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Abstract

The security policies are commonly specified through permissions, prohibitions and

obligations. Permissions and prohibitions are generally used to specify access control

policies, while obligations are useful to express usage control policies. Two different

types of obligations are generally considered, namely system obligations and user obli-

gations. User obligations are associated with deadlines. When these obligations are

activated, these deadlines provide the user with some time to enforce the obligation

before violation occurs. Using obligations with deadlines in security policies may cause

a new type of conflict. This kind of conflict could happen in presence of overlapping

deadlines. In this thesis, we propose a language based on a deontic logic of actions to

express permissions and obligations. The semantic of the proposed language is defined

using the situation calculus formalism. This allows us to analyze decidability and com-

plexity of several problems such as planning tasks. We then use the planning task to

prove the existence of conflictual situations. Once the conflicts are detected, we use

delegation to redistribute obligations in order to resolve these conflicts and thus avoid

possible violations. Furthermore, we show that obligations and permissions are not

sufficient to preserve interests of the system’s users. Indeed, for fairness reasons, the

possibility of executing actions achieving their interests should be always preserved.

Otherwise, violations are triggered. However, these actions are not obligations since

users have the choice to execute them or not. Thus, the violation is the consequence of

system’s failure in preserving the choice of users. Consequently, we enriched our model

with right rules to enable this feature. Finally, we show how the use of rights allows

the refinement of responsibility when conflicts occur.

Keywords: Computer security, Security policy, Access and usage control, Obliga-

tion with deadline, Situation calculus, Conflict management, Planning.





Résumé

Les politiques de sécurité s’expriment en général par des règles de permissions et

d’interdictions. Plus récemment, les spécifications et mises en oeuvre des règles

d’obligation commencent à voir le jour, notamment pour exprimer des politiques de

contrôle d’usage. Dans cette thèse, nous proposons un langage reposant sur les modal-

ités déontiques pour spécifier des politiques d’obligations avec délais. Ce modèle est

intégré dans le langage du calcul des situations séquentiel temporel. Le modèle permet

de prouver si un ensemble d’obligations actives dans une situation donnée est globale-

ment satisfaisable ou non. La démarche repose sur une recherche de planification des

obligations. Le modèle permet aussi d’exprimer les permissions et analyser un autre

type de conflit lorsqu’il est impossible de trouver un plan d’actions permises qui per-

met de remplir les obligations avec deadline. Le modèle permet aussi de spécifier un

ensemble de contraintes associées à la politique de sécurité. La démarche permet de

prouver que les contraintes seront toujours satisfaites. Finalement, nous avons étendu

notre modèle pour définir une politique incluant des règles de droit. La sémantique

proposée permet de formaliser la différence entre permission et droit. Cette distinction

permet de prouver si un conflit dans une situation donnée provient d’une anomalie

dans la politique ou si elle relève de la responsabilité d’un utilisateur. De plus, le mod-

èle formalise une propriété d’équité dans le jugement des responsabilités. Lorsqu’un

utilisateur a la possibilité de changer son comportement pour éviter un conflit, il est

considéré responsable. Le modèle permet également de formaliser les situations de

responsabilité partagée.

Mots Clés : Sécurité informatique, Politique de sécurité, Contrôle d’accès, Con-

trôle d’usage, Obligations avec délais, Calcul des situations, Gestion des conflits, Plan-

ification.
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CHAPTER

1 Introduction

1.1 Motivation and background

In Information systems used in many domains like health care information systems,

it is important that information is accessible only to authorized users (confidentiality

property) and must protect the accuracy and integrity of information and treatment

methods (integrity property). It is also important that authorized users can access

to information when they need it (availability property). Security of an information

system is characterized by enforcement of these three properties which are guaranteed

through a set of rules defined in the security policy of this system.

The security policies are often defined as permissions, prohibitions and obligations.

Permissions and prohibitions are generally used to specify access control policies.

As suggested in many works before, obligations are useful to express usage con-

trol policies [Cuppens et al. 2005, Elrakaiby et al. 2012a]. The application of these

rules to the same object may lead to conflicting situations. Preliminary work on

the classification of conflicts are reported in [Moffett and Sloman 1993], where several

types of conflicts have been defined (see also [Bertino et al. 1996, Dinolt et al. 1994]).

[Benferhat et al. 2003] presents an approach based on possibilistic logic to deal with

conflicts in prioritized security policies. However, there is another type of conflict which

is not managed yet, namely the conflict between obligations with deadlines. This kind

of conflict could happen in the case of overlapping deadlines. Thus, one of the objec-

tives of this thesis is to provide a model for expressing the rules of obligations with

deadline, detect violations and conflicting situations.

Furthermore, obligation and permission rules are not sufficient to express certain in-

terests. Indeed, there are actions representing the interests of users in the information

system which should always be possible to be executed in order to protect those in-

terests, otherwise violations are triggered. These actions are not obligatory, insofar

as there are no violations due to non-execution of these actions. However, the failure

to ensure their execution induces a violation. This need could be formulated using
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the rules of right. For example, CNIL (Commission National de l’informatique et des

libertés) 1 gives a list of rights and made provisions of steps to follow if these rights are

violated2. However, the use of right rules in the security policies causes a new type of

conflict which is not yet treated in the literature. It is a conflict that arises when the

execution of a right prevents an obligation from being fulfilled within its deadline or

conversely, fulfilling an obligation within its deadline necessarily leads to the violation

of a right. Thus, another goal of this thesis consists in providing a formal framework

which first gives a semantics for rights, then enables detection of right violations and

conflicts between rights and obligations.

Nevertheless, a conflict in a given situation does not come necessarily from security poli-

cies. Sometimes it could be avoided if users had adopted a different behavior within

an interval of time before that conflict occurs. Another goal of this thesis is to specify

when it is possible to challenge the actions executed by users in order to determine

responsibilities concerning conflictual situations.

1.2 Contributions

First, we provide a language based on deontic modalities to specify obligation policies

with deadline, and we present a model based on temporal sequential situations calculus

to give semantics to our language. Our model enables us to prove if active obligations

in a given situation are globally enforceable or not using the planning task. This al-

lows us to detect a conflict between obligations with deadline in usage control policies.

This work was published in [Essaouini et al. 2013]. Our model is then extended in

[Essaouini et al. 2014a] to express permissions and system obligations. This induces

a new type of conflict which occurs when it is impossible to find a plan of permitted

actions to achieve a situation where obligations are fulfilled in their deadlines. We

provide an algorithm for searching situations where this kind of conflict arises. In the

plan search, the choice of the execution time of the elected action obeys to equations

and inequalities over the reals which needs to be solved. For this purpose, we use a

component allowing temporal reasoning and SIMPLEX resolution. To illustrate our

approach, we take an example inspired from existing laws in hospitals regulating dead-

lines for completing patient medical records. The example is formally specified in our

language and implemented in ECRC Common Logic Programming System ECLIPSE

1An independent French administrative authority. It is responsible for ensuring that information

technology is at the service of citizens and it does not affect human identity, nor the rights or privacy,

or individual and public freedoms. It carries out its tasks in accordance with Law No. 78-17 of 6

January 1978 amended August 6, 2004
2http://www.cnil.fr/vos-droits/plainte-en-ligne/
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3.5.2, which is equipped with Simplex algorithm for solving linear equations and in-

equalities over the reals. In the implementation, we show how the plan search can be

optimized through the use of some heuristics and make some evaluation tests.

Furthermore, constraints in access control models are used to organize access priv-

ileges in order to avoid fraudulent situations. Ensuring that the constraints are

satisfied during the evolution of the system is an important issue. In our work

[Essaouini et al. 2014b], we extend our model to express the constraints policy, this

allows us to have a formal reasoning language in order to prove that the constraints

are always satisfied. The proposed language can be used to specify various constraints

mentioned in the literature. In addition, we formally specify the condition to prove

that the system specification is secure with respect to the access control requirements.

Finally, our model is enriched by rules of right. We give semantics to the right through

the difference that we make in our language between permitted actions and possible

actions. In our model, we can prove if a conflict in a given situation comes from the

policy or from the users responsibility. The behavior of users that make them respon-

sible for conflict can be due to intervals of time exploited wrongly. It can also be the

result of execution of some actions which prevent the users from fulfilling some of ac-

tive obligations for example. This leads to a situation where several obligations have

been accumulated and become impossible to fulfill within their deadlines. However not

all actions may be revoked. We cannot revoke an action for which there is a right to

execute it. This is because we consider it is unfair to revoke a right, which has been

exercised and also because a right which is not preserved leads to penalties as well as

failure to fulfill obligations within their deadlines. This is another interest for enrich-

ing a security policy by a new modal operator of right that our model can express. In

addition our model ensures a property of fairness in the judgment of responsibilities.

To the extent that every time there is a user who could change its behavior to avoid

conflict, he is considered responsible. Our model also allows us to formally express a

shared responsibility.

1.3 Outline of the dissertation

In this thesis, we first present in chapter 2 the situation calculus and state of the art

related to access control models and usage control policy languages. In chapter 3, we

explain how to define security policies that include obligations with deadline. This

model is based on deontic logic, and a security policy is viewed as a set of deontic

norms. In this chapter we extend situation calculus to formally derive which actual

norms apply in a given situation. We also formally define when an obligation with
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deadline is violated. In chapter 4, we extend our model to support constraints in

access control policies. We show how this language is adequate to express well-known

constraints in the literature. Then, we give a procedure based on the regression concept

to enforce these constraints. In chapter 5, we show how to detect the presence of

conflicting norms in the policy. We give the specification of a motivation example

and show how our implementation, using the programming language GOLOG, detects

conflicting obligations in a given situation. In chapter 6, we show how right rules

can enrich security policies and allow the formulation of interests which can not be

formulated using permission and obligation rules. In this chapter, we also formally

define when a right is violated and show how to detect the presence of another kind

of conflict that occurs when right rules are included in access control policies. We

propose in chapter 7 an approach which provides means to determine if there are users

responsible for conflictual situations. In this chapter we propose a possible solution

to solve conflict based on delegation of obligations and renunciation of rights. Finally,

discussions and perspectives are presented in chapter 8.



CHAPTER

2 Preliminaries and State

of the Art

2.1 Introduction

A security policy specifies security requirements through permissions, prohibitions and

obligations. A logic language is used to express in a clear and unambiguous way

these rules in order to reduce the complexity of the specification and facilitate its

understanding. A security model provides the elements necessary to analyze, validate

and enforce security policies. In particular, a security model is useful to verify that

a policy is complete and consistent. Furthermore, it can be used to verify that the

implementation by system complies with the expected properties. In this chapter, we

give an overview of current security models and policy languages while discussing their

limitations. We start by analysing access control models in section 2.2. In section

2.3, we discuss obligation and usage control policy languages and models. Some policy

analysing techniques are presented in section 2.4. Finally, we present in section 2.5 an

overview of situation calculus, the formalism language that we use in the remainder of

this thesis.

2.2 Access control models

2.2.1 Identity based access control model

We call IBAC (Identity Based Access Control) the first access control model proposed

in the literature [Lampson 1971]. This model introduces the basic concepts of subject,

object and action:

• The subject is the active entity of an information system (IS). Usually, it denotes

a user or an application which runs on behalf of a user.
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• The object is the passive entity of IS. It denotes an information or a resource to

which a subject can access by performing an action.

• The action denotes the desired effect when the subject accesses an object. One

can for example read or update the information in an object or copy the content

of an object into another object.

The objective of IBAC model is to control the access of subjects to objects through

the use of actions. This control is based on the identity of a subject and the object

identifier.

The IBAC model introduces the concept of authorization policy. In IBAC, an autho-

rization policy is the set of positive authorizations (or permissions) with the following

format: a subject has the permission to perform an action on an object. The specifica-

tion of negative authorizations (or prohibitions) are introduced in more recent access

control models.

In fact, in IBAC, it is implicitly assumed that the access control policy is closed. This

means by default all access are prohibited. The authorization policy specifies permis-

sions and an access is denied if the authorization policy does not enable to derive that

the access is explicitly permitted.

To represent an authorization policy, the proposed model in [Lampson 1971] introduces

another important concept: access control matrix, which will then be included in sub-

sequent models (see for example [Harrison et al. 1976]). In an access control matrix,

the rows and columns of the matrix correspond, respectively, to all subjects and objects

of the IS. The elements of the matrix represent all the permissions that a given subject

has on a given object.

The model of type IBAC is implemented in the most current operating systems such as

Windows, Unix or Linux. To implement such a model in IS, the access control matrix

is not directly implemented. In fact, there are two main approaches depending if the

implementation is based on a decomposition in rows or columns of the matrix.

The decomposition in columns associates with each object, a descriptor called an access

control list, which represents all subjects having access to the considered object. And

for each subject, all the actions that this subject can perform on that object.

The decomposition in rows associates with each subject, a set of capabilities, repre-

senting the set of objects which can be accessed by this subject. And for each object,

all the actions that the subject can perform on that object.

The IBAC model has an important limitation: the authorization policy could become

quickly complex to express and manage. In fact, it is necessary to list the permissions

for each subject, action and object. In particular, when a new subject or an object

is created, it is necessary to update the authorization policy in order to define new
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permissions associated with this subject or this object.

To overcome this problem, other models have been defined. All these models have in

common to provide a more structured authorization policy expression. We present in

the following sections, models offering respectively a structuration of subjects, actions

and objects.

2.2.2 Role-based access control model

The RBAC model (Role Based Access Control, see [Sandhu et al. 1996]) proposes to

structure the expression of authorization policy around the concept of role. A role is

an organizational concept: roles are assigned to users according to the function that

the user plays in the organization.

The basic principle of the RBAC model is to consider that permissions are directly

associated with roles. In RBAC, roles receive authorizations to perform actions on

objects. As IBAC, R-BAC model considers only positive authorizations (permissions)

and therefore it is assumed that the policy is closed.

Furthermore, the RBAC model introduces the concept of session. To perform an action

on an object, a user must first create a session and in this session, activates a role which

has the permission to perform this action on this object. If such a role exists and the

user was assigned to this role, then this user will have the permission to perform this

action on this object once this role is activated.

When a new subject is created in the IS, it is sufficient to assign roles to this subject,

thus this subject can access to the IS according to the permissions granted to this set

of roles. Therefore, compared to the IBAC model, the management of authorization

policy is simplified since there is no need to update this policy every time a new subject

is created.

In general, any set of roles can be assigned to a user, and a user can activate in a session

any subset of roles which was assigned to him/her. The RBAC model introduces

the notion of constraint to specify authorization policies including more restrictive

situations. Thus, a static separation constraint specifies that certain roles (e.g., nurse

and physician) can not be assigned to a user simultaneously. A dynamic separation

constraint specifies that, although some roles can be assigned to a user (for example

liberal doctor and surgeon) these roles can not be active simultaneously in the same

session.

In RBAC, it is also possible to organize roles hierarchically. Roles inherit permissions

from other roles that are hierarchically below them. When a role r1 is hierarchically

superior to a role r2, we say that r1 is a senior role of r2. Today the RBAC model is a

standard [Ferraiolo et al. 2001]. Many IS implement this standard, for example Unix
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Solaris from version 8 or the API Authorization Manager RBAC of Windows Server

2003.

2.2.3 Task based access control model

In IBAC and RBAC models, actions correspond generally to basic commands, such as

reading the contents of an object or writing in an object. In recent applications, there

is a need to control the execution of composite actions, called tasks or activities. The

need to control composite activities is particularly present in Workflow applications

[Atluri and Huang 1996].

The TBAC model (Task Based Access Control, see [Thomas and Sandhu 1998]) is the

first model which introduced the concept of task. Then, other models were developed

to monitor the implementation of activities in a workflow (see [Bertino et al. 1999,

Atluri et al. 2000]). In particular, the user must obtain permission just in time when

there is a need to continue the execution of the activity.

2.2.4 View based access control model

The RBAC and TBAC models introduced, respectively, the concepts of role and task

in order to structure subjects and actions. To facilitate the expression and the man-

agement of authorization policy, there is also a need for a concept which enables to

structure objects.

Among the access control models proposing a structuration of objects, we quote the

security model proposed by SQL for relational databases. The expression of a security

policy in SQL is based on the concept of view. We denote by VBAC (View Based

Access Control) this kind of access control models.

Intuitively, in a relational database, a view is the result of an SQL query which was

denoted by a given name. This concept of view is then used to structure the expression

of authorization policy using GRANT statements (which allows granting a new per-

mission to a user) and REVOKE (which allows deleting a permission that a user had).

Thus, a view is an effective way to provide an access to all objects in the view. Note

that these objects are sometimes virtual insofar as a SQL view is not materialized.

SQL/3 [Lentzner 2004], which is the latest evolution of the SQL standard, proposes

to extend the VBAC model by combining the concepts of view and role in order to

structure objects and subjects. Thus, the VR-BAC model is defined.

The concept of view is not limited to relational models. It could also be used in an oper-
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ating system. Currently, most operating systems propose just the concept of directory

in order to structure the expression of authorization policies.

2.2.5 Team-based access control model

In recent applications, it is often necessary to consider several organizations simulta-

neously. For example, in web services applications, a user of a certain organization

may wish to access data belonging to another organization. An organization is a struc-

tured entity. For example, a hospital is an organization that is divided into several

sub-organizations: the different departments of the hospital, the various services of

these departments, etc. Each organization generally manages its own authorization

policy. Some organizations may also be created dynamically depending on the activi-

ties that must support the hospital. For example, a health-care team can be created

to support a particular patient. This organization could be deleted once the activities

were made. Notice that the permissions of a subject not only depend on the role of

the subject but also of the structure within which the subject performs its role. This

problem was identified in the TMAC model. The TMAC (Team-Based Access Control,

see [Thomas 1997]) model introduces the concept of team. In TMAC, permissions are

associated with roles as well as teams. The subject’s permissions result from the com-

bination of permissions associated with the roles played by the subject and permissions

associated with the team in which the subject is assigned. Various combinations (for

example, the union of permissions) are considered. In fact, the TMAC model is incor-

rect because it introduces two binary relations: role-permission and team-permission.

If the team concept is introduced, a ternary relation team-role authorization must be

introduced. This is necessary to specify that authorizations do not depend only on role

but also on the team in which this role is exercised. Using such a ternary relation, it is

easy to specify the fact that the authorizations of the role doctor can change depending

on the doctor is in the team of health-care or in the emergency team. This imperfection

of the TMAC model has been corrected in the Or-BAC model, which we present latter

in this section.

2.2.6 Dynamic and contextual authorization models

In practice, many permissions are not static but depend on contexts. When these

contexts hold, the permissions are activated dynamically. This is called contextual

authorizations.

Permissions may depend on temporal contexts, geographical contexts, or provisional
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contexts (permission if other actions were previously performed as in the case of a

workflow). Other types of contexts may be defined ([Cuppens and Miege 2003]).

To represent these contextual authorizations, several access control models based

on rules have been proposed (model of type Rule-BAC, see [Jajodia et al. 2001,

Bertino et al. 2001]). In these models, an authorization policy is considered as a set

of rules of the form condition → permission which specify that a permission can be

derived when a certain condition holds.

Models of type Rule-BAC are based on first-order logic which is, in general, undecid-

able. To deal with this problem, most of these models propose to use Datalog to get

a decision procedure in a polynomial time. However rules must be conform to certain

syntactic restrictions ([Ullman 1988]).

Compared to the models presented in the previous sections, Rule-BAC models have

a greater expressiveness as it is possible to specify contextual authorizations. How-

ever, there is a lack in the structuration of the authorization policy which calls for the

introduction of the concepts of role, activity, view and organization.

2.2.7 Organization based access control model

The OrBAC model (Organization Based Access Control, see [Kalam et al. 2003]) ex-

ploits the concepts of role, activity, view and organization introduced respectively in

the RBAC models, TBAC, VBAC and TMAC. In OrBAC, an expression of authoriza-

tion policy is focused on the concept of organization.

The concepts of roles, views and activities are organizational concepts. Each orga-

nization defines the roles, activities and views, in which it wants to regulate access

by applying an authorization policy. Therefore, the OrBAC model introduces three

relationships: relevant-role, relevant-activity and relevant-view, in order to specify re-

spectively the roles, activities and views managed by the organization.

Thereafter each organization specifies assignments of subjects to roles using the ternary

relation empower. We can notice that this model allows, for example, to consider that

the same subject is assigned to different roles according to the concerned organization.

Similarly, two other ternary relationship consider and use are used. The ternary re-

lationship consider is used to specify, for each organization, the relationship between

action and activity. The ternary relationship use is used to specify, for each organiza-

tion, the relationship between object and view.

The OrBAC model also provides the ability to specify role-definition, view-definition

and activity-definition. A role-definition is a logical condition that, if satisfied, leads

to the conclusion that a subject is automatically assigned to the role corresponding to

the role-definition. Similarly, a view-definition and an activity-definition correspond to
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logical conditions which respectively manage views and activities.

Furthermore, the concept of context is explicitly introduced in the OrBAC model. The

definition of context is a logical condition. When this condition is satisfied, it can

conclude that the corresponding context holds. Note that each organization defines its

own contexts. This is used to express a context which may vary from an organization

to another.

Therefore, an authorization policy is expressed by specifying for each concerned or-

ganization, the activities that the roles have the permission to perform on the views

and in which context. Thus, the authorization policy is expressed independently from

the sets of the subjects, the actions and the objects managed by the IS. This is called

organizational authorization policies.

The model proposes the rules of passage, to derive automatically, from the organi-

zational authorization policy, the concrete permissions to apply to specific subjects,

actions and objects. This rule specifies that in a given organization, if a subject is

assigned to a certain role, an object is used in a certain view, an action implements

some activity, and if the authorization policy of this organization specifies that the role

is permitted to perform this activity in this view, then it can derive that the subject is

permitted to perform this action on this object if the conditions corresponding to the

context hold [Cuppens and Miege 2003].

The OrBAC model defines also role hierarchies (as in RBAC), in addition to the hierar-

chy of activities, views and organizations. Each of these hierarchies is associated with

a permission inheritance mechanism [F. Cuppens and Miége 2004]. The definition of

these hierarchies allows a more modular organizational expression of the authorization

policy.

In conclusion, the Or-BAC model imposes the same syntactic constraints as imposed

by Datalog. This allows to maintain a decision procedure computable in polynomial

time even when considering contextual authorizations. Thus, the Or-BAC model pro-

vides an expressiveness comparable to the other models such as Rule-BAC models while

providing a structured expression of the authorization policy.

2.3 Usage control models

Classical access control models specify whether a subject has the authorization to per-

form an action on an object of IS. Optionally, a contextual condition can be associated

with the authorization. This condition must be met before the execution of the action.

With the development of digital rights management applications (DRM), there is a

need to specify conditions that must be met not only before but also during or after
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an action was performed. For example, a server which enables listening music should

be able to specify that the payment must be made before, during or after listening

to a song. To express this kind of authorization policies, access control models are

not sufficient. Therefore, usage control models start to be proposed. In this section,

we present some of these frameworks which support obligations to meet usage control

requirements.

2.3.1 Policy rule management including provisions and obli-

gations

The model proposed in [Bettini et al. 2002b] extends rule-based access control models

to support provisions and obligations. Provisions denote actions which a subject must

perform before access, while obligations are actions which a subject will have to per-

form after access. This model makes a distinction between obligations and provisions

by associating to each one of them a different set of predicates. The set of required

provisions and obligations is calculated beforehand for each atom in the security rules.

This set is denoted Global Provisions and Obligations Set (GPOS). Concerning the

provision and obligation requirements corresponding to a given access request, they

are calculated using the set GPOS, when the request is issued. If these requirements

are satisfied, access is granted, otherwise, the user is informed about the provisions and

obligations that he must meet to satisfy his/her request.

This framework has been extended later in [Bettini et al. 2002a, Bettini et al. 2003]

to support obligations specification and enforcement. Obligation rules have been en-

riched by the specification of the set of actions to execute when the obligations are

fulfilled. When an obligation is violated, this triggers another obligation and another

set of actions should be taken.

Concerning the mechanism of obligation enforcement, the authors propose to set up

triggers. When obligations are accepted by users, triggers are derived from the defini-

tion of obligations. These triggers will be used to check if the obligations are fulfilled.

The derivation of the time when the obligations have to be verified is based on temporal

reasoning techniques.

The specification of rules in this model is not uniform. In fact, each rule can specify

any number of parameters. This complicates the interpretation of the policy because

of the hierarchical definition of obligations.
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2.3.2 Privacy policies in access control model

In [Ni et al. 2008], authors defined an obligation model to enable the specification of

privacy requirements in access control models. This model introduced repeating and

conditional obligations in addition to pre and post obligations.

The number of times that an obligation must be fulfilled is specified through variables

in a temporal constraint. The temporal constraint specifies also the time interval in

which the obligation must be fulfilled. The distinction between pre-obligation and

post-obligation depends on the lower endpoint of this interval.

In this model, there is a hierarchical dependency between obligations and permis-

sions. In fact, obligations are activated only if a request for access is issued. In addition,

the semantic of conditional obligation is not completely formalized. Furthermore, the

management and the enforcement of obligations in this model is complicated due to

the lack of clarity in how the fulfillment and violation of obligations affects the state

of policy.

2.3.3 The UCONABC model

The UCONABC model [Park and Sandhu 2004] is based on three components for us-

age control: Authorizations, oBligations and Conditions. The authorization component

evaluates conditions related to the subject’s and object’s attributes. Obligations specify

actions or operations that must be executed. The environmental conditions are spec-

ified through the condition component. The conditions that must be satisfied before

access are verified by pre functional predicates. While conditions that must be true in

current access are verified by ongoing predicates. Thus, if the pre-functional predicates

are true, the access is allowed. When the ongoing functional predicates become false,

the ongoing access is revoked. UCONABC enables also the update of subject and object

attributes as side effect of usage. This is called attribute mutability.

As pointed out in [Janicke et al. 2007], the lack of obligation monitoring and obligation

fulfillment notions in UCONABC explain why this model could fail to express properly

a desired requirement. This is certainly the reason why this model does not support

obligations which are not related to the usage session. Authors in [Janicke et al. 2007]

discussed other limitations of UCONABC as the fact that it does not support conflict

detection and resolution techniques.
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2.3.4 Obligation specification language

The Obligation Specification Language (OSL) [Hilty et al. 2007] enables the specifi-

cation of restrictions on usages and mandatory actions. The language specification

is based on typed set theory and First-Order Logic with equality. The semantics is

defined over event traces with discrete time steps. The semantics formalize the fact

that the trace of events (occurrence of actions) is consistent with the policy.

The OSL model does not formalize how states evolve when events occur. Thus, it is

not useful for analysing usage control policies. Furthermore, OSL policies are difficult

to specify and interpret.

2.3.5 Enforcement and management of obligation policies

In [Elrakaiby et al. 2012b], the authors present an obligation model based on the con-

cepts of Event Condition Action. It supports pre and post-obligations as well as on-

going, and continuous obligations. The specification and the enforcement of sanctions

for users that violate obligations, and re-compensation for users that fulfill their obli-

gations are also supported in this model. To manage conflicts and lack of permissions,

they propose to cancel obligations and the delay of obligations.

In contrast, the presented model does not manage accountability [Irwin et al. 2006,

Irwin et al. 2008, Pontual et al. 2010a, Pontual et al. 2010b]. In this sense, the au-

thors in [Pontual et al. 2011] give means for administrator to find the user responsible

for violation. Furthermore, the model manages dependencies between obligations. This

enables the administrator to find the obligations that can be affected by the obligations

which have not been fulfilled.

2.4 Managing policy conflicts

Initially, access control models allowed only the expression of positive authorizations

(permissions). Recently, models enable also to express negative authorizations (prohi-

bitions). Combining positive and negative authorizations in access control policies is

interesting for several reasons:

• Some authorization policies are easier to describe using prohibitions than permis-

sions.

• When the authorization policy must be updated, sometimes it is easier to insert

a prohibition than deleting an existing permission.
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• The combination of permissions and prohibitions is a simple way to express rules

with exceptions.

However, one problem arises when permissions and prohibitions are consid-

ered together in authorization policies [Lupu and Sloman 1999, Capitani et al. 2005,

Cuppens et al. 2007]. Indeed, for a subject, an action and a given object, it is possible

that the authorization policy allows deriving that the access is both permitted and

forbidden. To solve these conflicting situations, several strategies have been proposed

in the literature. In the following, we present some works from the literature wich deals

with conflicts in access control policies. Furthermore, we discuss conflicts which arise

when obligations are used in the policy language.

2.4.1 Access control policy analysis techniques

To solve conflicts between permissions and prohibitions, several approaches have been

proposed in the literature. Some approaches (see for example [Jajodia et al. 2001])

consider only simple strategies, such as prohibitions always outweigh permissions, or

permissions always outweigh prohibitions. These strategies are not suitable for address-

ing the problem of exceptions. Indeed, if a prohibition is an exception of a permission,

then this prohibition shall prevail over this permission. Otherwise, if a permission is

an exception of a prohibition, then the permission must prevail over the prohibition.

To manage exceptions, several models (e.g., [Benferhat et al. 2003]) proposed to intro-

duce priorities between the rules of the authorization policy. Most firewalls provide

representative examples to implement such strategies. Indeed, the rules for filtering a

firewall can be interpreted as a set of positive or negative authorizations. Generally,

the priority of filter rules corresponds to the order in which the rules were written.

Thus, when several rules are applied to a single packet, the final decision corresponds

to the first applicable rule (first matching strategy). Therefore, the ordering of rules

constitutes a simple, but effective, way to resolve conflicts in authorization policies

which include permissions and prohibitions.

Concerning the detection of such conflicts, authors in [Becker and Nanz 2010] define a

logic which extends datalog [Ullman 1988, Abiteboul et al. 1995] to specify state mod-

ifications after access requests. A proof system has been developed for this logic. This

system allows determining the sequences of command to reach a particular system

state.

However, the work in [Becker and Nanz 2010] considers only authorization policies.

Therefore, it does not support obligations.



16 CHAPTER 2. PRELIMINARIES AND STATE OF THE ART

2.4.2 Obligation policies analysis techniques

Conflicts in obligation policies arise when a subject is imposed obligations, which can-

not be fulfilled simultaneously. A conflict can also occur when a subject is obliged and

prohibited to execute the same action. In this section, we first discuss how conflicts

between system obligations can be resolved. Then, we present a framework which

analysis policy conflicts when obligations are supported.

Conflicts between System-obligations

Authors in [Chomicki and Lobo 2001, Chomicki et al. 2003], present a framework

based on the policy language PDL [Lobo et al. 1999] to resolve conflicts between sys-

tem obligations.

An action constraint is used to specify actions and conditions under which these ac-

tions must never be executed together. There are two approaches to solve such kind

of conflicts:

• Cancellation of some actions causing the conflict. The set of canceled actions must

be minimal.

• The event cancellation strategy. This strategy consists of ignoring the events that

caused the conflict.

In this work, a disjunctive logic program is used to formalize the semantics of conflict

resolution. This program calculates the maximal sets of non-conflicting actions using

the sets of events.

Sometimes it is enough to grant a delay on the execution of conflicting actions to resolve

a conflict. This is the purpose of the work presented in [Chomicki and Lobo 2001]. This

approach is based on the work previously presented in temporal action constraints

[Chomicki 1995] where temporal action constraints were discussed. The specification

of the actions previously executed is made using past temporal constraints.

Policy analysis in dynamic systems

The framework presented in [Craven et al. 2009] provide means to analyze authoriza-

tion and obligation policies. In this work, authors distinguish the policy representation

language from the domain description language. To describe dynamic domains, the

Event Calculus [Kowalski and Sergot 1986, Miller and Shanahan 2002] is used. The

policy and the domain description constitues what the autors called domain-constrained
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policy P . The analysis of domain constrained policies is based on the abductive con-

straint logic programming proof procedure described in [Nuffelen 2004].

Given the domain-constrained policy P and a goal G, the analysis problem consists

of finding the set of ground abducible predicates that if added as input to P , the goal G

is achieved. The abductive reasoning enables to detect modality conflicts. Indeed, the

goal to reach can be a situation where some subject is both permitted and prohibited

to execute some action on some target, or situations where a subject has an obligation

to execute some action which s/he is not permitted. This framework does not support

the detection of conflict between obligations with deadlines.

In the following, we give an overview of situation calculus. The situation calculus

is the formalism that we use to detect conflicts between obligations with deadlines and

other conflicts that we present in the following chapters.

2.5 Situation calculus

The situation calculus [McCarthy 1983] is a second-order logic language specially de-

signed to represent the change in dynamic worlds. The ontology and axiomatization

of the sequential situation calculus was extended to include time [Reiter 1998], con-

currency and natural actions [Reiter 1996], etc, but in all cases the basic elements of

language are actions, situations and fluents. The situation calculus language used in

this thesis is described below.

2.5.1 The language

The language consists of the following ontology:

• All changes in the world are the results of actions. They are designated by terms

of first order logic. To represent the time in the situation calculus, we add a

time argument in all instantaneous actions which is used to specify the exact

time or time range in which the actions occur in world history. For example,

sign(Jean, dischargeNote(Mary), 100) is the instantaneous action of signing the

discharge note of Mary by Jean at the moment 100. The actions are instan-

taneous, but we can express actions with duration. For example, consider the

following two instantaneous actions, startConsultation(d, p, t), meaning d starts

consultation of p at time t, and endConsultation(d, p, t′), meaning d ends con-

sultation of p at time t′. The fluent inConsultation(p, s), expressing the patient
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p is in consultation in the situation s, turns from false to true if there exists a

time t and doctor d when the action startConsultation(d, p, t) is performed, and

turns to false if there exists a time t′ when the action endConsultation(d, p, t′) is

performed. Thus in situations where fluent inConsultation(p, s) is true, we can

describe the properties of the world, such as the heartbeat of p per unit of time,

as a function of time that must be true during the progress of consultation.

• A possible history of the world, which is a sequence of actions is represented by

the first order terms denoted situations. The constant S0 is the initial situation.

• There is a binary function symbol do; do(α, s) denotes the situation result-

ing from the execution of the action α in the situation s. For example,

do(write(Jean, dischargeNote(Mary), 5),

do(write(Jean, consultationReport(Mary), 8),

do(write(Jean, admissionNote(Mary), 10), S0))) is the situation indicating the

history of the world which consists of the execution of the sequence of actions

[write(Jean, admissionNote(Mary), 10), write(Jean,

consultationReport(Mary), 8), write(Jean, dischargeNote(Mary), 5)].

• Fluents describing the facts of a state. There are two types of fluents; relational flu-

ents and functional fluents. Relational fluents are symbols of predicates which take

a term of type situation as the last argument, which their truth values may vary

from one situation to another. For example, inConsultation(Mary, s), means that

Mary is in consultation at situation s. Functional fluents are denoted by function

symbols that take a situation as the last argument, which the truth of their func-

tion values change from one situation to another. For example, heartbeat(Mary, s)

denotes the number of heartbeats of Mary in situation s.

• There are also symbols of predicates and functions (including constants) denoting

relations and functions independent of situations.

• A particular binary predicate symbol <, defines a strict order relation on situa-

tions; s < s′ means that we can reach s′ by a sequence of actions starting from s.

For instance, do(a2 , do(a1 , S0 )) < do(a4 , do(a3 , do(a2 , do(a1 , S0 )))).

• A second particular binary predicate symbol Poss, defines when an action is pos-

sible. Poss(a, s) means that the action a can be executed in the situation s.

• A function symbol time: time(a) denotes the time when the action a occurs.

• A function symbol start: start(s) denotes the start time of the situation s.
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2.5.2 fundamental axioms

The basic axioms for the situation calculus, as defined in [Lin and Reiter 1994] and

[Reiter 1991] are as follows:

• The second order induction axiom:

(∀P ).[P (S0) ∧ (∀a, σ)(P (σ) → P (do(a, σ)))] → (∀σ)P (σ)

The induction axiom says that to prove that property P is true in all situations it

is sufficient to prove that P is true in the initial situation S0 (initialization step)

and for all actions a and situations σ, if P is true in the situation σ, then P is still

true in the situation do(a, σ) (induction step). The axiom is necessary to prove

properties true in all situations [Reiter 1993].

• The unique names axioms:

S0 Ó= do(a, s), (2.1)

do(a, s) = do(a′, s′) → a = a′ ∧ s = s′

• Axioms that define an order relation < on situations:

¬s < S0,

s < do(a, s′) ↔ (Poss(a, s′) ∧ start(s′) ≤ time(a) ∧ s ≤ s′).

• The axiom: start(do(a, s)) = time(a).

In addition to the axioms described above, we need to describe a class of axioms when

we formalize an application domain:

• Action precondition axioms, one for each action:

Poss(A(þx, t), s) ↔ φ(þx, t, s)

where φ(þx, t, s) characterizes the preconditions of the action A, it is any first order

formula with free variables among þx, t, and whose only term of sort of situation

is s.

For example, a patient can leave hospital if he is in the hospital.

Poss(leave(p, t), s) ↔ inpatient(p, s)

Using predicate poss(a), we can then recursively specify that a given situation s

is executable.

Executable(s) ↔

(∀a, s′).do(a, s′) ≤ s → (Poss(a, s′) ∧ start(s′) ≤ time(a)).
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• Successor state axioms, one for each fluent. These axioms characterize the effects

of actions on fluents and they embody a solution to the frame problem1 for deter-

ministic actions [Reiter 1991].

The syntactic form of successor state axiom for a relational fluent F is:

Poss(a, s) →

[F (þx, do(a, s)) ↔ γ+
F (þx, a, s) ∨

(F (þx, s) ∧ ¬γ−

F (þx, a, s))]

where γ+
F (þx, a, s) and γ−

F (þx, a, s) indicate the conditions under which if the action

a is executed in situation s, F (þx, do(a, s)) becomes true and false respectively.

For example, the succession state axiom of fluent assigned(p, d, s) meaning a pa-

tient p is assigned to a doctor d can be defined as follows:

Poss(a, s) →

assigned(p, d, do(a, s)) ↔ [(∃t)a = assign(p, d, t) ∨

(assigned(p, d, s) ∧ ¬(∃t)a = revokeAssignment(p, d, t) ∧

¬(∃t)a = leave(p, t))]

Here γ+
F (þx, a, s) corresponds to the formula: (∃t)a = assign(p, d, t) and

γ−

F (þx, a, s) is the formula: (∃t)a = revokeAssignment(p, d, t)∨ (∃t)a = leave(p, t).

The action assign makes the fluent assigned true and the actions revokeAssignment

and leave turn the fluent assigned to false.

It is assumed that no action can turn F to be both true and false in a situation,

i.e. ¬∃s∃aγ+
F (þx, a, s) ∧ γ−

F (þx, a, s).

For a functional fluent, the syntactic form of successor state axiom is:

Poss(a, s) →

[F (þx, do(a, s)) = y ↔ γ+
F (þx, y, a, s) ∨

(y = F (þx, s) ∧ ¬(∃y′)γ−

F (þx, y′, a, s))]

where, γF (þx, y, a, s) is any first order formula with free variables among þx, y, a, t,

and whose only term of sort of situation is s.

• Axioms describing the initial situation.

• In each application involving a particular action A(þx, t), an axiom that gives the

time of the action A: time(A(þx, t)) = t.

1The difficulty in logic of expressing the dynamics of a situation without explicitly specifying

everything that is not affected by the actions.
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In the rest of this report, we denote Axioms = Σ ∪ Ass ∪ Aap ∪ AS0 where:

• Σ is the foundational axiomatic of the situation calculus.

• Ass is a set of successor state axioms.

• Aap is a set of action precondition axioms.

• AS0 is a set of initial situation axioms. AS0 is a set of sentences with the property

that S0 is the only term of sort situation mentioned by the fluents of a sentence

of AS0 . Thus, no fluent of a formula of AS0 mentions a variable of sort situation

or the function symbol do.

We denote Axioms ⊢ p the fact that the sentence p can be derived from the set of

axioms Axioms. This kind of domain theories provides us with various reasoning

capabilities, for instance planning [Green 1969b]. Given a domain theory Axioms as

above, and a goal formula G(s) with a single free-variable s, the planing task is to find

a sequence of actions þa such that:

Axioms ⊢ s0 ≤ do(þa, s0) ∧ Executable(do(þa, s0)) ∧ G(do(þa, s0)),

where do([a1, ..., an], s) is an abbreviation for do(an, do(an−1, ..., do(a1, s)...))

2.6 Conclusions

In this chapter, we give an overview of security policy specification and analysis. We

then discuss the limitations of current access and usage control policy languages and

models. This allows us to identify necessary points to support obligation and usage

control policies. In particular, this study illustrates how describing change in states is

necessary to clarify the semantics of obligations and usage controls. Policy analysis is

finally examined and an overview of situation calculus is presented.





CHAPTER

3 Specification of

Obligation with

Deadline Policies

3.1 Introduction

A security policy is often defined as permission, prohibition, obligation and exemp-

tion rules. Permission and prohibition rules are used to specify access control policies.

Obligation and exemption rules are useful to specify other security requirements cor-

responding to usage control policies [Cuppens et al. 2005][Elrakaiby et al. 2012a]. In

the usage control literature, two different types of obligation are generally considered

called system obligation and user obligation [Hilty et al. 2007]. When the security

policy includes user obligation, these obligations should be associated with deadlines.

When these obligations are activated, these deadlines provide the user with some time

to enforce the obligation before violation occurs.

In this chapter, we use a language based on deontic logic to specify security poli-

cies that include obligations with deadline. The advantage of deontic logic is that it

provides means to consistently reason about deontic concepts as obligation and permis-

sion. Then we suggest an approach based on the sequential temporal situation calculus

[Reiter 1998] to give semantic to our language. The Situation Calculus allows us to

analyze decidability and complexity of several useful problems as the temporal projec-

tion problem [Hanks and McDermott 1987]. This problem consists of asking whether

a formula holds after a sequence of actions is performed in the initial situation. In this

chapter, we will see how this is useful to decide which rule can be applied to a given

situation and detect violation. Furthermore, the situation calculus provides a solution

to the frame problem through the specification of succession state axioms [Reiter 1991].

The frame problem is the difficulty in logic of expressing the dynamics of a situation

without explicitly specifying everything that is not affected by the actions.
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This chapter is organized as follows. In section 3.2, we give a motivation example. Sec-

tion 3.3 explains how to define security policies that include obligations with deadline.

This model is based on deontic logic, and a security policy is viewed as a set of deontic

norms. Section 3.4 extends situation calculus to formally derive which actual norms

apply in a given situation. In this section, we also formally define when an obligation

with deadline is violated. Finally, we present the conclusion and contribution.

3.2 Motivation example

In the medical community, the patient’s record contains information about care pro-

vided to the patient during his stay in the hospital. The medical records are regulated

by hospitals through legal texts. These laws specify, in particular, the time given

to doctors to complete patient records assigned to them. In hospitals where medical

records are digitally stored, these rules may be expressed as obligations with deadlines.

These rules aim to ensure the availability of medical information in expected time. In

this section, we describe the impact of availability of medical information in expected

time on the quality of patient care and we give an example of obligations with deadline

concerning completion of medical records.

3.2.1 Impact of deadlines to complete medical records on the

availability of information

Studies have shown that patient care can be improved by timely sending a complete and

accurate information on patient hospitalization to the practitioner ([J. I. Balla 1994,

Bolton 2001]). In contrast, a breakdown of communication, due to delays in the transfer

of information or incomplete information can have serious consequences. For example,

the physician who does not have access to the summary sheet of a patient hospitaliza-

tion prepared by acute care services is in an uncomfortable situation when the patient’s

life is in danger.

Despite what has been raised by these studies on the importance of time when trans-

ferring patient information, it is observed a latency in transferring this information in

practice. Studies have noted that discharge summaries for example were not fulfilled

on time and in many cases, doctors who examined patients after their leaving from

hospital, do not receive them at all [C. van Walraven 2002]. Other studies noticed a

significant delay between the time when the patient receives his leave and when the

generalist physician received the advice ([Mageean 1986], [A. N. Raval 2003]).
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Therefore the hospitals are required to establish regulations so that the medical records

are fulfilled timely to ensure continuity of patient care.

3.2.2 Rules regarding the completion of the patient’s medical

record

The law on public hospitals specifies that medical records must be fulfilled for any

person registered or admitted to a health facility [R.R.O 1990]. Also it specifies the

elements that a medical record must contain. The law may specify the deadline given

to doctors so that each element is present in the patient’s record, and the appropriate

measures when these deadlines are not respected, see for example the Ontario regula-

tions [R.R.O 1990]. Among the documents that must be found in the medical records:

summary sheet, admission note, medical observation, operating protocol and discharge

note. The time to make these documents present in the folder of the user differs from

one document to the other. For example, writing the medical summary sheet of a

patient must be completed before this latter leaves the hospital. An admission note

must be completed within 48 hours following the admission of patient. See [CMQ 2005]

for a complete description of the time accorded to complete the remaining documents.

This example shows a real need to have obligations with deadline in security policy to

ensure the availability of information in a predefined time. We were inspired by rules

in document [CMQ 2005] for building the following example of policy rules.

Example 1

• Rule1: The doctor must complete the admission note of the patient

assigned to him within 30 units of time following his admission to the

hospital.

• Rule2: The doctor must complete the medical observation of the pa-

tient assigned to him within 40 units of time following his admission to

the hospital.

• Rule3: End deadline for completing the admission note of a patient

must occur after 30 units of time of his admission to the hospital.

• Rule4: End deadline for completing the medical observation of a patient

must occur after 40 units of time of his admission to the hospital.

• Rule5: The doctor is permitted to write observation or admission note

of an inpatient assigned to him.

• Rule6: The doctor is permitted to complete an observation or admission

note, that are being written, of an inpatient assigned to him.
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In this chapter, we first show how to express these rules in our language. Then we

show how to derive active obligations, actual permissions and detect violations.

3.3 Security policy specification

In this section, we define our language, based on deontic logic of actions, to specify

permissions and obligations in security policies. Then, we give the specification of rules

specified in the example 1. This example will be subsequently enriched by other needs

throughout this thesis.

3.3.1 Specification using the deontic logic of actions

We consider two modalities: Permissions and Obligations with deadline. They are

called normative modalities in the following. Normative modalities are represented as

dyadic conditional modalities. Permissions are specified using dyadic modality P (α|p)

where α is an action of A and p is the condition of the permission. The condition is any

formula built using fluents of F . P (α|p) means that the action α is permitted when

condition p holds. Obligations with deadline are specified using modality O(α < d|p)

which intuitively means that when formula p starts to hold, there is an obligation to

execute action α before the deadline condition d starts to hold. In the following, we

assume that the deadline condition must be an atomic fluent predicate of F . If the

action α is executed before the deadline condition d starts to hold, then we shall say

that the obligation is fulfilled. Else we shall consider that the obligation is violated.

We call norm a formula corresponding to a conditional permission or obligation with

deadline. A security policy, P is a finite set of norms.

3.3.2 Example of rule specification

We give, here, the specification of the policy rules described in 1. For that, we should

determine the set of fluents F and the set of the actionsA before given the specification.

• Set F of fluents:

– Assigned(p, d, σ). The patient p is assigned to a doctor d in situation σ.

– Inpatient(p, t, σ). The patient p is admitted to the hospital at time t in the

situation σ.
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– Deadline(type, p, t, σ). The deadline to write document of type type concern-

ing patient p created at time t is elapsed in σ.

– WritingDoc(d, type, p, t, t′, σ). Doctor d is writing the document of type type

concerning patient p created at time t and began to be written at time t′ in

σ.

– Doctor(d). d is a doctor.

• Set A of actions:

– Assign(p, d, t). The action to assign at time t the patient p to the doctor d.

– RevokeAssignment(p, d, t). The action to revoke at time t assignment of the

patient p to the doctor d.

– PatientAdmission(p, t). The action to admit at time t the patient p at the

hospital.

– Leave(p, t). The patient p leaves the hospital at time t.

– EndDeadline(type, p, t, t′). The action to warn at time t′ that the accorded

deadline for writing document of patient p expires.

– StartWrite(d, type, p, t), EndWrite(d, type, p, t): d starts (resp. ends) to

write document of type corresponding to patient p at time t; Type is one of

the following elements: Observation or AdmissionNote.

• Specification:

– Obligations with deadline

O1 : O(write(d, type, p, t, t′) < Deadline(type, p, t, σ)|Doctor(d)∧

Assigned(p, d, σ) ∧ Inpatient(p, t, σ) ∧ type = AdmissionNote)

O2 : O(write(d, type, p, t, t′) < Deadline(type, p, t, σ)|Doctor(d)∧

Assigned(p, d, σ) ∧ Inpatient(p, t, σ) ∧ type = Observation)

– System obligations

O3 : O(EndDeadline(admissionNote, p, t, t′)|Inpatient(p, t, σ) ∧ t′ = t+ 30)

O4 : O(EndDeadline(observation, p, t, t′)|Inpatient(p, t, σ) ∧ t′ = t+ 40)

– Permissions

P1 : P (StartWrite(d, type, p, t, tsw) | Doctor(d) ∧ Assigned(p, d, σ)∧

Inpatient(p, t, σ) ∧ type = (Observation ∨ AdmissionNote)) ∧ tsw > t

P2 : P (EndWrite(d, type, p, t, tew) | (∃t′)WritingDoc(d, type, p, t, t′, σ)∧

Assigned(p, d, σ) ∧ Inpatient(p, t, σ)∧

type = (Observation ∨ AdmissionNote) ∧ (tew > t) ∧ (tew > t′))
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We shall now use the situation calculus to formally define the semantics of the different

modalities which we defined in this section.

3.4 Actual norm derivation and violation detection

There are papers that only deal with system obligations [Lobo et al. 1999]. In that

case, the objective is generally to check that obligations are immediately enforced and

there is no room for violation. In this section, we consider user obligations with deadline

and want to consider that these user obligations may be violated in some situations.

Before showing this, let us point out how we can derive actual permissions.

3.4.1 The semantic of actual permission

We extend the situation calculus with fluent Perm(α, σ) meaning there is an actual

permission to do α. Then the set of Axioms previously defined is extended with a

permission definition axiom for every fluent predicate Perm(α), α ∈ A. For this

purpose, let Pα be the set of conditional permissions having the form P (α|p). We

denote ψPα
= p1 ∨ ... ∨ pn where each pi for i ∈ [1, ..., n] corresponds to the condition

of a permission in Pα. If Pα = ∅, then we assume that ψPα
= false. Using ψPα

, the

successor state axiom for Perm(α, σ) is defined as follows:

Poss(a, σ) →

Perm(α, do(a, σ)) ↔ [γ+
ψPα
(a, σ) ∨ (Perm(α, σ) ∧ ¬γ−

ψPα
(a, σ))]

This axiom specifies that the permission to do an action becomes effective after that the

action that activates the context of the permission rule is executed. This permission

remains effective until an action that turns the activation context to false is executed.

Example 2 Let us give when the permission rule P1 is active. According

to its specification, we should first have the succession state axiom of fluents

Assigned(p, d, σ) and Inpatient(p, t, σ). We assume that a patient p will be

assigned to doctor d when the action of assignment is executed, since then p

remains assigned to d unless there is a revocation of assignment or the patient

leaves the hospital.

Poss(a, σ) →

Assigned(p, d, do(a, σ)) ↔ [(∃t)a = Assign(p, d, t) ∨ (3.1)

(Assigned(p, d, σ) ∧ ¬(∃t)a = RevokeAssignment(p, d, t) ∧

¬(∃t)a = Leave(p, t))]
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Patient p is hospitalized if he was admitted to the hospital and did not leave.

Poss(a, σ) →

Inpatient(p, t, do(a, σ)) ↔ [a = PatientAdmission(p, t) ∨ (3.2)

(Inpatient(p, t, σ) ∧ ¬(∃t′)a = Leave(p, t′))]

Using the specification rule P1 and the succession state axioms above, we can

calculate the conditions under which StartWrite will be permitted:

γ+
ψPStartW rite(d,type,p,t,tsw)

(a, σ) ↔ type = (Observation ∨ AdmissionNote) ∧

[(Assigned(p, d, σ) ∧ a = PatientAdmission(p, t)) ∨

((∃t′).Inpatient(p, t′, σ) ∧ a = Assign(d, p, t))]

On the other side, the actions and the conditions under which StartWrite

will be no longer permitted are given by the following formula:

γ−

ψPStartW rite(d,type,p,t,tsw)
(a, σ) ↔

(∃t′)a = (RevokeAssignment(p, d, t′) ∨ Leave(p, t′))

Then the active permission for StartWrite is calculated using axiom (3.1).

Poss(a, σ) →

Perm(StartWrite(d, type, p, t, tsw), do(a, σ)) ↔

type = (Observation ∨ AdmissionNote) ∧ (3.3)

[(Assigned(p, d, σ) ∧ a = PatientAdmission(p, t)) ∨ (3.4)

((∃t′).Inpatient(p, t′, σ) ∧ a = Assign(d, p, t))] ∨ (3.5)

(Perm(StartWrite(d, type, p, t, tsw), σ) ∧ (3.6)

¬(∃t′)a = RevokeAssignment(p, d, t′) ∧ ¬(∃t′)a = Leave(p, t′) (3.7)

The lines 3.3, and 3.4 of the axiom above express the fact that a doctor

is permitted to write the observation and the admission note of a patient

assigned to him as soon as this patient is admitted in the hospital. The lines

3.3 and 3.5 express the fact that when a patient is hospitalized, a doctor

d will be permitted to write its observation and admission note after that

this patient is assigned to him. Finally the lines 3.6 and 3.7 express the fact

that a current permission for a doctor to write the admission note and the

observation of a patient is disabled, once the patient leaves the hospital or

the assignment of this patient to the doctor is revoked.

The actual permission corresponding to the rule P2 is calculated in appendix A.
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3.4.2 The semantic of active obligation

We extend the situation calculus with fluents Ob(α < d, σ) (the obligation to do α

before deadline d starts to be effective) where α is an action of A and d is a fluent of

F . As permissions, we need the obligation definition axiom for every fluent predicate

Ob(α < d), where α ∈ A and d ∈ F . Notice that since the sets A and F are finite, we

have a finite set of successor state axioms to define for Ob(α < d). We define Oα,d to be

the set of conditional obligations with deadline in P having the form O(α′ < d′|p) such

that α = α′ and d and d′ are logically equivalent. We say that two fluent predicates

d and d′ are logically equivalent with respect to a set of Axioms if we can prove that

d ↔ d′ is an integrity constraint of Axioms. We denote ψOα,d
= p1∨...∨pn where each pi

for i ∈ [1, ..., n] corresponds to the condition of an obligation in Oα,d. If Oα,d = ∅, then

we assume that ψOα,d
= false. Using ψOα,d

, the successor state axiom for Ob(α < d)

is defined as follows :

Poss(a, σ) →

Ob(α < d, do(a, σ)) ↔ [γ+
ψOα,d

(a, σ) ∨ (3.8)

(Ob(α < d, σ) ∧ ¬(a = α) ∧ ¬γ+
d (a, σ) ∧ ¬γ−

ψOα,d
(a, σ))]

This axiom says that the obligation to do α before deadline d is activated when ψOα,d

starts to be true. This obligation is deactivated when it is fulfilled (i.e. action α is

done) or it is violated (i.e. deadline d starts to be true) or condition ψOα,d
ends to be

true (i.e. it is no longer relevant to do α).

Example 3 In this example, we will see how to derive active obligations

of rule O1 and O2.

In addition to the succession state axioms of fluents Assigned and Inpatient

already specified in the example above, we need the succession state axiom of

fluent Deadline.

Action EndDeadline is executed to denote that the delay granted to write

documents is elapsed. When the deadline is considered expired, it remains

expired forever.

Poss(a, σ) → (3.9)

Deadline(type, p, t, do(a, σ)) ↔

(∃t′)a = EndDeadline(type, p, t, t′) ∨ Deadline(type, p, t, σ)

According to the specification of obligation rules, we can see that we have one

set of conditional obligations with deadlines: Owrite(d,type,p,t,tw),Deadline(type,p,t,σ).
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The corresponding formula ψOwrite(d,type,p,t,tw),Deadline(type,p,t,σ)
, after simplifica-

tion, is as follows:

ψOwrite(d,type,p,t,tw),Deadline(type,p,t,σ)
↔

Doctor(d) ∧ Assigned(p, d, σ) ∧ Inpatient(p, t, σ) ∧

type = (Observation ∨ AdmissionNote))

According to axiom (3.8), to derive concrete obligations we should calculate

the following formulas:

γ+
ψOwrite(d,type,p,t,tw),Deadline(type,p,t,σ)

(a, σ) ↔

[(Assigned(p, d, σ) ∧ a = PatientAdmission(p, t)) ∨

((∃t′)Inpatient(p, t′, σ) ∧ a = Assign(p, t))]

γ−

ψOwrite(d,type,p,t,tw),Deadline(type,p,t,σ)
(a, σ) ↔

(∃t′)a = (RevokeAssignment(p, d, t′) ∨ Leave(p, t′))

The above formulas are calculated using the succession state axiom of fluents

Assigned (3.1) and Inpatient (3.2).

Finally the formula γ+
Deadline(type,p,t)(a, σ) is calculated using succession state

axiom of fluent Deadline (3.9).

γ+
Deadline(type,p,t)(a, σ) ↔ a = EndDeadline(type, p, t, t′)

Thus the concrete obligations concerning rules O1 and O2 are calculated using

axiom 3.8 as follows:

Poss(a, σ) →

Ob(write(d, type, p, t, tw) < Deadline(type, p, t), do(a, σ)) ↔ (3.10)

(Assigned(p, d, σ) ∧ a = PatientAdmission(p, t)) ∨

((∃t′)Inpatient(p, t′, σ) ∧ a = Assign(p, t)) ∨

[Ob(write(d, type, p, t), σ) ∧ ¬(∃t′)a = (EndDeadline(type, p, t, t′) ∨

RevokeAssignment(p, d, t′) ∨ Leave(p, t′))]

The active obligations corresponding to the rules O3 and O4 are calculated in ap-

pendix A.

3.4.3 Fulfillment and violation detection

An obligation with deadline to do an action is considered satisfied, when the action is

executed while the obligation is still active, and before the deadline of the obligation



32 CHAPTER 3. SPECIFICATION OF OBLIGATION WITH DEADLINE...

becomes true. We characterize situations where the obligations are fulfilled by using

the fluent Fulfil defined as follows:

Poss(a, σ) →

Fulfil(α < d, do(a, σ)) ↔ [(Ob(α < d, σ) ∧ a = α ∧ ¬γ+
d (α, σ)) ∨ (3.11)

Fulfil(α < d, σ)]

Notice that, if in a given situation σ, it simultaneously happens that the obligatory

action is executed and the associated deadline is activated, then the decision is to

consider that the obligation is violated and not fulfilled. This is called obligation with

strict deadline. We can also define O(α ≤ d|p) so that, in the same situation, the

obligation is fulfilled and not violated.

Finally we define the succession state axiom of the fluent V iolatedO(α < d, σ), meaning

the obligation to do the action α before the deadline d is violated in situation σ:

Poss(a, σ) →

V iolatedO(α < d, do(a, σ)) ↔ [(Ob(α < d, σ) ∧ γ+
d (a, σ)) ∨ (3.12)

V iolatedO(α < d, σ)]

This axiom specifies that an obligation to do α is violated, when the associated deadline

comes true when it was still active, and it was never executed. The axiom also specifies

that in a given situation σ, if it simultaneously happens that the obligatory action is

executed and the associated deadline is activated, then the decision is to consider that

the obligation is violated.

Concerning system obligations we consider them as a special case of obligations with

deadline, written as follows: O(α). As there is no deadline associated with these

obligations, we assume that: γ+
d (a, σ) = γ−

d (a, σ) = false. Thus we can derive the

succession state axiom characterizing the situations when system obligations are active

using axiom 3.8.

Poss(a, σ) → (Ob(α, do(a, σ)) ↔ γ+
ψOα

(a, σ)) (3.13)

This axiom says that the system obligation to do α is activated only in the situations

when ψOα
starts to be true and they are deactivated immediately after. Thus a system

obligation should be fulfilled immediately after its activation. This can be derived

using the axiom 3.14 as follows:

Poss(a, σ) →

Fulfil(α, do(a, σ)) ↔ [(Ob(α, σ) ∧ a = α) ∨ Fulfil(α, σ)]
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When an obligation system is not executed immediately after its activation, a violation

is detected using the following axiom:

Poss(a, σ) →

V iolatedO(α, do(a, σ)) ↔ [(Ob(α, σ) ∧ ¬(a = α)) ∨ V iolatedO(α, σ)]

Example 4 Situations where the rules O1 and O2 are violated are charac-

terized by the following formula:

Poss(a, σ) →

V iolatedO(write(d, type, p, t, tw) < Deadline(type, p, t), do(a, σ)) ↔

[(Ob(write(d, type, p, t, tw) < Deadline(type, p, t), σ) ∧

a = EndDeadline(type, p, t, td)) ∨

V iolated(write(d, type, p, t, tw) < Deadline(type, p, t), σ)]

In the axiom above, action EndDeadline is the only action which turns the

fluent Deadline to true as specified in the succession state axiom of the fluent

Deadline 3.9. Concerning the fluent characterizing where these obligations

are active, Ob(write(d, type, p, t, tw) < Deadline(type, p, t), σ), is given by

axiom 3.10.

3.4.4 How the situation calculus helps us by resolving the

frame problem

Reiter [Reiter 1991] combined two different solutions to the frame problem in the situ-

ation calculus provided in [Pednault 1989] and [Schubert 1990]. In the case where the

effects of all actions on all fluents are determined, the proposed solution by Reiter re-

duces the number of axioms necessary to describe a dynamic world. Indeed, it reduces

the number of axioms to F +A, where F is the number of fluents and A is the number

of actions, compared with the 2 × A × F explicit frame axioms that would otherwise

be required.

Let us take an example. Consider the following sequence of actions:

σ = do([Assign(Alice, Jean, 4), PatientAdmission(Alice, 11),

StartWrite(Jean, Observation, Alice, 11), PatientAdmission(Bob, 12),

Assign(Bob, Jean, 13)], σ0)

Where σ0 is the initial situation containing the following effect: Doctor(Jean). This

sequence of actions is shown in the big gray block in figure 3.1. In this figure, we can
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Actual norm derivation

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(EndW rite(Jean, Observation, Alice, 11))

P erm(EndW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(EndW rite(Jean, Observation, Alice, 11))

P erm(EndW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(EndW rite(Jean, Observation, Alice, 11))

P erm(EndW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Bob, 13))

Ob(W rite(Jean, Observation, Bob, 13))

P erm(StartW rite(Jean, Observation, Bob, 13))

P erm(StartW rite(Jean, AdmissionNote, Bob, 13))

Derived facts

Doctor(Jean)

Assigned(Alice, Jean)

Doctor(Jean)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

W ritingDoc(Observation, Alice, 11)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

W ritingDoc(Observation, Alice, 11)

InP atient(Bob, 12)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

W ritingDoc(Observation, Alice, 11)

InP atient(Bob, 12)

Assigned(Bob, Jean)

Sequence of actions

which has been performed

Assign(Alice, Jean, 4)

P atientAdmission(Alice, 11)

StartW rite(Jean, Observation, Alice, 11)

P atientAdmission(Bob, 12)

Assign(Bob, Jean, 13)

Figure 3.1: Example of actual norm derivation

see the resulting facts after the execution of each action. The facts in green are those

that have just become true. They become black after the execution of actions which

have no effect on them. The pink block represents what we derive using the succession

state axioms of active obligations and concrete permissions which we have shown in

the examples above.

Let see now, through this example, how the provided solution of the frame problem

using the situation calculus helps us in deriving actual norms.

Let us consider the obligations of writing documents of Alice. According to the speci-

fication of policy rules, they are active in any situation where InPatient(Alice, t) and

Assigned(Alice, Jean) are true. They start to be active from the moment when action

PatientAdmission(Alice, 11) is executed (in the box where they are green). To derive

that these obligations remain active in following situations (in all the boxes where they

are black), normally, we should specify that each executed action from the execution of

PatientAdmission(Alice, 11) until the execution of Assign(Bob, Jean, 13) has no impact

on these obligations. Instead, it is simpler to specify, through succession state axioms,

that action Leave(Alice) (which turns Inpatient(Alice) to false), and RevokeAssign-
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ment (which turns Assigned(Alice, Jean)) to false) are the only ones that deactivate

these obligations (in addition to the actions that activate the corresponding deadlines

as we do not consider persistent obligations). Then because these actions were not

executed, it can inferred that these obligations remain active.

3.5 Conclusion and Contribution

In this chapter, we proposed to use deontic modalities to specify security policies in-

cluding obligations with deadline. Then we use the temporal sequential situations

calculus to derive concrete permissions and obligations. Furthermore, we have seen

how our model can detect violations. We have presented an example from an existing

law regulating deadlines for completion of patient medical records in the hospital of

Ontario [R.R.O 1990]. This example shows that there is a real need to include the

rule of obligations with deadline in usage control policy to ensure the availability of

information within an allotted time.

In addition to requiring a specific deadline for completing the document of patients,

it also requires that they are with a better quality. For example, it is stated in

[ANAES 1996] that the quality of documents is directly related to the time spent

on their outfit. Thus, it appears to be natural to have constraints in the usage control

policy specifying for example that the documents should be written sequentially by the

same doctor and a doctor should spend at least 5 units of time writing each document.

Thereby, we need to enrich our language so it can express and ensure the compliance

of constraints policy. This is what we will see in the next chapter.





CHAPTER

4 Specifying and

Enforcing Constraints

Policy in a Dynamic

World

4.1 Introduction

Constraints are undoubtedly an important aspect of access control models. They are

usually used to prevent fraudulent situations. In the literature, several types of con-

straints have been identified. Most of them belong to one of few basic types and are

used, in general, to implement the least privilege principle and separation of duty re-

quirement [Clark and Wilson 1987], [Saltzer and Schroeder 1975]. Our goals in this

chapter are, firstly, to develop a language in which these contraints can be expressed.

And secondly, provide a means to prove that these constraints are not violated despite

how the system evolves.

Furthermore, beyond the fact that there is a need to prove the satisfiability of these

constraints, it is more suitable to organize the decisions taken and actions performed in

the system to ensure it. In transactional databases for example, to ensure the enforce-

ment of integrity constraints, the classical approach is to verify if after the transaction

execution the database is consistent (i.e., does not violate the constraints). If an in-

consistency is detected, all operations of the transaction are canceled (rollback). This

approach cannot be applied in systems where a rollback is not possible (e.g., operating

systems). In this kind of system, it should be ensured that the constraints are met

before executing the actions. The approach we propose is to build the precondition ax-

ioms of actions so it is proved that the constraints remain ensured after any execution

of actions verifying these axioms.

In this chapter, we propose to extend our proposal language in chapter 3, based on deon-
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tic logic of actions and the Situation Calculus [McCarthy 1968], to express and enforce

policy constraints. We define two kinds of constraints which are referred throughout

this chapter as non historical (called ahistorical in the following) and historical con-

straints. We show through examples how these two types of constraints can be used to

express Statically Mutually Exclusive Roles (SMER), Dynamically Mutually Exclusive

Roles (DMER)[Ferraiolo et al. 2001] and also periodic temporal constraints.

Our approach is based on the work of authors in [Lin and Reiter 1994]. In this work,

the authors use the regression operator [Waldinger 1977, Pednault 1988, Reiter 1991]

to build action precondition axioms taking into account constraints formulated as a

simple state formula. These axioms are calculated so that, if the constraints are sat-

isfied in the initial situation, they will be satisfied in all situations resulting from the

execution of actions with respect to these axioms. In this chapter, we show how we

extend their approach to take into account the historical constraints which cannot be

expressed as a simple state formula.

This chapter is organized as follows. In section 4.2, we define our specification of the

constraints. In section 4.3, we describe how regression is used to implement constraints

written as simple formulas (ahistorical constraints), then we show how the historical

constraints can be rewritten as simple formulas to generalize the concept of enforce-

ment of specified constraint policies. In this section, we also define and characterize a

secure system with respect to access control requirements and constraints policy. In

section 4.4, we present related work. Section 4.5 concludes the chapter and summarizes

contributions.

4.2 Specifying constraints

In our model, we have two kinds of constraints, ahistorical constraints and historical

ones.

• An ahistorical constraint: It is a simple formula of the form:

(∀σ)¬(∃ þx1, .. þxn)(F1( þx1, σ) ∧ F2( þx2, σ) ∧ ... ∧ Fn( þxn, σ))

This constraint specifies that the fluents F1, ..., Fn must not all be true in the

same situation. This also means that if, in some situation, some fluents were true

and become false before the remaining fluents in the constraint become true, the

constraint is not violated.
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• A historical constraint is expressed using a formula of the form:

(∀σ, σ′), σ ≤ σ′¬(∃ þx1, .. þxn)

(F1( þx1, σ) ∧ ... ∧ Fi(þxi, σ) ∧ Fi+1( þxi+1, σ′) ∧ ...Fn( þxn, σ′))

Unlike ahistorical constraint, a historical constraint contains two parts. If it hap-

pened that the fluents specified in the first part were true in the same situation,

the second part of the constraint should never be true in the future.

4.2.1 Example

In access control models based on roles (RBAC, see [Li et al. 2007]), two kinds of

constraints have been defined: static mutually exclusive roles (SMER) and dynamic

mutually exclusive roles (DMER) [Ferraiolo et al. 2001]. The SMER constraint spec-

ifies that some roles should not be assigned mutually to the same users, while the

DMER constraint specifies that some roles should not be activated simultaneously in

the same session. Managing such constraints becomes more complex when a hierarchy

of roles is defined and administrative operations like deleting and adding roles are used.

In this section, we show how to formalize the fragment of the RBAC model related

to role assignment and role hierarchy using our language. We then give examples of

SMER and DMER constraints.

Formalizing the fragment of the RBAC model related to role assignment

and role hierarchy

We need the following fluents and actions to formalize the fragment of the RBAC model

related to role assignment and role hierarchy.

• Fluents:

– Assign(s, r, σ): Subject s is assigned to role r in σ.

– Sub_role(r1, r2, σ): r1 is a sub-role of role r2 in σ.

– Empower(s, r2, ss, σ): Subject s is empowered to the role r in the session ss

in σ.

– DMER(r2, r1, ss, σ): Role r1 is separated from role r2 in the session ss in σ.

– SMER(r1, r2, σ): Role r1 is statically separated from role r2 in σ.

• Actions:
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– Create_hierarchy(s, r1, r2) (resp. Revoke_hierarchy): Subject s creates

(resp. revokes) a hierarchy relation between role r1 and role r2.

– Create_assignment(s, s1, r) (resp. Revoke_assignment): Subject s assigns

(resp.revokes) subject s1 to role r.

– Create_SMER(s, r1, r2) (resp. Revoke_SMER): Subject s creates

(resp.revokes) a SMER relation between role r1 and role r2.

– Create_DMER(s, r1, r2, ss), σ)(resp. Revoke_DMER): Subject s creates

(resp. revokes) a DMER relation between role r1 and role r2 in the session

ss.

We give the semantic of the fluents specified below using succession state axioms.

• Succession state axiom of fluent SMER:

SMER(r1, r2, do(a, σ)) ↔

(∃s)[a = Create_SMER(s, r1, r2) ∨ a = Create_SMER(s, r2, r1)] ∨

(∃r3, s)Sub_role(r2, r3, σ) ∧ a = (Create_SMER(s, r3, r1) ∨

Create_SMER(s, r1, r3)) ∨

Sub_role(r1, r3, σ) ∧ (a = Create_SMER(s, r3, r2) ∨

Create_SMER(s, r2, r3)) ∨

SMER(r1, r3, σ) ∧ a = Create_hierarchy(s, r2, r3) ∨

SMER(r2, r3, σ) ∧ a = Create_hierarchy(s, r1, r3) ∨

SMER(r1, r2, σ) ∧ ¬(∃s)a = (Revoke_SMER(s, r1, r2) ∨

Revoke_SMER(s, r2, r1).

This axiom specifies that a static mutually exclusion roles between r1 and r2 can be

created by applying the action Create_SMER(s, r1, r2). And for all situations σ,

if SMER(r2, r1, σ) then SMER(r1, r2, σ). We admit that the action Revoke_SMER

is the unique action that turns the fluent SMER from true to false. Furthermore

in all situation σ, we assume if there exists a role r3 such that SMER(r1, r3, σ)

and Sub_role(r2, r3, σ) then SMER(r1, r2, σ). The succession state axiom of the

fluent DMER is the same like SMER.
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• Succession state axiom of fluent Sub_role:

Sub_role(r1, r2, do(a, σ)) ↔

(∃s)a = Create_hierarchy(s, r1, r2) ∨

(∃r3, s)[Sub_role(r1, r3, σ) ∧ a = Create_hierarchy(s, r3, r2) ∨

Sub_role(r3, r2, σ) ∧ a = Create_hierarchy(s, r1, r3)] ∨

Sub_role(r1, r2, σ) ∧ ¬(∃s)a = Revoke_hierarchy(s, r1, r2).

When the action of creating hierarchy between two roles r1 and r2 is executed,

the role r1 is then a sub-role of role r2. We assume for any situation σ, if

there exists a role r3 such that Sub_role(r1, r3, σ) and Sub_role(r3, r2, σ) then

Sub_role(r1, r2, σ). We also assume that a hierarchy between roles r1 and r2 can

only be revoked by applying the action of revoking hierarchy between r1 and r2.

• Succession state axiom of fluent Assign:

Assign(s1, r1, do(a, σ)) ↔

(∃s)a = Create_assignment(s, s1, r1) ∨

(∃r2, s)[Assign(s1, r2, σ) ∧ a = Create_hierarchy(s, r1, r2) ∨

Sub_role(r1, r2, σ) ∧ a = Create_assignment(s, s1, r2)] ∨

Assign(s1, r1, σ) ∧ ¬(∃s)a = Revoke_assignment(s, s1, r1)

The role assignment (resp. revocation) can be done by the action Cre-

ate_assignment (resp. Revoke_assignment). If a subject is assigned to some

role, he is assigned to all its lower roles.

• Succession state axiom of fluent Empower:

Empower(s1, r, ss, do(a, σ)) ↔

Assign(s1, r, σ) ∧ (∃s)a = Activate_role(s, s1, r, ss) ∨

(∃r1)Empower(s1, r1, ss, σ) ∧ (∃s)a = Create_hierarchy(s, r, r1) ∨

(∃r1)Sub_role(r, r1, σ) ∧ Assign(s1, r1, σ) ∧ (∃s)a = Activate_role(s, s1, r1, ss) ∨

Empower(s1, r, ss, σ) ∧ ¬(∃s)a = Deactive_role(s, s1, r, ss)

This axiom specifies that when the action Activate_role(s, s1, r, ss) is executed,

the subject s1 is empowered to the role r in the session ss if r is assigned to him.

He is also empowered to all the roles that are lower than the role r. The unique

action that turns the fluent Empower(s1, r, ss, σ) from true to false is the action

Deactive_role(s, s1, r, ss).



42 CHAPTER 4. SPECIFYING AND ENFORCING CONSTRAINTS POLICY...

Specifying SMER and DMER constraints

An SMER constraint specifies that two roles r1 and r2 cannot be simultaneously as-

signed to a user. This constraint can be expressed as an ahistorical constraint.

¬(SMER(r1, r2, σ) ∧ Assign(s1, r1, σ) ∧ Assign(s1, r2, σ)) (4.1)

Note that with the assignment revocation concept, if some subject s is assigned to the

role r1 and is revoked before that the role r2 is assigned to him, the SMER is logically

not violated as the roles r1 and r2 are not assigned to the subject s at the same time.

In addition to constraint 4.1, we consider the following ahistorical constraints:

¬SMER(r, r, σ) (4.2)

¬Sub_role(r, r, σ) (4.3)

¬DMER(r, r, ss, σ) (4.4)

Concerning the DMER constraint, it can be expressed in the historical form as follows:

¬(Empower(s, r1, ss, σ) ∧ Empower(s, r2, ss, σ′) ∧ DMER(r1, r2, ss, σ′))(4.5)

The constraint 4.5 specifies that roles r1 and r2 cannot be activated in the same session,

although these roles may be assigned to the same user.

We show in the following section how these constraints can be enforced.

4.3 Enforcing constraints

The idea to implement constraint policies is, for each action, build the preconditions

that must be satisfied so that the constraints are not violated when this action is

executed. In [Lin and Reiter 1994], the authors use the regression concept to generate

a set of action precondition axioms, one for each action prototype using state constraint

formulas which are of the form: (∀σ)C(σ), where C(σ) is a simple formula where the

unique free variable of type situation is σ. The historical constraints in our model are

in the form of state constraints. In this section, we show how this approach can be

applied to enforce them. Then we extend it to implement historical constraints which

are not simple formulas.

4.3.1 Enforcing ahistorical constraints

For each constraint C in Aahis, there is an associated simple state formula RegC such

that:

Auna ∪ Aahis ⊢ (∀x1, ..., xn, σ).R[C(do(A(x1, ..., xn), σ))] ↔ RegC
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Then the following action precondition axiom is obtained by predicate completion

([Clark 1987]) of Poss:

Poss(a(x1, ..., xn), σ) ↔ Πa ∧
∧

RegC

where the big conjunction ranges over the ahistorical constraints in Aahis.

Let Apre the set of action precondition axioms thus obtained. For every simple con-

straint C(σ) in Aahis, it is proved in [Lin and Reiter 1994] that:

Σ ∪ Auna ∪ Ass ∪ Apre ∪ Acls ⊢ C(σ0) → (∀σ).σ0 ≤ σ → C(σ).

To generalize this concept to the historical constraints, the idea is to rewrite them in

the simple form. This is what we present in the following.

4.3.2 Rewrite historical constraints in the form of simple state

constraint

The formulas contained in Ahis are in the following form:

(∀σ, σ′)σ ≤ σ′ → ¬(C(σ) ∧ C ′(σ′))

where C(σ) (resp. C(σ′)) is a simple formula with a unique free variable σ (resp. σ′).

C(σ) will be mentioned in the following as the first part of the historical constraint.

With each fluent F contained in C(σ), we associate the backup fluent Fbackup meaning

there exists a situation where the fluent F was true, the fluent Fbackup becomes true

when the associated fluent F becomes true and it will never be false, so we can build

the succession state axiom for every fluent Fbackup from the succession state axiom of

F by eliminating the part that specifies when the fluent F becomes false. Thus the

succession state axiom of the fluent Fbackup is defined as follows:

Poss(a, σ) →

[Fbackup(þx, do(a, σ)) ↔ γ+
F (þx, a, σ) ∨ Fbackup(þx, σ)]

where γ+
F (þx, a, σ) indicates the conditions under which the fluent F (þx, do(a, σ)) becomes

true if the action a is executed in situation σ. Let Cbackup(σ) be the formula obtained

from C(σ) by replacing each fluent in C(σ) by its corresponding backup fluent. The

constraint ¬(Cbackup(σ)∧C ′(σ)) is the simple form of the historical constraint ¬(C(σ)∧

C ′(σ′)).



44 CHAPTER 4. SPECIFYING AND ENFORCING CONSTRAINTS POLICY...

4.3.3 Enforcing the historical constraints

Let A′

ss be the new set of succession state axioms obtained by adding the succession

state axioms to Ass for all backup fluents corresponding to fluents mentioned in every

first part of constraints in Ahis. We can then verify that:

A′

ss ⊢ [(∀σ, σ′)σ ≤ σ′ → ¬(C(σ) ∧ C ′(σ′))] ↔ (∀σ)¬(Cbackup(σ) ∧ C ′(σ)) (4.6)

as

(∃σ, σ′)σ ≤ σ′ ∧ (C(σ) ∧ C ′(σ′)) ↔ (∃σ′)Cbackup(σ
′) ∧ C ′(σ′)

Let A′

ahis be the generated finite set of all rewritten constraints in Ahis. Note that

according to the unique name axioms, we can verify that for each historical constraint

in Ahis, there is a unique corresponding ahistorical one. As shown in the previous

section, we have:

Σ ∪ Auna ∪ A′

ss ∪ Apre ∪ Acls ⊢ (4.7)

¬(Cbackup(σ0) ∧ C ′(σ0)) → (∀σ).σ0 ≤ σ → ¬(Cbackup(σ) ∧ C ′(σ))

where, Apre is the set of precondition axioms generated as shown in the previous section

by considering the set of simple constraints A′

ahis ∪ Aahis.

Theorem 1. Let A′

ss, Ahis, Apre, Auna and Acls be as given above. For every historical

constraint (∀σ, σ′)[(σ ≤ σ′) ∧ ¬(C(σ) ∧ C ′(σ′))] ∈ Ahis,

Σ ∪ Auna ∪ A′

ss ∪ Apre ∪ Acls ⊢

¬(C(σ0) ∧ C ′(σ0)) → [(∀σ, σ′).σ0 ≤ σ ≤ σ′ → ¬(C(σ) ∧ C ′(σ′))].

Proof. Using the formulas 4.6 and 4.7.

4.3.4 Defining and characterizing a secure system

Before defining the property that a given situation is secure with respect to access

control requirements and a constraint policy, we define legal situations.

Definition 1. Legal situations

A situation is legal if it is the result of execution of permitted actions. They are defined

recursively as follows:

Legal(σ0) ∧

∀a∀σ, Legal(do(a, σ)) ↔ Perm(a, σ) ∧ Legal(σ)
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A situation is secure if it is legal and it does not violate any constraint of constraints

policy.

Definition 2. Secure situations

For each constraint ¬C(σ) in Aahis and for each constraint ¬(C ′(σ)∧ C ′′(σ′)) in Ahis,

the situation σ is secure iff:

Secure(σ) ↔

Legal(σ) ∧ ¬C(σ) ∧ (¬C ′′(σ) ∨ ¬(∃σ′)σ′ ≤ σ ∧ C ′(σ′))

Definition 3. We say that the system evolves in a secure way with respect to the access

control requirement and constraints policy iff all executable situations are secure.

(∀σ)Executable(σ) → Secure(σ)

Theorem 2. The system is secure when the action precondition axiom of every action

α is strengthened with the guarded condition that this action must be permitted and the

regression of all ahistorical and rewritten historical constraints.

Secure(σ0) ∧ (∀α, Poss(α, σ) ↔ Πα(σ) ∧
∧

RegC(σ) ∧ Perm(α, σ))

where the big conjunction ranges over the ahistorical constraints in Aahis and the rewrit-

ten historical constraints in A′

ahis.

Proof. The proof is by induction. The started situation σ0 is secure by applying the

hypothesis. Let σ be the situation such that Secure(σ). We should demonstrate that

do(a, σ) is secure where a is any action in A such that Poss(a, σ). The situation

do(a, σ) verifies Legal(do(a, σ)) as σ is a legal situation and Perm(a, σ). Regarding

constraints, for every constraint C, RegC(σ) means C(do(a, σ)).

4.3.5 Example

In this example, we show how we can calculate the precondition axiom of the action

Create_hierarchy using regression.

The action of creating hierarchy between roles impacts all specified constraints in the

example of section 4.2.

The regression of applying Create_hierarchy(s, r1, r2) to the constraint 4.1, is given

by the following formulas:

R[C1(do(Create_hierarchy(s, r1, r2), σ))] ↔

¬(∃s1)[SMER(r1, r2, σ) ∧ Assign(s1, r2, σ)] ∧ (4.8)

¬(∃r3, s1)[SMER(r3, r2, σ) ∧ Assign(s1, r3, σ) ∧ Assign(s1, r1, σ)] ∧ (4.9)

¬(∃r3, s1)[SMER(r1, r3, σ) ∧ Assign(s1, r2, σ) ∧ Assign(s1, r3, σ)] (4.10)
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Let σ′ = do(Create_hierarchy(s, r1, r2), σ), then in the situation σ′, we will have

sub_role(r1, r2, σ′). Suppose that 4.8 is false, according to the succession state ax-

iom of the fluent Assign, we can derive also that Assign(s1, r1, σ′). The separa-

tion of duty between r1 and r2 will remain true in the situation σ′, as the action

Create_hierarchy(s, r1, r2) has no effect on the fluent SMER. The assignment of

the role r2 to subject s1 will also remain true in the situation σ′. Then we will have

SMER(r1, r2, σ′) ∧ Assign(s1, r1, σ′) ∧ Assign(s1, r2, σ′) which violates the constraint

4.1. Now suppose that 4.9 is false, according to the succession state axiom of the

fluent SMER, we will also have static mutually exclusion roles between r3 and r1 in

the situation σ′. As the action Create_hierarchy(s, r1, r2) has no effect on the fluent

Assign, the roles r1, and r3 remain assigned to a subject s1 in the situation σ′, thus the

constraint 4.1 will be violated in the situation σ′. If 4.10 is false, the role r1 will be as-

signed to a subject s1 in the situation σ′ according to the succession state axiom of the

fluent Assign which is a violation of the constraint 4.1 as the static mutually exclusion

roles between r1 and r3 remains true in the situation σ′ and also Assign(s1, r3, σ′).

The regression of applying Create_hierarchy(s, r1, r2) to the constraint 4.2 is given

by the following formulas:

R[C2(do(Create_hierarchy(s, r1, r2), σ))] ↔ ¬SMER(r1, r2) (4.11)

The regression of applying Create_hierarchy(s, r1, r2) to the constraint 4.3 is given

by the following formulas:

R[C3(do(Create_hierarchy(s, r1, r2), σ))] ↔

¬(r1 = r2) ∧ ¬Sub_role(r2, r1) (4.12)

The regression of applying Create_hierarchy(s, r1, r2) to the constraint 4.4 is given

by the following formulas:

R[C4(do(Create_hierarchy(r1, r2)))] ↔ ¬(DMER(r1, r2, ss, σ)) (4.13)

It is clear that if 4.11 (resp. 4.12, 4.13) are false, the constraints 4.2 (resp. 4.3, 4.4) will

be violated. The regression of applying Create_hierarchy(s, r1, r2) to the constraint

4.5, after the rewriting process, is given by the following formulas :

R[C5(do(Create_hierarchy(r1, r2)))] ↔

¬(∃r3)(DMER(r3, r2, ss, σ) ∧

Empowerbackup(s, r3, ss, σ) ∧ Empower(s, r1, ss, σ)) ∧ (4.14)

¬(DMER(r1, r2, ss, σ) ∧ Empower(s, r2, ss, σ)) ∧ (4.15)

¬(DMER(r3, r2, ss, σ) ∧

Empowerbackup(s, r1, ss, σ) ∧ Empower(s, r3, ss, σ)) (4.16)
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Suppose that 4.14 is false in the situation σ. According to the succession state axiom

of the fluent DMER, we will also have in session ss in the situation σ′, the dynamic

mutually exclusion roles between r3 and r1. As the action Create_hierarchy(r1, r2)

has no effect on the fluents Empowerbackup(s, r3, ss, σ) and Empower(s, r1, ss, σ), they

reminded true in the situation σ′ and then the constraint 4.5 will be violated. If 4.15

is false in the situation σ, from the succession state axiom of the fluent Empower, we

can derive that the subject s will empower the role r1 in the situation σ′. As the the

fluents DMER(r1, r2, ss, σ) and Empower(s, r2, ss, σ) will remain true in the situation

σ′, the constraint 4.5 will be violated in this situation. For 4.16, we can follow the same

reasoning as in 4.15.

Then the action precondition axiom of the action Create_hierarchy(s, r1, r2) is as

follows :

Poss(do(Create_hierarchy(s, r1, r2), σ)) ↔

¬(r1 = r2) ∧

¬Sub_role(r2, r1, σ) ∧

¬SMER(r1, r2, σ) ∧ ¬DMER(r1, r2, ss, σ) ∧

¬(∃s1)[SMER(r1, r2, σ) ∧ Assign(s1, r2, σ)] ∧

¬(∃r3, s1)[SMER(r3, r2, σ) ∧ Assign(s1, r3, σ) ∧ Assign(s1, r1, σ)] ∧

¬(∃r3, s1)[SMER(r1, r3, σ) ∧ Assign(s1, r2, σ) ∧ Assign(s1, r3, σ)] ∧

¬(DMER(r3, r2, ss, σ) ∧ Empowerbackup(s, r3, ss, σ) ∧ Empower(s, r1, ss, σ)) ∧

¬(DMER(r1, r2, ss, σ) ∧ Empower(s, r2, ss, σ)) ∧

¬(DMER(r3, r2, ss, σ) ∧ Empowerbackup(s, r1, ss, σ) ∧ Empower(s, r3, ss, σ))

Up here, we have shown how historical and ahistorical constraints are implemented in

our model in order to ensure the secure system evolution with respect to constraint

policy. In the following, we show how we are able to express interesting requirements

using these two types of constraints.

4.3.6 Expressive power

In our model, we can express constraints on obligations and permissions using fluents

Ob and Perm. These constraints can be implemented using our approach because

we have the succession state axioms corresponding to these fluents that we presented

in the previous chapter. Furthermore, we can express temporal constraints by using

fluents taking time as parameters. They are enforced in the same way as non temporal

ones. In this category of constraints, we are able, in particular, to express periodic
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constraints. For illustration, let us take the following example concerning a payment

incident which occurs when the bank rejects a check payment order.

Example 5 The regulation like for example in France Monetary and Fi-

nancial Code1 specifies that the bank can apply tax to payment incident but

after sending to the bank issuer an injunction mail informing him that he will

be taxed for the bad check. A rejected check can be returned to the benefi-

ciary, then to solve the payment incident, the check issuer must replenish his

account with the appropriate amount and ask the beneficiary to make a new

presentation of the check. The regulation specifies that the bank cannot apply

a new tax on payment incident that may happen a second time within 30 days

after the first rejection. We assume that mails are received after being sent

and there is no delete action applied to the received mails. So we can suppose

we have the following succession state axiom for the fluent ackInjMailRCV :

ackInjMailRCV (mail, t, do(a, σ)) ↔

a = sendAckInjMail(mail, t) ∨ ackInjMailRCV (mail, t, σ)

The fluent payIncTaxed(check, t) means that the check is taxed at the time t.

We assume there is no revocation on the tax operation. Then the succession

state axiom of the fluent payIncTaxed is as follows:

payIncTaxed(check, t, do(a, σ)) ↔

a = applyTax(check, t) ∨ payIncTaxed(check, t, σ)

We suppose that a taxing operation can be always possible:

Poss(do(applyTax(check, t), σ)) → True

And consider the two constraints:

¬(∃mail)[check = subjOfInj(mail, σ) ∧ (4.17)

payIncTaxed(check, t, σ) ∧ payIncTaxed(check, t′, σ) ∧ ¬(t′ = t))

¬(∃mail, mail′)[check = subjOfInj(mail, σ) ∧ (4.18)

check = subjOfInj(mail′, σ) ∧ payIncTaxed(check, t, σ) ∧

payIncTaxed(check, t′, σ) ∧ (t′ − t) ≤ 30)]

The constraint 4.17 specifies that a tax should not be applied to check more

than once when the injunction mail is received. The constraint 4.18 speci-

fies that a check should never be taxed more than once within 30 units of
1Article L131-73 and Article D131-25
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time even if it is rejected again. These constraints are impacted just by the

action applyTax, so in this example for simplicity, we omit to speak about

the precondition axiom of sendAckInjMail action and the context when it is

permitted to apply it. To enforce these constraints, we can use the regression

concept to calculate precondition axiom of the action applyTax. Another

approach consists in introducing the concept of temporary activation of roles

related to objects. This kind of constraints is known in the literature un-

der the name of object-based separation of duty [Jaeger and Tidswell 2001].

Thereby we introduce the following:

• The fluent Empowertmp(s, r, o, t, ss, σ), namely the subject s plays the

role r to act on object o at time t in the session ss.

• The action Activate_roletmp(s, r, o, ss, t) activates the role r for the sub-

ject s to act on the object o at the time t.

The succession state axiom for Empowertmp is defined as:

Empowertmp(s, r, o, t, ss, do(a, σ)) ↔

Assign(s, r, σ) ∧ a = Activate_roletmp(s, r, o, ss, t) ∨

(∃r1)[Sub_role(r, r1, σ) ∧ Assign(s, r1, σ) ∧

a = Activate_roletmp(s, r1, o, ss, t)] ∨ False

This above axiom specifies that a temporary activated role is true

just in the situation resulting from the execution of the action

Activate_roletmp(s, r, o, ss, t). Any other action is performed after restor-

ing the fluent at a false value. Suppose now that the authorization to apply

tax to a check which is subject to an injunction mail is associated with a

temporary activation of role Clerk. Then a subject that temporary empowers

the role Clerk is permitted to apply a tax to the bad check but when he does,

he will not yet empower the role Clark to act again on the check, but there is

nothing that prevents him to activate the Clerk role again. For this purpose,

we should add the following constraint:

¬∃(mail, t, t′)[check = subjOfInj(mail, σ) ∧

Empowertmp(s, Clerk, check, t, ss, σ) ∧ (4.19)

check = subjOfInj(mail, σ′) ∧ Empowertmp(s, Clerk, check, t′, ss, σ′)

The check that is rejected one more time activates two different injunction

mails. Normally it is permitted to apply tax to the check that is rejected
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one more time but not during the 30 days after the last rejection. This is

expressed by the following historical constraint:

¬(∃mail, mail′)[check = subjOfInj(mail, σ) ∧ (4.20)

Empowertmp(s, Clerk, check, t, ss, σ) ∧ check = subjOfInj(mail′, σ′) ∧

Empowertmp(s, Clerk, check, t′, ss, σ′) ∧ t′ − t ≤ 30

4.4 Related work

Ahn and Sandhu [Ahn and Sandhu 1999, Ahn and Sandhu 2000, Bertino et al. 1999]

propose a Role-based constraints specification language in which they identify use-

ful role-based authorization constraints such as prohibition and obligation constraints.

However, the proposed language is complex to use and it is difficult for an administra-

tor to check if the specified constraints actually reflect the needed safety requirements.

In our model there are just two kinds of constraints easy to grasp. Note that this does

not affect the expressiveness of our model that allows us to express several constraints

known in the literature. In fact, we can express obligation constraints using fluent Ob

defined in chapter 3. We have seen how to derive the succession state axiom of this

fluent. Thus we can calculate the regression of any formula involving fluent Ob and

then enforce obligation constraints.

Tidswell and Jaeger propose a graphical access control model implement-

ing administrative controls [Tidswell and Jaeger 2000b, Tidswell and Jaeger 2000a,

Jaeger and Tidswell 2001]. In this model, the nodes represent sets of subjects, ob-

jects, etc. And the edges represent binary relationships on those sets. The constraints

are expressed using a set of operators on graph nodes. The verification of various safety

properties is done at run time involving a comparator function. With the construction

of precondition axioms of actions using regression, our approach ensures in advance

enforcement of constraints. The constraints will always be satisfied for all possible evo-

lutions of the system from an initial situation that respects the constraints to situations

resulting from execution of actions in accordance with precondition axioms (executable

situations). At runtime execution of the system, ensuring that the precondition axiom

of actions is satisfied amounts to solve the temporal projection problem which is de-

cidable in polynomial time. In addition our approach allows us to express and enforce

periodic temporary constraints which are not handled in other related works. Simpler

specification scheme for separation of duty constraints for RBAC model is defined by

Crampton in [Crampton 2003], but with this scheme, it is not possible to express for

example that a subject is restricted from executing an operation on a particular object

twice. This is what we express in the example related to taxing bad check presented
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in the previous section. And more interesting, in this example we also show how we

can specify the restrictions of acting on objects during a time interval. Similarly, we

can express a periodic temporary constraints concerning obligations.

It is clear that in our model there is a step that requires more simplification, this con-

sists in the definition of succession state axioms for fluents which belong to domain

application. Our proposal in this case is to specify axioms of positive (resp.negative)

effects on fluents and derivation rules and then build automatically succession state

axioms.

4.5 Conclusions and contribution

We proposed in this chapter a formal language to express constraints policy. In our

language, there is two kinds of constraints which we call historical and ahistorical con-

straints. We show how this language is adequate to express well-known constraints in

the literature. To enforce constraints, first we propose to rewrite the historical con-

straints into simple formulas. We then give a procedure based on the regression concept

to enforce these constraints. Furthermore, we formally specify the condition to prove

that the system specification is secure with respect to the access control requirements

and constraints policy.

Admittedly, constraints in access control models are essential to avoid fraudulent situa-

tions and ensure some desired properties which must be verified throughout the system

execution. However their use leads to restrict the conditions under which actions can

be performed. This may produce conflicting situations in obligation with deadline poli-

cies. For example, consider a situation where it is obligatory to do an action but it is

impossible to execute it. The goal of the next chapter is to identify this kind of conflict

and many others.





CHAPTER

5 Conflict Detection in

Obligation with

Deadline Policies

5.1 Introduction

The use of obligation rules in a security policies may cause conflicting sit-

uations. Preliminary work on the classification of conflicts are reported in

[Moffett and Sloman 1993], where several types of conflicts have been defined (see also

[Bertino et al. 1996, Dinolt et al. 1994]). [Benferhat et al. 2003] presents an approach

based on possibilistic logic to deal with conflicts in prioritized security policies.

In this chapter, we deal with new types of conflict which we managed in

[Essaouini et al. 2014a]. The first conflict arises between obligations with deadlines,

namely conflict in feasibility of obligations. This kind of conflict could happen in the

case of overlapping deadlines. For example: (i) The doctor is obliged to fill in the

summary sheet within 1 hour after the patient leaves. (ii) The surgeon must be vigi-

lant in the operating room. If the doctor is a surgeon and he is in the operating room

during a patient’s leaving, and if the duration of the surgery ends 2 hours after the

patient’s leaving, the surgeon cannot fill in the summary sheet of the patient because

the surgery will end after the deadline associated with filling the summary sheet. Thus,

there may be situations where it is impossible to meet certain obligation requirements

of the security policy before their deadlines. We show in this chapter how we identify

this conflict using executable plan [Green 1969a]. Given a goal formula, executable

plan consists in finding a possible sequence of actions so that the goal is satisfied after

executing this sequence of actions. The second conflict is between permissions and

obligations with deadline. This conflict occurs when it is impossible to find a sequence

of permitted actions which leads to a situation where obligations are fulfilled within

their deadlines. We formally define the situations which correspond to such conflicts
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by introducing the concept of a legal plan. A legal plan is the sequence of permitted

actions.

This chapter is organized as follows. In section 5.2, we enrich the example of comple-

tion of medical records described in chapter 3 by adding some constraints and show

how this causes some conflicts. In section 5.3, we define formally situations which

present a conflict in the feasibility of obligations and a conflict between obligations and

permissions. In this section, we also give the algorithm allowing the detection of these

conflicts. In section 5.4, we implement our model using the programming language

GOLOG [Levesque et al. 1997]. In this section, we make assessment on different sit-

uations that we build to simulate our model on the motivation example and discuss

some performance evaluation. The related work is presented in section 5.5. Finally, we

present the conclusion and contributions.

5.2 Motivation example

Let us consider the rules of example 1 specified in chapter 3. We now add the following

constraints:

• C1: A doctor should spend at least 5 units of time writing each document.

• C2: Only one document should be written by the same doctor at the same time.

For expressing these constraints, we need to add the fluent WrittenDoc(d, type, p, t,

te, σ), meaning the document of type type concerning patient p and created at time

t has been written at time te in σ by d. The corresponding succession state axiom is

defined as follows:

Poss(a, σ) →

WrittenDoc(d, type, p, t, te, do(a, σ)) ↔

[a = EndWrite(d, type, p, t, te) ∨ WrittenDoc(d, type, p, t, te, σ)]

This axiom specifies that a document is considered written if the writing process is

completed.

Thus the constraint C1 can be expressed as follows:

(∀σ, σ′).WritingDoc(d, type, p, t, ts, σ) ∧ WrittenDoc(d, type, p, t, te, σ′) ∧ (te − ts) ≥ 5

And the constraint C2:

(∀σ).¬(WritingDoc(d, type, p, t, ts, σ) ∧ WritingDoc(d, type′, p′, t′, t′

s, σ) ∧

¬(type = type′) ∧ ¬(p = p′) ∧ ¬(t = t′))
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Recall that the fluent WritingDoc(d, type, p, t, ts, σ), means that the document of type

type concerning patient p and created at time t is in writing process by d, and d began

to write it at time ts. The corresponding succession state axiom A.2 is described in

the appendix A.

Using the regression principle which we discussed in chapter 4, we can build the pre-

condition axiom of action EndWrite as follows:

Poss(EndWrite(d, type, p, t, te), σ) ↔ WritingDoc(d, type, p, t, ts, σ) ∧ te ≥ ts + 5

In this axiom, we admit that the writing end is applied to an ongoing writing document.

However the second constraint restricts the possibility of starting to write documents.

Thus, the precondition axiom of StartWrite is given by the following formula:

Poss(StartWrite(d, type, p, t, ts), σ) →

¬(∃type′, p′, t′, t′

s).WritingDoc(d, type′, p′, t′, t′

s, σ)

Now let us reconsider the same sequence of actions described in figure 3.1, while con-

sidering the precondition axioms of actions that we specified above. The new figure 5.1

shows the truth value of predicate Poss concerning the actions of writing documents.

In this figure, we can see that there are situations where there are obligations to do

actions but it is impossible to execute them. If these obligations are system obligations,

we can conclude immediately that there is a conflict in the policy. However the purpose

of obligations with deadline is to fulfill them before their deadlines expire. Thus, it is

possible that there are situations in the future where these actions become possible to

execute before the deadlines expire. In which case these situations will not be consid-

ered conflictual. The purpose of the following sections is to show how we can prove the

existence or not of these situations in the future using a planning process. We make

the same reasoning about situations where there are obligations with deadline to do

actions which are not permitted.

5.3 Conflict detection

In this section, we distinguish two kinds of conflict:

• A conflict in feasibility of obligations, which occurs when it is impossible to fulfill

obligations without violating some of them. This conflict is detected through the

definition of executable plan. In this kind of conflict, we distinguish two types:

– Conflict in the feasibility of an obligation with deadline.
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Actual norm derivation

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(EndW rite(Jean, Observation, Alice, 11))

P erm(EndW rite(Jean, AdmissionNote, Alice, 11))

¬P oss(StartW rite(Jean, Observation, Alice, 11))

¬P oss(StartW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(EndW rite(Jean, Observation, Alice, 11))

P erm(EndW rite(Jean, AdmissionNote, Alice, 11))

¬P oss(StartW rite(Jean, Observation, Alice, 11))

¬P oss(StartW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(EndW rite(Jean, Observation, Alice, 11))

P erm(EndW rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Bob, 13))

Ob(W rite(Jean, Observation, Bob, 13))

P erm(StartW rite(Jean, Observation, Bob, 13))

P erm(StartW rite(Jean, AdmissionNote, Bob, 13))

¬P oss(StartW rite(Jean, Observation, Alice, 11))

¬P oss(StartW rite(Jean, AdmissionNote, Alice, 11))

¬P oss(StartW rite(Jean, Observation, Bob, 13))

¬P oss(StartW rite(Jean, AdmissionNote, Bob, 13))

Derived facts

Doctor(Jean)

Assigned(Alice, Jean)

Doctor(Jean)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

W ritingDoc(Observation, Alice, 11)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

W ritingDoc(Observation, Alice, 11)

InP atient(Bob, 12)

InP atient(Alice, 11)

Assigned(Alice, Jean)

Doctor(Jean)

W ritingDoc(Observation, Alice, 11)

InP atient(Bob, 12)

Assigned(Bob, Jean)

Sequence of actions

which has been performed

Assign(Alice, Jean, 4)

P atientAdmission(Alice, 11)

StartW rite(Jean, Observation, Alice, 11)

P atientAdmission(Bob, 12)

Assign(Bob, Jean, 13)

Figure 5.1: Motivation example

– Global conflict in the feasibility between obligations with deadline.

• A conflict between obligations and permissions, which occurs when obligations can

not be fulfilled in their deadlines by executing permitted actions. This conflict is

detected through the definition of legal plan. In this kind of conflict, we distinguish

two types:

– Conflict between an obligation with deadline and permissions.

– Global conflict between obligations with deadline and permissions.
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5.3.1 Conflict in feasibility of obligations

An obligation is feasible in a situation σ if it is possible to execute it within its deadline

by following an executable plan. To formalize this, we define fluent Feasible(α < d, σ).

Feasible(α < d, σ) ↔ [Ob(α < d, σ) ∧

(∃σ′, σ < σ′)(Fulfil(α < d, σ′) ∧ Executable(σ′))]

In the above formula, the obligation to do the action α is active in the situation σ and

fulfilled in the situation σ′ which it is an executable situation. When an obligation is

not feasible in a situation σ, we say that there is a conflict in the feasibility of this

obligation in the policy for this situation.

It may happen that in one situation, every active obligation is feasible, but it is still

not possible to do all of them without violating the associated deadlines. If all the

active obligations in a situation σ can be executed without violating at least one of

them, we say that this situation is globally feasible. To characterize this, we introduce

the formula G-Feasible(σ).

G-Feasible(σ) ↔ (∃σ′)σ′ > σ ∧

(∀α, d)(Ob(α < d, σ) → (Fulfil(α < d, σ′) ∧ Executable(σ′)))

Proving that a given situation σ is globally feasible, amounts to proving the existence

of an executable situation where all the active obligations in σ are fulfilled. If the set

of actions and the set of fluents are finite, we can prove that the existence of such a

situation is decidable and can be solved in NEXPTIME complexity. This complexity

of planning in the situation calculus is high but is similar to other planners, like Strips

for example [Fikes and Nilsson 1971].

If a given situation is not globally feasible, then we shall say that there is a global

conflict in the feasibility of obligations in the policy in this situation. There are several

ways to solve this conflict:

• Changing the deadline of some obligations

• Creating an exemption which cancels some obligations

• Offering the possibility to delegate some obligations

Whereas obligations can be globally feasible, it is not possible to fulfill them by exe-

cuting permitted actions. The purpose of the next section is to detect such situations.
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5.3.2 Conflict between permission and obligation rules

There is a conflict between an obligation and a permission if the obligation cannot be

done within its deadline by following an execution of a permitted action. In general, we

call a sequence of permitted actions that achieves a given goal, a legal plan. Formally,

a legal plan to achieve a goal G, is the task of establishing that:

Axiom � (∃σ)G(σ) ∧ Legal(σ)

If the set of actions and the set of fluents are finite, similarly to finding an executable

plan, finding a legal plan is a decidable problem.

Through a legal situation, we define the fluent predicate L-Enforceable(α < d, σ),

meaning the active obligation Ob(α < d, σ) in σ is enforceable in a legal situation σ′.

L-Enforceable(α < d, σ) ↔

(∃σ′).σ′ > σ ∧ Fulfil(α < d, σ′) ∧ Legal(σ′)

In the formula above, finding the legal situation σ′, consists in finding a legal plan

leading to fulfill the active obligation α in σ.

Similarly to the global conflict between obligations, we define the global conflict be-

tween obligations and permissions using a legal plan. There is a global conflict between

obligation and permissions in a policy in a given situation σ, if this situation is not glob-

ally enforceable by following a legal plan. A globally enforceable situation by following

a legal plan is defined as follows:

LG-Enforceable(σ) ↔ ∃σ′, σ′ > σ ∧ (∀α, d)

Ob(α < d, σ) → Fulfil(α < d, σ′) ∧ Legal(σ′)

In the above formula, all the active obligations in σ are fulfilled in the legal situation

σ′. In the next section, we give an algorithm to detect the conflicts we formalized in

this section.

5.3.3 Conflict detection algorithm

In what follows, we assume the existence of a temporal reasoning component that al-

lows us to infer, for example, that T1 = T2 when T1 ≤ T1 and T2 ≤ T2, and we are able

to solve linear equations and inequalities over the reals using the Simplex algorithm

[Thom Fruhwirth 1992].

The Algorithm 1 detects the different types of conflict we have defined using recursive

search as defined in Algorithm 2. In this algorithm, we allow the execution of parallel
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actions otherwise we can use constraints to specify the actions which cannot be done

in parallel. Note that we suppose that if the situation we check is globally feasible

(resp. legally globally enforceable), then this situation must be executable (resp. le-

gal). Proving that a situation is executable (resp. legal) can be done using regression

[Reiter 1991], where testing is reduced to proving first order theorems in the initial

situation.

Furthermore, if the set of actions and the set of values are finite, we can estimate the

Algorithm 1 ConflictDetection(σ, N, conflictType)

Require: σ: the situation to check

N: the maximal depth

conflictType: the type of the searched conflict, “FC”for feasibility conflict,

“LC”for legally conflict and “SC”for strong conflict

Ensure: No: if there is no conflict of type conflictType in the policy at situation s

otherwise Yes.

O = {α ∈ A such that Ob(α < d, σ)} {set of active obligations in s}

s′ ← recursiveSearch(s, N, O, conflictType)

if ¬(s′ = NULL) then

return No {there is no conflict of type conflictType in the policy at σ and σ′ is

the plan which leads to fulfill all the active obligations in σ}

else

return Yes {there is a conflict of type conflictType in the policy in situation σ}

end if

maximum length of the plan, N , allowing to achieve the goal.

In our algorithm, we explore the tree of all possible worlds that can be very large. In-

deed, if we suppose that on average, there are k actions which are possible to execute

from a given situation, then the number of worlds to explore is the order of kN .

In the following section, we show how to optimize the search tree for finding a situation

where obligations are fulfilled if it exists.

5.4 Implementation

We implement our model using the logic programming language Golog

([Levesque et al. 1997, Reiter 1998]), based on the situation calculus. Regarding

our need to solve linear equations and inequalities, we use the Common Logic

Programming System ECLIPSE 3.5.2, which provides a built-in Simplex algorithm for
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Algorithm 2 recursiveSearch(σ, N, O, conflictType)

Require: s: the current situation

N: the current depth (initially the given maximum depth)

O: set of active obligations in σ

conflictType: the type of the searched conflict, “FC”for feasibility conflict,

“LC”for legally conflict and “SC”for strong conflict

Ensure: Null: if the depth of the current path exceeds the given maximum depth or,

situation when all obligations in O are fulfilled if it exists otherwise,

the next situation to give to the next call for recursion

switch (conflictType)

case “FC”:

E ← {a ∈ A, Poss(a, σ) ∧ Start(σ) ≤ Time(a)} {the set of actions that can lead

from σ to an eventual executable situation}

case “LC”:

E ← {a ∈ A, P erm(a, σ)} {the set of actions that can lead from σ to an eventual

legal situation}

case “SC”:

E ← {a ∈ A, Poss(a, σ) ∧ Start(σ) ≤ Time(a) ∧ Perm(a, σ)} {the set of actions

that can lead from σ to an eventual legal and executable situation}

end switch

while true do

if N < 0 then

return NULL

end if

for all a ∈ E do

σ′ ← do(a, σ)

N ← N − 1

if (∀α, d ∈ O)Fulfil(α < d, σ′) then

return σ′

end if

σ′′ ← recursiveSearch(σ′, N, O, conflictType)

if ¬(σ′′ = NULL) ∧ (∀α, d ∈ O)Fulfil(α < d, σ′′)) then

return σ′′

end if

N ← N + 1

end for

return NULL

end while
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solving linear equations and inequalities over the reals.

The point of departure for the implementation is to get the list of all active

obligations in a given situation S. This is given using the predicate activeObliga-

tions(ActiveObligationsList,S):

1 a c t i v e O b l i g a t i o n s ( A c t i v e O b l i g a t i o n s L i s t , S): − f i n d a l l ( Rule , ob ( Rule , S ) ,

A c t i v e O b l i g a t i o n s L i s t ) .

Given the list of active obligations, seeking the situation where all these obligations

are fulfilled is made using the procedure plan.

proc ( plan (N, L) ,

2 ?( a l l ( r , member( r , L) => f u l f i l ( r ) ) ) : ? ( r e p o r t S t a t s )#

?(N > 0 ) :

4 pi ( a , ? ( p r im i t i v eA ct i o n ( a ) ) : a ) :

?(− badSi tuat ion ) :

6 pi (n , ? ( n i s N−1): plan (n , L ) ) ) .

Here, primitiveAction is a predicate characterizing all the actions of the domain. IfN =

0 the execution of the procedure ends. If N > 0, a primitive action a is selected. The

Golog interpreter checks if the selected action a is possible and verifies that start(s) ≤

time(a), where s is the current situation. If so, a is executed and do(a, s) becomes the

new current executable situation.

we can change the following instruction of Golog:

do (E, S , do (E, S ) ) :− p r i mi t i v eA ct i o n (E) , poss (E, S ) ,

2 s t a r t (S , T1) , time (E, T2) ,T1 <= T2 .

and replace it with the following statement for searching a legal plan:

do (E, S , do (E, S ) ) :− p r i mi t i v eA ct i o n (E) , perm (E, S ) ,

2 s t a r t (S , T1) , time (E, T2) ,T1 <= T2 .

In our implementation we make no change in the Golog interpreter but every pre-

condition axiom of an action includes the fact that this action is permitted using the

fluent perm. Thus we test whether a situation is strongly enforceable or not using the

predicate sEnforceable(N,S1).

sEn fo r ceab l e (N, S1): − i n i t i a l i z eCPU ,

2 a c t i v e O b l i g a t i o n s ( A c t i v e O b l i g a t i o n s L i s t , S1 ) ,

do ( plan (N, A c t i v e O b l i g a t i o n s L i s t ) , S1 , S ) ,

4 p r e t t y P r i n t S i t u a t i o n (S ) .

Let us start by showing how we can write axioms of our example using Golog. The

complete description of axioms is described in the file conflictualSituation.pl.

Examples of succession state axioms:

ob ( write (D, Type , P,T) , do (A, S)): − ( a s s i gned (P,D, S ) ,

2 A=pat ientAdmiss ion (P,T) ) ;
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( ob ( write (D, observat ion , P,T) , S ) ,

4 not A=endWrite (D, observat ion , P,T, T1) ,

not A=endDeadline ( observat ion , P,T, T2) ,

6 not A=l e a v e (P, T3) ,

not A=revokeAss ignat ion (P,D, T4 ) ) .

8

f u l f i l ( write (D, Type , P,T) , do (A, S)): − ( ob ( write (D, Type , P,T) , S ) ,

10 (A=endWrite (D, Type , P,T, T2 ) ) ;

f u l f i l ( write (D, Type , P,T) , S ) ) .

Examples of action precondition axioms:

1 poss ( s ta r tWr i t e (D, observat ion , P,T, T1) , S): − i n p a t i e n t (P,T, S ) ,

a s s i gned (P,D, S ) ,

3 not writ ingDoc (D, Type1 , P1 , T3 , T4 , S ) ,

not writtenDoc (D, observat ion , P,T, S ) .

5

poss ( endWrite (D, Type , P,T, T1) , S): − writ ingDoc (D, Type , P,T, T2 , S ) ,T1 $>= T2+5.

In addition to the succession state axioms and precondition axioms of actions, we

suppose having the following axioms in the initial situation s0.

s t a r t ( s0 , 0 ) .

2 doctor ( jean ) .

Description of bad situations:

The badSituation test is used to remove partial plans which are known in advance to

be unsuccessful. For example, a branch resulting from the execution of an action that

disables an active obligation can be eliminated. A branch resulting from the execution

of an action that activates the deadline corresponding to an active obligation may also

be removed. We will see in the following how this can be done in the implementation

of our example.

If a violation of an active obligation occurs after the execution of an action, it is no

longer necessary to continue searching a solution from the resulting situation.

badSi tuat ion ( do (A, S)): − A=endDeadline (Type , P,T, T1) ,

2 not f u l f i l ( write (D, Type , P,T) , S ) , ! .

badSi tuat ion ( do (A, S)): − A=endDeadline (Type , P,T, T1) ,

4 poss ( endDeadline ( Type1 , P1 , T2 , T3) , S ) ,T3 $< T1 , ! .

badSi tuat ion (S): − ob ( endDeadline (Type , P,T, T1) , S ) , s t a r t (S , T2) ,

6 not (T1$>=T2 ) , ! .

If an active obligation is deactivated after the execution of an action, it is no longer

necessary to continue searching a solution from the resulting situation.

badSi tuat ion ( do (A, S)): − A=l e a v e (P,T ) , ! .

2 badSi tuat ion ( do (A, S)): − A=revokeAss ignat ion (P,D,T ) , ! .

The construction of these bad situations can be done using the succession state axioms

of fluents Ob and Fulfil. Thus these optimizations can be generalized to any policy
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without losing the completeness of the planning search. In our example, the execution

of actions patientAdmission and assign activates other obligations and has no impact

on the fulfillment of obligations which are already active. Therefore the path resulting

from their execution can be eliminated in the solution search.

badSi tuat ion ( do (A, S)): − A=a s s i g n (P,D,T ) , ! .

2 badSi tuat ion ( do (A, S)): − A=pat ientAdmiss ion (P,T ) , ! .

This optimization is closely related to our example because there is nothing that pre-

vents to have actions in the policy that are necessary to fulfill obligations but their

execution leads to activate other obligations simultaneously.

We have performed tests that check the strongly enforceability of situations constructed

as follows: the first situation checked by the first test, denoted s1 is the result of the

assignment of a single patient p1 to the doctor jean at time 4 followed by his admission

in the hospital at time 5.

t e s t 1 :− sEn fo r ceab l e (6 , do ( pat ientAdmiss ion ( p1 , 5 ) , do ( a s s i g n ( p1 , jean , 4 ) , s0 ) ) ) .

The next situation s2 is the assignment of another patient p2 to jean at time 6 from

the situation s1 followed by the admission of p2 in the hospital at time 7.

1 t e s t 2 :− sEn fo r ceab l e (12 , do ( pat ientAdmiss ion ( p2 , 7 ) , do ( a s s i g n ( p2 , jean , 6 ) ,

do ( pat ientAdmiss ion ( p1 , 5 ) , do ( a s s i g n ( p1 , jean , 4 ) , s0 ) ) ) ) ) .

We build 20 tests. Their complete description is in the file test.pl. The planning depth

research is calculated as follows. In our application domain, there are seven actions,

four of them are removed from the planning through the specification of badSituation.

The remainder actions are: startWrite, endWrite and endDeadline. In the database,

there is one doctor Jean and two types of documents, so for each patient, these ac-

tions are possible twice, one for each type of document. When one of these actions is

executed, it is not possible to execute it again according to their precondition axioms.

Thus when all these actions are performed one after the other, it is no longer possible

to perform other actions except those which are discarded from the planning search.

Thereby whenever a patient is added, the minimum depth ensuring the decidability of

solution research is increased by six.

We conducted two series of tests depending on the deadlines associated with the obli-

gations to write documents. The experiment was run on a machine equipped with an

Intel 32bit 2.60GHzx4 processor and 3,8GB RAM, running ECLIPSE 3.5.2 on ubuntu

Linux(v.13.04).

The first series of tests: the deadline for writing admission note is 30 units of time

and the observation is 40 units of time. In this series of tests, the maximum number

of patients, who can be admitted in the hospital and assigned to jean, without causing
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conflict between the obligations is 4. Indeed, the policy is not conflictual in the first

four situations. As example, the following legal plan generates a situation when all

the active obligations in the situation s1 are fulfilled which means that s1 is strongly

globally enforceable.

[ e c l i p s e 2 ] : t e s t 1 .

2

CPU time ( s ec ) : 0 .00

4

[ a s s i g n ( p1 , jean , 4 ) , pat ientAdmiss ion ( p1 , 5 ) , s ta r tWr i t e ( jean ,

6 admissionNote , p1 , 5 , _374 ) , endWrite ( jean , admissionNote , p1 , 5 , _1095 ) ,

s ta r tWr i t e ( jean , observat ion , p1 , 5 , _2264 ) , endWrite ( jean , observat ion , p1 , 5 , _3112 ) ,

8 endDeadline ( admissionNote , p1 , 5 , 3 5 ) , endDeadline ( obse rvat ion , p1 , 5 , 4 5 ) ]

more? n .

10

Linear Store :

12

_3112 $>= 15+1∗_2321+1∗_1187+1∗_431

14 _2264 $>= 10+1∗_1187+1∗_431

_1095 $>= 10+1∗_431

16 _374 $>= 5

The above plan contains uninstantiated temporal variables. The value of these variables

is just constrained by the inequalities in ECLIPSE’s linear constraint store. Although,

there may be cases when plans are fully specified like the following third test which

proves that the policy remains consistent after the admission of three patients.

[ e c l i p s e 4 ] : t e s t 3 .

2

CPU time ( s ec ) : 0 .03

4

[ a s s i g n ( p1 , jean , 4 ) , pat ientAdmiss ion ( p1 , 5 ) , a s s i g n ( p2 , jean , 6 ) ,

6 pat ientAdmiss ion ( p2 , 7 ) , a s s i g n ( p3 , jean , 8 ) , pat ientAdmiss ion ( p3 , 9 ) ,

s ta r tWr i t e ( jean , admissionNote , p3 , 9 , 9 ) , endWrite ( jean ,

8 admissionNote , p3 , 9 , 1 4 ) , s ta r tWr i t e ( jean , admissionNote , p2 , 7 , 1 4 ) ,

endWrite ( jean , admissionNote , p2 , 7 , 1 9 ) , s ta r tWr i t e ( jean ,

10 admissionNote , p1 , 5 , 1 9 ) , endWrite ( jean , admissionNote , p1 , 5 , 2 4 ) ,

s ta r tWr i t e ( jean , observat ion , p3 , 9 , 2 4 ) , endWrite ( jean ,

12 observat ion , p3 , 9 , 2 9 ) , s ta r tWr i t e ( jean , observat ion , p2 , 7 , 2 9 ) ,

endWrite ( jean , observat ion , p2 , 7 , 3 4 ) , s ta r tWr i t e ( jean ,

14 observat ion , p1 , 5 , 3 4 ) , endDeadline ( admissionNote , p1 , 5 , 3 5 ) ,

endDeadline ( admissionNote , p2 , 7 , 3 7 ) , endWrite ( jean , observat ion , p1 , 5 , 3 9 ) ,

16 endDeadline ( admissionNote , p3 , 9 , 3 9 ) , endDeadline ( obse rvat ion , p1 , 5 , 4 5 ) ,

endDeadline ( observat ion , p2 , 7 , 4 7 ) , endDeadline ( observat ion , p3 , 9 , 4 9 ) ]

18 more? n .

Finally the fifth test shows how the admission of a fifth patient produces a conflict.

[ e c l i p s e 6 ] : t e s t 5 .

2

No (1460 .33 s cpu )

The second series of tests: the deadline for writing admission note is 1000 units of

time and the observation is 1100 units of time.
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In this series of tests we check 20 situations. The table 5.1 summarizes the results

obtained and the execution time for each tested situation. This table describes the

most important parameters influencing the time of executions: the number of active

obligations and the depth of the solution search.

On average, there are 2 × nb actions, which can be executed from a given situation,

where nb is a number of admitted patients. Moreover, the plan to achieve the desired

goal is made up of nb × 6 actions. Then, the number of situations to explore is in the

order of (2 × nb)nb×6. This explains the increment in the time duration, each time a

patient is admitted.

Table 5.1: The summary of second series of tests

Tests Patient number Active obligation

number

The minimum re-

search depth

CPU time (sec) Strongly globally

enforceable ?

s1 1 4 6 0 yes

s2 2 8 12 0.01 yes

s3 3 12 18 0.03 yes

s4 4 16 24 0.06 yes

s5 5 20 30 0.1 yes

s6 6 24 36 0.2 yes

s7 7 28 42 0.36 yes

s8 8 32 48 0.66 yes

s9 9 36 54 1.1 yes

s10 10 40 60 1.78 yes

s11 11 44 66 2.78 yes

s12 12 48 72 4.16 yes

s13 13 52 78 6.03 yes

s14 14 56 84 6.04 yes

s15 15 60 90 8.60 yes

s16 16 64 96 11.95 yes

s17 17 68 102 16.43 yes

s18 18 72 108 21.75 yes

s19 19 76 114 28.89 yes

s20 20 80 120 37.97 yes

5.5 Related work

Most traditional security models are static and respond to access requests just

by yes (accept) or no (deny). Recently, there are more and more works on se-

curity models that handlle obligations [Bettini et al. 2002a, Damianou et al. 2001,

Ni et al. 2008, Hilty et al. 2007, Craven et al. 2009]. Formalization of obligations dif-

fers from one model to another. In XACML [XACML ], obligations are all operations

that must be met in conjunction with the application of the authorization decision.

In [Bettini et al. 2002a, Hilty et al. 2005, Hilty et al. 2007], distinction is made be-

tween provisions and obligations. Provisions are actions or conditions that must be

met before authorizing access. Obligations are actions that must be executed by users

or system after the access is given. The ABC model (Authorization, Obligation and
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Condition) [Park and Sandhu 2004] was specifically designed to express security poli-

cies including usage control constraints. The expression of a constraint to be satisfied

before the use of an object can be expressed as contextual authorization. However,

constraints to meet during or after the use of an object relate to obligations that the

user must follow. The NOMAD model [Cuppens et al. 2005] is based on a formaliza-

tion in temporal and deontic logic to express contextual obligations which should be

met before, during or after the execution of an action. It is also possible to specify a

deadline after which some obligation will be considered violated if the action was not

performed. Authors in [Sans et al. 2007], define a core language to specify the access

and usage control requirements and then give a formalism based on the logic of Tem-

porary Actions (TLA) [Lamport 1994] to specify the behavior of the policy controller

in charge of evaluating such policy. In this approach, a permission is associated with

two conditions, the first must be true at the time of query evaluation, and the second

must always be true as long as access is in progress. The authors also introduce a

concept to reset a current access. Regarding obligations, they are associated with two

conditions. Once the first condition is satisfied, the obligation is triggered then the

controller sends a notification to the user to perform the appropriate obligation, the

second condition determines when the obligation should be considered violated. If the

user does not satisfy the obligation before the second condition becomes true, a penalty

is applied to him. The authors in [Goedertier and Vanthienen 2006] talk about what

they called deontic conflicts. The types of conflict that the authors have classified in

this category are those that occur between permission and prohibition and those which

occurs between obligation and obligation waiver. As in the used formalism the authors

do not use prohibition and obligation waiver modalities, they do not deal with these

conflicts in their work. But in this category, there is another kind of conflict which is

the conflict between the obligations with deadlines and permissions. In our work, this

conflict is detected when there is no plan consisting of permitted actions that lead to

fulfilling an obligation requirement within its deadline. In other words it is possible

that in a given situation, a mandatory action is permitted and it can be fulfilled within

its deadline but it is not possible to execute because it is necessary to first execute other

actions which are not permitted. Certainly, the authors define another type of conflict

called temporal conflicts which occur when two deontic assignments at the same time

initiate and terminate obligation. This is a particular case of detection that we called

the global conflict between the obligations with deadlines. Indeed, in a given situation,

it may be possible to fulfill an active obligation within its deadline but given that there

are other active obligations at the same time it is not possible to fulfill them together

without violating one of them. The conflict in the temporal constraints is actually a

special case of a “logical”conflict that we detect with the concept of executable plan.
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5.6 Conclusion and Contribution

In this chapter, we first begin by formally defining the conflicting situations using

the situation calculus. Afterwards, we provide an algorithm for searching a plan of

actions, when it exists, which fulfills all the active obligations in a given situation

within their deadlines with respect to the permission rules. The length of the plan is

set in advance and can be calculated in the case where the sets of actions and fluents

are finite to ensure the decidability of the solution search. Furthermore, in the plan

search, the choice of the execution time of the elected actions obeys to equations and

inequalities which need to be solved. For this purpose, we use a component allowing

these equations and inequalities resolution. To illustrate our approach, we take the

example described in chapter 3 inspired from existing laws in hospitals regulating

deadlines for completing patient medical records. The example is implemented in

ECRC Common Logic Programming System ECLIPSE 3.5.2, which is equipped with

the Simplex algorithm for solving linear equations and inequalities over the reals. In

the implementation, we show how the plan search can be optimized through the use of

some heuristics and make some evaluation tests.

However, the existence of conflicting situations, does not necessarily imply that there is

a conflict in the policy. Sometimes a conflict occurs because there is an accumulation

of old obligations that have not been fulfilled and remained active. We will argue

about the nature of the activities that led to the accumulation of such obligations for

determining if the conflict comes from the policy or it is the responsibility of agents. For

that we need to enrich our language with another modality which it is the modality of

right. Indeed we need to distinguish an activity resulting from executing a permitted

action from an activity resulting from executing an action when there is a right to

perform it. This is the purpose of the following chapter.





CHAPTER

6 Enriching Obligation

with Deadline Policies

with Rights

6.1 Introduction

In this chapter, our main concern is to show how enriching security policies with right

rules allows us to improve the expressiveness of policy languages. A right to do an

action is associated with a context which corresponds to the set of conditions that

must hold in order to make the right active. Whenever a right is active, the execution

of the corresponding action should be possible, making the right ensured, otherwise

there is a violation of right. However making an action possible does not mean that

the action must be executed, while when an action must be executed (i.e., obligation),

it must necessarily be possible. Otherwise, there is a conflict in the feasibility of the

obligation rule. Thus, unlike obligations, it remains to the user to choose to exercise

its right or not.

However, we consider that obligations and rights have one thing in common insofar

as both can lead to situations of violation and sanction. But the semantic we give to the

violation of a right is different from that of obligation with deadline. The violation of

right is not associated with the fact that the user does not perform the action before a

deadline, but the fact that there are circumstances in a system or some users’ behaviors

which made the action impossible to be executed. These situations should be detected

even if the users concerned by the right did not try to execute the action. For example,

consider a user who has paid to access an online document. If the online document is

deleted or the corresponding host is stopped for some reasons, the access is no longer

possible (ex. HTTP Error 503-Service unavailable) but not forbidden (ex. HTTP

403-Forbidden). Thus, this can not be considered as a conflict between permissions

and interdictions but more specifically an access permission impossible to meet. In



70 CHAPTER 6. ENRICHING OBLIGATION WITH DEADLINE POLICIES...

addition, assume that the failure to access to this document induces the refund of the

costs that the user paid. Such an approach is a penalty resulting from a situation

where an access permission has not been satisfied. In these circumstances, the access

to this document should be expressed in the policy as a right. Situations where the

server is down or the document is deleted correspond to situations where the right

has been violated. The violation here has no connection with the fact that the user

has not fulfill an obligation to access to this document. But would protect the users’s

right to access to a document which they paid for, while keeping their own choice to

execute this access or not. In general, rights are often associated with penalties in

case of violations. For example, CNIL (Commission National de l’informatique et des

libertés) 1 gives a list of rights and made provisions of steps to follow if these rights are

violated2.

In this chapter, we first extend our language by considering a right modality. Then,

we show how to capture every situation where something happens which prevents right

to be executed. Furthermore, using right rules in security policies leads to a new type

of conflict which is, to the best of our knowledge, has received scarce attention in the

literature on the topic. It is a conflict that arises when the execution of a right prevents

an obligation from to be fulfilled in its deadline or conversely; fulfilling an obligation in

its deadline necessarily leads to the violation of a right. In this chapter, we introduce the

concept of preserved plan to formaly define a conflict between obligation with deadline

and right rules. Indeed, a preserved plan consists of a sequence of actions that causes

no violation of any current right. When there is no preserved plan that leads to fulfill

active obligations in their deadlines, we say that there is a conflict between obligations

and rights.

This chapter is organized as follows. Section 6.2 presents a motivation example. In

section 6.3, we extend our language with right modality to enable the specification of

right rules. Section 6.4 extends situation calculus to formally derive where a right is

effective. In this section, we also formally define right violation. Section 6.5 shows how

to detect the presence of conflicting norms in the policy. Our right modeling is then

compared to some of existing work modeling rights in section 6.6. Finally section 6.7

concludes this chapter.

1An independent French administrative authority. It is responsible for ensuring that information

technology is at the service of citizens and it does not affect human identity, nor the rights or privacy,

or individual and public freedoms. It carries out its tasks in accordance with Law No. 78-17 of 6

January 1978 amended August 6, 2004
2http://www.cnil.fr/vos-droits/plainte-en-ligne/
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6.2 Motivation example

In a code of medical ethics 3, it is stated that physicians are encouraged to attend

training and this is expressed as a right by this law. Thus, let us enrich the motivation

example described in 5.2 by adding the following rules:

• Right rule:

– r: The doctor has right to join training.

• Permission rules:

– p1: It is permitted to start training at unit time 30.

– p2: It is permitted to end training at unit time 90.

– p3: The doctor has a permission to join training.

– p4: The doctor has a permission to leave training.

– p5: It is permitted to start the coffee break at unit time 10.

– p6: It is permitted to end the coffee break at unit time 30.

– p7: The doctor has a permission to start to take a coffee break at the coffee

break moment

– p8: The doctor has a permission to end to take a coffee break when he is in

coffee break.

Furthermore, we saw in the previous chapters that there may be requirements

on the circumstances under which the medical records must be written to ensure

better quality. We saw that it is stated in [ANAES 1996] that the quality of

documents is directly related to the time spent on their outfit. This prompted

us to add constraints specifying the minimum time needed for the completion of

documents. We think that be vigilant can be also an important requirements to

ensure the better quality of documents. Thus, it appears to be natural to add the

following constraint to our example.

• Constraint:

– C3: No patient document is written by a doctor while he is in training or in

coffee break.

3 CODE DE DEONTOLOGIE MEDICALE: http://www.comores-

droit.com/code/deontologiemedicale
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Let us consider the sequence of actions described in figure 6.1. Jean has a possibility

between starting writing the admission note of Alice, or her observation note, or joining

a training. He can not do any of these actions in parallel otherwise he will not satisfy

the policy constraints. However, if Jean exercises his right to attend the training until

the end, i.e., 90 units of time, the obligations concerning writing the documents of Alice

will be violated. Similarly, requiring from Jean to fulfill these obligations deprives him

from his right to attend training which lead also to a violation of right. The violation in

this case is not due to the fact that Jean will not attend a training (attending a training

is not an obligation for Jean) but the fact that the succession of events prevents him

from having the choice to do it or not. In that case, the action is no longer possible

to be executed if he starts fulfilling his obligations. Keeping for the user the choice to

exercise his right or not at any moment leads us to consider that the defined policy is

conflictual in this kind of situation.

In the remainder of this chapter, we show how we detect this kind of conflict.

Derived facts using policy rules

P erm(StartT akeCoffeeBreak(Jean))

P erm(EndT akeCoffeeBreak(Jean))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(EndT akeCoffeeBreak(Jean))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Jean has right to join the current training

Sequence of actions

which has been performed

Assign(Alice, Jean, 4)

StartCoffeeBreak(10)

StartT akeCoffeeBreak(Jean, 10)

P atientAdmission(Alice, 11)

EndT akeCoffeeBreak(Jean, 29)

EndCoffeeBreak(30)

StartT raining(30)

Figure 6.1: Right example

6.3 Specification of right rules

We extend our language by adding the right modality. Modality R(α|p) means there

is a right to do α when condition p holds. Thus, we extend a security policy P with a

right norm corresponding to a conditional right.
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Example 6 In this example, we show how to specify the rule r given in

section 6.2 using our language. For this purpose, we extend the set of fluents

F and the set of actions A.

The set F is extended by the following fluent:

• Training(t, σ): There is a training in σ started at time t.

The set A is extended by the following actions:

• StartTraining(t), EndTraining(t): The action to start (resp. end) a

training.

• JoinTraining(s, t), LeaveTraining(s, t): s joins (resp.leave) training.

Specification of the right rule:

(r) : R(JoinTraining(d, t) | Doctor(d) ∧ (∃t′)Training(t′, σ) ∧ t > t′)

We shall now use the situation calculus to formally define the semantic of right.

6.4 Derivation of effective rights and detection of

rights violation

In this section, we show how to derive effective right, characterizing situations where

right is ensured and detecting the violation of rights.

6.4.1 Derivation of effective rights

The situation calculus is extended with fluent Right(α, σ), meaning there is an actual

right to do α in a situation σ. Let Rα be the set of conditional rights of P having the

form R(α|p). We denote ψRα
= p1 ∨ ... ∨ pn where each pi for i ∈ [1, ..., n] corresponds

to the condition of a right in Rα. If Rα = ∅, then we assume that ψRα
= false.

The succession state axiom of fluent Right(α, σ) is defined as follows:

Poss(a, σ) → (6.1)

Right(α, do(a, σ)) ↔ γ+
ψRα
(a, σ) ∨ (Right(α, σ) ∧ ¬γ−

ψRα
(a, σ))

This axiom specifies that a right becomes effective immediately after the execution of

action that activates the condition associated with it. Then this right will stay effective

in all following situations unless an action which disables the condition associated with

it is executed.



74 CHAPTER 6. ENRICHING OBLIGATION WITH DEADLINE POLICIES...

Example 7 Let give where the right of a doctor to join a training is effec-

tive.

We suppose that a training is underway in a given situation if action Start-

Training was executed and EndTraining did not.

Poss(a, σ) →

Training(t, do(a, σ)) ↔ a = StartTraining(t) ∨

Training(t, σ) ∧ ¬(∃t′)a = EndTraining(t′)

From the specification of the rule r and the succession state axiom above, we

can derive that the right of a doctor to join a training becomes effective upon

the execution of action StartTraining.

γ+
ψRJoinT raining(d,t)

(a, σ) ↔ Doctor(d) ∧ (∃t′)a = StartTraining(t′)

This right is disabled once the training is completed (i.e., action EndTraining

is executed).

γ−

ψRJoinT raining(d,t)
(a, σ) ↔ (∃t′)a = EndTraining(t′)

Thus using axiom (6.1), situations where there is a right to join a training are

characterized by the following axiom:

Poss(a, s) → (6.2)

Right(JoinTraining(d, t), do(a, σ)) ↔ Doctor(d) ∧

(∃t′)a = StartTraining(t′) ∨

Right(JoinTraining(d, t), σ) ∧ ¬(∃t′)a = EndTraining(t′)

Note that so far, there is really no distinction between permissions and rights. The

distinction will be highlighted in the next section concerning the detection of violations.

6.4.2 Violation detection

In our formalism, no action can prevent the enforcement of a granted right. Otherwise

there is a violation of right. The language is then extended by fluent Ensured(α, σ)

meaning the right to do α is assured in the situation σ. In other words, in all situations

if the right to do an action is active the action must be possible.

Ensured(α, σ)
def
↔ Right(α, σ) ∧ Poss(α, σ)
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If the precondition axiom of α is written as: Poss(α, s) ↔ φα(σ), then the succession

state axiom of Ensured(α, σ) can be derived as follows:

Poss(a, σ) → (6.3)

Ensured(α, do(a, σ)) ↔ (Right(α, σ) ∧ γ+
φα
(a, σ) ∧ ¬γ−

ψRα
(a, σ)) ∨

(φ(σ) ∧ γ+
ψRα
(a, σ) ∧ ¬γ−

φα
(a, σ)) ∨

(Ensured(α, σ) ∧ ¬γ−

ψRα
(a, σ) ∧ ¬γ−

φα
(a, σ))

Example 8 Let us consider the right of doctor to join a training. To

characterize the situations where this right is ensured, we must first give the

precondition axiom of action JoinTraining.

A doctor d can join a training if he is not writing a document of a patient

assigned to him, this is to not violate the constraint C3. Thus we admit that

the precondition axiom of action JoinTraining is as follows:

Poss(JoinTraining(d, t), σ) ↔ (6.4)

¬(∃type, p, t′, t′′)WritingDoc(d, type, p, t′, t′′, σ)

Here, φα(σ) corresponds to formula:

¬(∃type, p, t′, t′′)WritingDoc(d, type, p, t′, t′′, σ)

Thus, to build the succession state axiom of Ensured, according to axiom 6.3,

we use the succession state axiom of WritingDoc A.2. Thereby,

γ+
φα
(a, σ) ↔ (∃te)a = EndWrite(d, type, p, t′, te)

and,

γ−

φα
(a, σ) ↔ a = StartWrite(d, type, p, t′, t′′)

Finally, using the axiom 6.3, we can derive situations where right to join

training is ensured.

Poss(a, s) →

Ensured(JoinTraining(d, t), do(a, σ)) ↔

[Right(JoinTraining(d, t), σ) ∧

(∃type, p, t′, t′′)a = EndWrite(d, type, p, t′, t′′)] ∨

[¬(∃type, p, t′)WritingDoc(d, type, p, t′, σ) ∧ (∃t′′)a = StartTraining(t′′)] ∨

[Ensured(StartAttendTraining(d, t), σ) ∧

¬(∃type′, p′, t′, t′′)a = StartWrite(d, type, p, t′, t′′)]
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The violation of a right occurs in situations where the right is not ensured. The

violation of right is captured by the fluent V iolatedR(α, σ).

V iolatedR(α, σ)
def
↔ Right(α, σ) ∧ ¬Ensured(α, σ)

Thus we can detect the situation where there is violation of right. However, we do

not distinguish who is responsible of this violation. For example, if a doctor starts

writing a document at the same time as the starting of the training, his right to join

the training will not be ensured for some moments. In this case, it is a doctor who

choice to waive his own right.

Furthermore, it might be useful to get information about exercised rights. A right

to do an action is exercised when the action is done in situations where the right is

active. This is characterized by the following axiom:

Poss(a, σ) →

Exercised(α, do(a, σ)) ↔ (Right(α, σ) ∧ a = α) ∨ Exercised(α, σ)

Exercising a right does not automatically deactivate it. Like permission, as long as a

user has a right to do an action, he can perform it if the related conditions are satisfied.

6.5 Conflicting situations

In this section, we investigate three types of conflict:

• A conflict in an exemplary feasibility of obligations. This conflict occurs when

there is no executable plan to fulfill obligations within their deadlines without

violating new active obligations.

• A conflict in the feasibility of rights. This conflict occurs when rights are not

possible to be executed.

• A conflict between obligations and rights. This conflict occurs when obligations

can not be fulfilled in their deadlines without violating rights.

6.5.1 Conflict in exemplarity of feasibility of obligations

An obligation is exemplary feasible in a situation σ if it is possible to execute it within

its deadline without causing any violation. To formalize this, we define what we call

exemplary situations. A situation is exemplary if it does not contain violation of any
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obligation. Formally the exemplary situations can be constructed by recursion as

follows:

Exemplary(σ0) ∧

Exemplary(do(a, σ)) ↔ Exemplary(σ) ∧ ¬(∃α, d)[Ob(α < d, σ) ∧ γ+
d (a, σ)]

In the above formula, if σ is an exemplary situation, do(a, σ) will be also an exemplary

situation if the action a does not activate the deadline of current active obligation

(γ+
d (a, σ)). By construction, in situation do(a, σ), there is no violation of obligations

because it is the result of an action that does not generate a new violations and there

is no old ones because σ is itself an exemplary situation. We can now give the formal

definition of feasible obligation by introducing fluent E-Feasible(α < d, σ):

E-Feasible(α < d, σ) ↔ (∃σ′).σ′ > σ ∧ Executable(σ′) ∧

Exemplary(σ′) ∧ Fulfil(α < d, σ′)

The active obligation in σ is fulfilled in σ′ which it is an exemplary situation. The

research of σ′ can be blocked due to the existence of old violations. Thus, we can define

Pseudo-Exemplary situations as situations resulting from the execution of action which

not causes a new violation of obligations. These situations may contain old violation

of obligations.

Pseudo − Exemplary(do(a, σ)) ↔ ¬(∃α, d)[Ob(α < d, σ) ∧ γ+
d (a, σ)]

Using Pseudo-Exemplary situations, we can define an obligation which is feasible with-

out causing new violations, PE-Feasible(α < d, σ).

PE-Feasible(α < d, σ) ↔ (∃σ′).σ′ > σ ∧ Executable(σ′) ∧

(∀σ′′, σ < σ′′ ≤ σ′)Pseudo-Exemplary(σ′′) ∧ Fulfil(α < d, σ′)

In the formula above, between σ and σ′, there is no violation of new obligations. If

an obligation is not feasible exemplarily (resp.pseudo exemplarily) in a situation, we

shall consider that there is a conflict in the exemplarity (resp. pseudo exemplarity) of

feasibility of an obligation in the policy in this situation.

It may happen that every active obligation is exemplarily feasible in a situation σ, but

it is still not possible to do all of them without violating the associated deadlines. For

this purpose, we define the fluent predicate GE-Feasible(σ), meaning a situation σ is

globally exemplary feasible, as follows:

GE-Feasible(σ) ↔ ∃σ′, σ′ > σ ∧ Executable(σ′) ∧ Exemplary(σ′) ∧

(∀α, d).Ob(α < d, σ) → Fulfil(α < d, σ′)
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In the situation σ′, all the obligations that were active in the situation σ are fulfilled.

And there are no violations of any obligation. If it requires just to not produce new

violations between situation σ and σ′, we can use Pseudo-Exemplary situations like

what we do in the definition of PE-Feasible.

If a given situation is not globally exemplary feasible, then we shall say that there is

a global conflict in the exemplarity of feasibility of obligations in the policy in this

situation. There are several ways to solve this conflict:

• Changing the deadline of some obligations

• Creating an exemption which cancels some obligations

• Offering the possibility to delegate some obligations

6.5.2 A conflict in feasibility of rights

Let us consider a conditional right rule R(α|p) and the precondition axiom of action

α: Poss(α) ↔ φα.

A conflict in feasibility of right exists if the following condition holds:

Axioms ⊢ (∃σ).p(σ) ∧ ¬φα(σ)

For the resolution of this conflict, it is not always wise to rewrite the condition that

activates the right (i.e., R(α|p ∧ ¬φα). Let us take the example of right to join a train-

ing (rule r).

It does not make sense that a subject joins a training which he is in process to fol-

low it. Thus, we can have ¬AttendingTraining(d, σ) as precondition of action Join-

Training. Furthermore, it is necessary to have a training for to join it (precondition:

Training(t, σ)). We assume at this stage that these conditions are sufficient, thus the

precondition axiom of action JoinTraining can be specified as below:

Poss(JoinTraining(d, t), σ) ↔ (∃t′)Training(t′, σ) ∧ ¬AttendingTraining(d, σ)

In this case, we can rewrite the rule r to join a training to avoid a conflict like follows:

(r′) : R(JoinTraining(d, t) | Doctor(d) ∧ (∃t′)Training(t′, σ) ∧ ¬AttendingTraining(d, σ)).
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Hence, the axiom 6.2 is rewritten as follows:

Poss(a, s) → (6.5)

Right(JoinTraining(d, t), do(a, σ)) ↔ Doctor(d) ∧

(∃t′)a = StartTraining(t′) ∨

(∃t′)Training(t′, σ) ∧ (∃t′′)a = LeaveTraining(d, t′′) ∨

Right(JoinTraining(d, t), σ) ∧

¬(∃t′)a = (EndTraining(t′) ∨ JoinTraining(d, t′))

Furthermore, in the policy of our example, we specified a constraint that restricts the

circumstances under which it is possible to write documents for patients. Thus the

constraint C3 prevents a doctor from writing a document of a patient who is assigned

to him when he is following a training. To meet this requirement, the precondition

axiom of action JoinTraining should be as follows:

Poss(JoinTraining(d, t), σ) ↔ Training(σ) ∧ (6.6)

¬AttendingTraining(d, σ) ∧ ¬(∃type, p, t, t′)WritingDoc(d, type, p, t, t′, σ)

This axiom specifies that if a doctor is writing a document, he can not execute the

action JoinTraining to satisfy the constraint C3. In this case, rewriting the rule r′ as

follows:

R(JoinTraining(d, t) | Doctor(d) ∧ (∃t′)Training(t′, σ) ∧

¬AttendingTraining(d, σ) ∧ ¬(∃type, p, t, t′)WritingDoc(d, type, p, t, t′, σ)).

changes completely the rule. This is not always a good solution. The rules of rights

can be established by another organization different from the one which established a

policy. And perhaps there is another organization which monitors compliance with its

rights and applies sanctions if the right is not ensured (For example, CNIL4). In this

case, it is not wise to change the context of activation of right. As in the case of voting,

the right of an employee to vote can not be restricted by the company where he works

with a condition that the company will applied to avoid a conflict in its policy.

Thus, among the preconditions of actions, we must distinguish those which must be

verified otherwise the action cannot, logically, be executed. These conditions must be

added to the conditions of activation of the corresponding rights. Concerning the other

4An independent French administrative authority. It is responsible for ensuring that information

technology is at the service of citizens and it does not affect human identity, nor the rights or privacy,

or individual and public freedoms. It carries out its tasks in accordance with Law No. 78-17 of 6

January 1978 amended August 6, 2004
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conditions, to resolve the conflict, we can assign a prioritization between constraints

and rights.

Note that in this work, we are defining a persistent right, which must be ensured

at every moment (ex: read document). It is easy to extend this work for expressing

right with deadlines like what we do with obligations with deadlines. We mean by

a right with deadline, a right to do an action before some condition holds. Unlike

persistent right, it is not necessary to ensure this right every time. It is sufficient to

ensure it before that the condition holds so the right can be exercised. For example,

it is sufficient to ensure the right of voting before the closing time. In this case, the

detection of conflict is done using a planning task like detection of conflict concerning

obligations with deadlines.

Furthermore, there may be situations where there are several active rights. Each

one can be ensured separately. But it is not possible to ensure them simultaneously.

We call this conflict a global conflict in the feasibility of rights. It is detected when the

following condition occurs:

(∃α, α′).Right(α, σ) ∧ Right(α′, σ) ∧ ¬Poss(α′, do(α, σ))

Let us consider the same example like before, but suppose that there is possibility of

having several types of trainings (Training(Title, σ): meaning there is a training titled

Title). Logically, it is not possible for a subject to be simultaneously physically in two

different training if they are given in two different spaces. In this case, we can have

the following precondition axiom for action joining a training:

Poss(JoinTraining(d, t), σ) ↔ (∃Title).T raining(Title, σ) ∧

¬(∃Title′)AttendingTraining(d, T itle′, σ)

There is a global conflict in the feasibility of rights in a situation σ if the following

condition holds:

Training(Title, σ) ∧ Training(Title′, σ) ∧ ¬(Title = Title′)

Thus to solve a conflict, the rule r should be rewritten as follows:

(r) : R(JoinTraining(d, t) | Doctor(d) ∧ (∃Title)Training(Title, σ) ∧

¬(∃Title′)AttendingTraining(d, T itle′, σ)).

It is clear that rewriting rule of right r as below restricts the basic rule. A doctor in

the new rule has a right to attend just one training in the same time. But it is not

possible to do otherwise. Because it is a logical conflict.
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Note here another difference between permissions and rights. In fact, we can do the

same thing for permissions as we did for rights, i.e., ensure that every time an action is

permitted, it is possible to execute it to ensure for example the property of availability.

Availableness(σ) ↔ [(∀α)Perm(α, σ) → Poss(α, σ)]

However in presence of a conflict, there are more flexibility to rewrite the rule of

permissions than rewriting the rule of rights because as we mentioned before, rights

are often associated with penalties.

6.5.3 A conflict between obligations and rights

A conflict between obligation and right occurs when it is not possible to do an obligation

within its deadline without violating any right. To characterize this, we first introduce

the notion of preserved situation. A preserved situation is the result of execution of an

action that not causes any violation of rights. The preserved situations are constructed

recursively like follows:

Preserved(σ0) ∧

Preserved(do(a, σ)) ↔ Preserved(σ) ∧ ¬(∃α)[Right(α, σ) ∧ γ−

φα
(a, σ)]

The formula above specifies that the action a does not deactivate the preconditions of

any right to do an action α.

We can define a pseudo preserved situations as situations which are not the result of

action that causes a new violation of rights. This means that it is possible to have

violation of right in these situations which were inherited from precedent situations.

Pseudo-Preserved(do(a, σ)) ↔ ¬(∃α)[Right(α, σ) ∧ γ−

φα
(a, σ)]

Thus, we define the fluent P -Enforceable(α < d, σ) meaning that the obligation to do

α is enforceable before that the deadline d holds while preserving rights.

P -Enforceable(α < d, σ) ↔ (∃σ′).σ′ > σ ∧ Preserved(σ′) ∧

Fulfil(α < d, σ′)

Between σ, where the obligation is active, and σ′, where the obligation is fulfilled, there

is no violation of right. This is done through the recursive construction of preserved

situations. When an obligation is not enforceable while ensuring rights in a given

situation, we say that there is a conflict between obligations and rights in the policy.

It is possible that each active obligation in a given situation is enforceable with

preserving rights. However fulfilling all these obligations together necessarily leads to
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a violation of a right. To characterize this, we define the fluent GP -Enforceable(σ),

meaning a situation σ is globally enforceable while preserving rights.

GP -Enforceable(σ) ↔ ∃σ′, σ′ > σ ∧ (∀α, d)

Ob(α < d, σ) → Fulfil(α < d, σ′) ∧ Preserved(σ′)

In the formula above, all active obligations in σ are fulfilled in σ′. The fact that σ′ is

a preserved situation ensures that there is no violation of right between σ and σ′. If

a situation is not globally enforceable while preserving rights, we shall say that there

is a global conflict in the policy between obligations and rights in this situation. To

resolve this conflict, we can adopt the same strategies that we propose to resolve a

conflict between obligations. However, in addition, we can negotiate a waiver of some

rights against compensation. This is a common solution in real life. For example, in

a company, employees have a right to get holidays. The employer may negotiate with

the employee by asking her to renounce to this right to meet the delivery deadline of

a given project in exchange of a monetary compensation.

Example 9 The sequence of actions represented in figure 6.1 is a conflicting

situation. More accurately, there is a global conflict between right and obli-

gations in this situation. In fact, the only way to fulfill the active obligations

in σc before their deadlines, is to fulfill them in a moment when the training

is given. However writing documents by doctors when they are attending a

training is not possible. Thus it is necessary that Jean does not join a training

in some moments, which violates his right to join a current training whenever

he wants.

In the figure 6.2, we can see an example of a legal and not preserved plan

leading to fulfill all obligation in σc. In this plan, the right of Jean to join

training is disabled when Jean joins the training (succession state axiom 6.5).

However to fulfill the obligations before their deadlines, it is necessarily to

execute the action LeaveTraining before starting writing documents (action

precondition axiom 6.6), but the execution of a leaving action activates an-

other time the right of Jean to join the training (succession state axiom 6.5).

Thus starting writing document after the execution of LeaveTraining violates

the right of Jean to join the training.

6.6 Related work and discussion

Normally, when someone refers to an action as a permitted one, this means implicitly

that there is a choice between doing the action or not [Sartor 2005]. Indeed, when
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Derived facts using policy rules

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

¬P oss(JoinT raining(Jean))

Exercised(JoinT raining(Jean))

P erm(LeaveT raining(Jean, t))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Right(JoinT raining(Jean))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Right(JoinT raining(Jean))

V iolatedR(JoinT raining(Jean))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Right(JoinT raining(Jean))

Ensured(JoinT raining(Jean))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Right(JoinT raining(Jean))

V iolatedR(JoinT raining(Jean))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

Right(JoinT raining(Jean))

V iolatedR(JoinT raining(Jean))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

¬Right(JoinT raining(Jean))

F ulfil(W rite(Jean, AdmissionNote, Alice, 4))

F ulfil(W rite(Jean, Observation, Alice, 4))

A possible sequence of actions that fills

the active obligations in σc

JoinT raining(Jean, 30)

LeaveT raining(Jean, 35)

StartW rite(Jean, AdmissionNote, Alice, 4, 35)

EndW rite(Jean, AdmissionNote, Alice, 4, 40)

StartW rite(Jean, Observation, Alice, 4, 40)

EndDeadline(AdmissionNote, Alice, 4, 41)

EndT raining(44)

EndW rite(Jean, Observation, Alice, 4, 45)

Figure 6.2: Example of a legal and not preserved plan: violation of right to join training

in many situations

an action is permitted, it is sufficient to provide some opportunities that allow to

execute this action in the presence of general prohibitions. For instance, a user who

has permission to access the on line document may be prevented from accessing it

because for example it is also permitted in the policy to remove this document for

some reasons or stop the host server for maintenance. This leads to the concept of

preserving permissions [Sartor 2005] using directed obligations which means actions

that individuals must perform to ensure an interest of someone else. Then from the

directed obligations, Sartor in [Sartor 2005] defines obligation right. When a person

J has an obligation toward a person K to ensure an interest of K, then it said that

K has an obligation right toward J. Our conception of right is different from Sartor.

To show this, consider an example concerning right of data rectification 5: A user

has right to send request to correct informations concerning him. We admit that a

necessary condition to make a request to correct information is to have an available

email address of the manager holding the information. Thus, the right to send request

is ensured in the situations when the web-master has created the email address of the

5http://www.cnil.fr/vos-droits/vos-droits/le-droit-de-rectification/
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manager holding the information and there is no deleting action that has been applied

on this email. We can then consider that the obligation of the web-master to create

an email address of the manager of data modification ensured an interest of user to

make a request for data rectification. Then, this corresponds to the obligation right of

the user toward the web-master to create an email address of data manager. With this

approach, it is not possible to explicitly express the right of the user to make a request

to change her data. This is because it is her right to perform the action by herself and

not someone else. On the other side, if there is an obligation which requires for the

manager to respond to a request for modification of data transmitted by a user, in this

case it is an obligation right of the user toward manager to have an answer which is

certainly different from the right to issue the query.

To preserve rights, it is possible to derive prohibitions and obligations which are not

directly specified in the policy. Let’s see the example concerning the right of data

rectification. And consider the following precondition axiom of action for sending

modification request:

Poss(SendRectificationRequest(EmailAddress, req), σ) ↔

ContactAddresses(DataManager, EmailAddress, σ)

However the information concerning the email address of the manager exists on website

if if it was created at a given time and has not been removed.

Poss(a, s) →

ContactAddress(DataManager, EmailAddress, do(a, σ)) ↔

a = CreateContactAddress(DataManager, EmailAddress) ∨

ContactAddresses(DataManager, EmailAdress, σ) ∧

¬a = DelateContactAddresse(DataManager, EmailAddress)

From the succession state axiom of fluent ContactAddress(DataManager, emailAd-

dress), we can see that if we add an obligation rule to create an email of the manager

of data rectification and a rule to prohibit its deletion, then situations where the right

rule is preserved are situations where the obligation to create an address email is ful-

filled and the deletion prohibition rule is not violated.

6.7 Conclusion and contributions

In this chapter, we extend our formal language based on deontic logic of actions to spec-

ify rights rules. Throughout the chapter we give examples to approve the usefulness of
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the distinction between rights and permissions. Then, we use situation calculus to give

a semantics to our specification which enables this distinction. The use of right rules

leads to a new conflict which it is the conflict between the rights and obligations with

deadlines that occurs when it is impossible to fulfill the obligations in their deadlines

without violating an active right. We show how using the planning task, we can prove

the existence of such conflict.

The introduction of right rules in security policy could be used for any purpose other

than the one we have proposed in this chapter. In fact they can be used to model

the property of availability as illustrated in the example concerning on line documents

which we mentioned previously. In the next chapter, we will talk about another interest

to use the rule of right in a security policy.





CHAPTER

7 Conflict resolution

based on delegation and

renunciation of right

7.1 Introduction

In the previous chapters, we saw that the use of right and obligation rules in security

policies may cause a conflictual situations. In this chapter, we propose a possible

solution to resolve a conflict between obligations and permissions based on delegation.

And offer the possibility to waive right in order to resolve a conflict between obligations

and rights.

However, a conflict does not come necessarily from security policies. Sometimes a

conflict could be avoided if users had adopted a different behavior within an interval of

time before that conflict occurs. For example, suppose that there are two users Bob and

Alice, each of them has an active obligation with deadline to write different information

in the same document. Suppose also that the write access on this document can not

be done at the same time by two different users. An example of conflict can hold in the

following situation: Alice starts to write information to fulfill her own obligation in the

document; Bob can not fulfill his obligation, he must first wait for Alice to finish her

access to the document. However after that Alice fulfills her obligation, it is too late

for Bob to fulfill his obligation within its deadline. The problem is that it is possible

that the obligation concerning Bob was active before this conflict occurs. And maybe

it was possible that if Bob had adopted another trace of execution of actions between

the activation of his own obligation and the activation of Alice’s one, the conflict could

have been avoided. But what are the bases on which we can challenge the actions

executed by Bob in this time interval ? For example, can we have the same judgment

if Bob was attending an online training in this time of interval and if Bob was taking

a coffee break. It certainly depends on what is specified in the policy. If both actions
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are permitted, and assuming that obligations have higher priority than permissions,

we can say that Bob should have begun to fulfill his obligation instead of taking a

coffee break or attending a training. The purpose in this circumstances, is to consider

that the conflict is the responsibility of Bob. Contrariwise, assume that in a policy,

attending training is considered as a right. This implicitly leads to a commitment by

the policy of preserving the execution of this action (the principle of violation of right).

In this case, Bob could not be held responsible for the conflict. This is where modeling

of right in security policies becomes more challenging and interesting.

Indeed, we believe that the actions that were executed because there is a right to do

them should not be revoked. It is a way to be fair with a user to not revoke a right which

he exercised. In other words, the rights and obligations are considered at the same level.

This is justifiable because a right, which is not preserved, as an obligation, which is

not fulfilled in its deadline, raises violations and can lead to penalties. Of course, it is

interesting to consider prioritization between obligations and rights. However, rights

as obligations have always priority over permissions.

The characterization of conflicts responsibilities is a complex task. Indeed, respon-

sibility may be shared by multiple stakeholders. This may happen if the conflict can be

avoided if each stakeholder would have adopted another behavior in a given interval of

time. Responsibility can also be multiple. This occurs when the change in the behavior

of multiple users independently of each other would solve the conflict. For example, if

obligations concerning Bob and Alice are activated before the conflict happened and

both of them were in coffee break. Being fair with Bob implies that Alice should also

be considered responsible for the current conflict.

The remainder of this chapter is organized as follows. In section 7.2, we formalize a

conflict which does not come from the security policy and determine responsibilities. In

section 7.3, we propose to redistribute obligations using delegation to resolve a conflict

between obligations and permissions. In this section, we also introduce the principle of

right renunciation in order to resolve a conflict between rights and obligations. Finally

section 7.4 concludes this chapter.

7.2 Detected conflict and responsibility

Let us assume that a conflict between obligations with deadlines is detected in a given

situation σ. It is possible that some of them have been active in situations prior to

σ and remain active because they have not been executed. Thus, it is interesting to
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analyze the previously executed actions in order to show if the conflict could have been

avoided or not and determine responsibilities before trying to resolve a conflict.

7.2.1 Situations where the conflict could have been avoided

Our approach consists firstly to identify the previous situation where the first active

obligation in σ was activated. This situation is called the earliest situation in the rest of

this chapter and denoted σe. Then from σe, we search a plan to fulfill active obligations

that cause the conflict by reproducing what has been done with these obligations in σ

while preserving rights which are triggered. If the plan exists, then there is no conflict

in the policy as the conflict could have been avoided.

Let us start by giving the definition of the earliest situation.

Definition 4. Earliest situation.

The earliest situation denoted σe related to a conflictual situation σc is a prior situation

to σc where the older obligation among all active obligations in σc was activated.

Earliest(σe, σc) ↔ σe ≤ σc ∧

(∃αe, de)[Ob(αe < de, σc) ∧ Ob(αe < de, σe) ∧ (∀σ, σe ≤ σ ≤ σc)Ob(αe < de, σ)] ∧

∀(α′, d′, σ′)Ob(α′ < d′, σ′) ∧ Ob(α′ < d′, σc) → σe ≤ σ′

Note that by definition, the active obligation which characterizes the earliest sit-

uation should necessarily be active throughout the path between σe and the target

situation σc.

Proposition 1. The earliest situation σe corresponding to a situation σc is unique.

Proof. If there are two earliest situations σe and σ′

e corresponding to the same situation

σc, then σe ≤ σ′

e and σ′

e ≤ σe which leads to σe = σ′

e according to unique name axiom

2.1

Between a conflictual situation σc and its corresponding earliest situation σe, we

need to reproduce some of the facts when they actually happened. For this, we intro-

duce the following definition:

Definition 5. Earliest situation vs fact.

The earliest situation related to fact F is the earliest situation when the fluent F be-

comes true.

EarliestF (σ) ↔

(∃σ′, a)σ = do(a, σ′) ∧ γ+
F (a, σ′) ∧ ¬F (σ′)
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We can now characterize the set of agents whose behavior might have prevented

that a conflict occurs.

Definition 6. The set of agents which could avoid conflict.

Let σc be a situation which is not strongly enforceable and σe its corresponding earliest

situation. The set of agents which could avoid the conflict in σc consists of agents

which while we rearrange their activities between σe and σc, we can reach a legal and

preserved situation where the active obligations in σc are fulfilled. More formally:

AvoidingConflict(r, σc)
def
↔ ¬SG-Enforceable(σc) ∧

(∃σg, σe)Earliest(σe, σc) ∧ σg > σe ∧ Legal(σg) ∧ Preserved(σg) ∧

(∀σ, α, s′).σe ≤ σ ≤ σc ∧ Right(α(s′), σ) → (7.1)

(∃σ′).σe ≤ σ′ ≤ σg ∧ Right(α(s′), σ′) ∧ start(σ) = start(σ′)

(∀σ, α, d, s′).(σe ≤ σ ≤ σc) ∧ EarliestOb(α(s′)<d)(σ) → (7.2)

(∃σ′).σe ≤ σ′ ≤ σg ∧ Ob(α(s′) < d, σ′) ∧ start(σ) = start(σ′) ∧

(∀σ, α, d, s′).s′ /∈ r ∧ σe ≤ σ ≤ σc ∧ EarliestF ulfil(α(s′)<d)(σ) → (7.3)

(∃σ′)σe ≤ σ′ ≤ σg ∧ Fulfil(α(s′) < d, σ′) ∧ start(σ) = start(σ′) ∧

(∀α, d, s).s ∈ r ∧ Fulfil(α(s) < d, σc) → Fulfil(α(s) < d, σg) ∧ (7.4)

(∀α, d, s′).Ob(α(s′) < d, σc) → Fulfil(α(s′) < d, σg) (7.5)

In the formula above, σg is the searched solution. The plan allowing to reach this

situation verifies the following:

• All the rights which were active between σe and σc are activated at the same time

by this plan (7.1)

• All the obligations which were activated before σc are active at the same time by

this plan (7.2)

• The previous fulfilled obligations between σe and σc by agents not belonging to the

set r are fulfilled at the same time by this plan (7.3)

• The previous fulfilled obligations between σe and σc by agents in the set r are

fulfilled by this plan (7.4)

• The active obligations that cause the conflict are fulfilled in σg (7.5)

Example 10 Consider again the situation σc represented in figure 6.1. The

conflict in σc could have been avoided. As shown in figure 7.1, there is a legal,

executed and preserved plan that fulfills all the active obligations in σc in their
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deadlines starting from the earliest situation σe corresponding to σc, where

σe is given as follows:

σe = do([Assign(Alice, Jean, 4), StartCoffeeBreak(10),

StartTakeCoffeeBreak(Jean, 10), PatientAdmission(Alice, 11)], σ0)

Derived facts using policy rules

P erm(StartT akeCoffeeBreak(Jean))

P erm(EndT akeCoffeeBreak(Jean))

P erm(EndT akeCoffeeBreak(Jean))

Ob(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(StartT akeCoffeeBreak(Jean))

Ob(W rite(Jean, AdmissionNote, Alice, 4))

Ob(W rite(Jean, Observation, Alice, 4))

P erm(StartW rite(Jean, Observation, Alice, 11))

P erm(StartW rite(Jean, AdmissionNote, Alice, 11))

P erm(StartT akeCoffeeBreak(Jean))

Ob(W rite(Jean, AdmissionNote, Alice, 4))

Ob(W rite(Jean, Observation, Alice, 4))

¬P oss(StartW rite(Jean, Observation, Alice, 11))

P erm(StartT akeCoffeeBreak(Jean))

¬Ob(W rite(Jean, AdmissionNote, Alice, 11))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P oss(StartW rite(Jean, Observation, Alice, 11))

P erm(StartT akeCoffeeBreak(Jean))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

Ob(W rite(Jean, Observation, Alice, 11))

P erm(StartT akeCoffeeBreak(Jean))

¬Ob(W rite(Jean, Observation, Alice, 11))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

F ulfil(W rite(Jean, Observation, Alice, 11))

¬P erm(StartT akeCoffeeBreak(Jean))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

F ulfil(W rite(Jean, Observation, Alice, 11))

F ulfil(W rite(Jean, AdmissionNote, Alice, 11))

F ulfil(W rite(Jean, Observation, Alice, 11))

Right(JoinT raining(Jean))

Ensure(JoinT raining(Jean))

A possible sequence of actions that fulfill

the active obligations in σc

Assign(Alice, Jean, 4)

StartCoffeeBreak(10)

StartT akeCoffeeBreak(Jean, 10)

P atientAdmission(Alice, 11)

EndT akeCoffeeBreak(Jean, 19)

StartW rite(Jean, AdmissionNote, Alice, 4, 19)

EndW rite(Jean, AdmissionNote, Alice, 4, 24)

StartW rite(Jean, Observation, Alice, 4, 24)

EndW rite(Jean, Observation, Alice, 4, 29)

EndCoffeeBreak(30)

StartT rainig(30)

Figure 7.1: Example of legal, executed and preserved plans which prove that the conflict

in σc could have been avoided

The members in the set r verifying AvoidingConflict(r, σc), are not necessarily respon-

sible for the conflict in σc. In the next section, we distinguish among them who is

actually responsible. We then prove that our definition of responsibility ensures the

fairness property.
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7.2.2 Shared and multiple responsibilities

In this section, we define the group of agents who are considered responsible for a

current conflict. Then, we show that this definition enables the distinction between

the notion of multiple responsibility and shared responsibility. Furthermore, we prove

that our semantic of responsibility ensures the fairness property.

Definition 7. Responsibility

The agents responsible of a conflict in a given situation σc are those that constitute the

smallest set which satisfies AvoidingConflict in σc.

Responsible(r, σc) ↔ AvoidingConflict(r, σc) ∧

(∀r′)[(AvoidingConflict(r′, σc) ∧ r′ ⊆ r) → r = r′]

We assume that AvoidingConflict(∅, σc) = False. In this case we say that in σc

there is an inevitable conflict which means that the conflict comes from the security

policy. When r is different from singleton, the formula above expresses a shared respon-

sibility between the elements of r. Intuitively, we mean by shared responsibility that

there is a nested composition of actions that the elements of r should have executed

to avoid the conflict. Note that there may be different sets verifying the responsibil-

ity formula in which case we say that there is multiple responsibilty. Let us take an

example.

Example 11 Suppose that in a situation σc, there are active obligations

concerning agents s1, s2, s3 and s4 which cause conflict in σc and from the

earliest situation σe corresponding to σc there are three different sets of agents

which lead to avoid conflict, r1 = {s1, s2} , r2 = {s1} and r4 = {s3, s4}. Here

there is no shared responsibility between s1 and s2 as it exists a plan which

allows fulfilling the obligations of all users when the executed actions of s2

are kept unchanged and the activities of s1 are rearranged (i.e., r1 ⊂ r2). But

there is a shared responsibility between s3 and s4 as if we keep the executed

actions by s1 unchanged and rearrange the executed actions by s3 and s4

together, the conflict could have been avoided. Then to be fair back to s1,

the agents s3 and s4 are also responsible for this conflict.

In the following we assess formally the fairness of our model of responsibility.

Proposition 2. Fairness

Our overview of fairness is based on the following principle: for any happened conflict,
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if it is possible for other agents to change their behavior to avoid the conflict, then they

should be also considered responsible.

(∃s).s ∈ r ∧ Responsible(r, σc) ∧ (∃r′).s /∈ r′ ∧ AvoidingConflict(r′, σc) →

Responsible(r′, σc) ∨ (∃r′′).r′′ ⊂ r′ ∧ Responsible(r′′, σc)

Furthermore, the formalization of responsibility ensures that there is no agent that

can share the responsibility of a conflict with other agents when it is proved that this

conflict could be avoided if just the other agents had changed their behavior. In the

example 7.1, s2 does not share responsibility with s1 because there is a plan which

proves that only the change in the behavior of s1 can lead to avoid the conflict.

(∀s).(s ∈ r ∧ Responsible(r, σc)) → ¬(∃r′)(r′ = r\{s} ∧ AvoidingConflict(r′, σc))

Where r\{s} denotes the set consisting of all elements of r except the element s.

In this section, we distinguished between the conflictual situations, a conflict in

a policy and a conflict caused by users. This distinction allows the determination of

responsibilities before trying to resolve the conflict by redistributing obligations. In the

following, we show how the reallocation of obligations can be done using delegation.

7.3 Possible conflict resolution

When a conflict occurs, one possible solution is to change the deadlines associated with

obligations. However sometimes these deadlines can not be modified. For example the

deadlines concerning the completion of medical records are calculated based on studies

that have been made to estimate the most suitable deadlines to give the most effective

service to patients. Thus, the delegation may be in some cases the only way to avoid

that the violations occurs. For this purpose, we extend our model to support the

delegation of obligations.

7.3.1 Obligation delegation

We extend our model by the following actions and fluents.

• Propound(s, s′, α < d), meaning a subject s suggests the obligation to do α before

deadline d to a subject s′.

• Decline(s, s′, α < d), meaning a subject s rejects the obligation to do α before

deadline d which was suggested to him by s′.
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• Accept(s, s′, α < d), meaning a subject s accepts the obligation to do α before

deadline d which was suggested to him by s′.

The delegation of obligations requires two steps. The first step consists to suggest

the obligation to a suitable subject. If the suggested obligation is accepted, then this

obligation is considered delegated.

A suggested obligation for delegation is denoted Proposal(α < d, s, s′, σ); meaning

the obligation to do the action α before the deadline d is suggested by s to s′ in the

situation σ.

Poss(a, σ) →

Proposal(α < d, s, s′, do(a, σ)) ↔

a = Propound(s′, s, α < d) ∨

[Proposal(α < d, s, s′, σ) ∧ ¬(∃s′′)(a = Accept(s′′, s, α < d) ∧ (7.6)

¬(a = Decline(s′, s, α < d)) ∧ ¬γ+
d (a, σ) ∧ ¬γ−

ψOα,d
(a, σ) ∧ ¬(a = α)]

This axiom specifies that an obligation is no longer proposed for delegation when

it is accepted, declined or deactivated. Furthermore, an obligation can be proposed

for delegation to multi users. Although, in this axiom it is sufficient that one of

them accepts the proposed obligation, so it becomes no longer suggested for delega-

tion to the others. However, it may be useful to delegate an obligation to multi-

ple users for managing group obligations [Rakaiby et al. 2009] and shared obligations

[Cole et al. 2001, Ben Ghorbel-Talbi et al. 2011]. In this case, the line 7.6 can be mod-

ified by replacing s′′ by s′.

Certainly, a subject can propound an obligation for delegation if it is permitted by

the policy. And it is only an active obligation which can be propound for delegation.

Poss(Propound(s, s′, α < d), σ) ↔ Ob(α(s) < d, σ) ∧

Perm(Propound(s, s′, α < d), σ) ∧ Perm(α(s′), σ)

An obligation is delegated when it was suggested and accepted. A delegated obli-

gation is defined using the fluent Delegated(α < d, s, s′, σ), meaning the obligation to

do the action α before the deadline d is delegated to s′ by s.

Poss(a, σ) →

Delegated(α < d, s, s′, do(a, σ)) ↔

Proposal(α < d, s, s′, σ) ∧ a = Accept(s′, α < d) ∨

Delegated(α < d, s, s′, σ) ∧ ¬γ+
d (a, σ) ∧ ¬γ−

ψOα,d
(a, σ) ∧ ¬(a = α) (7.7)
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The line 7.7 specifies that the delegated obligation to s′ to do the action α before

the deadline d (i.e., Delegated(α < d, s, s′, σ)) turns to false when the obligation is

deactivated, when the corresponding deadline holds, or when it is fulfilled.

When a subject s delegates its own obligation to a subject s′, this obligation becomes

effective for s′. Thus we extend the axiom concerning active obligations 3.8 to support

the delegation of obligations as follows:

Poss(a, σ) →

Ob(α(s) < d, do(a, σ)) ↔ [γ+
ψOα,d

(a, σ) ∨

(∃s′)Proposal(α < d, s′, s, σ) ∧ a = Accept(s, s′, α < d) ∨

[Ob(α(s) < d, σ) ∧ ¬(a = α) ∧ ¬γ+
d (a, σ) ∧ ¬γ−

ψOα,d
(a, σ)]

Whenever an obligation is delegated to a subject s, it is active for him. A delegated

obligation could be delegated again.

Our model enables the propagation of obligation delegation

[Ben Ghorbel-Talbi et al. 2011]. This happens when a delegated obligation is

propounded for delegation another time and accepted. Nevertheless, when an

obligation is disabled, the entire chain of delegation is disabled as well.

7.3.2 Renunciation of its own rights

In this section, we propose to give the possibility to waive rights in order to solve

conflicting situations. Therefore, we extend our model as follows:

• Renunciate(s, α): a subject s renounces to its right to do α.

• Abandoned(α, σ): The right to do α is abandoned in a situation σ.

Once a subject renounces to his right, this latter is deactivated. Therefore, the succes-

sion state axiom of active right 6.1, is redefined as follows:

Poss(a, σ) →

Right(α(s), do(a, σ)) ↔ γ+
ψRα
(a, σ) ∨

(Right(α, σ) ∧ ¬γ−

ψRα
(a, σ) ∧ ¬(a = Renunciate(s, α)))
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When a subject renounces to his right, it is called an abandoned right, namely

Abandoned(α, σ). When a right is disabled, it is no longer an abandoned right.

Poss(a, σ) →

Abandoned(α(s), do(a, σ)) ↔ Right(α(s), σ) ∧ a = Renunciate(s, α) ∨

Abandoned(α, σ) ∧ ¬γ−

ψRα
(a, σ)

Certainly, a subject can renounce to his right if it is permitted by the policy. And

it is only an active right which can be waived.

Poss(Renunciate(s, α), σ) ↔ Right(α(s), σ) ∧

Perm(Renunciate(s, α), σ)

7.3.3 Solvable conflict

A conflict between obligations in a situation σc could be solved legally if using dele-

gation, it is possible to find a legal situation σ where the active obligations in σc are

fulfilled.

L − Solvable(σc) ↔ ∃σ, σ > σc ∧ Legal(σ) ∧ (∀α, d, s)

Ob(α(s) < d, σc) → Fulfil(α(s) < d, σ) ∨

(∃s′)Fulfil(α(s′) < d, σ) ∧ (∃s′′, σ′)(σc < σ′ < σ) ∧ Delegated(α < d, s′′, s′, σ′)

In the above formula, the active obligation in the situation σc concerning the subject

s, is fulfilled in the situation σ. This obligation is fulfilled by s, or by another subject

s′ which was delegated to him by a subject s′′.

Furthermore, the searched of a legal situation σ, ensures that all subjects are permitted

to do the actions that lead to this situation.

Similarly, the conflict between the obligations and rights could be solved, if using

delegation and the renunciation of right, it is possible to find a preserved situation σ

where the active obligations in σc are fulfilled.

P − Solvable(σc) ↔ ∃σ, σ > σc ∧ Preserved(σ) ∧ (∀α, d, s)

Ob(α(s) < d, σc) → Fulfil(α(s) < d, σ) ∨

(∃s′)Fulfil(α(s′) < d, σ) ∧ (∃s′′, σ′)(σc < σ′ < σ) ∧ Delegated(α < d, s′′, s′, σ′)

In the above formula, searching for a preserved situation σ, ensures that all rights are

ensured or some of them are ensured and others are waived.

Conflict due to delegation
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Conflict could be caused by delegation. Indeed, one user delegates his obligation to

the other one, and when this latter accepts the delegation, this causes a conflict in the

policy.

(∃s, σ)GL-Enforceable(σ) ∧ ¬(GL-Enforceable(do(Accept(s, α < d), σ))

Note that our mechanism of responsibility detection considers the user which accepts

the obligation as responsible of the occurrence of this conflict. Indeed, if we remove

the action accept (i.e., Accept(s, α < d)), the resulting situation is not conflictual

(GL-Enforceable(σ)), this means that s could have avoided the conflict. Furthermore,

as the action Accept is necessarily preceded by the action Propound, we can also derive

that the user s and the user who executed the action Propound could avoid the conflict.

However, in our definition of responsibility we conclude that the user s who accepts

the obligation is the only one responsible of this conflict. In the case of delegation

propagation, it is the last user who accepts the delegation before the occurrence of the

conflict which is considered responsible for this conflict.

7.4 Conclusion and contributions

In this chapter, we show how we can formally distinguish a conflict that arises from

the policy and the one that is the responsibility of one or multiple users. We show that

our judgment on the responsibility of a conflict is fair whenever it was possible that a

change in the behavior of a user would have led to avoid a conflict. In this case, this

user is considered responsible for this conflict. We also show that no user is sharing a

responsibility for a conflict with a user group if there exists an arrangement of actions

where it was sufficient for the other members of the group to change their behavior to

avoid the conflict.

In addition, we proposed a possible solution based on the delegation of obligation

and the renunciation of right to resolve a conflict that comes from a policy. If there is no

solution based on delegation, the only way would be to deactivate certain obligations.





CHAPTER

8 Conclusion and

perspectives

In this thesis, we use deontic modalities to specify security policies including obliga-

tions with deadline. Then we use the temporal sequential situations calculus to derive

concrete permissions and obligations. Furthermore, we show how the situation calculus

allows us to detect if there is a policy conflict in a given situation using the planning

task. Moreover, we have illustrated our approach by using a case study from the health

care community. Specifically, we are interested in obligations with deadlines concerning

completion of the patients’ medical records. We show how we can use our language to

express the obligations of this example. In addition, we present the implementation

that we did, using the logic programming language based on Golog, in order to prove

that a given situation is globally enforceable or not.

Furthermore, we proposed a formal language to express constraints in access control

policy. In our language, there are two kinds of constraints which we call historical and

ahistorical constraints. We show how this language is adequate to express well-known

constraints in the literature. To enforce constraints, first we propose to rewrite the

historical constraints into simple formulas. We then give a procedure based on the

regression concept to enforce these constraints.

In this thesis, we also propose to express the rules of right, in addition to permissions

and obligations rules. Throughout the thesis, we give examples to approve the use-

fulness of the distinction between rights and permissions. Then, we use the situation

calculus to give semantics to our specification which enables this distinction. The use

of rules of right leads to a new conflict that has not been addressed in the literature,

it is the conflict between the rights and obligations with deadlines. As a first step, we

use the schedule to prove the existence of the conflict. Then the detection mechanism

is refined to distinguish conflict from security policies and conflict due to the nature

of the activities carried out before the conflict occurs. This refinement is due to the

distinction that we make between permissions and rights to the extent that mandatory
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activities have priority over those which are permitted and at the same levels as the

rights. This is justified by the fact that rights are also associated with violations as

we have shown in the examples from CNIL. In addition, we can determine whether

the user is responsible for the ongoing conflict or not. Then, we give a property that

characterizes the fairness of the evaluation mechanism that allows us to judge this re-

sponsibility. Furthermore, we propose a possible solution to solve conflicts based on

delegation of obligations and renunciation of rights.

8.1 Perspectives

It is clear that in our model there is a step that requires more simplification, this

consists in the definition of succession state axioms for fluents which belong to domain

application. Our proposal in this case is to specify axioms of positive (resp.negative)

effects on fluents and derivation rules and then build automatically succession state

axioms.

Concerning the constraint model, we intend to use the planning task to distribute

user roles in order to accomplish the complete workflow task in compliance with access

control policies. Planning will also allow us to detect if there is a conflict between spec-

ified constraints. We will, in the future work, give a formal specification of constraint

consistency and provide means to prove it.

Our future work also includes the implementation of the detection mechanism of

responsibilities. In this regard, we should improve our algorithm of planning to allow

the search of several goals.

We will implement the solution which we propose to resolve conflicts using delega-

tion and renunciation of right. We should provide a plan which gives a solution with

a minimal renunciation of rights. On the other hand, the redistribution of obligations

could be guided by certain specific parameters. In the following, we propose how to

manage delegation based on the reputation of users and their workload.

The calculation of users reputation is based on the occurrence of violations. However,

the workload of users corresponds to the total amount of obligations assigned to them.

We define for each fluent F , a fluent Counter(F, n, σ) meaning the occurrence number

of fluent F in the situation σ is n. Similarly, Counter þX(F, n, σ) denotes the number

of parameters terrifying F in the situation σ where þX = (X0, ..., Xp) is fixed among

the parameters of F . For example, CounterJean(Violated(Write(Jean, type, p, t) <

Deadline(type, p, t)), is the number of violation that Jean did concerning the obli-

gation of writing patient documents. However, Counter(Violated(Write(d, type, p, t)
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< Deadline(type, p, t)) is the total number of violations concerning writing patient

documents. Using the Counter fluent, we can consider several perspectives to solve

conflictual situations based on delegation.

8.1.1 Delegation based on workload assigned to users

We propose to calculate the workload assigned to a user s using the number of active

obligations: Counters(Ob, n, σ), the number of violations: Counters(V iolated, n, σ)

and the number of fulfilled obligations: Counters(Fulfil, n, σ). A workload assigned

to a user between two situations is the total number of obligations that he must fulfill

between these situations.

Workloadσ,σ′(s, n) ↔ σ < σ′ ∧

Counters(V iolated, v, σ) ∧ Counters(V iolated, v′, σ′) ∧

Counters(Ob, a, σ′) ∧

Counters(Fulfil, f, σ) ∧ Counters(Fulfil, f ′, σ′) ∧

n = [(v′ − v) + (f ′ − f) + a]

This formula could be improved if we give for each obligation a weight expressing the

degrees of complexity to fulfill it. Assuming that all obligations have the same degree

of complexity, we can evaluate the equity between users concerning the task assigned

to them.

(∀s, s′)Workloadσ,σ′(s, n) ∧ Workloadσ,σ′(s, m) → n = m

The above formula may be restricted to users having the same role in the model of

access control based on roles.

Thus, we can search to resolve a conflict in a situation σc, while trying to balance

obligations between users.

Solvablew(σc) ↔ ∃σ, σ > σc ∧ Legal(σ) ∧ (∀α, d, s)

Ob(α(s) < d, σc) → Fulfil(α(s) < d, σ) ∨

(∃s′, s′′)Fulfil(α(s′) < d, σ) ∧ Delegated(α < d, s′′, s′, σ) ∧

(∃m)(∀s′′′)Workloadσc,σ(s
′′′, m)

The formula above specified that all users between the conflictual situation σc and the

situation σ where all active obligations in σc are fulfilled, have the same workload.
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8.1.2 Delegation based on user reputation

We can use the number of violations to calculate the reputation levels of users. We

consider two levels of reputations, Bad and Efficient.

Definition 8. A user s is considered having the Bad reputation of n % in a situation

σ if in σ the following formula is verified:

Reputation(s, Bad, n, σ)
def
↔

(∃v)Counters(V iolated, v, σ) ∧ (∃f)Counters(Fulfil, f, σ) ∧

n = v ÷ (f + v)

A user s is considered having the Efficient reputation of n % in a situation σ if in σ

he has the bad reputation of 1−n %. Using the reputation of users in a given situation

σ, we can calculate a reputation linked to an evaluation interval and a reputation linked

to a specific obligation.

Reputation linked to an evaluation interval

The reputation linked to an interval is calculated by reference to what happened in

this interval regardless of what happened before or after.

Reputationσ,σ′(s, Bad, n) ↔ σ < σ′ ∧

Counters(V iolated, v, σ) ∧ Counters(V iolated, v′, σ′) ∧

Counters(Fulfil, va, σ) ∧ Counters(Fulfil, va′, σ′) ∧

n = (v′ − v)÷ [(va′ − va) + (v′ − v)]

Reputation linked to a specific obligation

A reputation in a situation σ, linked to a specific obligation O(α < d) and a user s, de-

noted Reputationα,d(s, r, σ), can be calculated using CounterO(α(s)<d)(V iolated, n, σ),

CounterO(α(s)<d)(Fulfil, n, σ).

Consider a given threshold of reputation; Threshold(m). We could delegate an

obligation to a user deemed to be effective to do this obligation with percentage m.

Solvabler(σc) ∧ Threshold(m) ↔ ∃σ, σ > σc ∧ Legal(σ) ∧ (∀α, d, s)

Ob(α(s) < d, σc) → Fulfil(α(s) < d, σ) ∨

(∃s′, s′′)Fulfil(α(s′) < d, σ) ∧ Delegated(α < d, s′′, s′, σ) ∧

Reputationα<d(s
′, Efficient, n) ∧ n ≥ m)]
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In the above formula, the obligation to do α is fulfilled by a user s′. This obligation

was delegated to s′ by s′′ and s′ has a reputation to be efficient in doing this obligation

with percentage greater or equal to m.

Finally, it is important to implement a mechanism that allows to warn users of a

possible conflict and suggests the most appropriate plan of actions to follow.





APPENDIX

A Actual norm

derivation of the case

study described in

chapter 3

In this appendix, we calculate where the remainder of rules, specified in the case study

described in chapter 3, are effective. For this, let us first recall the specification of

these rules and the succession state axiom of fluents used on.

• The specification of rules:

O3 : O(EndDeadline(AdmissionNote, p, t, t′)|Inpatient(p, t) ∧ t′ = t+ 30)

O4 : O(EndDeadline(Observation, p, t, t′)|Inpatient(p, t) ∧ t′ = t+ 40)

P2 : P (EndtWrite(d, type, p, t, tew) | WritingDoc(d, type, p, t, t′) ∧ tew ≥ t′ + 5)

• Succession state axioms:

– Succession state axiom of fluent Inpatient:

Patient p is hospitalized if he was admitted to the hospital and did not leave.

Poss(a, σ) →

Inpatient(p, t, do(a, σ)) ↔ [a = PatientAdmission(p, t) ∨ (A.1)

(Inpatient(p, t, σ) ∧ ¬(∃t′)a = Leave(p, t′))]

– Succession state axiom of fluent WritingDoc:

A document is in writing process if the write began before and has not been
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completed.

Poss(a, σ) → (A.2)

WritingDoc(d, type, p, t, ts, do(a, σ)) ↔

a = StartWrite(d, type, p, t, ts) ∨

WritingDoc(d, type, p, t, ts, σ) ∧ ¬(∃te)a = EndWrite(d, type, p, t, te)

The formula characterizing where obligation rules O3 and O4 are effective is calculating

using the succession state axiom of fluent WritingDoc.

Poss(a, σ) →

Perm(EndWrite(d, type, p, t, te), do(a, σ)) ↔

a = StartWrite(d, type, p, t, ts) ∧ te ≥ ts + 5 ∨

Perm(endWrite(d, type, p, t, te), σ) ∧ ¬a = EndWrite(d, type, p, t, t′

e)

The situations where the system obligations O3 and O4 are active are calculated using

the succession state axiom of fluent Inpatient.

Poss(a, σ) →

Ob(EndDeadline(type, p, t, t′, do(a, σ)) ↔

[(a = PatientAdmission(p, t) ∧

((type = AdmissionNote ∧ t′ = t+ 30) ∨ type = Observation ∧ t′ = t+ 40)) ∨

(Ob(EndDeadline(type, p, t, t′), σ) ∧

¬(∃t′)a = EndDeadline(type, p, t, t′) ∧ ¬(∃t′)a = Leave(p, t′))]
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B Prolog file:

ConflictDetection.pl

1

:− i n c l u d e ( g o l o g i n t e r p r e t e r ) .

3 :− d i s c o n t i g u o u s ( time / 2 ) .

5 % GOLOG Procedures

7 proc ( plan (N, L) ,

?( a l l ( r , member( r , L)=> f u l f i l ( r ) ) ) : ?( r e p o r t S t a t s )#

9 ?(N > 0 ) :

p i ( a , ?( p r im i t i veA ct i o n ( a ) ) : a ) :

11 ?(− badSi tuat ion ) :

p i (n , ?( n i s N−1): plan (n , L ) ) ) .

13

% Precon d i t i on s f o r Pr imi t ive Act ions .

15

poss ( a s s i g n (P, D, T) , S): − doctor (D) , not as s i gned (P, D, S ) .

17

poss ( pat ientAdmiss ion (P, T) , S): − as s i gned (P, D, S ) , not i n p a t i e n t (P, T1 , S ) .

19

poss ( revokeAss ignat ion (P, D, T) , S): − as s i gned (P, D, S ) .

21

poss ( l e a v e (P, T) , S): − i n p a t i e n t (P, T1 , S ) .

23

poss ( s ta r tWr i t e (D, admissionNote , P, T, T1) , S): − perm ( s ta r tWr i t e (D, admissionNote ,

25 P, T, T1) , S ) , not writ ingDoc (D,

admissionNote , P, T, T2 , S ) ,

27 not writtenDoc (D, admissionNote ,

P, T, S ) .

29

poss ( s ta r tWr i t e (D, observat ion , P, T, T1) , S): − perm ( s ta r tWr i t e (D, observat ion ,

31 P, T, T1) , S ) , not writ ingDoc (D,

observat ion , P, T, T2 , S ) ,

33 not writtenDoc (D, observat ion ,

P, T, S ) .

35

poss ( endWrite (D, Type , P, T, T1) , S): − perm ( endWrite (D, Type , P, T, T1) , S ) .

37

poss ( endDeadline ( admissionNote , P, T, T1) , S): − i n p a t i e n t (P, T, S ) ,

39 not d e a d l in e ( admissionNote , P, T , S ) ,

adDeadline ( Deadl ine ) ,

41 T1 $= T + Deadl ine .
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43 poss ( endDeadline ( observat ion , P, T, T1) , S): − i n p a t i e n t (P, T, S ) ,

not d e a d l in e ( observat ion , P, T , S ) ,

45 obDeadline ( Deadl ine ) ,

T1 $= T + Deadl ine .

47

% Succes so r State Axioms

49

as s i gned (P, D, do (A, S)): − A = a s s i g n (P, D, T) ;

51 ( a s s i gned (P, D, S ) ,

not A = revokeAss ignat ion (P, D, T1) ,

53 not A = l e a v e (P, T2 ) ) .

55 d e a d l in e (Type , P, T, do (A, S)): − A = endDeadline (Type , P, T, T1 ) ;

d e a d l in e (Type , P, T, S ) .

57

i n p a t i e n t (P, T, do (A, S)): − A = pat ientAdmiss ion (P, T) ;

59 ( i n p a t i e n t (P, T, S ) ,

not A = l e a v e (P, T1 ) ) .

61

writ ingDoc (D, Type , P, T, T1 , do (A, S)): − A = star tWr i t e (D, Type , P, T, T1 ) ;

63 ( writ ingDoc (D, Type , P, T, T1 , S ) ,

not A = endWrite (D, Type , P, T, T2 ) ) .

65

writtenDoc (D, Type , P, T, do (A, S)): − A = endWrite (D, Type , P, T, T1 ) ;

67 writtenDoc (D, Type , P, T, S ) .

69 % Derived a c t i v e p e r mi s s i o n s

71 perm ( s ta r tWr i t e (D, observat ion , P, T, T1) , do (A, S)): − as s i gned (P, D, S ) ,

not writ ingDoc (D, Type1 , P1 ,

73 T2 , T3 , S ) ,

A = pat ientAdmiss ion (P, T) .

75

perm ( s ta r tWr i t e (D, observat ion , P, T, T1) , do (A, S)): − as s i gned (P, D, S ) ,

77 i n p a t i e n t (P, T, S ) ,

A = endWrite (D, Type1 , P1 ,

79 T2 , T3 ) .

81 perm ( s ta r tWr i t e (D, observat ion , P, T, T1) , do (A, S)): − perm ( s ta r tWr i t e (D, observat ion ,

P, T, T1) , S ) ,

83 not A = revokeAssignment (P,

D, T2) , not A = l e a v e (P, T2) ,

85 not A = star tWr i t e (D, Type1 ,

P1 , T3 , T4 ) .

87

perm ( s ta r tWr i t e (D, admissionNote , P, T, T1) , do (A, S)): − as s i gned (P, D, S ) ,

89 not writ ingDoc (D, Type1 , P1 ,

T2 , T3 , S ) ,

91 A = pat ientAdmiss ion (P, T) .

93 perm ( s ta r tWr i t e (D, admissionNote , P, T, T1) , do (A, S)): − as s i gned (P, D, S ) ,

i n p a t i e n t (P, T, S ) ,

95 A = endWrite (D, Type1 , P1 ,

T2 , T3 ) .

97

perm ( s ta r tWr i t e (D, admissionNote , P, T, T1) , do (A, S)): − perm ( s ta r tWr i t e (D,

99 admissionNote , P, T, T1) , S ) ,
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not A = revokeAssignment (P,

101 D, T2) , not A = l e a v e (P, T2) ,

not A = star tWr i t e (D, Type1 ,

103 P1 , T3 , T4 ) .

105

perm ( endWrite (D, Type , P, T, T1) , do (A, S)): − A = star tWr i t e (D, Type , P, T, T2) ,

107 T1 $>= T2 + 5 .

109 perm ( endWrite (D, Type , P, T, T1) , do (A, S)): − perm ( endWrite (D, Type , P, T, T1) , S ) ,

not A = endWrite (D, Type , P, T, T2 ) .

111

113 % Derived a c t i v e o b l i g a t i o n s

115 ob ( write (D, admissionNote , P, T) , do (A, S)): − ( a s s i gned (P, D, S ) ,

A = pat ientAdmiss ion (P, T) ) ;

117 ( ob ( write (D, admissionNote , P, T) , S ) ,

not A = endWrite (D, admissionNote , P,

119 T, T1) ,

not A = endDeadline ( admissionNote , P,

121 T, T2) , not A = l e a v e (P, T3) ,

not A = revokeAss ignat ion (P, D, T4 ) ) .

123

ob ( write (D, observat ion , P, T) , do (A, S)): − ( a s s i gned (P, D, S ) ,

125 A = pat ientAdmiss ion (P, T) ) ;

( ob ( write (D, observat ion , P, T) , S ) ,

127 not A = endWrite (D, observat ion ,

P, T, T1) ,

129 not A = endDeadline ( observat ion ,

P, T, T2) ,

131 not A = l e a v e (P, T3) ,

not A = revokeAss ignat ion (P, D, T4 ) ) .

133

ob ( endDeadline ( admissionNote , P, T, T1) , do (A, S)): − (A = pat ientAdmiss ion (P, T) ,

135 adDeadline ( Deadl ine ) ,

T1 $= T + Deadl ine ) ;

137 ( ob ( endDeadline ( admissionNote ,

P, T, T1) , S ) ,

139 not A = endDeadline ( admissionNote ,

P, T, T1) , not A = l e a v e (P, T2 ) ) .

141

ob ( endDeadline ( observat ion , P, T, T1) , do (A, S)): − (A = pat ientAdmiss ion (P, T) ,

143 obDeadline ( Deadl ine ) ,

T1 $= T + Deadl ine ) ;

145 ( ob ( endDeadline ( observat ion ,

P, T, T1) , S ) ,

147 not A = endDeadline ( observat ion ,

P, T, T1) , not A = l e a v e (P, T2 ) ) .

149

% Derived the f u l f i l l e d o b l i g a t i o n s .

151

f u l f i l ( endDeadline (Type , P, T, T1) , do (A, S)): − ( ob ( endDeadline (Type , P, T, T1) , S ) ,

153 A = endDeadline (Type , P, T, T1 ) ) ;

f u l f i l ( endDeadline (Type , P, T, T1) , S ) .

155

f u l f i l ( write (D, Type , P, T) , do (A, S)): − ( ob ( write (D, Type , P, T) , S ) ,

157 (A = endWrite (D, Type , P, T, T2 ) ) ;
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f u l f i l ( write (D, Type , P, T) , S ) ) .

159

badSi tuat ion ( do (A, S)): − A = endDeadline (Type , P, T, T1) ,

161 not f u l f i l ( write (D, Type , P, T) , S ) , ! .

badSi tuat ion ( do (A, S)): − A = endDeadline (Type , P, T, T1) ,

163 poss ( endDeadline ( Type1 , P1 , T2 , T3) , S ) , T3 $< T1 , ! .

badSi tuat ion (S): − ob ( endDeadline (Type , P, T, T1) , S ) , s t a r t (S , T2) , not (T1 $>= T2) , ! .

165 badSi tuat ion ( do (A, S)): − A = l e a v e (P, T ) , ! .

badSi tuat ion ( do (A, S)): − A = revokeAss ignat ion (P, D, T ) , ! .

167 badSi tuat ion ( do (A, S)): − A = a s s i g n (P, D, T ) , ! .

badSi tuat ion ( do (A, S)): − A = pat ientAdmiss ion (P, T ) , ! .

169

/∗ I n i t i a l S i t u a t i o n . ∗/

171 s t a r t ( s0 , 0 ) .

doctor ( jean ) .

173

% The time o f an a c t i o n occur rence i s i t s l a s t argument .

175

time ( a s s i g n (P, D, T) , T) .

177 time ( r evokeAss ignat ion (P, D, T) , T) .

time ( pat ientAdmiss ion (P, T) , T) .

179 time ( l e a v e (P, T) , T) .

time ( endDeadline (Type , P, T, T1) , T1 ) .

181 time ( s ta r tWr i t e (D, Type , P, T, T1) , T1 ) .

time ( endWrite (D, Type , P, T, T1) , T1 ) .

183

% Restore s i t u a t i o n arguments to f l u e n t s .

185

r e s t o r e S i t A r g ( f u l f i l ( Rule ) , S , f u l f i l ( Rule , S ) ) .

187 r e s t o r e S i t A r g ( ob ( Rule ) , S , ob ( Rule , S ) ) .

r e s t o r e S i t A r g ( badSituat ion , S , badS i tuat ion (S ) ) .

189

% Pr imi t ive Action D e c l a r a t i o n s .

191

p r i mi t i veA ct i o n ( s ta r tWr i t e (D, Type , P, T, T1 ) ) .

193 p r i mi t i veA ct i o n ( endWrite (D, Type , P, T, T1 ) ) .

p r i m i t i veA ct i o n ( endDeadline (Type , P, T, T1 ) ) .

195 p r i mi t i veA ct i o n ( revokeAss ignat ion (P, D, T) ) .

p r i m i t i veA ct i o n ( a s s i g n (P, D, T) ) .

197 p r i mi t i veA ct i o n ( pat ientAdmiss ion (P, T) ) .

p r i m i t i veA ct i o n ( l e a v e (P, T) ) .

199

201 % U t i l i t i e s .

203 makeActionList ( s0 , [ ] ) .

makeActionList ( do (A, S ) , L) :− makeActionList (S , L1 ) , append (L1 , [A] , L ) .

205 p r e t t y P r i n t S i t u a t i o n (S) :− makeActionList (S , A l i s t ) , nl , write ( A l i s t ) , nl .

207 a c t i v e O b l i g a t i o n s ( A c t i v e O b l i g a t i o n s L i s t , S): − f indal l ( Rule , ob ( Rule , S ) ,

A c t i v e O b l i g a t i o n s L i s t ) .

209

211 r e p o r t S t a t s :− nl , cputime (T) , write ( ’ CPU time ( sec ) : ’ ) ,

g e t v a l ( cpu , T1) , T2 i s T − T1 , write (T2) , nl .

213

i n i t i a l i z e C P U :− cputime (T) , s e t v a l ( cpu , T) .

215
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sEn fo r ceab l e (N, S1): − i n i t i a l i z eCPU , a c t i v e O b l i g a t i o n s ( A c t i v e O b l i g a t i o n s L i s t , S1 ) , nl ,

217 do ( plan (N, A c t i v e O b l i g a t i o n s L i s t ) , S1 , S ) ,

p r e t t y P r i n t S i t u a t i o n (S ) .





APPENDIX

C Gestion Des Conflits

dans les Politiques de

Contrôle d’ Usage

Dans une politique de sécurité, les règles de permissions et d’interdictions sont

généralement utilisées pour spécifier les politiques de contrôle d’accès. Les obligations

sont utiles pour exprimer des politiques de contrôle d’usage. Ces règles appliquées

à un même objet conduisent assez souvent à des situations conflictuelles. Dans la

littérature, on distingue plusieurs types de conflits. Un type de conflit qui n’ a pas

encore été géré dans la littérature est le conflit entre les obligations avec délais qui

survient lorsque ces délais se chevauchent. Les conflits entre les obligations avec

délais sont difficiles à détecter et à gérer. Nous avons besoin d’un modèle qui gére

comment le système d’information évolue dans le temps. Le but de la thèse est de

développer des mécanismes de contrôle d’accès et de contrôle d’usage qui permettent

d’implémenter les règles d’obligations avec délais, de détecter et de gérer les conflits.

Dans cette thèse, nous proposons un langage reposant sur les modalités déontiques

pour spécifier des politiques d‚Äôobligations avec délais. Ce modèle est intégré dans

le langage du calcul des situations séquentiel temporel. Le calcul des situations est un

langage qui représente le changement des mondes dynamiques comme un ensemble

de formules de la logique du premier ordre. Ses éléments de base sont les actions

qui peuvent être effectuées dans le monde, les fluents qui décrivent l’état du monde

et les situations qui représentent une histoire d’occurrences d’actions. Le calcul des

situations permet d’analyser la décidabilité et la complexité de plusieurs problèmes

utiles comme le problème de projection temporelle. Ce problème consiste à vérifier

si une formule est vrai après qu’une séquence d’actions a été effectuée à partir de

la situation initiale. Ainsi notre modèle permet de décider quelle règle peut être

appliquée à une situation donnée et de détecter les violations d’obligations dans un

temps polynomial.
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D’autre part, les contraintes constituent un aspect important des modèles de contrôle

d’accès. Elles sont généralement utilisées pour éviter des situations frauduleuses.

Ainsi notre modèle a été étendu pour exprimer une politique de contraintes.

Gestion des politiques de contraintes

Dans notre langage, il existe deux sortes de contraintes que nous appelons

contraintes historiques et non-historiques. Les contraintes historiques servent à

spécifier des exigences qui ne peuvent être vérifiées qu’en possédant des informations

sur l’historique, alors que les contraintes non-historiques servent à exprimer des

exigences liées á l’état courant. Nous montrons comment notre langage est suffisant

pour exprimer des contraintes bien connues dans la littérature. Pour appliquer

les contraintes, nous proposons d’abord de réécrire les contraintes historiques dans

des formules simples (ne contenant qu’une seule variable de type situation). Nous

proposons ensuite une procédure fondée sur le concept de régression pour faire

respecter ces contraintes. En outre, nous spécifions formellement la condition dont

la satisfaction permet de prouver que la spécification du système est sécurisée par

rapport aux exigences de contrôle d’accès et de la politique des contraintes. Cependant

l’utilisation des contraintes peut conduire à des situations conflictuelles.

Gestion des conflits dans les politiques d’obligations avec délais

L’utilisation des contraintes peut conduire à restreindre les situations dans

lesquelles les actions peuvent être exécutées et par suite générer des situations où

il est obligatoire de faire une action, mais il est impossible de l’exécuter. Dans ce

sens, nous avons d’abord défini formellement les situations qui présentent ce genre de

conflit que nous appelons un conflit de faisabilité. Ce conflit est détecté en utilisant

les situations exécutables. Une situation exécutable est le résultat de l’exécution

d’une action possible (les pré-conditions de l’action exécutée sont vérifiées) à partir

d’une situation qui est elle même exécutable. Ainsi, sous l’hypothèse que la situation

initiale est exécutable, ces situations sont construites par récursion. Nous dirons qu’il

existe un conflit de faisabilité globale dans une politique de contrôle d’usage dans une

situation donnée s si à partir de cette situation, il n’existe aucune situation exécutable

s′ où les obligations actives dans s peuvent être remplies.

De plus, notre modèle permet de détecter les conflits entre les permissions et les

obligations. La détection de ce genre de conflit se fait en utilisant les situations légales.

Comme les situations exécutables, ces situations sont construites récursivement. Une
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situation légale est le résultat de l’exécution d’une action permise à partir d’une

situation qui est elle même légale.

Nous avons proposé un algorithme de planification pour prouver si une politique

de contrôle d’usage est globalement cohérente dans une situation donnée ou non

(ne présentant pas de conflit de faisabilité ou un conflit entre les obligations et les

permissions). La planification consiste à trouver une séquence d’actions qui permettent

de satisfaire un but donné. Nous avons illustré notre approche en utilisant un exemple

du milieu de la santé où les règles d’obligations avec délais sont utilisées pour assurer

la disponibilité de l’information concernant les patients. Nous avons présenté la

spécification formelle de ces règles en utilisant notre modèle. Puis nous avons réalisé

l’implémentation en utilisant le langage de programmation d’actions Golog qui se

fonde sur le calcul des situations. Dans notre implémentation, nous avons fait appel au

Système de Programmation logique commune ECLIPSE 3.5.2 qui intègre l’algorithme

du simplex pour résoudre les équations et les inégalités linéaires.

Il est possible qu’un conflit se produit parce qu’il existe une suite d’anciennes

obligations qui n’ ont pas été remplies et qui sont restées actives.

Déterminer si les utilisateurs sont responsables d’un conflit dépend de la nature des

activités qui ont conduit à l’accumulation de ces obligations. En effet, nous devons

distinguer parmi les actions qui ont été exécutées avant que le conflit se produise, les

actions accompagnées d’une permission de les exécuter et les actions accompagnées

d’un droit de les exécuter. Nous considérons que ce n’est pas équitable de révoquer

le droit d’un utilisateur. Pour cela, nous avons enrichi notre langage avec une autre

modalité qui est la modalité de droit.

Enrichir les politiques de sécurité par des règles de droits

Dans le modèle que nous proposons, un utilisateur ne peut être privé d’excercer son

droit, sinon il y a une violation de droit. En général, les droits sont souvent associés

à des sanctions en cas de violations. Par exemple, la CNIL (Commission nationale de

l’informatique et des libertés) donne une liste de droits et prévoit des étapes à suivre

si ces droits sont violés. Ainsi dans notre modèle, une action dont on détient le droit

de l’exécuter doit toujours être possible tant que le droit est actif. En d’autre termes,

les pré-conditions d’une action doivent être vérifiées dans toutes les situations où le

droit de l’exécuter est actif. Dès lors qu’une des pré-conditions qui lui sont associées

est désactivée, une violation de ce droit est détectée.

Cependant, l’introduction des règles de droit dans une politique de sécurité peut

générer d’autre types de conflits comme le conflit entre les droits et les obligations
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avec des délais. En effet, il peut y avoir des situations où il n’ est pas possible de

remplir les obligations dans leurs délais sans que cela entraîne une violation d’un droit.

Pour détecter ce genre de conflit, nous avons défini les situations préservant les droits.

Ces situations sont, comme les situations légales, construites par récursion et sont le

résultat de l’exécution des actions qui ne désactivent aucune des pré-conditions des

actions qui font l’objet d’un droit effectif. Ainsi, on dit qu’une politique présente un

conflit entre les obligations et les droits dans une situation donnée s si il n’existe pas

une situation préservant les droits, s′, où les obligations actives dans s sont remplies.

Pour prouver l’existence ou non de la situation s′, on fait appel à la planification.

L’approche est similaire à celle utilisée pour détecter les conflits entre les permissions

et les obligations.

Notre modèle permet aussi de détecter les conflits entre les droits. Ce conflit survient

dans les situations où l’exercice d’un droit empêche d’exercer un autre droit qu’on

détient. Ce genre de conflit est détecté grâce aux situations exécutables.

Après avoir donné une sémantique au droit qui le distingue de la permission, nous

avons formalisé les responsabilités sur les conflits.

Gestion des responsabilités

Le comportement des utilisateurs qui les rend responsables d’un conflit peut être

un interval de temps mal exploité, comme il peut aussi être le résultat de l’exécution

de certaines actions qui ont empêché de remplir certaines obligations actives. Notre

approche comporte deux étapes :

• Déterminer l’interval de temps dans lequel on examine le comportement des util-

isateurs. Cet interval de temps se situe entre la situation où la plus ancienne

des obligations actives dans la situation conflictuelle s’est activée, et la situation

conflictuelle. Cette situation est appelée earlier situation.

• A partir de la situation earlier, on cherche une situation exécutable, légale, qui

préserve les droits et où les obligations actives dans la situation conflictuelle sont

remplies. Dans cette recherche, on s’assure de reproduire les droits et les obli-

gations qui ont été actives entre la situation earlier et la situation conflictuelle.

Le temps d’activation est le même. On s’assure aussi de reproduire tout ce qui

a été exercé comme droit et les actions qui ont été exécutées pour satisfaire des

obligations.

Ainsi dans la recherche, toutes les combinaisons seront testées pour trouver une

meilleur organisation des actions qui ont été effectuées (celle qui conduit à remplir les
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obligations qui ont causé le conflit). Implicitement, cette recherche pourrait révoquer

l’exécution de certaines actions qui n’ont servis ni à remplir une obligation ni à assurer

un droit (même si elles sont permises). En outre, notre modèle assure une propriété

de l’équité dans l’affectation des responsabilités. Dans la mesure où chaque fois qu’un

utilisateur pourrait changer son comportement pour éviter les conflits, il est considéré

comme responsable. Notre modèle permet également d’exprimer formellement une

responsabilité partagée.

Finalement, nous proposons la délégation des obligations et la renonciation aux droits

comme une éventuelle approche qui permettrait de résoudre les différents conflits que

nous avons recensé dans les politiques de contrôle d’usages.

Résolution des conflits

Un conflit est dit solvable s’il est possible de trouver une situation dans le futur où

les obligations causant le conflit seront remplies soit par le même utilisateur qui est

concerné par l’obligation, soit par un utilisateur dont l’obligation lui a été déléguée.

On propose que la redistribution des obligations causant le conflit obéisse à certains

paramètres, comme par exemple choisir de déléguer une obligation à un utilisateur

réputé d’être efficace dans l’accomplissement de cette obligation.

D’autre part, nous proposons une approche qui se fonde sur la renonciation aux droits

pour résoudre les conflits entre les obligations et les droits. La renonciation à un

droit est une action que l’utilisateur peut exécuter pour désactiver son propre droit.

La renonciation au droit devrait être réglementée dans la politique par des règles de

permissions contextuelles qui servent à cadrer le contexte où il peut y avoir un aban-

don de droit. Ces derniers points concernant la résolution des conflits ont été définis

formellement et seront développés plus en détail dans des travaux futurs.
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