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Introduction

The ability to perform precise measurements is a fundamental aspect of all quantitative
science. To determine the value of a parameter in a physical system, an experimentalist uses
a probe to interact with the system. By measuring the way the probe has been altered by its
interaction with the system, it is possible to deduce the value of the parameter. Any probe can
however be intrusive in the sense that it affects the physical system on its interaction, thus
altering the response of the system to its presence. From a classical physics point of view, the
usage of a beam of light as a probe is adapted to a non-intrusive measurement since it can be
attenuated to a point where its interaction with matter is negligible.

For instance, light has been used extensively to the purpose of estimating distances. More
than 2000 years ago, Eratosthenes estimated the circumference of the Earth using geometric
consideration of the shadow cast by the Sun. If the same measurement were made today using
current data, the retrieved value would be accurate to less than 1%.

Accuracy is a fundamental concept in experimental science. It defines how different the
value of a parameter will be when an experiment is repeated several times. The finite accuracy
is a direct consequence of other physical phenomena that limit the knowledge of a variable,
which may be described as the noise in a measurement. Without noise, any measurement
would be always perfect.

The discovery in the end of the 18" century of the wave-like nature of light gave birth to
the field of interferometry, allowing to measure distances with a precision limited only by the
wavelength of light. In 1894, Michelson measured the length of a platinium-iridium standard
by interferometry and defined it in terms of an emissive wavelength of cadmium. He advocated
the use of wavelengths as a natural standard for distance [Michelson 94]. In 1960, the meter
was redefined in terms of the emissive wavelength of krypton, replacing the platinium-iridium
standard. Today, the meter is defined from the speed of light. Light became an even more
widespread measurement tool since the advent of lasers, which brought a source of light that
is highly coherent both spatially and temporally.

As arecent example, the usage of light as a tool to measure long distances with good accuracy
has resulted in the estimation of the distance between the Earth and the Moon with an accuracy
of a few millimeters [Murphy Jr 08]. This measurement was achieved by sending pulses of light
on a retroreflector on the Moon and measuring their time of arrival. This measurement is called
a time-of-flight measurement, which is less accurate than an interferometric measurement. The
ability to distinguish between redundant information on distance, called ambiguity range, is
on the order of the wavelength of light for an interferometric measurement, while it is on the
order of the distance between subsequent pulses for a time-of-flight measurement. The latter
then offer a better dynamics, since the spacing between pulses of light is much higher than



its wavelength. Combining interferometric and time-of-flight measurements then allows to
merge high dynamics and sub-wavelength precision.

In order to combine the dynamics of the time-of-flight measurement performed with pulsed
light and the precision obtained by interferometric measurement, optical frequency combs ap-
peared as ideal tools for the task. A frequency comb consists of a large number of equally
spaced optical frequencies with a narrow linewidth, and a fixed phase relationship between
them. In the temporal domain, this corresponds to a train of short pulses emitted at equal in-
tervals. The development of mode-locked lasers, and in particular Titanium-Sapphire lasers in
the 1990' [Spence 91], resulted in the realization of such frequency comb with pulses as short
as a few femtosecond. The realization of many stabilization techniques allows today to pro-
duce very stable frequency combs, making them perfect tools for metrology and spectroscopy
[Udem 02].

For the purpose of high precision measurement, the accuracy of an experiment accomplished
using an optical frequency comb is limited mostly by the noise of the source. For a time-of-flight
measurement, the accuracy is limited by the fluctuation of the repetition rate, called timing jit-
ter, whereas an interferometric measurement is limited by the fluctuations in the each optical
carrier, generally called phase noise. The ability to characterize and measure these fluctuations
is essential to their stabilization [Paschotta 05].

These fluctuations can be described as arising from technical sources, such as thermal and
mechanical variations, but also from the quantum nature of light, which poses the most funda-
mental limit, the one that remains when removing all sources of technical noise in the measure-
ment. For instance, the random time-of-arrival of photons on a detector, commonly called the
shot noise limit, defines the standard quantum limit in sensitivity in both amplitude and phase
noise [Caves 81]. The field of quantum metrology studies how it is possible to engineer the
quantum state of the system that results in a better sensitivity compared to classical methods.
Recently, the usage of squeezed vacuum in an interferometer allowed to surpass the current
sensitivity in gravitational wave detection [Aasi 13].

In this thesis, we investigate the usage of frequency comb for precision measurements at the
quantum limit, as well as the fluctuations of the combs structure. We use a formalism that is
borrowed from quantum optics to describe classical phenomenon. We show indeed that the
comb structure can be decomposed on a basis of modes, where each of these is attached to a
given physical parameters [Lamine 08, Jian 12]. In a projective measurement scheme, we show
that it is then possible to measure an information carried by the electromagnetic field (such
as a delay in time) as well as fluctuations from the laser source (in that example, the timing
jitter). We finally propose a scheme to generate two beams that are “squeezed in time”, since
they allow to measure a delay with a better sensitivity than using classical ressources.



Outline of this thesis

The first part of this thesis concentrates on giving global definitions of the tools that are
needed for the task of measurement using a multimode description of an optical frequency
comb.

In the first chapter, we give a classical and a quantum formulation of the electromagnetic
field. We define the notations that are used throughout this thesis.

In the second chapter, we describe the concepts of ultrafast optics. Since the work of this
PhD was accomplished with short pulses (~ 20 fs), it is important to understand the physical
phenomena that arise when such pulses propagate. We also outline how to characterize the
spectral and temporal structure of the pulse, as well as its generation.

In the third chapter, we expose how we intend to measure the multimode structure of an
ultrafast frequency comb. We give a global description of the experiment and we outline how
to measure the optical quadratures of the different spectral components of the field.

The second part concentrates on the study of precision measurements at the quantum limit.

In the fourth chapter, we describe the multimode structure of the field when a perturbation
is introduced. We cover the case of a displacement in time, in amplitude (i.e. energy), in optical
frequency and in phase. We show that these parameters can be extracted by performing a
projective measurement on a set of specific spectral modes. Moreover, we give a quantum
description of the matter, which allows to show that these parameters are conjugated. We also
show that the sensitivity of the projective measurement scheme coincides with the standard
quantum limit.

In the fifth chapter, we present the experiments that were achieved on parameter estima-
tion. We first give an optical method to measure the sensitivity of an interferometer, and show
that it coincides with the limit defined by quantum mechanics. We then use a multimode ap-
proach to measure the sensitivity of an interferometric and of a time-of-flight measurement.
We also construct a detection mode that combines interferometric and time-of-flight measure-
ments, and show that a time measurement performed with that specific mode is indeed more
sensitive. Using again a multimode description, we measure the value of index dispersion of
a material with a reasonable precision. Finally, we use a different laser source that generates
multimode squeezed vacuum, and show an increase in sensitivity when the mode that is at-
tached to the detection of a parameter is squeezed.

The third part of this thesis is about characterizing the noise of an ultrafast frequency comb.
We use a homodyne based scheme that compares the noise of a laser source to a reference
whose noise figures are either known or negligible.

The sixth chapter is about generating a reference beam to characterize the fluctuations of
another. Since we use the same laser source to build the reference, we use an optical cavity to
filter the noise. We describe in this chapter the filtering of the noise with optical cavities, and



also characterize their properties when injected by an optical frequency comb.

In the seventh chapter, we measure the spectral amplitude and phase noise of an optical fre-
quency comb, as well as their spectral correlations. We show how the noise of different spectral
components of the spectrum is distributed and the correlations that exist between them. We
also measure the correlations between the amplitude and the phase fluctuations of the comb.

The fourth and last part of this thesis is about perspective on the next part of the experiment,
which aims at generating multimode squeezed light.

In the eighth and last chapter of this thesis, we present the general principle to generate
squeezed light with frequency combs. Based on parametric down conversion, we show the
multimode structure of the quantum field that is generated and its potential applications. We
present the work that started on the elaboration of a synchronously pumped optical parametric
amplifier.



Part 1

Measuring with ultra-fast frequency
combs



1 The modes and states of a beam of light

“You’re looking for an internship ? Check this guy out, N. Treps [...] he’s very smart
and does really great research, I reckon he will rise quickly in academia.”
— Clément “Lil’ Hud” Jacquard
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The aim of this chapter is to develop most of the conventions and notations that are used
throughout this thesis. We begin by describing the notion of modes of the classical electro-
magnetic field, a concept that is essential to the understanding of the remaining. This is done
both for the longitudinal and transverse part of the field representing a beam of light. We then
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write the quantum description of light by quantifying the field, introducing the operators and
states that will be relevant to this work.

1.1 The classical electromagnetic field

Light being a form of electromagnetic radiation, its description may be achieved by Maxwell’s
equations. Throughout this manuscript, every boldface symbol X denotes a vector in the carte-
sian basis, unless specified otherwise.

1.1.1 Description of the real electromagnetic field

We begin by writing the electric field E(r, ¢), which is a 3-dimensional vector that depends on
the spatial variable r and the temporal variable ¢.

In order to keep this description general, we consider that the field propagates through a
medium of free charge density p and of polarization density P, neglecting the magnetic part.
The electric field will induce on matter an electric response D, called the electric flux density,

which is defined as
D(r,t)=¢oE(@x, )+ P(x,t) (1.1)

More generally, the relationship between the applied electric field E and the response D is
established through the electric permittivity tensor &;:

D(r,t) = €o[,]1E(r,?) (1.2)

The physics behind the field-matter interaction is then contained within the &, tensor, which
describes the anisotropy of the medium. Its definition will be particulary useful for the descrip-
tion of non-linear effects that will be outlined in chapter 8.

For now, we specialize to the case of propagation through a charge free p = 0, isotropic
and linear medium. This involves that the relation between the induced polarization and the
applied field is linear:

P(r,t) = eoxE(r,1) (1.3)

Under these conditions, the relation between the electric field and the response of the medium
is simply given by

D(r,t) =¢geE(r,t) with e=1+y. (1.4)
This lead to the definition of the index of refraction n, which is more commonly used in optics:

n=ve (1.5)
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The familiar propagation equation that governs the spatial and temporal propagation of the
electric field through a medium is:

1 6%E

AE=——
2 3:2
v ot

(1.6)

where A stands for the vectorial laplacian operator and v, = ¢/n is the phase velocity, i.e. the
speed of light in the medium (in the case of vacuum, we have naturally v, = c).

A standard solution to (1.6) is the plane-wave solution:
E(r,t)=Re {Eo ei(k‘r_‘””“b)} (1.7)

where Ej is a constant vector, k is the propagation vector whose magnitude k2 = wn/c satisfies
the dispersion relation for a plane-wave of pulsation w. In this expression, an arbitrary phase
¢ will be expanded in more detail in section 2.2.

1.1.2 Fourier space formalism

On many occasions in this manuscript, it will be convenient to look at the representation of
the electric field in the frequency-domain, which we shall describe in this part.

In this work, we will adopt the symmetric definition of the Fourier transform. Although not
necessary, it is convenient to use this prescription in quantum optics with continuous variables
as the commutation relations for the bosonic operators a(¢) and d(w) are then symmetric (see
section 1.4.2).

For a function f(¢) defined in the temporal domain, we write the Fourier transform flw)
defined in the conjugated space as:

dt :
@)= [ =W = Ff 0] 18
f Nors f f (1.8)
R
Conversely, the inverse Fourier transform is then given by
dw ;
(t):f— (w)e ™ = ZF7Hf(w)] 1.9
f Nors f f (1.9)
R
Applying this to the real electric field yield its Fourier decomposition

E(r t)—fﬂlz(r w) "1t (1.10)
> _R \/ﬁ ’ .

1 For a better readability, we use the same notation to denote a function f in the real and in the Fourier domain.
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Since E(?) is a real quantity, it follows that
[E(r,w)]" =E(r,-w) (1.11)

This definition of E(w) therefore contains some redundancy, which leads to the introduction
of the analytic electric field E™) (r,t) where the negative frequencies are removed from the
Fourier decomposition:

EM(r, t)—f—E(r w) e ot (1.12)

It is worth stressing that this quantity is now complex, so that the real field is defined by the
relation

E(,t)=EP @,t)+E7 (1,1 (1.13)

where EC) (r,t)= [E(+) (r, t)] : corresponds to the integration over the negative frequencies.

Equivalently, one may define an analytic signal in the frequency domain by taking the Fourier
transform of the temporal analytic signal:

E® (r,w) = EW) (r,) et (1.14)

[
It follows that
E(r,0)=E" (r,0) +E7 (r,-w) (1.15)

where E (r,0) = [E¥ (r,0)] .

1.2 Modal description

As introduced by equation (1.7), plane-waves satisfying the dispersion relation form a basis on
which the field can be expanded. More generally, it may be expanded on any set of normalized
modes, either spatial, temporal, or spatiotemporal, as long as they satisfy Maxwell’s equations.

In this section, we show how to describe the electric field with modes in the longitudinal
and transverse plane. We enclose the system in a box of volume V and of section S.

1.2.1 Temporal and spectral modes

A decomposition of the field in plane-waves may be achieved by expanding the analytic field
(1.12) in spatial Fourier components, as it is done in [Grynberg 10]. The field is then written as

EV(r,0)=1) S apepel®er—eet) (1.16)
l
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where &/ is the polarization of the component ¢, k, its wavevector, ay is the normal variable
which corresponds to the complex amplitude of the component ¢, and &7 is a normalization

constant given by
hwg
Ep=\|—= 1.17
¢ \/ 2ncegV ( )

This is called the normal mode decomposition and each mode of the basis is an independent
monochromatic polarized wave. This definition of the field is very convenient when quanti-
fying it, but for the scope of this thesis, we will rather decompose a light beam on a basis of
envelope modes.

For the remaining of this manuscript, we will consider the field only in a given linear polar-
ization, E is then reduced to a scalar. We also consider that the frequency spectrum in (1.16)
is narrow and centered around wy, allowing the constant to be taken out of the sum &, = &p.
Finally, we rewrite (1.16) as a decomposition of envelope modes u(t) relative to the carrier
frequency:

ED(,t)=& Y apu(t)e’®r—oo) (1.18)
l

where {u,(2)} is a set of orthonormal modes that satisfy the general condition (1.31) and a,
is the complex amplitude of the field. We’ve also incorporated the imaginary unit i in the
mode uy, since these can always be defined up to a constant phase factor. It will sometimes
be convenient to write the field as E™ (r,¢) = Epa(t)e!KT=w0t) where a(t) = Yoapup(t)is the
envelope of the field.

By taking the Fourier transform of (1.18), one may also define a spectral mode, or frequency
mode:

E(+)(r,w):é302ag u(w—wp)e®* (1.19)
0

with u(w —wg) = u(Q) = F[u(t)] and Q = w —wy is the frequency relative to the optical carrier.

These temporal - or spectral - modes will be the main center of focus throughout this the-
sis. Their definition is very general at this point since the modes {u/} needs only to satisfy
Maxwell’s equation as well as the normalization and orthogonality conditions (1.31). How-
ever, in section 2.1.4, we will revise this spectro-temporal modes concept by applying it to the
case of ultrashort laser pulses. In particular, we will use whenever possible the gaussian profile
for the spectral and temporal envelopes, as every calculation will have an analytical solution
in this case.

1.2.2 Spatial modes

The previous treatment only deals with plane waves whose wavefront is infinite. However, in
practice, actual laser beams have a finite transverse extent and may not be considered as true
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plane waves.

Fortunately, in the present case, we may consider the laser beams as paraxial, meaning that
they are made up of a superposition of plane waves with propagation vectors close to a single
direction. This also implies that the field’s variations in the transverse plane are much slower
than in the longitudinal dimension.

We choose the propagation direction as z, and the transverse direction as the (x,y) plane
where we define a unitary vector p. Therefore, the position vector is written as r = (p,z). A
more complete description of the paraxial beams and the transverse structure of laser field may
be found in [Yariv 67] or [Siegman 86].

We consider a monochromatic paraxial wave written as
EW (r,t) = E g(x) ¢! k2 =01 (1.20)

where E( = &pa encompasses the field amplitude, % satisfies the dispersion relation and g is a
slowly varying envelope in the longitudinal direction. Mathematically, this condition is written
|0§ g| < 2k 0, g| and allows to the neglect second order derivatives of g with respect to z.
Injecting the expression (1.20) into the propagation equation (1.6) under this approximation
leads to the following paraxial wave equation

0g
Ny,g—2ik— =0 1.21
p8 — 4l oz ( )

where A, = 02 + 6? is the laplacian operator in the transverse plane.

This equation has gaussian solutions that provide a good description of the laser beams that
we are used to work with. In particular, the entire family of transverse electromagnetic mode
(TEM) prove very useful as they correspond to the spatial eigenmodes of a laser cavity. The
expression for the lowest order mode is written as follows:

wo _,2/,2 i 2 .
8oo(x,y,2) = %e pIw(z) o= ikp*2R(2) oi(2) (1.22)
where we defined the quantities

20, — 11,2 z
wi(z)=wy |1+ (—) (1.23)

2R

1 z

= 1.24
RG) 2+2} (124)

z
¢(z) = arctan (—) (1.25)

2R
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_ nwin (1.26)

R=—y .
This describes a gaussian beam centered at z = 0 with a radius wy called waist (measured at
1/e). The beam width variation is defined by w(z). The confocal parameter or depth of focus
b = 2z, is the length over which the radius is less than v/2wg. The geometry of the wavefront

is given by the radius of curvature R(z) and ¢(z) is called the Gouy phase.

Higher order modes of the TEM,,,, family are obtained by adding Hermite polynomials vari-
ation to the solution. The resulting modes then read

gmn(xay,z):

Cum H \/§x \/gy e—pz/wz(z)e—ikpz/ZR(z)ei(m+n+1)(!>(z) (1 27)
wi@) "w@) | T\ wz) ‘

where C,,, = 1/Va2r*m+1p1m! ensures a proper normalization of the mode.

To show the effects that will be of interest to us in this thesis, we shall reduce the dimensions
of the Hermite Gauss modes by constraining them to the x axis. We write our new basis as
{gn(x,2)}. It is linked to the two-dimensional modes (1.27) by assuming a fundamental profile
over the y direction and integrating it out:

&n(x,2)= f dy gnolx,y,2) (1.28)
R

The exact expression of the resulting modes, which may be found in [Delaubert 07], is not
relevant to the scope of this thesis, as we shall only use their orthogonality properties.

1.2.3 Spatio-temporal modes

The previous definitions in the transverse and longitudinal domains are quite convenient, since
they may be combined in a straightforward manner to build a new set of modes. This provides
a complete model description of the electric field.

Under the previous descriptions and approximations, a linearly polarized electric field may
be expanded on the basis of temporal u;(¢) and spatial modes v, (x,z) as:

E®(x,z,0)=& Y a,-,nui(t)gn(x,z)ei(kz_‘”ot) (1.29)

i,n

Alternatively, we are also able to define a new basis of modes w; ,(x,z,¢) that encompasses
every combination of the longitudinal and transverse modes:

Wi n(x,2,t) = ui(t) gnlx,2) (1.30)

Note that the spatial and temporal parts are factorized in w, which assumes no space-time
coupling. This is a very reasonable assumption for the present work, where the light beam is
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in a well-defined spatial mode. At any position z and over a detection time 7', these form an
orthonormal set; introducing the standard L2 inner product (-,-), it reads

(Wim,Wjn) Efcdtff dzpw;m Win=8¢T6;j6mn (1.31)
T S

1.2.4 Basis change

The modes that we chose, being the temporal u(¢) or spatial v(x,z) modes, are not unique; the
field may be expanded on any other basis. As an example, if we consider another temporal
basis {v;(¢)} of the field, the change from {u;(¢)} to {v;(¢)} is achieved by a unitary transform U
defined by

Uij = <ui(t),vj(t)> Efc d¢ uf(t) Uj(t) (1.32)
T

which allows to write the change of basis as

v(t) =2 Uijui(t) (1.33)

1.2.5 Power and energy

Finally, we define some of the physical quantities related to the energy and the power contained
in the field. These are important quantities since that are quite easy to access experimentally.
To lighten the notations , we write the complex field as

ED (x,2,t) = &alx, z,t) e 100 (1.34)

where a(x,z,t) = Y; ;a; ju;(t)gj(x,2) is the envelope of the field, proportional to the square
root of the number of photons.
The energy density v (in J/m?) contained in the electromagnetic field [Yariv 67] is given by

v= %80(E2+CZB2) (1.35)

In term of the complex field, the energy density may be written as”

2
v(x,z,t) = 2¢e0 ’E(”(x,z, t)‘ (1.36)

2 The “energy” in the real field is twice the one contained in the complex field E2 = 2 |E(+)|2, and since for
plane waves, B? = E2/c?, the energy density as a function of the complex field is consequently written as (1.36).
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The energy W contained in the field is therefore equal to the integral of the energy density
over the volume V = Sc¢T delimited by a section S and a detection time 7'. The index depen-
dency comes from the fact that the light actually travels through the medium an optical length
dependent on the index n. Using the normalization condition (1.31) and the field constant
(1.17), the energy reads

W = 2e0n&2 f dV la(x, z,8)12 = Nhiwo (137)
14

where N is the number of photon in the field over a time 7. For temporal modes that are
bounded, as it is the case for pulses of light, this integration time 7" allows to define specific
quantities (see section 2.1.2).

The instantaneous intensity of the field (in J/s/cm?) is then given by

2
I(x,z,t) = 2egnc ‘E(Jr)(x,z,t)‘ (1.38)

For pulses, we are often interested in the integrated intensity or fluence F":

F(x,z)= fI(x,z,t) dt (1.39)
T

Alternatively, we may define the power by integrating the intensity (1.38) over transverse co-
ordinates:

P(z,t) = f I(x,z,t)d%p (1.40)
S

The energy contained in the field may therefore be obtained by integrating either the power
or the fluence on the proper variables:

W :fF(x,z)dzp EfP(z,t) d¢ (1.41)
S T

Because of the dependency between the ¢ and z variables, the integral over ¢ cancels the lon-
gitudinal component of these quantities. Another useful quantity is the power that is obtained
experimentally using a bolometer. These instruments measure power through heating, and are
therefore incapable of resolving the power in a single pulse’. The result of such a measurement
is the power averaged over a second Py (in W).

3 For relatively long pulses, a calibrated photodiode can resolve a single pulse. For pulses shorter than picosec-
ond timescale, this method is no longer valid because of the slow response of the electronics.
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Note that all the previously defined quantities translate very well to the spectral domain,
thanks to the symmetric Fourier transform defined in section 1.1.2. Using indeed this prescrip-
tion, the Parseval theorem reads

f dQ ‘E(”(Q)‘z: f dt‘E(”(t)(2 (1.42)
R R

meaning of course that computing the energy-related quantities in both spaces yields equiva-
lent results.

1.3 The quadratures of the classical field

In section 1.2, we've seen that we can write the field in a particular spatio-temporal mode as
the product of a slowly varying envelope and a phase factor that reflect the wave-like nature of
light. In the following parts, it will be useful to break this phase factor into an absolute phase
and the wave front curvature part. This leads to the introduction of the field quadratures
[Bachor 04].

1.3.1 Quadrature amplitudes
Using the previous notations, we write the real electric field in the spatio-temporal modes basis

{wi n(x,z,8)} as

E(x,z,t)=&) Z @i nWin(x,z, £)etk2=w0d) | ¢ o = & alx,z,t)e 10 +c.c. (1.43)

i,n

where c.c. stands for conjugated complex, and where we merged the spatial propagation with
the envelope to form the complex amplitudes a(x,z,t) =Y, , @i n wi,n(x,z,t)eikz. An equiva-
lent form of this notation is given in terms of the quadrature amplitudes X and P associated
to the sine and cosine waves:

E(x,z,t) =&y [X(x,2,t) cos(wot) + P(x, z, t)sin(wot)] (1.44)

The quadratures of the field are proportional to the real and imaginary part of the complex
amplitude:

X(x,z,t)=alx,z,t)+a™(x,2,t) (1.45)
P(x,z,t)= i(a*(x,z,t)—a(x,z,t)) (1.46)
This notation is convenient for describing the interaction between two fields (and also to

quantify the electric field, see section 1.4). A common representation of the classical field
decomposed on its quadratures is called the Fresnel diagram, or phase space representation.
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PA PA
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Y

(a) (b)

Figure 1.1: Phase space diagram of a single electric field E (a) and of the
interference between two fields (b).

In this diagram, the field is represented at a single point of space and time as a vector of
magnitude |a| making an angle ¢ = arctan(P/X) with the X axis as outlined on figure 1.1a.
In the case of interferences, the total field is sketched as the vectorial sum between the two
individual fields. This helps to visualize on which quadrature lies the resulting field, as it is
showed on figure 1.1b.

1.3.2 Quadrature fluctuations

Another elegant application of the field quadrature is when the wave has fluctuations in both
amplitude and phase.

Consider a variation of the envelope in equation (1.44) (this means that the carrier remains
unaffected). The fluctuations of E then read

OE (x,2,t) = &) (5X(x, z,t) cos(wot) +i0P(x,z,t) sin(wot)) (1.47)

The fluctuations of the field quadratures X and 6P may then easily be linked to the fluc-
tuations in amplitude and phase. Indeed, for the simplest expression of an electric field £ =
S ae'? +c.c., a fluctuation in both amplitude da and phase §¢ leads to the following first order
expansion:

6E =~ & (6aei"’+ia6(pei"’)+c.c. (1.48)
=28y (6X cosp+ 6P sin(p)

This description is again very relevant to the scope of this thesis, as the variations in ampli-
tude 6X and phase 6P are easily accessible by usual measurements methods. From this point,
we shall call respectively X and P the amplitude and phase quadratures of the electric field*.

“Note that §P is actually proportional to the amplitude A of the field. As we will see in chapter 3, one does
not exactly measure the phase of the field, but rather the phase as being “imprinted” on the amplitude.
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1.4 Quantization of the field

In order to explore the ultimate limits in sensitivity when measuring with light, we need a quan-
tum description of the electric field. The standard way to quantify the field is by identifying
the field quadratures X and P as canonical variables in the sense of Hamiltonian mechanics,
analogous to the quantification of a collection of harmonic oscillators. This allows to asso-
ciate hermitian operators X and P which satisfy canonical commutation relations. The full
treatment can be found in [Grynberg 10].

1.4.1 Bosonic operators

This begins by associating to the normal modes ay of (1.16) an operator d,. We impose these
operators the canonical commutation relation, and we also impose a zero commutation for
operators corresponding to different modes, since they are decoupled by construction:

[dg,d;;] =0y (1.49)
[dr,ar]l=0 (1.50)

The bosonic operators d, and d; are called respectively annihilation and creation operators
since they destroy or create a photon in the mode ¢. This is again entirely similar to the
harmonic oscillator where an excitation is represented by a photon.

It follows that we can define a real quantum electric field from the quantification of (1.13):

Ea,t)=EP @, 0+ E 7 x,0) (1.51)

where the quantum analytic field in the Heisenberg representation is given by

BV =iy &dpe el terond (1.52)
l

1.4.2 Modal decomposition

In analogy to the classical treatment of 1.2, it is also possible to expand the quantum field on
any basis of monochromatic modes w;(x,z,t) that still allow to diagonalize the energy of the
system. Using the same considerations that were used to derive equation (1.18), we can write

E'(+)(x,z,t):£’oz a;wilx,z,t) (1.53)
i

where & is also defined by (1.17).
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The commutation relations (1.49) and (1.50) remain valid for the bosonic operator in the
mode {w;(x,z,t)}. In particular, considering that the field is in a well defined spatial mode
go(x,2), an even more concise notation may be obtained by considering the continuous mode
annihilation operator [Loudon 00] d(x,z,t) = d(¢) go(x, 2), allowing to write the commutation
relations as

[d(t), dT(t')] =6@t—t') (1.54)
[a(#),4(h] =0 (1.55)

The Fourier transform formalism introduced in section 1.1.2 then allows to define the annihi-
lation operator in the frequency domain @ ,(2) where the commutation relation is written the
same way’:

[d(Q), dT(Q’)] —5(Q-Q) (1.56)
[a(Q), a(Q)] =0 (1.57)

The energy of the quantized system is given by the Hamiltonian that sums the contribution of
every mode i:

H = hw, f (d*(t)d(t) + %)
T

= hwo Z(d;di + %) = ﬁwo Z
i i

1
N;+ 5) (1.58)

where N; = d:di is the operator for photon number in the mode i.
The continuous annihilation operator a({2) may be decomposed as

a(Q) =Y 6 ui(Q) (1.59)

The eigenstates of the Hamiltonian are the photon number states, or Fock states, IN1,...,N;,...)
where N; is the number of photons in the mode i. The bosonic operators action on the Fock
states is mode dependent:

dijlni,...,n;,...0=vn;n1,...,n;—1,...) (1.60)
lny,...oni,.. )=V +Ung,. . ni+1,..0) (1.61)

A change of basis from {w;(x, z,t)} to {v i(x, 2, t)} is done in a similar way as in the classical
part 1.2.4 by associating another bosonic operator b; to the new mode v;(x,z,1) :

EP,z,0)=i& ZZA)J vj(x,2,t) (1.62)
i

> The non-symmetric definition of the Fourier transform would leave a factor 27 in the commutator.



1. THE MODES AND STATES OF A BEAM OF LIGHT 19

such that, for w; defined as (1.33) with a unitary basis change matrix U, the new bosonic
operators write as :
bj U;; al

1

I
g

(1.63)

I;i :Z(U_l)ij a; (1.64)

1.4.3 Quadrature operators

In quantum information, the Fock states are particularly interesting since they allow to picture
photons as a natural representation of qubits. They also exhibit interesting quantum behavior
for many applications in quantum optics [Kimble 77]. This regime is called the discrete variable
(DV) regime.

In our case, we are more interested in a regime where we have a high photon flux since it
leads to higher sensitivity in our measurement (see 4.1.2). We then classical a classical field
of macroscopic energy and we picture the quantum effects as fluctuations in the light wave.
This high photon number regime, also called the continuous variable (CV) regime is getting
more and more used in the quantum optics community [Lloyd 99, Furusawa 11], as well as the
hybrid regime that couples both the discrete and continuous description of the light [Morin 14,
Jeong 14].

The standard approach in CV consists in assigning a bosonic operator @; to a classical wave
amplitude @; such that a; = (4;). The quantum fluctuations 6d; of the quantum field are then
written as

0d; =a; —{a;) (1.65)

where there is an implicit identity operator 1 hidden after the expectation value of d;. In this
thesis, we make use of the semi-classical approximation [Reynaud 92] that neglects any higher
order term in 4d.

The bosonic operators are not hermitian, so they do not correspond to an observable and
may not be measured. However, their real and imaginary parts are hermitian and correspond
to the exact quantum counterpart of the field quadratures defined in (1.45) and (1.46):

Ri=d;+d! (1.66)
ﬁi:i(d’;—di) (1.67)
From (1.49) and (1.50), the commutator for the quadrature operators &; and p; is given by:

[&i, ;] =2i6;; (1.68)
i, %] = [pi,pj] =0 (1.69)
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These conjugation relations allow to write the following Heisenberg inequality:

03 0% 21 (1.70)

where o = (502> is the variance of operator O. Finally, we can define an arbitrary quadrature
operator cj(f at a ¢ angle in phase space:
g7 =dje’ +d;e " (1.71)

Using this notation, the amplitude (1.66) and phase (1.67) operators are dephased by n/2. For
states that contain n-modes, the quadrature operators {%;} and {p;} are represented as vectorial
operators of n components X and p. It is also convenient to define a full quadratures vector of
2n components X= (X1,..sXn,P1,---,0n)T.

1.4.4 Relation to the classical field

In experimental quantum optics, it is quite convenient to be able to relate the quantum field
(1.53) to the classical field (1.18). This allows to define what observable is being measured.
The expectation value of the electric field (1.53) is written as

<E(+)(x,z,t)> = éaoz @;) w;(x,z,t) (1.72)
i
For single-mode Gaussian states (cf. section 1.6.2.2), it is always possible to find a basis of
modes {v;(x,z,t)} where only the first mode n = 0 is non-vacuum. This implies that
(Go)=VN (1.73)

where N is the number of photons contained in the field. Using the definition of the quadrature
operators (1.66) and (1.67), the annihilation operator can be written in term of observables:

Ri+ip;
;= 2P (1.74)
2
Thus, the quantum electric field is written in term of amplitude and phase observables:
& +ip;
i TP vilx,z,t) (1.75)

E(Jr)(x,z,t):@@oz
i

For classical light, computing the expectation value of (1.75) should be equivalent to measuring
the classical field (1.18). This defines the important relation:

(%) =2 Re {E(”} (1.76)

The expectation value of the quadrature amplitude of the quantum field is exactly equal to
twice the real part of the complex classical field®.

®Obviously integrated over a finite spatial and temporal window.
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1.5 Quantum states

We introduce in this section the quantum states of interest in the continuous variable regime.
For a more detailed description of the subject, [Braunstein 05] provides with a thorough review.

1.5.1 Density operator

Usually a quantum system is represented by a single state vector |y), called pure state. It
is however not sufficient to describe a realistic system; the influence of the environment or
fluctuations of various origin will degrade the purity of the state and lead to a statistical mixture
of pure states, or mixed state. These may no longer be represented as single state vectors.
A standard way of representing mixed states is by the density matrix or density operator p,
defined by

ﬁZZCi lwi) (i (1.77)

where the c¢; coefficients are the statistical weight of the pure state |y;). The density matrix
satisfies the condition Tr [p] = 1.
The purity P of the state can be deduced from the density matrix by

P =Tr[p?] (1.78)

For a pure state, P = 1; otherwise, 0 < P < 1 for a mixed state.

The density matrix is a general tool that is especially convenient when describing mixed
states in the discrete variable regime, as it may be expanded on the Fock states basis. How-
ever its usage in the continuous variables regime, where the number of photons and of modes
increases, is more problematic, since it contains an infinite number of elements. Therefore,
in this regime, it is more proper to make use of a representation in quadratures, which is a
natural representation of continuous variables. It is outlined in the next section as the Wigner
function, or Wigner distribution.

1.5.2 Wigner function

The Wigner function corresponds to another representation of the field in terms of quadra-
tures. For a n-mode state, it may be written on the phase space of the outcomes of X,p as

[Schleich 11]:

1
(2m)"

W(x,p) = f d"p d"v Tr ﬁe—i(§:~p+f)-v) ei(x~y+p-v) (1.79)

This representation should ideally show the probability of measuring the outcome x and
p of a measurement on X and p. However, it is clear from (1.68) that these operators do not
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commute, therefore such a probability distribution cannot exist. The Wigner function W is a
¢

quasi-probability distribution such that the projection of W on any quadrature ;" corresponds

to the marginal probability distribution of the outcome q(ip of the measurement. Like a proba-
bility distribution, the integral over all quadratures is equal to 1:

f d'xd"pW(x,p)=1 (1.80)

and the integral over all but one quadrature yields the probability to measure it; for example,
by writing p® = q?*™2 the orthogonal quadrature to q?, the probability to measure q? is given
by projecting the Wigner function:

Py(q?) = f W(q?,p?) d"p? (1.81)

However, this distribution can be negative, hence the name of quasi-probability distribution.
For more details on the Wigner function, see [Ourjoumtsev 07].
The Wigner function is a good tool to describe quantum states in term of the phase space
variables, and many of the states relevant to continuous variables quantum optics may be rep-
resented through this function. It is worth stressing that the negativity of the Wigner function
is not a necessary criterion do describe the "quantumness” of the state. Some states will ex-
hibit highly non-classical behaviors such as entanglement and nonlocality, yet their Wigner
function are positive. The most common belong to the class of Gaussian states that will be
expanded in the following section.

1.6 Gaussian states

1.6.1 Definition and quantum covariance matrix

Simply put, gaussian states correspond to states whose Wigner function is Gaussian. They are
efficiently producible in a laboratory and available on demand. As an example, the ground state
of the Hamiltonian, or vacuum state, is Gaussian. Moreover, most operations we can apply on
gaussian states of light preserves their Gaussian characteristics.

The most general form for a Gaussian Wigner distribution can be formulated as
[Ferraro 05] :

WX) = p —% X-(X))' ! (X-(X)) (1.82)

1
— ex
@2n)*vdetI'

where <X> is the expectation value vector of the quadratures and T is the symmetrized covari-
ance matrix which elements are defined the following way:

[r]ijzrij:%({X,-,&}—(Xi)()?j)} (1.83)



1. THE MODES AND STATES OF A BEAM OF LIGHT 23

where {-, -} denotes the anti-commutator. By definition (and as for its classical counterpart, see

section 7.2.1), the covariance matrix is a real, positive and semi-definite matrix which allows

the spectral theorem to apply (this will be of great importance to us later on). The diagonal

elements of this 2n x 2n matrix correspond to the individual variance of each quadratures for

every modes, and the off-diagonal represent correlations between those modes and quadra-

tures. For our purposes, it contains all the information on the gaussian state that is considered.
Finally, the purity of the state in term of the covariance matrix is given by

1

P=
vdetT

(1.84)

1.6.2 Examples of Gaussian states

1.6.2.1 Vacuum state

The ground state of the radiation field is the state with zero photons |0) = [N; =0,...,N,, =0)
in every modes. It is called a vacuum state. The covariance matrix associated to this state is
the identity matrix, whatever the basis of modes in which it is represented:

Tio) = Tan (1.85)

It is a direct consequence of the way we defined the quadrature operators (1.66) and (1.67) :
the variance of the fluctuations on both quadratures for a zero-photons state is equal to unity.
Therefore, its Wigner function is given by

W(x,p) = e~ 2(x*+p%) (1.86)

(2m)n

1.6.2.2 Coherent state

Introduced in [Glauber 63], coherent states |a;) are widely used in quantum optics since they
are the quantum states that represent the state of light emitted by an ideal laser well above
threshold. They are also called quasi-classical states. Moreover, they are the eigenstates of the
annihilation operator @;:

a; la;) = a; la;) (1.87)

The expression of such states may be obtained by displacing the vacuum state in phase space.
This is achieved by applying the displacement operator D; on the vacuum state:

;) =Di(a;) 10) (1.88)
where

T_ald; (1.89)

Di(a;) = exp |a;d; —
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A general coherent state is obtained by the tensor product of each individual coherent states
(1.87)

lay =) la;) (1.90)

i
Its covariance matrix is also equal to the identity matrix:
Loy =Ton (1.91)

and is therefore the same in each basis. In fact, it may be shown that there always exists a basis
in which any coherent state can be represented with a coherent state in mode 1 and vacuum
in all the other modes [Treps 05]:

lv)=la)®l0,...,0,...) (1.92)

A coherent state may therefore be considered as a single mode state.’
In this basis, the coherent state writes in terms of the Fock states as

AN
20 = @

@y =712 Y —L_10) (1.93)
n1:0 n]_!

where the photons are created in the first mode. It is straightforward to show that

(N1) =al? (1.94)
and
012\71 = |al? (1.95)

The photon number distribution of a coherent state follow a Poisson distribution.

1.6.2.3 Squeezed state

The Heisenberg inequality (1.70) imposes a restriction on the value of the product of the vari-
ances of the quadratures in a given mode. And yet it does not constrain the variance of one
single quadrature. In the case where the variance of one quadrature in a given mode is less
than 1, this mode is said to be squeezed.

¢

The squeezing operator for the quadrature §" in mode i is written as

&i(al) - @

Si(&;)=exp 5

(1.96)

7 In contrast, a state is called multi mode if it is not single mode. Albeit amusing, this condition is strong in the
sense that any state that cannot be written according to (1.92) is by definition multi mode. A good explanation of
these conditions can be found in [Delaubert 07].
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where &; = r; e'% is the squeezing parameter; r; > 0 is the amount of squeezing and 6; is the
direction.

On a vacuum state, the action of this operator yields the state |¢;) = S i(£;)10), which may
be expanded in terms of even Fock states [Ferraro 05]. Despite its name, the squeezed vacuum
is not an empty state, as its mean number of photon is given by

(]\A/'i>|{i> = sinh?r; (1.97)

whereas the expectation value of a quadrature operator at any angle in phase space vanishes :

<C? gib>|§'> =0V ¢. However, the variances for the two orthogonal quadratures cj(ip and ﬁ‘f = d(l./)+§

read
0%4, —e 2i= 012 (1.98)
q;
1
2 2r
og°,=e" = — 1.99

The field is then “squeezed” along a given quadrature and “anti-squeezed” along the other. The
special cases where ¢ = 0 and ¢ = § correspond respectively to amplitude or phase squeezed
states.

In the case where the state is pure and multimode, the covariance matrix is diagonal:

11
Ly = diag(U%,Ug,---,— —) (1.100)

DA DA
532 64()+7{/2
_“_‘;{5_’5, %
X 56" X
() (b)

Figure 1.2: Phase space representation of (a) a coherent state; (b) a coherent
squeezed squeezed on the 0 + /2 quadrature. A vacuum state is obtained
by setting a = 0 in these diagrams.



1. THE MODES AND STATES OF A BEAM OF LIGHT 26

1.6.2.4 Entangled states

As it was pointed out, the off-diagonal terms in the covariance matrix display the correla-
tions between the quadrature, whose origin may be classical or quantum. One of the most
intriguing parts of quantum mechanics, the famous notion of entanglement as first described
in [Einstein 35], emerges from quantum correlations. Formally speaking, an entangled state
is a quantum state that cannot be described by the tensor product of density operators of its
sub-ensembles; the state is then called not separable. While this feature is well described in the
discrete variables regime, giving a formal definition of it in the continuous variables regime is
a more challenging task. Current research studies a variety of criteria to define entanglement
in this regime, such as inseparability, study of correlations, etc.

Although most of the work in this thesis is of classical nature, entangled states will be of
interest in the next part of the experiment, and a more thorough explanation will be given in
chapter 8.



2 Femtosecond ultrafast optics

(About ultrafast pulse-shaping) “There’s about a million things that can go wrong.”

— Jonathan “Golden Goose” Roslund
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This thesis is all about precise measurements with light in the near infrared in the fem-
tosecond regime and the analysis of its fluctuations. This domain has been growing and matur-
ing for the last forty years and is now incredibly active. It is also very impressive how interdis-
ciplinary this field has become, with its wide range of applications in all sorts of research area.
It involves a short time scale which allows one to make “stop-action” measurements of rapid
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phenomenon, and very high intensity, enough to strip the electrons from their nuclei, result-
ing in a laser-generated plasma. It also makes extreme nonlinear optics phenomena possible,
where laser-matter interactions are sensitive to the non-instantaneous dynamics of bound mo-
tions of electrons. Although this thesis does not deal with these extreme behavior -attosecond
time scales, XUV and X-Ray frequencies, high harmonics generation...-, ultrafast aspects need
to be treated with care. The aim of this chapter is therefore to give the reader a “crash-course”
in ultrafast optics, since most of the remaining chapters in this manuscript will rely heavily
on the definitions that will follow. A more complete description may be found in [Rudolph 06]
and [Weiner 11a].

2.1 Description of pulses of light

In this section, we introduce the notion of an optical frequency comb and give a mathematical
description of its field. We then define power-related quantities that are specific to ultrashort
pulses of light. We also put forward definitions to characterize the temporal and spectral en-
velopes, and end with a Gaussian description of the matter.

2.1.1 Optical frequency combs

In the case where the output spectrum of the laser corresponds to a large number of equally
spaced longitudinal modes, the laser is designated as an optical frequency comb where every
frequency mode is called a tooth of the comb. The process through which such lasers are gen-
erated is called mode-locking; it ensures a fixed phase relationship between each longitudinal
mode of the comb. In this condition, in the temporal domain, it can be shown that the electric
field consists of pulses of limited duration, whereas it would vanish if the phases were random.
This mechanism will be outlined in more details in section 2.4.

Due to their very stable structure, frequency combs are tools of reference for metrology and
spectroscopy. Their development led to the Nobel prize of Theodor W. Héansch and John L.
Hall in 2005.

2.1.1.1 Ideal frequency comb

In the following, we will give a mathematical description for the output of a mode-locked laser.
The frequencies of the longitudinal modes are written as

Wp =N, (2.1)

where w, is the free-spectral range of the laser cavity.
Considering only the temporal part, the electric field of a single pulse can be written from
(1.18) as the product of a slowly varying envelope and an optical carrier at the frequency wy:

ES) (5= ya(tye " (22)
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which can be expanded in the Fourier space as previously:

a(®)e " = g(w — w) = a(Q) (2.3)

dz
(+) —
Elese(w)_éaofm
R

The Fourier relation between time and frequency domains (or time-bandwidth product) im-
poses that short pulses have a broad spectrum.

In the spectral domain, assuming an infinitely narrow homogeneous linewidth for each lon-
gitudinal mode, the spectrum of an optical frequency comb is obtained by summing the con-
tribution of each single pulse:

ED(@)=ES) (@) ; 8w —nw,) (2.4)
which corresponds to the spectrum sketched on figure 2.8.
In the temporal domain, this becomes

Bepy = [
EV@) = (ES) %A@ (255
where * represents the convolution product and A; is the Fourier transform of the Dirac comb
distribution }_,, 6(w — w,):

Ar =) 6(t—n7) (2.6)

Consequently, the complex field in the temporal domain is written as

EM@) =Y a(t—nr)e iwot=nD (2.7)

This represents a train of pulses where 7 = 27/w, is the time spacing between subsequent
pulses.

2.1.1.2 Realistic frequency comb

The previous treatment is not entirely realistic since it does not take into account the effect
of dispersion in the laser cavity. As we will expand into more details in section 2.2, both the
envelope and the carrier of short pulses of light are changed by the effect of dispersion. Disper-
sion causes a difference between the phase velocity and the group velocity, therefore leading
to an increasing dephasing between the carrier and the envelope from pulse to pulse!. The
difference of dephasing between successive pulses is called carrier-envelope phase (CEP):

1 1
Adce = (v_ - ﬁ) woL (2.8)
g
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Temporal domain
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Figure 2.1: Temporal and spectral representation of a frequency comb.
where vy and v, are respectively the phase and group velocities in the laser cavity, and L is

the length of the laser cavity.
As a result, the complex field reads

EM@®) = Y a(t—nr)e iwot=nD) ginAder (2.9)
n

It is important to point that as opposed to (2.7), the field is no longer periodic because of the
CEP. In the spectral domain, this translates to

EP(w) = E;;)lse(w);()‘(w —(nw, +wcg)) (2.10)

where w g is the carrier-envelope offset (CEO) defined by

w
WCE = A‘PCEZ_; (2.11)

INote that the dispersion that is refered to here is inside the laser cavity, not outside.
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The longitudinal modes of a realistic frequency comb are then written as

]wn :nwr+wCE‘ (2.12)

The temporal and spectral representation of a frequency comb are shown on figure 2.1.

In precision measurements, the stabilization of both the repetition rate and the carrier-
envelope offset are very important. It can be achieved through a variety of ways, for example
by locking the comb on stabilized single-mode lasers [Nicolodi 14]. These quantities also be-
long to the global parameters of a frequency comb and their fluctuations will be analyzed in
more details in the next part of this thesis.

2.1.2 Energy and peak power

This section is a complement to 1.2.5.

As it was suggested, for pulses of light, the detection time 7 need to be chosen with care as
it allows to define specific power-related quantities. It can be useful to consider this detection
time as 7/2 i.e. half the time between subsequent pulses. Hence, computing the energy from
(1.41) yields the energy W, contained in a pulse:

W, = f P(z,t)dt (2.13)
/2

For a frequency comb with a repetition rate f;, the average detected power is given by:

Wp _
Payg =70 =Wy x r (2.14)
which is obviously equal to the energy in a pulse times the number of pulses per second.
Finally, for nonlinear effects, a very important characteristic of a pulse is its peak power Py,
which is defined as the maximum occurring optical power. Since this quantity depends on the
actual pulse shape, giving a mathematical description in the general case is not possible, but it
has an analytical expression for gaussian pulses (c.f. (2.27)).

2.1.3 Moments of the field

When working with ultrashort pulses, it is useful to know the temporal and spectral character-
istics of the field such as the width Aw in the spectral domain and A¢ in the temporal domain.
There are multiple ways of defining these quantities, the most widely used being the full width
at half maximum (FWHM). Though convenient because visual, it is not always the best way.
That is for instance the case of pulses with substructures that causes a considerable part of the
energy to lie well outside of the range defined by the FWHM. In these cases, it is preferable to
use averaged values derived from the statistical moments of the field’s intensity envelope.
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The moments of the field can be defined for any variable ¢, being spatial, temporal and
spectral. Therefore, for the sake of generality, let us write the field envelope as f(¢). The
moment of order n for the variable ¢ with respect to the intensity of the field is defined as

JrEMIF©OP e
JrIF@©dé

The first order moment (&) is the “center of mass” of the intensity distribution, generally chosen
as a reference to give a zero value. As an example, the center of the transverse field as defined by
(1.28) will be centered on x = 0, and the spectrum is usually centered on the carrier frequency
wo. This definition can become very meaningful experimentally since we seldom work with
perfectly symmetric spectra (and neither with perfectly symmetric pulses, for that matter).

A good criterium for the width in either domain is the standard deviation, defined as a
function of the first and second order moments:

o =1/(E2) - (©? (2.16)

In the temporal domain, when setting the first moment as zero, this is equivalent to the root
mean square (RMS). The RMS duration has analytical expressions for well-defined envelopes
[Sorokin 00]. The case of gaussian envelopes will be treated in the next section.

When defining the center of mass as the reference, the time width of the pulse is simply
written as

(&)=

(2.15)

o Jrt?la@)® dt

= 2.17
T T P de (217)

Similarly, the bandwidth is defined as

2 2
ai:fww lalw)” do (2.18)
Jr+ la(@)I? do

Because of the conjugation relationships between the temporal and the spectral domains, the
uncertainty principle in harmonic analysis [Appel 08] states that

1
4

This inequality is saturated only in the case of gaussian pulses.

0?.0% > (2.19)

2.1.4 Gaussian pulses

Having presented the general characteristics of a pulse, it seems convenient to introduce a
Gaussian temporal envelope u(¢) that we can use to do analytical calculations. The choice
made here is indeed purely analytical, since the Gaussian shape is a reasonable approximation
of the structure of the experimental pulses.
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2.1.4.1 Temporal domain
The temporal mode u(t) associated to a Gaussian shape is given by
t2

11 2
)= —— = exp|———|=C,exp|-——
WO = ST Ay eXp( 4At2) teXp( 4At2)

(2.20)

where At is the second moment and the coeflicient C; ensures that u(¢) satisfies the normal-
ization condition? [p lu(#)|? dt = 1.
The FWHM of this distribution is related to the time bandwidth by

Atrwam = 2AtV2In2 (2.21)

Note that with this definition of the Gaussian field, the RMS width (2.17) and the second mo-
ment are equal

o? :f 2 |u(@)? dt = A¢? (2.22)
R

With other definitions that are more common in the ultrafast community, there would be a
factor of 2 between them.

2.1.4.2 Spectral domain

Taking the Fourier transform of (2.20) yields the field in the spectral domain:

¢ 2 92

u(w) = Wexp(—At w®) (2.23)

Computing the second moment then yields

1
which allows us to rewrite the spectrum as
1 1 w? w?

_ _Y \=c -2 2.25
= e Vre exp( 4Aw2) ‘”exp( 4Aw2) (229)

This representation is the exact counterpart of equation (2.20) and obeys the same normaliza-
tion conditions. All the quantities from the temporal part may be transposed to the spectral
domain by the substitution At — Aw.

2 For simplicity, we take the normalization condition (1.31) and consider that T'=1.
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From (2.24), it is clear that the Gaussian case saturates the inequality (2.19). The time-
bandwidth product may also be written in term of the FWHM:

At rwam X AorwaMm = 27 x 0.441 (2.26)

This metric allows us to define the transform limited pulse, the shortest Gaussian pulse possible
for a given spectral width. The value of the time-bandwidth product for other pulse shapes,
such as hyperbolic secant or lorentzian, can be found in [Sorokin 00].

Finally, when writing the power of a Gaussian pulse according to (1.40), it becomes possible
to write the peak power as

Wy Wy Pvg
P= ~0.94 =094 (2.27)
V2 At AtrwrMm fr x AtrwHM

This expression as a function of the average power is convenient since, again, this quantity
cannot be measured using usual electronics.

2.2 The influence of dispersion

As introduced in section 1.3, the electric field can carry information on both the amplitude
and the phase quadrature. When doing measurement with ultrashort pulses, this information
can be spectrally dependent. We will be particularly interested in the phase quadrature of the
field, and therefore, we need to understand the phase variations in both the spectral and the
temporal domains. It is also important to know whether or not a pulse is free of such phase
variations.

2.2.1 Spectral and temporal phases

At the risk of sounding redundant, we write the complex field in the temporal domain as
EWM ()= &alt)e 0! (2.28)

where a(?) is the field envelope, a priori complex. In the spectral domain, relative to the carrier
frequency, we also have

ED(Q) = &a(Q) (2.29)

with Q = w — wg. To add phase variations in either the frequency or time domains, we write
these phases respectively ¢(¢) and ¢(w) and include them in the envelope as follows:

a(t) = |a(t)] eV (2.30)
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and
a(Q) = [a(Q)] PP (2.31)

Two particular cases emerge: when (¢) is a constant, the pulse is free of phase modulation,
and when ¢(w) is a constant, the pulse is said to be bandwidth limited.

When a pulse has a non trivial variation in both y(¢) and ¢(w), we say it is chirped. The
following section will list the effects that a spectral phase can have on the pulse shape.

2.2.2 Effects on the pulse shape

Let us consider that the spectral phase ¢(w) can be Taylor expanded around the carrier fre-
quency wo:

) 1 o 0%¢ 1 3 03¢

~ Pp(wo) + (W —wo) —| +=(w-wo)? —| +=(w—-wy)® —= 2.32
P)=glon) =00 30| +ow-wol 5| Hgle-wl S5 23)

which can be rewritten in a more compact notation as

o 0
P =po+ Q1 + o P2t s (2.33)
The field’s spectrum is consequently written as

ET(Q) = & la(@)] ¥ (2.34)

It is evident from computing the spectral intensity that the energy is not affected by this phase,
nor is the intensity spectrum as observed with a spectrometer. However, such a phase can have
a huge influence on the pulse shape. In the next section, we show the effect of each term of
the phase expansion on the temporal pulse.

2.2.2.1 Constant phase

In the case of a constant phase ¢p(Q2) = ¢, there is no change in the pulse shape. The temporal
field is directly given by

EWN(t) = & la(t)| e H@ot=90) (2.35)

A constant spectral phase then results in a simple phase shift of the carrier in the temporal
domain. The real field in the temporal domain is written

E(t)=2Re {E(+)(t)} = 2&la(t)| cos (wot — ¢o) (2.36)

The resulting pulse shape is depicted in figure 2.2 for a wavelength of 795 nm and a temporal
FWHM of 6 fs.

3 Here we stress the fact that a linear phase in either ¢ or w has the same effect on the pulse than a constant
phase... As we will see in 2.2.2, a linear spectral phase shift is equivalent to a simple delay in the time domain, and
a linear temporal phase shift is simply a shift of center frequency. As a result, it does not change this definition,
and that is the reason why we kept the carrier e “°* outside of the envelope in (2.28).
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Figure 2.2: Pulse shape of a 6 fs pulse with and without a constant (negative) spectral phase.

2.2.2.2 Linear phase

For a linear spectral phase ¢(Q2) = Q¢1, the complex field in the temporal domain is written as
ED) =& |a(t—¢1)| e (2.37)

This results in a global delay in the envelope of the pulse as shown by figure 2.3. Note that the
carrier of the delayed pulse is not shifted with respect to the phase of the undelayed pulse.

— No delay P
-- 10 fs of group delay
/|

-10 -5 0 15 t (fs)

Figure 2.3: Pulse shape of a 6 fs pulse with and without a linear spectral phase.

A global delay in both phase and envelope, combining constant and linear spectral phases,
will then result in a shift of the carrier in the delayed pulse.

2.2.2.3 Quadratic phase

A quadratic spectral phase ¢(Q) = %2 ¢ affects both the envelope shape and the carrier fre-
quency, as shown on figure 2.4. This is also the case for every higher order phase. The temporal
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field of a Gaussian pulse with a quadratic spectral phase reads
(+) Co e -iwot
E (t) = é"oa\/T_te e (238)

Here we defined the envelope of the field as a Gaussian of second moment ¢ defined by

(2.39)

Since this quantity is complex, the temporal field is not yet written in the form of (2.30).
To do so, we define an effective temporal width At' = |¢| for the chirped pulse, allowing to
decompose the argument of the Gaussian in real and imaginary parts:

1)2 1\ . ¢
— | = 2.40
(2c) (2At') BTN (2:40)
where At is defined as
2
At = At 1+(2"Zz) (2.41)

From equation (2.40), we see that a quadratic phase will have two effects on the pulse shape:

+ The envelope becomes broader according to (2.41) independently of the sign of ¢o. A
useful criterium is the amount of quadratic phase ¢, for which the pulse’s envelope is
twice bigger than the transform limited one. It reads:

be = 2V3 AL (2.42)

All these quantities may of course be put in term of temporal FWHM using (2.21).
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Figure 2.4: Pulse shape of a 6 fs pulse with and without a positive quadratic phase.



2. FEMTOSECOND ULTRAFAST OPTICS 38

+ A linear frequency modulation occurs, given by

$2
8(A¢')*
This phenomenon is often referred to as chirp, as an analogy to acoustic waves. An up-
chirp means that the instantaneous frequency increases with time, whereas a down-chirp
is the contrary.

w(t) = t (2.43)

A pulse will acquire quadratic phase when it propagates through a dispersive medium. Since
both positive and negative chirp induce a broadening of the envelope, the minimum pulse du-
ration can only occur when there is no chirp, that is when there is no variation in instantaneous
frequency and no spectral phase higher than the first order in w.

To compensate a positive quadratic phase acquired through propagation, a pulse may be
compressed down to the Fourier limit by using a negative group velocity dispersive medium.
This is achieved by using either prisms or gratings [Martinez 84], or even by pulse shaping
using a Spatial Light Modulator [Weiner 00].

2.2.2.4 Cubic phase

A cubic phase ¢(Q2) = %3 ¢3 results in a radical change in the temporal envelope, making it non-
Gaussian. The Fourier transform may still be analytically computed according to [McMullen 77].

Using a clever change of variables { = Q + iAT—’f, with 73 = ¢3/2, the Fourier transform of the
spectral envelope reduces to

dé T3 4 (A 2088 A2 ) ..
u(t):Cw R Vor exp Lgf +L(T—3—t)f exp F—Ft e (244)
23

The integral over ¢ is known as the Airy integral in the complex plane Ai(¢) = fC \/‘21_; es 7t

Injecting this result, we then obtain:
C Att/r3 —¢ At? (2At* ,
u(t) = —"’Ai( ! ) ( - t)] g il (2.45)
T T 73 | 373

For 7 — 0, this function converges to the standard gaussian pulse. For non zero values of 7, we
see that the carrier is unaffected, whereas the envelope acquires a complex shape, as shown in
figure 2.5.

Upon propagating through a strongly dispersive medium, the third order dispersion will
cause a delay of the pulse peak as well as an asymmetric broadening, creating replicas. For
a negative cubic phase, these ripples arrive earlier in time, whereas it is the contrary for a
positive phase. Generally, the cubic dispersion is weaker than the quadratic, so that effect
always coincides with the broadening and chirp defined in the previous section. This may be
modeled by the substitution A¢ — { in (2.45).

Cubic phase can therefore pose very serious problems in ultrafast optics. As was the case
for quadratic phase, it is possible to compensate for it using a compressor or a pulse shaper.
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Figure 2.5: Envelope of a 6 fs pulse with and without a cubic phase.

2.3 Representations of the pulse

From the previous section, it is clear that a full representation of the pulsed field needs to in-
clude both the spectral and the temporal phases. Of course, once retrieved, one could plot the
spectral and temporal phases of the pulse, but these can be hard to read. Although it does con-
tain all the required information, it is not straightforward to know the temporal distribution of
each frequency of the field. For example, temporal representations of the pulse in the previous
section do not give easily away the arrival time of each color.

2.3.1 Time-frequency distributions

In many other fields such as quantum mechanics or acoustics, other representations were in-
troduced to complement standard Fourier analysis. These distributions of time-varying spectra
are called spectrograms (or equivalently sonograms). The concept has been widely used for the
analysis of time-varying spectra

Over the years, a great number of distributions have been introduced and investigated, and
it is still an evolving field. Here we only expose the general principle that lies behind time-
frequency distributions since it also hints as to how to access the pulse shape experimentally.
It also provides a good visual witness of the pulse shape and allows one to understand rapidly
the structure that the pulse acquired during its propagation. For a review on all the different
time-frequency distributions, see [Cohen 89].

2.3.1.1 Wigner distribution

The whole field of time-frequency distribution has been built upon the study of the Wigner
function. First introduced by Wigner and applied to quantum mechanics, the Wigner function
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can be applied to any set of conjugated variables, for example, the wave-vector £ and the
position x, or the angular frequency w and the time ¢. It has found some application in ultrafast
optics for the description of pulses [Walmsley 96], but its usage has become limited since it is
cumbersome to relate to the physical spectrum. Its mathematical definition is generally given

by

_ dr =) T\ —iwt p(+) T
R
dd ) . 9
= | —E® (a) - —) e WOtEH) (w +— (2.47)
2n 2 2
R

This definition is the counterpart of the quantum version.

Although this does provide a two-dimensional representation of the field, the Wigner func-
tion can prove hard to use and interpret. Because the distribution at a certain time usually
reflects properties of the signal at other times, it is highly “non-local” in nature. Therefore, if
there is noise on the signal for a small finite time, that noise will appear at other times. This
means also that, at a certain point in time, the function can be non zero even when the signal
is null. This noisy behavior is one of the main drawbacks of the Wigner distribution; it can be
cleaned by smoothing, but this operation inevitably destroys some desirable structures.

2.3.1.2 Short-time Fourier Transform

A more widespread way of obtaining a spectrogram with better reliability is the so-called short-
time Fourier transform. The concept is simple to understand and powerful. If one wants to
analyze the behavior of a signal at a particular time, then one simply has to take a portion of
the signal centered around that time, calculate its energy spectrum, and do this for every time.

Formally, let us consider the complex temporal envelope a(¢) of the field that we want to
resolve and multiply it by a gating function A(¢ — 7). The spectrogram is then obtained by
taking the energy of the Fourier transform of the signal:

S(w,t) = U]R \Zlna(r)h(r —t)e leT

which, for specific filter function 4, is the short-time Fourier transform (STFT) of the signal.
Alternatively*, we may define S by taking the spectral envelope a(w) and the Fourier transform

of the filter A(w) :

2

(2.48)

2

do .
S(w,t) = 9 h(O —w)e'?
(@,0) UR\/%“( Yh(9—w)e

(2.49)

“This definition is sometimes called a sonogram.
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The two definitions are equivalent. From an experimental point of view, there are many tech-
niques that allows one to measure spectrograms and therefore to resolve both the amplitude
and the phase of the pulse.

One needs to choose the filter function A with care. Once again, because of the uncertainty
principle, the narrower the function, the better the resolution in a specific domain, but it cannot
be arbitrarily narrow. In that case, any variation in either the spectral or the temporal phase
will be much smaller than the spectrum of S and will then be difficult to resolve. Conversely,
if the filter is too broad, the spectrogram will be identical to the original power spectrum, and
no information over the phase can be gained. There is therefore a necessary tradeoff between
time and resolution. In general, one should select a gate function whose duration is on the
order of the inverse bandwidth of the pulse to be characterized. In other words, gating the
pulse by its transform-limited version is a good choice.

2.3.2 Some examples

In this short section, we take some of the spectral phases that were investigated in section
2.2.2 and apply the STFT method to compute the spectrogram. We chose the gate function to
be the transform limited version of the chirped pulse. We again restrict ourselves to the study
of Gaussian envelopes.

The spectrograms shown on figure 2.6 represent three different cases. The first is the transform-
limited pulse which has no chirp, but it can have either a constant or a linear spectral phase’.
The second is a pulse with a positive quadratic phase, it is said to be linearly chirped. The third
and last pulse has some cubic phase.
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Figure 2.6: Spectrogram of three different pulse shapes. From left to right: (a) transform
limited 20 fs pulse, (b) linear chirp (i.e quadratic phase), (c) cubic phase.

From these representations, the temporal distribution of each color® is more evident. It is

SNaturally, a linear spectral phase would translate the spectrogram along the time axis.
Note that the term color denotes here the spectrum of the electromagnetic field, not the colors used to rep-
resent the spectrograms in figure 2.6 !
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very easy to notice that a positive quadratic phase will make the lower frequency part (i.e. the
red wavelengths) to arrive earlier in time. In the cubic case, the colors propagate together, but
the shape of the pulse is no longer gaussian as it was stressed earlier. The center of mass of
the pulse is also noticeably shifted.

2.3.3 Experimental realizations

To conclude this chapter, we shall say a few words on how to experimentally retrieve the pulse
shape. See [Trebino 02] for a much more complete list.

Knowing the exact structure of a pulse in both amplitude and phase can be very important
for alot of applications. Every non-linear process is highly dependent on the phase of the pulse,
and the best efficiency is achieved when the pulse is transform-limited (c.f. section 8.3.2). In
this situation, it is vital to know the absolute spectral (or temporal) phase.

There are no linear effects that can resolve the duration of a pulse or its phase in an absolute
way. However, intensity correlation measurements will give information on the width of the
pulse. This is realized by gating the pulse by itself within a y'® medium and measuring the in-
tensity of its second harmonic. The width of the resulting autocorrelation trace is proportional
to the effective time-bandwidth of the pulse. Although it does not give the phase distribution,
it is a simple technique that allows to infer whether or not a pulse is chirped with respect to
its theoretical limit.

To access the phase profile, we usually resort to a technique called Frequency-Resolved Op-
tical Grating (FROG) which gates the pulse to itself. Mathematically, what is measured at the
output is very similar to (2.48). There exists a wide variety of FROG techniques that each offer
some advantages and drawbacks. It is usually a technique similar to auto-correlation except
that we measure the spectrum instead of the intensity. This allows to retrieve the absolute
spectral and temporal phase of the pulse.

When the time-frequency distribution of the pulse is known, one can use it as a reference
to measure the phase profile of another source using simpler techniques. For example, by
beating an unknown pulse with a reference in an interferometer, in the spectral domain, the
interference pattern allows one to retrieve the relative spectral phase between the two (see
section 3.1.3.4). Knowing the phase of the reference, it is therefore straightforward to plot the
time-frequency distribution of the unknown pulse. This method can also be used to directly
retrieve the spectrogram of the pulse by the xFROG procedure [Trebino 02].

2.4 Generation of pulses of light

In part III, we shall dive in more details into the noise characteristics of a laser source and we
will need a decent knowledge on how the light of a femtosecond oscillator is generated. The
aim of this section is to provide a description centered mainly on the type of lasers that have
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been used during this PhD (solid-state Titanium Sapphire laser, passive Kerr-lensing mode-
locking), and does not pretend to review all of the laser theory.

2.4.1 Steady-state laser cavity

For our purposes, we consider laser sources that are made of a linear Fabry-Pérot cavity with
a gain medium, as depicted by figure 2.7. Light passes through the gain medium twice per
round-trip, and the electric field is periodic on this length. To achieve optical gain, a population
inversion must occur in the gain medium. This corresponds to the situation where the number
of electrons in an excited state exceeds the number of electrons in a lower level. This is usually
achieved by optical pumping, where an external light source -e.g. a laser diode- is used to
promote the electrons in an excited state.

HR oC

H Gain medium n

Figure 2.7: Linear laser cavity. HR: High Reflectivity ; OC: Output Coupler.

A steady-state is achieved if the two following conditions are fulfilled:
« The gain condition states that the round-trip gain balances exactly the round-trip losses.

« The phase condition allows only certain longitudinal modes to resonate inside the cavity.
Their angular frequencies must satisfy

=2 ¢ 2.50

wm = 2m - (2.50)

with m € IN and L is the total path traveled by the light in the cavity (in the case of a linear

cavity, this distance is twice the cavity length). The spacing between each longitudinal

mode, or free spectral range, is given by wrsg = ¢/L. It also corresponds to the laser
repetition rate.

When the laser cavity is set such that the gain exceed losses only for a single longitudi-
nal mode, the regime is called single mode. This results in the well-known monochromatic
properties of lasers.

A basic laser operation is sketched schematically on figure 2.8 in the spectral domain. Laser
oscillation happens only for modes where the gain lies above the loss line. In this broadband
situation, multiple longitudinal modes satisfy the lasing conditions so that several output fre-
quencies appear simultaneously. This regime is therefore called multimode.

This picture is a bit naive since in practice, the situation is a bit more complicated. Indeed,
the gain condition requires that the gain exactly equals rather than exceeds the loss. This
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Figure 2.8: Sketch of the conditions for multimode lasing.

situation depends only on the properties of the laser medium and the pump level, and the level
at which gain equal losses is called threshold. At this level, only weak light is emitted by the
laser. To produce significant laser intensity, weak spontaneous emission needs to build up in
the gain medium, and the gain must therefore exceed the loss.

However, above threshold, the intracavity field will extract more power that was stored by
the pump in the gain medium and a saturation phenomenon occurs. As photons are amplified
in the laser cavity by the gain medium through stimulated emission, electrons in the excited
state are stimulated back to their low energy state. The gain is consequently reduced, and the
actual gain, known as saturated gain, depends on the properties of the laser medium, the pump
level and also the intracavity laser intensity. Thus, pump power above the threshold value is
converted into stimulated emission’ as laser intensity will build up just enough to maintain
the saturated gain at exactly the loss level. On figure 2.8, we assumed that the gain medium
is broadened homogenously such that the saturated gain has the same spectral shape as the
minimum gain required to achieve threshold.

This representation is however convenient, as to achieve short-pulse generation, a large
number of modes need to oscillate simultaneously. As it was pointed in section 2.1.1, each
of these longitudinal modes needs to have a fixed phase relationships in order to generate a
frequency comb. This is achieved through the process of mode-locking.

2.4.2 Mode-locked lasers

To obtain a mode-locked laser generating ultrashort pulses, pulses need to form within the
laser cavity using either active or passive elements. One also needs to take into account a
number of different processes that affect the pulse as it propagates inside the cavity.

"This picture is similar to saturation phenomenon of electronic amplifiers; full gain is only possible for input
signals below a certain voltage level, whereas higher input level will induce clipping of the output.
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2.4.2.1 General principles

The mechanism of mode-locking is enabled when the gain is higher for the pulsed regime than
for the continuous wave (CW) regime. This mechanism can either be an active element or be
passively triggered by saturable absorption. Historically, active mode-locking was the first one
to be demonstrated. Currently, passive mode-locking is widely used since it yields the shortest
pulses through Kerr-lens mode-locking [Morgner 99]. The process of mode-locking is a com-
plicated one: it involves a lot of different processes simultaneously, and describing its dynamics
requires an elaborate treatment. A thorough description can be found in [Weiner 11a]. In the
following, we briefly review the different key points that are required to achieve pulsed light
generation.

Gain and bandwidth. As for single mode regime, both gain and linear loss are needed
to generate short pulses, but their bandwidth are then important. According to the time-
bandwidth product (2.19), shorter pulses have broader bandwidth and the laser needs to be set
accordingly. Bandwidth limitation arises from a filtering effect, due to wavelength-dependent
loss elements or from the finite bandwidth of the gain medium. Therefore, one has to maximize
the bandwidth of the laser to achieve the shortest pulses generation.

Modulations. It is straightforward to see regularly spaced pulses of light as a CW wave
whose amplitude is modulated at the repetition rate frequency. When this modulation happens
inside the laser cavity, it introduces losses that are minimized when laser emission occurs in the
form of short pulses that are synced with the modulation frequency. At each pass of the cavity,
pulses get shortened up to a certain limit, and the pulsed regime becomes favorable. That is
why modulations play a key role in achieving and maintaining mode-locked operation®.

Active modulations. This refers to externally driven modulators that modulate either the
amplitude or the phase of the circulating pulse. The modulation frequency is usually chosen as
the cavity round-trip time, and it needs to be set very precisely. This mode-locking technique,
though quite simple, is not very robust since it is highly dependent on the stability of the cavity
length. Moreover, the response of the modulator becomes ineffective for very short pulses and
this limits the attainable pulse width.

Passive modulations. Conversely, this cavity loss modulation may be a function of the
pulse intensity . As a consequence, the loss changes dynamically in response to the pulse,
which itself is modulated in return. It is a nonlinear process that leads to a self-induced modu-
lation with a period automatically synced to the cavity round-trip time. When the modulation
happens in amplitude, we talk of self-amplitude modulation (SAM). These can be induced by
adding a saturable loss element in the cavity, or saturable absorber. The phase can also vary
dynamically with the time-dependent pulse intensity, leading to a self-phase modulation (SPM),
occurring also at the pulse round-trip time. This process usually has a very fast response, such

8Note that since a Fabry-Perot cavity couples amplitude and phase, the modulations needed to achieve mode-
locking can also be in phase.
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that only the instantaneous intensity matters in the nonlinear interaction. As a result, the
pulse-shortening action can remain effective even for very short pulses. This mode-locking
mechanism is therefore classified as passive, since the light itself initiates its own modulations
through nonlinearities.

Dispersion. Finally, as we have seen in section 2.2.2, dispersion (due especially to quadratic
and cubic phases) leads to serious consequences on the pulse shape and can therefore hinder
short-pulse generation. In the laser cavity, dispersion comes from the gain medium, from the
dielectric coating of the mirrors, or even simply from air. As the pulse gets broader after each
round-trip, the temporal overlap in the cavity becomes weaker and this limits the efficiency
of the lasing process. More importantly, this degrades the peak power and leads to weaker
nonlinear effects. To minimize intracavity dispersion, a popular scheme for this is to use a
shorter, more highly doped gain crystal. This minimizes the amount of dispersion acquired
through the medium, but it does not compensate for other elements. Best results are then
obtained by using a prism based compressor which material is carefully chosen, or by using
specially designed chirped mirrors. The latter offer a very high and broadband reflectivity with
the advantage of tailoring even better the phase they compensate and are usually prefered for
few-cycles pulse generation.

To summarize, when a laser cavity is built with a broadband gain and a sufficient bandwidth,
generation of short pulses can be achieved by modulating the intracavity field and a careful
management of dispersion. We will now interest ourselves in one particular type of passive
mode-locking, the solid-state Kerr mode-locking, as it might explain the correlations in the
dynamics of amplitude and phase of the lasers that we investigate (cf. chapter 7).

2.4.2.2 Kerr-lens mode-locking

Nowadays, the most popular mode-locking technique with solid-states laser is called Kerr-lens
mode-locking (KLM). KLM lasers based on titanium:sapphire (Ti:S) are particularly widespread.
It consists of using the nonlinear response of the gain medium in which the nonlinear index
leads to self-focusing in the laser cavity. This provides the modulation necessary to mode-lock
the system. Note that this effect is an interplay between spatial and temporal properties of the
field.
More precisely, the optical Kerr effect originates from the y® nonlinearity of the gain medium.

The index of refraction of the medium depends on the intensity of the laser pulse. It is written
as

n(,t)=ng+ng9I(r,t) (2.51)

where I(r,t) is the pulse intensity defined in (1.38). The pulse induces a change in the refractive
index’ of the material that is proportional to the instantaneous intensity. The response time of

° In most laser materials, ng > 0 so the index actually increases with pulse power.
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this nonlinear effect is not known exactly but is usually estimated to be 1 to 2 fs which can be
considered as instantaneous.

As aresult, after propagating in such a medium of length L, the field will acquire a nonlinear
phase shift, given by

AP(r, t) = %ngl(r, tL (2.52)

When approaching a pulsed regime, this effect induces both a fast SAM and a fast SPM, which
may therefore be used as a mode-locking scheme. This process is highly dependent on the
spatial profile of the lasing field. Once initiated, mode-locked operation is then self-sustaining.

Originally, the lasers that use this effect were described simply as “self-mode-locked” since
the mode-locking mechanism was not identified at first. Afterwards, it was determined that
a nonlinear lensing associated to the gain medium provides the fast amplitude modulation
required for mode-locking. As pointed out earlier, because the response of the medium is
almost instantaneous, it is by this process that most of today’s Ti:Sa lasers emit pulses of light
in the sub 10-fs range.

From (2.52), it is clear that the KLM method is highly dependent on the temporal profile
(i.e peak power) but also on the spatial profile of the lasing field. Indeed, when assuming
a Gaussian profile such as (1.22), the intensity (hence the nonlinear effects) induced in the
gain medium depends upon the radial coordinate. The change of index has therefore a radial
dependency (and so does the phase) which is equivalent to a self-induced lens for the lasing
mode. Under different conditions, this effect can reduce the loss or increase the gain, thus
acting as a fast saturable absorber and resulting in self-amplitude modulation. When the loss
is reduced, mode-locking becomes possible.

To reduce the loss using the spatial mode structure, a number of options are available. For ex-
ample, it has been found quite remarkably that when a Ti:Sa laser cavity is slightly misaligned
for a mixture of fundamental and higher order TEM modes to resonate, mode-locking could be
induced by an external perturbation, such as tapping one of the cavity mirrors. This can be ex-
plained by the fact that a higher order mode has a wider spread and gets clipped somewhere in
the cavity'’. Self-lensing then improves the mode quality or decreases the beam size which in
turn reduces the loss. There are also possibilities to accentuate and control the beam clipping
effects by adding a slit close to the end mirror. This approach is called hard-aperture KLM and
corresponds to one type of laser source that was used in this thesis (see 7.2.3). Finally, the gain
can be increased since self-focusing may affect the overlap of the lasing mode with the spatial
profile of the pump laser beam in the gain medium. The situation is in the end equivalent to
the latter, and is called soft-aperture KLM. Such a laser is the other source used in this work
(see 3.1.1).

19This is one of the reasons that explain the poor spatial profile at the output of a mode-locked laser.



2. FEMTOSECOND ULTRAFAST OPTICS 48

What should be retained from this section is that the process by which ultra-short pulses of
light are generated is a complicated one. It is a delicate interplay between non-linear effects
(Kerr effect, self-amplitude and self-phase modulation, self-focussing, influence of the pump
power...), spectral phase (negative group delay dispersion) and spatial characteristics of both
laser and pump field. The full description of these effects is well beyond the scope of this
thesis and we only need to remember that the dynamics of a laser field are obviously highly
dependent upon them.



3 Revealing the multimode structure

(About doing experiments in the late evening) “It’s not worth it; you think you have a
good idea, but you just end up doing stupid things.”

- Pu “Pupu” Jian
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Having introduced the modal description of the field generated by an ultrafast frequency
comb, we now present the experimental techniques to actually access this structure. This mul-
timode description may be used to retrieve information encoded in the field.

Accessing experimentally these frequency-dependent quadratures have two prerequisites:

49
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+ Being able to measure the amplitude and the phase of the field. In practice, as it was
stressed in equation (1.48), one may only measure the amplitude of the field. However,
the phase quadrature information are experimentally transferred to an amplitude mea-
surement. This is achieved by interferometric measurement called homodyne detection,
a very widespread scheme in optics, and particularly in quantum optics[Adesso 14]. In
this scheme, one field, called local oscillator, is used as a reference, while the other field,
called signal, carries the information to be measured. One can then access the phase
difference between the two fields.

+ Resolving the temporal or the spectral structure of the field. The first solution is to dis-
perse the spectrum on a diffraction grating and perform homodyne detection on a given
spectral slice. This spectrally-resolved homodyne detection, called multipixel homodyne
detection (MHD), is a very powerful and versatile tool to measure the multimode structure
of the field. We present the working principle of the method in section 3.3.2. Another
possibility is to physically change the spectral amplitude and phase of a field and perform
a standard homodyne detection. This has been originally achieved in the group by shap-
ing the spectrum of the local oscillator using a pulse shaper. In the homodyne detection,
this allows selection of which spectral part of the field will interfere. Since already done
in the past (see [Jian 14]), we only introduce the working principle of pulse-shaping in
section 3.1.3, and we add a few details in appendix B. Although measuring from a spec-
tral point of view seems easier, accessing it from the temporal side also yields interesting
results. We call this last method temporally-resolved homodyne detection, and introduce
it in section 3.3.3.

In this section, we focus on presenting the building blocks of the experiment that allow to
extract this structure.

3.1 General experimental scheme

In this section, we present the general layout of the experiment. Subparts of it are built differ-
ently depending on the experiment but it can be summarized as shown on figure 3.1.

The beam generated by the femtosecond oscillator is split into the two arms of a Mach-
Zehdner interferometer. 90% of the power is sent in the local oscillator (LO) arm, and the
remaining 10% are sent into the signal beam. On the LO path, a pulse-shaper is introduced to
address both the amplitude and the phase of the field.

On the signal path, we consider that, at some point, a spectrally-dependent perturbation
occurs. It can be purposely introduced by an amplitude or phase modulator in the form of a
modulation at a given frequency. This is what we opted for in parameter estimation, where
we voluntarily modulate a physical parameter in order to measure it through a multimode
description of the phenomenon. We develop this experiment in part II.
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Figure 3.1: General experimental scheme, BS: beam-splitter.

However, this modulation of the field does not need to be purposely introduced. Indeed,
any source of noise (being mechanical, acoustical, thermal or technical in nature) can be rep-
resented as a modulation of the field on a range of frequencies (or equivalently, integration
time). It is very natural to understand that at very high detection frequency (i.e. at a very short
time scale), there can be no source of noise other that the quantum nature of light. Conversely,
on a longer observation time (i.e. at low frequencies), influence from the surrounding environ-
ment becomes more noticeable. In part III, we use a similar scheme where one beam shows
much lower noise figures (such that it can be taken as a reference) to actually extract the noise
information of the other beam.

The two beams are then combined in a homodyne detection scheme and the resulting field
is consequently measured.

We shall now present the different subparts of the experiment.

3.1.1 Laser source

The laser source is a Titanium-Sapphire based femtosecond oscillator from the FEMTOLASERS
company. It delivers pulses around 22 fs FWHM at a central wavelength of 795 nm for a rep-
etition rate of 156 MHz. The average power is on the order of 1.1 W, therefore the energy
contained in a pulse is about 7 nJ and the peak power is around 0.2 MW. The distance between
subsequent pulses is then 1.92 m, i.e. 6 ns in the time domain. The spectrum is well approxi-
mated by a Gaussian of 42 nm width FWHM. The geometry of the laser cavity is depicted on
figure 3.2.

The gain medium is pumped by a Verdi V10 laser from COHERENT. An acousto-optic mod-
ulator (AOM) is used to attenuate the pump power to around 5 W and can also be utilized
to lock the CEO frequency of the comb [Helbing 02]. As the injection of the pump drifts on
hours-time-scale, a quadrant detector is used on a leakage to detect the pointing drift, and a
mirror mounted on piezo-electric actuators is used to lock the beam’s position. The stability
range of the cavity is controlled by changing the length of the short arm. The mode-locking
mechanism is a soft-aperture KLM (see section 2.4.2.2). Intra-cavity dispersion compensation
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Figure 3.2: Laser cavity. M1 and M5 are curved mirrors, the other mirrors in the short and
long arms are chirped. M3 is on a translation stage to fine-tune the stability range. OC: output
coupler, W: wedge to adjust the CEP, ECDC: extra-cavity dispersion compensation to compress
the pulse to the transform limit.

is achieved by chirped mirrors. At the output of the laser, the pulses are compressed to be
transform-limited using an extra set of chirped mirrors.

Because this laser cavity is built using very short mounts and small optics, it is a very sta-
ble oscillator with good noise figures. It can remain modelocked over multiple days of op-
eration as long as the environnement does not show abrupt variations. As it is usually the
case with solide-state laser cavities, the main source of large time scale perturbation are ther-
mal. A thorough analysis of the noise characteristics of this laser source may be found in
[Schmeissner 14a].

This is not the only femtosecond source that was used in this thesis. In part III, we actually
developed most of the experimental frame around another system that delivers longer pulses.
The working principle of the laser cavity is however very similar to the one presented here.

3.1.2 Interferometric photodetection

Photodetection is a straightforward way to measure the field’s intensity in optics. Since a
standard detector integrates the intensity over a time much larger than the optical period, the
information about the phase is then lost. To access the phase of the field, we make use of
interferometric measurements. The beating of the two field results in an interference pattern
which contains information on the phase difference between the two fields.

Consider the scheme depicted in figure 3.3. Two fields are mixed on a 50 — 50 beamsplitter
(BS). The first one, called signal field, is the field to be characterized. The second one, called
local oscillator, serves as a reference. This denomination comes from the homodyne detection
scheme that will be outlined in section 3.1.2, and we chose to keep this notation to describe the
principle of interferometric measurements.
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Figure 3.3: General homodyne detection scheme where two balanced photodiodes are used
to detect the signal. The difference of the two photocurrent is subsequently taken to yield the
homodyning signal.

The total field after the beamsplitter (that we consider a fixed longitudinal coordinate z, such
that we may drop the z dependency) reads

. E (@, )+ Ef) (1) 6
tot" %> \/E :

where the + sign depends on which output port of the beamsplitter is considered. Computing
the intensity according to (1.38) yields:

Ie,t) Iro(x,t
Tpos (x,8) = S(;’ ) LO;’C’ )+2nceoRe{E( (2, ES) (x, t)} (3.2)

A standard square-law photodetector integrates the intensity over the detector size S and on a
given integration time 7'. The efficiency of the photon-to-electron conversion can be modeled
by the responsivity % (in A/W) of the photodiode'. The retrieved photocurrent .# is then
written as

t+T
J(t):@f d2pf dt' I(x,t') = ZP(t) (3.3)
S t

where P(¢) is the detected power of the electric field.
The total photocurrent at one output of the beamsplitter is thus written as

t+T
jtot(t)_ (t)+@(t)+%— Re {[ d2 f dt a, (.’)C t)aLO(x t)} (34)

IFrom (3.3), the responsivity % is defined by % = %. By writing both the photocurrent and the energy as
containing respectively n electrons and N photons, the responsivity is defined by % = nhiwo. This introduces the
quantum efficiency n = & of the detector with 0 = n > 1, a parameter that is more commonly referred to in the
field of quantum optics.
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where we injected the complex field expression and simplified some constant factors. Here,
the envelopes a contain the phase of each field.

As we have seen in section 2.2.1, it seems more convenient to consider spectral phases rather
than temporal phases, since the relation between the two is not always trivial. However, the
concept of photodetection is more naturally put in the time domain since the signal is inte-
grated over a finite time. To switch to the spectral domain, we inject the Fourier transform of
a(x,t) into (3.4). The temporal integral then writes as

t+T dQ dQ’ ~ "N
ot [ A oy
ot [ v @amoe &9

Since the bounds of the temporal integrals are not infinity, we need to apply a convenient
approximation. We integrate over a time 7" a field whose spectral width is on the order of Aw.
In the scope of this thesis where we do not require to resolve the pulsed regime, the detection
time is on the order of the microsecond. For a laser source such as the one described in 3.1.1,
the time-bandwidth product (2.24) implies that 20 fs pulses have a 50 THz bandwidth. It means
that Aw x T' > 1 is valid over a very wide range of detection times 7'. Under this condition,
we can consider the bounds of this integral as being infinite, allowing to consider the temporal
integral as 6 (2 — Q')*.
Thus the photocurrent (3.4) is equivalently written as

ﬂtot:ﬁ+@i%@ Re{f dzpf an:(x,Q)aLo(x,Q)} (3.6)
2 2 ST S R
This expression still indicates that the measurement is taken over a finite detection time 7.
The two first terms in this equation contain only information about the energy in each field.
To isolate the third term, we take the difference of the photocurrents at both outputs of the
beamsplitter:

h
7 =2 Re f 2p f dQa’(x,Varolx,Q) (37)
S R

The signal that is measured is then proportional to the cross-correlation between the two fields,
which is necessarily phase-dependent. It is referred to as the homodyne signal and will be at
the center of most experiments done in this thesis. A few relevant comments on this signal:

« This assumes that the beamsplitter is balanced, i.e. that the detected photocurrents asso-
ciated to each field are equal on both detectors. It also involves that both detectors have
the same responsivity Z.

2This approximation also allows to link the normalization condition (1.31) for spectral and temporal modes:
Jg dQu*@u(@) = [T dt'u* (ut) =T
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« It is integrated over the full optical spectrum.

« Whereas the detection of a single beam would only yield the optical power, this inter-
ferometric scheme is sensitive to the phase of the field.

To further simplify the expression of the homodyne signal, let us write the signal field en-
velope as as(x,Q) = asws(x,Q) where the amplitude a; is complex. We also consider the
spatio-temporal mode is not coupled in space and time: w(x,t) = g(x)u(2). Concerning the
local oscillator field, in analogy to the quantum treatment, we write its complex amplitude
as aro = VN0 e?0. This notation allows to set the phase reference in this interferometric
measurement. Finally, we choose to normalize every photocurrents by Zhwo, and we keep the
same notation .#_ for the normalized photocurrent.

Hence, the homodyne signal is written as

- =2v/Nzo Re{a; T, ei¢0} (3.8)

where we introduced the homodyne overlap integral I'.. The overlap integral, also called co-
herence of the field, is factorized as follows:

1 1
T = (§ f dngs(m*gw(x)) x (T f d9u2‘<9>uw<9>) =7Yp X 70 (3.9)
S R

The spatial overlap integral y, denotes the spatial mode-matching between the two beams.
Ideally, the two beams need to have the same transverse profile on the beamsplitter. In that
case, this factor is equal to unity.

The yq integral contains a fair amount of information. It is quite similar to the spatial inte-
gral since it defines the spectral overlap between the two fields. To maximize it, one need to
match both the spectral phases and the envelope. In the temporal domain, in analogy to the
spatial case, this corresponds to the situation where both the envelopes and carriers of the two
pulses overlap. This may be achieved through a variety of means, but the most efficient way
to ensure a perfect temporal overlap is pulse shaping. We will develop this method in section
3.1.3.

Consider that we perfectly matched the two fields both spatially and spectrally. The coher-
ence of the field is then unity. Hence, this interferometric measurement retrieves the signal

F_=24/Npo Re{a: eid’o} (3.10)

Having set the local oscillator as the field of reference’, this allows to extract information on
the amplitude and the phase of the signal field. Note that this signal is also amplified by the

3The phase reference ¢ can be defined so that ae?0 is real.
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number of photons in the LO field. When this detection is operated in a configuration where
the LO beam is stronger that the signal, this scheme is called a homodyne detection, that we
expand in more details in section 3.3.

In this work, we look at fluctuations of the global mode u(2) which in the general case
become accessible through I'.. In section 3.2.1, we give the example of modulating the signal
field in either amplitude and phase, and apply this experimental scheme to retrieve information
on the modulation.

In the following section, we present how the spectral overlap between the two fields can be
experimentally optimized.

3.1.3 Pulse shaping

For the majority of applications in ultrafast optics, the necessity to carefully control the pulse
shape is of great importance. The development of pulse shaping techniques has therefore been
closely related to the advancements in ultrafast technologies. These techniques are comple-
mentary to ultrashort pulse generation and characterization methods. Their applications in-
clude amplified pulse compression, dispersion compensation for fiber optics communications,
coherent control, spectroscopy and nonlinear microscopy, to name a few.

In this section, we present briefly the pulse shaping techniques that were used during this
thesis and their purpose. More information on pulse shaping techniques can be found in
[Weiner 95, Weiner 11b].

3.1.3.1 Programmable mask pulse shaper

For our applications, we chose to build a pulse shaper by using spatial light modulation (SLM)
in a 4 — f configuration, as depicted in figure 3.4. By diffracting the spectrum using diffraction
gratings, we are able to address both the amplitude and the phase of each part of the spectrum.
The resolution is limited by the one of the masks of the SLM. A more detailed description of
the pulse shaper can be found in [Jian 14], and explanations on the alignment procedure in
[Monmayrant 05] (although the chosen geometry differs). This pulse shaper was graciously
lent to us by Béatrice Chatel.

The arrays, produced by the JENOPTIK company, are composed of 640 pixels of nematic liquid
crystals, comprised between two glass substrates. Transparent electrodes are deposited on the
substrate as to control the voltage on each pixel. The total size of the mask is 64 x 10 mm. When
applying a voltage between two electrodes, one can change the refractive index in the liquid
crystal, and the array then acts as a phase mask. By combining two arrays with orthogonal
polarizations and a polarizer at the output, it is possible to address both the amplitude and the
phase of each “pixel” of the field.

This shaper has however some drawbacks. Being more than 10 years old, the delay between
sending a command and the actual response of the crystal is on the order of 1 second, which is
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Figure 3.4: Schematic of a pulse-shaper in a 4-f configuration. [Figure by Jonathan Roslund]

too long for complicated coherent control scheme or optimization procedure using evolution-
ary algorithm [Roslund 10]. It is also about 50 cm high, making it cumbersome to work with,
whereas most recent pulse shapers can be as small as 10 cm. However, the use of a large SLM
is vital when shaping short pulses; the spectrum being wide, in order to obtain a good reso-
lution, one needs very diffractive gratings, therefore leading to short distances in the optical
apparatus. Short distances are hard to work with when building a pulse shaper, since it will
inevitably lead to a number of problems, such as achromatism and spatial chirp. Therefore, we
settled for a large mask that allowed for a more comfortable geometry in its design.

3.1.3.2 Pulse-shaping application to the experiment

While pulse shaping can be a very powerful tool to optimize light-matter interaction (for ex-
ample, optimizing the temporal phase to maximize the efficiency in a non-linear process), our
applications do not require a transform-limited pulse. Indeed, since we are dealing with linear
interferometry, any common phase in each arm of the interferometer cancels out, and we need
only to concern ourselves about the relative phase difference.

From equation (3.8) and (3.9), we set a perfect spatial overlap between the two fields (i.e. y, =
1). We also decompose the envelopes as amplitude and phase a(Q) = |a(Q)| e!*Y). The phases
defined here are spectrally dependent. The homodyne signal at the output of an interferometer
is then proportional to

1 4 .
I_ Re{ T f dQ las(Q) aro(Q)] e29 D gido } (3.11)
R

where we wrote the relative spectral phase between the two fields as 6¢p(Q) = ¢r0(2) — ps(Q).
As we pointed out in the previous section, the retrieved signal (3.8) is maximized when the
overlap between the fields is optimal.
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For our applications, we need to make absolutely sure that the relative spectral phase be-
tween the two arms of the interferometer is as flat as possible (i.e. shows no curvature, ac-
cording to 2.2.1). This can be summarized by setting d¢p = 0V 2, and the most efficient way
to achieve this condition is by pulse-shaping. Note that a mismatch in linear phase is easy
to correct using a standard delay line. However, achieving a perfectly flat relative phase is
problematic using standard compensation scheme such as prism compressors. Pulse shaping,
though hard to implement, has the advantage of being versatile since any change in the dis-
persive elements can easily be accounted for.

As a complement to relative phase compensation, the pulse shaper can be also used to opti-
mize the spectral overlap in amplitude between the two fields, although this has finally less of
an impact on the resulting signal than phase mismatch. This spectral filter function has also
been used to calibrate the multipixel detection (see section 5.3.1). Information and results on
using the shaper to actually form the detection mode can be found in appendix B.

3.1.3.3 Spectral phase compensation

We quickly outline in this part the experimental procedure to match the phase between the
two arms of the interferometer, since it has been routinely done when changing elements in
the interferometer.

We start by setting the maximum voltage on the electrodes of the SLM such that its transmis-
sion is maximal (the pulse shaper is then equivalent to a zero-dispersion 4-f line). In the absence
of any dispersive elements on the interferometer other than the strict necessary (achromatic
mode-matching lenses for example), the phase between the two arms is relatively flat. When
adding a dispersive element, two strategies can therefore be applied:

+ Knowing the dispersive medium, it is possible to simulate how much phase it adds and
write it on the shaper as a Taylor polynomial;

« Measure the relative phase by spectral interferometry, and apply it to the shaper as to
minimize it.

To optimize the phase difference, a good metric is to look at the contrast of the optical fringes.

This experimental quantity can be steadily measured by looking at the signal from a single

diode at the output of the interferometer. To generate fringes, one needs to sweep the delay
between the two fields. To do so, we set (g9 = W, 0qT Which yields

WA 1 . _
Froi(T) = ?s + % +2Re{ f dQ las(Q)aro(Q)| e 0D gimoat (3.12)
R

The interference term then oscillates at the modulation frequency wpoq*. The contrast € of

4This oscillation is easy to show in the monochromatic case. In our case, it can be deduced from (3.12) con-
sidering that a spectral phase difference lies obviously in the phase quadrature. Therefore, the interference term
will be proportional to I sin ¢o.
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these fringes is given by the familiar formula

o T 519)

- gmax min
jtot + jtot

The contrast can be easily linked to the coherence (3.9) using equation (3.12):

2/ S %
¢=2Y"5"LOp (3.14)

I+ Ir0

Therefore, measuring the contrast of the balanced detection returns information on the spectral
overlap in both amplitude and phase. For a constant phase A¢, the only remaining term that
can influence the coherence is the spatial overlap between the two fields.

We stress however that this metric is not very sensitive to small shifts in the phase, and
additional corrections are usually best achieved using spectral interferometry.

Phase (rad)

760 780 800 820 840
Wavelength (nm)

Figure 3.5: Experimental wrapped relative phase between the signal and LO fields of the Mach-
Zehdner interferometer over the full width of the spectrum.

As an example, on figure (3.5) we show the spectral phase that is written on the shaper for
the basic interferometer with the minimum dispersive elements in each arm. This correction
ensures a contrast of more that 90%, limited only by the spatial mismatch of the two fields.
We see that the phase is a balanced mix of quadratic and cubic components, probably because
of the very thick achromatic lenses that are used for spatial mode-matching.

Note also that on this figure, the phase is wrapped every 2n. That is a consequence of
the regime in which the shaper is operated, where the voltage applied in the electrodes is
mapped in such a way that the phase is defined modulo 27. In practice, this limits the maximum
phase variation that can be written on it’: the neighbouring pixels of such discontinuities

>The ultimate limit, however, is defined by the Nyquist limit. It can be summarized be stating that no phase
difference greater that 7 may be imprinted on adjacent pixels. It is very similar to a sampling problem where
undersampling will result in an ambiguity in the shaping process[Monmayrant 05].
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need to have their nematic crystal oriented in opposite directions. As a consequence, the field
is diffracted and this causes a drop in the amplitude that appears as holes in the spectrum.
This effect inevitably reduce the coherence between the two fields. Therefore, it has been
preferable to compensate the quadratic dispersion as best as possible using linear optics (such
as transparent glass), and only doing small corrections with the pulse shaper.

3.1.3.4 Spectral interferometry

As hinted at the end of section 2.3.3, spectral interferometry is a powerful and easy-to-implement
technique when we only care about the relative spectral phase between two fields.

Detecting one port of the beamsplitter with a spectrometer yields:
1;(Q) N I10(Q) hwo

+R Re{ fs dsz(s‘)(x,Q)E(L%(x,Q)} (3.15)

I (Q) = 2 2 5

Doing a treatment similar to the photodetection, it is straightforward to obtain the detected
signal:

I,(Q) N It.0(Q2)
2 2

We see that the overall spectrum shows an oscillation that is dependent on the relative spectral
phase between the two fields. However, §¢((2) is usually quite small and the spectrum mod-
ulation is experimentally masked by stronger fluctuations (such as air turbulences). A direct
measurement of 6¢(Q2) is thus impossible to achieve using this signal.

A way around this limitation is to set a global delay between the two fields, i.e. g = w7. In
that case, the spectrum shows oscillations of a period 27/t that are modulated by the spectral
phase, which may then be extracted. This technique is called spectral interferometry.

Ii0:(2) =

+las(Q)aro(Q)l cos [¢o + H(Q)] (3.16)
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Figure 3.6: Fourier-transform spectral interferometry algorithm from experimental data. The
delay between the two fields is on the order of 500 fs (i.e. 150 pum).

To show how the spectral phase is extracted, let us rewrite the interference part of equation
(3.16) as

1 . . . .
3 las(Q)aro(Q)l (el(m“’(’)”m‘/’(g) + e"(Q+“’°)T_l5¢(Q)) (3.17)
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Taking the Fourier transform of (3.17) transfers the signal to the temporal domain which ex-
hibits sidebands at +7. We label them f (¢ + 7):

1 . .
fesn)=2 f dQ |as(Q)aro(Q)] 0P i) (3.18)

By selecting one sideband and transferring it back to ¢ = 0, another Fourier transform allows
to retrieve the integrand |as(Q) aro(Q)| e, The modulus of that signal yields the product
of the spectral envelopes whereas its argument gives directly the spectral phase.

This algorithm is called Fourier-transform spectral interferometry [Lepetit 95]. It is depicted
on figure 3.6 for experimental data that eventually lead to the phase compensation shown on
figure 3.5.

Using these methods, we are then able to ensure that the spectral overlap between the two
mean fields is close to the optimum.

3.2 Signal measurement

In this section, we present how the information may be encoded either on the phase or on the
amplitude quadrature of the field. We then show how this information may be retrieved using
an interferometric measurement scheme.

We start by considering that the two fields are perfectly matched both temporally and spa-
tially, such that the overlap integral (3.9) is equal to one.

3.2.1 Modulations of the field

As an analogy to radio frequencies, information may be hard-coded in the electric field by
modulating it, either in amplitude or in phase. The description of the resulting field is necessary
to properly retrieve this information.

The temporal representation of the signal field modulated in amplitude is written as

EQ) (=& (1 + m(t)) g u(t) e iwot (3.19)

where a; is the complex envelope. Furthermore, a phase modulation reads
EG) ()= S asu(t)e”@ot=P®) (3.20)

3.2.1.1 Interferometric measurement of the modulations

For a small modulation, we may expand the phase modulated field as

ES) (1)=& (1 + ip(t)) s u(t)e iwot (3.21)
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Therefore, we can consider that the quantity that is being modulated is the complex amplitude
of the field. It then becomes time-dependent and may be rewritten as

as(t)=as+0ag(t) (3.22)

where da(2) is equal to m(¢)- as for an amplitude modulation and ip(¢) - a5 for a phase mod-
ulation.

The signal at the output of the homodyne detection is obtained by replacing the complex
envelope ag in (3.8) by as(#). It is possible to do so for a modulation whose period is much
slower than the response time of the detector. It is a reasonable assumption when modulating
at MHz frequencies. The time-dependent homodyne signal then reads

7.(t)=2/Nro Re{a} (e} =20/ Npo Re {aje + 6a; (e} (3.23)

where we remind that we set the overlap integral I', = 1.

If we define the phase reference ¢ such that a}e'?" is real, then for an amplitude modula-
tion, the same phase ¢ allows to retrieve the signal. On the contrary, for a phase modulation,
the signal is maximal for a /2 phase difference between the two fields.

3.2.1.2 The sidebands picture

The representation of the modulated field in the Fourier domain introduces the concept of
sidebands of the optical carrier.

For that, we assume a sinusoidal profile for the modulations: m(¢) = m cosQgrt, and a
similar expression for p(¢)°.

Using this expression, the phase modulated field may be expanded as

EG) (1) = Eoalt)e 0t P D (3.24)
For a small amplitude of modulation p <« 1, the phase can be expanded, leading to (3.21).
In the Fourier domain, the phase modulated spectrum reads

E'E,;Lzzl(Q) =& (a(Q) + ilz—)a(Q - Qpr)- i%a(Q + QRF)) (3.25)

In the case of a frequency comb, a phase modulation will result in sidebands appearing on
both sides of each tooth with an imaginary amplitude. The situation is also very similar for an
amplitude modulation where sidebands appear, but with a real amplitude :

EE:])W(Q):(% (G(Q)+%G(Q—QRF)+%G(Q+QRF)) (3.26)

This comb picture is sketched in figure 3.7.
The perturbation to the field therefore occurs at a given analysis frequency Qrr that can be
differentiated from signals at baseband frequency.

Note that this formulation of a modulation considers only one electrical quadrature. In the general case,
either a phase or a sine term should be added.
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Figure 3.7: Phase-space representation of a frequency comb modulated in both amplitude
(green lines) and phase (blue lines). The phase modulation switches sign on either side of a
tooth.

3.2.2 Data acquisition

In equation (3.23), we showed that we can retrieve the information on the modulation through
J_(t). We now give more details on the tools at our disposal to characterize it. This leads
naturally to some statistical consideration, the introduction of signal-to-noise (SNR) ratio and
the concept of demodulation.

3.2.2.1 Demodulation of the signal

We consider that we retrieve the signal .#_(¢) from (3.23) and we convert it to a voltage V (¢) =
Vo + 06V (t) which encompasses the cases of both amplitude and phase optical quadrature mea-
surements (Vo = 0 in that case). This signal contains a DC term V and some time-dependent
variation.

We begin by considering a modulation such that 6V (¢) = mcos(Qrrt). We are interested
in retrieving the amplitude m of the modulation. A very common way in signal analysis is
demodulation. It consists in multiplying the signal by another at the same frequency Qgrp
delivered by a reference (for example a function generator). Since there is no reason for these
two signals to be synced, we need to set the phase ¢ of the reference. The mixing of the two
signals can be done using an analogical mixer, but the process can also be digital.

The signal X(¢) at the output of the mixer reads

X(t) =Vycos(Qrrpt+ @) + meos(Qrrt)cos (Qrpt + @) (3.27)

where we considered that the amplitude of the reference signal is 1”. Using product-to-sum

"In practice, an analogic mixer requires a specific power in the reference to be driven ,i.e. in order to extract
the modulated signal above the noise.
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trigonometric identities, the signal is rewritten as
m
X (t)=Vycos(Qrrpt +¢) + > (cosq) +cos (2Qrpt + (p)) (3.28)

The resulting signal still shows oscillation, but we transferred the DC component to the quan-
tity we want to measure. To isolate it, we apply a low-pass filter with a transfer function A(f)
of low cutoff frequency.

After low-pass filtering, the retrieved signal in the frequency domain is simply the product
of the signal by the filter:

Xl =h(f)-X () (3.29)

Since the product of Fourier transforms is equal to the Fourier transform of their convolution
product, the temporal signal at the output is directly the convolution of the signal by the filter:

Xy = (h >«<X)(t)sf]R dt'n(t' - X (t') (3.30)

The filter function A(f) has a low cutoff frequency, therefore its Fourier transform A(t) is a
very broad function®. As such, the integration on oscillating terms will be zero, and the only
remaining term is

Xy, = % fR d¢'h(t — t)cos @ (3.31)

By setting the demodulation phase ¢, we select which electric quadrature is being measured.
In that case, we measure m for ¢ =0.

This signal is finally discretized by sampling at a given sampling rate f; where each point X;
is the mean value X; = f; fl/fs X (@)l dt. This allows to characterize the signal by computing
its mean and variance. We see that one would here always retrieve the exact value of m, since
this model did not include any noise in the measurement (the variance of the detected signal
is zero).

In order to take the noise into account, we simply add a stochastic variable n(t) to 6V (¢),
leading to an extra term 6 X (¢) at the output of the mixer. It reads

SX (@) :f dt'h(t' = t)n(t') cos (Qrrt' + @) (3.32)
R

which will retrieve the spectral component of n(¢) at the frequency Qrr. The amount of noise
that is retrieved is dependent upon the width of the filter. For low cutoff frequencies (i.e. large

1

£\
1+(£)
Its temporal response is an exponential: A(¢) = /5 fee~fe!l which is therefore a function with a high temporal

8For a first-order low-pass filter with a cutoff frequency f., its transfer function is a lorentzian A(f) =

bandwidth for a small value of f.



3. REVEALING THE MULTIMODE STRUCTURE 65

temporal width), the fluctuations will average and the noise floor will then be lower. This
bandwidth is called resolution bandwidth.

This picture including noise is more realistic, since the recovered distribution of X; presents
a certain variance agf. When no light hits the detector, at high analysis frequencies, the only
present noise comes from the detection apparatus and is commonly referred to as dark noise
n dark(t). When light hits the detector, at high analysis frequency, another noise source arises
from the fluctuations of quantum vacuum, i.e the shot noise ngj,(t). The baseline for noise
may then be defined by measuring the variance of theses two signals. If the detection scheme
allows to resolve the shot noise, taking the ratio of the variances of shot noise versus dark
noise defines the clearance of the whole detection scheme.

In this work, we will rely heavily on this measurement scheme since it is quite easy to
implement. Usually, to characterize a signal at multiple analysis frequencies, one would use
a spectrum analyzer which functioning principle is very similar to what we developed here.
This apparatus has the advantage of presenting a very low noise floor. It does however measure
only a single signal at the same time, and in our work, we needed to acquire at most 16 signals
simultaneously on a wide range of analysis frequencies.

3.2.2.2 The power spectral density

Some measurements were still done using a spectrum analyzer, mostly because of its very good
noise figure. Therefore, we present here the working principle of a spectrum analyzer, which
requires to consider the previous treatment in the frequency domain. Whereas the previous
demodulation scheme retrieves a voltage, a spectrum analyzer retrieves the power.

The power spectral density (PSD) of .#_(¢) is formally defined as:

T/2 2
Ss.(f)= h—I»I;oT Um_y @)= (3.53)

For a stationary process, the Wiener-Khinchin theorem allows to rewrite the power spectral
density as the Fourier transform of the autocorrelation function of .#_:

Sy_(f)—ff —dt I_(t).I_(t' —t) 2"t (3.34)
The variance of .#_(¢) may be obtained from the PSD as:

0% = fR df S (f) (3.35)

S.# (f) is defined for both positive and negative values of f, and since .#_ is real, its PSD
contains redundant information. This description is called double-sided, in opposition to the
single-sided description which considers only positive frequencies. Thus, the single-sided PSD
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is twice as large as the double-sided in order to conserve the total power contained in the
sidebands.

This picture is similar to the one developed previously in the temporal domain except that it
outputs a power distribution. If one requires the full distribution of the signal over a range of
different RF frequencies, one would need to sweep the frequency of the local oscillator during
the mixing process. This is precisely what a swept-tuned spectrum analyzer does: it aims to
compute (3.35). In the same way, it needs to apply a filter function A(f) such that this variance
remains finite (very high frequency fluctuations such as white noise are usually present in such
measurements). The measured variance is then equal to

- fR af S5 (F AP (3.36)

As previously, the shape and bandwidth of the filter defines for how long the acquisition win-
dow is opened and how high the noise floor is.

3.3 Mode-dependent detection

Having introduced the concept and outcome of an interferometric measurement scheme, we
finally come to show that this detection is mode-dependent. Not only does it allows to re-
trieve information encoded on a specific quadrature of the field, it also enables to differentiate
between different modes. To show this, we use a multimode quantum description of 3.1.2.

3.3.1 Quantum derivation

Similar to the quantization that was done in section 1.4, we consider the quantum counterpart
of equation (3.7) where we assign a bosonic operator G(Q) = }_; d;u;(Q) to the spectral envelope
a(Q). Considering again a perfect spatial overlap, the difference of photocurrent operator is
given by

1
- f dQaf(Q)d, o +he. (3.37)

where h.c. stands for hermitian conjugate.
Using the modal decomposition of the bosonic operator (1.59), this equation is written as

= Z s JLOfd‘Qu;'k,s(‘Q)uj,LO(Q)-i_h'C‘ (3.38)

Moreover, the normalization condition (1.31) allows to write the overlap integral in (3.38) as
0;,j. The quantum homodyne signal thus reduces to

_ g
__Z 1,8 LLO h.c. (3'39)
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We need to chose a proper basis to compute the noise in the measurement. We define the
mean-field basis from the local oscillator, where only the first mode is non-vacuum:

G =apouol@+Y8d, ;o uiQ) (3.40)
i

where a; , =1/NLo e'?0 is the complex amplitude of the mean field and we expanded the
annihilation operator as (1.65).
In the mean-field basis, the homodyne operator thus reads

A

_ K
S_=a;,dq,+ Zai’s 6ai,LO +h.c. (3.41)
l

In the case where the LO beam is stronger than the signal (in other words, if Ny is large
enough), we may neglect the second term in this development. This approximation is at the
center of homodyne detection. It implicates that the fluctuations of all the modes of the LO do
not come into play in this measurement.

In term of quadratures operators (1.71), we can rewrite the homodyne operator as

A

= 51 * 4 = ~PLo
F-=ar5dg+ 06y =VNLO G (3.42)

Therefore, computing the homodyne signal from the expectation value of (3.42) results in the
expectation value of the signal quadrature operator in the quadrature defined by the local oscil-
lator. This development also shows the mode selectivity of this scheme. Indeed, the detection
only retrieves the mode of the signal field that is defined by the mean field mode of the local
oscillator. Thus, we call this scheme a projective measurement.

Another relevant consideration is the quantum noise in this measurement. Considering the

fluctuations of the homodyne signal 8.9_ = \/N10 6 (j(gLsO, we can compute its variance:

((6.9)") =Nwo <(64‘£§0)2> (3.43)

Thus, the noise in the homodyne measurement is written as

AS =+\/Nioo (3.44)

where o is the noise in the mode of the signal field. When the noise originates only from the
fluctuations of quantum vacuum, then o = 1°.

This quantum derivation is very useful to show the mode selectivity of the homodyne de-
tection scheme. Although not straightforward, it can be linked to the classical treatment that
was done in this chapter. Indeed, we adopted a purely monomode approach in the form of

°The quantum treatment is needed to properly identify the noise in this measurement. However, a similar
result can be obtained from a monomode classical derivation.
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a single spectral mode. From this point of view, the homodyne detection measures the fluc-
tuations (either in amplitude or in phase) of the global mode, that is accessible through the
overlap integral I'.. In the quantum description, the overlap integral is always equal to unity
by the construction of the detection basis. The signal that is measured is actually dependent
on the expectation value of the bosonic operator in each mode of the signal field. Since this
basis is constructed from the spectrum of the global mode, it is therefore entirely similar to the
classical description.

Finally, another important fact to be retained from this section is that the local oscillator
field needs to be stronger than the signal field in a homodyne detection scheme. It is vital to
ensure that the noise from the LO field does not come into play.

3.3.2 Spectrally-resolved homodyne detection

In analogy to (3.38), for alocal oscillator in a given mode wy,o(x,t) and a multimode description
of the signal field, the classical homodyne signal can be written as

9_=2y/Nzo Re {Z o} aro (w] @, 0,wro, t)>} (3.45)
i,n

where the inner product is defined as (1.31) and the {w; ,} modes form an orthonormal basis.
Thus, to measure the amplitude of a given mode of the signal field, one has to set the LO in
that same mode.

We consider the temporal part of this scalar product and are interested in how the local
oscillator mode can be constructed. As it was hinted earlier, a first strategy is pulse-shaping to
construct the projection mode and to perform the measurement. This means however that a
new configuration needs to be established for each different mode. We present here a way to
perform this projection after the measurement, which then allows to extract any mode from a
single measurement.

The starting point is to notices that, in an interferometric measurement, once the beams
are combined, the nature of the signal remains unchanged for linear operation. Therefore, if
one could resolve each spectral component of the combined field, the result would be strictly
equivalent to combine the same spectral component of each field on a different beamsplitter
and then separately measure the different colors.

Thus, a spectrally-resolved homodyne detection is achieved by spatially dispersing the spec-
tral component of the light (using either a grating or a prism'), focussing each of these colors
on a linear array of detectors, and performing the detection. The general setup is sketched on
figure 3.8.

Since this detection is done using a finite number of detectors, or pixels, we call this scheme
multipixel homodyne detection (MHD).

1A prism cut at Brewster angle and properly placed in the beam will be less lossy than a grating, but less
dispersive.
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Figure 3.8: Spectrally-resolved homodyne detection.

3.3.2.1 Introduction

This detection was first introduced in the spatial domain for quantum state tomography [Beck 00].
Quantum state tomography is a technique based on homodyne detection to measure the quan-
tum state of light and reconstruct the Wigner function of the state. As we will see in the next
section, homodyne detection is sensitive to the mode mismatch between the two fields (repre-
sented by the overlap integral), and any mismatch will lead to a loss of efficiency and degrade
the quality of the reconstruction. Optimization of the mode-matching (in that case, spatial, but
in our case, it is spectral / temporal) can be achieved by shaping the beam, but it may not be
an easy or robust task.

The solution proposed in [Beck 00] relies on using an array of detectors in the homodyne
detection instead of single diodes, such that the mode-mismatch may actually be corrected post
facto. For a more complete description of spatial multipixel detection, see [Morizur 11]. In the
following, we give a description of spectral multipixel detection, which we will simply refer to
as MHD.

3.3.2.2 Multipixel basis

We consider an array of N pixels, where N is an even integer. We assume it is centered on the
carrier frequency wg and it is subdivided so that each pixel corresponds to a spectral slice of
width dw. We index each pixel by n € Z. This defines subset of the optical spectrum whose
center frequencies are given by w, = wo + ndw.

This defines a new set of modes, called pixel-modes, that we label u,(w). They can be defined
from the whole spectrum:

N
u(w) = Z Unp(w) (3.46)



3. REVEALING THE MULTIMODE STRUCTURE 70

5wI}/é

wo T N pixels

Jj

Figure 3.9: Multipixel array.

where a pixel-mode is obtained by “pixelization” of the envelope:

Cru(w) fw, <w<wps1

un(w) = { 0 otherwise (347)

where ¢, ensures that each pixel-mode is normalized.
Any basis may therefore be represented in the multipixel basis using the same method.

3.3.2.3 Multipixel homodyne signal

To reconstructing the homodyne signal in the multipixel case, we first write (3.8) for a single
pixel. It reads

I-n=2VNro Rel a;, f dwu; ,(@)uro(w)e o (3.48)
Sw

where we set once again a perfect spatial overlap (which doesn’t depend on the pixel number in
the absence of spatial chirp'!). In theory, one would have to account for the dependency of the
responsivity & on the pixel number, but it can be taken care of by an experimental calibration
of the detector.

Usually, the two fields are in the same spectral mode (experimentally, that may not exactly be
the case, but this mismatch can be compensated, as we will discover in section 5.4.2). Therefore,
to introduce an arbitrary mode in the LO field, one has to reconstruct the homodyne signal by
applying an arbitrary gain to the single-pixel signal :

N
I = Z &nI-n
n=1

=2y/Nro Re{ a} f dous(w)upyp(w)e®@ xy, (3.49)
ow

1Spatial chirp can be a very serious problem when dealing with ultrashort pulses. It corresponds to the situa-
tion where different wavelengths are mapped to different part of the transverse beam, as an analogy to temporal
chirp (2.2.2.3). It can be very easily introduced when working with diffracting elements such as pulse compressors.
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where we wrote the effective mode of the LO field as

upmp(®) =) gnunrolw) (3.50)

Again, it is reasonable to consider that the LO field is in the mean field mode, such that any
projection mode can be constructed knowing the mean field mode. It is clear that modes that
show a structure varying faster than the resolution of the array cannot be reconstructed.

In our case, we do not wish to reconstruct very complicated modes, such that meaningful
information can be obtained even with only 4 pixels. Indeed, the strongest condition for recon-
structing a basis is the orthogonality between its modes. One therefore needs as many pixels
as there are peaks and valleys in the modes to construct them unambiguously.

3.3.3 Temporally-resolved homodyne detection

Finally, a very useful measurement scheme that was used during this PhD is a temporally-
resolved homodyne detection. The general scheme is based on cross-correlations measure-
ments, which derivation is similar to the one done for spectral interferometry in section 3.1.3.4.
For our applications, it provides an incredibly convenient way to measure the homodyne signal
independently of the optical quadrature.

3.3.3.1 Electric field cross-correlations

When scanning the delay between the two fields, the homodyne signal reads
F_(T) f dQal(Qaro(Q)e’ ™ +c.c. (3.51)
R

where both envelopes are complex and contain their respective phases. Injecting the Fourier
transforms of each envelopes yields the temporal representation:

ﬂ_(r)af dta’(t)aro(t—1)e 7 +c.c. (3.52)
T

For pulse characterization, if one field is known, then it is possible to extract both the amplitude
and the phase of the other. For example, by considering that the LO pulse is a delta function,
then the result of the measurement is proportional to Re {a;(r)e "*“0"} (in the spectral domain,
this means the spectrum of LO is much broader, and the signal spectrum is obtained by decon-
volution). Therefore, the envelope of the crosscorrelation signal gives access to the amplitude
of the field, while the argument gives access to its temporal phase. However, in the general
case, nothing conclusive may be extracted about the pulse shape without making assumptions.
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3.3.3.2 Application to homodyne detection

Nonetheless, we do not concern ourselves with the actual pulse shape, but we are rather inter-
ested in the relative phase between the two fields. Recording the homodyne signal as a function
of the delay between the two fields has the great advantage of retrieving all the information at
once.

We want to compute the homodyne signal as function of the delay 7 between the two fields.
This is done by setting ¢o = w7 = (2 + wp) 7 in (3.8). The signal then reads

Z_(1)=2v/Nro Re{a;‘ f dQul(Q)u LO(Q)eiQTeW} (3.53)
If we consider also a perfect spectral overlap, this simply reduces to
F_(1)=2v/Nro Re{a:ucc(r)ei“’”} (3.54)

where u..(7) is the cross-correlation of the envelopes'Z.

This expression shows that all the information on the complex envelope as of the signal
field may be retrieved in the envelope and the phase of the retrieved signal. More importantly,
this method allows to measure every optical quadratures “simultaneously”. To show this, we
consider that the signal field is modulated either in amplitude or in phase, similar to (3.23).
This signal is then written as

7(1)=2vNro (Re{a;ucc(r)eiw“} + Re{aa;(r)ucc(r)ew}) (3.55)

The information on the modulation is contained in the second term which can be isolated by
demodulation. Whereas in the previous description, we need to set ¢ to differentiate between
an amplitude and a phase modulation, here they can both be accessed.

Moreover, this method can also be used to extract the spectral structure of the signal field,
in the same way the multipixel homodyne does. Indeed, taking the Fourier transform of the
cross-correlation signal (3.53) with respect to 7 yields directly the integrand:

I"(Q)=Z[I" (1)]1=2y/Nro Re{a; u;(Duro(Q)} (3.56)

As we will see later, measuring this temporally resolved homodyne signal is an incredibly
powerful and versatile tool that will allow to measure parameters precisely without resorting
to complex experimental techniques. Indeed, the result is virtually identical to the multipixel
scheme and can be used with a single detection. It may then prove to be an alternative to
multipixel detection since it is possible to extract the spectral part from the signal.

21fboth fields are defined by the same Gaussian envelope of width At, the autocorrelation is another Gaussian
of width v2'At. Note however that this does not retrieve the absolute width of the pulse since this is a relative
measurement.
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3.3.3.3 Experimental realization

To actually measure the temporally-resolved homodyne signal, one needs to scan the delay
between the two fields. Different methods are available, each presenting different constraints:

« This displacement needs to be purely longitudinal. If it induces an angular shift, then the
spatial overlap will not be uniform over the range of the scan thus introducing errors.

« The best way to achieve such a delay scan is by putting a retroreflector on a motorized
delay line. This allows to achieve displacements over a large range, more than enough
to resolve the full pulse width. The drawback of this method is its speed: motorized
translation stages do not respond fast enough to make such a measurement real-time.

+ A mirror mounted on a piezoelectric actuator can offer micrometers of displacement
on a millisecond timescale. This offer the fastest possible response, but it need to be
introduced in the beam path with a minimum angle.

For our experiment, we decided to build a retroreflector on a motorized delay line. Initially,
it was used solely for the purpose of crosscorrelations measurements, before this temporally-
resolved homodyne detection was even considered. To account for the slow response, we
chose to stabilize the relative phase between the two fields before the stage by building two
consecutive homodyne detections. The experimental scheme is shown on figure 3.10.

Both signal and LO beams are split on a 90/10% beam splitter. On part goes to a first homo-
dyne detection (HD1) while the second goes to the second homodyne detection (HD2) which
has the retroreflector built into the signal beam’s path. Using the low frequency signal from
HD1, the relative phase between the two field is locked by acting on a piezo-mounted mirror.
In such a configuration, the only phase fluctuations left come from the propagation of the two
beams on a very short distance, and they are therefore very small. This allows to perform the
crosscorrelation measurement with a very good reproducibility.

We specify that the second homodyne detection can either be single diode or spectrally-
resolved.

3.3.4 Addendum: single diode homodyne detection

To close that part on homodyne detection, we explain one last relevant point. In homodyne
detection, we take the difference of the two photocurrents to measure the interferometric term.
It is not only to remove the signal coming from the power of both fields, but rather to get rid
of any classical noise that might be contained in the fields.

It is clear from the signal of a single detector (3.16) and from the difference signal (3.8) that
both contain the same interference term. The only difference between these two expressions
reside in the power contained in each field, which is a term that does not oscillate. Therefore,
when demodulating as described in section 3.2.2, the mean signal retrieved would be similar
in both cases. The only important difference resides in the variance.
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Figure 3.10: Experimental layout for the relative phase lock between signal and LO fields.
The two fields are first separated by beamsplitter of 90% reflectivity. The transmitted 10% are
combined in a first homodyne detection. The difference of the photocurrent is used to lock the
delay between the two fields. Once the phases are stabilized, measurements can be done on a
second homodyne detection.

Indeed, if any amplitude classical noise is present, it will show when measuring the noise
from a single diode, but not from the difference. The latter then present a higher SNR'®. Nev-
ertheless, if the analysis frequency is high enough, the only noise comes from quantum fluc-
tuations. Thus, looking at only one photocurrent in the homodyne detection yields the same
result than taking the difference at the expense of lower photon number.

3Note that classical noise will be present in the measured mean signal in whichever case. However, the noise
floor is different, hence the signal-to-noise is higher in the real homodyne configuration.
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4 Parameter estimation at the quantum
limit
(About the amount of squeezing required in quantum computation) From what I got

from the experimentalists, we don’t have infinite squeezing yet.”
— Giulia “Flash Dance” Ferrini
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In the previous chapter, we introduced how the multimode structure of the field can be
experimentally accessed. In the present chapter, we shall describe the particular case of pa-
rameters that are willingly encoded in the field. It introduces the concept of projective mea-
surement, detection modes, limits in sensitivity and efficient measurements.

We then concentrate our study to the case of perturbations of the pulse both in amplitude
and in phase that originate from phase and energy shifts. We put forward the conjugated
variables amplitude / phase and time / frequency that naturally arise, and give a proposal for
a quantum formulation.

Then, we look at more precise examples of parameter estimation, such as distance and fre-
quency. We define the detection modes for these quantities and compute their sensitivities.

Finally, we put forward a drawback in the projective measurement scheme where the spatial
part of the field can contain information that contaminates the measurement on its longitudinal
part.
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4.1 Projective measurements

In this section, we present in a more detailed way how the variation of a small parameter
encoded in the field may be seen as photons being displaced in a given mode of the field. This
defines the projections modes required in a homodyne detection scheme 3.3 to extract this
parameter.

4.1.1 Displacements of the field in specific modes

In a way very similar to the modulations introduced in 3.2, let us consider that through prop-
agation in a dispersive medium, the field is affected by a parameter p. Whether this perturba-
tion happens in the amplitude or in the phase quadrature is of no importance for this general
treatment. We also assume that the field is in a given spatial mode such that the transverse
dependency of the field can be implicit'. The general scheme is depicted on figure 4.1.

Local
Y Oscillator

Ero® o 2Zs(t,0)

E(t E(t, op
® Perturbation (=p) N
p N

Signal

Output
xXp
Figure 4.1: Projective measurement scheme.
The field after propagation reads
EW(t, p) = &alt, p)e 0! (4.1)

To remain consistent with previous definitions, we again keep the carrier outside of the com-
plex envelope a(¢). The parameter p may however be a perturbation of the carrier.

The general problem of estimating a parameter p encoded in a light beam E(p) has been
treated for example in [Helstrom 68]. The ultimate limit in sensitivity in the measurement is
given by the so-called quantum Cramér-Rao bound for specific quantum states of light. For
Gaussian states, it can be shown [Jian 14] that this bound can be experimentally reached with
a balanced homodyne detection scheme.

For a small variation of p, the field (4.1) may be Taylor expanded as follows:

aE(+)
ENt,p)=~EM(t,0)+p (¢,p =0) (4.2)
p

INote that the present treatment can also be applied to the transverse profile of the field. It’s only a matter of
changing the considered variable from time to space.
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The modal structure appears by writing (4.2) in term of the complex envelope:

EW(t,p)=& (a(t,O) +p S—Z(t,m) = Sy, (uo(t) + pKU(t))e_i‘”Ot (4.3)

where we introduced the normalized mode v(¢) = Il{ g—;(t, p =0)and K is a dimensional normal-

oul |ou

ap|’|0p
The mode u¢(¢) = u(¢,0) corresponds to the mean-field, i.e. the envelope of the non-displaced
field. The mode v(¢) is called the detection mode attached to the detection of the parameter p.

In the general case where multiple parameters p; € p are encoded in the field, the previous
derivation applies and reads

ization constant which reads K = < >, where the inner product is defined as (1.31).

J

EW(t,p) = & (a(t,00+p- Vpa(t,0) = Goas(uo(t) + Y. pi Kivi(®) e ™! (4.4)

One should note that, in general, the modes v do not form an orthogonal basis. In this equation,
the displaced field is defined as a superposition of the undisplaced field in the mean field mode
and a set of different modes with a small contribution. We can thus image the fact that this
perturbation is displacing photons into other modes (which is similar to power being pushed
in sidebands in the spectral domain in the case of a modulation).

We also consider that the signal field is in a coherent state, such that a; = VvN.

The retrieved signal in a homodyne configuration scheme is computed by considering that
the signal field is given by (4.3) and the LO is in the mode v(¢). The situation is then similar to
(3.43), where we retrieve the information carried by the signal field in the mode defined by the
mean-field of the local oscillator. The optical quadrature that we retrieve is set by the phase of
the local oscillator.

In this picture, the signal may also be written as the inner product of the signal envelope by
the local oscillator mode:

3_=2/NNzo Re{ (u(t),v(t))} (4.5)

with u(#) = uo(t) + p Kv(t).

As an example, let us consider the special case where v(¢) is orthogonal to u¢(¢). We then
have (uo(%),v(¢)) = 0 and (v(¢),v(¢)) = 1. The homodyne signal then directly retrieves the value
of p:

J_=2y/NNro pK (4.6)

To compute the signal-to-noise ratio X, one has to compute the noise in the experiment, which
is given by (3.44):

AJ_=+/Nipo (4.7)
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where o represents the noise in the detection mode. Thus, the signal-to-noise ratio reads

s _2VNK

o

P (4.8)

If the only noise present arises from fluctuations of quantum vacuum, then we have o = 1.

In the multi-parameters case described by (4.4), in the particular case where the modes v;(¢)
form an orthogonal basis, it is straightforward to see that a homodyne detection with the local
oscillator in the mode v;(¢) allows to retrieve unambiguously any parameter p; encoded in the

signal field.

4.1.2 Sensitivity

One can then determine the sensitivity with which we retrieve the parameter p. It is defined
from the minimum value p i, of p that can be measured using this method, that is, for a
signal-to-noise ratio of 1:

o
Pmin= QWK

The sensitivity is then given by the inverse of p ;in. In the quantum-limited case, we have:

(4.9)

1
Pmin= ZWK

This important relation shows that the sensitivity increases with the photon number N and
with the normalization constant K. In the more general case (4.9), we see that the sensitivity
is also governed by the variance of the detection mode. It means that when classical noise is
present (i.e. o > 1), sensitivity decreases, however, if squeezed quantum light is used (o < 1),
then sensitivity is increased. This is a standard result in quantum metrology, first demonstrated
in [Caves 81], and a recent application example can be found in [Aasi 13].

Since the sensitivity (4.10) scales with the number of photons, we took the experimental
strategy to work with strong coherent states rather than to use squeezed vacuum.

(4.10)

4.1.3 The Cramér-Rao bound

As hinted in the beginning of this section, the ultimate limit in sensitivity that one may achieve
in the parameter estimation problem is given by the Cramér-Rao bound. Indeed, to know
whether or not a given measurement scheme is optimal, one usually resorts to information
theory. A good outlook into the classical Cramér-Rao bound may be found in [Réfrégier 02]
whereas a quantum development and an application to this experiment is done in [Jian 14].
In information theory, the classical Cramér-Rao bound corresponds to the best precision
that one can achieve using every possible estimator for a given parameter. This estimator is
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then said to be unbiased since it gives the correct value of the parameter that is estimated. This
allows to determine which measurement apparatus or strategy is best suited to determine the
value of a parameter.

This can then be redefined in the quantum realm in term of density operators. The mea-
surement is described by a set of operators known as positive operator-value measure (POVM)
[Barnett 02]. The derivation of this bound is more subtle than in the classical case, but it gives
a stronger result. Indeed, the limit that one obtains is measurement independent, since the
quantum Cramér-Rao bound is given whatever the measurement apparatus. This bound can
be saturated, and has been extensively used in the field of quantum metrology [Anisimov 10].

In the case of multimode Gaussian states (for example, coherent states), this bound can be
computed. More importantly, it has been demonstrated that the best sensitivity of parame-
ter estimation using a balanced homodyne detection scheme equals the quantum Cramér-Rao
bound, making this detection scheme an efficient measurement strategy:.

The main result here is that the chosen projective measurement scheme yields the best pos-
sible outcome in the parameter estimation problem.

4.2 Spectral and temporal displacements

In this section, we concentrate our study to small displacements of the field in time (carrier
and envelope) and to small displacements of the spectrum.

4.2.1 Temporal displacements

We use the results that were obtained in section 2.2.2 about spectral phase effects on the pulse
shape. Let us Taylor expand the accumulated phase to the first order as in (2.33). For conve-
nience, we identify characteristic times in the following way:

¢Q) =wot,+Qt, (4.11)

We identify ¢, as a displacement of the carrier and ¢, as a displacement of the envelope.
The displaced field in the spectral domain is simply given by

E{(Q) = & a(Q)el(@otyt ) (4.12)
Equivalently, in the temporal domain:
EX(0) = &alt —tg) e o(t=t) (4.13)

which clearly shows the displacements in both carrier and envelope.
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Since t, and ¢ are supposedly small compared to the optical period, we then proceed to
expand the amplitude and the phase of the temporal representation of the field. We then obtain

9 .
EX(t) = & VN (uo(t) - tgaito) (1+iwot,)e 0
. au() —iwot
=& VN uo(t)+w0t¢-Lu0(t)—th e (4.14)

where we neglected the second order term ¢,,-t ;. We labeled u the unperturbed field envelope,
such that the total field is written as E(s+)(t) = & VN u(t). We can see that equation (4.14) is
similar to (4.3), except that not all modes are normalized.

After normalization of the modes on which (4.14) is expanded, the field then writes as

E() =& VN as (uo(t) +Woty v y(t) + Kgty- vg(n)e—iwot (4.15)

The mode attached to the detection of a phase shift ¢, is called phase mode v (t), and is defined
by

vo(t) =iuo(t) (4.16)

Note that v, is not orthogonal to the mean-field mode u,.

As a reference to measurements that consider the time of arrival of pulses of light, we call
the mode attached to the detection of a shift in the envelope ¢, the time-of-flight mode v 4(¢).
It is defined as

1 auo _;
e 1wot

Ug(t) = —E at (417)

2
. In the Gaussian case given by

1

duq

whose normalization constant K is given by K, = 1/ [ dt |

(2.20), the normalization constant is actually proportional to the temporal bandwidth: K, =

2At

and the time-of-flight mode is consequently given by

t Ouo
t)= —uo(t) = -2At— 4.18
vg(?) AL uo(?) Y, (4.18)
In that case, the field is written as
t .

ES() = 6 VIV (uo(®)+ woty vy (t) + IR §(0))eient (4.19)

As an example, on figure 4.2 is depicted a representation of the real part of (4.19) in the case
of a global delay of the pulse ¢, = t, = 6t.
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uo(t)

Figure 4.2: Schematic picture of a delayed pulse expanded on the basis of the detection modes.

In the same manner, the expansion of the Gaussian field in the spectral domain from (4.12)
yields
ESP(Q) = & VN uo(Q)(1 +iwgt, +iQt,)
= 6 VN (10(Q)+ 0oty - vy(Q) + Aty v(Q) (4.20)

The detection modes in the spectral domain are then given by

0p(Q) = i uo(Q) (4.21)

Q
vg(Q) = iA_qu(Q) (4.22)

Using the previously defined Fourier transform formalism, it is easy to show that the Gaussian
detection modes are directly linked by Fourier transforms.

Note that every spectral mode is pure imaginary, whereas the temporal time-of-flight mode
is real. Although surprising, it is understandable that a perturbation in the arrival time of a
train of pulses can be resolved with a single detector; it is therefore an amplitude quadrature
measurement in the temporal domain, but it cannot be resolved as easily in the spectral do-
main®.

4.2.2 Spectral displacements

The previous derivation has an exact counterpart in the spectral domain.

20ne can also consider an infinitely accurate detector in the temporal domain. It could potentially resolve
any effect on the pulse shape, being a delay, a broadening or a change in its structure. A spectrometer on the
other hand cannot resolve any spectral phase without using interferometric measurements. A time measurement
is then sensitive to the relative phase between each color.
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Consider a displacement in the spectrum that manifests itself in the form of a global change
€ of the amplitude. The envelope of the field is then written as (1 +¢€)a(2), where we chose
€ to be independent on wavelength for simplicity. Consider also a change dw in the central
wavelength, which then changes the amplitude to a(Q - dw).

Using these notations, the displaced spectral field is consequently written as

ED(Q) =& (1+6)a(Q-bw) (4.23)
Taking the Fourier transform simply yields
ED(t) = & (1 +€)alt)e i @o—00) (4.24)

When expanding the field (4.23) and neglecting second-order terms, we then obtain

EPQ) =& VN (uo(m +e-ug(Q)—dw- %) (4.25)

A treatment identical to (4.19) allows to write the displaced spectrum as

ES(Q) = 6 VN (10(@)+e-ve(@)+ o ) (4.26)
2Aw

which defines the detection mode v, for a perturbation € in the amplitude of the field

0e(Q) = uo(Q)| (4.27)

and the mode v, attached to a shift of the central wavelength

Q
V50(Q) = Euo(Q) (4.28)

In the same way as before, figure 4.3 provides a schematic representation of equation (4.26).
In the temporal domain, equation (4.24) allows to define the temporal detection modes

ve() =uo(t) and U5w(t):iAituo(t) (4.29)

We see that the exact set of modes are used to detect these fours parameters. They differ in their
definition by the imaginary unit i which specifies on which optical quadrature the information
resides. More importantly, it also reveals that these parameters are conjugated in the sense
of hamiltonian mechanics. Therefore, they are also observable of conjugated operators in a
quantum description (see section 4.2.3).
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Figure 4.3: Schematic picture of a spectrum displaced in energy and in center wavelength

expanded on the basis of the detection modes.
Using (4.10), we compute the ultimate limit in sensitivity for these measurements. For the

temporal displacements, we obtain

1
and (tg) min = W—Aw (430)

1
(t‘P) min —
2v N wg

and for the amplitude / spectrum displacements, we have

A
and  (Ese)min = \/—% (4.31)

1
tedmin= ——=
t 2VN

Using this modal description, we find the standard result for the ultimate sensitivity for an

interferometric measurement of amplitude and phase’.
Moreover, using a Gaussian mean-field mode allows to easily construct the detection basis.

One may note that the detection basis that we derived here is similar to the Hermite-Gauss
basis. This is quite convenient since these modes are directly orthogonal. For a non-Gaussian
mean-field, the construction of the basis is not as straightforward. Indeed, there is no guar-
antee that the modes attached to the estimation of parameters are orthogonal. In that case,
the construction of the basis needs to be adapted to the parameters that need to be measured.
Albeit less general, we will keep the Gaussian definition for analytical reasons, but the same

results may be obtained for an arbitrary mean-field.
3Tt is worth noting that the standard interferometer limit scales as 1/v/N. This difference by a factor of two

arises from the fact that the homodyne-based measurement places the N signal photons into a single arm of the
interferometer, whereas the standard interferometric detection distributes them equally between both arms.
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4.2.3 Conjugated parameters

Introducing the Hermite-Gauss modes v,(Q)*, we have

vo(Q)=up(Q) and v1(Q)= Agqu(Q) (4.32)

which allows to rewrite the displaced fields in the same basis.
In the spectral domain, we consider a field displaced in all four of the previous parameters :

ESP(Q) =6 VN [00(Q) + (e +iwot ) -vo(Q) + (2‘2—“; + iAwtg) -vl(Q)) (4.33)
where we used the modes {v,} from the Hermite-Gauss basis.

This equation puts forward the conjugated parameters. The mean field mode vy is associated
naturally to variations of amplitude, whose conjugate quantity is a shift in phase. Similarly,
the mode v carries the information on a shift in the envelope of the pulse. The conjugate pa-
rameter is a shift of the spectrum. In quantum mechanics, conjugate variables are observable
that do not commute and satisfy Heisenberg’s principle. The field of quantum metrology has
usually focused on the measurement of a single variable. Its orthogonal observable may how-
ever contain information from a different origin that can be used to enhance the measurement
result[Steinlechner 13].

To formulate the quantum counterpart of (4.33), we write (do) = VN, and assume that only
vo and vy are non-vacuum modes. Under the small parameter approximation, it reads

ECQ) =& {\/JV

5
(1+e+imot,) - vo(Q)+ (ﬁ + iAwtg) 01(Q)

+ Zadnun(Q)} (4.34)

Ideally, we would like to define observables to measure the parameters encoded in the field.
Using the quadrature operators (1.66) and (1.67), for a field in the Hermite-Gauss basis where
the mean-field mode is vy, we have

9?31' +iﬁi

EPQ=6 Y divi =6 v;i(Q) (4.35)

Thus, in term of quantum observables, the field (4.34) is written as

(Xo) +1(po) 0o(Q) + X +i1p1)

EDQ) =&
s (Q)=46& 2 2

v1(Q)+)_86,v,(Q) (4.36)

By identification, we have the following relations:

(%0)=2VN'(1+e)  and  (po)=2VN wot, (4.37)
(#1)=VN Z—‘” and (1) =2VN Awt, (4.38)
w

4vn(Q) = H

T () w@
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We see that the mean-field mode vy is naturally used to detect the amplitude and the phase of
the field. The next mode in the basis is used to detect slippage in time and in frequency. We
may then define new conjugate operators X; and P; such that computing their expectation
value yields the parameter of interest:

. 1 X 1

Xo= % and Py=——p 439
0= S0 0= ST ” 0 (4.39)
N A . 1

X1 = —w.f?l and P1 = (4.40)

——F D
VN o0W/N Aw'

This introduces clearly the couples of conjugate variables amplitude / phase and time / fre-
quency as carried by different spectral modes. To perform a measurement below the standard
quantum limit on one quantity, one would have to introduce squeezing in the same mode (the
quantity retrieved in the other field quadrature would then show excess noise).

Being conjugate observables, using (1.68), the commutation relations for these new operators
read

[Xo, Po) =

1 A A l
d X1,P{|=— 4.41
SNwg and [X71,P4] N (4.41)

leading to the following uncertainty relations:

1

N (4.42)

0%, 0p, = and 0%, "0p, =

4N wg
In addition to the enhancement in sensitivity, the identification of conjugated observable allows
to generate entanglement between them. We investigate this possibility in the last part of this
thesis.

4.2.4 Application to range-finding

An application to our projective measurement scheme is space-time positionning, as proposed
in [Lamine 08]. In the perspective of exchanging pulses of light between two observers, it is
possible to determine the delay in time or in space between their time of arrival and a reference.
In our description, it is similar to measuring ¢, and .

In the first case, one uses the wave-like nature of light and uses interferometry to determine
the offset between the carriers. The ambiguity range of such a measurement is on the order
of the wavelength. In the second case, one considers the arrival time of the pulses envelope,
leading to an ambiguity range dictated by the spacing between subsequent pulses. Naturally,
combing the two methods leads to a more precise measurement.

In our vocabulary, it means that there exists a mode that combines the phase mode and
the time-of-flight mode, which presents a higher sensitivity for measuring a global delay (or
displacement).
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4.2.4.1 Existing schemes

Combining interferometric with time-of-flight measurement is common method in absolute
distance estimation. The first experiment from [Chekhovsky 98] uses picosecond pulses in a
time-of-flight measurement, giving a rough estimation of distance, combined with white-light
interferometry, thus enhancing precision.

As an example of a scheme combining interferometric and time-of-flight measurement using
femtosecond pulses, we can cite the one proposed by Jun Ye in [Ye 04]. It is based on the fact
that in an interferometer, when a distance difference is introduced between the two arms, the
delay in the arrival of the two pulses depends also on the repetition rate of the laser. Moni-
toring the delay as a function of the repetition rate then allows to retrieve the distance. The
first estimate on distance is done using a fast detector while higher precision is achieved by
measuring the contrast of the optical fringes. An experimental realization has been done in
[Cui 08]. The precision of this scheme is limited by the timing jitter of the laser source.

This scheme is best suited for use in vacuum since it is sensitive to dispersion. To account
for that effect, it is possible to consider the spectral phase accumulated. The distance can be
retrieved by comparing the spectral phase between the reference arm and the target arm of an
interferometer for different wavelengths. It is another application of spectral interferometry
3.1.3.4 to distance estimation [Cui 11]. The precision is however limited by the knowledge of
the environnement parameter in order to compensate for it.

Another scheme derived from dual comb spectroscopy techniques has been demonstrated
in [Coddington 09]. Two frequency combs with slightly different repetition rates are used: one
is sent into an interferometer while the other is used as the local oscillator of an heterodyne
cross-correlation scheme to analyze the output of the interferometer. The pulses from the two
sources are then overlayed at different times. This technique can be seen as down-sampling of
the signals which may be measured using slow detectors and electronics.

Finally, a purely time-of-flight technique can be mentioned [Kim 08]. It is called a balanced
optical cross-correlator. Pulses coming from a target whose distance we want to determine are
combined with a reference in a nonlinear y® crystal. A cross-correlation is obtained between
the two pulses by measuring the sum frequency signal out of the crystal. The delay is retrieved
by scanning the repetition rate between the two lasers and identifying zero cross-correlations
signal. This method directly measures the group delay and no knowledge on the dispersives
properties of the propagation medium is required. However, since it is a non-linear process, it
is dependent on the pulses duration.

4.2.4.2 Ultimate limit in sensitivity

We compute the ultimate limits of sensitivity for an interferometric phase measurement or a
time-of-flight measurement. We consider that light propagates in a weakly dispersive medium
with a refractive index n(w). Introducing a perturbation of propagation distance 6L in the
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signal beam, the phase difference between the two fields writes as

wn(w)

Sep(w) = oL (4.43)

. )
wo

oL 0
0Pp(w) = —won(wo) + (w — wop) (n(wo) +wo —
c ow

=woty+Qtg (4.44)

We expand this phase, similar to (4.11):

where we neglected the second order dispersion. The time shifts of the carrier ¢, and of the
envelope ¢, are given by

oL oL
ty= —ng=— (4.45)
C Vo
5L 6L
tg=— (no+wony) = — (4.46)
c Vg

where we introduced the phase and group velocities of light in the medium, and we wrote
derivatives with respect to w with a prime.

Using the derivation of the previous section, the delayed signal field is consequently written
in the Hermite-Gauss basis {v,} as

ESP(Q) = & VN [00(Q) +iwot, - vo(Q) +iAwt g -v1(Q)| = & VN u(Q) (4.47)

where u(Q) is the mode of the signal field’. Performing a projective measurement on ivg
and ivy will retrieve respectively ¢, and #g, thus giving information on 6L with shot-noise
limits given by (4.30). More precisely, the limit in sensitivity for a phase and a time-of-flight
measurement are written as

6Ly = —2¢ (4.48)
min ZW(UO

GLY, = —& _ (4.49)
™ 2yN Aw

Since the information on 6L is carried by both modes, we can construct another detection
mode corresponding to L. We compute:

ou | o0 o, B
m Lo = l(V(p U()(Q)+ Vg Ul(Q)) (450)
= (ﬂ @)+ 22 vg(Q)) (4.51)
Vo Ve

Note that u(Q) results from a Taylor expansion of a normalized mode. Therefore, it is no longer normalized.
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For measuring 6L, the ultimate limit of sensitivity is thus given by

1 1
(6L)so; = (4.52)
T
Vo Vg
and the detection mode allowing to reach this sensitivity is given by

1 w Aw
vsL(L2) = (—0 0p(Q)+ — -vg(Q)) (4.53)

(%)2 N (%_w)Z Vo Vg

¢ g

We see indeed that the detection mode combines the phase mode and the time-of-flight mode
to yield a more sensitive measurement of L. The enhancement depends on the properties
of the light source (by its wavelength and bandwidth) and on the properties of the dispersive
medium. In the case of air, the dependency of index with wavelength is negligible such that
Vp = Vg.

It is then similar to vacuum, where the phase velocities and group velocities of light are
equal. And the detection mode is then given by

1 A
UsL.(Q) = ——— (v(p(Q) 22 0g(Q) (4.54)

1+ (ﬁ)—‘;’)Z “o

Here, the enhancement is only dependent on the wavelength and bandwidth of the laser. To
make best use of this scheme using a coherent broadband source, the technical limitation to
the enhancement is obtained for single-cycle pulses®.

Since this scheme relies on linear interferometry, the pulse duration is not relevant, and
spectrum broadening techniques, such as supercontinuum generation, can be used in order to
increase even more the sensitivity.

Note that the description for a perturbation in mean wavelength and energy given in 4.2.2
may be written such that the amplitude of the field is affected by the change in wavelength.
Since the parameter w would appear on both the amplitude and the time-of-flight mode, a
similar development to the one done here would result in a detection mode to detect dw.

4.2.4.3 Addendum: higher order modes

In the previous treatment, we neglected the influence of dispersion. The main reason for that
simplification is mostly technical. Experimentally, it is already difficult to measure the group
delay term, and accessing the information about group delay dispersion using this scheme

%A single-cycle pulse can be defined as Atpwry = i—’; [Brabec 97]. For Gaussian pulses, this yields ﬁ—‘(‘)’ =~0.2.
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is not possible. One would need either a very dispersive material or a very high number of

photons in the signal beam in order to extract the signal above the noise floor.

However, taking into account the dispersion results in another interesting application of the

projective measurement scheme, that we propose to develop here.
Expanding the phase perturbation (4.43) to the second order yields

oL
OPp(w) = - {wo n(wop) + (w — wo) (n(wo) +wo %%

%n

(w—wo)z( on
+ — (2 — —_—
@o ow?

2 ow

i

wo

which can be rewritten as

2
5(,[)(Q)=a)()t<p+th+—tGVD
wo
with

w oL
tgvp = Wy (n6 + ?Ong) —_—

With the previous treatment, the detection mode for tgyp is given by
2
V3 Aw?

= %vo(ﬂ) + \/gvz(ﬂ)

where the mode of the field is written as

vavp(Q) =1 uo(2)

Aw?
u(Q) =vo(Q)+1i wolyp - vo(Q) +Awt g -v1(Q) + \/gw_tGVD -vgvp(Q)
0

on )
O [y,

(4.55)

(4.56)

(4.57)

(4.58)

The detection mode for a perturbation of group delay dispersion combines the first and
third modes of the Hermite-Gauss basis. It is then clear that this mode is not orthogonal to
the phase mode ivy, but it is orthogonal to the time-of-flight mode iv;. This mode description
is another derivation to show that a time-of-flight measurement is insensitive to the effect of
group-velocity dispersion. However, performing a measurement using the phase mode will be

contaminated by dispersion. More precisely, it would retrieve

Aw?
(u,v(p> =woty+——EtGgvD
wo

(4.59)
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and a projection on the dispersion mode would yield

wo Aw?
(u,vgvp) = —=t,+ \/g— tovp 4.60
\/g [ (UO ( )

which would then be contaminated by the pure phase displacement.

The modal decomposition of the field allows to define purified modes to measure only one
parameter independently of the other. In the case of GVD, it is straightforward to see that the
purified mode is directly

vl p(Q) = v2(Q) (4.61)

PRI . . . . . . . . p _
The sensitivity of this purified mode is obtained by computing its normalization contant K, , =

Kaovp <UZVD, vGVD) = V2 Aw—“f. It is proportional to the constant of the original mode Kgyvp
by a factor equal to the overlap between the original and the purified modes. The measurement
is thus more accurate but less precise.

Similarly, a purified phase mode v{, would retrieve only the pure phase information without
the dispersion. It is obtained by orthogonalization as follows:

vip(Q) & vy (Q) = (vy,vaVD) - vaVD(Q) (4.62)

After normalization, the purified mode for phase detection is given by

2 1
vh(Q) = ﬁ vo(Q) — ﬁvg(Q) (4.63)

The sensitivity for this phase measurement is scaled by K, f, = \/g wo, leading to

(#0) puin = S (4.64)

min ~ ZW\/gwo

Comparing to (4.30), we can see that the sensitivity for a phase measurement independent of
dispersion is indeed degraded.

With this treatment, we showed the feasibility to use projective measurements as a mean
to increase the accuracy of a ranging experiment in a dispersive medium at the expense of
precision’. It is also possible to add other parameters to the development, thus building another
detection modes basis. Two strategies can then be adopted.

"We stress that this modal description is another derivation of already existing schemes. For example, the fact
that the time-of-flight mode is independent of dispersion is another representation of multiwavelengths interfer-
ometry that combines interferometric measurements at different wavelength.
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The first one is to use an established model to define the detection modes. In [Jian 12], the
Edlén model is used to characterize the dependency of the index of refraction of air on param-
eters such as pressure, humidity and temperature. It is then possible to construct a variety of
modes that measure the variation of only a single parameter independently of the others.

Otherwise, it seems conceivable to adopt an evolutionary algorithm to build the detection
mode. For example, if one were to dynamically address the projection mode on a ranging
experiment in a dispersive medium, an optimization of that mode could potentially increase
the signal to the optimal.

Obviously, all of these schemes are dependent on the amount of noise in the experiment,
and the ability to distinguish the effects of other sources of noise to the fluctuations that we
want to access.

4.3 Space-time coupling: a source of contamination

To conclude, we need to address the influence of the transverse profile of the field in the pro-
jective measurement scheme.

In most of our calculations, we considered that both beams in the interferometers were in
the same spatial mode, such that the overlap integral y,, is unity. When the beams are spatially
multimode, not only does it degrade the signal, it can also cause a contamination on both optical
quadratures. As a consequence, a phase measurement no longer retrieves a pure longitudinal
information, but rather a mixture of longitudinal and transverse displacement.

4.3.1 Transverse displacements

Thanks to the symmetry between the spatial and the temporal description of the electric field,
our previous treatment can be applied to the spatial domain. For a more detailed description,
see [Delaubert 07]. For our purpose, we consider spatial perturbation only as displacement and
tilt of the beam relative to a reference, as shown on figure 4.4.

Reference 5 l

.......................................

Axis : d Reference ioovoiieioio.. :
Axis

a) Displacement b) Tilt

Figure 4.4: Representation of simple spatial modifications for a Gaussian beam relative to a
reference axis. a) Displacement of the beam. b) Tilt or angular displacement 6.

We write the transverse envelope of the field as a(x,z) = ago(x,2) where we define the
transverse mode as a TEMgg (1.27). In analogy to a displacement in time, we first consider that
the beam is displacement along the x axis by a quantity d. The reference is naturally defined as
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x = 0. For simplicity, we center the longitudinal coordinate z = 0 at the beam waist. Although
the beam’s displacement does not depend on the longitudinal coordinate, the tilt of the beam
needs to be defined around a pivot point, which we will define as the beam’s waist.

The displaced transverse field is then expanded as

a(x) = a (go(x) +d- %(x)) (4.65)

The information on displacement is carried by %, which for TEM modes, is found to be exactly
the TEMp; mode. The displaced field then writes as

d
ax)=a (go(x) +— -gl(x)) (4.66)
wo

Note that the amplitude of the displacement is real.
On the other hand, the expression of a beam that is tilted by an angle 6 with respect to a
reference reads

a(x) = a go(xcos @) er*sin? (4.67)

where &k = 27” is the norm of the wavevector at a wavelength A. Here, the wavefront is tilted
both in amplitude and in phase. In similar way as previously, we expand this phase considering
that the angle 0 is small®, and we obtain the tilted field:

9
g(x) = a(go(x) +ip -xgo(x)) with p= 7”6 (4.68)

The tilt information p is carried again by the mode xgo(x) which is directly proportional to

the TEMy; mode for a TEMgg reference beam. It is carried in the phase quadrature of the field.
The expression of the field for a beam both displaced and tilted then reads

d
a ., iw) 21(0)

E(x) = é"oa
wo 2

golx) + (4.69)
which is schematically depicted in figure 4.5.

It is obvious that, from the point of view of an experimentalist, a change in the position
of a beam can come either from a global displacement and/or from a tilt of the beam. From
equation (4.69), we see that one is distinguishable from another by accessing the amplitude or
the phase quadrature of the TEMp; mode. As in the temporal domain, performing a projective
measurement by projecting the displaced field on a local oscillator in the TEMg; mode allows
to retrieve the information.

A displacement or a tilt of the beam can always be seen as a simple displacement in the
detection plane. Hence, to properly distinguish between them experimentally, careful imaging

8More precisely, the condition writes as AM/wg < 1.
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Figure 4.5: Representation of a displaced and tilted beam in the transverse plane. The tilt
is represented here by an angle of the wavefront’s plane with respect to a reference. The
information about the displacement and the tilt are both carried by the TEMy; mode, but on
orthogonal optical quadratures.

needs to be achieved. Otherwise, if the detection plane is not at a well-defined point in space,
a physical displacement and tilt of the beam translate into different quantities.

The important point is that both amplitude and phase optical quadratures contain informa-
tion on the displacement of the beam. Again, this displacement can be described as photons
being transferred to the TEMg; mode”.

If one were to continue the expansion (4.65) up to the second order, it would show that the
TEMo2 mode carries information about a change in the waist size in the amplitude quadrature
and a change in the longitudinal waist position in the phase quadrature.

4.3.2 Homodyne contamination

Let us consider that we want to detect a longitudinal displacement i