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Abstract

The topic of this thesis concern the discrete spectrum of non-selfadjoint operators de-
fined by relatively compact perturbation of selfadjoint operators. These selfadjoint op-
erators are choosen among classical operators of quantum mechanics. These are the
Dirac operator, the Klein-Gordon operator, and the fractional laplacian who generalize
the Schrödinger operator usually studied for such issues. The main method is based on
a theorem of complex analysis which gives Blaschke-type condition on the zeros of a
holomorphic function on the unit disc. This Blaschke condition gives informations on
the behaviour of eigenvalues of the perturbed operator by mean of Lieb-Thirring-type in-
equalities. Another method using functional analysis is also used to obtain these kind of
inequalities and both methods are compared to each other.

Keywords : Discrete spectrum, Lieb-Thirring-type inequalities, conformal mappings,
Dirac operator, Klein-Gordon operator, fractional Schrödinger operator.

Résumé

L’objet de cette thèse est d’obtenir des informations sur le spectre discret d’opérateurs
non auto-adjoints définis par des perturbations relativement compactes d’opérateurs auto-
adjoints. Ces opérateurs auto-adjoints sont choisit parmi les opérateurs classique de mé-
canique quantique. Il s’agit des opérateurs de Dirac, de Klein-Gordon et le laplacien
fractionnaire qui généralise l’étude de l’opérateur de Schrödinger habituellement con-
sidéré pour de tels problèmes. La principale méthode utilisée ici relève d’un théorème
d’analyse complexe donnant une condition de type Blaschke sur les zéros d’une fonction
holomorphe du disque unité. Cette condition traduit le comportement des valeurs propres
de l’opérateur perturbé sous forme d’inégalités de type Lieb-Thirring. Une autre méthode
venant d’analyse fonctionnelle a été employée pour obtenir de telles inégalités et les deux
méthodes sont comparées entre elles.

Mots-clés : Spectre discret, inégalités de type Lieb-Thirring, transformations conformes,
opérateur de Dirac, opérateur de Klein-Gordon, opérateur de Schrödinger fractionnaire.
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1 Introduction

Table of Contents
1.1 General setting of the thesis . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An overview of the topic . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main results and methods of proofs . . . . . . . . . . . . . . . . . . 4

1.4 Possible directions for the future work . . . . . . . . . . . . . . . . . 8

1.1 General setting of the thesis
1 We start briefly presenting the general setting of the problem considered in this work.
Most notation and terms will be given later; a glossary of the notation can be found in the
appendix at the end of the thesis.

Let H0 be a “well known” self-adjoint operator, satisfying σ(H0) = σess(H0), where
σess denote the essential spectrum of the operator. For instance, we can choose H0 to be
the Laplacian

∆f =
d∑

k=1

∂2f

∂x2
k

.

Then, add a potential V to H0; recall that the potential acts as a multiplicative operator
by the function V . This perturbed operator is denoted by

H = H0 + V. (1.1.1)

It acts on some dense subspace of L2(Rd,Cn) where n = 1 for the scalar case and n > 1
in the vectorial case.

In the case where H0 = −∆, we call H Schrödinger operator.
We also consider the cases where H0 is either the Dirac operator Dm (Chapter 3), or

the Klein-Gordon operator Km (same Chapter, last Section), or the fractional Laplacian
(−∆)s, s > 0 (Chapter 4).

The choice of the potential V , taken in a spaceLp, is made so that the essential spectrum
of the operator H is the same as the essential spectrum of unperturbed operator H0, that
is

σess(H) = σess(H0).

1This version of the manuscript is the updated version of august 2015. The major modifications with
respect to the original manuscript concern the presentation of the results in the introduction and some
misprints.
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Since we know the essential spectrum ofH0, the problem we are interested in is to “deter-
minate” the discrete spectrum σd(H) of H , which is the set of eigenvalues of H of finite
algebraic multiplicity.

In this study, we obtain the information on the discrete spectrum of H under the form
of the so called Lieb-Thirring-type inequalities, written as:∑

λ∈σd(H0)

d(λ, σess(H))α

d(λ,E)β(1 + |λ|)γ
≤ C · ‖V ‖pLp ,

where E is the set of complex number which are the “edges” of σess(H) (except for∞),
the positive parameters α, β, γ bear the information on the distribution of the discrete
spectrum σd(H), and C is a constant (to be discussed in more detail later).

Before going to an overview of recent results on the subject, we recall that the classical
Lieb-Thirring inequality is the following one, [LT76]: for real potentials V such that the
integral below is convergent, we have∑

j

(λj)
γ
− ≤ Lγ,d

∫
Rd
V (x)

γ+d/2
− dx (1.1.2)

where Lγ,d is the sharp constant in (1.1.2), x− = max{0;−x}, and either γ ≥ 1
2

for
d = 1, or γ > 0 for d = 2, or γ ≥ 0 for d ≥ 3. The quest for the sharp constant Lγ,d
is a interesting subject on its own, see [LW00], Theorem 12.4 in [LL01] and the remarks
therein. This issue will not be discussed here.

Originally, the Lieb-Thirring inequalities were obtained in articles [LT76] and [LT75],
which were devoted to the search for a new proof of “stability of matter”. For more details
on this subject see the book by Lieb and Seiringer [LS09b] and the book by Balinsky and
Evans [BE11].

The present work is structured as follow:

1. In the Introduction (Chapter 1), we present the general setting of the topic of this
thesis, give its brief overview. We continue with new results and we discuss the
methods applied in the proofs.

2. Chapter 2 deals with the preliminaries. We recall some definitions and propositions
of general operator and spectral theory as well as more specific results we use later.

3. Chapters 3, 4, and 5 are devoted to Dirac operator, fractional Laplacian, and the ap-
plication of Hansmann’s Theorem (including proofs and corresponding discussion),
respectively. The results of Chapters 3 and 4 are obtained with the help of Borichev-
Golinskii-Kupin Theorem 2.3.1, whereas the results of the Chapter 5 follow from
results of Hansmann (Theorem 5.1.1).

1.2 An overview of the topic
As we said before, the problem we are interested in here, is to obtain some information
on the discrete spectrum of the operator H .

2



First, let us focus on the Schrödinger operator

H = −∆ + V. (1.2.1)

When the potential V is real-valued, H is (essentially) self-adjoint on L2(Rd,R), which
allow us to perform the analysis described in the previous section. The main interest of
this work is to deal with complex-valued potentials, so the perturbed operator is a priori
non-self-adjoint.

At the beginning of the 2000’s, Abramov, Aslanyan et Davies proved, [AAD01, Theo-
rem 4], that the eigenvalues λ of the Schrödinger operator acting inL2(R) with a complex-
valued potential V ∈ L1(R) ∩ L2(R) satisfy

∀λ ∈ C\R+, |λ| ≤ 1

4
‖V ‖2

L1 . (1.2.2)

The proof was based on Birman-Schwinger principle and evaluating some integral kernel.
This inequality clearly gives a localization of the discrete spectrum of H since it lies

in a disc centered at the origin 0 with radius 1
4
‖V ‖2

L1 . The evaluating the number of
eigenvalues proved to be a more difficult task, and the authors proved a finiteness result
[AAD01, Theorem 5] when the potential V satisfies ∀γ ∈ R, ‖V eγx‖L1 <∞ and d = 1.

This article initiated a large number of papers on the subject; though, it is commonly
admitted ([BO08], [GK07], [BGK09], [DHK09], etc.) that the paper which gave the
second birth to the study of Lieb-Thirring-type inequalities is [FLLS06]. The point of the
latter work was to consider a complex-valued potential instead of a real-valued one. Let
us quote [CLN96] for the Dirac operator, [HS02] for the Jacobi matrices, or in [FLS08]
for the fractional Schrödinger operator as connected to [FLLS06] works.

In the paper [FLLS06], the authors study the Schrödinger operator H = −∆ + V ,
acting on L2(Rd,C). They explain that, following a question from Davies, the aim was to
find a similar inequality to (1.2.2) in dimension d ≥ 2. They did not succeed to bound the
modulus of the eigenvalues but they obtained a Lieb-Thirring-type inequality [FLLS06,
Theorem 1]:

Theorem 1.2.1. Let d ≥ 1 and γ ≥ 1.

1. For eigenvalues with non-positive real part∑
Re(λj)<0

|Re(λj)|γ ≤ Lγ,d

∫
Rd

Re(V (x))
γ+ d

2
− dx.

2. If κ > 0, then the eigenvalues inside the cone {|Im(z)| < κRe(z)} verify∑
|Im(λj)|≥κRe(λj)

|λj|γ ≤ Cγ,d(κ)

∫
Rd
|V (x)|γ+ d

2dx.

Here Cγ,d(κ) = 21+γ/2+d/4
(
1 + 2

κ

)γ+d/2
Lγ,d and Lγ,d is the Lieb-Thirring constant

given in (1.1.2).
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The rise of the interest to the topic resulted in many articles on Lieb-Thirring-type
inequalities for different unperturbed operators. We quote for instance the papers by
Bruneau and Ouhabaz ([BO08]), Borichev, Golinskii, and Kupin ([BGK09]), Laptev and
Safronov ([LS09a]), Demuth, Hansmann, and Katriel ([DHK09, DHK13]), Golinskii and
Kupin ([GK12, GK13]), Hansmann and Katriel ([HK11]), Hansmann ([Han11, Han13]).

Finally, concerning a counterpart of (1.2.2) in dimension d ≥ 2 (the question posed by
Davies), Frank showed ([Fra11, Theorem 1]) a similar inequality for |λ|γ with 0 < γ ≤ 1

2
.

Until now, we essentially spoke about the Schrödinger operator. This is not the only op-
erator from the mathematicla physics which have been studied recently: the Klein-Gordon
operator, the Dirac operator, and more recently the fractional Laplacian also attracted
some attention. Here are some references on the corresponding works.

For the Dirac operator, we mention the book by Thaller [Tha91], and we refer to the
papers [CLN96], [CLT14], and [FS11].

For the Klein-Gordon operator, sometimes called relativistic Schrödinger operator as
well as for the fractional Laplacian, we refer to [FLS08] or [LS09b].

It should be mentioned that these operators have also been studied in the presence of a
magnetic field, see for instance the article by Sambou [Sam14] for the case of magnetic
Schrödinger operators.

We finish this overview with a few words on Jacobi matrices. Since their study appeal
to the same methods as Schrödinger operator, we quote the following articles: [GK07]
- application of the idea in [FLLS06] to Jacobi matrices, [BGK09] - as application of
Borichev-Golinskii-Kupin Theorem 2.3.1, [HK11] - with an improvement of the previous
theorem, [FS11] - with a gap in the spectrum and the method of the article are also used
to periodic Schrödinger operator and Dirac operator in dimension 1, and [Han11] - as
application of Theorem 5.1.1.

1.3 Main results and methods of proofs

We comment on the methods used in the present work. Then we give the results in a
simplified form (i.e., the auxiliary constants are not made explicit).

The main method developed in this work is based on a theorem from complex analy-
sis; we call it Borichev-Golinskii-Kupin Theorem 2.3.1, and it is proved in [BGK09]. In
particular, this theorem is applied to (complex) Jacobi matrices, by Demuth, Hansmann,
and Katriel in [DHK09] to Schrödinger operator, and by Sambou in [Sam14] to magnetic
Schrödinger operator in odd dimension.

This theorem gives a Blaschke-type condition for the zeros of a holomorphic function
on the unit disc satisfying the growth hypothesis (2.3.1). We consider as holomorphic
function f a variation of the regularized perturbation determinant such that the zeros of
f are exactly the eigenvalues of the perturbed operator H . Then we know how to bound
this function with respect to the Lp-norm of the potential V and the norm of the resolvent
of H0. Composing with a conformal map, this function f defined on C\σess(H) and its
bound are transferred to the unit disc. We then apply Borichev-Golinskii-Kupin Theorem
to find our estimate on the zeros of the composed function in the unit disc. At least, we
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transfer it back in C with the help of the inverse conformal map, and we obtain an estimate
on the eigenvalues of H which is the Lieb-Thirring-type inequality we sought for.

Another method comes from a result of Hansmann 5.1.1, proved in [Han11]. This result
gives a bound in terms of the Lp-norm of the potential for the sum of distance between the
eigenvalues of the perturbed operator and the numerical range of the unperturbed operator.
It is presented as a variation of a theorem from Kato ([Han11, Theorem 1.1]). Since the
result is given for bounded operators, we apply it to the resolvents of the operators H and
H0. Hence we need to bound the norm of the resolvent (this is the same computation as
in the previous method), and to bound from below the distance between a point of the
complex plan and the spectrum of the resolvent. These two calculations lead us to the
Lieb-Thirring-type inequality.

Hansmann used this theorem to obtain new estimates for complex Jacobi matrices and
Schrödinger operator.

Here is the list of our main results. The first result concerns the Dirac operatorDm,m ≥
0. We putD = Dm+V . In addition to its importance in physics, the particularity (and the
difficulty) of this operator is that it is not semi-bounded, unlike the Schrödinger operator.

Theorem 1.3.1 (case m > 0). Let Dm be the Dirac operator defined in (3.1.1) and
V ∈ Lp(Rd;Mn(C)) with p > d and 0 < τ ≤ p − d. Then the discrete spectrum σd(D)
of D satisfies the following Lieb-Thirring-type inequalities.

For d ≥ 2,

∑
λ∈σd(D)

d(λ, σ(Dm))p+τ

|λ−m| · |λ+m|(1 + |λ|)2p−2+2τ
≤ C · ‖V ‖pLp ,

with C depending on various parameters.
When d = 1, we have

∑
λ∈σd(D)

d(λ, σ(Dm))p+1+τ

|λ+m| · |λ−m| · (1 + |λ|)2p+2τ
≤ C · ‖V ‖pLp ,

where C depends on various parameters.

In the case where the mass m is null, the result is the following:

Theorem 1.3.2 (casem = 0). LetD0 be the Dirac operator defined in (3.1.1) withm = 0
and V ∈ Lp(Rd;Mn(C)), p > d. Then, for 0 < τ ≤ p− d,

∑
λ∈σd(D)

d(λ, σ(D0))p+τ

(1 + |λ|)2(p+τ)
≤ C · ‖V ‖pLp ,

with C depending on various parameters.

Using appropriately a method first developed for semi-bounded operator, we succeed
to improve this last result. We then obtain the next result which is proved in Appendix.
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Theorem 1.3.3 (case m = 0). With the above notation, we have, for 0 < τ ≤ p− d,

∑
λ∈σd(D)

d(λ, σ(D0))p+τ

(1 + |λ|)d+2τ
≤ C · ‖V ‖pLp ,

where C depends on various parameters.

With the help of the auxiliary results proved for the Dirac operator, we also obtain Lieb-
Thirring-type inequality for the Klein-Gordon operatorKm,m ≥ 0. We putK = Km+V .

Theorem 1.3.4 (case m > 0). Let Km be the Klein-Gordon operator defined in (3.6.1)
and V ∈ Lp(Rd;M`(C)). We assume p > d and let τ > 0 be small enough.

For d ≥ 2, we have the following estimate:

∑
λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(1 + |λ−m|)d−1+2τ
≤ C · ‖V ‖pLp .

where C depends on various parameters.
In dimension d = 1, we have:∑

λ∈σd(K)

d(λ, σ(Km))p+1+τ

|λ−m|(1 + |λ−m|)1+2τ
≤ C · ‖V ‖pLp ,

with C depending on various parameters.

If the mass is null, we refer to the fractional Laplacian with s = 1
2
. It should be noted a

difference at the point m of the spectrum when m > 0 or m = 0. The explanation comes
from the different bound for the norm of the resolvent (compare the Proposition 3.3.6 and
4.2.5).

Concerning the fractional Laplacian H0 = −(∆)s, we obtain a Lieb-Thirring-type
inequality for all s > 0 and not just for s < min{1; d

2
}, as in [FLS08]. The result is the

following:

Theorem 1.3.5. Let H = H0 + V be the fractional Schrödinger operator defined by

(4.1.1) and V ∈ Lp(Rd;Mn(C)), p > max{1;
d

2s
}. We take τ > 0 small enough.

For 0 < s ≤ d
2
, the following inequality is satisfied

∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|α(1 + |λ|)β
≤ C · ‖V ‖pLp ,

where C depends on various parameters, and the powers verify

1. α = min{p+τ
2

; d
2s
},

2. β = 2τ + 1
2
(d
s
− p− τ)+.
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For s > d
2
, p > 1, we have∑

λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|α(1 + |λ|)β
≤ C · ‖V ‖pLp ,

where C depends on various parameters and the powers verify

1. α = 1
2

+ 1
2

min{p− d
2s

+ τ ; 1},

2. β = 2τ + 1
2
( d

2s
− p+ 1− τ)+.

Finally, applying Hansmann’s Theorem, we obtain the following results for the Klein-
Gordon operator and for the fractional Laplacian.

Theorem 1.3.6. Let Km be the Klein-Gordon operator with m > 0 defined in (3.6.1) and
V ∈ Lp(Rd;Mn(C)), p > d. Then, for τ > 0, the Lieb-Thirring-type inequality looks as
follow ∑

λ∈σd(K)

d(λ, σ(Km))p

(1 + |λ|)d+τ
≤ C · ‖V ‖pLp ,

where the constant C depends on various parameters.

Concerning the fractional Laplacian we have the following inequality:

Theorem 1.3.7. LetH = H0 +V be the Schrödinger operator defined in (4.1.1) for s > 0
and p > max{1; d

2s
} with V ∈ Lp(Rd;Mn(C)). Then, for τ > 0, the following inequality

holds true∑
λ∈σd(H)

d(λ, σ(H0))p

(1 + |λ|) d
2s

+τ
≤ C · ‖V ‖pLp ,

with C depending on various parameters.

Let us summarise the chronology of the previous results. Demuth, Hansmann, and
Katriel worked on the Schrödinger operator, or more generally on a perturbation of a pos-
itive self-adjoint operator. We wonder then if the method works with a non-semi-bounded
operator which lead us to the Dirac operator. Following the Dirac operator, we deduce
results for the Klein-Gordon operator who appears as “ half ” a Dirac operator. Finally
we interested ourself with the fractional Laplacian as a generalisation of the Schrödinger
and Klein-Gordon (with m = 0) operators.

From the various results we obtain for a perturbed operator H = H0 + V , we can
imagine the following picture for the behaviour of the eigenvalues of H and their rate of
convergence to the essential spectrum of H which is here the spectrum of H0. Indeed it
seems that three cases occur was whether the limit is a (finite) real edge of the spectrum,
or the point at infinity, or a point of the spectrum distinct from the edges (finite or not).
Since the results are limited by the fact that such sequences of eigenvalues exist or not,
we only give a few examples of possible conclusions deduce from the Lieb-Thirring-type
inequality of a perturbation of the Dirac operator, after remark 3.2.4. The comparison be-
tween the Lieb-Thirring-type inequalities obtained from Borichev, Golinskii, and Kupin
Theorem, and the one obtained from Hansmann Theorem for a same operator can be
found in Subsection 5.1.2.
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1.4 Possible directions for the future work
The present work gives rise to following natural problems we plan to work on in the
future:

• An improvement (or a variation) of the Borichev-Golinskii-Kupin Theorem allow-
ing to consider more peculiar growth condition near the boundary.

• If the unperturbed operator is H0 = f(−∆) with f a Bernstein function, for in-
stance, under which conditions are we able to find a Lieb-Thirring-type inequality
with the help of the methods described above ?

• In the spirit of [GK13], is it possible to obtain the above Lieb-Thirring-type in-
equalities for perturbations of self-adjoint perturbation, like the Stark operator or a
Schrödinger operator with a Coulomb or Hardy potential?

• We quote the Birman-Schwinger principle after (1.2.2) which is often used to lo-
calize the discrete spectrum. Concerning the Dirac operator, the dimension d = 1
has been studied by Cuenin, Laptev, and Tretter in [CLT14] for the Dirac operator.
So the question is still open for dimension d ≥ 2.

The study of perturbations of operators is not constrained to operators acting on Hilbert
space; in different setting, we sometimes have to restart from the beginning.

• We also may consider Banach spaces. In some Banach spaces the notion of de-
terminant is well understood. However many points remain to clear up in order to
apply results on the zeros of a holomorphic function. Results similar to those of
this dissertation have been obtained by Demuth and Hanauska in [DH13].
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2.1 Generalities: definitions and notation

2.1.1 General operator theory

We only consider complex separable Hilbert spaceH in this dissertation.
LetH1 andH2 be two Hilbert spaces, we define an operator fromH1 toH2 as a linear

application A defined on a dense subspace D of H1, called domain, with values in H2.
OftenH1 = H2.

If A is defined on the whole H1, we say that A is bounded on H1 if there exists a
constant C ∈ R such that ∀x ∈ H, ‖Ax‖ ≤ C · ‖x‖. We note L(H1,H2) the set of
bounded operators onH1 with values inH2. IfH1 = H2 = H, we simply write L(H).

Generally, since the operators we consider come from differential equations, they will
be defined on a dense subspaceD of a Hilbert spaceH and are not bounded. We call them
unbounded operators.

Fortunately working with a dense subspaceD in analysis has the advantage that we can
take the closure D of this subspace to “extend” known properties on D to D. Especially
we would like to define the notion of adjoint for an unbounded operator. But for that we
need to “extend” the operator from D toH.

The following notion of closable operator is important to work with unbounded oper-
ator. We first need to define the extension of an operator.
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Definition 2.1.1 (extension of an operator). Let A and B be two operators on H. We say
thatB is an extension ofA, and we writeA ⊂ B, ifD(A) ⊂ D(B) and ∀x ∈ D(A), Ax =
Bx.

Definition 2.1.2 (closed operator). We say that the operator A : D ⊂ H → H is closed if
its graph Γ(A) defined by Γ(A) := {〈x;Ax〉, x ∈ D} is closed in H

⊕
H endowed with

the scalar product 〈(x1; y1); (x2; y2)〉 = 〈x1;x2〉+ 〈y1; y2〉.

We now define the notion of closable operator.

Definition 2.1.3 (closable operator and closure). An operator A is called closable if it has
a closed extension.

Every closable operator has a smallest closed extension, called its closure. We denote
it by A.

There are operators which are not closable, but the self-adjoint operators or the essen-
tially self-adjoints operators are. We now define the adjoint of an operator.

Definition 2.1.4 (adjoint operator). Let A : H → H be a densely defined operator with
domain D(A). We denote

D(A∗) := {x ∈ H, ∃y ∈ H,∀z ∈ D(A), 〈Az;x〉 = 〈z; y〉}.

For each x ∈ D(A∗), we define A∗x = y. We call the operator A∗ the adjoint of A.

See [Sch12, p.8] for a definition with A : H1 → H2.

Proposition 2.1.5 (Theorem VIII.1 [RS80]). Let A be a densely defined operator in H.
Then

1. A∗ is closed.

2. A is closable if and only if D(A∗) is dense, in which case A = A∗∗.

3. If A is closable then
(
A
)∗

= A∗.

Definition 2.1.6 (self-adjoint, essentially self-adjoint operator). Let A be a densely de-
fined operator inH.

1) We say that A is self-adjoint if A = A∗, that is, if D(A) = D(A∗) and for all
x ∈ D(A), Ax = A∗x.

2) We say that A is essentially self-adjoint if A is self-adjoint.

Remark 2.1.7. If A is essentially self-adjoint, then it has one and only one self-adjoint
extension: A. In the sequel we denote the operator and its closure by the same symbol.

We end this section with the notion of compact operator.

Definition 2.1.8 (compact operator). LetA ∈ L(H). We say thatA is compact if for each
bounded subset E, the image A(E) is relatively compact inH (i.e. the closure of A(E) is
compact inH). We denote the space of compact operator onH by S∞ (see Section 2.2).
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We recall the Riesz-Schauder Theorem (see [RS80, Theorem VI.15] or [EE89, Theo-
rem I.1.9])

Theorem 2.1.9 (Riesz-Schauder Theorem). Let A be a compact operator on H. Then
the spectrum σ(A) of A is discrete with eventually λ = 0 as unique accumulation point.
Moreover any nonzero λ ∈ σ(A) is an eigenvalue of finite geometric multiplicity.

Remark 2.1.10. One can show that the algebraic multiplicity is also finite ([EE89, Remark
I.1.19]). Those notions will be defined in the next subsection.

2.1.2 Spectrum of operators and Weyl’s Theorem
We now turn our attention to the notion of spectrum of an operator.

Definition 2.1.11 (spectrum and resolvent). Let A : H → H be a closed operator in H
defined on D.

We say that λ ∈ C belongs to the resolvent set ρ(A) of A if the operator (λId−A) is a
bijection from D toH with bounded inverse.

In this case, we call (λId− A)−1 the resolvent of A at λ.
If λ /∈ ρ(A), we say that λ belongs to the spectrum of A and we note σ(A) = C\ρ(A).

Usually we write (λ− A)−1 instead of (λId− A)−1.

Definition 2.1.12 (eigenvalue). We say that λ ∈ C is an eigenvalue ofA if there exists x ∈
H\{0} such that Ax = λx. We then call x an eigenvector of A. The set of eigenvalues of
A is denoted by σp(A) and called point spectrum.

If λ is an eigenvalue of A then λId−A is not injective hence λ ∈ σ(A). In other terms
the kernel of λId− A, denoted by Ker(λId− A), is not reduce to the null vector. In this
case, the dimension of Ker(λId− A) is called geometric multiplicity of λ.

Let λ ∈ σp(A) and consider Rλ := {x ∈ H,∃n ∈ N∗, (λId− A)nx = 0} which is a
linear subspace of H. We call algebraic multiplicity of the eigenvalue λ, the dimension
ofRλ. Clearly the geometric multiplicity is less or equal to the algebraic multiplicity.

For more details about geometric and algebraic multiplicities see the book by Edmunds
and Evans [EE89].

The next proposition is [EE89, Theorem IX.2.3].

Proposition 2.1.13 (spectrum of the resolvent). Let A be a closed operator in H and
µ ∈ ρ(A). Then, for λ 6= µ,

1. λ ∈ ρ(A) if and only if (µ− λ)−1 ∈ ρ((µId− A)−1),

2. λ is an eigenvalue of A if and only if (µ−λ)−1 is an eigenvalue of (µId−A)−1 and
in this case the algebraic and geometric multiplicities are the same,

3. and λ is in the essential spectrum ofA (see definition below) if and only if (µ−λ)−1

belongs to the essential spectrum of (µId− A)−1.

Remark 2.1.14. Since the operators A we will consider are unbounded then, in particular,
for each µ ∈ ρ(A), 0 ∈ σ((µId− A)−1) ([Dav07, Lemma 8.1.9]).
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Definition 2.1.15 (discrete spectrum). Let A be a closed operator in H. We call discrete
spectrum of A and denote it by σd(A) the set of eigenvalues of A with finite algebraic
multiplicity.

We can now define the essential spectrum in the context of a Hilbert space.
Let us first recall there are different definitions for the essential spectrum of a closed

operator defined on a dense subspace of a Banach space. A detailed discussion can be find
at the beginning of [EE89, Section IX.1]. Theorem 1.6 in [EE89, p.417] tells us that those
definitions coincide when the operator is self-adjoint in a Hilbert space. For a definition
in the case of Hilbert space, see [RS80, Subsection VII.3]. In both case we can define the
essential spectrum in the following way.

Definition 2.1.16 (essential spectrum). Let A be a self-adjoint operator in H. Then the
essential spectrum of A is defined as the complementary set in σ(A) of the discrete spec-
trum, i.e.

σess(A) = σ(A)\σd(A).

We now formulate Weyl’s Theorem (see [RS78, Theorem XIII.14] or [EE89, Theorem
IX.2.1]).

Theorem 2.1.17 (Weyl’s Theorem). Let A be a self-adjoint operator and B be a closed
operator such that

1. For some λ ∈ ρ(B) ∩ ρ(A), (A− λ)−1 − (B − λ)−1 is compact.

2. and either

a) σ(A) 6= R and ρ(B) 6= ∅,
or

b) there are elements of ρ(B) in both the upper and lower half-planes.

Then σess(B) = σess(A).

To satisfy the first condition of Weyl’s Theorem, we will assume that, for suitable λ,
V (λ−H0)−1 is compact since we know that (λ−H)−1−(λ−H0)−1 = (λ−H)−1V (λ−
H0)−1. This is the point of the next definition.

Definition 2.1.18 (relatively compact). The potential V is a relatively compact perturba-
tion of H0 if dom(H0) ⊂ dom(V ) and for λ ∈ ρ(H0), V (λ−H0)−1 is compact.

The first condition of Weyl’s Theorem is then satisfy. The condition 2a) will be verified
for the Dirac operator with positive mass, the Klein-Gordon operator and the fractional
Laplacian, and 2b) will be verified for the massless Dirac operator.

We will assume more than the relatively compactness of V . In fact V (λ −H0)−1 will
belong to some subspaces of the space of compact operators, the Schatten-von Neumann
spaces Sp. These spaces are defined in the next section. We introduce the following
definition.
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Definition 2.1.19 (relatively Schatten-von Neumann). We say that V is a relatively Schatten-
von Neumann perturbation ofH0 if V is a relatively compact perturbation ofH0 such that,
for some p > 1,

for λ ∈ ρ(H0), V (λ−H0)−1 ∈ Sp. (2.1.1)

With this hypothesis in the hand, we may apply the Birman-Solomyak inequality (see
(2.4.2)) and also define a perturbation determinant. These tools are introduced in the next
sections.

2.2 Schatten-von Neumann classes and
perturbation determinant

2.2.1 Definitions and properties

For this subsection we refer to the monographs by Gohberg and Krein [GK69] and by
Simon [Sim05], and the paper [Sim77].

Recall that the space of compact operators onH is denoted by S∞.

Definition 2.2.1 (Schatten-von Neumann spaces). The Schatten-von Neumann spaces
Sp, 1 ≤ p <∞, are the subspaces of compact operators satisfying

Sp := {A ∈ S∞, ‖A‖pSp :=
+∞∑
n=1

sn(A)p < +∞},

where (sn(A))N are the singular values of A (or s-numbers), that is, the eigenvalues of
(AA∗)1/2 enumerated in decreasing order.

We recall ([GK69, Theorem III.7.1]) that the spaces Sp, p ≥ 1, are two-sided ideals of
L(H) and have the structure of a complete algebra for the norm ‖ · ‖Sp . Furthermore we
have the following inclusion: for p ≤ q,Sp ⊂ Sq.

Definition 2.2.2 (regularized determinant). LetA ∈ Sn, n ∈ N∗, we define the regularized
determinant

detn(Id− A) :=
+∞∏
k=1

[
(1− λk) exp

(
n−1∑
j=1

λjk
j

)]
,

where (λk)k is the sequence of eigenvalues of A.

This determinant satisfy the following properties:

1. detn(Id) = 1.

2. Let A ∈ Sn, Id−A is invertible if and only if detn(Id−A) 6= 0 ([Sim77, Cor.6.3]).

3. For all A,B ∈ L(H) satisfying AB,BA ∈ Sn, detn(Id− AB) = detn(Id−BA).
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4. If A(·) is a holomorphic function on a region Ω with values in Sp, then the function
detn(Id−A(·)) is holomorphic on Ω ([Sim77, Lemma 6.1] and [GK69, 8. p.163]).

5. Let A ∈ Sp for some real p ≥ 1. Then clearly A ∈ Sdpe, where dpe is defined by
min{n ∈ N, n ≥ p}, and verify the following property

|detdpe(Id− A)| ≤ exp
(

Γp‖A‖pSp
)
, (2.2.1)

with Γp a positive constant depending only on p ([Sim77, Theorem 6.4]).

The next definition comes from [GK69, Subsection IV.3.1].

Definition 2.2.3 (regularized perturbation determinant). LetA andB be bounded operator
in H with B − A ∈ Sp. Let µ be so that Id − µA is invertible, then, we call regularized
perturbation determinant of A by B − A ∈ Sp, the determinant defined by

d(µ) := detdpe
(
(Id− µB)(Id− µA)−1

)
The following property links the zeros of the regularized perturbation determinant and

the eigenvalues of the perturbed operator.

Proposition 2.2.4 (Zeros of the determinant). If µ ∈ ρ(A) ∩ σp(B) has finite algebraic
multiplicity then the order of µ−1 as zero of d is equal to the algebraic multiplicity of µ−1

as eigenvalue of B.

For the proof, we refer to [GK69, Subsection IV.3.4] - case p = 1 - or [GGK00, Theo-
rem XII.2.3], or [Han10, Proposition 1.5.8].

2.2.2 A regularized perturbation determinant
This subsection deals with the construction of a regularized perturbation determinant
needed in our proofs. The content is inspired by the work done in the paper [DHK09]
in Section 3.1.1. with the results in [GK69, Section IV.3].

We consider the following general setting: H0 is a self-adjoint operator and we assume
that σ(H0) = σess(H0). Then H = H0 + V with V (λ−H0)−1 ∈ Sp for some p > 1 and
for all λ ∈ ρ(H0). Hence, by Weyl’s Theorem, σess(H) = σess(H0).

We show the following property.

Proposition 2.2.5. With the above hypothesis, for −a ∈ ρ(H), we define a function F in
C\σ(H0) with values in Sp by

F (λ) = (λ+ a)(a+H)−1V (λ−H0)−1, (2.2.2)

and a function f : C\σ(H0)→ C by

f(λ) := detdpe(Id− F (λ)). (2.2.3)

We call the function f regularized perturbation determinant of H0 by V . It verify the
following properties: f is holomorphic on C\σ(H0), the zeros of f are the eigenvalues
of H , and the order of the zero is equal to the algebraic multiplicity of the corresponding
eigenvalue.
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Proof. Let λ ∈ ρ(H0) and −a ∈ ρ(H) (in particular −a ∈ ρ(H0)). Denoting µ =
λ+ a,A = (a+H0)−1 and B = (a+H)−1, we have

(Id− µB)(Id− µA)−1 = Id− Id + (Id− µB)(Id− µA)−1

= Id− [(Id− µA)− (Id− µB)] (Id− µA)−1

= Id− µ(B − A)(Id− µA)−1.

We recall that for all λ ∈ ρ(H0), µ−1 ∈ ρ(A), by Proposition 2.1.13, which justifies the
invertibility of Id− µA. In fact we have the following equivalence:

Id− (λ+ a)(a+H0)−1 invertible⇐⇒ [a+H0 − λ− a](a+H0)−1 invertible
⇐⇒ (λ−H0) invertible
⇐⇒ λ ∈ ρ(H0). (2.2.4)

We describe the above formula in terms of a, λ,H0, andH . That is, we have the following
resolvent relation

B − A = (a+H)−1 − (a+H0)−1

= (a+H)−1 [(a+H0)− (a+H)] (a+H0)−1

= −(a+H)−1V (a+H0)−1, (2.2.5)

so, substituting in the previous relation, we obtain, for λ ∈ ρ(H0),

Id− µ(B − A)(Id− µA)−1 =

= Id + (λ+ a)(a+H)−1V (a+H0)−1
[
Id− (λ+ a)(a+H0)−1

]−1

= Id + (λ+ a)(a+H)−1V
[(

Id− (λ+ a)(a+H0)−1
)

(a+H0)
]−1

= Id + (λ+ a)(a+H)−1V [−λ+H0]−1

= Id− F (λ),

where F is defined in (2.2.2) and F (λ) ∈ Sp since V (λ−H0)−1 ∈ Sp.
Now we show that the function f : C\σ(H0)→ C defined in (2.2.3) verifies the wanted

properties.
First of all the map λ 7→ F (λ) is well defined on ρ(H0) with values in Sp hence f is

well defined, holomorphic on ρ(H0), and f(−a) = detdpe(Id) = 1.
We now show that Id− F (λ) is non invertible if and only if λ ∈ σd(H). We know the

following resolvent equation from (2.2.5)

(a+H0)−1 − (a+H)−1 = (a+H)−1V (a+H0)−1,

consequently

Id− (λ+ a)(a+H)−1 =

= Id− (λ+ a)
[
(a+H0)−1 − (a+H)−1V (a+H0)−1

]
= Id− (λ+ a)(a+H0)−1 + (λ+ a)(a+H)−1V (a+H0)−1,
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hence, since λ ∈ ρ(H0),(
Id− (λ+ a)(a+H)−1

) [
Id− (λ+ a)(a+H0)−1

]−1
=

=
(
Id− (λ+ a)(a+H0)−1 + (λ+ a)(a+H)−1V (a+H0)−1

)
×

×
[
Id− (λ+ a)(a+H0)−1

]−1

= Id + (λ+ a)(a+H)−1V (a+H0)−1
[
Id− (λ+ a)(a+H0)−1

]−1

= Id− F (λ).

So Id−F (λ) is non invertible if and only if Id− (λ+a)(a+H)−1 is non invertible. But,
using the same argument as in (2.2.4) and knowing that λ /∈ σ(H0) = σess(H), we have

Id− (λ+ a)(a+H)−1 non invertible⇐⇒ λ ∈ σ(H)

⇐⇒ λ ∈ σd(H).

Finally, by Proposition 2.2.4,

f(λ) = 0⇐⇒ λ ∈ σd(H),

and the order of the zero for f is equal to the algebraic multiplicity of the eigenvalue λ
for H .

2.3 Complex analysis results

2.3.1 Borichev-Golinskii-Kupin Theorem
The next theorem, proved in [BGK09, Theorem 0.3], gives a bound of the zeros of a
holomorphic function on the unit disc D := {|z| < 1} according to its growth near the
boundary T := {|z| = 1}. The important aspect of this result for the sequel is that we can
consider points (ζj) on the unit circle where the growth increase.

Theorem 2.3.1 (Borichev, Golinskii, Kupin). Let h be a holomorphic function on D with
h(0) = 1. We assume that h satisfies the following inequality

|h(z)| ≤ exp

(
K

(1− |z|)α
N∏
j=1

1

|z − ζj|βj

)
, (2.3.1)

where K > 0, |ζj| = 1 and α, βj ≥ 0, j = 1, . . . , N .
Then, for all τ > 0, the zeros of h verify the following Blaschke-type inequality

∑
h(z)=0

(1− |z|)α+1+τ

N∏
j=1

|z − ζj|(βj−1+τ)+ ≤ C ·K,

where C depends on α, βj, ζj , and τ .

Above, x+ = max{x, 0}.
The above Blaschke-type inequality shows that the zeros of hmay accumulate “slower”

to the ζj-points than elsewhere on the unit circle.
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Remark 2.3.2. In the applications, the points ζj correspond (in general) to the edges of the
essential spectrum of the perturbed operator. But we shall be careful that a modification of
the power βj of the factor |z−ζj| does not only imply a modification of the corresponding
edge of the essential spectrum. Indeed, we can verify this fact with the proofs in this
thesis, but we also have to remember that we are working with a holomorphic function h
on D and so, a modification of the behaviour of h in the neighbourhood of some point in
the disc induce a modification in other regions in the disc.

For instance, in the case of the fractional Schrödinger operator, 0 ∈ C is the image of
−1 ∈ D via the conformal map ϕa defined in (4.2.6), and Formula (4.2.9) with |1 + z| =

2
√
|λ|

|
√
λ+ i

√
a|

for z ∈ D, λ ∈ C\R+ and a large enough, shows that a modification of the

power in the factor |1 + z| implies the factor |λ| (behaviour at 0) and a + |λ| (behaviour
at∞).

Remark 2.3.3. Since for β ∈ R we have (β+−1+τ)+ = (β−1+τ)+, instead of resolving
in the first place β ≥ 0, we will apply Theorem 2.3.1 directly when the inequality 2.3.1
occurs and we distinguish afterwards the different cases βj − 1 + τ ≥ 0.

This result has been improved in some sense by Demuth and Hansmann: [HK11, The-
orem 4]. But in our cases when we may apply the latter (massless Dirac, Klein-Gordon,
fractional Laplacian), it brings no difference with Theorem 2.3.1 (see also remark 3.6.9).

In particular, Favorov and Golinski discuss different investigations around the previous
theorem (see for instance [FG09]).

2.3.2 Useful inequalities

For two nonnegative functions f, g defined on a domain Ω of the complex plane C, we
write f(λ) ≈ g(λ) if there are constants C1, C2 > 0 so that C1f(λ) ≤ g(λ) ≤ C2f(λ)
for all λ ∈ Ω. And we write f(λ) . g(λ) if there is a positive constant C such that
f(λ) ≤ C · g(λ) for λ ∈ Ω. The choice of the domain Ω will be clear from the context.

We used repeatedly the next inequalities (in particular to bound integrals).

Lemma 2.3.4. 1. Let a, b ≥ 0, and p ≥ 1, then

ap + bp ≤ (a+ b)p ≤ 2p−1(ap + bp).

2. Let a, b ≥ 0, then

√
a2 + b2 ≤ a+ b ≤

√
2
√
a2 + b2.

3. Let 0 < α < 1 and a, b ≥ 0. Then

2α−1(aα + bα) ≤ (a+ b)α ≤ aα + bα.
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2.3.3 Conformal mappings

The conformal maps appear in our work for two reasons: the first to send the domain of
a map into D in order to apply Theorem 2.3.1 of Borichev, Golinskii, and Kupin. The
other to work with Hansmann’s Theorem 5.1.2 (or 5.1.1). In both case this is a distortion
problem, that is, to compare the distance between a point and the boundary of a region
and the distance of the image of this point to the image of the boundary by a conformal
map. We denote the distance between z and A by d(z, A) := inf

w∈A
|z − w|.

This allow on one hand to send our study of the discrete spectrum from C to a study in
D so that we can apply Theorem 2.3.1 of Borichev, Golinskii, and Kupin, or on the other
hand to transfer a problem with an unbounded operator to a problem with its resolvent so
that we can apply the results of Hansmann 5.1.2 or 5.1.1.

Theorem 2.3.5 (Koebe distortion). Let f : D→ C be injective. Then

∀z ∈ D,
1

4
(1− |z|2)|f ′(z)| ≤ d(f(z), ∂f(D)) ≤ (1− |z|2)|f ′(z)|.

For a proof we refer to [Pom92, Corollary 1.4].
In the sequel we will use the following writing of the above inequality with the introduc-

tion of the distance between z and the unit circle T. Since for all z ∈ D, 1 ≤ 1 + |z| ≤ 2,
we have

∀z ∈ D,
1

4
d(z,T) |f ′(z)| ≤ d(f(z), ∂f(D)) ≤ 2 d(z,T) |f ′(z)|. (2.3.2)

2.4 Birman-Solomyak inequality

The next result is a generalization of Theorem 4.1 in [Sim05] to vector-valued function.
We putMn(C) to be the space of square complex matrices of order n. For p ≥ 1, we

consider the space of measurable functions on Rd with values inMn(C) defined by

Lp(Rd;Mn(C)) =

{
V : ‖V ‖pLp =

∫
Rd
‖V (x)‖pF dx

}
,

where ‖ · ‖F is called Frobenius norm,

‖V (x)‖F =

( ∑
i,j=1,...,n

|(V (x))i,j|2
)1/2

. (2.4.1)

The choice of the Frobenius norm is important for the proof of the following proposi-
tion.

Proposition 2.4.1. Let f and g ∈ Lp(Rd,Mn(C)) with 1 < p < ∞. Then we have the
following inequality

‖f · g(−i∇)‖pSp ≤ (2π)−d‖f‖pLp · ‖g‖
p
Lp . (2.4.2)
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Proof. The proof closely follows [Sim05, Theorem 4.1], the main modifications being
the use of the Froebenius norm and relation (2.4.3) for matrix-valued integral operators.
To stress the differences of the matrix-valued case as compared to the scalar one, we give
the argument in a somewhat more detailed form than the quoted theorem from [Sim05].

All operators considered in this proposition act on L2(Rd;Cn). Let B be a bounded
operator given, for f ∈ L2(Rd;Cn), by

(Bf)(x) =

∫
Rd
K(x, y)f(y) dy,

where the kernel K(·, ·) is aMn(C)-valued measurable function. A familiar result from
[GK69] or [Sim05] says that

‖B‖2
S2

=

∫
Rd

∫
Rd
‖K(x, y)‖2

F dxdy. (2.4.3)

Now, denote by A := f(x)g(−i∇) the integral operator associated to the kernel

(2π)−d/2f(x)ǧ(x− y),

where ǧ is the inverse Fourier transform of g.
Suppose that f and g are in L2(Rd;Mn(C)). Recalling (2.4.1) and the fact that the

norm is submultiplicative, we obtain that

‖A‖2
S2

= ‖f(x)g(−i∇)‖2
S2

= (2π)d
∫
Rd

∫
Rd
‖f(x)ǧ(x− y)‖2

F dxdy

≤ (2π)−d
∫
Rd

∫
Rd
‖f(x)‖2

F‖ǧ(x− y)‖2
F dxdy

≤ (2π)−d‖f‖2
L2 · ‖g‖2

L2 ,

where we used Fubini and Fourier-Parseval Theorems. So, the integral operator A lies in
S2 (i.e., it is Hilbert-Schmidt), and we have bound (2.4.2) for p = 2. In particular, A is a
compact operator.

Recall that L∞ is the space endowed with the norm

‖f‖L∞ := ess-supx∈Rd‖f(x)‖F .

Let us take two test functions φ, ψ from L2(Rd;Cn) such that

‖φ‖2
L2 =

∫
Rd
‖φ(x)‖2

2 dx =

∫
Rd

(
n∑
i=1

|φi(x)|2
)
dx ≤ 1

and ‖ψ‖2
L2 ≤ 1. We are to prove that

‖A‖ = ‖A‖S∞ = sup
φ,ψ
|(φ,Aψ)| ≤ ‖f‖∞ · ‖g‖∞, (2.4.4)

where f, g ∈ L2 ∩ L∞. Indeed,

|(φ,Aψ)| = |(φ, f(gψ̂)̌)| = |(f ∗φ, (gψ̂)̌ )|
≤ ‖(f ∗φ‖L2 ‖(gψ̂)̌ ‖L2 .
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Then

‖f ∗φ‖2
L2 =

∫
Rd
‖f ∗φ‖2

2 dx ≤
∫
Rd
‖f‖2

F‖φ‖2
2 dx ≤ ‖f‖2

∞‖φ‖2
L2 ,

and, similarly,

‖gψ̂‖2
L2 ≤ ‖g‖2

∞‖ψ̂‖2
L2 = ‖g‖2

∞‖ψ‖2
L2 .

Hence, (2.4.4) is proved for all f, g in L2 ∩ L∞. Then the standard complex interpolation
argument yields

‖f(x)g(−i∇)‖pSp ≤ (2π)−d‖f‖pLp · ‖g‖
p
Lp ,

for all 2 ≤ p <∞. The same result for indices 1 < p ≤ 2 follows by duality.
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3 The Dirac operator : results and
proofs
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3.1 Definition

According to Dirac’s theory (see for instance [Tha91, Section 1]) the relativistic motion
of a particle with spin 1

2
- electron or positron for examples in the case of a positive mass

m > 0 - (without electromagnetic field) is describe by the Dirac operator. Because of
spin structure, the configuration space of the particle takes values in Cn, where n = 2ν

with ν ≥ 1. The movement of the free particle of mass m is given by the Dirac equation,

i~
∂ϕ

∂t
= Dmϕ,
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where ϕ ∈ L2(Rd;Cn) with d ∈ {1, . . . , n− 1}, if m > 0 and d ∈ {1, . . . , n} otherwise.
The Dirac operator is defined as

Dm := −ic~α · ∇+mc2β = −ic~
d∑

k=1

αk
∂

∂xk
+mc2β. (3.1.1)

Here c is the speed of light, and ~ is the reduced Planck constant. We renormalize and
consider ~ = c = 1. Here we set α := (α1, . . . , αd) and β := αd+1. The matrices αi are
d+ 1 linearly independent self-adjoint linear maps, acting in Cn, satisfying the following
anti-commutation relations

αiαj + αjαi = 2δi,jId ,

for i, j = 1, . . . , d+1. For instance, on R3, one can choose the Pauli-Dirac representation

αi =

(
0 σi
σi 0

)
, β =

(
IdC2 0

0 −IdC2

)
,

for i = 1, 2, 3 and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In the general case, the n × n-matrices αj are constructed as special elements of the
so-called Clifford algebra (see [Obo98, Chapter 1]). Without any loss of generality we
take

β :=

(
IdCn/2 0

0 −IdCn/2

)
.

Mimicking the proofs of Section 1.1 to Section 1.4 of [Tha91, Section 1] it is easy to
check that the operator Dm is essentially self-adjoint on C∞c (Rd;Cn) and the domain of
its closure is H 1(Rd;Cn), the Sobolev space of order 1 with values in Cn. The closure of
the operator is denoted with the same symbol Dm. With the help of the Fourier transform,
it is easy to prove that Dm is unitarily equivalent to( √

−∆Rd +m2 × IdCn/2 0

0 −
√
−∆Rd +m2 × IdCn/2

)
. (3.1.2)

Hence the spectrum of Dm is absolutely continuous and given by ]−∞,−m]∪ [m,+∞[.
We recall that the function V is identified with the operator of multiplication by itself.

Assuming that V ∈ Lp(Rd;Mn(C)) and p > d, we show (Proposition 2.4.1) that the mul-
tiplication by V is a relatively Schatten-von Neumann perturbation of Dm (see definition
2.1.19). We consider the perturbed operator

D = Dm + V. (3.1.3)

By Weyl’s Theorem 2.1.17

σess(D) = σess(Dm) = σ(Dm) =]−∞,−m] ∪ [m,+∞[.
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3.2 Results and comparisons

Our main results for the Dirac operator are the following. We first give the results when
the mass m is positive and then when m = 0. We compare the first theorem with previ-
ously known results.

Let us give some precisions about the constants involved in the results and who will be
introduce in the following sections. The constant b is a real number, larger than 1, in order
to define the resolvent of the perturbed operator D at the point ib (see Lemma 3.3.7), and
Zb is a constant from the distortion calculus.

Theorem 3.2.1 (case m > 0). Let D be the perturbed Dirac operator defined in (3.1.3)
with V ∈ Lp(Rd;Mn(C)) with p > d. Then the discrete spectrum σd(D) verify the
following Lieb-Thirring-type inequalities.

If d ≥ 2 and 0 < τ ≤ p− d then

∑
λ∈σd(D)

d(λ, σ(Dm))p+τ

|λ−m| · |λ+m|(1 + |λ|)2p−2+2τ
≤ C ·K4 · ‖V ‖pLp , (3.2.1)

with

1. K4 = K1 b
p 25p+d−2+3τ · (1 +m)3p+d−3+2τ

m3p+d−2+τ
· Z12p+2d−13+3τ

b ,

a) where K1 = Γp2
d−2(2π)−dsd−1n

p
2M(1 + 2m)d−1,

b) and M, sd−1 are defined in Proposition 3.3.6;

2. and C depends on d, p,m, and τ .

When d = 1, for τ > 0, the inequality becomes

∑
λ∈σd(D)

d(λ, σ(Dm))p+1+τ

|λ+m| · |λ−m| · (1 + |λ|)2p+2τ
≤ C ·K3 · ‖V ‖pLp , (3.2.2)

with

1. K3 = n
p
2 s0 ·

Γp
2π
· bp ·M(1 + 2m) 25p+4+3τ · (1 +m)3p+1+τ

m3p+2+τ
· Z12p+1+3τ

b ,

2. the constants M and s0 are defined in Proposition 3.4.1,

3. and C depends on p,m, and τ .

Remark 3.2.2. The above constants C come from the application of Theorem 2.3.1 of
Borichev-Golinskii-Kupin and are not explicit. But the constants K4 and K3 are com-
putable from the proof of the theorems. This remark is also valid for the other theorems
deduce from Theorem 2.3.1.
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We compare these inequalities with result from Cancelier, Lévy-Bruhl, and Nourrigat
([CLN96]) in dimension d = 3, and another from Frank and Simon ([FS11]) in dimension
d = 1. In these articles the authors worked with self-adjoint perturbations (the potential V
being real), and in these cases, the relations (3.2.1) and (3.2.2) can be written in a simpler
form. In fact the discrete spectrum σd(D) is then real and hence is contained in ]−m;m[.
We denote Em = {±m} and we have d(λ, σ(Dm)) = d(λ,Em) for λ ∈ σd(D). A simple
computation shows that (3.2.1) becomes∑

λ∈σd(D)

d(λ,Em)p−1+τ . ‖V ‖pLp , (3.2.3)

and (3.2.2) becomes∑
λ∈σd(D)

d(λ,Em)p+τ . ‖V ‖pLp . (3.2.4)

In [CLN96], d = 3 and, with our notation, one of their results (see [CLN96, Corollaire
1.3]) says that

∀γ > 0,
∑

λ∈σd(D)

d(λ,Em)γ ≤ Cp

(
‖V ‖γ+3

Lγ+3 + ‖V ‖γ+3/2

Lγ+3/2

)
,

for real potentials such that the right-hand side is convergent. Taking γ = p − 3, i.e.
p > d = 3, we find∑

λ∈σd(D)

d(λ,Em)p−3 ≤ Cp
(
‖V ‖pLp + ‖V ‖p−3/2

Lp−3/2

)
, (3.2.5)

where p > 3 and V ∈ Lp(R3;R) ∩ Lp−3/2(R3;R).
In [FS11], d = 1 and they proved (see [FS11, Theorem 7.1]), for γ ≥ 1

2
and V ∈

Lγ+1(R;R) ∩ Lγ+1/2(R;R).∑
λ∈σd(D)

d(λ,Em)γ ≤ C1,p‖V ‖γ+1
Lγ+1 + C2,p,m‖V ‖γ+1/2

Lγ+1/2 .

Taking γ = p− 1
2

with p ≥ 1, we get to∑
λ∈σd(D)

d(λ,Em)p−
1
2 ≤ C1,p‖V ‖

p+ 1
2

Lp+
1
2

+ C2,p,m‖V ‖pLp , (3.2.6)

and V ∈ Lp(R;R)∩Lp+1/2(R;R). Clearly the inequalities (3.2.5) and (3.2.6) are respec-
tively better than (3.2.3) and (3.2.4). On the other hand, even for real-valued case, the
inequality (3.2.3) is valid for larger classes of potentials. The point is that (3.2.1) remains
true for complex-valued perturbations. As often happens, the strength of the method we
use is indivisible from its weakness, i.e., being very general and rather powerful, it does
not go ultimately far in exploiting the specifics of operators under consideration. Conse-
quently the bounds on the discrete spectrum it produces are expected to be improvable at
least in some special cases.

In the case m = 0 we obtain the next result.
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Theorem 3.2.3 (case m = 0). Let D be the Dirac operator defined in (3.1.3) with m = 0
and V ∈ Lp(Rd;Mn(C)), p > d. Then, for 0 < τ ≤ p− d, we have∑

λ∈σd(D)

d(λ, σ(D0))p+τ

(1 + |λ|)2(p+τ)
≤ C ·K1 · ‖V ‖pLp , (3.2.7)

withC depending on p, d, and τ , andK1 = Γp 22p−1 bp+d+τK,K is defined in Proposition
3.5.2.

Remark 3.2.4. In Appendix, we improve this result using the integration seen for operator
bounded from below. We obtain the following result (see Theorem 6.1.1):

Theorem 3.2.5 (case m = 0). With the above hypothesis, for 0 < τ ≤ p− d, we have∑
λ∈σd(D)

d(λ, σ(D0))p+τ

(1 + |λ|)d+2τ
. ‖V ‖pLp .

Theorems 3.2.1 and 3.2.3 provide quantitative estimates for the convergence of se-
quences of eigenvalues (λn) ⊂ σd(D) to σess(D) for V ∈ Lp(Rd). To illustrate, we fix
m > 0 and consider sequences (λn) ⊂ σd(D) converging to a point λ chosen in three
different ways. Suppose that Im(λn) > 0.

1. Let λ = ±m and assume there is a constant C strictly positive such that |Re(λn ∓
m)| ≤ C |Imλn|. Then

d(λn, σ(Dm)) ≈ |λn ∓m|, |λn ±m| ≈ const, 1 + |λn| ≈ const,

and relation (3.2.1) implies that
∞∑
n=1

|λn ∓m|p−1+τ < +∞.

2. Let λ =∞ and |Im(λn)| ≤ C. Then

d(λn, σ(Dm)) ≈ |Im(λn)|, |λn +m|.|λn −m| ≈ |λn|2, 1 + |λn| ≈ |λn|,

and relation (3.2.1) implies that
∞∑
n=1

|Im(λn)|p+τ

|λn|2p+2τ
< +∞.

3. If λ ∈]m;∞[, then

d(λn, σ(Dm)) ≈ |Im(λn)|, |λn +m|.|λn −m| ≈ const, 1 + |λn| ≈ const,

and relation (3.2.1) implies that
∞∑
n=1

|Im(λn)|p+τ < +∞.

Concerning the proofs, we start with the proof of the case m > 0 with d ≥ 2 and then
with d = 1. We prove then the case m = 0.
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3.3 Proof in dimension greater than 2
In this section and the next one (d = 1), we assume m > 0.

3.3.1 Conformal map for the Dirac operator

We have to send the resolvent set ρ(Dm) = C\{]−∞,−m] ∪ [m,+∞[} in the unit disc
D via a conformal map. The mappings we need are the next ones :

Figure 3.1: Map’s domains

1. z1 =
λ−m
λ+m

: C\σ(Dm) → C\[0,+∞[. The inverse mapping is given by λ =

m
1 + z1

1− z1

.

2. z2 =
√
z1 : C\[0,+∞[→ {Im(z) > 0}. The inverse mapping is z1 = z2

2 .

3. z3 =
z2 − i

z2 + i
: {Im(z) > 0} → D. The inverse map is z2 = i

1 + z3

1− z3

.

4. The normalization is operated by

u = eiθ
z3 − zb
1− zbz3

: Dz3 → Du,

where zb = −ib/(|m + ib| + m) is the image of ib by the three first conformal
mappings. We recall that b is a real number needed to define the resolvent of D at
ib. As above, we sometimes label the unit disk D by the corresponding variable to
avoid misunderstanding. We put furthermore

um,+ := u(1), um,− := u(−1).

The inverse map is z3 =
u+ eiθzb
eiθ + uzb

.
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Notice that the conformal mapping u will serve to match the normalization h(0) = 1
from Theorem 2.3.1. The following conformal maps

ψ = (z3 ◦ z2 ◦ z1)−1 : Dz3 → C\σ(Dm), (3.3.1)
ϕ = (u ◦ z3 ◦ z2 ◦ z1)−1 : Du → C\σ(Dm)

will be important for the sequel.
The map ψ is easy to compute,

λ = ψ(z3) = −2m
z3

1 + z2
3

. (3.3.2)

The next propositions deals with the computation of distortion. We prove them with
the help of the Koebe distortion Theorem 2.3.5.

Remark 3.3.1 (Notation). To simplify the following relations we note Zb =
1 + |zb|
1− |zb|

.

Lemma 3.3.2. With the notation above we have

1. (2Zb)
−1 d(u,T) ≤ d(z3,T) ≤ 2Zb d(u,T).

2. Z−1
b |u− u(a)| ≤ |z3 − a| ≤ Zb |u− u(a)|, with a ∈ {1,−1, i,−i}.

Proof. To simplify the reading we note in this proof z instead of z3. Notice that ∀z ∈
D, 1

2
(1− |z|2) ≤ d(z,T) ≤ 1− |z|2, since for z ∈ D, 1 ≤ 1 + |z| ≤ 2.

Let z ∈ Dz, then

1− |z|2 =
|eiθ + uzb|2 − |u+ eiθzb|2

|eiθ + uzb|2

=
1− |u|2 + |uzb|2 − |zb|2

|eiθ + uzb|2
=

(1− |u|2)(1− |zb|2)

|eiθ + uzb|2
.

Hence

1

2

1− |zb|2

|eiθ + uzb|2
· d(u,T) ≤ d(z,T) ≤ 2

1− |zb|2

|eiθ + uzb|2
· d(u,T). (3.3.3)

See the remark next to the proof for the use of Koebe distortion Theorem.

Let us prove the second point. Recall that um,+ = u(1) = eiθ 1− zb
1− zb

and that um,− =

u(−1) = −eiθ 1 + zb
1 + zb

.

In the case a = 1, we have

|z − 1| =
∣∣∣∣u+ eiθzb − (eiθ + uzb)

eiθ + uzb

∣∣∣∣ =

∣∣∣∣u(1− zb) + eiθ(zb − 1)

eiθ + uzb

∣∣∣∣
=

∣∣∣∣ 1− zb
eiθ + uzb

∣∣∣∣ · ∣∣∣∣u+ eiθ zb − 1

1− zb

∣∣∣∣ =
|1− zb|
|eiθ + uzb|

· |u− um,+|. (3.3.4)
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In the same way we obtain

|z + 1| = |1 + zb|
|eiθ + uzb|

· |u− um,−|, |z + i| = |1 + izb|
|eiθ + uzb|

· |u− u(−i)|,

and |z − i| = |1− izb|
|eiθ + uzb|

· |u− u(i)|.

To explicit the constant depending on b, we have

1− |zb| ≤ 1− |uzb| ≤ |eiθ + uzb| ≤ 1 + |zb|,

so

1− |zb|
1 + |zb|

≤ 1− |zb|2

|eiθ + uzb|2
≤ 1 + |zb|

1− |zb|
,

then, with a ∈ {1,−1, i,−i},

1− |zb|
1 + |zb|

≤ |1 + azb|
|eiθ + uzb|

≤ 1 + |zb|
1− |zb|

. (3.3.5)

Finally with the notation in Remark 3.3.1 we get the lemma.

Remark 3.3.3. We may also use (2.3.2). We would obtain

1

4

1− |zb|2

|eiθ + uzb|2
· d(u,T) ≤ d(z,T) ≤ 2

1− |zb|2

|eiθ + uzb|2
· d(u,T).

In one hand, the function here is simple, hence the computations are easy; on the other
hand, it gives an example where the constants in the inequalities (2.3.2) are not sharp. But
it is interesting to note that the constant depending on b is the same with both methods.
However to find the distortion at the points −1 and 1, the Koebe distortion Theorem does
not help.

Proposition 3.3.4 (Distortion between C\σ(Dm) and D). The distortion via the map ϕ
defined in (3.3.1) between C\σ(Dm) and D is the following :

d(λ, σ(Dm)) ≥ m

2
Z−7
b

|u− um,+| · |u− um,−|
|u− u(i)|2|u− u(−i)|2

d(u,T), (3.3.6)

d(λ, σ(Dm)) ≤ 4mZ7
b

|u− um,+| · |u− um,−|
|u− u(i)|2|u− u(−i)|2

d(u,T), (3.3.7)

and

d(u,T) ≤ 16Zb(1 +m) · d(λ, σ(Dm))

(|λ+m| · |λ−m|) 1
2 (1 + |λ|)

, (3.3.8)

d(u,T) ≥ mZ−1
b

8(1 +m)
· d(λ, σ(Dm))

(|λ+m| · |λ−m|) 1
2 (1 + |λ|)

. (3.3.9)
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Proof. Since ψ′(z) = −2m
1− z2

(1 + z2)2
, we obtain by (2.3.2)

m

2
· |1− z

2
3 |

|1 + z2
3 |2
d(z3,T) ≤ d(λ, σ(Dm)) ≤ 4m · |1− z

2
3 |

|1 + z2
3 |2
d(z3,T). (3.3.10)

Now

|1− z2
3 | = |1− z3| · |1 + z3| and |1 + z2

3 | = |z3 − i| · |z3 + i|,

then we use the previous lemma to find (3.3.6) and (3.3.7).
To prove (3.3.8) and (3.3.9), we start from (3.3.10) to obtain

1

4m
· d(λ, σ(Dm))|1 + z2

3 |2

|1− z2
3 |

≤ 1− |z3| ≤
2

m
· d(λ, σ(Dm))|1 + z2

3 |2

|1− z2
3 |

. (3.3.11)

The definitions of zi, i = 1, 2, 3 give the following relations

1− z2
3 =

4i
√
z1

(
√
z1 + i)2

and 1 + z2
3 =

2z1 − 2

(
√
z1 + i)2

, (3.3.12)

hence
|1 + z2

3 |2

|1− z2
3 |

=
|z1 − 1|2√
|z1| · |

√
z1 + i|2

and

1 + |z1| ≤ |
√
z1 + i|2 ≤ 2(1 + |z1|), (3.3.13)

since Im(
√
z1) = Im(z2) > 0. Then

|z1 − 1| = 2m

|λ+m|
, |
√
z1| =

∣∣∣∣λ−mλ+m

∣∣∣∣
1
2

,
1

1 + |z1|
=

|λ+m|
|λ+m|+ |λ−m|

. (3.3.14)

On the other side the inequalities in Lemma 2.3.4 give

|λ+m|+ |λ−m| ≤
√

2
√
|λ+m|2 + |λ−m|2 = 2

√
|λ|2 +m2

≤ 2(|λ|+m) ≤ 2(1 +m)(1 + |λ|) (3.3.15)

and

|λ+m|+ |λ−m| ≥
√
|λ+m|2 + |λ−m|2 =

√
2
√
|λ|2 +m2

≥ |λ|+m ≥ m

1 +m
(1 + |λ|). (3.3.16)

Putting all this together in (3.3.11), we obtain

d(z3,T) ≤ 8(1 +m) · d(λ, σ(Dm))

(|λ+m| · |λ−m|)
1
2 (1 + |λ|)

and

d(z3,T) ≥ m

4(1 +m)
· d(λ, σ(Dm))

(|λ+m| · |λ−m|)
1
2 (1 + |λ|)

.

We finish the proof with Lemma 3.3.2.
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3.3.2 Bound on the resolvent of the unperturbed Dirac
operator

We apply Proposition 2.4.1 to the Dm operator by putting, for x ∈ Rd,

f(x) = V (x), g(x) = (λ− µm(x))−1 × IdCn ,

with µm(x) :=
√
|x|2 +m2 × IdCn . We obtain the next proposition

Proposition 3.3.5. Let V ∈ Lp(Rd;Mn(C)), p > d, and λ ∈ ρ(Dm). Then V (λ −
Dm)−1 ∈ Sp, and

‖V (λ−Dm)−1‖pSp ≤ (2π)−d‖V ‖pLp · ‖(λ− µm(·))−1‖pLp

if Re(λ) ≥ 0 and

‖V (λ−Dm)−1‖pSp ≤ (2π)−d‖V ‖pLp · ‖(λ+ µm(·))−1‖pLp

if Re(λ) ≤ 0.

We find then a bound of the expression ‖(λ ± µm(·))−1‖Lp appearing in the above
inequality for d ≥ 2. The case d = 1 is treated in the corresponding section.

Proposition 3.3.6. Assume d ≥ 2. Let λ = λ0 + iλ1 and p > d. Then

‖(λ− µm(·))−1‖pLp ≤ 2d−2sd−1n
p
2 ·M · (|λ−m|+m)d−1

d(λ, σ(Dm))p−1

for λ0 ≥ 0, and

‖(λ+ µm(·))−1‖pLp ≤ 2d−2sd−1n
p
2 ·M · (|λ+m|+m)d−1

d(λ, σ(Dm))p−1

for λ0 ≤ 0.
Above, M = max{M1;M2} where

1. M1 = 2
d−1

2 ×max

{
(1 + 2d−2)

∫ +∞

0

dt

(t2 + 1)
p
2

; 2d−2

∫ +∞

0

td−1 dt

(t2 + 1)
p
2

}
,

2. and M2 = 2

∫ +∞

0

dt

(t2 + 1)
p
2

,

and sd−1 = 2π
d−1
2

Γ( d−1
2 )

is the total mass of the invariant measure on the unit sphere of dimen-

sion d− 1, Γ is Euler’s function.

Proof. First of all, recall that (λ − µm(·))−1 = (λ − µm(·))−1 × IdCn , hence ‖(λ −
µm(·))−1‖p

Lp(Rd,Mn(C))
= np/2‖(λ− µm(·))−1‖p

Lp(Rd,C)
.
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The case ±λ0 ≥ 0 being similar, we give the proof for λ0 ≥ 0 (and λ1 > 0) only. After
a polar change of variable,

‖(λ− µm(·))−1‖p
Lp(Rd,C)

= sd−1

∫ +∞

0

rd−1

|
√
r2 +m2 − λ|p

dr,

where sd−1 =
2π

d−1
2

Γ
(
d−1

2

) . We are then reduced to bound

I =

∫ +∞

0

rd−1

|
√
r2 +m2 − λ|p

dr.

We write |
√
r2 +m2−λ|p =

(
(
√
r2 +m2 − λ0)2 + λ2

1

)p
2 and make the change of variable

s =
√
r2 +m2 −m. Hence,

I =

∫ +∞

0

((s+m)2 −m2)
d−2

2 (s+m)

((s+m− λ0)2 + λ2
1)
p
2

ds. (3.3.17)

We now distinguish the cases m ≤ λ0 and 0 ≤ λ0 < m. For m ≤ λ0, we observe that
d(λ, σ(Dm)) = |λ1|. On pose β = λ0 −m ≥ 0 et (comme d ≥ 2) on utilise l’inégalité√

(s+m)2 −m2 ≤ s+m, d’où

I ≤
∫ +∞

0

(s+m)d−1

((s− β)2 + λ2
1)
p
2

ds.

Since m ≤ λ0 and λ /∈ σ(Dm), we have |λ1| > 0, and∫ +∞

0

(s+m)d−1

((s− β)2 + λ2
1)
p
2

=
1

|λ1|p

∫ β

0

(s+m)d−1((
s− β
λ1

)2

+ 1

)p
2

ds

+
1

|λ1|p

∫ +∞

β

(s+m)d−1((
s− β
λ1

)2

+ 1

)p
2

ds. (3.3.18)

In the right hand-side of (3.3.18), we make the change of variable t =
β − s
λ1

in the first

integral and t =
s− β
λ1

in the second one (we assume λ1 > 0). Then we apply the

inequality (a+ b)d−1 ≤ 2d−2(ad−1 + bd−1) for a, b ≥ 0. This leads to the bounds

I ≤ 2d−2

|λ1|p−1

∫ β
λ1

0

(β − λ1t)
d−1dt

(t2 + 1)
p
2

+

∫ β
λ1

0

md−1dt

(t2 + 1)
p
2

+

∫ +∞

0

(β + λ1t)
d−1dt

(t2 + 1)
p
2

+

∫ +∞

0

md−1dt

(t2 + 1)
p
2

)
.
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For 0 ≤ t ≤ β
λ1
, β − λ1t ≤ β since λ1 > 0, and recalling that p > d, we can bound in the

following way

I ≤ 2d−2

|λ1|p−1

[ (
(1 + 2d−2)βd−1 + 2md−1

) ∫ +∞

0

dt

(t2 + 1)
p
2

+ 2d−2|λ1|d−1

∫ +∞

0

td−1 dt

(t2 + 1)
p
2

]
.

Moreover, using Lemma 2.3.4,

βd−1 + |λ1|d−1 ≤ (λ0 −m+ λ1)d−1 ≤
(√

2
√

(λ0 −m)2 + λ2
1

)d−1

,

we obtain, for m ≤ λ0,

I ≤ 2d−2

d(λ, σ(Dm))p−1

(
M1|λ−m|d−1 +M2m

d−1
)
,

with M1 = 2
d−1
2 max

{
(1 + 2d−2)

∫ +∞

0

dt

(t2 + 1)
p
2

; 2d−2

∫ +∞

0

td−1 dt

(t2 + 1)
p
2

}
and

M2 = 2

∫ +∞

0

dt

(t2 + 1)
p
2

.

We now turn to the case 0 ≤ λ0 < m. We see d(λ, σ(Dm)) = |λ −m|; going back to
(3.3.17), we use the inequality (s+m− λ0)2 + λ2

1 ≥ s2 + |λ−m|2. Consequently

I ≤ 1

|λ−m|p

∫ +∞

0

(s+m)d−1((
s

|λ−m|

)2

+ 1

)p
2

ds.

Doing the change of variable t =
s

|λ−m|
and bounding as in the first part of the compu-

tation, we come to, for 0 ≤ λ0 < m,

I ≤ 2d−2

d(λ, σ(Dm))p−1

(
M̃1|λ−m|d−1 + M̃2m

d−1
)
,

with M̃1 =

∫ +∞

0

td−1 dt

(t2 + 1)
p
2

et M̃2 =

∫ +∞

0

dt

(t2 + 1)
p
2

. The proposition is proved.

3.3.3 Bound on the resolvent of the perturbed Dirac operator
The next lemma shows that, for b large enough, ib ∈ ρ(H). Although it is not an obliga-
tion, it is useful to bound ‖(−ib + D)−1‖ by 1. We refer to [Han10, Lemma 3.3.4] for a
more general statement.

Lemma 3.3.7. Let p > d ≥ 2. Then for b large enough, we know that
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1. the operator −ib+D is invertible, that is ib ∈ ρ(D),

2. and ‖(−ib+D)−1‖ ≤ 1.

We use the bound in Proposition 3.3.6, hence we assume d ≥ 2.

Proof. First notice that inequality ‖V (ib−Dm)−1‖ < 1 implies that the operator (−ib+D)
is invertible.

Indeed, the inequality ‖V (ib−Dm)−1‖ < 1 implies that Id−V (ib−Dm)−1 is invertible,
and we have

Id− V (ib−Dm)−1 = (ib−Dm)(ib−Dm)−1 − V (ib−Dm)−1

= (ib−Dm − V )(ib−Dm)−1

= (ib−D)(ib−Dm)−1.

Second, we show that we have ‖V (ib−Dm)−1‖ < 1 for b large enough. Since ‖A‖ ≤
‖A‖Sp , for all operators A, Propositions 2.4.1 and 3.3.5 entail

‖V (ib−Dm)−1‖p ≤ ‖V (ib−Dm)−1‖pSp

≤ K‖V ‖pLp
(1 + |ib−m|d−1)

|ib−m|p−1
, (3.3.19)

where K does not depend on b. It is convenient to put

C(b)p = K‖V ‖pLp
(1 + |ib−m|d−1)

|ib−m|p−1
.

The right-hand side of inequality (3.3.19) trivially goes to zero when b goes to infinity,
and so ‖V (ib−Dm)−1‖ ≤ C(b) < 1 for b large enough.

Now we prove that ‖(−ib+D)−1‖ ≤ 1 for b large enough. Using the resolvent identity,
we get

‖(−ib+D)−1‖ ≤ ‖(−ib+Dm)−1‖+ ‖(−ib+D)−1‖ · ‖V (−ib+Dm)−1‖
≤ ‖(−ib+Dm)−1‖+ ‖(−ib+D)−1‖ · ‖V (−ib+Dm)−1‖Sp .

Since D∗m = Dm,

‖(−ib+Dm)−1‖ =
1

d(ib, σ(Dm))
=

1

|ib−m|
,

and, as above, we obtain

‖(−ib+D)−1‖ ≤ 1

|ib−m|
+ C(b) ‖(−ib+D)−1‖.

Resolving this inequality with respect to ‖(−ib+D)−1‖, we get the claim of the lemma.
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3.3.4 Proof of Theorem 3.2.1 in dimension greater than 2

Recall from (2.2.3) that f(λ) = detdpe(Id− F (λ)), with

F (λ) := (λ− ib)(−ib+D)−1V (λ−Dm)−1 ∈ Sp.

We have by the property of the regularized determinant

|f(λ)| ≤ exp
(

Γp‖(λ− ib)(D − ib)−1V (λ−Dm)−1‖pSp
)
. (3.3.20)

Applying Propositions 3.3.5 and 3.3.6, we get, for λ ∈ C\σ(Dm), to

‖V (λ−Dm)−1‖pSp ≤ (2π)−d‖V ‖pLp‖(λ± µm(·))−1‖pLp

≤ (2π)−d2d−2sd−1n
p
2M · ‖V ‖pLp ·

(|λ±m|+m)d−1

d(λ, σ(Dm))p−1

≤ (2π)−d2d−2sd−1n
p
2M(1 + 2m)d−1‖V ‖pLp

(1 + |λ|)d−1

d(λ, σ(Dm))p−1

with M defined in Proposition 3.3.6.
We apply Lemme 3.3.7 and the previous inequality to (3.3.20), and we obtain

log |f(λ)| ≤ K1‖V ‖pLp
|λ− ib|p(1 + |λ|)d−1

d(λ, σ(Dm))p−1
,

for λ ∈ C\σ(Dm) and with K1 = Γp2
d−2(2π)−dsd−1n

p
2M(1+2m)d−1. Since |λ− ib|p ≤

bp(1 + |λ|)p, we have

log |f(λ)| ≤ K1 b
p‖V ‖pLp

(1 + |λ|)p+d−1

d(λ, σ(Dm))p−1
. (3.3.21)

We now have to go in D in order to apply Borichev-Golinskii-Kupin Theorem 2.3.1.
For this, we consider the function g(u) = f ◦ ϕ(u), where ϕ is defined in (3.3.1); the
function g is holomorphic on Du. By inequalities (3.3.16) and (3.3.14), we have

1 + |λ| ≤ 1 +m

m
(|λ+m|+ |λ−m|)

≤ 1 +m

m
· 1 + |z1|
|z1 − 1|

.

But z1 = z2
2 = −

(
1 + z3

1− z3

)2

, that is, z1 − 1 = −2
1 + z2

3

(1− z3)2
and 1 + |z1| = 2

1 + |z3|2

|1− z3|2
,

so
1 + |z1|
|z1 − 1|

=
1 + |z3|2

|1 + z3|2
≤ 2

|1 + z3|2
. Consequently, with the help of Lemma 3.3.2, we

obtain

1 + |λ| ≤ 2
1 +m

m
· Z2

b

|u− u(i)||u− u(−i)|
(3.3.22)

34



From the lower bound of d(λ, σ(Dm)) in Proposition 3.3.4 and the previous inequality,
we bound (3.3.21) by

log |g(u)| ≤ K2 · ‖V ‖pLp
|u− u(i)|p−d−1|u− u(−i)|p−d−1

d(u,T)p−1|u− um,+|p−1|u− um,−|p−1
,

with K2 = K1 b
p

(
2Z2

b

1 +m

m

)p+d−1(
2Z7

b

m

)p−1

.

We apply Theorem 2.3.1; we get, for τ > 0,∑
g(u)=0

(1− |u|)p+τ (|u− um,+| |u− um,−|)p−2+τ (|u− u(i)| |u− u(−i)|)(d−p+τ)+

≤ C K2 · ‖V ‖pLp ,

with C depending on d, p, {um,+;um,−;u(i);u(−i)}, and τ and K2 is described above.
By hypothesis, we always have p > d ≥ 2, hence, for all 0 < τ < p− d, we obtain∑

g(u)=0

(1− |u|)p+τ |u− um,+|p−2+τ |u− um,−|p−2+τ ≤ C K2 · ‖V ‖pLp . (3.3.23)

The last step of the proof consists in transferring relation (3.3.23) back to ρ(Dm) =
C\σ(Dm). Remind that we have by Lemma 3.3.2 and Proposition 3.3.4

1− |u| = d(u,T) ≥ mZ−1
b

8(1 +m)
· d(λ, σ(Dm))

(|λ+m| · |λ−m|) 1
2 (1 + |λ|)

,

and, by Lemma 3.3.2 and the (in)equalities (3.3.12) to (3.3.15), we have

|u− um,+| · |u− um,−| ≥ Z−2
b |z3 − 1| · |z3 + 1| = 4Z−2

b

|z1|
1
2

|√z1 + i|2

≥ 2Z−2
b

|z1|
1
2

1 + |z1|
= 2Z−2

b

(|λ−m| |λ+m|) 1
2

|λ+m|+ |λ−m|

≥ Z−2
b

(1 +m)
· (|λ−m| · |λ+m|)1/2

1 + |λ|
.

Hence, for p > d ≥ 2 and τ small enough, we get to

(1− |u|)p+τ (|u− um,+| · |u− um,−|)p−2+τ ≥
K3 d(λ, σ(Dm))p+τ

|λ+m| · |λ−m|(1 + |λ|)2(p+τ−1)
,

with K3 =

(
mZ−1

b

23(1 +m)

)p+τ (
Z−2
b

1 +m

)p−2+τ

. We deduce the results of Theorem 3.2.1,
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and, in particular, the constant is

K4 = K2 ×K−1
3

= K1 b
p

(
2Z2

b

1 +m

m

)p+d−1(
2Z7

b

m

)p−1(
23(1 +m)

mZ−1
b

)p+τ
×

×
(

1 +m

Z−2
b

)p−2+τ

= K1 b
p 25p+d−2+3τ · (1 +m)3p+d−3+2τ

m3p+d−2+τ
· Z12p+2d−13+3τ

b .

This ends the proof. �

Remark 3.3.8. Of course we can wonder what happens to (3.3.23) when τ ≥ p − d.
We can verify that Theorem 2.3.1 still apply but, as expected, the resulting inequality is
then weaker than (3.3.23). Indeed, the additional factor |u − u(i)| · |u − u(−i)| gives a
contribution as 1

|λ+m|+|λ−m| and after computations, we find∑
λ∈σd(H)

d(λ, σ(Dm))p+τ

|λ+m| · |λ−m|(1 + |λ|)p+d+3τ
. ‖V ‖pLp . (3.3.24)

The comparison between (3.2.1) and (3.3.24) gives

(1 + |λ|)2p−2+2τ

(1 + |λ|)d+p+3τ
=

1

(1 + |λ|)d−p+2+τ
≤ 1

since d− p+ 2 > 1.

3.4 The dimension 1 case
We start by bounding the resolvent norm ‖(λ− µm(·))−1‖pLp .

3.4.1 Upper bound of the resolvent
Proposition 3.4.1. Let λ ∈ C\σ(Dm),m > 0, and p > d = 1. Then

‖(λ− µm(·))−1‖pLp ≤ np/2s0M ·
d(λ;σ(Dm)) +m

d(λ, σ(Dm))p
,

with M = max

{
1;

∫
R

dt

(t2 + 1)
p
2

}
and s0 = 2.

Proof. First
∫
R

dx

|
√
x2 +m2 − λ|p

= s0n
p/2

∫ +∞

0

dr

|
√
r2 +m2 − λ|p

.

We put λ = λ0 + iλ1. We assume 0 ≤ λ0 < m, i.e. d(λ, σ(Dm)) = |λ −m| > 0, and
λ1 ≥ 0, we split the integral

I =

∫ |λ−m|
0

dr

|
√
r2 +m2 − λ|p

+

∫ +∞

|λ−m|

dr

|
√
r2 +m2 − λ|p

. (3.4.1)
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and we recall that |
√
r2 +m2 − λ|p = ((

√
r2 +m2 − λ0)2 + λ2

1)
p
2 .

For 0 ≤ r ≤ |λ−m|, we have 0 < m− λ0 ≤
√
r2 +m2 − λ0 so

∫ |λ−m|
0

dr(
(
√
r2 +m2 − λ0)2 + λ2

1

)p
2

≤
∫ |λ−m|

0

dr

((m− λ0)2 + λ2
1)
p
2

≤
∫ |λ−m|

0

dr

|λ−m|p
=
|λ−m|
|λ−m|p

.

For r ≥ |λ−m| > 0, we make the change of variable s =
√
r2 +m2−m, 0 < m−λ0 ≤√

r2 +m2 − λ0 and use the inequality
√

(s+m)2 −m2 ≥ s and (s+m− λ0)2 + λ2
1 ≥

s2 + |λ−m|2 to obtain∫ +∞

|λ−m|

dr

|
√
r2 +m2 − λ|p

=

∫ +∞

A

(s+m) ds

((s+m− λ0)2 + λ2
1)

p
2

√
(s+m)2 −m2

≤
∫ +∞

A

(s+m) ds

(s2 + |λ−m|2)
p
2
√

(s+m)2 −m2
,

with A =
√
|λ−m|2 +m2 −m.

The function f : x 7→ x+m√
(x+m)2 −m2

is decreasing on [A; +∞[ (the derivative

is non-positive on this interval), so ∀x ≥ A, f(x) ≤ f(A) =

√
|λ−m|2 +m2

|λ−m|
≤

|λ−m|+m

|λ−m|
.

Then we bound and use the change of variable s = |λ−m|t, so we find∫ +∞

|λ−m|

dr

|
√
r2 +m2 − λ|p

≤ |λ−m|+m

|λ−m|p+1

∫ +∞

A

ds((
s

|λ−m|

)2

+ 1

)p
2

≤ |λ−m|+m

|λ−m|p

∫ +∞

0

dt

(t2 + 1)
p
2

.

Hence I ≤ N · |λ−m|+m

|λ−m|p
with N = max

{
1;

∫ +∞

0

dt

(t2 + 1)
p
2

}
. This finishes the

case 0 ≤ λ0 < m.
We now suppose that λ0 ≥ m. In this case we always have λ1 6= 0. One takes λ1 > 0

(else −λ1 > 0), and we split the integral in two

I =

∫ λ1

0

dr

|
√
r2 +m2 − λ|p

+

∫ +∞

λ1

dr

|
√
r2 +m2 − λ|p

. (3.4.2)
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On one hand

∫ λ1

0

dr

|
√
r2 +m2 − λ|p

=

∫ λ1

0

dr

((
√
r2 +m2 − λ0)2 + λ2

1)
p
2

≤
∫ λ1

0

dr

λp1
=
λ1

λp1
.

and for r ≥ λ1, we make the change of variable s + m =
√
r2 +m2, hence, putting

A =
√
λ2

1 +m2 −m,

∫ +∞

λ1

dr

((
√
r2 +m2 − λ0)2 + λ2

1)
p
2

=

∫ +∞

A

(s+m)ds

|(s+m− λ0)2 + λ2
1|
p
2

√
(s+m)2 −m2

.

As above, the function f : x 7→ x+m√
(x+m)2 −m2

is decreasing on [A; +∞[, so

∀x ≥ A, f(x) ≤ f(A) =

√
λ2

1 +m2

λ1

≤ λ1 +m

λ1

. Hence

∫ +∞

A

(√
(s+m)2 −m2

)−1

ds

|(s+m− λ0)2 + λ2
1|
p
2

≤ λ1 +m

λ1

∫ +∞

A

ds

|(s+m− λ0)2 + λ2
1|
p
2

≤ λ1 +m

λp+1
1

∫ +∞

A

ds((
s+m− λ0

λ1

)2

+ 1

) p
2

.

We make the change of variable t =
s+m− λ0

λ1

, so

∫ +∞

A

ds((
s+m− λ0

λ1

)2

+ 1

) p
2

= λ1

∫ +∞

B

dt

(t2 + 1)
p
2

≤ λ1

∫
R

dt

(t2 + 1)
p
2

.

Consequently, we find

∫ +∞

λ1

dr

|
√
r2 +m2 − λ|p

≤ λ1 +m

λp1

∫
R

dt

(t2 + 1)
p
2

,

hence I ≤ M

λp1
(λ1 +m), with M =

∫
R

dt

(t2 + 1)
p
2

. We deduce the proposition.
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3.4.2 Proof in dimension 1

We go back to inequality (3.3.20) and apply Propositions 3.3.5 and 3.4.1, hence

log |f(λ)| ≤ Γp‖(λ− ib)(D − ib)−1V (λ−Dm)−1‖pSp

≤ Γp
2π
s0 n

p/2M |λ− ib|p‖(D − ib)−1‖p ‖V ‖pLp ·
d(λ;σ(Dm)) +m

d(λ, σ(Dm))p

≤ Γp
2π
s0 n

p/2bpM ‖(D − ib)−1‖p ‖V ‖pLp(1 + |λ|)p · |λ−m|+m

d(λ, σ(Dm))p

≤ K1 b
p‖(D − ib)−1‖p ‖V ‖pLp ·

(1 + |λ|)p+1

d(λ, σ(Dm))p
,

with K1 =
Γp
2π
· s0 n

p/2M (1 + 2m).

In the proof of Lemma 3.3.7, C(b) becomes

C(b)p = ‖V ‖pLpK ·
m+ |ib−m|
|ib−m|p

which tends to zero when b tends to +∞. Hence the lemma still apply for p > 1. Conse-
quently, for b large enough, ‖(D − ib)−1‖ ≤ 1.

Hence, for all λ ∈ C\σ(Dm),

log |f(λ)| ≤ K1 · ‖V ‖pLp ·
(1 + |λ|)p+1

d(λ, σ(Dm))p
,

with K1 defined above.
Recall that, by (3.3.22) and (3.3.6), we have

1 + |λ| ≤ 2
1 +m

m
· Z2

b

|u− u(i)||u− u(−i)|

and d(λ, σ(Dm)) ≥ m

2
Z−7
b

|u− um,+| · |u− um,−|
|u− u(i)|2|u− u(−i)|2

d(u,T),

so,

log |g(u)| ≤ K1b
p

(
2

1 +m

m
Z2
b

)p+1(
2Z7

b

m

)p
‖V ‖pLp

|u− u(i)|p−1|u− u(−i)|p−1

d(u,T)p|u− um,+|p|u− um,−|p

≤ K2 · ‖V ‖pLp ·
|u− u(i)|p−1|u− u(−i)|p−1

d(u,T)p|u− um,+|p|u− um,−|p
,

with K2 = K1 · bp 22p+1Z9p+2
b · (1 +m)p+1

m2p+1
. Since p − 1 > 0, applying Theorem 2.3.1,

we find∑
g(u)=0

d(u,T)p+1+τ (|u− um,+| · |u− um,−|)p−1+τ ≤ C ·K2 · ‖V ‖pLp ,
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where C depends on p, {um,+;um,−;u(i);u(−i)}, and τ . But we know that

|u− um,+| · |u− um,−| ≥
Z−2
b

(1 +m)
· (|λ−m| · |λ+m|)1/2

1 + |λ|

and d(u,T) ≥ mZ−1
b

8(1 +m)
· d(λ, σ(Dm))

(|λ+m| · |λ−m|) 1
2 (1 + |λ|)

,

hence

d(u,T)p+1+τ (|u− um,+| · |u− um,−|)p−1+τ ≥ mp+1+τZ−3p+1−3τ
b

23(p+1+τ)(1 +m)2p+2τ
×

× d(λ, σ(Dm))p+1+τ

|λ+m| · |λ−m| · (1 + |λ|)2p+2τ

Finally ∑
λ∈σd(D)

d(λ, σ(Dm))p+1+τ

|λ+m| · |λ−m| · (1 + |λ|)2p+2τ
≤ C ·K3 · ‖V ‖pLp ,

with K3 = K1 · bp 25p+4+3τ · (1 +m)3p+1+τ

m3p+2+τ
· Z12p+1+3τ

b .

3.5 The massless case
We prove in this section Theorem 3.2.3. The method is the same but the spectrum of D0

is the whole real line : σ(D0) = R. The small differences with the casem > 0 come from
the study of the conformal map and the upper bound of the Schatten norm of the resolvent
in the expression V (λ−D0)−1, λ ∈ ρ(D0).

3.5.1 Conformal map and bound of the resolvent
Concerning the conformal map, we recall that ρ(D0) = C+ ∪ C−, where C± are the sets
{λ ∈ C : ±Im(λ) > 0}. So we can compute the contributions of the discrete spectrum
σd(D) ∩ C± to (3.2.7) and then add them up. That is why, without loss of generality, we
discuss the case of λ ∈ σd(D)∩C+, and the case of σd(D)∩C− is treated similarly. The
conformal map ϕ we are interested in, is particularly simple,

λ = ϕ(z) = ib · 1 + z

1− z
: D→ C+,

z = ϕ−1(λ) =
λ− ib

λ+ ib
: C+ → D.

with b ≥ 1.

Proposition 3.5.1 (distortion between C+ and D). For b ≥ 1, the distortion between C+

and D are

b

2
· d(z,T)

|z − 1|2
≤ d(λ, σ(D0)) ≤ 4b · d(z,T)

|z − 1|2
,
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and
1

b
· d(λ, σ(D0))

(1 + |λ|)2
≤ d(z,T) ≤ 16b · d(λ, σ(D0))

(1 + |λ|)2
.

Proof. For the first set of inequalities, we apply (2.3.2) to ϕ, with ϕ′(z) =
2ib

(z − 1)2
.

The second part result from the first |z − 1|2 =
4b2

|λ+ ib|2
. Since b ≥ 1, we bound by

|λ+ ib|2 ≤ (|λ|+ b)2 ≤ b2(1 + |λ|)2 and we bound from below by |λ+ ib|2 ≥ |λ|2 + b2 ≥
1

2
(|λ|+ b)2 ≥ 1

2
(1 + |λ|)2. Hence

1

b2(1 + |λ|)2
≤ 1

|λ+ ib|2
≤ 2

(1 + |λ|)2
,

and we conclude.

Proposition 3.5.2. Let p > d. Then

‖V (λ−D0)−1‖pSp ≤ K‖V ‖pLp
|λ|d−1

d(λ, σ(D0))p−1
,

with

1. if d ≥ 2,

a) K = n
p
2 sd−1(2π)−d2

d−1
2 M

b) where M = max

{
(1 + 2d−2)

∫ +∞

0

dt

(t2 + 1)
p
2

; 2d−2

∫ +∞

0

td−1 dt

(t2 + 1)
p
2

}
.

2. Else d = 1 and we have K = n
p
2

2

π

∫ +∞

0

dt

(t2 + 1)
p
2

.

Proof. For λ = λ0 + iλ1 ∈ C+, from the inequality 2.4.2, we bound of the norm resolvent
with

‖V (λ−D0)−1‖pSp ≤ (2π)−dn
p
2‖V ‖pLp ‖(λ− µ0(x))−1‖p

Lp(Rd,C)
,

where µ0(x) = |x|. Then we follow the proof of Proposition 3.3.6.
For d ≥ 2, we start with the polar change of variable and we have to bound the integral

I =

∫ +∞

0

rd−1

|r − λ|p
dr.

Remind that here d(λ, σ(D0)) = Im(λ) = λ1 > 0.

I =

∫ +∞

0

rd−1

|(r − λ0)2 + λ2
1|
p
2

dr

=
1

|λ1|p

∫ +∞

0

rd−1∣∣∣∣( r−λ0λ1

)2

+ 1

∣∣∣∣ p2
dr
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We make the change of variable s =
r − λ0

λ1

, hence, using the inequalities of Lemma

2.3.4, we obtain

I =
1

|λ1|p−1

∫ +∞

−λ0
λ1

(λ1s+ λ0)d−1

(s2 + 1)
p
2

ds

=
1

|λ1|p−1

(∫ 0

−λ0
λ1

(λ1s+ λ0)d−1

(s2 + 1)
p
2

ds+

∫ +∞

0

(λ1s+ λ0)d−1

(s2 + 1)
p
2

ds

)

=
1

|λ1|p−1

(∫ λ0
λ1

0

(−λ1s+ λ0)d−1

(s2 + 1)
p
2

ds+

∫ +∞

0

(λ1s+ λ0)d−1

(s2 + 1)
p
2

ds

)

≤ 1

|λ1|p−1

(∫ +∞

0

|λ0|d−1

(s2 + 1)
p
2

ds+ 2d−2

∫ +∞

0

|λ1s|d−1 + |λ0|d−1

(s2 + 1)
p
2

ds

)

≤ 1

|λ1|p−1

(
(1 + 2d−2)|λ0|d−1

∫
R+

ds

(s2 + 1)
p
2

+ 2d−2|λ1|d−1

∫
R+

sd−1ds

(s2 + 1)
p
2

)
.

Again with Lemma 2.3.4, we have

|λ0|d−1 + |λ1|d−1 ≤ (|λ0|+ λ1)d−1 ≤
(√

2
√
λ2

0 + λ2
1

)d−1

= 2
d−1

2 |λ|d−1.

Putting M = max

{
(1 + 2d−2)

∫ +∞

0

1

(s2 + 1)
p
2

ds; 2d−2

∫ +∞

0

sd−1

(s2 + 1)
p
2

ds

}
, we get to

I ≤ 2
d−1

2 M

d(λ, σ(D0))p−1
· |λ|d−1

and the Proposition is proved.
The bound for d = 1 is almost done after the second change of variable so the proof is

omitted.

3.5.2 Proof of Theorem 3.2.3
By the properties of the regularized determinant Sp and Proposition 3.5.2, we have

log |f(λ)| ≤ ΓpK ‖(ib−D)−1‖p‖V ‖pLp ·
|λ− ib|p|λ|d−1

d(λ;σ(D0))p−1
,

where f is defined in (2.2.3) and F is the same as (2.2.2) but with m = 0. As before, we
have ‖(ib −D)−1‖ ≤ 1 for b large enough. Putting λ = ϕ(z) and g = f ◦ ϕ, we obtain,
thank to the results of Proposition 3.5.1,

log |g(z)| ≤ K1 b
d‖V ‖pLp ·

|z|p|1 + z|d−1

|1− z|d+p−1
· |1− z|

2(p−1)

d(z,T)p−1

≤ K1 b
d‖V ‖pLp ·

|z|p|1 + z|d−1

|1− z|d−p+1d(z,T)p−1
,
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where K1 = Γp2
2p−1K and K is defined in Proposition 3.5.2. We apply Theorem 2.3.1

to the function g to get, for all τ > 0,∑
g(z)=0

d(z,T)p+τ |z − 1|(d−p+τ)+ ≤ C ·K1 · bd · ‖V ‖pLp , (3.5.1)

withC depending on p, d, {1}, and τ , andK1 is given above. Since p > d, for 0 < τ < p−

d, we have d−p+τ < 0; And from the distortion inequalities, d(z,T) ≥ 1

b
· d(λ, σ(D0))

(1 + |λ|)2
,

hence ∑
λ∈σ(D)

d(λ, σ(D0))p+τ

(1 + |λ|)2(p+τ)
≤ C · bp+d+τK1 · ‖V ‖pLp .

The proof is done. �

3.6 The Klein-Gordon operator

3.6.1 Definition and results
Another operator close to the Dirac operator is the following defined by [Tha91, Formula
(1.3)]

Km =
√
−∆Rd +m2 × IdC` (3.6.1)

with m ≥ 0 et ` ≥ 1. We call it Klein-Gordon operator but there are other possible
conventions; it is frequently called relativistic Schrödinger operator sometimes labelled
“quasi” ([BE11]). In [LS09b] (or [Sei10]), the authors replace the study of the Klein-
Gordon operator by the study of the “ultra-relativistic” Schrödinger operator (−∆)1/2

(see reference therein).
As Thaller indicates in [Tha91, Section 1.1] the Klein-Gordon equation [Tha91, For-

mula (1.3)] does not satisfy some properties of the quantum mechanics (for example, the
time derivative should be of order 1).

Remark 3.6.1. For more details about the problem encounter with this operator see Chap-
ter VI of the book by Holstein Topics in quantum mechanics.

This time, unlike the Dirac operator, the dimension ` is not related to the dimension d.
This operator is used as model for a particle of mass m without spin (see [BE11, Section
2.2]); In the view of (3.1.2), it is a “half” of the Dirac operator . As the Dirac operator,
it is essentially self-adjoint on C∞c (Rd;C`), the domain of its closure is H 1(Rd;C`), and
its spectrum is absolutely continuous and equals [m,+∞[.

We consider the perturbed Klein-Gordon operator

K = Km + V,

with V ∈ Lp(Rd;M`(C)) and p > d. As before, we have by Weyl’s Theorem 2.1.17,

σess(K) = σess(Km) = [m; +∞[.
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One advantage of the Klein-Gordon operator is that it is bounded from below. Using
this fact we are able to “integrate” according to the idea of Demuth, Hansmann, and
Katriel.

This gives the next result

Theorem 3.6.2. Let K be as above and V ∈ Lp(Rd;M`(C)). We assume p > d. The
constants ω and Cω are defined in Proposition 3.6.7. Then, for d ≥ 2 and τ small enough,
we have∑

λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(1 + |λ−m|)d−1+2τ
≤ C · K3

I
· ω

d−1+τCp
ω

τ
· ‖V ‖pLp . (3.6.2)

where

1. K3 =
Γp

(2π)d
· `p/2sd−1M(1 +m)d−12δ,

with a) M defined in Proposition 3.3.6,

b) δ = 2p+ d−max{p−τ
2

; d} − 1 + τ ,

2. I =

∫ +∞

0

tp+(
p
2
−d−1− τ

2
)+

(t+ 1)p+d+2τ+(
p
2
−d−1− τ

2
)+
dt,

3. and finally C depends on `, d, p,m, and τ .

In dimension d = 1, with 0 < τ ≤ p− 1, we find∑
λ∈σd(K)

d(λ, σ(Km))p+1+τ

|λ−m|(1 + |λ−m|)1+2τ
≤ C · K3

I
· ω

1+τCp
ω

τ
· ‖V ‖pLp , (3.6.3)

with

1. K3 =
Γp
2π
· `

p
2 s0M (1 +m)2

1
2

(7p+9+3τ), M is defined in Proposition 3.4.1,

2. I =

∫ +∞

0

tp+
1
2

(p−3−τ)+ dt

(t+ 1)p+2+2τ+ 1
2

(p−3−τ)+
,

3. and C depending on `, p,m, and τ .

We recall that the constant C comes from Theorem 2.3.1 (see Remark 3.2.2).
We recall the result we obtained in [Dub14] using the computations done for the per-

turbed Dirac operator.

Theorem 3.6.3 (case m > 0). With the notation above, we have∑
λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(1 + |λ|)p+max{ p
2

;d}−1+2τ
. ‖V ‖pLp . (3.6.4)

In dimension d = 1, we have∑
λ∈σd(K)

d(λ, σ(Km))p+1+τ

|λ−m|(1 + |λ|) 3
2

(p+τ)+ 1
2

. ‖V ‖pLp . (3.6.5)
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We notice that, for m = 0, the operator is simply

K = (−∆)1/2 + V,

that is the fractional Schrödinger operator with s = 1
2

(see next Chapter). We observe that
a non-trivial degeneration of a bound on the resolvent of K0 takes place in this case and
the inequality of Theorem 3.6.2 can be refined in the following way (see Theorem 4.2.1) :

Theorem 3.6.4 (case m = 0). Let K be the perturbed Klein-Gordon operator defined
above with m = 0 and V ∈ Lp(Rd;M`(C)), p > d. Then, for τ > 0 small enough, we
have ∑

λ∈σd(K)

d(λ, σ(K0))p+τ

|λ|min{(p+τ)/2,d}(1 + |λ|) 1
2

(2d−p−τ)++2τ
. ‖V ‖pLp . (3.6.6)

As we said before, the massless Klein-Gordon operator is also the fractional Laplacian
(−∆)s with s = 1

2
. For the self-adjoint case, an account on Lieb-Thirring-type inequali-

ties can be found in Frank, Lieb and Seiringer ([FLS08]) and Lieb and Seiringer ([LS09b,
Chapter 4]).

It is convenient to compare Theorem 3.6.4 with these results for s = 1/2. Of course,
the discrete spectrum σd(K) lies on the negative real half-axis in this case. In our notation
Theorem 2.1 from [FLS08] says that∑

λ∈σd(K)

|λ|p−d ≤ Cp,d‖V−‖pLp , (3.6.7)

where p > d and V− = min{V, 0}. Since d(λ, σ(K0)) = |λ|, bound (3.6.6) looks like

∑
λ∈σd(K)

|λ|max{(p+τ)/2, p+τ−d}

(1 + |λ|) 1
2

(2d−p−τ)++2τ
≤ C‖V ‖pLp , (3.6.8)

which is slightly weaker than (3.6.7) as we will see immediately. Indeed, if we have
p+ τ − d > (p+ τ)/2 (or, equivalently, p/2 ≥ d), the left hand-side of (3.6.8) is

|λ|p+τ−d

(1 + |λ|)2τ
≤ |λ|p−d ·

(
|λ|

(1 + |λ|)2

)τ
≤ |λ|p−d.

If p/2 < d, we have for the left hand-side of (3.6.8)

|λ|(p+τ)/2

(1 + |λ|)d−(p+τ)/2
≤ |λ|

p+τ−d · |λ|−(p+τ)/2+d

(1 + |λ|)d−(p+τ)/2

= |λ|p−d ·
(
|λ|

1 + |λ|

)d−(p+τ)/2

· |λ|τ

(1 + |λ|)2τ
,

and a simple bound using d − (p + τ)/2 > 0 yields that the second factor in the above
formula is less or equal to one.
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3.6.2 Proof of results
We start with the computation of the distortion.

We consider the function ϕa : D → C\R+ defined by ϕa(z) = −a
(
z + 1

z − 1

)2

(see

(4.2.6)) and the function ψa(z) = m+ϕa(z). We put λ1 = ϕa(z) et λ = λ1 +m = ψa(z).
The distortions for ϕa are known by Proposition 4.2.3, hence we easily deduce the one

for ψa.

Proposition 3.6.5 (Distortion between σ(Km) and D.). The distortion via ψa behaves the
following way :

a · d(z,T)
|z + 1|
|z − 1|3

≤ d(λ, σ(Km)) ≤ 8a · d(z,T)
|1 + z|
|1− z|3

, (3.6.9)

and
√
a

4
· d(λ, σ(Km))√
|λ−m|(a+ |λ−m|)

≤ d(z,T) ≤ 4
√
a

d(λ, σ(Km))√
|λ−m|(a+ |λ−m|)

. (3.6.10)

Remark 3.6.6. In the article [Dub14], we used a less precise version of (3.6.10) :

1

4
√
a
· d(λ, σ(Km))√
|λ−m|(1 + |λ−m|)

≤ d(z,T) ≤ 4
√
a

d(λ, σ(Km))√
|λ−m|(1 + |λ−m|)

. (3.6.11)

Proof. We refer to the proof of Proposition 4.2.3.
For (3.6.9), it suffices to see that ψ′a(z) = ϕ′a(z) and use (4.2.7).
For (3.6.10), it is just a change of variable λ1 = λ−m in (4.2.8).

As we said before, the Klein-Gordon operator is bounded from below, hence we have
the following proposition (see also [Han10, Lemma 3.3.4]).

Proposition 3.6.7. Let p > d, there is ω ≥ 1 depending on d, `, p,m, and V , satisfying
−ω +m ∈ ρ(Km) such that

∀a−m > ω, ‖(−a+m−K)−1‖ ≤ Cω
a− ω

, (3.6.12)

with Cω = (1− ‖V (−ω +m−Km)‖)−1.

Proof. For convenience, some details will be proved in Proposition 4.2.7.
We have ‖V (λ−Km)−1‖ < 1⇒ λ ∈ ρ(Km) (see Proposition 4.2.7). Take λ = −a+m

and let us show there is ω ≥ 1 such that for all a > ω +m, ‖V (−a+m−Km)−1‖ < 1.
Indeed, we have

‖V (−a+m−Km)−1‖ ≤ ‖V (−a+m−Km)−1‖Sp

≤ (2π)−d/p‖V ‖Lp · ‖(−a+m− µm(x))−1‖

and, by the bound obtained in Proposition 3.3.6 (and 3.4.1 for dimension d = 1) for the
Dirac operator when Re(λ) ≥ 0, the right hand-side of the above inequality tends to 0
when a tends to +∞.
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Now, for all a −m ≥ ω ≥ 1, we have ‖(−a + m −Km)−1‖ ≤ Cω
a− ω

. Indeed, from

the relation 4.2.15, with λ = −a+m we have

‖(−a+m−K)−1‖ ≤ 1

d(−a+m;σ(Km))
· 1

1− ‖V (−a+m−Km)−1‖

≤ Cω
a
≤ Cω
a− ω

,

since d(−a + m,σ(Km)) = a ≥ a − ω and ‖V (−a + m − Km)−1‖ tends to 0 when a
tends to +∞.

Remark 3.6.8. In the article [Dub14], as for the distortion, we limited ourself to the use
of results obtained with the Dirac operator, hence, we bounded ‖(−a+m−K)−1‖ by 1.
Following the ideas of Demuth, Hansmann, and Katriel ([DHK09] or [DHK13], thanks
to the bound above, we obtain better estimations (see Remark 3.6.9).

Proof of Theorem 3.6.2. We go back to the expression of F defined in (2.2.2) with, this
time, the operator Km : F (λ) = (λ + a −m)(−a + m −K)−1V (λ −Km)−1, and f is
defined as in (2.2.3) for λ ∈ C\σ(Km).

We start with the case d ≥ 2. Since ‖(−a + m −K)−1‖ ≤ Cω
|a− ω|

, for a ≥ ω, then,

from above and Proposition 3.3.6 for d ≥ 2,

log(f(λ)) ≤ ΓpC
p
ω

|a− ω|p
· |λ+ a−m|p‖V (λ−Km)−1‖pSp (3.6.13)

≤ K1

|a− ω|p
· ‖V ‖pLp · |λ+ a−m|p · (|λ−m|+m)d−1

d(λ, σ(Km))p−1

≤ K1(1 +m)d−1

|a− ω|p
· ‖V ‖pLp |λ1 + a|p · (1 + |λ1|)d−1

d(λ, σ(Km))p−1
, (3.6.14)

where, by Proposition 3.3.6 for d ≥ 2, K1 =
Γp

(2π)d
Cp
ω2d−2`

p
2 sd−1M . By definition

|λ1| = a

∣∣∣∣z + 1

z − 1

∣∣∣∣2, hence

|λ+ a−m| = |λ1 + a| = 4a|z|
|z − 1|2

and 1 + |λ1| = 2a
(1 + |z|2)

|z − 1|2
≤ 4a

|z − 1|2
.

We express the inequality (3.6.14) in terms of z ∈ D, so

log |g(z)| ≤ K1(1 +m)d−1

|a− ω|p
· ‖V ‖pLp ·

(4a|z|)p · (4a)d−1 · a1−p|z − 1|3p−3

|z − 1|2p · |z − 1|2d−2 · d(z,T))p−1|z + 1|p−1

≤ K2 ·
ad

|a− ω|p
· ‖V ‖pLp
d(z,T)p−1|z + 1|p−1|z − 1|2d−p+1

,

with K2 = K1(1 +m)d−14p+d−1. We apply Theorem 2.3.1, hence, for all τ > 0,∑
g(z)=0

d(z,T)p+τ |z − 1|(2d−p+τ)+|z + 1|p−2+τ ≤ C ·K2 ·
ad

|a− ω|p
· ‖V ‖pLp (3.6.15)
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where C depends on d, p, {1;−1}, and τ , and K2 is described above. Since p > d ≥ 2,
we always have p− 2 > 0, we have to distinguish d < p ≤ 2d and p > 2d.

We recall the following inequalities:

we have z =

√
λ−m− i

√
a√

λ−m+ i
√
a

, so z − 1 =
−2i
√
a√

λ−m+ i
√
a

and z + 1 =
2
√
λ−m√

λ−m+ i
√
a

.

On the other hand |
√
λ−m+ i

√
a|2 = a+ |λ−m|, hence

|z − 1| ≥
√

2a

(a+ |λ−m|)1/2
, |z + 1| ≥

√
2|λ−m|

(a+ |λ−m|)1/2
. (3.6.16)

If p > 2d then

d(z,T)p+τ |z + 1|p−2+τ ≥
(√

a

4

)p+τ
2

1
2

(p−2+τ) · d(λ, σ(Km))p+τ |λ−m| p+τ2 −1

|λ−m| p+τ2 (a+ |λ−m|)p+τ+ p+τ
2
−1

≥ a
p+τ
2

2
3
2

(p+τ)+1
· d(λ, σ(Km))p+τ

|λ−m|(a+ |λ−m|)3 p+τ
2
−1
,

hence

∑
λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(a+ |λ−m|)3
p+τ

2
−1
. K2 · 2

3
2

(p+τ)+1 · a
d− p+τ

2

|a− ω|p
· ‖V ‖pLp . (3.6.17)

Similarly, if d < p ≤ 2d, then

d(z,T)p+τ |z − 1|2d−p+τ |z + 1|p−2+τ ≥ ad+τ

22p−d+1+τ
· d(λ, σ(Km))p+τ

|λ−m|(a+ |λ−m|)p+d−1+2τ
.

hence∑
λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(a+ |λ−m|)p+d−1+2τ
. K2 ·22p−d+1+τ · a−τ

|a− ω|p
· ‖V ‖pLp . (3.6.18)

Remark 3.6.9. A very interesting idea of Demuth, Hansmann, and Katriel is to see the
inequalities of type (3.6.17) and (3.6.18) as a familly of inequalities depending on the
parameter a. Their idea is to consider an “average” of these inequalities by integrating
with respect to a between ω and +∞.

We follow the proof of Theorem 4.4.6 from [DHK13], but the difference here is that
we do use the Theorem of Borichev, Golinskii, and Kupin instead of Theorem 3.3.5 from
[DHK13] (although based on the same theorem) which gives no difference here except
maybe for the constant in front of ‖V ‖LP . The other difference concern the integration
of the left-hand side member : the inequality given before Formula (4.4.19) page 27 in
[DHK13] miss one case : when ϕ1− 1 + τ < 0. Fortunately, by an obvious lower bound,
we find the same power for the factor |λ|+ ω, but the constant is again different.

We start from the above cases. We precise that the interchanging of the sum and the
integral is valid, by Fubini Theorem, since all functions are positive.
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When p > 2d then, from (3.6.17), we find∑
λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|

∫ +∞

ω

a
p+τ
2
−d−1−τ |a− ω|p

(a+ |λ−m|)3
p+τ

2
−1
da .

∫ +∞

ω

da

a1+τ
· ‖V ‖pLp .

The integral in the right-hand side equals
1

τωτ
. In the left-hand side, we make the

change of variable t =
a− ω

|λ−m|+ ω
, and, if p

2
− d − 1 > 0, we bound from below

(|λ−m|+ ω)t+ ω by (|λ−m|+ ω)t, else we bound from above (|λ−m|+ ω)t+ ω by
(|λ−m|+ ω)(t+ 1), hence, if p

2
− d− 1 > 0, we have∫ +∞

ω

a
p−τ
2
−d−1|a− ω|p

(a+ |λ−m|)3
p+τ

2
−1
da

=
(|λ−m|+ ω)p+1

(|λ−m|+ ω)
3
2

(p+τ)−1

∫
R+

[(|λ−m|+ ω)t+ ω]
p−τ
2
−d−1tp

(t+ 1)
3
2

(p+τ)−1
dt

≥ (|λ−m|+ ω)
p−τ
2
−d−1

(|λ−m|+ ω)
p
2
−2+ 3τ

2

∫ +∞

0

t
3p
2
−d−1− τ

2

(t+ 1)
3
2

(p+τ)−1
dt

≥ 1

(|λ−m|+ ω)d−1+2τ

∫ +∞

0

t
3p
2
−d−1− τ

2

(t+ 1)
3
2

(p+τ)−1
dt,

which gives, for 2d < p and p
2
− d− 1 > 0,∑

λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(ω + |λ−m|)d−1+2τ
.
K2

I
· 2

3
2

(p+τ)+1 1

τωτ
· ‖V ‖pLp ,

with I =

∫ +∞

0

t
3p
2
−d−1− τ

2

(t+ 1)
3
2

(p+τ)−1
dt.

And if p
2
− d− 1 ≤ 0 then∫ +∞

ω

a
p−τ
2
−d−1|a− ω|p

(a+ |λ−m|)3
p+τ

2
−1
da ≥ 1

(|λ−m|+ ω)d−1+2τ

∫ +∞

0

tp dt

(t+ 1)p+d+2τ
.

Hence, for 2d < p and p
2
− d− 1 ≤ 0∑

λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(ω + |λ−m|)d−1+2τ
.
K2

I
· 2

3
2

(p+τ)+1 · 1

τωτ
· ‖V ‖pLp ,

with I =

∫ +∞

0

tp dt

(t+ 1)p+d+2τ
.

Now when d < p ≤ 2d then, from (3.6.18), we obtain∑
λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|

∫ +∞

ω

a−1|a− ω|p

(a+ |λ−m|)p+d−1+2τ
da .

∫ +∞

ω

da

a1+τ
· ‖V ‖pLp .
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Here, we bound first from below a−1 by (a + |λ −m|)−1, and then doing the change of

variable t =
a− ω

|λ−m|+ ω
, we find

∫ +∞

ω

a−1|a− ω|p

(a+ |λ−m|)p+d−1+2τ
≥
∫ +∞

ω

|a− ω|p

(a+ |λ−m|)p+d+2τ
da

≥ (|λ−m|+ ω)p+1

(|λ−m|+ ω)p+d+2τ

∫ +∞

0

tp dt

(t+ 1)p+d+2τ
.

Hence, for d < p ≤ 2d,∑
λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m|(ω + |λ−m|)d−1+2τ
.
K2

I
· 22p−d+1+τ · 1

τωτ
· ‖V ‖pLp ,

with I =

∫ +∞

0

tp dt

(t+ 1)p+d+2τ
.

Summarising the different cases, we obtain the claimed inequality for d ≥ 2.
Remark 3.6.10. One can wonder what happens if, in the right-hand side of (3.6.18), in-

stead of bounding by the integral
∫ +∞

ω

1

a1+τ
da, we bound with

∫ +∞

ω

1

a2
da for instance.

In this case, the power in the numerator of the left-hand side is smaller and consequently
the power of the quotient is higher. But in order to obtain the best estimate possible, it has
to be the smallest possible.

Now we consider the dimension d = 1.
Recall the result of Proposition 3.4.1 :

‖(λ− µm(·))−1‖pLp ≤ `p/2s0M ·
d(λ;σ(Km)) +m

d(λ, σ(Km))p
,

with M only depending on p, and we bound d(λ;σ(Km)) by |λ − m|. We still have

‖(a−m−K)−1‖ ≤ Cω
|a− ω|

, for a ≥ ω, so, from (3.6.13),

log(f(λ)) ≤ ΓpC
p
ω

|a− ω|p
· |λ+ a−m|p‖V (λ−Km)−1‖pSp

≤ K1

|a− ω|p
· ‖V ‖pLp |λ+ a−m|p · |λ−m|+m

d(λ, σ(Km))p

≤ K1 (1 +m)

|a− ω|p
· ‖V ‖pLp |λ1 + a|p · |λ1|+m

d(λ, σ(Km))p
,

with K1 =
Γp
2π
· `

p
2 s0M Cp

ω, M is defined in Proposition 3.4.1. Then

log |g(z)| ≤ K1 (1 +m)

|a− ω|p
‖V ‖pLp

(4a|z|)p

|z − 1|2p
· 4a

|z − 1|2
· a−p|z − 1|3p

d(z,T))p|z + 1|p

≤ K2
a

|a− ω|p
· ‖V ‖pLp ·

|z|p

d(z,T))p|z − 1|2−p|z + 1|p
,
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with K2 = K1(1 +m)4p+1. We apply Theorem 2.3.1 and we find∑
g(z)=0

d(z,T)p+1+τ |z + 1|p−1+τ |z − 1|(1−p+τ)+ ≤ C ·K2 ·
a

|a− ω|p
· ‖V ‖pLp ,

where K2 is describe above and C is a constant depending on p, {1;−1}, and τ .
Since p > 1 then, for all 0 < τ < p− 1, we have 1− p+ τ < 0. Then

d(z,T) ≥
√
a

4
· d(λ, σ(Km))√
|λ−m|(1 + |λ−m|)

and |z + 1| ≥
(

2|λ−m|
a+ |λ−m|

)1
2

,

hence

d(z,T)p+1+τ |z + 1|p−1+τ ≥ a
1
2

(p+1+τ)

22(p+1+τ)− 1
2

(p−1+τ)
· d(λ, σ(Km))p+1+τ

|λ−m|(a+ |λ−m|) 3
2

(p+τ)+ 1
2

≥ a
1
2

(p+1+τ)

2
3
2

(p+τ)+ 5
2

· d(λ, σ(Km))p+1+τ

|λ−m|(a+ |λ−m|) 3
2

(p+τ)+ 1
2

.

Consequently,

∑
λ∈σd(K)

d(λ, σ(Km))p+1+τ

|λ−m|(a+ |λ−m|) 3
2

(p+τ)+ 1
2

.
a−

1
2

(p−1+τ)

|a− ω|p
· ‖V ‖pLp ,

It remains to integrate the previous inequality with respect to the parameter a between ω
and +∞. We have to bound from below the next integral∫ +∞

ω

|a− ω|pa 1
2

(p−1+τ)−1−τ

(a+ |λ−m|) 3
2

(p+τ)+ 1
2

da =

∫ +∞

ω

|a− ω|pa 1
2

(p−3−τ)

(a+ |λ−m|) 3
2

(p+τ)+ 1
2

da.

We distinguish if p > 3 or 1 < p ≤ 3 and make the change of variable t =
a− ω

|λ−m|+ ω
.

We start with p > 3, so we bound (|λ −m| + ω)t + ω from below by (|λ −m| + ω)t)
hence ∫ +∞

ω

|a− ω|pa 1
2

(p−3−τ) da

(a+ |λ−m|) 3
2

(p+τ)+ 1
2

=

=
(|λ−m|+ ω)p+1

(|λ−m|+ ω)
3
2

(p+τ)+ 1
2

∫ +∞

0

tp[(|λ|+ ω)t+ ω]
1
2

(p−3−τ)

(t+ 1)
3
2

(p+τ)+ 1
2

dt

≥ (|λ−m|+ ω)
1
2

(p−3−τ)

(|λ−m|+ ω)
1
2

(p−1+3τ)

∫ +∞

0

t
1
2

(3p−3−τ)

(t+ 1)
3
2

(p+τ)+ 1
2

dt.

So, for p > 3, with K3 = K2 2
3
2

(p+τ)+ 5
2 ,

∑
λ∈σd(K)

d(λ, σ(Km))p+1+τ

|λ−m|(ω + |λ−m|)1+2τ
.

(∫ +∞

0

t
1
2

(3p−3−τ)

(t+ 1)
3
2

(p+τ)+ 1
2

dt

)−1
K3

τωτ
· ‖V ‖pLp .
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And if 1 < p ≤ 3 then we first bound a from above by a+ |λ−m| and then∫ +∞

ω

|a− ω|pa 1
2

(p−3−τ) da

(a+ |λ−m|) 3
2

(p+τ)+ 1
2

≥
∫ +∞

ω

|a− ω|p da
(a+ |λ−m|)p+2+2τ

≥ (|λ−m|+ ω)p+1

(|λ−m|+ ω)p+2+2τ

∫ +∞

0

tp dt

(t+ 1)p+2+2τ
dt.

Hence, for 1 < p ≤ 3, with K3 as above,

∑
λ∈σd(K)

d(λ, σ(Km))p+1+τ

|λ−m|(ω + |λ−m|)1+2τ
.

(∫ +∞

0

tp dt

(t+ 1)p+2+2τ
dt

)−1
K3

τωτ
· ‖V ‖pLp .

This finishes the proof of Theorem 3.6.3.

The case m = 0 is a particular case of the fractional Laplacian with s = 1
2
, hence

we refer to the next chapter for the proof. However we precise that the proof of Lieb-
Thirring-type inequalities for the fractional Laplacian was done in the paper [Dub15]
after the article [Dub14], for which we made the computation in the particular case of
s = 1

2
.
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4 The fractional Laplacian operator
: results and proof

Table of Contents
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Results and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Conformal mapping for the fractional Laplacian . . . . . . . . . 56

4.2.2 Upper bound for fractional Laplacian . . . . . . . . . . . . . . 56

4.2.3 Upper bound of the perturbed operator . . . . . . . . . . . . . . 59

4.2.4 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Definition
The referee of the paper [Dub14] make us aware of the existence of Lieb-Thirring-type
inequalities for fractional Laplacian in [LS09b] (for instance), generalising the Klein-
Gordon massless case. We define for s > 0 the fractional Laplacian (−∆)s with the help
of the functional calculus applied to the positive operator−∆. Hence (−∆)s is essentially
self-adjoint on C∞c (Rd;Cn) and the domain of its closure is the fractional Sobolev space

W 2,2s(Rd,Cn) := {f,
∫
Rd

(1+ |ζ|2)s‖f̂(ζ)‖2dζ < +∞}, where f̂ is the Fourier transform

of f . By the spectral mapping Theorem the spectrum of (−∆)s is [0; +∞[.
Let us denote by H0 := (−∆)s, s > 0 and consider the perturbed operator

H = H0 + V (4.1.1)

where V is the operator of multiplication by V . We call it fractional Schrödinger opera-
tor. Here again we assume that V is a relatively Schatten-von Neumann perturbation of
H0 (see definition 2.1.19).

The potential V belongs to Lp(Rd;Mn(C)) =

{
V :

∫
Rd
‖V (x)‖pF dx < +∞

}
, where

‖ · ‖F is the Frobenius norm,

‖V (x)‖F =

( ∑
i,j=1,...,n

|(V (x))i,j|2
)1/2

.

If V ∈ Lp(Rd;Mn(C)) and p > max{1; d
2s
} then the hypothesis (2.1.1) is satisfied (see

Proposition 2.4.1).
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By Weyl’s Theorem 2.1.17 on the essential spectrum

σess(H) = σess(H0) = σ(H0) = [0,+∞[.

4.2 Results and proofs
The following Lieb-Thirring-type inequalities are obtained with the help of Theorem 2.3.1
of Borichev, Golinskii, and Kupin, and using the integration method of Demuth, Hans-
mann, and Katriel.

Theorem 4.2.1. Let H be the fractional Schrödinger operator defined by (4.1.1) and
V ∈ Lp(Rd;Mn(C)), p > max{1; d

2s
}. We take τ small enough. The constants ω and Cω

are defined in Proposition 4.2.7.
For 0 < s ≤ d

2
, the next inequality is verified

∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|α(1 + |λ|)β
≤ C · K1

I
· ω

β−τCp
ω

τ
· ‖V ‖pLp , (4.2.1)

where

1. the powers satisfy

a) α = min{p+τ
2

; d
2s
},

b) β = 2τ + 1
2
(d
s
− p− τ)+,

c) δ = 7p
2

+ 3τ
2

+ min{p; d
s
} − d

2s
(see K1),

2. C depends on d, p, s, and τ ,

3. K1 =
Γp

(2π)d
· 2δ · n

p/2sd−1

2s
·M1, M1 is defined in Proposition 4.2.5,

4. and I =

∫ +∞

0

tp+
1
2

(p−d
s
−2−τ)+

(t+ 1)p+1+2τ+ 1
2

max{d
s
−p−2τ ;0;p−d

s
−2−τ}

dt.

For s > d
2

and p > 1, we have

∑
λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|α(1 + |λ|)β
≤ C · K4

I
· ω

β−τCp
ω

τ
· ‖V ‖pLp , (4.2.2)

where

1. the powers satisfy

a) α = 1
2

+ 1
2

min{p− d
2s

+ τ ; 1},
b) β = 2τ − 1

2
min{0; p− d

2s
− 1 + τ},

c) δ = 2(2p+ 1− d
2s

+ τ)− 1
2

max{p− d
2s
− 1 + τ ; 0; 3d

2s
− p− 1 + τ} (see K4),
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2. C depends on d, p, s, and τ ,

3. K4 =
Γp

(2π)d
2δ · n

p/2sd−1

2s
·N1, N1 is defined in Proposition 4.2.5,

4. and I =

∫ +∞

0

tp+
1
2

(p− 3d
2s
−1−τ)+

(t+ 1)p+1+2τ+ 1
2

max{p− 3d
2s
−1−τ ;0; d

2s
+1−p−τ}

dt.

We give here the result obtained without integration.

Theorem 4.2.2. Let H be the fractional Schrödinger operator defined by (4.1.1) and
V ∈ Lp(Rd;Mn(C)) with p > max{1; d

2s
}. Let τ > 0 be small enough.

For 0 < s ≤ d
2
, the next inequality is satisfied

∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|α(1 + |λ|)β
. ‖V ‖pLp , (4.2.3)

where

1. α = min{p+τ
2

; d
2s
},

2. β = p
2

+ max{p; d
s
} − d

2s
+ 2τ .

For s > d
2
, p > 1, we have

∑
λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|α(1 + |λ|)β
. ‖V ‖pLp , (4.2.4)

where

1. α = 1
2

+ 1
2

min{p− d
2s

+ τ ; 1},

2. β = p− d
2s

+ 1 + 3τ
2

+ 1
2

max{p− d
2s
− 1; 0; 3d

2s
− p− 1}.

In the self-adjoint setting we refer to Theorem 2.1 in [FLS08]. In this case, σd(H) lies
on the negative real half-axis and 0 < s < min{1; d

2
}. In our notation Formula (5.11)

from [FLS08] says∑
λ∈σd(H)

|λ|p−
d
2s ≤ Cp,d‖V−‖pLp , (4.2.5)

where p > d
2s

and V− = min{V, 0}. For 0 < s < min{1; d
2
}, A simple computation

proves that (4.2.1) and (5.1.1) are weaker than (4.2.5).
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4.2.1 Conformal mapping for the fractional Laplacian
Let ϕa be a map sending D to the resolvent set C\{R+} of H0. It is defined for a > 0 by

ϕa : z 7→ λ := −a
(
z + 1

z − 1

)2

, (4.2.6)

and the inverse map defined in C̄\R+ is

ϕ−1
a : λ 7→ z :=

√
λ− i

√
a√

λ+ i
√
a
.

Proposition 4.2.3 (Distortion between C\R+ and D). The distortion via ϕa behave the
following way :

a · d(z,T)
|z + 1|
|z − 1|3

≤ d(λ,R+) ≤ 8a · d(z,T)
|1 + z|
|1− z|3

, (4.2.7)

and
√
a

4
· d(λ,R+)√
|λ|(a+ |λ|)

≤ d(z,T) ≤ 4
√
a

d(λ,R+)√
|λ|(a+ |λ|)

. (4.2.8)

Proof. The first distortion directly follows from (2.3.2) to the function ϕa with, for z ∈
D, ϕ′a(z) = 4a

z + 1

(z − 1)3
.

For the second, we have

|1 + z| =
2
√
|λ|

|
√
λ+ i

√
a|

and |1− z| = 2
√
a

|
√
λ+ i

√
a|
. (4.2.9)

On the other hand |
√
λ + i

√
a|2 = |λ| + a + 2

√
a Im(

√
λ), and, since Im(

√
λ) ≥ 0, we

obtain

|λ|+ a ≤ |
√
λ+ i

√
a|2 ≤

(
|
√
λ|+ |

√
a|
)2

≤ 2(a+ |λ|).

Going back to the inequalities (4.2.7), we obtain (4.2.8).

4.2.2 Upper bound for fractional Laplacian
From Proposition 2.4.1 we have

Proposition 4.2.4. Let V ∈ Lp(Rd;Cn), p > max{1; d
2s
} and λ ∈ ρ(H0).

Then V (λ−H0)−1 ∈ Sp, and

‖V (λ−H0)−1‖pSp ≤ (2π)−d‖V ‖pLp · ‖(λ− | · |
2s)−1‖p

Lp(Rd,Mn(C))
.

We are going to bound the expression ‖(λ − | · |2s)−1‖Lp appearing in the previous

proposition. We recall that sd−1 =
2π

d−1
2

Γ(d−1
2

)
for d ≥ 2 and it is convenient to put s0 = 2

for d = 1.
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Proposition 4.2.5. Let λ = λ0 + iλ1 ∈ C\R+ and p > max{1; d
2s
}. We put in this

proposition δ = d
2s
− 1.

For 0 < s ≤ d
2
, we have

∥∥(λ− | · |2s)−1
∥∥p
Lp
≤ n

p
2 sd−1

2s
·M1 ·

|λ|
d
2s
−1

d(λ, σ(H0))p−1
, (4.2.10)

with M1 = max

{
K2;

∫ +∞

0

tδ dt

(t2 + 1)
p
2

}
, and K2, defined in the proof, depends on d, p,

and s.
And for s > d

2
, we have

∥∥(λ− | · |2s)−1
∥∥p
Lp
≤ n

p
2 sd−1

2s
· N1

d(λ, σ(H0))p−
d
2s

, (4.2.11)

where N1 = max

{∫ +∞

0

tδ

(t2 + 1)
p
2

;

∫ 1

0

tδdt+ 2

∫ +∞

0

dt

(t2 + 1)
p
2

}
.

Proof. As for the Dirac operator, we start with∥∥(λ− | · |2s)−1
∥∥p
Lp(Rd,Mn(C))

= n
p
2

∥∥(λ− | · |2s)−1
∥∥p
Lp(Rd,C)

= n
p
2 sd−1I,

with sd−1 known for d ≥ 2, s0 = 2 for d = 1 and where

I =

∫ +∞

0

rd−1

|r2s − λ|p
dr =

∫ +∞

0

rd−1

|(r2s − λ0)2 + λ2
1|
p
2

dr. (4.2.12)

We assume first that λ0 < 0, that is d(λ, σ(H0)) = |λ|. In (4.2.12), we use (r2s−λ0)2 ≥

r4s + λ2
0, and we make the change of variable t =

r2s

|λ|
, so

I ≤
∫ +∞

0

rd−1

(r4s + |λ|2)
p
2

dr

≤ 1

2s
· |λ|

d
2s

|λ|p

∫ +∞

0

t
d
2s
−1

(t2 + 1)
p
2

dt. (4.2.13)

The integral in (4.2.13) converges since p > d
2s
> 0.

Now we assume λ0 ≥ 0 and λ1 > 0 since ‖(λ − | · |2s)−1‖ = ‖(λ̄ − | · |2s)−1‖. In

(4.2.12), doing the change of variable t =
r2s − λ0

λ1

, we obtain

I =
1

2sλp−1
1

∫ +∞

−λ0
λ1

(λ1t+ λ0)
d−1
2s (λ1t+ λ0)

1
2s
−1

(t2 + 1)
p
2

dt

=
1

2sλp−1
1

∫ +∞

−λ0
λ1

(λ1t+ λ0)
d
2s
−1

(t2 + 1)
p
2

dt. (4.2.14)
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If s = d
2
, the bound is obvious.

Now assume that 0 < s < d
2
. Since λ1 > 0,−λ0

λ1
< 0, we have∫ +∞

−λ0
λ1

(λ1t+ λ0)
d
2s
−1

(t2 + 1)
p
2

dt =

∫ 0

−λ0
λ1

(λ1t+ λ0)
d
2s
−1

(t2 + 1)
p
2

dt

+

∫ +∞

0

(λ1t+ λ0)
d
2s
−1

(t2 + 1)
p
2

dt.

In the first integral of the right-hand side of the above equality, we use λ1t + λ0 ≤ λ0,

and in the second (λ1t+λ0)
d
2s
−1 ≤ Cd,s

(
(λ1t)

d
2s
−1 + λ

d
2s
−1

0

)
, withCd,s = max{1; 2

d
2s
−2}.

Hence, putting δ = d
2s
− 1, we have

I ≤ 1

2sλp−1
1

[
λδ0

∫ 0

−λ0
λ1

1

(t2 + 1)
p
2

dt +

+Cd,sλ
δ
1

∫ +∞

0

tδ

(t2 + 1)
p
2

dt+ Cd,sλ
δ
0

∫ +∞

0

1

(t2 + 1)
p
2

dt

]
≤ K1

2sλp−1
1

·
[
λδ0 + λδ1

]
,

with K1 = max

{
(1 + Cd,s)

∫ +∞

0

dt

(t2 + 1)
p
2

;Cd,s

∫ +∞

0

tδdt

(t2 + 1)
p
2

}
. Then, putting

C ′d,s = max{1; 21−δ}, we have

I ≤ K1

2sλp−1
1

· C ′d,s(λ0 + λ1)δ

≤ K1

2sλp−1
1

· C ′d,s(
√

2)δ|λ|δ.

Consequently, for λ0 ≥ 0, I ≤ K2

2s
· |λ| d2s−1

d(λ, σ(H0))p−1
with K2 = K1 · C ′d,s(

√
2)δ.

This ends the case s ≤ d
2
.

Now we consider the case s > d
2

and we suppose again λ1 > 0. From (4.2.14), we
know that

I =
1

2sλp−1
1

∫ +∞

−λ0
λ1

(λ1t+ λ0)δ

(t2 + 1)
p
2

dt.

The difficulty here is that−1 < δ = d
2s
−1 < 0. Making the change of variable u = t+ λ0

λ1
,

we obtain∫ +∞

−λ0
λ1

(λ1t+ λ0)δ

(t2 + 1)
p
2

dt = λδ1

∫ +∞

−λ0
λ1

(t+ λ0
λ1

)δ

(t2 + 1)
p
2

dt

= λδ1

∫ +∞

0

uδ(
(u− λ0

λ1
)2 + 1

) p
2

du.
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We bound the last integral in the following way :∫ +∞

0

uδ(
(u− λ0

λ1
)2 + 1

) p
2

du ≤
∫ 1

0

uδdu+

∫ +∞

1

1(
(u− λ0

λ1
)2 + 1

) p
2

du

≤
∫ 1

0

uδdu+

∫
R

1

(u2 + 1)
p
2

du.

Indeed, in the first inequality, we use (u − λ0
λ1

)2 + 1 ≥ 1 when 0 ≤ u ≤ 1, and uδ ≤ 1

when u ≥ 1 (since δ < 0). Hence, for λ0 ≥ 0, I ≤ K3

2s
· λδ1
λp−1

1

, with K3 =

∫ 1

0

uδdu +

2

∫ +∞

0

du

(u2 + 1)
p
2

. This finishes the proof.

Remark 4.2.6. When 0 < s ≤ d/2 we cannot factorize by λ1 in the computation for
λ0 ≥ 0, because we cannot bound the same way on [1; +∞[.

4.2.3 Upper bound of the perturbed operator
To bound ‖(−a − H)−1‖ we may use exactly the same proof as for the perturbed Dirac
operator (see Theorem 4.2.2). However, as for the Klein-Gordon operator, we can use
the following bound of ‖(−a − H)−1‖ to obtain a better Lieb-Thirring-type inequality
(Theorem 4.2.1). Again we refer to [Han10, Lemma 3.3.4] for a more general statement.

Proposition 4.2.7. Let p > max{1; d
2s
}, there is ω ≥ 1, depending on n, d, p, s, and V ,

so that −ω ∈ ρ(H) and

∀a ≥ ω, ‖(−a−H)−1‖ ≤ Cω
|ω − a|

.

Proof. We use the following relation

∀λ ∈ ρ(H0), λ−H = (Id− V (λ−H0)−1)(λ−H0). (4.2.15)

Since σ(H0) = σess(H), we deduce that λ ∈ ρ(H) if and only if Id − V (λ − H0)−1

is invertible. But we know that ‖V (λ − H0)−1‖ < 1 implies that Id − V (λ − H0)−1 is
invertible hence ‖V (λ−H0)−1‖ < 1 implies λ ∈ ρ(H).

Taking λ = −a, we show that, for all a ≥ ω where ω ∈ R+ is large enough, the in-
equality ‖V (−a−H0)−1‖ < 1 is satisfy. For that we use the Birman-Solomyak inequality
(2.4.2). Indeed

‖V (−a−H0)−1‖ ≤ ‖V (−a−H0)−1‖Sp

≤ (2π)−d/p‖V ‖Lp · ‖(−a− |x|2s)−1‖Lp .

Hence, by Proposition 4.2.5, we find

‖V (−a−H0)−1‖ ≤ K ′(d, n, p, s)‖V ‖Lp · a
1
p

(
d
2s
−p)
.
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The right-hand side member in the above inequality tends to 0 when a tends to +∞, hence
there is ω ≥ 1, depending on n, d, p, s, and V , such that ∀a > ω, ‖V (−a−H0)−1‖ < 1.

We show now that, for a > ω, we have ‖(−a − H)−1‖ ≤ C(ω)

|ω − a|
. From relation

(4.2.15), we have for λ ∈ ρ(H),

‖(λ−H)−1‖ ≤ ‖(λ−H0)−1‖ · ‖(Id− V (λ−H0)−1)−1‖

≤ 1

d(λ, σ(H0))
· 1

1− ‖V (λ−H0)−1‖
.

For λ = −a, d(−a, σ(H0)) = a ≥ |ω − a|, and since lim
a→+∞

‖V (−a−H0)−1‖ = 0, there

is ω ≥ 1 so that for all a > ω,

‖(−a−H)−1‖ ≤ Cω
a
≤ Cω
|ω − a|

.

Remark 4.2.8. See the proof of Lemma 3.3.4 in [Han10] for a more general setting It
proves the existence of ω such that in R(ω) = {λ ∈ ρ(H0),Re(λ) ≤ −ω}, we have

∀λ ∈ R(ω), ‖(λ−H)−1‖ ≤ Cω
|Re(λ) + ω|

.

4.2.4 Proof of Theorem 4.2.2
Remember from (2.2.3) that f(λ) = detdpe(Id− F (λ)), with

F (λ) := (λ+ a)(a+H)−1V (λ−H0)−1 ∈ Sp, p ≥ 1.

By properties of the regularized determinant we know that

log(|f(λ)|) ≤ Γp‖(λ+ a)(a+H)−1V (λ−H0)−1‖pSp .

From Proposition 4.2.7, for p > max{1; d
2s
} and a ≥ ω, we have ‖(a+H)−1‖ ≤ C(ω)

|ω − a|
,

and from Proposition 2.4.1 we obtain the next inequality

log |f(λ)| ≤ Γp
(2π)d

· Cp
ω

|ω − a|p
· |λ+ a|p‖V ‖pLp‖(λ− |x|

2s)−1‖p
Lp(Rd,Mn(C))

,

(4.2.16)

for λ ∈ C\R+.
Case 0 < s ≤ d

2
. From (4.2.10), we have

log |f(λ)| ≤ K1

|ω − a|p
· ‖V ‖pLp ·

|λ+ a|p|λ| d2s−1

d(λ, σ(H0))p−1
, (4.2.17)

where we put K1 =
Γp

(2π)d
· Cp

ω ·
np/2sd−1

2s
·M1 and M1 is defined in (4.2.10).
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We now transfer the above inequality back on D in order to apply Theorem 2.3.1. That
is, we consider the function g(z) = f ◦ ϕa(z), where ϕa is defined by (4.2.6); it is clearly

holomorphic on D. By definition (4.2.6) we have |λ + a| =
4a|z|
|1− z|2

. By the previous

relation and Proposition 4.2.3 applied to the previous inequality we obtain

log |g(z)| ≤ K1

|ω − a|p
· ‖V ‖pLp ·

(4a)p |z|p a
d
2s
−1|z + 1|

d
s
−2|z − 1|3(p−1)

|z − 1|2p|z − 1|
d
s
−2ap−1d(z,T)p−1|1 + z|p−1

≤ K2 a
d
2s

|ω − a|p
· ‖V ‖pLp ·

|z|p

d(z,T)p−1|1 + z|p−
d
s

+1|1− z|
d
s
−p+1

,

with K2 = 4pK1.
We apply then Theorem 2.3.1, hence, for all τ > 0, we have

∑
g(z)=0

(1− |z|)p+τ |z − 1|(
d
s
−p+τ)+|z + 1|(p−

d
s

+τ)+ .
K2 a

d
2s

|ω − a|p
· ‖V ‖pLp , (4.2.18)

with K2 defined above.
Consider first the case d

2s
< p < d

s
. Hence, for 0 < τ < d

s
− p, (4.2.18) becomes

∑
g(z)=0

(1− |z|)p+τ |z − 1|
d
s
−p+τ ≤ C · K2 a

d
2s

|ω − a|p
· ‖V ‖pLp , (4.2.19)

where C depends on d, p, s, {−1; 1}, and τ .
In the second case, we have p = d

s
. We obtain

∑
g(z)=0

(1− |z|)p+τ |z − 1|τ |1 + z|τ ≤ C · K2 a
d
2s

|ω − a|p
· ‖V ‖pLp , (4.2.20)

where C depends on d, p, s, {−1; 1}, and τ .
The third and last case is d

s
< p, and (4.2.18) becomes, for 0 < τ < p− d

s
,

∑
g(z)=0

(1− |z|)p+τ |z + 1|p−
d
s

+τ ≤ C · K2 a
d
2s

|ω − a|p
· ‖V ‖pLp , (4.2.21)

where C depends on d, p, s, {−1; 1}, and τ .
The next step of the proof consist in transferring relations (4.2.19), (4.2.20) and (4.2.21)

back to ρ(H0) = C\R+. Remind that we have, by Proposition 4.2.3,

1− |z| = d(z,T) ≥
√
a

4
· d(λ, σ(H0))

|λ|1/2(a+ |λ|)
,

|1 + z|2 ≥ 2|λ|
a+ |λ|

, and |1− z|2 ≥ 2a

a+ |λ|
.
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From equation (4.2.19) we get

(1− |z|)p+τ |z − 1|
d
s
−p+τ ≥ a

d
2s

+τ

2
5p
2

+ 3τ
2
− d

2s

· d(λ, σ(H0))p+τ

|λ|
p+τ

2 (a+ |λ|)
d
2s

+
p
2

+
3τ
2

,

so ∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
p+τ

2 (a+ |λ|)
d
2s

+
p
2

+
3τ
2

. a−τ · K2

|ω − a|p
· 2

5p
2

+ 3τ
2
− d

2s · ‖V ‖pLp .

From equation (4.2.20) we obtain

(1− |z|)p+τ |z − 1|τ |z + 1|τ ≥ a
p
2

+τ

22p+τ
· d(λ, σd(H0))p+τ

|λ|
p
2 (a+ |λ|)p+2τ

,

so ∑
λ∈σ(H)

d(λ, σ(H0))p+τ

|λ|
p
2 (a+ |λ|)p+2τ

. a−τ · K2

|ω − a|p
· 22p+τ · ‖V ‖pLp .

Finally from equation (4.2.21) we get

(1− |z|)p+τ |z + 1|p−
d
s

+τ ≥ a
p+τ

2

2
3
2

(p+τ)+ d
2s

· d(λ, σ(H0))p+τ

|λ|
d
2s (a+ |λ|)

3p
2
− d

2s
+

3τ
2

,

so ∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
d
2s (a+ |λ|)

3
2

(p+τ)− d
2s

. a
d
2s
−p+τ

2 · K2

|ω − a|p
· 2

3
2

(p+τ)+
d
2s · ‖V ‖pLp .

We can now proceed to the integration with respect to a ∈ [ω; +∞[ (see Remark 3.6.9).
We start from the above cases. We precise that the interchanging of the sum and the

integral is valid thank to Fubini Theorem, since the functions are positive.
If d

2s
< p < d

s
then,∑

λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
p+τ

2

∫ +∞

ω

|ω − a|pa−1

(a+ |λ|)
d
2s

+
p
2

+
3τ
2

da .
∫ +∞

ω

da

a1+τ
· ‖V ‖pLp .

On one hand,
∫ +∞

ω

da

a1+τ
=

1

τωτ
, and in the left-hand side member, we make the change

of variable t =
a− ω
|λ|+ ω

hence, since a ≤ a+ |λ|,

∫ +∞

ω

|ω − a|pa−1

(a+ |λ|)
d
2s

+
p
2

+
3τ
2

da ≥
∫ +∞

ω

|ω − a|p

(a+ |λ|)
d
2s

+
p
2

+1+
3τ
2

da

≥ (|λ|+ ω)p+1

(|λ|+ ω)
d
2s

+
p
2

+1+
3τ
2

∫ +∞

0

tp dt

(t+ 1)
d
2s

+
p
2

+1+
3τ
2

.
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So, for d
2s
< p < d

s
,∑

λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
p+τ

2 (ω + |λ|)
d
2s
−p

2
+

3τ
2

.
K2

I1

· 2
5p
2

+ 3τ
2
− d

2s

τωτ
· ‖V ‖pLp , (4.2.22)

with I1 =

∫ +∞

0

tp dt

(t+ 1)
d
2s

+
p
2

+1+
3τ
2

.

If p = d
s
, the proof is the same, and we find∑

λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
p
2 (ω + |λ|)2τ

.
K2

I2

· 22p+τ

τωτ
· ‖V ‖pLp , (4.2.23)

with I2 =

∫ +∞

0

tp dt

(t+ 1)p+1+2τ
.

If p > d
s

then,

∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
d
2s

∫ +∞

ω

|ω − a|pa
p+τ

2
− d

2s
−1−τ

(a+ |λ|)
3
2

(p+τ)− d
2s

da .
∫ +∞

ω

da

a1+τ
· ‖V ‖pLp .

As previously, we do the change of variable t =
a− ω
|λ|+ ω

so, if 1
2
(p− d

s
− 2− τ) ≥ 0 then

we bound from below (|λ|+ω)t+ω by (|λ|+ω)t, and if 1
2
(p− d

s
− 2− τ) < 0 we bound

from above (|λ|+ω)t+ω by (|λ|+ω)(t+ 1). We present the case 1
2
(p− d

s
− 2− τ) ≥ 0,

the second being the same as above.∫ +∞

ω

|ω − a|pa
p
2
− d

2s
−1− τ

2

(a+ |λ|)
3
2

(p+τ)− d
2s

da =

=
(|λ|+ ω)p+1

(|λ|+ ω)
3
2

(p+τ)− d
2s

∫ +∞

0

tp[(|λ|+ ω)t+ ω]
p
2
− d

2s
−1− τ

2

(t+ 1)
3
2

(p+τ)− d
2s

dt

≥ (|λ|+ ω)
p
2
− d

2s
−1− τ

2

(|λ|+ ω)
p
2
− d

2s
−1+

3τ
2

∫ +∞

0

t
3p
2
− d

2s
−1− τ

2

(t+ 1)
3
2

(p+τ)− d
2s

dt,

hence, when 1
2
(p− d

s
− 2− τ) > 0, we obtain

∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
d
2s (ω + |λ|)2τ

.
K2

I3

· 2
3
2

(p+τ)+
d
2s

τωτ
· ‖V ‖pLp , (4.2.24)

with I3 =

∫ +∞

0

t
3p
2
− d

2s
−1− τ

2

(t+ 1)
3
2

(p+τ)− d
2s

dt. When 1
2
(p− d

s
− 2− τ) < 0, we obtain

∑
λ∈σd(H)

d(λ, σ(H0))p+τ

|λ|
d
2s (ω + |λ|)2τ

.
K2

I4

· 2
3
2

(p+τ)+
d
2s

τωτ
· ‖V ‖pLp , (4.2.25)
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where we put I4 =

∫ +∞

0

tp dt

(t+ 1)p+1+2τ
.

Summarizing (4.2.22) to (4.2.25), we find (4.2.3). This ends the case 0 < s ≤ d
2
.

Case s > d
2
.

Using (4.2.11) and Proposition 4.2.7, the inequality (4.2.16) becomes

log |f(λ)| ≤ K4

|ω − a|p
· ‖V ‖pLp ·

|λ+ a|p

d(λ, σ(H0))p−
d
2s

,

where we put K4 =
Γp

(2π)d
·Cp

ω ·
np/2sd−1

2s
·N1, with N1 depending only on d, n, p, and s.

Then, as before, we have

log |g(z)| ≤ K4

|ω − a|p
· ‖V ‖pLp ·

4pa
d
2s |z|p

d(z,T)p−
d
2s |1− z| 3d2s−p|1 + z|p− d

2s

.

We put now K5 = 4pK4. Applying Theorem 2.3.1, we have

∑
g(z)=0

(1− |z|)p−
d
2s

+1+τ |z − 1|(
3d
2s
−p−1+τ)+ |z + 1|(p−

d
2s
−1+τ)+ .

K5 a
d
2s

|ω − a|p
· ‖V ‖pLp .

The possible cases with respect to p and d
2s

are clear from the following drawing (Figure
4.1). The x-axis represents p and the y-axis represents d

2s
. There are 4 lines of the equa-

tions y = 1, x − y − 1 = 0, −x + 3y − 1 = 0, and x − 3y − 1 = 0. This last equation
will be useful during the integration of the inequalities.

Figure 4.1: The different cases for s > d
2
.

Consequently, there are three cases to consider :

case 1. The part 1 : p− d
2s
− 1 ≥ 0 and 3d

2s
− p− 1 < 0.

case 2. The part 2: p− d
2s
− 1 < 0 and 3d

2s
− p− 1 < 0.
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case 3. The part 3: p− d
2s
− 1 < 0 and 3d

2s
− p− 1 ≥ 0.

The computations are similar to the case s ≤ d
2
. We recall that

1− |z| = d(z,T) ≥
√
a

4
· d(λ, σ(H0))

|λ|1/2(a+ |λ|)
,

|1 + z|2 ≥ 2|λ|
a+ |λ|

, and |1− z|2 ≥ 2a

a+ |λ|
.

In the first case, we have

d(z,T)p+1− d
2s

+τ |z + 1|p−
d
2s
−1+τ ≥

(√
a

4

)p+1− d
2s

+τ

· 2
1
2

(p− d
2s
−1+τ)×

× d(λ, σ(H0))p+1− d
2s

+τ |λ|
p−1+τ

2
− d

4s

|λ|
p+1+τ

2
− d

4s (a+ |λ|)p+1− d
2s

+τ+
p−1+τ

2
− d

4s

≥ a
1
2

(p+1− d
2s

+τ)

2
3
2

(p+τ)+
5
2
−3d

4s

· d(λ, σ(H0))p+1− d
2s

+τ

|λ|(a+ |λ|)3
p+τ

2
+

1
2
−3d

4s

,

so

∑
λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|(a+ |λ|)3
p+τ

2
−3d

4s
+

1
2

.
a−

1
2

(p+1−3d
2s

+τ)

|ω − a|p
· ‖V ‖pLp . (4.2.26)

In the second case, we have

d(z,T)p+1− d
2s

+τ ≥
(√

a

4

)p+1− d
2s

+τ

· d(λ, σ(H0))p+1− d
2s

+τ

|λ|
p+1+τ

2
− d

4s (a+ |λ|)p+1− d
2s

+τ
,

so

∑
λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|
1
2

(p+1− d
2s

+τ)(a+ |λ|)p+1− d
2s

+τ
.
a−

1
2

(p+1−3d
2s

+τ)

|ω − a|p
· ‖V ‖pLp . (4.2.27)

In the last case, we have

d(z,T)p+1− d
2s

+τ |z − 1|
3d
2s
−p−1+τ ≥

≥
(√

a

4

)p+1− d
2s

+τ

(
√

2a)
3d
2s
−p−1+τ · d(λ, σ(H0))p+1− d

2s
+τ

|λ|
p+1+τ

2
− d

4s (a+ |λ|)p+1− d
2s

+τ+
3d
4s
−p+1−τ

2

≥ a
d
2s

+τ

2
5
2

(p+1)−7d
4s

+
3τ
2

· d(λ, σ(H0))p+1− d
2s

+τ

|λ|
1
2

(p+1− d
2s

+τ)(a+ |λ|)
p+1

2
+
d
4s

+
3τ
2
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so

∑
λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|
p+1+τ

2
− d

4s (a+ |λ|)
p+1

2
+
d
4s

+
3τ
2

.
a−τ

|ω − a|p
· ‖V ‖pLp . (4.2.28)

This give the second part of Theorem 4.2.2.
It remains to integrate with respect to a on [ω; +∞[. We do it the same way as 0 < s ≤

d
2
.
In the first case : p− d

2s
− 1 ≥ 0 and 3d

2s
− p− 1 < 0, we obtain from (4.2.26)

∑
λ∈σd(H)

d(λ, σ(H0))p+1− d
2s

+τ

|λ|

∫ +∞

ω

|ω − a|pa
1
2

(p−3d
2s
−1−τ)

(a+ |λ|)3
p+τ

2
−3d

4s
+

1
2

da .
∫ +∞

ω

da

a1+τ
· ‖V ‖pLp .

On one hand
∫ +∞

ω

da

a1+τ
=

1

τωτ
, and in the left-hand side member, if p − 3d

2s
− 1 > 0

we make the change of variable t =
a− ω
|λ|+ ω

, and if p − 3d
2s
− 1 ≤ 0 we bound first from

above a by a + |λ|, (see the figure 4.1 for the draw of the line p − 3d
2s
− 1 = 0) hence, if

p− 3d
2s
− 1 > 0, for τ small enough,

∫ +∞

ω

|ω − a|pa
1
2

(p−3d
2s
−1−τ)

(a+ |λ|)3
p+τ

2
−3d

4s
+

1
2

da =

=
(|λ|+ ω)p+1

(|λ|+ ω)3
p+τ

2
−3d

4s
+

1
2

∫ +∞

0

tp[(|λ|+ ω)t+ ω]
1
2

(p−3d
2s
−1−τ)

(t+ 1)3
p+τ

2
−3d

4s
+

1
2

dt

≥ (|λ|+ ω)
1
2

(p−3d
2s
−1−τ)

(|λ|+ ω)
p
2
−3d

4s
−1

2
+

3τ
2

∫ +∞

0

t
1
2

(3p−3d
2s
−1−τ)

(t+ 1)3
p+τ

2
−3d

4s
+

1
2

dt.

Hence, if p− 3d
2s
− 1 > 0,

∑
λ∈σd(H)

d(λ, σ(H0))p+1− d
2s

+τ

|λ|(ω + |λ|)2τ
.
K5

I5

· 2
1
2

(3(p+τ)+5−3d
2s

)

τωτ
· ‖V ‖pLp , (4.2.29)

with I5 =

∫ +∞

0

t
1
2

(3p−3d
2s
−1−τ)

(t+ 1)3
p+τ

2
−3d

4s
+

1
2

dt. And if p− 3d
2s
− 1 ≤ 0,

∫ +∞

ω

|ω − a|pa
1
2

(p−3d
2s
−1−τ)

(a+ |λ|)3
p+τ

2
−3d

4s
+

1
2

da ≥
∫ +∞

ω

|ω − a|p(a+ |λ|)
1
2

(p−3d
2s
−1−τ)

(a+ |λ|)3
p+τ

2
−3d

4s
+

1
2

da

≥ (|λ|+ ω)p+1

(|λ|+ ω)p+1+2τ

∫ +∞

0

tp dt

(t+ 1)p+1+2τ
.
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Hence, if p− 3d
2s
− 1 ≤ 0,

∑
λ∈σd(H)

d(λ, σ(H0))p+1− d
2s

+τ

|λ|(ω + |λ|)2τ
.
K5

I6

· 2
1
2

(3(p+τ)+5−3d
2s

)

τωτ
· ‖V ‖pLp , (4.2.30)

with I6 =

∫ +∞

0

tp dt

(t+ 1)p+1+2τ
.

In the second case, we have p − d
2s
− 1 < 0 and 3d

2s
− p − 1 < 0. We integrate the

inequality (4.2.27), which gives

∑
λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|
1
2

(p+1− d
2s

+τ)

∫ +∞

ω

|ω − a|pa
1
2

(p−3d
2s
−1−τ)

(a+ |λ|)p+1− d
2s

+τ
da .

∫ +∞

ω

da

a1+τ
· ‖V ‖pLp .

We have p− 3d
2s
− 1 ≤ 0, hence we bound from above a by a+ |λ| and then with the same

change of variable, we find∫ +∞

ω

|ω − a|pa
1
2

(p−3d
2s
−1−τ)

(a+ |λ|)p+1− d
2s

+τ
da ≥

∫ +∞

ω

|ω − a|p

(a+ |λ|) 1
2

(p+ d
2s

+3+3τ)
da

≥ (|λ|+ ω)p+1

(|λ|+ ω)
1
2

(p+ d
2s

+3+3τ)

∫
R+

tp dt

(t+ 1)
1
2

(p+ d
2s

+3+3τ)

≥ 1

(|λ|+ ω)
1
2

( d
2s
−p+1+3τ)

∫
R+

tp dt

(t+ 1)
1
2

(p+ d
2s

+3+3τ)
,

and we know that d
2s
− p+ 1 > 0 by hypothesis hence

∑
λ∈σd(H)

d(λ, σ(H0))p+1− d
2s

+τ

|λ|
1
2

(p+1− d
2s

+τ)(ω + |λ|) 1
2

( d
2s
−p+1+3τ)

.
K5

I7

· 2
2(p+1− d

2s
+τ)

τωτ
· ‖V ‖pLp , (4.2.31)

with I7 =

∫ +∞

0

tp dt

(t+ 1)
1
2

(p+ d
2s

+3+3τ)
. We recall here that 0 < p− d

2s
< 1, hence d

2s
− p+

1 > 0.
Finally the last case : p − d

2s
− 1 < 0 and 3d

2s
− p − 1 ≥ 0. Integrating the inequality

(4.2.28) we find

∑
λ∈σd(H)

d(λ, σ(H0))p−
d
2s

+1+τ

|λ|
1
2

(p+1− d
2s

+τ)

∫ +∞

ω

|ω − a|pa−1

(a+ |λ|)
p+1

2
+
d
4s

+
3τ
2

da .
∫ +∞

ω

da

a1+τ
· ‖V ‖pLp .

Bounding from above a by a+ |λ|, and then with the change of variable, we obtain∫ +∞

ω

|ω − a|pa−1

(a+ |λ|)
p+1

2
+
d
4s

+
3τ
2

da ≥
∫ +∞

ω

|ω − a|p

(a+ |λ|) 1
2

(p+3+ d
2s

+3τ)
da

≥ (|λ|+ ω)p+1

(|λ|+ ω)
1
2

(p+3+ d
2s

+3τ)

∫ +∞

0

tp dt

(t+ 1)
1
2

(p+3+ d
2s

+3τ)
.
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So

∑
λ∈σd(H)

d(λ, σ(H0))p+1− d
2s

+τ

|λ|
1
2

(p+1− d
2s

+τ)(ω + |λ|)
1
2

(
d
2s
−p+1+3τ)

.
K5

I8

· 2
1
2

(5(p+1)−7d
2s

+3τ)

τωτ
·‖V ‖pLp , (4.2.32)

with I8 =

∫ +∞

0

tp dt

(t+ 1)
1
2

(p+3+ d
2s

+3τ)
. As before 0 < p− d

2s
< 1, hence d

2s
− p+ 1 > 0.

To clarify the statement of the theorem, in the case 2., we bound from below
1

(1 + |λ|)τ

by
1

(1 + |λ|)
3τ
2

, so this gives β.

The proof of Theorem 4.2.1 is finished. �
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5 Lieb-Thirring-type Inequalities
with Hansmann’s results
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5.1 Hansmann’s Theorem and results

5.1.1 Hansmann’s Theorem
The following theorem is the main ingredient of the proofs of Theorems 5.2.2 and 5.3.1.
It is proved in the article [Han11].

Theorem 5.1.1. Let A be a normal bounded operator and B be a bounded operator such
that B − A ∈ Sp for some p ≥ 1. We assume further that σ(A) is convex, then∑

λ∈σd(B)

d (λ, σ(A))p ≤ ‖B − A‖pSp .

In [Han13, Cor. 1], the author generalize the previous theorem in the following way.

Theorem 5.1.2 (Hansmann). LetA be a bounded self-adjoint operator andB be a bounded
operator such that B − A ∈ Sp for some p > 1. Then the following inequality holds :∑

λ∈σd(B)

d (λ, σ(A))p ≤ Cp‖B − A‖pSp ,

where Cp depends only on p.

The constant Cp can be describe in the following form : we have

Cp =


122−pΓp if 1 < p < 2

2 if p = 2
2p/2−14p−2Γp if p > 2

,
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where Γp is a constant given before Theorem 1 in [Han13], and satisfy Γp ≥ 2 pour tout
p > 1.

We notice first that the first theorem is valid for p ≥ 1 and the second consider p > 1,
Also the constant Cp in Theorem 5.1.2 is greater than 1, hence, in the case where both
theorems apply (for instance when the spectrum of the unperturbed operator is convex),
Theorem 5.1.1 is more interesting. For more details, we refer to the articles [Han11],
[Han13] and [DHK13].

in [Han11], the author applied Theorem 5.1.1 to the Schrödinger and Jacobi opera-
tors, and in [Han13], to the case of a unitary operator, but also on zero-sets of Cauchy
transforms of a finite, complex Borel measure on the unit circle.

Theorem 5.1.2 was used by Golinskii and Kupin in [GK13] for a perturbation of a
self-adjoint Schrödinger operator, and by Sambou in [Sam14] for magnetic Schrödinger
operator.

More generally, we saw how to bound the resolvent norm of the perturbed operator (see
Proposition 4.2.7) when the unperturbed operator is bounded from below. We can then
use Theorem 5.3.3 in [DHK13] who use an integration with respect to the parameter a,
useful here to define the resolvent of the operators, and give better result than the simple
application of Theorems 5.1.1 and 5.1.2 alone. In the next results the only constants we
did not compute are ω and Cω.

5.1.2 Results and comparisons

We saw in Proposition 4.2.7 the existence of ω ≥ 1, depending on n, d, p, s, and V , such
that

∀a > ω, ‖(−a−H)−1‖ ≤ Cω
|ω − a|

.

In this case, the obtained result for the fractional Schrödinger operator is

Theorem 5.1.3. Let H be the fractional Schrödinger operator defined in (4.1.1) and V ∈
Lp(Rd;Mn(C)), p > max{1; d

2s
} with s > 0.

Then, for τ > 0, the following inequality holds

∑
λ∈σd(H)

d(λ, σ(H0))p

(1 + |λ|) d
2s

+τ
≤ K2

I
· ω

d
2sCp

ω

τ
· ‖V ‖pLp , (5.1.1)

with

1. K2 = (2
√

5)p · n
p/2sd−1

2s(2π)d
·M1 if 0 < s ≤ d

2
,

2. K2 = (2
√

5)p · n
p/2sd−1

2s(2π)d
·N1 if s > d

2
,

3. and I =

∫ +∞

0

tp+(p− d
2s
−1−τ)+ dt

(t+ 1)p+
d
2s

+1+τ+(p− d
2s
−1−τ)+

,
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where M1 and N1 are defined in Proposition 4.2.5.

To compare Theorems 4.2.1 and 5.1.3, consider a sequence of eigenvalues (λn)N, λn ∈
σd(H), converging to λ ∈ σess(H) = R+.

Without loss of generality, we assume d(λ, σ(H0)) ≤ 1.
We start with the simplest case λ ∈]0; +∞[. In this case, (5.1.1) is better than (4.2.1)

or (4.2.2) .
The case λ = ∞ is simple too. We distinguish the different cases with respect to p

and d
s
, and after computation the term in (4.2.1) becomes

d(λn, σ(H0))p+τ

|λn|
d
2s

+2τ
and the term

in (5.1.1) becomes
d(λn, σ(H0))p

|λn|
d
2s

+τ
. We have

d(λn, σ(H0))τ

|λn|τ
≤ 1. Hence (5.1.1) gives a

better estimate than (4.2.1). The same reasoning is valid to compare (5.1.1) and (4.2.2),
and give the same conclusion.

The “integration ” method introduced by Demuth, Hansmann, and Katriel is useful here
since, without it, the inequality (4.2.1) give a better estimate at∞ than (5.2.1).

When λ = 0, the situation is more delicate: If d(λn, σ(H0)) ≈ |λn|, i.e., Re(λn) ≤ 0 or
0 ≤ Re(λn) ≤ C|Im(λn)| with C > 0; then (4.2.1) give a better result than (5.1.3). Else,
when d(λn, σ(H0)) = |Im(λ)| and Re(λn) ≥ |Im(λn)|, there are two cases. Indeed, the

term in (4.2.1) becomes
|Im(λ)|p+τ

|λn|min{(p+τ)/2;d/2s} and the term in (5.1.3) becomes |Im(λ)|p.

Hence the quotient is
|λn|min{(p+τ)/2;d/2s}

|Im(λ)|τ
≈ Re(λn)min{(p+τ)/2;d/2s}

|Im(λ)|τ
. The case to distin-

guish are then clear. The same hold with (4.2.2). Finally when λ = 0, (4.2.1) or (4.2.2)
have a small advantage over (5.1.1).

In the same way for the Klein-Gordon operator, there is ω ≥ 1, depending on n, d, p,m
et V , so that

∀a ≥ ω, ‖(−a−K)−1‖ ≤ Cω
|ω − a|

. (5.1.2)

Hence we have

Theorem 5.1.4. Let K = Km + V be the perturbed Klein-Gordon operator m > 0,
defined in 3.6.1 and V ∈ Lp(Rd;Mn(C)), p > d. Then, for τ > 0, we have the following
inequality∑

λ∈σd(K)

d(λ, σ(Km))p

(1 + |λ|)d+τ
≤ K3 · (ω +m)d

I · τ
· ‖V ‖pLp , (5.1.3)

with K3 = (2
√

5)p · n
p/2sd−1

(2π)d
· Cp

ω · 2δM , where

1. δ = 2d− 3 and M = max{M1;M2} if d ≥ 2 (see Proposition 3.3.6),

2. else δ = 1 and M is defined in Proposition 3.4.1 if d = 1,

and I =

∫ +∞

0

t2p−d

(t+ 1)2p+1+τ
dt.
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We compare the results (3.6.2) obtained with Borichev-Golsinkii-Kupin Theorem to
the result (5.1.3) obtained with Hansmann Theorem.

For this we consider a sequence (λn)N ⊂ σd(K) which converges to λ ∈ σess(K).
Without lost of generalities, we assume d(λn, σ(Km)) ≤ 1.

The simpler case is λ ∈]m; +∞[. In this case, (5.1.3) is better than (3.6.2). The case

λ =∞ is also easy since, in this case, the term in (3.6.2) becomes
d(λn, σ(Km))p+τ

|λn|d+2τ
and

the term in (5.1.3) becomes
d(λn, σ(Km))p

|λn|d+τ
. We have

d(λn, σ(Km))τ

|λn|τ
≤ 1. Hence (5.1.3)

is better than (3.6.2). The integration method introduced by Demuth, Hansmann, and
Katriel is relevant here because, without it, the inequality (3.6.4) give a better estimate at
∞ than (5.3.1).

When λ = m, the situation is more complicated: if d(λn, σ(Km)) ≈ |λn −m|, that is,
Re(λn) ≤ m or 0 ≤ Re(λn) −m ≤ C|Im(λn)| with C > 0; then (3.6.2) gives a better
result than (5.1.3). Else, when d(λn, σ(Km)) = |Im(λ)| and Re(λn) − m ≥ |Im(λn)|,

there are two cases. Indeed, the term in (3.6.2) becomes
|Im(λ)|p+τ

|λn −m|
and the term in

(5.1.3) becomes |Im(λ)|p. Hence the quotient gives
|λn −m|
|Im(λ)|τ

≈ Re(λn)−m
|Im(λ)|τ

. The two

cases are then clear.

5.1.3 Distortion for resolvent
We will apply the Theorem 5.1.1 to the resolvent of the operators (since they are un-
bounded). To compute the distortion between the spectrum of the operator and the one of
its resolvent, we need to know the distortions of the mapping λ 7→ 1

λ
between C\[a; +∞[

and C\[0; 1
a
]. This is the content of the next proposition.

Proposition 5.1.5. Let a > 0. The distortion between C\[0; 1
a
] and C\R+ via the inverse

function is given by

d

(
1

λ
,

[
0;

1

a

])
≥ 1√

5
· d (λ, [a; +∞[)

|λ| · (a+ |λ|)
. (5.1.4)

Proof. We detail the computation. For this, we distinguish four parts denoted by 1., 2.,
3., and 4. (see figure 5.1). We denote Iz = [0; 1

a
] and Iλ = [a; +∞[.

When λ ∈ 1., we have d(λ, Iλ) = |λ − a| and d(z, Iz) = |z| =
1

|λ|
=

|λ− a|
|λ| · |λ− a|

.

Since |λ− a| ≤ a+ |λ|, we deduce that

for λ, z ∈ 1., d(z, Iz) ≥
d(λ, Iλ)

|λ|(a+ |λ|)
.

Similarly, when λ ∈ 2., we have d(λ, Iλ) = |Im(λ)| and d(z, Iz) = |Im(z)| = |Im(λ)|
|λ|2

,

and since |λ| ≤ a+ |λ|, we find

for λ, z ∈ 2., d(z, Iz) ≥
d(λ, Iλ)

|λ|(a+ |λ|)
.
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Figure 5.1: The different parts for the inverse map

In the same way, when λ ∈ 3., we have d(λ, Iλ) = |λ − a| et d(z, Iz) =

∣∣∣∣z − 1

a

∣∣∣∣ =∣∣∣∣a− λaλ

∣∣∣∣ =
|λ− a|
a|λ|

. But a ≤ a+ |λ| hence

for λ, z ∈ 3., d(z, Iz) ≥
d(λ, Iλ)

|λ|(a+ |λ|)
.

For λ ∈ 4., we always have 0 ≤ Re(λ) ≤ a. So we always have d(λ, Iλ) = |λ− a| and

d(z, Iz) = |Im(z)| = |Im(λ)|
|λ|2

. We consider three cases

1. |Im(λ)| ≥ a
2
,

2. |Im(λ)| ≤ a
2

and Re(λ) ≤ a
2
,

3. |Im(λ)| ≤ a
2

and Re(λ) ≥ a
2
.

We start with |Im(λ)| ≥ a
2
. Then

|λ− a| =
√

(Re(λ)− a)2 + Im(λ)2

≤
√
a2 + Im(λ)2 since 0 ≤ Re(λ) ≤ a

≤
√

5|Im(λ)| since |Im(λ)| ≥ a

2
.

Hence, as before,

d(z, Iz) ≥
1√
5
· d(λ, Iλ)

|λ|(a+ |λ|)
.
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Case 2. We have |Im(λ)| ≥ Re(λ), hence |Im(z)| ≤ |z| ≤
√

2|Im(z)| since |Im(z)| =
|Re(λ)|
|λ|2

≤ |Im(λ)|
|λ|2

= |Im(z)|. Consequently, d(z, Iz) ≥
1√
2
|z| =

1√
2|λ|

. But

|λ− a|
a+ |λ|

≤ 1 so

d(z, Iz) ≥
1√
2
· d(λ, Iλ)

|λ|(a+ |λ|)
.

Case 3. The last case is similar to the previous one, we use this time |Im(λ)| ≥ a −
Re(λ) ≥ 0, and we obtain

d(z, Iz) ≥
1√
2
· d(λ, Iλ)

|λ|(a+ |λ|)
.

This conclude the proof of the distortion’s inequality.

5.2 Proof for the fractional Laplacian

We introduce the function g : C\[0,+∞[→ C\[− 1
a
, 0] defined by g(λ) =

−1

a+ λ
. The

next proposition is the application of Proposition 5.1.5 to H0 and its resolvent at −a : we
have (−a−H0)−1 = g(H0).

Proposition 5.2.1. The distortion between C\[− 1
a
; 0] and C\R+ is given by

d

(
g(λ),

[
−1

a
, 0

])
≥ 1

2
√

5
· d (λ,R+)

(a+ |λ|)2
.

Proof. We compose relation 5.1.4 by the translation T : λ 7→ λ+ a, hence

d

(
1

λ+ a
,

[
0;

1

a

])
≥ 1√

5
· d (λ+ a, [a; +∞[)

|λ+ a| · (a+ |λ+ a|)

≥ 1

2
√

5
· d (λ, [0; +∞[)

|λ+ a| · (a+ |λ|)
,

then we bound from below with |λ+ a| ≤ a+ |λ|.

The next theorem is a first Lieb-Thirring-type inequality obtained thanks to Theorem
5.1.1.

Theorem 5.2.2. Let H be the operator defined in (4.1.1) and V ∈ Lp(Rd;Mn(C)),
p > max{1; d

2s
} with s > 0. Then the next inequality holds

∑
λ∈σd(H)

d(λ, σ(H0))p

(a+ |λ|)2p
≤ K2 ·

a
d
2s
−p

|ω − a|p
· ‖V ‖pLp , (5.2.1)

where (see Proposition 4.2.5 for the definition of M1 and N1)
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1. K2 = (2
√

5)p
np/2sd−1

2s(2π)d
· Cp

ω ·M1 if 0 < s ≤ d
2
,

2. or K2 = (2
√

5)p
np/2sd−1

2s(2π)d
· Cp

ω ·N1 if s > d
2
.

Proof. We putA = (−a−H0)−1 which is normal andB = (−a−H)−1 which is bounded
for a > ω so that A and B exist. We know that B−A = BV A ∈ Sp, hence we can apply
Theorem 5.1.1. It implies, for p ≥ 1,∑

µ∈σd(B)

d (µ, σ(A))p ≤ ‖B − A‖pSp . (5.2.2)

Now we bound the right-hand side of the inequality (5.2.2), for p > max{1; d
2s
}, with the

help of Propositions 4.2.4, 4.2.5, and 4.2.7

‖B − A‖pSp ≤ (2π)−d‖(−a−H)−1‖p · ‖V ‖pLp · ‖(−a− | · |
2s)−1‖pLp

≤ K1 ·
a
d
2s
−p

|ω − a|p
· ‖V ‖pLp , (5.2.3)

where K1 =
np/2sd−1

2s(2π)d
· Cp

ω ·M1 if 0 < s ≤ d
2

or K1 =
np/2sd−1

2s(2π)d
· Cp

ω · N1 if s > d
2

(see

Proposition 4.2.5). Then from Proposition 2.1.13, µ = (−a − λ)−1 = g(λ) ∈ σd(B) if
and only if λ ∈ σd(H), hence∑

µ∈σd(B)

d (µ, σ(A))p =
∑

{g(λ),λ∈σd(H)}

d (g(λ), σ(A))p

≥ 1

(2
√

5)p
·
∑

λ∈σd(H)

d (λ, σ(H0))p

(a+ |λ|)2p
. (5.2.4)

The last inequality result from Proposition 5.2.1. The result is a consequence of (5.2.3)
and (5.2.4).

The last step to obtain Theorem 5.1.3 is an integration with respect to a the same way
as in [DHK13] in the proof of Theorem 5.3.3.

Proof of Theorem 5.1.3. From Theorem 5.2.2 we know that, for all a > ω,∑
λ∈σd(H)

d(λ, σ(H0))p

(a+ |λ|)2p
· |ω − a|

p

a
d
2s
−p+1+τ

≤ C · 1

a1+τ
· ‖V ‖pLp ,

where C does not depend on a. we integrate with respect to a between ω and +∞ the
previous inequality :∫ +∞

ω

∑
λ∈σd(H)

d(λ, σ(H0))p

(a+ |λ|)2p
· |ω − a|

p

a
d
2s
−p+1+τ

da .
∫ +∞

ω

1

a1+τ
da · ‖V ‖pLp

=⇒
∑

λ∈σd(H)

d(λ, σ(H0))p
∫ +∞

ω

ap−
d
2s
−1−τ |ω − a|p

(a+ |λ|)2p
da .

‖V ‖pLp
τωτ

.
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In the last inequality the interchanging of the sum and the integral is valid by Fubini
Theorem (the functions are positive). We bound from below the left-hand side of the
above inequality whether p − d/2s ≤ 1 or p − d/2s > 1 and then make the change of

variable t =
a− ω
|λ|+ ω

. Hence, assuming first that p− d/2s > 1,

∫ +∞

ω

ap−
d
2s
−1−τ (a− ω)pda

(a+ |λ|)2p
=

(|λ|+ ω)p+1

(|λ|+ ω)2p

∫
R+

[(|λ|+ ω)t+ ω]p−
d
2s
−1−τ tp

[t+ 1]2p
dt

≥ (|λ|+ ω)p−
d
2s
−1−τ

(|λ|+ ω)p−1

∫ +∞

0

t2p−
d
2s
−1−τ

[t+ 1]2p
dt

≥ 1

(|λ|+ ω)
d
2s

+τ

∫ +∞

0

t2p−
d
2s
−1−τ

(t+ 1)2p
dt.

When p− d/2s < 1, we have

∫ +∞

ω

ap−
d
2s
−1−τ (a− ω)pda

(a+ |λ|)2p
=

(|λ|+ ω)p+1

(|λ|+ ω)2p

∫
R+

[(|λ|+ ω)t+ ω]p−
d
2s
−1−τ tp

[t+ 1]2p
dt

≥ (|λ|+ ω)p−
d
2s
−1−τ

(|λ|+ ω)p−1

∫ +∞

0

(t+ 1)p−
d
2s
−1−τ tp

[t+ 1]2p
dt

≥ 1

(|λ|+ ω)
d
2s

+τ

∫ +∞

0

tp

(t+ 1)p+
d
2s

+1+τ
dt.

This concludes the proof.

5.3 Proof for the Klein-Gordon operator

To prove the Theorem 5.1.4, we start with the following result.

Theorem 5.3.1. Let K = Km + V be a perturbation of the Klein-Gordon operator
Km,m > 0, defined in (3.6.1) eand V ∈ Lp(Rd;Mn(C)), p > d. Then we have the
following inequality

∑
λ∈σd(H)

d(λ, σ(Km))p

(a+m+ |λ|)2p
≤ K2 ·

(a+m)d−p

(a− ω)p
· ‖V ‖pLp , (5.3.1)

with K2 = (2
√

5)p · sd−1n
p
2

(2π)d
· Cp

ω · 2δM where

1. δ = 2d− 3 and M = max{M1;M2} if d ≥ 2 (see Proposition 3.3.6),

2. or δ = 1 and M is defined in Proposition 3.4.1 if d = 1.
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Proof. We consider the operators A = (−a −Km)−1 and B = (−a −K)−1 for a > ω.
From Proposition 2.1.13, we know that σ((−a − Km)−1) =

[
− 1
a+m

; 0
]
. We put λ1 =

λ+ a, then from Proposition 5.1.5 we have

d

(
1

λ1

,

[
0;

1

a+m

])
≥ 1√

5
· d(λ1; [a+m; +∞[)

|λ1|(a+m+ |λ1|)

≥ 1√
5
· d(λ; [m; +∞[)

|λ+ a|(a+m+ |λ+ a|)

≥ 1

2
√

5
· d(λ; [m; +∞[)

(a+m+ |λ|)2
.

Using the results of Proposition 3.3.6 (or 3.4.1 when d = 1)

‖B − A‖pSp ≤ ‖B‖
p ‖V A‖pSp

≤ (2π)−d‖(−a−K)−1‖p ‖V ‖pLp‖(−a−
√
|x|2 +m2)−1‖pLp

≤ K1 ·
Cp
ω

(a− ω)p
· ‖V ‖pLp · 2

δ′(a+m)d−p

≤ K2 ·
(a+m)d−p

(a− ω)p
· ‖V ‖pLp ,

with, if d ≥ 2, δ′ = d − 1, K1 =
sd−1n

p
2

(2π)d
· 2d−2M with M = max{M1;M2} (see

Proposition 3.3.6), or, if d = 1, δ′ = 1, K1 =
s0n

p
2

(2π)d
·M , with M defined in Proposition

3.4.1; then K2 = K1C
p
ω 2δ

′ .
We apply now Theorem 5.1.1 to A and B, and we obtain inequality (5.3.1).

∑
λ∈σd(H)

d(λ, σ(Km))p

(a+m+ |λ|)2p
≤ (2

√
5)pK2

(a− ω)p(a+m)p−d
· ‖V ‖pLp ,

with K2 described above.

Proof of Theorem 5.1.4. We now integrate the inequality (5.3.1) with respect to a between
ω and +∞ to find (5.1.3). Recall that ω ≥ 1.

∑
λ∈σd(H)

d(λ, σ(Km))p
∫ +∞

ω

(a− ω)p(a+m)p−d−1−τ

(a+m+ |λ|)2p
da .

∫ +∞

ω

da

(a+m)1+τ
·‖V ‖pLp .

In the integral in the left-hand side of the inequality, we make the change of variable
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t =
a− ω

|λ|+ ω +m
,

∫ +∞

ω

(a− ω)p(a+m)p−d

(a+m+ |λ|)2p(a+m)1+τ
da =

=

∫ +∞

0

(|λ|+ ω +m)p+1tp [(|λ|+ ω +m)t+ ω +m]p−d

[(|λ|+ ω +m)(t+ 1)]2p[(|λ|+ ω +m)t+ ω +m]1+τ
dt

≥ (|λ|+ ω +m)2p−d+1

(|λ|+ ω +m)2p

∫ +∞

0

t2p−d

(t+ 1)2p [(|λ|+ ω +m)(t+ 1)]1+τ
dt

≥ 1

(|λ|+ ω +m)d+τ

∫ +∞

0

t2p−d

(t+ 1)2p+1+τ
dt.

In the penultimate inequality we use ω +m > 0 and |λ| > 0.
This ends the proof.
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6 Appendix
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6.1 Integration of the Lieb-Thirring-type inequality in the case of mass-
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6.2 Glossary of the notation . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Integration of the Lieb-Thirring-type inequality
in the case of massless Dirac operator

One of the reasons we cannot “integrate” the Lieb-Thirring-type inequalities in Theorem
3.2.1, as for half-bounded operators, is the absence of the parameter b in the behaviour at
infinity of the distortion.

We realize lately that this parameter is present in the case of the massless Dirac oper-
ator. That is why we present in this appendix the proof of the following improvement of
Theorem 3.2.3.

Theorem 6.1.1 (case m = 0). Let D be the Dirac operator defined in (3.1.3) with m = 0
and V ∈ Lp(Rd;Mn(C)), p > d. Then, for 0 < τ ≤ p− d, we have∑

λ∈σd(D)

d(λ, σ(D0))p+τ

(1 + |λ|)d+2τ
≤ C · K1

I
· ω

d+τCp
ω

τ
· ‖V ‖pLp , (6.1.1)

where

1. C depends on p, d, and τ ,

2. K1 = Γp 22p−1K, K is defined in Proposition 3.5.2,

3. I =

∫
R+

tp+(p−d−1)+ dt

(t+ 1)2(p+τ)−(p−d−1)+
,

4. and Cω is defined in Proposition 6.1.3.

To prove the result, we show another distortion inequality in Proposition 3.5.1. We
keep the same functions and we work in C+.

Proposition 6.1.2 (distortion between C+ and D). Let b > 0, the distortion between C+

and D are

b

2
· d(z,T)

|z − 1|2
≤ d(λ, σ(D0)) ≤ 4b · d(z,T)

|z − 1|2
,
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and

b · d(λ, σ(D0))

(b+ |λ|)2
≤ d(z,T) ≤ 16b · d(λ, σ(D0))

(b+ |λ|)2
.

Proof. The proof is the same as the proof of Proposition 3.5.1 except that we use 1
2
(|λ|+

b)2 ≤ |λ+ ib|2 ≤ (|λ|+ b)2.

We know from Proposition 3.5.2 the bound of the norm-resolvent of D0. The new fact
is the following bound of the norm-resolvent of the perturbed operator D:

Proposition 6.1.3. There is ω ≥ 1 depending on d, n, p, and V such that iω ∈ ρ(D) and,
for all b ≥ ω,

‖(ib−D)−1‖ ≤ Cω
|b− ω|

.

Proof. Indeed, looking back at the proof of Proposition 4.2.7, we use that

‖V (ib−D0)−1‖pSp ≤ K‖V ‖pLp
bd−1

bp−1

tends to 0 when b tends to +∞.

Proof of Theorem 6.1.1. We go back to the inequality (3.5.1) which becomes, since p >
d, ∑

g(z)=0

d(z,T)p+τ ≤ C ·K1 ·
Cp
ωb
d

|b− ω|p
· ‖V ‖pLp ,

But, with the new expression of the distortion, we have d(z,T) ≥ b · d(λ, σ(D0))

(b+ |λ|)2
, hence

∑
λ∈σd(D)

d(λ, σ(D0))p+τ

(b+ |λ|)2(p+τ)
.

bd−p−τ

|b− ω|p
· ‖V ‖pLp .

We integrate this inequality with respect to b between ω and +∞ in the following way∑
λ∈σd(D)

d(λ, σ(D0))p+τ
∫ +∞

ω

|b− ω|pbp−d−1

(b+ |λ|)2(p+τ)
db . ‖V ‖pLp

∫ +∞

ω

db

b1+τ
. (6.1.2)

The interchanging of the sum and the integral is valid by Fubini Theorem. The integral in

the right-hand side member equals
1

τωτ
. In the left-hand side, the bound depends on the

sign of p−d− 1. If p−d− 1 ≥ 0 then, with the change of variable t =
b− ω
ω + |λ|

, we have∫ +∞

ω

|b− ω|pbp−d−1

(b+ |λ|)2(p+τ)
db =

(ω + |λ|)p+1

(ω + |λ|)2(p+τ)

∫
R+

tp((ω + |λ|)t+ ω)p−d−1

(t+ 1)2(p+τ)
dt

≥ (ω + |λ|)p−d−1

(ω + |λ|)p−1+2τ

∫
R+

t2p−d−1

(t+ 1)2(p+τ)
dt

≥ 1

(ω + |λ|)d+2τ

∫
R+

t2p−d−1

(t+ 1)2(p+τ)
dt.
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If p − d − 1 < 0, we bound from above b by b + |λ|, and then with the same change of
variable, we find∫ +∞

ω

|b− ω|pbp−d−1

(b+ |λ|)2(p+τ)
db ≥

∫ +∞

ω

|b− ω|p

(b+ |λ|)p+d+1+2τ
db

≥ (ω + |λ|)p+1

(ω + |λ|)p+d+1+2τ

∫
R+

tp dt

(t+ 1)2(p+τ)

≥ 1

(ω + |λ|)d+2τ

∫
R+

tp dt

(t+ 1)p+d+1+2τ
.

Hence, going back to (6.1.2), we obtain∑
λ∈σd(D)

d(λ, σ(D0))p+τ

(ω + |λ|)d+2τ
db ≤ C · K1

I
· C

p
ω

τωτ
· ‖V ‖pLp ,

with C,K1, and Cω described above, and I =

∫
R+

t2p−d−1

(t+ 1)2(p+τ)
dt if p − d − 1 ≥ 0, or

I =

∫
R+

tp dt

(t+ 1)p+d+1+2τ
if p− d− 1 < 0.
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6.2 Glossary of the notation

• L2(Rd,Kn) :=

{
f : Rd → Kn measurable,

∫
Rd
|f(x)|2 dx <∞

}
, where K = R

or C. This is a complex Hilbert space.

• C∞c denote the space of infinitely differentiable functions with compact support.
See Sections 3.1, 3.6.1, and 4.1.

• C+ (resp. C−) denote the half-plane with positive (resp. negative) imaginary part.
See Section 3.5.1.

• D = {z : |z| < 1} is the open unit disc in C.

• d(z;A) denote the distance between z and A. See Section 2.3.3.

• H 1 denote the Sobolev space of order 1. See Sections 3.1 and 3.6.1.

• sd−1 =
2π

d−1
2

Γ
(
d−1

2

) is the total mass of the invariant measure on the unit sphere of

dimension d− 1, If d = 1, it is convenient in this work to put s0 = 2.

See Propositions 3.3.6, 3.5.2, and 4.2.5.

• Sp : Schatten-von Neumann classes. See Section 2.2. In particular S∞ denote the
space of compact operators.

• T = {z : |z| = 1} is the unit circle in C.

• W 2,2s denote the fractional Sobolev space. See Section 4.1.

• Zb =
1 + |zb|
1− |zb|

, constant appearing in bounds of conformal mapping; see remark

3.3.1.

• Γp has two definitions : except for Chapter 5, it is a constant in the bound of the
regularized perturbation determinant. See Formula (2.2.1).

In Chapter 5, this is a constant appearing in Theorem 5.1.2.

• ‖ · ‖F denote the Frobenius norm. See Section 2.4.

• f ≈ g and f . g. Comparison’s inequalities between two nonnegative functions.
See Section 2.3.2.

• f̂ and ǧ denote respectively the image by the Fourier transform of f and the image
by the inverse Fourier transform of g.
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