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Abstract

Wireless communications have known an exponential growth and a fast progress

over the past few decades. Nowadays, wireless mobile communications have evolved

over time starting with the first generation primarily developed for voice communi-

cations, and reaching the fourth generation referred to as long term evolution that

offers an increasing capacity with much more users via different radio interface

together with core network improvements. Overall throughput and transmission

reliability are among the essential measures of service quality in a mobile commu-

nication system. Such measures are mainly subjected to interference management

constraint in a multi-user network.

Interference management is at the heart of wireless regulation and is essential

for maintaining a desirable throughput while avoiding the detrimental impact of

interference at the undesired receivers. Our work is incorporated within the frame-

work of interference network where each user is equipped with single or multiple

antennas. The goal is to resolve the challenges that wireless communications face

taking into account the achievable rate and the complexity cost.

We address both transmission cases, downlink and uplink in mobile commu-

nication. First of all, we describe the interference alignment scheme proposed to

deal with the interference caused by users sharing the same medium and using

the same resources. Then, we consider the single input single output interference

channel, and we show that although interference alignment is sub-optimal in the

finite power region, it is able to achieve a significant overall throughput. We pro-

pose to optimize the design in order to achieve enhanced sum-rate performance

in the practical SNR region. Firstly, we introduce a way to optimize the precod-

ing subspaces at all transmitters, exploiting the fact that channel matrices in the

interference channel model of a single input single output channel are diagonal.

Secondly, we propose to optimize jointly the set of precoder bases within their

associated precoding subspaces. To this end, we combine each precoder with a

new combination precoder, and this latter seeks the optimal bases that maximizes
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the network sum-rate.

The second part addresses the detection side in the downlink transmission in

presence of the interference alignment scheme. The interference are assumed to

be aligned at each receiver and of the same space dimensions as the desired signal,

which transforms the decoding model into a determined linear model. Our ap-

proach of resolving the decoding problem is different from the classical approaches

based on the interference estimation. The main idea is to separate the desired

streams from the interference using higher-order cumulants blindly. We show

the equivalence between the problem to resolve and the determined blind source

separation problem. Then, we propose to separate the desired signal from the in-

terference through a joint diagonalization of the fourth-order cumulants matrices.

The third part addresses the uplink transmission in the absence of any precoding

scheme. We shows that jointly decoding both desired signal and interference can

achieve a full receive diversity. In this respect, we describe the joint optimal

detector, which is characterized by a very high computational cost depending on

the dimension of the decoding problem. Then, we try to find out alternative

detectors that significantly reduce the computational cost at the detriment of

error rate performance. The proposed detectors are robust even if the decoding

problems are underdetermined. We also propose a channel coding scheme that uses

a convolutional code at the transmitter side and a turbo-detector at the receiver

side in order to increase the reliability of transmission.
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Introduction

Ces vingt dernières années ont été marquées par un essor très rapide des commu-

nications radio-mobiles. Après un démarrage plutt lent de la première génération

des systèmes de téléphonie sans fil dans les années 80, exclusivement réservée

à la voix, les années 90 ont marqué le pas, les générations se sont succédées

pour répondre aux besoins croissants des utilisateurs. Alors que la quatrième

génération, visant à offrir un service Internet haut débit et desservir un nombre

élevé d’usagers, vient d’être déployée, des réflexions sont menées pour définir la

cinquième génération et anticiper l’explosion des débits et du nombre d’appareils

connectés. Parmi les paramètres clés d’un service de communication sans fil, les

plus importants sont le débit offert, la qualité de service garantie et la charge

maximale du système en nombre d’utilisateurs. Ces trois critères sont mutuelle-

ment dépendants. La limitation actuelle pour améliorer simultanément les trois

est l’interférence, en particulier l’interférence multi-utilisateurs.

L’interférence multi-utilisateurs apparat lorsque plusieurs sources d’une même

zone géographique transmettent, simultanément et dans la même bande de fréquence,

des informations mutuellement indépendantes vers des destinataires distincts.

Dans cette thèse, nous nous intéressons à la gestion d’interférences multi-

utilisateurs, à partir de méthodes classiques ou avancées, appliquées à l’émission ou

en réception. Nous considérons différents contextes et pour chaque contexte, nous

proposons des solutions innovantes permettant d’améliorer les performances du

système en termes de débit, qualité de service et nombre d’utilisateurs. La thèse est

divisée en plusieurs parties. La première partie est consacrée à un état de l’art con-

cis sur les techniques de gestion et de réduction des interférences multi-utilisateurs.

Nous introduisons en particulier le concept d’alignement d’interférences. La sec-

onde partie concerne l’alignement d’interférences dans le cas d’un canal à in-

terférence, où chaque source ou destinataire est équipé d’une seule antenne. Nous
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proposons des algorithmes d’optimisation du schéma d’alignement d’interférence,

pour améliorer le débit total pour des valeurs du rapport signal à bruit correspon-

dant à des zones de fonctionnement pratique du système. Enfin nous considérons

deux scénarios, un premier se prêtant à l’application du schéma d’alignement

d’interférence et le second ne permettant aucun précodage à l’émission. Nous

considérons le problème de détection dans chaque cas et proposons des solutions

mettant en uvre des techniques existantes ou inédites.

Dans notre état de l’art, nous avons considéré trois types de canaux où l’interférence

multi-utilisateurs se manifeste. Le canal Broadcast implique l’émission simul-

tanée d’un même message d’une source vers plusieurs destinataires. Le canal à

accès multiple modélise l’émission simultanée de messages indépendants depuis

plusieurs sources vers un même destinataire. Le canal à interférence regroupe

plusieurs paires source-destination indépendantes, où chaque source émet un mes-

sage à l’attention de son destinataire. Les techniques d’accès multiple classiques,

que sont le FDMA (division de la bande de fréquence en sous-bandes disjointes,

chacune étant attribuée à un utilisateur), le TDMA (répartition orthogonale du

temps entre les utilisateurs) ou le CDMA (allocation de signatures idéalement

orthogonales aux différents utilisateurs) permettent d’éviter l’interférence entre

utilisateurs en sacrifiant le débit par utilisateur, qui est inversement proportionnel

au nombre total d’utilisateurs. Des méthodes avancées, plus efficaces en terme

de débit total, sont basées sur l’application d’un précodage des signaux à émettre

en fonction de l’état du canal. La connaissance globale de l’état du canal est la

principale contrainte de ces techniques. Parmi les plus efficaces, nous retenons la

technique d’IA (Interference Alignment) pour le canal à interférence et la technique

dite DPC (Dirty Paper Coding) pour le canal Broadcast. Le principe de l’IA est

de concevoir les précodeurs de façon qu’à la réception, les interférences et le signal

désiré soient dans deux sous-espaces séparés et de dimensions asymptotiquement

égales (lorsque le nombre d’utilisations canal tend vers l’infini). La technique IA

permet d’atteindre un débit asymptotique (lorsque le rapport signal à bruit tend

vers l’infini) proportionnel au nombre d’utilisateurs. Le principe du DPC est de

définir le précodeur de sorte que chaque destinataire reçoive sans interférence le

message qui lui est adressé. Cette technique offre un débit optimal qui tend vers

la capacité du canal.
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Alignement d’interférence pour le canal à interférences

mono-antenne

Dans cette première partie, nous considérons un canal à interférence et nous

nous intéressons d’abord à la technique d’IA. Pour expliquer le concept de l’IA,

nous introduisons l’exemple de trois utilisateurs dans un canal flat fading à in-

terférence, comme illustré dans la figure 1. Nous supposons que chaque émetteur

souhaite transmettre un symbole dans la direction d’un vecteur noté v1 pour le

premier émetteur, v2 pour le deuxième et v3 pour le troisième. Toutes les matrices

du canal entre tous les émetteurs et tous les récepteurs sont considérées connues

de tous les émetteurs. Le principe de l’IA est de choisir tous les vecteurs v1, v2 et

v3 de telle sorte que dans chaque récepteur, les vecteurs portant les interférences

sont alignés et linéairement indépendants du vecteur portant le signal désiré. Les

interférences peuvent être ensuite supprimées par un détecteur de type forçage

à zéro. Dans l’exemple illustré, il est possible d’envoyer trois symboles dans un

espace de deux dimensions, et donc le débit total asymptotique augmente bien

linéairement avec le nombre d’utilisateurs.

Figure 1: Canal à interférence mono-antenne entre trois utilisateurs en
présence du schéma d’IA.

Dans le modèle mathématique, le signal reçu au récepteur k est la superposition

des signaux émis, déphasés et atténués, à laquelle s’ajoute le bruit. Le vecteur

symbole sk au k-ème émetteur est de dimension dk. Ce vecteur symbole est ensuite
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précodé par une matrice de précodage Vk pour fournir un vecteur signal xk de

dimension N .

En pratique, ce modèle théorique correspond dans le cas mono-antenne à un

schéma OFDM où N désigne le nombre de sous-porteuses et les composantes du

vecteur sk sont émis simultanément sur des sous-porteuses distinctes. Dans le

cas multi-antennes, il suffit de transmettre simultanément les composantes de sk

depuis N antennes.

Les conditions de vérification de l’alignement des interférences à la réception

sont les suivantes

rang (UkHkkVk) = dk,

UkHkjVj = 0, ∀j 6= k. (1)

oùHkj est la matrice canal entre le j-ème émétteur et le k-ème récepteur. Autrement

dit, nous cherchons les matrices Uk et Vk de telle sorte que, après décodage, la

matrice désignant l’espace désiré soit de rang plein et la matrice désignant l’espace

non désiré soit nulle.

Considérons un schéma quelconque d’IA pour une transmission mono-antenne.

Nous proposons deux étapes de calcul pour l’optimisation de ce schéma. Nous

proposons de modifier la matrice de précodage du schéma original afin de max-

imiser le débit total du système tout en gardant les interférences alignées. Les

deux étapes d’optimisation sont les suivantes: l’optimisation des sous-espaces de

précodage par la projection de toutes les matrices de précodage sur une matrice

diagonale variable W commune entre tous les émetteurs, et l’optimisation des

vecteurs de base des précodeurs par l’introduction d’une matrice variable Ck, ∀k.
L’optimisation des espaces de précodage peut se faire via la matrice W afin

de maximiser le débit total. Le problème de maximisation proposé est sous la

contrainte d’une puissance moyenne totale constante. Les critères de détection

utilisés à la réception sont les critères classiques MMSE et ZF. Avec un MMSE, la

solution exige l’utilisation d’algorithmes itératifs comme, par exemple, l’algorithme

de gradient projeté. Avec un ZF, nous obtenons une solution analytique très simple

à implémenter.

Concernant la deuxième étape d’optimisation, nous prenons le même critère

que précedemment (maximisation du débit), et nous cherchons les matrices Ck

qui résolvent le problème. Sous l’hypothèse d’un MMSE à la réception, le problème

dépend de plusieurs variables et est résolu en appliquant des algorithmes d’optimisation
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Figure 2: Comparison du débit moyen par dimension pour plusieurs schémas
de précodage quand N = 3.

itératifs pour des fonctions coût multi-variable. Sous l’hypothèse d’un ZF à la

réception, le modèle après suppression des interférences revient à un modèle MIMO

mono-utilisateur, et les techniques proposées en MIMO mono-utilisateur peuvent

être utilisées.

Les performances en terme de débit sont illustrées sur les figures 2 et 3. Nous

traçons le débit moyen par dimension dans un système mono-antenne de trois util-

isateurs. Nous observons un gain important quand les optimisations proposées sont

appliquées par rapport au schéma original d’IA non optimisé. Par contre, parmi

les schémas comparés, celui qui maximise le SINR (rapport signal sur interférence

plus bruit) est le plus performant au détriment des interférences résiduelles et d’une

complexité très élevée par rapport au schéma OW-ZF qui optimise le schéma d’IA

supposant un critère ZF.

La question d’optimalité du schéma d’IA en terme de débit se pose, théoriquement,

le schéma est optimal lorsque le SNR tend vers l’infini et pour une distribution

Gaussienne des symboles sources. Dans le cas d’une constellation discrète, le

précodage optimal en terme de débit consiste à maximiser l’information mutuelle

entre les paires émetteur-récepteur.

Malgré sa sous-optimalité en présence d’une constellation discrète, le schéma IA

reste néanmoins intéressant à deux titres : d’une part, il permet de séparer facile-

ment les interférences et le signal désiré, et d’autre part, le nombre de symboles
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Figure 3: Comparison du débit moyen par dimension pour plusieurs schémas
de précodage quand N = 5.

d’information transmis par l’IA est supérieur à celui transmis avec les techniques

classiques.

Figure 4: Communication mobile sans fil : transmission descendante (down-
link).



Résumé des Travaux de Thèse xi

De détection en présence du schéma d’alig- ne-

ment d’interférence

Dans la première partie de nos contributions, nous avons considéré la gestion

d’interférence dans un canal à interférence du côté émetteur. Dans la deuxième

partie, nous supposons qu’un schéma d’alignement d’interférence est appliqué à

l’émission, et nous traitons le problème de détection du côté récepteur, en fonction

de la connaissance de l’état du canal.

L’exemple illustré sur la figure 4 sert à définir le contexte. Deux stations de

base veulent communiquer avec deux terminaux mobiles distincts. Les terminaux

mobiles émettent un signal vets les stations de bases leur permettant d’estimer

le canal. Cette estimation se fait via des séquences d’apprentissage de longueur

liée au nombre de canaux à estimer. Ces stations sont connectées par une unité

centrale et peuvent donc partager les connaissances des canaux, ce qui conduit à

une réalisation possible du schéma d’AI. Notre contribution concerne la détection

après l’application du schéma d’IA.

Le modèle mathématique est le suivant:

yk = HkkVksk +
∑

j 6=k

HkjVjsj + zk,

=
[

H̄k
k H̄k

I

] [

sTk s̄Tk
]T

+ zk (2)

Le signal reçu s’exprime comme étant le signal désiré, auquel se rajoutent l’interférence

et un bruit. La matrice désignant le terme désiré est engendré par la matrice

H̄k
k de dimension d. Les matrices correspondantes aux interférences alignées sont

engendrées par la matrice H̄k
I de dimension N − d. Ces deux sous-espaces con-

stituent un espace de dimension N . En présence d’IA, le signal reçu s’exprime donc

comme la multiplication d’une matrice de mélange, déterminée, de rang plein, par

un vecteur source.

Le schéma de détection classique consiste à estimer en première étape le sous es-

pace engendrant les interférences. Cette estimation se fait à partir d’une séquence

d’apprentissage introduite dans chaque trame émise. Ensuite, les interférences

sont supprimées par une simple projection sur le sous espace orthogonal aux in-

terférences linéairement indépendant du signal désiré. Une fois les interférences

éliminées, les symboles désirés peuvent être extraits par l’utilisation des détecteurs
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basés sur les critères de forçage à zéro, de minimisation de l’erreur quadratique

moyenne, de distance minimale ...

Ils existent d’autres schémas de détection basés sur des techniques de séparation

de source aveugle qui consistent à extraire les symboles désirés sans aucune in-

formation a priori sur la matrice de mélange (i.e. connaissance de la matrice du

canal). La seule hypothèse est l’indépendance des symboles superposés. Le modèle

mathématique du signal reçu est équivalent au modèle mathématique de séparation

de source avec bruit, avec un signal source contenant des symboles mutuellement

indépendants et des symboles mutuellement dépendants. D’ailleurs, on peut mon-

trer que les méthodes de séparation aveugle comme par exemple la technique de

diagonalisation jointe des matrices propres (JADE), sont capables d’extraire les

symboles indépendants du vecteur source. Dans ce contexte, il est possible de

détecter le signal désiré par l’utilisation de la technique JADE grâce à la propriété

d’indépendance entre le signal désiré et les interférences.

Par contre, quelques ambiguités résident sur l’échelle et l’ordre des symboles

détectés. Afin de lever ces ambiguités, nous introduisons quelques symboles con-

nus, et nous cherchons à minimiser l’erreur quadratique moyenne normalisée avec

les symboles détectés pour régler l’ordre des symboles, et à minimiser l’erreur

quadratique moyenne non normalisée pour régler le facteur d’échelle.

Les figures 5 et 6 illustrent les performances de taux d’erreur binaire (BER). La

première figure, où le BER est tracé en fonction du SNR, compare les détecteurs

basés sur les deux techniques de séparation de source JADE et ICA aux détecteurs:

MMSE basé sur une connaissance parfaite de l’espace des interférences et MMSE

basé sur une estimation de l’espace des interférences. Les détecteurs non clas-

siques sont plus performants que ceux basés sur une estimation via des symboles

d’apprentissage. Ces résultats s’interprètent à partir de la figure 6, qui montre que

les performances des détecteurs classique et non classique se rapprochent quand

le nombre des symboles de réference augmente. La supériorité des détecteurs non

classiques est due au fait que ces derniers ne sont pas très sensibles au nombre des

symboles connus et effectuent une suppression aveugle des interférences.

Détection en l’absence du schéma d’align- ement

d’interférence

Dans les deux parties précédentes, nous avons considéré un schéma d’IA à

l’émission. Dans cette partie, nous nous intéressons au cas où les émetteurs n’ont
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pas une connaissance de l’état du canal, et par la suite l’IA n’est plus réalisable.

Nous proposons deux schémas de détection itératifs, le premier est basé sur une

minimisation d’une norme ℓ1 et le deuxième basé sur une minimisation d’une

fonction quadratique.

Le nouveau contexte est le suivant : les émetteurs ne connaissent pas l’état

global du canal et les récepteurs connaissent les canaux qui les relient à tous les

émetteurs. Ce scénario est équivalent à une transmission uplink en communication

mobile. Dans ce contexte, nous proposons de gérer les interférences de la façon

suivante : chaque récepteur considère d’abord les interférences comme étant un

signal désiré, une fois décodé le signal d’intérêt et les interférences, le récepteur

garde seulement les symboles désirés. De cette façon, les hypothèses à l’émission

sont relâchées, et la complexité se reporte vers les stations de base. Nous nous

mettons dans un cas MIMO avec une transmission de plusieurs symboles par

utilisation de canal sur les différentes antennes, et nous considérons le cas pratique

où l’alphabet de la constellation à l’émission est à un ensemble fini.

Quand le nombre total des symboles à décoder est plus grand que le nombre

des antennes à la réception, le système est dit sous déterminé. Pour une détection

fiable des systèmes sous déterminés, il est proposé d’utiliser le critère de distance

minimale. Cependant ce critère exige une recherche exhaustive avec un coût de

calcul très élevé. Afin de réduire ce coût de calcul, nous allons transformer le

modèle précédent en un modèle parcimonieux 1.

La transition vers un modèle parcimonieux est illustrée dans l’exemple suivant.

Considérons un alphabet Q de trois éléments et sa forme vectorielle q. Nous

définissons un dictionnaire selon le procédé représenté sur la figure 7. Soit un

vecteur x ayant ses trois composantes appartenant à Q. On associe à la premier

composante le sous vecteur s1, à la deuxième composante le sous vecteur s2 et

à la troisième composante le sous vecteur s3. Autrement dit, nous associons au

vecteur x de trois composantes un vecteur s parcimonieux de dimension 9 qui ne

contient que des composantes 0 et 1.

En utilisant la transition illustrée sur la figure 7, le signal reçu s’exprime comme

l’addition de produit d’une nouvelle matrice de mélange sous-déterminée par un

vecteur binaire source et d’un vecteur bruit. Le problème revient donc à chercher

les composantes binaires d’un vecteur parcimonieux s. Le nouveau problème de

détection peut se résoudre soit par une minimisation d’une norme ℓ1 bien définie

sous des contraintes convexes linéaires et quadratiques, ou bien une minimisation

1Un vecteur parcimonieux par définition est un vecteur qui a la majorité de ses éléments nuls.
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Figure 7: Décomposition parcimonieux du vecteur avec ses composantes ap-
pertenant sur un ensemble d’alphabet fini.

d’une fonction quadratique définie par la distance euclidienne entre le signal reçu et

les points de la constellation à la réception sous des contraintes convexes linéaires.

L’avantage principal du deuxième problème est qu’il ne dépend d’aucun paramètre

à optimiser. La contrainte quadratique dans le premier problème limite la zone

de recherche dans une boule centrée de rayon constante. Les contraintes linéaires

garantissent qu’il existe au moins une composante non nulle dans chaque sous

vecteur. Les solutions des deux problèmes de détection proposés sont obtenues

par l’utilisation de méthodes à complexité polynomiale comme la méthode du

point intérieur.

Afin d’évaluer les performances, nous traçons d’abord le temps d’exécution en

fonction du nombre d’antennes à la réception indiqué sur la figure 8. La relation en-

tre le nombre d’antennes à la réception Nr et le nombre total des symboles émis dt

par utilisation de canal est donnée par la formule Nr =
7
8
dt, ce qui rend le système

sous-déterminé. En comparant le temps d’exécution des deux détecteurs proposés

avec celui du décodeur par sphère qui est basé sur une recherche exhaustive dans

une boule de rayon donné, nous observons une augmentation presque exponentielle

dans le cas du décodeur par sphère tandis qu’avec les deux problèmes proposés,

l’augmentation est presque linéaire.

Les performances en termes de taux d’erreur binaire en fonction de SNR sont
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0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR[dB]

B
E

R

MIMO channel, Coded QPSK transmission

Quad−min, d
t
=64,  N

r
=48

MMSE,      d
t
=64, N

r
=48
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tion QPSK et un rendement de code 1/2.

illustrées sur la figure 9. Nous montrons les performances pour une configuration

24×21, c. à .d. un nombre total des symboles émis égal à 24, ce qui implique une

haute efficacité spectrale. Pour une probabilité d’erreur de 10−3, nous observons

une perte d’environ 4dB et 6dB de deux détecteurs l’un basé sur la minimisation

d’une fonction quadratique et l’autre basé sur la minimisation du norme ℓ1, par

rapport au décodeur par sphère.

Afin d’augmenter la fiabilité de la transmission, nous intégrons le détecteur

issu du problème de minimisation d’une fonction quadratique dans un schéma de

turbodétection. Autrement dit, nous considérons l’existence d’un code correcteur

d’erreur et le récepteur est constitué de la cascade du détecteur et du décodeur

du code correcteur d’erreur, échangeant des informations de fiabilité, enrichies au

fil des itérations. Le critère de détection est adapté pour intégrer les estimations

intermédiaires sur les symboles obtenues grâce au décodeur du code correcteur

d’erreur. Il est obtenu en minimisant la probabilité d’erreur sous l’hypothèse

d’une approximation gaussienne des estimations symboles issues du décodeur de

code correcteur d’erreur. Cté émission, une seule composante du vecteur si est non

nulle et égale à 1. Nous exploitons cette propriété en réception pour interpréter la

k-ième composante du vecteur estimé de si comme la probabilité que xi soit égal

à qk.

Les performances en termes de taux d’erreur binaire en fonction de SNR sont
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illustrées sur la figure 10. Malgré des hypothèses imparfaites, un gain très im-

portant est obtenue en intégrant le schéma de turbo-détection dans la chaine de

transmission. Par contre, une perte d’environ 2dB est obtenue par rapport au

turbo égaliseur MMSE.

Conclusions

Dans nos travaux de thèse, nous avons adressé la gestion d’interférences multi-

utilisateurs, à partir de méthodes classiques ou avancées, appliquées à l’émission ou

en réception. Nous avons considéré différents contextes et pour chaque contexte,

nous avons proposé des solutions innovantes permettant d’améliorer les perfor-

mances du système en termes de débit, qualité de service et nombre d’utilisateurs.

Dans la première partie, nous avons présenté un état de l’art concis sur les tech-

niques de gestion et de réduction des interférences multi-utilisateurs. Nous avons

introduisé en particulier le concept d’alignement d’interférences. Dans la seconde

partie, nous avons addressé l’optimisation du design de la technique d’alignement

d’interférences dans le cas d’un canal à interférence, où chaque source ou des-

tinataire est équipé d’une seule antenne. Nous avons proposé des algorithmes

d’optimisation du schéma d’alignement d’interférence, pour améliorer le débit to-

tal pour des valeurs du rapport signal à bruit correspondant à des zones de fonc-

tionnement pratique du système. Ensuite nous avons considéré deux scénarios,

un premier se prêtant à l’application du schéma d’alignement d’interférence et le

second ne permettant aucun précodage à l’émission. Nous avons considérons le

problème de détection pour les deux cas. Dans le cas où les interférences sont

alignées, nous avons montré la supériorité des détecteurs basés sur des techniques

de séparation de sources aveugle par rapport aux détecteurs basés sur des critères

classiques. Dans le cas de l’absence de tout schéma de précodage, nous avons

proposé de gérer les interférences à la réception et avons transformé le modèle

en un modèle parcimonieux. En se basant sur cette transformation, le nouveau

problème de détection peut se résoudre soit par une minimisation d’une norme ℓ1

bien définie sous des contraintes convexes linéaires et quadratiques, ou bien une

minimisation d’une fonction quadratique définie par la distance euclidienne entre

le signal reçu et les points de la constellation à la réception sous des contraintes

convexes linéaires. Enfin nous avons intégré le détecteur issu du problème de

minimisation d’une fonction quadratique dans un schéma de turbodétection afin

d’augmenter la fiabilité de la transmission.
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MAC Multiple access channel

MAP Maximum a posteriori

MI Mutual information
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ML Maximum likelihood

MD Minimum distance

MMSE Minimum mean square error

MSE Mean square error

NMSE Normalized mean square error
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Chapter 1

Introduction and motivations

1.1 Introduction

Wireless communications have known an exponential growth and a fast progress

over the past few decades. Nowadays, wireless mobile communications have evolved

over time starting with the first generation primarily developed for voice commu-

nications. Later on, the second generation emerged and permitted data to be

also processed. After a while, the third generation systems progressed due to the

need of integrated voice, data and multimedia traffic. In the last few years, the

fourth generation referred to as long term evolution has invaded the market and

has attracted much attention as it offers an increasing capacity and speed using a

different radio interface together with core network improvements.

Figure 1.1: Mobile communication systems progress.
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Chapter 1. Introduction and motivations 2

Overall throughput and transmission reliability are among the essential mea-

sures of the quality of service in a wireless system. Such measures are mainly

subjected to interference management constraint in a multi-user network. The

interference management is at the heart of wireless regulation and is essential for

maintaining a desirable throughput while avoiding the detrimental impact of inter-

ference at the undesired receivers. Usually, interference incurring from undesired

transmitters in a multi-user network is managed using some kind of multiplexing

techniques. Such techniques commonly used in the previous and current genera-

tions of mobile communications, are based on the orthogonalization approach of

the channel access by assigning the users orthogonal time/frequency/spatial re-

sources. In single input single output channel, orthogonal access schemes can be

used to divide the single degree of freedom among the users such that each user

gets a fraction and the sum of these fractions is equal to one. Hence, the per-user

throughput decreases as the number of users increases. Overcoming this incon-

venient requires managing interference in different manner such that the per-user

throughput remains independent of the number of active users.

Few years ago, a novel interference management technique appeared, known

as interference alignment. Interference alignment has been initially proposed to

deal with the interference caused by users sharing the same medium and using the

same resources. The originality of this strategy of management is its efficiency

for mitigating interference and for maximizing the overall throughput which can

scale linearly with the number of users. Interference alignment technique has been

introduced as an approach to maximize interference-free space for the desired

signal. Its key idea is that all the interference can be concentrated roughly into

one half of the signal space at each receiver, leaving the other half available to the

desired signal and free of interference.

1.2 Motivations

In spite of its asymptotic optimality, interference alignment faces several prac-

tical challenges. One of the challenges is the sub-optimality in the finite signal-to-

noise ratio region, since it does not achieve the channel capacity which in general

is still not well defined. Another main challenge is to provide the knowledge of

the perfect and full channel state information at the transmitters that links them

to the receivers. Some designs based on distributed iterative algorithms do not

require the full knowledge of the channels coefficients. However, these distributed
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Figure 1.2: Multi-user mobile communication system transmission.

algorithms necessitate a high overhead signaling, which raises another challenge

to deal with.

Our work is incorporated within the framework of interference channel where

each node is equipped with single or multiple antennas. The goal is to resolve the

challenges that the communications face in an interference network taking into

account the computational efficiency and the complexity cost. We propose several

solutions for the design at both the transmitter side and the receiver side, and we

discuss some practical applications of the resulting schemes.

1.3 Summary of the PhD contributions

The first part of our work considers the single input single output interference

channel. The goal is to show that although interference alignment is sub-optimal

in the finite power region, it is able to achieve a significant overall throughput.

We investigate the interference alignment scheme proposed for single input sin-

gle output channel, which achieves a high multiplexing gain at any given signal

dimension. Then, we try to modify the design in order to achieve an enhanced

sum-rate performance in the practical SNR region. Firstly, we introduce a way
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to optimize the precoding subspaces at all transmitters, exploiting the fact that

channel matrices in the interference model of a single input single output channel

are diagonal. Secondly, we propose to optimize jointly the set of precoder bases

within their associated precoding subspaces. To this end, we combine each pre-

coder with a new combination precoder, and this latter seeks the optimal basis

that maximizes the network sum-rate.

Part of this work has been published in [3, 4, 5]

• Y. Fadlallah, A. Aissa-El-Bey, K. Amis and R. Pyndiah, “Interference Align-

ment : Improved Design via precoding Vectors,” in In Proc. of IEEE Vehic-

ular Technology Conference (VTC)-Spring, Japan, May 2012.

• Y. Fadlallah, A. Aissa-El-Bey, K. Amis and R. Pyndiah, “Interference Align-

ment : Precoding Subspaces Design,” in In Proc. IEEE International Work-

shop on Signal Processing Advances in Wireless Communications (SPAWC),

Turkey, June 2012.

• Y. Fadlallah, K. Amis, A. Aissa-El-Bey and R. Pyndiah, “Formation de voie

pour la maximisation du débit dans les schémas d’alignement d’interférence,”

in 24eme édition du colloque Gretsi, Brest, France, Sept. 2013.

The second part assumes a K-user multiple input multiple output interference

channel. We describe the interference alignment at the transmitter side, then

we approach the linear decoding scheme at the receiver side. The interference

are assumed to be aligned at each receiver, which transforms the decoding model

into a determined linear model. Our approach of resolving the decoding problem is

different from classical approaches based on interference subspace estimation. The

main idea is to blindly separate the desired streams from the interference using

higher-order cumulants. We show the equivalence between the problem to resolve

and the determined blind source separation problem. Then, we propose to blindly

extract the desired signal from the interference through a joint diagonalization of

the fourth-order cumulants matrices [6]. We show that the separation ability is

due to the independence between the desired signal and the interference.

Part of this work has been published in [7]

• Y. Fadlallah, A. Aissa-El-Bey, K. Abed-Meraim, K. Amis and R. Pyndiah,

“Semi-blind source separation in a multi-user transmission system with in-

terference alignment” IEEE wireless communications letter, to appear.
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The last part assumes that the transmitters are not aware of the channel state

information, and shows that decoding both desired signal and interference can

achieve a full receive diversity. In this respect, we describe the joint optimal

detector, which is characterized by a very high computational cost depending on

the dimension of the decoding problem. Then, we try to find out alternative

detectors that significantly reduce the computational cost at the detriment of

error rate performance. The proposed detectors are robust even if the decoding

problems are underdetermined. We also propose a channel coding scheme that

employs a convolutional code at the transmitter side and a turbo-detector at the

receiver side.

Part of this work has been published in [8] and submitted to

• Y. Fadlallah, A. Aissa-El-Bey, K. Amis, D. Pastor and R. Pyndiah, “New

Decoding strategy for underdetermined MIMO transmission using sparse de-

composition,” in European Signal Processing Conference (Eusipco), Maroc,

Sept. 2013.

• Y. Fadlallah, A. Aissa-El-Bey, K. Amis, D. Pastor and R. Pyndiah, “Itera-

tive decoding strategy for underdetermined MIMO transmission using sparse

decomposition” Submitted to IEEE Transactions on Vehicular Technology.

• A. Aissa-El-Bey, D. Pastors, S. M. Aziz-Sbai and Y. Fadlallah, “Recovery of

Finite Alphabet Solutions of Underdetermined Linear System” Submitted to

IEEE Transactions on Information Theory.

Another contribution is related to the non-optimality of the interference align-

ment under discrete constellation assumption. As such, we derive the mutual

information under discrete constellation assumption, and we propose two ways to

increase the data rate performance. One is by maximizing the joint cut-off rate

that represents a lower bound on the mutual information. The other way is by

approximating the mutual information using Taylor expansion. This contribution

has been published in [9]

• Y. Fadlallah, A. Khandani, K. Amis, A. Aissa-El-Bey and R. Pyndiah, “Pre-

coding and Decoding in the MIMO Interference Channels for Discrete Con-

stellation,” in IEEE International Symposium on Personal, Indoor and Mo-

bile Radio Communications (PIMRC), UK, Sept. 2013.
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Our thesis is organized as follows. Chapter 1 introduces our framework and

contributions. Chapter 2 presents the well-known strategies for interference man-

agement in mobile wireless communications. In Chapter 3, we introduce the inter-

ference alignment concept for a multi-user single input single output interference

channel. Then, Chapter 4 addresses the multi-user downlink transmission with

interference alignment and proposes a linear detector based on blind source sepa-

ration techniques. For uplink transmission when no precoding schemes are applied,

we show in Chapter 5 the interest of decoding interference with the desired signal,

and we propose low complexity detectors for high dimensional decoding problem.

Finally, Chapter 6 concludes our thesis and proposes some perspectives.



Chapter 2

State of the art on interference

mitigation in wireless

communications

2.1 Introduction

This chapter deals with the usual techniques for interference mitigation in wire-

less systems. We first recall some features of transmission on the radio channel.

Then we describe briefly orthogonal multiple access techniques and propose a clas-

sification of multi-user communication channels by giving the techniques used to

deal with the multiple access interference.

2.2 Radio propagation

Wireless mobile communication systems suffer from performance limitations

imposed by the propagation influences. In the mobile radio channel, the trans-

mission path can vary from simple line-of-sight to the severely obstructed channel

due to the motion of the mobile radio terminal, which makes the radio channels

extremely random.

The information in a wireless channel is carried on an electromagnetic wave.

This latter can be subjected to effects of the propagation environment such as

reflection, diffraction and scattering. In order to characterize the propagation

models, both empirical and analytical methods are used. The empirical approach

results in a statistical model with an analytical description that recreates a set

of measurements. In fact, propagation models are classified into two categories

7
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[10]. The first category known as large-scale models, includes the models that

predict the mean signal power for an arbitrary path separating a transmitter and

a receiver. The second category known as small-scale fading, or fading models,

includes the models that characterize the rapid fluctuations of the received signal

power over short time duration.

2.2.1 Large-scale propagation models

Measurements-based propagation models have showed that average received sig-

nal power decreases logarithmically with distance separating a transmitter-receiver

(Tx-Rx) pair. These models are used to estimate the received signal power as a

function of distance and are called path loss models. The average path loss for an

arbitrary Tx-Rx pair with distance d is expressed as [10]

P̄L(d) ∝
(

d

d0

)

, or P̄LdB(d) = P̄LdB(d0) + 10n log10

(

d

d0

)

, (2.1)

where n indicates the path loss exponent and d0 the close-in reference distance.

n depends on the propagation environment, e.g. in a free space environment n is

equal to 2. The model in (2.1) considers that any distance d separating a Tx-Rx

pair results in a constant path loss. However, two different Tx-Rx pairs at two

different locations with the same separation distance may have the surrounding

environment totally different. This implies that measured signals can be far away

from the average value predicted in (2.1). Measurements have been derived in

[11, 12], and have showed that at any distance d, the path loss PL at a particular

location is random and log-normally distributed, i.e. Gaussian distributed when

measured in dB [10]. That is,

PLdB(d) = P̄LdB(d0) + 10n log10

(

d

d0

)

+Xσ, (2.2)

where Xσ is a Gaussian distributed random variable with zero mean and variance

σ2 (in dB). The log-normally distributed random variable given in (2.2) describes

the random shadowing effects. The close-in reference distance d0, the path loss

exponent n and the standard deviation σ are the parameters that characterize the

path model, which can be used to estimate the received power levels at a random

location for communication system analysis purpose [10].
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2.2.2 Small-scale propagation models

Small-scale fading, or simply fading, is a term used to describe the fluctuations

of the parameters (phase, amplitude, frequency) of a radio signal over a small

transmission distance. The most important effects in a fading channel are the

fluctuation of the signal power, the fluctuation of the frequency modulation due

to Doppler effect, and the time dispersion caused by the multipath propagation

delays. For mobile wireless communications, fading effect usually occurs in urban

areas where the mobile is surrounded by obstacles that prevent from a line-of-sight

connection between the base station and the mobile terminal.

In a mobile radio channel, small-scale fading is influenced by the following

major factors:

• Multipath propagation: the presence of reflecting objects and scatters in

the channel disperses the signal parameters, and creates multiple modified

versions of the transmitted signal displaced with respect to one another in

time and phase.

• Terminal mobile motion: the movement of the destination causes a random

modulation due to difference Doppler shifts on each of the multipath com-

ponents. The frequency variation depends on the speed of the destination

movement.

• Obstacles motion: when the obstacles of the propagation environment move,

the multipath components undergo a time variation.

• Bandwidth of the transmitted signal: the small-scale fading strength depends

on the transmitted signal bandwidth.

Slow and fast fading

The fading channel may be referred to as fast fading or slow fading channel

depending on how fast the channel variations are compared to the transmitted

baseband signal variations. If the coherence time Tc of the channel is smaller

than the symbol period, i.e. the channel impulse response changes rapidly within

the symbol duration, the channel is said fast fading. The coherence is used to

characterize the time varying nature of the frequency variations of the channel

in the time domain. It is inversely proportional to the Doppler spread Ds, i.e.

Tc ≈ 1
Ds

. If the symbol duration is much slower than the channel coherence time,

i.e. T ≪ Tc, the channel is supposed to be slow fading. In this case, the channel

may be assumed to be static over one or several reciprocal bandwidthes.
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Flat and frequency selective fading

Frequency fading is mainly related to time dispersion due to multipath prop-

agation. When the fading channel has a constant gain and linear phase response

over a coherence bandwidth Bc that is greater than the bandwidth of the trans-

mitted signal Bs, the radio channel is said flat fading channel. In a flat fading, the

channel can be approximated with no excess delay, since the reciprocal bandwidth

(symbol period) of the transmitted signal T is much larger than the channel time

delay spread τmax, i.e.

Bs ≪ Bc, and T ≫ τmax. (2.3)

Flat fading channels are also referred to as narrowband channels for which the

transmission bandwidth is considered narrow when compared to the flat fading

coherence bandwidth. On the other hand, if the fading channel has a constant

gain and linear phase response over a bandwidth smaller than the transmitted

signal bandwidth, the radio channel is called frequency selective fading channel. In

such a case, the channel response has a time delay spread greater than the symbol

period, i.e. τmax > T . This results in multipath effects, and multiple versions of

the transmitted symbols are received attenuated and time-delayed which induces

inter symbol interference. In the frequency domain, the transmitted components

at different frequencies undergo different attenuation and phase shifts. Frequency

selective fading channels are also referred to as wideband channels for which the

signal bandwidth is supposed wide when compared to the coherence bandwidth.

The frequency selective fading channels can be transformed into adjacent flat

fading subchannels by applying techniques such as orthogonal division frequency

multiplexing (OFDM) that divides the wideband into many sub-bands much nar-

rower than the coherence bandwidth. In our work, an OFDM scheme in a Rayleigh

distributed channel. This assumption is commonly used in mobile radio channels

to describe the envelope of an individual multipath component.

2.3 Interference mitigation in mobile wireless com-

munications

In wireless communications, the ideal would be to allow the users in the same

area to send information simultaneously in the same bandwidth to their intended

receivers. Sending information at the same time in the same bandwidth will cause

interference at the receiver side that, if dealt with as noise, enhances the noise
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Figure 2.1: Multiplexing techniques for interference mitigation.

strength. Therefore, a wise management of interference is a challenging task so

the users can share the same wireless medium. Multiplexing techniques used so

far allocate the available resources in an orthogonal way. The three major multi-

plexing techniques used to share the available resources in wireless communication

systems are: frequency division multiplexing (FDM) (orthogonal bandwidth allo-

cation thanks to parallel sub-bands), time division multiplexing (TDM) (orthog-

onal time share thanks to successive time slots), and code division multiplexing

(CDM) (orthogonal user signatures). Such techniques are applied for both nar-

rowband and wideband systems.

2.3.1 Multiplexing techniques

Frequency division multiplexing: it assigns individual channels to individ-

ual users, i.e. each transmitter is allocated a unique frequency band that does not

overlap with other user sub-bands. This requires the use of tight radio frequency

filtering to eliminate the adjacent channel interference.

Time division multiplexing: it divides the transmission period into time slots,

and each slot is allocated to one user. TDM consists in transmitting in a buffer-

and-burst method, which means that for any user the transmission is discontinu-

ous. The use of TDM requires an accurate time synchronization for interference

elimination. This can be achieved using guard interval between different slots.

Code division multiplexing: it encodes the information by a pseudo ran-

dom signature with very large bandwidth taken in a subset of near-orthogonal

sequences. This technique allows the users to use the whole spectrum at the same

time using different dedicated signatures. For detection of the desired information,

the receiver correlates the received signal with the code of the desired user. When
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the inter-correlation is high, i.e. the code matches the received signal, the desired

signal is found and can be extracted.

As an analogy, we give the problem of people that want to talk to each other in

a room. For a successful communication, each one can wait for his turn (TDM),

or speak at different pitches (FDM), or use a different language (CDM).

Another multiplexing technique known as spatial division multiplexing (SDM),

where users that transmit simultaneously in the same frequency band on multiple

antennas aim at dividing the channel space into parallel channels. The concept of

this technique is similar to the TDM that divides the time up to time slices and

to the FDM that divides the spectrum into frequency bands, the SDM divides the

space into parallel channels and information streams are sent independently and

simultaneously in the same frequency band.

2.3.2 Achievable rate

The division multiplexing techniques described above succeed in avoiding inter-

ference induced from other users sharing the available resources. Such techniques

result in a constant channel capacity, and a per user channel capacity that de-

creases with the increase of the number of users. When a single transmitter sends

information in an additive white Gaussian noise (AWGN) channel with bandwidth

Bs and average power p in watt, the channel capacity which represents the max-

imum rate of information that can be reliably transmitted over a communication

channel is analytically expressed as [13]

C = Bs log2

(

1 +
p

N0Bs

)

, (2.4)

where N0 is the noise power spectral density. When several transmitters want to

share the same medium and apply the orthogonal division multiplexing techniques

for network communication management, the total channel capacity between all

Tx-Rx pairs is equal to the one given in (2.4). However, the channel capacity per

user varies from one multiplexing technique to another. Using TDM technique, the

capacity is equally-distributed between all users having equal time slot duration

and equal average power. The capacity per user is given by [14]

C =

(

1

K

)

Bs log2

(

1 +
Kp

N0Bs

)

, (2.5)
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where K is the total number of users sharing the same medium. A same ex-

pression is also obtained using FDM technique, for which the total bandwidth is

divided into K sub-bands and equally-distributed between users. When the CDM

is applied, the channel capacity depends on whether the transmitters can cooper-

ate to exchange their pseudo-random sequence or not. When the cooperation is

not allowed, the signals from other users are considered as noise, and hence the

achievable capacity is upper bounded by a constant equal to 1
loge(2)

. When the

cooperation is allowed, the total achievable rate for the K users assuming equal

average power for each user is similar to that obtained for TDM and FDM, and

the rate region is defined by the following equations

Ri < Bs log2

(

1 + p

BsN0

)

∀1 ≤ i ≤ K,

Ri +Rj < Bs log2

(

1 + 2p
BsN0

)

∀1 ≤ i, j ≤ K

...
∑K

i=1Ri < Bs log2

(

1 + Kp

BsN0

)

, (2.6)

where Ri represents the rate of the ith user. From (2.6) one can notice that when

the per user rates are identical, the CDM does not yield a higher rate than TDM

and FDM. However, if the rates of the K users are selected to be unequal such

that the inequations in (2.6) are satisfied, then it is possible to find an achievable

per user rate that exceeds the per user capacity of FDM or TDM techniques.

Despite their ability to avoid interference and to provide a reliable communica-

tion over a wireless communication channel, the division multiplexing techniques

result in a strong limitation for reaching the maximum achievable rate when ap-

plied for interference management in the multi-user interference channel (IC).

Other techniques that involve precoding, i.e multi-stream beamforming, are able

to deliver a higher data rate performance when applied for interference manage-

ment, specially when the number of users is finite and both ends of a Tx-Rx pair

are equipped with multiple antennas. The remaining of this chapter introduces

the precoding concept for different multi-user single input single output (SISO)

and multiple inputs multiple outputs (MIMO) channels.

2.4 Multi-user channel categories

As mentioned in Section 2.2, we consider a flat fading transmission channel.

Denoting by y the vector of symbols collected on the received antennas at a given
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time instant, we can write

y = Hx+ z, (2.7)

where H is the channel matrix between the transmit antennas and the receive

antennas, x is the transmitted data vector from the transmit antennas at the

same time instant, and n is the white complex Gaussian distributed noise vector.

Despite its simplicity, the model is extremely rich and describes several situations

of interest in wireless communications. Depending on the transmitter and the

receiver features, the different transmission channel types described by (2.7) are

classified into the following categories

• When all antennas at the transmitter and the receiver are allowed to coop-

erate, i.e. full antennas cooperation, the channel can be viewed as a single

user MIMO channel. The single user MIMO channel arises in multiple

antenna wireless communications, e.g. LTE network.

• When no cooperation is allowed in the system and each antenna transmit

to only one receive antenna, the channel is called a SISO interference

channel.

• When the antennas are divided into groups and within each group the anten-

nas fully cooperate, the channel is called a MIMO interference channel

(IC). The IC arises for example in peer to peer communication wireless

networks.

• When only the receive antennas are allowed to cooperate and the transmit

antennas are constrained to encode their signals independently, the model

represents a multiple access channel (MAC). The MAC arises in the

uplink of cellular communications where multiple mobile terminals send data

to a base station equipped with an antenna array.

• When only the transmit antennas can cooperate and the receive antennas

are constrained to decode their messages independently, the model represents

a broadcast channel (BC). The BC represents the downlink of cellular

communications where a base station equipped with an antenna array sends

to multiple mobile terminals.
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2.5 Advanced techniques for data rate improve-

ment under Gaussian input assumption

The transmission model given by (2.7) is degraded by the co-channel interfer-

ence effect. That is, the transmission from each antenna causes interference at

the unintended antennas. Many techniques exist to struggle against this effect.

In the case of a single user MIMO channel, one of the most efficient schemes is

the singular value decomposition (SVD) based scheme. It consists in applying a

unitary linear precoder and a unitary linear decoder that transform the channel

into independent sub-channels. The SVD-based scheme is capacity-achieving and

yields a minimum mean squared error (MMSE) at the receiver [15]. Designing

such a scheme requires the knowledge of the channel state information (CSI) at

the transmitter which is done using a feedback link from the receiver. Therefore,

the channel estimation methods are of significant importance.

2.5.1 Broadcast channels

Similarly to MIMO single user channel, the knowledge of the channel state

information at the transmitter (CSIT) in a MIMO BC allows the use of advanced

processing techniques that increase the total channel throughput. Dirty paper

coding (DPC) is a non-linear precoding technique that characterizes the capacity

of a BC. DPC is based on the fact that a destination wants its private message

free of interference. This principle has been introduced by Costa et al. in [16].

The authors have shown that with the idea of interference cancellation in mind,

the capacity of a channel where the transmitter knows the interfering signal is

the same as if there were no interference. A proposed analogy was that from an

information theory point of view, writing on dirty paper is equivalent to writing on

clean paper when one has a priori knowledge of the dirt place. In [17], this concept

has been applied to downlink transmission in a multi-user MIMO channel. When

the CSI is available at the base station (BS), this latter knows the interference

that the first user will produce at the second user, and hence can design a signal

that avoids the known interference at the second user. This concept has been

used to characterize the capacity region of the MIMO BC [18]. The proposed

DPC technique for the MIMO BC uses a QR decomposition of the channel matrix

between the BS and the users. This channel matrix can be decomposed as the

product of an unitary matrix with an upper-triangular matrix, or equivalently as

the product of a lower triangular matrix L with a unitary matrixQ, i.e. H = LQ.
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The transmitted signal from the BS is precoded with the Hermitian transpose of

Q. At the end users, the effective channel seen is L. The first user of this system

sees no interference from signal transmitted to the other users, therefore its signal

may be processed without those coming from the other users. The second user

sees interference only from the signal transmitted to the first user, therefore this

interference is known and can be overcome using DPC. Subsequent users are dealt

with in a similar manner.

Another precoding concept is the linear precoding, which is a linear transfor-

mation of the data vector by a matrix P at the transmitter. When the CSIT

is available, the precoder can be sought to fulfill many criteria. A well known

criterion is to reduce the inter-user interference by imposing the constraint that

all interference terms are zero. When K is less than or equal to the number of

transmit antennas Nt, this can be accomplished by multiplying the data vector

by the pseudo inverse of the channel matrix, known as channel inversion precod-

ing [19]. However, this method faces a real problem when the channel matrix is

ill-conditioned and the transmitter is allocated a limited power. It results in a

dramatically degraded SNR at the receiver, hence poor data rate performance.

Figure 2.2: 3-users MIMO Broadcast Channel

Allowing some interference level at the receiver is usually better in terms of

sum-rate improvement. A simple way of precoding that derives from the linear

MMSE criterion is to select the precoder as P = (HHH + αI)−1, referred to as

regularized channel inversion [20]. This simple procedure results in a sum-rate that

grows linearly with min(Nt, K), the DoF of the MIMO BC, but at a rate that is

somewhat slower than the capacity. If some receivers are equipped with more than
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one antenna, the channel inversion technique can still be applied but with a lower

efficiency than in the single receive antenna case, since antennas for the single

user can cooperate and jointly detect the desired symbols. Therefore, the channel

inversion is replaced by the block channel inversion or block diagonalization [21].

As for channel inversion, this approach does not achieve capacity, but offers a

relatively low computational cost. Now, when a linear decoder is applied at the

receivers and is known to the transmitter, the optimal linear precoder depends on

the optimal linear decoder. Consequently, some arbitrary precoding and decoding

vectors can be chosen for the transmitter and the receiver, and then iteratively

optimized until a convergence criterion is satisfied. This iterative processing is

characterized by its high computational cost in favor of the best performance.

Figure 2.3: 3-users MIMO Multiple-access Channel.

2.5.2 Multiple access channels

In a MIMO MAC, the precoding has no interest when the users cannot coop-

erate with each other in the uplink transmission. The capacity region of the MAC

reaches its upper limit for Gaussian distributed input and depends only on the

input covariance [22]. In the cases where the joint design (i.e. cooperation) is pos-

sible, the optimal input covariance matrix is obtained by maximizing the channel

weighted sum rate, which is a convex optimization problem under Gaussian input

assumption. When only sum rate criterion is considered, the problem is optimized

using iterative water-filling algorithm developed in [22]. Precoding design can also
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be applied taking into account other criteria. For instance, in [23] the mean square

error (MSE) is minimized under the assumption of a linear receiver. In [24], the

signal-to-interference and noise ratio (SINR) is maximized assuming an iterative

linear receiver.

2.5.3 Interference channels

As explained previously, the BC and MAC model the downlink and uplink

transmissions, respectively, in a mobile wireless communication. In a cellular

environment, one cell is not isolated from the others, and therefore the effects of

the cell interaction must be taken into consideration in the received signal model.

This case arises when many point-to-point links sharing a same medium need to

establish communication simultaneously. IC is the situation in which multiple

transmitters send their messages independently to their intended receiver, and

transmitters and receivers are not aware of the interference caused by each other.

The main difference between the IC and the multiple access and broadcast

channels lies in their channel capacity characterization. For the BC and MAC,

the capacity region is well-defined (see [18] and [22]), and optimal transmit-receive

designs have been derived for capacity achieving. However, in the IC where no

cooperation is allowed between the transmitters and the receivers, the characteri-

zation of the channel capacity, until recently, was an open problem and very little

was known about its region. An important step in this direction is the characteri-

zation of the degree of freedom (DoF) of a K-user interference network. The DoF

represents the asymptotical rate of growth of the network capacity with the log2

of the signal to noise ratio (SNR). The spatial DoF turns out to be the number

of non-interfering paths that can be created in a wireless network through signal

processing at the transmitters and receivers. The definition of the DoF was first

introduced by Host-Madsen et al. in [25] as follows

lim
snr→∞

C(snr)

log2(snr)
= DoF, (2.8)

The DoF of an interference network has been demonstrated by Cadambe et al. in

[26] to be equal to K
2
using a new approach of interference management proposed

first by Maddah et al. in [27] and known as interference alignment (IA) approach.

With the innovative idea of IA, the authors in [26] have closed the gap with the

upper bound on the DoF K
2
obtained by the authors in [25]. IA consists of linear

precoding at the transmitters and zero forcing (linear decoding) at the receivers,



Chapter 2. State of the art on interference mitigation 19

and can be applied for SISO and MIMO IC [26, 27, 28], in the quasi-static and

the time-varying fading cases [26, 29]. This process is very efficient in terms of

computational cost. However, it requires a heavy signaling to communicate all

channel coefficients between transmitters and receivers to the transmitters in or-

der to complete the IA design. Another IA achieving strategy is to communicate

to each transmitter the coefficients of the channels that link it to all receivers, and

then to seek the IA precoders iteratively using distributed algorithms between each

Tx-Rx pair. Such an algorithm is described in [2] in the case of MIMO IC. The

authors have proposed to seek the precoders iteratively so that the interference

leakage power is minimized. Other algorithms have been later proposed taking

into account other criteria such as minimum mean square error (MMSE), network

sum-rate, power minimization [1, 30, 31] and so on. Some closed form solutions

that achieve optimized DoF have also been derived among which we can quote

[26] and [32].

Figure 2.4: 3-users MIMO Interference Channel.

Several IA schemes have been introduced since the first proposed for SISO

time-varying channels in [26]. In all these schemes, the received subspace is the

sum of the linearly independent desired and interference subspaces to which noise

subspace is superposed. This decomposition also holds in the case of multiplexing

techniques described in section 2.3.1, but the dimension of the desired subspace

is smaller. For example, assuming a K-user SISO IC, when the dimension of the
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received signal vector is of order K, the dimensions of the desired subspace and

the interference subspace are 1 and K − 1 respectively. When the IA technique is

used instead, the desired subspace dimension tends asymptotically to K
2
.

2.6 Optimality of the IA technique with respect

to the input alphabet

The preceding paragraph has introduced the IA design as an asymptotic capacity-

achieving ; i.e. for Gaussian-distributed channel input (continuous input constel-

lation). However, does IA keep this asymptotic rate optimality under practical

assumptions, e.g. under discrete input constellation assumption? Not necessarily,

since the maximum rate-achieving linear precoding design is the one that maxi-

mizes the mutual information (MI).

Figure 2.5: Interference channel model studied in our work.

In most research works, the MI has been maximized under the assumption of

Gaussian input distribution. Unfortunately, this assumption seems to be far away

from the practical systems that employ a discrete input constellation such as phase

shift keying (PSK) modulation and quadratic amplitude modulation (QAM). Sev-

eral papers have discussed the precoding optimization under finite alphabet con-

stellation in single user and multi-user channels. For instance, the linear precoding

scheme that maximizes the MI for discrete constellation in a single user MIMO
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channel has been addressed in [33]. The authors have proved that the MI is a

concave function of a matrix which is itself a quadratic function of the precoding

matrix. For multi-user channels, other schemes have been defined such as [34] and

[35], where the MI expression has been derived for both BC and MAC. In the

multi-user IC, the maximum rate-achieving linear precoding scheme is also the

one that maximizes the MI expression which has to be derived. In this section,

we are interested in this general case modeled as

yk =

K
∑

j=1

HkjPjxj + zk, (2.9)

where K = {1, · · · , K} is the set of all users, yk is the received signal vector at

receiver k, Hkj is the complex channel matrix between the jth transmitter and the

kth receiver, Pj is the precoding matrix of the jth transmitter. The jth transmitted

information xj is defined as a dj × 1 vector from a discrete constellation. zk is

the N × 1 circularly symmetric complex Gaussian noise vector at the receiver k,

with independent and identically distributed (i.i.d.) components and zero mean

and σ2IN variance; i.e. zk ∼ Nc(0, σ
2IN).

For such a case, the MI can be expressed as (see Appendix A for more details)

I(xk;yk) = log2(M
dk) +

1

MKdk

∑

a1,··· ,aK
E [log2 (Jk(yk, a1, · · · , aK))]

− 1

MKdk

∑

a1,··· ,aK
E [log2 (Jk(yk, a1, · · · , ak−1, ak+1, · · · , aK))] ,(2.10)

where

Jk(yk, a1, · · · , aK) =
∑

a
′

1,··· ,a
′

K

exp



−
‖zk +

∑K

j=1 Ĥkj(x
aj
j − x

a
′

j

j )‖2
σ2



,

Jk(yk, a1, · · · , ak−1, ak+1, · · · , aK) =
∑

a
′′

1 ,··· ,a
′′

k−1,a
′′

k+1,··· ,a
′′

K
exp

(

−‖zk+
∑K

j 6=k Ĥkj(x
aj
j −x

a
′′

j
j )‖2

σ2

)

,

where Ĥkj = HkjPj , and the indexes aj , a
′

j , a
′′

j are in the setMdj =
{

1, · · · ,Mdj
}

for all j with M the constellation set length for one symbol. x
aj
j is a symbol
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vector from the jth transmitter belonging to the set Qdj . The MI expression given

in 2.10 is a one-dimensional integration that can be resolved using Monte-Carlo

simulation.

Seeking the linear precoding scheme that maximizes the MI expression in a

closed-form is non trivial. Therefore, iterative algorithm for multi-variable opti-

mization can be employed, where at each iteration the optimization is based on

the gradient descent. On the other hand, a huge computational cost may pursue

this iterative process since the calculation of the MI is required many times ; i.e.

Monte-Carlo simulations might be required many times. Other solutions can be

proposed for computational cost reduction by replacing the MI criterion by an-

other criterion such as cut-off rate which represents a tight lower bound on the MI.

A criterion modification might result in a sub-optimal performance but a better

efficiency in term of computational cost.

2.7 Conclusion

In this chapter, we have described the constraints imposed by the wave propaga-

tion environment on the mobile wireless communication systems. Then, the com-

monly used multiplexing techniques for interference avoidance have been briefly

presented with a focus on the achievable rate. Applied in a multiple access case and

given an average SNR value, limitations of these techniques for reliable commu-

nications are twofold: either the target data rate imposes the maximum tolerable

number of users or the number of users is fixed and the per user data rate cannot

exceed a maximum value. Higher achievable rates can be obtained by applying at

the transmitter a precoding concept optimized with this regard. A brief descrip-

tion of precoding techniques for different multi-user channel categories has been

presented assuming Gaussian-distributed inputs. In next chapter, we come back

to the interference alignment scheme and consider the case of SISO interference

channel.



Chapter 3

Interference alignment for a

multi-user SISO interference

channel

3.1 Introduction

In most existing wireless communication systems, interference is avoided either

by coordinating the users to orthogonalize the channel access, or by treating in-

terference from other transmitters as noise. However, until recently, the capacity

region of the IC remained unknown, except for some special cases such as strong

and very strong interference [36, 37]. In [27], Maddah et al. have proposed a new

approach in order to show that the N -antennas MIMO X-channels can offer as

much as 4N
3

DoF. This new approach of interference management has been named

IA.

The key idea of IA is to jointly design all transmitted signals such that inter-

fering signals at each receiver overlap and remain distinct from the desired signal.

This approach has been exploited by Cadambe et al. in [26]. The authors have

shown that the maximum achievable DoF in the K-user time-varying SISO IC, in

the N -dimensional Euclidean space, is K
2
, and is achieved thanks to an IA scheme.

Later on, Motahari et al. have addressed the achievable DoF of a quasi-static IC.

They have extended the idea of IA from space/time/frequency dimensions to the

signal level dimensions, and have shown that based on the field of Diophantine ap-

proximation in number theory [29], the interference can be aligned in the rational

spaces, achieving a maximum DoF of K
2
.

The first IA scheme for SISO transmissions has been proposed in [26] for the

23
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time/frequency varying channel. This scheme has been designed to achieve the

asymptotic capacity in the IC, i.e. when both the SNR and the signal dimen-

sions tend to infinity. In contrast, Choi et al. have introduced another IA design

that aims to achieve a higher multiplexing gain at any given signal dimension

[38]. In this chapter, we adopt the IA scheme proposed by Choi et al. for SISO

transmission, and we try to modify the design in order to achieve higher sum-rate

performance in the practical SNR region. Firstly, we introduce a way to opti-

mize the precoding subspaces at all transmitters, exploiting the fact that channel

matrices in the IA model are diagonal. Two solutions are derived. The first is

achieved iteratively using projected gradient descent method. The second is a

closed-form solution that avoids the numerical computation, thus, resulting in a

very low computational complexity. Secondly, we propose to optimize the precod-

ing vectors at each transmitter within its precoding subspace. To this end, we

combine each IA precoder with a new combination precoder. The combination

precoder seeks the optimal basis that maximizes the network sum-rate assuming

an individual transmit power constraint. However, a closed-form solution seems

non trivial. Therefore, we apply an iterative process based on the simple gradient

descent method, and converges to a local maximum due to the non-concavity of

the objective function.

This chapter is organized as follows. Section 3.2 describes the system model.

Then, Section 3.3 presents the IA design in SISO IC. In Section 3.4, we propose

to optimize the network sum-rate through a diagonal matrix W . The precoding

vectors optimization within the IA subspaces is presented in Section 3.5. In section

3.6, we present the convergence rate of the proposed iterative algorithms. Section

3.7 evaluates the sum-rate performance of the proposed optimization. Finally,

Section 3.8 concludes the chapter.

3.2 System model

Let us assume a K-user SISO IC with K transmitter-receiver pairs. A wireless

channel links each receiver to each transmitter, but a given transmitter intends to

have its signal decoded by a single dedicated receiver only. User j transmits a sym-

bol vector of length dj. This symbol vector is then precoded using anN×dj precod-
ing matrix, and transmitted through a frequency/time-varying complex channel.

In a SISO transmission, the vector of symbols is transmitted using channel ex-

tensions or realizations. For instance, in a frequency selective (frequency varying)
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channel, each symbol occupies one frequency slot. The received signal at the kth

receiver can be modeled as

yk =

K
∑

j=1

HkjVjsj + zk, ∀k ∈ K , (3.1)

where K = {1, · · · , K} is the set of all users, Hkj ∈ CN×N is the diagonal chan-

nel matrix between the jth transmitter and the kth receiver, Vj ∈ CN×dj is the

precoding matrix of the jth transmitter. The jth transmitted information sj is

defined as a dj × 1 vector belonging to a Gaussian continuous constellation. zk

is the N × 1 circular symmetric complex Gaussian noise vector at the receiver k,

with i.i.d. components; i.e. zk ∼ Nc(0, σ
2IN). We also consider the following

hypothesis in this chapter:

1. Users do not cooperate.

2. Non-precoded user symbols are Gaussian continuously distributed and mu-

tually independent.

3. The set of channel matrices Hkj is entirely and perfectly known at all trans-

mitters and all receivers.

4. All diagonal components of Hkj ∀k, j ∈ K are independent and identically

distributed (i.i.d.) and continuously distributed, with absolute values upper-

bounded with a finite value.

The maximum achievable DoF in the K-user SISO IC is equal to

lim
snr→∞

C(snr)

log2(snr)
=

K

2
, (3.2)

where C(snr) represents the channel capacity.

3.3 IA design in a SISO interference channel

3.3.1 Precoding design

The essence of the IA scheme is to design the transmit beamforming matrices

in a way that the interference-free stream number at each receiver is maximized.
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Figure 3.1: 3-user SISO interference channel with IA scheme.

The IA design conditions have been defined as follows

rank (UkHkkVk) = dk,

UkHkjVj = 0, ∀j 6= k, (3.3)

where Uk is the decoding matrix at the kth receiver. In other words, the desired

signal belongs to the subspace generated by the vectors of Gk = UkHkkVk, while

the interference is completely eliminated. The feasibility of the linear system in

(3.3) is conditioned to the following: i) the linear system has to be proper, i.e.

the number of variables is more than or equal to the number of equations, ii) the

linear system has to be generic [28]. In some particular cases, the genericity is

satisfied by providing a channel matrix with random and independent coefficients.

An example on the IA design is given in Figure 3.1. A particular case where

three users share the same resources to communicate. Each transmitter has one

symbol to transmit to its dedicated receiver. All channel coefficients are supposed

known at all transmitters1. In order to achieve the IA linear precoding design, each

transmitter k transmits its symbol in the direction of a two-dimensional vector vk,

and the precoding vectors at all transmitters are conceived in such a way that at all

receivers the vectors carrying the two interfering symbols are aligned and linearly

1This hypothesis is very optimistic, but it is taken by many research works in the literature.
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independent of the vector that carries the desired symbol. Then, the interference

are eliminated by a simple projection on the interference null space.

One precoding design that provides IA at all receiver nodes and fulfills the

conditions in (3.3)in the SISO interference channel is proposed by Choi et al as

[38]

V1 =







∏

k,l∈K\1,k 6=l,(k,l)6=(2,3)

(
(T23)

−1Tkl

)nkl |
∑

k,l∈K\1,k 6=l,(k,l)6=(2,3)

nkl ≤ m∗ + 1






,

V3 =






(T23)

−1
∏

k,l∈K\1,k 6=l,(k,l)6=(2,3)

(
(T23)

−1Tkl

)nkl |
∑

k,l∈K\1,k 6=l,(k,l)6=(2,3)

nkl ≤ m∗






,

Vj = H−1
1j H13V3,

Tkl = (Hk1)
−1Hkl(H1l)

−1H13. (3.4)

where m∗ is any non-negative integer which defines the number of transmitted

symbols and the length of the precoding vectors, and Tkl is an N × N diagonal

matrix. In the IA design described above, the achievable DoF per user can be

obtained using the following combinations

d1 =

(

m∗ +M + 1

M

)

and d3 =

(

m∗ +M

M

)

,

where M is a parameter depending on the user number, M = (K− 1)(K− 2)− 1,

di is the DoF of the ith user i.e. the number of transmitted symbols, and N is

defined as N = d1 + d2. In the particular scheme above, the IA conditions can be

satisfied by providing di = d3 , d1 > d3, i ∈ K\{1, 3}. For example, in a 3-user

SISO multi-user IC, we have d1 = n + 1, d2 = d3 = n,N = 2n + 1, and n can be

any non negative integer.

3.3.2 Linear decoding design

In the aforementioned transmission model, the received signal given in (3.1)

can be rewritten as

yk = H̄k
ksk

︸ ︷︷ ︸

Desired subspace

+
∑

j 6=k

H̄k
j sj

︸ ︷︷ ︸

Interference subspace

+zk, (3.5)
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where H̄k
j = HkjVj. We assume that the IA conditions are satisfied. Let H̄k

I ∈
CN×(N−dk) denotes the N−dk matrix spanning all interference subspaces ; i.e. H̄k

j

for j ∈ {1, · · · , K} , j 6= k are all spanned by H̄k
I . Before going further into the

description, we introduce the following lemma.

Lemma 1. Let A1 ∈ CN×n and A2 ∈ CN×n (N > n), where rank(A1) = n

and rank(A2) = m, (m ≤ n) and span(A2) ⊂ span(A1). Then, for every s2 ∈
Cn×1, ∃ s1 ∈ Cn×1 such that A1s1 = A2s2

Using Lemma 1 at the receiver k, the interference subspace from the jth trans-

mitter can be expressed in terms of H̄k
I as

H̄k
j sj = H̄k

I sjI , where sjI =
(

H̄kH

I H̄k
I

)−1
H̄kH

I H̄k
j sj . (3.6)

Substituting (3.6) into (3.5) yields

yk = H̄k
ksk + H̄k

I s̄k + zk

=
[
H̄k

k H̄k
I

] [
[sTk s̄Tk

]T
+ zk

= Bks̃k + zk, (3.7)

where s̄k =
(
s1I + · · ·+ s(k−1)I + s(k+1)I + · · ·+ sKI

)
, Bk ∈ C

N×N is a full rank

matrix that spans the union of the desired and the interference subspaces, and s̃k

is the N×1 vector consisting of the dk desired streams and the N−dk interference

streams. Equation (3.7) gives the mathematical formulation of a linear determined

decoding problem, where an N -length source data vector s̃k is mixed by a constant

mixing matrix Bk to produce a vector yk of N observations. Such a decoding

problem can be resolved using classical criteria such as Zero-Forcing (ZF), MMSE,

Maximum Likelihood (ML)...

3.4 IA precoding subspaces optimization

In this section, we aim to optimize the IA precoding subspaces in the scheme

described above. From (3.3), it can be noted that the modified precoding matrices

defined as

Vk = W V IA
k ∀k ∈ K, (3.8)

where V IA
k is the original matrix derived with respect to the IA conditions and

W is any diagonal matrix, satisfy the IA conditions. That is, the projection of all
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precoding matrices of the IA scheme on a common diagonal matrix W keeps the

IA conditions respected.

The precoding subspaces can be optimized by judiciously selecting the compo-

nents of W in (3.8). This diagonal matrix W determines the interference and the

desired subspaces design, while maintaining the IA conditions at the receivers. We

assume both MMSE and ZF based detection schemes, widely used due to their

simplicity for implementation, and we derive two different optimized designs that

maximize the network sum-rate for both cases.

3.4.1 MMSE-based decoder - Iterative solution

Assuming an MMSE decoder, the mutual information between the kth trans-

mitter and its intended receiver k can be expressed as

Rk(w) = log2
|IN + p

∑

j HkjWVjV
H
j WHHH

kj|
|IN + p

∑

j 6=k HkjWVjV
H
j WHHH

kj |
, (3.9)

where p is the user average transmit power over the average noise power assumed

equal at all receivers. Using the Sylvester’s determinant theorem [39], the fact

that all channel matrices are diagonal, and the definition of Bk and Ak as

Bk =

K∑

j=1,j 6=k

HkjVjV
H
j HH

kj

Ak = Bk +HkkVkV
H
k HH

kk, (3.10)

(3.9) can be reformulated in the following compact form as

Rk(w̃) = log2
|IN + p W̃Ak|
|IN + p W̃Bk|

, (3.11)

where W̃ = W .WH is a diagonal matrix with positive elements w̃i ∀i. One

can notice from (3.10) that matrices Ak and Bk are written as the sum of semi-

definite positive matrices, and hence are positive semi-definite. Consequently, the

Cholesky decomposition2 can be applied, and the matrices Ak and Bk can be

rewritten as

Ak = LH
Ak
LAk

with LH
Ak

= [LH
Bk

HkkVk] and Bk = LH
Bk
LBk

. (3.12)

2It is important to note that the Cholesky decomposition, originally defined for a positive
definite matrix, can be extended to the positive semi-definite case [40].
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Substituting (3.12) into (3.11) yields the kth user rate

Rk(w̃) = log2
|IN + p LAk

W̃LH
Ak
|

|IN + p LBk
W̃LH

Bk
|
. (3.13)

Our goal is to seek w̃ ; the vector of positive components defining the diagonal

of W̃ = WWH , that maximizes the total mutual information (i.e. network sum-

rate) in the IC under the constant total transmit power linear constraint. The

maximization problem is then defined as

argmax
w̃

1

N

K∑

k=1

log2
|IN + p LAk

W̃LH
Ak
|

|IN + p LBk
W̃LH

Bk
|
,

subject to the total transmit power constraint

K∑

k=1

tr(Vk(w)Vk(w)H) = K, w̃i ≥ 0, i ∈ {1, ..., N} . (3.14)

It is not obvious whether a closed-form solution can be obtained or not, there-

fore, one can search for the solution iteratively. However, the convergence towards

the global maximum is not guaranteed unless the objective function is concave.

The proof of the concavity with respect to the variable vector w̃, requires the

objective function to be twice differential and its Hessian matrix to be negative

semi-definite [41]. Indeed, a similar problem has been treated in [42] for the 3-

user IA scheme. The authors have demonstrated that a function having the form

of (3.14) is concave if Ak and Bk are defined as in (3.12) (see Appendix B in

[42]). The solution that approaches the optimum can be obtained using the pro-

jected gradient method with an optimized variable step size (details are given in

Appendix B). Other algorithms can also be used such as simple gradient descent

method using Lagrange multipliers.

3.4.2 ZF-based decoder - Closed-form solution

In the previous subsection, we have proposed to optimize the precoding sub-

spaces using iterative processing when MMSE is applied at the receiver. In this

section, we apply a ZF criterion at the receiver. Then, we propose a closed-form

solution for w that is asymptotically optimal. This solution is obtained from the

network sum-rate maximization problem approximation for very high SNR, and

under the hypothesis of a ZF applied at all receivers. It also avoids the need for
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a numerical solver that requires a matrix inversion at each iteration, and thus

increases the processing time and computational cost.

Assuming a ZF criterion at all receiver nodes and an IA design at all transmit-

ters, the mutual information between the kthtransmitter and its intended receiver

k is expressed as

Rk = log2 |IN + p UkHkkWVkV
H
k WHHH

kkU
H
k | (3.15)

whereUk is the interference canceler at the k
th receiver. Assuming well-conditioned

channel matrices and using Sylvester’s determinant theorem [39], the kth user rate

can be approximated for high SNR values by

Rk ≈
SNR>>1

log2 |p HkkWVkV
H
k WHHH

kkU
H
k Uk| . (3.16)

Now, we intend to maximize the sum-rate approximation
∑

k Rk with respect to

w under the total transmit power constraint. Using the following equivalence

argmax
w̃

K∑

k=1

Rk(w̃) ≡ argmax
w̃

|W̃ |K
K∏

k=1

|HkkVkV
H
k HH

kk||UH
k Uk| (3.17)

and the fact that
∏K

k=1 |HkkVkV
H
k HH

kk||UH
k Uk| is positive, the optimization prob-

lem in (3.17) can also be reduced to

argmax
w̃

|W̃ |,

subject to
∑

k tr(W̃VkV
H
k ) = KN , w̃i > 0 ∀i. (3.18)

We notice that the objective function in (3.18) is a simple determinant of a diagonal

matrix, hence, a concave function. Introducing Lagrange multiplier λ, the convex

dual of this problem is formulated as follows [41]

argmax
w̃

argmin
λ

L(w̃, λ). (3.19)

where the Lagrangian function is defined as

L(w̃, λ) = |W̃ | − λ
(

tr(
∑

k W̃VkV
H
k )−KN

)

,

with tr(
∑

k W̃VkV
H
k ) =

∑N
i=1 ciw̃i, and ci =

∑K
k=1 ||vki||2, (3.20)

and vki stands for the ith row of the matrix Vk. Since the objective function is
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concave, the Karush Kuhn-Tucker (KKT) conditions are sufficient to determine

the global optimum. The KKT conditions of the problem in (3.19) are given by

∇w̃L(w̃, λ)|w̃=w̃∗ = 0 , λ > 0 ,
∑N

i=1 ciw̃i = K N (3.21)

The solution of the linear problem in (3.21) is given by

w̃∗i =
K

ci
, i ∈ {1, ..., N} . (3.22)

Hence, the components of w are obtained as w∗i =
√
w̃∗i for all i. It is worth noting

that beside maximizing the sum-rate, the problem of maximizing the individual

rate using the approximation in (3.16), has the same solution obtained in (3.22).

A major advantage of the proposed solution is the fact that it has an analytic

simple expression making its implementation complexity very low. Indeed, the

other algorithms proposed for sum-rate maximization and interference power min-

imization in SISO and MIMO3 transmissions, achieve the optimum using singular

value decomposition (SVD) [43] and/or iterative algorithm that requires hundreds

to thousands iterations to converge [1, 2, 30].

3.4.3 Complexity and sum-rate performance

The computational complexity is a major bottleneck for the practical imple-

mentation that is considered in system designs. In the following, we discuss the

complexity of the precoding schemes proposed above.

The first optimized design that maximizes the sum-rate assuming an MMSE

detector is obtained using the projected gradient descent method. This iterative

method requires at each iteration the computational cost of the first order deriva-

tive of the objective function. Looking at the expression given in (B.2), one can

notice that the derivative is calculated using matrix multiplications and matrix

inversions with dimensions N × N . Therefore, the computational complexity at

each iteration can be considered of order O(N3). On the other hand, the design

based on a closed-form solution requires the computation of a Frobenius norm and

a division of N real numbers. Thus, the complexity order is O(N).

Figure 3.2 compares the average sum-rate per dimension performance of both

designs W-MMSE and W-ZF that symbolize the designs based on the solutions

3The IA schemes proposed for MIMO transmission can also be used in SISO systems.
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Figure 3.2: Average sum rate per dimension of the two proposed designs for
subspace improvement with N = 3 and N = 7.

of the problems in (3.14) and (3.18), respectively. It can be observed that for

N = 3 and N = 7, the W-MMSE design outperforms the W-ZF design with the

closed-form solution in the low SNR region. However, when the SNR becomes

very high, the sum-rate performance for both designs get very close.

It is important to note that the proposed designs result from the optimization

of the original designs proposed in [38], and not the optimal IA design that maxi-

mizes the sum-rate. This explains why when we compare the designs for different

dimensions N , a higher sum-rate is obtained for N = 3 compared to the design

for N = 7.

3.5 Precoding vectors design within IA subspaces

The previous section has addressed the optimization of the IA precoding sub-

spaces at once using a diagonal matrix W . On the other hand, there was no

discussion on the optimality of the precoding vectors within IA subspaces. In this

section, we propose to maintain the IA subspaces design at the transmitters, and

we aim to optimize the precoding vectors within each subspace. We consider both

cases: MMSE and ZF criterion at the receiver, and we attempt to maximize the

network sum-rate in each case.
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The precoding matrices defined in (3.4) are of size N × dk with N > dk, ∀k.
Thus, introducing a new combination matrix Ck ∈ Cdk×dk at each transmitter

node as follows

Pk = Vk Ck, ∀ k ∈ K, (3.23)

will modify the basis of Vk within its own subspace without modifying the subspace

itself. These variables can later be defined taking into account different criteria

such as MSE, BER, sum-rate, transmit power... Next, we show how to optimize

the additional combination matrices so as to maximize the network sum-rate.

3.5.1 MMSE-based decoder

Assuming an MMSE at all receivers, the mutual information between the kth

transmitter and its dedicated receiver k can be written as a function of the com-

bination matrices Ck ∀k as follows

Rk = log2
|IN + p

∑K
j=1HkjPjP

H
j HH

kj|
|IN + p

∑K
j 6=k HkjPjP

H
j HH

kj|
. (3.24)

Now, in order to maximize the sum-rate under the individual transmit power

constraint, we propose the following maximization problem

argmax
Ck, k∈K

1

N

K∑

k=1

log2
|IN + p

∑K

j=1 H̄kjCj

(
H̄kjCj

)H |
|IN + p

∑K
j 6=k H̄kjCj

(
H̄kjCj

)H |
subject to tr(VkCkC

H
k V H

k ) = N, ∀k ∈ K. (3.25)

where H̄kj = HkjVj. It is well-known that the optimal solution is the one that

nullifies the gradient of the sum-rate expression. However, a closed-form solution

is not obvious due to a complicated expression of the first order derivative as

shown in (C.5) in Appendix B. Therefore, we attempt to get close to the solution

iteratively. We use an iterative algorithm that optimizes the cost function with

respect to one variable while the others remain fixed. In our reasoning, each

variable is considered as one of the precoding matrices. This technique results in a

non-convex optimization due to the dependence between the precoding matrices.

At each iteration, the optimization is based on the gradient descent widely used in

MIMO multi-user channel. The iterative algorithm for the sum-rate maximization

is detailed in algorithm 3.1.
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Algorithm 3.1 IA precoding vectors optimization

1: Initialize randomly all precoding matrices C1, · · · CK .
2: Start loop with l = 1
3: for k = 1 to K do
4: Calculate the gradient, ∇Ck

f(C l
1, · · · ,C l

K).

5: Update C
(l+1)
k = C l

k + λ.∇Ck
f(C l

1, · · · ,C l
K).

6: if trace(VkC
(l+1)
k C

(l+1)H

k V H
k ) > N update C

(l+1)
k =

√

N
dk

C
(l+1)
k

√

trace(VkC
(l+1)
k

C
(l+1)H

k
V H
k

)
.

7: end for
8: If f(C

(l+1)
1 , · · · ,C(l+1)

K )−f(C l
1, · · · ,C l

K) > ǫ, set l = l+1 and go back to step
3), otherwise stop the processing.

In this algorithm the gradient is defined in (C.5) in Appendix B, f describes the

objective function given in (3.25), and the precoding matrices are supposed to be

of unit Frobenius norm. The step size λ is updated using the backtracking search,

which is an effective and quite simple method [41]. Despite the non-convexity of the

multi-variable objective function, as long as the variable is steered in the gradient

direction, the algorithm converges to a local maximum. In our simulations, the

convergence of this iterative algorithm is supposed to be achieved either when

∑

k

||∇
C

(l)
k

R|| < ǫ (3.26)

or when a maximum number of iterations is reached, and ǫ is defined as a tolerance

value that could be e.g. 10−6 (taken in our simulation results).

3.5.2 ZF-based decoder

Given the kth user rate, the ZF-based detector uses a matrix Uk to cancel

the interference, yielding an equivalent dk × dk MIMO transmission model. Many

options exist to find the best family of combination matrices {Cj} in order to max-

imize the sum-rate. The channel model after interference suppression at receiver

k is obtained as

yk = UkHkkVkCksk +Ukzk,

= H̃kCksk +Ukzk, (3.27)

where Uk is the decoding matrix at the kth receiver. It is defined as the dk × N

interference null space. The model defined in (3.27) is a typical MIMO single
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user model with channel matrix H̃k and precoding matrix Ck. One optimized

form of Ck is the one composed of the right singular vector of the new channel

matrix H̃k. Such a precoding scheme achieves the channel capacity as described

in [44]. Another form that requires less computational complexity is the one that

orthonormalizes the columns of the original precoding matrix Vk. In [45], the

authors have shown that this last form gets close to the maximum information

rate when the SNR becomes high.

3.5.3 Complexity and sum-rate performance

The algorithm that optimizes the solution iteratively in section 3.5.1 is based on

the gradient descent method. At each iteration, the iterative algorithm requires

the gradient of the objective function that needs itself inversion of N × N full

rank matrices. Thus, the total computational complexity depends mainly on the

number of iterations and on the precoding matrices dimensions. The complexity

cost is of order O(nbiN
3) where nbi is the number of iterations.

Figure 3.3 illustrates the sum-rate per dimension of the design CW-MMSE

which represents the solution W-MMSE optimized with the algorithm 3.1, and

the solution OW-ZF that represents the W-ZF design with orthogonal precoding

vectors. For the subspace optimization, we use the closed form solution derived

in section 3.4.2. One can observe a sum-rate performance loss in the case of

OW-ZF compared to the CW-MMSE for low SNR values, whereas when the SNR

increases both sum rates become very close. However, in terms of complexity cost,

less operations are required, of order O(Nd2k) at each transmitter, and no joint

processing is required for the optimization design.

3.6 Convergence rate of the iterative solutions

In section 3.4.1 and section 3.5.1, we have proposed two iterative solutions, one

aims to optimize the IA subspaces and the other optimizes the precoding vectors

within each IA subspace without modifying the subspace itself.

The first iterative solution to the problem in (3.14) for the IA subspaces opti-

mization is reached using the projected gradient method. We have mentioned that

the objective function is concave, thus, the convergence towards the global opti-

mum is guaranteed. On the other hand, the iterative solution proposed for the IA

precoding vectors optimization is reached using an algorithm based on the gradi-

ent descent method for a multi-variable objective function. Thereby, the objective
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Figure 3.3: Average sum rate per dimension of the proposed precoding vectors
design using the combination matrices for N = 3 and N = 7.

function changes at every iteration yielding a non convex optimization problem.

However, as long as the iterative method is based on the gradient descent and

the variable follows the direction of the gradient using an optimized step size, a

convergence towards a local optimum is guaranteed.

The convergence rates of the discussed iterative solutions above are shown in

Figure 3.4. For the projected gradient descent method, the convergence towards

either the optimal solution or a neighboring optimal solution requires hundreds

of iterations. This slow convergence rate shifts the attention to the closed-form

solution obtained in section 3.4.2. Now, looking at the design for precoding vectors

optimization within their subspace, the convergence rate seems fast. For example,

almost 10 to 15 iterations are required to achieve a near-optimal value at 15dB

and 25dB when N = 7.

3.7 Comparison of the proposed optimized de-

signs to the state of art schemes

In this section, we compare the proposed designs to the distributed designs

proposed in [1, 2] in terms of sum-rate per dimension. We consider a 3-user

frequency selective SISO IC, with the model proposed in section 3.2. The total
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Figure 3.4: Convergence of the iterative algorithm in section 3.5.1 and the
projected gradient method in section 3.4.1.

independent stream number from all users is equal to DoFT = 3n + 1, and the

precoding vectors length is N = 2n+1 for all users, and n can be any non negative

number. The transmit constellation is Gaussian continuously distributed, and

the channel coefficients are circularly symmetric complex Gaussian distributed

with zero mean and unit variance. The following abbreviations are used for the

compared designs:

• OW-ZF : the proposed IA design with the closed-form solution derived in

section 3.4.2 that uses orthogonal precoding vectors.

• CW-MMSE : the IA design with the two iterative proposed optimization in

section 3.4.1 and section 3.5.1.

• IA-Iter: the IA design obtained with the distributed algorithm proposed in

[1]

• Max-SINR: the beamforming design proposed in [2] that maximizes the sig-

nal to interference and noise ratio (SINR) of all streams.

Figures 3.5, 3.6 and 3.7 illustrate the average sum-rate per dimension perfor-

mance of the OW-ZF, the CW-MMSE, the IA-Iter and the Max-SINR for N = 3,
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Figure 3.5: Comparison of the average sum rate per dimension for different
precoding designs for N = 3.
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precoding designs for N = 5.
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N = 5 and N = 7, respectively. The iterative algorithm IA-Iter and Max-SINR

are evaluated under ni = 800 maximum number of iteration. Compared to the

CW-MMSE, the OW-ZF performs similarly for all configurations with a slight

loss for low and medium SNR values. This is due to the fact that a ZF criterion

becomes equivalent to an MMSE when the SNR becomes very high, and that the

OW-ZF design is based on an approximation for high SNR. On the other hand,

an important gain is obtained over the IA-Iter design over the whole SNR region

when N = 3 and N = 5, e.g. at 20dB a gain of about 2.2 − 2.5 bits/s/Hz and

1.7−2 bits/s/Hz is obtained for N = 3 and N = 5 respectively. It is worth noting

that in addition to this gain, the OW-ZF design is a closed-form, thus, it exhibits

a much less computational complexity than the other designs. It also does not

require any iterative processing to achieve the solution, and thus exhibits a rea-

sonable complexity order when N increases. Now, considering the beamforming

optimization design that maximizes the SINR referred to as Max-SINR, this last

outperforms the proposed designs in the low and medium SNR region. However,

this resulting gain decreases as the SNR increases in the medium to high SNR

region. For example, the OW-ZF design and the Max-SINR design reach the same

sum-rate value of about 10.4 bits/s/Hz at 30dB for N = 3. This result can show

that in some particular cases, the proposed designs are very close to one of the

most efficient designs when the SNR is high enough while keeping a low complexity

level such as the OW-ZF design.

Next, Figure 3.8 evaluates the performance of the following designs: OW-ZF,

IA-Iter and Max-SINR, as a function of the precoding vectors sizes. At 15dB and

30dB, the OW-ZF outperforms the IA-Iter for N ≤ 9 and N ≤ 11. On the other

hand, it can be observed that the two iterative designs IA-Iter and Max-SINR

result in an increasing sum-rate with the vectors sizes, however, the closed-form

design OW-ZF results in a decreasing sum-rate with the vectors sizes. This means

that OW-ZF is close to the optimal for small precoding dimensions, and starts

moving away when N increases.

3.8 Conclusion

In this chapter, we have introduced three optimized designs for the IA scheme

in a K-user SISO IC. The first and the second consider optimizing the precoding

subspaces at the IA transmitters through a common diagonal matrix assuming an

MMSE and ZF linear detector, respectively. The third assumes an MMSE linear
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Figure 3.7: Comparison of the average sum rate per dimension for different
precoding designs for N = 7.
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detector, and seeks the optimal precoding vectors within a predefined subspace

at each transmitter. The first and the third designs referred to as W-MMSE and

C-MMSE, respectively, require iterative algorithms to converge to their optimum,

whereas the second design referred to as W-ZF, is obtained from a closed-form

solution. Comparing to other IA distributed designs, the proposed designs show a

significant sum-rate performance, and much less computational complexity when

the closed-form solution is applied. To enhance the sum-rate performance, we

have introduced an orthogonalization of the precoding vectors in the W-ZF design,

which enables to achieve a trade-off between complexity and data rate.

In the next chapter, we introduce the spatial IA concept in the MIMO IC. We

address the detection problem at the receivers, where we consider transmitters

with full CSI knowledge and receivers with no CSI knowledge. Such a situation

appears when each transmitter estimates the CSI between itself and all receivers

in the IC through feedback links, then shares it with the other transmitters via a

centralized coordinator.



Chapter 4

Linear detectors for downlink

transmission with interference

alignment

4.1 Introduction

The previous chapter has addressed the transmission in a multi-user SISO IC.

The interference alignment scheme has been presented with some proposed opti-

mization for the precoding design. This chapter addresses the transmission in a

multi-user MIMO IC, i.e. the transmitters and the receivers are equipped with

multiple antennas. We assume a network where the transmitters have a limited

cooperation on CSI exchange level i.e. the IA can be applied, and the receivers

cannot cooperate. This context is similar to the downlink transmission in mobile

communication network, where the base stations (BS) that cooperate through a

central unit transmit to their independent terminal users simultaneously.

Similarly to the SISO IC, in a K-user MIMO systems where different users

are equipped with multiple antennas, the IA results in a linearly scaling network

sum-rate with the number of users sharing a common transmission medium. The

achievable DoF1 has been studied in many papers using the IA concept in signal

scale and signal vector space [26, 28, 46, 47, 48]. Also, different schemes have been

proposed in space/frequency/time/rational dimensions to characterize the DoF by

defining new inner and upper bounds.

1The degrees of freedom (DoF) of wireless interference networks represent the number of
interference-free signaling dimensions in the network.

43
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On the other hand, IA in spatial dimensions are desirable for their analytical

tractability, for the useful insights they offer in the finite SNR region, and for their

robustness to practical limitations such as frequency offsets due to mismatched

synchronization. The feasibility of the spatial IA design for MIMO transmissions

has been studied [28], and distributed IA-achieving algorithms have been derived,

e.g. [1, 2, 30]. These algorithms are based on an iterative processing at the

transmitter when the full-CSI is available at the transmitters, and on information

exchange with the receiver when only the local CSI is available at the transmitters

and the receivers.

In this chapter, we assume a linear spatial IA design at the transmitters and

approach the decoding problem. That is, the interfering signals are aligned in

a subspace linearly independent of the desired signal subspace. The traditional

linear decoders can estimate the decoding matrices, defined as the interference

null space, using the basic Least Square (LS) method essentially based on a train-

ing sequence within each frame. Herein, our contribution regarding the decoding

scheme pursues a different approach. The main idea consists in separating each de-

sired streams (desired signal) from the interference using higher-order cumulants,

and then the desired signal can be identified using a few training symbols. This

approach has the advantage of allowing to decode the received signal even when

the number of training symbols is low, and thus result in a more robust decoding

scheme for a given training sequence length. We first show the equivalence between

the MIMO IC model with IA at the transmitters and a determined Blind Source

Separation (BSS) model. Then, we demonstrate the feasibility of solving the BSS

problem to separate the desired signal from the interference through a joint diag-

onalization of the fourth-order cumulants matrices [6]. The separation ability is

due to the existing independence between the desired signal and the interference.

The joint diagonalization is able to extract the desired streams blindly up to a

permutation and scaling ambiguities. These ambiguities can be solved using a

few training symbols within each transmitted frame, hence, the term semi-blind

is invoked.

The remaining of this chapter is organized as follows. In Section 4.3, the as-

sumed MIMO IC is described. The distributed IA in MIMO IC is reviewed in

Section 4.4. The traditional linear decoding is derived in Section 4.5. In Sec-

tion 4.6, we link the IC model associated with IA design to the determined blind

source separation model, and show the ability of the joint diagonalization tech-

nique to decode the desired signal. Section 4.7 evaluates the performance of the
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BSS techniques. Finally, Section 4.8 concludes the paper.

4.2 Context and transmission network

In this chapter, we consider a downlink transmission in a mobile network where

the BSs (Base stations) transmit to the mobile terminals. We assume that BSs

can communicate reliably through the help of a central unit. An interference

alignment is applied at the transmitter side requiring a global CSI knowledge at

the BSs. Each BS acquires the CSI between itself and each terminal from training

sequences sent by the terminal on the uplink. The central unit is used to share

the CSI knowledge and benefit from a global CSI at each BS. Each terminal can

at best estimate the individual CSI between itself and its dedicated BS, and thus

knows neither the signal nor the interference subspaces. The communication starts

when each mobile terminal transmits to all BSs in a given area training symbols for

CSI estimation. We assume a TDD mode and consider the channels reciprocal and

invariant over the transmission of one frame. The channel is firstly estimated at the

BS using an Ls-length uplink reference signal sent from the mobile terminals. This

strategy is employed in the TDD-uplink transmission scheme in the 3GPP-LTE

network [49]. Once all CSI linking each BS to all mobile terminals are estimated

at each BS, they can be shared with the other BSs through the central unit.

Then, the IA scheme can be designed based on the global CSIT knowledge. In the

second phase, the downlink transmission begins. At the receiver side, the mobile

terminal only knows that an interference alignment scheme has been applied at the

transmitter side. We show that the interference can be suppressed blindly using

the BSS techniques. Once the signal has been extracted, a limited number of

training symbols are necessary to solve the ambiguity and permutation problems.

4.3 System Model

We consider a K-user quasi static IC with K transmit-receive pairs and N =

Nt = Nr antennas at each side of the link. A given transmitter intends to have its

signal decoded by a single dedicated receiver. Each transmitter sends dk symbols

at one channel use. Without loss of generality, we assume d = d1 = · · · = dK . The

received signal at the kth receiver node and at instant l is given by

yk(l) = HkkVksk(l) +
∑

j 6=k

HkjVjsj(l) + zk(l), l = 0, · · · , T − 1 (4.1)
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where T represents the frame length, Hkj ∈ CN×N is the fading channel matrix be-

tween the jth transmitter and the kth receiver, Vj ∈ CN×d is the precoding matrix

at the jth transmitter, and zk(l) ∈ CN×1 is the circular symmetric complex Gaus-

sian noise vector at the kth receiver, with i.i.d. components; i.e. zk ∼ Nc(0, IN).

{sj(l) ∈ Qd×1|l = 0, · · · , T − 1} represents the d streams from the jth transmitter

during a T -symbol duration interval. The symbols of sj are supposed i.i.d. from a

finite constellation Q. Each T -length frame is decoded at once and assumed time

invariant over the duration of a frame.

The K precoders are jointly designed to satisfy the IA conditions, which can

be achieved using different solutions without channel extensions [1, 2, 26]. At the

receiver side, the intended signal can be detected by projecting the received signal

on the interference null space. The lth decoded signal vector is given by

ỹk(l) = Ukyk(l)

= UkHkkVksk(l) +
∑

j 6=k

UkHkjVjsj(l) +Ukzk(l), (4.2)

where Uk is the decoding matrix at the kth receiver. In the upcoming sections,

we present the spatial IA design for the adopted channel model, and we show the

ability of extracting the desired signal using higher-order cumulants.

Figure 4.1: Mobile interference network: transmission in downlink.
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4.4 Spatial IA design in a K-user MIMO IC

Many solutions have been proposed to align the interference in a K-user MIMO

IC. Some of them are computed numerically from a closed form [26, 32, 46]. Oth-

ers require an iterative processing and try to converge to a solution for which

the interference are aligned at each receiver. For example, in [2] the proposed

scheme consists in seeking iteratively the precoding and decoding matrices that

minimize the interference leakage under the assumption of channel reciprocity. In

[1], the criterion has been generalized to minimize the interference caused at all

undesired receivers. In [30], the same criterion has been considered under the sum

rate maximization and the constant transmit power constraints. Other criteria

have also been investigated such as the maximization of the chordal distance pre-

serving aligned interference [43], the maximization of the received power in the

interference-free subspaces [30] and so on. In the following, a brief description of

the iterative IA-achieving concept is exhibited. At receiver k, the conditions to

align interference from other transmitters into the null space of Uk are given by

[2]

rank (UkHkkVk) = dk,

UkHkjVj = 0, ∀j 6= k. (4.3)

In other words, the desired signal belongs to the subspace generated by the vectors

of Gk = UkHkkVk, while the interference is completely eliminated. The feasibility

of the linear system in (4.3) is conditioned to the following: i) the linear system has

to be proper, i.e. the number of variables is more than or equal to the number of

equations, ii) the linear system has to be generic [28]. In some particular case, the

genericity is satisfied by providing a channel matrix with random and independent

coefficients.

When both conditions are satisfied, the IA scheme is achieved by only mini-

mizing the total interference leakage expressed as

IL =
K∑

k=1

∑

j 6=k

‖UH
k HkjVjV

H
j HH

kjUk‖. (4.4)

The IA design consists in defining the precoding and the decoding matrices that

minimize the interference leakage at all users. The proposed IA-achieving dis-

tributed algorithms start with arbitrary transmit and receive filters Vk and Uk for
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all k, and iteratively update these filters to minimize the interference leakage. The

interference leakage is the metric for the quality of alignment. The basic algorithm

is described as in 4.1. This algorithm above is guaranteed to converge, however, a

convergence to a global minimum is not guaranteed due to the non-convex nature

of the interference optimization problem [2].

Algorithm 4.1 Distributed IA design

1: Set Vk to an arbitrary matrix such as V H
k Vk = Idk .

2: Compute the interference covariance as Qk =
∑K

j 6=k HkjVjV
H
j HH

kj.

3: Compute Uk that minimizes the interference covariance as Uk = νdk
min (Qk),

where νdk
min (.) denotes the eigenvectors corresponding to the dthk smallest

eigevalues.
4: Exchanging the roles of the precoders and decoders in the reciprocal network.

5: Compute the new interference covariance as Q̄k =
∑K

j 6=k H
H
kjUjU

H
j Hkj.

6: Compute Vk that minimizes the new interference covariance as Vk =
νdk
min

(
Q̄k

)
.

7: Exchanging the roles of the precoders and decoders in the reciprocal network.

8: Repeat 2− 7 until convergence.

4.5 Traditional linear decoding in a spatial IA

scheme

The application of the IA design at the transmitters allows a linear detection2

using criteria such as ZF and MMSE. The reason is that the interference signals are

all aligned in a subspace linearly independent from the subspace that contains the

desired signal. Hence, seeking the null space of the interference signal can separate

the desired signal and the interference, and then the signal can be linearly detected.

In this section, we derive the ZF and the MMSE detector applied at the receivers

in a K-user MIMO IC.

We apply the distributed algorithm proposed in section 4.4. The interference

canceler is given by Uc,k. It is calculated using the singular value decomposition

of the interference subspace as

U 0
kSkVk =

∑

j 6=k

HkjPj (4.5)

2In the new model, IC with IA, the number of observations is equal to the number of variables.
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where U 0
k = [U 1

k , Uc,k] consists of the interference space U 1
k ∈ CNr×(Nr−dk) and

the interference null space Uc,k ∈ CNr×dk ,respectively.

Assuming a perfect knowledge of the interference subspace at each receiver, the

received signal after applying the interference canceler Uc,k is obtained as

ỹk(l) = Uc,kHkkVksk(l) +Uc,kzk(l). (4.6)

The system in (4.6) with sk variable is a determined linear system with dk equa-

tions and dk variables, and the matrix Gk = Uc,kHkkVk has full rank with di-

mensions dk × dk. A ZF-based decoding matrix is then defined as G−1
k , and the

decoded signal yields

ŷk(l) = G−1
k Gksk(l) +G−1

k Uc,kzk(l),

= sk(l) + z̄k(l). (4.7)

where z̄k(l) = G−1
k Uc,kzk(l). It is well-known that a ZF-based receiver increases

the level of noise due to the non-unitary matrix G−1
k . Therefore an MMSE can be

used instead. The MMSE use the a priori information of the noise distribution to

decrease the mean square errors (MSE).

One can notice that the interference canceler is a unitary matrix, thus, it keeps

the noise level unchanged. Consequently, the MMSE detector can be directly

applied to the interference-free signal ỹk(l) given in (4.6). The MMSE criterion

looks for the matrix Ḡk that minimizes the MSE between the estimated signal

and the original signal. The MSE is defined as follows

MSEk = E
[
‖Ḡkỹk(l)− sk(l)‖2

]
(4.8)

Deriving MSEk with respect to Ḡk, the solution that makes the derivative zero

is obtained as

Ḡk =
(
GkG

H
k + σ2Idk

)−1
GH

k , (4.9)

and the decoded signal becomes

ŷk(l) = ḠkGksk(l) + ḠkUc,kz̄k(l). (4.10)

The described receivers need a perfect CSI knowledge for an accurate estimation

of the decoding matrix. In practice, the CSI is estimated at each receiver using a

training sequence. Several estimators have been proposed among which the least
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square (LS) and the MMSE estimators [50]. In this chapter, we pursue a different

approach. We exploit the statistical independence of the transmitted streams,

and we blindly seek the decoding matrix, at each receiver, that maximizes the

statistical independence between the components of the mixed received signal.

Then, we introduce a few training symbols in order to remove the residual scaling

and permutation ambiguities inherent in the blind separation.

4.6 Desired signal extraction in a spatial IA scheme

using high-cumulants order

The blind and semi-blind source separation using high-cumulants order has

been exploited in single user MIMO systems [51, 52]. Here, we want to show

that the blind source separation techniques can be extended to the downlink of a

multi-user MIMO IC when the IA scheme is applied at the transmitters.

4.6.1 Desired signal Extraction

The standard Blind Source Separation (BSS) standard instantaneous model is

defined as

y(l) = As(l), l = 0, · · · , T − 1 (4.11)

where s(l) ∈ CN×1 is the vector of N statistically independent latent variables

called independent components, y(l) ∈ CN×1 is the observation vector, and A ∈
CN×N is a full rank unknown mixing matrix. The BSS technique seeks the demix-

ing matrixUbss that maximizes the statistical independence between the estimated

components ŝ(l) = UbssAs(l), ∀l. For the sake of simplicity, the time index will

be ignored in the remaining of this section.

It is shown in [53] that, under mild assumptions, the estimated variables ŝ are

similar to the original sources s up to a permutation and scaling by a complex

constant, i.e.

UbssA = PΛ, (4.12)

where P is a permutation matrix and Λ is a diagonal matrix.
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Back to the MIMO IC model with IA technique applied at the transmitters,

the model is formulated as (3.7)

yk =
[
H̄k

k H̄k
I

] [
sTk s̄Tk

]T
+ zk

= Aks̃k + zk. (4.13)

whereAk is a full rank square matrix and s̄k =
(
s1I + · · ·+ s(k−1)I + s(k+1)I + · · ·+ sKI

)
.

All components of s̄k are mutually dependent. This model is similar to the BSS

model except that some mutual dependencies exist between some components of

s̃k. The first d components of s̃k are mutually independent and represent the de-

sired streams sk. The other (N−d)-components of s̃k are mutually dependent and

represent the interference part s̄k. This situation of dependent sources has been

considered in certain recent studies, e.g. [54, 55, 56]. Several algorithms have been

proposed for source separation such as bounded component analysis algorithm. In

our case, there is no need for such algorithms, and the desired signal can be ex-

tracted using a simple joint block diagonalization of the high order cumulants as

explained in the following subsection. The received signal is whitened first before

applying the blind source separation algorithm.

4.6.2 Second-order information: Whitening

For the model in (4.11), the whitening matrix that decorrelates the received

signal is denoted by Wk. Its derivation requires the estimation of the correlation

matrix Ryk = E(yH
k yk). Wk is obtained as the solution of the following equation

WkRykW
H
k = IN . (4.14)

For independent and equally power distributed streams, Ry can be decomposed

as Ryk = AkA
H
k . This means that for Wk satisfies (4.14), there exists an unitary

matrix Bk such that WkAk = Bk. In other words, the whitening reduces the

determination of the random matrix Ak to the unitary matrix Bk.

In the MIMO IC with IA, the kth whitened received signal yields

yw
k = Wkyk = WkAks̃k +Wkzk, (4.15)

and the kth decoded signal is obtained as

ŷk = UH
k Wkyk = UH

k WkAks̃k +UH
k Wkzk, (4.16)
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where Uk is the unitary matrix that will separate the desired signal, i.e. the

independent streams in (4.13).

4.6.3 Joint Approximate diagonalization of Eigenmatrices

JADE is a well known statistical technique for solving linear determined BSS

problems. It is based on the fact that the fourth order cross-cumulants of inde-

pendent variables are zeros. That is, demixing a mixed signal as in (4.11) involves

looking for the decoding matrix that minimizes the sum of all the squared cross-

cumulants of Ce [57], and e represents any vector of N mixed random variables.

The sum of all the squared cross-cumulants of Ce is given by

Ccross =
∑

i 6=j

|cum(ei, e
∗
j , ep, e

∗
l )|2, (4.17)

where the cumulant set of all components (streams) of an observed data vector z

is defined as

Cz =
{
cum(ei, e

∗
j , ep, e

∗
l ) | i, j, p, l ∈ {1, · · · , N}

}
, (4.18)

and cum refers to the fourth order cumulant and e∗i is the complex conjugate of

the ith entry of e.

In our transmission model, the observed vector is transformed to yw
k after being

whitened. yw
k is then decoded using the unitary matrix Uk. In [53], the authors

have proposed to find Uk that maximizes the sum of the squared auto-cumulants

defined as

Cauto(Uk) =
N∑

i=1

|cum(ŷk,i, ŷ
∗
k,i, ŷk,i, ŷ

∗
k,i)|2, (4.19)

and they have showed that it is equivalent to minimizing the sum of the squared

cross-cumulants in Cŷk . Maximizing the criterion in (4.19) under unitary decoding

matrix constraint can be done using Givens rotations based method. However, for

the complex case, the Givens angles cannot be formulated in a closed-form.

In [6], the authors have modified the criterion in (4.19), and have proposed to

seek Uk as the unitary maximizer of the following criterion

c(Uk) =

N∑

i,k,l=1

|cum(ŷk,i, ŷ
∗
k,iŷk,p, ŷ

∗
k,l)|2. (4.20)



Chapter 4. Linear detectors for downlink transmission with IA 53

This is equivalent to minimizing the sum of the squared cross-cumulants with

distinct first and second indices. The modified criterion allows an efficient opti-

mization by the use of the term ”joint diagonalization”. In our case, due to the

existence of some mutual dependencies between the undesired signal, we show that

the term becomes joint block diagonalization.

Now, for resolving the maximization problem of the function in (4.20) under

the constraint of a unitary demixer, let us first define the cumulant matrices of

the observed whitened signal as follows. To any N ×N matrix Mr with elements

mr,lp, ∀p, l ∈ {1, · · · , N}, is associated a cumulant matrix denoted Qyw
k
(Mr)

defined entrywise by

qij =
N∑

k,l=1

cum(yw
k,i,y

w
k,j
∗,yw

k,p,y
w
k,l
∗)mr,lp, ∀ i, j ∈ {1, · · · , N}. (4.21)

Also, defining the parallel set of all cumulant slices for p, l ∈ {1, · · · , N} as

N p =
{
Qyw

k
(bpb

T
l )|p, l ∈ {1, · · · , N}

}
(4.22)

where bp is the vector with only one non-zero element equal to one at the pth po-

sition. Thus, Qyw
k
(bpb

T
l ) represents the (p, l) parallel cumulant slice whose (i, j)th

entry is cum(yw
k,i,y

w
k,j
∗,yw

k,p,y
w
k,l
∗). It has been shown in [6] that for the set N p,

the unitary matrix Uk that maximizes c(Uk) is equivalent to the joint diagonaliser

of the set N p given by

Cdiag (Uk,N p) =
N∑

k,l=1

‖diag
(
UH

k Qyw
k
(bkb

T
l )Uk

)
‖2, (4.23)

where ||diag(.)||2 is the norm of the vector built from the diagonal of the matrix.

The joint diagonaliser of the set N p is also proven to be essentially equal toWA =

B when all the variable components are independent. The joint diagonaliser can

be obtained using the Jacobi technique.

In order to increase the computational efficiency, it has been demonstrated that

for any N -dimensional complex random vector e with fourth-order cumulants,

there exist N2 real numbers λ1, · · · , λN2 and N2 matrices M1, · · · ,MN2 called

eigenmatrices satisfying

Qe(Mn) = λnMn, trace
(
MnM

H
r

)
= δ(n, r) ∀n, r ∈ {1, · · · , N2}, (4.24)
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and for a unitary demixing matrix, N(N − 1) eigenvalues of Qe are zeros and the

rest N eigenvalues are equal to the kurtosis of the sources. Consequently, the joint

diagonalization can be performed on the set made from the N most significant

eigenpairs

Ne = {λn,Mn | n ∈ {1, · · · , N}} (4.25)

The joint diagonalization is performed using the extended Jacobi technique.

Let us now summarize the steps of the algorithm JADE as follows

1. Step 1: Compute the whitening matrix Wk as the inverse square root of

the sample covariance matrix of the received data. As shown in [6], Wk

transforms Ak into a unitary matrix Bk = WkAk.

2. Step 2: Form the sample fourth order cumulant matrix3 Qyw
k
of the whitened

data yw
k = Wkyk

3. Step 3: Compute the N most significant eigenpairs of Qyw
k
: {λn,Mn|n =

1, · · · , N}

4. Step 4: Perform the approximate joint diagonalization of matrices {λnMn|n =

1, · · · , N} by an unitary matrix Uk

5. Step 5: An estimate of the source vector is ŝ = Uky
w
k

As described above and in [6], when all streams are statistically independent

JADE is able to separate the original streams through joint diagonalization of the

cumulant matrices. Let us now show that even in the presence of some mutually

dependent components, as in (3.7), JADE is able to separate the mutual indepen-

dent streams. For our considered problem, the (N − d) interference sources are

dependent in which case the set of matrices {λnMn|n = 1, · · · , N} are not any-

more jointly diagonalizable but are jointly block-diagonalizable. In other words,

for n = 1, · · · , N , we have the following joint matrix structure:

λnMn = Bk

[

Mn,1 0

0 Mn,2

]

BH
k (4.26)

where Mn,1 are d× d diagonal matrices, Mn,2 are (N − d)× (N − d) unstructured

matrices and Bk = WkAk. In [58], it is shown that the joint diagonalization

algorithm used in the standard BSS method JADE can be used as well for the joint

3Qyw

k
(i, j, k, l) = cum(ywk,i, y

w
k,j

∗, ywk,p, y
w
k,l

∗).
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block diagonalization of a set of matrices. Consequently, the final transformation

given by the whitening matrix and unitary transform U leads to:

UkWkAk =

[

D1 0

0 D2

]

where D1 is a d × d diagonal matrix and D2 a (N − d) × (N − d) given matrix.

Hence, the first d entries of ŝk = Uky
w
k represent the desired source signals while its

remaining N−d entries represent linear mixtures of the (non-desired) interference

signals.

4.6.4 Semi-Blind separation

The ambiguities on the scale and permutation of the estimated streams can be

solved using a few training symbols inserted within each data frame. We denote

sj,tr ∈ C1×Ns the jth training sequence for j ∈ {1, · · · , d}, and ŝi,Ns the first Ns

symbols of the ith estimated independent stream with i ∈ {1, · · · , d}. We define

the Normalized Minimum Mean Squared Error (NMSE), widely used to evaluate

the efficiency of the BSS techniques, as

NMSE(ŝi,Ns, sj,tr) = log10

[

1− |ŝi,Nss
H
j,tr|2

||ŝi,Ns||2 ||sj,tr||2

]

. (4.27)

The ambiguity on the permutation order can be solved by minimizing the NMSE

according to the training sequence

argmin
i,j∈{1,··· ,d}

NMSE(ŝi,Ns, sj,tr), (4.28)

Next, the scale ambiguity can be solved by looking for the complex variable α that

minimizes the MMSE between the estimated variables and the training sequence

MMSE = E
[

|α ŝj,Ns − sj,tr|2
]

. (4.29)

The 1 × Ns vector ŝi used in (4.27), (4.28), and (4.29) is formed by the first Ns

estimated symbols of the stream sk.

Remark 4.1: The proposed technique requires the receiver to wait for all samples

within one frame. Therefore, the authors in [51] have proposed an adaptative semi-

blind high order separation technique. This technique can be adapted to our case
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since we have showed that the dependency between interference streams does not

affect the desired source extraction.

Remark 4.2: As will be shown by our simulation results, the semi-blind approach

results in a slight performance loss as compared to the standard (data-aided)

MMSE. However, it is shown in [59], that in such cases one can compensate for

this performance loss using a decision-directed MMSE detection in a two step

approach, the first step being the semi-blind approach proposed previously (see

[59] for further details).

4.7 Simulation Results

In this section, we evaluate the Bit Error Rate (BER) of the JADE and FastICA

in a 3-user 2×2 and 4×4 MIMO IC with an IA design. The IA scheme is achieved

using the distributed iterative solution proposed in [2] and described in section 4.4.

We only treat the cases where the algorithm converges to a solution that guarantees

an average interference power level of 10−4. Each user sends d = 2 data streams.

The symbols are QPSK modulated. The channel is supposed flat fading Rayleigh

distributed, and remains constant over one frame with length L = 2000 symbols.

We consider a naive training sequence, where the training symbols are selected

randomly for all compared algorithms. Before starting we introduce the basic

estimation method LS. The estimated channel matrix is given by

HLS = yk,Nss
H
k,tr

(
sk,trs

H
k,tr

)−1
, (4.30)

where yk,Ns ∀k are the N th
s first received signal vectors, and sk,tr is the training

sequence vector.

Fast ICA is a BSS technique characterized by its low computational complexity

and fast convergence. It also performs close to the JADE in terms of robustness.

The implementation of FastICA is based on the algorithm described in [60] (see [60]

section V). Regarding the implementation of JADE, it is based on the algorithm

proposed in [61], for which the matlab function can be found at [62].

Fig. 4.2 illustrates the BER performance of the MMSE-based detector with full

and perfect CSI, the BSS-based detectors (JADE and FastICA), and the MMSE-

based detector with LS-CSI estimation. We use Ns = 8 training symbols to resolve

the scale and the permutation ambiguities, and to estimate the CSI for the LS

method. As shown, JADE and FastICA have close BER performance in the entire
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Figure 4.2: BER performance comparison using Ns = 8 training symbols

• JADE: proposed decoding scheme that uses JADE-based detector.

• FastICA: proposed decoding scheme that uses FastICA-based detector.

• LS: the MMSE-based detector with LS-CSI estimation.

• MMSE: the MMSE-based detector with perfect CSI.

SNR region. They also perform close to the MMSE-based with full and perfect

CSI with a gap of about 1dB - 2dB over the entire SNR region. On the other hand,

compared to the LS, a gain between 1dB - 4dB over all SNR values is obtained.

Similar comparison is obtained for the 2×2 MIMO IC configuration, where Ns = 4

training symbols are introduced, as illustrated in Fig 4.3. In addition, the JADE-

based detector and the FastICA-based detector performs the same. Compared to

the MMSE-based with full CSI, a slight loss between 1dB and 2dB is obtained

over the whole SNR region.

The scale and the permutation ambiguities can be resolved by inserting a few

training symbols. Fig. 4.4 describes the BER behavior of the JADE and FastICA

algorithm as a function of the training sequence length. The MMSE-based with

LS-CSI estimation requires at least Ns =
∑3

j=1 dj = 6 to separate the sources. The

JADE and FastICA techniques can separate the independent sources without any
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Figure 4.3: BER performance comparison using Ns = 4 training symbols
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Figure 4.4: The influence of the training sequence length on the BER perfor-
mance
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Figure 4.5: NMSE for measuring the efficiency of the ICA algorithms

training symbols. Then, the scaling and the permutation problem can be solved

using Ns = 1 symbol for the case of one desired stream (i.e. one stream per user,

d = 1) and more for the other cases, depending on the number of desired streams.

For example, when d1 = d2 = d3 = 2, Ns = 2 symbols is required. At 20dB, the

BER of both techniques improves with Ns to reach 3.10−3 for Ns = 8, and remains

roughly unchanged when Ns increases. Comparing to the LS, an important BER

gain is obtained for Ns < 16. This gain decreases when Ns increases and becomes

negligible at Ns = 32. This BER behavior comparison is similar for SNR= 32dB.

Next, the Normalized Minimum Squared Error (NMSE) of the FastICA and

the JADE algorithms is shown in Fig. 4.5. The NMSE defined below is similar

to the one defined in (4.27) except that here we consider it over the whole frame,

whereas in (4.27), it is considered over the duration of the training sequence. The

NMSE of the jth stream at the receiver k is given by

NMSE(sj,Ns, ŝj) = log10

[

1− |ŝj,Nss
H
j |2

||ŝj,Ns|| ||sj||

]

. (4.31)

One can notice that the NMSE decreases when the SNR increases, which means

that the desired signals, composed from independent components, can be separated



Chapter 4. Linear detectors for downlink transmission with IA 60

10 15 20 25 30
10

−3

10
−2

10
−1

SNR[dB]

B
E

R

3−user MIMO Interference Channel, N
t
=N

r
=4

LS,SNR=12dB

JADE,SNR=12dB

LS,SNR=16dB

JADE,SNR=16dB

LS,SNR=24dB

JADE,SNR=24dB

Figure 4.6: Effect of the IA imperfection on the BER performance Ns = 8

from the signal mixed with interference using high order cumulants concept.

In practice, in order to perform the IA design, channel matrices have to be

estimated. There exists two strategies for channel estimation at the transmitters.

In the first, the channel is estimated at each transmitter using an Ls-length uplink

reference signal sent from the receivers assuming a reciprocal channel supposed

constant during one frame transmission. This strategy is employed in the TDD-

uplink transmission scheme in the 3GPP-LTE network [49]. The second strategy

is when each receiver estimates the channels connecting him with the transmitter,

and feeds it back quantized to the transmitter. The reliability of this strategy

depends on the channel estimator at the receiver, the channel quantizer, and the

feedback link quality. Research works carried out, e.g. in [63, 64], and have studied

the IA achievability using a limited feedback link. They have defined a channel

quantizer over the composite Grassmannian manifold, that achieves a full DoF in

the IC when the feedback bit rate scales sufficiently fast with the SNR. In our

study, we assume the first strategy in a TDD-uplink transmission scheme where

the receiver sends to the transmitter an Ls-length reference signal in a reciprocal

channel for CSI estimation, and we want to study the robustness of the proposed

detector for a given channel estimation error. The estimated channel matrices are
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Figure 4.7: Effect of the IA imperfection on the BER performance Ns = 8

modeled as [65]

H̃kj = Hkj +Ekj; ∀ k, j (4.32)

where Ekj is the channel estimation error ∀ k, j. The coefficients of Ekj are

symmetric complex Gaussian distributed with zero mean and σ2
e variance. In Fig.

4.6 and 4.7, the BER performance of both LS and JADE methods is illustrated

in presence of a channel estimation error. For the configuration 2× 2 MIMO IC,

it can be observed that JADE tends to the performance with perfect IA design

when:

• SNR= 12dB and the imperfection is beyond σ2
h/σ

2
e = 20dB,

• SNR= 18dB and the imperfection is beyond σ2
h/σ

2
e = 25dB,

• SNR= 24dB and the imperfection is beyond σ2
h/σ

2
e = 30dB.

JADE also results in better BER performance than the LS. Now, for the con-

figuration 4 × 4 MIMO IC, it can be observed that JADE tend to the perfor-

mance with perfect IA design when the imperfection is beyond σ2
h/σ

2
e = 20dB for

the three SNR values 12dB, 16dB and 24dB. Additionally, in the region where

σ2
h/σ

2
e < 10dB, both of the detectors result in a degraded BER. However, our
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proposed decoder outperforms the LS: i) beyond σ2
h/σ

2
e = 10dB when SNR=12dB,

ii) beyond σ2
h/σ

2
e = 14dB when SNR=16dB, and iii) beyond σ2

h/σ
2
e = 21dB when

SNR=20dB.

In a practical system, the training symbol number is a tradeoff between channel

estimation accuracy and spectral efficiency loss. It is necessary to study the influ-

ence of the training sequence length on the performance of the proposed scheme.

Fig. 4.8 illustrates the variation of estimation reliability in terms of the training

sequence length. One can observe that high values, i.e. σ2
h/σ

2
e > 20dB, can be

achieved using:

• Ls = 5 training symbols sent to the transmitter when SNR= 20dB,

• Ls = 7 training symbols sent to the transmitter when SNR= 16dB,

• Ls = 11 training symbols sent to the transmitter when SNR= 12dB,

• Ls = 20 training symbols sent to the transmitter when SNR= 8dB.

Which means that reliable channel estimation can be achieved with a reasonable

training sequence length, even when the SNR is not too high.
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Remark 4.3: The results shown above are for the basic scheme proposed in

this chapter. It is worth noticing that the introduction of the training sequence

is not the only way for solving the permutation and scaling problem. However, it

is one of the simplest method. For example, when a receiver has only one desired

stream to extract, the ambiguity is the limited to the scale only. Such ambiguity

can be resolved using ACMA algorithm (analytical constant modulus algorithm)

as proposed in [59].

4.8 Conclusion

In this chapter, we have addressed the problem of detection for the downlink

of a multi-user MIMO system using IA scheme at the transmitters. The problem

has been formulated as a blind source separation problem, and we have shown the

efficiency of the BSS methods, e.g. the joint diagonalization technique (JADE), for

blindly detecting the desired signals. Training sequences have been introduced to

resolve the permutation and scaling ambiguities. The proposed scheme performs

close to full-CSI MIMO IC-IA schemes. We have also showed by simulations that

it outperforms the traditional MMSE using LS for interference estimation method

when using the same training sequence length.

In the next chapter, we assume that in the multi-user MIMO IC the transmitters

cannot cooperate and do not have any knowledge of the CSI. We address the

problem of detection with a spatial multiplexing scheme assumption as IA cannot

be applied due to a lack of CSI at the transmitters.





Chapter 5

Low complexity detectors based

on sparse decomposition for

uplink transmission

5.1 Introduction

In chapter 3 and 4, we have addressed the K-user MIMO and SISO interference

networks where the transmitters have knowledge of the full CSI and apply the IA

concept. In this chapter, we address a K-user MIMO interference network and

consider the only possible CSI knowledge ; the one between each transmitter and

its destination. In such a context, IA and joint designs cannot be applied. This

context is similar to the transmission in an uplink mode when the transmitters

(mobile end users) cannot exchange information and have knowledge of only the

CSI between them and their intended destinations. Herein, we do not study the

precoding design at the transmitters, but rather we focus on a detection scheme

that utilizes ML criterion for signal reconstruction. We show first that decoding the

interference jointly with the desired signal using ML joint detector can achieve the

maximum receive diversity that is equal to the number of independent observations

at the receiver side. Then, we propose alternative solutions to the ML that highly

increase the computational efficiency for high signal and constellation dimensions.

Basically, ML joint detection has been proposed as an optimal strategy that

detects simultaneously the transmitted signals [66]. ML detector has been proved

to minimize the probability of error for medium and high SNR values. However,

its complexity grows exponentially with the antenna dimensions and the constel-

lation size, which makes it impractical. Alternative solutions have been proposed,

65
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among which the sphere decoder (SD) which achieves near-optimal performance

assuming that the spherical search is well designed [67]. However, SD exhibits a

variable computational complexity that depends heavily on the SNR value, the

signal dimension, and the sphere radius initialization. The computational com-

plexity order has been upper-bounded by O(MγN ), where γ ∈ (0, 1], N is the

signal dimension, and M is the constellation size [68].

The aforementioned detectors are based on an exhaustive search of the desired

signal. This implies a high computational complexity order that does not suit

the practical systems. Sub-optimal MIMO detection schemes have been studied

such as fixed sphere decoder and the K-best sphere decoding scheme [69, 70].

However, these detectors still require very high computational complexity for very

high signal and constellations dimensions. In this chapter, we assume a finite

transmit constellation size, and propose iterative strategies to detect the desired

signal. This iterative detection aims to maintain a low computational cost even

with the increase of the signal and/or constellation size. We rewrite the MIMO

channel model with inputs selected from a finite alphabet set as a MIMO channel

with sparse inputs belonging to the binary set {0, 1}. Then, we propose two ways

for the signal detection. In the first, we exploit the knowledge of the number

of non-zero elements of the vector to be recovered and formulate the problem of

detection as a minimization problem of the norm ℓ0 within a well-defined sphere.

The ℓ0-norm minimization can be relaxed by an ℓ1-norm minimization problem

[71]. This relaxation makes it possible to use iterative algorithms proposed for

sparse source recovering with polynomial time complexity [41, 72]. The proposed

ℓ1-minimization problem seeks a solution that lies in the intersection of a sphere

with radius ǫ and of a well-defined plane.

The first minimization problem is highly dependent on ǫ, and does not nec-

essarily ensure a low error probability for very high SNR when the number of

observations is less than the number of decoded symbols. Therefore, we propose

an alternative minimization problem for signal detection equivalent to the ML de-

tection problem. This alternative problem looks for a solution that minimizes the

euclidean distance with the received signal subject to the constant norm ℓ0. For

the same reasons as previously, and with the aim of reducing the computational

complexity, we relax the ℓ0-norm constraint by the ℓ1-norm constraint. This relax-

ation imposes a solution lying in the intersection of a lozenge with a unit diameter

and a predefined plane. Unfortunately, the equality constraint of the ℓ1-norm is

not convex. Therefore, we demonstrate that for our specified problem the relaxed
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ℓ1-norm constraint is satisfied by only ensuring that all components of the vari-

able vector are positive. This reduces our problem to a quadratic minimization

problem under linear equality and positive variable constraints, i.e. under convex

constraints. Such a problem can be solved iteratively using first order optimiza-

tion algorithms (i.e. gradient descent) and other polynomial time algorithms e.g.

primal-dual point interior method [41].

The last part of this chapter incorporates the minimum distance (MD) based

detector in a turbo detection scheme. The goal is to improve the joint detection

iteratively by modifying the minimization criterion of the detector at each iteration

depending on the extrinsic information at the output of the channel decoder. The

main points addressed in this chapter are summarized as follows:

• Highlighting the receive diversity when an ML joint detector is applied for

detecting the desired signal and the interference signal simultaneously.

• Transforming the decoding problem into a sparse input recovering problem.

• Detecting the desired signal via ℓ1-minimization under linear and quadratic

constraints.

• Detecting the desired signal via quadratic minimization under linear equality

constraints.

• Integrating the minimum distance based detector in a turbo detection scheme.

This chapter is organized as follows. Section 5.2 describes the MIMO transmis-

sion model. In section 5.3, we show the receive diversity gain when interference is

jointly decoded with the desired signal. The sphere decoding scheme is described

in section 5.4. The MIMO model with finite alphabet input is transformed into a

model with sparse input in section 5.5. Section 5.6 proposes the iterative decod-

ing scheme based on ℓ1-norm minimization. Section 5.7 proposes an alternative

decoding scheme that minimizes the euclidean distance with the received signal

preserving a constant norm ℓ1. The complexity and the error rate performance are

assessed in Section 5.8. The last contribution of the turbo detection is proposed

in 5.9. Finally, Section 5.10 concludes the chapter.

5.2 System model

We consider a K-user MIMO interference channel, where each transmitter and

each receiver are equipped with Nt and Nr antennas, respectively. We assume a
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perfect CSI knowledge at the receiver. Our system model does not necessitate any

joint design at the transmitters and do not consider any precoding scheme. The

received signal is defined as follows

yk = Hkkxk +
∑

j 6=k

Hkjxj + zk, (5.1)

where Hkj ∈ CNr×Nt is the random channel matrix between the jth transmitter

and the kth receiver, xk is the dk × 1 data vector from the kth transmitter with

symbols selected from a finite alphabet constellation, and zk is the Nr×1 circularly

symmetric additive Gaussian noise vector with zero mean and covariance matrix

equals to σ2I at the kth receiver. The components of xk belong to a finite alphabet

constellation defined as Q = {q1, q2, · · · , qM}. For example, assuming a 4-QAM

constellation yields M = 4 and Q = {1+i√
2
, 1−i√

2
, −1+i√

2
, −1−i√

2
}.

In the previous chapters, we have assumed an IA design, which allows the use of

linear receivers for the desired signal detection. In this chapter, we do not assume

any specific precoding design, which means that linear receivers are not efficient for

desired signal detection and interference suppression. In this respect, we propose

to consider the interference as a useful signal, and to jointly decode the desired

signal plus the interference signal. We show that decoding the interference jointly

with the desired signal can achieve a full receive diversity equal to the number of

observations.

5.3 Joint decoding of interference and desired

signal

Let us first rewrite the received signal in (5.1) as follows

yk = Hk1x1 + · · ·+HkKxK + zk

= (Hk1, · · · ,HkK)







x1

...

xK







+ zk,

= H̄kx+ zk, (5.2)

where H̄k is the new channel matrix with dimensions Nr × dt, and dt =
∑K

j=1 dj.

In order to decode the original information in (5.2), we propose to use a joint

minimum-distance (MD) detector. In the presence of interference, the authors in
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[73] have shown that the solution of the joint MD detector becomes very close to

the one obtained using the detector with ML criterion when the SNR increases

(i.e. in the region of optimality) and requires less computational complexity. The

MD detector is based on an exhaustive search over all possible transmitted vectors

and selects the symbol vector with the minimum distance to the received signal.

The detected signal is the solution of the following minimization problem

ŷk = arg min
x∈Qdt

||yk − H̄kx||2. (5.3)

Next, we show the receive diversity that can be achieved using the proposed strat-

egy for joint interference and desired symbols decoding.

Our channel model in (5.3) can be seen as a single user dt×Nr MIMO channel.

For a single user MIMO channel, the generic receiver equation is equal to

yDR
= HDR×dtxdt×1 + zDR

. (5.4)

Assuming MD detector, the probability of error can be approximated at high SNR

by [35]

Pe = αSNR−DTDR , (5.5)

where α points out the horizontal shift of the Pe curve, DT is the transmit diversity

gain, and DR is the receive diversity gain. Assuming DT = 1, (5.5) indicates that

the slope of the probability of error is proportional to the inverse of SNR to the

power DR. DR is equal to the number of independent observations at the receiver,

and remains independent of the number of transmit antennas. This result has

been established in [74], where the authors have concluded that when using an

MD detector, only an SNR penalty is introduced when the number of transmit

antennas increases. Hence, for the channel model in (5.2) the expected receive

diversity gain achieved with an MD detector is DR = Nr. In the remaining of this

chapter, the channel model in (5.2) will be adopted.

5.4 Sphere decoding

The MD detector exploits the receive channel diversity and performs near-

optimally in the medium to high SNR region. However, it is based on an ex-

haustive search, for which the computational complexity grows exponentially. An

alternative solution that performs similarly with reduced complexity is the sphere
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decoding (SD). In the following, we revise briefly the concept of the sphere decoder

with its computational efficiency.

The goal of the SD proposition is to reduce the computational cost of the

joint MD detector while maintaining the same decoding performance [75]. It

consists in searching over all possible transmitted symbols with the corresponding

points in the received constellation lying within a hypersphere of radius r around

the received vector yk. The SD problem can be represented by the following

minimization problem

arg min
x∈Qdt

||yk − H̄kx||2 subject to ||yk − H̄kx||2 ≤ r2. (5.6)

Assuming H̄k a square matrix, it can be QR decomposed as H̄k = QkRk, where

Qk is a unitary matrix and Rk is an upper triangular matrix at the receiver

k. Using the decomposed H̄k, and the fact that a Frobenius norm is unitarily

invariant1, the constraint of the problem in (5.6) can be formulated as

‖ŷ −Rkx‖2 ≤ r2, (5.7)

where ŷ = QH
k yk. Equation (5.7) is equivalent to

r2 ≥
dt∑

j=1

(

ŷj −
dt
∑

i=j

rij,kxi

)2

, (5.8)

where rij,k denotes the (i, j)th entry of the upper triangular matrix Rk. The

expansion of (5.8) yields

r2 ≥ (ŷdt − rdtdt,kxdt)
2 + (ŷdt−1 − r(dt−1)dt,kxdt − r(dt−1)(dt−1),kxdt−1) + · · · , (5.9)

where the first term depends only on xdt , the second term on (xdt , xdt−1) and so

on. One can notice from (5.9) that a necessary condition for the decoded signal

to be in the hypersphere of radius r is to have (ŷdt − rdtdtxdt)
2 ≤ r2, which means

⌈−r + ŷdt
rdtdt

⌉ ≤ xdt ≤ ⌊
r + ŷdt
rdtdt

⌋. (5.10)

1Unitarily invariant norm means ||A|| = ||UAV || where U and V are unitary matrices
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Then, for every xdt satisfying this condition, we define r[dt−1] = r− (ŷdt−rdtdtxdt)
2

and ŷ
[dt−1]
dt

= ŷdt−1 − r(dt−1)dtxdt , that yields a stronger necessary condition as

⌈−r
[dt−1] + ŷ

[dt−1]
dt

r(dt−1)(dt−1)
⌉ ≤ xdt−1 ≤ ⌊

r[dt−1] + ŷ
[dt−1]
dt

r(dt−1)(dt−1)
⌋. (5.11)

The condition in (5.11) is still necessary but not sufficient for a point to be in the

hypersphere. One can continue in a similar way for xdt−2 and so on until x1. At a

position i with 1 ≤ i < dt, if the condition is not satisfied, the decoder goes up to

the level i+1 and chooses another candidate value from the corresponding region

for xi+1. If the decoder reaches the symbol x1 with a symbol vector x′ verifying the

condition that the euclidean distance metric is less than r i.e. ||yk−H̄kx
′||2 ≤ r2,

then the radius r will be updated and the new search is limited by the new value of

||yk − H̄kx
′||. The above process continues until no further point is found inside

the hypersphere, and the symbol vector achieving the smallest value of (5.7) is

considered as the MD solution.

When the matrix H̄k is tall or fat, a preprocessing has to be applied before

the process described above. When H̄k is tall, i.e. more observations than data

symbols, H̄k is first decomposed as[67]

H̄k = [Q1,k Q2,k]

[(

Rk

0

)]

, (5.12)

thereby the hypersphere equation in (5.6) can be written as

‖Q1,kyk −Rkx‖2 ≤ r2 − ‖Q2,kyk‖2. (5.13)

Using the new hypersphere equation in (5.13), the sphere decoding process can

be applied as described above with the new radius r′ =≤ r2 − ‖Q2,kyk‖2. Now,

when H̄k is fat and for constant modulus signals, i.e. more data symbols than

observations, an equivalent minimization problem to (5.6) is given by [76]

arg min
x∈Qdt

||yk − H̄kx||2 + αxHx. (5.14)

This is also equivalent to

arg min
x∈Qdt

||ỹk −Dkx||2, (5.15)
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where ỹk = DkG
−1
k H̄kyk, Gk = H̄H

k H̄k + αIdt and it is Cholesky factorized as

Gk = DH
k Dk, where Dk is an upper triangular matrix. The diagonal terms of Dk

are all non-zero and the sphere decoding process described above can be applied

to (5.15).

5.5 Sparse decomposition

The goal of our work is to propose an efficient decoding scheme of the received

data samples characterized by a polynomial complexity order over the whole SNR

region. We assume a priori knowledge on the transmitted information. We exploit

the fact that the original symbols belong to a finite alphabet, and we decompose

each symbol on the basis of the vector space in which the finite alphabet vector

q = [q1, q2, · · · , qM ] can be cast. That is, the data vector with N entries in the

transmission model can be modeled as an equivalent sparse data vector with dt×M
entries. The jth symbol xj of x is decomposed (c.f. Figure 5.1)

xj = q sTj ,

where sj = [δq1(xj), δq2(xj)), · · · , δqM (xj)] ,

and δqi(xj) =

{

1 if xj = qi

0 otherwise
. (5.16)

Applying this decomposition over all symbols, the vector x can be formulated in

function of s as

x = Bqs,

where s = [s1, s2, · · · , sdT ]T , and Bq = IN ⊗ q. (5.17)

Bq is a block diagonal matrix of size dt×dtM . Substituting (5.17) into (5.1) yields

the received signal

yk = H̄kBqs+ zk. (5.18)

Since s is a sparse vector that contains lots of zero elements, the detection of

the original information can be seen as a sparse source decoding. In the upcoming

sections, we propose two minimization problems to detect s. The first is inspired

from problems of sparse source recovering [77]. The second is an approximation
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Figure 5.1: Sparse decomposition of a vector with components belonging to
a finite alphabet set.

of the MD detector based on the euclidean distance minimization. Both problems

detect the original signal iteratively using algorithms with polynomial complexity

such as the primal-dual interior point method, the gradient descent method [41].

Related problems have proposed in [78, 79, 80, 81, 82, 83, 84] .

5.6 Iterative detection of sparse transformedMIMO

via ℓ1-minimization

This section proposes to detect the desired signal using the ℓ1-norm minimiza-

tion problem under linear and quadratic constraints. In order to solve the ℓ1-

minimization problems, iterative methods are usually applied such as Primal Dual

Interior Point (PDIP) method and Homothopy method [85]. In the following, we

address two channel cases: noiseless and noisy MIMO interference channel, and
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we formulate a minimization problem for signal detection in each case. We also

show that in a noiseless case, and for binary alphabet constellation, the alternative

detection problem is equivalent to the MD joint detection problem.

5.6.1 Noiseless MIMO channel

Using the sparse decomposition as in the previous section for a noiseless case,

the transmission model becomes

yk = H̄kBqs. (5.19)

This sparse source recovering problem has been addressed in [77]. It has been

written as a minimization problem of an ℓ0-norm, i.e.

arg min
s∈RdtM

||s||0 subject to s ∈
{
yk = H̄kBqs, and B1s = 1dt

}
, (5.20)

where the norm ℓ0 is the total number of non-zero elements in a vector, and the

dt × dtM block diagonal matrix B1 is defined as

B1 = Idt ⊗ 1T
M . (5.21)

The equality constraint B1s = 1dt ensures that the solution Bqs has dt nonzero

components. The authors in [77] have proved that such a problem has a unique

sparse solution s. Thus, the desired information x is recovered by seeking the

unique solution of (5.20). However, solving the ℓ0-minimization is NP-hard and

requires an exhaustive search over all the coefficients of s. Therefore, with the aim

of reducing the complexity cost of the optimization, it has been proposed to relax

the ℓ0-norm by the ℓ1-norm. In this respect, the optimization problem becomes

arg min
s∈RdtM

||s||1 subject to s ∈
{
yk = H̄kBqs, and B1s = 1dt

}
, (5.22)

For a binary alphabet, the equivalence between the ℓ1-norm minimization problem

in (5.22) and the ℓ0-norm minimization problem (5.20) has been proved with prob-

ability tending to 1 for large dt and when the random mixing matrix H̄k satisfies

Nr ≥ dt/2. Additionally, they have also conjectured that for a non-binary finite

alphabet i.e. M > 2, the equivalence is still guaranteed for large N and when
(M−1)

M
dt ≤ Nr.
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5.6.2 Noisy MIMO channel

In this subsection, we adapt the scheme described in [77] to the noisy MIMO

channel case. In presence of noise, the received signal is given as in (5.1) and (5.18).

The solution of x that respects yk = H̄kx is no longer in the finite constellation

set due to the random noise added to the received signal. On the other hand,

since the noise is assumed Gaussian distributed with zero mean and σ2 variance,

there exists a constant ǫ such that ||yk − H̄kBqs||22 < ǫ. In this respect, using

the decomposition of x in its dictionary i.e. x = Bqs, we propose the following

minimization problem for the detection of s

[ℓ0−min] : arg min
s∈{0,1}dtM

||s||0, subject to s ∈
{
||yk − H̄kBqs||22 < ǫ, and B1s = 1dt

}
,

(5.23)

As previously, the equality constraint B1s = 1dt ensures that a solution with

symbols belonging to the finite constellation inputs exists. The other inequality

constraint ||yk − H̄kBqs||22 < ǫ, restricts the codewords searching area to be

within an euclidean distance less than a constant ǫ to the received signal. The

minimization problem is similar to the sphere decoding problem, but is written in

a different manner. That is, the non-zero elements of the detected sparse vector

are imposed to be equal to dt with recovered symbols belonging to the transmit

constellation set and to the hypersphere of radius
√
ǫ.

In our problem, the detected symbols depend heavily on the choice of ǫ, which

in turn depends on the current SNR value. We try to select ǫ such that the

probability to only obtain the correct solution within the codewords searching

area is maximized. Hence, we define ǫ as follows [86]

ǫ = F−1
χ2
d
(ρ2)

(1− γ), (5.24)

where Fχ2
d
(ρ2) is the cumulative distribution function of the non-central χ2 distribu-

tion χ2
d(ρ

2) with d degrees of freedom and non-central parameter ρ2. The threshold

parameters in our problem are defined as follows: d = 2Nr due to the complex

noise, ρ2 = 2σ2 log(Nr) is the universal threshold, and γ ∈ (0, 1]. Discussion on

the optimality of the chosen ǫ is given in the Appendix D.

The problem presented in (5.23) is NP-hard and is not convex. This means

that an exhaustive search is required and a non-unique solution may be obtained.

Therefore, as evoked in (5.23), we propose to relax the ℓ0-norm by the ℓ1-norm.
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Subsequently, the decoding problem can be formulated as

[ℓ1−min] : arg min
s∈RdtM×1

||s||1 subject to s ∈
{
||yk − H̄kBqs||22 < ǫ, and B1s = 1dt

}
,

(5.25)

The ℓ1-norm minimization problems are based on an iterative processing that

employs optimization algorithms solvable in polynomial time. One of the most

performant and efficient methods is the primal-dual interior point (PDIP) [87].

The PDIP algorithm shows a significant computational gain compared to the NP-

hard solver, since each iteration requires O(N3M3) arithmetic operations where

N is the vector length, whereas the NP-hard requires a number of operations that

increases exponentially with N .

5.7 Iterative detection of sparse transformedMIMO

via minimum distance minimization

The detection problem given in (5.23) looks for the sparse source that minimizes

the norm ℓ0 within a well-defined sphere-plane intersection. In this section, we

reverse the problem, and we seek a solution with the smallest euclidean distance to

the received signal on a well-defined plane, while a constant ℓ0-norm is maintained.

The reason behind this criterion modification is that the previous minimization

problem depends on both the sphere radius ǫ and the relaxation of the ℓ0-norm.

Furthermore, the uniqueness of the solution is related to how accurate the sphere

radius is. The proposed quadratic problem herein only depends on the ℓ0-norm

relaxation, and can be seen as a relaxed MD detector.

Starting with the MD detector, it requires an exhaustive search over all possible

transmitted symbol vectors, and selects the solution that corresponds to the closest

point to the received signal in the received constellation. In other words, it selects

the symbol vector that minimizes the euclidean distance between yk and H̄kx.

Hence, the MD detection problem is defined as

[MD] : arg min
x

||yk − H̄kx||22 subject to x ∈ Qdt . (5.26)

The main drawback of the MD problem is that it suffers from a high computational

complexity because of the constraint x ∈ Qdt that entails an exhaustive search.

Herein, we propose an equivalence to this constraint using the following proposition
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Proposition 1. The components of x belong to the finite alphabet constellation Q
if and only if the following equalities hold: B1s = 1dt and ||s||0 = dt.

Proof. Assuming first that the components of a dt-dimensional vector x belong to

a finite alphabet set, thus x can be sparsely decomposed as x = Bqs (see section

5.5), where s consists of dt sub-vectors with only one non-zero element equal to

one for each. This means that the sum over each sub-vector is equal to one i.e.

B1s = 1dt , and the total number of non-zero elements in s is equal to dt i.e.

||s||0 = dt.

Let us now assume both equalities B1s = 1dt and ||s||0 = dt. The first equality

B1s = 1dt , i.e.
∑M

p=1 s(j−1)M+p = 1 for all j ∈ {1, · · · , dt}, implies that at least

one non-zero element exists in any sub-vector j ∈ {1, · · · , dt}, with a minimum

total non-zero elements number dt. The second equality ||s||0 = dt imposes the

total non-zero elements number to be equal to dt, thus along with the first equality

each sub-vector can contain only one element different from zero and equal to one.

Thereby, the projection of the whole vector s onto the decomposition matrix Bq

yields a vector x = Bqs in the finite alphabet constellation Qdt .

Using proposition 1, the [MD] minimization problem in (5.26) becomes

arg min
s∈RdtM

||yk − H̄kBqs||22 subject to B1s = 1dt , ||s||0 = dt. (5.27)

The dt × dtM matrix B1 is defined as in (5.21). The first constraint given by

B1s = 1dt is linear and does not require a high computational cost. The second

constraint given by ||s||0 = dt is discrete i.e. belongs to a finite discrete set, thereby

making the problem NP-hard. Such problems necessitate exhaustive search to be

solved yielding an exponential increase of the computational complexity with the

signal dimension. To overcome this drawback, we propose to relax the ℓ0-norm by

the ℓ1-norm. The relaxed constraint yields ||s||1 = dt. Such a constraint is not

convex, thus, a global optimum is not necessarily achieved. In order to transform

the problem into a quadratic minimization problem subject to convex constraints,

we introduce the following lemma:

Lemma 1. Let B1 be a matrix defined as B1 = INr ⊗ 1T
M and s a (dtM)-length

real vector satisfying B1s = 1dt . Then all components of s are positive if and only

if its ℓ1-norm equals dt i.e. ‖s‖1 = dt.

Proof. Let B1 = INr ⊗ 1T
M . The k-th row of B1 has null components except

components of indices ranging from (k− 1)N +1 to kN which equal to one. Thus
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B1s = 1dt implies
M∑

p=1

s(k−1)dt+p = 1 ∀k. (5.28)

By successive additions with respect to k, we obtain

dt∑

i=1

si = dt. (5.29)

Let us first assume that all components of s be positive. Then si = |si| and
using (5.29), we deduce that

∑dtM
i=1 |si| = dt, i.e. ‖s‖1 = dt.

Let us now assume that ‖s‖1 = dt. Considering (5.29), we can thus write

dtM∑

i=1

(|si| − si) = 0. (5.30)

LetN (s) stand for the set of non-zero negative components of s. Then
∑dtM

i=1 (|si|−
si) equals 2

∑

i∈N (s) |si| and is non-zero positive which is in contradiction with

(5.30). We thus deduce that N (s) is empty and all components of s are positive.

Using the lemma above, the decoding problem becomes

[Quad-min] : arg min
s∈RNM×1

||yk − H̄kBqs||22 subject to B1s = 1dt , s ≥ 0.(5.31)

This new optimization model is a quadratic programming model with linear equal-

ity constraints and nonnegative variables. It can be solved using iterative methods

proposed for quadratic programming. One efficient method is the primal dual in-

terior point (PDIP), especially when high accuracy is required. This method is

largely discussed in the literature, and for more details the reader can refer to

[41] (see Chap 11). The PDIP method is characterized by a significant computa-

tional gain compared to the NP-hard solver, since each iteration requires O(M3N3)

arithmetic operations, where N is the variable vector length, whereas the NP-hard

requires a number of operations that increases exponentially with N i.e. O(MN ).
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Figure 5.2: Time-run comparison of the proposed decoding schemes versus
the sphere decoder for different SNR values under QPSK constellation inputs.

5.8 Complexity and bit error rate performance

In this section we evaluate the Bit Error Rate (BER) and the computational

complexity of the proposed detectors based on quadratic minimization and ℓ1-

minimization. We consider a multi-user MIMO interference channel as discussed

in section 5.2, and assume a joint detection of the interference and the desired

signal at each receiver, which means that for each receiver the interference channel

can be modeled as an dt × Nr MIMO single user channel, where dt is the total

number of the symbols from all transmitters and Nr is the number of receive

antennas at the receivers. The channel coefficients are i.i.d. circularly symmetric

complex Gaussian distributed with zero mean and unit variance, and the data

symbols belong to a finite constellation. For our proposed detectors, we use the

cvx toolbox which is a Matlab-based modeling system for convex optimization

[88, 89]. Cvx is compatible with several solvers such as SeDuMi and SDPT3

[72, 90]. For our problems, we pick the Gurobi optimizer [91] to solve the [ℓ1-min]

and the [Quad-min] problem proposed in section 5.6 and 5.7. We simulate this

system using Matlab 7.10 on a processor Intel(R) Core(TM) i5-3317U CPU at

1.70GHz with memory 6GB RAM.

Fig. 5.2 compares the time run of the sphere decoder (SD), described in [76],

to the time run of the proposed detectors [ℓ1-min] and [Quad-min]. The time-run

represents the average processing time to decode the received signal. We assume a

QPSK constellation mapping known at both the transmitter and the receiver. It
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Figure 5.3: BER performance comparison of the proposed decoding schemes
versus the sphere decoder under QPSK constellation inputs.

can be observed that with the iterative processing, the time-run increases slightly

with the system dimensions, however, it remains independent of SNR. For exam-

ple, the time run of the [Quad-min] problem is equal to 0.011 sec for both SNR

values 8dB and 14dB using a 16×14 system dimensions. Moreover, increasing the

dimensions from 16 × 14 to 32 × 28 entails an increase of only 0.019 sec. On the

other hand, the SD time-run blows up when the dimensions or/and the SNR level

increase. For instance, when going from 16 × 14 to 32 × 28 antennas dimension,

the time run undergoes an increase of more than 20 sec. For the SD, we could

not go beyond the 24 × 21 system dimensions due to a very high computational

complexity, which is upper-bounded by O(MγN ), where γ ∈ (0, 1] [68]. However,

using any of our proposed detectors, any MIMO system with very high dimensions

can be decoded, e.g. a signal with 128 transmitted symbol can be detected in less

than half a second. Furthermore, the increase of the time run can be predicted

from its slope in Fig. 5.2 which is much lighter than the SD slope.

Regarding the BER performance, Fig. 5.3 illustrates a slight performance gain

of our schemes in the low SNR region. Otherwise, i.e. beyond 8dB, the SD

outperforms the proposed schemes. For example, compared to the [Quad-min]

decoding scheme, a gain between 2dB and 2.5dB is obtained respectively with the

dimensions 16× 14 and 24× 21. Comparing to the [ℓ1-min] decoding scheme, we

observe at BER 10−2 a gain of about 5dB with a 16×14 antennas and of 4dB with

a 24 × 21 antennas. To compare the iterative detectors to each other, Fig. 5.4
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Figure 5.5: Time-run comparison of the proposed decoding schemes versus the
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exhibits the BER performance in the underdetermined 32×28 and 64×56 MIMO

systems. It can be first observed that both detectors exploit the receive diversity,

i.e. when the antennas dimension increases the BER is improved. Second, we

notice that the [Quad-min] outperforms the [ℓ1-min] in terms of BER, specially

for high SNR values.

Fig. 5.5 and 5.6 represent the time run and the BER of the proposed detection
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Figure 5.6: BER performance of the proposed decoding schemes for large
antennas dimensions under 16-QAM constellation inputs.

schemes and the SD for a 16-QAM constellation. The analysis of the computa-

tional efficiency is similar to the one presented in Fig. 5.2, except that a higher

time run is required for all detectors since the constellation dimension increases.

In terms of BER performance, we do not compare to the SD that requires a pro-

hibitive running time. The detectors performance are compared to each other and

to the Gaussian channel reference curve. An important result is the gain obtained

by the [Quad-min] over the [ℓ1-min], which exceeds 7dB at 10−2. The [Quad-min]

interest becomes more significant for large dimensions. It uses the same minimiza-

tion criterion as the MD, and the only difference is that the ℓ0-norm constraint is

relaxed by the ℓ1-norm. For some other problems, the relaxation of the ℓ0-norm

by the ℓ1-norm does not affect the problem and an equivalence of both problems

(original and relaxed) holds [77, 92]. We do not claim this equivalence herein,

however, additional constraint might be found to yield similar performance as the

original MD detector.

5.9 Turbo detection of a sparse detected signal

The previous sections have proposed alternative detectors that detect the sig-

nal using polynomial time solvable algorithms. Two detectors have been proposed.

The first detector called [ℓ1−min], is based on the ℓ1-norm minimization under

linear and quadratic constraints. The second detector called [Quad-min], involves
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minimizing the distance between the received constellation and the received signal

under linear constraints and a constant ℓ1-norm constraint. It has been shown

from simulations in section 5.8, that the second detector results in better BER

performance than the ℓ1-norm based detector. Therefore in the remaining of this

chapter we will consider the [Quad-min] detector since it seems a better candi-

date for offering a trade-off between complexity and performance. Our goal is to

associate the proposed detector with a channel decoding scheme that helps in min-

imizing the BER and yields a more reliable transmission [93]. We thus consider

from now, that binary streams are forward error correcting (FEC) encoded then

randomly interleaved before being converted into symbols.

5.9.1 Turbo detection concept

Turbo detection is based on the turbo principle used first for parallel concate-

nated convolutional codes (i.e. turbocodes) [94]. The originality of turbocodes is

their capability for approaching the channel capacity in a computational feasible

way [95]. The key idea is, at the receiver one soft-in soft-out decoder passes on

the extrinsic part of the soft output to the other soft-in soft-out decoder and vice

versa. To make an analogy, we give as an example the mechanism of the turbo en-

gine, where the compressor (one decoder) feeds back the compressed air (extrinsic

information) to the main engine (the other decoder).

The turbo concept can be successfully applied not only for the channel decoding,

but also in a wide area of communication receivers yielding turbo detection, turbo

equalization, multi-user detection [96, 97, 98] ... This part is dedicated to the

association of a FEC decoder with the detector [Quad-min] at the receiver side.

As shown in Fig. 5.7, the detector delivers extrinsic information from the soft

output to the channel decoder and vice versa, which permits a detector-decoder

iterative process [99]. Both the detector and the channel decoder must be soft-

input/soft-output (SISO) devices, i.e., both must be able to accept and produce

soft-decision information. The purpose behind is to let the receiver benefit from

an improved error rate performance while maintaining acceptable computational

cost. The turbo detection scheme consists of a main detector, a channel decoder,

an interleaver, a deinterleaver, a symbol to binary converter, and a binary to

symbol converter.
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Figure 5.7: Turbo detection scheme

5.9.2 Turbo detection scheme

Back to our model, each symbol is seen as a projection of a sparse sub-vector

onto the finite alphabet vector q. Each sub-vector has only one non-zero com-

ponent equals to one at the symbol position in the q vector. In other words,

the components of each sub-vector represent the probabilities of presence of the

symbols. For example, when the transmitted symbol is the first element in q, the

probability of transmission of this element is equal to one, and the probability of

transmission of any other element in q is equal to zero. The probabilities are all

in the binary set {0, 1} since the elements in the sparse vector can only take the

values zero or one. This interpretation will be useful for building the detector soft

output to be delivered to the soft FEC decoder.

Regarding the detection based on the [Quad-min] problem, we introduce the

following proposition

Proposition 2. Let us denote sdetout the detector output used as a soft estimate of

s. All the recovered elements of the sparse vector ŝ are in the interval [0, 1].

Moreover, the sum of the components in each sub-vector is equal to one, i.e.
∑M

p=1 ŝ
det
(j−1)M+p = 1, ∀j ∈ {1, · · · , dt}.

Proof. The detection problem in (5.31) is subjected to a positive variable con-

straint. Also, the constraint B1s = 1dt imposes that the sum of all components in

each sub-vector is equal to one, i.e.
∑M

p=1 ŝ
det
(j−1)M+p = 1, ∀j ∈ {1, · · · , dt}. Both

constraints taken together imply that all elements of the sparse vector are positive

and less than or equal to one, which means in the interval [0, 1].

Using the proposition above, we will consider in the following the recovered

elements in the interval [0, 1] as the probabilities of a symbol to occur conditionally

to y.

Let m = log2(M) and b be the length-mdt coded and interleaved binary infor-

mation sequence at one channel use. Let also η be the binary to symbol conversion
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defined as:

η :
[

b(k−1)m b(k−1)m+1 . . . bkm−1

]

∈ {0, 1}m → xk ∈ Q (5.32)

and bp = η−1(qp).

At first iteration, the sparse detector provides ŝdetout interpreted as a posteriori

probabilities of x that is:

ŝdetout((k − 1)m+ p) = Pr(xk = qp|y). (5.33)

Using ŝdetout, the symbol to binary converter can compute log likelihood ratio on the

i-th bit associated to the k-th symbol, denoted by Λdet
out and defined as:

Λdet
out((k − 1)m+ i) = loge

(Pr(b((k − 1)m+ i) = 1|ŝdetout)

Pr(b((k − 1)m+ i) = 0|ŝdetout)

)

(5.34)

= loge

(
∑

qp∈Q|η−1(qp)(i)=1 Pr(xk = qp|ŝdetout)
∑

qp∈Q|η−1(qp)(i)=0 Pr(xk = qp|ŝdetout)

)

(5.35)

= loge

(
∑

qp∈Q|η−1(qp)(i)=1 ŝ
det
out((k − 1)m+ p)

∑

qp∈Q|η−1(qp)(i)=0 ŝ
det
out((k − 1)m+ p)

)

(5.36)

Let Λdec
in be the sequence obtained after deinterleaving of Λdet

out. We consider that

the FEC code is a convolutional code and assume that the soft-in soft-out optimal

BCJR decoder is used at the receiver. The FEC decoder produces Λdec
out from

Λdec
in . It can be decomposed as the sum of Λdec

in and Λdec
ext, defined as an extrinsic

information. The extrinsic information corresponds to the information on the

current bit brought by a priori information on its neighbours in the codeword,

which is independent of the input LLR. It translates the FEC coding constraint

and will be used as input of the binary to symbol converter to provide a priori

information to the detector in the following iteration. Let Λdet
in be the result of

interleaving of Λdec
ext. Let ŝ

in
in stand for the aforementioned a priori information. It

is computed as follows:

ŝdetin ((k − 1)m+ p) = Pr(xk = qp|Λdet
in ) (5.37)

=
∏

0≤i≤m−1

bp=η−1(qp)

Pr(b((k − 1)m+ i = bp(i)|Λdet
in ) (5.38)

with Pr(b((k − 1)m+ i = bp(i)|Λdet
in ) =

exp(
(2bp(i)−1)Λdet

in ((k−1)m+i)

2
)

exp(
Λdet
in

((k−1)m+i)

2
)+exp(

−Λdet
in

((k−1)m+i)

2
)
.
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5.9.3 New detection criterion

s belongs to a size-Mdt alphabet S. Let denote s(ℓ) an element of S and s
(ℓ)
k

the k-th subvector of length M . Then sk = s
(ℓ)
k and xk = qp impose that all

components of s
(ℓ)
k be null except the p-th which is equal to 1.

We can write:

Pr(s = s(ℓ)|ŝdetin ) =
∏

1≤k≤dt

s
(ℓ)
k

(i)=δi,p

Pr(xk = qp|Λdet
in ) (5.39)

=
∏

1≤k≤dt

s
(ℓ)
k

(i)=δi,p

ŝdetin ((k − 1)m+ p) (5.40)

The MAP detector searches for s in the alphabet S which maximizes the a

posteriori probability, that is:

max
s(ℓ)S

Pr(s = s(ℓ)|y, ŝdetin ) (5.41)

which is equivalent to:

min
s(ℓ)∈S

‖y −HBqs
(ℓ)‖22 − σ2

b

∑

1≤k≤dt

s
(ℓ)
k

(i)=δi,p

loge(ŝ
det
in ((k − 1)m+ p)) (5.42)

As seen before, the MAP detector computation cost is too high to be used in

practice.

How can we take into account the a priori information delivered by the decoder

in the proposed detector? As the distribution of ŝdetout is not trivial, we approximate

it. We assume that ŝdetout is gaussian with mean equal to ŝdecin . The proposed detector

criterion becomes:

min
s∈C

‖y −HBqs‖22 + α‖s− ŝdetin ‖22, (5.43)

where α is a positive weight less than 1. It enables to take into account the

imprecision of the distribution approximation. Using (5.42), another justification

for the criterion is possible. The second term can be seen as a penality, imposed

to ensure that the detector output remains in the neighborhood of the decoder

output all the closer as the iterative process progresses.
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Figure 5.8: BER performance of the proposed turbo detector for large anten-
nas dimensions under QPSK constellation inputs and code rate 1/2.
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5.9.4 Bit error rate performance

Fig. 5.8 and Fig. 5.9 illustrate the BER performance of the proposed turbo

detection scheme under 5 iterations and QPSK transmit constellation in dt × Nr

multiple antennas systems. For the determined systems, i.e. the total number of

transmitted symbols is equal to number of observations, we compare our scheme

to the MMSE turbo-equalizer in a 64 × 64 system assuming a 256 bits coded

frame with a code rate equals to 1/2. We notice an advantage for the MMSE

turbo-equalizer [100] of 1 to 1.2dB over all SNR values. When the system is

underdetemined, the BER of both schemes are plotted in Fig. 5.9 for the configu-

ration 64×48 for a frame 512 coded bits with a code rate equals to 1/2. It can be

seen that with the increase of the SNR, the MMSE outperforms our scheme with

a gain between 1.5 and 2dB. For instance, our scheme achieves a BER of 10−4 at

10dB of SNR whereas the MMSE achieves the same BER value at 8dB. This loss

is mainly due to the inaccuracy of the LLR at the input of the channel decoder.

Remark 5.1: It is important to note the imprecision of the LLR at the de-

tector output. Another sparse recovering approach that delivers the a posteriori

probabilities known as Bayesian approach [101]. This means a reliable LLR at the

detector output. However, most of the methods in the aforementioned approach

assume the signal statistics to be Gaussian, e.g. [102, 103]. This is inadequate in

practice since the source can pursue any distribution which is sometimes unknown.

This approach also requires in general a higher computational cost than the non

Bayesian approach. That is why we have proposed in our work to use methods

that result in a unique solution, nevertheless the other approach as well as the

optimization of the criterion (5.42) are perspectives for a future work.

5.10 Conclusion

In this chapter, we have first showed that decoding interference jointly with the

desired signal can achieve higher receive diversity than canceling interference in a

traditional manner using a zero-forcing (assuming the best case when interference

are aligned). We have also addressed the problem of decoding in high dimension

MIMO systems with finite constellation. We have modeled the transmission as a

higher-dimension MIMO channel with sparse input vector. We have then defined

two detectors to reconstruct the sparse data vector, the first based on the ℓ1-

minimization problem and the second is a relaxed minimum distance detector

named [Quad-min]. The ”relaxed” term is used since we have relaxed the ℓ0-norm
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constraint by the ℓ1-norm constraint. Iterative algorithms of polynomial moderate

complexity are used to solve the problem. The performance are evaluated using

Monte-Carlo simulations for different systems configurations. At the end, we have

considered a FEC encoded MIMO system and proposed an iterative turbo-like

receiver consisting of the cascade of our detector with a FEC decoder. The sparse

detection criterion incorporating a priori information from the FEC decoder has

still to be improved in the future.





Chapter 6

Conclusion and perspectives

6.1 Conclusion

This PhD thesis is incorporated within the framework of interference channel

where each node is equipped with single or multiple antennas. The goal is to

resolve the challenges that the communications face in an interference network

taking into account the computational efficiency and the complexity cost.

In the first part, we have briefly presented the commonly used multiplexing

techniques for interference avoidance (e.g. TDM, FDM, CDM) with a focus on

their achievable rate limitations. By introducing the precoding concept at the

transmitter, higher achievable rates can be obtained. A brief description of pre-

coding techniques in different multi-user channel categories has been presented

assuming Gaussian-distributed inputs. Then, we have showed the sub-optimality

of the IA technique for multi-user interference channel under discrete constellation

assumption.

In the second part, we have come back to the interference alignment scheme

and have considered the case of a K-user SISO IC. We have introduced three op-

timized designs for the IA scheme proposed in [38]. The first and the second look

for optimizing the precoding subspaces at the IA transmitters through a common

diagonal matrix assuming an MMSE and a ZF linear detectors, respectively. The

third assumes an MMSE linear detector, and seeks the optimal precoding vec-

tors within a predefined subspace at each transmitter. The first and the third

designs require iterative processing to converge to their optimum, whereas the

second design is obtained in a closed-form solution. Then we have showed that

the orthogonalization of the precoding vectors of the closed-form design enables

to achieve a trade-off between complexity and data rate.

91
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The third part has addressed the detection problem for the downlink of a multi-

user MIMO system using IA scheme at the transmitters and without CSI at the

receivers. The problem has been formulated as a blind source separation problem,

and the ability of the joint diagonalization technique (JADE) has been shown to

extract the desired streams. Training sequences have been introduced to solve

the permutation and scaling ambiguities. From simulations, we have showed that

the proposed scheme performs close to full-CSI MIMO IC-IA scheme with a small

training sequence number.

In the last part, we have considered the multi-user MIMO IC assuming that

the transmitters cannot cooperate and do not necessarily have knowledge of the

CSI. We have addressed the problem of detection assuming a spatial multiplexing

and no precoding due to a lack of CSI at the transmitters. We have first showed

that decoding interference jointly with the desired signal can achieve higher receive

diversity than canceling interference in a traditional manner using a zero-forcing

(assuming the best case when interference are aligned). We have also tackled the

problem of decoding in high dimension MIMO systems with finite constellation.

We have modeled the transmission as a higher-dimension MIMO channel with

sparse input vector. We have then defined two detectors to reconstruct the sparse

data vector, the first based on the ℓ1-minimization problem and the second is

a relaxed minimum distance detector named [Quad-min]. The ”relaxed” term

is used since we have relaxed the ℓ0-norm constraint by the ℓ1-norm constraint.

Iterative algorithms of polynomial moderate complexity have been used to solve

the problem. The performance have been assessed from simulations that carried

out in the cases for different systems configurations. At the end, we have considered

a FEC encoded MIMO system and have proposed an iterative turbo-like receiver

consisting of the cascade of our detector with a FEC decoder. Compared to a

usual MMSE-based turbo equalizer, the proposed scheme suffers from a maximum

loss of 2dB due to the imperfect exploitation of a priori information provided by

the FEC decoder.

6.2 Future works

One part of our works has addressed the IA design at the transmitters in an

IC and has showed the complexity cost and performance in the finite SNR region.

On the other hand, it is important to know how our IA based proposal could work

in practice.
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At the receiver side, the use of the BSS based detector as proposed in Chapter

4 does not take the noise variance into consideration. In many standards and

networks, the noise variance is considered as a priori information at the receivers,

and this can improve the channel estimation accuracy resulting in higher detection

reliability. Also, how to integrate the BSS detectors with a turbo-detection scheme

and how to obtain the LLR values?

With spatial multiplexing and without precoding design, the receiver can decide

to decode the interference as in Chapter 5. Our perspective herein is to apply a

Bayesian approach for solving the [ℓ1-min] and the [Quad-min] detection problems.

The importance of this approach appears when the detector is followed by a soft

channel decoder that requires the LLR as inputs. The sparse Bayesian approach

for sparse signal recovering should produce the probability of each symbol to occur

which yields a reliable LLR and thereby improved decoding scheme.





Appendix A

Mutual information in the MIMO

interference channels

The mutual information between a transmitter- receiver pair is defined as [104]

I(yk;xk) = H(xk)−H(xk|yk), (A.1)

where H(xk|yk) is the conditional entropy of the transmitted information xk given

that yk is received. Each element of the vector xk is uniformly distributed over

the M-cardinal transmit constellation Q. Hence, the entropy is given as

H(xk) = log2(M). (A.2)

The conditional entropy in (A.1) is defined as

H(xk|yk) = −
∑

ak

∫

yk

p(xak
k ,yk) log2 [p(x

ak
k |yk)]

= −
∑

a1,··· ,aK

∫

yk

p (yk,x
a1
1 , · · · ,xaK

K ) log2

[
p(yk|xak

k ) p(xak
k )

p(yk)

]

= − 1

MK

∑

a1,··· ,aK

∫

yk

p (yk|xa1
1 , · · · ,xaK

K ) log2

[
p(yk|xak

k ) p(xak
k )

p(yk)

]

(A.3)

Assuming the indexes aj, a
′

j , a
′′

j ∈
{
1, · · · ,Mdj

}
, and substituting the expansion

of the following probabilities density in the main expression of the conditional

entropy in (A.3)
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and
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1 , · · · ,xaK
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where Ĥkj = HkjPj and nk the Gaussian distributed noise vector with zero mean

and σ2I noise variance, the mutual information is obtained as

I(xk;yk) = log2(M) +
1

MK

∑

a1,··· ,aK

∫

nk

p(nk) log2
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where
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Appendix B

Projected gradient method

The projected gradient algorithm requires firstly the computation of the gradi-

ent with respect to w̃

∂R(w̃)

∂w̃i

=
K∑

k=1

(Xki − Yki) , (B.1)

where Xki and Yki are defined as

Xki =
p

N
lAki

(

I + p LAkW̃LAk
H
)−1

lHAki (B.2)

Yki =
p

N
lBki

(

I + p LBkW̃LBk
H
)−1

lHBki

with lAki and lBki are the i
th rows of the matrices LAk and LBk, respectively. The

constraint, defined in (3.5), can be formulated as

K∑

k=1

tr[VkW̃V H
k ] =

N∑

i=1

w̃ici , (B.3)

with ci is the i
th component of the vector c, ci =

∑

k ||vki||2, and vki is the i
th row

of the matrix Vk.

Equation (B.3) defines the set of w̃ that satisfies the constraint, thus, given the

gradient, we project it on the constraint hyperplane and update w̃ by

w̃l+1 = w̃l + µ. pproj(w̃
l), (B.4)

where µ is a variable step size and p(w̃) is the projected gradient defined as

pproj(w̃
l) =∇w R(w̃l)− (ct ∇w R(w̃l)).

c

||c||2 . (B.5)
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The convergence towards the steady state is achieved either when

||p(w̃l)|| < ǫ , (B.6)

with ǫ is the tolerance factor for stopping the iterations, or a maximum number of

iterations is attained. In this algorithm, the step size µ is a determining factor to

ensure a faster convergence, thus, it must be judiciously selected. In [41], two line

search methods are proposed: exact line search and inexact line search methods. In

practice, most line searches are inexact, and many methods have been proposed.

One is the backtracking method, which is employed for our design. It is very

simple to implement and quite effective. Besides, the step size is updated at each

iteration to satisfy w̃i > 0 for all i.



Appendix C

Sum-rate gradient with respect to

the combination matrix

Using the kth information rate expression in (3.24), the sum rate can be written

as

R ≡
K∑

k=1

log2 |Xk| − log2 |Yk| (C.1)

where

Xk = I + p
K∑

j=1

H̄kjCj

(
H̄kjCj

)H
, and Yk = I + p

K∑

j 6=k

H̄kjCj

(
H̄kjCj

)H
(C.2)

Since the sum-rate is real valued function and Ck∀k are complex variables, the

gradient of the sum-rate can be calculated using the differential with respect to

Ck. It is known to be dR = 2∂R/C∗
k . Details are given in [105]. Using the

differential of log2 |Xk| computed as

d log2 |Xk| = trace
(
X−1

k dXk

)
, and dXk = p H̄kjCjdC

H
j H̄

H
kj , (C.3)

Using the following properties: trace
(
AdBH

)
=trace

(
ATdB∗), d[trace(A)] =

trace(dA), vec(dA) = dvec(X) and trace
(
ATB

)
=vec(A)T )vec(B), and refer-

ring to [105] that describes the first-order differential and the Jacobian matrix

properties, we obtain

d log2 |Xk| =
2p

ln2
vec

(
H̄H

kkX
−1
k H̄kkCk

)T
.vec(dC∗

k). (C.4)
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Thus, the gradient of R w.r.t. C∗
k is obtained as follows

∇
C

(l)
k

R =
2p

ln2

K∑

i=1

H̄H
ikX

−1
i H̄ikCk −

2p

ln2

K∑

i 6=k

H̄H
ikY

−1
i H̄ikCk. (C.5)



Appendix D

Sphere Radius for the

ℓ1-minimization problem

constraint

From a general point of view, let Y,Θ, X be three d-dimensional real random

vectors where X ∼ N (0, σ2Id) when Θ and X are independent and Y = Θ +X .

Given tolerance τ > 0, Random Distortion Testing (RDT) [106] is the problem of

testing whether ‖Θ(ω)− θ0‖ 6 τ or not, when we are given Y and the probability

distribution of Θ is unknown. By analogy with standard terminology in statistical

inference, we say that this problem is the testing of the null event
[
‖Θ−θ0‖ 6 τ

]

against the alternative event
[
‖Θ− θ0‖ > τ

]
on the basis of observation Y . The

RDT problem [106] is summarized as follows:

RDT:







Observation:Y = Θ+X

{

Θ and X independent,

X ∼ N (0, σ2Id),

Null event:
[
‖Θ− θ0‖ 6 τ

]
,

Alternative event:
[
‖Θ− θ0‖ > τ

]
.

(D.1)

Given any η > 0, let Tη be any thresholding test with threshold height η defined

for any y ∈ Rd by

Tη(y) =
{

1 if ‖y − θ0‖ > η

0 if ‖y − θ0‖ 6 η.
(D.2)

Given γ ∈ (0, 1] and ρ > 0, there exists a unique solution λγ(ρ) > 0 in η to

1−Fχ2
d
(ρ2)(η

2) = γ, where Fχ2
d
(ρ2) is the cumulative distribution function of the non-

central χ2 distribution χ2
d(ρ

2) with d degrees of freedom and non-central parameter

ρ2. In [86], it is then proved that the thresholding test Tλγ (τ) with threshold height
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λγ(τ) is such that the conditional probability values P
[
Tλγ (τ)(Θ +X) = 1

∣
∣ ‖Θ−

θ0‖ 6 τ
]
have supremum equal to γ, whatever Θ such that P

[
‖Θ−θ0‖ 6 τ

]
6= 0.

We thus say that Tλγ(τ) has size γ for RDT. Moreover, it turns out that Tλγ(τ) is

optimal for RDT among all tests with same size in the following sense: 1) Save

for values of ρ in some subset D ⊂ (τ,∞) such that P
[
‖Θ − θ0‖ ∈ D

]
= 0, the

conditional probability P
[
Tλγ(τ)(Θ+X) = 1

∣
∣ ‖Θ−θ0‖ = ρ

]
does not depend on the

distribution of Θ for every ρ ∈ (τ,∞)\D and 2) P
[
Tλγ(τ)(Θ+X) = 1

∣
∣ ‖Θ−θ0‖ =

ρ
]
> P

[
T (Θ + X) = 1

∣
∣ ‖Θ − θ0‖ = ρ

]
for all test T with level γ and such that

P
[
T (Θ +X) = 1

∣
∣ ‖Θ− θ0‖ = ρ

]
does not depend on the distribution of Θ either.

In other words, with respect to some criterion suitable for the natural invariance

exhibited by RDT on the spheres centered at θ0 in R
d, thresholding tests Tλγ(τ)

are optimal.
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