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Introduction

The ability to perform precise measurements is a fundamental aspect of all quantitative

science. To determine the value of a parameter in a physical system, an experimentalist uses

a probe to interact with the system. By measuring the way the probe has been altered by its

interaction with the system, it is possible to deduce the value of the parameter. Any probe can

however be intrusive in the sense that it a�ects the physical system on its interaction, thus

altering the response of the system to its presence. From a classical physics point of view, the

usage of a beam of light as a probe is adapted to a non-intrusive measurement since it can be

attenuated to a point where its interaction with matter is negligible.

For instance, light has been used extensively to the purpose of estimating distances. More

than 2000 years ago, Eratosthenes estimated the circumference of the Earth using geometric

consideration of the shadow cast by the Sun. If the same measurement were made today using

current data, the retrieved value would be accurate to less than 1%.

Accuracy is a fundamental concept in experimental science. It de�nes how di�erent the

value of a parameter will be when an experiment is repeated several times. The �nite accuracy

is a direct consequence of other physical phenomena that limit the knowledge of a variable,

which may be described as the noise in a measurement. Without noise, any measurement

would be always perfect.

The discovery in the end of the 18
th

century of the wave-like nature of light gave birth to

the �eld of interferometry, allowing to measure distances with a precision limited only by the

wavelength of light. In 1894, Michelson measured the length of a platinium-iridium standard

by interferometry and de�ned it in terms of an emissive wavelength of cadmium. He advocated

the use of wavelengths as a natural standard for distance [Michelson 94]. In 1960, the meter

was rede�ned in terms of the emissive wavelength of krypton, replacing the platinium-iridium

standard. Today, the meter is de�ned from the speed of light. Light became an even more

widespread measurement tool since the advent of lasers, which brought a source of light that

is highly coherent both spatially and temporally.

As a recent example, the usage of light as a tool to measure long distances with good accuracy

has resulted in the estimation of the distance between the Earth and the Moon with an accuracy

of a few millimeters [Murphy Jr 08]. This measurement was achieved by sending pulses of light

on a retrore�ector on the Moon and measuring their time of arrival. This measurement is called

a time-of-�ight measurement, which is less accurate than an interferometric measurement. The

ability to distinguish between redundant information on distance, called ambiguity range, is

on the order of the wavelength of light for an interferometric measurement, while it is on the

order of the distance between subsequent pulses for a time-of-�ight measurement. The latter

then o�er a better dynamics, since the spacing between pulses of light is much higher than

1



2

its wavelength. Combining interferometric and time-of-�ight measurements then allows to

merge high dynamics and sub-wavelength precision.

In order to combine the dynamics of the time-of-�ight measurement performed with pulsed

light and the precision obtained by interferometric measurement, optical frequency combs ap-

peared as ideal tools for the task. A frequency comb consists of a large number of equally

spaced optical frequencies with a narrow linewidth, and a �xed phase relationship between

them. In the temporal domain, this corresponds to a train of short pulses emitted at equal in-

tervals. The development of mode-locked lasers, and in particular Titanium-Sapphire lasers in

the 1990' [Spence 91], resulted in the realization of such frequency comb with pulses as short

as a few femtosecond. The realization of many stabilization techniques allows today to pro-

duce very stable frequency combs, making them perfect tools for metrology and spectroscopy

[Udem 02].

For the purpose of high precision measurement, the accuracy of an experiment accomplished

using an optical frequency comb is limited mostly by the noise of the source. For a time-of-�ight

measurement, the accuracy is limited by the �uctuation of the repetition rate, called timing jit-
ter, whereas an interferometric measurement is limited by the �uctuations in the each optical

carrier, generally called phase noise. The ability to characterize and measure these �uctuations

is essential to their stabilization [Paschotta 05].

These �uctuations can be described as arising from technical sources, such as thermal and

mechanical variations, but also from the quantum nature of light, which poses the most funda-

mental limit, the one that remains when removing all sources of technical noise in the measure-

ment. For instance, the random time-of-arrival of photons on a detector, commonly called the

shot noise limit, de�nes the standard quantum limit in sensitivity in both amplitude and phase

noise [Caves 81]. The �eld of quantum metrology studies how it is possible to engineer the

quantum state of the system that results in a better sensitivity compared to classical methods.

Recently, the usage of squeezed vacuum in an interferometer allowed to surpass the current

sensitivity in gravitational wave detection [Aasi 13].

In this thesis, we investigate the usage of frequency comb for precision measurements at the

quantum limit, as well as the �uctuations of the combs structure. We use a formalism that is

borrowed from quantum optics to describe classical phenomenon. We show indeed that the

comb structure can be decomposed on a basis of modes, where each of these is attached to a

given physical parameters [Lamine 08, Jian 12]. In a projective measurement scheme, we show

that it is then possible to measure an information carried by the electromagnetic �eld (such

as a delay in time) as well as �uctuations from the laser source (in that example, the timing

jitter). We �nally propose a scheme to generate two beams that are “squeezed in time”, since

they allow to measure a delay with a better sensitivity than using classical ressources.
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Outline of this thesis

The �rst part of this thesis concentrates on giving global de�nitions of the tools that are

needed for the task of measurement using a multimode description of an optical frequency

comb.

In the �rst chapter, we give a classical and a quantum formulation of the electromagnetic

�eld. We de�ne the notations that are used throughout this thesis.

In the second chapter, we describe the concepts of ultrafast optics. Since the work of this

PhD was accomplished with short pulses (∼ 20 fs), it is important to understand the physical

phenomena that arise when such pulses propagate. We also outline how to characterize the

spectral and temporal structure of the pulse, as well as its generation.

In the third chapter, we expose how we intend to measure the multimode structure of an

ultrafast frequency comb. We give a global description of the experiment and we outline how

to measure the optical quadratures of the di�erent spectral components of the �eld.

The second part concentrates on the study of precision measurements at the quantum limit.

In the fourth chapter, we describe the multimode structure of the �eld when a perturbation

is introduced. We cover the case of a displacement in time, in amplitude (i.e. energy), in optical

frequency and in phase. We show that these parameters can be extracted by performing a

projective measurement on a set of speci�c spectral modes. Moreover, we give a quantum

description of the matter, which allows to show that these parameters are conjugated. We also

show that the sensitivity of the projective measurement scheme coincides with the standard

quantum limit.

In the �fth chapter, we present the experiments that were achieved on parameter estima-

tion. We �rst give an optical method to measure the sensitivity of an interferometer, and show

that it coincides with the limit de�ned by quantum mechanics. We then use a multimode ap-

proach to measure the sensitivity of an interferometric and of a time-of-�ight measurement.

We also construct a detection mode that combines interferometric and time-of-�ight measure-

ments, and show that a time measurement performed with that speci�c mode is indeed more

sensitive. Using again a multimode description, we measure the value of index dispersion of

a material with a reasonable precision. Finally, we use a di�erent laser source that generates

multimode squeezed vacuum, and show an increase in sensitivity when the mode that is at-

tached to the detection of a parameter is squeezed.

The third part of this thesis is about characterizing the noise of an ultrafast frequency comb.

We use a homodyne based scheme that compares the noise of a laser source to a reference

whose noise �gures are either known or negligible.

The sixth chapter is about generating a reference beam to characterize the �uctuations of

another. Since we use the same laser source to build the reference, we use an optical cavity to

�lter the noise. We describe in this chapter the �ltering of the noise with optical cavities, and
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also characterize their properties when injected by an optical frequency comb.

In the seventh chapter, we measure the spectral amplitude and phase noise of an optical fre-

quency comb, as well as their spectral correlations. We show how the noise of di�erent spectral

components of the spectrum is distributed and the correlations that exist between them. We

also measure the correlations between the amplitude and the phase �uctuations of the comb.

The fourth and last part of this thesis is about perspective on the next part of the experiment,

which aims at generating multimode squeezed light.

In the eighth and last chapter of this thesis, we present the general principle to generate

squeezed light with frequency combs. Based on parametric down conversion, we show the

multimode structure of the quantum �eld that is generated and its potential applications. We

present the work that started on the elaboration of a synchronously pumped optical parametric

ampli�er.



Part I

Measuring with ultra-fast frequency
combs
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1 Themodes and states of a beam of light
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and does really great research, I reckon he will rise quickly in academia.”
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The aim of this chapter is to develop most of the conventions and notations that are used

throughout this thesis. We begin by describing the notion of modes of the classical electro-

magnetic �eld, a concept that is essential to the understanding of the remaining. This is done

both for the longitudinal and transverse part of the �eld representing a beam of light. We then
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write the quantum description of light by quantifying the �eld, introducing the operators and

states that will be relevant to this work.

1.1 The classical electromagnetic �eld
Light being a form of electromagnetic radiation, its description may be achieved by Maxwell’s

equations. Throughout this manuscript, every boldface symbol X denotes a vector in the carte-

sian basis, unless speci�ed otherwise.

1.1.1 Description of the real electromagnetic �eld
We begin by writing the electric �eld E (r, t), which is a 3-dimensional vector that depends on

the spatial variable r and the temporal variable t.
In order to keep this description general, we consider that the �eld propagates through a

medium of free charge density ρ and of polarization density P, neglecting the magnetic part.

The electric �eld will induce on matter an electric response D, called the electric �ux density,

which is de�ned as

D (r, t)= ε0E (r, t)+P (r, t) (1.1)

More generally, the relationship between the applied electric �eld E and the response D is

established through the electric permittivity tensor εr:

D (r, t)= ε0 [εr]E (r, t) (1.2)

The physics behind the �eld-matter interaction is then contained within the εr tensor, which

describes the anisotropy of the medium. Its de�nition will be particulary useful for the descrip-

tion of non-linear e�ects that will be outlined in chapter 8.

For now, we specialize to the case of propagation through a charge free ρ = 0, isotropic

and linear medium. This involves that the relation between the induced polarization and the

applied �eld is linear:

P (r, t)= ε0χeE (r, t) (1.3)

Under these conditions, the relation between the electric �eld and the response of the medium

is simply given by

D (r, t)= ε0 εE (r, t) with ε= 1+χe (1.4)

This lead to the de�nition of the index of refraction n, which is more commonly used in optics:

n =p
ε (1.5)
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The familiar propagation equation that governs the spatial and temporal propagation of the

electric �eld through a medium is:

4E= 1
v2
ϕ

∂2E
∂t2 (1.6)

where 4 stands for the vectorial laplacian operator and vϕ = c/n is the phase velocity, i.e. the

speed of light in the medium (in the case of vacuum, we have naturally vϕ = c).

A standard solution to (1.6) is the plane-wave solution:

E (r, t)=Re
{
E0 ei(k·r−ωt+φ)

}
(1.7)

where E0 is a constant vector, k is the propagation vector whose magnitude k =ωn/c satis�es

the dispersion relation for a plane-wave of pulsation ω. In this expression, an arbitrary phase

φ will be expanded in more detail in section 2.2.

1.1.2 Fourier space formalism
On many occasions in this manuscript, it will be convenient to look at the representation of

the electric �eld in the frequency-domain, which we shall describe in this part.

In this work, we will adopt the symmetric de�nition of the Fourier transform. Although not

necessary, it is convenient to use this prescription in quantum optics with continuous variables

as the commutation relations for the bosonic operators â(t) and â(ω) are then symmetric (see

section 1.4.2).

For a function f (t) de�ned in the temporal domain, we write the Fourier transform f̃ (ω)
de�ned in the conjugated space as:

f (ω)=
∫
R

dtp
2π

f (t) eiωt ≡F [ f (t)] (1.8)

Conversely, the inverse Fourier transform is then given by
1
:

f (t)=
∫
R

dωp
2π

f (ω) e−iωt ≡F−1 [ f (ω)] (1.9)

Applying this to the real electric �eld yield its Fourier decomposition

E (r, t)=
∫
R

dωp
2π

E (r,ω) e−iωt
(1.10)

1
For a better readability, we use the same notation to denote a function f in the real and in the Fourier domain.
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Since E(t) is a real quantity, it follows that

[E (r,ω)]∗ =E (r,−ω) (1.11)

This de�nition of E(ω) therefore contains some redundancy, which leads to the introduction

of the analytic electric �eld E(+) (r, t) where the negative frequencies are removed from the

Fourier decomposition:

E(+) (r, t)=
∫
R+

dωp
2π

E (r,ω) e−iωt
(1.12)

It is worth stressing that this quantity is now complex, so that the real �eld is de�ned by the

relation

E (r, t)=E(+) (r, t)+E(−) (r, t) (1.13)

where E(−) (r, t)= [
E(+) (r, t)

]∗
corresponds to the integration over the negative frequencies.

Equivalently, one may de�ne an analytic signal in the frequency domain by taking the Fourier

transform of the temporal analytic signal:

E(+) (r,ω)=
∫
R

dtp
2π

E(+) (r, t) eiωt
(1.14)

It follows that

E (r,ω)=E(+) (r,ω)+E(−) (r,−ω) (1.15)

where E(−) (r,ω)= [
E(+) (r,ω)

]∗
.

1.2 Modal description
As introduced by equation (1.7), plane-waves satisfying the dispersion relation form a basis on

which the �eld can be expanded. More generally, it may be expanded on any set of normalized

modes, either spatial, temporal, or spatiotemporal, as long as they satisfy Maxwell’s equations.

In this section, we show how to describe the electric �eld with modes in the longitudinal

and transverse plane. We enclose the system in a box of volume V and of section S.

1.2.1 Temporal and spectral modes
A decomposition of the �eld in plane-waves may be achieved by expanding the analytic �eld

(1.12) in spatial Fourier components, as it is done in [Grynberg 10]. The �eld is then written as

E(+) (r, t)= i
∑
`

E`α`ε` ei(k`·r−ω`t)
(1.16)
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where ε` is the polarization of the component `, k` its wavevector, α` is the normal variable

which corresponds to the complex amplitude of the component `, and E` is a normalization

constant given by

E` =
√

~ω`
2ncε0V

(1.17)

This is called the normal mode decomposition and each mode of the basis is an independent

monochromatic polarized wave. This de�nition of the �eld is very convenient when quanti-

fying it, but for the scope of this thesis, we will rather decompose a light beam on a basis of

envelope modes.

For the remaining of this manuscript, we will consider the �eld only in a given linear polar-

ization, E is then reduced to a scalar. We also consider that the frequency spectrum in (1.16)

is narrow and centered around ω0, allowing the constant to be taken out of the sum E` ' E0.

Finally, we rewrite (1.16) as a decomposition of envelope modes u(t) relative to the carrier

frequency:

E(+) (r, t)= E0
∑
`

α`u`(t)ei(k·r−ω0t)
(1.18)

where {u`(t)} is a set of orthonormal modes that satisfy the general condition (1.31) and α`
is the complex amplitude of the �eld. We’ve also incorporated the imaginary unit i in the

mode u`, since these can always be de�ned up to a constant phase factor. It will sometimes

be convenient to write the �eld as E(+) (r, t) = E0a(t)ei(k·r−ω0t)
where a(t) ≡ ∑

`α`u`(t) is the

envelope of the �eld.

By taking the Fourier transform of (1.18), one may also de�ne a spectral mode, or frequency

mode:

E(+) (r,ω)= E0
∑
`

α`u`(ω−ω0) eik·r
(1.19)

with u(ω−ω0)= u(Ω)=F [u(t)] and Ω=ω−ω0 is the frequency relative to the optical carrier.

These temporal - or spectral - modes will be the main center of focus throughout this the-

sis. Their de�nition is very general at this point since the modes {u`} needs only to satisfy

Maxwell’s equation as well as the normalization and orthogonality conditions (1.31). How-

ever, in section 2.1.4, we will revise this spectro-temporal modes concept by applying it to the

case of ultrashort laser pulses. In particular, we will use whenever possible the gaussian pro�le

for the spectral and temporal envelopes, as every calculation will have an analytical solution

in this case.

1.2.2 Spatial modes
The previous treatment only deals with plane waves whose wavefront is in�nite. However, in

practice, actual laser beams have a �nite transverse extent and may not be considered as true
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plane waves.

Fortunately, in the present case, we may consider the laser beams as paraxial, meaning that

they are made up of a superposition of plane waves with propagation vectors close to a single

direction. This also implies that the �eld’s variations in the transverse plane are much slower

than in the longitudinal dimension.

We choose the propagation direction as z, and the transverse direction as the (x, y) plane

where we de�ne a unitary vector ρ. Therefore, the position vector is written as r = (
ρ, z

)
. A

more complete description of the paraxial beams and the transverse structure of laser �eld may

be found in [Yariv 67] or [Siegman 86].

We consider a monochromatic paraxial wave written as

E(+) (r, t)= E0 g(r) ei(kz−ω0t)
(1.20)

where E0 = E0α encompasses the �eld amplitude, k satis�es the dispersion relation and g is a

slowly varying envelope in the longitudinal direction. Mathematically, this condition is written∣∣∂2
z g

∣∣¿ 2k |∂z g| and allows to the neglect second order derivatives of g with respect to z.

Injecting the expression (1.20) into the propagation equation (1.6) under this approximation

leads to the following paraxial wave equation

4ρ g−2ik
∂g
∂z

= 0 (1.21)

where 4ρ = ∂2
x +∂2

y is the laplacian operator in the transverse plane.

This equation has gaussian solutions that provide a good description of the laser beams that

we are used to work with. In particular, the entire family of transverse electromagnetic mode

(TEM) prove very useful as they correspond to the spatial eigenmodes of a laser cavity. The

expression for the lowest order mode is written as follows:

g00 (x, y, z)= w0

w(z)
e−ρ

2/w2(z) e−ikρ2/2R(z) eiφ(z)
(1.22)

where we de�ned the quantities

w2(z)= w2
0

[
1+

(
z

zR

)]
(1.23)

1
R(z)

= z
z2 + z2

R
(1.24)

φ(z)= arctan
(

z
zR

)
(1.25)
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zR = πw2
0n
λ

(1.26)

This describes a gaussian beam centered at z = 0 with a radius w0 called waist (measured at

1/e). The beam width variation is de�ned by w(z). The confocal parameter or depth of focus

b = 2zR is the length over which the radius is less than

p
2ω0. The geometry of the wavefront

is given by the radius of curvature R(z) and φ(z) is called the Gouy phase.

Higher order modes of the TEMmn family are obtained by adding Hermite polynomials vari-

ation to the solution. The resulting modes then read

gmn (x, y, z)= Cnm

w(z)
Hm

(p
2 x

w(z)

)
Hn

(p
2 y

w(z)

)
e−ρ

2/w2(z) e−ikρ2/2R(z) ei(m+n+1)φ(z)
(1.27)

where Cnm = 1/
p
π2n+m+1n!m! ensures a proper normalization of the mode.

To show the e�ects that will be of interest to us in this thesis, we shall reduce the dimensions

of the Hermite Gauss modes by constraining them to the x axis. We write our new basis as

{gn(x, z)}. It is linked to the two-dimensional modes (1.27) by assuming a fundamental pro�le

over the y direction and integrating it out:

gn (x, z)=
∫
R

dy gn0(x, y, z) (1.28)

The exact expression of the resulting modes, which may be found in [Delaubert 07], is not

relevant to the scope of this thesis, as we shall only use their orthogonality properties.

1.2.3 Spatio-temporal modes
The previous de�nitions in the transverse and longitudinal domains are quite convenient, since

they may be combined in a straightforward manner to build a new set of modes. This provides

a complete model description of the electric �eld.

Under the previous descriptions and approximations, a linearly polarized electric �eld may

be expanded on the basis of temporal ui(t) and spatial modes vn(x, z) as:

E(+) (x, z, t)= E0
∑
i,n
αi,nui(t) gn(x, z) ei(kz−ω0t)

(1.29)

Alternatively, we are also able to de�ne a new basis of modes wi,n(x, z, t) that encompasses

every combination of the longitudinal and transverse modes:

wi,n(x, z, t)= ui(t) gn(x, z) (1.30)

Note that the spatial and temporal parts are factorized in w, which assumes no space-time

coupling. This is a very reasonable assumption for the present work, where the light beam is
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in a well-de�ned spatial mode. At any position z and over a detection time T , these form an

orthonormal set; introducing the standard L
2

inner product 〈·, ·〉, it reads

〈
wi,m,w j,n

〉≡ ∫
T

cdt
Ï
S

d2ρw∗
i,m w j,n = ScT δi j δmn (1.31)

1.2.4 Basis change
The modes that we chose, being the temporal u(t) or spatial v(x, z) modes, are not unique; the

�eld may be expanded on any other basis. As an example, if we consider another temporal

basis {vi(t)} of the �eld, the change from {ui(t)} to {vi(t)} is achieved by a unitary transform U
de�ned by

Ui j =
〈
ui(t),v j(t)

〉≡ ∫
T

c dt u∗
i (t) v j(t) (1.32)

which allows to write the change of basis as

v j(t)=
∑

i
Ui j ui(t) (1.33)

1.2.5 Power and energy
Finally, we de�ne some of the physical quantities related to the energy and the power contained

in the �eld. These are important quantities since that are quite easy to access experimentally.

To lighten the notations , we write the complex �eld as

E(+) (x, z, t)= E0 a(x, z, t) e−iω0t
(1.34)

where a(x, z, t) = ∑
i, jαi, j ui(t) g j(x, z) is the envelope of the �eld, proportional to the square

root of the number of photons.

The energy density υ (in J/m
3
) contained in the electromagnetic �eld [Yariv 67] is given by

υ= 1
2
ε0

(
E2 + c2 B2

)
(1.35)

In term of the complex �eld, the energy density may be written as
2

υ(x, z, t)= 2ε0

∣∣∣E(+)(x, z, t)
∣∣∣2 (1.36)

2
The “energy” in the real �eld is twice the one contained in the complex �eld E2 = 2

∣∣E(+)∣∣2
, and since for

plane waves, B2 = E2/c2
, the energy density as a function of the complex �eld is consequently written as (1.36).
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The energy W contained in the �eld is therefore equal to the integral of the energy density

over the volume V = ScT delimited by a section S and a detection time T . The index depen-

dency comes from the fact that the light actually travels through the medium an optical length

dependent on the index n. Using the normalization condition (1.31) and the �eld constant

(1.17), the energy reads

W = 2ε0nE 2
0

∫
V

dV |a(x, z, t)|2 = N~ω0 (1.37)

where N is the number of photon in the �eld over a time T . For temporal modes that are

bounded, as it is the case for pulses of light, this integration time T allows to de�ne speci�c

quantities (see section 2.1.2).

The instantaneous intensity of the �eld (in J/s/cm
2
) is then given by

I(x, z, t)= 2ε0nc
∣∣∣E(+)(x, z, t)

∣∣∣2 (1.38)

For pulses, we are often interested in the integrated intensity or �uence F:

F(x, z)=
∫
T

I(x, z, t) dt (1.39)

Alternatively, we may de�ne the power by integrating the intensity (1.38) over transverse co-

ordinates:

P(z, t)=
∫
S

I(x, z, t) d2ρ (1.40)

The energy contained in the �eld may therefore be obtained by integrating either the power

or the �uence on the proper variables:

W =
∫
S

F(x, z) d2ρ ≡
∫
T

P(z, t) dt (1.41)

Because of the dependency between the t and z variables, the integral over t cancels the lon-

gitudinal component of these quantities. Another useful quantity is the power that is obtained

experimentally using a bolometer. These instruments measure power through heating, and are

therefore incapable of resolving the power in a single pulse
3
. The result of such a measurement

is the power averaged over a second Pavg (in W).

3
For relatively long pulses, a calibrated photodiode can resolve a single pulse. For pulses shorter than picosec-

ond timescale, this method is no longer valid because of the slow response of the electronics.
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Note that all the previously de�ned quantities translate very well to the spectral domain,

thanks to the symmetric Fourier transform de�ned in section 1.1.2. Using indeed this prescrip-

tion, the Parseval theorem reads∫
R

dΩ
∣∣∣E(+)(Ω)

∣∣∣2 = ∫
R

dt
∣∣∣E(+)(t)

∣∣∣2 (1.42)

meaning of course that computing the energy-related quantities in both spaces yields equiva-

lent results.

1.3 The quadratures of the classical �eld
In section 1.2, we’ve seen that we can write the �eld in a particular spatio-temporal mode as

the product of a slowly varying envelope and a phase factor that re�ect the wave-like nature of

light. In the following parts, it will be useful to break this phase factor into an absolute phase

and the wave front curvature part. This leads to the introduction of the �eld quadratures

[Bachor 04].

1.3.1 Quadrature amplitudes
Using the previous notations, we write the real electric �eld in the spatio-temporal modes basis{
wi,n(x, z, t)

}
as

E (x, z, t)= E0
∑
i,n
αi,n wi,n(x, z, t) ei(kz−ω0t) +c.c.≡ E0 a(x, z, t) e−iω0t +c.c. (1.43)

where c.c. stands for conjugated complex, and where we merged the spatial propagation with

the envelope to form the complex amplitudes a(x, z, t) = ∑
i,nαi,n wi,n(x, z, t) eikz

. An equiva-

lent form of this notation is given in terms of the quadrature amplitudes X and P associated

to the sine and cosine waves:

E (x, z, t)= E0 [X (x, z, t) cos(ω0t)+P(x, z, t)sin(ω0t)] (1.44)

The quadratures of the �eld are proportional to the real and imaginary part of the complex

amplitude:

X (x, z, t)= a(x, z, t)+a∗(x, z, t) (1.45)

P(x, z, t)= i
(
a∗(x, z, t)−a(x, z, t)

)
(1.46)

This notation is convenient for describing the interaction between two �elds (and also to

quantify the electric �eld, see section 1.4). A common representation of the classical �eld

decomposed on its quadratures is called the Fresnel diagram, or phase space representation.
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(a) (b)

Figure 1.1: Phase space diagram of a single electric �eld E (a) and of the

interference between two �elds (b).

In this diagram, the �eld is represented at a single point of space and time as a vector of

magnitude |a| making an angle φ = arctan(P/X ) with the X axis as outlined on �gure 1.1a.

In the case of interferences, the total �eld is sketched as the vectorial sum between the two

individual �elds. This helps to visualize on which quadrature lies the resulting �eld, as it is

showed on �gure 1.1b.

1.3.2 Quadrature �uctuations
Another elegant application of the �eld quadrature is when the wave has �uctuations in both

amplitude and phase.

Consider a variation of the envelope in equation (1.44) (this means that the carrier remains

una�ected). The �uctuations of E then read

δE (x, z, t)= E0

(
δX (x, z, t) cos(ω0t)+ iδP(x, z, t)sin(ω0t)

)
(1.47)

The �uctuations of the �eld quadratures δX and δP may then easily be linked to the �uc-

tuations in amplitude and phase. Indeed, for the simplest expression of an electric �eld E =
E0αeiϕ+c.c., a �uctuation in both amplitude δα and phase δϕ leads to the following �rst order

expansion:

δE ≈ E0

(
δα eiϕ+ iαδϕ eiϕ

)
+c.c. (1.48)

= 2E0

(
δX cosϕ+δP sinϕ

)
This description is again very relevant to the scope of this thesis, as the variations in ampli-

tude δX and phase δP are easily accessible by usual measurements methods. From this point,

we shall call respectively X and P the amplitude and phase quadratures of the electric �eld
4
.

4
Note that δP is actually proportional to the amplitude A of the �eld. As we will see in chapter 3, one does

not exactly measure the phase of the �eld, but rather the phase as being “imprinted” on the amplitude.
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1.4 Quantization of the �eld
In order to explore the ultimate limits in sensitivity when measuring with light, we need a quan-

tum description of the electric �eld. The standard way to quantify the �eld is by identifying

the �eld quadratures X and P as canonical variables in the sense of Hamiltonian mechanics,

analogous to the quanti�cation of a collection of harmonic oscillators. This allows to asso-

ciate hermitian operators X̂ and P̂ which satisfy canonical commutation relations. The full

treatment can be found in [Grynberg 10].

1.4.1 Bosonic operators
This begins by associating to the normal modes α` of (1.16) an operator â`. We impose these

operators the canonical commutation relation, and we also impose a zero commutation for

operators corresponding to di�erent modes, since they are decoupled by construction:[
â` , â†

k

]
= δ`k (1.49)

[â` , âk]= 0 (1.50)

The bosonic operators â` and â†
`

are called respectively annihilation and creation operators

since they destroy or create a photon in the mode `. This is again entirely similar to the

harmonic oscillator where an excitation is represented by a photon.

It follows that we can de�ne a real quantum electric �eld from the quanti�cation of (1.13):

Ê (r, t)= Ê(+)
(r, t)+ Ê(−)

(r, t) (1.51)

where the quantum analytic �eld in the Heisenberg representation is given by

Ê(+)
(r, t)= i

∑
`

E` â`ε` ei(k`·r−ω`t)
(1.52)

1.4.2 Modal decomposition
In analogy to the classical treatment of 1.2, it is also possible to expand the quantum �eld on

any basis of monochromatic modes wi(x, z, t) that still allow to diagonalize the energy of the

system. Using the same considerations that were used to derive equation (1.18), we can write

Ê(+) (x, z, t)= E0
∑

i
âi wi(x, z, t) (1.53)

where E0 is also de�ned by (1.17).
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The commutation relations (1.49) and (1.50) remain valid for the bosonic operator in the

mode {wi(x, z, t)}. In particular, considering that the �eld is in a well de�ned spatial mode

g0(x, z), an even more concise notation may be obtained by considering the continuous mode

annihilation operator [Loudon 00] â(x, z, t) = â(t) g0(x, z), allowing to write the commutation

relations as [
â(t) , â†(t′)

]
= δ(t− t′) (1.54)[

â(t) , â(t′)
]= 0 (1.55)

The Fourier transform formalism introduced in section 1.1.2 then allows to de�ne the annihi-

lation operator in the frequency domain â`(Ω) where the commutation relation is written the

same way
5
: [

â(Ω) , â†(Ω′)
]
= δ(Ω−Ω′) (1.56)[

â(Ω) , â(Ω′)
]= 0 (1.57)

The energy of the quantized system is given by the Hamiltonian that sums the contribution of

every mode i:

Ĥ = ~ω0

∫
T

(
â†(t) â(t)+ 1

2

)

= ~ω0
∑

i

(
â†

i âi + 1
2

)
≡ ~ω0

∑
i

(
N̂i + 1

2

)
(1.58)

where N̂i ≡ â†
i âi is the operator for photon number in the mode i.

The continuous annihilation operator â(Ω) may be decomposed as

â(Ω)=∑
i

âi ui(Ω) (1.59)

The eigenstates of the Hamiltonian are the photon number states, or Fock states, |N1, . . . , Ni, . . .〉
where Ni is the number of photons in the mode i. The bosonic operators action on the Fock

states is mode dependent:

âi |n1, . . . ,ni, . . .〉 =p
ni |n1, . . . ,ni −1, . . .〉 (1.60)

â†
i |n1, . . . ,ni, . . .〉 =

√
ni +1 |n1, . . . ,ni +1, . . .〉 (1.61)

A change of basis from {wi(x, z, t)} to

{
v j(x, z, t)

}
is done in a similar way as in the classical

part 1.2.4 by associating another bosonic operator b̂ j to the new mode v j(x, z, t) :

Ê(+)(x, z, t)= iE0
∑

i
b̂ j v j(x, z, t) (1.62)

5
The non-symmetric de�nition of the Fourier transform would leave a factor 2π in the commutator.
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such that, for w̃ j de�ned as (1.33) with a unitary basis change matrix U, the new bosonic

operators write as :

b̂†
i =

∑
i
Ui j a†

i (1.63)

b̂i =
∑

i

(
U−1)

i j ai (1.64)

1.4.3 Quadrature operators
In quantum information, the Fock states are particularly interesting since they allow to picture

photons as a natural representation of qubits. They also exhibit interesting quantum behavior

for many applications in quantum optics [Kimble 77]. This regime is called the discrete variable
(DV) regime.

In our case, we are more interested in a regime where we have a high photon �ux since it

leads to higher sensitivity in our measurement (see 4.1.2). We then classical a classical �eld

of macroscopic energy and we picture the quantum e�ects as �uctuations in the light wave.

This high photon number regime, also called the continuous variable (CV) regime is getting

more and more used in the quantum optics community [Lloyd 99, Furusawa 11], as well as the

hybrid regime that couples both the discrete and continuous description of the light [Morin 14,

Jeong 14].

The standard approach in CV consists in assigning a bosonic operator âi to a classical wave

amplitude αi such that αi = 〈âi〉. The quantum �uctuations δâi of the quantum �eld are then

written as

δâi = âi −〈âi〉 (1.65)

where there is an implicit identity operator 1̂ hidden after the expectation value of âi. In this

thesis, we make use of the semi-classical approximation [Reynaud 92] that neglects any higher

order term in δâ.

The bosonic operators are not hermitian, so they do not correspond to an observable and

may not be measured. However, their real and imaginary parts are hermitian and correspond

to the exact quantum counterpart of the �eld quadratures de�ned in (1.45) and (1.46):

x̂i = âi + â†
i (1.66)

p̂i = i
(
â†

i − âi

)
(1.67)

From (1.49) and (1.50), the commutator for the quadrature operators x̂i and p̂i is given by:[
x̂i , p̂ j

]= 2iδi j (1.68)[
x̂i , x̂ j

]= [
p̂i , p̂ j

]= 0 (1.69)
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These conjugation relations allow to write the following Heisenberg inequality:

σ2
x̂i
σ2

p̂i
≥ 1 (1.70)

where σÔ ≡ 〈
δÔ2〉

is the variance of operator Ô. Finally, we can de�ne an arbitrary quadrature

operator q̂φi at a φ angle in phase space:

q̂φi = â†
i eiφ+ âi e−iφ

(1.71)

Using this notation, the amplitude (1.66) and phase (1.67) operators are dephased by π/2. For

states that contain n-modes, the quadrature operators {x̂i} and {p̂i} are represented as vectorial

operators of n components x̂ and p̂. It is also convenient to de�ne a full quadratures vector of

2n components X̂= (x̂1, . . . , x̂n, p̂1, . . . , p̂n)ᵀ.

1.4.4 Relation to the classical �eld
In experimental quantum optics, it is quite convenient to be able to relate the quantum �eld

(1.53) to the classical �eld (1.18). This allows to de�ne what observable is being measured.

The expectation value of the electric �eld (1.53) is written as〈
Ê(+) (x, z, t)

〉
= E0

∑
i
〈âi〉 wi(x, z, t) (1.72)

For single-mode Gaussian states (cf. section 1.6.2.2), it is always possible to �nd a basis of

modes {vi(x, z, t)} where only the �rst mode n = 0 is non-vacuum. This implies that

〈â0〉 =
p

N (1.73)

where N is the number of photons contained in the �eld. Using the de�nition of the quadrature

operators (1.66) and (1.67), the annihilation operator can be written in term of observables:

âi = x̂i + i p̂i

2
(1.74)

Thus, the quantum electric �eld is written in term of amplitude and phase observables:

Ê(+) (x, z, t)= E0
∑

i

x̂i + i p̂i

2
vi(x, z, t) (1.75)

For classical light, computing the expectation value of (1.75) should be equivalent to measuring

the classical �eld (1.18). This de�nes the important relation:

〈x̂〉 = 2 Re
{
E(+)

}
(1.76)

The expectation value of the quadrature amplitude of the quantum �eld is exactly equal to

twice the real part of the complex classical �eld
6
.

6
Obviously integrated over a �nite spatial and temporal window.
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1.5 Quantum states
We introduce in this section the quantum states of interest in the continuous variable regime.

For a more detailed description of the subject, [Braunstein 05] provides with a thorough review.

1.5.1 Density operator
Usually a quantum system is represented by a single state vector

∣∣ψ〉
, called pure state. It

is however not su�cient to describe a realistic system; the in�uence of the environment or

�uctuations of various origin will degrade the purity of the state and lead to a statistical mixture

of pure states, or mixed state. These may no longer be represented as single state vectors.

A standard way of representing mixed states is by the density matrix or density operator ρ̂,

de�ned by

ρ̂ =∑
i

ci
∣∣ψi

〉〈
ψi

∣∣
(1.77)

where the ci coe�cients are the statistical weight of the pure state

∣∣ψi
〉
. The density matrix

satis�es the condition Tr
[
ρ̂
]= 1.

The purity P of the state can be deduced from the density matrix by

P =Tr
[
ρ̂2]

(1.78)

For a pure state, P = 1; otherwise, 0< P < 1 for a mixed state.

The density matrix is a general tool that is especially convenient when describing mixed

states in the discrete variable regime, as it may be expanded on the Fock states basis. How-

ever its usage in the continuous variables regime, where the number of photons and of modes

increases, is more problematic, since it contains an in�nite number of elements. Therefore,

in this regime, it is more proper to make use of a representation in quadratures, which is a

natural representation of continuous variables. It is outlined in the next section as the Wigner

function, or Wigner distribution.

1.5.2 Wigner function
The Wigner function corresponds to another representation of the �eld in terms of quadra-

tures. For a n-mode state, it may be written on the phase space of the outcomes of x̂, p̂ as

[Schleich 11]:

W(x,p)= 1
(2π)n

∫
dnµ dnν Tr

[
ρ̂ e−i(x̂·µ+p̂·ν)

]
ei(x·µ+p·ν)

(1.79)

This representation should ideally show the probability of measuring the outcome x and

p of a measurement on x̂ and p̂. However, it is clear from (1.68) that these operators do not
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commute, therefore such a probability distribution cannot exist. The Wigner function W is a

quasi-probability distribution such that the projection of W on any quadrature x̂φi corresponds

to the marginal probability distribution of the outcome qφi of the measurement. Like a proba-

bility distribution, the integral over all quadratures is equal to 1:∫
dnx dnpW(x,p)= 1 (1.80)

and the integral over all but one quadrature yields the probability to measure it; for example,

by writing pφ =qφ+π/2
the orthogonal quadrature to qφ, the probability to measure qφ is given

by projecting the Wigner function:

Pφ(qφ)=
∫

W(qφ,pφ)dnpφ
(1.81)

However, this distribution can be negative, hence the name of quasi-probability distribution.

For more details on the Wigner function, see [Ourjoumtsev 07].

The Wigner function is a good tool to describe quantum states in term of the phase space

variables, and many of the states relevant to continuous variables quantum optics may be rep-

resented through this function. It is worth stressing that the negativity of the Wigner function

is not a necessary criterion do describe the "quantumness" of the state. Some states will ex-

hibit highly non-classical behaviors such as entanglement and nonlocality, yet their Wigner

function are positive. The most common belong to the class of Gaussian states that will be

expanded in the following section.

1.6 Gaussian states

1.6.1 De�nition and quantum covariance matrix
Simply put, gaussian states correspond to states whose Wigner function is Gaussian. They are

e�ciently producible in a laboratory and available on demand. As an example, the ground state

of the Hamiltonian, or vacuum state, is Gaussian. Moreover, most operations we can apply on

gaussian states of light preserves their Gaussian characteristics.

The most general form for a Gaussian Wigner distribution can be formulated as

[Ferraro 05] :

W(X)= 1

(2π)npdetΓ
exp

[
−1

2
(
X−〈

X̂
〉)ᵀ

Γ−1 (
X−〈

X̂
〉)]

(1.82)

where

〈
X̂

〉
is the expectation value vector of the quadratures and Γ is the symmetrized covari-

ance matrix which elements are de�ned the following way:

[Γ]i j ≡Γi j = 1
2

〈{
X̂ i , X̂ j

}−〈
X̂ i

〉 〈
X̂ j

〉〉
(1.83)
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where {· , ·} denotes the anti-commutator. By de�nition (and as for its classical counterpart, see

section 7.2.1), the covariance matrix is a real, positive and semi-de�nite matrix which allows

the spectral theorem to apply (this will be of great importance to us later on). The diagonal

elements of this 2n×2n matrix correspond to the individual variance of each quadratures for

every modes, and the o�-diagonal represent correlations between those modes and quadra-

tures. For our purposes, it contains all the information on the gaussian state that is considered.

Finally, the purity of the state in term of the covariance matrix is given by

P = 1p
detΓ

(1.84)

1.6.2 Examples of Gaussian states

1.6.2.1 Vacuum state

The ground state of the radiation �eld is the state with zero photons |0〉 = |N1 = 0, . . . , Nn = 0〉
in every modes. It is called a vacuum state. The covariance matrix associated to this state is

the identity matrix, whatever the basis of modes in which it is represented:

Γ|0〉 = 12n (1.85)

It is a direct consequence of the way we de�ned the quadrature operators (1.66) and (1.67) :

the variance of the �uctuations on both quadratures for a zero-photons state is equal to unity.

Therefore, its Wigner function is given by

W(x,p)= 1
(2π)n e−

1
2 (x2+p2)

(1.86)

1.6.2.2 Coherent state

Introduced in [Glauber 63], coherent states |αi〉 are widely used in quantum optics since they

are the quantum states that represent the state of light emitted by an ideal laser well above

threshold. They are also called quasi-classical states. Moreover, they are the eigenstates of the

annihilation operator âi:

âi |αi〉 =αi |αi〉 (1.87)

The expression of such states may be obtained by displacing the vacuum state in phase space.

This is achieved by applying the displacement operator D̂ i on the vacuum state:

|αi〉 = D̂ i(αi) |0〉 (1.88)

where

D̂ i(αi)= exp
[
αi â

†
i −α∗

i âi

]
(1.89)
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A general coherent state is obtained by the tensor product of each individual coherent states

(1.87)

|α〉 =⊗
i
|αi〉 (1.90)

Its covariance matrix is also equal to the identity matrix:

Γ|α〉 = 12n (1.91)

and is therefore the same in each basis. In fact, it may be shown that there always exists a basis

in which any coherent state can be represented with a coherent state in mode 1 and vacuum

in all the other modes [Treps 05]: ∣∣ψ〉= |α〉⊗ |0, . . . ,0, . . .〉 (1.92)

A coherent state may therefore be considered as a single mode state.7

In this basis, the coherent state writes in terms of the Fock states as

|α〉 = e−|α|
2/2

∞∑
n1=0

ân1
1√
n1!

|0〉 (1.93)

where the photons are created in the �rst mode. It is straightforward to show that〈
N̂1

〉= |α|2 (1.94)

and

σ2
N̂1

= |α|2 (1.95)

The photon number distribution of a coherent state follow a Poisson distribution.

1.6.2.3 Squeezed state

The Heisenberg inequality (1.70) imposes a restriction on the value of the product of the vari-

ances of the quadratures in a given mode. And yet it does not constrain the variance of one

single quadrature. In the case where the variance of one quadrature in a given mode is less

than 1, this mode is said to be squeezed.

The squeezing operator for the quadrature q̂φi
i in mode i is written as

Ŝi(ξi)= exp

ξi

(
â†

i

)2 −ξ∗i (âi)2

2

 (1.96)

7
In contrast, a state is called multi mode if it is not single mode. Albeit amusing, this condition is strong in the

sense that any state that cannot be written according to (1.92) is by de�nition multi mode. A good explanation of

these conditions can be found in [Delaubert 07].
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where ξi = r i eiθi
is the squeezing parameter; r i > 0 is the amount of squeezing and θi is the

direction.

On a vacuum state, the action of this operator yields the state |ξi〉 = Ŝi(ξi) |0〉, which may

be expanded in terms of even Fock states [Ferraro 05]. Despite its name, the squeezed vacuum

is not an empty state, as its mean number of photon is given by〈
N̂i

〉
|ξi〉 = sinh2 r i (1.97)

whereas the expectation value of a quadrature operator at any angle in phase space vanishes :〈
q̂φi

〉
|ξi〉

= 0 ∀φ. However, the variances for the two orthogonal quadratures q̂φi and p̂φi ≡ q̂
φ+π

2
i

read

σ2
q̂φi

= e−2r i ≡σ2
i (1.98)

σ2
p̂φi

= e2r i ≡ 1
σ2

i
(1.99)

The �eld is then “squeezed” along a given quadrature and “anti-squeezed” along the other. The

special cases where φ = 0 and φ = π
2 correspond respectively to amplitude or phase squeezed

states.
In the case where the state is pure and multimode, the covariance matrix is diagonal:

Γ|ξ〉 = diag

(
σ2

1,σ2
2, . . . ,

1
σ2

1
,

1
σ2

2
, . . .

)
(1.100)

A phase space diagram of coherent and squeezed states is shown on �gure 1.2.

(a) (b)

Figure 1.2: Phase space representation of (a) a coherent state; (b) a coherent

squeezed squeezed on the θ+π/2 quadrature. A vacuum state is obtained

by setting α= 0 in these diagrams.
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1.6.2.4 Entangled states

As it was pointed out, the o�-diagonal terms in the covariance matrix display the correla-

tions between the quadrature, whose origin may be classical or quantum. One of the most

intriguing parts of quantum mechanics, the famous notion of entanglement as �rst described

in [Einstein 35], emerges from quantum correlations. Formally speaking, an entangled state

is a quantum state that cannot be described by the tensor product of density operators of its

sub-ensembles; the state is then called not separable. While this feature is well described in the

discrete variables regime, giving a formal de�nition of it in the continuous variables regime is

a more challenging task. Current research studies a variety of criteria to de�ne entanglement

in this regime, such as inseparability, study of correlations, etc.

Although most of the work in this thesis is of classical nature, entangled states will be of

interest in the next part of the experiment, and a more thorough explanation will be given in

chapter 8.



2 Femtosecond ultrafast optics

(About ultrafast pulse-shaping) “There’s about a million things that can go wrong.”
– Jonathan “Golden Goose” Roslund
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This thesis is all about precise measurements with light in the near infrared in the fem-

tosecond regime and the analysis of its �uctuations. This domain has been growing and matur-

ing for the last forty years and is now incredibly active. It is also very impressive how interdis-

ciplinary this �eld has become, with its wide range of applications in all sorts of research area.

It involves a short time scale which allows one to make “stop-action” measurements of rapid

27
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phenomenon, and very high intensity, enough to strip the electrons from their nuclei, result-

ing in a laser-generated plasma. It also makes extreme nonlinear optics phenomena possible,

where laser-matter interactions are sensitive to the non-instantaneous dynamics of bound mo-

tions of electrons. Although this thesis does not deal with these extreme behavior -attosecond

time scales, XUV and X-Ray frequencies, high harmonics generation...-, ultrafast aspects need

to be treated with care. The aim of this chapter is therefore to give the reader a “crash-course”

in ultrafast optics, since most of the remaining chapters in this manuscript will rely heavily

on the de�nitions that will follow. A more complete description may be found in [Rudolph 06]

and [Weiner 11a].

2.1 Description of pulses of light
In this section, we introduce the notion of an optical frequency comb and give a mathematical

description of its �eld. We then de�ne power-related quantities that are speci�c to ultrashort

pulses of light. We also put forward de�nitions to characterize the temporal and spectral en-

velopes, and end with a Gaussian description of the matter.

2.1.1 Optical frequency combs
In the case where the output spectrum of the laser corresponds to a large number of equally

spaced longitudinal modes, the laser is designated as an optical frequency comb where every

frequency mode is called a tooth of the comb. The process through which such lasers are gen-

erated is called mode-locking; it ensures a �xed phase relationship between each longitudinal

mode of the comb. In this condition, in the temporal domain, it can be shown that the electric

�eld consists of pulses of limited duration, whereas it would vanish if the phases were random.

This mechanism will be outlined in more details in section 2.4.

Due to their very stable structure, frequency combs are tools of reference for metrology and

spectroscopy. Their development led to the Nobel prize of Theodor W. Hänsch and John L.

Hall in 2005.

2.1.1.1 Ideal frequency comb

In the following, we will give a mathematical description for the output of a mode-locked laser.

The frequencies of the longitudinal modes are written as

ωn = nωr (2.1)

where ωr is the free-spectral range of the laser cavity.

Considering only the temporal part, the electric �eld of a single pulse can be written from

(1.18) as the product of a slowly varying envelope and an optical carrier at the frequency ω0:

E(+)
pulse(t)= E0 a(t) e−iw0t

(2.2)



2. FEMTOSECOND ULTRAFAST OPTICS 29

which can be expanded in the Fourier space as previously:

E(+)
pulse(ω)= E0

∫
R

dtp
2π

a(t)ei(ω−ω0)t = a(ω−ω0)≡ a(Ω) (2.3)

The Fourier relation between time and frequency domains (or time-bandwidth product) im-

poses that short pulses have a broad spectrum.

In the spectral domain, assuming an in�nitely narrow homogeneous linewidth for each lon-

gitudinal mode, the spectrum of an optical frequency comb is obtained by summing the con-

tribution of each single pulse:

E(+)(ω)= E(+)
pulse(ω)

∑
n
δ(ω−nωr) (2.4)

which corresponds to the spectrum sketched on �gure 2.8.

In the temporal domain, this becomes

E(+)(t)=
(
E(+)
pulse?∆τ

)
(t) (2.5)

where ? represents the convolution product and ∆τ is the Fourier transform of the Dirac comb

distribution

∑
nδ(ω−ωn):

∆τ =
∑
n
δ(t−nτ) (2.6)

Consequently, the complex �eld in the temporal domain is written as

E(+)(t)=∑
n

a(t−nτ) e−iω0(t−nτ)
(2.7)

This represents a train of pulses where τ = 2π/ωr is the time spacing between subsequent

pulses.

2.1.1.2 Realistic frequency comb

The previous treatment is not entirely realistic since it does not take into account the e�ect

of dispersion in the laser cavity. As we will expand into more details in section 2.2, both the

envelope and the carrier of short pulses of light are changed by the e�ect of dispersion. Disper-

sion causes a di�erence between the phase velocity and the group velocity, therefore leading

to an increasing dephasing between the carrier and the envelope from pulse to pulse
1
. The

di�erence of dephasing between successive pulses is called carrier-envelope phase (CEP):

∆φCE =
(

1
vg

− 1
vφ

)
ω0L (2.8)
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Figure 2.1: Temporal and spectral representation of a frequency comb.

where vφ and vg are respectively the phase and group velocities in the laser cavity, and L is

the length of the laser cavity.

As a result, the complex �eld reads

E(+)(t)=∑
n

a(t−nτ) e−iω0(t−nτ) e−in∆φCE
(2.9)

It is important to point that as opposed to (2.7), the �eld is no longer periodic because of the

CEP. In the spectral domain, this translates to

E(+)(ω)= E(+)
pulse(ω)

∑
n
δ (ω− (nωr +ωCE)) (2.10)

where ωCE is the carrier-envelope o�set (CEO) de�ned by

ωCE =∆φCE
ωr

2π
(2.11)

1
Note that the dispersion that is refered to here is inside the laser cavity, not outside.
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The longitudinal modes of a realistic frequency comb are then written as

ωn = nωr +ωCE (2.12)

The temporal and spectral representation of a frequency comb are shown on �gure 2.1.

In precision measurements, the stabilization of both the repetition rate and the carrier-

envelope o�set are very important. It can be achieved through a variety of ways, for example

by locking the comb on stabilized single-mode lasers [Nicolodi 14]. These quantities also be-

long to the global parameters of a frequency comb and their �uctuations will be analyzed in

more details in the next part of this thesis.

2.1.2 Energy and peak power
This section is a complement to 1.2.5.

As it was suggested, for pulses of light, the detection time T need to be chosen with care as

it allows to de�ne speci�c power-related quantities. It can be useful to consider this detection

time as τ/2 i.e. half the time between subsequent pulses. Hence, computing the energy from

(1.41) yields the energy Wp contained in a pulse:

Wp =
∫
τ/2

P(z, t) dt (2.13)

For a frequency comb with a repetition rate fr, the average detected power is given by:

Pavg =
Wp

Tr
≡Wp × fr (2.14)

which is obviously equal to the energy in a pulse times the number of pulses per second.

Finally, for nonlinear e�ects, a very important characteristic of a pulse is its peak power Ppk,

which is de�ned as the maximum occurring optical power. Since this quantity depends on the

actual pulse shape, giving a mathematical description in the general case is not possible, but it

has an analytical expression for gaussian pulses (c.f. (2.27)).

2.1.3 Moments of the �eld
When working with ultrashort pulses, it is useful to know the temporal and spectral character-

istics of the �eld such as the width ∆ω in the spectral domain and ∆t in the temporal domain.

There are multiple ways of de�ning these quantities, the most widely used being the full width

at half maximum (FWHM). Though convenient because visual, it is not always the best way.

That is for instance the case of pulses with substructures that causes a considerable part of the

energy to lie well outside of the range de�ned by the FWHM. In these cases, it is preferable to

use averaged values derived from the statistical moments of the �eld’s intensity envelope.
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The moments of the �eld can be de�ned for any variable ξ, being spatial, temporal and

spectral. Therefore, for the sake of generality, let us write the �eld envelope as f (ξ). The

moment of order n for the variable ξ with respect to the intensity of the �eld is de�ned as

〈
ξn〉= ∫

R ξ
n | f (ξ)|2 dξ∫

R | f (ξ)|2 dξ
(2.15)

The �rst order moment 〈ξ〉 is the “center of mass” of the intensity distribution, generally chosen

as a reference to give a zero value. As an example, the center of the transverse �eld as de�ned by

(1.28) will be centered on x = 0, and the spectrum is usually centered on the carrier frequency

ω0. This de�nition can become very meaningful experimentally since we seldom work with

perfectly symmetric spectra (and neither with perfectly symmetric pulses, for that matter).

A good criterium for the width in either domain is the standard deviation, de�ned as a

function of the �rst and second order moments:

σξ =
√〈

ξ2
〉−〈ξ〉2

(2.16)

In the temporal domain, when setting the �rst moment as zero, this is equivalent to the root

mean square (RMS). The RMS duration has analytical expressions for well-de�ned envelopes

[Sorokin 00]. The case of gaussian envelopes will be treated in the next section.

When de�ning the center of mass as the reference, the time width of the pulse is simply

written as

σ2
t =

∫
R t2 |a(t)|2 dt∫
R |a(t)|2 dt

(2.17)

Similarly, the bandwidth is de�ned as

σ2
ω =

∫
R+ω2 |a(ω)|2 dω∫
R+ |a(ω)|2 dω

(2.18)

Because of the conjugation relationships between the temporal and the spectral domains, the

uncertainty principle in harmonic analysis [Appel 08] states that

σ2
t ·σ2

ω ≥ 1
4

(2.19)

This inequality is saturated only in the case of gaussian pulses.

2.1.4 Gaussian pulses
Having presented the general characteristics of a pulse, it seems convenient to introduce a

Gaussian temporal envelope u(t) that we can use to do analytical calculations. The choice

made here is indeed purely analytical, since the Gaussian shape is a reasonable approximation

of the structure of the experimental pulses.
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2.1.4.1 Temporal domain

The temporal mode u(t) associated to a Gaussian shape is given by

u(t)= 1
(2π)1/4

1p
∆t

exp
(
− t2

4∆t2

)
≡ Ct exp

(
− t2

4∆t2

)
(2.20)

where ∆t is the second moment and the coe�cient Ct ensures that u(t) satis�es the normal-

ization condition
2

∫
R |u(t)|2 dt = 1.

The FWHM of this distribution is related to the time bandwidth by

∆tFWHM = 2∆t
p

2ln2 (2.21)

Note that with this de�nition of the Gaussian �eld, the RMS width (2.17) and the second mo-

ment are equal

σ2
t =

∫
R

t2 |u(t)|2 dt =∆t2
(2.22)

With other de�nitions that are more common in the ultrafast community, there would be a

factor of 2 between them.

2.1.4.2 Spectral domain

Taking the Fourier transform of (2.20) yields the �eld in the spectral domain:

u(ω)=
p

2∆t
(2π)1/4 exp

(−∆t2ω2)
(2.23)

Computing the second moment then yields

∆ω2 = 1
4∆t2 (2.24)

which allows us to rewrite the spectrum as

u(ω)= 1
(2π)1/4

1p
∆ω

exp
(
− ω2

4∆ω2

)
≡ Cω exp

(
− ω2

4∆ω2

)
(2.25)

This representation is the exact counterpart of equation (2.20) and obeys the same normaliza-

tion conditions. All the quantities from the temporal part may be transposed to the spectral

domain by the substitution ∆t →∆ω.

2
For simplicity, we take the normalization condition (1.31) and consider that T = 1.
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From (2.24), it is clear that the Gaussian case saturates the inequality (2.19). The time-

bandwidth product may also be written in term of the FWHM:

∆tFWHM×∆ωFWHM ≈ 2π×0.441 (2.26)

This metric allows us to de�ne the transform limited pulse, the shortest Gaussian pulse possible

for a given spectral width. The value of the time-bandwidth product for other pulse shapes,

such as hyperbolic secant or lorentzian, can be found in [Sorokin 00].

Finally, when writing the power of a Gaussian pulse according to (1.40), it becomes possible

to write the peak power as

Ppk =
Wpp
2π∆t

' 0.94
Wp

∆tFWHM
≡ 0.94

Pavg

fr ×∆tFWHM
(2.27)

This expression as a function of the average power is convenient since, again, this quantity

cannot be measured using usual electronics.

2.2 The in�uence of dispersion
As introduced in section 1.3, the electric �eld can carry information on both the amplitude

and the phase quadrature. When doing measurement with ultrashort pulses, this information

can be spectrally dependent. We will be particularly interested in the phase quadrature of the

�eld, and therefore, we need to understand the phase variations in both the spectral and the

temporal domains. It is also important to know whether or not a pulse is free of such phase

variations.

2.2.1 Spectral and temporal phases
At the risk of sounding redundant, we write the complex �eld in the temporal domain as

E(+) (t)= E0 a(t) e−iω0t
(2.28)

where a(t) is the �eld envelope, a priori complex. In the spectral domain, relative to the carrier

frequency, we also have

E(+) (Ω)= E0 a(Ω) (2.29)

with Ω = ω−ω0. To add phase variations in either the frequency or time domains, we write

these phases respectively φ(t) and φ(ω) and include them in the envelope as follows:

a(t)= |a(t)| eiψ(t)
(2.30)
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and

a(Ω)= |a(Ω)| eiφ(Ω)
(2.31)

Two particular cases emerge: when ψ(t) is a constant, the pulse is free of phase modulation,

and when φ(ω) is a constant, the pulse is said to be bandwidth limited3
.

When a pulse has a non trivial variation in both ψ(t) and φ(ω), we say it is chirped. The

following section will list the e�ects that a spectral phase can have on the pulse shape.

2.2.2 E�ects on the pulse shape
Let us consider that the spectral phase φ(ω) can be Taylor expanded around the carrier fre-

quency ω0:

φ(ω)'φ(ω0)+ (ω−ω0)
∂φ

∂ω

∣∣∣∣
ω0

+ 1
2

(ω−ω0)2 ∂
2φ

∂ω2

∣∣∣∣
ω0

+ 1
6

(ω−ω0)3 ∂
3φ

∂ω3

∣∣∣∣
ω0

(2.32)

which can be rewritten in a more compact notation as

φ(Ω)'φ0 +Ωφ1 +Ω
2

2
φ2 +Ω

3

6
φ3 (2.33)

The �eld’s spectrum is consequently written as

E(+) (Ω)= E0 |a(Ω)| eiφ(Ω)
(2.34)

It is evident from computing the spectral intensity that the energy is not a�ected by this phase,

nor is the intensity spectrum as observed with a spectrometer. However, such a phase can have

a huge in�uence on the pulse shape. In the next section, we show the e�ect of each term of

the phase expansion on the temporal pulse.

2.2.2.1 Constant phase

In the case of a constant phase φ(Ω)=φ0, there is no change in the pulse shape. The temporal

�eld is directly given by

E(+)(t)= E0 |a(t)| e−i(ω0t−φ0)
(2.35)

A constant spectral phase then results in a simple phase shift of the carrier in the temporal

domain. The real �eld in the temporal domain is written

E(t)= 2Re
{
E(+)(t)

}
= 2E0|a(t)| cos

(
ω0t−φ0

)
(2.36)

The resulting pulse shape is depicted in �gure 2.2 for a wavelength of 795 nm and a temporal

FWHM of 6 fs.

3
Here we stress the fact that a linear phase in either t or ω has the same e�ect on the pulse than a constant

phase... As we will see in 2.2.2, a linear spectral phase shift is equivalent to a simple delay in the time domain, and

a linear temporal phase shift is simply a shift of center frequency. As a result, it does not change this de�nition,

and that is the reason why we kept the carrier e−iω0 t
outside of the envelope in (2.28).
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No delay
-5 fs of phase delay

t (fs)-10 -5 0 5 10

Figure 2.2: Pulse shape of a 6 fs pulse with and without a constant (negative) spectral phase.

2.2.2.2 Linear phase

For a linear spectral phase φ(Ω)=Ωφ1, the complex �eld in the temporal domain is written as

E(+)(t)= E0
∣∣a (

t−φ1
)∣∣ e−iω0t

(2.37)

This results in a global delay in the envelope of the pulse as shown by �gure 2.3. Note that the

carrier of the delayed pulse is not shifted with respect to the phase of the undelayed pulse.

t (fs)-10 -5 0 5 10 15

No delay
10 fs of group delay

Figure 2.3: Pulse shape of a 6 fs pulse with and without a linear spectral phase.

A global delay in both phase and envelope, combining constant and linear spectral phases,

will then result in a shift of the carrier in the delayed pulse.

2.2.2.3 Quadratic phase

A quadratic spectral phase φ(Ω) = Ω2

2 φ2 a�ects both the envelope shape and the carrier fre-

quency, as shown on �gure 2.4. This is also the case for every higher order phase. The temporal
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�eld of a Gaussian pulse with a quadratic spectral phase reads

E(+)(t)= E0α
Cςp
∆t

e−(t/2ς)2 e−iω0t
(2.38)

Here we de�ned the envelope of the �eld as a Gaussian of second moment ς de�ned by

ς=∆t

√
1− i

φ2

2∆t2 (2.39)

Since this quantity is complex, the temporal �eld is not yet written in the form of (2.30).

To do so, we de�ne an e�ective temporal width ∆t′ = |ς| for the chirped pulse, allowing to

decompose the argument of the Gaussian in real and imaginary parts:(
1
2ς

)2
=

(
1

2∆t′

)2
+ i

φ2

8(∆t′)4 (2.40)

where ∆t′ is de�ned as

∆t′ =∆t

√
1+

(
φ2

2∆t2

)2
(2.41)

From equation (2.40), we see that a quadratic phase will have two e�ects on the pulse shape:

• The envelope becomes broader according to (2.41) independently of the sign of φ2. A

useful criterium is the amount of quadratic phase φc for which the pulse’s envelope is

twice bigger than the transform limited one. It reads:

φc = 2
p

3∆t2
(2.42)

All these quantities may of course be put in term of temporal FWHM using (2.21).

No chirp
+20 fs² of quadratic
 phase

t (fs)-10 0 10

Figure 2.4: Pulse shape of a 6 fs pulse with and without a positive quadratic phase.
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• A linear frequency modulation occurs, given by

ψ(t)= φ2

8(∆t′)4 t (2.43)

This phenomenon is often referred to as chirp, as an analogy to acoustic waves. An up-

chirp means that the instantaneous frequency increases with time, whereas a down-chirp

is the contrary.

A pulse will acquire quadratic phase when it propagates through a dispersive medium. Since

both positive and negative chirp induce a broadening of the envelope, the minimum pulse du-

ration can only occur when there is no chirp, that is when there is no variation in instantaneous

frequency and no spectral phase higher than the �rst order in ω.

To compensate a positive quadratic phase acquired through propagation, a pulse may be

compressed down to the Fourier limit by using a negative group velocity dispersive medium.

This is achieved by using either prisms or gratings [Martinez 84], or even by pulse shaping

using a Spatial Light Modulator [Weiner 00].

2.2.2.4 Cubic phase

A cubic phaseφ(Ω)= Ω3

6 φ3 results in a radical change in the temporal envelope, making it non-

Gaussian. The Fourier transform may still be analytically computed according to [McMullen 77].

Using a clever change of variables ξ=Ω+ i∆t2

τ3 , with τ3 =φ3/2, the Fourier transform of the

spectral envelope reduces to

u(t)= Cω

∫
R

dξp
2π

exp
[

i
τ3

3
ξ3 + i

(
∆t4

τ3 − t
)
ξ

]
exp

[
2∆t6

3τ6 − ∆t2

τ3 t
]

e−iωo t
(2.44)

The integral over ξ is known as the Airy integral in the complex plane Ai(t) = ∫
C

dzp
2π i

e
z3
3 −zt

.

Injecting this result, we then obtain:

u(t)= Cω

τ
Ai

(
∆t4/τ3 − t

τ

)
exp

[
∆t2

τ3

(
2∆t4

3τ3 − t
)]

e−iωo t
(2.45)

For τ→ 0, this function converges to the standard gaussian pulse. For non zero values of τ, we

see that the carrier is una�ected, whereas the envelope acquires a complex shape, as shown in

�gure 2.5.

Upon propagating through a strongly dispersive medium, the third order dispersion will

cause a delay of the pulse peak as well as an asymmetric broadening, creating replicas. For

a negative cubic phase, these ripples arrive earlier in time, whereas it is the contrary for a

positive phase. Generally, the cubic dispersion is weaker than the quadratic, so that e�ect

always coincides with the broadening and chirp de�ned in the previous section. This may be

modeled by the substitution ∆t → ζ in (2.45).

Cubic phase can therefore pose very serious problems in ultrafast optics. As was the case

for quadratic phase, it is possible to compensate for it using a compressor or a pulse shaper.
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No cubic phase
30 fs of cubic phase
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Figure 2.5: Envelope of a 6 fs pulse with and without a cubic phase.

2.3 Representations of the pulse
From the previous section, it is clear that a full representation of the pulsed �eld needs to in-

clude both the spectral and the temporal phases. Of course, once retrieved, one could plot the

spectral and temporal phases of the pulse, but these can be hard to read. Although it does con-

tain all the required information, it is not straightforward to know the temporal distribution of

each frequency of the �eld. For example, temporal representations of the pulse in the previous

section do not give easily away the arrival time of each color.

2.3.1 Time-frequency distributions
In many other �elds such as quantum mechanics or acoustics, other representations were in-

troduced to complement standard Fourier analysis. These distributions of time-varying spectra

are called spectrograms (or equivalently sonograms). The concept has been widely used for the

analysis of time-varying spectra

Over the years, a great number of distributions have been introduced and investigated, and

it is still an evolving �eld. Here we only expose the general principle that lies behind time-

frequency distributions since it also hints as to how to access the pulse shape experimentally.

It also provides a good visual witness of the pulse shape and allows one to understand rapidly

the structure that the pulse acquired during its propagation. For a review on all the di�erent

time-frequency distributions, see [Cohen 89].

2.3.1.1 Wigner distribution

The whole �eld of time-frequency distribution has been built upon the study of the Wigner

function. First introduced by Wigner and applied to quantum mechanics, the Wigner function
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can be applied to any set of conjugated variables, for example, the wave-vector k and the

position x, or the angular frequency ω and the time t. It has found some application in ultrafast

optics for the description of pulses [Walmsley 96], but its usage has become limited since it is

cumbersome to relate to the physical spectrum. Its mathematical de�nition is generally given

by

W (t,ω)=
∫
R

dτ
2π

E(−)
(
t− τ

2

)
e−iωτE(+)

(
t+ τ

2

)
(2.46)

=
∫
R

dϑ
2π

E(−)
(
ω− ϑ

2

)
e−iϑt E(+)

(
ω+ ϑ

2

)
(2.47)

This de�nition is the counterpart of the quantum version.

Although this does provide a two-dimensional representation of the �eld, the Wigner func-

tion can prove hard to use and interpret. Because the distribution at a certain time usually

re�ects properties of the signal at other times, it is highly “non-local” in nature. Therefore, if

there is noise on the signal for a small �nite time, that noise will appear at other times. This

means also that, at a certain point in time, the function can be non zero even when the signal

is null. This noisy behavior is one of the main drawbacks of the Wigner distribution; it can be

cleaned by smoothing, but this operation inevitably destroys some desirable structures.

2.3.1.2 Short-time Fourier Transform

A more widespread way of obtaining a spectrogram with better reliability is the so-called short-

time Fourier transform. The concept is simple to understand and powerful. If one wants to

analyze the behavior of a signal at a particular time, then one simply has to take a portion of

the signal centered around that time, calculate its energy spectrum, and do this for every time.

Formally, let us consider the complex temporal envelope a(t) of the �eld that we want to

resolve and multiply it by a gating function h(t− τ). The spectrogram is then obtained by

taking the energy of the Fourier transform of the signal:

S(ω, t)=
∣∣∣∣∫
R

dτp
2π

a(τ)h(τ− t) e−iωτ
∣∣∣∣2 (2.48)

which, for speci�c �lter function h, is the short-time Fourier transform (STFT) of the signal.

Alternatively
4
, we may de�ne S by taking the spectral envelope a(ω) and the Fourier transform

of the �lter h(ω) :

S(ω, t)=
∣∣∣∣∫
R

dϑp
2π

a(ϑ)h(ϑ−ω) eiϑt
∣∣∣∣2 (2.49)

4
This de�nition is sometimes called a sonogram.
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The two de�nitions are equivalent. From an experimental point of view, there are many tech-

niques that allows one to measure spectrograms and therefore to resolve both the amplitude

and the phase of the pulse.

One needs to choose the �lter function h with care. Once again, because of the uncertainty

principle, the narrower the function, the better the resolution in a speci�c domain, but it cannot

be arbitrarily narrow. In that case, any variation in either the spectral or the temporal phase

will be much smaller than the spectrum of S and will then be di�cult to resolve. Conversely,

if the �lter is too broad, the spectrogram will be identical to the original power spectrum, and

no information over the phase can be gained. There is therefore a necessary tradeo� between

time and resolution. In general, one should select a gate function whose duration is on the

order of the inverse bandwidth of the pulse to be characterized. In other words, gating the

pulse by its transform-limited version is a good choice.

2.3.2 Some examples
In this short section, we take some of the spectral phases that were investigated in section

2.2.2 and apply the STFT method to compute the spectrogram. We chose the gate function to

be the transform limited version of the chirped pulse. We again restrict ourselves to the study

of Gaussian envelopes.

The spectrograms shown on �gure 2.6 represent three di�erent cases. The �rst is the transform-

limited pulse which has no chirp, but it can have either a constant or a linear spectral phase
5
.

The second is a pulse with a positive quadratic phase, it is said to be linearly chirped. The third

and last pulse has some cubic phase.
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Figure 2.6: Spectrogram of three di�erent pulse shapes. From left to right: (a) transform

limited 20 fs pulse, (b) linear chirp (i.e quadratic phase), (c) cubic phase.

From these representations, the temporal distribution of each color
6

is more evident. It is

5
Naturally, a linear spectral phase would translate the spectrogram along the time axis.

6
Note that the term color denotes here the spectrum of the electromagnetic �eld, not the colors used to rep-

resent the spectrograms in �gure 2.6 !
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very easy to notice that a positive quadratic phase will make the lower frequency part (i.e. the

red wavelengths) to arrive earlier in time. In the cubic case, the colors propagate together, but

the shape of the pulse is no longer gaussian as it was stressed earlier. The center of mass of

the pulse is also noticeably shifted.

2.3.3 Experimental realizations
To conclude this chapter, we shall say a few words on how to experimentally retrieve the pulse

shape. See [Trebino 02] for a much more complete list.

Knowing the exact structure of a pulse in both amplitude and phase can be very important

for a lot of applications. Every non-linear process is highly dependent on the phase of the pulse,

and the best e�ciency is achieved when the pulse is transform-limited (c.f. section 8.3.2). In

this situation, it is vital to know the absolute spectral (or temporal) phase.

There are no linear e�ects that can resolve the duration of a pulse or its phase in an absolute

way. However, intensity correlation measurements will give information on the width of the

pulse. This is realized by gating the pulse by itself within a χ(2)
medium and measuring the in-

tensity of its second harmonic. The width of the resulting autocorrelation trace is proportional

to the e�ective time-bandwidth of the pulse. Although it does not give the phase distribution,

it is a simple technique that allows to infer whether or not a pulse is chirped with respect to

its theoretical limit.

To access the phase pro�le, we usually resort to a technique called Frequency-Resolved Op-

tical Grating (FROG) which gates the pulse to itself. Mathematically, what is measured at the

output is very similar to (2.48). There exists a wide variety of FROG techniques that each o�er

some advantages and drawbacks. It is usually a technique similar to auto-correlation except

that we measure the spectrum instead of the intensity. This allows to retrieve the absolute

spectral and temporal phase of the pulse.

When the time-frequency distribution of the pulse is known, one can use it as a reference

to measure the phase pro�le of another source using simpler techniques. For example, by

beating an unknown pulse with a reference in an interferometer, in the spectral domain, the

interference pattern allows one to retrieve the relative spectral phase between the two (see

section 3.1.3.4). Knowing the phase of the reference, it is therefore straightforward to plot the

time-frequency distribution of the unknown pulse. This method can also be used to directly

retrieve the spectrogram of the pulse by the xFROG procedure [Trebino 02].

2.4 Generation of pulses of light
In part III, we shall dive in more details into the noise characteristics of a laser source and we

will need a decent knowledge on how the light of a femtosecond oscillator is generated. The

aim of this section is to provide a description centered mainly on the type of lasers that have
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been used during this PhD (solid-state Titanium Sapphire laser, passive Kerr-lensing mode-

locking), and does not pretend to review all of the laser theory.

2.4.1 Steady-state laser cavity
For our purposes, we consider laser sources that are made of a linear Fabry-Pérot cavity with

a gain medium, as depicted by �gure 2.7. Light passes through the gain medium twice per

round-trip, and the electric �eld is periodic on this length. To achieve optical gain, a population

inversion must occur in the gain medium. This corresponds to the situation where the number

of electrons in an excited state exceeds the number of electrons in a lower level. This is usually

achieved by optical pumping, where an external light source -e.g. a laser diode- is used to

promote the electrons in an excited state.

Gain medium
HR OC

Figure 2.7: Linear laser cavity. HR: High Re�ectivity ; OC: Output Coupler.

A steady-state is achieved if the two following conditions are ful�lled:

• The gain condition states that the round-trip gain balances exactly the round-trip losses.

• The phase condition allows only certain longitudinal modes to resonate inside the cavity.

Their angular frequencies must satisfy

ωm = 2πm
c
L

(2.50)

with m ∈ N and L is the total path traveled by the light in the cavity (in the case of a linear

cavity, this distance is twice the cavity length). The spacing between each longitudinal

mode, or free spectral range, is given by ωFSR = c/L. It also corresponds to the laser

repetition rate.

When the laser cavity is set such that the gain exceed losses only for a single longitudi-

nal mode, the regime is called single mode. This results in the well-known monochromatic

properties of lasers.

A basic laser operation is sketched schematically on �gure 2.8 in the spectral domain. Laser

oscillation happens only for modes where the gain lies above the loss line. In this broadband

situation, multiple longitudinal modes satisfy the lasing conditions so that several output fre-

quencies appear simultaneously. This regime is therefore called multimode.
This picture is a bit naive since in practice, the situation is a bit more complicated. Indeed,

the gain condition requires that the gain exactly equals rather than exceeds the loss. This
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Figure 2.8: Sketch of the conditions for multimode lasing.

situation depends only on the properties of the laser medium and the pump level, and the level

at which gain equal losses is called threshold. At this level, only weak light is emitted by the

laser. To produce signi�cant laser intensity, weak spontaneous emission needs to build up in

the gain medium, and the gain must therefore exceed the loss.

However, above threshold, the intracavity �eld will extract more power that was stored by

the pump in the gain medium and a saturation phenomenon occurs. As photons are ampli�ed

in the laser cavity by the gain medium through stimulated emission, electrons in the excited

state are stimulated back to their low energy state. The gain is consequently reduced, and the

actual gain, known as saturated gain, depends on the properties of the laser medium, the pump

level and also the intracavity laser intensity. Thus, pump power above the threshold value is

converted into stimulated emission
7

as laser intensity will build up just enough to maintain

the saturated gain at exactly the loss level. On �gure 2.8, we assumed that the gain medium

is broadened homogenously such that the saturated gain has the same spectral shape as the

minimum gain required to achieve threshold.

This representation is however convenient, as to achieve short-pulse generation, a large

number of modes need to oscillate simultaneously. As it was pointed in section 2.1.1, each

of these longitudinal modes needs to have a �xed phase relationships in order to generate a

frequency comb. This is achieved through the process of mode-locking.

2.4.2 Mode-locked lasers
To obtain a mode-locked laser generating ultrashort pulses, pulses need to form within the

laser cavity using either active or passive elements. One also needs to take into account a

number of di�erent processes that a�ect the pulse as it propagates inside the cavity.

7
This picture is similar to saturation phenomenon of electronic ampli�ers; full gain is only possible for input

signals below a certain voltage level, whereas higher input level will induce clipping of the output.
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2.4.2.1 General principles

The mechanism of mode-locking is enabled when the gain is higher for the pulsed regime than

for the continuous wave (CW) regime. This mechanism can either be an active element or be

passively triggered by saturable absorption. Historically, active mode-locking was the �rst one

to be demonstrated. Currently, passive mode-locking is widely used since it yields the shortest

pulses through Kerr-lens mode-locking [Morgner 99]. The process of mode-locking is a com-

plicated one: it involves a lot of di�erent processes simultaneously, and describing its dynamics

requires an elaborate treatment. A thorough description can be found in [Weiner 11a]. In the

following, we brie�y review the di�erent key points that are required to achieve pulsed light

generation.

Gain and bandwidth. As for single mode regime, both gain and linear loss are needed

to generate short pulses, but their bandwidth are then important. According to the time-

bandwidth product (2.19), shorter pulses have broader bandwidth and the laser needs to be set

accordingly. Bandwidth limitation arises from a �ltering e�ect, due to wavelength-dependent

loss elements or from the �nite bandwidth of the gain medium. Therefore, one has to maximize

the bandwidth of the laser to achieve the shortest pulses generation.

Modulations. It is straightforward to see regularly spaced pulses of light as a CW wave

whose amplitude is modulated at the repetition rate frequency. When this modulation happens

inside the laser cavity, it introduces losses that are minimized when laser emission occurs in the

form of short pulses that are synced with the modulation frequency. At each pass of the cavity,

pulses get shortened up to a certain limit, and the pulsed regime becomes favorable. That is

why modulations play a key role in achieving and maintaining mode-locked operation
8
.

Activemodulations. This refers to externally driven modulators that modulate either the

amplitude or the phase of the circulating pulse. The modulation frequency is usually chosen as

the cavity round-trip time, and it needs to be set very precisely. This mode-locking technique,

though quite simple, is not very robust since it is highly dependent on the stability of the cavity

length. Moreover, the response of the modulator becomes ine�ective for very short pulses and

this limits the attainable pulse width.

Passive modulations. Conversely, this cavity loss modulation may be a function of the

pulse intensity . As a consequence, the loss changes dynamically in response to the pulse,

which itself is modulated in return. It is a nonlinear process that leads to a self-induced modu-

lation with a period automatically synced to the cavity round-trip time. When the modulation

happens in amplitude, we talk of self-amplitude modulation (SAM). These can be induced by

adding a saturable loss element in the cavity, or saturable absorber. The phase can also vary

dynamically with the time-dependent pulse intensity, leading to a self-phase modulation (SPM),

occurring also at the pulse round-trip time. This process usually has a very fast response, such

8
Note that since a Fabry-Perot cavity couples amplitude and phase, the modulations needed to achieve mode-

locking can also be in phase.
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that only the instantaneous intensity matters in the nonlinear interaction. As a result, the

pulse-shortening action can remain e�ective even for very short pulses. This mode-locking

mechanism is therefore classi�ed as passive, since the light itself initiates its own modulations

through nonlinearities.

Dispersion. Finally, as we have seen in section 2.2.2, dispersion (due especially to quadratic

and cubic phases) leads to serious consequences on the pulse shape and can therefore hinder

short-pulse generation. In the laser cavity, dispersion comes from the gain medium, from the

dielectric coating of the mirrors, or even simply from air. As the pulse gets broader after each

round-trip, the temporal overlap in the cavity becomes weaker and this limits the e�ciency

of the lasing process. More importantly, this degrades the peak power and leads to weaker

nonlinear e�ects. To minimize intracavity dispersion, a popular scheme for this is to use a

shorter, more highly doped gain crystal. This minimizes the amount of dispersion acquired

through the medium, but it does not compensate for other elements. Best results are then

obtained by using a prism based compressor which material is carefully chosen, or by using

specially designed chirped mirrors. The latter o�er a very high and broadband re�ectivity with

the advantage of tailoring even better the phase they compensate and are usually prefered for

few-cycles pulse generation.

To summarize, when a laser cavity is built with a broadband gain and a su�cient bandwidth,

generation of short pulses can be achieved by modulating the intracavity �eld and a careful

management of dispersion. We will now interest ourselves in one particular type of passive

mode-locking, the solid-state Kerr mode-locking, as it might explain the correlations in the

dynamics of amplitude and phase of the lasers that we investigate (cf. chapter 7).

2.4.2.2 Kerr-lens mode-locking

Nowadays, the most popular mode-locking technique with solid-states laser is called Kerr-lens
mode-locking (KLM). KLM lasers based on titanium:sapphire (Ti:S) are particularly widespread.

It consists of using the nonlinear response of the gain medium in which the nonlinear index

leads to self-focusing in the laser cavity. This provides the modulation necessary to mode-lock

the system. Note that this e�ect is an interplay between spatial and temporal properties of the

�eld.

More precisely, the optical Kerr e�ect originates from theχ(3)
nonlinearity of the gain medium.

The index of refraction of the medium depends on the intensity of the laser pulse. It is written

as

n(r, t)= n0 +n2 I(r, t) (2.51)

where I(r, t) is the pulse intensity de�ned in (1.38). The pulse induces a change in the refractive

index
9

of the material that is proportional to the instantaneous intensity. The response time of

9
In most laser materials, n2 > 0 so the index actually increases with pulse power.
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this nonlinear e�ect is not known exactly but is usually estimated to be 1 to 2 fs which can be

considered as instantaneous.

As a result, after propagating in such a medium of length L, the �eld will acquire a nonlinear

phase shift, given by

∆φ(r, t)= ω

c
n2I(r, t)L (2.52)

When approaching a pulsed regime, this e�ect induces both a fast SAM and a fast SPM, which

may therefore be used as a mode-locking scheme. This process is highly dependent on the

spatial pro�le of the lasing �eld. Once initiated, mode-locked operation is then self-sustaining.

Originally, the lasers that use this e�ect were described simply as “self-mode-locked” since

the mode-locking mechanism was not identi�ed at �rst. Afterwards, it was determined that

a nonlinear lensing associated to the gain medium provides the fast amplitude modulation

required for mode-locking. As pointed out earlier, because the response of the medium is

almost instantaneous, it is by this process that most of today’s Ti:Sa lasers emit pulses of light

in the sub 10-fs range.

From (2.52), it is clear that the KLM method is highly dependent on the temporal pro�le

(i.e peak power) but also on the spatial pro�le of the lasing �eld. Indeed, when assuming

a Gaussian pro�le such as (1.22), the intensity (hence the nonlinear e�ects) induced in the

gain medium depends upon the radial coordinate. The change of index has therefore a radial

dependency (and so does the phase) which is equivalent to a self-induced lens for the lasing

mode. Under di�erent conditions, this e�ect can reduce the loss or increase the gain, thus

acting as a fast saturable absorber and resulting in self-amplitude modulation. When the loss

is reduced, mode-locking becomes possible.

To reduce the loss using the spatial mode structure, a number of options are available. For ex-

ample, it has been found quite remarkably that when a Ti:Sa laser cavity is slightly misaligned

for a mixture of fundamental and higher order TEM modes to resonate, mode-locking could be

induced by an external perturbation, such as tapping one of the cavity mirrors. This can be ex-

plained by the fact that a higher order mode has a wider spread and gets clipped somewhere in

the cavity
10

. Self-lensing then improves the mode quality or decreases the beam size which in

turn reduces the loss. There are also possibilities to accentuate and control the beam clipping

e�ects by adding a slit close to the end mirror. This approach is called hard-aperture KLM and

corresponds to one type of laser source that was used in this thesis (see 7.2.3). Finally, the gain

can be increased since self-focusing may a�ect the overlap of the lasing mode with the spatial

pro�le of the pump laser beam in the gain medium. The situation is in the end equivalent to

the latter, and is called soft-aperture KLM. Such a laser is the other source used in this work

(see 3.1.1).

10
This is one of the reasons that explain the poor spatial pro�le at the output of a mode-locked laser.
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What should be retained from this section is that the process by which ultra-short pulses of

light are generated is a complicated one. It is a delicate interplay between non-linear e�ects

(Kerr e�ect, self-amplitude and self-phase modulation, self-focussing, in�uence of the pump

power...), spectral phase (negative group delay dispersion) and spatial characteristics of both

laser and pump �eld. The full description of these e�ects is well beyond the scope of this

thesis and we only need to remember that the dynamics of a laser �eld are obviously highly

dependent upon them.



3 Revealing the multimode structure

(About doing experiments in the late evening) “It’s not worth it; you think you have a
good idea, but you just end up doing stupid things.”

– Pu “Pupu” Jian
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Having introduced the modal description of the �eld generated by an ultrafast frequency

comb, we now present the experimental techniques to actually access this structure. This mul-

timode description may be used to retrieve information encoded in the �eld.

Accessing experimentally these frequency-dependent quadratures have two prerequisites:

49
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• Being able to measure the amplitude and the phase of the �eld. In practice, as it was

stressed in equation (1.48), one may only measure the amplitude of the �eld. However,

the phase quadrature information are experimentally transferred to an amplitude mea-

surement. This is achieved by interferometric measurement called homodyne detection,

a very widespread scheme in optics, and particularly in quantum optics[Adesso 14]. In

this scheme, one �eld, called local oscillator, is used as a reference, while the other �eld,

called signal, carries the information to be measured. One can then access the phase

di�erence between the two �elds.

• Resolving the temporal or the spectral structure of the �eld. The �rst solution is to dis-

perse the spectrum on a di�raction grating and perform homodyne detection on a given

spectral slice. This spectrally-resolved homodyne detection, called multipixel homodyne
detection (MHD), is a very powerful and versatile tool to measure the multimode structure

of the �eld. We present the working principle of the method in section 3.3.2. Another

possibility is to physically change the spectral amplitude and phase of a �eld and perform

a standard homodyne detection. This has been originally achieved in the group by shap-

ing the spectrum of the local oscillator using a pulse shaper. In the homodyne detection,

this allows selection of which spectral part of the �eld will interfere. Since already done

in the past (see [Jian 14]), we only introduce the working principle of pulse-shaping in

section 3.1.3, and we add a few details in appendix B. Although measuring from a spec-

tral point of view seems easier, accessing it from the temporal side also yields interesting

results. We call this last method temporally-resolved homodyne detection, and introduce

it in section 3.3.3.

In this section, we focus on presenting the building blocks of the experiment that allow to

extract this structure.

3.1 General experimental scheme
In this section, we present the general layout of the experiment. Subparts of it are built di�er-

ently depending on the experiment but it can be summarized as shown on �gure 3.1.

The beam generated by the femtosecond oscillator is split into the two arms of a Mach-

Zehdner interferometer. 90% of the power is sent in the local oscillator (LO) arm, and the

remaining 10% are sent into the signal beam. On the LO path, a pulse-shaper is introduced to

address both the amplitude and the phase of the �eld.

On the signal path, we consider that, at some point, a spectrally-dependent perturbation

occurs. It can be purposely introduced by an amplitude or phase modulator in the form of a

modulation at a given frequency. This is what we opted for in parameter estimation, where

we voluntarily modulate a physical parameter in order to measure it through a multimode

description of the phenomenon. We develop this experiment in part II.
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Figure 3.1: General experimental scheme, BS: beam-splitter.

However, this modulation of the �eld does not need to be purposely introduced. Indeed,

any source of noise (being mechanical, acoustical, thermal or technical in nature) can be rep-

resented as a modulation of the �eld on a range of frequencies (or equivalently, integration

time). It is very natural to understand that at very high detection frequency (i.e. at a very short

time scale), there can be no source of noise other that the quantum nature of light. Conversely,

on a longer observation time (i.e. at low frequencies), in�uence from the surrounding environ-

ment becomes more noticeable. In part III, we use a similar scheme where one beam shows

much lower noise �gures (such that it can be taken as a reference) to actually extract the noise

information of the other beam.

The two beams are then combined in a homodyne detection scheme and the resulting �eld

is consequently measured.

We shall now present the di�erent subparts of the experiment.

3.1.1 Laser source
The laser source is a Titanium-Sapphire based femtosecond oscillator from the Femtolasers

company. It delivers pulses around 22 fs FWHM at a central wavelength of 795 nm for a rep-

etition rate of 156 MHz. The average power is on the order of 1.1 W, therefore the energy

contained in a pulse is about 7 nJ and the peak power is around 0.2 MW. The distance between

subsequent pulses is then 1.92 m, i.e. 6 ns in the time domain. The spectrum is well approxi-

mated by a Gaussian of 42 nm width FWHM. The geometry of the laser cavity is depicted on

�gure 3.2.

The gain medium is pumped by a Verdi V10 laser from Coherent. An acousto-optic mod-

ulator (AOM) is used to attenuate the pump power to around 5 W and can also be utilized

to lock the CEO frequency of the comb [Helbing 02]. As the injection of the pump drifts on

hours-time-scale, a quadrant detector is used on a leakage to detect the pointing drift, and a

mirror mounted on piezo-electric actuators is used to lock the beam’s position. The stability

range of the cavity is controlled by changing the length of the short arm. The mode-locking

mechanism is a soft-aperture KLM (see section 2.4.2.2). Intra-cavity dispersion compensation
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Figure 3.2: Laser cavity. M1 and M5 are curved mirrors, the other mirrors in the short and

long arms are chirped. M3 is on a translation stage to �ne-tune the stability range. OC: output

coupler, W: wedge to adjust the CEP, ECDC: extra-cavity dispersion compensation to compress

the pulse to the transform limit.

is achieved by chirped mirrors. At the output of the laser, the pulses are compressed to be

transform-limited using an extra set of chirped mirrors.

Because this laser cavity is built using very short mounts and small optics, it is a very sta-

ble oscillator with good noise �gures. It can remain modelocked over multiple days of op-

eration as long as the environnement does not show abrupt variations. As it is usually the

case with solide-state laser cavities, the main source of large time scale perturbation are ther-

mal. A thorough analysis of the noise characteristics of this laser source may be found in

[Schmeissner 14a].

This is not the only femtosecond source that was used in this thesis. In part III, we actually

developed most of the experimental frame around another system that delivers longer pulses.

The working principle of the laser cavity is however very similar to the one presented here.

3.1.2 Interferometric photodetection
Photodetection is a straightforward way to measure the �eld’s intensity in optics. Since a

standard detector integrates the intensity over a time much larger than the optical period, the

information about the phase is then lost. To access the phase of the �eld, we make use of

interferometric measurements. The beating of the two �eld results in an interference pattern

which contains information on the phase di�erence between the two �elds.

Consider the scheme depicted in �gure 3.3. Two �elds are mixed on a 50−50 beamsplitter

(BS). The �rst one, called signal �eld, is the �eld to be characterized. The second one, called

local oscillator, serves as a reference. This denomination comes from the homodyne detection

scheme that will be outlined in section 3.1.2, and we chose to keep this notation to describe the

principle of interferometric measurements.
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Figure 3.3: General homodyne detection scheme where two balanced photodiodes are used

to detect the signal. The di�erence of the two photocurrent is subsequently taken to yield the

homodyning signal.

The total �eld after the beamsplitter (that we consider a �xed longitudinal coordinate z, such

that we may drop the z dependency) reads

E(+)
tot(x, t)= E(+)

s (x, t)±E(+)
LO(x, t)

p
2

(3.1)

where the ± sign depends on which output port of the beamsplitter is considered. Computing

the intensity according to (1.38) yields:

I tot (x, t)= Is(x, t)
2

+ ILO(x, t)
2

±2ncε0 Re
{
E(−)

s (x, t)E(+)
LO(x, t)

}
(3.2)

A standard square-law photodetector integrates the intensity over the detector size S and on a

given integration time T . The e�ciency of the photon-to-electron conversion can be modeled

by the responsivity R (in A/W) of the photodiode
1
. The retrieved photocurrent I is then

written as

I (t)=R

∫
S

d2ρ

∫ t+T

t
dt′ I(x, t′)≡R P(t) (3.3)

where P(t) is the detected power of the electric �eld.

The total photocurrent at one output of the beamsplitter is thus written as

Itot(t)= Is

2
(t)+ ILO

2
(t)±R

~ω0

ST
Re

{∫
S

d2ρ

∫ t+T

t
dt′ a∗

s (x, t′)aLO(x, t′)
}

(3.4)

1
From (3.3), the responsivity R is de�ned by R = I

P . By writing both the photocurrent and the energy as

containing respectively n electrons and N photons, the responsivity is de�ned by R = η q
~ω0

. This introduces the

quantum e�ciency η = n
N of the detector with 0 ≥ η ≥ 1, a parameter that is more commonly referred to in the

�eld of quantum optics.
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where we injected the complex �eld expression and simpli�ed some constant factors. Here,

the envelopes a contain the phase of each �eld.

As we have seen in section 2.2.1, it seems more convenient to consider spectral phases rather

than temporal phases, since the relation between the two is not always trivial. However, the

concept of photodetection is more naturally put in the time domain since the signal is inte-

grated over a �nite time. To switch to the spectral domain, we inject the Fourier transform of

a(x, t) into (3.4). The temporal integral then writes as∫ t+T

t
dt′

Ï
R2

dΩp
2π

dΩ′
p

2π
a∗

s (Ω)aLO(Ω′) ei(Ω−Ω′)t′
(3.5)

Since the bounds of the temporal integrals are not in�nity, we need to apply a convenient

approximation. We integrate over a time T a �eld whose spectral width is on the order of ∆ω.

In the scope of this thesis where we do not require to resolve the pulsed regime, the detection

time is on the order of the microsecond. For a laser source such as the one described in 3.1.1,

the time-bandwidth product (2.24) implies that 20 fs pulses have a 50 THz bandwidth. It means

that ∆w×T À 1 is valid over a very wide range of detection times T . Under this condition,

we can consider the bounds of this integral as being in�nite, allowing to consider the temporal

integral as δ
(
Ω−Ω′)2

.

Thus the photocurrent (3.4) is equivalently written as

Itot = Is

2
+ ILO

2
±R

~ω0

ST
Re

{∫
S

d2ρ

∫
R

dΩa∗
s (x,Ω)aLO(x,Ω)

}
(3.6)

This expression still indicates that the measurement is taken over a �nite detection time T .

The two �rst terms in this equation contain only information about the energy in each �eld.

To isolate the third term, we take the di�erence of the photocurrents at both outputs of the

beamsplitter:

I− = 2R
~ω0

ST
Re


∫
S

d2ρ

∫
R

dΩa∗
s (x,Ω)aLO(x,Ω)

 (3.7)

The signal that is measured is then proportional to the cross-correlation between the two �elds,

which is necessarily phase-dependent. It is referred to as the homodyne signal and will be at

the center of most experiments done in this thesis. A few relevant comments on this signal:

• This assumes that the beamsplitter is balanced, i.e. that the detected photocurrents asso-

ciated to each �eld are equal on both detectors. It also involves that both detectors have

the same responsivity R.

2
This approximation also allows to link the normalization condition (1.31) for spectral and temporal modes:∫

R dΩu∗(Ω)u(Ω)= ∫ t+T
t dt′ u∗(t′)u(t′)= T
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• It is integrated over the full optical spectrum.

• Whereas the detection of a single beam would only yield the optical power, this inter-

ferometric scheme is sensitive to the phase of the �eld.

To further simplify the expression of the homodyne signal, let us write the signal �eld en-

velope as as(x,Ω) = αs ws(x,Ω) where the amplitude αs is complex. We also consider the

spatio-temporal mode is not coupled in space and time: w(x, t) ≡ g(x)u(Ω). Concerning the

local oscillator �eld, in analogy to the quantum treatment, we write its complex amplitude

as αLO = √
NLO eiφ0

. This notation allows to set the phase reference in this interferometric

measurement. Finally, we choose to normalize every photocurrents by R~ω0, and we keep the

same notation I− for the normalized photocurrent.

Hence, the homodyne signal is written as

I− = 2
√

NLO Re
{
α∗

s Γc eiφ0
}

(3.8)

where we introduced the homodyne overlap integral Γc. The overlap integral, also called co-
herence of the �eld, is factorized as follows:

Γc =
 1

S

∫
S

d2ρ gs(x)∗gLO(x)

 ×
 1

T

∫
R

dΩu∗
s (Ω)uLO(Ω)

≡ γρ×γΩ (3.9)

The spatial overlap integral γρ denotes the spatial mode-matching between the two beams.

Ideally, the two beams need to have the same transverse pro�le on the beamsplitter. In that

case, this factor is equal to unity.

The γΩ integral contains a fair amount of information. It is quite similar to the spatial inte-

gral since it de�nes the spectral overlap between the two �elds. To maximize it, one need to

match both the spectral phases and the envelope. In the temporal domain, in analogy to the

spatial case, this corresponds to the situation where both the envelopes and carriers of the two

pulses overlap. This may be achieved through a variety of means, but the most e�cient way

to ensure a perfect temporal overlap is pulse shaping. We will develop this method in section

3.1.3.

Consider that we perfectly matched the two �elds both spatially and spectrally. The coher-

ence of the �eld is then unity. Hence, this interferometric measurement retrieves the signal

I− = 2
√

NLO Re
{
α∗

s eiφ0
}

(3.10)

Having set the local oscillator as the �eld of reference
3
, this allows to extract information on

the amplitude and the phase of the signal �eld. Note that this signal is also ampli�ed by the

3
The phase reference φ0 can be de�ned so that α∗

s eiφ0
is real.
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number of photons in the LO �eld. When this detection is operated in a con�guration where

the LO beam is stronger that the signal, this scheme is called a homodyne detection, that we

expand in more details in section 3.3.

In this work, we look at �uctuations of the global mode u(Ω) which in the general case

become accessible through Γc. In section 3.2.1, we give the example of modulating the signal

�eld in either amplitude and phase, and apply this experimental scheme to retrieve information

on the modulation.

In the following section, we present how the spectral overlap between the two �elds can be

experimentally optimized.

3.1.3 Pulse shaping
For the majority of applications in ultrafast optics, the necessity to carefully control the pulse

shape is of great importance. The development of pulse shaping techniques has therefore been

closely related to the advancements in ultrafast technologies. These techniques are comple-

mentary to ultrashort pulse generation and characterization methods. Their applications in-

clude ampli�ed pulse compression, dispersion compensation for �ber optics communications,

coherent control, spectroscopy and nonlinear microscopy, to name a few.

In this section, we present brie�y the pulse shaping techniques that were used during this

thesis and their purpose. More information on pulse shaping techniques can be found in

[Weiner 95, Weiner 11b].

3.1.3.1 Programmable mask pulse shaper

For our applications, we chose to build a pulse shaper by using spatial light modulation (SLM)

in a 4− f con�guration, as depicted in �gure 3.4. By di�racting the spectrum using di�raction

gratings, we are able to address both the amplitude and the phase of each part of the spectrum.

The resolution is limited by the one of the masks of the SLM. A more detailed description of

the pulse shaper can be found in [Jian 14], and explanations on the alignment procedure in

[Monmayrant 05] (although the chosen geometry di�ers). This pulse shaper was graciously

lent to us by Béatrice Chatel.

The arrays, produced by the Jenoptik company, are composed of 640 pixels of nematic liquid

crystals, comprised between two glass substrates. Transparent electrodes are deposited on the

substrate as to control the voltage on each pixel. The total size of the mask is 64 × 10 mm. When

applying a voltage between two electrodes, one can change the refractive index in the liquid

crystal, and the array then acts as a phase mask. By combining two arrays with orthogonal

polarizations and a polarizer at the output, it is possible to address both the amplitude and the

phase of each “pixel” of the �eld.

This shaper has however some drawbacks. Being more than 10 years old, the delay between

sending a command and the actual response of the crystal is on the order of 1 second, which is
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Figure 3.4: Schematic of a pulse-shaper in a 4-f con�guration. [Figure by Jonathan Roslund]

too long for complicated coherent control scheme or optimization procedure using evolution-

ary algorithm [Roslund 10]. It is also about 50 cm high, making it cumbersome to work with,

whereas most recent pulse shapers can be as small as 10 cm. However, the use of a large SLM

is vital when shaping short pulses; the spectrum being wide, in order to obtain a good reso-

lution, one needs very di�ractive gratings, therefore leading to short distances in the optical

apparatus. Short distances are hard to work with when building a pulse shaper, since it will

inevitably lead to a number of problems, such as achromatism and spatial chirp. Therefore, we

settled for a large mask that allowed for a more comfortable geometry in its design.

3.1.3.2 Pulse-shaping application to the experiment

While pulse shaping can be a very powerful tool to optimize light-matter interaction (for ex-

ample, optimizing the temporal phase to maximize the e�ciency in a non-linear process), our

applications do not require a transform-limited pulse. Indeed, since we are dealing with linear

interferometry, any common phase in each arm of the interferometer cancels out, and we need

only to concern ourselves about the relative phase di�erence.

From equation (3.8) and (3.9), we set a perfect spatial overlap between the two �elds (i.e. γρ =
1). We also decompose the envelopes as amplitude and phase a(Ω)= |a(Ω)| eiφ(Ω)

. The phases

de�ned here are spectrally dependent. The homodyne signal at the output of an interferometer

is then proportional to

I− ∝Re

 1
T

∫
R

dΩ |as(Ω)aLO(Ω)| eiδφ(Ω) eiφ0

 (3.11)

where we wrote the relative spectral phase between the two �elds as δφ(Ω)=φLO(Ω)−φs(Ω).
As we pointed out in the previous section, the retrieved signal (3.8) is maximized when the

overlap between the �elds is optimal.
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For our applications, we need to make absolutely sure that the relative spectral phase be-

tween the two arms of the interferometer is as �at as possible (i.e. shows no curvature, ac-

cording to 2.2.1). This can be summarized by setting δφ = 0∀Ω, and the most e�cient way

to achieve this condition is by pulse-shaping. Note that a mismatch in linear phase is easy

to correct using a standard delay line. However, achieving a perfectly �at relative phase is

problematic using standard compensation scheme such as prism compressors. Pulse shaping,

though hard to implement, has the advantage of being versatile since any change in the dis-

persive elements can easily be accounted for.

As a complement to relative phase compensation, the pulse shaper can be also used to opti-

mize the spectral overlap in amplitude between the two �elds, although this has �nally less of

an impact on the resulting signal than phase mismatch. This spectral �lter function has also

been used to calibrate the multipixel detection (see section 5.3.1). Information and results on

using the shaper to actually form the detection mode can be found in appendix B.

3.1.3.3 Spectral phase compensation

We quickly outline in this part the experimental procedure to match the phase between the

two arms of the interferometer, since it has been routinely done when changing elements in

the interferometer.

We start by setting the maximum voltage on the electrodes of the SLM such that its transmis-

sion is maximal (the pulse shaper is then equivalent to a zero-dispersion 4-f line). In the absence

of any dispersive elements on the interferometer other than the strict necessary (achromatic

mode-matching lenses for example), the phase between the two arms is relatively �at. When

adding a dispersive element, two strategies can therefore be applied:

• Knowing the dispersive medium, it is possible to simulate how much phase it adds and

write it on the shaper as a Taylor polynomial;

• Measure the relative phase by spectral interferometry, and apply it to the shaper as to

minimize it.

To optimize the phase di�erence, a good metric is to look at the contrast of the optical fringes.

This experimental quantity can be steadily measured by looking at the signal from a single

diode at the output of the interferometer. To generate fringes, one needs to sweep the delay

between the two �elds. To do so, we set φ0 =ωmodτ which yields

Itot(τ)= Is

2
+ ILO

2
+2 Re

 1
T

∫
R

dΩ |as(Ω)aLO(Ω)| eiδφ(Ω) eiωmodτ

 (3.12)

The interference term then oscillates at the modulation frequency ωmod
4
. The contrast C of

4
This oscillation is easy to show in the monochromatic case. In our case, it can be deduced from (3.12) con-

sidering that a spectral phase di�erence lies obviously in the phase quadrature. Therefore, the interference term

will be proportional to Γc sinφ0.
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these fringes is given by the familiar formula

C = Imax
tot −Imin

tot

Imax
tot +Imin

tot
(3.13)

The contrast can be easily linked to the coherence (3.9) using equation (3.12):

C = 2
√

IsILO

Is +ILO
Γc (3.14)

Therefore, measuring the contrast of the balanced detection returns information on the spectral

overlap in both amplitude and phase. For a constant phase ∆φ, the only remaining term that

can in�uence the coherence is the spatial overlap between the two �elds.

We stress however that this metric is not very sensitive to small shifts in the phase, and

additional corrections are usually best achieved using spectral interferometry.

Figure 3.5: Experimental wrapped relative phase between the signal and LO �elds of the Mach-

Zehdner interferometer over the full width of the spectrum.

As an example, on �gure (3.5) we show the spectral phase that is written on the shaper for

the basic interferometer with the minimum dispersive elements in each arm. This correction

ensures a contrast of more that 90%, limited only by the spatial mismatch of the two �elds.

We see that the phase is a balanced mix of quadratic and cubic components, probably because

of the very thick achromatic lenses that are used for spatial mode-matching.

Note also that on this �gure, the phase is wrapped every 2π. That is a consequence of

the regime in which the shaper is operated, where the voltage applied in the electrodes is

mapped in such a way that the phase is de�ned modulo 2π. In practice, this limits the maximum

phase variation that can be written on it
5
: the neighbouring pixels of such discontinuities

5
The ultimate limit, however, is de�ned by the Nyquist limit. It can be summarized be stating that no phase

di�erence greater that π may be imprinted on adjacent pixels. It is very similar to a sampling problem where

undersampling will result in an ambiguity in the shaping process[Monmayrant 05].
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need to have their nematic crystal oriented in opposite directions. As a consequence, the �eld

is di�racted and this causes a drop in the amplitude that appears as holes in the spectrum.

This e�ect inevitably reduce the coherence between the two �elds. Therefore, it has been

preferable to compensate the quadratic dispersion as best as possible using linear optics (such

as transparent glass), and only doing small corrections with the pulse shaper.

3.1.3.4 Spectral interferometry

As hinted at the end of section 2.3.3, spectral interferometry is a powerful and easy-to-implement

technique when we only care about the relative spectral phase between two �elds.

Detecting one port of the beamsplitter with a spectrometer yields:

I tot (Ω)= Is(Ω)
2

+ ILO(Ω)
2

+R
~ω0

S
Re

{∫
S

d2ρE(−)
s (x,Ω)E(+)

LO(x,Ω)
}

(3.15)

Doing a treatment similar to the photodetection, it is straightforward to obtain the detected

signal:

I tot (Ω)= Is(Ω)
2

+ ILO(Ω)
2

+|as(Ω)aLO(Ω)| cos
[
φ0 +δφ(Ω)

]
(3.16)

We see that the overall spectrum shows an oscillation that is dependent on the relative spectral

phase between the two �elds. However, δφ(Ω) is usually quite small and the spectrum mod-

ulation is experimentally masked by stronger �uctuations (such as air turbulences). A direct

measurement of δφ(Ω) is thus impossible to achieve using this signal.

A way around this limitation is to set a global delay between the two �elds, i.e. φ0 =ωτ. In

that case, the spectrum shows oscillations of a period 2π/τ that are modulated by the spectral

phase, which may then be extracted. This technique is called spectral interferometry.

Figure 3.6: Fourier-transform spectral interferometry algorithm from experimental data. The

delay between the two �elds is on the order of 500 fs (i.e. 150 µm).

To show how the spectral phase is extracted, let us rewrite the interference part of equation

(3.16) as

1
2
|as(Ω)aLO(Ω)|

(
ei(Ω+ω0)τ+iδφ(Ω) + e−i(Ω+ω0)τ−iδφ(Ω)

)
(3.17)
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Taking the Fourier transform of (3.17) transfers the signal to the temporal domain which ex-

hibits sidebands at ±τ. We label them f (t±τ):

f (t±τ)= 1
2

∫
dΩ |as(Ω)aLO(Ω)| eiδφ(Ω) eiΩ(t±τ)

(3.18)

By selecting one sideband and transferring it back to t = 0, another Fourier transform allows

to retrieve the integrand |as(Ω)aLO(Ω)| eiδφ(Ω)
. The modulus of that signal yields the product

of the spectral envelopes whereas its argument gives directly the spectral phase.

This algorithm is called Fourier-transform spectral interferometry [Lepetit 95]. It is depicted

on �gure 3.6 for experimental data that eventually lead to the phase compensation shown on

�gure 3.5.

Using these methods, we are then able to ensure that the spectral overlap between the two

mean �elds is close to the optimum.

3.2 Signal measurement
In this section, we present how the information may be encoded either on the phase or on the

amplitude quadrature of the �eld. We then show how this information may be retrieved using

an interferometric measurement scheme.

We start by considering that the two �elds are perfectly matched both temporally and spa-

tially, such that the overlap integral (3.9) is equal to one.

3.2.1 Modulations of the �eld
As an analogy to radio frequencies, information may be hard-coded in the electric �eld by

modulating it, either in amplitude or in phase. The description of the resulting �eld is necessary

to properly retrieve this information.

The temporal representation of the signal �eld modulated in amplitude is written as

E(+)
AM(t)= E0

(
1+m(t)

)
αs u(t) e−iω0t

(3.19)

where αs is the complex envelope. Furthermore, a phase modulation reads

E(+)
PM(t)= E0αs u(t) e−i(ω0t−p(t))

(3.20)

3.2.1.1 Interferometric measurement of the modulations

For a small modulation, we may expand the phase modulated �eld as

E(+)
PM(t)' E0

(
1+ ip(t)

)
αs u(t) e−iω0t

(3.21)



3. REVEALING THE MULTIMODE STRUCTURE 62

Therefore, we can consider that the quantity that is being modulated is the complex amplitude

of the �eld. It then becomes time-dependent and may be rewritten as

αs(t)=αs +δαs(t) (3.22)

where δαs(t) is equal to m(t) ·αs for an amplitude modulation and ip(t) ·αs for a phase mod-

ulation.

The signal at the output of the homodyne detection is obtained by replacing the complex

envelope αs in (3.8) by αs(t). It is possible to do so for a modulation whose period is much

slower than the response time of the detector. It is a reasonable assumption when modulating

at MHz frequencies. The time-dependent homodyne signal then reads

I−(t)= 2
√

NLO Re
{
α∗

s (t)eiφ0
}
≡ 2

√
NLO Re

{
α∗

s eiφ0 +δα∗
s (t)eiφ0

}
(3.23)

where we remind that we set the overlap integral Γc = 1.

If we de�ne the phase reference φ0 such that α∗
s eiφ0

is real, then for an amplitude modula-

tion, the same phase φ0 allows to retrieve the signal. On the contrary, for a phase modulation,

the signal is maximal for a π/2 phase di�erence between the two �elds.

3.2.1.2 The sidebands picture

The representation of the modulated �eld in the Fourier domain introduces the concept of

sidebands of the optical carrier.

For that, we assume a sinusoidal pro�le for the modulations: m(t) = m cosΩRF t, and a

similar expression for p(t)6
.

Using this expression, the phase modulated �eld may be expanded as

E(+)
PM(t)= E0 a(t) e−iω0t eip(t)

(3.24)

For a small amplitude of modulation p ¿ 1, the phase can be expanded, leading to (3.21).

In the Fourier domain, the phase modulated spectrum reads

E(+)
PM(Ω)= E0

(
a(Ω)+ i

p
2

a (Ω−ΩRF )− i
p
2

a (Ω+ΩRF )
)

(3.25)

In the case of a frequency comb, a phase modulation will result in sidebands appearing on

both sides of each tooth with an imaginary amplitude. The situation is also very similar for an

amplitude modulation where sidebands appear, but with a real amplitude :

E(+)
AM(Ω)= E0

(
a(Ω)+ m

2
a (Ω−ΩRF )+ m

2
a (Ω+ΩRF )

)
(3.26)

This comb picture is sketched in �gure 3.7.

The perturbation to the �eld therefore occurs at a given analysis frequencyΩRF that can be

di�erentiated from signals at baseband frequency.

6
Note that this formulation of a modulation considers only one electrical quadrature. In the general case,

either a phase or a sine term should be added.
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Figure 3.7: Phase-space representation of a frequency comb modulated in both amplitude

(green lines) and phase (blue lines). The phase modulation switches sign on either side of a

tooth.

3.2.2 Data acquisition
In equation (3.23), we showed that we can retrieve the information on the modulation through

I−(t). We now give more details on the tools at our disposal to characterize it. This leads

naturally to some statistical consideration, the introduction of signal-to-noise (SNR) ratio and

the concept of demodulation.

3.2.2.1 Demodulation of the signal

We consider that we retrieve the signal I−(t) from (3.23) and we convert it to a voltage V (t)=
V0+δV (t) which encompasses the cases of both amplitude and phase optical quadrature mea-

surements (V0 = 0 in that case). This signal contains a DC term V0 and some time-dependent

variation.

We begin by considering a modulation such that δV (t) = mcos(ΩRF t). We are interested

in retrieving the amplitude m of the modulation. A very common way in signal analysis is

demodulation. It consists in multiplying the signal by another at the same frequency ΩRF
delivered by a reference (for example a function generator). Since there is no reason for these

two signals to be synced, we need to set the phase ϕ of the reference. The mixing of the two

signals can be done using an analogical mixer, but the process can also be digital.

The signal X (t) at the output of the mixer reads

X (t)=V0 cos
(
ΩRF t+ϕ)+mcos(ΩRF t)cos

(
ΩRF t+ϕ)

(3.27)

where we considered that the amplitude of the reference signal is 17
. Using product-to-sum

7
In practice, an analogic mixer requires a speci�c power in the reference to be driven ,i.e. in order to extract

the modulated signal above the noise.
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trigonometric identities, the signal is rewritten as

X (t)=V0 cos
(
ΩRF t+ϕ)+ m

2

(
cosϕ+cos

(
2ΩRF t+ϕ))

(3.28)

The resulting signal still shows oscillation, but we transferred the DC component to the quan-

tity we want to measure. To isolate it, we apply a low-pass �lter with a transfer function h( f )
of low cuto� frequency.

After low-pass �ltering, the retrieved signal in the frequency domain is simply the product

of the signal by the �lter:

X ( f )|h = h( f ) · X ( f ) (3.29)

Since the product of Fourier transforms is equal to the Fourier transform of their convolution

product, the temporal signal at the output is directly the convolution of the signal by the �lter:

X (t)|h =
(
h∗ X

)
(t)≡

∫
R

dt′h(t′− t)X (t′) (3.30)

The �lter function h( f ) has a low cuto� frequency, therefore its Fourier transform h(t) is a

very broad function
8
. As such, the integration on oscillating terms will be zero, and the only

remaining term is

X (t)|h = m
2

∫
R

dt′h(t′− t)cosϕ (3.31)

By setting the demodulation phase ϕ, we select which electric quadrature is being measured.

In that case, we measure m for ϕ= 0.

This signal is �nally discretized by sampling at a given sampling rate fs where each point X i
is the mean value X i = fs

∫
1/ fs

X (t)|h dt. This allows to characterize the signal by computing

its mean and variance. We see that one would here always retrieve the exact value of m, since

this model did not include any noise in the measurement (the variance of the detected signal

is zero).

In order to take the noise into account, we simply add a stochastic variable n(t) to δV (t),
leading to an extra term δX (t) at the output of the mixer. It reads

δX (t)|h =
∫
R

dt′h(t′− t)n(t′) cos
(
ΩRF t′+ϕ)

(3.32)

which will retrieve the spectral component of n(t) at the frequency ΩRF . The amount of noise

that is retrieved is dependent upon the width of the �lter. For low cuto� frequencies (i.e. large

8
For a �rst-order low-pass �lter with a cuto� frequency fc, its transfer function is a lorentzian h( f )= 1

1+
(

f
fc

)2 .

Its temporal response is an exponential: h(t) =
√

π
2 fc e− fc |t|

, which is therefore a function with a high temporal

bandwidth for a small value of fc.
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temporal width), the �uctuations will average and the noise �oor will then be lower. This

bandwidth is called resolution bandwidth.

This picture including noise is more realistic, since the recovered distribution of X i presents

a certain variance σ2
X . When no light hits the detector, at high analysis frequencies, the only

present noise comes from the detection apparatus and is commonly referred to as dark noise
ndark(t). When light hits the detector, at high analysis frequency, another noise source arises

from the �uctuations of quantum vacuum, i.e the shot noise nshot(t). The baseline for noise

may then be de�ned by measuring the variance of theses two signals. If the detection scheme

allows to resolve the shot noise, taking the ratio of the variances of shot noise versus dark

noise de�nes the clearance of the whole detection scheme.

In this work, we will rely heavily on this measurement scheme since it is quite easy to

implement. Usually, to characterize a signal at multiple analysis frequencies, one would use

a spectrum analyzer which functioning principle is very similar to what we developed here.

This apparatus has the advantage of presenting a very low noise �oor. It does however measure

only a single signal at the same time, and in our work, we needed to acquire at most 16 signals

simultaneously on a wide range of analysis frequencies.

3.2.2.2 The power spectral density

Some measurements were still done using a spectrum analyzer, mostly because of its very good

noise �gure. Therefore, we present here the working principle of a spectrum analyzer, which

requires to consider the previous treatment in the frequency domain. Whereas the previous

demodulation scheme retrieves a voltage, a spectrum analyzer retrieves the power.

The power spectral density (PSD) of I−(t) is formally de�ned as:

SI−( f )= lim
T→∞

1
T

∣∣∣∣∫ T/2

−T/2

dtp
2π

I−(t) e2iπ f t
∣∣∣∣2 (3.33)

For a stationary process, the Wiener-Khinchin theorem allows to rewrite the power spectral

density as the Fourier transform of the autocorrelation function of I−:

SI−( f )=
Ï
R2

dtp
2π

dt′I−(t′)I−(t′− t) e2iπ f t
(3.34)

The variance of I−(t) may be obtained from the PSD as:

σ2
I− =

∫
R

d f SI−( f ) (3.35)

SI−( f ) is de�ned for both positive and negative values of f , and since I− is real, its PSD

contains redundant information. This description is called double-sided, in opposition to the

single-sided description which considers only positive frequencies. Thus, the single-sided PSD
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is twice as large as the double-sided in order to conserve the total power contained in the

sidebands.

This picture is similar to the one developed previously in the temporal domain except that it

outputs a power distribution. If one requires the full distribution of the signal over a range of

di�erent RF frequencies, one would need to sweep the frequency of the local oscillator during

the mixing process. This is precisely what a swept-tuned spectrum analyzer does: it aims to

compute (3.35). In the same way, it needs to apply a �lter function h( f ) such that this variance

remains �nite (very high frequency �uctuations such as white noise are usually present in such

measurements). The measured variance is then equal to

σ2
I−

∣∣∣
h
=

∫
R

d f SI−( f ) |h( f )|2 (3.36)

As previously, the shape and bandwidth of the �lter de�nes for how long the acquisition win-

dow is opened and how high the noise �oor is.

3.3 Mode-dependent detection
Having introduced the concept and outcome of an interferometric measurement scheme, we

�nally come to show that this detection is mode-dependent. Not only does it allows to re-

trieve information encoded on a speci�c quadrature of the �eld, it also enables to di�erentiate

between di�erent modes. To show this, we use a multimode quantum description of 3.1.2.

3.3.1 Quantum derivation
Similar to the quantization that was done in section 1.4, we consider the quantum counterpart

of equation (3.7) where we assign a bosonic operator â(Ω)=∑
i âiui(Ω) to the spectral envelope

a(Ω). Considering again a perfect spatial overlap, the di�erence of photocurrent operator is

given by

Î− = 1
T

∫
dΩ â†

s(Ω) âLO(Ω)+h.c. (3.37)

where h.c. stands for hermitian conjugate.

Using the modal decomposition of the bosonic operator (1.59), this equation is written as

Î− = 1
T

∑
i, j

â†
i,sâ j,LO

∫
dΩu∗

i,s(Ω)u j,LO(Ω)+h.c. (3.38)

Moreover, the normalization condition (1.31) allows to write the overlap integral in (3.38) as

δi, j . The quantum homodyne signal thus reduces to

Î− = 1
T

∑
i

â†
i,sâi,LO +h.c. (3.39)
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We need to chose a proper basis to compute the noise in the measurement. We de�ne the

mean-�eld basis from the local oscillator, where only the �rst mode is non-vacuum:

âLO =αLOu0(Ω)+∑
i
δâi,LO ui(Ω) (3.40)

where αLO ≡ √
NLO eiφLO

is the complex amplitude of the mean �eld and we expanded the

annihilation operator as (1.65).

In the mean-�eld basis, the homodyne operator thus reads

Î− =αLO â†
0,s +

∑
i

â†
i,sδâi,LO +h.c. (3.41)

In the case where the LO beam is stronger than the signal (in other words, if NLO is large

enough), we may neglect the second term in this development. This approximation is at the

center of homodyne detection. It implicates that the �uctuations of all the modes of the LO do

not come into play in this measurement.

In term of quadratures operators (1.71), we can rewrite the homodyne operator as

Î− =αLO â†
0,s +α∗

LO â0,s ≡
√

NLO q̂φLO
0,s (3.42)

Therefore, computing the homodyne signal from the expectation value of (3.42) results in the

expectation value of the signal quadrature operator in the quadrature de�ned by the local oscil-

lator. This development also shows the mode selectivity of this scheme. Indeed, the detection

only retrieves the mode of the signal �eld that is de�ned by the mean �eld mode of the local

oscillator. Thus, we call this scheme a projective measurement.
Another relevant consideration is the quantum noise in this measurement. Considering the

�uctuations of the homodyne signal δÎ− =√
NLO δq̂φLO

0,s , we can compute its variance:

〈(
δÎ−

)2
〉
= NLO

〈(
δq̂φLO

0,s

)2
〉

(3.43)

Thus, the noise in the homodyne measurement is written as

∆I− =
√

NLO σ (3.44)

where σ is the noise in the mode of the signal �eld. When the noise originates only from the

�uctuations of quantum vacuum, then σ= 19
.

This quantum derivation is very useful to show the mode selectivity of the homodyne de-

tection scheme. Although not straightforward, it can be linked to the classical treatment that

was done in this chapter. Indeed, we adopted a purely monomode approach in the form of

9
The quantum treatment is needed to properly identify the noise in this measurement. However, a similar

result can be obtained from a monomode classical derivation.
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a single spectral mode. From this point of view, the homodyne detection measures the �uc-

tuations (either in amplitude or in phase) of the global mode, that is accessible through the

overlap integral Γc. In the quantum description, the overlap integral is always equal to unity

by the construction of the detection basis. The signal that is measured is actually dependent

on the expectation value of the bosonic operator in each mode of the signal �eld. Since this

basis is constructed from the spectrum of the global mode, it is therefore entirely similar to the

classical description.

Finally, another important fact to be retained from this section is that the local oscillator

�eld needs to be stronger than the signal �eld in a homodyne detection scheme. It is vital to

ensure that the noise from the LO �eld does not come into play.

3.3.2 Spectrally-resolved homodyne detection
In analogy to (3.38), for a local oscillator in a given mode wLO(x, t) and a multimode description

of the signal �eld, the classical homodyne signal can be written as

I− = 2
√

NLO Re

{∑
i,n
α∗

i,nαLO

〈
w∗

i,n(x, t),wLO(x, t)
〉}

(3.45)

where the inner product is de�ned as (1.31) and the

{
wi,n

}
modes form an orthonormal basis.

Thus, to measure the amplitude of a given mode of the signal �eld, one has to set the LO in

that same mode.

We consider the temporal part of this scalar product and are interested in how the local

oscillator mode can be constructed. As it was hinted earlier, a �rst strategy is pulse-shaping to

construct the projection mode and to perform the measurement. This means however that a

new con�guration needs to be established for each di�erent mode. We present here a way to

perform this projection after the measurement, which then allows to extract any mode from a

single measurement.

The starting point is to notices that, in an interferometric measurement, once the beams

are combined, the nature of the signal remains unchanged for linear operation. Therefore, if

one could resolve each spectral component of the combined �eld, the result would be strictly

equivalent to combine the same spectral component of each �eld on a di�erent beamsplitter

and then separately measure the di�erent colors.

Thus, a spectrally-resolved homodyne detection is achieved by spatially dispersing the spec-

tral component of the light (using either a grating or a prism
10

), focussing each of these colors

on a linear array of detectors, and performing the detection. The general setup is sketched on

�gure 3.8.

Since this detection is done using a �nite number of detectors, or pixels, we call this scheme

multipixel homodyne detection (MHD).

10
A prism cut at Brewster angle and properly placed in the beam will be less lossy than a grating, but less

dispersive.
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Figure 3.8: Spectrally-resolved homodyne detection.

3.3.2.1 Introduction

This detection was �rst introduced in the spatial domain for quantum state tomography [Beck 00].

Quantum state tomography is a technique based on homodyne detection to measure the quan-

tum state of light and reconstruct the Wigner function of the state. As we will see in the next

section, homodyne detection is sensitive to the mode mismatch between the two �elds (repre-

sented by the overlap integral), and any mismatch will lead to a loss of e�ciency and degrade

the quality of the reconstruction. Optimization of the mode-matching (in that case, spatial, but

in our case, it is spectral / temporal) can be achieved by shaping the beam, but it may not be

an easy or robust task.

The solution proposed in [Beck 00] relies on using an array of detectors in the homodyne

detection instead of single diodes, such that the mode-mismatch may actually be corrected post
facto. For a more complete description of spatial multipixel detection, see [Morizur 11]. In the

following, we give a description of spectral multipixel detection, which we will simply refer to

as MHD.

3.3.2.2 Multipixel basis

We consider an array of N pixels, where N is an even integer. We assume it is centered on the

carrier frequency ω0 and it is subdivided so that each pixel corresponds to a spectral slice of

width δω. We index each pixel by n ∈ Z. This de�nes subset of the optical spectrum whose

center frequencies are given by ωn =ω0 +nδω.

This de�nes a new set of modes, called pixel-modes, that we label un(ω). They can be de�ned

from the whole spectrum:

u(ω)=
N∑
n

un(ω) (3.46)



3. REVEALING THE MULTIMODE STRUCTURE 70

Figure 3.9: Multipixel array.

where a pixel-mode is obtained by “pixelization” of the envelope:

un(ω)=
{

Cn u(ω) if ωn ≤ω<ωn+1
0 otherwise

(3.47)

where cn ensures that each pixel-mode is normalized.

Any basis may therefore be represented in the multipixel basis using the same method.

3.3.2.3 Multipixel homodyne signal

To reconstructing the homodyne signal in the multipixel case, we �rst write (3.8) for a single

pixel. It reads

I−,n = 2
√

NLO Re

α∗
s,n

∫
δω

dωu∗
s,n(ω)uLO,n(ω) eiφLO

 (3.48)

where we set once again a perfect spatial overlap (which doesn’t depend on the pixel number in

the absence of spatial chirp
11

). In theory, one would have to account for the dependency of the

responsivity R on the pixel number, but it can be taken care of by an experimental calibration

of the detector.

Usually, the two �elds are in the same spectral mode (experimentally, that may not exactly be

the case, but this mismatch can be compensated, as we will discover in section 5.4.2). Therefore,

to introduce an arbitrary mode in the LO �eld, one has to reconstruct the homodyne signal by

applying an arbitrary gain to the single-pixel signal :

I− =
N∑

n=1
gn I−,n

= 2
√

NLO Re

α∗
s

∫
δω

dωus(ω)uMP (ω) ei∆φ(ω) ×γρ
 (3.49)

11
Spatial chirp can be a very serious problem when dealing with ultrashort pulses. It corresponds to the situa-

tion where di�erent wavelengths are mapped to di�erent part of the transverse beam, as an analogy to temporal

chirp (2.2.2.3). It can be very easily introduced when working with di�racting elements such as pulse compressors.
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where we wrote the e�ective mode of the LO �eld as

uMP (ω)=∑
n

gn un,LO(ω) (3.50)

Again, it is reasonable to consider that the LO �eld is in the mean �eld mode, such that any

projection mode can be constructed knowing the mean �eld mode. It is clear that modes that

show a structure varying faster than the resolution of the array cannot be reconstructed.

In our case, we do not wish to reconstruct very complicated modes, such that meaningful

information can be obtained even with only 4 pixels. Indeed, the strongest condition for recon-

structing a basis is the orthogonality between its modes. One therefore needs as many pixels

as there are peaks and valleys in the modes to construct them unambiguously.

3.3.3 Temporally-resolved homodyne detection
Finally, a very useful measurement scheme that was used during this PhD is a temporally-

resolved homodyne detection. The general scheme is based on cross-correlations measure-

ments, which derivation is similar to the one done for spectral interferometry in section 3.1.3.4.

For our applications, it provides an incredibly convenient way to measure the homodyne signal

independently of the optical quadrature.

3.3.3.1 Electric �eld cross-correlations

When scanning the delay between the two �elds, the homodyne signal reads

I−(τ)∝
∫
R

dΩa∗
s (Ω)aLO(Ω) eiΩτ+c.c. (3.51)

where both envelopes are complex and contain their respective phases. Injecting the Fourier

transforms of each envelopes yields the temporal representation:

I−(τ)∝
∫

T
dta∗

s (t)aLO(t−τ) e−iω0τ+c.c. (3.52)

For pulse characterization, if one �eld is known, then it is possible to extract both the amplitude

and the phase of the other. For example, by considering that the LO pulse is a delta function,

then the result of the measurement is proportional to Re
{
as(τ)e−iω0τ

}
(in the spectral domain,

this means the spectrum of LO is much broader, and the signal spectrum is obtained by decon-

volution). Therefore, the envelope of the crosscorrelation signal gives access to the amplitude

of the �eld, while the argument gives access to its temporal phase. However, in the general

case, nothing conclusive may be extracted about the pulse shape without making assumptions.
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3.3.3.2 Application to homodyne detection

Nonetheless, we do not concern ourselves with the actual pulse shape, but we are rather inter-

ested in the relative phase between the two �elds. Recording the homodyne signal as a function

of the delay between the two �elds has the great advantage of retrieving all the information at

once.

We want to compute the homodyne signal as function of the delay τ between the two �elds.

This is done by setting φ0 =ωτ≡ (Ω+ω0)τ in (3.8). The signal then reads

I−(τ)= 2
√

NLO Re
{
α∗

s

∫
dΩu∗

s (Ω)uLO(Ω)eiΩτeiω0τ

}
(3.53)

If we consider also a perfect spectral overlap, this simply reduces to

I−(τ)= 2
√

NLO Re
{
α∗

s ucc(τ)eiω0τ
}

(3.54)

where ucc(τ) is the cross-correlation of the envelopes
12

.

This expression shows that all the information on the complex envelope αs of the signal

�eld may be retrieved in the envelope and the phase of the retrieved signal. More importantly,

this method allows to measure every optical quadratures “simultaneously”. To show this, we

consider that the signal �eld is modulated either in amplitude or in phase, similar to (3.23).

This signal is then written as

I−(τ)= 2
√

NLO

(
Re

{
α∗

s ucc(τ)eiω0τ
}
+Re

{
δa∗

s (τ)ucc(τ)eiω0τ
})

(3.55)

The information on the modulation is contained in the second term which can be isolated by

demodulation. Whereas in the previous description, we need to set φ0 to di�erentiate between

an amplitude and a phase modulation, here they can both be accessed.

Moreover, this method can also be used to extract the spectral structure of the signal �eld,

in the same way the multipixel homodyne does. Indeed, taking the Fourier transform of the

cross-correlation signal (3.53) with respect to τ yields directly the integrand:

I−(Ω)=F [I−(τ)]≡ 2
√

NLO Re
{
α∗

s u∗
s (Ω)uLO(Ω)

}
(3.56)

As we will see later, measuring this temporally resolved homodyne signal is an incredibly

powerful and versatile tool that will allow to measure parameters precisely without resorting

to complex experimental techniques. Indeed, the result is virtually identical to the multipixel

scheme and can be used with a single detection. It may then prove to be an alternative to

multipixel detection since it is possible to extract the spectral part from the signal.

12
If both �elds are de�ned by the same Gaussian envelope of width ∆t, the autocorrelation is another Gaussian

of width

p
2∆t. Note however that this does not retrieve the absolute width of the pulse since this is a relative

measurement.
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3.3.3.3 Experimental realization

To actually measure the temporally-resolved homodyne signal, one needs to scan the delay

between the two �elds. Di�erent methods are available, each presenting di�erent constraints:

• This displacement needs to be purely longitudinal. If it induces an angular shift, then the

spatial overlap will not be uniform over the range of the scan thus introducing errors.

• The best way to achieve such a delay scan is by putting a retrore�ector on a motorized

delay line. This allows to achieve displacements over a large range, more than enough

to resolve the full pulse width. The drawback of this method is its speed: motorized

translation stages do not respond fast enough to make such a measurement real-time.

• A mirror mounted on a piezoelectric actuator can o�er micrometers of displacement

on a millisecond timescale. This o�er the fastest possible response, but it need to be

introduced in the beam path with a minimum angle.

For our experiment, we decided to build a retrore�ector on a motorized delay line. Initially,

it was used solely for the purpose of crosscorrelations measurements, before this temporally-

resolved homodyne detection was even considered. To account for the slow response, we

chose to stabilize the relative phase between the two �elds before the stage by building two

consecutive homodyne detections. The experimental scheme is shown on �gure 3.10.

Both signal and LO beams are split on a 90/10% beam splitter. On part goes to a �rst homo-

dyne detection (HD1) while the second goes to the second homodyne detection (HD2) which

has the retrore�ector built into the signal beam’s path. Using the low frequency signal from

HD1, the relative phase between the two �eld is locked by acting on a piezo-mounted mirror.

In such a con�guration, the only phase �uctuations left come from the propagation of the two

beams on a very short distance, and they are therefore very small. This allows to perform the

crosscorrelation measurement with a very good reproducibility.

We specify that the second homodyne detection can either be single diode or spectrally-

resolved.

3.3.4 Addendum: single diode homodyne detection
To close that part on homodyne detection, we explain one last relevant point. In homodyne

detection, we take the di�erence of the two photocurrents to measure the interferometric term.

It is not only to remove the signal coming from the power of both �elds, but rather to get rid

of any classical noise that might be contained in the �elds.

It is clear from the signal of a single detector (3.16) and from the di�erence signal (3.8) that

both contain the same interference term. The only di�erence between these two expressions

reside in the power contained in each �eld, which is a term that does not oscillate. Therefore,

when demodulating as described in section 3.2.2, the mean signal retrieved would be similar

in both cases. The only important di�erence resides in the variance.
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Figure 3.10: Experimental layout for the relative phase lock between signal and LO �elds.

The two �elds are �rst separated by beamsplitter of 90% re�ectivity. The transmitted 10% are

combined in a �rst homodyne detection. The di�erence of the photocurrent is used to lock the

delay between the two �elds. Once the phases are stabilized, measurements can be done on a

second homodyne detection.

Indeed, if any amplitude classical noise is present, it will show when measuring the noise

from a single diode, but not from the di�erence. The latter then present a higher SNR
13

. Nev-

ertheless, if the analysis frequency is high enough, the only noise comes from quantum �uc-

tuations. Thus, looking at only one photocurrent in the homodyne detection yields the same

result than taking the di�erence at the expense of lower photon number.

13
Note that classical noise will be present in the measured mean signal in whichever case. However, the noise

�oor is di�erent, hence the signal-to-noise is higher in the real homodyne con�guration.
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4 Parameter estimation at the quantum
limit

(About the amount of squeezing required in quantum computation)“From what I got
from the experimentalists, we don’t have in�nite squeezing yet.”

– Giulia “Flash Dance” Ferrini
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In the previous chapter, we introduced how the multimode structure of the �eld can be

experimentally accessed. In the present chapter, we shall describe the particular case of pa-

rameters that are willingly encoded in the �eld. It introduces the concept of projective mea-

surement, detection modes, limits in sensitivity and e�cient measurements.

We then concentrate our study to the case of perturbations of the pulse both in amplitude

and in phase that originate from phase and energy shifts. We put forward the conjugated

variables amplitude / phase and time / frequency that naturally arise, and give a proposal for

a quantum formulation.

Then, we look at more precise examples of parameter estimation, such as distance and fre-

quency. We de�ne the detection modes for these quantities and compute their sensitivities.

Finally, we put forward a drawback in the projective measurement scheme where the spatial

part of the �eld can contain information that contaminates the measurement on its longitudinal

part.
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4.1 Projective measurements
In this section, we present in a more detailed way how the variation of a small parameter

encoded in the �eld may be seen as photons being displaced in a given mode of the �eld. This

de�nes the projections modes required in a homodyne detection scheme 3.3 to extract this

parameter.

4.1.1 Displacements of the �eld in speci�c modes
In a way very similar to the modulations introduced in 3.2, let us consider that through prop-

agation in a dispersive medium, the �eld is a�ected by a parameter p. Whether this perturba-

tion happens in the amplitude or in the phase quadrature is of no importance for this general

treatment. We also assume that the �eld is in a given spatial mode such that the transverse

dependency of the �eld can be implicit
1
. The general scheme is depicted on �gure 4.1.

Signal

Local
Oscillator

Output

Perturbation

Figure 4.1: Projective measurement scheme.

The �eld after propagation reads

E(+)(t, p)= E0 a(t, p) e−iω0t
(4.1)

To remain consistent with previous de�nitions, we again keep the carrier outside of the com-

plex envelope a(t). The parameter p may however be a perturbation of the carrier.

The general problem of estimating a parameter p encoded in a light beam E(p) has been

treated for example in [Helstrom 68]. The ultimate limit in sensitivity in the measurement is

given by the so-called quantum Cramér-Rao bound for speci�c quantum states of light. For

Gaussian states, it can be shown [Jian 14] that this bound can be experimentally reached with

a balanced homodyne detection scheme.

For a small variation of p, the �eld (4.1) may be Taylor expanded as follows:

E(+)(t, p)' E(+)(t,0)+ p
∂E(+)

∂p
(t, p = 0) (4.2)

1
Note that the present treatment can also be applied to the transverse pro�le of the �eld. It’s only a matter of

changing the considered variable from time to space.
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The modal structure appears by writing (4.2) in term of the complex envelope:

E(+)(t, p)' E0

(
a(t,0)+ p

∂a
∂p

(t,0)
)
≡ E0αs

(
u0(t)+ p K v(t)

)
e−iω0t

(4.3)

where we introduced the normalized mode v(t)= 1
K
∂u
∂p (t, p = 0) and K is a dimensional normal-

ization constant which reads K =
√〈∣∣∣∂u

∂p

∣∣∣ ,
∣∣∣∂u
∂p

∣∣∣〉 , where the inner product is de�ned as (1.31).

The mode u0(t) = u(t,0) corresponds to the mean-�eld, i.e. the envelope of the non-displaced

�eld. The mode v(t) is called the detection mode attached to the detection of the parameter p.

In the general case where multiple parameters pi ∈ ~p are encoded in the �eld, the previous

derivation applies and reads

E(+)(t,p)' E0
(
a(t,0)+p ·∇∇∇p a(t,0

)≡ E0αs

(
u0(t)+∑

i
pi K i vi(t)

)
e−iω0t

(4.4)

One should note that, in general, the modes v do not form an orthogonal basis. In this equation,

the displaced �eld is de�ned as a superposition of the undisplaced �eld in the mean �eld mode

and a set of di�erent modes with a small contribution. We can thus image the fact that this

perturbation is displacing photons into other modes (which is similar to power being pushed

in sidebands in the spectral domain in the case of a modulation).

We also consider that the signal �eld is in a coherent state, such that αs =
p

N .

The retrieved signal in a homodyne con�guration scheme is computed by considering that

the signal �eld is given by (4.3) and the LO is in the mode v(t). The situation is then similar to

(3.43), where we retrieve the information carried by the signal �eld in the mode de�ned by the

mean-�eld of the local oscillator. The optical quadrature that we retrieve is set by the phase of

the local oscillator.

In this picture, the signal may also be written as the inner product of the signal envelope by

the local oscillator mode:

I− = 2
√

N NLO Re
{
〈u(t),v(t)〉

}
(4.5)

with u(t)= u0(t)+ p K v(t).
As an example, let us consider the special case where v(t) is orthogonal to u0(t). We then

have 〈u0(t),v(t)〉 = 0 and 〈v(t),v(t)〉 = 1. The homodyne signal then directly retrieves the value

of p:

I− = 2
√

N NLO p K (4.6)

To compute the signal-to-noise ratio Σ, one has to compute the noise in the experiment, which

is given by (3.44):

∆I− =
√

NLO σ (4.7)
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where σ represents the noise in the detection mode. Thus, the signal-to-noise ratio reads

Σ= 2
p

N K
σ

· p (4.8)

If the only noise present arises from �uctuations of quantum vacuum, then we have σ= 1.

In the multi-parameters case described by (4.4), in the particular case where the modes vi(t)
form an orthogonal basis, it is straightforward to see that a homodyne detection with the local

oscillator in the mode vi(t) allows to retrieve unambiguously any parameter pi encoded in the

signal �eld.

4.1.2 Sensitivity
One can then determine the sensitivity with which we retrieve the parameter p. It is de�ned

from the minimum value pmin of p that can be measured using this method, that is, for a

signal-to-noise ratio of 1:

pmin = σ

2
p

N K
(4.9)

The sensitivity is then given by the inverse of pmin. In the quantum-limited case, we have:

pmin = 1

2
p

N K
(4.10)

This important relation shows that the sensitivity increases with the photon number N and

with the normalization constant K . In the more general case (4.9), we see that the sensitivity

is also governed by the variance of the detection mode. It means that when classical noise is

present (i.e. σ > 1), sensitivity decreases, however, if squeezed quantum light is used (σ < 1),

then sensitivity is increased. This is a standard result in quantum metrology, �rst demonstrated

in [Caves 81], and a recent application example can be found in [Aasi 13].

Since the sensitivity (4.10) scales with the number of photons, we took the experimental

strategy to work with strong coherent states rather than to use squeezed vacuum.

4.1.3 The Cramér-Rao bound
As hinted in the beginning of this section, the ultimate limit in sensitivity that one may achieve

in the parameter estimation problem is given by the Cramér-Rao bound. Indeed, to know

whether or not a given measurement scheme is optimal, one usually resorts to information

theory. A good outlook into the classical Cramér-Rao bound may be found in [Réfrégier 02]

whereas a quantum development and an application to this experiment is done in [Jian 14].

In information theory, the classical Cramér-Rao bound corresponds to the best precision

that one can achieve using every possible estimator for a given parameter. This estimator is
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then said to be unbiased since it gives the correct value of the parameter that is estimated. This

allows to determine which measurement apparatus or strategy is best suited to determine the

value of a parameter.

This can then be rede�ned in the quantum realm in term of density operators. The mea-

surement is described by a set of operators known as positive operator-value measure (POVM)

[Barnett 02]. The derivation of this bound is more subtle than in the classical case, but it gives

a stronger result. Indeed, the limit that one obtains is measurement independent, since the

quantum Cramér-Rao bound is given whatever the measurement apparatus. This bound can

be saturated, and has been extensively used in the �eld of quantum metrology [Anisimov 10].

In the case of multimode Gaussian states (for example, coherent states), this bound can be

computed. More importantly, it has been demonstrated that the best sensitivity of parame-

ter estimation using a balanced homodyne detection scheme equals the quantum Cramér-Rao

bound, making this detection scheme an e�cient measurement strategy.

The main result here is that the chosen projective measurement scheme yields the best pos-

sible outcome in the parameter estimation problem.

4.2 Spectral and temporal displacements
In this section, we concentrate our study to small displacements of the �eld in time (carrier

and envelope) and to small displacements of the spectrum.

4.2.1 Temporal displacements
We use the results that were obtained in section 2.2.2 about spectral phase e�ects on the pulse

shape. Let us Taylor expand the accumulated phase to the �rst order as in (2.33). For conve-

nience, we identify characteristic times in the following way:

φ(Ω)'ω0 tϕ+Ω tg (4.11)

We identify tϕ as a displacement of the carrier and tg as a displacement of the envelope.

The displaced �eld in the spectral domain is simply given by

E(+)
s (Ω)= E0 a(Ω) ei(ω0tϕ+Ωtg)

(4.12)

Equivalently, in the temporal domain:

E(+)
s (t)= E0 a(t− tg) e−iω0(t−tϕ)

(4.13)

which clearly shows the displacements in both carrier and envelope.
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Since tϕ and tg are supposedly small compared to the optical period, we then proceed to

expand the amplitude and the phase of the temporal representation of the �eld. We then obtain

E(+)
s (t)' E0

p
N

(
u0(t)− tg

∂u0

∂t

)
· (1+ iω0tϕ

)
e−iω0t

= E0
p

N
(
u0(t)+ω0tϕ · iu0(t)− tg

∂u0

∂t

)
e−iω0t

(4.14)

where we neglected the second order term tϕ·tg. We labeled u0 the unperturbed �eld envelope,

such that the total �eld is written as E(+)
s (t) = E0

p
N u(t). We can see that equation (4.14) is

similar to (4.3), except that not all modes are normalized.

After normalization of the modes on which (4.14) is expanded, the �eld then writes as

E(+)
s (t)= E0

p
N αs

(
u0(t)+ω0tϕ ·vϕ(t)+Kgtg ·vg(t)

)
e−iω0t

(4.15)

The mode attached to the detection of a phase shift tϕ is called phase mode vϕ(t), and is de�ned

by

vϕ(t)= i u0(t) (4.16)

Note that vϕ is not orthogonal to the mean-�eld mode u0.

As a reference to measurements that consider the time of arrival of pulses of light, we call

the mode attached to the detection of a shift in the envelope tg the time-of-�ight mode vg(t).
It is de�ned as

vg(t)=− 1
Kg

∂u0

∂t
e−iω0t

(4.17)

whose normalization constant Kg is given by Kg =
√∫

dt
∣∣∣∂u0
∂t

∣∣∣2 . In the Gaussian case given by

(2.20), the normalization constant is actually proportional to the temporal bandwidth: Kg = 1
2∆t

and the time-of-�ight mode is consequently given by

vg(t)= t
∆t

u0(t)≡−2∆t
∂u0

∂t
(4.18)

In that case, the �eld is written as

E(+)
s (t)= E0

p
N

(
u0(t)+ω0tϕ ·vϕ(t)+ tg

2∆t
·vg(t)

)
e−iω0t

(4.19)

As an example, on �gure 4.2 is depicted a representation of the real part of (4.19) in the case

of a global delay of the pulse tϕ = tg = δt.
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Figure 4.2: Schematic picture of a delayed pulse expanded on the basis of the detection modes.

In the same manner, the expansion of the Gaussian �eld in the spectral domain from (4.12)

yields

E(+)
s (Ω)' E0

p
N u0(Ω)

(
1+ iω0 tϕ+ iΩ tg

)
≡ E0

p
N

(
u0(Ω)+ω0 tϕ ·vϕ(Ω)+∆ω tg ·vg(Ω)

)
(4.20)

The detection modes in the spectral domain are then given by

vϕ(Ω)= i u0(Ω) (4.21)

vg(Ω)= i
Ω

∆ω
u0(Ω) (4.22)

Using the previously de�ned Fourier transform formalism, it is easy to show that the Gaussian

detection modes are directly linked by Fourier transforms.

Note that every spectral mode is pure imaginary, whereas the temporal time-of-�ight mode

is real. Although surprising, it is understandable that a perturbation in the arrival time of a

train of pulses can be resolved with a single detector; it is therefore an amplitude quadrature

measurement in the temporal domain, but it cannot be resolved as easily in the spectral do-

main
2
.

4.2.2 Spectral displacements
The previous derivation has an exact counterpart in the spectral domain.

2
One can also consider an in�nitely accurate detector in the temporal domain. It could potentially resolve

any e�ect on the pulse shape, being a delay, a broadening or a change in its structure. A spectrometer on the

other hand cannot resolve any spectral phase without using interferometric measurements. A time measurement

is then sensitive to the relative phase between each color.
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Consider a displacement in the spectrum that manifests itself in the form of a global change

ε of the amplitude. The envelope of the �eld is then written as (1+ε)a(Ω), where we chose

ε to be independent on wavelength for simplicity. Consider also a change δω in the central

wavelength, which then changes the amplitude to a(Ω−δω).
Using these notations, the displaced spectral �eld is consequently written as

E(+)
s (Ω)= E0 (1+ε)a(Ω−δω) (4.23)

Taking the Fourier transform simply yields

E(+)
s (t)= E0 (1+ε)a(t) e−i(ω0−δω)t

(4.24)

When expanding the �eld (4.23) and neglecting second-order terms, we then obtain

E(+)
s (Ω)' E0

p
N

(
u0(Ω)+ε ·u0(Ω)−δω · ∂u0

∂Ω

)
(4.25)

A treatment identical to (4.19) allows to write the displaced spectrum as

E(+)
s (Ω)= E0

p
N

(
u0(Ω)+ε ·vε(Ω)+ δω

2∆ω
·vδω(Ω)

)
(4.26)

which de�nes the detection mode vε for a perturbation ε in the amplitude of the �eld

vε(Ω)= u0(Ω) (4.27)

and the mode vδω attached to a shift of the central wavelength

vδω(Ω)= Ω

∆ω
u0(Ω) (4.28)

In the same way as before, �gure 4.3 provides a schematic representation of equation (4.26).

In the temporal domain, equation (4.24) allows to de�ne the temporal detection modes

vε(t)= u0(t) and vδω(t)= i
t
∆t

u0(t) (4.29)

We see that the exact set of modes are used to detect these fours parameters. They di�er in their

de�nition by the imaginary unit i which speci�es on which optical quadrature the information

resides. More importantly, it also reveals that these parameters are conjugated in the sense

of hamiltonian mechanics. Therefore, they are also observable of conjugated operators in a

quantum description (see section 4.2.3).
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Figure 4.3: Schematic picture of a spectrum displaced in energy and in center wavelength

expanded on the basis of the detection modes.

Using (4.10), we compute the ultimate limit in sensitivity for these measurements. For the

temporal displacements, we obtain

(
tϕ

)
min =

1

2
p

N ω0
and

(
tg

)
min =

1

2
p

N∆ω
(4.30)

and for the amplitude / spectrum displacements, we have

(tε)min =
1

2
p

N
and (tδω)min =

∆ωp
N

(4.31)

Using this modal description, we �nd the standard result for the ultimate sensitivity for an

interferometric measurement of amplitude and phase
3
.

Moreover, using a Gaussian mean-�eld mode allows to easily construct the detection basis.

One may note that the detection basis that we derived here is similar to the Hermite-Gauss

basis. This is quite convenient since these modes are directly orthogonal. For a non-Gaussian

mean-�eld, the construction of the basis is not as straightforward. Indeed, there is no guar-

antee that the modes attached to the estimation of parameters are orthogonal. In that case,

the construction of the basis needs to be adapted to the parameters that need to be measured.

Albeit less general, we will keep the Gaussian de�nition for analytical reasons, but the same

results may be obtained for an arbitrary mean-�eld.

3
It is worth noting that the standard interferometer limit scales as 1/

p
N . This di�erence by a factor of two

arises from the fact that the homodyne-based measurement places the N signal photons into a single arm of the

interferometer, whereas the standard interferometric detection distributes them equally between both arms.
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4.2.3 Conjugated parameters
Introducing the Hermite-Gauss modes vn(Ω)4

, we have

v0(Ω)= u0(Ω) and v1(Ω)= Ω

∆ω
u0(Ω) (4.32)

which allows to rewrite the displaced �elds in the same basis.

In the spectral domain, we consider a �eld displaced in all four of the previous parameters :

E(+)
s (Ω)= E0

p
N

(
v0(Ω)+ (

ε+ iω0tϕ
) ·v0(Ω)+

(
δω

2∆ω
+ i∆ωtg

)
·v1(Ω)

)
(4.33)

where we used the modes {vn} from the Hermite-Gauss basis.

This equation puts forward the conjugated parameters. The mean �eld mode v0 is associated

naturally to variations of amplitude, whose conjugate quantity is a shift in phase. Similarly,

the mode v1 carries the information on a shift in the envelope of the pulse. The conjugate pa-

rameter is a shift of the spectrum. In quantum mechanics, conjugate variables are observable

that do not commute and satisfy Heisenberg’s principle. The �eld of quantum metrology has

usually focused on the measurement of a single variable. Its orthogonal observable may how-

ever contain information from a di�erent origin that can be used to enhance the measurement

result[Steinlechner 13].

To formulate the quantum counterpart of (4.33), we write 〈â0〉 =
p

N , and assume that only

v0 and v1 are non-vacuum modes. Under the small parameter approximation, it reads

Ê(+)
s (Ω)= E0

{p
N

[(
1+ε+ iω0tϕ

) ·v0(Ω)+
(
δω

2∆ω
+ i∆ωtg

)
·v1(Ω)

]
+∑

n
δânvn(Ω)

}
(4.34)

Ideally, we would like to de�ne observables to measure the parameters encoded in the �eld.

Using the quadrature operators (1.66) and (1.67), for a �eld in the Hermite-Gauss basis where

the mean-�eld mode is v0, we have

Ê(+)
s (Ω)= E0

∑
i

âi vi(Ω)= E0
∑

i

x̂i + i p̂i

2
vi(Ω) (4.35)

Thus, in term of quantum observables, the �eld (4.34) is written as

Ê(+)
s (Ω)= E0

(〈x̂0〉+ i 〈 p̂0〉
2

v0(Ω)+ 〈x̂1〉+ i 〈 p̂1〉
2

v1(Ω)+∑
n
δânvn(Ω)

)
(4.36)

By identi�cation, we have the following relations:

〈x̂0〉 = 2
p

N (1+ε) and 〈 p̂0〉 = 2
p

N ω0 tϕ (4.37)

〈x̂1〉 =
p

N
δω

∆ω
and 〈 p̂1〉 = 2

p
N ∆ω tg (4.38)

4vn(Ω)= 1p
2nn!

Hn

(
Ωp
2∆ω

)
·u(Ω)
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We see that the mean-�eld mode v0 is naturally used to detect the amplitude and the phase of

the �eld. The next mode in the basis is used to detect slippage in time and in frequency. We

may then de�ne new conjugate operators X̂ i and P̂i such that computing their expectation

value yields the parameter of interest:

X̂0 = 1

2
p

N
x̂0 and P̂0 = 1

2
p

N ω0
p̂0 (4.39)

X̂1 = ∆ωp
N

x̂1 and P̂1 = 1

2
p

N ∆ω
p̂1 (4.40)

This introduces clearly the couples of conjugate variables amplitude / phase and time / fre-

quency as carried by di�erent spectral modes. To perform a measurement below the standard

quantum limit on one quantity, one would have to introduce squeezing in the same mode (the

quantity retrieved in the other �eld quadrature would then show excess noise).

Being conjugate observables, using (1.68), the commutation relations for these new operators

read [
X̂0 , P̂0

]= i
2Nω0

and

[
X̂1 , P̂1

]= i
N

(4.41)

leading to the following uncertainty relations:

σX̂0
·σP̂0

≥ 1
4Nω0

and σX̂1
·σP̂1

≥ 1
2N

(4.42)

In addition to the enhancement in sensitivity, the identi�cation of conjugated observable allows

to generate entanglement between them. We investigate this possibility in the last part of this

thesis.

4.2.4 Application to range-�nding
An application to our projective measurement scheme is space-time positionning, as proposed

in [Lamine 08]. In the perspective of exchanging pulses of light between two observers, it is

possible to determine the delay in time or in space between their time of arrival and a reference.

In our description, it is similar to measuring tϕ and tg.

In the �rst case, one uses the wave-like nature of light and uses interferometry to determine

the o�set between the carriers. The ambiguity range of such a measurement is on the order

of the wavelength. In the second case, one considers the arrival time of the pulses envelope,

leading to an ambiguity range dictated by the spacing between subsequent pulses. Naturally,

combing the two methods leads to a more precise measurement.

In our vocabulary, it means that there exists a mode that combines the phase mode and

the time-of-�ight mode, which presents a higher sensitivity for measuring a global delay (or

displacement).
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4.2.4.1 Existing schemes

Combining interferometric with time-of-�ight measurement is common method in absolute

distance estimation. The �rst experiment from [Chekhovsky 98] uses picosecond pulses in a

time-of-�ight measurement, giving a rough estimation of distance, combined with white-light

interferometry, thus enhancing precision.

As an example of a scheme combining interferometric and time-of-�ight measurement using

femtosecond pulses, we can cite the one proposed by Jun Ye in [Ye 04]. It is based on the fact

that in an interferometer, when a distance di�erence is introduced between the two arms, the

delay in the arrival of the two pulses depends also on the repetition rate of the laser. Moni-

toring the delay as a function of the repetition rate then allows to retrieve the distance. The

�rst estimate on distance is done using a fast detector while higher precision is achieved by

measuring the contrast of the optical fringes. An experimental realization has been done in

[Cui 08]. The precision of this scheme is limited by the timing jitter of the laser source.

This scheme is best suited for use in vacuum since it is sensitive to dispersion. To account

for that e�ect, it is possible to consider the spectral phase accumulated. The distance can be

retrieved by comparing the spectral phase between the reference arm and the target arm of an

interferometer for di�erent wavelengths. It is another application of spectral interferometry

3.1.3.4 to distance estimation [Cui 11]. The precision is however limited by the knowledge of

the environnement parameter in order to compensate for it.

Another scheme derived from dual comb spectroscopy techniques has been demonstrated

in [Coddington 09]. Two frequency combs with slightly di�erent repetition rates are used: one

is sent into an interferometer while the other is used as the local oscillator of an heterodyne

cross-correlation scheme to analyze the output of the interferometer. The pulses from the two

sources are then overlayed at di�erent times. This technique can be seen as down-sampling of

the signals which may be measured using slow detectors and electronics.

Finally, a purely time-of-�ight technique can be mentioned [Kim 08]. It is called a balanced

optical cross-correlator. Pulses coming from a target whose distance we want to determine are

combined with a reference in a nonlinear χ(2)
crystal. A cross-correlation is obtained between

the two pulses by measuring the sum frequency signal out of the crystal. The delay is retrieved

by scanning the repetition rate between the two lasers and identifying zero cross-correlations

signal. This method directly measures the group delay and no knowledge on the dispersives

properties of the propagation medium is required. However, since it is a non-linear process, it

is dependent on the pulses duration.

4.2.4.2 Ultimate limit in sensitivity

We compute the ultimate limits of sensitivity for an interferometric phase measurement or a

time-of-�ight measurement. We consider that light propagates in a weakly dispersive medium

with a refractive index n(ω). Introducing a perturbation of propagation distance δL in the
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signal beam, the phase di�erence between the two �elds writes as

δφ(ω)= ωn(ω)
c

δL (4.43)

We expand this phase, similar to (4.11):

δφ(ω)' δL
c
ω0 n(ω0)+ (ω−ω0)

(
n(ω0)+ω0

∂n
∂ω

∣∣∣∣
ω0

)
≡ω0 tϕ+Ω tg (4.44)

where we neglected the second order dispersion. The time shifts of the carrier tϕ and of the

envelope tg are given by

tϕ = δL
c

n0 = δL
vϕ

(4.45)

tg = δL
c

(
n0 +ω0 n′

0
)= δL

vg
(4.46)

where we introduced the phase and group velocities of light in the medium, and we wrote

derivatives with respect to ω with a prime.

Using the derivation of the previous section, the delayed signal �eld is consequently written

in the Hermite-Gauss basis {vn} as

E(+)
s (Ω)= E0

p
N

(
v0(Ω)+ iω0tϕ ·v0(Ω)+ i∆ωtg ·v1(Ω)

)
= E0

p
N u(Ω) (4.47)

where u(Ω) is the mode of the signal �eld
5
. Performing a projective measurement on iv0

and iv1 will retrieve respectively tϕ and tg, thus giving information on δL with shot-noise

limits given by (4.30). More precisely, the limit in sensitivity for a phase and a time-of-�ight

measurement are written as

(δL)ϕmin =
vϕ

2
p

N ω0
(4.48)

(δL)g
min =

vg

2
p

N∆ω
(4.49)

Since the information on δL is carried by both modes, we can construct another detection

mode corresponding to δL. We compute:

∂u
∂(δL)

∣∣∣∣
δL=0

= i
(
ω0

vϕ
·v0(Ω)+ ∆ω

vg
·v1(Ω)

)
(4.50)

≡
(
ω0

vϕ
·vϕ(Ω)+ ∆ω

vg
·vg(Ω)

)
(4.51)

5
Note that u(Ω) results from a Taylor expansion of a normalized mode. Therefore, it is no longer normalized.
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For measuring δL, the ultimate limit of sensitivity is thus given by

(
δL

)
SQL =

1

2
p

N

1√(
ω0
vϕ

)2 +
(
∆ω
vg

)2
(4.52)

and the detection mode allowing to reach this sensitivity is given by

vδL(Ω)= 1√(
ω0
vϕ

)2 +
(
∆ω
vg

)2

(
ω0

vϕ
·vϕ(Ω)+ ∆ω

vg
·vg(Ω)

)
(4.53)

We see indeed that the detection mode combines the phase mode and the time-of-�ight mode

to yield a more sensitive measurement of δL. The enhancement depends on the properties

of the light source (by its wavelength and bandwidth) and on the properties of the dispersive

medium. In the case of air, the dependency of index with wavelength is negligible such that

vϕ ' vg.

It is then similar to vacuum, where the phase velocities and group velocities of light are

equal. And the detection mode is then given by

vδL(Ω)= 1√
1+

(
∆ω
ω0

)2

(
vϕ(Ω)+ ∆ω

ω0
·vg(Ω)

)
(4.54)

Here, the enhancement is only dependent on the wavelength and bandwidth of the laser. To

make best use of this scheme using a coherent broadband source, the technical limitation to

the enhancement is obtained for single-cycle pulses
6
.

Since this scheme relies on linear interferometry, the pulse duration is not relevant, and

spectrum broadening techniques, such as supercontinuum generation, can be used in order to

increase even more the sensitivity.

Note that the description for a perturbation in mean wavelength and energy given in 4.2.2

may be written such that the amplitude of the �eld is a�ected by the change in wavelength.

Since the parameter δω would appear on both the amplitude and the time-of-�ight mode, a

similar development to the one done here would result in a detection mode to detect δω.

4.2.4.3 Addendum: higher order modes

In the previous treatment, we neglected the in�uence of dispersion. The main reason for that

simpli�cation is mostly technical. Experimentally, it is already di�cult to measure the group

delay term, and accessing the information about group delay dispersion using this scheme

6
A single-cycle pulse can be de�ned as ∆tFWHM = 2π

ω0
[Brabec 97]. For Gaussian pulses, this yields

∆ω
ω0

≈ 0.2.
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is not possible. One would need either a very dispersive material or a very high number of

photons in the signal beam in order to extract the signal above the noise �oor.

However, taking into account the dispersion results in another interesting application of the

projective measurement scheme, that we propose to develop here.

Expanding the phase perturbation (4.43) to the second order yields

δφ(ω)' δL
c

{
ω0 n(ω0)+ (ω−ω0)

(
n(ω0)+ω0

∂n
∂ω

∣∣∣∣
ω0

)
+ (ω−ω0)2

2

(
2
∂n
∂ω

∣∣∣∣
ω0

+ω0
∂2n
∂ω2

∣∣∣∣
ω0

)}
which can be rewritten as

δφ(Ω)=ω0 tϕ+Ω tg +Ω
2

ω0
tGV D (4.55)

with

tGV D =ω0

(
n′

0 +
ω0

2
n′′

0

) δL
c

(4.56)

With the previous treatment, the detection mode for tGV D is given by

vGV D(Ω)= i
1p
3

Ω2

∆ω2 u0(Ω)

= 1p
3

v0(Ω)+
√

2
3

v2(Ω) (4.57)

where the mode of the �eld is written as

u(Ω)= v0(Ω)+ i
(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)+

p
3
∆ω2

ω0
tGV D ·vGV D(Ω)

)
(4.58)

The detection mode for a perturbation of group delay dispersion combines the �rst and

third modes of the Hermite-Gauss basis. It is then clear that this mode is not orthogonal to

the phase mode iv0, but it is orthogonal to the time-of-�ight mode iv1. This mode description

is another derivation to show that a time-of-�ight measurement is insensitive to the e�ect of

group-velocity dispersion. However, performing a measurement using the phase mode will be

contaminated by dispersion. More precisely, it would retrieve

〈
u,vϕ

〉=ω0 tϕ+ ∆ω
2

ω0
tGV D (4.59)
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and a projection on the dispersion mode would yield

〈u,vGV D〉 =
ω0p

3
tϕ+

p
3
∆ω2

ω0
tGV D (4.60)

which would then be contaminated by the pure phase displacement.

The modal decomposition of the �eld allows to de�ne puri�ed modes to measure only one

parameter independently of the other. In the case of GVD, it is straightforward to see that the

puri�ed mode is directly

vp
GV D(Ω)= v2(Ω) (4.61)

The sensitivity of this puri�ed mode is obtained by computing its normalization contant K p
GV D =

KGV D
〈
vp

GV D ,vGV D
〉 =p

2 ∆ω2

ω0
. It is proportional to the constant of the original mode KGV D

by a factor equal to the overlap between the original and the puri�ed modes. The measurement

is thus more accurate but less precise.

Similarly, a puri�ed phase mode vp
ϕ would retrieve only the pure phase information without

the dispersion. It is obtained by orthogonalization as follows:

vp
ϕ(Ω)∝ vϕ(Ω)−〈

vϕ,vGV D
〉 ·vGV D(Ω) (4.62)

After normalization, the puri�ed mode for phase detection is given by

vp
ϕ(Ω)=

√
2
3

v0(Ω)− 1p
3

v2(Ω) (4.63)

The sensitivity for this phase measurement is scaled by K p
ϕ =

√
2
3 ω0, leading to

(
tp
ϕ

)
min =

1

2
p

N
√

2
3 ω0

(4.64)

Comparing to (4.30), we can see that the sensitivity for a phase measurement independent of

dispersion is indeed degraded.

With this treatment, we showed the feasibility to use projective measurements as a mean

to increase the accuracy of a ranging experiment in a dispersive medium at the expense of

precision
7
. It is also possible to add other parameters to the development, thus building another

detection modes basis. Two strategies can then be adopted.

7
We stress that this modal description is another derivation of already existing schemes. For example, the fact

that the time-of-�ight mode is independent of dispersion is another representation of multiwavelengths interfer-

ometry that combines interferometric measurements at di�erent wavelength.
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The �rst one is to use an established model to de�ne the detection modes. In [Jian 12], the

Edlén model is used to characterize the dependency of the index of refraction of air on param-

eters such as pressure, humidity and temperature. It is then possible to construct a variety of

modes that measure the variation of only a single parameter independently of the others.

Otherwise, it seems conceivable to adopt an evolutionary algorithm to build the detection

mode. For example, if one were to dynamically address the projection mode on a ranging

experiment in a dispersive medium, an optimization of that mode could potentially increase

the signal to the optimal.

Obviously, all of these schemes are dependent on the amount of noise in the experiment,

and the ability to distinguish the e�ects of other sources of noise to the �uctuations that we

want to access.

4.3 Space-time coupling: a source of contamination
To conclude, we need to address the in�uence of the transverse pro�le of the �eld in the pro-

jective measurement scheme.

In most of our calculations, we considered that both beams in the interferometers were in

the same spatial mode, such that the overlap integral γρ is unity. When the beams are spatially

multimode, not only does it degrade the signal, it can also cause a contamination on both optical

quadratures. As a consequence, a phase measurement no longer retrieves a pure longitudinal

information, but rather a mixture of longitudinal and transverse displacement.

4.3.1 Transverse displacements
Thanks to the symmetry between the spatial and the temporal description of the electric �eld,

our previous treatment can be applied to the spatial domain. For a more detailed description,

see [Delaubert 07]. For our purpose, we consider spatial perturbation only as displacement and

tilt of the beam relative to a reference, as shown on �gure 4.4.

Reference
Axis Reference

Axis

a) Displacement b) Tilt

Figure 4.4: Representation of simple spatial modi�cations for a Gaussian beam relative to a

reference axis. a) Displacement of the beam. b) Tilt or angular displacement θ.

We write the transverse envelope of the �eld as a(x, z) = α g0(x, z) where we de�ne the

transverse mode as a TEM00 (1.27). In analogy to a displacement in time, we �rst consider that

the beam is displacement along the x axis by a quantity d. The reference is naturally de�ned as
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x = 0. For simplicity, we center the longitudinal coordinate z = 0 at the beam waist. Although

the beam’s displacement does not depend on the longitudinal coordinate, the tilt of the beam

needs to be de�ned around a pivot point, which we will de�ne as the beam’s waist.

The displaced transverse �eld is then expanded as

a(x)'α
(
g0(x)+d · ∂g0

∂x
(x)

)
(4.65)

The information on displacement is carried by
∂g0
∂x , which for TEM modes, is found to be exactly

the TEM01 mode. The displaced �eld then writes as

a(x)'α
(
g0(x)+ d

w0
· g1(x)

)
(4.66)

Note that the amplitude of the displacement is real.

On the other hand, the expression of a beam that is tilted by an angle θ with respect to a

reference reads

a(x)=α g0(xcosθ) eikxsinθ
(4.67)

where k = 2π
λ

is the norm of the wavevector at a wavelength λ. Here, the wavefront is tilted

both in amplitude and in phase. In similar way as previously, we expand this phase considering

that the angle θ is small
8
, and we obtain the tilted �eld:

g(x)=α
(
g0(x)+ ip · xg0(x)

)
with p = 2π

λ
θ (4.68)

The tilt information p is carried again by the mode xg0(x) which is directly proportional to

the TEM01 mode for a TEM00 reference beam. It is carried in the phase quadrature of the �eld.

The expression of the �eld for a beam both displaced and tilted then reads

E(x)= E0α

[
g0(x)+

(
d

w0
+ i

w0 p
2

)
g1(x)

]
(4.69)

which is schematically depicted in �gure 4.5.

It is obvious that, from the point of view of an experimentalist, a change in the position

of a beam can come either from a global displacement and/or from a tilt of the beam. From

equation (4.69), we see that one is distinguishable from another by accessing the amplitude or

the phase quadrature of the TEM01 mode. As in the temporal domain, performing a projective

measurement by projecting the displaced �eld on a local oscillator in the TEM01 mode allows

to retrieve the information.

A displacement or a tilt of the beam can always be seen as a simple displacement in the

detection plane. Hence, to properly distinguish between them experimentally, careful imaging

8
More precisely, the condition writes as λ/w0 ¿ 1.
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Figure 4.5: Representation of a displaced and tilted beam in the transverse plane. The tilt

is represented here by an angle of the wavefront’s plane with respect to a reference. The

information about the displacement and the tilt are both carried by the TEM01 mode, but on

orthogonal optical quadratures.

needs to be achieved. Otherwise, if the detection plane is not at a well-de�ned point in space,

a physical displacement and tilt of the beam translate into di�erent quantities.

The important point is that both amplitude and phase optical quadratures contain informa-

tion on the displacement of the beam. Again, this displacement can be described as photons

being transferred to the TEM01 mode
9
.

If one were to continue the expansion (4.65) up to the second order, it would show that the

TEM02 mode carries information about a change in the waist size in the amplitude quadrature

and a change in the longitudinal waist position in the phase quadrature.

4.3.2 Homodyne contamination
Let us consider that we want to detect a longitudinal displacement in a projective homodyne

detection, as introduced in 4.2.1 and 4.2.4. We consider that whatever mean utilized to generate

the longitudinal displacement in the signal �eld also induces a transverse displacement. We

chose the longitudinal reference z = 0 as the point where the beams are combined. We write

the signal mode as

gs(x)= g0(x)+ (
sd + isp

) · g1(x) (4.70)

We also consider that the transverse mode of the local oscillator is mostly in a TEM00 mode

with a small TEM01 contribution. We write:

gLO(x, z)=µ g0(x, z)+ν g1(x, z)≡µ
(
g0(x, z)+ηg1(x, z)

)
(4.71)

with

∣∣µ∣∣2 +|ν|2 = 1, ν¿ 1 and η= ν
µ
¿ 1.

Since we did not specify the pivot point for the tilt, we simply write the two displacement

parameters as sd and sp, as way to identify the optical quadrature. Note that these correspond

9
The displacement and tilt of the beam also correspond to conjugated observables in a quantum

description[Delaubert 06].
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in the general case to a mixture of displacement and tilt. In our experiment, we did not carefully

image the displacement, therefore it is not possible to infer whether or not the information on

the spatial amplitude and phase quadrature originate from displacement or tilt.

Computing the spatial overlap integral, as de�ned in (3.9), we then obtain

γρ =µ
(
1+η(

sd − isp
))

(4.72)

where we remind that µ ' 1 and η¿ 110
. In the following, we remove the dependency on µ

since it is close to unity, and does not add anything relevant.

We remind that the spectral envelope of the signal �eld is written in the Hermite-Gauss basis

as

us(Ω)= v0(Ω)+ i
(
ω0 tϕ ·v0(Ω)+∆ω tg ·v1(Ω)

)
(4.73)

The signal �eld is then found to be in the following spatio-temporal mode:

us(Ω) · gs(x)= v0(Ω)
[
g0(x)+ (

sd −ω0tϕsp
) · g1(x)

]
(4.74)

+iv0(Ω)
[
ω0tϕ · g0(x)+ (

sp +ω0tϕsd
) · g1(x)

]
− v1(Ω)∆ωtgsp · g1(x)

+iv1(Ω)
[
∆ωtg · g0(x)+∆ωtgsd g1(x)

]
We can see that the amplitude and phase quadratures of the signal �eld now contain both

temporal and spatial parameters. By neglecting second order terms (i.e. terms similar to tϕsd
which are supposed to be small), we compute the overlap between the signal �eld (4.73) and

the spatial part of the local oscillator (4.71):

us(Ω) ·γρ = v0(Ω) ·
[
1+η sd

]
(4.75)

+iv0(Ω) ·
[
ω0tϕ+η sp

]
+iv1(Ω) ·∆ωtg

It is now clear from (4.75) that performing a projective measurement on the mode iv0 attached

to a phase measurement will not retrieve only a information on a longitudinal displacement.

The measurement is then contaminated by the spatial displacement, depending on how much

TEM01 component there is in the local oscillator beam.

For no TEM01 contribution in the local oscillator (η= 0), as before, we retrieve either tϕ or

tg by projecting on respectively the phase mode iv0 and the time-of-�ight mode iv1. However,

when η 6= 0, projecting on the phase mode retrieves

I− ∝ η sp +ω0tϕ (4.76)

10
Note also that sd and sp are real quantities.
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Even though η is supposed to be small, for a precision measurement, the contamination can

become signi�cant. In the time domain, this spatial e�ect can be seen as an additional delay of

the carrier.

Interestingly enough, projecting on the time-of-�ight mode does not retrieve any spatial

information (at the �rst order). This mode will retrieve purely a timing information, indepen-

dently on the amount of spatial displacement.

Since we interest ourselves into the ultimate limits in the sensitivity to measure a purely

longitudinal displacement, these spatial e�ects can a�ect the result. It is therefore of utmost

importance to control the transverse displacement of the beam in our sensitivity measure-

ments.



5 Measuring the multimode �eld

“The starting point is to do just a simple time measurement.”
– Nicolas “The Boss” Treps
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In this chapter, we present the main results of the parameter estimation experiment. It is

in the continuity of the range-�nding experiment done by Pu Jian during her PhD [Jian 14].

Back then, the main experimental setup was built, and the goal was to show the application

of projective measurements to parameter estimation, and in particular to range-�nding. The

ultimate objective was to use di�erent modes to measure di�erent parameters that are encoded

into the beam of light. For example, one can assign di�erent modes sensitive to a variety of

97
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di�erent physical e�ects that arise due to propagation through a dispersive medium [Jian 12].

The proof-of-principle experiment was realized using a pulse-shaper to create a local oscil-

lator mode that shows di�erent sensitivities to a path di�erence between the two arms of the

interferometer. It relied on a careful calibration of this displacement. The next step was to use

projective measurements to di�erentiate between a displacement in free-space or in vacuum,

i.e. to di�erentiate between a di�erence in true path or in optical path.

In the work that we present here, the main objective remains, but we had to make di�erent

choices on the experimental side. A lot of the original ideas proved di�cult to implement, and

the parameters that we wanted to access ended up being too small to be measured with good

con�dence. Moreover, the spatial contamination described in (4.3) proved to be signi�cant,

even though the spatial overlap seemed su�ciently high. In this section, we therefore settle to

show the following points:

• Using the mean-�eld mode, we measure the sensitivity of a Mach-Zehdner interferome-

ter, and we show that it coincides with the Cramér-Rao bound for coherent states (4.30).

This calibration is done in an absolute manner, without assuming anything about the

losses in the measurement process.

• Making use of a spectrally resolved homodyne detection, we show that the multimode

structure of the �eld is accessible with a single shot measurement, and that we can there-

fore do a post-facto projective measurement.

• We apply this experimental scheme to the original range-�nding experiment, and derive

the sensitivity of a mode attached to a displacement in phase, a displacement in the

envelope, and �nally we show that the ultimate sensitivity is attained using the detection

mode. We then measure the same parameter with di�erent modes, resulting in di�erent

sensitivities.

• Finally, we show that one can e�ectively measure di�erent parameters using di�erent

projection modes. Using a spectral and time-resolved homodyne detection, we measure

the di�erence in optical path between two arms of the interferometers when a heavily

dispersive material is introduced.

5.1 Experimental details
As we hinted in the introduction, the whole experiment proved to be more di�cult than �rst

expected. It eventually grew more and more in complexity in order to show even the simplest

results with reproducibility and con�dence. For example, the spatial contamination required

the experiment to be adapted to the new constraints rather than being entirely rebuilt.

In this section, we outline details on the experimental scheme, the way it is constructed and

the way the information is measured.
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5.1.1 Measurement strategy
To summarize, we want to measure the parameters outlined in section 4.2 using a projective

measurement scheme. Ideally, we would like this measurement to be quantum-limited since

we are interested in the ultimate limits in sensitivity. These limits are only achieved when

the only noise present in the light source is the �uctuations of quantum vacuum (i.e. σ= 1 in

equation (4.9)).

In a homodyne con�guration scheme, the noise of importance in the measurement is the

amplitude noise. Indeed, since the two arms of the interferometer comes from the same source,

the phase noise does not come into play.

To determine the frequency at which the laser source is shot-noise limited in amplitude, a

standard measurement is a balanced detection. It consists in splitting equally on a beamsplitter

the �eld and measure the power spectral density of the noise with two balanced diodes. Taking

the sum of the photocurrents yields the classical noise of the original beam, whereas taking

the di�erence yields the shot noise. Indeed, since any classical noise subtracts when taking

the di�erence, what remains is the quantum nature of light. The result, using a homebuilt

photodetector, is shown on �gure 5.1.
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Figure 5.1: Balanced detection and resulting noise traces. The sum gives the amplitude noise,

di�erence gives the shot noise. The laser source is shown to be shot-noise limited in amplitude

at 2 MHz.

On this plot, we show the amplitude noise, the shot noise and the dark noise of the detector.

The amount of light on the detector is on the order of 200 µW, and the noise level is given in

Decibel-Carrier dBc, i.e. the noise level relative to the power contained in the optical carrier.

We can see that the amplitude noise is at the same level than the shot noise at around 2 MHz.

We also added the dark noise of the detection to con�rm that the clearance is high enough to

assert the shot noise level.

This shows that, in order to perform a quantum limited measurement, we need to measure

the parameters at a frequency around 2 MHz. The homodyne signal is then retrieved either

using a spectrum analyzer or by demodulation, as described in section 3.2.2.
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5.1.2 Phase modulation at high frequencies
We then need to achieve a modulation of the optical path at 2 MHz. A standard way to do so

is to use an electro-optic modulator (EOM), which is able to deliver a strong phase modulation

at high frequency. Rather than modulating the optical path, such a device modulates the index

of refraction of the propagating medium, thus creating a phase shift. Although it results in

considerable depth of modulation, for our purposes of multimode parameter estimation, it may

not be the best choice.

By applying a strong electric �eld Eext to a crystal, the linear Pockels e�ect induces a change

∆n in the refractive index. The change in phase is then found to be written as

∆φ(ω)= ω

c
∆n(ω) (5.1)

where ∆n(ω) is de�ned as [Boyd 03]:

∆n(ω)= 1
2

n3(ω) r33 Eext (5.2)

The phase modulation is then proportional to the cube of the index of refraction of the medium

and to the appropriate element of the electro-optic tensor r33 (which can be de�ned as a func-

tion of χ(2)
). Even though this phase shift may be rewritten as a longitudinal displacement, it

is not as straightforward as physically delaying the pulse.

For example, if we want to measure the ultimate sensitivity for a distance or a delay using

our scheme, that is, using the detection mode de�ned in section 4.2.4.2, the description of

the phase and group velocities is then entirely dependent on the model described by (5.1). In

particular, the type of crystal and its composition needs to be known (which consist usually of

doped materials to achieve a strong phase displacement) with precision, and the dependency

of the electro-optic tensor with the wavelength should also be taken into account. Moreover,

the polarization needs to be carefully set to avoid unwanted amplitude modulations.

Hence, to generate a displacement at high frequency, we settled for the most straightforward

method which consists of physically displacing a mirror. This is best achieved by mounting a

mirror on a piezoelectric actuator at zero incidence with the beam, as shown on �gure 5.2. By

applying a voltage to the actuator, its ceramic material expands or contracts, thus displacing

the beam.

This apparatus generates a true displacement that is straightforward to understand, but it

does have some drawbacks too.

• First, to generate a pure longitudinal displacement, one has to make sure that the mirror

is perfectly normal to the incident beam, which is not an easy feature to achieve. This will

inevitably displace the beam in the transverse plan, leading to the unwanted coupling

described in section 4.3.
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Figure 5.2: Experimental scheme for modulating the delay between the two arms of the inter-

ferometer.

• Though a piezoelectric actuator is supposed to expand and contract longitudinally, there

is no guarantee that it does not move in the transverse plane. Indeed, in [PI 14], it is

shown that piezoelectric stacks possess other vibration modes than longitudinal. The

amount of excitation of these unwanted modes depends largely on how the resonator is

mounted. The resonator consists of the association of the mirror, the actuator and the

mount. Di�erent mounting strategies can be adopted to insure a better stability, such as

a strong, stable mount [Briles 10], or a lateral clamping of the actuator [Chadi 13].

• Applications of a piezo is best suited for low frequencies. When high voltage is applied,

a displacement on the order of 1 µm is achievable. However, at high frequencies, the re-

sponse is severely reduced. For sensitivity measurements, this limit does not matter since

even a small displacement may be su�cient. Nevertheless, the response can be erratic,

and the linearity of displacement with the applied voltage needs to be experimentally

veri�ed.

Therefore, a mirror mounted on a piezo actuator induces a change in both the longitudinal and

the transverse planes. These displacements happen at the same modulation frequency, such

that it is not straightforward to distinguish between a pure phase modulation (i.e. a change in

propagation) to a transverse displacement. Moreover, with a high enough sensitivity (which is

the case in the scope of this thesis), an amplitude modulation can be observed simply because

the angle of incidence of the beam on optics is being modulated [Ivanov 03]. Albeit small, this

e�ect is not negligible in our applications.

To evaluate our experimental scheme, we modulated the phase of the signal �eld using dif-

ferent elements and measured the signal on both optical quadratures. We also measured the
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spatial displacement. The experimental scheme for these measurements is outlined on �gure

5.3.

Razor blade

Amplitude Phase

Phase modulation
at        

Figure 5.3: Experimental scheme to measure the amount of phase, amplitude and spatial mod-

ulations. The amplitude response is obtained by removing the razor blade. Note that the photon

number needs to be equal in each measurement in order to be consistent. Also, the signal at

the output of the mixer goes through a 15 kHz �rst order low-pass �lter before collecting the

data.

The phase quadrature information was retrieved using a homodyne detection with the rel-

ative phase between the signal and LO locked on π/2. Note that this measurement is done

without any mode construction, so the projection mode is simply the mean-�eld mode, which

is best suited for a phase detection. The amplitude quadrature was obtained with a single diode

with the same optical power than in the homodyne case. The spatial information was obtained

by adding a sharp razor blade in the beam. The blade is moved in the beam until half the power

is blocked. It then gives information on how much the beam is being displaced (but does not

distinguish displacement or tilt without proper imaging). This was done for both x and y di-

rections. We then took this data set for a range of modulation frequencies around 2 MHz. The

data was acquired by demodulating each signal
1
. Note that since the modulation of the �eld is

small, the output of the photodiode needs to be ampli�ed before the mixing procedure. This is

achieved with a low noise ampli�er ZFL-1000LN from Mini-circuits.

On �gure 5.4, we plotted the detected signals for these cases when a piezoelectric actuator

is being modulated.

We can see on this plot that the phase quadrature (i.e. the homodyne signal) yields the higher

stsignal. It is also noticeable that the response is not �at with respect to modulation frequency.

This is to be expected for any resonator, which will show resonances. The signal on the am-

plitude quadrature is lower by at least two orders of magnitude, which is quite small but it

1
The demodulation phase (i.e. electronic quadrature) was set such that the retrieved signal is maximal.
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Figure 5.4: Power spectral density obtained by demodulation of the amplitude and phase

optical quadratures for a piezoelectric actuator (Physik Instrumente, PL055.30).

can be measured without any di�culty. It means that, in an homodyne detection scheme, if

the relative phase between the two arms is not set perfectly for a phase quadrature measure-

ment, not only is there a loss of signal, we would also retrieve information from the amplitude

quadrature.

More surprising is the amount of spatial modulation that is present. Note that these traces

are corrected from the amount of amplitude modulation since it should appear on all mea-

surements. Both axis show a signal level that is only one order of magnitude lower than the

homodyne signal, which is not negligible. We can see that the transverse and longitudinal

displacements are structured, which is yet another witness of resonances. However, the re-

lationship between the phase quadrature structure and the transverse displacement does not

appear to be trivial: for example, there is a clear resonance at 2.03 MHz for the phase quadra-

ture which does not appear on both spatial signals.

We add that similar measurements were done for di�erent types of piezo actuators, which

showed very di�erent responses. The one that was eventually chosen and plotted on �gure

5.4 showed the lowest transverse modulation. We also characterized di�erent EOMs the same

way. Though the phase modulation is much �atter with frequency, it isn’t exempt of amplitude

or transverse modulation, as shown on �gure 5.5. This is a con�rmation that an electro-optic

modulator is not a perfect phase modulator either.

We conclude that getting a purely longitudinal displacement required a very careful control

of both imaging and the way the displacement is generated. We opted for a spatial �ltering

technique to remove the transverse displacement rather than try to generate a pure phase

modulation.

5.1.3 Spatial �ltering
The analysis of the previous section and the theoretical analysis of 4.3 shows that the transverse

displacement is a real e�ect that comes into play in our experimental scheme.

In order to be con�dent in the fact that no spatial contamination remains, the best option

would be to ensure a perfect TEM00 mode in the local oscillator arm. A possible way to do
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Figure 5.5: Power spectral density obtained by demodulation of the amplitude and phase

optical quadratures for an electro-optic modulator (resonant, but operated at a frequency far

from resonance).

so is to build a Fabry-Pérot cavity in this arm, which acts as a spatial �lter. However, it is a

cumbersome solution in ultrafast optics, since this cavity would need to match the laser’s cavity

(especially in length) in order to transmit the entire the spectrum. It also adds complexity to

the experimental setup with the need of an active lock.

We then opted for a single-mode �ber, which also acts as a spatial �lter, but can prove to be

cumbersome. In particular, these are quite dispersive, and would need to be compensated. One

solution would be to put �bers on both arms of the interferometer and use the pulse-shaper to

�ne tune the relative phase.

As we pointed in section 3.3.2, in a homodyne measurement, once the beams are combined,

no linear element can a�ect the information contained in the interference pattern. Therefore,

it is convenient to put the �lter �ber at the output of the beamsplitter, where the dispersion

does not matter anymore, as depicted by �gure 5.6. Doing so, we noticed a consequent increase

in the contrast of the interference fringes. By introducing a narrow bandpass �lter of 1.5 nm

FWHM, the temporal overlap integral can be considered as being unity, such that the mea-

sured contrast depends only on the spatial coherence. Without spatial �ltering, we measured

a contrast of 92%, whereas with a single-mode �ber, we measured a contrast close to 100%.

This allows us to consider that both beams are in the same spatial mode (de�ned by the

�ber), such that no contamination of the homodyne signal can come from transverse e�ects.

Note that these unwanted spatial modulations on the phase quadrature at the input of the �ber

are however pushed into the amplitude quadrature at the output. Therefore, the lock of the

relative phase between the two arms of the interferometer still needs to be set with care.

5.2 Interferometer calibration
Before proceeding to multimode parameter estimation, we need to calibrate the phase mod-

ulation. Simply put, one needs to be able to relate what is measured to physical quantities.

We restrict our calibration to the case of a mirror mounted on a piezo actuator, but the same
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Figure 5.6: Spatial �ltering scheme for homodyne detection. SF: single-mode �ber.

strategy can be applied to an EOM.

What is being measured at the output of the homodyne detection is an optical phase, and

we would like to relate it to a longitudinal displacement. For large displacements (i.e. on the

order of the optical wavelength), the phase shift can be observed from the interference fringes,

and therefore be measured with a good precision. However, at high modulation frequency,

the response is very diminished and the resulting longitudinal displacement is much smaller

than the optical wavelength. Hence, it may not directly be measured. Extrapolating from a

calibration obtained from a large displacement is conditioned by the linearity of both the piezo

element and the electronics that are used.

A possible strategy is to use a quadrant detector which allows to detect small displacements

[Treps 03]. We place the actuator at a 45◦
angle and measure the transverse displacement.

However, relating the measured signal to an actual longitudinal displacement requires a knowl-

edge of the distances and the geometry of the optical layout. The precision on the calibration

is then dependent on the ability to measure distances on the optical table. Such a calibration,

albeit precise and simple to execute, is thus not done in an absolute manner. It also requires

to move the mirror at a di�erent place, and the calibration is not done with the same optical

scheme than the measurement.

In [Roslund 15], we propose a methodology to enable an absolute measurement of a sub-

wavelength longitudinal displacement introduced by a piezo-electric actuator. It is based on

the fact that all the information on the displacement is contained within the relative strength

of the various harmonics that arise due to the phase modulation. This method does not require

any assumption regarding the nature of the light source.

With the calibration in hand, it is straightforward to estimate the limit of sensitivity of the

interferometer given by (4.10). Usually, the ultimate limit of detection (which scales with
1p
N

)

is estimated by measuring the optical power contained in the signal �eld[Verlot 09]. Doing so

necessitate to know the responsivity of the photodiode and also to precisely measure all the

�eld quantities that de�ne the detection limit such as the fringes contrast for mode-matching.
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The method that we propose here does not require any of this knowledge.

5.2.1 Calibration of displacement

5.2.1.1 Methodology

We begin by considering that the signal �eld is phase modulated. Under the assumption that

the phase modulation is linear with the voltage applied to the piezo element, we write the

optical phase as

φmod = k ·n ·d(V ) ·sin[ΩRF t] (5.3)

where k = 2π
λ

is the �eld’s wavenumber, n is the index of refraction of air, d(V ) is the longi-

tudinal displacement that we need to determine, and ΩRF is the modulation frequency. The

signal �eld is consequently written as

E(+)
sig(x, t)= E0αs ws(x, t) eiφmod

(5.4)

where we set αs as a real quantity. Therefore, the homodyne signal (3.8) writes as

I− = 2
√

NLO Γc ·αs cos
[
φ0 +φmod

]
(5.5)

where Γc is the coherence between the two �elds and φ0 is the phase of the local oscillator.

We remind that the responsivity of the detector is contained implicitly in the de�nition of the

photocurrent. Note also that this measurement is done with no mode construction: the mode

in the signal �eld is supposed to be similar to the mode in the local oscillator �eld, i.e. the

mean-�eld mode. Any mismatch in amplitude or in phase between the �elds is contained in

the coherence Γc.

For a displacement smaller than the optical wavelength kḋ ¿ 1, the homodyne signal may

be expanded on a Bessel function basis. It yields:

I− ' 2
√

NLO Γc ·αs
[
J0(k n d) cosφ0 (5.6)

−2J1(k n d)sinφ0 sin[ΩRF t]+2 J2(k n d)cosφ0 cos[2ΩRF t]+ . . .
]

We can see that the signal at the fundamental frequency ΩRF is maximal for a relative phase

o�set between the two �elds φ0 = π
2 . It means that the LO needs to be overlapped with the

phase quadrature of the signal �eld.

The amplitude quadrature of the �eld contains a DC term which corresponds to the energy

in the two �elds and the second harmonic of the modulation, which contains information about

the longitudinal displacement d.

At an analysis frequency where the only noise present arises from �uctuations of quantum

vacuum, the noise in the detection is given from (4.7) with σ= 1:

∆I− =
√

NLO (5.7)
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which allows to write the signal to noise ratio as

Σ= 2Γc ·αs
[
J0(k n d) cosφ0 (5.8)

−2J1(k n d)sinφ0 sin[ΩRF t]+2 J2(k n d)cosφ0 cos[2ΩRF t]+ . . .
]

≡Σ(0) +Σ(1) +Σ(2)

This expression shows that the signal-to-noise shows di�erent harmonics which depend on

the energy contained in the signal �eld.

By computing the ratio of the �rst and second harmonic, we have

Σ(2)

Σ(1) =
∣∣∣∣ J2(k n d)
J1(k n d)

∣∣∣∣' k n d
4

(5.9)

which is independent on the energy in the signal �eld and varies linearly with the optical

displacement d.

Therefore, the relative strength of the harmonics of the signal-to-noise ratio is linearly re-

lated to the displacement, which enables a direct calibration.

5.2.1.2 Experimental procedure

To retrieve the displacement d(V ) as a function of the applied voltage V , we then need to

measure the power of the �rst and second harmonics of the signal-to-noise ratio for di�erent

voltages.

Measuring the �rst harmonic is straightforward. We set the interferometer in homodyne

con�guration by setting approximately 10 times more power in the local oscillator arm than

in the signal arm (as to be insensitive to the noise in the local oscillator, as it was discussed

in section 3.3.1). The output of both photodiodes are split at 10 kHz using a biased-tee. This

allows to separate the DC to the high frequency components of (5.8).

On �gure 5.7, we plot the DC term and the demodulated �rst harmonic of equation (5.8).

Using the scheme introduced by �gure 3.10, we sweep the relative phase between the two arms

of the interferometer while retrieving simultaneously the DC fringes and we demodulated the

�rst harmonic
2
. We see that both are in quadrature, such that the DC may be used as an

error signal to lock the delay. When the DC term is zero, the signal from the �rst harmonic is

maximal. This allows to pinpoint the phase quadrature with a good precision.

We drive the piezo-electric actuator
3

at a frequency of 2 MHz and we ramp the voltage from

0 to 10 V using a function generator. Note that this signal is not ampli�ed, which guarantees

that the electric signal that is sent to the piezo element is linear. The relative phase φ0 is locked

on the phase quadrature using a PI lockbox Newfocus LB1005.

2
The relative amplitude of these two traces is not meaningful in this plot since we normalized them to 1.

3
We stress that this method does not only calibrate a displacement: it may more generally be utilized to

calibrate a phase o�set. It can thus be used to calibrate the response of an electro-optic modulator using the same

scheme.
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Figure 5.7: Retrieved traces at the output of the interferometer when sweeping the relative

phase between the two arms. Dashed: DC signal of a single photodiode. Straight: Demodu-

lation of the �rst harmonic for a phase modulation. Note that the two signals are in perfect

quadrature.

To measure the second harmonic, we need to lock the relative phase on the amplitude

quadrature. To do so, we utilize the demodulated signal of the �rst harmonic, which is in

quadrature with the DC fringes. This demodulated signal then provides the error signal to

lock on the amplitude quadrature.

Therefore, using this signal, it is possible to lock the interferometer on the amplitude quadra-

ture and measure the power contained in the second harmonic. This is achieved by adding

another modulating element to the interferometer (such as another piezo-electric actuator or

an EOM). It is modulated at a di�erent RF frequency such that it does not in�uence the mod-

ulation of the �rst one, and used to generate the error signal. That way, the locking apparatus

is di�erent from the one that we measure.

Note also that the strength of the second harmonic is much lower than the fundamental. It

is therefore necessary to have both a strong phase modulation and a detection with a low noise

�oor in order to measure this amplitude modulation. Therefore, we use a spectrum analyzer

for this calibration. Demodulation is used only to lock on the amplitude quadrature.

We add that an ultrafast source is not required for this calibration procedure.

5.2.1.3 Results

To compute the signal-to-noise using a spectrum analyzer, we need to consider how the noise

is retrieved.

On a general manner, we can write the measurement M(t) as a sum of signal S(t) and noise

N(t): M(t) = S(t)+N(t). Computing the PSD from (3.34) yields M2( f ) = S2( f )+N2( f ) in the

absence of correlation between signal and noise. The signal-to-noise ratio is then simply given
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Figure 5.8: Phase modulation harmonics observed in the homodyne signal as a function of the

voltage applied to the piezo-electric actuator. The fundamental harmonic (a) grows linearly

with displacement, whereas the second harmonic (b) grows quadratically. The ratio (c) of the

two signal-to-noise shows a linear response to the displacement, and allows to retrieve the

calibration.

by

S
N

( f )≡Σ( f )=
√√√√(

M
N

( f )
)2

−1 (5.10)

Therefore, we need to measure the signal SI−( fRF ) at the fRF frequency given by (3.33) and the

noise in the measurement by measuring the homodyne signal in the absence of a modulation.

The signal-to-noise is then computed using (5.10).

The evolution of the amplitude of both the fundamental and second harmonic peaks are

depicted on �gure 5.8a and b as a function of the applied voltage.

We can see that the �rst harmonic grows linearly for small values of the displacement (in

agreement with J1(d) ' d
2 ). This also con�rms our assumption that the modulating element

responds linearly to voltage on the investigated range.

The growth of the second harmonic is considerably smaller and scales quadratically with

displacement (in agreement with J2(d) ' d2

8 ). Both those signals are dependent on the power

contained in the signal �eld, as shown by (5.8).

The ratio of the two harmonics depicted by 5.8c, however, is independent on the strength

of the signal �eld. As expected, the ratio grows linearly with displacement, and a linear �t

according to (5.9) retrieves an optical displacement of

d(V )= 0.55±0.01 Å
/

Volt (5.11)

for a center wavelength λ= 2π
k = 795 nm. Since the experiment was done in laboratory air, we

set the index of refraction n = 1. The calibration was achieved at 1.95 MHz.
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Figure 5.9: Time-averaged displacement sensitivity of the mirror-mounted piezo actuator. The

displacement at which the signal-to-noise is equal to 1 is found to be dmin = 5.0 ± 0.1 ·10−14

m. The integration time is 9 ms which amount to ∼ 1012
photons.

5.2.2 Sensitivity measurement
With the calibration in hand, it is then possible to estimate the sensitivity of the interferom-

eter to a phase measurement. We again lock the relative phase on the phase quadrature and

ramp the voltage as in 5.8a, albeit over a reduced range. This is achieved with a 42 dB electric

attenuator at the output of the function generator. The scan result is shown on �gure 5.9.

The smallest amplitude dmin that is measurable occurs for a modulation amplitude that is

equal to the background quantum noise, i.e. Σ(1) = 1.0. We �nd that the minimum sensitivity

is dmin = 5.0± 0.1·10−14
m. The retrieved signal results from collecting photons within a time

interval corresponding to a resolution bandwidth of ∆νRBW = 50 Hz. After renormalization by

the resolution bandwidth, the minimum detectable longitudinal displacement becomes

dmin = 7.0±0.1 ·10−15
m

/p
Hz (5.12)

We want to compare this value to the one predicted by the Cramér-Rao bound for phase esti-

mation. Using (4.30), it is given by

dSQL
min =

λ0

4π
p

N
(5.13)

where λ0 is the center wavelength of the light. We then need to evaluate the number of photons

that are detected during the calibration.

As we hinted in the introduction to this section, estimating the photon number necessitates

to take into account the quantum e�ciency of the detector as well as the fringe contrast. For

detectors PDA36A from Thorlabs, the responsivity at 795 nm is R = 0.5 A/W, leading to a

quantum e�ciency of η= 78%.

The contrast of the optical fringes that we measured is C = 51%. This allows to compute the

coherence of the �eld using (3.14). The DC output of the detectors shows a voltage of 0.365 V
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in the signal beam and 4.13 V in the local oscillator �eld. We therefore estimate a coherence

of Γc ≈ 94%.

Moreover, we need to estimate the acquisition time of the spectrum analyzer. Since it utilizes

a Gaussian �lter, the acquisition window is opened for a time ∆t that can be calculated from

the time-bandwidth product of the �lter. Namely, we have ∆t∆νRBW = 0.44 where ∆νRBW
corresponds to the resolution bandwidth of the apparatus. We then estimate the width of the

time window to be ∆t = 9 ms.

The number of detected photons during the time ∆t is therefore given by

N = η ·Γ2
c ·

Ps

~ω0
·∆t (5.14)

where Ps = 115 µW is the power in the signal �eld. We then estimate N ' 2.7 ·1012
photons.

Plugging the detected number of photons into the theoretical detection limit (5.13) and nor-

malizing by the resolution bandwidth then yields

dSQL
min = 5.5 ·10−15

m

/p
Hz (5.15)

Thus, the experimentally recovered sensitivity is in fair agreement with the one estimated from

the standard quantum limit

(
dmin

/
dSQL
min ' 1.27

)
.

We stress that the observed displacement is a time-average over the detection time in the

millisecond scale. This measurement does not resolve an absolute variation on an ultrafast

timescale. Also, we add that the retrieved sensitivity is very dependent on the purity of the

phase modulation. Indeed, if the retrieved signal contains a mixture of longitudinal and trans-

verse displacement (that we’ve seen in section 4.3.1 can lie in the phase quadrature of the �eld),

the measured sensitivity won’t coincide with the Cramér-Rao bound anymore.

Still, it is quite remarkable that the retrieved sensitivity is in very good agreement with the

theoretical expectation.

5.3 Multipixel detection
Having a way to calibrate the longitudinal displacement with a good precision, we may now

move on to extracting parameters from the �eld using a modal approach. Toward that aim, we

�rst need to develop the design and construction of the multipixel detection.

5.3.1 Design and construction

5.3.1.1 Optical and electrical design

The multipixel homodyne detection of �gure 3.8 is put instead of the second homodyne detec-

tion on �gure 3.10. The two beams are focussed on two plane-ruled gratings (RG-1200-1000
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from Newport) which are then imaged on microlenses arrays. These allow to precisely focus

the spectral slices on each pixel of the detector array without any gaps
4
. This optical layout is

shown on �gure 5.10.

Figure 5.10: Picture of the multipixel homodyne detection. The beams are schematically over-

layed. The left detector is at a noticeable angle in the beam because of the way the photodiode

array is clamped. Both di�racted beams are actually at zero incidence on the arrays to maxi-

mize e�ciency.

We chose a mirror-symmetry for the construction of both detectors for an easier alignment.

To ensure a proper alignment, we aligned carefully the di�raction grating as not to introduce

any tilt in the di�racted beams.

Each detector and each microlenses array are mounted on lateral translation stages, which

is very important for alignement. There is no need for a longitudinal translation stage on the

detectors.

The photodiodes array, built by Hamamatsu, are composed of 16 Si photodiodes with a

quantum e�ciency of 90%. They are plugged into a self-built motherboard. Each pixel is con-

nected to a transimpedance ampli�er which split the signal into a DC and high-frequency part

(cuto� frequency of ∼ 200 kHz). The gain of the ampli�er may be adjusted using a potentiome-

ter. It allows to calibrate the gain of each pixel.

On the left side of picture 5.10, we can see the demodulation electronics. For simplicity,

we operated the detection with 8 pixels, plugging only every other pixels. Each HF signal is

4
Though not mandatory, this focussing increases the signal for quantum application, when detecting squeezed

vacuum. In our case, we noticed inconsistent signals at high frequency when the light is being di�racted on the

border of pixels. We therefore opted for the additional microlenses array.
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demodulated. The path starts with taking the di�erence of the photocurrents of both detectors

(with a passive subtractor ZFSC-2-1 fromMini-circuits), and a 20 kHz high-pass �lter is added

to ensure no saturation of the demodulation electronics. The di�erence signal is subsequently

ampli�ed and mixed with the electronic local oscillator. The output of the mixer is then low-

pass �ltered with a 15 kHz bandwidth. This scheme is identical for all the 16 pixels that result

in the 8 signals. These are digitalized using an acquisition card PCIe-6361 from National

Instrument. This card can acquire 16 channels simultaneously at an acquisition rate of 2
MHz

5
. The analogical signals from the demodulation are acquired using a BNC connector

block BNC-2110.

The DC output of the photodiodes are connected into another connector block BNC-2111

which allows for the acquisition of 16 simultaneous signals. As we will see, the acquisition

of all of the DC allows to precisely align the detection, and serves as a good reference before

starting a measurement.

We also take two DC signals from the center pixels of each detectors to lock the delay be-

tween the arms of the interferometer (by taking the di�erence to generate an error signal, see

�gure 5.7).

The data acquisition is then accomplished using Labview.

5.3.1.2 Alignement procedure

Once the optical layout is set, we need to carefully align the detection. When constructing a

homodyne detection, it is necessary to ensure that the photons are distributed equally between

the two outputs of the combining beamsplitter. This is required to nullify the energy terms of

signal and LO �eld in (3.4) when taking the di�erence of the photocurrents. Failing to do so

would result in an unbalanced detection where the noise from the local oscillator remains.

When using two detectors, this is achieved by �ne-tuning the angle on the beamsplitter until

the energy detected by both detector is equal
6
. However, since this scheme integrates over the

full optical spectrum, it does not ensure that every part of the spectrum is perfectly balanced.

To balance the power on the multipixel detection, we �rst con�rmed that each DC output of

the detector was balanced, i.e. that the same voltage was read for the same optical power. This

was accomplished by using the pulse-shaper as an interference �lter, selecting a very narrow

spectral slice centered at 795 nm, and using the translation stages to move each pixel in the

beam. Therefore, we were able to con�rm that each DC were balanced and could be used as a

reference.

We then maximized the sum of the DC voltages of each detector by �ne-tuning the posi-

tion of the microlenses array. Then, by summing the signal received by both detectors (thus

computing the total received), we balanced the beamsplitter by tuning its angle.

Eventually, we need to �nd a way to ensure that the power in each spectral slice rather than

the total power is balanced. By monitoring every DC simultaneously, we compared the power

5
For a single channel, thus, the simultaneous acquisition rate for 8 pixels is limited to 250 kHz per channel.

6
Since the stronger beam is the local oscillator, this procedure is accomplished using this beam only.
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Figure 5.11: Acquisition of the DC signal of signal and local oscillator �elds for a single de-

tector. Each points represents a pixel of the detector.

pixel by pixel. By playing with the lateral position of both detectors and microlenses arrays,

we are able to overlap the two spectra perfectly
7
.

However, this procedure does not ensure that the signal �eld is also balanced. It has been

previously observed and con�rmed in this experiment. It is believed to originate from polariza-

tion imbalance between the two �elds. Fortunately, this has no e�ect on the �nal measurement,

since the signal �eld is weaker than the local oscillator. It does however come into play for lock-

ing the relative phase. Indeed, since we use the di�erence of the DC (which is proportional to

power), the proper lock point is thus not de�ned as being exactly zero. The o�set can be deter-

mined by measuring the imbalance of the signal �eld. Albeit small, this di�erence is enough

to considerably change the outcome in a sensitive measurement.

The mismatch between the signal and local oscillator spectra is shown on �gure 5.11. This

particular e�ect is important for modes construction and needs to be accounted for.

5.3.2 Gain calibration
Now that the power received by both detector is balanced, we move on to the gain calibration

procedure.

As it was described in 5.3.1.1, the high frequency output of the detectors have a variable gain

that may be tuned. This is important to ensure that the retrieved signal is equal on all pixel for

the same optical power. We therefore need to balance the gain of all pixels of a single detector,

but we also need to balance both detectors. If they are not balanced, the situation is equivalent

to an unbalanced beamsplitter.

To calibrate the gain, we again use the pulse shaper as an interference �lter, allowing to

7
Note that this overlapping procedure is easier with short spectra. Large bandwidth means that the uncertainty

in the re�ectivity of all optics gets more noticeable.
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focus a �xed amount of power on a single pixel. A possible strategy from there is to record the

variance of the demodulated signal at a quantum limited frequency while moving the detector

laterally. Since this variance is proportional to the photon number, assuming that the photo-

diodes have the same response, it is possible to tune the gain to set each variance on the same

value.

This method is easy to implement, yet does not yield the best result. Indeed, measuring

the variance of the demodulated signal is not very stable, and the measurement needs to be

averaged over a few seconds in order to be reproducible. The whole calibration procedure thus

takes longer to achieve, and is subject to slow power �uctuations of the laser source.

We adopted another technique which is widespread to calibrate photodiodes. Since we need

only the local oscillator beam to calibrate, we may introduce any dispersive element in the

beam without being concerned about overlap. We then introduced an acousto-optic modula-

tor (MT110-A1.5-IR from AA Opto-Electronic) before the beam splitter. We optimized its

alignement such that the e�ciency of di�raction is maximum. Blocking the di�racted beam,

we may then modulate its amplitude, such that it introduces an amplitude modulation on the

beam
8
. For consistency, we chose to modulate the amplitude of the �eld at the same frequency

that we want to do the measurement, i.e. around 2 MHz.

Demodulating this signal, we then have a stable reference to do the calibration. We send

light to a single detector and move it such that the beam hits a single pixel at a time, and tune

the gain to put the demodulated signal on the reference. This method allows to calibrate not

only the photodiode’s ampli�er, but also all the detection scheme.

With a single detector calibrated, we then put the light on the same pixel of both detector

and look at the di�erence of the photocurrents. We tune the gain of the second detector to

make that signal zero, ensuring that both detectors are balanced. Iterating that procedure over

all pixels allows to complete the calibration procedure.

To con�rm that the calibration is successful, we remove the AOM and measure the variance

of the di�erence of the photocurrents for a given optical power. We then compare the retrieved

spectral shape to the DC spectrum. As we said, both are proportional to the photon number

and should therefore be similar. The measurement is shown on �gure 5.12.

We can see on this plot that the DC spectrum overlaps very well with the HF variance
9
.

This means that measuring the variance of the homodyne signal at a high enough frequency

(without any element modulating) does indeed retrieve the shot noise statistics, and may be

used to compute the signal-to-noise in our measurements.

8
We remind that we inject only a single spectral slice of the spectrum. We then do not need to take into

account the response of the AOM with respect to optical wavelength.

9
Note that the variance retrieved for a single detector rather than the di�erence of both also retrieves the

shot noise at a high enough detection frequency. The signal is however divided by two since it receives half the

number of photons.
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Figure 5.12: Measurement of the DC signal of the local oscillator for a single detector and the

variance of the di�erence of photocurrents. Both overlap, showing a succesful calibration.

5.3.3 Space-wavelength mapping
Another important part of the procedure is to map pixels to wavelength. This is achieved

using again the pulse shaper. Since it is already calibrated, we chose to use it as a reference to

calibrate the mapping of the pixels.

To do so, we use again the shaper as an interference �lter where we sweep its central wave-

length. For each point, we record the DC of each pixels for both detectors. The result is shown

on �gure 5.13a.
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Figure 5.13: Space to wavelength mapping of the detectors. (a) Acquisition of the detected

DC signal when the center wavelength of a small spectral slice is sweeped on a detector. (b)

Resulting calibration for both detectors.

We �t a Gaussian through each signal of 5.13a and map the mean wavelength as a function of
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the pixel number. This is done for both detectors. The resulting calibration is shown on 5.13b.

Note that the mapping of both detectors is symmetric, thanks to the good optical design.

We can see from the mapping that we indeed plugged every other pixels, except for the

ones on the edge. This is intentional, since the amount of power is reduced at the edge of the

spectrum. Therefore, we moved the edge pixel inwards, allowing to have enough optical power

to rise the signal above the noise level.

5.3.4 Clearance
Finally, another important step in characterizing a photodiode ampli�er is to determine its

saturation point.

To determine this point, we measure the variance of each signal while increasing the optical

power. The retrieved signal should increase linearly with power. Saturation occurs when the

ampli�ed signal does no longer grow linearly with power.

With the ampli�er than is used, the saturation phenomena occurs when the variance of the

signal drops suddenly to the noise �oor of the detection. The amount of optical power at which

the signal crashes de�nes the maximum power at which the detection may be operated. In turn,

this de�nes the maximum clearance of the system. Doing so, we found the saturation point of

the system to be 8 dB above the dark noise (per pixel). This value, even if it is not very high

for very sensitive quantum application, such as detection of squeezed vacuum, is more than

enough for our applications.

Knowing the saturation point, we usually operated our homodyne detection with a power

level that maximizes the signal while keeping a safe distance from saturation.

5.4 Spectrally-resolved multimode parameter estimation
We are now equipped to investigate the multimode structure of the �eld using spectrally-

resolved detection. We �rst use the multipixel detection to show the existence of a higher

order mode in which photons are displaced when the optical path is modulated.

We then develop how the modes are constructed under the restriction that both spectra from

the signal and local oscillator �elds are not exactly similar. Finally, we apply this scheme to the

measurement of phase and group delay independently, and to construct the detection mode

for space-time positioning.

5.4.1 A glimpse at the multimode structure
We �rst consider the homodyne signal out of the multipixel detection when the phase of the

�eld is modulated, as developed in 4.2.1. Let us write the integrand of the homodyne signal as

i(Ω)=
√

NLO α
∗
s ·

[
v0(Ω)− i

(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)

)] ·uLO(Ω)eiφ0 +c.c. (5.16)
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where c.c. stands for conjugated complex. The homodyne signal is written I− = ∫
dΩi(Ω).

We can see in this expression that the time-of-�ight mode carries information. However, the

signal is dominated by the phase mode, since ω0 À ∆ω. We propose here to experimentally

suppress the contribution of the phase mode from (5.16). What should remain is the time-of-

�ight mode (and higher order modes not written in (5.16)), con�rming the validity of the modal

expansion of the �eld.

For a phase modulation occurring at a quantum limited frequency, the noise in the measure-

ment at an optical frequencyΩmay be written as ∆i(Ω)=√
NLO uLO(Ω). The signal-to-noise

is consequently given by

Σ(Ω)=α∗
s ·

[
v0(Ω)− i

(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)

)]
eiφ0 +c.c.≡ 2Re

{
as(Ω)eiφ0

}
(5.17)

which is found to be the signal’s �eld envelope (4.1) in the quadrature de�ned by the local

oscillator’s phase. This quantity can be steadily evaluated using the multipixel detection and

setting the relative phase between the two arms of the interferometer.

The signal-to-noise 5.17 can be decomposed as a part independent of the modulation (i.e.
DC) in the amplitude quadrature of the �eld and a part the is modulated at a high frequency

that lies in the phase quadrature. On the amplitude quadrature, we have

ΣX (Ω)= 2Re
{
α∗

s v0(Ω)
}

(5.18)

which does not contain any high frequency modulation. On the contrary, the phase quadra-

ture’s signal-to-noise writes as

ΣP (Ω)= 2Re
{
α∗

s
(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)

)}
(5.19)

which contains the modulated terms tϕ and tg. The signal given by equation 5.19 may thus

be measured by locking the interferometer on the phase quadrature and demodulating at the

modulation frequency. As we pointed earlier, the main contribution in this signal comes from

the phase mode v0, and the displacement contained in v1 is small in comparison. However, the

DC signal actually contains the �rst mode without the longitudinal displacement. At the DC

output of the photodiodes, we measure the square of (5.18) (since it measures power) with a

proportionality factor due to the di�erent response in electronics.

To extract higher order components from (5.16), one may subtract the DC signal with a

proper gain as to cancel the phase mode contribution. What should remain is the contribution

of higher order modes.

Consider that we record the signal-to-noise given by (5.19) for a given phase modulation.

We then use the DC of signal’s �eld Ps(Ω), which we write as a function of (5.18) as Ps(Ω) =
κ ·

(
ΣDC

)2
, where κ is a proportionality factor.

To remove the phase mode’s contribution from (5.16), we write the di�erence signal D as

D(Ω)=ΣHF (Ω)− g ·
√

Ps(Ω) =α∗
s

[(
ω0tϕ− g

p
κ

) ·v0(Ω)+∆ωtg ·v1(Ω)
]

(5.20)
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where g is an arbitrary gain in post-processing that we propose to determine. More precisely,

the phase mode contribution is zero for:

g = ω0tϕp
κ

(5.21)

At �rst glance, it seems like determining g requires to know the values of unknown parameters.

However, one may note that the integral of the phase mode

∫
dΩv0(Ω) is non-zero, since it is

an even function for the considered spectrum. Conversely, the integral of the time-of-�ight

mode yields zero by construction

∫
dΩv1(Ω) = 0. We stress that this last remark is exact for

Gaussian spectra. In the case where the optical spectrum is a little asymmetric, we may still

consider that the integral of the time-of-�ight mode, which is an odd function, is much smaller

than the integral of the phase mode. It is therefore a reasonable hypothesis to neglect this term.

Using this assertion, the gain is then found to be:

g =
∫

dΩΣHF (Ω)∫
dΩ

√
Ps(Ω)

(5.22)

In term of our experimental setup where we have 8 pixels, these integrals are discrete summa-

tion over the pixels.

The result of this procedure when modulating the piezo actuator that was calibrated in sec-

tion (5.2.1) is presented in �gure 5.14.
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Figure 5.14: Homodyne signal without the phase mode contribution, given by (5.20) with the

proper gain (5.21). The spectral structure clearly resembles the time-of-�ight mode. Higher

order modes are also contained in this spectrum, but are not as obvious to the eye. For com-

parison, we overlayed the signal-to-noise of the acquisition which is clearly dominated by the

phase mode. It is clearly not obvious that such spectrum contains a time-of-�ight component.

We can see that the remaining spectral structure in the di�erence signal D shows a strong

contribution from a time-of-�ight mode. The �rst moment of the DC spectrum is found to be
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µ= 796 nm, which is in good agreement with the point at which the structure of (5.2.1) crosses

zero. The right scale of this plot is attached to the signal-to-noise (5.19) which is overlayed. The

left scale is therefore also in the same units of signal relative to noise. Note that the di�erence

signal is much smaller, which is to be expected since the group velocity modulation in air is

negligible. It is remarkable however that it may still be extracted.

We stress also that although the sign of the extracted mode 5.14 (i.e. D < 0 for λ > λ0) is

right on this �gure, it depends on the lock point. More speci�cally, looking back at �gure 5.7,

we see that the two sides of the DC fringes are equivalent respectively to a maximum and to a

minimum of the demodulated signal. Therefore, depending on which side of the DC fringe we

lock on (which we remind is our error signal), the sign of the retrieved signal switches. On the

measurement that yielded the result 5.14, we were locked on an “up-fringe”, corresponding to

a positive HF signal.

This measurement is merely to show that the multimode structure of the �eld is indeed

contained in our spectrally-resolved measurement. We do not try to extract any physical value

at this point since we want to construct projection modes to do so.

5.4.2 Signal extraction
We now present the method to construct the projection modes. As we discussed in 4.2, the

modes may be constructed from a Hermite-Gauss basis, but only for a Gaussian mean �eld

mode. In the general case, we need to know the spectrum of the mean �eld and de�ne the next

mode in the basis using the theoretical derivation from section 4.2.

In the previous experiment, we showed that it is possible to retrieve the time-of-�ight mode

using the spectrum from the signal �eld. Such a method could then potentially be used to

construct the detection basis. We experimented with various ways to construct this basis, and

we expand in this section the method that was eventually chosen.

Using the multipixel homodyne detection, what is measured is the signal (5.16) integrated on

each spectral slice. To properly extract the information carried by the signal �eld, we remind

that we need to set a gain gn on each signal, as depicted by equation (3.49). The homodyne

signal of the n
th

pixel is written as

I−,n =
√

NLO α
∗
s gn

Ωn+δω/2∫
Ωn−δω/2

dΩu∗
s (Ω) ·uLO(Ω) eiφ0 + c.c. (5.23)

where δω is the spectral width of a pixel and us is the envelope of the signal �eld, which may

be expanded on the projection modes basis {vi} as us(Ω)=∑
i pi vi(Ω).

The total homodyne signal is obtained by summing the individual contribution from each
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pixel. It reads:

I− =
√

NLO α
∗
s
∑
n

gn

Ωn+δω/2∫
Ωn−δω/2

dΩ

(∑
i

pi v∗i (Ω)

)
·uLO(Ω) + c.c. (5.24)

≡
√

NLO α
∗
s
∑
n,i

pi gnΓn,i + c.c. (5.25)

where Γn,i is the overlap integral between the local oscillator mode and the i
th

mode of the

signal �eld over the n
th

spectral band. To show how to chose the gain g in order to extract a

given mode j, we rewrite (5.24) as:

I− =
√

NLO α
∗
s
∑

i
pi ·

(∑
n

gn ·Γn,i

)
+ c.c. (5.26)

Since pi are physical parameters, they are real quantities, and we also de�ned the gains gn as

real numbers. This allows to write:

I− = 2
√

NLO α
∗
s
∑

i
pi ·

(∑
n

gn ·Re
{
Γn,i

})
(5.27)

≡ 2
√

NLO α
∗
s
∑

i
pi · 〈 g , Γi 〉 (5.28)

We can see from this last expression that the homodyne signal is proportional to the scalar

product between the gain function and the overlap integral in the i
th

mode. In the case were

the local oscillator is a �at function, the gain that allows to retrieve a given mode j of the

projection basis is g = ∫
v j , such that 〈 g , Γi 〉 = δi j . This gain g then selects a single term in

the sum, but it needs to be constructed knowing the shape of v j , which is deduced from v0.

Hence, to reconstruct a given mode v j from the signal �eld, we need to know the local

oscillator’s envelope uLO, but also the mean-�eld mode v0. In the continuous limit of an in�nite

number of pixels n, this reconstruction is exact. In our case, the pixelization of the detection

can only approximate the structure of the modes, such that the reconstruction is not exact. It

is however su�cient to ensure orthogonality between the projection modes, which is the most

important in parameter estimations.

The noise in the measurement is given by ∆I− = NLO
∑

n g2
n
∫
δω dΩ |uLO(Ω)|2. Conse-

quently, the signal-to-noise is given by

Σ=α∗
s

∑
n gn

∫
dΩu∗

s (Ω) ·uLO(Ω)√∑
n g2

n
∫

dΩ |uLO(Ω)|2
eiφ0 +c.c. (5.29)

where the integrals are over the spectral width δω around the n
th

pixel. Note that the gain

function needs to be considered in the noise of the measurement.
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In principle, the knowledge of the envelopes v0 and uLO should be acquired by measuring

the DC of the signal and local oscillator’s �elds. The mode vi can then be predicted, and the

gain that needs to be applied to uLO can be computed.

However, we have discovered that this method did not yield the best reproducibility. The

measured homodyne signal is quite sensitive to di�erent parameters such as turbulences that

slightly a�ect the lock point. As a consequence, the signal-to-noise (5.17) shows a di�erent

spectral shape than the signal’s spectrum recovered by the DC output of the detectors. This

small o�set is enough to make the output of each measurement very di�erent, and as a conse-

quence, we had to devise another way to construct the modes.

The solution that we eventually picked is to use the demodulated homodyne signal to ex-

tract the mean-�eld mode. This method requires the assumption that demodulated signal is a

pure phase modulation, which is a very reasonable hypothesis with our spatial �ltering. More

speci�cally, we consider the phase modulation as φm(ω)=ω · tm, where tm = δLn/c.

We divide the signal-to-noise (5.29) of each individual pixel by the optical frequencyωn. This

treatment does not exactly retrieve the signal envelope because of the pixelization of the signal

to noise. It does however provide a stable reference that is speci�c to each measurement and

that takes systematic errors into account. For simplicity, we refer to that retrieved spectrum as

the signal �eld envelope.

Having obtained the signal spectrum, we may now construct the modes basis by applying a

proper gain gn to each pixel. We remind that, in the Gaussian case, this basis is de�ned by the

Hermite-Gauss basis, and the gains gn are therefore given by the Hermite polynomials.

In the case where the envelope of the signal �eld is not Gaussian, the modes are more di�cult

to construct. The time-of-�ight mode is formally de�ned by (4.18) as the derivative of the

mean-�eld mode with respect to frequency. Computing the derivative of the retrieved mean-

�eld mode would be a possibility, however, it is not a stable solution. Indeed, dealing with a

discretized spectrum, a numerical derivation is very unstable. Hence, this method does not

ensure the best reproducibility.

Another convenient approximation may be done here, considering that our spectra are close

to being Gaussian. Therefore, the gain that needs to be applied must also be close to Hermite

polynomials. To construct the modes, we then multiply the envelope of the signal �eld by the

proper Hermite polynomial. The obtained spectrum is then orthogonalized to the mean-�eld

mode and normalized.

Such an algorithm does not ensure that the constructed time-of-�ight mode is exactly the

derivative of the mean-�eld. However, for our applications, we want to extract the information

carried by a given mode, independently of another. Doing so requires perfect orthogonality

between the projection modes. It is therefore logical that the experiment is very sensitive to

the orthogonality between the modes. Moreover, the most important feature of the time-of-

�ight mode is the π phase shift at the center of the spectrum, which is easy to achieve using

this method.

Finally, one last problem to address is the fact that the local oscillator spectrum is di�erent
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from the signal, as shown by �gure 5.11. Fortunately, this mismatch is easy to account for when

constructing the gain
10

. By dividing the projection mode by the local oscillator’s spectrum, we

multiply the result to the homodyne signal (5.23). This allows to make sure that the envelope

of the local oscillator simpli�es in the process, and we project on the proper mode de�ned by

the signal’s mean-�eld mode.

This process is detailed in appendix C.

5.4.3 Heterodyne measurements: the need for a stable reference
Before proceeding even further, we need to address yet another complexity in the measurement

scheme.

We aim to measure small parameters, which as we have discovered in 5.4.1 is possible. We in-

deed extracted a small signal (on the order of a signal to noise ratio of 1) from a much stronger

signal (SNR of ∼ 300). The result that was presented in that section is however hard to re-

produce. It is subject to numerous systematic errors, such as turbulences and dependency on

the lock point of the interferometer. Moreover, it is not surprising that the outcome of this

measurement is highly dependent on how the �ltering �ber is injected. Such a device is quite

sensitive to alignement and is subject to variations. It has been observed that a small change

in the injection of the �ber (small enough that the coupling is not noticeably a�ected) results

in a totally di�erent measurement. This may be explained by the di�erence in mode-matching

between the two beams of the interferometer. The local oscillator beam is smaller than the

signal and is then coupled di�erently into the �ber. Small changes in the injection therefore

result in a di�erent interference pattern.

It is thus very di�cult to �nd a good witness to the proper alignement of the experiment

in this con�guration. We therefore needed to �nd a way to ensure good operation of the

experiment with a solid reproducibility, in an e�ort to gain in precision.

What usually provides a good reference is the DC signal from the detectors. However, using

such a reference requires to somehow know the result of the experiment before measuring it.

Indeed, a possibility would be to monitor the di�erence signal from �gure 5.14 while tweaking

the alignement and the lock point of the interferometer. Computing before hand the amount

of signal that should remain on the time-of-�ight mode, this would provide a reference. More

than just being not an exceptionally rigorous experimental procedure, it is cumbersome to do

so, since we need to measure multiple quantities to compute the di�erence signal (like the shot

noise).

We then tried to �nd other references, considering that the experiment would work better

if everything were measured simultaneously, in order to account for stability issues. The idea

then came to simultaneously measure two modulations which should be similar. For example, if

one were to modulate the phase of the �eld using two similar modulators, one would retrieve

10
For posterity, it is worth mentioning that an interesting way to tackle this problem would be to use the shaper

to match both spectra. We did not investigate this method, but it may be worthwhile to pursue it.
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exactly the same signal
11

. If not, it then means that the experiment is not properly aligned

(di�erent spatial components couple di�erently into the �ber).

We consequently modulated two di�erent piezo actuators at di�erent RF frequencies. These

two actuators are placed at very di�erent distances in the interferometers, such that their

amount of spatial displacement is di�erent. If, for example, we do not inject properly the �ber,

their higher order spatial components will be transmitted with di�erent weight, resulting in a

di�erent measurement.

We heterodyne the two modulations as to detect them simultaneously. The �rst actuator is

modulated atΩRF , while the other is modulated atΩRF+Ωh, whereΩh is called the heterodyne

frequency, and is on the order of a few hundred Hz such that the signal is not �ltered by the

low-pass �lter at the output of the demodulation process. We demodulate the signal at ΩRF ,

which then shows a modulation at the Ωh frequency. By Fourier transforming this signal,

isolating the peak at the heterodyne frequency and Fourier transforming back, we extract the

two di�erent signals without any losses
12

.

It is then possible to monitor these two modulations at the same time. This allows to tweak

in real-time the injection and the lock point of the interferometer until both signals overlap

perfectly. Doing so resulted in the best possible reproducibility in this experiment.

5.4.4 Space-time positioning
At last, we have what is necessary to extract the parameters carried by the multimode �eld.

To perform the measurement, we adopt a strategy similar to the one used for the calibration

(5.2.1.2). We ramp the amplitude of the modulation of a phase modulating element and record

the demodulated signal for each pixel.

Note that modulating an element di�erent than the one that we calibrated does not require

to perform another calibration. By assuming that both modulate the phase of the �eld in the

same way, we just ratio the signal-to-noises of the �rst harmonics to deduce the displacement.

We then compute the signal-to-noise (5.29) for a given gain function, de�ning a given pro-

jection mode.

5.4.4.1 Phase and time-of-�ight measurements

We propose to �rst measure the minimum variation of distance distance that is possible to

measure using either the phase mode or the time-of-�ight mode. We remind that the theoret-

ical expression for these is given by equation (4.48) and (4.49). Their reconstructed spectral

shape is plotted on �gure 5.15. By ramping the amplitude of the modulation, we record the

11
We remind that the most relevant measurement is the spectral shape of the phase modulation. The amplitude

of this high-frequency spectrum is not as relevant as its shape, which contains the modal structure.

12
Note that during this process, there is a digital demodulation phase that needs to be determined to maximize

the retrieved heterodyne signal.
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Figure 5.15: Detection modes for space-time positioning. Because of the limited bandwidth,

the di�erence between the timing mode and the phase mode is negligible but still noticeable.

strength of the phase modulation for each part of the spectrum. We then compute their signal-

to-noise, as shown on �gure 5.16a. By summing each pixel (�gure 5.16b), we should recover

the same sensitivity that we measured using a non spectrally-resolved homodyne detection for

the calibration.

To con�rm that assertion, we measured the power in the signal beam and found 346 µW.

Taking into account a quantum e�ciency of the detectors of 90%, a contrast of 90% and a res-

olution bandwidth (speci�ed by the low-pass �lter for demodulation) of 15 kHz
13

, we estimate

a detected photon number of ∼ 1010
.

The minimum theoretical detectable displacement is then found to be

dSQL
min = 5.2 fm

/p
Hz (5.30)

Taking the longitudinal displacement for which the signal-to-noise of �gure 5.16b is equal to

1 and normalizing by the resolution bandwidth, we measure an ultimate sensitivity of

dmin,XP = 7.2±0.1 fm

/p
Hz (5.31)

which is once more in good agreement with the theoretical value.

To perform the projective measurement, we take the raw acquisition (i.e. not the signal-to-

noise 5.16a), and linearly �t the response of each pixel. We then perform the scalar product

of these �ts to the �lter of the mode we want to project on. Indeed, the acquisition already

contains the spectral shape of the local oscillator, hence we need only the �lter part of the

modes to perform the projection. This gives the signal for which we then need to compute the

signal-to-noise

13
It is worth stressing that the �lter has a Lorentzian transfer function, in contrast with the spectrum analyzer

that acquires in a Gaussian window. The time-bandwidth product of a Lorentzian is 0.142.
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Figure 5.16: Signal recovered by each pixel of the detection while scanning the amplitude of

the calibrated piezo actuator. (a) Retrieved signal-to-noise for each pixel. (b) Total signal-to-

noise and linear �t.

The noise is obtained by projecting on the projection mode the variance of vacuum for each

pixel. Note that, from (5.29), we need to take the square of the gain function to do this projec-

tion, the variance is proportional to the number of photon (it is therefore a power measurement)

and the signal is proportional to the square root of the number of photon (it is a measurement

of the �eld). We then obtain the shot-noise projected on the desired mode
14

.

We may then compute the signal-to-noise of the displaced �eld projected on a given mode.

The signal-to-noise once projected on the phase and time-of-�ight modes is outlined on �gure

5.17.

We remind that the limits in sensitivity for measuring a distance using the phase and time-of-

�ight modes are respectively given by (4.48) and (4.49). In this case, we modulate the distance

in air, hence vϕ ' vg is a very reasonable approximation. The ratio of these two sensitivities is

then given by

(δL)g
min

(δL)ϕmin
= ω0

∆ω
(5.32)

Experimentally, from (5.31), the retrieved sensitivity while projecting on the phase mode is

dϕ

min,XP = 7.2±0.1 fm

/p
Hz and when projecting on the time-of-�ight mode, we have dg

min,XP =
14

Note that the value of the shot noise obviously does not change a lot when projecting it onto the �lters.

Nevertheless, the small variation still needs to be accounted for.
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Figure 5.17: Signal-to-noise of the phase modulation projected on the detection modes at-

tached to a phase and a time-of-�ight measurement.

382.6±0.5 fm

/p
Hz . The ratio of these sensitivities then reads

(δL)g
XP

(δL)ϕXP
' 53 ±2 (5.33)

To compare to the theoretical ratio, we need to compute the �rst and second moment of the

spectrum that is received by the detector. We use the DC output of the detector when detecting

the signal’s spectrum. We �nd µ= 796.5 nm for the �rst moment and σ= 15 nm for the second

moment. This de�nes an e�ective center frequency and bandwidths as ωX P
0 = 2.37 PHz and

∆ωX P = 44.5 THz. This allows to compute the ratio

ωX P
0

∆ωX P ' 53.2 (5.34)

which is in excellent agreement with the retrieved ratio (5.33).

This result serves as a proof-of-principle for projective measurement. We measured the

minimum detectable displacement in a homodyne measurement scheme when projecting on

the two modes attached to a phase and a time-of-�ight measurement. We found obviously that

a time-of-�ight measurement is less sensitive that a phase measurement, and the di�erence

in sensitivities is found to be dependent on the bandwidth and the center wavelength of the

detected light.

5.4.4.2 Detection mode

We now propose to go one step further and try to compute the ultimate sensitivity for space-

time positioning when projecting on the detection mode de�ned in 4.2.4.2. We name that mode

timing mode.
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Figure 5.18: Enhancement in sensitivity between the detection mode for space-time position-

ing and the phase mode.

We remind that this detection mode is a superposition of the phase mode and the time-

of-�ight mode, with a weight de�ned by the ratio (5.34). Having measured the experimental

moments of the �eld and having constructed the phase and time-of-�ight modes, it is then

straightforward to build the detection mode. We plot it on �gure 5.15. We can see that it is

very similar to the phase mode, since the bandwidth of the spectrum is relatively small. There is

still a noticeable di�erence in the shape, and as a direct consequence, a projective measurement

using this mode will result in a di�erent sensitivity.

For a modulation in air, the ratio of sensitivities for a phase detection and a detection on the

timing mode is given by

(δL)ϕmin

(δL)SQL
=

√
1+

(
∆ω

ω0

)2
' 1+ 1

2

(
∆ω

ω0

)2
(5.35)

As such, the enhancement is quanti�ed by
1
2

(
∆ω
ω0

)2
, which with our experimental moments

amount to 1.8 ·10−4
, which is very small. A way to show this enhancement experimentally is

to plot the di�erence between a projection of the homodyne signal on the timing mode and on

the phase mode ΣδL −Σϕ as a function of the displacement. This is plotted on �gure 5.18. We

can see that the slope of this function is positive, showing that the detection mode has indeed

a higher sensitivity.

We compute the minimum detectable displacement with the timing mode and ratio it to the

sensitivity of the phase mode. The measured enhancement is found to be (1.5±0.2) · 10−4
,

which is in good agreement to the expected value.

We have then showed the applicability of projective measurements with the example of

space-time positioning. We measured the smallest displacement possible using the modes at-

tached to a phase and a time-of-�ight detection, and constructed another mode that combines

both methods to obtain an even better sensitivity.
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5.4.5 Dispersion
We now propose to use the time-of-�ight mode to measure a di�erent parameter. As shown

by (4.45) and (4.46), the retrieved information for a perturbation of distance depends on the

phase or the group velocity of light in the medium. For air, these are equal. However, if it were

possible to introduce a path variation in a strongly dispersive medium, then the two velocities

are no longer equal, and the time-of-�ight mode would retrieve a di�erent information.

Moreover, knowing the value of the phase velocity by projecting on the phase mode, it seems

possible to measure the group velocity by subtracting the projection on the phase mode to the

projection on the time-of-�ight mode. The original idea for that application is depicted in

appendix D, which proved di�cult to implement.

We had to devise another way to induce a strong modulation of the group velocity. Since it

does not seem possible to modulate the group velocity independently of the phase velocity, we

chose to introduce a modulation of path by introducing a dispersive material in the beam. We

settled for a prism made of SF-10, which we mounted on a piezo-actuator as shown on �gure

5.19. With careful alignement, we were able to achieve a deep phase modulation.

Figure 5.19: Modulation of path in a strongly dispersive medium. The two prisms are places

as close to possible as not to introduce any problems when the colors are recombined.

Using such a device to modulate the path, the phase and time-of-�ight modes will retrieve a

di�erent parameter. To show this, we propose to make use of another detection scheme than

the multipixel detection. Namely, we use a single diode homodyne detection and resolve the

spectral structure of the �eld by resolving it temporally, as introduced in section 3.3.3. Such a

scheme is not dependent on lock point and allows to retrieve the spectrum with less ambiguity

than the multipixel. Note that the multipixel detection also works for this application and has

the advantage of resolving the spectral structure in a single-shot, but the representation is

pixelized rather than continuous.

We retrieve the cross-correlation of the signal and local oscillator �eld when modulating

the calibrated piezo actuator and the prism. Both modulations are retrieved simultaneously

through heterodyning. We also measure the DC output of the photodiodes. Performing a

Fourier transform then allows to retrieve the spectrum, as depicted by �gure 5.20. Note that

the spectral resolution of the retrieved spectrum is much better than the multipixel, since it is

de�ned by the time window on which the cross-correlation is measured, which can be made

arbitrarily large.

By heterodyning, we retrieve simultaneously the signal-to-noise spectra for the modulation

of a calibrated piezo-mounted mirror and the prism. Using a procedure similar to (5.20), it is
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Figure 5.20: Demodulated signal of the cross-correlation between the signal and the local

oscillator �elds. The retrieved fringes are those of the high-frequency phase modulation. The

Fourier transform is directly the spectrally resolved homodyne signal.

possible to isolate the dispersion term.

More precisely, we write as Σ1 and Σ2 respectively the signal to noise of the piezo actuator

and the prism. It writes:

Σn(Ω)= 2
p

N
[
ω0 tϕ,n ·v0(Ω)+∆ω tg,n ·v1(Ω)

]
(5.36)

where n denotes which element is modulated. Computing the di�erence signal D between the

signal-to-noise ratios then yields

D(Ω)=Σ2(Ω)− g ·Σ1(Ω) (5.37)

= 2
p

N
[
ω0

(
tϕ,2 − g tϕ,1

) ·v0(Ω)+∆ω (
tg,2 − g tg,1

) ·v1(Ω)
]

Similarly to (5.22), the gain to be digitally added in order to nullify the phase mode’s contribu-

tion to the di�erence signal is found to be

g = tϕ,2

tϕ,1
≡

∫
dΩΣ2∫
dΩΣ1

(5.38)

Since in air, group and phase velocities are equal, we have tϕ,1 = tg,1. Upon application of the

gain, the di�erence signal simpli�es to

D(Ω)= 2
p

N ∆ω
(
tg,2 − tϕ,2

) ·v1(Ω)

≡ 2
p

N ∆ω · ω0 n′
0δL2

c
·v1(Ω) (5.39)

We can see that the di�erence signal should in theory contain a single contribution on the time-

of-�ight mode which is directly proportional to the index dispersion at the center wavelength.
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Using projections, it is possible to suppress the dependency on the displacement δL2. Indeed,

projecting the signal to noise on the phase mode yields

〈Σ2,v0〉 = 2
p

N ω0tϕ,2 ≡ 2
p

N ω0
n0δL2

c
(5.40)

Dividing the di�erence signal projected on the time-of-�ight mode by this quantity then yields

〈D,v1〉
〈Σ2,v0〉

= n′
0

n0
∆ω (5.41)

which is only dependent on the bandwidth of the �eld and on the index properties of the

medium.
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Figure 5.21: Heterodyne di�erence signal. The retrieved shape clearly ressembles to a time-

of-�ight mode. Dashed line correspond to the retrieved spectrum with the same procedure but

when modulating two similar piezo-mounted mirrors.

On �gure 5.21, we show the di�erence signal (5.39) which shows obviously principally a

time-of-�ight structure. In dashed lines, we applied the same gain procedure when we het-

erodyne and demodulate two similar piezo-mounted mirrors. This allows to show that the

retrieved signal is indeed dependent on the di�erence between the two modulating elements.

Using the projections de�ned by (5.41), we retrieve a value of

〈D,v1〉XP
〈Σ2,v0〉XP

' (1.2±0.2) ·10−2
(5.42)

Using Sellmeyer’s equations and the values of index and index dispersion given in table A.1,

we �nd that, for SF10,

n′
0

n0
≈ 9.9 ·10−3

fs. For the considered bandwidth, the theoretical value of

(5.42) is therefore 3.9 ·10−3
. The experimental value is too important by a factor of 3. There

are multiple leads to explain this discrepancy. Among the most relevant is the fact that this
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measurement is slow compared to the single shot acquisition of the previous experiments. In

order to obtain a good resolution, the delay line needs to be swept over a long range, resulting

in a longer acquisition time (on the order of 2 seconds). Such a measurement is prone to

turbulences and �uctuations. Moreover, since it is not spectrally-resolved, the shot noise needs

to be reconstructed from the DC signal.

The in�uence of all the sources of error has not been investigated in details since this method

was applied near the end of this thesis. It would however bene�t from being studied further,

since it presents an interesting alternative to the multipixel detection.

5.4.6 Quantum spectrometer
To conclude on this part on parameter estimation, we consider the same experiment on the

amplitude quadrature.

As described in (4.2.2), the time-of-�ight mode can be used in the amplitude quadrature

to detect a shift in the spectrum. Using the multipixel detectors, such a measurement is quite

easy to achieve, since it is an amplitude measurement and thus does not require any homodyne

detection or delay lock. We took this measurement one step further by using squeezed vacuum

in order to perform a measurement below the standard quantum limit.

This experiment was accomplished with a di�erent laser source, delivering longer pulses on

the order of 100 fs. The reason being that this source is injecting a synchronously pumped opti-

cal parametric oscillator, which delivers under threshold multimode squeezed vacuum[Roslund 13].

The modal structure of this quantum light is well approximated by the Hermite-Gauss ba-

sis, which also happens to be the basis on which the previous detection modes are expanded.

Therefore, it is possible to use such �eld that is squeezed in the proper mode to enhance the

sensitivity of projective measurement, as described by (4.9).

For this experiment, we chose to modulate the center wavelength of the laser, again at a

high frequency of ∼ 1.5 MHz. This is achieved by modulating a mirror inside the laser cavity,

usually used to lock the spectrum’s center
15

. The modulation was added to the retrocontrol

loop of the lock, small enough such that it does not hinder the stability.

Since the wavelength parameter lies on the amplitude quadrature, the measurement is per-

formed using a single multipixel detector, greatly simplifying the scheme
16

. However, since

it is dealing with quantum resources, the experiment still comprises a lot of complications.

The �rst one it to be able to generate a bright beam which is squeezed on the proper mode.

This was achieved by combining the multimode squeezed vacuum output of the OPO with a

strong beam on a 93-7% beamsplitter. These two beams had to be locked together. For a more

complete description of the experiment, see [Cai 15].

As a �rst step, the experiment was made using classical resources, much like what was

15
On this source, this lock actually also stabilizes the CEO.

16
Note that, since it is using a single detector, the measurement needs to be performed at a quantum limited

frequency in order to be shot-noise limited.
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Figure 5.22: Signal-to-noise ratio for each pixel when the center wavelength is being modu-

lated by a variable amplitude. On the right, the last point of the scan (i.e. maximum modulation

strength) is plotted as a function of wavelength. It shows a non-Gaussian shape.

described in the previous section. The amplitude of the modulated element is ramped, and the

signal received by each pixel (on the amplitude quadrature) is subsequently demodulated. The

retrieved signals are plotted on �gure 5.22.

In contrast with our previous measurements on the phase quadrature, we directly retrieve

a high frequency spectrum that has a shape similar to the time-of-�ight mode. That is to be

expected from (4.25), since demodulating this �eld and computing its signal-to-noise would

retrieve directly

Σ(Ω)= δω

2∆ω
·v1(Ω) (5.43)

In this scheme where only a single beam is used, the modes construction is easier: it can be

constructed from the spectral shape of the shot-noise. Doing so allows to construct the ampli-

tude mode and the time-of-�ight mode without having to resort to a complicated construction

as in 5.4.2.

After projecting on these two modes, we retrieve the signal-to-noise ratios depicted by �gure

5.23. We can see that projecting on the amplitude mode results in a higher signal than the time-

of-�ight mode. Therefore, the way the wavelength is modulated in this experiment does also

induce a variation of amplitude that is subsequently detected.

Note also that we did not calibrate the displacement, since we are interested mostly in the

quantum enhancement. Therefore, we consider that this measurement on the time-of-�ight

mode is quantum limited, and we retrieve for a signal-to-noise ratio of 1 the ultimate value

given by (4.31). Computing again the �rst moment from the reconstructed modes and consid-

ering a number of photons of 4 ·1016
(corresponding to 10 mW detected over a second), the

ultimate limit for the detection of a spectral displacement is

(δω)SQLmin ' 61 kHz

/p
Hz (5.44)
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Figure 5.23: Signal-to-noise ratios after projection on the phase mode and on the time-of-�ight

mode. The modulation induces variations in both amplitude and wavelength.

Interestingly, this value is smaller than the tooth spacing.

We then perform the same measurement when squeezed vacuum is injected. The sensitivity

will then be proportional to the variance of the detection mode. The way squeezed vacuum is

generated, in order to have a noise reduction in the second mode, the �rst mode must neces-

sarily show excess noise (see section 8.1.1).

The �rst mode is antisqueezed and shows an excess noise of +4.4 dB, whereas the second

mode is squeezed, and has a reduced noise of −1.4 dB. The result upon projecting on these

modes is shown on �gure 5.24 along with the case when vacuum is injected.
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Figure 5.24: Comparison between vacuum and squeezed vacuum input upon projection on (a)

the amplitude mode (b) the time-of-�ight mode.

We can see that the amplitude mode does indeed show excess noise, since the sensitivity is

reduced with respect to the vacuum case. On the other hand, the time-of-�ight mode increases
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the sensitivity by a considerable amount of 21%. The sensitivity limit is then given by

(δω)sqzmin ' 50 kHz

/p
Hz (5.45)

This resulting sensitivity is below the standard quantum limit.



Part III

Noise analysis of an ultra-fast frequency
comb
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6 Optical cavities

(Upon observing the transverse modes of a particularly misaligned cavity, looking in-
credibly similar to the Batman sign[Jacquard 12]) “I don’t think I can ever do better
than that.”

– Clément “Game Over Man” Jacquard
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In the previous part, we used a modal description of the �eld to extract information that

was hard-coded in it. In this part, we show that the same formalism may be applied to the

noise analysis of a frequency comb, in both amplitude and in phase.

For that purpose, we need to develop tools to access the noise characteristics. We have

already seen that accessing the amplitude noise is straightforward. However, resolving phase

noise necessitates to compare a signal to a reference, being electrical or optical. As it was

hinted in section 3.1, in a homodyne detection scheme, if the phase noise of one �eld in the

interferometer is known, then we can deduce the phase noise of the other �eld. Such a scheme

would allow to apply our modal characterization to noise characteristics of a laser source.

To decouple the noise, we chose to introduce a Fabry-Perot cavity in the signal arm of the

interferometer. It acts as a low-pass �lter in both amplitude and phase, whose output shows

di�erent noise properties than its input. From a speci�c analysis frequencies de�ned by the

cavity’s �nesse, we can consider that the noise properties of the �ltered beam are quantum
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limited, and may thus be used in a homodyne measurement to access the noise distribution of

the local oscillator.

In this part, we focus on the description of Fabry-Perot cavities in the femtosecond regime.

We also present experimental details on the characterization of a high �nesse cavity injected

by a broad spectrum.

6.1 Fabry-Perot cavities
In this section, we remind the basic equations that describe a Fabry-Perot cavity and its �ltering

behavior. The general theory can be found in many optics book, such as [Siegman 86].

6.1.1 Input-output relations
We consider a ring Fabry-Perot cavity of length L made of three mirrors. We label two input

and output mirrors with Fresnel coe�cients in energy
1 R1,R2 and T1,T2, such that Ri+Ti = 1.

The third mirror is supposed have a perfect re�ectivity. The amplitude coe�cient are assumed

to be real and are written as r i =
√

Ri , ti =
√

Ti . A representation of such cavity is done on

�gure 6.1.

Figure 6.1: Schematic drawing of a ring cavity. The back mirror is supposed to have a perfect

re�ectivity. The phase accumulated on one round-trip is written ϕc.

We are interested in the incident, transmitted and re�ected �elds, that we write respectively

E(+)
i , E(+)

t and E(+)
r . We write the phase accumulated over a round-trip as ϕc(Ω), and the �eld

inside the cavity is written as Ec(Ω). The input-output relations of the cavity are written as

E(+)
t (Ω)= tc(Ω) ·E(+)

i (Ω) and E(+)
r (Ω)= rc(Ω) ·E(+)

i (Ω) (6.1)

1
For simplicity, we do not assume that the Fresnel coe�cients are dependent on wavelength. Nevertheless,

for a full simulation of a high �nesse cavity injected by a broad spectrum, the re�ectivity curve of the mirrors

needs to be taken into account.
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Figure 6.2: Amplitude and phase of the complex transfer coe�cients in transmission and in

re�ection for an impedance matched cavity of �nesse 1000. The phase of the re�ected �eld is

not de�ned at resonance, since all the incident �eld is transmitted. If losses are included in this

model, there exists a re�ected �eld at resonance.

These �elds are linked by the following coe�cients:

tc(Ω) = t1t2eiϕc(Ω)/2

1− r1r2eiϕ(Ω) = τ(Ω) eiΦt(Ω)
(6.2)

rc(Ω) = r2eiϕc(Ω) − r1

1− r1r2eiϕ(Ω) = ρ(Ω) eiΦr(Ω)
(6.3)

We decomposed both coe�cients in amplitude and in phase. The phase accumulated one

round-trip is notedϕc(Ω). As before, the frequencies are taken relative to the carrierΩ=ω−ω0.

By computing the amplitude and the phase of the transfer coe�cients, it can be shown that

τ(Ω) and ρ(Ω) are even functions, while Φt(Ω) and Φr(Ω) are odd functions. The coe�cients

are depicted on �gure 6.2.

When the cavity is impedance matched, i.e. t1 = t2 = t and r1 = r2 = r, the equations are

greatly simpli�ed. The transmission coe�cient in energy is given by: :

Tc(Ω)= |tc(Ω)|2 = T2

(1−R)2 +4R sin2
(
ϕc(Ω)

2

) (6.4)

which is maximal for ϕc(Ω)= 0 [2π].
In the remaining, it will be convenient to consider the input-output relations in term of the

quadratures of the �eld.

We remind that the real �eld is decomposed in the spectral domain as a sum of the analytic

�elds as:

E (ω)= E(+) (ω)+E(−) (−ω) (6.5)
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In term of the �eld’s amplitude, we have E(+) (ω) = E0 a(ω−ω0). The input-output relations

may the be written as

at(Ω)= tc(Ω) ·ai(Ω) (6.6)

Using the expressions of the �eld quadratures (1.45) and (1.46), it is possible to rewrite the input-

output relations as a function of the quadratures of the incident and transmitted / re�ected

�elds. A simple expression is obtained by considering the parity of the transfer coe�cients.

The relation linking the �eld quadratures is then written as(
X t
Pt

)
(Ω)= τ(Ω)

[
cosΦt(Ω) −sinΦt(Ω)
sinΦt(Ω) cosΦt(Ω)

]
·
(
X i
Pi

)
(Ω) (6.7)

A similar expression may be obtained for the re�ected �eld’s quadratures.

6.1.2 Characteristic quantities
A cavity is de�ned intrinsically by its mirrors and its length, which allow to de�ned quantities

to characterize it.

The phase accumulated over one round-trip of a cavity in vacuum writes as

ϕc(Ω)= (Ω+ω0)
L
c

(6.8)

For the cavity to be resonant at the frequency ω0, its length L needs to satisfy the condition:

L = pλo (6.9)

This length de�nes the spacing in frequency between two resonances as the free spectral range

(FSR):

νFSR = c
L

(6.10)

We introduce the �nesse F of the cavity, which is an intrinsic quantity only dependent on the

properties of the cavity. For a global re�ectivity R in power
2

(i.e. a fraction 1−R in power is

lost after one round-trip), the �nesse reads:

F = π

2arcsin
(

1−pρ
2
pp

ρ

) (6.11)

2
For the cavity sketched on �gure 6.1, the global re�ectivity writes as R = R1R2. Losses can be introduced in

this factor.
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In the high re�ectivity approximation, this formula approximates to:

F ' 2π
1−ρ = 2π

T +P
(6.12)

where we noted T the global transmission, and P the round-trip losses. This formula is only

valid for a high �nesse. A common way to describe the �nesse is the average number of round-

trip of a single photon inside the cavity before being transmitted. The higher the �nesse, the

longer the light is trapped inside the cavity. This properties is useful to understand the �ltering

properties of a cavity.

6.1.3 Spatial mode
In order for a cavity to be a stable resonator, the intra-cavity �eld needs to be periodic on the

cavity length: the accumulated phase needs to be a multiple of 2π, and the transverse pro�le

of the cavity beam must overlap with the incident beam.

The stability condition for a cavity is obtained by modeling the propagation of the beam

using the ABCD formalism, and solving for the complex beam parameter to be unchanged after

a round-trip. This de�nes the distances between the optics that result in a stable resonator.

Usually, the spatial mode of the cavity is a TEM00. Proper injection of the cavity consists in

overlapping the incident beam with the cavity’s mode. To do so, one needs to align the input

beam properly, and to ensure that the mode matches the one of the cavity by setting its waist

size and position on the proper values.

Misaligning the input beam puts energy in odd modes (such as TEM01), whereas incorrect

mode-matching transfers energy in the even modes (such as TEM02). It is therefore possible to

distinguish experimentally between an error in alignement and an error in mode-matching by

looking at the transmitted spatial modes
3
. Such properties can be used to change the mode of

the input beam, which is obviously a lossy process[Treps 03].

6.1.4 Noise �ltering
The spatial pro�le of the transmitted beam is de�ned by the mode of the cavity. The behavior

may be seen as a �lter of the transverse pro�le of the input beam. Indeed, if the mode at input

shows other modes than the one of the cavity, then these components will propagate away

and not resonate in the cavity. The e�ciency of this �ltering is dependent on the �nesse. The

higher the �nesse, the more e�cient the �ltering.

In the spectral domain, the same phenomenon occurs, even though it is not as straightfor-

ward to describe. Using the sidebands picture 3.2.1.2, any noise can be represented as a sideband

of the optical frequency. If the frequency of the noise is high enough such that the sidebands

are not resonant, according to (6.7), the sidebands won’t be transmitted by the cavity.

3
Note that distinguishing between an mismatch in waist size and in waist position requires to access the

amplitude and the phase quadrature of the TEM02 mode.
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Therefore, the cavity will act as a low-pass �lter in noise, which cuto� frequency can be

de�ned from the point at which the amplitude transfer coe�cient of �gure 6.2 is reduced by a

factor of 2, in analogy to electric �lters. This frequency de�nes the bandwidth νc of the cavity,

and is related to the �nesse and the free spectral range of the cavity by:

νc = νFSR

F
(6.13)

A higher �nesse thus leads to a stronger �ltering of the noise. In the temporal domain, a similar

treatment allows to consider that the �uctuations of the �eld are averaged over the time the

light is trapped in the cavity. This time is the inverse of the bandwidth of the cavity.

Using the quadratures description (6.7), we then see that this low-pass �ltering occurs in

both quadratures, thus �ltering the amplitude and the phase noise of the incident �eld.

6.1.5 Quadrature conversion
In term of quadratures, the noise �ltering is described another way. Consider amplitude and

phase noise of the incident �eld, written as δX i and δPi. The variance of the amplitude and

phase noise of the transmitted �eld (6.7) are then written:〈
δX2

t
〉= c2

1
〈
δX2

i
〉+ c2

2
〈
δP2

i
〉−2c1 c2 〈δX i ·δPi〉 (6.14)〈

δP2
t
〉= c2

1
〈
δP2

i
〉+ c2

2
〈
δX2

i
〉+2c1 c2 〈δX i ·δPi〉 (6.15)

where we wrote the conversion coe�cients c1 = τ(Ω)cosΦt(Ω) and c2 = τ(Ω)sinΦt(Ω). We

can see that the amplitude quadrature of the transmitted �eld contains information about both

optical quadratures of the incident �eld and also correlations between amplitude and phase

noise. As it is shown in section 7.3.4, these correlations are considerably smaller than the

individual noise in amplitude or in phase.
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Figure 6.3: Amplitude of the coe�cients that convert noise from one optical quadrature to the

other.



6. OPTICAL CAVITIES 143

On �gure 6.3, we plotted the conversion coe�cients. We can see for example that on the

amplitude quadrature of the transmitted �eld (6.14), the amplitude noise is �ltered by the coef-

�cient c1. However, the amount of phase noise conversion increases with analysis frequency,

up to approximately ∼ νc
2 . At this frequency, the value of the two coe�cients di�ers by about 2

dB. In the case where phase noise is much higher than amplitude noise (which is the case with

a modelocked Ti:Sa laser), the amplitude quadrature of the transmitted �eld should therefore

show excess noise. On the phase quadrature (6.15), the input phase noise is attenuated, and a

portion of the input amplitude noise is converted.

Thus, the noise switches quadrature between the input and the output of the cavity. Nev-

ertheless, the noise is still attenuated, such that the total noise is diminished. This quadrature

conversion e�ect will be of importance later.

6.2 Synchronous cavities
In order for a cavity to be resonant for multiple optical frequencies, the resonance condition

(6.9) needs to be revised. In the time domain, it is straightforward to see that a resonant cavity

injected by a train of pulse corresponds to the situation where the pulse inside the cavity

overlaps with the next pulse in the train. In order to be perfectly resonant, both the carrier

and the envelope of the pulses need to overlap. Such cavities are then said to be synchronous,

since they need to be synced with the repetition rate of the laser.

In this section, we write the theory for synchronous cavities, and do simulations to predict

the behavior of high �nesse synchronous cavities. A more complete treatment may be found

in [Medeiros de Araujo 12].

6.2.1 Resonance condition
We consider that the cavity is injected by a frequency comb whose CEO is zero, such that the

frequencies of the comb are written simply as ωn = nωr (see (2.1)). In order for the cavity to

be resonant for the entire comb, the phase accumulated on a round-trip needs to be a multiple

of 2π for each frequency :

ϕc(ωn)= 0 [2π] ∀ n (6.16)

Solving this condition with (6.8) allows to deduce that the cavity length needs to satisfy

L = 2πc
ωr

≡ Lr (6.17)

The length of the cavity needs to equal the length between two pulses, which is also the length

of the laser cavity. Note that this solution is also valid for any multiple integer of the repetition

length. Such a cavity would also transmit the entire spectrum, the only complications are

experimental, since longer cavities are more subject to turbulences.
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6.2.2 The cavity’s comb
When considering the physical parameters that arise when describing the phase accumulated

in a round-trip, it can be shown that the cavity de�nes a frequency comb. Achieving perfect

resonance is then equivalent to overlapping perfectly the comb de�ned by the cavity with the

comb of the laser source.

We write the phase due to propagation in a dispersive medium (6.8) as

φc(ω)= ωL
c

(
1+δn(ω)

)
≡ωL

c
+ϕ(ω) (6.18)

The �rst term of this phase corresponds to the vacuum case, whereas the second term is the

perturbation induced by the dispersive medium. This description is convenient since in the

vacuum case, the resonance condition is well-de�ned.

The round-trip phase is then written as

ϕc(ω)=φGouy+ωL
c
+ϕ(ω) (6.19)

We considered the Gouy phase that is a result from the propagation of the transverse modes
4
.

It is a constant that depends only on the geometry of the cavity. The term φvac corresponds to

the propagation in vacuum, while the term ϕ contains the information about the medium.

We propose to solve the resonance condition for this accumulated phase, when the cavity is

injected by a frequency comb with a non-zero CEO.

To do so, we Taylor-expand ϕ(ω) around ω0 as it was done previously, for example in (2.32).

The accumulated phase then writes as

ϕc(ω)=φGouy+ϕ0 −ω0ϕ
′
0 +

ω

c
(
L+ cϕ′

0
)+ 1

2
(ω−ω0)2ϕ′′

0 + . . .

≡α+ ω

c
Le�+

1
2

(ω−ω0)2ϕ′′
0 + . . . (6.20)

where ϕ0 =ϕ(ω0), ϕ′
0 and ϕ′′

0 correspond respectively to the �rst and second derivatives of ϕ

with respect to ω taken at ω0. We can see a constant phase term described by

α=φGouy+ϕ0 −ω0ϕ
′
0 (6.21)

and a e�ective optical path de�ned by

Le� = L+ cϕ′
0 (6.22)

This apparent cavity length is due to the �rst order dispersion.

4
Note that when considering the Gouy phase, the cavity length (6.17) does not ensure resonance. The incident

comb thus needs to have a non-zero CEO.



6. OPTICAL CAVITIES 145

If we neglect higher orders of this development, we may solve analytically the resonance

condition. We see that we can de�ne the cavity’s frequency combs, which frequencies ωc
n

satisfy ϕc(ωc
n)= 2nπ. They read

ωc
n = n

2πc
Le�

−α c
Le�

≡ nωc
r +ωc

CE (6.23)

This frequency comb has its own repetition rate and carrier-to-envelope o�set that are depen-

dent on the properties of the cavities and of the dispersive medium.

To ensure perfect resonance of the incident light, we need to overlap the frequency comb

de�ned by the cavity to the frequency comb of the laser. It means that we must simultaneously

set ωc
CE = ωCE and ωc

r = ωr. Experimentally, one may match the repetition rates by either

locking the length L of the cavity to the repetition rate of the laser, or the other way around.

For the carrier-to-envelope phase, since it is a constant parameter, one may change the amount

of dispersion in the cavity to match the CEO of the laser. However, for high �nesse cavity, this

parameter usually �uctuates, such that it is better to be able to lock the CEO of the laser on a

stable reference, and tune this value such that it matches the cavity’s.

When taking into account higher order dispersion, the frequencies that are resonant in the

cavity do not form a comb anymore, since the spacing between the teeth of the comb is not

constant. There are no other strategies than minimize the dispersion accumulated on a round-

trip. This parameter is very important to control when conceiving a high �nesse cavity.

6.2.3 Simulations
Even though solving the resonance condition is no longer analytical for realistic conditions

(i.e. propagation in a dispersive medium), it may be simulated easily. Such simulations are

essential when building synchronous high �nesse cavity, since it allows to predict how the

spectrum will be transmitted. The only unknown parameters in such simulations is the actual

�nesse, which always turns out to be smaller in the experiments, due to various sources of

losses that are not easily modeled.

A parameter that is easy to change experimentally is the cavity length, using for example a

translation stage. Small variations of the cavity length is commonly achieved by introducing

a piezo-mounted mirror inside the cavity. This also allows to control the cavity length’s in a

retrocontrol loop in order to lock it to the laser. We remind that the contrary procedure (i.e.
changing the laser’s cavity length) results in the same situation, such that the problem may be

modeled in a similar way.

When simulating cavities injected by broad spectra, a useful representation is to plot the

transfer function (6.4) as a function of the wavelength and of the detuning of the cavity
5
. This

5
This detuning may be de�ned as an o�set in its length around resonance.
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results in a two-dimensional map which is easy to relate to experimental quantities. This is

inspired by [Schliesser 06].

We consider a high-�nesse cavity injected by the frequency comb described in 3.1.1, which

has a spectral width of 40 nm FWHM. We then compute the transfer function (6.4) considering

that the cavity is in lab air. We de�ne the incident frequency comb according to experimen-

tal parameters, and we set the cavity’s parameters (6.23) to satisfy the resonance conditions

without dispersion.

We then consider small variations δL around L and plot the transfer function in transmission

for each wavelength. The result, which we call resonance map, is shown on �gure 6.4. The

simulation is done for a cavity of �nesse ∼ 200 in air at standard atmospheric pressure. Since a

cavity is sensitive to the phase accumulated over one round-trip, a resonance map is an indirect

representation of this phase. We can see on this �gure that the resonance is curved with respect

to wavelength, which is representative of residual dispersion.
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Figure 6.4: Resonance map for a cavity of �nesse ∼ 200 in air. On the right is the integral of

the resonance map over wavelength. The insets are projections at a given cavity length.

Taking projections of the map at a given cavity length gives the transmitted spectrum. It is

equivalent to setting the cavity length experimentally by locking. On the right side of �gure 6.4,

we integrated the resonance map over wavelength. This result is also accessible experimentally

by sweeping the cavity length at a resonnably high speed (which can be done by ramping

the piezo inside the cavity and measuring the transmitted power with a photodiode). The

transmission peak, which is a Lorentzian without dispersion, is clearly assymetric, which is

another witness of intra cavity dispersion.

We can see from the map that there is no cavity length (i.e. no lock point) that allows to

transmit the whole spectrum because of second order dispersion. Without quadratic phase, the
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resonance map would be straight, without curvature, meaning that it is possible to transmit

the entire spectrum, as predicted by (6.23).

In this model, we only considered the accumulated phase results from propagation through

air. Experimentally, we need to take into account all the elements inside the cavity, especially

the dielectric coating on all the mirrors, which always adds dispersion. Therefore, a possible

strategy to ensure resonance of every tooth of the comb is to use specially designed mirrors

with the lowest possible dispersion, and put the cavity in vacuum. Another possibility is to use

chirped mirrors which phase is tailored to compensate the propagation through air. However,

this usually results in an oscillating GDD which, for high �nesse cavities, introduces higher

order dispersion to the accumulated phase.

6.3 Experimental realization

6.3.1 Motivations
In this last section, we present experimental results on the construction and the characteri-

zation of a cavity of �nesse ∼ 1200 injected by a ∼ 45 nm FWHM spectrum. More details

may be found in [Schmeissner 14a]. It was constructed to take advantage of the noise �ltering

properties described in 6.1.4.

We remind that, from section 4.1.2, the sensitivity in a projective measurement scheme is

governed by the noise in the detection mode. In our experiment described in chapter 5, we split

the �eld out of the laser source to generate the beam where information is encoded and the

beam used to measure it. In a more general scheme, the two �elds do not come from the same

source and thus do not share common noise properties. As a result, for space-time positioning,

the phase noise of the source needs to be minimized since the detection mode is on the phase

quadrature. This may be achieved by introducing a �ltering cavity in the signal’s arm of the

interferometer

6.3.2 Design and construction
As we developed in section 6.2.1, in order to transmit the entire spectrum, the cavity length

needs to match the free spectral range of the laser source. We chose to set a cavity length of

1.92 m, matching the laser’s cavity (free spectral range of 156 MHz).

The geometry that was chosen is a ring cavity in a bow-tie con�guration. The reason for

a ring cavity instead of a linear is that it is possible to inject two counter-propagating beams.

Therefore, one beam may be used to lock the cavity’s length, while the other one is used for

measurements. Working with short pulses, this solution is convenient since the locking beam

can propagate through very dispersive materials such as EOMs while keeping the studied pulse

transform-limited. The cavity is sketched on �gure 6.5.
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Figure 6.5: Drawing of the bow-tie ring cavity. IC : input coupler, OC : output coupler; PZT

: piezo-mounted mirror; CM : curved mirror. The waists in the cavity are written w1 and w2.

Not shown : one mirror is on a remote controlled translation stage with picometer precision

to match the free spectral range of the cavity to the laser.

The cavity is put in a vacuum chamber built of Invar to minimize the in�uence of the envi-

ronnement. The mirrors are coated by Layertec, and are optimized for zero dispersion on a

large spectral bandwidth. The re�ectivity of the couplers is 99.8%, which using (6.11) results

in a theoretical �nesse of ∼ 1600.

To match the free spectral range of the cavity, one of the mirrors is mounted on a motor

translation stage with a picometer precision. Another mirror is mounted on a piezo actuator

to lock the cavity length.

We estimated the �nesse using an optical ring-down technique to a value of ' 1250, which

is smaller than the theoretical value. There are consequently losses in the cavity, which is to

be expected when building a high �nesse cavity. Nevertheless, the measured �nesse is very ac-

ceptable for applications to ultrafast optics. The bandwidth of the cavity is then approximately

νc ≈ 125 kHz.

6.3.3 Cavity lock
A weaker second beam is injected from the output coupler, used as a reference. It is phase

modulated outside of the cavity bandwidth using an EOM. Its re�ection is di�racted on a

grating, and a selected spectral slice is detected using an APD. The phase modulation is de-

modulated to generate the error signal used to lock the cavity in a Pound-Drever-Hall (PDF)

scheme[Black 01].

This allows to set the cavity length, which is one of two parameters that need to be set to

ensure full transmission of the incident spectrum. As we described in 6.2.2, the other parameter

that needs to be �xed is the carrier-envelope-o�set. We do so by changing the CEO of the laser

by modulation of the pump laser[Helbing 02].

This stabilization of the CEO is done with a commercial system from Menlo. A photonic

crystal �ber is injected by a portion of the laser’s output to generate a supercontinuum. It is



6. OPTICAL CAVITIES 149

octave spanning, and may therefore be self-referenced. Doing so, we realize a f −2 f scheme

that retrieves the �uctuations of the carrier-envelope o�set frequency[Jones 00]. As usual, this

signal is demodulated by a stable reference (Agilent N5181A) and used in a retrocontrol loop

on the pump AOM to lock the CEO. The proper o�set is found by maximizing the transmission

of the cavity.

6.3.4 Environnemental pressure dependency
As we described it in 6.2.2, the environnemental conditions are of the utmost importance when

realizing a high �nesse cavity in the femtosecond regime. Naturally, the best operation should

be obtained when the cavity is under vacuum, since there wouldn’t be any source of dispersion.

In practice however, we noticed that the best operation (i.e. maximum transmitted power

and spectral width) is obtained for a weak vacuum of ∼ 50 mbar. To investigate this behavior,

we propose to measure the resonance map of �gure 6.4 for di�erent air pressure inside the

cavity.

To achieve such a map, we need to change the length where the cavity is locked, which we

refer to as the lock point. The way to do so is to change the spectral slice that is used to generate

the error signal. However, we stress that this method does not allow to lock the cavity on an

arbitrary point. Indeed, from �gure 6.4, we can see that a certain cavity length is resonant for

two ranges of frequency. Using our locking method, it means that using the error signal of

these two spectral slices result in the same lock point. This situation occurs if the accumulated

phase is quadratic. The simulation can be easily adapted to that constraint, as shown by �gure

6.7a. The resonance map is then symmetric in the situation where two distinct spectral slices

are transmitted at a given cavity length.

Setting di�erent intra-cavity pressure, we acquire the transmitted spectrum using a spec-

trometer for di�erent lock points. We then plot the resonance maps, as shown on �gure 6.6.

For the highest and lowest pressure, the experiment maps are consistent with the observa-

tion that we made about symmetric resonance maps. We can then conclude that there is a fair

amount of quadratic phase accumulated at 130 mbar. However, we can also see that there is a

residual negative quadratic phase at lower pressure.

This residual quadratic phase must come from the optical elements inside the cavity. There

are 6 mirrors in the cavity, and small residual quadratic phase on each re�ection can result in a

considerable amount over a round-trip, which is even more noticeable for a high �nesse cavity.

Therefore, the remaining negative dispersion from the mirrors is compensated by the positive

dispersion of the air inside the cavity.

On �gure 6.7b, we selected a lock point of 795 nm and plotted the spectrum transmitted by

the cavity. At a pressure of ∼ 50 mbar, the cavity transmits the entire spectrum, whereas it is

reduced for higher or lower air pressure because of dispersion. The transmitted power is also

higher. We also injected the cavity with a broader source generated by a photonic crystal �ber,

and found the maximum bandwidth of the cavity to be around 100 nm.
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Figure 6.6: Experimental resonance maps for di�erent intra-cavity air pressure. The striped

structure is a result of the interpolation technique used to plot, and is not a real physical e�ect.
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Figure 6.7: (a) Theoretical resonance map for a cavity of �nesse ∼ 200 in 100 mbar of air.

Instead of the cavity length, we plotted it as a function of the lock point, obtained by mapping

the transmitted spectrum to the cavity length. (b) Projection of the experimental resonance

maps of �gure 6.6 for a lock point of 795 nm.

With this method, we fully characterized the cavity. It allows to retrieve indirectly the phase

accumulated on a round-trip without introducing any element inside the cavity.
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Figure 6.8: Power spectrum distribution of the amplitude noise for the same amount of power

of the laser and the cavity transmission. The higher signal comes from the free-running varia-

tions of the CEO frequency, normalized for an equivalent power. The CEO noise’s trace is cut

before 1 MHz because the detected beating hits the noise �oor of the detection scheme.

6.3.5 Noise properties
Finally, we take interest in the noise of the �eld transmitted by the cavity. The results presented

in this part are investigated in greater details in [Schmeissner 14c] and [Schmeissner 14a].

We �rst compare the amplitude noise of the transmitted and incident �elds by acquiring the

power spectrum distribution with a single detector. The result is shown on �gure 6.8.

We see that at high frequencies, there is indeed a �ltering of the amplitude noise of the

laser. Notably, the structure at 1.5 MHz which originates from the relaxation oscillations of

the laser is totally suppressed. However, at lower frequencies, the amplitude noise of the �eld

transmitted by the cavity is considerably higher. We see an excess noise of ∼ 40 dB.

This result can be expected from equation (6.14). For a high phase noise and low amplitude

noise at the input, the amplitude quadrature of the output of the cavity will show higher noise

than the original amplitude noise.

In [Schmeissner 14a], using what is called the rubber-band model[Newbury 07], it is shown

that the main driver of phase noise of this laser source comes from �uctuations of CEO rather

than repetition rate. In order to lock the cavity, the CEO of the laser has to be locked with a

PID whose bandwidth is on the order of 100 kHz. Any �uctuations in CEO higher than this

frequency can thus be considered to be free-running.

Using a phase-lock loop (PLL) scheme, we analyze the power spectrum distribution of the

carrier-to-envelope o�set noise detected at the output of the f −2 f interfermometer, and we

plot it also on �gure 6.8. Above 100 kHz, we can see that the slope of the CEO noise is similar to

the amplitude noise transmitted by the cavity. Comparing the noise level is not straightforward
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Figure 6.9: Power spectrum distribution of the amplitude noise of the laser source, the ho-

modyne signal of the output of the cavity versus its input and the CEO phase noise measured

from the signal at the output of the f −2 f interferometer.

since the beating signal in the f −2 f is detected using an APD, and renormalizing the power

is prone to measurements error. However, comparing the slopes is enough to infer that the

transmitted �eld by the cavity is indeed dominated by the conversion of high phase noise of

the laser source.

To conclude, we perform a homodyne detection between the transmitted �eld (as the signal

�eld) and the laser’s output (as the local oscillator). On the phase quadrature, we should mea-

sure the relative phase noise

〈
δφ2

rel

〉
between the two �elds. We analyze the beam at the output

of the cavity which contains the �ltered phase noise of the laser. Indeed, if the phase noise of

the local oscillator is written

〈
δφ2

0
〉
, then the phase noise of the signal �eld is

〈
[H( f ) ·φ0]2〉

,

where H( f ) is the �lter function of the phase quadrature. The relative phase noise that is

measured is thus: 〈
δφ2

rel
〉= [1−H( f )]2 〈

δφ2
0
〉

(6.24)

We then do not actually measure the noise of the source, but rather the remaining phase noise

after �ltering. At low sideband frequencies, the cavity does not �lter anything (H → 1) and

the two arms of the interferometer are correlated and no meaningful information about phase

noise may be retrieved. However, above the cuto� frequency, the retrieved phase noise contains

information on the original phase noise attenuated by the �lter function. The result is shown

on �gure 6.9.

We observe that the homodyne signal follows a speci�c attenuation above the cuto� fre-

quency, whose slope is di�erent than the one retrieved from the PLL of the carrier-to-envelope

o�set frequency noise. The di�erence in slopes is found to agree with the �ltering of the CEO

phase noise[Schmeissner 14c].



7 Experimental study of correlations in
spectral noise

“It’s all about the noise...”
– Roman “Herr Schmeissner” Schmeissner
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We use in this chapter a multimode description of an optical frequency comb to describe

its noise. We show that both its amplitude and phase �uctuations may be decomposed on

a basis of modes, each attached to a di�erent parameter. We pursue the strategy that was

adopted in [Schmeissner 14b] to characterize the spectral distribution of noise of a frequency

comb, bringing novel insight on the matter.

In particular, we adapt our spectrally-resolved measurement scheme to simultaneous mea-

surement of the spectral structure of amplitude and phase noise. This allows to glean the

correlations between the amplitude and the phase noise of an optical frequency comb which

is, to our knowledge, an undocumented subject.

The scheme that we investigate in this section allows to retrieve the �uctuations of the

collective parameters that de�ne an optical frequency comb. Accessing their variations in real-

time grants the possibility to precisely characterize and potentially stabilize the laser source.

153
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7.1 The modal structure of noise

7.1.1 Introduction and motivations
When assessing the noise of a laser source, it is usually separated in �uctuations in amplitude

(i.e. variation in photon number) and in phase (i.e. variation in frequency).

In the case of a frequency comb, such a description needs to be applied to each individual

comb line, resulting in �uctuations in the global comb structure. Typically, the noise dynamics

are described with a number of collective properties[Haus 93] such as pulse energy, carrier-

envelope o�set or the temporal jitter of the pulse train.

In a manner similar to that presented in 4.2, it has been theorized in [Haus 90] that a variation

of one of these collective parameters a�ects the comb structure in a way that consists of adding

a particular noise mode to the mean-�eld mode. The noise dynamics of an optical frequency

comb may thus be theoretically represented by a unique set of noise modes, exactly like a

perturbation in the propagation distance of a pulse may be decomposed on a set of modes.

The existence of such modes would imply that correlations must exist between individual

comb lines. Strictly speaking, this would mean that the sum of the noise of individual spectral

slices is not equal to the noise of the sum of the spectral slices. Whereas the distribution of

noise across a frequency comb is an already well-documented subject[Bartels 04, Swann 06],

the role of correlations among individual comb lines is a research subject to be explored in

more details[Martin 09].

7.1.2 The noise modes
To fully describe the dynamics of a frequency comb, we use four collective parameters. The

theory of Haus and Lai[Haus 90] describes the noise that arises due to the generation and prop-

agation of a soliton pulse in a laser cavity. The variables considered for a pulse are its photon

number, phase, position (in time) and momentum (i.e. frequency). These four variables may

be linked to four collective parameters of the pulse train as mean power, central wavelength,

timing jitter and phase (CEO).

On �gure 7.1, we show a schematic representation of the variations in amplitude and in

phase of individual comb lines. In insets, we reproduced the corresponding noise mode from

[Haus 90] describing the �uctuations of power, wavelength, CEO phase and timing jitter.

As it should, these modes show a close resemblance to the ones outlines in section 4.2. The

di�erences arise from the fact the Haus theory describes a soliton pulse that propagates inside

the laser cavity while we look at the �eld at the output.

The description of this theory is beyond the scope of this thesis, the important point being

the existence and shape of such noise modes.
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Figure 7.1: Schematic representation of the four collective parameters that describe the noise

dynamics of a frequency comb.

7.2 Measuring spectral correlations in the noise
To reveal the modal structure in the noise dynamics of a frequency comb, one has to simulta-

neously measure and compare the �uctuation (in amplitude and in phase) of every comb line.

Since resolving a single frequency is not experimentally feasible with our sources, we consider

spectral bands. The collective properties of the comb lines that populate these bands should

remain. To do so, we propose to make use of the multipixel detection presented in 3.3.2.

7.2.1 Classical covariance matrix
As usual, we represent the �eld as:

E(+)(Ω)= E0 a(Ω) eiϕ(Ω)
(7.1)

The �uctuations of the �eld δE = E−〈E〉 are thus given to the �rst order by

δE(Ω)= E0

(
δa(Ω)+ iδϕ(Ω) ·a(Ω)

)
eiϕ(Ω) +c.c.

= 2δX cos
[
ϕ(Ω)

]+2δP sin
[
ϕ(Ω)

]
(7.2)

Consider that we measure simultaneously the �uctuations of the �eld in amplitude and in

phase in a given spectral band. We write the retrieved amplitude and phase noise for the n
th

spectral band respectively as δXn and δPn. These �uctuations are retrieved at a given sideband

frequency.

We investigate a sideband RF frequency range of ∼ 100 kHz to ∼ 3 MHz. We do not wish to

resolve �uctuations at lower frequencies that originate from technical noise, such as vibrations,
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turbulence, acoustics and thermal e�ects. The investigated range is mostly dominated by laser

dynamics such as spontaneous emission and noise from the pump transferred to the oscillator.

Over that range, the observed noise �uctuations closely follow Gaussian statistics. As a

consequence, a proper representation of these spectrally dependent �uctuations is a covariance

matrix. The elements of the covariance matrices in amplitude and in phase are written as

[ΓX ]i j =
〈
δX i ·δX j

〉
(7.3)

[ΓP ]i j =
〈
δPi ·δP j

〉
(7.4)

The diagonal elements of this matrix represent the spectrally-resolved variance. The notation

〈·〉 denotes the averaging of the demodulated �uctuations at a given sideband frequency over

the acquisition time.

Since the phase

〈
(δP)2〉

and amplitude

〈
(δX )2〉

�uctuations are acquired simultaneously,

it is possible to compute the correlations 〈δX ·δP〉 for every frequency bands. We write the

obtained matrix C as

[C]i j =
〈
δX i ·δP j

〉
(7.5)

Note that this matrix is not symmetric, and may thus not be diagonalized. However, the full

matrix M de�ned by:

Γ=
[
ΓX C
CT ΓP

]
(7.6)

which represents the collective �uctuations in amplitude and in phase. This matrix is symmet-

ric and may therefore be diagonalized.

Indeed, since covariance matrices are positive-semide�nite and symmetric, they may con-

sequently by decomposed on an eigenbasis:

Γ=VΛV−1
(7.7)

where the i
th

column vi of V is the i
th

eigenvector of Γ associated to the eigenvalue Λii. The

eigenvector then correspond to a noise mode whose eigenvalue depict its contribution to the

global noise description. Note that this matrix needs to be normalized, which we will do in

section 7.2.3.2 relative to the shot noise level. Also, the amount of modes that are accessible

using the multipixel detector is limited by the number of pixels.

With such a decomposition in hand, it is possible to project the modes attached to the �uctu-

ation of a parameter that we constructed in chapter 5 on the eigenmodes of the noise matrices

to estimate their contributions. This is in essence what was done in section 5.4.6 to know the

noise in the time-of-�ight mode in the amplitude squeezed beam. Albeit the noise was quan-

tum in nature, the strategy adopted here to extract classical noise structure is globally inspired

by the quantum method.
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Note that the decomposition of the full covariance matrix (7.6) results in a basis of modes

that couple both amplitude and phase noise. Since these are not easy to interpret, we chose

to diagonalize independently ΓX and ΓX which gives the modal distribution of amplitude and

phase noise whose analysis is more accessible.

7.2.2 Retrieving the �uctuations
Up until now, we used a homodyne detection to retrieve the information on the phase quadra-

ture of the �eld by taking the di�erence of the photocurrents, or the amplitude noise by taking

the sum. Such measurement were done independently. Here, we show that this same scheme

may be used to retrieve simultaneously the information on both �eld quadrature by acquiring

the signal at both output of the interferometer. We name this scheme as superdyne detection.

In the interferometer, we want to retrieve the noise in the local oscillator beam (i.e. the

strong �eld) while the signal �eld is used as a reference to access the phase quadrature. As we

will demonstrate in this section, this optical setup allows to retrieve the �uctuations both in

amplitude and in phase of the local oscillator �eld. To measure the noise in individual spectral

bands, we use the same spectrally-resolved homodyne detection as before (see 3.3.2). The

details on the experimental procedure are given in section 7.2.3.1.

In [Schmeissner 14b], measuring the previously-described covariance matrices was achieved

using the same homodyne detection based optical setup. Two balanced photodiodes were used

at the output of the interferometer, such that the detection of individual spectral bands was

achieved with a pulse shaper in the local oscillator arm. . The measurement was accomplished

using a spectrum analyzer. Both amplitude and phase noise were measured, but not simulta-

neously, such that the correlations between the two was not measured. The scheme that we

present here consists in an upgrade of that previous setup since a single measurement retrieves

the noise in both quadrature simultaneously and is much quicker to achieve.

To retrieve both quadratures at the same time, for one given spectral band, we measure si-

multaneously the signals coming from both detectors. So instead of measuring a single signal

coming from the analogical di�erence of both photocurrents, we retrieves the two photocur-

rents. This is done for all of the 8 spectral bands, resulting in the simultaneous acquisition of

16 signals. The sum and the di�erence are then done in post-processing.

More speci�cally, going back to equation (3.4), taking the sum of the photocurrents (for a

given spectral slice) yields

I+,n =Is,n +ILO,n (7.8)

where the contribution from individual �eld is integrated over the spectral band of the detector.

This obviously yields the total power contained in both beams of the interferometer, such that

the �uctuations of this photocurrent are found to be directly proportional to the noise on the

amplitude quadrature of the �elds. In the case where the local oscillator is stronger than the
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signal �eld, the noise if dominated by its amplitude �uctuations. Hence, it follows that〈(
δI+,n

)2
〉
= NLO

〈(
δXLO,n

)2
〉

(7.9)

Taking the di�erence of the photocurrent results in the now familiar homodyne signal:

I−,n = 2
√

NLO Re
{
α∗

s Γc,n eiφ0
}

(7.10)

Note that in contrast with parameter estimation, the modal structure of the �uctuations of the

signal �eld is not known, since this is what we aim to determine. When the interferometer is

locked on the phase quadrature, we see that the �uctuations in phase noise are carried by the

term ia(Ω) ·δϕ(Ω) (cf. equation (7.2)). The measured phase is the relative phase between the

two arms of the interferometer: δϕ(Ω) = δϕLO(Ω)−δϕs(Ω). If we consider that there is no

phase noise in the signal �eld, which may be achieved by �ltering, then the measured phase is

δϕ(Ω)= δϕLO(Ω), which is the absolute phase noise of the local oscillator.

When the relative phase between the two arms is π/2, the noise in the detected signal is

given by 〈(
δI−,n

)2
〉
= NLO

〈(
δPs,n

)2
〉

(7.11)

Note that this is contingent upon the local oscillator being in the same mean-�eld mode than

the signal �eld. More importantly, we can see that this scheme measures the phase quadrature

of the signal �eld rather than the local oscillator �eld. Hence it needs to be renormalized. From

(7.2), we can see that the phase quadrature is proportional to the envelope of the signal �eld,

as such, δPs ∝
p

N . Therefore, when the two �elds are in the same mean-�eld mode, their

phase �uctuations are linked by

δPLO,n =
√

NLO

N
δPs,n (7.12)

This allows to renormalize our measurement (7.11) such that the �uctuations of the same �eld

are retrieved.

7.2.3 Experimental scheme

7.2.3.1 Measurement strategy

As we hinted earlier, to measure the �uctuations, we use our superdyne detection to acquire

simultaneously the sum and the di�erence of the photocurrents. The experimental scheme is

depicted on �gure 7.2.
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Figure 7.2: Experimental scheme of the superdyne detection that measures simultaneously the

�uctuations in amplitude and in phase of the laser �eld. The �eld that is being characterized

is the local oscillator, while the signal �eld serves as a reference.

The laser source that we characterize is di�erent of the one used in the experiments from

part III. It is a solid-state Titanium-Sapphire laser Mira from Coherent pumped by a Verdi

V18. It delivers pulses of ∼ 100 fs at a center wavelength of 795 nm with a repetition rate of 76
MHz. The spectral width is 10 nm FWHM, and the mean mode-locked power that is delivered

is around 2 W.

On the local oscillator arm, a spatial light modulator from BNS is introduced to compensate

the spectral phase between the two �elds by pulse shaping.

In order to decouple the �uctuations of the two arms, we introduce a Fabry-Pérot cavity of

�nesse ∼ 200 to �lter the signal’s �eld. The cuto� frequency νc is consequently around 200
kHz. We remind that, when using a cavity in a homodyne detection, the relative phase that

is measured is given by equation (6.24), which is dependent on the transfer function in phase

H( f ) of the cavity.

The analysis frequency f l at which the phase noise in both beams is non longer correlated

may be obtained by solving the frequency at which the phase noise of the transmitted �eld is

reduced by a factor of 2 from the incident:

[1−H( f l)]2 = 1
2

(7.13)

By approximating the transfer function to the case of high �nesse cavities, this yields f l '
1.55·νc. Therefore, at a frequency of ∼ 300 kHz, the two beams can be considered as decoupled

in phase, such that the measurement on the phase quadrature retrieves the �uctuations of the

local oscillator.

On the amplitude quadrature, we remind that this quadrature shows excess noise from the

quadrature conversion (6.14) induced by the cavity. Consequently, the noise level has to be

characterized and attenuated properly to ensure that taking the sum of the photocurrents yields
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only the noise of the local oscillator. To ensure no contamination due to the di�erent noise

levels, we introduced di�erent level of optical attenuation in the signal beam when measuring.

The optimal attenuation is obtained when the retrieved noise spectrum for the sum of the

photocurrent is equivalent (in the distribution, not in amplitude) to the one retrieved with the

signal beam blocked
1
.

7.2.3.2 Normalization

As it was outlined in section 3.3.1, the variances of the quadrature operators in amplitude and

in phase are equivalently equal to 1 for vacuum. Hence, it is a logical choice to normalize

the �uctuations to the shot-noise level. Moreover, since the clearance of the detection scheme

is not exceptionnally high (8 dB at maximum power, about 2 dB only for the side pixels that

receive less power), the dark noise in the measurement needs to be carefully removed.

The normalization process consists in computing a gain function that allows to retrieve the

signal. As before, we write the measured signal mi for a single pixel, with an optical signal si
and noise

2 di. The measurement then yields mi = αi si +di, where αi is gain resulting from

the conversion of the optical signal into an electrical signal. In term of covariance, without

correlation between the signal and the noise, we have:

Covi j [m]=αiα j ·Covi j [s]+Covi j [d] (7.14)

where Covi j [x] is the element (i, j) of the covariance matrix of x. When the �uctuations of the

signal arise from quantum vacuum, then Cov[s] = 1 is the identity matrix. For any measure-

ment to yield the value of 1 when measuring vacuum, the gain α is thus found to be

αi =
√

Covii [mvac]−Covii [d] (7.15)

where mvac is the measure covariance matrix of vacuum.

The covariance matrices normalized to the shot-noise level are therefore given by

Covi j [s]= Covi j [m]−Covi j [d]
αi ·α j

(7.16)

which is the noise relative to shot noise (RSN).

The amplitude covariance matrix directly retrieves the amplitude �uctuations of the local

oscillator �eld. However, the phase covariance matrix needs to be renormalized according to

(7.12) such that the phase noise that is measured is for the number of photons contained in the

local oscillator �eld and no the signal �eld.

1
We also add that the introduction of a high-pass �lter at the input of the demodulation stage was necessary

because the very high phase noise at lower frequencies saturated the electronics.

2
The noise that is referred to here is the dark noise of the detection. The term signal obviously describes the

noise that arises from measuring the �uctuations of the light �eld, which are not correlated to the noise of the

detection.
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Note that, from a quantum point of view, this situation is equivalent to mixing an unit of

vacuum in the signal port of the beamsplitter. As a consequence, the sensitivity is reduced

according to Heisenberg principle. This is a consequence of the simultaneous measurement of

both optical quadratures. For classical noise, this is however not an issue.

Once this renormalization of the phase �uctuations is done, the correlation matrix C is also

normalized to shot noise using to (7.16) because of the isotropy of vacuum.

7.3 Experimental results

7.3.1 Amplitude and phase spectral noise
On �gure 7.3, we represent the covariance matrices in amplitude (top panel) and in phase

(bottom panel) for a range of three sideband frequencies. The noise is estimated relative to

the shot noise level in a linear scale. We also included as inset a two-dimensional heatmap

representation of each matrices.
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Figure 7.3: Covariance matrix representation of the �uctuations in amplitude (top row) and

in phase (bottom row) at three di�erent sideband frequencies.

We can see that at high frequency, neither the amplitude nor the phase matrix exhibit cor-

relations between wavelengths. For the amplitude matrix, the diagonal elements are equal to

1, con�rming that the laser source is shot noise limited in amplitude on this corresponding
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time-scale. The absence of correlation terms is also consistent with the fact that the �uctua-

tions of vacuum are entirely uncorrelated. The same observation can be done for the phase

covariance matrix, although the diagonal elements are equal to 10. This is a consequence of

the power renormalization (7.12) that decreases the sensitivity of the measurement. When not

normalizing, the diagonal elements are equal to 1, and the source is therefore also shot-noise

limited in phase noise at this sideband frequency.

Conversely, on longer time scale, it appears that the amplitude �uctuations of every consid-

ered spectral band are correlated, as it is depicted by the �at structure of the top left matrix.

For the phase quadrature, not only is the noise considerably higher, the correlations are largely

con�ned to the spectral center. Both quadrature show a very di�erent noise level and spectral

distribution.

Note also that the amplitude noise appears to reach the shot noise level quicker than the

phase noise, which is in accord with �gure 6.9. Although the laser source that was investigated

in chapter 6 is di�erent than the present one, both are still Titanium-Sapphire based laser and

thus exhibit similar disparities in the noise level.

However, the two sources do not share the same mode-locking mechanism, hence there is

no reason to assume that their spectral noise distribution should be similar. Unfortunately, the

phase noise of the source that delivers 20 fs pulses was not yet acquired at the time of the

writing of this thesis. However, measuring the amplitude noise is quite straightforward and

has been steadily achieved. Its amplitude noise matrices are plotted on �gure 7.4

We see indeed a di�erent spectral distribution than the ones depicted by �gure 7.3. Most

noticeably, the noise seems concentrated toward the infrared wavelengths, even more than the

other laser source. At 1.5 MHz, the amplitude noise is dominated by the relaxation oscilla-

tions. Whereas the amplitude noise retrieved with a single detector does not appear to be that

di�erent for both laser sources, their spectral correlations can show di�erent structure.

By this method, the noise �gure of two laser source may be compared in details since in-

formation about correlations between di�erent parts of the spectrum are not easily retrieved

using standard methods. More importantly, the di�erence in the mode-locking process may be

the reason for the di�erences that are witnessed here, and more information will be gained by

acquiring the spectral phase �uctuations in the near future.

7.3.2 The noise modes
We now want to extract the modal structure of this noise, which becomes accessible upon

eigendecomposition of the noise matrices. The eigenvalues re�ect the noise power, and are

dependent on analysis frequency. They are shown on �gure 7.5. At high frequency, the noise

in both quadratures is equal to the shot noise
3

as it should. At longer timescale, the eigenvalues

rise well above shot noise level in a non-degenerate manner. In both cases, the main noise

3
The o�set with respect to shot in the noise value for the main eigenvalue of the phase quadrature comes from

excess noise from the cavity. It may be suppressed by attenuating the signal’s beam.
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Figure 7.4: Covariance matrix representation of the �uctuations in amplitude only of the laser

source described in 3.1.1.

mode is clearly identi�ed as the one with the highest eigenvalue. The eigenmode attached to

the highest eigenvalues (at a particular analysis frequency) are also shown on the plot 7.5. We

can see that the main amplitude noise mode closely resembles the mean-�eld mode while the

next eigenstructure is similar to the time-of-�ight mode. The phase quadrature shows the same

eigenmodes.

The eigenstructures are very similar to the theoretical prediction of [Haus 90] shown on

�gure 7.1. The amplitude noise is clearly dominated by amplitude �uctuations while the �uc-

tuations of wavelength are much lower. In the phase quadrature, the CEO phase noise largely

dominates whereas the timing jitter is less important but still noticeable. Interestingly, we

show the clear existence of a third mode not predicted by Haus theory, which, in analogy to

4.2.4.3, may be attached the �uctuations of dispersion inside the laser cavity.

Note that this method of eigendecomposition does not ensure that the variation of each

eigenvalue in �gure (7.5) is always attached to the same mode. Nevertheless, no crossing in

the noise power is observed, and the modal structure is not a�ected by the analysis frequency
4

.

Since the noise is represented relatively to the quantum limit, this method also allows to

compare the noise power in both quadrature. We can infer from the decomposition that the

�uctuations in CEO and in time of arrival of the pulses are more intense than the �uctuations

in power and in center frequency.

We note also that the general structure of the amplitude covariance matrix and eigenmodes

are di�erent from the one presented in [Schmeissner 14b] despite the laser source being identi-

cal. In addition to the di�erence in sensitivity, this disparity may be explained by the fact that

this previous experiment was accomplished with pump diodes at the end of their life cycle,

resulting in very di�erent noise characteristics.

4
Except of course when shot noise is reached and every eigenvalue is degenerated. Consequently, the modal

structure is meaningless.
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Figure 7.5: Eigenvalue distribution of the covariance matrices in amplitude (a) and in phase

(b). The corresponding eigenmodes at 500 kHz are also plotted.
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Figure 7.6: Experimental evolution of the �uctuations of the four collective parameters of

an optical frequency comb with respect to sideband frequency. The phase mode corresponds

on the amplitude and phase quadratures respectively to variations in mean power and in CEO

phase. The time-of-�ight mode corresponds to timing jitter and center wavelength �uctuations.

7.3.3 Collective parameters projection
It is also possible to derive which parameter �uctuates given knowledge of the previous noise

distribution. Indeed, the modes attached to the �uctuations of a parameters may be computed,

as it was done in 4.2. Computing the inner product (i.e the overlap) between the parameter

mode and the eigenmodes of the noise matrices then allows to retrieve the noise associated

to the �uctuation of the said parameter. This is in essence a basis change of the covariance

matrix. The retrieved eigenvalue is then directly the noise power attached to the �uctuations

of a physical parameter.
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On �gure 7.6, we projected the previous eigendecomposition into the basis de�ned by the

phase mode and time-of-�ight modes v0 and v1 as previously de�ned. This projection is done

for every analysis frequency, hence the distribution in noise is always attached to the proper

mode. It is clear from this �gure that the noise variation is quite similar to the one depicted in

�gure 7.5, thus demonstrating a very good overlap between the eigenmodes and the projection

modes attached to a speci�c parameter.

This allows to directly compare the noise in amplitude and in phase. The global noise struc-

ture is strongly dominated by the �uctuations of CEO and timing jitter that lie on the phase

quadrature.

7.3.4 Phase-amplitude correlations
The concurrent acquisition of amplitude and phase �uctuations allows to compute the cor-

relations between the two. Note that the quadrature noises have very di�erent intensities.

Retrieving the correlations between signals very contrasted does not yield a precise result. To

increase the dynamic range, it is preferable to compute the correlations between two signals

with similar variations. In our setup, the strongest noise comes from the phase noise, which is

retrieved by the amplitude of the signal �eld. Consequently, this beam was signi�cantely atten-

uated. The power ratio between the local oscillator and the signal �elds was set to ∼ 300 for the

acquisition of correlations. On �gure 7.7, we plot the matrices of correlations for three di�erent

analysis frequencies. As expected, beyond sideband frequencies of ∼ 1 MHz, no correlations

are observed since the quadrature of vacuum are not tied. At lower frequencies however, a

distinct structure is observed along the amplitude quadrature. We can see a variation in ampli-

tude seemingly similar to a Gaussian for every frequency band of the phase quadrature. Note

that the global sign of this correlation matrix has no meaning since the variations in phase are

dependent upon the lock point of the interferometer. As it was discussed in 5.4.1, the side of

the fringe on which we lock determines the sign of the recovered signal, hence the sign of the

retrieved correlations may be switched by changing the lock fringe. The polarity of each pixel

within the correlation matrix is however relevant, and every spectral bands are correlated the

same way.

The Gaussian structure along the phase quadrature may be explained by the mode-locking

mechanism of the laser. As it was outlined in 2.4.2.2, the Kerr-lensing e�ect is in essence a

phase response dependent on the amplitude, as described by equation (2.52). This may explain

that the phase and amplitude quadrature are correlated within the same spectral band, with a

progression that follows the mean-�eld spectrum.

An animation of the amplitude and phase noise matrices as well as the correlation matrix as

a function of sideband frequency may be found online at [Thiel 15].
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Figure 7.7: Matrix of correlations between amplitude and phase noise. The correlations vanish

at high sideband frequencies since the �uctuations of quantum vacuum are uncorrelated.

7.3.5 Real-time laser dynamics analysis
To conclude, we wish to propose this measurement scheme to resolve the real-time variation

of the laser noise. To do so, instead of leaving the laser source free-running, we introduce a

perturbation inside the laser cavity and characterize it. Since the measurements in the phase

quadrature require to lock an optical cavity, this perturbation needs to be small enough as not

to disrupt the cavity’s retrocontrol loop.

We decided to adjust the mode-locking mechanism by slowly opening or closing the slit at

the output of the laser’s cavity. Being a hard-aperture KLM (see section 2.52), doing so either

pushes laser operation towards continuous wave generation
5

(slit opened) or towards self Q-

switching. In both cases, mode-locking is lost. We propose to dynamically explore the noise

characteristics of the laser along this range.

For di�erent opening of the slit, we record the covariance matrices in amplitude and in phase

as a function of the analysis frequency. We proceed to eigendecomposition and we project the

results in the phase and time-of-�ight modes. This ensures that we are tracking the �uctuations

in the same mode. The results are shown on �gure 7.8.

We see again that the noise structure is dominated by the �uctuations of phase in every

con�guration. The parameters that are the most a�ected by the mode-locking mechanism

appear to be the CEO phase and the mean power, both carried by the mean-�eld mode. In

comparison, the �uctuations in timing jitter and center wavelength remains unchanged by the

perturbation.

The noise added by the opening of the slit is clearly concentrated in the relaxation oscilla-

tions of the system. In amplitude and in phase, the relaxation oscillation peaks is ampli�ed by

20 dB when the slit is opened (i.e. close to self Q-switching) whereas it vanishes when the slit

is closed (i.e. optimal con�guration of the system).

This behaviour is observed easily when measuring the power spectrum distribution in ampli-

5
We note that this con�guration results in the least amplitude noise.
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Figure 7.8: Fluctuations of power (a) center wavelength (b) CEO phase (c) and timing jitter (d)

for di�erent con�gurations of the mode-locking mechanism.

tude noise using a single detector. However, it is interesting to notice that the phase quadrature

is a�ected by the same amount, and that the �uctuations are concentrated in the global phase

of the comb rather than in timing o�set.

Because of the way the aperture of the slit a�ects the laser cavity, the results that we show

here is to be expected. Introducing losses in the cavity should not a�ect the center wavelength

nor the repetition rate. This proves however the validity of this method to diagnose the ultrafast

source in term of its main parameters.

Rather than measuring the noise matrices over a range of sideband frequencies for di�erent

opening of the slit, we also did a dynamical measurement at �xed sideband frequencies. We

computed in real-time the covariance matrices while dynamically opening the slit. Note that

this was not done for the phase quadrature, since the change in power would most certainly

unlock the cavity. The result of the dynamic acquisition on the amplitude quadrature is shown

on �gure 7.9 for analysis frequencies close to the relaxation oscillation of the system.

We see that the more sensitive parameter to this particular perturbation is the amplitude,

while the center wavelength is not a�ected. This measurement was achieved independently

for the four sideband frequencies, such that the timescales may not be compared.

Having access to these �uctuations in real-time opens the possibility to diminish them us-
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Figure 7.9: Real-time acquisition when the slit at the output of the laser cavity is opened

dynamically. This is a dynamic progression between the situations plotted on �gure 7.8 at four

analysis frequencies close to the relaxation oscillations. The noise are for (1) amplitude and (2)

center wavelength jitter. The grayed boxes represent the time at which mode-locking is lost,

and the contained data is then not relevant.

ing a retrocontrol loop. For example, while monitoring the �uctuations in CEO phase noise,

it is conceivable to act on an element inside the laser cavity to reduce the noise. Since the

obtained decomposition is made in term of uncoupled noise, it should be possible with proper

engineering to counter the variation of one parameter independently of the others.



Part IV

Going further with quantum frequency
combs
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8 Multimode squeezed states

(Having spent a day trying in vain to communicate with a Newfocus controller, to the
point of building his own communication cable)
“By now, I am �rmly convinced that this instrument has become self-aware, and will
just refuse to work.”

– Jonathan “Gri�n” Roslund
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In this �nal part, we overview the future developments of the parameter estimation ex-

periment. It involves the generation of quantum light to perform measurements below the

standard quantum limit and the synthesis of a beam entangled in “time”.

Toward that aim, we describe the non-linear e�ects in the femtosecond regime (second har-

monic generation and parametric down conversion) that are necessary to generate the quan-

tum resources that are required.
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8.1 Generating quantum states

8.1.1 Creation of squeezed states
To generate quantum states with sub-Poisson statistics, several techniques which are all based

on non-linear optics can be used. It involves the creation of pairs of photons within a medium

which then share complementary information (such as polarization, frequency, etc.).

In our laboratory, generation of quantum states has been achieved within an optical para-

metric oscillator (OPO) injected by a frequency comb. It consists of a gain medium which

presents a χ(2)
non-linearity put in a cavity. Within the crystal, a nonlinear e�ect converts a

pump photon of frequency ωp and wavevector kp into two photons, called signal and idler,

whose frequencies and momenta satisfy:

ωp =ωs +ωi (8.1)

kp =ks +ki (8.2)

The cut of the crystal is set such that all frequencies propagate with the same velocities, re-

sulting in the maximal gain. In the case were the signal and the idler photons are in the same

spatiotemporal mode, the parametric down conversion process is said to be degenerate.

The Hamiltonian of a degenerate parametric down conversion process is written as

ĤPDC = igap

(
â†

s

)2 +h.c. (8.3)

with g = χ(2)ωs
Ni c

. To obtain that expression, we considered that the pump is a classical �eld, and

we made the approximation that it is undepleted by the nonlinear process. We also considered

the perfect phasematching case ∆k= 0.

The unitary evolution matrix associated to the Hamiltonian is then given by

Û = exp
[
− i

2
ĤPDC

]
≡ exp

[
1
2

gap

((
â†

s

)2 − âs

)]
(8.4)

which corresponds to the squeezing operator (1.96) with a squeezing parameter gap. This

factor scales with the amplitude of the pump �eld (i.e. the square root of the pump intensity)

and with the non-linear susceptibility of the crystal.

It may be shown that this process corresponds to a phase sensitive ampli�cation of the in-

coming �eld in the same mode as the signal [Grynberg 10]. More precisely, for an input �eld

Ê(+)
in of frequency ωs and of same polarization as the signal, after propagation through the

crystal, the �eld Ê(+)
s is characterised by the following quadrature operators:

x̂s = e−γ`c · x̂in (8.5)

p̂s = e+γ`c · p̂in (8.6)
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where `c is the length of the crystal and γ= χ(2)apωs
Ni c

is the gain, with ap the classical amplitude

of the pump and Ni the photons number in the input �eld. The variances of the quadrature

operators are then written as: 〈
(δx̂s)2〉= e−2γ`c ·〈(δx̂in)2〉

(8.7)〈
(δp̂s)2〉= e+2γ`c ·〈(δ p̂in)2〉

(8.8)

When the input state is a coherent state or a vacuum state, its variance on both quadrature

is equal to unity, and therefore, the amplitude �uctuations of the signal state are found to be

below 1. It is said to be amplitude squeezed. On the other hand, its phase quadrature has a

variance superior to one, and is then said to be anti-squeezed.

8.1.2 Parametric down conversion with an optical frequency comb
To introduce the generation of multimode squeezed light, we give a succinct description of the

parametric down conversion of an optical frequency comb. A more complete description may

be found in [Patera 08] and in [Jiang 12].

For a pump �eld described by a frequency comb of repetition rate ωr and carrier-envelope-

o�set frequency 2ωCE , each toothωp,k = kωr+2ωCE can give rise by parametric down conver-

sion to two frequencies ωs,n = nωr +ωCE and ωs,k−n = (k−n)ωr +ωCE with ωs,n +ωs,k−n =
ωp,k. The amplitude of this conversion is dependent on the amplitude ak of the pump fre-

quency ωp,k. Consequently, a frequency of the signal comb ωs,n is generated by all the pump

frequencies ωp,k and coupled to all the signal frequencies ωs,k−n with a strength depending

on the amplitude ak for each k. This is therefore a highly multimode process that results in a

highly multimode structure, as shown by �gure 8.1.

The interaction Hamiltonian in this case is then written as

ĤPDC = ig
∑
m,n

am+nΦm,nâ†
s,mâ†

s,n +h.c. (8.9)

where Φm,n denotes the phase mismatch between the interacting waves within the crystal. It

can be shown[Eckstein 12] that this decomposition on a very large number of frequency modes

may be simpli�ed by diagonalizing the spectral coupling matrix or joint spectral distribution
Lm,n = am,nΦm,n. When writing Λk the eigenvalues of L and Ŝk the annihilation operators

associated to the eigenmodes vk of L, the Hamiltonian is expressed in the basis of the operators{
Ŝk

}
as:

ĤPDC = ig
∑
k
Λk

(
Ŝ†

k

)2 +h.c. (8.10)

This Hamiltonian describes an assembly of independent squeezing operators acting on the

modes Ŝk with a squeezing factor gk = gΛk. The modes Ŝk are called the supermodes of the

system.



8. MULTIMODE SQUEEZED STATES 173

Signal

Pump

Parametric Down
Conversion

Figure 8.1: Representation of the parametric down conversion process with optical frequency

comb. Each tooth of the pump comb can give rise to every tooth of the signal comb. [Figure

by Renné Medeiros de Araujo]

In the case we are interested in, it may be shown that Λk is real, and when ordered from

highest to lowest values, Λk is positive for even k and negative for odd k. This means that the

even supermodes are squeezed in amplitude, while the odd supermodes are squeezed in phase.

8.1.3 Objectives and perspectives
We aim to generate a number of these quantum supermodes for various applications such

as below quantum limit parameter estimation and entanglement. Such resource has already

been successfully manufactured by the group [Roslund 13], showing at least a number of 32
supermodes, each individually squeezed, where the lowest order mode is squeezed by 8 dB.

This quantum source was also used for the experiment in quantum metrology described in

section 5.4.6. See [Cai 15] for the latest development and applications.

As it was referred to earlier, the quantum source consists of a synchronously pumped opti-

cal parametric oscillator (SPOPO) which is resonant for the signal �eld. If we were to generate

entanglement between di�erent supermodes, one would have to manufacture two of these

multimode quantum beams. Moreover, since it is generated inside of a cavity, the “quantum-

ness” of the state is only observable on an integration time that is limited by the bandwidth of

the cavity. In the time domain, this is pictured by the quantum behaviour of a train of pulses

that are correlated over the life time of the cavity.

Consequently, observing quantum e�ects between subsequent pulses is not possible using

such squeezer. Having access to the quantum e�ects in a pulse-by-pulse regime would result in

a discrete representation of a continuous variable state, thus leading to interesting perspectives.
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The parametric down conversion process in single-pass (i.e. not in cavity) appears to be well-

suited to that particular task.

We propose to utilize such scheme to the generate a signal and idler �eld with less complexity

that an OPO. Since no cavity is present, there is no bandwidth e�ect, hence every pulse would

show quantum properties[Wenger 04]. On the down side, achieving squeezed light generation

in a single-pass con�guration requires a lot of pump power.

In the following, we give a description of the parametric down conversion process that is

oriented toward the main parameters to set and control in order to maximize the amount of

squeezing in a single-pass con�guration.

8.2 Single-pass squeezing

8.2.1 Parametric down conversion
We begin by showing how to derive (8.9).

We consider the interaction between a pump and a signal �eld in a non-linear medium with

a second order non-linear polarization. Using a classical treatment, it can be shown
1

that the

envelope as of the signal �eld satis�es the following propagation equation:

∂as

∂z
(z,ω)= E0,p

ω0χ
(2)

2nsc

∫
R

ap(z,ω+ω′)a∗
s (z,ω′) ei∆k(ω,ω′)z dω′

p
2π

(8.11)

where ns is the index of refraction seen by the signal wave and E0,p is the �eld constant of

the pump �eld. Note that even though we considered that the signal and the idler �elds are

identical, this process may not be regarded as being degenerate since photons are created at

di�erent frequencies that satisfy the energy conservation condition (see �gure 8.1.

The quantity ∆k(ω,ω′) is the mismatch in wave vector due to the propagation of di�erent

polarization in an anisotropic medium. It reads

∆k(ω,ω′)= kp(ω+ω′)−ks(ω′)−ks(ω) (8.12)

In the undepleted pump regime where ap does not depend on the longitudinal variable, for a

real envelope
2 as, it is straightforward to obtain the amplitude of the signal �eld at the output

of the crystal. With a crystal length `c, the signal envelope at the output aout
s is written as a

function of the input ain
s as:

aout
s (ω)= exp[S0] ·ain

s (ω) (8.13)

1
As in the �rst chapter, we use the paraxial approximation and the slowly-varying envelope approximation.

2
In the more realistic case were as is complex, the calculation links aout

s to its complex conjugate (ain
s )∗.
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where S0 is given by the following integral:

S0 = E0,p
ω0χ

(2)`c

2nsc

∫
R

ap(ω+ω′) sinc
(
∆k(ω,ω′)`c

2

)
dω′
p

2π

≡ C
∫
R

L(ω,ω′)
dω′
p

2π
(8.14)

We wrote the constant factor C that encompasses the medium properties and the indices of

refraction seen by the pump and the signal �eld, and we introduced the joint spectral distri-

bution L(ω,ω′) = ap(ω+ω′) sinc
(
∆k(ω,ω′)`c

2

)
. Using the discrete structure of a frequency comb

allows to write the Hamiltonian (8.9).

The squeezing factor is consequently proportional to the eigenvaluesΛ j of L and to the con-

stant C. Note that L is dependent on the amplitude of the pump �eld, such that the eigenvalues

Λ j are also dependent on the square root of the number of photons in the pump.

8.2.2 Eigenmodes of the parametric down conversion
The multimode structure of the signal �eld at the output of the crystal is dictated by the eigen-

modes of the joint spectral distribution. Using a Gaussian approximation, this diagonalization

has an analytical solution[Patera 08] where the eigenvalues have a geometric progression de-

pendent on the properties of the gain medium and the eigenvectors are Hermite-Gauss modes.

The spectral width of the �rst supermode is dependent also upon the properties of the medium

and the spectral bandwidth of the pump, while the width of the following modes scales with

the square root of the mode order.

We want this squeezing source to be realized from the second harmonic of the laser source

described in 3.1.1, which delivers pulses of ∼ 20 fs, much shorter in comparison to the other

laser source that was used to measured the noise matrices of chapter 7 and the below shot

noise measurement of section 5.4.6. Whereas the peak power is more important with shorter

pulses, the in�uence of dispersion is also much stronger. Hence, a compromise has to be made

between pulse duration and crystal length.

When frequency doubling this source, the maximum achievable bandwidth is on the order

of 14 nm. This sets the limit for the bandwidth of the pump to be used in the simulations. The

other parameter to be chosen is the crystal type. The nonlinear crystal used in the SPOPO and

for second harmonic generation is BIBO (BIB3O6), which has a strong nonlinearity but is also

quite dispersive.

A very widespread nonlinear crystal in ultrafast optics is Barium Borate, BBO. It has a decent

nonlinearity and a very wide phase matching bandwidth, making it ideal for short pulses. We

settled to use this crystal for our simulations and experiments.

We set the orientation of the crystal such that phase matching is achieved at the center

frequency ∆k(ω0,ω0) = 0. The phase mismatch between di�erent spectral components of the
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interacting �elds is obtained by Taylor-expanding the pump and signal wavevectors:

∆k(Ω,Ω′)=���*
0

∆k0 + (k′
p −k′

s)(Ω+Ω′)+
[

1
2

k′′
p(Ω+Ω′)2 − 1

2
k′′

s (Ω2 +Ω′2)
]

(8.15)

where k′
s,p and k′′

s,p correspond to �rst and second order derivatives with respect to ω taken

at the center frequency ω0. On �gure 8.2, we plot the joint spectral distribution matrix and its

eigendecomposition for a parametric down conversion in 1 mm of BBO when the pump has a

bandwidth of 8 nm FWHM.
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Figure 8.2: Parametric down conversion for 1 mm of BBO and a pump of 8 nm FWHM. (a) Joint

spectral distribution. (b) Eigenspectrum of the decomposition and simulated measurement. (c)

First two supermodes (plain) and amplitude of the laser’s �eld (dashed).

The joint spectral distribution corresponds to the product of the Gaussian pump by the phase

matching function which results in the curved structure because of the quadratic dispersion in

the crystal. It follows that the supermodes have an oscillating behaviour in the spectral wings.

From the analytical diagonalization, it can be shown that the width of the �rst supermode

is proportional to the bandwidth of the pump, and inversely proportional to the parametric

crystal length, the group velocity mismatch and the dispersion. Choosing the crystal length

and the bandwidth of the pump thus allows to taylor the width of the supermodes.
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These parameters also a�ect the eigenspectrum in both its amplitude and its distribution.

The con�guration that was chosen for this simulation yields a �at distribution of the �rst four

eigenvalues, while the bandwidth of the �rst supermode is similar to the one of the laser.

This spectral width is important to control in order to access it. To measure the variance

in a given mode, one has to perform a projective measurement where the local oscillator is

in the same mode. To do so, the local oscillator �eld needs naturally to have a bandwidth at

least equal to the mode that we want to measure. If not, the overlap between the signal and

the reconstructed mode will be lower, which, when measuring quantum states, is equivalent

to mixing vacuum. This is a source of loss that is very important to control.

Consequently, if one wants to measure every modes that are shown on the eigenspectrum

of �gure 8.2 using the �eld from the laser source, the retrieved distribution of squeezing would

be very di�erent. A way of predicting this dependency is to use a pragmatic approach based on

projective measurements. Consider that we want the measure the noise in a given supermode

in a homodyne detection were we are able to shape the local oscillator. In the case were the

parameters of the interaction are such that the �rst supermode is well-approximated by a Gaus-

sian (as it is the case in �gure 8.2), it follows that the next supermodes are also approximated

by a Hermite-Gaussian basis.

To measure the amount of squeezing in each of these supermodes, we project the multimode

vacuum on the mode of the local oscillator that is set by the experimentalist. To construct the

projection mode, we measure the �rst and second moments of this �rst supermode
3

and build

a Hermite-Gauss basis with these parameters. Since the bandwidth of the local oscillator is

limited by that of the original �eld, we multiply the reconstructed basis by a sharp �lter. This

allows to simulate that the bandwidth of the local oscillator can be slightly increased with

increasing its power and shaping its amplitude.

We then compute the overlap between each modes of this new basis and the eigenmodes

computed in 8.2.2, and we use the result to weight the eigenvalues distribution. The result is

shown on �gure 8.3. This procedure adds a steep cuto� and reduces substantially the number

of measurable modes, as shown on 8.2(b). A similar result may be obtained by diagonalizing

a subset of the joint spectral distribution matrix. When applied to a simulation of the SPOPO

experiment, this method gives a reasonable approximation of the experimental squeezing spec-

trum
4
.

Experimentally, this bandwidth e�ect is currently limiting the amount of squeezing that is

measured in the higher order modes with the SPOPO. Another concomitant e�ect may be that

the pixelization of the search space can only approximate the high frequency variation of the

supermodes, and is again equivalent to mixing in vacuum.

For the situation that we study, we do not wish to produce a high number of squeezed

modes, in contrast with the SPOPO experiments. However, we are interested in producing

3
With the SPOPO, this may be done by operating it over threshold such that this mode is non-vacuum.

4
Although the real experimental method to measure the noise in every mode is based on reconstructing the

covariance matrix and diagonalizing it. This does not assume any shape of the supermodes, but is still limited by

bandwidth and pixelization issues.
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Figure 8.3: Overlap between the �rst 8 eigenmodes and a reconstructed Hermite-Gaussian

basis that has the same moments than the �rst supermode. This reconstructed basis is also

weigthed such that its width may not exceed the maximum possible bandwidth de�ned by the

local oscillator (dashed).

squeezed modes that are as close as possible to Hermite-Gauss, as we will explain in section

8.5.1. Computing the overlap between the simulated eigenmodes of the system and the ideal

basis is then more adapted to that purpose.

8.2.3 Expected e�ciency
The previous simulation allows to predict the number of detectable modes and their relative

squeezing / anti-squeezing levels. The global e�ciency of the process is however not an easy

quantity to predict with con�dence. Experimental quantities that are hard to evaluate precisely,

such as peak power and focussing e�ects, lead to very di�erent expectations.

Since we already have access to a squeezer in our laboratory, meaningful results can be

obtain by doing comparisons. In an OPO, the maximum squeezing is achieved for a pump

power at which the cavity is emitting a bright beam of light, similar to a laser. This point

is called threshold and is dependent in particular on the re�ectivity of the OPO cavity. By

considering the squeezing factor g0 of the �rst supermode, which depends on pump power,

one can show that the threshold is reached for:

gthresh = cosh−1
(
1+ r2

2r

)
(8.16)

where r is the global re�ectivity of the cavity. We calculate the value of this parameter for

the experimental settings corresponding to a global re�ectivity r2 = 70% (�nesse of 20). The

pump power at threshold is measured to be Pthresh ≈ 80 mW.

In the case of the SOOPO, the squeezing parameter in the n
th

mode is a function of the

eigenvalue gn. The threshold corresponds in the theory to a singular point where the squeezing

parameter goes to in�nity. However, when no cavity is considered (i.e. in single pass parametric
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down conversion), the squeezing parameter is directly proportional to this eigenvalue and does

not show any singularity. With out experimental parameters, if one were to remove the OPO

cavity and measure the squeezing level for the pump power at which threshold is achieved, the

expected squeezing level is on the order of 1.5 dB.

This rough estimation allows to infer the maximum amount of squeezing in a single pass

con�guration for a given pump power. We also note that the squeezing amount scale with the

square root of the pump power, and is by far the easiest parameter to adjust in order to increase

the squeezing amount.

8.3 Second harmonic generation
In this section, we succinctly present how to create a strong pump for the parametric down

conversion process. We derive the governing equations for second harmonic generation in the

ultrafast regime and the parameters on which e�ciency depends.

8.3.1 E�ciency
With a similar treatment than that done in section (8.2.1) for parametric down conversion, the

propagation equation for the signal �eld
5

within the frequency doubling crystal writes as

∂As

∂z
(z,ω)= i

ω0χ
(2)

nsc

∫
R

Ap(z,ω′) Ap(z,ω−ω′) ei∆k(ω,ω′)z dω′
p

2π
(8.17)

where we considered the center frequency of the signal �eld as 2ω0, and we write the envelopes

A i(z,ω)= E0,iai(z,ω) for a better readability.

In the undepleted pump regime, equation (8.17) may be integrated over the crystal length

`c:

Aout
s (ω)= i

ω0χ
(2)`c

nsc

∫
R

Ap(ω′) Ap(ω−ω′) sinc
(
∆k(ω,ω′)`c

2

)
dω′
p

2π
(8.18)

where we consider that the signal �eld at the input of the crystal has a zero amplitude.

When neglecting the e�ect of second-order dispersion in the phase-matching function, the

second-harmonic �eld is then written as:

Aout
s (ω)= iΓ`c F(ω) ·Φ(ω) (8.19)

5
Note that we always consider the pump �eld as the input of the nonlinear process, being second harmonic

generation or parametric down conversion. It does not denotes the same �eld for both processes.
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where Γ= ω0χ
(2)

nc , F(ω)= ∫
R

dω′p
2π

Ap(ω′) Ap(ω−ω′) is the self-convolution of the pump �eld and

Φ(ω) is the phase-matching function. It reads

Φ(ω)= sinc
(
∆k′`c

2

)
(8.20)

where ∆k′ = k′
p −k′

s is the group velocity mismatch.

In the Gaussian case, the second harmonic of the pump �eld is another Gaussian of band-

width

p
2∆ωp and center frequency 2ω0 multiplied by the phase matching function which acts

as a spectral �lter. For a dispersive material, the phase-matching function becomes narrower,

hence the second harmonic spectrum is shorter than the limit given by

p
2∆ωp.

We are interested in the energy Ws contained in the second harmonic �eld, obtained by

integrating the intensity (see (1.41)):

Wout
s = 2ncε0

∫
R

dω
∣∣Aout

s (ω)
∣∣2

(8.21)

An exact treatment can be done in the time domain to compute the energy [Weiner 11a]. In

the spectral domain, a similar result may be obtained by approximating the phase-matching

function by a Gaussian of similar FWHM.

The second harmonic �eld is then found to be proportional to

Aout
s (ω)∝ χ(2)Wp`c

n3/2 exp
[
−

(
ω−2ω0

2κ

)2]
(8.22)

where Wp is the energy in a pump pulse and κ is an e�ective width de�ned by

κ=
p

2∆ωp

[
1+

(
∆k′`c∆ωpp

2ξ

)2]−1/2

(8.23)

where ξ ≈ 1.9 is a numerical factor that approximates the FWHM of the sine cardinal to a

Gaussian. For short crystals `c → 0, we �nd the standard result that the second harmonic

�eld has a width

p
2∆ωp. A longer crystal then reduces the spectral bandwidth of the second

harmonic �eld.

Hence, the energy in a signal pulse is given by

Wout
s ∝

d2
e�

n3 W2
p `

2
c κ (8.24)

We introduced the e�ective nonlinear coe�cient de� = χ(2)

2 which is commonly used in the

literature to quantify the nonlinearity of a medium [Boyd 03].
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The e�ciency of the second-harmonic generation process is proportional to:

ηSHG ∝
d2
e�

n3 Wp`
2
c κ (8.25)

It is a standard result that this e�ciency is proportional in the CW regime to the pump power,

to the square of the crystal length and to the nonlinear coe�cient. In the ultrafast regime,

however, di�erent cases arise depending on the bandwidth of the pump. We chose to write

these conditions as a function of the temporal bandwidth rather than the spectral bandwidth:

•

∣∣∆k′∣∣`c ¿∆tp: this is the quasi-continuous regime, it corresponds to the situation where

the bandwidth of the phase-matching is much broader than the spectrum of the pump.

In that case, κ→∆ωp and the e�ciency writes as:

η
QCW
SHG

∝ `2
c

Wp

∆tp
(8.26)

Like the CW case, the e�ciency scales with the square of the crystal length and with

the energy of the pump. However, because of the pulsed regime, the e�ciency is also

inversely proportional to the temporal bandwidth ∆tp of the pump.

•

∣∣∆k′∣∣`c À∆tp: the group delay mismatch is much larger than the pulse width, which is

equivalent to state that the phase-matching bandwidth is much narrower than the pump

spectrum. In this case, κ→ 2ξ
|∆k′|`c

which is independent of the bandwidth of the pump.

When computing the e�ciency in the large group velocity mismatch regime, we obtain:

ηGVM
SHG

∝ `c

|∆k′|Wp (8.27)

In this regime, the second harmonic power scales linearly with the crystal length, and is

independent of the pump duration. E�ciency is degraded by the group velocities mis-

match. Spectrally, the second harmonic �eld is �ltered by the phase-matching function,

which results in the temporal domain in a square pulse shape, with a duration

∣∣∆k′∣∣`c
independent of the pump pulse duration.

The previous discussion allows to de�ne a characteristic length `T , called temporal walk-

o�, as the distance for which the pump and the signal are temporally separated by one unit of

bandwidth:

`T = ξp
ln2

∆tp

|∆k′| (8.28)
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The optimal situation is attained when these two width are matched, meaning `c ≈ `T . This

usually means using a crystal with a broad phase-matching bandwidth compared to the pump

�eld spectrum.

The length `T gives a limit to the crystal length for temporal e�ects. A similar derivation

may be done in the spatial domain to yield two di�erent boundaries.

The �rst one arises from focussing e�ects. When pumped by a Gaussian beam of waist w0,p
in the center of the crystal, the transverse mode of the signal beam is also Gaussian with the

following properties:

w0,s =
w0,pp

2
for which z0,s = z0,p (8.29)

where z0 is the Rayleigh length of the beam. De�ning the depth-of-�eld, or confocal parameter,

b as b = 2z0, it is possible to estimate the optimal crystal length at which e�ciency is maximum.

The treatment done in [Boyd 68] gives the optimal crystal length `c ≈ 2.84b. This criterion

takes into account the fact that the frequency doubling process is most e�cient at the point of

focus whereas it is weaker in the other regions of the crystal.

The other criterion to consider is the e�ect of walk-o�. When critical phase-matching is

achieved (i.e. the cut of the crystal is such that the fundamental and harmonic waves propagate

with the same velocities), this poses the problem that the second harmonic energy does not

propagate along the wave vector. Hence, the overlap between the two waves is not conserved

over the crystal length.

The limit in crystal length `s (also called aperture length), for a walk-o� angle ρ, is de�ned

by the distance for which the second harmonic wave is displaced by one pump beam diameter:

`s =
p

2 w0,p

ρ
(8.30)

giving yet another limit in crystal length to take into account.

One �nal focussing e�ect that is worth mentioning is the phase-matching of the di�erent

wave vectors of the pump. Indeed, for strong focussing, the edge of the beam propagate with

di�erent wavevectors, such that the doubling e�ciency is decreased due to phase-matching.

This de�nes the acceptance angle of the crystal.

Obviously, the same considerations need to be applied to parameteric down conversion in

order to maximize its e�ciency.

8.3.2 The in�uence of temporal chirp
The previous derivation considered transform-limited pulses. It is important to know the in-

�uence of the pump chirp on the second harmonic.

We consider here that the pump �eld is linearly chirped, i.e. it has a quadratic spectral phase

φ2 (see section 2.2.2.3) when entering the crystal. As we have seen, such phase expands the
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pulse length in the temporal domain and decreases the peak power. It should therefore decrease

the e�ciency of the frequency doubling process.

We add a quadratic spectral phase to the pump �eld in equation (8.18):

A′
p(ω)= Ap(ω) exp

[
iφ2

(ω−ω0)2

2

]
(8.31)

It can be shown that the second harmonic �eld at the output of the crystal thus writes as

(
Aout

s
)′ (ω)= Aout

s (ω)√
1− iφ2

/
2∆t2

p

exp
[

i
φ2

2
(ω−2ω0)2

2

]
(8.32)

showing that the quadratic phase of the pump is passed to its second harmonic, reduced by a

factor 2.

Consequently, the energy in the second harmonic �eld is found to be:

(
Wout

s
)′ = Wout

s

1+ (
φ2

/
2∆t2

p
)2 ≡ Wout

s(
∆t′p

/
∆tp

)2 (8.33)

where ∆tp and ∆t′p are respectively the temporal width of the transform-limited and the

chirped pump pulse, as de�ned by (2.41). Naturally, we have ∆t′p
/
∆tp > 1 whether φ2 is posi-

tive or negative.

The e�ciency of second harmonic generation is thus degraded with respect to the transform

limited case according to

η′SHG = ηSHG(
∆t′p

/
∆tp

)2 (8.34)

This shows the necessity to have a transform-limited pump pulse to ensure the best e�ciency.

More precisely, this same treatment may be used to take into account the dispersion induced by

the propagation through the crystal, which can be very dispersive for short pulses. Hence, the

optimal situation corresponds to a transform-limited pump pulse in the center of the crystal.

Again, the same considerations also apply to parametric down conversion.

8.4 An ultra-fast squeezer
We present in this section the experimental realization of a single-pass squeezer.

8.4.1 Pump generation
We achieved second-harmonic generation in a type-I BBO crystal of 400 µm from transform-

limited 20 fs infrared pulses. A prism compressor was used to ensure that the infrared pulses
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Figure 8.4: Geometry of the SPOPA cavity. The waist at its center is w1 = 20 µm, and the

input waist is w0 = 180 µm. IC: input coupler, HR: high re�ectivity, CM: curved mirror.

duration was minimal in the frequency doubling crystal. The second harmonic spectral width

is on the order of 8 fs in such con�guration, which is what is required by the simulation on

�gure 8.2.

When pumped with an infrared power of ∼ 400 mW, we measure an e�ciency of ∼ 5%,

i.e. 20 mW of second harmonic power. Such power is not su�cient to e�ciently pump the

parametric down conversion process. To increase it, one could change the parameters of the

frequency doubling , such as focussing and crystal length. However, this would pose other

problems such as spatial chirp, poor spatial mode quality and non-gaussian spectrum.

Hence, we chose to place the parametric down conversion crystal in a synchronous cavity

resonant for the pump. The resulting scheme can be called a synchronously pumped optical

parametric ampli�er (SPOPA).

Note that a 8 nm spectrum at 400 nm corresponds to transform-limited 30 fs pulses, which

disperse more quickly than in the infrared. The compensation of dispersion of the second

harmonic �eld is therefore very important, especially if it needs to be resonant in a high �nesse

cavity.

8.4.2 Synchronously pumped optical parametric ampli�er
The power circulating inside of a cavity with a high �nesse F is enhanced with respect to

the incident beam by a factor of F /π. Hence, a cavity of �nesse 100 would see its intracavity

power enhanced by a factor of ∼ 20. Such an enhancement applied to our second harmonic

power is more than enough to pump the parametric down conversion process.

During her master thesis internship [Casacio 14], Catxerê Andrade Casacio designed the

geometry of a synchronous cavity which provides a waist of ∼ 20 µm at its center. It is a linear

cavity in a simple layout with one input coupler, one back mirrors and two curved mirrors, as

shown on �gure 8.4.

Since it is linear, the light travels in both directions inside the cavity, and its length corre-

sponds to half the free spectral range of the laser. The curved mirrors both have a focal length

of 50 mm. In order to be a stable resonator, the waist on both the input coupler and the back

mirror needs to be of ∼ 180 µm.
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The cavity was experimentally constructed by Thibaut Michel during his internship. The

modematching is achieved using three curved mirrors as to minimize the dispersion on the

second harmonic beam. Using an input coupler with a re�ectivity of 98%, a �nesse of ∼ 150
was measured, with a reasonable mode-matching of 90%. The presence of a transverse TEM01
mode was originally observed, and it could not be diminished by aligning the beam to the

cavity. It was determined that this transverse mode came from the ellipticity of the beam.

Introducing a pinhole to �lter it solved the problem.

Using a Pound-Drever-Hall locking scheme were a piezo actuator is modulating the phase

of the beam at ∼ 800 kHz, a stable lock was obtained with low �uctuations.

As of yet, we could not introduce the parametric down conversion crystal inside of the cavity

because of the dispersion. Since the light is going twice through the crystal, taking into account

the air, the amount of dispersion for one round-trip with a 1 mm BBO crystal is around 300
fs

2
. That amount of phase is enough to double the length of a 30 fs pulse.

Consequently, we acquired chirped mirrors to compensate for the propagation inside the

cavity. This would allow to proceed to lock the cavity with a crystal inside.

8.5 Perspectives
Finally, we present the applications to the quantum light that would be generated by the

SPOPA. Being a source of multimode squeezed light, it can be applied to quantum metrology

to produce below shot-noise sensitivity in parameter estimation. From another perspective,

one can consider two of these multimode squeezed beams and use them to entangle quantities

that can be linked to the parameters from section 4.2.

8.5.1 Quantum enhanced metrology
We remind from section 4.2.4.2 that a measurement on the detection mode for space-time posi-

tioning presents the best sensitivity using classical resources. The sensitivity of this projective

measurement is governed by the variance of the signal �eld in the detection mode. Hence,

using squeezed light, the sensitivity is increased beyond the quantum limit, as it was done ex-

perimentally in 5.4.6. However, that quantum experiment was a spectral analysis, whereas the

space-time positionning experiment can be achieved with a single pulse. The quantum e�ects

would then also be resolvable in a pulse-by-pulse measurement.

By taking into account the variance of the di�erent modes of the signal �eld, the minimum

detectable distance from (4.52) (for a propagation in vacuum) is then written as

(
δL

)
min =

c

2
p

N

√
ω2

0σ
2
p0 +∆ω2σ2

x1

ω2
0 +∆ω2

(8.35)
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Figure 8.5: Representation of the multimode output of the parametric downconversion process

when seeded by a coherent state. The mean-�eld mode is squeezed on the phase quadrature

and the time-of-�ight mode is squeezed on the amplitude quadrature.

where σp0 is the noise in the phase mode (in the phase quadrature) and σx1 the noise in the

time-of-�ight mode (in the amplitude quadrature). In order for the sensitivity to increase with

respect to the standard quantum limit, both these variances need to be smaller than unity.

Remarkably, this is precisely the characteristics of the multimode squeezed light at the out-

put of the parametric down conversion process. Indeed, when the �rst supermode (correspond-

ing to the mean �eld mode) is phase squeezed, then the next supermode (corresponding to the

time-of-�ight mode) is amplitude squeezed. In the case depicted by �gure 8.2, the �rst two

eigenvalues have the same absolute value, such that the two �rst supermodes would show the

same reduced variance in orthogonal quadratures, i.e. σp0 ' σx1 ≡ σ0. Hence, the sensitivity

reads

(
δL

)
SQZ,min

' c

2
p

N

1√
ω2

0 +∆ω2
·σ2

0 (8.36)

Therefore, the parametric down conversion scheme outputs directly the necessary resources to

perform a below shot-noise measurement of a displacement in space or in time. The important

point is that the two �rst supermodes are squeezed by the same amount while the higher

order modes are of no importance. The conditions that are outlined in �gure 8.2 appear to be

su�cient to generate such quantum state.

We stress that this quantum detection mode is generated directly by the nonlinear process,

and does not require the generation of a synthetic beam as it was done in 5.4.6. The parametric

down conversion process needs to be seeded since the mean �eld mode has to be squeezed. A

schematic representation is given on �gure 8.5.

To produce the squeezed state using the SPOPA, it needs to be seeded in order to produce

the beam described by �gure 8.5. Note that the signal and idler photons need to be created in

the same spatiotemporal mode. To do so, one could use dichroic mirrors to seed the cavity and

perform the parametric down conversion in a collinear con�guration. This results directly in a
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Figure 8.6: Computer graphics representation of the SPOPA. It is seeded by a coherent �eld in

the mean-�eld mode. In a non-collinear con�guration, at the output, there are two entangled

beams.

squeezed beam, similar to the output of the SPOPO. To achieve such scheme, dichroic mirrors of

very good quality are required, but this geometry is simple to execute and the down-converted

beam is easy to retrieve. The most problematic part would be the dispersion compensation, or

more precisely, matching the spectral phase of the seed to the down-converted �eld.

8.5.2 Entanglement
If two such beams are generated, it is possible to combine them on a beamsplitter to generate

entanglement. Entanglement would then be observed between the two mean-�eld modes and

on between the two time-of-�ight modes. Since the phase mode is attached respectively to a

detection of variation in amplitude and phase on the amplitude and the phase quadrature, the

�rst entangled quantities are amplitude and phase. Similarly, the time-of-�ight mode detects a

variation of center wavelength and timing jitter, so the entangled quantities are frequency and

time.

If the two modes have the same squeezing value, this degeneracy allows to easily change the

basis to the detection mode that combines both phase and time-of-�ight mode. The entangle-

ment would then be related to this mode which is attached to a measurement of distance. One

entangled quantity would therefore by the delay in distance (or in time) while the other quan-

tity is less clearly de�ned, as it combines energy and frequency. The study of the properties of
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Delay

Figure 8.7: Generation of a highly multimode quantum source that is entangled in frequency

and multiplexed in time.

such states is among the next objectives of this project.

These entangled beams are generated when seeding the SPOPA in a non-collinear con�gu-

ration, as depicted be �gure 8.6. Because of the small acceptance angle of BBO, this scheme re-

quires tight geometry and small angles which is experimentally challenging. Combining these

two beams would then generate squeezing and allow to be applied to quantum metrology.

It is important to stress that this treatment holds for a single pulse, such that these properties

may be accessed by resolving the process in the time domain.

Another interesting application of the OPA in the non-collinear con�guration is the gen-

eration of big states [Yokoyama 13]. It consists of a large number of entangled states (called

cluster states), which are important resources to continuous variables quantum information.

Such highly multimode entangled state can be generated with the SPOPA in non-collinear

con�guration, as shown by �gure 8.7.

After generation of two entangled beams in a non-collinear con�guration, one is delayed

with respect to the other and the two beams are combined on a beam-splitter. The resulting

quantum state is highly multimode and entangled in both frequency and time.



Conclusion and outlooks

In this thesis, we have given a modal description of the �eld generated by an ultrafast fre-

quency comb. We have explicitly described how this multimode structure is experimentally

accessed through the scheme of projective measurement. We have applied this formalism to

the extraction of information encoded in a given optical quadrature, as well as to the retrieval

of the �uctuations of the laser source.

We have demonstrated that a single parameter information is contained in a single mode of

the �eld, named the detection mode, and we have shown that the best strategy to retrieve it is

to use a homodyne detection where the local oscillator is in the detection mode.

We used a spectrally-resolved homodyne detection the set the mode of the local oscillator.

It allows to retrieve simultaneously all the information that is contained on a given optical

quadrature.

In quantum metrology, we devised an all-optical method to calibrate at the standard quantum

limit the phase shift induced by a phase modulating element. The calibration is then utilized

to measure the limit in sensitivity of an interferometer, which is found to coincide with the

Cramér-Rao bound for Gaussian states. This measurement does not require any knowledge of

the physical quantities that de�ne the theoretical limit in sensitivity.

We introduced the detection modes attached to a phase and a time-of-�ight measurement.

The sensitivity of a measurement on these two modes is found to be in very good agreement

with the theory. We constructed the detection mode for a longitudinal displacement, which

combines interferometric and time-of-�ight measurement, and proved an increase in sensi-

tivity. This allowed to validate the projective measurement protocol applied to space-time

positioning.

This protocol could �nd practical applications. For example, the increase in sensitivity could

be used for synchronizing the position between two remote objects in vacuum. The small in�u-

ence of dispersion allows to use very broadband sources such that the gain in sensitivity would

be more important. The modal approach also allow to distinguish between di�erent parame-

ters. As such, this scheme could allow to perform a measurement of longitudinal displacement

independently of transverse e�ect, such as �uctuations in pointing.

We applied this measurement scheme to the dispersive properties of a material. Using a

temporally-resolved homodyne detection, we did extract the same spectrally multimode struc-

ture with a continuous rather than pixelized approach, although the measurement is non longer

done in real-time. We thus extracted the index dispersion of a medium with a reasonable accu-

racy. This temporally-resolved measurement could potentially be made real-time by making
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the delay sweep quicker, and the extraction of timing information could also be improved by

using two combs with slightly di�erent repetition rates [Coddington 09].

We also successfully used non-classical light generated by another laser source to enhance

the sensitivity in the measurement of a spectral displacement. By introducing squeezed vac-

uum in the mode attached to the detection of that parameter, we showed an increase in sensi-

tivity due to the reduction in quantum noise in that detection mode.

In our experiments, the limited bandwidth of the laser source made the quantities to be mea-

sured extremely small. The enhancement between a standard measurement and one that uses

a modal approach was thus also small. It is still remarkable that the enhancement was mea-

surable with precision, proving again the validity of the protocol.

We used the multipixel homodyne detection to measure the spectral �uctuations in ampli-

tude and in phase of the laser source. Using a modal description, we have access in real-time

to the dynamics of the collective parameters of a frequency comb. Moreover, this allowed to

measure the correlations between the amplitude and the phase noise of an optical frequency

comb, bringing interesting perspective on the mode-locking mechanism.

Since it is real-time, we showed that this scheme could potentially be used as an error signal

to compensate the �uctuations of the laser source.

Finally, we introduced the theoretical and experimental concepts that are needed to create

sources of multimode squeezed light with single-pass parametric down conversion. We pre-

sented the development of a synchronously-pumped optical parametric ampli�er. Such tool

can be used in applications to quantum metrology and fundamental physics with the study

of entanglement between a displacement in space and its conjugate variable. With the use of

pulsed light, this quantum ressource also presents potential application in continuous variable

quantum information with the elaboration of quantum networks.
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A Medium dispersion

(While explaining a complicated phase-lock loop electrical scheme)
“[...] Then the signal comes into this electrical component” (showing a circle with an R in
it) “which is actually me doing the retrocontrol loop by myself. It’s the human element
!”

– Roman “Human PID” Schmeissner
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In this appendix, we give useful formula for estimating the dispersion in a medium. It can be

a very handy tool in ultrafast optics when building an experiment. It allows to estimate how

much delayed a pulse will be with respect to another or the amount of quadratic phase it will

acquire. It is also important to estimate the phase-mismatch between the interacting waves in

a nonlinear process.

A.1 Sellmeyer equation
For numerical calculations, the main indices of an anisotropic medium may be calculated using

Sellmeyer’s equation:

n2
i (λ)= A i + Bi

λ2 −Ci
−D iλ

2 i = x, y, z (A.1)

where Sellmeyer coe�cients A,B,C,D may be found in the literature usually for λ in microm-

eters.

A.2 Wave-vector dispersion

We expand the wavevector k(ω)= ωn(ω)
c in the spectral domain:

k(ω)' k(ω0)+ (ω−ω0)
∂k
∂ω

∣∣∣∣
ω0

+ (ω−ω0)2

2
∂2k
∂ω2

∣∣∣∣
ω0

(A.2)

≡ k0 +Ωk′
0 +

Ω2

2
k′′

0 (A.3)
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Derivative of the index n(ω) with respect toω need to be computed. Using Sellmeyer equations,

one can compute the derivatives of n(λ) with respect to λ. Finally, to deduce each term of (A.2),

we use the composition of derivatives ∂/∂ω= ∂λ/∂ω×∂/∂λ which then yields

∂k
∂ω

= 1
c

(
n(ω)+ω∂n(ω)

∂ω

)
= 1

c

(
n(λ)−λ∂n(λ)

∂λ

)
(A.4)

∂2k
∂ω2 = 1

c

(
2
∂n(ω)
∂ω

+ω∂
2n(ω)
∂ω2

)
= λ3

2πc2
∂2n(λ)
∂λ2 (A.5)

Knowing the main indices of a medium by the Sellmeyer equation (A.1) and the index seen

by any propagating wave, we may use relations (A.5) to compute the linear and quadratic

dispersion terms.

A.3 Application to delay and dispersion estimation
It is then straightforward to estimate the amount of delay or dispersion that a pulse acquires

by propagating through a medium of length L. By expressing λ in mm in Sellmeyer equations

and using c = 299.8 nm/fs, delay in fs is directly given by
1

δτ= k′
0 L (A.6)

with k′
0 in fs / mm, while the amount of dispersion in fs

2
is given by

φ2 = k′′
0 L (A.7)

with k′′
0 in fs

2
/mm.

On table A.1, we show the index properties of materials that were encountered during this

thesis. The knowledge of the properties of glass materials was particularly useful to compen-

sate the amount of dispersion caused by transmissive optics such as lenses and windows, while

the properties of air needed to be taken in account for the design of Fabry-Pérot cavities.

1
Here we consider the delay relative to a path reference in vacuum. We replace vacuum with the medium such

that the path traveled is actually (n(ω)−1)×L.
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Medium λ0 (nm) n0 k′
0 (fs/mm) k′′

0 (fs
2
/mm)

Air

800 nm 1+3 ·10−4 0.9 0.021
400 nm 1+3 ·10−4 1 0.050

Air (40 mbar) 800 nm 1+1 ·10−5 0.05 0.001

BK7

800 nm 1.51 1760 45
400 nm 1.53 1950 123

SF10

800 nm 1.71 2510 158
400 nm 1.78 3350 708

BBO (oo-e)

800 nm 1.66 2284 75
400 nm 1.66 2481 198

BIBO (ee-o)

800 nm 1.82 2900 166
400 nm 1.82 3337 480

Table A.1: Table of index properties of some materials that were used in this thesis. For

nonlinear crystals, the indices are taken to achieve critical phase-matching.



B Projectivemeasurements by pulse shap-
ing

(Having spent an hour trying to make an expensive Stanford Research Systems PID
controller working)
“I’m sure this thing works perfectly − you just need to be an expert in PID theory to
precisely set all of the 15 parameters.”

– Jonathan “Labview Guru” Roslund
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In this appendix, we review the procedure of projective measurement by pulse shaping, as

it was originally intended.

This technique has the main advantage of not requiring a spectrally-resolved detection, thus

reducing the complexity of the experiment. Indeed, as it is explained in 5.3, the multipixel de-

tection requires careful alignment and calibration in order to work properly. Moreover, the

necessity to demodulate each pixel independently requires low-noise electronics and careful

engineering in order to reduce the noise �oor of the detection, and particularly cross-talk be-

tween each electrical pathway. The way our demodulation was achieved may not be optimal,

and the low clearance of 8 dB could certainly be improved.

For quantum experiment, the highest quantity of squeezing where detected using single

photodiodes with high quantum e�ciency, and the mode projection to measure the variance

in a given mode of the squeezed vacuum �eld is achieved by pulse shaping. The multipixel

detection could not measure as much squeezing as the single diode scheme because of the

lowest quantum e�ciency and the relatively low clearance of the detection scheme.

For our application to quantum metrology, the clearance is not as important, and the clear

advantage of single diode scheme is the simplicity of the experimental scheme (moreover, as we

develop in 3.3.3 and 5.4.5, a single diode scheme can resolve the spectral structure of the �eld).

However, the drawback that motivated the use of the multipixel detection is the reproducibil-

ity of the experiment. Since every mode can be constructed post-facto with the multipixel

detection, a single measurement may be used several times to extract di�erent information.

As we show in this appendix, however, some of the simplest experiment would have been

strictly impossible using pulse shaping.
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B.1 Pulse shaping the time-of-�ight mode
We show the example of pulse shaping the time-of-�ight mode, whose expression is given by

(4.32).

Shaping this mode is straightforward: a π phase shift is imprinted on the compensation

phase 3.5. An quadratic amplitude mask is also applied. The resulting spectrum and the spectral

phase measured by spectral interferometry is shown on �gure B.1.
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Figure B.1: Top : Spectrum of the time-of-�ight mode. The gold trace is the experimental

spectrum obtained from the mean-�eld mode while the blue is measured. Bottom : retrieved

spectral phase of the time-of-�ight mode by spectral interferometry. It shows a π phase shift

at the center wavelength.

The di�culty when trying to pulse shape such a mode is to respect orthogonality. As we

develop in appendix C, the modes construction require perfect orthogonality in order for our

experiments to succeed. This is experimentally hard to achieve, since the phase shift needs to

happen exactly on the center of mass of the mean-�eld mode.

A solution that we investigated was to dynamically change the wavelength at which the

π phase shift occurs while looking at the center of the cross-correlation between the local

oscillator and the signal �eld. Such a cross-correlation measurement is shown on �gure B.2.

The mode construction is successful when the fringe at time zero is zero, and the symmetry

satisfy the theoretical predictions.



APPENDIX B. PROJECTIVE MEASUREMENTS BY PULSE SHAPING 197

- 150 - 100 - 50 50 100 150

- 0.6

- 0.4

- 0.2

0.2

0.4

Amplitude (a.u.)

Figure B.2: Crosscorrelation between the signal �eld and the local oscillator in the time-of-

�ight mode.

B.2 Locking on the time-of-�ight mode
Considering that the time-of-�ight mode’s construction is successful, to achieve projective

measurement on the phase quadrature, one would have to lock the relative phase between the

two arms of the interferometer on the phase quadrature. This is usually achieved by locking

on the di�erence of the DC signal from the detectors of the homodyne detection, as shown on

�gure 5.7. In the case of the phase mode, the lock point is easy to pinpoint since the maximal

phase information corresponds to a null DC signal.

In the case of the time-of-�ight mode, however, the lock point is not well de�ned. The

�rst problem to obtain an error signal to lock the delay is that the time-of-�ight mode has

zero amplitude at its center. There is thus no signal to lock on. It is however not the most

fundamental of problems that prevent from locking on such a mode.

We remind that the �ip mode (i.e. mean �eld mode with a π phase shift) has the same

energy than the mean-�eld mode, and should therefore be easier to lock on. Since it shows a

80% overlap with the time-of-�ight mode, it is possible to use it in projective measurements.

Even using this mode, a simple measurement such as the one presented in 5.4.4.1 (comparing

the sensitivity of the phase mode to the time-of-�ight mode in distance estimation) is very

complicated using pulse shaping.

Let us explain how the experiment would work with pulse shaping. Modulating the phase

of the �eld, we use the phase mode to measure the minimum displacement that corresponds to

a signal-to-noise of 1. This is achieved by locking on the phase quadrature, which corresponds

to the maximal signal that is retrievable. Note that this is a good reference to know whether

or not the lock point is e�ectively on the proper quadrature.

To know the sensitivity of the time-of-�ight mode, one would have to use the pulse shaper

to put the local oscillator in this mode, and perform the same measurement on the same lock
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point. However, theoretical simulations show that this lock point does no longer correspond

to a maximum of signal.

-10 -5 5 10

Figure B.3: Crosscorrelation of the high frequency component of the �eld (i.e. the sensitivity

to a phase modulation) when the local oscillator is in the phase mode (blue) and the �ip mode

(gold). In this simulation, the ratio of the two marked point is equal to ω0
/
∆ω.

On �gure B.3, we show the theoretical cross-correlation between the signal and the local

oscillator �eld for a phase mode and �ip mode projection. We marked the maximum of the

signal retrieved with a projection on the phase mode. We can see that the corresponding point

on the �ip mode does not correspond to the maximum signal. There is thus no other way to

lock on this mode than to use the DC error signal, which is very small and hard to lock on.

The best option that was devised was to build yet another homodyne detection with the

mean-�eld mode in both arms to generate an error signal. The delay of the other homodyne

detection is locked according to this error signal. There was therefore a homodyne detection

for locking the delay, and another for measuring the signal. The problem with that scheme is

that the path �uctuations are di�erent on both detections, and the measured signal was thus

noisier.

B.3 Dispersion measurement
The dispersion experiment outlined in section 5.4.5 aim at measuring the dispersion of a medium

by removing the phase mode contribution to the measurement. The original idea behind that

experiment made use of pulse shaping, and aimed at measuring the di�erence between a mod-

ulation of distance in air or in vacuum.

Because of a number of complications, we settled for the measurement depicted in 5.4.5.

However, a lot of work was put on the original idea, and successful techniques were developed,
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that we shall expand in this appendix.
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Figure B.4: Scheme to measure the air dispersion. Two piezo actuators modulate the distance

δL by an equal amount in vacuum and in air. A variable gain is applied on the second piezo,

such that for a speci�c value, they create a variation of the optical path without any change in

distance.

The original scheme is presented on �gure B.4. Using a vacuum chamber, a distance δL
is modulated in vacuum, while another distance is modulated in air with an opposite phase

−g ·δL. A variable gain g may be experimentally tuned.

Written the modulated �eld and computing the retrieved signal-to-noise ratios in a projec-

tive measurement scheme on the phase mode, we have:

Σϕ(Ω)= 2
p

N ω0 (1− g ·n0)
δL
c

(B.1)

whereas on the time-of-�ight mode:

Σg(Ω)= 2
p

N∆ω
[
1− g · (n0 −ω0n′

0
)] δL

c
(B.2)

where we wrote n0 and n′
0 respectively the index of refraction and the dispersion of air.

We see that, for a speci�c value of g = 1
n0

, the projection on the phase mode will be zero,

whereas the time-of-�ight mode would retrieve the following signal:

Σg(Ω)= 2
p

N∆ωω0
n′

0

n0

δL
c

(B.3)

More speci�cally, if we scan the gain parameter g continuously and record the variation of

(B.1) and (B.3), we would recover linear function that cross zero for two di�erent values of g.
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The spacing between this value is then found to be proportional to n′
0. In essence, this method

is very similar to the one presented in 5.4.5.

Experimentally, we tried to achieve this measurement by pulse shaping. As we developed

in B.2, the ability to project on the time-of-�ight mode requires to lock the interferometer on

another homodyne detection of reference.

To achieve the compensation of the two modulations, we demodulated the signal received

by the reference homodyne detection locked on the phase quadrature, thus yielding a signal

proportional to (B.1). By setting the electronic demodulation phase on the amplitude quadra-

ture retrieves the di�erence in the amplitude of the two modulations. The electronic phase

quadrature retrieves the sign. These two signals were then used as error signals to lock both

the amplitude and the phase of the compensation. One of the actuator was amplitude modu-

lated and the other was phase modulated, such that it is possible to lock the signal (B.1) at zero.

Then, ramping a small DC voltage to the amplitude modulation allows to sweep the gain g.
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Figure B.5: Histograms of the demodulated signals for the piezo modulations in air and in

vacuum. (a) Signals retrieved when both piezos are modulated independently with the same

amplitude but with an opposite phase. (b) Same situation, but the two piezos are modulated

simultaneously. The variance of the compensated signal is found to be equal to the shot noise.

On �gure B.5a, we plotted the histogram of the demodulated signals when the two piezos

are modulated independently with the same amplitude but with an opposite phase. On �gure

B.5b, we recorded another histogram but when both piezos are compensated. By overlaying

the signal retrieved when no modulation is achieved, we see that the compensated signal is

identical to the shot noise statistics. By locking the two modulations together, we therefore

achieved two perfectly balanced modulation, such that the path traveled by the light is not

changed. It is then possible to sweep the amplitude of one modulation from both sides of the

compensation point, record the signal when projecting on the phase and on the time-of-�ight

mode, and retrieve the dispersion of air.

Such a measurement would then show that di�erent modes retrieve di�erent parameters in
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a projective measurement scheme.

Unfortunately, we could not complete this experiment due to the spatial contamination de-

scribed in 4.3. This contamination was actually discovered while performing this measurement.

Indeed, we noticed a very di�erent response of each piezo actuator whether we retrieved the

signal-to-noise on the measurement homodyne or on the lock homodyne. This e�ectively

meant that the distance modulation was compensated according to one homodyne, but not to

the other. This was explained by the fact that both homodyne were not strictly similar. The

reference homodyne did not present a spatial contrast as good as the measurement homodyne.

Moreover, the piezo actuators were imaged di�erently on both beamsplitter, thus recovering a

di�erent amount of spatial components.

At this point, we decided to build the multipixel detection described in 5.3 in an e�ort to

distinguish between spatial and temporal modulations. Indeed, a spatial modulation should

not be spectrally-dependent. Eventually, we moved towards spatial �ltering, as described in

5.1.3.

Nevertheless, this experiment was very successful in the sense that we were able to lock two

high frequency modulations in quadrature with no added noise.



C Experimental construction of the de-
tection modes

(Upon noticing the german profanity in my Labview programs) “I think you have a
problem.”

– Vanessa “das Heiliges Einhorn” Chille

In this appendix, we explicit the ways the detection modes for the parameter estimation are

constructed.

In section 5.4.2, we introduced the problem of modes construction. Ideally, these should be

constructed from the power spectrum of the signal �eld. When the local oscillator spectrum

is similar, the modes can also be constructed from its spectrum. However, when both �eld are

not superimposed, there are extra steps to be added to the modes construction algorithm. We

also remind that all the spectra are acquired using demodulated high frequency signals rather

than DC signals from the detectors.

We begin by extracting the signal �eld from the high frequency signal, which we name uhack
sig .

The local oscillator spectrum is obtained by acquiring the variance of the photocurrents at a

quantum limited frequency, such that we measure �uctuations of quantum vacuum. We name

the retrieved spectrum uhack
LO .

If the two �elds showed the same spectral structure, we can reconstruct the homodyne signal

by computing the gain. To obtain the multipixel gain (which correspond to Hermite polynomial

in the Gaussian case), we need to compute the �rst moment µ of the signal’s spectrum (see

section 2.1.3). With the calibration of the multipixel detector, we have a map λi shown on

�gure 5.13b which returns the wavelength of pixel i. By �tting this map to a line, we obtain

a continuous function pix(λ) which returns the pixel number of wavelength λ. Knowing the

center of mass µ of the spectrum, it is therefore possible to obtain its fractional pixel index

pix(µ). This part is quite important to the algorithm, since the sensitivity that is measured

depends on the spectrum that is being recorded, and not on the full spectrum delivered by the

laser.

We can then construct the �lter function fn(λ) as

f̃n(λ)= (
λ−µ)n

(C.1)

which are subsequently normalized using fn(λ)= f̃n(λ)∣∣∣ f̃n(λ)
∣∣∣ .

When we multiply these �lters to the signal mode uhack
sig , there is no guarantee that the

resulting modes are orthogonal, and thus do not form a basis yet. We obtain the proper modes

by orthogonalizing each of them to the signal mode. We label these modes uhack
n .
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Finally, we need to de�ne new �lters from these modes. Indeed, these are de�ned with

respect to the signal �eld. However, we need to apply these modes to the local oscillator in

order to accomplish a projective measurement. The �nal �lters, labeled Fn, are then given by

Fn(λ)= uhack
n

uhack
LO

(C.2)

where n = 0 is the �lter to apply to the local oscillator �eld for a phase detection, n = 1 is a time-

of-�ight measurement, etc... This operation ensure that applying the �lter to the acquisition

will project on the right mode de�ned by the signal �eld. The �lters for a given acquisition of

the experiment is given on �gure 5.12 when a piezoelectric actuator is modulated.
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Figure C.1: “Hack” �lters obtained by extracting the spectral structure of the �eld from the

measured homodyne signal. Note the di�erence with the theoretical Hermite polynomial Hn,

where for example H0 = 1. This structure in the �lters is essential for reproducibility of the

experiment.

To accomplish the post-facto projective measurement, we then need to apply the �lters to

the spectrally resolved homodyne acquisition, and compute the signal-to-noise.



D Conjugated variable of space-time po-
sition

(About writing a PhD dissertation)
“Stop drinking co�ee and start drinking tea. Otherwise, you’ll be twitching more and
more every passing day.”

– Alexandros “The Greek” Tavernarakis

In section 8.5, we showed that is it possible to produce quantum states that correspond

to the observables de�ned in 4.2.3. For example, it is possible to introduce squeezing in a

detection mode to enhance the sensitivity of the measurement, as it was done in 5.4.6 were

we achieved a measurement of a spectral displacement below the standard quantum limit.

The same description applies to the measurement of a phase shift, amplitude perturbation and

timing jitter.

We also proved that it is possible to squeeze the detection mode for space-time positioning.

It is therefore possible to entangle this state to its conjugate quantity. In this appendix, we

investigate the physical meaning of the observable that is conjugated to the position in space-

time.

The problematic should be posed as follows: consider that we have a source that delivers the

beam depicted by �gure 8.5, that is squeezed in the detection mode for space-time positioning.

If one were to perform a detection of a longitudinal displacement using this mode, the sensi-

tivity would be increased with respect to the standard quantum limit. However, what physical

information would be retrieved by a measurement on the orthogonal quadrature ? Since the

displacement in space-time is an observable, the orthogonal quadrature should also contain a

physical parameter.

D.1 Detection mode for a global displacement
From a classical point of view, the expression of a �eld that is delayed by a quantity δL is given

by:

E(+)(Ω)= E0
p

N
[
v0(Ω)+ iδL

(
ω0

vϕ
·v0(Ω)+ ∆ω

vg
·v1(Ω)

)]
(D.1)

where v0 is the mean-�eld mode and v1 is the next mode in the Hermite-Gauss basis. The modes

i ·v0 and i ·v1 correspond respectively to the phase mode and to the time-of-�ight mode.
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In section 4.2.4.2, we introduced the detection mode vδL for measuring δL. It reads:

vδL(Ω)= i
KδL

(
v0(Ω)+ ∆ω

ω0
· vϕ

vg
·v1(Ω)

)
(D.2)

where KδL =
√

1+
(
∆ωvϕ

/
ω0vg

)2
is a normalization factor. The displaced �eld (D.1) then

writes simply as:

E(+)(Ω)= E0
p

N
[
v0(Ω)+KδL · δLω0

vϕ
·vδL(Ω)

]
(D.3)

We take the case of a displacement in vacuum, such that vϕ = vg = c. The detection mode then

writes as:

vδL(Ω)= i
KδL

(
v0(Ω)+ ∆ω

ω0
·v1(Ω)

)
(D.4)

D.2 Detection mode for a spectral displacement
In section 4.2.2, we derived the detection mode for a spectral displacement. We did not take

into account the fact that changing the optical frequency also changes the energy of the �eld.

Indeed, from the plane-wave expansion (1.16) of the �eld, we can write:

E(+)(t)=∑
`

E`α`u`(t)e−iω`t
(D.5)

We consider a global displacement δω of the spectrum that a�ects every frequencies equally.

As such, we have

E(+)(t)=∑
`

E`α`u`(t)e−iω`te−iδωt
(D.6)

The energy of the �eld is a�ected by the change in the frequency through E` (1.17). For a small

displacement δω, we have E`→ E`+ δω
2ω`

·E`.

The �eld may then be written as

E(+)(t)=∑
`

E`

(
1+ δω

2ω`

)
α`u`(t)e−iω`te−iδωt

(D.7)

We then apply the small bandwidth approximation: ω` ≈ω0. Also, sinceω0 À∆ω, it is possible

to consider that √
~ω`

δω

2ω`
= δω

2

√
~
ω`

≈ δω

2

√
~
ω0
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Consequently, the displacement in energy due to the frequency shift may simply be modeled

by a perturbation of the �eld constant:

E(+)(t)' E0

(
1+ δω

2ω0

)∑
`

α`u`(t)e−iω0te−iδωt
(D.8)

Finally, the �eld displaced in frequency and in energy is written from (4.26) by setting ε= δω
2ω0

.

We then obtain

E(+)
s (Ω)= E0

p
N

[
u0(Ω)+ δω

2ω0

(
·v0(Ω)+ ω0

∆ω
·v1(Ω)

)]
(D.9)

The detection mode for δω is thus given by

vδω(Ω)= 1
Kδω

(
v0(Ω)+ ω0

∆ω
·v1(Ω)

)
(D.10)

with Kδω =
√

1+
(
ω0

/
∆ω

)2
.

We can see that this mode is di�erent from (D.10) �rst by its real amplitude, but also by the

weight on the mode v1. Indeed, a detection of a shift of distance is more easily achieved with

large bandwidth, i.e. with short pulses for the time-of-�ight component. The change in the

center of the temporal enveloppe is then easier to detection. The same argument explains why

the shift of the carrier is easier to detect with large optical frequencies.

It is also logical that a shift of the spectrum is easier to detect with very small bandwidth,

since a small change in the center wavelength results in a large change in the signal at a �xed

optical frequency. The fact that the shift in amplitude due to δω is detected with a sensitivity

that scales with 1
/
ω0 is explained by the fact that, since δω is small, then the smaller ω0 is, the

easier it is to detect the shift in energy.

One should note that this description is purely theoretical, since it seems hard to �nd a laser

source that could displace the spectrum in such way that the only change in energy comes from

a change in photon frequencies. For instance, on �gure 5.23, we can see an amplitude variation

that is higher than the variation of center wavelength. Although it may include a contribution

from the change in photon frequency, this contribution should be negligible, probably not even

detectable.

The most important point is the fact that the mode (D.10) is not the complex conjugate of

(D.10). Consequently, it is not possible to perform the quantum derivation from section 4.2.3

when the �eld is expanded on these modes.
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D.3 Conjugated parameter
We propose to write formally the expression of the conjugated parameter. We start by rede�n-

ing the basis of the �eld as {Vn}, where the �rst mode corresponds to the detection mode:

V0(Ω)= 1√
1+

(
∆ω

/
ω0

)2

(
v0(Ω)+ ∆ω

ω0
v1(Ω)

)
(D.11)

We consider that this is the only mode in the basis that is non-vacuum.

In terms of quadratures, the quantum �eld is written as

Ê(+)
s (Ω)= E0

(〈
X̂0

〉+ i
〈
P̂0

〉
2

V0(Ω)+∑
n
δânVn(Ω)

)
(D.12)

where X̂ and P̂ are the quadratures of the �eld in the new basis.

We see that, naturally, the expectation value of the phase quadrature operator is given by

〈
P̂0

〉= 2
p

N
δL
c

√
ω2

0 +∆ω2
(D.13)

We can see that computing the expectation value of the observable P̂ ′
0 = c

2
p

N
√
ω2

0+∆ω2
P̂0 would

yields δL.

However, the meaning of its conjugate variable is more di�cult to interpret. It should obvi-

ously contain the mean-�eld, but it should also contain a physical quantity that is detected on

the amplitude quadrature with a sensitivity that increases with ω0 and ∆ω. This is clearly the

contrary of a shift δω in the center frequency.

Hence, the physical interpretation of that quantity does not seem straightforward and could

result from di�erent sources that are not clearly identi�ed.
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