2). The gluing transformation of the field

Ai has the correct expression with respect to its status of "geometric connection" on A. In
particular, this expression is independent of τ . Local expressions of the induced ordinary
connection and the reduced kernel endomorphism associated to ̟ are independently glued
on Uij .

In the context of the Atiyah Lie algebroid, the gluing functions αi
j and χij are given by

the adjoint action Adg−1

ij
and the local Maurer-Cartan forms g−1

ij d̂gij , respectively. Then,

the relations (4.2.6) become Ai = g−1
ij ◦Ajgij+g−1

ij dgij and τloc, i(γi) = g−1
ij τloc, j(gijγig

−1
ij )gij ,

for any γi ∈ Γ(Ui ×g). These gluing transformations shows that the induced ordinary con-
nection is identified with an Ehresman connection on P. However, the algebraic parameter
τ is not related to a geometric object on P. Instead, it would correspond to a morphism
on ΓG(P, g) and then, would belong to the space C∞(P) ⊗ g∗ ⊗ g.

4.2.2 Covariant derivative associated to a generalized connection

We define the covariant derivative associated to a generalized connection ̟ in the same
way as the covariant derivative associated to an ordinary connection on A. Here, the "hor-
izontal" subspace of A is substituted by the image space of Θ̂. Formula (4.2.4) shows that
this horizontal subspace is actually lifted by a vertical element of L depending on τ . The
definition of the generalized covariant derivative results in an extension of the geometric
covariant derivative by τ .

80



4.2 – Generalized connections on transitive Lie algebroids

Let E be a representation space of A with the representation φ : A → D(E). One
denotes by s ∈ Γ(E) a section on the vector bundle E so that the covariant derivative
associated to a generalized connection is defined by the map Γ(E) → Ω1(A, E) as

D̂φs(X) = dφs(Θ̂(X)), (4.2.7)

for any X ∈ A. With respect to the decomposition of Θ̂, the covariant derivative associ-
ated to ̟ is decomposed as D̂φ = Dφ − φL(τ ◦ ω̊). Explicitly, this generalized covariant
connection can be written in terms of the generalized connection ̟ as D̂φ = d̂φ − φL(̟).

Again, the reduced kernel endomorphism τ measures the obstruction for the generalized
covariant derivative Θ̂ to vanish on L. This is obvious by the formula D̂φs(ι◦ℓ) = φL(τ(ℓ))s,
for any s ∈ Γ(E) and ℓ ∈ L. Then, Θ̂ vanishes on the vertical subspace of A if and only if
τ = 0 i.e. if and only if the generalized connection ̟ is an ordinary connection 1-form.

As a 1-form with values in D(E), the covariant derivative associated to a 1-form ̟
can be locally trivialized with respect to a atlas of Lie algebroids (Ui, ∇0

i , Ψi)i∈I . Over the
open set U , the local trivialization of D̂φ is defined as

(D̂φ)loc(X ⊕ γ) = φloc(X ⊕ γ) − (φL)loc(̟loc(X ⊕ γ))

= φloc(X ⊕ A(X)) − (φL)loc(τloc(ω̊loc(X ⊕ γ))) (4.2.8)

for any X ⊕ γ ∈ TLA(U , g). Then, the first term corresponds to the local formulation of
the covariant derivative associated to ω and the second term establishes a coupling with
the parameter τloc.

As a local 1-form defined on TLA(U , g), the generalized covariant derivative can be
decomposed with respect to the dual basis (dx1, . . . , dxm) of Γ(TU) and the dual basis
(θ1, . . . , θn). The covariant derivative is then decomposed as

(D̂φ)loc = (D̂φ)µdxµ + (D̂φ)aθa (4.2.9)

where (D̂φ)µ and (D̂φ)a are elements of D(E).

Anticipating on the next sections, one writes the local expression of D̂φ in the mixed
local basis. In this basis, the existence of the background connection ω̊ plays an essential
role. To obtain the decomposition of D̂φ on the mixed local basis, we observe that, locally,
the background connection 1-form ω̊ can be written as Å−θ so that the component θa can
be written θa = Åa − ω̊a

loc, where Åa ∈ Ω1(U) and ω̊a
loc ∈ Ω1

TLA
(U). Then, the expression

(4.2.9) can be written as

(D̂φ)loc = (D̂φ)′
µdxµ + (D̂φ)′

aω̊a
loc (4.2.10)

with (D̂φ)′
µ and (D̂φ)′ are elements of D(E). In this basis, the components can be written

as 



(D̂φ)′
µ = φloc(∂µ) + Aa

µ φL, loc(Ea)

(D̂φ)′
a = τ b

a φL, loc(Eb)
(4.2.11)

The full aspect of the mixed local basis will be detailed in section 5.2.1. It plays an
essential role in the definition of the integration over A and also in the construction of a
gauge theories on transitive Lie algebroids.
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4.2.3 Curvature associated to a generalized connection

Similarly with the theory of ordinary connections on A, the curvature associated to a gen-
eralized connection ̟ can be defined either as the obstruction for the generalized covariant
connection Θ̂ to be a morphism of Lie algebras on A or by the Cartan structure equa-
tion associated to ̟. One will show that these two definitions are equivalent. However,
the curvature associated to a generalized connection cannot be defined as the generalized
covariant derivative of ̟.

The decomposition of a generalized connection ̟ as the sum of an ordinary connection
ω and its associated reduced kernel endomorphism τ induces an extension of the "ordinary"
curvature associated to an ordinary connection 1-form. This extension is composed by two
new terms which involve an interaction between the connection 1-form ω and the field τ
and also a quadratic term which depends only of the algebraic constraint on τ . After
some manipulations, the expression of the generalized curvature gives rise to an ordinary
curvature on M, a covariant derivative along ω of the algebraic parameter τ and a potential
term which measures the obstruction for τ to preserve the Lie bracket on L.

Locally, the use of a background connection on A is an essential feature in order
to decompose correctly the generalized curvature along its differential degrees of forms.
Then, one shows that the three components associated to this decomposition each defines
a global object on A. As parts of a global single object, these three components inherit
the property of the generalized curvature, for instance, with respect to the gauge action
of L.

Let Θ̂ be the generalized covariant connection associated to a generalized connection
̟. The generalized curvature F̂ associated to this generalized connection is defined as

F̂ (X,Y) = [Θ̂(X), Θ̂(Y)] − Θ̂([X,Y]) (4.2.12)

for any X,Y ∈ A. Here, the curvature measures the obstruction for Θ̂ to be a morphism
of Lie algebras on A. By writing Θ̂ in terms of the generalized connection 1-form ̟, one
obtains the Cartan structure equation of the curvature F̂ :

F̂ = d̟̂ +
1

2
[̟, ̟] (4.2.13)

where [·, ·] is the graded Lie bracket defined on Ω•(A, L). Obviously, for ̟ an ordinary con-
nection on A, we obtain the expression of the ordinary curvature. In this sense, generalized
connections correctly generalize geometric curvatures.

For convenience, one considers the Cartan structure equation (4.2.13) associated to
̟ to define F̂ . One decomposes ̟ into its geometric component, given by its induced
ordinary connection ω, and its algebraic component, given by its reduced kernel endomor-
phism τ . By using a non-trivial rearrangement of the terms induced by this decomposition,
one computes the expression of generalized curvature associated to ̟, written in terms
of ω and τ . This expression will be a posteriori justified by the geometric and algebraic
interpretations of each of these terms. The curvature F̂ can be written as

F̂ = R − (Dτ) ◦ ω̊ + ω̊∗Rτ (4.2.14)

with 



R := F − τ ◦ F̊

(Dτ) ◦ ω̊ := [Θ, τ ◦ ω̊] − τ ◦ [Θ̊, ω̊]

ω̊∗Rτ := 1
2

(
τ ◦ [ω̊, ω̊] − [τ ◦ ω̊, τ ◦ ω̊]

)
(4.2.15)
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where F is the curvature of the induced ordinary connection, F̊ is the curvature of the
background connection, Θ is the covariant connection associated to the induced ordinary
connection and Θ̊ is the covariant connection associated to the background connection.

This decomposition of F̂ makes apparent the geometric and the algebraic meaning
of the curvature associated to a generalized connection. The following comments will be
relevant in the upcoming construction of a gauge invariant field theory.

• The first term R involves the curvatures of the induced connection ω and of the
background connection ω̊. As we said before, these two objects are geometric ob-
jects defined on the space of vector fields Γ(TM). Then, there exist a 2-form R̂
defined on vector fields on M with values in L associated to R and given by the
relation R̂(X, Y ) = R(X,Y) for any X,Y ∈ A such that ρ(X) = X and ρ(Y) = Y .
Equivalently, R̂ is related to R by the pull-back of the anchor ρ so that one has
R = ρ∗(R̂) ∈ Ω2(M, L).

• The second term (Dτ) ◦ ω̊ involves the covariant connections Θ and Θ̊ associated
to the induced ordinary connection and the background connection, respectively.
Then, they are geometric objects defined on U which can be defined with respect to
the connection ∇ as Θ = ρ∗∇ and with respect to the background connection ∇̊ as
Θ̊ = ρ∗∇̊ . Here, the map ∇̊ is the connection associated to ω̊. For any α ∈ End(L),
one defines the map Dα : Γ(TU) → End(L) as DXα(ℓ) = [∇X , τ(ℓ)] − τ ◦ [∇̊X , ℓ], for
any ℓ ∈ L. Even if the adjoint representation on L gives a derivation, the difference
of these two terms gives an endomorphism so that Dα is well-defined. Moreover, a
cumbersome computation shows that for any X, Y ∈ Γ(TM), the map D is related
to the curvatures R and R̊ as

DXDY τ − DY DXτ − D[X,Y ]τ = [R(X, Y ), τ ] − τ([R̊(X, Y ), IdL]) (4.2.16)

In order to make apparent the purely geometric component of (Dτ)◦ ω̊, one uses the
pull-back by the anchor map ρ so that it can be equivalently written as (ρ∗Dτ)◦ ω̊ =
[ρ∗∇, τ ◦ ω̊]−τ ◦ [ρ∗∇̊, ω̊]. Under this form, one sees that this 2-form mixes the purely
geometric degrees and the algebraic ones. This point will be relevant in the local
decomposition of this term on a mixed local basis.

• The last term ω̊∗Rτ is the obstruction for τ to be an endomorphism of Lie algebras
on L. It is called the algebraic curvature of the reduced kernel endomorphism with
a background connection.

As expected by the nature of generalized connection on A, the generalized curvature
associated to ̟ is related to both purely geometric terms and non-geometric ones. In order
to take into account its geometric components, one writes the curvature F̂ associated to
the generalized connection ̟ under the form

F̂ = ρ∗R̂ − (ρ∗Dτ) ◦ ω̊ + ω̊∗Rτ . (4.2.17)

Directly, one reads that the first term gives always zero if one the argument of F̂ is an
element of L. If the two arguments of F̂ are in L, then both the first and the second
terms vanish. The third term do not vanish depending on its arguments. Instead, it gives
zero if and only if the algebraic parameter τ preserves the Lie bracket on L. These three
terms are ordered according to their degrees of forms: the first term is a purely geometric
term, the second term mixes both the geometric and the algebraic component of A, and
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the third term is a purely algebraic term. Moreover, one will see in section 6.3, that these
three terms are compatible with the infinitesimal algebraic action of L.

As an element of the differential complex Ω•(A, L), the generalized curvature F̂ can be
locally trivialized over U providing an atlas of Lie algebroids (Ui, Si). Over any open set U ,
it is trivialized as F̂loc = Ψ−1 ◦ F̂ ◦S and then, with respect to the previous decomposition
of F̂ , one obtains

F̂loc = (ρ∗R̂)loc − ((ρ∗Dτ) ◦ ω̊)loc + (ω̊∗Rτ )loc (4.2.18)

with




(ρ∗R̂)loc = dA + 1
2 [A, A] − τloc(dÅ + 1

2 [Å, Å]) ∈ Ω2(U , g)

((ρ∗Dτ) ◦ ω̊)loc = (dτloc) ◦ ω̊loc + [A, τloc ◦ ω̊loc] − τloc([Å, ω̊loc]) ∈ Ω1(U , End(g))

(ω̊∗Rτ )loc = 1
2 (τloc([ω̊loc, ω̊loc]) − [τloc ◦ ω̊loc, τloc ◦ ω̊loc]) ∈ C∞(U) ⊗ ∧2g∗ ⊗ g.

(4.2.19)

On Uij , the gluing transformations of the three components (ρ∗R̂)loc, ((ρ∗Dτ) ◦ ω̊)loc

and (ω̊∗Rτ )loc are computed with the gluing transformations of the local objects A, Å and
τloc. The results are obtained in terms of the gluing functions αj

i and χj
i associated to the

atlas of Lie algebroids (Ui, ∇0
i , Ψi). Straightforwardly, these relations are





(ρ∗R̂)loc, j = αj
i (ρ∗R̂)loc, i

((ρ∗Dτ) ◦ ω̊)loc, j = α̂j
i ((ρ∗Dτ) ◦ ω̊)loc, i

(ω̊∗Rτ )loc, j = α̂j
i (ω̊∗Rτ )loc, i

(4.2.20)

These results are compatible with the fact that the three components define global objects
on A.

As a 2-form defined on TLA(U , g), the generalized curvature can be decomposed with
respect to the basis (dx1, dx2, . . . , dxm) of Γ(T ∗U), the basis (E1, E2, . . . , En) for g and
the basis (θ1, θ2, . . . , θn) for the dual space g∗. Considering the previous decomposition
of F̂ , it seems natural to use the background connection to define the mixed local basis
associated to ω̊. Then, similarly to the local decomposition of the generalized covariant
derivative (section 4.2.2), the generalized curvature is decomposed on the basis (dxµ, ω̊a

loc)
instead of the basis (dxµ, θa). This change of basis of ΩTLA(U , g) is wider explained in the
section 5.2.1. This local description of F̂ in the mixed local basis gives

F̂loc = F̂ a
µν dxµ ∧ dxν ⊗ Ea + F̂ b

µa dxµ ∧ ω̊a
loc ⊗ Eb + F̂ c

ab ω̊a
loc ∧ ω̊b

loc ⊗ Ec (4.2.21)

where F̂ a
µν , F̂ b

µa and F̂ c
ab are elements of C∞(U). The decomposition (4.2.17) is very nicely

adapted to the local expression of F̂ in the mixed local basis. Indeed, one shows that each
term of this decomposition is directly associated to a component of F̂loc written in the
basis (dxµ, ω̊a

loc). Thus, one obtains

F̂ a
µν = (ρ∗R̂)a

µν =
1

2

(
∂µAa

ν − ∂µAa
ν + Ab

µAc
νCa

bc − τa
b (∂µÅb

ν − ∂µÅb
ν + Åd

µÅe
νCb

de

)
(4.2.22)

F̂ b
µa = −((ρ∗Dτ) ◦ ω̊)b

µa = −
(
∂µτ b

a + Ac
µτd

a Cb
cd − Åc

µτ b
d

)
Cd

ca (4.2.23)

F̂ c
ab = (ω̊∗Rτ )c

ab =
1

2

(
τ c

dCc
ab − τd

a τ e
b Cc

de

)
(4.2.24)
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Note that the first term has only Greek indices, the second term is a mix term since it
contains both a Greek and a Latin index and the third term does contain only Latin
indices so that it defines a purely algebraic component.
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Chapter 5

Scalar product for differential forms

This chapter is devoted to the construction of additional structures on Lie algebroids A and
on its associated differential complexes which permit, in fine, to define of a scalar product
on the space of differential forms. Such constructions are mainly related to the metric,
the Hodge star operator and the integral. These structures are extensions of those already
defined in the context of differential geometry where they play an essential role in the
construction of gauge field theories. In the context of Lie algebroids, the construction of
gauge field theories is also related to these structures. Then, they have to be generalized
in order to take into account both the geometric and the algebraic richness of the Lie
algebroids.

Gauge theories are concerned with the dynamics of fields defined on M. We have
already seen in section 3.3 that the local trivialization of a differential q-form ω gives local
components ωµ1...µra1...as ∈ C∞(U), with r + s = q. Moreover, these components depend
a priori on a choice of local trivialization map S. One of the goal of this chapter is to
exhibit a systematic method which permits to associate to any differential forms defined
on a Lie algebroid a dynamical field which is both globally defined on M and independent
of any choice of trivialization.

There is a direct method to obtain a globally defined field out of a differential form on
A. It is given by the inner integral operator. This operator makes an integration along
the inner degrees of differential forms and then, it isolates the so-called maximal inner
component of ω. One shows that this maximal inner component is globally defined on
M and is independent of any choice of trivialization. If the inner integral is composed
with an integral over M, one thus obtains an integration over A. This integration helps
to define a gauge invariant action functional . Unfortunately, the inner integral operator
gives non-trivial results only if the degree of form of ω is greater than the dimension of the
fiber L. If not, it trivially gives zero. Then, this integral should not be used to construct
a gauge theory based on connections, covariant derivatives and curvatures on transitive
Lie algebroids. To do so, additional structures are required.

In differential geometry, the Hodge star operator establishes an isomorphism of vector
spaces between the space Ωq(M) of differential forms defined on Γ(TM) with values in
C∞(M) and the space Ωm−q(M), where m denotes the dimension of M. On transitive Lie
algebroids, the corresponding generalization of the Hodge star operator takes into account
both the geometry of M and the geometry of L. It results in an operator which realizes
an isomorphism of vector spaces between Ωq(A) and Ωm+n−q(A), easily extended to a map
Ωq(A, L) → Ωm+n−q(A, L). The action of the Hodge star operator consists in mapping the
coefficients associated to the local description of differential forms, from their respective
degrees of forms q to the corresponding space of degree (m − q), up to combinatorial
coefficients. In order to preserve the global structure of the differential complex on A, a
metric ĝ on A is necessary.
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On the base manifold M and on the kernel L, we define a geometric metric g : Γ(TM)×
Γ(TM) → C∞(M) and an inner metric h : L × L → C∞(M), respectively. In the general
case, it is not possible to globally define a metric ĝ on a transitive Lie algebroid A as the
“direct sum” of a metric g over M and a metric h on L. However, we show that any inner
non-degenerate metric on A is related to a connection ∇̊ : Γ(TM) → A, called the metric
connection on A, so that the metric ĝ can be written as ĝ = ρ∗g + ω̊∗h, where ω̊ denotes
the ordinary connection 1-form associated to ∇̊.

This chapter is constructed as follows. Firstly, we define metrics on A and we see how
inner non-degenerate metrics are related to the existence of a connection ∇̊ on A. This
metric connection associated to ĝ will play the role of the “background” connection, the
one used to define the so-called mixed local basis on TLA(U , g). If A is inner-orientable,
this mixed local basis is also used to construct a globally-defined volume form on A.
Secondly, according to this volume form, we define the inner integral operator acting on
Ω•(A) and on Ω•(A, L), which will permit to define an integration over A. Thirdly, using
an inner non-degenerate metric ĝ, we define the Hodge star operator acting on Ω•(A) and
on Ω•(A, L). This definition is given locally, with respect to an atlas of Lie algebroids. To
finish, we show that the composition of a Hodge star operator with an integral operator
over A gives a scalar product defined on any differential complexes. Accordingly to this
scalar product, one shows that forms of distinct degrees are orthogonals.

5.1 Metric on transitive Lie algebroids

In this section, we give the definition of metrics and inner-metrics on A. These metrics
allow to define the orientation and the inner-orientation of A. An important result of this
section establishes that any inner non-degenerate metric ĝ defined on A can be written as
the direct sum of a metric on M and a metric on L. This expression is obtained by using
the so-called metric connection on A associated to ĝ.

5.1.1 Metrics and inner-metrics defined on A

As a vector bundle over M, the Lie algebroid A can be equipped with a metric ĝ which
is a C∞(M)-linear map which acts on the space of sections A as ĝ : A × A → C∞(M).
A priori, this metric is locally defined i.e. it depends of the point p ∈ M. This metric
is said to be non-degenerate on A if ĝ(X,Y) = 0 for any Y ∈ A, if and only if X = 0. A
metric defined on a totally intransitive Lie algebroid L is said to be an inner metric on L.

A metric ĝ defined on A automatically defines a metric on its kernel L. This induced
metric is called the inner-metric associated to ĝ and it is constructed with the pull-back
by the injective map ι : L → A as h = ι∗ĝ : L × L → C∞(M) so that, for any γ, η ∈ L,
h(γ, η) = ĝ(ι(γ), ι(η)). The non-degeneracy of h on L is defined as for ĝ. A metric ĝ
on A is said to be inner non-degenerate if the inner metric h = ι∗ĝ associated to ĝ is
non-degenerate on L.

A metric on M, usually denoted as g : Γ(TM) × Γ(TM) → C∞(M), also defines a
metric on A given by the pull-back by the anchor ρ : A → Γ(TM) as ĝ = ρ∗g : A × A →
C∞(M) defined, for any X,Y ∈ A, as ĝ(X,Y) = g(ρ(X), ρ(Y)). This induced metric ĝ is
degenerate since it gives zero for X or Y are elements of L. In this sense, one says that
the metric ĝ does not "see" the inner part of A.

Let ω ∈ Ω1(A, L) and let h be an inner metric on L. For any X,Y ∈ A, the metric
ĝ = ω∗h is defined on A as ĝ(X,Y) = h(ω(X), ω(Y)). Here again, this metric is degenerate
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due to ker(ω). 1 If ω is an ordinary connection 1-form on A normalized on L, then one
shows that h = ι∗ĝ so that h is the inner metric on L associated to ĝ. In this case, the
metric ĝ does not "see" the horizontal subspace of A associated to this connection.

An inner metric h defined on L can be extended on the differential space Ω•(A, L) of
forms defined on A with values in L. It results in a graded C∞(M)-linear application
h : Ω•(A, L) × Ω•(A, L) → Ω•(A). For any ω ∈ Ωp(A, L) and η ∈ Ωq(A, L), the (p + q)-form
h(ω, η) ∈ Ωp+q(A) is defined as

h(ω, η)(X1, . . . ,Xp+q) =
1

p!q!
ǫa1a2...ap+q

h (ω(Xa1 , . . . ,Xap), η(Xap+1 , . . . ,Xap+q )) (5.1.1)

for any X1, . . . ,Xp+q where ǫa1a2...ap+q
denotes the Levi-Civita antisymmetric tensor with

ǫ12...p+q = +1.

A Killing inner metric on L is a metric which satisfies, for any γ, η, σ ∈ L, the relation

h([γ, η], σ) + h(η, [γ, σ]) = 0. (5.1.2)

This compatibility relation with the Lie bracket is an essential property for the construction
of gauge-invariant theories. This Killing inner metric h is extended to the differential
complex Ω•(A, L). It results in a map h : Ω•(A, L)×Ω•(A, L) → Ω•(A) whose compatibility
with the graded Lie bracket on Ω•(A, L) is given as

h([ω1, ω2], ω3) + (−1)k1k2h(ω2, [ω1, ω3]) = 0 (5.1.3)

where ω1 ∈ Ωk1(A, L), ω2 ∈ Ωk2(A, L) and ω3 ∈ Ω•(A, L).

5.1.2 Metric on a representation space

Consider a vector bundle E → M as a representation space for A, equipped with the rep-
resentation φ : A → D(E). As a vector bundle, we define on E a metric hE : Γ(E)×Γ(E) →
C∞(M). Similarly to the Killing metric, one can establish a compatibility relation between
the representation map φ and the metric hE . A compatibility with the representation of all
A would be too restrictive and, instead, we consider only a compatibility relation between
hE and the representation of the kernel L. Then, we say that a metric hE is φL-compatible
if

hE(φL(ℓ)s1, s2) + hE(s1, φL(ℓ)s2) = 0, (5.1.4)

for any s1, s2 ∈ Γ(E) and ℓ ∈ L. If one takes E = L and φ the Lie bracket on L, one obtains
exactly a Killing inner metric on L.

This metric can also be extended to forms defined on A with values in E . This ex-
tended metric is defined as in (5.1.1). This metric will be used in chapter 7, to define the
Lagrangian sector associated to (spinless) matter fields.

5.1.3 Inner orientation of a transitive Lie algebroid

The data of an inner metric h associated to a metric ĝ on A permits to define the inner
orientation of A. This definition is related to both the local expression of h and to the
gluing functions associated to an atlas of Lie algebroids (Ui, Si)i∈I .

With respect to this atlas of Lie algebroids, a metric h on L is locally trivialized
over the open set Ui as hloc, i(γi, ηi) = h(Ψi(γi), Ψi(ηi)), where Ψi : Γ(Ui × g) → L|Ui

is

1 As an application from A → L, the kernel of ω is necessarily different from 0.
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defined as in section 2.2.1. One denotes by (E1, E2, . . . , En) a basis of the Lie algebra
g so that we define local components of the inner metric h as (hloc, i)ab = hloc, i(Ea, Eb).
These components are dynamical fields defined on Ui. To simplify the notation, we simply
denote the components (hloc, i)ab by (hi)ab ∈ C∞(Ui).

A locally constant inner metric is a metric hloc defined on Γ(Ui ×g) whose components
(hi)ab : Ui → R are constant functions on Ui. With respect to a local chart (Ui, ϕi) on
M, these components should fulfill the relation ∂µhab = 0 for any µ = 1, . . . , m and
a, b = 1, . . . , n, where ∂µ = ∂/∂xµ denotes an element of the basis of TUi.

Over the open set Uij , the inner metric h can be locally written either as hloc, i, with
respect to (Ui, Ψi), or as hloc, j , with respect to (Uj , Ψj), respectively. These two trivial-
izations describe the same object on L so that we have the relation

hloc, i(γi, ηi) = hloc, j(γj , ηj), (5.1.5)

for any γi, ηi ∈ Γ(Ui × g) and γj , ηj ∈ Γ(Uj × g). Then,we show that the local components
(hi)ab and (hj)ab of h are related by the formula:

(hi)ab = (Gji)
c
a(Gji)

d
b(hj)cd, (5.1.6)

where the elements (Gji)
b
a are the coefficients of the matrix-valued representation of the

gluing function αj
i : Γ(Uij × g) → Γ(Uij × g). These coefficients are elements of C∞(Uij).

As a matrix-valued element, the determinant of Gij is well-defined on any open set Uij

and depends on the point p ∈ Uij . Then, a totally intransitive Lie algebroid L is said to
be orientable if there exist an atlas (Ui, Ψi)i∈I of L such that det(Gij) > 0 on any open
sets Uij . A transitive Lie algebroid A

ρ→ M is said to be inner orientable if its kernel L

is orientable. A transitive Lie algebroid A is said to be orientable if it is inner orientable
and if the base manifold M is orientable in the sense of the usual differential geometry.

5.1.4 Metric connection

In this section, we show that any inner-non degenerate metric ĝ on A is related to a
unique connection on A called the metric connection. As we have seen in section 4.1.1, a
connection on A is used to define a horizontal subspace which is the complement of L in A.
Here, a metric connection associated to ĝ is used to define the unique horizontal subspace
of A which is also orthogonal to L with respect to ĝ.

Let ĝ be an inner non-degenerate metric on A and h = ι∗ĝ be the inner metric associated
to ĝ. For any η̃ ∈ L, consider the C∞(M)-linear map f : L → C∞(M) defined as f(γ) =
h(γ, η̃), for any γ ∈ L. For f and f ′ two maps corresponding to η̃ and η̃′, respectively,
the non-degeneracy of h implies that they are equals if and only if η̃ = η̃′. Then, the
correspondence between the map f and the element η̃ is unique. In [FLM13], one uses a
variant of the theorem of Riesz to prove that any C∞(M)-linear map f : L → C∞(M)
can be written under the form f(γ) = h(γ, η̃).

For any X ∈ A, we define the C∞(M)-linear map f(γ) = −ĝ(X, ι(γ)) and we denote
by ω̊(X) the unique element of L associated to f by the previous construction. Then, one
obtains

− ĝ(X, ι(γ)) = h(ω̊(X), γ). (5.1.7)

Since h is a non degenerate metric on L, ω̊ is such that ω̊ ◦ ι(ℓ) = −ℓ, for any ℓ ∈ L

and thus, ω̊ is normalized on L and correspond to an ordinary connection 1-form on A.
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One denotes by ∇̊ : Γ(TM) → A the connection associated to ω̊ and we call it metric
connection on A.

The defining relation of ω̊ can also be written as ĝ(X + ι ◦ ω̊(X), ι(γ)) = 0. The first
argument of ĝ is exactly the covariant connection Θ̊ associated to ∇̊ so that one has the
following statement: for any X ∈ Γ(TM) and any γ ∈ L, we have

ĝ(∇̊X , ι(γ)) = 0. (5.1.8)

The connection ∇̊ identifies the subspace of A which is both a complement space of L in A

and also its orthogonal space, with respect to the metric ĝ. This result relied on the single
assumption that the metric ĝ was an inner non-degenerate metric. Hence, any inner-non
degenerate metric ĝ on A is equivalent with the data of the triple (g, h, ∇̊). In [Ker68], a
similar metric is used to construct a non-abelian Kaluza-Klein theory on P.

5.1.5 Decomposition of the inner non degenerate metric

The use of a metric connection on A associated to ĝ leads to the "sum" of a (possibly
degenerate) metric g defined on the geometric component of A and a non-degenerate metric
h defined on L. Here, we show that the decomposition of ĝ as ρ∗g + ω̊∗h is established by
a direct computation.

Let ĝ be an inner non-degenerate metric on A and ∇̊ the metric connection associated
to ĝ. Using the covariant connection Θ̊ associated to ∇̊, the metric ĝ can be decomposed,
for any X,Y ∈ A, as

ĝ(X,Y) = ĝ(Θ̊(X), Θ̊(Y)) + ĝ(Θ̊(X), ι ◦ ω̊(Y)) + ĝ(ι ◦ ω̊(X), Θ̊(Y)) + ĝ(ι ◦ ω̊(X), ι ◦ ω̊(Y))

= ĝ(∇̊ρ(X), ∇̊ρ(Y)) + ĝ(ι ◦ ω̊(X), ι ◦ ω̊(Y))

Here, we have used the relations Θ̊ = ρ∗∇̊ and ĝ(Θ̊(X), ι ◦ ℓ) = 0, for any X ∈ A and ℓ ∈ L.
We define a metric g on M associated to the connection ∇̊ as g(X, Y ) = ĝ(∇̊X , ∇̊Y ), for
any X, Y ∈ Γ(TM). One writes the inner metric h associated to ĝ as h = ι∗ĝ so that, for
any X,Y ∈ A, we obtain the following decomposition of the inner non degenerate metric
as

ĝ(X,Y) = g(ρ(X), ρ(Y)) + h(ω̊(X), ω̊(Y)). (5.1.9)

Under this form, one says that the metric ĝ is block-diagonalized with respect to the geo-
metric and the algebraic parts of A. The geometric metric g on M is possibly degenerate.
To obtain the non-degeneracy of this metric, the metric ĝ on A has to be both inner
non-degenerate and non-degenerate.

With respect to an atlas of Lie algebroids, this metric ĝ is locally trivialized over the
open set Ui as ĝloc, i = S∗

i ĝ : TLA(Ui, g) × TLA(Ui, g) → C∞(Ui). For any X ⊕ γ, Y ⊕ η ∈
TLA(Ui, g), the local trivialization ĝloc is defined in terms of the metrics gi on Γ(Ui) and
hloc, i on Γ(Ui × g) as

ĝloc(X ⊕ γ, Y ⊕ η) = gi(X, Y ) + hloc, i(ω̊loc(X ⊕ γ), ω̊loc(Y ⊕ η)) (5.1.10)

With respect to a local chart, these two metrics are decomposed on the tensorial product
between the basis (dx1, . . . , dxm), associated to the cotangent bundle T ∗U and the basis
(θ1, . . . , θn), associated to the dual Lie algebra g∗. One would rather use the decomposition
of ĝloc on the mixed local basis associated to the metric connection ω̊loc. Then, we obtain

ĝloc = gµν dxµ ⊗ dxν + hab ω̊a
loc ⊗ ω̊b

loc (5.1.11)
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where gµν = g( ∂
∂xµ , ∂

∂xν ) and hab are the local components of g and hloc, respectively. With
respect to a change of trivializations on Uij , these local expression of the metric g remain
invariant and the local expressions of the metric h transforms as

hi, ab ωa
loc, i ⊗ ωb

loc, i = hj, ab ωa
loc, j ⊗ ωb

loc, j (5.1.12)

Then, the local trivializations of the two metrics g = ∇̊∗ĝ and ω̊∗h are correctly glued
together to form globally-defined objects on M.

5.2 Integration over A

5.2.1 The mixed local basis

In the previous examples, the mixed local basis associated to a background connection ω̊
was used to give a convenient local description of globally-defined differential forms defined
on A. Actually, this basis is an essential feature for the local trivializations of non-trivial
transitive Lie algebroids.

As we’ve seen before, differential complexes on A are locally decomposed with respect
to an atlas of Lie algebroids and a local chart of M on the graded tensorial product of
a basis associated to the cotangent bundle and a basis associated to the dual of g as in
the formula (3.3.9). Contrary to the basis of T ∗U , the gluing relations associated to an
element θa : TLA(U × g) → C∞(M), does not preserve this bi-graduation. Indeed, by
changes of trivialization, the map θa moves to αa

b ◦ θb + χa
µdxµ, where χa

µdxµ is equipped
with a geometric degrees of forms. Then, the gluing transformations of θa do not preserve
the dual space g∗.

Trivialization S1 S2

Geometric degree of forms dxµ −→ dxµ

Algebraic degree of forms θa −→ αa
b θb + χa

µdxµ

Thus, written in the basis (dxµ, θa), the local components of ω support very badly changes
of local trivialization.

This section gives the general theory of the mixed local basis applied to forms defined
on A with values in C∞(M). This theory can easily be extended to differential forms with
values in L. As an application of this construction, we define a volume form on A and the
so-called maximal inner differential form.

Let A be a transitive Lie algebroid equipped with an atlas of Lie algebroids (Ui, Si)i∈I .
Locally, we write the local expression a q-form ω ∈ Ωq(A) over the open set U as:

ωloc =
∑

r+s=q

(ωloc)
θ (r,s)
µ1µ2...µra1a2...as

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr ⊗ θa1 ∧ θa2 ∧ . . . ∧ θas (5.2.1)

where (dx1, dx2, . . . , dxm) and (θ1, θ2, . . . , θn) are the basis of the cotangent bundle T ∗U
and the dual Lie algebra g∗, respectively, and the elements (ωloc)

θ (r,s)
µ1µ2...µra1a2...as ∈ C∞(Ui)

are the local components of ω. Under this form, one says that ω is locally trivialized on
the basis (dxµ, θa).

The background connection used to construct the mixed local basis is an ordinary
connection 1-form ω̊ ∈ Ω1(A, L), which can be locally written over Ui as ω̊loc, i = (Åa

i −
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θa
i ) ⊗ Ea, where Åa

i ∈ Ω1(Ui), θa
i ∈ g∗ and (Ea)a=1,...,n denotes a basis for the Lie algebra

g. In this notation, one has ω̊loc, i = ω̊a
loc, i ⊗ Ea where ω̊a

loc, i = Åa
i − θa

i is an element of
Ω1

TLA
(Ui). A family of such 1-forms (ω̊a

loc, i)i∈I is called the mixed local basis relative to the

connection ∇̊ and to the basis (Ea)a=1,...,n. Note that the set (ω̊a
loc, i)i∈I must be given by

the local trivialization of a connection 1-form defined on A.

We write the element θa ∈ g∗ as θa = Åa − ω̊a
loc. In order to obtain the local trivi-

alization of ω in the basis (dxµ, ω̊a
loc) or, introducing the terminology, in the mixed local

basis, one simply substitutes θa by its corresponding expression Åa − ω̊a
loc. It results in

the expression

ωloc =
∑

r+s=q

(ωloc)
(r,s)
µ1µ2...µra1a2...as

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr ∧ ω̊a1

loc ∧ ω̊a2

loc ∧ . . . ∧ ω̊as

loc (5.2.2)

where (ωloc)
(r,s)
µ1µ2...µra1a2...as ∈ C∞(M) are the new components of ωloc with respect to this

mixed local basis.

Over the open set Uij , local trivializations of the brackground connection 1-form ω̊ are
glued as ω̊loc, i = αi

j ◦ω̊loc, j ◦sj
i . Using the representation of αi

j as a matrix-valued function,

one obtains ω̊a
loc, i = (Gij)a

b (ω̊b
loc, j) ◦ sj

i . Then, the basis used in the decomposition of ω in
the mixed local basis are preserved by changes of trivializations.

Trivialization S1 S2

Geometric degree of forms dxµ −→ dxµ

Algebraic degree of forms

given by the mixed local basis
ω̊a −→ αa

b ωb ◦ s2
1

5.2.2 Volume form on A

A volume form on A essentially plays the same role as the volume form on M: it permits an
integration of differential forms on A. For the moment, since the integration of differential
forms has not been defined yet, a volume form is defined as a differential form of degrees
n = dim(L) on A which permits to canonically exhibit the so-called maximal inner term
associated to any ω ∈ Ωq(A, L).

Let A be an inner-orientable transitive Lie algebroid equipped with an inner metric
h. We consider a background connection 1-form ω̊ and one denotes by ω̊loc, i its local
trivialization. Let ω̊1

loc, i ∧ ω̊2
loc, i ∧ . . . ∧ ω̊n

loc, i be a n-form defined on TLA(Ui, g), with
values in C∞(Ui). On the open set Uij , the gluing relations of each ω̊a

loc, i are given by the
equation (3.3.7) so that the corresponding n-form defined in Ωs

TLA
(Uj) is of the form

ω̊1
loc, j ∧ ω̊2

loc, j ∧ . . . ∧ ω̊n
loc, j = (Gji)

1
a1

(Gji)
2
a2

· · · (Gji)
n
an

(
ω̊a1

loc, i ∧ ω̊a2

loc, i ∧ . . . ∧ ω̊an

loc, i

)
◦ si

j

= (Gji)
1
a1

(Gji)
2
a2

· · · (Gji)
n
an

ǫa1a2...an

(
ω̊1

loc, i ∧ ω̊2
loc, i ∧ . . . ∧ ω̊n

loc, i

)
◦ si

j

= det(Gji)
(
ω̊1

loc, i ∧ ω̊2
loc, i ∧ . . . ∧ ω̊n

loc, i

)
◦ si

j

One recalls that the local inner metrics (hi)ab and (hj)ab are related over the open set Uij

as (hi)ab = (Gji)
c
a(Gji)

d
b(hj)cd so that we have

det(hloc, i) = det(Gji)
2 det(hloc, j). (5.2.3)
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Moreover, as a consequence of the chain relations (2.2.7), one has det(Gij) = det(Gji)
−1.

Then, one defines the volume form ωvol on A as the set of local 1-forms ((ωvol)i)i∈I defined
on the open sets Ui as

(ωvol)i =
√

det(hloc, i) ω̊1
loc, i ∧ ω̊2

loc, i ∧ . . . ∧ ω̊n
loc, i (5.2.4)

It is straightforward to prove that, on the open set Uij , the elements (ωvol)i and (ωvol)j

are related as

(ωvol)j =
√

det(hloc, j) ω̊1
loc, j ∧ ω̊2

loc, j ∧ . . . ∧ ω̊n
loc, j

=
√

det(hloc, i) | det(Gij)| det(Gji)
(
ω̊1

loc, i ∧ ω̊2
loc, i ∧ . . . ∧ ω̊n

loc, i

)
◦ si

j

= (ωvol)i ◦ si
j

From section 3.3.1, this last result implies that the differential forms ((ωvol)i)i∈I are the
local trivializations of a global form ωvol ∈ Ωn(A).

5.2.3 Maximal inner form on A

We consider a q-form ω ∈ Ωq(A) which is locally trivialized on Ui in the mixed local
basis as in formula (5.2.2). Over each open set Ui, we are interested in the component of
ωloc, i associated to the bi-graduation (q − n, n) i.e. which can be written as ω

(q−n,n)
loc, i =

(ωloc, i)
(q−n,n)
µ1...µq−nai...andxµ1 ∧ . . . ∧ dxµq−n ⊗ ω̊a1

loc ∧ . . . ∧ ω̊an

loc. This local component is written
in terms of ωvol as

ω
(q−n,n)
loc, i =

n!√
det(hloc, i)

(ωloc, i)
(q−n,n)
µ1µ2...µq−n

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµq−n ∧ (ωvol)i (5.2.5)

for each i ∈ I, where (ωvol)i denotes the local restriction of ωvol over Ui. note that, on the
local component of ω

(q−n,n)
loc, i , the Latin indices have been contracted to give the factor n!

so that they do not occur anymore.

We denote ωm.i.
loc, i = 1√

det(hloc, i)
(ωloc, i)

(q−n,n)
µ1µ2...µq−n . This corresponds to the maximal

inner component associated to ω. Then, the (q − n, n)-component of ω can be written as

ωq−n,n
loc, i = n! ωm.i.

loc, i ∧ ωvol, i (5.2.6)

The notation m.i. stands for "maximal inner".

By changes of trivialization, a straightforward computation shows that the maximal
inner component ωm.i.

i and ωm.i.
j associated to ω are related by ωm.i.

i = ωm.i.
j . Then, the

family of forms (ωm.i.
i )i∈I are the local trivializations of a global form ωm.i. ∈ Ωq−n(M).

One shows that the existence of a maximal inner term is independent of the background
connection. Indeed, a q-form ω can be locally described either with respect to the basis
(dxµ, θa) as

ωloc = (ωloc)
θ,(q−n,n)
µ1...µq−n

dxµ1 ∧ . . . ∧ dxµq−n ⊗ θa1 ∧ . . . ∧ θan + . . . (5.2.7)

where ". . ." denotes the components of ωloc with inner degrees which are not maximal, or,
with respect to the basis (dxµ, ω̊a

loc), as

ωloc = n! ωm.i.
√

det(hloc) ω̊1
loc ∧ ω̊2

loc ∧ . . . ∧ ω̊n
loc + . . . (5.2.8)
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By writing θa = Aa − ω̊a, it is straightforward to see that

ωm.i. =
(−1)n

n!
√

det(hloc)
(ωloc)

θ,(q−n,n)
µ1...µq−n

dxµ1 ∧ . . . ∧ dxµq−n (5.2.9)

Then, the existence of ωm.i. does not depend on the background connection ∇̊ used to define
the mixed local basis but only on the assumption that A is inner-orientable. Depending
on the choice of basis (mixed local basis or not), the (q − n)-form defined on M can be
directly "read" on the local decomposition of ω.

5.2.4 Inner integration

The inner integration defined on Ω•(A) is an integration in the sense where it gets rid of
the inner degrees of form. It consists in extracting the maximal inner terms associated to
any element ω ∈ Ω•(A). Then, this inner operation is defined as

∫

inner
: Ω•(A) → Ω•−n(M) ; ω Ô→ ωm.i. (5.2.10)

where ωm.i.
i ∈ Ωq−n(Ui) denotes the maximal inner component of ωloc, i. By construction,

we remark that
∫

inner ωvol = 1. In [Kub98], a similar operator is constructed by using a
“dual” volume form ǫ ∈ ∧n

L. This inner integral is naturally extended to Ω•(A, L) as
∫

inner
: Ω•(A, L) → Ω•−n(M, L) ; ω Ô→ ωm.i. (5.2.11)

This comes from the fact that, for any q-form ω, the term ωm.i.
i ∈ Ωq−n(Ui, g) is related to

ωm.i.
j over Uij as ωm.i.

i = αi
jωm.i.

j . Then, the elements (ωm.i.
i )i∈I are the local trivializations

of defined on M with value in L.

By construction of this inner integration, a lot of informations related to the degrees
of freedom of ω are lost after performing this integral. Indeed, every local components
of ω which does not contain the local volume form (ωvol)loc are “killed” by this inner
integration. Then, any q-form ω defined on A with degree q < n has no maximal inner
component so that it is in the kernel of this inner integral.

Thus, it seems like that the kernel of this integral is "too big" to be related to the
construction of gauge field theories. Indeed, these are usually related to objects with low
degrees in differential form, for instance connections or curvatures which are algebraically
described in terms of 1-forms or 2-forms on A. Then, the application of the inner integral
on these objects will give zero as soon as the dimension of the inner degrees of freedom
becomes greater than 2 or 3.

Nevertheless it results in the action of this inner integral an interesting feature for the
construction of physical models: the resulting maximal inner form is globally defined on
M. Then, before using this operator to construct gauge theories, additional structures
have to be defined. This will be done in section 5.3 by the introduction of the Hodge-star
operator.

5.2.5 Integration over A

The integration over A permits to associate to any differential q-form defined on A a
scalar number. However, by construction, this integral inherits the properties of the inner
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integral, in particular concerning the loss of informations related to ω. This will be solved
in the definition of the scalar product in section 5.4.

Let A be an orientable transitive Lie algebroids. The integration of ω ∈ Ωq(A) over A

is given by the composition of the inner integral operator with an integration over M as
defined in 1.1.4 so that we have

∫

A

ω =

∫

M
◦

∫

inner
ω =

∫

M
ωm.i. ∈ R (5.2.12)

Obviously, this definition makes sense only if the integral over M converges, which is the
case when M is compact or if ωm.i. has compact support.

The integration over M gives a non-zero result only for forms with maximal degrees
of geometric forms. Then, the integration over A does not vanish only for q-forms ω with
both maximal degrees in the inner directions and in the de Rham direction. This is only
the case for q = m + n where m = dim(M) and n = dim(L).

5.3 Hodge star operator

The definition of a Hodge star operator on a Lie algebroid extends the geometric definition
of the Hodge star operator on M. This extension takes into account both the geometric
and the algebraic degrees of forms of differential complexes defined on A. It establishes an
isomorphism of vector spaces between forms of degree q with forms of degree m + n − q.
Roughly speaking, it consists in transferring each local components of a differential form
from a bi-graduation (r, s) to bi-graduation (m−r, n−s), up to combinatorial coefficients.

In order to preserve the global structure on A, these components should be given in
the mixed local basis associated to a metric connection on A.

Let A be an orientable transitive Lie algebroid equipped with a non degenerate and
inner non-degenerate metric ĝ which is decomposed as (g, h, ∇̊) and an atlas of Lie alge-
broids (Ui, Si)i∈I . Both the metrics g and h are non-degenerate. The Hodge star operator
⋆ : Ωq(A) → Ωq−m−n(A) associated to the metric ĝ is a C∞(M)-linear map is defined as
follows.

Let ω ∈ Ωq(A) be a q-form locally trivialized, in a given chart, with respect to the
mixed local basis to ωloc ∈ Ωq

TLA
(U , g) as:

ωloc =
∑

r+s=q

(ωloc)
(r,s)
µ1µ2...µra1a2...as

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr ∧ ω̊a1

loc ∧ ω̊a2

loc ∧ . . . ∧ ω̊as

loc (5.3.1)

The Hodge-star operator acts on each local components of ωloc such that, the form ⋆ ωloc ∈
Ωm+n−p

TLA
(U , g) is defined as

⋆ ωloc =
∑

r+s=p

(−1)s(m−r) 1

r!s!

√
det(hloc)

√
det(g) (ωloc)

(r,s)
µ1...µra1...as

ǫν1...νm ǫb1...bn

× gµ1ν1 · · · gµrνr ha1b1 · · · hasbs dxνr+1 ∧ · · · ∧ dxνm ∧ ω̊
bs+1

loc ∧ · · · ∧ ω̊bn

loc

(5.3.2)

where ǫν1...νm and ǫb1...bn
are the Levi-Civita tensors and where (gµν) and (hab) are the

inverse matrix components of (gµν) and (hab), respectively.

On the open set Uij , the differential form ω can be trivialized either over Ui with
respect to the trivialization Si, or over Uj , with respect to the trivialization Sj . We apply
the Hodge star operator on ωloc, ,i and ωloc, j in order to compute (⋆ ωloc)i and (⋆ ωloc)j .
To this purpose, one uses the following gluing relations:
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• (hj)ab = (Gij)c
a(Gij)d

b(hi)cd and (hj)ab = (Gji)
a
c (Gji)

b
d(hi)

cd

•
√

det(hloc, j) = | det(Gij)|
√

det(hloc, i)

• ω̊a
loc, j = (Gji)

a
b (ω̊b

loc, i) ◦ si
j

• ωj, µ1µ2...µra1a2...as = (Gij)b1
a1

(Gij)b2
a2

· · · (Gij)bs
as

αji (ωi, µ1µ2...µrb1b2...bs
)

By a direct computation, one obtains (⋆ ωloc)j = (⋆ ωloc)i ◦si
j for any i, j = 1, . . . , I. Then,

the forms {(⋆ ωloc)i}i∈I are the local trivializations of a global form ⋆ ω ∈ Ωq−n−m(A) and
the map ⋆ : Ωq(A) → Ωq−m−n(A) defined as ω Ô→ ⋆ ω is well-defined. By using cumbersome
calculations, one shows that the map ⋆ is invertible. Indeed, for any ω ∈ Ωq(A) one has
⋆ ⋆ ω = (−1)(m+n−q)qω.

The Hodge star operator can be extended to Ωq(A, L) with merely the same definition.
Thus, one obtains ⋆ : Ωq(A, L) → Ωq−m−n(A, L) defined as ω Ô→ ⋆ ω where (⋆ ωloc)i ∈
Ωq−m−n

TLA
(Ui, g). It is invertible by the same manner as before.

5.4 Scalar product for forms defined on A

We arrive at the final result of this chapter: the definition of a scalar product for differential
forms defined on A with values either in C∞(M) or in L. This scalar product involve a
non-degenerate and inner non-degenerate metric ĝ on A, a background connection used to
define a mixed local basis and a Hodge star operator. With respect to this scalar product,
differential forms of distinct degrees are orthogonal.

Let A be an orientable and inner-orientable transitive Lie algebroid equipped with a
non-degenerate and inner-non degenerate metric ĝ = (g, h, ∇̊) and a Lie algebroid atlas
(Ui, Si)i∈I = (Ui, Ψi, ∇0

i )i∈I . For any ω ∈ Ωq(A) and η ∈ Ωr(A), one defines the scalar
product for differential forms with values in C∞(M) as

〈ω, η〉 =

∫

A

(ω ∧ ⋆ η) (5.4.1)

By construction, for q = p, the degrees of forms of ω are completed by the degrees of
forms of ⋆ η so that ω ∧ ⋆ η ∈ Ωm+n(A) and then, the integral over A does not necessarily
vanish. However, for q Ó= r, the scalar product gives 0. In this sense, differential forms with
distinct degrees are orthogonal with respect to this scalar product. Using straightforward
computations, one checks that this scalar product is symmetric.

This scalar product also gives rise to relations of orthogonality between the bi-graduations
associated to the local decomposition of a differential form. To see this, we locally decom-
pose a differential form ω in the mixed local basis (dxµ, ω̊a

loc). Then, one shows that the
local (r, s)-form, where r denotes the degree of forms on U and s denotes the degree of
the mixed local basis ω̊a

loc, is orthogonal to any local form with bi-degrees (r′, s′) except
for r = r′ and s = s′. In other words, the scalar product of two differential forms with
the same degree of forms gives the product, terms to terms, of each components, up to
combinatorial coefficients. In chapter 7, this result is directly applied to the definition of
a gauge action functional.

By linearity, this scalar product is extended to differential complexes of forms defined
on A. Let ω1, ω2 ∈ Ω•(A), as elements of a differential complex of forms, they can be
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written as ω1 = ⊕a=0ωa
1 and ω2 = ⊕a=0ωa

2 , where ωa
1 and ωa

2 belong to Ωa(A). Thus, the
scalar product between these two differential complexes gives

〈ω1, ω2〉 =
∑

a=0

〈ωa
1 , ωa

2〉 (5.4.2)

By construction of the scalar product, no mix terms are involved.

This scalar product can be also extended to Ω•(A, L) with merely the same definition.
Let ω ∈ Ωq(A, L) and η ∈ Ωr(A, L), one has:

〈ω, η〉h =

∫

A

h(ω, ⋆ η) ∈ R (5.4.3)

Here, the metric h is defined on forms defined on A with values in L as in (5.1.1). Let
ω1 = ⊕a=0ωa

1 and ω2 = ⊕a=0ωa
2 where ωa

1 and ωa
2 belong to Ωa(A, L). Then, one has:

〈ω1, ω2〉h =
∑

a=0

〈ωa
1 , ωa

2〉h (5.4.4)

This scalar product defined on differential forms with values in L will be a fundamental
feature to construct gauge-invariant theory on transitive Lie algebroids.
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Chapter 6

Gauge theory based on transitive Lie
algebroids

In this chapter, we consider groups of symmetries which act on the inner space of physical
systems. In the theory of fiber bundles, it is well-known that the symmetry is encoded
in the structure group G associated to a principal bundle P. The gauge action of this
structure group is given by the group of vertical automorphisms {f : P → P|f(u·g) =
f(u)·g and π(f(u)) = π(u), ∀u ∈ P, ∀g ∈ G} which act on objects defined on P such as
the connections, the covariant derivatives, the curvatures, etc. Such an action is called the
geometric action of the group G.

On transitive Lie algebroids, gauge groups do not always exist and, instead, we con-
sider only infinitesimal gauge actions. These infinitesimal gauge actions are related to
the kernel L as it represents the inner degrees of freedom of the Lie algebroids related to
the infinitesimal "inner" displacements. These are given by the Cartan operation (L, i, L)
and acts on the space of ordinary connections, covariant derivatives and curvatures by the
Lie derivative. This corresponds to the geometric infinitesimal action of L. Restricted to
the subspace of ordinary connections on A, it results in the usual gauge transformations
of the differential geometry: connections transform with an inhomogeneous term, covari-
ant derivatives preserve the gauge action of L on a representation space and curvatures
transform, at the first order, in the adjoint action of L. On Atiyah Lie algebroids, theses
transformations are exactly the infinitesimal version of the action of the gauge group G
associated to P.

On the space of generalized connections on A, the reduced kernel endomorphism as-
sociated to a generalized connection ̟ is not compatible, in a certain sense, with the
geometric infinitesimal action of L. Even if the Lie derivative of L is well-defined on gen-
eralized connections, it induces "messy" gauge transformations on the various fields of the
gauge theory. In particular, the induced ordinary connection associated to ̟ does not
transform as an ordinary connection 1-form, due to the presence of the background con-
nection ω̊ which does no support action of L. Also, the generalized covariant derivative
does not preserve the representation space of A. Finally, the transformations of the cur-
vature associated to ̟ make improbable, if not impossible, the construction of a gauge
theory based on it.

To solve these messy gauge transformations, we introduce a new gauge action of the
kernel L. It does not correspond to a geometric action, and then, we call it the algebraic
infinitesimal action of L. This algebraic gauge action is defined in order to preserve the
generalized covariant derivative associated to ̟. By induction, we compute the gauge
transformations of generalized connections, their reduced kernel endomorphisms and their
induced ordinary connection 1-form. With this algebraic action, the curvature F̂ as-
sociated to ̟ gets homogeneous gauge transformations. In particular, the three terms
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associated to the decomposition of F̂ (see section 4.2.3) transform independently as ho-
mogeneous terms. The geometric and the algebraic gauge actions of L coincide only for
τ = 0 i.e. restricted on the subspace of ordinary connections on A. In chapter 7, we use
this algebraic action of L to construct gauge invariant quantities.

This chapter is organized as follows. We introduce the geometric infinitesimal action
of L in terms of the action of a Lie derivative associated to the Cartan operation (L, i, L).
This action is implemented both on ordinary connections and on generalized connections.
On Atiyah Lie algrebroids, one shows that the geometric action of L corresponds to the
infinitesimal action of the gauge group on P. On generalized connections, the geometric
action of L makes apparent some incompatibility relations which will be discussed in
the body of the text. Then, the algebraic gauge action of L is defined on generalized
connections. Its non-geometrical statue will also be discussed. In particular, one will see
that for τ = 0, geometric and algebraic gauge action of L coincide.

6.1 Geometric action of L on ordinary connections

In the context of transitive Lie algebroids, infinitesimal geometric action is naturally de-
fined via the definition of a Lie derivative along L. Initially, the Lie derivative was a
geometric operation acting on vector fields and covectors. Here, we consider the algebraic
definition related to the Cartan operation (L, i, L) on A

ρ→ M, as defined in section 3.2.4.

Let A be a transitive Lie algebroid over M with kernel L. Considering L as a totally
intransitive Lie algebroid (with null anchor), one defines the Cartan operation (L, i, L) on
A, where i denotes the inner operation and L denotes the Lie derivative. These two maps
are defined as

iξ : Ωq(A, L) → Ωq−1(A, L) ; iξω(X1, . . . ,Xq−1) = ω(ι ◦ ξ,X1, . . . ,Xq−1)

Lξ = iξ ◦ d̂ + d̂ ◦ iξ : Ωq(A, L) → Ωq(A, L)

for any ω ∈ Ωq(A, L), X1, . . . ,Xq−1 ∈ A and ξ ∈ L. Here, the differential operator d̂ :
Ωq(A, L) → Ωq+1(A, L) is associated to the ad-representation of A on L.

The infinitesimal gauge action of L on A is defined on any element X ∈ A as

X Ô→ Xξ = X − ι ◦ δX where δX = [ξ,X], (6.1.1)

with ξ denotes the parameter of the infinitesimal gauge transformation. Since the gauge
transformations based on L are infinitesimal, the reader should keep in mind the formula
ξ2 ≃ 0. In the following, the status of geometric action of L is given when the infinitesimal
gauge action of L is encoded in the action of the Lie derivative L.

The infinitesimal gauge action of L is given on the connection 1-forms ω by the geo-
metric action of L as

ω Ô→ ωξ = ω − δω where δω = Lξω (6.1.2)

with ξ ∈ L and Lξ : Ωq(A, L) → Ωg(A, L). The first order term δω can be written as
δω(X) = Lξω(X) = [ξ, ω(X)] + [ξ,X] for any X ∈ A and ξ ∈ L. Then, using intrinsic
notations, we obtain the geometric transformations of the ordinary connection 1-forms:

ωξ = ω − [ξ, ω] + d̂ξ (6.1.3)

The geometric action of L preserves the space of ordinary connection in the sense that
ωξ(ι ◦ ℓ) = −ℓ for any ξ, ℓ ∈ L. Then ωξ is still normalized on L and still corresponds to
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6.1 – Geometric action of L on ordinary connections

an ordinary connection 1-form. However, it does not define the same horizontal subspace
of A as the connection associated to ω.

The geometric gauge transformation of Θ : A → A, associated to ∇ : Γ(TM) → A, is
directly computed using the Lie derivative along ξ ∈ L as

Θ Ô→ Θξ = Θ − δΘ (6.1.4)

where δΘ = LξΘ = [ξ, Θ] and then, the covariant connection transforms as Θξ = Θ−[ξ, Θ].
Written under this form, one sees that Θξ defines the horizontal subspace of A associated
to the connection ωξ in the sense that ωξ(Θξ) = 0, at first order in ξ. The geometric action
of L on Θ is compatible with the geometric action on the ordinary connection 1-form ω in
the sense that Θξ(X) = X + ι ◦ ωξ(X), for any X ∈ A and ξ ∈ L.

Let E be a representation space for A equipped with the representation φ on E so that
the differential operator d̂φ is well-defined. The infinitesimal geometric gauge action of L

on s ∈ Γ(E) is given by the Lie derivative associated to d̂φ as

sξ = s − δs where δs = Lξs = d̂φ ◦ iξs + iξ ◦ d̂φs = φL(ξ)s (6.1.5)

and ξ ∈ L denotes the parameter of the gauge transformation. The infinitesimal geometric
gauge transformation of the covariant derivative associated to the connection ∇ and the
representation φ : A → D(E) is induced from the geometric action of L on the covariant
connection Θ and on the element s as

Dξsξ = φ(Θξ)sξ (6.1.6)

where ξ ∈ L. Using a direct computation, we show that the geometric action of L on the
covariant derivative is given in terms of ω as

Dξsξ(X) = φ(X)sξ − φL(ωξ)sξ. (6.1.7)

At the first order in ξ, the representation space of A is preserved by the geometric action
of L in the sense that

Dξsξ = Ds − φL(ξ)Ds + O(ξ2) = (Ds)ξ + O(ξ2) (6.1.8)

where O(ξ2) denotes terms of higher order in ξ. This is a good thing since, initially,
the covariant derivative was introduced in gauge field theories to obtain covariant objects
with respect to the action of a local gauge group. In differential geometry, the geometric
structure of the covariant derivative necessarily gives this covariance. In the context of
Lie algebroids, this point is recovered for the geometric action on L on covariant derivative
associated to ordinary connections on A.

We proceed to the computation of the geometric action of L on the curvature F asso-
ciated to ω. As expected, we find the infinitesimal version of the well-known homogeneous
gauge transformations of F . To see this, let F = ρ∗R ∈ Ω2(A, L) be the curvature associ-
ated to the connection ∇ on A. The infinitesimal gauge transformation on the L-horizontal
2-form F is given by the geometric action as

F ξ = F − δF where δF = LξF = [ξ, F ], (6.1.9)

for any ξ ∈ L. We say this the gauge transformation of F is homogeneous since the map
F → F ξ is C∞(M)-linear. This also implies that a null curvature vanishes on all the gauge
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Chapter 6 – Gauge theory based on transitive Lie algebroids

orbit of ω. At the first order in ξ, we see that the geometric action of L is compatible with
the geometric action on the ordinary connection 1-form in the sense that

F ξ = d̂ωξ +
1

2
[ωξ, ωξ] (6.1.10)

The geometric action of L on F preserves its L-horizontality in the sense that F ξ(ι◦ℓ,X) =
0, for any X ∈ A and ξ, ℓ ∈ L.

6.2 Geometric action of L on generalized connections

The geometric action of the kernel is applied on generalized connections on A. Problems
arise as we consider the geometric gauge transformation of the induced ordinary connection
ω. Indeed, this ordinary connection is associated to a background connection ω̊ which, by
definition, does not support the gauge action of L. To recover a convenient transformation
for ω, we have to define a “non-geometric” gauge action of L i.e. an algebraic gauge action.

Let ̟ ∈ Ω1(A, L) be a generalized connection 1-form on A and (L, i, L) be the Cartan
operation on A. The infinitesimal geometric action of L on ̟ is given by the Lie derivative
so that we define ̟ξ = ̟ − δ̟ with δ̟ = Lξ̟ = [ξ, ̟(X)] − ̟ ◦ ι([ξ,X]). Then, we
obtain

̟ξ = ̟ − [ξ, ̟] − ̟(ι ◦ d̂ξ) (6.2.1)

We see that if ̟ is normalized on L, we obtain the gauge transformations (6.1.3).

With respect to the decomposition of ̟ as in formula (4.2.3), we compute the in-
finitesimal action of L on the reduced kernel endomorphism τ and on the induced ordinary
connection ω. The background connection term used to define the ordinary connection
is invariant under the action of L. Indeed, this background connection term is related
to both the metric connection associated to a metric ĝ on A and the mixed local basis
used to locally decompose differential forms. For these two reasons, it seems illegitimate
to consider the background connection as a gauge field. Then we assume that the gauge
action is not represented on it or, equivalently, that the representation of L is trivial on ω̊.

We define the gauge transformation of the reduced kernel endomorphism as τ ξ = ̟ξ ◦
ι+IdL and the gauge transformation of the induced ordinary connection as ωξ = ̟ξ+τ ξ(ω̊).
A straightforward computation leads to the transformations:





τ ξ(ℓ) = τ(ℓ) − [ξ, τ(ℓ)] − τ([ℓ, ξ])

ωξ = ω − [ξ, ω] + d̂ξ − αξ,
(6.2.2)

for any ℓ, ξ ∈ L, where we have defined αξ = τ([Θ̊, ξ]) ∈ Ω1(A, L). This term is clearly a
reminiscent of the fact that the background connection does not support the action of L.
It is related to a geometric obstruction of the gauge action of L. Nevertheless, ωξ is still
an ordinary connection 1-form since αξ is L-horizontal and then we obtain ωξ(ι ◦ ℓ) = −ℓ
for any ℓ ∈ L. The gauge transformation of the covariant connection Θ : A → A associated
to ω is induced from ωξ as Θξ(X) = X + ι ◦ ωξ(X) ,for any X ∈ A. Then, one obtains
Θξ = Θ− [ξ, Θ]−αξ for any ξ ∈ L. Again, the 1-form αξ prevents the covariant connection
Θ to transform as a geometric object.

The generalized covariant connection Θ̂ : A → A associated to ̟ defined in section
4.2.1 transforms as

Θ̂ξ = Θ̂ − δΘ̂ with δΘ̂ = LξΘ̂ = [ξ, Θ̂] + Θ̂ ◦ ι(d̂ξ). (6.2.3)
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6.2 – Geometric action of L on generalized connections

Using a straightforward computation, the generalized covariant map Θ̂ξ is related to the
generalized connection ̟ξ as

Θ̂ξ(X) = X + ι ◦ ̟ξ(X). (6.2.4)

Contrary to the covariant derivative associated to an ordinary connection 1-form, the
covariant derivative associated to a generalized connection does not preserve the represen-
tation space with respect to the geometric action of L. To see this, consider an element
s ∈ Γ(E) which supports a geometric action of L, as in (6.1.5). For any ξ ∈ L, the gen-
eralized covariant derivative of s transforms as D̂ξsξ = φ(Θ̂ξ)sξ. We compare this gauge
transformation with (D̂s)ξ = D̂s − φL(ξ)D̂s and we obtain, at first order in ξ, the relation

D̂ξsξ = (D̂s)ξ − φ(Θ̂ ◦ ι(d̂ξ))s (6.2.5)

The obstruction for the generalized covariant derivative associated to ̟ to preserve the
representation space E , with respect to the geometric infinitesimal gauge action of L is
encoded in the reduced kernel endomorphism in the sense that

(D̂s)ξ − D̂ξsξ = φL(τ(d̂ξ))s (6.2.6)

For τ = 0, the right-hand-term vanishes and the covariant derivative preserves Γ(E) with
respect to the action of L. Then, the incompatibility between these two representations
of L comes from the algebraic component τ of ̟. This will be also apparent in the gauge
transformations of the generalized curvature associated to ̟.

Let F̂ ∈ Ω2(A, L) be the curvature associated to the generalized connection ̟. This
curvature supports two distinct representations of L. It can be either defined by the
geometric gauge action of L as

F̂ ξ = F̂ − δF̂ with δF̂ = LξF̂ , (6.2.7)

or it can be defined using the Cartan structure equation

F̂ ξ = d̟̂ξ + 1
2 [̟ξ, ̟ξ], (6.2.8)

for any ξ ∈ L where ̟ξ = ̟ − Lξ̟. Similarly to the generalized covariant derivatives,
these two gauge transformations of the curvature F̂ are not compatible.

Consider the infinitesimal gauge transformation of F̂ induced by ̟ξ by the Cartan
structure equation F̂ ξ = d̟̂ξ + 1

2 [̟ξ, ̟ξ]. Directly, one shows that the three elements
exhibited in the decomposition of F̂ (see section 4.2.3) transform respectively as





ρ∗R̂ Ô→ (ρ∗R̂)ξ = ρ∗R̂ − [ξ, ρ∗R̂]

+τ([F̊ , ξ]) − [Θ, αξ]

+O(ξ2)

(ρ∗Dτ) ◦ ω̊ Ô→ (ρ∗Dτ)ξ ◦ ω̊ = (ρ∗Dτ) ◦ ω̊ − [ξ, (ρ∗Dτ) ◦ ω̊]

−[Θ, τ ([ω̊, ξ])] + τ
(
[[Θ̊, ω̊], ξ]

)
− [α(ξ), τ(ω̊)]

+O(ξ2)

ω̊∗Rτ Ô→ (ω̊∗Rτ )ξ = ω̊∗Rτ − [ξ, ω̊∗Rτ ]

−1
2τ ([[ω̊, ω̊], ξ]) − [τ(ω̊), τ([ω̊, ξ])]

+O(ξ2)
(6.2.9)
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In the three cases, the first order linear term in ξ is decomposed into two parts. The
former is given by the adjoint action of ξ ∈ L and corresponds to the homogeneous part
of the transformation. The latter involves non homogeneous terms depending mainly on
τ and αξ. These terms are badly interpretable since we know that this kind of gauge
transformations do not come from any geometric structure, due to the presence of the
background term ω. Still, we remark that gauge transformations preserve the geometric
and the algebraic statues of each terms. In particular, the geometric action of L on the
third term, which is the obstruction for τ to be a morphism of Lie algebras, preserves this
algebraic status.

Now, consider the infinitesimal gauge transformation of F̂ given by the geometric
action of L as F̂ → F̂ ξ = F̂ − δF̂ where δF̂ = LξF̂ for any ξ ∈ L. By linearity, the
geometric action of L is distributed on the three factors ρ∗R̂, (ρ∗Dτ) ◦ ω̊ and ω̊∗Rτ of the
previous decomposition so that we obtain





ρ∗R Ô→ (ρ∗R)ξ = ρ∗R − Lξ(ρ∗R)

(ρ∗Dτ) ◦ ω̊ Ô→ ((ρ∗Dτ) ◦ ω̊)ξ = (ρ∗Dτ) ◦ ω̊ − Lξ ((ρ∗Dτ) ◦ ω̊)

ω̊∗Rτ Ô→ (ω̊∗Rτ )ξ = ω̊∗Rτ − Lξω̊∗Rτ

(6.2.10)

It results in the geometric action of L on each of these three terms




Lξ(ρ∗R) = [ξ, ρ∗R]

Lξ ((ρ∗Dτ) ◦ ω̊) = [ξ, (ρ∗Dτ) ◦ ω̊] − [Θ, τ(d̂ξ)] + τ([Θ̊, d̂ξ])

Lξ(ω̊∗Rτ ) = [ξ, ω̊∗Rτ ] + τ([d̂ξ, ω̊]) − [τ(d̂ξ), τ(ω̊)]

(6.2.11)

Contrary to the previous type of gauge transformations, the geometric transformations of
each terms do not preserve their respective geometric and algebraic statues.

We denote by (F̂ ξ)geo the geometric action of F̂ and we denote by (F̂ ξ)ind the gauge
transformation F̂ induced by the gauge transformed connection ̟ξ. With the same nota-
tion, we make the distinction for the gauge transformations of the elements ρ∗R, (ρ∗Dτ)◦ω
and ω̊∗Rτ . We establish the following relations:

(ρ∗R)ξ
ind − (ρ∗R)ξ

geo = τ([F̊ , ξ]) − [Θ, αξ]

(ρ∗Dτ)ξ
ind − (ρ∗Dτ)ξ

geo = −[Θ, αξ] + τ([Θ̊, αξ]) − [αξ, τ(ω̊)] + τ([[Θ̊, ξ], ω̊])

(ω̊∗Rτ )ξ
ind − (ω̊∗Rτ )ξ

geo = −τ([[Θ̊, ξ], ω̊]) + [αξ, τ(ω̊)]

(6.2.12)

The obstruction for these two types of gauge transformation of the curvature to be
equivalently defined either as the geometric action of L on F̂ or by induction from the gauge
transformed generalized connection ̟ξ is encoded in the reduced kernel endomorphism
of ̟. Indeed, we directly reads that these three obstructions vanishes for τ = 0 i.e. when
the space of generalized connections is restricted to the space of ordinary connections.

6.2.1 Gauge action on Atiyah Lie algebroids

In this section, we consider an Atiyah Lie algebroid associated to a principal bundle
P(M, G). Here, the geometric action of the kernel L can be substituted by the action of a
gauge group G. Then, the geometric action on ΓG(P, g) is given by the action of the group
of vertical automorphisms. At first order, this corresponds exactly to the infinitesimal
geometric action of ΓG(P, g).
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In the theory of fiber bundles, the gauge action of the structure group is related to the
space of vertical automorphisms f : Pp → Pp, where p ∈ M, such that f(u·g) = f(u)·g, for
any u ∈ P and g ∈ G. This application is equivalent to the data of a G-equivariant group
valued field g : P → G which fulfills g(u·a) = a−1·g(u)·a, for any a ∈ G. We denote by G
the set of these functions g and we call it the gauge group on P. The maps f : Pp → Pp

and g : P → G are related by the formula f(u) = u·g(u). Assume G is connected and
simply connected so that any element g can be written under the form g = exp(λ), where
λ ∈ g. Then, any element g ∈ G can be written under the form g(u) = exp(λ(u)), where
λ : P → g with λ(u·a) = a−1·λ(u)·a, for any u ∈ P and a ∈ G. Then, the kernel ΓG(P, g)
of ΓG(P) generates the gauge group of P.

What follow are classical results of differential geometry obtained in the context of
Atiyah Lie algebroids.

The action of the gauge group on the space of right-invariant vector fields ΓG(P) is
given in terms of flows as

(Xg)u =
d
dt |t=0

φX,t(u·g(u))·g−1 (φX,t(u·g(u))) = Xu − ι ◦
(
(X·g−1)g

)
u

(6.2.13)

for any X ∈ ΓG(P) and u ∈ P. Basic geometric computations shows that the inhomoge-
neous term (X·g−1)g is an element of ΓG(P, g). With abuse of notations, we extend the
differential d̂ to G but we keep in mind that the quantity d̂g makes no sense and only
terms of the form g−1d̂g or (d̂g)g−1 are correctly defined. The term g−1(d̂g) ∈ Ω1

Lie(P, g)
is defined as g−1(d̂g)(X) = g−1(X·g), for any X ∈ ΓG(P), same thing for (d̂g)g−1. It
is direct to prove that g−1(d̂g) + (d̂g−1)g = 0 and g−1(d̂g)(ι ◦ ℓ) = g−1·ℓ·g − ℓ, for any
ℓ ∈ ΓG(P, g).

The action of G on the elements v ∈ Γ(P, g) is defined by the following commutating
diagram

ΓG(P)
G∗ // ΓG(P)

Γ(P, g)

ι

OO

G∗ // Γ(P, g)

ι

OO

where G∗ denotes the geometric action of G on either ΓG(P) or on ΓG(P, g). Directly, one
reads ((ι ◦ v)g)u = d

dt |t=0
u·e−tv(u)·g−1

(
u·e−tv(u)

)
·g(u) = d

dt |t=0
u·g−1(u)·e−tv(u)·g(u). One

compares this result to (ι◦vg)u = d
dt |t=0

ue−tvg(u) so that G acts on ΓG(P, g) as vg = g−1·v·g,
for any g ∈ G. One defines the induced action of G on an ordinary connection 1-form so
that this second diagram commutes

ΓG(P)
G∗ //

ω

��

ΓG(P)

ωg

��
Γ(P, g)

G∗ // Γ(P, g)

This gives the relation : (ω(X))g = ωg(Xg) for any X ∈ ΓG(P). It results in the gauge
transformation of the ordinary connection 1-form ω as ωg(X) = g−1·ω(X−ι((X·g)g−1))·g =
g−1·ω(X)·g+g−1(X ·g) or, in a more compact notation ωg = g−1·ω·g+g−1·d̂g. In the case
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of the matrix group, the element g(u) can be written as exp(tξ(u)) = 1 + tξ(u) + O(t2).
Making the derivation at t = 0, one obtains the formula (6.1.3).

We consider a generalized connection ̟ on A. The definition of the geometric action
of the gauge group G is given by the sme previous computations so that we obtain

̟g = g−1·̟·g − g−1·̟ ◦ ι((d̂g)·g−1)·g. (6.2.14)

With this definition, we induce the gauge transformation of the induced ordinary con-
nection ω and the reduced kernel endomorphism τ as in (4.2.3). One defines the gauge
transformed reduced kernel endomorphism as τ g = ̟g ◦ ι + IdL : L → L and the gauge
transformed of the induced ordinary connection ωg as ωg = ̟g + τ g(ω̊). Here again,
the background connection ω̊ does not support the representation of the gauge group. A
straightforward computation leads to the transformations:





τ g(ℓ) = g−1τ(gℓg−1)g

ωg = g−1·ω·g + g−1d̂g − αg

(6.2.15)

for ℓ ∈ L and g ∈ G, where we have defined αg = g−1·τ(ω̊ − g·̊ω·g−1 − gd̂g−1)g. This
last term is reminiscent of the fact that the background connection does not support the
action of G. It corresponds to the “global” version of αξ. As in the infinitesimal case, ωg

is still an ordinary connection since αg vanishes on L. Note that the gauge transformation
of the reduced kernel endormophism τ associated to ̟ can be obtained by the geometric
action of G. To see this, one considers the following commutative diagram:

ΓG(P, g)
G∗ //

τ

��

ΓG(P, g)

τg

��
Γ(P, g)

G∗ // Γ(P, g)

Then, we obtain τ g(vg) = (τ(v))g that we can write τ g(v) = g−1τ(gvg−1)g, for any
v ∈ ΓG(P, g) and g ∈ G.

To finish with the computation of the gauge group on Atiyah Lie algebroids, we ex-
plicitly compute the action of G on the three elements exhibited in (4.2.14). Then, the
gauge transformation of F̂ is defined as F̂ g = d̟̂g + 1

2 [̟g, ̟g]. We obtain




ρ∗R̂ Ô→ (ρ∗R̂)g = g−1(ρ∗R̂)·g
−d̂(αg) − [ωg, αg] + 1

2 [αg, αg]

(ρ∗Dτ) ◦ ω̊ Ô→ (ρ∗Dτ)g ◦ ω̊ = g−1·[Θ, τ(g·̊ω·g−1)]·g − g−1·τ(g·[Θ̊, ω̊]·g−1)·g
−[αg, g−1τ(gω̊g−1)g−1]

ω̊∗Rτ Ô→ (ω̊∗Rτ )g = g−1·
(
τ(g[ω̊, ω̊]g−1)g − [τ(gω̊g−1), τ(gω̊g−1)]

)
·g
(6.2.16)

Note that the action of G on the third term, which is the obstruction for τ to be a morphism
of Lie algebra, preserves this status.

6.3 Algebraic action of L

In the previous section, we have shown that the geometric action of L is related to the in-
finitesimal version of the action of the gauge group. In the context of ordinary connections
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ω, this action of L is compatible with the geometric nature of the objects derived from
ω such as the covariant derivative, the curvature, etc. However, the “hybrid” nature of
generalized connection is in conflict with the "pure geometric" action of L. This is obvious
in the formulas of section 6.2 where the reduced kernel endomorphism τ , which measures
the non-geometric nature of ̟, is involved in all the "undesirable terms" of the gauge
transformations. The most problematic feature related to the geometric gauge action on
generalized connections concerns the covariant derivative. Indeed, the geometric action of
L does not preserve the "covariance" of Θ̂.

The algebraic gauge action of L is introduced to restore a convenient gauge transfor-
mation with respect to the covariant derivative associated to ̟. This requirement leads
to impose a new transformation for ̟. As we will see, the geometric and the algebraic
action of L coincide for τ = 0. For τ Ó= 0, the algebraic action of L cannot be interpreted
as geometric construction: this explains the terminology "algebraic gauge action".

With this choice of gauge action, we induce the corresponding gauge transformations
of the generalized covariant connection, the curvature, etc. Then, we obtain homogeneous
transformations which will be used to construct gauge field theories based on generalized
connections.

Let E be a representation space of A. We assume that the kernel L acts infinitesimally
on s ∈ Γ(E) as sξ = s − φL(ξ)s, where φL denote the representation of L on E , as in the
previous case. This gauge transformation corresponds to the most natural representation
of L on the "matter fields" of the theory. In the case of Atiyah Lie algebroids, the fiber
bundle E is a vector bundle associated to P, with fiber F , equipped with the left action
ℓ : G → End(F ). The gauge group G acts on s : P → F as sg = ℓ(g−1)s, for any g ∈ G.

Let ̟ be a generalized connection on A and D̂φ = φ(Θ̂) : A → D(E) the covariant
derivative associated to ̟. One asks for the covariant derivative D̂φ to have homogeneous
gauge transformations either with respect to the infinitesimal action of L or, if it exists,
with respect to the action of G. Then, we impose

D̂φ(X)ξsξ = D̂φ(X)s − φL(ξ)D̂φ(X)s or D̂φ(X)gsg = ℓ(g−1)D̂φ(X)s, (6.3.1)

for any X ∈ A and s ∈ Γ(E). These two formulas are equivalent, up to the first order in
ξ. Then, with respect to the action of L, respectively G, the generalized connection ̟ is
required to transform as

̟ξ = ̟ − [ξ, ̟] + d̂ξ or ̟g = g−1̟g + g−1d̂g, (6.3.2)

where g−1d̂g has been defined in 6.2.1.

These two formulas differ from the formulas (6.2.1) and (6.2.14) obtained from the
geometric action of L or G. This is an important point: the fact that the generalized
covariant derivative preserves the gauge action of L (or G) on E leads to a non-geometrical
action on the generalized connection ̟. Formulas in (6.3.2) give the infinitesimal algebraic
action of L and the algebraic action of G on ̟, respectively.

We see now how this algebraic action of L is induced, starting from the transformation
of ̟ to its geometric component ω and its algebraic component τ of ̟. One recalls
that the background connection, by definition, doesn’t support the action of L (neither
geometric nor algebraic). With respect to the decomposition of ̟ into (ω, τ) (c.f. section
4.2.1), the computation of the infinitesimal algebraic action of L on the induced ordinary
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connection ω and the reduced kernel endomorphism τ reads




ωξ = ω − [ξ, ω] + d̂ξ

τ ξ(ℓ) = τ(ℓ) − [ξ, τ(ℓ)]
(6.3.3)

for any ℓ, ξ ∈ L. With respect to the algebraic action of L, the induced ordinary con-
nection ω transforms like a true ordinary connection on A. Contrary to the geometric
transformation, the ad representation of g acts only on the target space of the τ and no
more on its source space. Similarly, for ℓ ∈ L and g ∈ G, the algebraic action of G on
the induced ordinary connection and the reduced kernel endomorphism gives the following
transformations 




ωg = g−1ωg + g−1d̂g

τ g(ℓ) = g−1τ(ℓ)g
(6.3.4)

These two transformations are the global version of the infinitesimal algebraic action of L.

The distinction between the geometric and the algebraic gauge actions of L is encoded
in the reduced kernel endomorphism associated to ̟. A direct computation highlights this
assertion. Let ̟ξ

alg be the algebraic action of ξ on ̟ and let ̟ξ
geo be the geometric action

of ξ on ̟. The difference between these two representations gives ̟ξ
alg − ̟ξ

geo = τ(d̂ξ)
for any ξ ∈ L. With respect to the geometric and algebraic action of g ∈ G, one obtains
̟g

alg − ̟g
geo = τ(g−1d̂g) for any g ∈ G. Then, when restricted to the subspace of ordinary

connections, the geometric action and the algebraic action of L or of the gauge group G
coincide. Out of the space of ordinary connections, this could not happen except if, by a
process of symmetry reduction, the gauge parameter ξ (or the Lie algebra of the reduced
group of symmetry) is restricted to ker(τ). This point is out of the scope of the present
PhD thesis.

We close this section by the definition of the algebraic action of L and G on the curva-
ture associated to ̟. Consider the algebraic action of L on ̟, the induced infinitesimal
transformation of the curvature F̂ associated to ̟ is induced from the expression of ̟ξ

so that it transforms as F̂ ξ = F̂ − [ξ, F̂ ]. Then, the three components associated to
the decomposition of F̂ with respect to their geometric and algebraic status transform
respectively as:





ρ∗R̂ Ô→ (ρ∗R̂)ξ = ρ∗R̂ − [ξ, ρ∗R̂]

(ρ∗Dτ) ◦ ω̊ Ô→ (ρ∗Dτ)ξ ◦ ω̊ = (ρ∗Dτ) ◦ ω̊ − [ξ, (ρ∗Dτ) ◦ ω̊]

ω̊∗Rτ Ô→ (ω̊∗Rτ )ξ = ω̊∗Rτ − [ξ, ω̊∗Rτ ]

(6.3.5)

One obtains homogeneous gauge transformations. In the three cases, the first order linear
term is given by the adjoint action of ξ ∈ L. Note that the action of L on the third
term, which is the obstruction for τ to be a morphism of Lie algebras, preserves this
status. Similarly, consider the algebraic representation of G on ̟, the induced gauge
transformation of the curvature F̂ associated to ̟ is given by F̂ g = g−1F̂ g for any g ∈ G.
Then, the three components defined in (4.2.14) transform as:





ρ∗R̂ Ô→ (ρ∗R̂)g = g−1(ρ∗R̂)g

(ρ∗Dτ) ◦ ω̊ Ô→ (ρ∗Dτ)g ◦ ω̊ = g−1(ρ∗Dτ)g

ω̊∗Rτ Ô→ (ω̊∗Rτ )g = g−1(ω̊∗Rτ )g

(6.3.6)

108



6.3 – Algebraic action of L

In the three cases, the gauge transformation is given by the adjoint action of g ∈ G. In
the next chapter, we will consider only algebraic gauge transformations.
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Chapter 7

Yang-Mills-Higgs type theories

The mathematical description of the SM of particle physics is based on the existence
of both some inner symmetries and the so-called gauge principle which claims that any
observable in physics have to be invariant with respect to the action of the corresponding
symmetry group. From these two fundamental concepts, one induces that the theory of
fiber bundles is an adapted mathematical framework to describe these inner symmetries
and that physical quantities related to inner degrees of freedom have to be gauge-invariant
quantities.

As a direct application of this observation, the YM theories are geometric constructions
which result in the dynamic of the gauge bosons of the SM. These particles mediate the
fundamental electromagnetic and nuclear interactions and they can be described in terms
of geometric objects defined on a trivial principal bundle P(M, G). In this description, the
gauge group G of the theory is related to the group of vertical automorphism on P and the
minimal coupling term between matter fields and gauge bosons is given by the covariant
derivative associated to a connection on P. To construct gauge invariant quantities from
geometric objects, YM theories considers the curvature R of this connection, which is
the simplest first order derivative object with homogeneous gauge transformations. Then,
it results in the definition of a gauge invariant action functional written as the “norm”
of R. For U(1)-gauge theories, this theory gives exactly the Maxwell equations of the
electromagnetic theory. This construction is detailed in [Nak03; TS87]. YM models are
given by the theory of connections on P.

Then, this description establishes a correspondence between geometric objects and the
physical content of the SM: gauge bosons Aµ are local trivializations of connections ω on
P, the field strength Fµν are related to the curvature of ω, etc. Upon the gauge field
theories based on the theory of connections, additional structures on P are required to
take also into account the description of matter fields, e.g. scalar fields and spinor fields
which are described using associated vector bundles or Dirac bundles, respectively.

In the Lagrangian of the SM, the mass term for gauge bosons Aµ are given under the
form mabA

a
µAµ b, where the summation is made over the Latin indices a, b = 1, . . . , dim(G)

where m denotes the matrix of mass associated to the gauge bosons. However, it is not
possible to add such terms in the theory without “breaking” the global gauge invariance
of the Lagrangian. Thus, YM models based on the theory of connections are not suitable
to describe massive vectors bosons W ±

µ and Z0
µ, related to the weak interaction, whose

mass have been experimentally measured to be 80.38 ± 0.015 GeV and 91.1876 ± 0.0021
GeV, respectively.

The mechanism used to restore the compatibility between YM gauge field theories
and massive vector bosons is provided by the Brout-Englert-Higgs-Hagen-Guralnik-Kibble
(BEHHGK, pronouned “beck”) mechanism of spontaneous symmetry breaking [IZ85; PS95].
To perform this mechanism, additional structures have to be implemented on YM models.
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It requires some added-by-hand objects such as a scalar field φ coupled to gauge bosons
Aµ, which is embedded into a quartic potential. This potential is adjusted with dynamical
parameters which depend on the energy scale of the system. For low energies, the field φ
realizes a spontaneous polarization into the so-called vacuum configuration corresponding
to a minimum of its potential. This mechanism is purely analog to the spontaneous po-
larization of magnetic crystals in ferro-magnetic theories. From the polarization of φ, the
symmetry group G is reduced to one of its subgroup. Then, the mass term mabA

a
µAµ b be-

comes gauge invariant and the gauge bosons Aµ acquire mass. Applied to the electroweak
sector of the SM, this mechanism gives correctly the U(1)-charged current W +

µ W µ − and
the neutral current Z0

µZ0 µ with the correct ratio of masses.

Then, the scalar field φ is added-by-hand in the theory as a new particle of the SM.
Same thing for the potential, it has been added a posteriori to permit the polarization
of φ. Thus, the spontaneous symmetry breaking mechanism is out of the geometry of
connections. This means that the mass of gauge bosons does not come from intrinsic
geometric objects but, instead, from the interaction with an external field.

The objective of this chapter is to establish a mathematical construction based on
transitive Lie algebroids in order to obtain, at the end, a YMH theory strictly defined in
the geometry of (generalized) connections in the sense that it will be simply constructed
as the “norm” of the curvature associated to ̟ (the explicit expression is given in (7.1.1)).
It results in that the space of generalized connections provide the algebraic extension that
will permit to obtain a gauge theory greatly analog with the BEHHGK mechanism of
symmetry reduction. However, this model presents some deep distinctions with the usual
scheme. In particular, in our construction, the scalar field φ is substituted by the reduced
kernel endomorphism τ : L → L associated to a generalized connection ̟. It results in
a gauge field theory which is decomposed as the sum of a pure YM theory, a covariant
derivative of the field τ b

a and a potential term for τ b
a. Moreover, this potential is not

related to dynamical parameters and instead, it is interpreted as an obstruction for τ to
be a morphism of Lie algebras. Thus, we will define the space of solutions associated to
this theory. A first (trivial) solution is given by τ = 0, which gives the usual YM theory. A
second one (less trivial) is given by τ b

a = δb
a which gives a YM theory with massive vector

fields.

In this chapter, all the constructions of the previous chapters are used to properly define
a gauge invariant theory based on generalized connections on transitive Lie algebroids. In
particular, we consider differential calculi on transitive Lie algebroids and systems of local
trivializations. We also use an inner non-degenerate metric ĝ and the orientation on A to
construct a Hodge star operator and a scalar product on Ω•(A, L). The infinitesimal action
of the gauge group is given by the algebraic action of L. It results in a gauge invariant
functional action depending only on ̟ and defined as the square of F̂ . Straightforward
computations lead to the explicit expression of the theory in terms of gauge fields defined
on spacetime. Discussions and comments will highlight the relevance of this construction.

7.1 Gauge field theories using generalized connections on transitive Lie
algebroids

The gauge invariant action functional SGauge[̟] based on generalized connection is defined
under a compact form so that it is direct to check that this quantity is invariant with
respect to the algebraic action of L. Once we are convinced of this, we can give a more
explicit formulation of SGauge[̟], with the guarantee that the obtained results won’t lost
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its gauge-invariance with respect to L. The objective of this first section is, starting from
the formal definition of this gauge action, to give the explicit expression of the associated
Lagrangian. Under its final form, the Lagrangian depends only on Greek and Latin indexes
coming from the local trivialization of transitive Lie algebroids.

7.1.1 Gauge invariant action functional

Let A
ρ→ M be an orientable transitive Lie algebroid over M. It is equipped with a non-

degenerate and inner-non degenerate metric ĝ = (g, h, ∇̊) on A with g a non-degenerate
metric on M and h a locally constant Killing inner (non-degenerate) metric on L. It is
also equipped with an atlas of Lie algebroids (Ui, Si)i∈I = (Ui, Ψi, ∇0

i )i∈I which permits
to realize local isomorphisms of differential complexes between Ω•(A, L) and Ω•

TLA
(Ui, g).

Let F̂ ∈ Ω2(A, L) be the curvature associated to the generalized connection ̟ ∈
Ω1(A, L). The functional action associated to the generalized connection ̟ on A is a
scalar quantity which is invariant with respect to the infinitesimal algebraic action of L as
depicted in section 6.3. It depends only on ̟ and is defined as:

SGauge[̟] = 〈F̂ , F̂ 〉h (7.1.1)

We show that the action SGauge[̟] is invariant with respect to the algebraic action of L

i.e. it transforms with respect to ξ ∈ L as Sξ = S −δS with δS = 0. The demonstration of
this gauge invariance is tedious, but with no mystery, so that we rather use some formal
arguments than direct computations. Before starting, we convince ourselves of the two
following facts. Firstly, the algebraic action of L is represented only on the target space of
F̂ by the relation F̂ ξ = F̂ + δF̂ , with δF̂ = −[ξ, F̂ ], for any ξ ∈ L where [·, ·] is the graded
Lie bracket on Ω•(A, L). Secondly, the Hodge star product ⋆ acts only on the arguments
of F̂ , i.e. on the source space, leaving invariant the target space g. This is obvious in
formula (5.3.2). Then, the Hodge star operator and the gauge action commute with the
gauge action of L so that we obtain

⋆(F̂ ξ) = ⋆(F̂ − [ξ, F̂ ]) = ⋆ F̂ − [ξ, ⋆ F̂ ] = (⋆ F̂ )ξ (7.1.2)

for any ξ ∈ L. Now, we use the fact that the inner metric h is a Killing metric as defined
in section 5.1.1 in order to obtain

〈F̂ ξ, F̂ ξ〉h :=

∫

A

h(F̂ ξ, (⋆ F̂ ξ))

=

∫

A

h(F̂ ξ, (⋆ F̂ )ξ)

=

∫

A

h(F̂ , ⋆ F̂ ) + h(−[ξ, F̂ ], ⋆ F̂ ) + h(F̂ , −[ξ, ⋆ F̂ ])

=

∫

A

h(F̂ , ⋆ F̂ )

= 〈F̂ , F̂ 〉h.

Then, the action functional SGauge[̟] is gauge invariant with respect to the algebraic
action of L. In the case of Atiyah Lie algebroids associated to P(M, G). The gauge group
G acts globally on the gauge fields of the theory so that, instead of the Killing metric h, we
use an ad-invariant polynomial form of degrees 2. Then, using the same arguments and
computations as before, we shows that the functional action associated to the generalized
connection ̟ ∈ Ω1

Lie(P, g) is invariant with respect of the algebraic action of G.
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7.1.2 Lagrangian density

In gauge field theories, one prefers use the Lagrangians rather than action functionals
for the description of fields. In the context of gauge field theories based on transitive
Lie algebroids, the Lagrangian density is well-defined and permits to go further in the
description of the theory.

The Lagrangian density associated to the gauge invariant action functional SGauge[̟]
is defined as

L[̟]dvol =

∫

inner
h(F̂ , ⋆ F̂ ) ∈ C∞(M) (7.1.3)

so that SGauge[̟] =
∫

M L[̟]dvol, where dvol denotes the invariant volume form on M.
The inner integration operator gives a function defined on M which is independent of
any system of local trivializations of A. From the gauge invariance of SGauge[̟], the
Lagrangian density is also gauge-invariant.

We use the connection 1-form ω̊ associated to the metric connection ∇̊ to locally
decompose F̂ in the mixed local basis as in (4.2.21). The Hodge star operator acts on F̂
as in definition (5.3.2), so that a straightforward computation gives

h(F̂ , ⋆ F̂ ) =
1

2

√
det(h)

√
det(g) h(F̂µ1ν1

, F̂µ2ν2
) ǫρ1...ρmǫa1...an gµ2ρ1gν2ρ2

dxµ1 ∧ dxν1 ∧ dxρ3 ∧ . . . ∧ dxρm ⊗ ω̊a1

loc ∧ . . . ∧ ω̊an

loc

+
√

det(h)
√

det(g) h(F̂µ1a1
, F̂µ2a2

) ǫρ1...ρmǫb1...bn
gµ2ρ1ha2b1

dxµ1 ∧ dxρ2 ∧ . . . ∧ dxρm ⊗ ω̊a1

loc ∧ ω̊b2

loc ∧ . . . ∧ ω̊bn

loc

+
1

2

√
det(h)

√
det(g) h(F̂a1b1

, F̂a2b2
) ǫρ1...ρmǫc1...cn ha2c1hb2c2

dxρ1 ∧ . . . ∧ dxρm ⊗ ω̊a1

loc ∧ ω̊b1

loc ∧ ω̊c3

loc ∧ . . . ∧ ω̊cn

loc

where ǫρ1...ρm and ǫa1...an are the Levi-Civita tensors and F̂µν , F̂µa and F̂ab are elements of
C∞(U) ⊗ g corresponding to the local trivialization of F̂ over U . By counting the number
of basis dxµ and ω̊a

loc on each term, we see that h(F̂ , ⋆ F̂ ) is (m + n)-differential form
defined on TLA(U , g) with values in C∞(U). Moreover, this (m + n)-form is given by the
squares, terms by terms, of the three components of F̂loc so that the geometric terms F̂µν ,
the “mix” terms F̂µa and the algebraic terms F̂ab do not interfere which each others.

In order to use the scalar product defined on Ω•(A), the (m + n)-differential form
h(F̂ , ⋆ F̂ ) has to be written in terms of the volume form ωvol on A, as defined in (5.2.4),
and the volume form dvol on M. To this purpose, we use cumbersome combinatorial
computations. It results of these combinations an elegant expression of L[ω] given simply
in terms of F̂µν , F̂µa and F̂ab. The expression of this Lagrangian in terms of the local
gauge fields Aµ, Åµ and τ b

a is given in section 7.1.3.

For practical reasons, the three “square” terms of h(F̂ , ⋆ F̂ ) are computed indepen-
dently. The objective of each computation is to obtain a decomposition of the correspond-
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ing component on the basis dvol ⊗ ω̊vol ∈ Ωm+n(A). The first term gives

1

2

√
det(h)

√
det(g) h(F̂µ1ν1

, F̂µ2ν2
) ǫρ1...ρmǫa1...an gµ2ρ1gν2ρ2

dxµ1 ∧ dxν1 ∧ dxρ3 ∧ . . . ∧ dxρm ∧ ω̊a1

loc ∧ . . . ∧ ω̊an

loc

=
1

2

√
det(h)

√
det(g) h(F̂µ1ν1

, F̂µ2ν2
) ǫρ1...ρmǫa1...an gµ2ρ1gν2ρ2

1

m!n!
ǫµ1ν1ρ3...ρmǫa1...andx1 ∧ . . . ∧ dxm ∧ ω̊1

loc ∧ . . . ∧ ω̊n
loc

=
1

2

√
det(h)

√
det(g) h(δµ1ν1

ρ1ρ2
F̂µ1ν1

, F̂µ2ν2
) gµ2ρ1gν2ρ2

(m − 2)!

m!
dx1 ∧ . . . ∧ dxm ∧ ω̊1

loc ∧ . . . ∧ ω̊n
loc

=
(m − 2)!

m!

√
det(h)

√
det(g) h(F̂ρ1ρ2

, F̂µ2ν2
) gµ2ρ1gν2ρ2

dx1 ∧ . . . ∧ dxm ∧ ω̊1
loc ∧ . . . ∧ ω̊n

loc

=
1

m(m − 1)
h(F̂ρ1ρ2

, F̂µ2ν2
) gµ2ρ1gν2ρ2 dvol ∧ ωvol (7.1.4)

where dvol =
√

det(g) dx1 ∧ . . .∧dxm is the volume form on M and ωvol =
√

det(h) ω̊1
loc ∧

. . .∧ ω̊n
loc is the volume form along the fiber L. In this computation, δµ1ν1

ρ1ρ2
is the Kronecker

tensor of degrees r = 2 which acts on any antisymmetric field Ta1a2
as δb1b2

a1a2
Tb1b2

= 2!Ta1a2
.

Using a similar computation, the second term gives:
√

det(h)
√

det(g) h(F̂µ1a1
, F̂µ2a2

) ǫρ1...ρmǫb1...bn
gµ2ρ1ha2b1

dxµ1 ∧ dxρ2 ∧ . . . ∧ dxρm ∧ ω̊b2

loc ∧ . . . ∧ ω̊bn

loc

=
√

det(h)
√

det(g) h(F̂µ1a1
, F̂µ2a2

) ǫρ1...ρmǫb1...bn
gµ2ρ1ha2b1

1
m!n!ǫ

µ1ρ2...ρmǫa1b2...bndx1 ∧ . . . ∧ dxm ∧ ω̊1
loc ∧ . . . ∧ ω̊n

loc

=
√

det(h)
√

det(g) h(F̂µ1a1
, F̂µ2a2

) δµ1

ρ1
δa1

b1
gµ2ρ1ha2b1 (m−1)!(n−1)!

m!n!

dx1 ∧ . . . ∧ dxm ∧ ω̊1
loc ∧ . . . ∧ ω̊n

loc

= (m−1)!(n−1)!
m!n!

√
det(h)

√
det(g) h(F̂µ1a1

, F̂µ2a2
) gµ2µ1ha2a1

dx1 ∧ . . . ∧ dxm ∧ ω̊1
loc ∧ . . . ∧ ω̊n

loc

= 1
mn

h(F̂µ1a1
, F̂µ2a2

) gµ2µ1ha2a1 dvol ∧ ωvol (7.1.5)

For the last term, one obtains:

1

2

√
det(h)

√
det(g) h(F̂a1b1

, F̂a2b2
) ǫρ1...ρmǫc1...cn ha2c1hb2c2

115



Chapter 7 – Yang-Mills-Higgs type theories

dxρ1 ∧ . . . ∧ dxρm ∧ ω̊a1

loc ∧ ω̊b1

loc ∧ ω̊c3

loc ∧ . . . ∧ ω̊cn

loc

=
1

2

√
det(h)

√
det(g) h(F̂a1b1

, F̂a2b2
) ǫρ1...ρmǫc1...cn ha2c1hb2c2

1
m!n!ǫ

ρ1...ρmǫa1b1c3...cn dx1 ∧ . . . ∧ dxm ∧ ω̊1
loc ∧ . . . ∧ ω̊n

loc

=
1

2

√
det(h)

√
det(g) h(δa1b1

c1c2
F̂a1b1

, F̂a2b2
) ha2c1hb2c2 (n−2)!

n! dx1 ∧ . . .∧dxm ∧ ω̊1
loc ∧ . . .∧ ω̊n

loc

= (n−2)!
n!

√
det(h)

√
det(g) h(F̂c1c2

, F̂a2b2
) ha2c1hb2c2 dx1 ∧ . . . ∧ dxm ∧ ω̊1

loc ∧ . . . ∧ ω̊n
loc

= 1
n(n−1) h(F̂c1c2

, F̂a2b2
) ha2c1hb2c2 dvol ∧ ωvol (7.1.6)

So that, we finally obtain:

h(F̂ , ⋆ F̂ ) =

{
1

m(m − 1)
h(F̂ρ1ρ2

, F̂µ2ν2
) gµ2ρ1gν2ρ2

+
1

mn
h(F̂µ1a1

, F̂µ2a2
) gµ2µ1ha2a1

+
1

n(n − 1)
h(F̂c1c2

, F̂a2b2
) ha2c1hb2c2

}
dvol ∧ ωvol

With this expression we can apply the inner integral simply by “reading” the decom-
position of h(F̂ , ⋆ F̂ ). Directly, we see that the Lagrangian density is explicitly written in
terms of the components F̂µν , F̂µa and F̂ab as

L[̟] =
1

m(m − 1)
h(F̂µ1ν1

, F̂µ2ν2
) gµ1µ2gν1ν2

+
1

mn
h(F̂µ1a1

, F̂µ2a2
) gµ1µ2ha1a2

+
1

n(n − 1)
h(F̂a1a2

, F̂b1b2
) ha1a2hb1b2 ∈ C∞(M)

It is straightforward to check that L[̟] is gauge invariant with respect to the algebraic
infinitesimal gauge action of L, as expected by the definition of SGauge[̟]. In the case of
the Atiyah Lie algebroid, this gauge invariance is also obtained with respect to the action
of the gauge group G. Actually, we can check that each of the three terms h(F̂ρ1ρ2

, F̂µ2ν2
),

h(F̂µ1a1
, F̂µ2a2

) and h(F̂c1c2
, F̂a2b2

) are separately gauge invariant quantities.

In section 4.2.3, we have seen that the decomposition of F̂ in the mixed local basis leads
to the homogeneous gluing relations of the three components F̂µν , F̂µa and F̂ab with respect
to changes of trivializations. These gluing relations are of the forms F̂j µν = αj

i (F̂i, µν),
F̂j, µa = α̂j

i (F̂i, µa) and F̂j, ab = α̂j
i (F̂i, ab), where F̂i, µν , F̂i, µa and F̂i, ab are elements of the

space C∞(Uij) ⊗ g. The gluing functions αi
j : Γ(Uij × g) → Γ(Uij × g) are represented on

the basis of g by the matrix-valued functions (Gij)b
a. These terms are exactly compensated

by the gluing transformations of the local expressions hab of the inner metric h. Then, the
Lagrangian density is globally defined over M, as it is expected by definition of Sgauge[̟].
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7.1.3 Yang-Mills-Higgs model

In this section, we express the Lagrangian density in terms of the local gauge fields Aµ, Åµ

and τ b
a associated with the local trivialization of the induced ordinary connection ω, ω̊ and

the reduced kernel endomorphism τ associated to a generalized connect ̟, respectively.
We use the formulas (4.2.22), (4.2.23) and (4.2.24) to obtain the following expression of
the Lagrangian density L[A, τ ]:

L[A, τ ] = λ1 gµ1µ2gν1ν2 ha1a2

(
∂µ1

Aa1

ν1
− ∂ν1

Aa1

µ1
+ Ab1

µ1
Ac1

ν1
Ca1

b1c1
− τa1

b1

(
∂µ1

Åb1

ν1
− ∂ν1

Åb1

µ1
+ Åd1

µ1
Åe1

ν1
Cb1

d1e1

))
·

(
∂µ2

Aa2

ν2
− ∂ν2

Aa2

µ2
+ Ab

µ2
Ac

ν2
Ca2

bc − τa2

b2

(
∂µ2

Åb2

ν2
− ∂ν2

Åb2

µ2
+ Åd1

µ2
Åe1

ν2
Cb2

d1e1

))

+ λ2 gµ2µ1ha2a1hb1,b2

(
∂µ1

τ b1

a1
+ Ac1

µ1
τd1

a1
Cb1

c1d1
− Åc1

µ1
τ b1

d1
Cd1

c1a1

)
·
(
∂µ2

τ b2

a2
+ Ac2

µ2
τd2

a2
Cb2

c2d2
− Åc2

µ2
τ b2

d2
Cd2

c2a2

)

+ λ3hc1c2
ha1a2hb1b2

(
τ c1

d1
Cd1

a1b1
− τd1

a1
τ e1

b1
Cc1

d1e1

)
·
(
τ c2

d2
Cd2

a2b2
− τd2

a2
τ e2

b2
Cc2

d2e2

)
(7.1.7)

where λ1 = 1
4m(m−1) , λ2 = 1

mn
and λ3 = 1

4n(n−1) are combinatorial coefficients coming
from the definition of the Hodge-star operator. The elements Cc

ab ∈ R are the constant
structures of the Lie algebra g.

Under this form, the Lagrangian L[A, τ ] is written in terms of explicit local gauge fields
defined on U . It describes massless vector bosons Aµ coupled to a multi-index scalar field
τ b

a embedded into a quartic potential. At this level of description, we can forget about
the upper structure used to construct this theory. Here, the background connection Åµ

is not a dynamical field. Background-dependent gauge field theories are detailed [PS95].
This gauge field theory is equipped with a few free parameters which are the metric gµν ,
the metric hab and the L.1 Note that these parameters are present in the three sectors of
L[A, τ ]. Finally, this theory does describe a Yang-Mills-Higgs type theory.

In expression (7.1.7), the three terms of the Lagrangian L[A, τ ] are associated to the
three terms ρ∗R̂, D̂τ and R̂τ of the curvature F̂ . The first term (ρ∗R̂)µν(ρ∗R̂)µν corre-
sponds to the field strength of the gauge bosons Aa

µ which are given by the geometric
component associated to the induced ordinary connection associated to ̟. The second
term (D̂φ)µτ (D̂φ)µτ corresponds to the covariant derivative of the scalar field used in the
mechanism of spontaneous symmetry breaking and gives a minimal coupling between the
scalars fields τ b

a and the gauge bosons Aµ. This term goes with a background connection
term depending on Å and τ . The last term R̂τ R̂τ is a potential term for the scalar fields
τ b

a. This potential is quartic in τ and is strictly analog to the potential term which embeds
the scalar field of the BEHHGK mechanism. This term is positive and it is minimized for
R̂τ = 0. Here, this minimum has an algebraic interpretation : it corresponds to choose τ
as an endomorphism of Lie algebras over L.

7.1.4 Minimal coupling with matter fields

Adding a representation space of A, the previous YMH theory is extended by a coupling
term with matter fields. Here, we consider only the case of spineless matter fields s. The

1 For physical reasons, I do not consider the dimension of M as a free parameter.
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action functional associated to this minimal coupling is defined by using the generalized
covariant derivative associate to ̟. This action functional SMatter[̟, s] is constructed
in the same way as SGauge[̟]. It results in two terms: the first one gives the minimal
coupling between s and the gauge bosons Aµ and the second one gives a coupling of s with
thescalar fields τ b

a.

For spinor fields, a representation of a Clifford algebra has to be defined on a Dirac
bundle. The mathematical formalism of spinors, from the point of view of the geometry, is
detailed in [LM89]. In the context of transitive Lie algebroids, this Clifford algebra should
be defined by taking into account both Γ(TM) and the kernel L. This construction is out
of the scope of the present PhD thesis. The generalization of Dirac bundles to transitive
Lie algebroids is under investigation.

Let E be a representation space for the Lie algebroid A equipped with φ : A → D(E).
Using the generalized covariant derivative defined in section 4.2.7, we construct a gauge
invariant term associated to the section s ∈ Γ(E) and a generalized connection ̟. This
term is interpreted as a minimal coupling of the gauge bosons and the field τ with matter.
The covariant derivative D̂φ associated to a generalized connection on A is a 1-form defined
on A with values in the first-order derivatives of Γ(E). From the relation (4.2.10), this
covariant derivative can be written in the mixed local basis as

(D̂φ)loc = (D̂φ)µdxµ + (D̂φ)aω̊a
loc (7.1.8)

where (D̂φ)µ and (D̂φ)a are derivations of Γ(E) for µ = 1, . . . , m and a = 1, . . . , n written
as (D̂φ)µ = ∂µ + φL, loc(Aµ) and (D̂φ)a = φL, loc(τ

b
aEb).

This decomposition of D̂φ in the mixed local basis indicates that the Hodge star op-
erator can be defined on the covariant derivative in order to obtain ⋆ D̂φ. It results in a
(m+n−1)-form defined on A with values in the first order derivatives of Γ(E). From this,
we define the ’action functional associated to the matter field s as

SMatter[̟, s] =

∫

A

hE(D̂φs, ⋆ D̂φs), (7.1.9)

where hE describes a φL-compatible metric on E . For the same reasons as in 7.1.1, the
Hodge star product commutes with the algebraic infinitesimal action of L (or G, if it
exists) and then we straightforwardly obtain hE(D̂ξ

φsξ, ⋆ D̂ξ
φsξ) = hE(D̂φs, ⋆ D̂φs), for any

ξ ∈ L and s ∈ Γ(E). Then, SMatter[̟, s] is gauge invariant with respect to the infinitesimal
algebraic action of L. The same result is obtained using the algebraic action of G. Using the
definition of the Hodge-star operator, we compute explicitly the quantity hE(D̂φs, ⋆ D̂φs)
and we obtain

hE((D̂φ)s, ⋆(D̂φ)s) =
√

det(h)
√

det(g) hE((D̂φ)µs, (D̂φ)νs) ǫν1...νmǫa1...an gνν1

dxµ ∧ dxν2 ∧ . . . ∧ dxνm ⊗ ω̊a1

loc ∧ . . . ∧ ω̊an

loc

+
√

det(h)
√

det(g) hE((D̂φ)as, (D̂φ)bs) ǫν1...νmǫa1...an hba1

dxν1 ∧ . . . ∧ dxνm ⊗ ω̊a
loc ∧ ω̊a2

loc ∧ . . . ∧ ω̊an

loc

=
√

det(h)
√

det(g) hE((D̂φ)µs, (D̂φ)νs) gνν1

(m − 1)!

m!
δµ

ν1
dx1 ∧ dx2 ∧ . . . ∧ dxm ⊗ ω̊1

loc ∧ . . . ∧ ω̊n
loc
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+
√

det(h)
√

det(g) hE((D̂φ)as, (D̂φ)bs) hba1

(n − 1)!

n!
δa

a1
dxν1 ∧ . . . ∧ dxνm ⊗ ω̊a

loc ∧ ω̊a2

loc ∧ . . . ∧ ω̊an

loc

=

(
1

m
hE((D̂φ)µs, (D̂φ)νs) gνµ +

1

n
hE((D̂φ)as, (D̂φ)bs) hba

)
dvol ⊗ ωvol (7.1.10)

The Lagrangian density LMatter[̟, s] is defined from SMatter[̟, s] as SMatter[̟, s] =∫
M LMatter[̟, s]dvol, where dvol is the volume form on M so that we obtain the expression

LMatter[̟, s]dvol =
∫

inner hE(D̂φs, ⋆ D̂φs) ∈ C∞(M). We identify this expression with the

result of hE
(
(D̂φ)s, ⋆(D̂φ)s

)
so that we can write

LMatter[̟, s] =
1

m
gµν hE((D̂φ)µs, (D̂φ)νs) +

1

n
hab hE((D̂φ)as, (D̂φ)bs) (7.1.11)

We implement the expression of the covariant derivatives (D̂φ)µ and (D̂φ)a in this
Lagrangian so that we obtain

LMatter[A, τ, s] = λ4 gµν hE (∂µs + φL, loc(Aµ)s, ∂νs + φL, loc(Aν)s)

+ λ5 hab hE
(
φL, loc(τ

c
aEc)s, φL, loc(τ

d
b Ed)s

)
, (7.1.12)

where λ4 = 1
m

and λ5 = 1
n

. Directly, we can check that this Lagrangian is invariant
with respect the the algebraic action of L. As for L[A, τ ], this Lagrangian density is also
invariant with respect to changes of trivialization of A.

The Lagrangian density associated to this minimal coupling term with a matter field s
is divided into two terms. The first one corresponds to the usual minimal coupling between
the gauge bosons Aµ and the matter field s. The second one gives a coupling between the
scalar field τ b

a and s. In quantum field theory (QFT), this last term is interpreted as an
interaction term.

For Atiyah Lie algebroid associated to the principal fiber bundle P(M, G), the repre-
sentation space is the associated vector bundle E = P ×ℓ F with F a vector space and ℓ
the left representation of G on F . Then, s ∈ Γ(E) is identified with a G-equivariant map
P → F and its local description by the pull-back by sections as in sub-section 1.2.3. the
representation of the Atiyah Lie algebroid on E is given by the pull-back of ΓG(P) so that
the Lagrangian density (7.1.12) becomes:

LMatter[A, τ, s] = λ4 gµν hE (∂µs + ℓ∗(Aµ)s, ∂νs + ℓ∗(Aν)s)

+ λ5 hab hE
(
τ c

aℓ∗(Ec)s, τd
b ℓ∗(Ed)s

)
(7.1.13)

Here, the requirement for hE to be φL-compatible is substituted by the requirement for hE
to be G-invariant i.e. hE(ℓ(g−1)s1, ℓ(g−1)s2) = hE(s1, s2), for any s1, s2 ∈ Γ(E) and g ∈ G.
Then, with respect to this metric, gluing transformations by change of trivializations are
related to the gluing functions gij : Uij → G so that we obtain hE((D̂φ)i, µs, (D̂φ)i, µs) =

hE((D̂φ)j, µs, (D̂φ)j, µs), for any s : Uij → E . Same thing for the covariant derivative
(D̂φ)i, a.
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7.2 Applications of the gauge field theory model

The gauge invariant functional action SGauge[̟] is defined in the general framework of
transitive Lie algebroids. In this section, we give explicit applications of this model in the
case of Atiyah Lie algebroids associated to fiber bundle with structure group U(1) and
SU(N). These particular cases give results closely related to the gauge theories of the
SM.

7.2.1 Application to a U(1)-gauge theory

In the SM, U(1)-gauge theories are related to the description of electromagnetism. This
example permits to see that gauge field theories based on transitive Lie algebroids are
compatible with the gauge action of abelian groups.

Consider an Atiyah Lie algebroid associated to the principal bundle P(M, U(1)), where
M denotes the spacetime (m = 4) and U(1) denotes the group of unitary matrix of rank 1
(n = 1), with u(1) = iR its Lie algebra.

For U(1)-gauge theory, the induced ordinary connection ω is locally written in terms
of a local 1-form A with values in iR, so that the curvature associated to this connection is
simply written as F = dA. Also, the local expression of the reduced kernel endomorphism
τ becomes an element of C∞(U). For this gauge group, matter fields are described by
sections of the associated bundle E = (P × C)/U(1). With respect to the gauge transfor-
mations given by the gauge group U(1) = {z : M → U(1)}, the three fields Aµ, τ and s

transform as Az
µ = Aµ + z−1∂µz , τ z = τ and sz = z−1s, for any z ∈ U(1), respectively.

Note that, in the abelian case, τ is gauge invariant. Here, the gauge boson Aµ corresponds
to the photon of the particle physics.

In order to explicitly write the total Lagrangian LU(1)
gauge[A, s, τ ], we take η = (+ − −−)

the Minkowski metric and the metric h, is defined as h(s1, s2) = s1·s2 for any s1, s2 : U →
C, where the bar denotes the complex conjugate. For U(1), the constant structures Cc

ab

associated to its Lie algebra vanish. Then, we obtain the Lagrangian

LU(1)
gauge[A, τ ] =

1

48
h

(
∂µAν − ∂νAµ − τ ·

(
∂µÅν − ∂νÅµ

)
, ∂µAν − ∂νAµ − τ ·

(
∂µÅν − ∂νÅµ

))

+
1

4
h (∂µτ, ∂µτ) +

1

4
h ((DA)µs, (DA)µs) + h (τ ·s, τ ·s) ,

where (DA)µs = ∂µ + ℓ∗(Aµ)s is the covariant derivative of the field s which gives the
minimal coupling term between photons and matter fields. This theory describes the
propagations of photons Aµ and scalar fields τ interacting with a matter field s. In this
case, the field τ is a massless gauge field.

In particle physics, the Higgs field of the SM does not interact with photons. In
our model such coupling terms would be, symbolically, of the form AAττCC, where the
A’s denote the photon, the τ ’s denote the scalar field and the C’s denote the constant
structures of the gauge group. For the case U(1), these constant structures vanish. Thus,
coupling terms between the scalar field τ and the photon A automatically give zero.

7.2.2 Application to a SU(N)-gauge theory

Consider an Atiyah Lie algebroid associated to the principal bundle P(M, SU(N)), where
M denotes the spacetime (m = 4) and SU(N) denotes the set of unitary matrix with
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determinant equals to 1 (n = N2 − 1) with su(N) its Lie algebra. For the metric g on M,
we take the Minkowski metric with the signature (+ − −−), which is denoted by ηµν , and
for the Killing inner metric h, we take h(γ, γ′) = tr(γ·γ′), where tr denotes the trace on
the matrix algebra for any γ, γ′ ∈ su(N).

We use a canonical basis for SU(N) i.e. a set (E1, . . . , En) of N ×N matrices such that
one has [Ei, Ej ] = Ck

ijEk, where Ck
ij ∈ R are the structure constants and tr(EiEj) = −δij

for i, j, k = 1 . . . n where δij denotes the Kronecker symbol. The elements (Ei)i=1...n of the
basis of su(N) are anti-hermitian matrices i.e. E†

i = −Ei, where † denotes the transposed
complex-conjugate. Thus, we obtains hij = −δij and hij = −δij . An element of su(N)
is written as γ = γaEa where γa ∈ R. For example, for N = 2, such a basis is given by
E1 = i√

2
( 0 1

1 0 ) , E2 = i√
2

(
0 −i
i 0

)
and E3 = i√

2

(
1 0
0 −1

)
.

To describe the matter fields of the theory, we consider the associated vector bundle
E = P ×ℓC

N whose sections are given by the local maps s : U → C
N . We also assume that

the metric hE is defined as hE(s1, s2) =
∫

M s1(p)†·s2(p) dx1 . . . dxm for any s1, s2 ∈ Γ(E),
where the † denotes the transposed complex conjugate.

To simplify the computations, we take the geometric component of the background
connection Åµ = 0 for µ = 1, 2, 3, 4. 2 The total Lagrangian associated to the SU(N)-
gauge theory and to minimal coupling with a matter field s becomes:

LSU(N)
Gauge [A, s, τ ] = − 1

48

(
∂µAa

ν − ∂νAa
µ + Ca

b1c1
Ab1

µ Ac1

ν

) (
∂µAν a − ∂νAµ a + Ca

b2c2
Aµ b2Aν c2

)

+
1

4n
(∂µτ b

a + Ac1

µ τd1

a Cb
c1d1

)(∂µτ b
a + Aµ c2τd2

a Cb
c2d2

)

− 1

4 n(n − 1)

(
τd1

a τ e1

b Cc
d1e1

− Cd1

ab τ c
d1

) (
τd2

a τ e2

b Cc
d2e2

− Cd2

ab τ c
d2

)

+
1

4

(
∂µs + ℓ∗(Aµ)s

)†·
(
∂µs + ℓ∗(Aµ)s

)

− 1

n

(
τ c

a ℓ∗(Ec)s
)†·

(
τd

a ℓ∗(Ed)s
)

One recalls the infinitesimal action of the space ΓG(P, g) on the fields of the theory. Let
ξ : U → g be the gauge parameter (depending of the point) of the theory. The gauge fields
of the theory transform as





Aa
µ Ô→ Aa

µ + δAa
µ with δAa

µ = Ab
µξcCa

bc + ∂µξa

τa
b Ô→ τa

b + δτa
b with δτa

b = τ c
aξdCb

cd

s Ô→ s + δs with δs = −ξaℓ∗(Ea)s

(7.2.1)

By a direct computation, we check that LSU(N)
Gauge [A, s, τ ] is gauge invariant with respect

to the algebraic action of Γ(U × g). We can also check that the theory is invariant with
respect to a change of trivializations of ΓG(P).

In this SU(N)-gauge theory, the mass term associated to the scalar fields τ b
a are ex-

plicitly given in terms of the structure constants of su(N). This mass term becomes

δL[A, τ ] =
1

4n(n − 1)
Cd

abC
e
abτ

c
dτ c

e (7.2.2)

where there is an implicit summation over the repetitive indeces.
2 Such a background connection can only be defined locally.
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7.3 Spaces of solutions

In this section, we give examples of spaces of solutions in Ω1(A, L), with respect to the
potential term of the theory. Two solutions are given, the first one gives the usual YM
model and the second one gives massive vector bosons. These two solutions are related to
the “phase transition” which occurs in the spontaneous symmetry breaking mechanism.

7.3.1 Two canonicals examples of Ω1

sol
(A, L)

In the usual BEHHGK mechanism, the vacuum state for the scalar field φ corresponds
to its value which minimizes the potential. Depending on the energy of the system, this
potential takes either the shape of a well or the shape of a sombrero, so that the vacuum
state of the scalar field φ corresponds either to φ = 0 or φ Ó= 0, respectively. In YMH type
theories based on generalized connections, the potential is not fixed by any dynamical
parameters. It is written as an algebraic constraint on τ which is minimal if and only
if τ is a morphism of Lie algebras. Then, the so-called vacuum state of the scalar field
φ would correspond to some specific subspaces of generalized connections. One denotes
by Ω1

sol(A, L) the space of generalized connections with their associated reduced kernel
endomorphism τ preserves the Lie bracket on L. Directly, we can check that the algebraic
action of L (or G for Atiyah Lie algebroid) is compatible with this subspace in the sense
that if ̟ ∈ Ω1

sol(A, L), then so is ̟ξ (or ̟g).

The first example of Ω1
sol(A, L) is given by the space of ordinary connections on A, i.e.

for τ = 0, which is a trivial morphism of Lie algebras on L. According to this value, the
Lagrangian is greatly simplified and becomes

L[A, s, τ = 0] = λ1 ha1a2

(
∂µAa1

ν − ∂νAa1

µ + Ab1

µ Ac1

ν Ca1

b1c1

)
·

(
∂µAν a2 − ∂νAµ a2 + Ab

µ2
Ac

ν2
Ca2

bc

)

+ λ4 hE (∂µs + φL,loc(Aµ)s, ∂µs + φL,loc(A
µ)s) (7.3.1)

which is the standard formulation of the YM model in QFT coupled with a matter field s.
This is not surprising to see that YM theories are coming from gauge invariant action
functionals based on generalized connections. Indeed, we have seen that YM theories are
based on the existence of Ehersmann connections on principal bundles which are in 1:1
correspondence with ordinary connections defined on transitive Lie algebroids. However,
it is more surprising to see the YM theories are a solution in the more general context of
YMH theories based on generalized connections. Comparing with the usual interpretation
of the BEHHGK mechanism of spontaneous symmetry breaking, this space of solutions
would correspond to the vacuum configuration associated to a well potential.

The solution τ = 0 shows that the well-known YM theories associated to ordinary
connections are compatible with the more general framework of the YMH theories asso-
ciated to generalized connections on transitive Lie algebroids with respect to, at least,
two points. Firstly, the space of ordinary connections is a subspace of the space of the
generalized connections on A, compatible with the algebraic gauge action of L (or G) which
is canonically identified simply by putting τ = 0. Secondly, the YM theories are described
as a solution space of our constructions corresponding to this vacuum configuration φ = 0
in the BEHHGK mechanism.

The second example of Ω1
sol(A, L) is given by the space of generalized connections on

A such that τ(ℓ) = ℓ, for any ℓ ∈ L. Indeed, τ = IdL is a morphism of Lie algberas over L.
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Then, the Lagrangian can be written as:

L[A, τ = IdL] = λ1 gµ1µ2gν1ν2 ha1a2

(
∂µ1

Aa1

ν1
− ∂ν1

Aa1

µ1
+ Ab1

µ1
Ac1

ν1
Ca1

b1c1
− ∂µ1

Åa1

ν1
+ ∂ν1

Åa1

µ1
− Åd1

µ1
Åe1

ν1
Ca1

d1e1

)
·

(
∂µ2

Aa2

ν2
− ∂ν2

Aa2

µ2
+ Ab

µ2
Ac

ν2
Ca2

bc − ∂µ2
Åa2

ν2
+ ∂ν2

Åa2

µ2
− Åd1

µ2
Åe1

ν2
Ca2

d1e1

)

+ λ2 gµ2µ1ha2a1hb1,b2

(
Ac1

µ1
Cb1

c1a1
− Åc1

µ1
Cb1

c1a1

)
·
(
Ac2

µ2
Cb2

c2a2
− Åc2

µ2
Cb2

c2a2

)

+ λ4 gµνhE
(
∂µs + φL,loc(Aµ)s, ∂νs + φL,loc(Aν)s

)

− λ5 habhE (φL,loc(Ea)s, φL,loc(Eb)s) (7.3.2)

For this solution, we see the presence of the mass term mabA
a
µAµ b where mab denotes the

mass matrix of the gauge bosons Aµ. Which is written as :

mab =
1

mn
ha1a2hb1b2

Cb1

aa1
Cb2

ba2
(7.3.3)

Contrary to the solution corresponding to τ = 0, this second space of solution gives
mass term for the gauge bosons Aµ and thus corresponds to an alternative to the mech-
anism of spontaneous symmetry breaking. In analogy with this mechanism, this second
solution is related to the vacuum configuration of φ associated to the potential with a
sombrero shape which is minimized for non-zero values of φ. These two examples show
the analogy between the BEHHCK mechanism and the selection of some spaces of solution
in Ω1(A, L). Indeed, in both situations, the mass term of the gauge bosons Aµ does come
from the interaction with a scalar field. When this scalar field minimizes its potential
term, then it results in either a mass term m = 0 or m Ó= 0.

However, there is a major difference between these two mechanisms. Contrary to the
usual interpretation of the spontaneous symmetry breaking mechanism, the "shape" of the
potential term Rτ Rτ is not given in terms of some dynamical parameters related to the
energy scale of the system. Here, the potential term is an algebraic constraint so that the
"phase transition" is substituted by change of space of solutions, from τ = 0 to τ = IdL.
For this last choice, the theory describes massive gauge bosons.

Concerning the gauge transformations, the space of solutions associated to τ = IdL

is not compatible with the algebraic infinitesimal action of L. Then, the reduced kernel
endormiphsm τ would transform as τ ξ(γ) = γ − [ξ, γ], for any gauge parameter ξ ∈ L, so
that mass term (7.3.3) is not gauge invariant. Accordingly to the gauge principle, does
not correspond to observable in physics. In chapter 8, we give a new method of symmetry
reduction of the gauge group. Applied to a specific subspace of Ωsol(A, L) on Atiyah Lie
algebroids, this method gives gauge-invariant mass terms for the vectors bosons of the
theory.

As an application of this space of solutions, we compute the mass matrix of the gauge
bosons Aµ for differential groups of symmetry. To compute the mass matrix, we choose
SU(N)-gauge theories where the basis of the Lie algebras su(N) is given as in section 7.2.2
so that hab = −δab. As examples, one takes N = 2, N = 3 and N = 4. For N = 2, one
takes E1 = i√

2
( 0 1

1 0 ) , E2 = i√
2

(
0 −i
i 0

)
and E3 = i√

2

(
1 0
0 −1

)
. The mass matrix becomes:

(mab) =
1

3
Id3×3 (7.3.4)
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For N = 3, one takes Ei = i√
2

λi, where λi denotes the Gell-Mann’s matrices. The mass
matrix becomes:

(mab) =
3

6
Id8×8 (7.3.5)

For N = 4, the mass matrix becomes:

(mab) =
2

15
Id15×15 (7.3.6)

The computations have been performed using the Mathematica code presented in the
appendix B.
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Chapter 8

Method of symmetry reduction

In gauge field theories, one usually have to deal with gauge degrees of freedom in order
to create gauge-invariant quantities. In the literature, there exist at least three methods
to perform reductions of the symmetry group. Firstly, the spontaneous symmetry break-
ing mechanism breaking of the SM consists in adding a scalar field in the theory. By a
dynamical process, this scalar field operates a polarization and the initial group of symme-
try is spontaneously reduced to a residual subgroup (see [PS95; IZ85; Wei95]). Secondly,
the gauge-fixing method consists in selecting one representative gauge configuration in a
gauge orbit of the theory by adding a constraint equation on a gauge field. In order to
preserve this representative element, the gauge group does not act anymore on the fields
of the theory (same references as before). Thirdly, the method of reduction of fiber bundle
is defined as a mathematical construction on a principal bundle P(M, G). This method
states that if there exists a section of an associated fiber bundle with fiber isomorph to
G/H, where H ⊂ G, then the principal bundle P(M, G) is reductive to a H-principal
bundle [KN96a].

This chapter is devoted to the construction of an alternative method of symmetry
reduction. The general construction is detailed in [FFLM13]. This method is related to
the definition of gauge-invariant composite fields out of connections. The general idea of
this construction is to make a change of variables in a functional space of gauge fields
(ω, Λ), where ω is a gauge connection and Λ is a gauge field defined on M, called the
auxiliary field associated to this construction. It results in this change of variables that
the part of Λ which carries the action of the gauge group is moved to ω in order to define
a gauge-invariant composite field ω̂.

As a first example, we apply this method to the electroweak part U(1) × SU(2) of
the SM of particle physics. The gauge connections are the gauge bosons aµ : M → U(1)
and bµ : M → SU(2) and the auxiliary field is the scalar field φ : M → C

2. It results
in a gauge invariant theory with vector bosons W ± and Z0, interacting with a scalar
field η : M → R

+ defined out of φ. De facto, this method reduces the symmetry group
U(1) × SU(2) to U(1) without making reference neither to any gauge fixing term nor to
any symmetry breaking mechanism. In section 8.2.2, we will see that this construction
does work only for SU(2) gauge theories and, for dimension N > 2, obstruction terms
occur and the “neutralization” of the gauge group SU(N) is no more possible.

We also apply this mechanism in the context of gauge theories based on generalized
connections on transitive Lie algebroids. To do so, we consider Atiyah Lie algebroids
associated to a principal bundle P(M, SU(N)) and we restrict the space of generalized
connections to the space Ω1

sol(A, L) whose reduced kernel endomorphisms τ can be written
as τ(γ) = u−1γu, where u is an element of the gauge group.1 Then, the induced ordinary

1The reader should not confuse this “u field” with the point u ∈ P of the previous sections. In this
section, the points of P are denoted by the letter w.
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connection ω, associated to ̟ ,“absorbs” the u field so that it defines a field ω̂, which we
denote as the gauge-invariant composite field. This procedure works for any dimension N .

8.1 General framework

The method of symmetry reduction depicted in this chapter is based on the existence
of a gauge connection with a given representation of the gauge group G and a group-
valued field. This group-valued field is called the dressing field of the theory. Practically,
this dressing field is defined out of an auxiliary field, not necessarily with values in the
gauge group, which is called the auxiliary field of the theory. Then, the dressing field
would correspond to the "part" of the auxiliary field which supports the representation of
G. Then, gauge connections and dressing fields are "mixed" together, in an appropriate
manner, so that it results in a gauge-invariant composite field.

We consider a gauge field theory associated to a principal bundle P(M, H) with struc-
ture group H and its Lie algebra h. We denote by H the gauge group associated to H, i.e.
the space {h : P → H|h(w·a) = a−1h(w)a, ∀w ∈ P and ∀a ∈ H}. Let ω be a connection
1-form defined on P(M, H) which transforms with respect to the gauge group H as

ωh = h−1ωh + h−1d̂h (8.1.1)

where h ∈ H and d̂ is a convenient graded differential operator.

Let G be a Lie group such that H ⊂ G and let u be a G-valued field over M which
varies under a gauge transformation as uh = h−1u for any h ∈ H. Such a field is called
the dressing field of the theory. Then, if it exists, we define the composite field associated
to the connection 1-form ω and the dressing field u as the field

ω̂ := u−1ωu + u−1d̂u. (8.1.2)

If it makes sense, this composite field is a gauge-invariant field. Indeed, we consider that
the fields u and ω have their own representation of H so that the gauge transformation
of ω̂ is defined as ω̂h = (uh)−1ωhuh + (uh)−1d̂uh, for any h ∈ H. A direct computation
shows that

ω̂h = u−1·hh−1ωhh−1·u+u−1·(d̂h)h−1·u+u−1·h(d̂h−1)·+u−1du = u−1ωu+u−1d̂u = ω̂.
(8.1.3)

The gauge invariance of ω̂ occurs de facto from an appropriate combination of the u fields
and the connection ω. The action of H is not forbidden but instead, it is “neutralized”
in the sense that its representation on ω̂ becomes trivial. Note that the composite field ω̂
does not always belong to a space of connections on P(M, H), e.g. for G Ó= H.

The method used to construct gauge invariant composite fields can be extended to cre-
ate gauge-invariant composite fields out of matter fields. Indeed, we apply this procedure
to matter fields in order to obtain a gauge-invariant composite field. Let E = P ×ℓ F be
a vector bundle associated to the principal bundle P(M, H). The gauge group H acts
on s ∈ Γ(E) as sh = ℓ(h−1)s, for any h ∈ H so that the gauge invariant composite field
associated to s and the dressing field u is defined as

ŝ := ℓ(u−1)s (8.1.4)

For the same reason a before, the gauge transformation of ŝ is given as ŝh = ℓ((uh)−1)sh =
ℓ(u−1h)ℓ(h−1)s = ℓ(u−1)s = ŝ, for any h ∈ H. With respect to this invariance, the
composite field ŝ is no more a section on the fiber bundle E .
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Gauge invariant composite fields can also be defined out of the curvature R associated
to a connection ω or the covariant derivative Ds along ω of a section s. It results in gauge
invariant composite objects, compatible with their corresponding composite fields ω̂ and
ŝ.

We start with the curvature R associated to the connection 1-form ω defined as R =
dω+ 1

2 [ω, ω], where [·, ·] denotes the graded Lie bracket adapted to the differential structure
of ω. We define the gauge invariant composite field R̂ := u−1Ru, which is no more
a curvature on P. Moreover, using a straightforward computation, we show that R̂ =
dω̂ + 1

2 [ω̂, ω̂] so that, in appearance, R̂ would be the “curvature” associated to ω̂.

The gauge-invariant composite covariant derivative can also be defined in terms of the
composite connection ω̂. Let D be the covariant derivative associated to the connection
1-form ω acting on the field s as Ds = dEs + ℓ∗(ω)s, where d denotes a graded differential
operator associated to the representation space s and ℓ∗ the induced representation of h
on Γ(E). Then, from (8.1.4), the composite field D̂s = ℓ(u−1)Ds is gauge-invariant and
we show directly that D̂s := D̂ŝ, where D̂s := dEs + ℓ∗(ω̂)s, for any s ∈ Γ(E).

Consider a gauge theory defined by a Lagrangian L[ω, s, φ] where ω is a connection
1-form, s is a matter field and φ is a gauge field which can be decomposed as (u, η) with
u is a dressing field and η a gauge invariant field called the residual field. By using the
dressing u, we define the composite fields ω̂ and ŝ. The gauge invariance of the Lagrangian
permits to claim that, under its final form, the theory does not depend explicitly on the
u field so that we obtain L[ω, s, φ] = L[ω̂, ŝ, η]. Written in the new variables, the gauge
group does not act anymore on the fields of the theory. This assertion is illustrated by the
following examples. A counting of the degrees of freedom of the fields before and after the
change of variables shows that this method preserves the degrees of freedom of the theory,
as expected.

8.2 Application to SU(N)-gauge theories

The electroweak part of the SM describes the propagation of the gauge bosons associated to
the group of symmetry U(1)×SU(2), interacting with an external scalar field φ : M → C

2

embedded into a quartic potential. This scalar field corresponds to an auxiliary field from
which we define a dressing field u : M → SU(2). Then, we define the gauge invariant
composite fields of the theory and we show that they exactly correspond, in an appropriate
basis of u(1) ⊕ su(2), to the photon Aµ and the vector bosons W ±

µ and Zµ. All the fields
of the theory are invariant with respect to the symmetry SU(2) but not with respect to
U(1).

This method is extended to a SU(N)-gauge theory coupled with a scalar field φ : M →
C

N . We shows that, for N > 2, the dressing field associated to φ is not unique so that
the previous method cannot be rigorously applied.

8.2.1 The electroweak part of the Standard Model

Consider the trivial fiber bundle P = M×G, where G = U(1)×SU(2). We denote by U(1)
and SU(2) the sets of functions ζ : M → U(1) and γ : M → SU(2), respectively. They
form the gauge groups associated to G. The Lagrangian associated to the electroweak
part of the SM is given as follows

L[aµ, bµ, φ] = −1

4
fµνfµν − 1

4

∑

a

ga
µνgµν a + (Dµφ)†(Dµφ) − µ2φ†φ − λ(φ†φ)2 (8.2.1)
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where fµν and gµν are the field strengths associated to the U(1)-connection aµ and to the
SU(2)-connection bµ, the covariant derivative is given as Dµ = ∂µ + 2i

g′ aµ + 2i
g

bµ, the field
φ : M → C

2 is the scalar field associated to the BEHHGK mechanism of spontaneous
symmetry breaking and the symbol † denotes the transposed complex conjugate,

This theory is invariant with respect to the following gauge transformations. The
first line and the second line correspond to the transformations with respect to the gauge
groups U(1) and SU(2), respectively.

U(1) : aζ
µ = aµ + 2i

g′ ζ−1∂µζ bζ
µ = bµ φζ = ζ−1φ

SU(2) : aγ
µ = aµ bγ

µ = γ−1bµγ + 2i
g

γ−1∂µγ φγ = γ−1φ,

(8.2.2)
where g′ and g denote the coupling constants associated to the gauge groups U(1) and
SU(2), respectively.

From the scalar field φ, we define a field u : M → SU(2) which transforms with
respect to SU(2) as uγ = γ−1u. To see this, we use the fact that elements of C

2\{0}
are uniquely decomposed as C

2\{0} = SU(2) ⊗ R
∗
+. This decomposition of φ becomes

explicit as one chooses a reference vector
(

0
1

)
such that the scalar field φ =

(
φ1

φ2

)
can

be decomposed as φ = ηu
(

0
1

)
, where η =

√
|φ1|2 + |φ2|2 ∈ R

+ denotes the norm of φ

and u : M → SU(2) is defined as

u = (1/η)
(

φ2 φ1

−φ1 φ2

)
. (8.2.3)

As the norm of φ, the field η is gauge invariant with respect to the action of both U(1)
and SU(2). Then, the matrix-valued field u carries all the representation of the gauge
group. Directly, we compute the gauge transformation of u with respect to γ ∈ SU(2)
and ζ ∈ U(1) and we obtain

uγ = γ−1u ; uζ = u·ζ̂, (8.2.4)

where ζ̂ =
(

ζ 0
0 ζ−1

)
. The first transformation shows that the field u corresponds to a

dressing field with respect to the gauge group SU(2). Then, we define the composite field
Bµ associated to the gauge field bµ and the dressing field u as

Bµ = u−1bµu + u−1∂µu, (8.2.5)

which is gauge invariant with respect to the action of SU(2). However, it is not invariant
with respect to the action of U(1). The gauge field aµ is not concerned with the u field.
Then, in the functional space of fields of the theory, we have conducted the following
change of variables:

(aµ, b1
µ, b2

µ, b3
µ, φ) Ô→ (aµ, B1

µ, B2
µ, B3

µ, u, η) (8.2.6)

In particle physics, in order to make apparent the vector bosons corresponding to the
electroweak interaction, one proceeds to a rotation of the basis of u(1) ⊕ su(2), measured
by the so-called weak angle θW . This rotation leads to the definition of the photon Aµ,
the U(1)-charged bosons W ±

µ and the neutral boson Zµ so that we have

(aµ, B1
µ, B2

µ, B3
µ) Ô→ (Aµ, W +

µ , W −
µ , Zµ) (8.2.7)
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where 



Aµ = sin θW B3
µ + cos θW aµ

W ±
µ = 1√

2
(B1

µ ∓ iB2
µ)

Zµ = cos θW B3
µ − sin θW aµ

, (8.2.8)

with cos θW = g

g2+g′2 and sin θW = g′

g2+g′2 . Directly, we can check that all these fields are
invariant with respect to the action of SU(2) and that they does transform with respect
to U(1) as

Aζ
µ = Aµ + 2i

e
ζ−1∂µζ ; (W ±

µ )ζ = ζ∓2W ±
µ ; Zζ

µ = Zµ. (8.2.9)

Then, the gauge group U(1) is only represented on the photon Aµ and the bosons W ±
µ .

These transformations show that Aµ is a local U(1)-connection on P and W ±
µ correspond

to the U(1)-charged bosons of the SM.

The Lagrangian L[aµ, bµ, φ] can now be written in terms of the new composite fields
Aµ, W ±

µ , Z0
µ and the new fields u and η. Using the gauge invariance of the theory, it is

straightforward to show that the u fields do not appear in the theory as dynamical fields
so that, in the new variables, this theory depends only on the gauge-invariant composite
vector bosons and the norm η and we finally have

L[aµ, bµ, φ] = L[aµ, Bµ, η] Ô→ L′[Aµ, W ±
µ , Zµ, η] (8.2.10)

The Lagrangian L′[Aµ, W ±
µ , Zµ, η] is gauge invariant since all the fields of the theory are

invariant with respect to the action of SU(2) and then could correspond to observables in
Physics. All these fields are not invariant with respect to U(1), but the Lagrangian still
preserves its gauge-invariance with respect to this gauge group. The action of SU(2) has
been “neutralized” so that the method described here has permitted the reduction of the
gauge-group U(1) × SU(2) → U(1).

The residual field η ∈ R
+ is now embedded into the potential −φ2η−λφ4 = −µ2η−λη4

and can be extended as η = η0 + H, where η0 minimizes this potential term and H
corresponds to the propagation of the Higgs field. The perturbation of η around η0 permits
also the attribution of mass terms associated to the vector bosons W +

± and Zµ, as expected.

To finish this example, we count the degrees of freedom of the theory before and after
the definition of the composite fields in order to make sure that this method consists simply
in a change of variables in the functional space of fields. This counting is summarized in
table 8.1.

In [MW10], the spinors fields of the SM are also included in the model. The method of
change of variables gives rise also to SU(2)-gauge invariant composite fields, as expected
by formula (8.1.4).

8.2.2 Application to a SU(N)-gauge theory

As an extended model, we apply the previous construction to a SU(N)-gauge theory
coupled with a scalar field φ : M → C

N . For N > 2, it is not possible to clearly identify
the dressing field of the theory so that we can’t define the corresponding gauge invariant
composite field. We explain the reasons of this.

Consider a SU(N)-gauge theory for N > 2 coupled with a scalar field φ : M → C
N .

For N > 2, it is not possible to uniquely decompose the field φ into the pair (u, η), with
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Gauge theory
Electroweak part

of the SM
(Initial form)

Electroweak part
of the SM

(Final form)

Gauge group U(1) × SU(2) U(1)

dimension (1) 1 + 3 1

Fields of the theory aµ, bµ Aµ, W ±
µ , Zµ

dimension (2) 4 + 3 × 4 = 16 4 + 3 × 4 = 16

Scalar fields of the
theory

Auxiliary field ϕ Residual field η

dimension (3) 4 1

Degrees of freedom
of the theory

(2) + (3) − (1)
16 16

Table 8.1: Fields involved in the theory with their meanings and degrees of freedom, before
and after the definition of the composite fields

u ∈ SU(N) and η =
√

|φ1|2 + . . . + |φN |2 the norm of φ. This can be seen by looking at
the degrees of freedom of φ before and after such a decomposition. We would obtain

{degrees of (u, η)} − {degrees of φ} = (N2 − 1 + 1) − 2N = N2 − 2N. (8.2.11)

so that this difference gives 0 only for N = 2 (and N = 0, trivially).

This non-uniqueness of the decomposition of φ becomes explicit as we write this scalar
field under the form φ = ηuφ̊, where η is the norm of φ, u is a SU(N)-valued function

and φ̊ is a reference vector in C
N that we choose equal to φ̊ =

(
0N−1

1

)
, where ( 0N−1 )

denotes the null vector for the N − 1 first components. The norm η is uniquely defined in
terms of φ but the field u ∈ SU(N) is only defined modulo the left action of elements of the
form ( v 0

0 1 ), where v is a SU(N − 1)-valued field which acts on the first N − 1 components
of φ̊. This element v has dimension (N − 1)2 − 1 = N2 − 2N , as in (8.2.11). Then, in this
sense, it encodes the obstruction for φ to be uniquely decomposed as (u, η). Moreover, for
N = 2, the element v belongs to SU(1) which, by convention, is the scalar number 1.

One denotes by [u] : M → SU(N)/SU(N − 1) a field defined on M with values in the
corresponding orbit so that the scalar field φ can be decomposed as (η, [u]). Then, the
previous gauge transformation uγ = γ−1u is now substituted with the gauge transforma-
tion [uγ ] = [γ−1u] which does not correspond to the correct gauge transformation for the
dressing field. In [FFLM13], we show that this method results in a reduction of the gauge
group SU(N) → SU(N − 1).

8.3 Application for YMH theory based on generalized connections

This method is now applied to the YMH type models based on generalized connections
on transitive Lie algebroids.

The previous example based on the electroweak part of the Standard Model have
allowed to describe the spontaneous symmetry breaking mechanism, usually associated to

130



8.3 – Application for YMH theory based on generalized connections

a dynamical process, in terms of a change of variables in the functional space of fields of
the theory. Then, the reduction of the symmetry group of the theory is no more given as
a result of a “polarization” process but comes from an appropriate rearrangement of the
degrees of freedom of the fields.

This equivalence of description is useful in the context of gauge theories based on
generalized connection on A. Indeed, as we have seen in section 7.1, the free parameters of
the theory are not running constants related to the energy of the system. They are defined
“once for all” in the description of the theory and are related only to the metrics g and h,
the dimensions of M and L and also on the constant structures Cc

ab. Then, a symmetry
reduction by changes of variables in the space of fields should be more adapted to this
context than a symmetry reduction by means of a spontaneous symmetry breaking.

Since the reduced kernel endomorphism plays a role similar to the scalar field of the
BEHHGK mechanism, the dressing field required to define gauge invariant composite fields
should be similarly defined out of τ . In the general case, this procedure requires additional
investigations on the algebraic structure of τ . In this section, we restrict this procedure to
the YMH type model based on a particular subspace of Ω1

sol(A, L) defined on an Atiyah Lie
algebroid associated to a principal bundle P(M, G), where G is centerless. The reasons
of this specific restriction will be detailed in the following.

The final result of this construction is a YM theory describing massive vector fields Aµ.
These vector bosons are composite fields defined for the gauge bosons Aµ and a dressing
field u associated to the scalar field τ b

a. Then, they are invariant with respect to the action
of the gauge group G and ought to correspond to physical observables.

8.3.1 The Yang-Mills-Higgs type model

Consider an orientable Atiyah Lie algebroid over M associated to the principal bundle
P(M, G), with G = SU(N), equipped with an atlas of Lie algebroids, a Killing inner
non-degenerate metric h associated to an inner non-degenerate metric ĝ = (g, h, ∇̊) on
ΓG(P) and a φL-compatible metric on a representation space Γ(E) = Γ(P ×ℓ C

N ).

The Lagrangian we are interested in is the SU(N)-gauge theory of section 7.2.2 which
describes gauge bosons Aµ and a matter field s : M → C

N , interacting with scalar fields
τ b

a ∈ R. Here again, to simplify the model, we choose Å = 0. This theory is then written
as

LSU(N)
Gauge [A, s, τ ] = − 1

48

∑

a

fa
µν fµν a +

1

4n

∑

a,b

Dµτ b
a Dµτ b

a − 1

4 n(n − 1)
W (τ)

+
1

4

∑

a

((Dℓ)µs)† (Dℓ)
µs − 1

n

∑

a

(
τ c

a ℓ∗(Ec)s
)†·

(
τd

a ℓ∗(Ed)s
)

where fa
µν is the field strength associated to the SU(N)-connection Aµ, the fields τ b

a :
U → R are the scalar fields associated to the reduced kernel endomorphism τ : L → L,
the covariant derivative of τ b

a is given as Dµτa
b = ∂µτ b

a + Ac1
µ τd1

a Cb
c1d1

, the potential term
is written under the form

Wτ =
(
τd1

a τ e1

b Cc
d1e1

− Cd1

ab τ c
d1

) (
τd2

a τ e2

b Cc
d2e2

− Cd2

ab τ c
d2

)
(8.3.1)

and the covariant derivative of the matter field s is given as (Dℓ)µs = ∂µs + ℓ∗(Aµ)s.
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All the fields A, τ and s of the theory support the action of the gauge group G as





Ag
µ = g−1Aµg + g−1∂µg

τ g = g−1τg

sg = ℓ(g−1)s

(8.3.2)

where g : M → SU(N) is an element of the gauge theory. From the previous section, the
theory is invariant with respect to these gauge transformations.

8.3.2 Dressing field for Atiyah Lie algebroid

In the general case, there exists no systematic method to define a dressing field from a
tensorial field τ . Then, we restrict the space of generalized connections on Atiyah Lie
algebroids to a specific subspace. We denote by Aτ̊ the space of generalized connections
on ΓG(P) such that the reduced kernel endomorphism associated to ̟ can be written as

τ(v) = uτ̊(v)u−1 (8.3.3)

, for any v ∈ ΓG(P, g), with u : P → G and where τ̊ : L → L is called the reference
configuration. We compute the induced right-action of G on the field u and we obtain
u(w·g) = g−1u(w)g, for any g ∈ G and w ∈ P. Then, the fields u are elements of the
gauge group G = Γ(P ×α G), where α(g)g′ = gg′g−1.

We denote by Gτ̊ the subgroup of G associated to the reference configuration τ̊ which
is defined as the set of elements g ∈ G such that g−1τ̊(v)g = τ̊(v), for any v ∈ L. They
are in the “center” of G. The gauge group G acts on the field τ as τ g = g−1τg, so that
it preserves the space Aτ̊ . Then, we define the algebraic action of G on τ in terms of the
field ug as τ g = ug τ̊ug−1 where g ∈ G. Then, we can write

g−1u τ̊ u−1g = ug τ̊ ug−1 ↔ τ̊ = (u−1gug) τ̊ (u−1gug)−1 (8.3.4)

and then, we find that u−1gug is an element of Gτ̊ .

To define a non-ambiguous gauge transformation of the field u, we consider the space
AIdL

of generalized connections on ΓG(P) whose associated reduced kernel endomorphism
can be written as τ(v) = Aduv for any v ∈ ΓG(P, g) where u : P → G. We also assume
that the group G is centerless so that the subgroup GIdL

is reduced to the space of constant
functions with values in e, the identity element of G. Thus, gauge transformations of the
field u are uniquely defined as ug = g−1u and then, the field u is a dressing field as defined
in section 8.1.

Let ω be the induced ordinary connection 1-form associated to the generalized con-
nection ̟ on ΓG(P). We define the gauge-invariant composite field ω̂ associated to the
connection ω and the dressing field u as ω̂ = u−1ωu + u−1d̂u, where d̂ is the graded dif-
ferential operator acting on Ω•(A, L). Let s ∈ Γ(E), then the composite field ŝ = ℓ(u−1)·s
is also gauge invariant. The local expression for the composite field ω̂ and ŝ are written
in terms of the field uloc as

Âµ = u−1
locAµuloc + u−1

loc∂µuloc ; ŝloc = ℓ(u−1
loc)sloc (8.3.5)

where the local field uloc : U → G is defined by the pull-back of the local cross section
σ : U → P|U as uloc(p) = u(σ(p)), for any p ∈ U .
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Gauge theory
YMH theory

on Atiyah Lie algebroid
(Initial form)

YMH theory
on Atiyah Lie algebroid

(Final form)

Gauge group SU(N) {e}
dimension (1) N2 − 1 0

Bosons and fields of
the theory

Aµ, s Âµ, ŝ

dimension (2) 4 × (N2 − 1) + N 4 × (N2 − 1) + N

Scalar fields of the
theory

τ s.t. τ = u−1IdLu IdL

dimension (3) N2 − 1 0

Degrees of freedom
of the theory

(2) + (3) − (1)
4 × (N2 − 1) + N 4 × (N2 − 1) + N

Table 8.2: Fields involved in the theory with their meanings and degrees of freedom, before
and after the definition of the composite fields

8.3.3 YMH model restricted to AIdL

We proceed to the change of variables (Aµ, s, τ) Ô→ (Âµ, ŝ, u) so that the gauge theory
L[A, s, τ ] can be written in terms of these new fields as

LSU(N)
Gauge [Â, ŝ] =

1

48

∑

a

f̂a
µν f̂µν a +

1

4n

∑

a,b

Cb
caCb

daÂc
µÂµ d +

1

4

∑

a

(
(D̂ℓ)µŝ

)†
(D̂ℓ)

µŝ

+
1

n

∑

a

(
ℓ∗(Ea)s

)†· (ℓ∗(Ea)s)

where f̂a
µν is the field strength associated to the gauge invariant composite field Âµ and the

covariant derivative of the matter field s is given as (D̂ℓ)µ = ∂µ + ℓ∗(Âµ). Using the gauge
invariance of the Lagrangian, we see that the theory does not depend explicitly of the
u fields but depends exclusively of gauge-invariant fields Âµ and ŝ. Moreover, the space
AIdL

is a subspace of Ω1
sol(A, L) so that the reduced kernel endomorphism τ associated to

this subspace cancels the potential term. Instead of the covariant derivative of τ , we find
the new term 1

4n

∑
a,b Cb

caCb
daÂc

µÂµ d which correspond in particle physics to a mass term
for the vector fields Âµ. The computation of this mass term for low dimensions has been
given in section 7.3.

In section 8.2.2, we have seen that the method used to construct gauge invariant
composite fields by using a scalar field φ : M → C

N was possible only for N = 2 (actually,
this is also possible for N = 1). Here, the method can be applied for any N . As in the
previous model, the gauge group has not disappeared from the theory. It is still present
but its action on the gauge invariant composite field is trivial.The residual field associated
to τ is simply IdL so that all the degrees of freedom of τ have been moved to Âµ and ŝ.
We summarize our construction in table 8.2
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Chapter 8 – Method of symmetry reduction

8.4 Commentaries

The method which consists into defining gauge invariant composite fields using some ex-
tra degrees of freedom is close to the philosophy of the Goldstone mechanism in particle
physics. This mechanism states that, during a spontaneous symmetry breaking, the de-
grees of freedom, which correspond to the generators of G lost after the reduction, become
the so-called Goldstone bosons. These bosons are then “eaten” by the gauge bosons Aµ

which acquire new degrees of freedom. From massless gauge bosons, with helicity ±1, they
become massive vector fields with spin {−1, 0, +1}. With regard to this interpretation of
the Goldstone mechanism, the mass term of the vector fields is correlated to the reduction
of the symmetry group.

In analogy with this mechanism, the method described in this chapter is related to a
transfer of degrees of freedom but here, they are carried by the dressing field from a source
field, the auxiliary field in our terminology, to a target field, the connection and/or a matter
field. Then, composite fields are “bigger”, in the sense that they carry additional degrees
of freedom, and also gauge-invariant. The auxiliary field, “undressed” of its dressing field,
becomes a gauge-invariant residual field. The symmetry group is not reduced in the same
sense as in the BEHHGK mechanism. Here, the group still exists but, de facto, it is not
represented neither on the composite field nor on the residual field. An example given in
[FFLM13] is related to the Einstein’s equations of gravity described as a geometric gauge
theory providing a Cartan connection on a principal bundle. In this example, the residual
field is not canonically identified but still, it can be related to a metric on spacetime.

In the YMH model associated to an Atiyah Lie algebroid, there is no dynamical struc-
tures which indicate that a spontaneous symmetry breaking can be performed. Indeed,
all the free parameters of the theory come either from the geometry or from the algebraic
structure of the Atiyah Lie algebroid, and no dynamical parameters are present as in the
usual Higgs-like models of the SM. Nevertheless, the extra field τ can actually be used to
perform both a symmetry reduction and, simultaneously, an emergence of mass term for
the gauge bosons Aµ. It is not possible to do so in the general case, that’s why we restrict
ourselves to the subspace AIdL

of Ω1
sol(A, L). On this subspace, the entire degrees of free-

dom of τ are contained in the u-field so that, once they are “absorbed” by the connections
Aµ and the matter fields s, the Lagrangian does depend neither on u nor on any residual
field. It results in the gauge theory with massive vector bosons in interactions with matter
fields.
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Conclusion

Lie algebroids was initially defined as the infinitesimal version of Lie groupoids [Mac05].
Its formulation in terms of fiber bundles has been widely used in the context of the
geometry of Poisson manifolds [KS08; CDW87]. In the present PhD thesis, we rather use
the description of Lie algebroids in terms of sections on the vector bundle A than in terms
of geometric objects. This description is close to the formalism of gauge fields theories
where gauge fields are defined as sections of associated fiber bundles. Moreover, we know
that NCG have established a correspondence between geometric objects and algebraic
description. This leads us to consider the description of (transitive) Lie algebroids in
terms of C∞(M)-modules given by the space of sections of the vector bundle A.

As the physics takes place on the base manifold of A, it is necessary to establish local
trivializations of transitive Lie algebroids. By doing so, we obtain a supplementary degree
of “control” on objects defined on the “top” structure A. Then, the distinction between
geometric and algebraic components becomes explicit e.g. Lie bracket explicitly defined
on Γ(TU) ⊕ Γ(U × g) by using Lie bracket on Γ(TU) and g, and the representations of
vector fields on Γ(U × g). Also, local descriptions of A make apparent some Greek and
Latin indices related to both the geometry of M and the Lie algebra g, respectively. This
local description is well-adapted to the formalism of gauge fields theories in physics.

The description of A in terms of sections is compatible with definitions of differential
complexes. Indeed, we do not assume the existence of some dual Lie algebroids bundle A∗

to define the space of differential forms on A. In our formulation of transitive Lie algebroids,
differential complexes are given in terms of C∞(M)-linear maps defined on antisymmetric
copies of A with values in a given representation space. Associated differential operators
are defined using representations of C∞(M)-modules and the duality of Lie brackets. This
“algebraic” description of differential forms on transitive Lie algebroids permits to establish
local isomorphisms of differential complexes between Ω•(A) (resp. Ω•(A, L)) and Ω•

TLA
(U)

(resp. Ω•
TLA

(U , g)). Straightforwardly, we show that these isomorphisms are compatible
with their associated differential operators.

Within the geometric formalism, transitive Lie algebroids can be considered as a gen-
eralization of the tangent bundle TM. In our scheme, these are considered as a general-
ization of vector fields on M. Indeed, the geometry of vector fields is embedded in A via
the anchor ρ. Then, the subset of A which can be projected on Γ(TM) corresponds to the
geometric degrees of freedom of A and the subset of A which does not project on Γ(TM),
the kernel of ρ, encodes its algebraic degrees of freedom. Contrary to the “geometric part”
of A, the “algebraic part” L is defined without ambiguities. In the non-trivial situation,
it is not possible to separate these two subspaces. This is analog to vector fields on a
principal bundle P: vertical vector fields are uniquely defined on P but its complementary
space in Γ(TP) requires an additional connection on P.

The same thing occurs in the context of transitive Lie algebroid. To determine the
complementary space of L in A, we use a connection on A which defines an injective
C∞(M)-linear map ∇ : Γ(TM) → A. Then, this connection ∇ determines the “horizon-
tal” subspace of A in the sense that the map ∇ permits the decomposition A = L⊕ Im(∇).
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Chapter 8 – Method of symmetry reduction

On Atiyah Lie algebroids, this is related to the usual definition of connections defined on
principal fiber bundles. This connection is seen as a geometric object in the sense that it
does not see the kernel L. However, this geometric description of connection on A can be
“bring back” to the algebraic side of A: connections defined on A are equivalently defined
by the data of an ordinary connection 1-form ω ∈ Ω1(A, L) normalized on L. Here, the
normalization of ω on L means ω ◦ ι = −IdL. It is a reminiscent of the geometric nature on
∇: it occurs to “kill” the algebraic degrees of freedom of ω so that its dynamical degrees
of freedom are only carried by its geometric component. This is obvious as we locally
trivialize ω as ωloc = (Aa

µdxµ − θa) ⊗ Ea since all the dynamical degrees of freedom are
carried by A = Aa

µdxµ ⊗Ea and θa is an element of g∗. On Atiyah Lie algebroids, ordinary
connection 1-form are in 1:1 correspondence with Ehresmann connections 1-form on P
[LM12a]. Covariant derivatives and curvatures inherits the “all-geometric” nature of the
connection 1-form: with respect to the Cartan operation (L, i, L), these differential forms
are L-horizontal and their local trivializations depend only on the geometric connection
A ∈ Ω1(U , L).

Actually, this “all-geometric” nature of ω is encoded in its normalization constraint
on L. Then, generalized connections defined on A can be considered as perturbations of
ω in Ω1(A, L) where the object τ : L → L parametrizes this perturbation so that we have
ω ◦ ι = −IdL + τ . Conversely, we define the space of generalized connection on A as
the space Ω1(A, L) and we denote by τ the measure of the obstruction for a generalized
connection ̟ to be normalized on L. For these two definitions, the parameter τ encodes
the “non-geometric nature” of ̟. We make it apparent as we decompose any generalized
connection ̟ into the sum ω + τ(ω̊), where ω is the induced ordinary connection 1-form
associated to ̟ and ω̊ is a background connection on A. This sum represents, modulo
the background connection, the separation of the geometric degrees of freedom and the
algebraic degrees of freedom of ̟. Once locally trivialized, these two components can
be considered as independents gauge fields. This independence is also apparent from the
point of view of the gluing transformations by changes of trivializations.

The expression of generalized covariant derivatives in terms of ω and τ makes appar-
ent an algebraic extension of the “usual” geometric covariant derivative. This extension
contributes in some minimal coupling between the “parameter” τ and some spaces of rep-
resentation. The curvature of generalized connection is defined with the Cartan structure
equation as d̟̂ + 1

2 [̟, ̟]. In terms of ω and τ , the expression of this curvature is more
cumbersome. An adapted formulation makes apparent the decomposition of F̂ in the so-
called mixed basis as the sum of three terms. The first term corresponds to the purely
geometric component of F̂ , written in terms of the curvatures of ω and ω̊. The second term
mixes geometric and algebraic degrees of forms under the form of a covariant derivative
term. Finally, the last term is purely agebraic and is interpreted as the obstruction for τ
to preserve the Lie bracket on L.

The bi-nature (geometric and algebraic) of generalized connections leads to some in-
compatibility relations with respect to gauge transformations. Even if the “usual” in-
finitesimal gauge transformations, given by the Lie derivative along L, are well-defined on
generalized connections, they result in messy gauge transformations. For example, covari-
ant derivatives associated to ̟, acting on a representation space E , do not preserve the
representation of L on Γ(E) i.e. we obtain D̂ξsξ Ó= (D̂s)ξ. Moreover, gauge transforma-
tions of the curvature associated to ̟ are awful to manipulate in order to construct gauge
invariant quantities. These results come from the fact that “usual” gauge transformations
are actually geometric transformations. Indeed, on Atiyah Lie algebroids, the gauge action
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of L is given by the Lie derivative, is exactly the infinitesimal version of the action of the
gauge group G by vertical automorphisms. Then, these geometric gauge transformations
cannot be compatible with the new algebraic degrees of freedom of ̟. A new gauge action
of L have been defined specially for generalized connections in order to obtain convenient
gauge transformations more manageable to construct gauge-invariant quantities. These
new gauge transformations and the old “usual” ones coincide on the space on ordinary
connection 1-forms. This scheme is also present in the works of T. Masson in NCG (see
[Mas] and references therein) .

Gauge invariant action functionals are defined as the “norm” of the curvature associ-
ated to a generalized connection ̟. Lagrangians L[̟] associated to these action function-
als are defined by the composition of two operations. Starting from F̂ ∈ Ω2(A, L), we use
an inner non-degenerate metric ĝ = (g, h, ∇̊), where h is a Killing inner, and a Hodge star
operator on A to build a differential form h(R̂, ⋆ R̂) with degree (m + n) defined on A with
values in C∞(M). Then, the inner integral “extracts” the component of this differential
form which is factorized by the volume form ωvol. It results in a m-form defined on vector
fields on M. As a m-form, this object can be written as L[̟]dvol, where dvol denotes
the volume form on M. It results in the expression of L[̟] ∈ C∞(M) as the sum of the
square of each components associated to the decomposition of F̂ in terms of ω and τ .

The Lagrangian associated to a generalized connection form a YMH type model, de-
picted in a background reference, where the local expression of τ plays the role of the
scalar field of the BEHHGK mechanism of spontaneous symmetry breaking [PS95; IZ85].
The potential term for τ is not related to any dynamical parameters which would modify
its “shape”, depending on the energy of the system. Instead, it is defined as an algebraic
constraint on τ . It is obvious that the usual spontaneous symmetry breaking mechanism
of the SM makes few sense in this context. There, we have used an alternative method of
symmetry reduction which has consisted into a change of variables in the functional space
of fields (A, τ). In analogy the Goldstone mechanism, degrees of freedom of τ which are
in the representation of the gauge group are moved to the gauge connections A in order
to create gauge-invariant composite fields. Presently, this method cannot be performed
in the general case. That’s why we have applied this method only for generalized connec-
tions on Atiyah Lie algebroids with fields τ which can be written as Adu, where u ∈ G.
The counting of the theory’s degrees of freedom, before and after this operation, leads to
consider this method merely as a change of variables. It results in a YM theory describing
massive vector bosons Aµ, with the action of the symmetry group SU(N) reduced to the
neutral element {e}.

All these results form an essential contribution to constructions of gauge field theories
and, in particular, to the definition of YMH type models which are directly relevant to
the SM. A similar result have been obtained from the NCG of A. Connes [Con94; CM08a;
CCM07] but here, the formalism of transitive Lie algebroids admits representation of Lie
groups, not only modules. Moreover, the description of transitive Lie algebroids in terms
of sections, rather than in terms of fiber bundles, gives more manageable constructions.
These works should be soon extended by additional constructions coming either from the
formalism of gauge fields theory or from transitive Lie algebroids themselves. The next
three points establishes my research projects for my future post-doctoral positions.

In the context of gauge field theories, we have to explore the renormalization of SU(N)-
gauge theories of YMH type based on transitive Lie algebroids. Here, we forget about the
geometric and algebraic scheme of the theory of Lie algebroids and we simply consider the
Lagrangian LSU(N)

gauge [A, τ, Å, s] of section 7.2.2 as a gauge theory toy-model related to the
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SM. We need only to employ the usual tools of the QFT so that, starting with the classical
Lagrangian, we compute the vertexes associates to the Feynman’s diagrams of the gauge
fields Aµ and τ b

a in order to study the renormalization of the theory at the 1-loop order.

The method of symmetry reduction by change of variables described in chapter 8 have
been applied to a “convenient” subset of generalized connections on Atiyah Lie algebroids.
This method have shown that the field τ plays an important role in the construction by
“moving” its gauge degrees of freedom of τ to the induced ordinary connection in order
to get a gauge invariant theory with massive vector fields. In the more general case,
does it exist a relation between the reduction of the group of symmetry and the algebraic
properties of τ? I expect that these works will allow to confirm the analogy between τ
and the scalar field φ of the BEHHGK mechanism.

We have incorporated scalar fields in YMH type theories associated to generalized
connections. What about spinor fields which describe fermionic matter? From the point
of view of mathematical physics, Dirac spinors are in a representation of a Clifford algebra
associated to the vector space Γ(TM) and a metric g on M. Besides, transitive Lie
algebroids are considered as generalizations of vector fields on M and are equipped with
a metric ĝ. Moreover, if the metric ĝ is an inner non degenerate metric, then there
exists a unique connection ∇̊ on A so that the transitive Lie algebroids can be written
as A = L ⊕ Im(∇̊) and the metric ĝ is block-diagonal with respect to this decomposition.
Then, this result should be employed to extend the usual Dirac operator of the field theory
by an algebraic element coming from the fiber L of the Lie algebroid. Applied to gauge field
theory based on transitive Lie algebroids, I expect to extend the usual spinor fields of the
SM by some algebraic objects which should bring new phenomenological interpretations
in particle physics.
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Appendix A

Čech-de Rham bicomplex

A.1 Recalls

A.1.1 Partition function of the unity

The partition function of the unity is defined as follows. Given an atlas of M, a partition
function of the unity is a collection of C∞(M) maps (ρi)i∈I , such that, for any point
p ∈ M, one has:

• ρi(p) > 0 for any p ∈ Ui for any i ∈ I.

• ρi vanishes outside of Ui.

• ∑
i∈I ρi(p) = 1 for any p ∈ M.

A.1.2 Čech cohomology

Let M be a manifold covered by opens (Ui)i∈I , sorted in the growing order (U1, U2, . . . , UI).
Let F be a functor which assign to any open Ui a differential form defined on Ui. Let
Cp(U ,F) defined as:

Cp(U ,F) =
∏

α1<...<αq

F(Uα1α2...αp) (A.1.1)

where Uα1α2...αp = Uα1
∩ Uα2

∩ . . . ∩ Uαp . The element C0(U ,F) = C∞(M). An el-
ement ω ∈ Cp(U ,F) is a collection of forms defined on Uα1...αp . The map ωα1α2...αp−1

denotes the representative of ω on the intersection Uα1α2...αp−1
. The differential operator

δ : Cp(U ,F) → Cp+1(U ,F) is defined as:

(δω)α1α2...αp+1
=

p+1∑

i=1

(−1)i+1ωα1α2... \αi...αp+1|α1...αp+1
(A.1.2)

where ωα1α2... \αi...αp+1|α1...αp+1
is restricted to the open Uα1α2...αp+1

. It is straightforward to
show that δ ◦ δ = 0. One has the following long sequence of differential complex:

0 //C0(U ,F)
δ //C2(U ,F)

δ // . . .
δ //Cq(U ,F)

δ // . . . (A.1.3)

The Čech cohomology is the cohomological sequence H•
dR(U ,F) =

⊕
q=0 Hq

dR((U ,F), δ)
where

Hq(U ,F, δ) = Zq((U ,F), δ)/Bq((U ,F), δ). (A.1.4)

where Zq((U ,F), δ) denotes the space of closed q-forms and Bq((U ,F), δ) denotes the space
of exact q-forms
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A.2 Generalized Čech-de Rham bicomplex

Let (U1, S1) and (U2, S2) such that U2 ⊂ U1 be two local trivializations of A|U1
. For any

ω1 ∈ Ω•
TLA

(U1, g), one denotes by ω1|2 its restriction to U2.

Denote by α̂2
1 the map defined as in (3.3.8) over the open U1∩U2 = U2 (here, U12 = U2).

One defines the map

i U2

U1
: Ω•

TLA(U1, g)|U2
→ Ω•

TLA(U2, g), ; i U2

U1
(ω1|2) = α̂2

1(ω1|2). (A.2.1)

One establishes the following properties of the map i

i U1

U1
(ω1) = ω1 ; i U1

U2
◦ i U2

U1
(ω1|2) = (ω1|2) ; i U3

U2
◦ i U2

U1
(ω1|3) = i U3

U1
(ω1|3) (A.2.2)

for any U3 ⊂ U2 ⊂ U1.

One denotes by F the functor which assign to any open Ui with i ∈ I a map Ui Ô→
Ω•

TLA
(Ui, g) which is a presheaf of graded differential Lie algebras.

Let A be a transitive Lie algebroid over M with kernel L equipped with a atlas of Lie
algebroids (Ui, Ψi, ∇0

i )i∈I . Let (Ui)i∈I be a good cover of M whose opens are sorted in the
growing order (U1, U2, . . . , UI). On any Uα0...αp = Uα0

∩ . . . ∩ Uαp Ó= ∅, one assumes there
is a local trivialization of A|Uα0...αp

.

Assume that to any Uα0...αp Ó= ∅, one associates a differential complex which one
denotes by Ω•

TLA
(Uα0...αp , g). These differential complexes are not necessarily the corre-

sponding trivializations of Ωq(A, L) over Uα0...αp . One defines the map

α̂αkα0...αp
α0...αp

: Ω•(Uα0...αp , g)|Uαkα0...αp
→ Ω•(Uαkα0...αp , g). (A.2.3)

We define an extended version of the ordinary Čech-de Rham bicomplex associated to
the presheaf F. Consider the bicomplex

Cp,q(U ,F) = Cp(U , Ωq
TLA

(U , g)) =
∏

α0<...<αp

Ωq
TLA

(Uα0...αp , g) (A.2.4)

One denotes by p and q the Čech degree and the de Rham degree of Cp,q(U ,F), respectively.
We denote by ωα0···αp ∈ Cp(U , Ωq

TLA
(U , g)) an element (p, q) of this bicomplex. For p = −1,

one defines C−1,q(U ,F) = Ωq(A, L). For any (p, q), one defines the map δ̃ as follows:

δ̃ : Cp,q(U ,F) → Cp+1,q(U ,F) ; (δ̃ω)α0...αp+1
=

p∑

k=0

(−1)ki
Uα0...αp+1

Uα0... \αk...αp+1

(ωα0... \αk...αp+1|α0...αp+1
)

(A.2.5)
with ωα0... \αk...αp+1|α0...αp+1

∈ Ωq(Uα0... \αk...αp+1
, g)|Uα0...αp+1

where α0 . . . \αk . . . αp+1 means

the omission of the index αk. Here the map i
Uα0...αp+1

Uα0... \αk...αp+1

is defined as

i
Uα0...αp+1

Uα0... \αk...αp+1

(ωα0... \αk...αp+1|α0...αp+1
) = α̂

α0...αp+1

α0... \αk...αp+1
(ωα0... \αk...αp+1|α0...αp+1

) (A.2.6)

The map δ̃ : C−1,q(U ,F) → C0,q(U ,F) is defined as the local trivialization of Ωq(A, L) with
respect to the atlas (Ui, Si)i∈I . One adopts the Čech convention:

i
Uα0...αp

Uα0...αi...αj ...αp
= −i

Uα0...αp

Uα0...αj ...αi...αp
(A.2.7)
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for any i, j. This implies that the element ωα0...αp is a completely antisymmetric tensor
object.

For any ω ∈ Ω•
TLA

(Uα0...αp−1
, g), one uses the chain relation on i

Uj

Ui
in order to compute:

(δ̃(δ̃ω))α0...αp+1
=

p∑

k=0

(−1)ki
Uα0...αp+1

Uα0... \αk...αp+1

((δ̃ω)α0... \αk...αp+1|α0...αp+1
)

=
p∑

k=0

(−1)ki
Uα0...αp+1

Uα0... \αk...αp+1

( p∑

k’=0

k’<k

(−1)k′

i
Uα0... \αk...αp+1

Uα0... \α
k′ ... \αk...αp+1

(ωα0... \αk′ ... \αk...αp+1|α0... \αk...αp+1
)

+
p∑

k’=0

k’>k

(−1)k′+1i
Uα0... \αk...αp+1

Uα0... \αk... \α
k′ ...αp+1

(ωα0... \αk... \α′

k
...αp+1|α0... \αk...αp+1

)
)

=
p∑

k=0

p∑

k’=0

k’<k

(−1)k+k′

i
Uα0...αp+1

Uα0... \α
k′ ... \αk...αp+1

(ωα0... \αk′ ... \αk...αp+1|α0... \αk...αp+1
)

+
p∑

k=0

p∑

k’=0

k’>k

(−1)k+k′+1i
Uα0...αp+1

Uα0... \α
k′ ... \αk...αp+1

(ωα0... \αk... \αk′ ...αp+1|α0... \αk...αp+1
) (A.2.8)

It is straightforward to show that the sum of these two last terms give zero. Then one
has:

δ̃ ◦ δ̃ = 0 (A.2.9)

Let Ui and Uj such that Uj ⊂ Ui. For any ω ∈ Ωq
TLA

(Ui, g) and using the formula
(2.2.9), one computes:

(d̂TLA(δ̃ω)j)(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1)

=
q+1∑

k

(−1)k+1Xi·(δ̃ω)j(X1 ⊕ γ1, . . . , ∨k, . . . , Xq+1 ⊕ γq+1)

+
q+1∑

k

(−1)k+1[γk, (δ̃ω)j(X1 ⊕ γ1, . . . , ∨k, . . . , Xq+1 ⊕ γq+1)]

+
∑

1≤k<k′≤q+1

(−1)k+k′

(δ̃ω)j([Xk ⊕ γk, Xk′ ⊕ γk′ ], X1 ⊕ γ1, . . . , ∨k, . . . , ∨k
′

, . . . , Xq+1 ⊕ γq+1)

=
q+1∑

k

(−1)k+1Xi·(αji ◦ ωi|j)(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))

+
q+1∑

k

(−1)k+1[γk, (αji ◦ ωi|j)(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))]

+
∑

1≤k<k′≤q+1

(−1)k+k′

(αji ◦ ωi|j)(Si
j([(Xk ⊕ γk), (Xk′ ⊕ γk′)]), . . . , ∨k, . . . , ∨k

′

, . . .)
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=
q+1∑

k

(−1)k+1αji ◦ (Xi·ωi|j)(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))

−
q+1∑

k

(−1)k+1[χji(X), (αji ◦ ωi|j)(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))]

+
q+1∑

k

(−1)k+1[αji(γk), (αji ◦ ωi|j)(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))]

+
q+1∑

k

(−1)k+1[χji(X), (αji ◦ ωi|j)(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))]

+
∑

1≤k<k′≤q+1

(−1)k+k′

(αji ◦ ωi|j)(Si
j([(Xk ⊕ γk), (Xk′ ⊕ γk′)]), . . . , ∨k, . . . , ∨k

′

, . . .)

=
q+1∑

k

(−1)k+1αji ◦ (Xi·ωi|j)(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))

+
q+1∑

k

(−1)k+1αji ◦ ([γk, ωi|j(Si
j(X1 ⊕ γ1), . . . , ∨k, . . . , Si

j(Xq+1 ⊕ γq+1))]

+
∑

1≤k<k′≤q+1

(−1)k+k′

(αji ◦ ωi|j)([Si
j(Xk ⊕ γk), Si

j(Xk′ ⊕ γk′)]), . . . , ∨k, . . . , ∨k
′

, . . .)

= α̂j
i (d̂TLAω)i|j(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1)

= δ̃(d̂TLAω)j(X1 ⊕ γ1, . . . , Xq+1 ⊕ γq+1)

Then one has the following result:

d̂TLA ◦ δ̃ = δ̃ ◦ d̂TLA (A.2.10)

for any opens Ui and Uj such that Uj ⊂ Ui. The map i V
U with V ⊂ U is a morphism of

graded differential Lie algebras.

The Čech-de Rham bicomplex associated to the presheaf F is summarize in the follow-
ing table.
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0

1

2

...

q

0 1 2 . . . p

p

q

δ̃

d̂TLA

∗ ∗

∗

One has the long sequence

0 //C−1,q(U ,F)
δ̃ //C0,q(U ,F)

δ̃ //C1,q(U ,F)
δ̃ //C2,q(U ,F)

δ̃ // . . . (A.2.11)

In order to prove the exactness of this long sequence, we introduce a partition function
of unity as defined in A.1.1 {ρi}i∈I subordinated to the good cover {Ui}i∈I . Let ω ∈
Cp,q(U ,F) an exact form i.e. such that

(δ̃ω)α0...αp+1
=

p∑

k=0

(−1)ki
Uα0...αp+1

Uα0... \αk...αp+1

(
(ωα0··· \αk...αp+1

)|α0...αp+1

)
= 0. (A.2.12)

For any ωα0...αp ∈ Ωq
TLA

(Uα0...αp , g), the element ραk
·ωα0...αp is assumed to be defined on

Uα0... \αk...αp
where ραk

comes out from the partition function of the unity of M for any
1 < k < p. For any α0 < . . . < αp, let us define

τα0...αp =
I∑

αk=1

α̂α0...αp
αkα0...αp

(
ραk

·ωαkα0...αp

)

A straightforward computation shows that

(δ̃τ)α0...αp =
p∑

k=0

(−1)ki
Uα0...αp

Uα0... \αk...αp

(
τα0··· \αk...αp|α0...αp

)

=
p∑

k=0

(−1)kα̂
α0...αp

α0... \αk...αp







I∑

αk′ =1

α̂
α0... \αk...αp

αk′ α0... \αk...αp

(
ραk′

·ωαk′ α0... \αk...αp

)

 |α0...αp




Since ω is an exact form, one has the relation:

α̂
αk′ α0...αp
α0...αp

(
ωα0...αp|αk′ α0...αp

)
+

p∑

k=0

(−1)k+1α̂
αk′ α0...αp

αk′ α0... \αk...αp

(
ωαk′ α0··· \αk...αp|αk′ α0...αp

)
= 0.

(A.2.13)
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So that,

(δ̃τ)α0...αp =
p∑

k=0

(−1)kα̂
α0...αp

α0... \αk...αp







I∑

αk′ =1

α̂
α0... \αk...αp

αk′ α0... \αk...αp

(
ραk′

·ωαk′ α0... \αk...αp

)

 |α0...αp




=
I∑

αk′ =1

p∑

k=0

(−1)kα̂
α0...αp

αk′ α0... \αk...αp

(
(ραk′

·ωαk′ α0... \αk...αp
)|α0...αp

)

=
I∑

αk′ =1

p∑

k=0

(−1)kραk′
·α̂ α0...αp

αk′ α0...αp
α̂

αk′ α0...αp

αk′ α0... \αk...αp

(
ωαk′ α0... \αk...αp

|α0...αp

)

=
I∑

αk′ =0

ραk′
α̂ α0...αp

αk′ α0...αp
α̂

αk′ α0...αp
α0...αp (ωα0...αp)

=
I∑

αk′ =0

ραk′
(ωα0...αp)

= ωα0...αp

This proves that any exact form ω is closed. Then, the long exact sequence (A.2.11) is
exact.

One denotes by K•(U ,F) =
⊕

r=0 Kr(U ,F) the total bicomplex where :

Kr(U ,F) =
⊕

p+q=r

Cp,q(U ,F) (A.2.14)

This total bicomplex is equipped with the differential operator:

D : Kr(U ,F) → Kr+1(U ,F) ; D = d̂TLA + (−1)pδ̃ (A.2.15)

where p denotes the Čech degree of Kr(U ,F). It is easy to check that following properties:

D ◦ D = 0 ; δ̃ ◦ d̂ = D ◦ δ̃ ; δ̃ ◦ d̂ = d̂TLA ◦ δ̃ (A.2.16)

One has the long sequence

0 //K0(U ,F)
D //K1(U ,F)

D //K2(U ,F)
D //K3(U ,F)

D // . . . (A.2.17)

One denotes by H•(K(U ,F), D) the cohomology of (K•(U ,F), D) with respect to the
differential operator D.

A.2.1 Isomorphism in cohomology

One establishes the following correspondence. The total complex K•(U ,F) computes the
cohomology of Ω•(A, L). more precisely, one has the isomorphism in cohomology:

H•((A, L), d̂) ≃ H•(K(U ,F), D) (A.2.18)

Thus, the cohomology of (Ω•(A, L), d̂) is the cohomology of the total complex of the bicom-
plex (K•(U ,F), D). To prove this, one shows that there exist a map δ̃∗ : H•((A, L), d̂) →
H•(K(U ,F), D) which is bijective. First of all, one proves that such a map exists.
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Let ω be a representative element of Hk((A, L), D). One uses the map δ̃ to define
δ̃ω ∈ Kk(U ,F) consisting in only the top component. As a closed k-form, one write

D(δ̃ω) = δ̃ d̂ω = 0 (A.2.19)

so that the element δ̃ω ∈ Kk(U ,F) is also a closed element with respect to D.

Assuming that ω is an exact form on Ω(̨A, L), the previous construction would induce
that

δ̃ω = δ̃d̂ρ = D(δ̃ρ) (A.2.20)

so that the element δ̃ω ∈ Kk(U ,F) is also an exact element with respect to D. This
proves that the map δ̃ : Cp,q(U ,F) → Cp+1,q(U ,F) defines a map δ̃∗ : H•((A, L), d̂) →
H•(K(U ,F), D).

p

q

δ̃

d̂TLA

D

σp,q 0

0σp−1,q+1

0

σp+1,q−1

0

• Let’s prove that δ̃∗ is surjective. Let σ a representative element of Hk(K(U ,F), D).
As a closed k-form, it can be written by the sum:

σ = σ0,k + σ1,k−1 + . . . + σk−1,1 + σk,0 (A.2.21)

where σi,j ∈ Ci,j(U ,F), such that:





d̂TLAσ0,k = 0

δ̃σ0,k + d̂TLAσ1,k−1 = 0

...

δ̃σp−1,q+1 + d̂TLAσp,q = 0

...

(−1)k−1δ̃σk−1,1 + d̂TLAσk,0 = 0

(−1)kδ̃σk,0 = 0

(A.2.22)
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Since (A.2.11) is exact, the last term σk,0 is exact with respect to δ̃. Thus, there
exist an element σ̃k−1,0 ∈ Ck−1,0(U ,F) such that

(−1)k−1δ̃(σ̃k−1,0) = σk,0 (A.2.23)

The second last line of (A.2.22) can now be written as

(−1)k−1δ̃σk−1,1 + (−1)k−1d̂TLAδ̃(σ̃k−1,0) = 0

One uses the fact that d̂TLA ◦ δ̃ = δ̃ ◦ d̂TLA to proves that σk−1,1 + d̂TLAσ̃k−1,0 is exact
with respect to δ̃. Thus, there exist an element σ̃k−2,1 ∈ Ck−2,1(U ,F) such that

(−1)kδ̃(σ̃k−2,1) − d̂TLAσ̃k−1,0 = σk−1,1 (A.2.24)

The same procedure is iterate along the diagonal so that one proves that the elements
σk−2,2, σk−3,3, . . . , σ0,k can be written in terms of elements σ̃k−3,2σ̃k−4,3, . . . , σ̃0,k−1

and an element ω ∈ Ωk(A, L).

More precisely, consider the element σ̃ ∈ Kk−1(U ,F) composed of the elements
σ̃0,k−1, . . ., σ̃k−1,0 previously defined. Then, the element σ ∈ Kk(U ,F) can be written
as:

σ = D(σ̃) + δ̃ω (A.2.25)

where ω ∈ Ωk(A, L).

p

q

δ̃

d̂TLA

D

σp,q 0

0. . .

0

. . . 0

σp+q,0
0

σ0,p+q

0

. . .

σp,q−1

σp−1,q

. . .

ω

Obviously, σ − Dσ̃ is a representative element of [σ] ∈ Hk(K(U ,F), D). It is easy to
see that d̂TLA(σ − D(σ̃)) = 0. Then, d̂TLA ◦ δ̃ω = δ̃ ◦ d̂TLAω = 0 so that d̂TLAω = 0.
Thus, the element ω obtained is an element of Zk((A, L), d̂).

By choosing the representative σ + D(η) of [σ] instead of σ, one would obtain that
σ + D(η) = D(σ̃ + η) + δ̃ω. This implies that the induced element ω remains the
same. Thus, the element ω does depend only on [σ].
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Conversely, one assumed that the k-form ω ∈ Ωk(A, L) defined by the equation
(A.2.25) is an exact form. Then, one would obtain

σ = D(σ̃) + δ̃d̂ρ = D(σ̃ + δ̃ρ) (A.2.26)

Thus, the element would be an exact form in Kk(U ,F).

One has shown that, to any [σ] ∈ Hk(K(U ,F), D), one can associates an element
[ω] ∈ Hk((A, L), d̂). This proves that the map δ̃∗ is surjective.

• Let’s prove that δ̃∗ is injective.

Let ω ∈ Ωk((A, L)) such that
D(σ) = δ̃ω (A.2.27)

So that D(σ̃) gives 0 except for the component d̂TLAσ̃0,k−1 ∈ C0,k(U ,F) which is
equal to δ̃ω. Implementing the same construction as before, one can easily show
that there exist an element ρ ∈ Ωk−1(A, L) and an element η̃0,k−2 ∈ C0,k−2(U ,F)
such that

δ̃ρ + d̂TLAη̃0,k−2 = σ̃0,k−1 (A.2.28)

Thus, the equation (A.2.27) becomes

d̂TLAδ̃ρ = −δ̃ω (A.2.29)

so that, one obtains that ω is an exact form in Ωk(A, L). This proves that the the
map δ̃∗ maps to the class [0] ∈ Hk(K(U ,F), D) only if ω is a representative of the
class [0] ∈ Hk((A, L), D).

One has prove that the map δ̃∗ is both injective and surjective and thus, one has
established an isomorphism of cohomological complexes

H•((A, L), d̂) ≃ H•(K(U ,F), D) (A.2.30)

A.2.2 Associated spectral sequence

Consider the bicomplex (C•,•(U ,F), d̂TLA, δ). One denotes by Hp,q(C•,•(U ,F), d̂TLA) the
cohomological class of C•,•(U ,F) with respect to d̂TLA at the bidegrees (p, q). The spectral
sequence associated to the extended bicomplex of Čech-de Rham (Er, dr)r=1,2 is defined as
follow. The first term of this spectral sequence is

Ep,q
1 = Hp,q(C•,•(U ,F), d̂TLA).

This first term can also be written as:

Ep,q
1 = Cp(U, Hq) (A.2.31)

where Hq is the presheaf which associates to an open subset Uα0...αp ⊂ M the cohomology
space Hq(Uα0...αp) = Hq(Ω•

TLA
(Uα0...αp , g), d̂TLA). The differential operator d1 is induced

from δ̃ as follow:

d1 : Hp,q(C•,•(U ,F), d̂TLA) → Hp+1,q(C•,•(U ,F), d̂TLA) ; d1ω =
∏

α0<...<αp

(δ̃ω)α0...αp

(A.2.32)
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where ω is a representative of [ω] ∈ Hp,q(C•,•(U ,F), d̂TLA). It is straightforward to see
that the image of ω by d1 is representative of the an element of Hp+1,q(C•,•(U ,F), d̂TLA).

The second term of this spectral sequence is then

Ep,q
2 = Hp(Ep,q

1 , d1) = Hp(C•(U , Hq), δ̃)

This is a Leray-Serre spectral sequence for which the fibration is not just along ordinary
spaces but along differential structures.

Recall that the differential operator d̂TLA can be locally decomposed as d̂TLA = d + s′

where d is the de Rham derivative and s′ is the Chevalley-Eilenberg derivative equipped
with the adjoint representation of g. Morerover, because U is a good cover, the de Rham
cohomology vanishes for q Ó= dim(M). Then, one has

Hq(Ω•
TLA(Uα0...αp , g), d̂TLA) = Hq((g, g), s′),

the Lie algebra cohomology of the usual differential complex (∧•g∗ ⊗ g, s′).

One has proved that there exist a spectral sequence (Er, d̂r)r≥0 which abouts to the
cohomology of (Ω•(A, L), d̂) such that Ep,q

2 = Hp(M; Hq(g, g)).

Remember that the restriction map i
Uj

Ui
for the presheaf F makes use of the action of

α̂
Uj

Ui
. The induced restriction map for the presheaf Hq is obtained by the induced action

of α̂
Uj

Ui
in cohomology. This implies that the presheaf Hq is not necessarily a constant

presheaf.
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(*CONSTRUCTION su(N) PAR RECURRENCE *)

(*donnée de la dimension*)

rankN = 3;

dimN = rankN^2 - 1;

(*initialisation*)

Esu2 = Table[0, {i, 1, 3}, {j, 1, 2}, {k, 1, 2}];

MatrixForm[Esu2[[1]] = I/Sqrt[2] {{0, 1}, {1, 0}}];

MatrixForm[Esu2[[2]] = I/Sqrt[2] {{0, -I}, {I, 0}}];

MatrixForm[Esu2[[3]] = I/Sqrt[2] {{1, 0}, {0, -1}}];

Esuprev = Esu2;

(*relation de récurrence*)

For[

r = 2, r < rankN, r++,

dim = r^2 - 1;

Esunext =

Table[0, {i, 1, (r + 1)^2 - 1}, {j, 1, (r + 1)}, {k, 1, (r + 1)}];

(*inclusion d’un bloc su(N-1) dans su(N)*)

Do[

Do[

If[i < (r + 1) && j < (r + 1) ,

Esunext[[k, i, j]] = Esuprev[[k, i, j]], Esunext[[k, i, j]] = 0

]

, {i, 1, (r + 1)}, {j, 1, (r + 1)}

]

, {k, 1, dim}

]

(*rajout des termes sur les bords*)

Do[

Do[

If[EvenQ[k],

Esunext[[(dim + 2 m + k), (r + 1), (1 + m)]] = -Sqrt[(1/2)],

Esunext[[(dim + 2 m + k), (r + 1), (1 + m)]] = I Sqrt[1/2]]

, {k, 1, 2}]

, {m, 0, (r - 1)}];

Do[

Do[

If[EvenQ[k],

Esunext[[(dim + 2 m + k), (1 + m), (r + 1)]] = Sqrt[1/2],
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Esunext[[(dim + 2 m + k), (1 + m), (r + 1)]] = I Sqrt[1/2]]

, {k, 1, 2}]

, {m, 0, (r - 1)}];

(*dernier générateur*)

Esunext[[((r + 1)^2 - 1), (r + 1), (r + 1)]] = (-I r)/

Sqrt[(r + 1) r];

Do[

Esunext[[((r + 1)^2 - 1), i, i]] = I/Sqrt[(r + 1) r]

, {i, 1, r}

]

(*fin de la boucle*)

Esuprev = Esunext;

];

EsuN = Esunext;

(*impression des générateurs de l’algèbre de Lie suN*)

Do[

Print[

MatrixForm[EsuN[[i]]]

], {i, 1, dimN}

];

(* Vérification Tr = -\delta *)

TrN = Table[0, {i, 1, dimN}, {j, 1, dimN}];

Do[

TrN[[a, b]] = Tr[

EsuN[[a]].EsuN[[b]]

], {a, 1, dimN}, {b, 1, dimN}

];

Print[MatrixForm[TrN]];

(******(*calcul des constantes de structures pour su(N)*)************)

CoefN = Table[0, {i, 1, dimN}, {j, 1, dimN}, {k, 1, dimN}];

Do[

CoefN[[a, b, c]] = Tr[

(EsuN[[a]].EsuN[[b]] - EsuN[[b]].EsuN[[a]]).(EsuN[[c]])

], {a, 1, dimN}, {b, 1, dimN}, {c, 1, dimN}

];

(*****************************************)

(*impression des constantes de structures*)

(*****************************************)
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(* simplification de l’écriture des constantes de structures*)

Do[

CoefN[[i]] = Simplify[CoefN[[i]]]

, {i, 1, dimN}

];

(*impresion des constantes de structures*)

Do[

Print[MatrixForm[CoefN[[i]]]]

, {i, 1, dimN}

];

(*calcul de la matrice des masses avec \tau=1*)

(*définition du projecteur \tau*)

tau = Table[0, {i, 1, dimN}, {j, 1, dimN}];

Do[

tau[[i, i]] = f[i]

, {i, 1, dimN}

];

(*réinitialisation \tau*)

Do[

f[i] = 1

, {i, 1, dimN}

];

(* fin réinitialisation \tau*)

MatrixForm[tau]

(*calcul du coefficient de masse*)

MasssuN = Table[

Sum[

CoefN[[a0, b0, c]] CoefN[[a1, b1, c]] tau[[d, b0]] tau[[d, b1]]

, {b0, 1, dimN}, {b1, 1, dimN}, {c, 1, dimN}, {d, 1, dimN}

]

, {a0, 1, dimN}, {a1, 1, dimN}

];

(*affichage*)

MatrixForm[MasssuN]
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Résumé de la thèse

Connus des mécaniciens de la géométrie de Poisson, les algébroïdes de Lie transitifs
sont ici étudiés du point de vue de leurs sections afin de développer un formalisme algé-
brique plus proche de celui développé par les théories de jauge. Dans cette approche, les
algébroïdes de Lie transitifs s’apparentent à une généralisation des champs de vecteurs sur
la variété de base. Ce mémoire de thèse a pour objet l’étude des connexions généralisées
sur les algébroïdes de Lie transitifs et la construction de théories de jauge.

Les connexions ordinaires sur les algébroïdes de Lie transitifs sont définies par des
1-formes de connexion de l’algébroïde de Lie à valeurs dans son noyau et vérifiant une
contrainte de normalisation sur ce noyau. En relâchant cette contrainte, on construit l’es-
pace des 1-formes de connexions généralisées qui se décomposent, à l’aide d’une connexion
ordinaire de fond, comme la somme d’une connexion ordinaire et d’un paramètre purement
algébrique défini sur le noyau.

Dans l’esprit des théories Yang-Mills, une action invariante de jauge est définie comme
la “norme” de la courbure associée à une connexion généralisée. De cette action, il découle
un lagrangien composé des termes des théories de jauge de type Yang-Mills-Higgs : le
terme cinétique associé aux champs de jauge et le terme de couplage minimal pour un
champ tensoriel scalaire plongé dans un potentiel quartique.

Dans le cas des algébroïdes de Lie d’Atiyah, la réduction du groupe de symétrie de la
théorie s’effectue par une redistribution des degrés de liberté dans l’espace fonctionnel des
champs de la théorie. Il résulte de ces manipulations la définition d’une théorie de type
Yang-Mills dont les bosons vecteurs sont des champs massifs.

Abstract Thesis

Transitive Lie algebroids are usually studied from the point of view of the geometry of
Poisson. Here, they are preferentially defined in terms of sections of fiber bundle in order
to get close to the formalism of the gauge field theory. Then, transitive Lie algebroids
can be seen as a generalization of vector fields on the base manifold. This PhD thesis is
concerned with the study of generalized connections on transitive Lie algebroids and the
construction of gauge theories.

Ordinary connections on transitive Lie algebroids are defined as the subset of 1-forms
on Lie algebroids with values in its kernel which fulfill a normalization constraint on
this kernel. By relaxing this constraint, we build the space of generalized connection 1-
forms. Using a background connection, we show that any generalized connections can
be decomposed as the sum of an ordinary connection and a purely algebraic parameter
defined on the kernel.

As in Yang-Mills theories, we define a gauge invariant functional action as the “norm”
of the curvature associated to a generalized connection. Then, the Lagrangian associated
to this action forms a Yang-Mills-Higgs type model composed with the field strength
associated to gauge fields and a minimal coupling with a tensorial scalar field embedded
into a quartic potential.

In the case of Atiyah Lie algebroids, the symmetry group of the theory can be reduced
by using an appropriate rearrangement of the degrees of freedom in the functional space
of fields. We thus obtain a Yang-Mills type theory describing massive vector bosons.


