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Introduction

“The accreditation to conduct research acknowledges the high scientific level of the candidate, the origi-
nality of his approach in a scientific field, his ability to master a strategy in a sufficiently wide academic
field and his capability to supervise younger researchers. [. . . ]”

Extracted from the ministerial decree of November 23d, 1998, about the accreditation to conduct
research (habilitation à diriger des recherches).
source: http://www.ens.fr/recherche/hdr/?lang=en

This Habilitation Thesis manuscript does NOT summarize my main research activities since the end
of my Ph.D. Instead, I decided to use this introduction to briefly describe the research contributions of
my work (articles are numbered according to my publication list at the end of the introduction). After
this short self-promotion, the rest of the manuscript is made of three chapters presenting three different
topics on which I worked with Ph.D. students. Each chapter can be read independently of the others and
should be relatively self-contained. Chapter 1 is a gentle introduction to the theory of random graphs
with an emphasis on contagions on such networks. In Chapter 2, I explain the main ideas of the objective
method developed by Aldous and Steele [6] applied to the spectral measure of random graphs and the
monomer-dimer problem. This topic is dear to me and I hope that this chapter will convince the reader
that it is an exciting field of research. Chapter 3 deals with problems in high-dimensional statistics which
now occupy a large proportion of my time. Unlike Chapters 1 and 2 which could be easily extended in
lecture notes, I felt that the material in Chapter 3 was not ready for such a treatment. This field of
research is currently very active and I decided to present two of my recent contributions.

My research interests are in network science and the theory of communications with emphasis on statis-
tics, mathematical modeling and algorithm design. My main theoretical contributions are grounded
in applications. Understanding tools developed by various communities (computer science, theoretical
physics or machine learning) allowed me to attack pure mathematical problems with original ideas and
to solve mathematical conjectures out of reach with the standard tools developed in the random graphs
literature. In the other direction, a mathematical understanding of heuristic methods such as the cav-
ity method in statistical physics or belief propagation in machine learning allowed me to design new
algorithms with optimal performances for load balancing or statistical inference in networks. I strongly
believe in the dialog between applied and theoretical scientific disciplines.

Main Scientific Contributions

(a) Large deviations with applications to communication networks (2001-2006) Motivated by
statistical evidences for the presence of files with heavy-tailed distributions on the Internet, I developed
with my Ph.D. advisor François Baccelli (INRIA, now UT Austin) and Serguei Foss (Heriot-Watt Uni-
versity) a new theory of large deviations for heavy-tailed (subexponential) distributions. Combined with
an algebraic representation of networks, we obtained the first large deviations results for non-markovian
networks in their stationary regime for heavy-tailed distributions in [J23],[J21]. I then developed a
technique to deal with light-tailed distributions in [J19], [J17]. I extended these results [J15] to design
control algorithms like in [J18] where an optimal load balancing rule is designed in order to minimize
resequencing delays.

v



(b) Streaming algorithms with security constraints (2004-2006) In applications such as network
monitoring, telecommunications data management or clickstream monitoring, data takes the form of
continuous data streams rather than finite stored data sets, and clients require long-running continuous
queries as opposed to one-time queries. During my postdoc at IBM, I developed with Zhen Liu (now
Microsoft) and Anton Riabov (IBM) algorithms to schedule tasks on streams with security constraints
[C31], which are now part of a product of IBM called System S.
(c) Economics of security in networks (2005-2009) I started this applied program in a collabo-
ration with Jean Bolot (SPRINT now Technicolor). We developed a very general model to analyze the
economics of epidemic processes, by overlaying an economic framework on a general epidemic propaga-
tion model. Using a local mean-field approach, we solved the model, and derived insight in a specific
problem, namely the economic aspects of security investments in networks subject to virus and botnet
attacks [C26], [C24]. We then considered the problem of designing incentives to entities in the Internet
so they invest in security at a socially efficient level [C20], [J10], and find that insurance is a powerful
such incentive [C27], [C21].
(d) Combinatorial optimization over random data and its scaling exponents (2006-2009)
I started this theoretical program under the guidance of David Aldous (UC Berkeley), working with
Charles Bordenave (postdoc, now with CNRS) on combinatorial optimization over random data and its
scaling exponents. We considered combinatorial optimization problems defined over random ensembles,
and studied how solution cost increases when the optimal solution undergoes a small perturbation. Note
that Freshman calculus tells us that for a smooth cost function f with x∗ being its minimum, we have
ε(δ) = min{f(x) − f(x∗), |x − x∗| ≥ δ} that scales like δ2. For the minimum spanning tree and for a
simple example of an algorithmic problem solvable by dynamic programming, we were able to show in
[J16], [J14], that the increase in cost scales also as δ2, corresponding to a scaling exponent of 2. For
a combinatorial optimization problem, a larger exponent means that there are more near-optimal solu-
tions, suggesting that the algorithmic problem of finding the optimal solution is intrinsically harder. So
scaling exponents may serve to separate combinatorial optimization problems of an appropriate type into
a small set of classes of increasing difficulty. For instance, the minimum matching problem is expected
to have scaling exponent 3, and thus be in the same class as TSP in a quantitative way, as distinct from
their qualitative similarity as NP-complete problems under worst-case inputs. This parallels the notion
of universality class in statistical physics. A rigorous proof of a scaling exponent of 3 is still an open
problem.
(e) Contagion in social networks (2008-2014) In [J11], I analyzed the spread of new behaviors in
social networks modeled by random graphs. Building on the work of S. Janson, I showed a new phase
transition: when the network is sparse, the contagion is limited by its low global connectivity; when it
is dense, the contagion is limited by the stability of the high-degree nodes. With Emilie Coupechoux
(Ph.D. student), we extended these results to analyze the impact of clustering (i.e. presence of triangles)
[J4] and [J1].
(f) Distances in weighted random graphs (2010-2014) With Moez Draief (Imperial college) and
Hamed Amini (Ph.D. student), we studied the impact of random exponential edge weights on the dis-
tances in a random graph [J8] and, in particular, on its diameter. Our main result consists of a precise
asymptotic expression for the maximal weight of the shortest weight paths between all vertices (the
weighted diameter) of sparse random graphs [J2].
(g) Matching, load balancing and caching (2008-) Leveraging my expertise in the techniques de-
veloped by D. Aldous and M. Steele, called objective method or local weak convergence of graphs, I was
able to solve an open problem in the random graphs literature with C. Bordenave and J. Salez (disproving
a conjecture of N. Wormald): we showed in [J7] that the size of a maximum matching depends only upon
local statistics of the graph and we were able to compute explicitly its value for large random graphs
[C14]. With Laurent Massoulié (Technicolor now INRIA-MSR) and Mathieu Leconte (Ph.D student),
we extended these results [C8] and showed how they can be used for caching in Content Distribution
Networks [C12]. In another direction, with Florian Bourse (ENS student) and Milan Vojnovic (MSR),
we looked at the balanced edge partition problem for the purpose of scaling out parallel computations
and we demonstrate efficiency of natural greedy online assignments in [C2].
(h) Spectra of random graphs (2007-) With Charles Bordenave, we discovered that the local weak
convergence gives new results for the convergence of the spectrum of large random graphs [J13] (i.e.
spectrum of the associated symmetric adjacency matrix). Our work combined with ideas from random
matrix theory and analysis of algorithms, allowed us with Justin Salez (Ph.D. student) to compute in
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[J12] the rank of such graphs (answering an open question of K. Costello and V. Vu). This is one of the
very few quantitative results for diluted random matrices with non i.i.d. entries. Wit Laurent Massoulié,
we are now leveraging our expertise in random matrix theory to study weak Ramanujan property of
random graphs with applications to community detection.
(i) High-dimensional statistical inference (2011-) I started this new line of research while visiting
Andrea Montanari (Stanford). Using approximate message passing algorithms, we proved the universal-
ity of a certain phase transition arising in polytope geometry and compressed sensing [J3]. This solved a
conjecture by David Donoho and Jared Tanner. More recently, with Laurent Massoulié and Jiaming Xu
(Ph.D. UIUC), I obtained new results for community detection using spectral methods, first for a labeled
stochastic bloc model [C6] and then for a more general latent variable model [C3]. With Se-Young Yun
(postdoc) and Alexandre Proutière (KTH), we designed a streaming and memory limited algorithm for
community detection in [C1] with guarantees that outperform all existing schemes.
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Chapter 1

Percolation in random graphs

In this first chapter, we start with an introduction to the theory of random graphs. We first define
the configuration model denoted by G(n,d) in Section 1.1, where n is the number of nodes, while
d = (d1, . . . , dn) is the sequence of degrees. This model is a very natural probabilistic model as G(n,d)
will have the uniform distribution among all graphs with degree sequence given by d. The sequence
d is called graphic iff there is a simple graph (without loops and multiple edges) that has d as degree
sequence. Erdős and Gallai [49] gave a necessary and sufficient condition for a sequence to be graphic
(see also [92]):

∑n
i=1 di is even and

k∑
i=1

di ≤ k(k − 1) +

n∑
j=k+1

min(k, dj), for each k ≤ n.

However it is always possible to construct a multigraph, i.e. a graph having possibly self-loops and
multiple edges between pairs of vertices, provided

∑n
i=1 di is even. Hence for d such that

∑n
i=1 di is

even, we construct the multigraph G∗(n,d) by pairing the half-edges uniformly at random (see the formal
definition below). Then if d is graphic, the law of the multigraph G∗(n,d) conditioned on being simple
is exactly G(n,d). In the sequel, we always assume that

∑n
i=1 di is even and for each statement about

G(n,d), we also tacitly assume that d is graphic.
In this chapter, we are interested in questions concerning the size and structure of the largest com-

ponent in a random graph when the number of vertices n tends to infinity. We consider a sequence of
degree sequences d(n) and the associated sequence of random graphs G∗(n,d(n)) and G(n,d(n)). These
questions have attracted a lot of attention and there are by now quite a number of textbooks studying
random graphs [24], [61]. For a modern treatment, we strongly recommend the lecture notes [95] (note
that my opinion might be biased by the fact that Remco van der Hofstad kindly agreed to review my
thesis!). Under some regularity conditions on the sequence of degrees d(n), there is at most one giant
component (i.e. containing a positive fraction of the vertices) and we give conditions for the existence of
such a giant component. These results go back to the work of Molloy and Reed [79] and a simple proof
is provided by Janson and Luczak in [60] based on a very nice coupling argument and Glivenko-Cantelli
theorem (see Proposition 4.24 in [65]). The proof is also explained in [95]. Indeed, the technique of
proof was first developed for the k-core problem in [59], i.e. to compute the size of the largest induced
subgraph with minimal degree at least k. In the case of the giant component problem, the proof is based
on the analysis of an exploration process and in the case of the k-core problem, the proof is based on
the analysis of a greedy algorithm removing low degree vertices. As low degree vertices are removed, it
will possibly produce other low degree vertices among its neighbors and so on. The exploration process
or this greedy algorithm can be interpreted as an epidemic process on the random graph activating (all
or some) neighbors of already active vertices. In the case of the giant component problem, activated
vertices are the ones that have been explored while in the greedy algorithm constructing the k-core, the
activated vertices are those removed by the algorithm. Note that at the end of the first process, acti-
vated nodes constitute the explored component while at the end of the second process, the k-core is the
subgraph induced by all vertices which are not active. In this chapter, we choose to follow the epidemics
interpretation and show that the proof technique extends to much more general type of epidemics. As
an example, we will obtain new results on cascading behavior in random networks. The proofs for the
results in Section 1.2 can be found in [69].
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Results in Section 1.2 concern static properties of the random graph. Although a dynamic process
is introduced and analyzed, its main purpose is to allow for an explicit computation of its final state.
In particular, the dynamic of the process has no natural meaning in term of epidemics. Note however
that a recent work [58] extends the techniques of [60] to study the SIR epidemics on random graphs.
In Section 1.3, we follow a different approach and consider first-passage percolation on random graphs.
Imagine the random graph is connected and a piece of information has to be broadcast to all vertices
from one initial vertex. We compute the time needed for all vertices to get informed if each edge requires
an exponential time to transmit the information from one end to the other. This time depends on the
initial node starting the broadcast and we compute the time associated to a typical vertex and also
to a worst vertex. In other words, we compute weighted distances in random graphs with exponential
weights. The proofs for the results in Section 1.3 can be found in [10].

1.1 Configuration model

One popular and important type of random graph is given by the uniformly distributed random graph
with a given degree sequence, defined as follows. Let n ∈ N and let d = (di)

n
1 be a sequence of non-

negative integers. We let G(n,d) be a random graph with degree sequence d, uniformly chosen among
all possibilities (assuming there is any such graph at all; in particular,

∑
i di has to be even).

It is well-known that it is often simpler to study the corresponding random multigraph G∗(n,d) with
given degree sequence d = (di)

n
1 , defined for every sequence d with

∑
i di even by the configuration model

(introduced in [23], [15]): take a set of di half-edges for each vertex i, and combine the half-edges into
pairs by an uniform random matching of the set of all half-edges (this pairing is called a configuration);
each pair of half-edges is then joined to form an edge of G∗(n,d).

Probability asymptotics: we consider asymptotics as the number of vertices n tends to infinity,
and thus we assume throughout the paper that we are given, for each n, a sequence d(n) = (di)

n
1 with∑

i d
(n)
i even. For notational simplicity we will usually not show the dependency on n explicitly; we thus

write d and di, and similarly for other (deterministic or random) quantities. All unspecified limits and
other asymptotics statements are for n → ∞. For example, w.h.p. (with high probability) means with

probability tending to 1 as n → ∞ and
p→ means convergence in probability as n → ∞. Similarly, we

use op , Ωp and Op in a standard way, see [61]. For example, if X(n) = X is a parameter of the random

graph, X = op(n) means that P(|X| > εn) → 0 as n → ∞ for every ε > 0, equivalently |X|/n p→ 0, or
for every ε > 0, |X| < εn w.h.p.

We assume that we are given d = (di)
n
1 satisfying the following regularity conditions:

Condition 1. For each n, d = (d
(n)
i )n1 is a sequence of non-negative integers such that

∑n
i=1 di is even

and, for some probability distribution p = (pr)
∞
r=0 independent of n,

(i) |{i : di = r}|/n→ pr for every r ≥ 0 as n→∞;

(ii) λ :=
∑
r≥0 rpr ∈ (0,∞);

(iii)
∑
i∈[n] d

2
i = O(n).

In words, we assume that the empirical distribution of the degree sequence converges to a fixed
probability distribution p with a finite mean λ. Condition 1 (iii) ensures that p has a finite second
moment and implies that the empirical mean of the degrees converges to λ (uniform integrability of the
empirical distribution of the degrees).

We will study both the random multigraph G∗(n,d) and the (simple) random graph G(n,d). Note
that G∗(n,d) does not have the uniform distribution over all multigraphs with the given degree se-
quence (there is a weight with a factor 1/j! for every edge of multiplicity j, and a factor 1/2 for every
loop). However, conditioned on the multigraph being a simple graph, we obtain G(n,d), the uniformly
distributed random graph with given degree sequence. By [57], we know that the Condition 1(iii) im-
plies lim inf P(G∗(n,d) is simple) > 0. In this case, many results transfer immediately from G∗(n,d) to
G(n,d), for example, every result of the type P(En)→ 0 for some events En, and thus every result saying
that some parameter converges in probability to some non-random value. This includes every results
in this chapter. The proofs of the results given in this chapter first deal with the random multigraph
G∗(n,d) and in a last step, transfer the results to G(n,d) by conditioning.
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Remark 1.1. The results of this chapter, can be applied to some other random graphs models too by
conditioning on the degree sequence. In particular, our results will apply whenever the random graph
conditioned on the degree sequence has a uniform distribution over all possibilities. Notable examples of
such graphs are G(n, p), the Bernoulli random graph with n vertices and edge probability p and G(n,m),
the uniformly random graph with n vertices and m edges. For example, for G(n, p) with np→ λ ∈ (0,∞)
or G(n,m) with 2m/n → λ, the Condition 1 holds in probability with (pk) a Poisson distribution with

parameter λ, pk = e−λ λ
k

k! (see Appendix B in [10]).

1.2 An unified framework for contagions

In this section, we describe the contagion process for any given finite graph G with vertex set [n]. We
still denote by di the degree of node i ∈ [n]. From now on, a vertex i is either active or inactive. In
our model, the initial set of active nodes S (the seed) will remain active during the whole process of
the contagion. We will consider single activation where the seed contains only one (or o(n)) vertex
and partial activation where a positive fraction α > 0 of the vertices is in the seed. In this last case,
we consider a simple model where each node i draws independently of each other a Bernoulli random
variable σi with parameter α and is considered as initially active (i.e. in the seed) if σi = 1 and not
initially active otherwise. Clearly, then a fraction α chosen uniformly at random among the population
constitutes the initial seed of the contagion.

Symmetric threshold model: we first present the symmetric threshold model which generalizes
the bootstrap percolation presented above. Given a map k : N 7→ N, the local rule is the following: a
vertex of degree d becomes active if and only if its number of active neighbors exceeds k(d).

Now the progressive dynamic of the diffusion on a finite graph G = (V,E) operates as follows: some
set of nodes S starts out being active; all other nodes are inactive. Time operates in discrete steps
t = 1, 2, 3, . . . . At a given time t, any inactive node i becomes active if its number of active neighbors
is at least k(di) + 1. This in turn may cause other nodes to become active. It is easy to see that the
final set of active nodes (after n time steps if |V | = n) only depends on the initial set S (and not on the
order of the activations) and can be obtained as follows: set Xi = 11(i ∈ S) for all i. Then as long as
there exists i such that

∑
j∼iXj > k(di), set Xi = 1, where j ∼ i means that i and j share an edge in

G. When this algorithm finishes, the final state of node i is represented by Xi: Xi = 1 if node i is active
and Xi = 0 otherwise.

Percolated threshold model: this model builds on previous model and depends on an additional
parameter π ∈ [0, 1]. Given any graph G and initial set S, we now proceed in two phases.

• bond percolation: randomly delete each edge with probability 1 − π independently of all other
edges. We denote the resulting random graph by Gπ;

• apply the symmetric threshold model with thresholds k(d): set Xi = 11(i ∈ S) and then as long as
there is i such that

∑
j∼πiXj > k(di), set Xi = 1, where j ∼π i means that i and j share an edge

in Gπ and di is the degree of node i in the original graph G.

Clearly if π = 1, this is exactly the symmetric threshold model. If in addition k(d) = k, then this
model is the bootstrap percolation. On the other hand if π ∈ (0, 1) and k(d) = 0 for any d, then this
process explores the connected components of the vertices in S in the graph Gπ. Note that the percolated
threshold model is not equivalent to the symmetric threshold model on the (bond) percolated graph since
threshold depends on the degree in the original graph (and not in the percolated graph).

1.2.1 Contagion with partial activation

For integers s ≥ 0 and 0 ≤ r ≤ s, we denote by bsr the binomial probabilities bsr(p) := P(Bi(s, p) = r) =(
s
r

)
pr(1− p)s−r.
For a graph G, let v(G) and e(G) denote the number of vertices and edges in G respectively. In this

section, we assume that (in addition of the asymptotic degree distribution p) the followings are given:
a positive fraction α for the initial seed, a threshold function k(d) and a bond percolation parameter π.
These parameters are independent of n. The subgraph of G(n,d) induced by the active (resp. inactive)
nodes at the end of the diffusion is denoted by H (resp. I). For r ≤ s, we denote by vsr(I) the number
of vertices in I with degree s in G and r in I, i.e. the number of vertices with degree s in G which are
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not activated and with r neighbors which are not activated either. We denote by vs(H) the number of
activated vertices of degree s in G (and with possibly lower degree in H).

We define the functions:

h(z) := (1− α)
∑
s

ps
∑

r≥s−k(s)

rbsr(1− π + πz),

g(z) := λz(1− π + πz)− h(z),

h1(z) := (1− α)
∑
s

ps
∑

r≥s−k(s)

bsr(1− π + πz),

where λ =
∑
s sps. We define (a justification of the use of the max follows from the detailed proof)

ẑ := max {z ∈ [0, 1] : g(z) = 0} . (1.1)

Theorem 1.2. Consider the random graph G(n,d) (or G∗(n,d)) for a sequence d = (di)
n
1 satisfying

Condition 1. We consider the percolated threshold diffusion on this graph with a positive fraction α for
the initial seed, a threshold function k(d) and a bond percolation parameter π. We assume that either
ẑ = 0, or if ẑ ∈ (0, 1] then there exists ε > 0 such that g(z) < 0 for any z in the interval (ẑ − ε, ẑ). We
have:

v(H)/n
p→ 1− h1(ẑ),

vs(H)/n
p→ ps − (1− α)

∑
k≥s−k(s)

psbsk(1− π + πẑ),

vsr(I)/n
p→ (1− α)

∑
i+k(s)≥s−r

psbsr(ẑ)bs−r,i(1− π),

e(I)/n
p→

(
11(π 6= 1)

ẑ

2(1− π + πẑ)
+ 11(π = 1)

1

2

)
h(ẑ).

If we condition the induced graph I∗ of inactive nodes in G∗(n,d) on its degree sequence dI
∗

and let nI
∗

be the number of its vertices, then I∗ has the distribution of G∗(nI
∗
,dI

∗
).

Note that the bootstrap percolation corresponds to the particular case of the percolated threshold
model with π = 1 and K(d) = θ ≥ 0 and our Theorem 1.2 allows to recover the results in [13] for random
regular graphs and in [7] for random graphs with given vertex degrees.

1.2.2 Contagion with a single activation

In this section, we look at the contagion with one (or a small number o(n) of) initial active node(s) in
G(n,d).

In this case, we need to define vertices playing a particular role. We call them pivotal vertices and
denote by P the set of pivotal vertices defined as follows: start from the graph Gπ, i.e. the initial graph
in which each edge has been removed with probability 1−π and then remove all vertices with k(di) ≥ 1.
The set of pivotal vertices is the set of vertices spanned by the largest connected component of the
remaining graph. Since we kept only connected vertices in Gπ with k(di) = 0, we see that activating any
of the pivotal vertex will activate its pivotal neighbors in the next step and at the end of the diffusion,
all pivotal vertices (and perhaps others) will be active.

For u ∈ [1, n], let C(u) (resp. C(1, . . . , j)) be the subgraph induced by the final active nodes with
initial active node u (resp. initial active nodes 1, . . . , k). We also define I(u) as the subgraph induced
by the inactive nodes with initial active node u. The set of vertices of C(u) and I(u) is a partition of the
vertices of the original graph. From previous discussion, we see that if u ∈ P , then we have P ⊂ C(u).

In the case of random graphs G(n,d), we will show that if the set of pivotal vertices is small (i.e.
op(n)), then the final size of the diffusion is also small w.h.p. Of course, if the set of pivotal vertices is
Ωp(n), then the final set of active vertices is also Ωp(n) as it contains all the pivotal vertices and our next
theorem gives its asymptotic size. Before that, we need to define two sets of functions corresponding to
activated vertices and pivotal vertices.
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For activated nodes, the functions are exactly the same as in previous section with α = 0:

ha(z) :=
∑
s

ps
∑

r≥s−k(s)

rbsr(1− π + πz),

ga(z) := λz(1− π + πz)− ha(z),

ha1(z) :=
∑
s

ps
∑

r≥s−k(s)

bsr(1− π + πz).

We define

za := sup {z ∈ [0, 1) : ga(z) = 0} . (1.2)

We now define the functions associated to the pivotal vertices:

gp(z) = (1− π + πz)

λz − ∑
s: k(s)≥1

sps −
∑

s: k(s)=0

sps(1− π + πz)s−1

 ,

hp1(z) =
∑

s: k(s)=0

ps(1− π + πz)s +
∑

s: k(s)≥1

ps,

and zp = sup {z ∈ [0, 1) : gp(z) = 0}.
We call the following condition the cascade condition:

π
∑

r: k(r)=0

r(r − 1)pr >
∑
r

rpr, (1.3)

which can be rewritten as πE[D(D − 1)11(k(D) = 0)] > E[D] where D is a random variable with
distribution p.

Theorem 1.3. Consider the random graph G(n,d) (or G∗(n,d)) for a sequence d = (di)
n
1 satisfying

Condition 1 and assume that in addition, we have for each n,
∑
i∈[n] d

3
i = O(n) (which in particular

implies Condition 1 (iii)). We consider the percolated threshold diffusion on this graph with a threshold
function k(d) and a bond percolation parameter π ∈ [0, 1].

(i) If the cascade condition (1.3) is satisfied, then

lim
n

v(P )

n
= 1− hp1(zp) > 0.

Moreover, for any u ∈ P , we have w.h.p.

lim inf
n

v(C(u))

n
= lim inf

v(∩u∈PC(u))

n
≥ 1− ha1(za) > 0,

where za is defined by (1.2). Moreover if za = 0 or za is such that there exists ε > 0 with ga(z) < 0
for z ∈ (za − ε, za), then we have for any u ∈ P :

v(C(u))/n
p→ 1− ha1(za),

vsr(I(u))/n
p→

∑
i+k(s)≥s−r

psbsr(z
a)bs−r,i(1− π),

vs(C(u))/n
p→ ps −

∑
j≥s−k(s)

psbsj(1− π + πza),

e(I(u))/n
p→

(
11(π 6= 1)

za

2(1− π + πza)
+ 11(π = 1)

1

2

)
ha(za).

If we condition the induced graph I∗(u) of inactive nodes in G∗(n,d) on its degree sequence dI
∗(u)

and let nI
∗(u) be the number of its vertices, then I∗(u) has the distribution of G∗(nI

∗(u),dI
∗(u)).
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(ii) If π
∑
r, k(r)=0 r(r − 1)rr <

∑
r rpr, then for any j = o(n), v(C(1, . . . , j)) = op(n).

Remark 1.4. The technical condition on the sign of ga is required to avoid some (pathological) cases. To
illustrate it, consider the particular case k(d) = 0 and π = 1, so that the diffusion is a simple exploration
process of the connected component of the initial active vertex in G. Then the cascade condition becomes
with D a random variable with distribution p:

E[D(D − 1)] > E[D].

A simple computation shows that

ha(z) = zφ′D(z), ga(z) = z (λz − φ′D(z)) , and, ha1(z) = φD(z),

where φD(x) = E[xD] is the generating function of the asymptotic degree distribution. By an easy
concavity argument, we see that the condition on the sign of ga around za is satisfied unless p2 = 1.
Hence if p2 < 1, we recover the condition for the existence of a giant component [79], [60]. Note that the
case p2 = 1 is quite exceptional and rather different behaviors can occur (see Remark 2.7 in [60]).

For the same reason, in (ii) we require the inequality to be strict which is in some cases a (slightly)
conservative condition.

1.2.3 Application: cascading behavior in random networks

To illustrate our last result, we consider a simple case with k(d) = qd and π = 1. Then, every inactive
vertex of degree d that has > qd active neighbors becomes active. This model may be a reasonable model
for the spread of rumors or beliefs. To keep the analysis simple, we will only consider the Erdős-Rényi
graph G(n, λ/n) with λ ∈ (0,∞). Hence we have only two parameters: λ the mean degree in the graph
and q which represents the required fraction of active nodes among its neighbors in order to become
active.

Clearly, the lower q is, the easier the diffusion spreads. Indeed, for each λ, there exists a value qc(λ)
such that: when q < qc(λ), the cascade condition 1.3 holds, whereas for q > qc(λ), it does not and we
can apply Theorem 1.3 (ii) so that cascades are small. As shown in Figure 1.1 (Left), we see that qc
is a non-decreasing function of λ for λ ≤ 2 and a non-increasing function of λ, for λ ≥ 4. The second
curve in Figure 1.1 corresponds to the contagion threshold for a scale-free random network whose degree

distribution pr = r−γ

ζ(γ) (with ζ(γ) =
∑
r−γ) is parametrized by the decay parameter γ > 1.

Figure 1.1: Left: qc(λ) for Erdős-Rényi random graphs and for power law graphs (dashed curve) as a
function of the average degree λ. Right: Size of the cascade (in percent of the total population) for
Erdős-Rényi random graphs as a function of λ the average degree for a fixed q = 0.15. The lower curve
gives the asymptotic fraction of pivotal vertices.

We also observe that in both cases, for q sufficiently low, there are two critical values for the parameter
λ, 1 < λi(q) < λs(q) such that a global cascade for a fixed q is only possible for λ ∈ (λi(q);λs(q)). The
heuristic reason for these two thresholds is that a cascade can be prematurely stopped at high-degree
nodes. For Erdős-Rényi random graphs, when 1 ≤ λ < λi(q), there exists a giant component, i.e.
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a connected component containing a positive fraction of the nodes. The high-degree nodes are quite
infrequent so that the diffusion should spread easily. However, for λ close to one, the diffusion does not
branch much and progresses along a very thin tree, “almost a line”, so that its progression is stopped as
soon as it encounters a high-degree node. Due to the variability of the Poisson distribution, this happens
before the diffusion becomes large for λ < λi(q). Nevertheless the condition λ > λi(q) is not sufficient
for a global cascade. Global diffusion also requires that the network be not too highly connected. This
is reflected by the existence of the second threshold λs(q) where a further transition occurs, now in the
opposite direction. For λ > λs(q), the diffusion will not reach a positive fraction of the population.
The intuition here is clear: the frequency of high-degree nodes is so large that diffusion cannot avoid
them and typically stops there since it is unlikely that a high enough fraction of their many neighbors
eventually adopts. Following [98], we say that these nodes are locally stable.

The lower curve in Figure 1.1 (Right) represents the number of pivotal nodes in an Erdős-Rényi
random graph as a function of λ the average connectivity for q−1 = 6.666...: hence we keep only the
largest connected component of an Erdős-Rényi random graph where we removed all vertices of degree
greater than 6. By the same heuristic argument as above, we expect two phase transitions for the
size of the set of pivotal players. In the proof of Theorem 1.3, we show that it is indeed the case and
moreover that the phase transitions occur at the same values λi(q) and λs(q) as can be seen on Figure
1.1 (Right) where the normalized size (i.e. fraction) γ(q, λ) of the set of pivotal players is positive only
for λ ∈ (λi(q), λs(q)). Hence a cascade is possible if and only if there is a ’giant’ component of pivotal
players. Note also that both phase transitions for the pivotal players are continuous, in the sense that
the function λ 7→ γ(q, λ) is continuous. This is not the case for the second phase transition for the
normalized size of the cascade s(q, λ) which can be computed from Theorem 1.3 (see [69]). The function
λ 7→ s(q, λ) is continuous in λi(q) but not in λs(q) as depicted on Figure 1.1 (Right). This has important
consequences: around λi(q) the propagation of cascades is limited by the connectivity of the network
as in standard epidemic models. But around λs(q), the propagation of cascades is not limited by the
connectivity but by the high-degree nodes which are locally stable.

1.3 First Passage Percolation

In previous section, we ignored the dynamic of the diffusion and concentrated on the final set of ac-
tive/inactive vertices. In this section, we will concentrate on a careful analysis of the dynamic for a very
simple model of diffusion also called first passage percolation. First-passage percolation (FPP) describes
the dynamics of a fluid spreading within a random medium. In this section, we study the impact of
the introduction of edge weights on the typical distances in a random graph and, in particular, on its
diameter.

A weighted graph (G,w) is the data of a graph G = (V,E) and a collection of weights w = {we}e∈E
associated to each edge e ∈ E. We suppose that all the edge weights are non-negative. For two vertices
a and b ∈ V , a path between a and b is a sequence π = (e1, e2, . . . ek) where ei = {vi−1, vi} ∈ E and
vi ∈ V for i ∈ {1, . . . , k} = [1, k], with v0 = a and vk = b. We write e ∈ π if the edge e ∈ E belongs to
the path π, i.e., if e = ei for an i ∈ [1, k]. For a, b ∈ V , the weighted distance between a and b is given by

distw(a, b) = distw(a, b;G) = min
π∈Π(a,b)

∑
e∈π

we ,

where the minimum is taken over all the paths between a and b in the graph G. If there is no such path,
we set the distance to be infinite. The weighted diameter is then given by

diamw(G) = max{distw(a, b), a, b ∈ V, distw(a, b) <∞} .

and the weighted flooding time is

floodw(a,G) = max{distw(a, b), b ∈ V, distw(a, b) <∞}.
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1.3.1 Main results

We will consider the random graph G(n,d) for a sequence d satisfying Condition 1 with the additional
condition: for some ε > 0,

n∑
i=1

d2+ε
i = O(n). (1.4)

We define q = {qk}∞k=0 the size-biased probability mass function corresponding to p, by

∀k ≥ 0, qk :=
(k + 1)pk+1

λ
, (1.5)

and let ν denote its mean:

ν :=

∞∑
k=0

kqk ∈ (0,∞) (which is finite by condition (1.4)). (1.6)

Let φp(z) be the probability generating function of {pk}∞k=0: φp(z) =
∑∞
k=0 pkz

k, and let φq(z) be
the probability generating function of {qk}∞k=0: φq(z) =

∑∞
k=0 qkz

k = φ′p(z)/λ. In this section, we will
consider only the case where ν > 1. In particular, there exists a unique µ in (0, 1) such that µ = φq(µ)
and if C is the size (in number of vertices) of the largest component of G(n, (di)

n
1 ), then we have by

[Molloy, Reed [79] - Janson, Luczak [60]]: C/n p−→ 1− φp(µ) > 0. In addition, we introduce

µ∗ = φ′q(µ) =

∞∑
k=1

kqkµ
k−1 ∈ [0, 1) . (1.7)

We can now state our main theorem.

Theorem 1.5. Let (G(n, (di)
n
1 ), w) be a sequence of random weighted graphs where w = {we}e∈E are

i.i.d. rate one exponential random variables.
Assume Condition 1 and (1.4) hold. Assume that ν defined in (1.6) is such that ν > 1.
Assume that all the graphs have the same minimum degree denoted by dmin = mini∈[1,n] di ≥ 1 and
moreover that pdmin > 0. Let Γ : N∗ → R be defined by:

Γ(d) := d 11[d ≥ 3] + 2(1− q1) 11[d = 2] + (1− µ∗) 11[d = 1]. (1.8)

If we condition the vertices 1 and 2 to be connected, we have

distw(1, 2;G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
. (1.9)

If we condition the vertex 1 to be in the largest component, we have

floodw(1, G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

1

Γ(dmin)
. (1.10)

Finally, we have:

diamw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

2

Γ(dmin)
. (1.11)

Remark 1.6. Note that ν > 1 implies that there is a positive fraction of nodes in G(n, (di)
n
1 ) with

degree 3 or larger. In particular, we have q1 = 2p2/λ < 1 and µ∗ < 1 so that we have Γ(d) > 0 for all
d ∈ N∗ = {1, 2 . . . }.

We now comment our result with respect to related literature. Our main contribution is (1.11) while
results (1.9) and (1.10) follow from the analysis required to prove (1.11). Indeed, a much stronger version
of (1.9) has been proved for a slightly different model of random graphs by Bhamidi, van der Hofstad,
and Hooghiemstra in [19]. Theorem 3.1 in [19] shows that if the sequence (di)

n
1 is a sequence of i.i.d.
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(non-degenerate) random variables with dmin ≥ 2 and finite variance, then there exists a random variable
V such that (conditioning on 1 and 2 being connected)

distw(1, 2;G∗(n, (di)
n
1 )))− log n

ν − 1

d−→ V.

We expect this result to be valid for our model of random graphs G(n, (di)
n
1 ) where the degrees di satisfy

Condition 1 (but we did not try to prove it). [19] and [18] give also results when the degree sequence
has no finite second moment and no finite first moment.

Motivated by the analysis of the diameter of the largest component of a critical Erdős-Rényi random
graph (without edge weights), Ding, Kim, Lubetzky, and Peres [36] show that if di = r ≥ 3 for all i, then
we have with high probability:

diamw(G∗(n, r)) =

(
1

r − 2
+

2

r

)
log n+O(log log n).

In a previous work with M. Draief [8], we extended the analysis of [36] to graphs with minimum degree
3 to get:

diamw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

2

dmin
.

The intuition behind this formula is simple: consider a vertex with minimal degree dmin, its closest
neighbor is at distance given by an exponential random variable with rate dmin (i.e. the minimum of
dmin exponential rate one random variables). Hence the probability for this distance to be larger than
log n/dmin is n−1. Since there are order pdmin

n vertices with minimal degree, a simple argument shows
that we will find two nodes with degree dmin and with closest neighbors at distance log n/dmin. The
diameter will be obtained by taking a shortest path between these two nodes. Each such node will first
give a contribution of log n/dmin to reach its closest neighbor and then the path between these neighbors
will be typical, of the order log n/(ν − 1). This simple heuristic argument shows that our result on the
diameter depends crucially on the weights being exponentially distributed or at least have an exponential
tail. We refer to [20] for recent results on distances with i.i.d. weights. As we will see, the presence of
nodes with degree one and two makes the analysis much more involved than in [36] or [8]. As soon as a
fraction of nodes have degree two, there will be long paths constituted by a chain of such nodes and we
will see that these paths contribute to the diameter.

We end this section by a simple remark. As explained in Section 1.1, our results can be applied to
some other random graphs models too by conditioning on the degree sequence. Notable examples of such
graphs are G(n, p), the Bernoulli random graph with n vertices and edge probability p and G(n,m), the
uniformly random graph with n vertices and m edges. For example, for G(n, p) with np → λ ∈ (0,∞)
or G(n,m) with 2m/n→ λ, our result gives in this case (note that φq(z) = e−λ(1−z)):

Theorem 1.7. Let λ > 1 be fixed, and let µ∗ < 1 satisfy µ∗e
−µ∗ = λe−λ. Assume Gn = G(n, p) where

np → λ ∈ (0,∞) (or Gn = G(n,m) with 2m/n → λ ∈ (0,∞)) with i.i.d. rate 1 exponential weights on
its edges. Then

diamw(Gn)

log n

p−→ 1

λ− 1
+

2

1− µ∗
. (1.12)

This result improves on a lower bound of the weighted diameter given by Bhamidi, van der Hofstad
and Hooghiemstra in [17] Theorem 2.6. Note that [17] also deals with the case np→∞ which is out of
the scope of the present paper.

1.3.2 Overview of the proof

Our work is a direct generalization of [36] with significantly more involved calculations. The first key idea
of the proof from [36] is to grow balls centered at all vertices of the graph simultaneously. The time when
two balls centered at a and b respectively intersect is exactly the half of the weighted distance between a
and b. (In what follows, we will sometimes deliberately use the term time instead of the term weighted
distance.) Hence the weighted diameter becomes twice the time when the last two balls intersect. A
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simple argument shows that any two balls containing slightly more than
√
n vertices (2

√
rn log n vertices

for r-regular case) will intersect with high probability; see Proposition 3.1 in [10]. Hence it will be
enough to control the time at which all balls have reached this critical size of order

√
n in order to

prove an upper bound for the weighted diameter. For a proof of the upper bound on the diameter,
we apply an union bound argument as in [36]. Hence, we need to find the right time such that the
probability for a (typical) ball to reach size

√
n is of order n−1. In order to do so, we use the second

main idea of the proof: we couple the exploration process on the weighted graph with a continuous time
Markov branching process. This coupling argument is quite standard and we will deal here with the same
branching process approximation for the exploration process on the graph as in [19]. However, we are
facing here new difficulties as we need to consider events of small probability for this exploration process
(of order n−1). In particular, we need to show that the coupling is still valid for such large deviations.
When dmin ≥ 3, the argument of [36] can be extended easily [8]. But as soon as dmin ≤ 2, several
complications happen. First as shown in [9], the asymptotics for the large deviations of the branching
process depend on the minimal possible offspring. Second, as soon as dmin = 1, the small components of
the graph contain now a positive fraction of the nodes. We need to bound the diameter of these small
components and to study the diameter of the largest component, we need to condition our exploration
process on ’non-extinction’. Similarly, the presence of degree one nodes, significantly complicates the
proofs. When dmin = 1, the longest shortest path in a random graph will be between a pair of vertices a
and b of degree one. Furthermore, this path consists of a path from a to the 2-core, a path through the
2-core, and a path from the 2-core to b. Also to apply the second moment method as in [36] in order to
get a lower bound, we need to first remove vertices with degree one iteratively to work with the 2-core
of the graph (indeed an augmented version of this 2-core, see Section 4.2 in [10] for details).

In [10], we first prove an upper bound for the weighted diameter. This will consist in defining the
two parameters αn and βn with the following significance. (i) Two balls of size at least βn intersect
almost surely, (ii) considering the growing balls centered at a vertex in the graph, the time it takes for
the balls to go from size αn to size βn have all the same asymptotic for all the vertices of the graph,
and the asymptotic is half of the typical weighted distance in the graph, and (iii) the time it takes for
the growing balls centered at a given vertex to reach size at least αn is upper bounded by 1+ε

Γ(dmin) log n

for all ε > 0 with high probability (w.h.p.). This will show that the diameter is w.h.p. bounded above
by (1 + ε)( 1

ν−1 + 2
Γ(dmin) ) log n, for all ε > 0. The last section provides the corresponding lower bound.

To obtain the lower bound, we show that w.h.p. (iv) there are at least two nodes with degree dmin such
that the time it takes for the balls centered at these vertices to achieve size at least αn is worst than the
other vertices, and is lower bounded by 1−ε

Γ(dmin) log n, for all ε > 0. And using this, we conclude that the

diameter is w.h.p. bounded below by (1− ε)( 1
ν−1 + 2

Γ(dmin) ) log n, for all fixed ε > 0, finishing the proof

of our main theorem.
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Chapter 2

Local weak convergence, spectral
measures and combinatorial
optimization

In this chapter, we give an unified view of three different papers: in [28] and [29], we dealt with spectral
properties of random graphs, while in [30], we analyzed the monomer-dimer model on random graphs.
It came somehow as a surprise to us that our results on these two different topics were so closely related.
I hope that the presentation chosen in this chapter will elucidate this coincidence. At least, writing it
helped me to get a better understanding of these problems! The results presented in this section extend
partly those written in the original papers. We now have a much better understanding of the spectral
properties of random graphs. The lecture notes by Charles Bordenave [27] give a recent overview of this
field. Concerning the monomer-dimer model, [2] and [1] are recent works with a similar approach as the
one developed in this chapter. Some of their results are restricted to lattices and we extend them to
unimodular graphs.

This chapter is completely independent from previous chapter as the techniques used here are dif-
ferent. I would say that the general philosophy to approach the problem is rather original compared
to the usual tools developed by the community working on random graphs and combinatorics. The
general belief behind our approach is the following: the asymptotic study of algebraic, combinatorial
or probabilistic parameters associated to graphs as the number of edges and vertices tends to infinity
in a comparable way should depend only upon the limiting local geometry of the graphs. Originating
from the study of disordered systems in statistical physics, this general heuristic has given rise to a
powerful non-rigorous computational formalism known as the cavity method [77]. If true, this heuristic
has important implications:

• practically, the parameter of interest can be efficiently approximated via distributed, local message-
passing algorithms;

• theoretically, a unique self-consistent infinite limit can be defined and determined by purely local
specifications.

In this chapter, I concentrate on this second point and give a mathematical confirmation of the cavity
method for the spectral measure of large graphs [85], [22], [91] and the monomer-dimer problem [99]
using the framework of the objective method by Aldous and Steele [6].

I start by defining the empirical spectral measure and the monomer-dimer model for a finite graph in
Sections 2.1 and 2.2. In order to extend these notions to infinite graphs, I introduce some basic concepts
of functional analysis in Section 2.3 (see [84] for a self-contained exposition of the fundamental princi-
ples). In Section 2.4, I define the framework of local weak convergence, the notion of unimodularity and
mean spectral measure. The main results are presented in Section 2.5 and in Section 2.6, I get explicit
asymptotics for large random graphs. Finally, in Section 2.7, I explain how part of the results can be
extended to a much more general framework.
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Notations: a graph G is a triple consisting of a vertex set V (possibly infinite but countable), an
edge set E and a map that associates to every edge two vertices (not necessarily distinct) called its
endpoints. When two vertices u and v are endpoints of an edge, we say they are neighbors and write
u ∼ v to indicate this. We denote by the same symbol ∂v the set of neighbors of node v ∈ V and the
set of edges incident to v. The degree of v is the cardinal of ∂v. We will work only with locally finite
graph, where the degree of every vertex is finite. For a graph G = (V,E), a walk of length ` from x
to y is a sequence v0 = x, v1, . . . , v` = y, with vi ∈ V and ei = {vi, vi+1} ∈ E for i = 0, . . . ` − 1. A
simple cycle is a path with ` ≥ 2, x = y and all other vertices are pairwise distinct. When such a path
exists, x is said to be connected to y. Being connected to is clearly an equivalence relation on V and
the associated equivalence classes are called the connected components of G. When there is only one
connected component, we say that the graph is connected. A connected graph without simple cycles is
called a tree.

C is the set of complex numbers and H is the set of complex numbers with positive imaginary part:

H = {z ∈ C, =(z) > 0}.

Any probability measure µ on R is characterized by its Borel-Stieltjes transform, which is an analytic
function from H to H (see [56] for details):

Fµ(z) =

∫
R

dµ(λ)

λ− z
.

We will use the following formula which is true for symmetric measures:

µ({0}) = lim
t→0
−
√
−1tFµ(

√
−1t). (2.1)

We denote by ⇒ the weak convergence of probability measures.

2.1 Empirical spectral measure of finite graphs

A finite graph G = (V,E) on n vertices V = {1, . . . , n} can be represented by a {0, 1}-valued n × n
matrix A called its adjacency matrix: Auv = 11(u ∼ v). Since A is symmetric, it has n real eigenvalues
λ1 ≤ · · · ≤ λn. The empirical spectral measure of the graph G is the probability measure on R:

µG =
1

n

n∑
i=1

δλi ,

where δx denotes the Dirac measure concentrated on x.
We now describe a rooted spectral measure. We show that it is a “local functional” and that the

empirical spectral distribution is the average of this rooted spectral measure when the root is chosen
uniformly at random. Take an orthonormal basis of eigenvectors (φ1, . . . , φn) corresponding to the
eigenvalues λ1, . . . , λn. For v ∈ V , we denote by χv the vector with all entries equal to 0 except the v-th
one equal to 1. The spectral measure of G rooted at v ∈ V is defined as:

µ(G,v) =

n∑
i=1

〈φi|χv〉2δλi , (2.2)

where 〈·|·〉 denotes the inner product in Rn.
Note that we have: ∫

xkµ(G,v)(dx) = 〈χv|Akχv〉,

which is the number of returning walks of length k starting at v. This quantity is local in the sense that
it depends only on the neighborhood of v at depth k. Moreover, this description of the moment of µ(G,v)

shows that the measure does not depend on the particular choice of the basis. Also, it is easy to check
that µ(G,v) is a probability distribution on R and we have (see Lemma 2.1 in [87])

µG =
1

n

n∑
v=1

µ(G,v). (2.3)

In words, the empirical spectral measure is the spatial average of the rooted spectral measures.
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2.2 The monomer-dimer model and the matching measure

A matching on a finite graph G = (V,E) is a subset of edges with no common vertex. A matching is
encoded by a binary vector B = (Be, e ∈ E) ∈ {0, 1}E defined by Be = 1 if and only if the edge e
belongs to the matching. The constraint

∑
e∈∂v Be ≤ 1 for all v ∈ V ensures that B is a matching.

Vertices v with
∑
e∈∂v Be = 0 are called monomer and edges e with Be = 1 are called dimers. The size

of the matching is given by
∑
e∈E Be. For a finite graph G, we define the matching number of G as

ν(G) = max{
∑
eBe} where the maximum is taken over matchings of G.

We introduce the family of probability distributions on the set of matchings parametrized by a
parameter z > 0:

µzG(B) =
z
∑
e Be

PG(z)
, (2.4)

where

PG(z) =
∑
B

z
∑
e Be

∏
v∈V

11

(∑
e∈∂v

Be ≤ 1

)

=

ν(G)∑
k=0

mk(G)zk,

where mk(G) is the number of matchings of size k (m0(G) = 1).
We denote by νz(G) the mean size of a matching under µzG, that is:

νz(G) =
∑
e∈E

µzG(Be = 1)

=
1

PG(z)

ν(G)∑
k=1

kmk(G)zk =
zP ′G(z)

PG(z)
,

where P ′G(z) is the derivative of PG(z) with respect to z. For any finite graph, when z tends to infinity,
the distribution µzG converges to the uniform distribution over maximum matchings so that we have

ν(G) = lim
z→∞

νz(G). (2.5)

The matching polynomial is defined as:

QG(z) =

ν(G)∑
k=0

(−1)kmk(G)zn−2k = znPG(−z−2).

We define the matching measure of G denoted by ρG as the uniform distribution over the roots of the
matching polynomial of G:

ρG =
1

ν(G)

ν(G)∑
i=1

δzi , (2.6)

where the zi’s are the roots of QG. Note that QG(−z) = (−1)nQG(z) so that ρG is symmetric.
The fundamental theorem for the matching polynomial is the following.

Theorem 2.1. (Heilmann Lieb [54]) The roots of the matching polynomial QG(z) are real.

In particular, the matching measure of G is a probability measure on R. Again, we can write ρG as a
spatial average of rooted measures thanks to the work of Godsil [53]. A walk in a graph is self-avoiding
if it touches every vertex at most once. For a finite graph G and a root vertex v, one can construct
Tv(G), the tree of self-avoiding walks at v as follows: its vertices correspond to the finite self-avoiding
walks in G starting at v, and we connect two walks if one of them is a one-step extension of the other.
Using [53], the following theorem is proved in [2]; it relates the matching measure of G with the rooted
spectral measures of the Tv(G)’s:
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Theorem 2.2. Let G be a finite graph, then we have

ρG =
1

n

n∑
v=1

µ(Tv(G),v).

In particular, Theorem 2.2 gives one of the several known proofs for the Heilmann-Lieb theorem.
Moreover if G is a tree, we have Tv(G) = G for any v ∈ V so that in this case by (2.3), we have ρG = µG.

Of course, the polynomials PG(z) or QG(z) contains the same information as the matching measure
ρG. We can express the quantity of interest in term of ρG: for z > 0,

1

n
lnPG(z) =

1

2

∫
ln(1 + zλ2)dρG(λ),

1

n
νz(G) =

1

2

∫
zλ2

1 + zλ2
dρG(λ),

1

n
ν(G) =

1

2
(1− ρG({0})) .

2.3 Rooted spectral measure of infinite graphs

In this section, we extend the notion of rooted spectral measure described in Section 2.1 to infinite
graphs. For the sake of simplicity, we will restrict ourselves to graphs G with bounded degree, i.e. finite
maximum degree. Most of the theory extends to locally finite graphs, see chapter 2.2 in [87].

A graph G = (V,E) with bounded degree can be identified with a linear operator A on the Hilbert
space

`2(V ) =

{
ψ : V → C :

∑
v∈V
|ψ(v)|2 <∞

}
,

endowed with its canonical inner product 〈ψ|φ〉 =
∑
v∈V ψ(v)φ(v). Specifically, the domain of A is the

dense subspace of finitely supported functions and the action of A on the canonical orthonormal basis
(χv)v∈V , where χv(w) = 11(v = w), is given by

Aχv =
∑
w∈∂v

χw.

A is called the adjacency operator of G. It is symmetric: 〈χv|Aχw〉 = 〈Aχv|χw〉 and bounded as the
graph G has bounded degree. As a consequence, A and G are said to be self-adjoint, the spectrum of A is
real. Moreover, the spectral theorem for self-adjoint operators then guarantees that for every ψ ∈ `2(V )
with ‖ψ‖ = 1, there exists a unique probability measure µψ on R satisfying

〈ψ|(A− zI)−1ψ〉 =

∫
R

dµψ(λ)

λ− z
,

for all z ∈ H, where H is the set of complex numbers with positive imaginary part (see [84]).
In particular, for each vertex v ∈ V , we may consider the spectral measure associated with the vector

χv. We denote it by µ(G,v) and call it the rooted spectral measure of G at v. We now check that this
definition is compatible with (2.2) in the finite dimensional case, i.e. when A is a finite matrix. In this
case, we have with the notations of Section 2.1:

(A− zI)ψ =

n∑
i=1

(λi − z)〈ψ|φi〉φi,

(A− zI)−1ψ =

n∑
i=1

(λi − z)−1〈ψ|φi〉φi,

〈ψ|(A− zI)−1ψ〉 =

n∑
i=1

(λi − z)−1〈ψ|φi〉2.
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Hence taking ψ = χv, we see that we recover the expression (2.2) for µ(G,v). Intuitively, µ(G,v) may be
thought as the local contribution of the vertex v to the spectral measure of A (which is a projection-
valued measure on R in the infinite dimensional case). In particular, we can still interpret the k-th
moment of µ(G,v) as the number of returning walks of length k starting at v.

Now, we want to extend the relation (2.3) in a meaningful way to infinite graphs. To do this, we
need to introduce the notion of unimodularity which is the main topic of the next section.

2.4 The framework of local weak convergence

This section gives a brief account of the framework of local weak convergence. For more details, we refer
to the seminal paper [16] and to the surveys [6, 5].

Rooted graphs. A rooted graph (G, o) is a graph G = (V,E) together with a distinguished vertex
o ∈ V , called the root. We let G? denote the set of all locally finite connected rooted graphs considered
up to rooted isomorphism, i.e. (G, o) ≡ (G′, o′) if there exists a bijection γ : V → V ′ that preserves roots
(γ(o) = o′) and adjacency ({i, j} ∈ E ⇐⇒ {γ(i), γ(j)} ∈ E′). We write [G, o]h for the (finite) rooted
subgraph induced by the vertices lying at graph-distance at most h ∈ N from o. The distance

dist ((G, o), (G′, o′)) :=
1

1 + r
where r = sup {h ∈ N : [G, o]h ≡ [G′, o′]h} ,

turns G? into a complete separable metric space, see [5].
With a slight abuse of notation, (G, o) will denote an equivalence class of rooted graph also called

unlabeled rooted graph in graph theory terminology. Note that the rooted spectral measures of two
isomorphic rooted graphs are equal. Hence µ(G,o) is the same for any choice of a rooted graph in its
rooted-isomorphism class and our abuse of notation does not introduce any ambiguity. Similarly if two
rooted graphs are isomorphic, then their rooted trees of self-avoiding walks are also isomorphic. It thus
makes sense to define (To(G), o) for elements (G, o) ∈ G?.

Local weak limits. Let P(G?) denote the set of Borel probability measures on G?, equipped with the
usual topology of weak convergence (see e.g. [21]). Given a finite deterministic graph G = (V,E), we
construct a random element of G? by choosing uniformly at random a vertex o ∈ V to be the root, and
restricting G to the connected component of o. The resulting law is denoted by U(G). If {Gn}n≥1 is
a sequence of finite graphs such that {U(Gn)}n≥1 admits a weak limit L ∈ P(G?), we call L the local
weak limit of {Gn}n≥1. If (G, o) denotes a random element of G? with law L, we shall use the following
slightly abusive notation : Gn ; (G, o) and for f : G? → R:

E(G,o) [f(G, o)] =

∫
G?
f(G, o)dL(G, o).

Unimodularity. Let G?? denote the space of locally finite connected graphs with a distinguished
oriented edge, taken up to the natural isomorphism relation and equipped with the natural distance,
which turns it into a complete separable metric space. With f : G?? → R, we associate a function
∂f : G? → R, defined by:

∂f(G, o) =
∑
i∈∂o

f(G, o, i),

and also the reversal f∗ : G?? → R of f defined by:

f∗(G, o, i) = f(G, i, o).

It is shown in [5] that any (G, o) with law L arising as the local weak limit of some sequence of finite
graphs satisfies

E(G,o) [∂f(G, o)] = E(G,o) [∂f∗(G, o)] (2.7)
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for any Borel f : G?? → [0,∞). A measure L ∈ P(G?) satisfying this invariance is called unimodular,
and the set of all unimodular probability measures on G? is denoted by Pu(G?). Note that (2.7) can be
expanded to: ∫

G?

∑
i∈∂o

f(G, o, i) dL(G, o) =

∫
G?

∑
i∈∂o

f(G, i, o) dL(G, o).

Mean spectral measure. With the notation introduced above, the spectral measure µG of a finite
graph G (2.3) can be expressed as the mean of µ(G,o):

µG = E(G,o)

[
µ(G,o)

]
. (2.8)

The definition (2.8) makes sense for (possibly infinite) (G, o) ∈ Pu(G?) and we call it the mean spectral
measure of (G, o) (following the terminology used for random measures). More explicitly, for any Borel
set B on R, we have by definition:

µG(B) =

∫
µ(G,o)(B)dL(G, o), where, µ(G,o) was defined in Section 2.3.

Note that we are slightly abusing notation as µG depends on the law L of (G, o). Indeed µL can be
defined by the right-hand side of (2.8) for any L ∈ P(G?). If L is unimodular, we take the simplified
notation µL = µG when no confusion is possible (it follows from Theorem 3.1 in [5] that for fixed
underlying graphs, there is at most one unimodular measure).

Sofic measure. A measure L ∈ P(G?) is sofic if there exists a sequence of finite graphs (Gn)n≥1 whose
local weak limit is L. The set of sofic measures is the closure for the topology of weak convergence of the
set {U(G) , G finite}. We denote by Ps(G?) the set of sofic measures. All sofic measures are unimodular:
Ps(G?) ⊂ Pu(G?) and the converse is open, see [5] for a discussion.

2.5 Main results

We are now ready to extend the results from finite graphs to infinite graphs.

Theorem 2.3. Let (Gn)n≥1 be a sequence of finite graphs with uniformly bounded degrees such that
Gn ; (G, o). In particular (G, o) ∈ Ps(G?). Then we have as n→∞,

(i) µGn ⇒ E(G,o)

[
µ(G,o)

]
= µG,

(i′) ρGn ⇒ E(G,o)

[
µ(To(G),o)

]
= ρG.

For all x ∈ R, we have

(ii) lim
n→∞

µGn({x}) = µG({x}),

(ii′) lim
n→∞

ρGn({x}) = ρG({x}).

Note that if G is a finite graph, wit Gn = G for all n, we recover results in Sections 2.1 and
2.2. Theorem 2.3 deals only with sofic measures and Proposition 2.2 in [27] shows that (i) extends to
converging sequences of unimodular measures.

As a consequence of Theorem 2.3, we have for the matching problem (results following this argument
can already be found in the paper of Heilmann and Lieb, see Section 8 [54]):

Theorem 2.4. Let (Gn) be a sequence of finite graphs with uniformly bounded degrees such that Gn ;

(G, o). Then we have as n→∞, for z > 0,

1

n
lnPGn(z) → 1

2

∫
R

ln(1 + zλ2)dρG(λ),

1

n
νz(Gn) → 1

2

∫
R

zλ2

1 + zλ2
dρG(λ),

1

n
ν(Gn) → 1

2
(1− ρG({0}) .
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Let T = (V,E) be a tree with bounded degree. Thanks to the recursive structure of the tree T , we
show that the Borel-Stieltjes transform of µ(T,o) can be computed recursively. Once a root o ∈ V is
fixed, we use the notation i→ j to mean that j is a child of i in the rooted tree (T, o). Given z ∈ H, a
solution to the cavity recursion on the rooted tree (T, v) is a family (xi(z))i∈V ∈ HV satisfying the local
equations:

xi(z) =
−1

z +
∑
j→i xj(z)

. (2.9)

We then have the following result:

Theorem 2.5. Let T = (V,E) be a tree with bounded degree and o ∈ V . For every z ∈ H, the cavity
recursion on the rooted tree (T, o) has a unique solution. Moreover, we have

Fµ(T,o)
(z) = xo(z).

Note that we do not need the assumption of unimodularity for this theorem to be true. Note also
that the recursion (2.9) involves the whole tree but only the value computed at the root of the tree gives
the correct Borel-Stieltjes transform of the rooted spectral measure. Salez proved a much stronger result
characterizing the self-adjointness of trees by the existence of a unique solution to the cavity recursion
(see Theorem 2.2 in [87]).

We now characterize more precisely µ(T,o)({0}) thanks to (2.1). The idea is to iterate once the

recursion (2.9) with z =
√
−1t and to let t tends to zero. We then obtain what we call the cavity

recursion at zero temperature. A solution to the cavity recursion at zero temperature on the rooted tree
(T, o) is a family (mi)i∈V ∈ [0, 1]V satisfying the local equations:

mi =

1 +
∑
j→i

∑
k→j

mk

−1

−1

, (2.10)

with the conventions 1/0 =∞, 1/∞ = 0 and the sum over the empty set is equal to zero. Then we have:

Theorem 2.6. Let T = (V,E) be a tree with bounded degree and o ∈ V . There exists a largest solution
(mi)i∈V in [0, 1]V to the cavity recursion at zero temperature on the rooted tree (T, o), i.e. for any
solution (m′i)i∈V , we have m′i ≤ mi for all i ∈ V . Moreover, we have µ(T,o)({0}) = mo.

Hence as a direct consequence of Theorem 2.6, we get

Theorem 2.7. Let (Gn)n≥1 be a sequence of finite graphs with uniformly bounded degrees such that
Gn ; (G, o). Then we have FµG(z) = E(G,o) [xo(z)], where xo(z) is the value at the root o of the solution
of the cavity recursion on (To(G), o). Moreover, we have

lim
n→∞

ν(Gn)

n
=

1

2

(
1− E(G,o) [mo]

)
,

where mo is the value at the root o of the largest solution of the cavity recursion at zero temperature on
(To(G), o).

At this stage, the interest of this last theorem might not be apparent to the reader. In the next
section, we will use it to compute explicitly the limit of the matching number when the limiting tree has
the branching property. Of course, in the case where the limit of (Gn)n≥1 is concentrated on trees, we
have the following result:

Proposition 2.8. Let (Gn)n≥1 be a sequence of finite graphs with uniformly bounded degrees such that
Gn ; (T, o) where T is a tree. Then we have µT = ρT .
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2.6 Unimodular Galton-Watson trees and recursive distribu-
tional equations

In this section, we explain how recursions on trees automatically give rise to distributional fixed point
equations when specialized to Galton-Watson trees. Such equations are a common ingredient in the
objective method, see [6].

As explained in Section 2.4, a measure concentrated on trees arising as the local weak limit of some
sequence of finite graphs (i.e. a sofic measure) needs to be unimodular. Hence, we first need to define a
unimodular version of family trees of Galton-Watson branching processes.

Unimodular Galton-Watson trees. Let p = {pr}r≥0 be a probability distribution on N with non-
zero finite mean, and let p̂ = {p̂r}r≥0 denote its size-biased version:

p̂r =
(r + 1)pr+1∑

k kpk
(r ∈ N) (2.11)

A unimodular Galton-Watson tree with degree distribution p is a random rooted tree (T, o) obtained by
a Galton-Watson branching process where the root has offspring distribution p and all its descendants
have offspring distribution p̂. The law of (T, o) is unimodular, and is denoted by ugwt(p). Such trees
play a distinguished role as they are the local weak limits of many natural sequences of random graphs,
including those produced by the configuration model described in previous chapter.

Note that there are other unimodular probability measures supported on rooted trees for which the
computations described below are still tractable, for example the skeleton tree [6] or bipartite versions of
unimodular Galton-Watson trees [70]. We also note that all unimodular probability measures supported
on rooted trees with maximum degree less than d ≥ 2 are sofic, see [48].

Owing to the Markovian nature of the branching process, the set of equations (2.10) takes the much
simpler form of a recursive distributional equations (RDE), which we now make explicit. We denote
P(N) (resp., P([0, 1])) the space of probability distributions on N ([0, 1], resp.). Given p,p′ ∈ P(N) and
ν ∈ P([0, 1]), we denote by Θp,p′(ν) the distribution of the [0, 1]-valued r.v.

Y =
1

1 +
∑N
i=1(

∑N ′i
j=1Xij)−1

, (2.12)

where N ∼ p, N ′i ∼ p′ and Xij ∼ ν, all of them being independent. With this notation in hands,
Theorem 2.6 clearly implies the following.

Corollary 2.9. Let d ≥ 2. Assume (T, o) ∼ ugwt(p) with pi = 0 for i ≥ d. The random variable
µ(T,o)({0}) has distribution Θp,p̂(ν), where ν ∈ P([0, 1]) is the largest solution to the RDE

ν = Θp̂,p̂(ν). (2.13)

In the above sentence, the word largest refers to the usual stochastic order on P([0, 1]): ν1 ≤ ν2 if for
any continuous function ϕ : [0, 1]→ R,∫

[0,1]

ϕdν1 ≤
∫

[0,1]

ϕdν2.

We now solve explicitly the distributional fixed point equation (2.13). We assume that p0 + p1 < 1,
otherwise p̂0 = 1 and the only solution to (2.13) is clearly ν = δ1. Let φ(x) =

∑
r≥0 prx

r be the
generating function of p and for any x ∈ [0, 1], we define:

M(x) = φ′(1)xx+ φ(1− x) + φ(1− x)− 1 where, x =
φ′(1− x)

φ′(1)
. (2.14)

First observe that M ′(x) = φ′′(1 − x)(x − x), and therefore any x ∈ [0, 1] where M admits a local
extrema must satisfy x = x. We will say thatM admits a historical record at x if x = x and M(x) > M(y)
for any 0 ≤ y < x. Since [0, 1] is compact and M is analytic, there are only finitely many such records.
In fact, they are in one-to-one correspondence with the solutions to the RDE (2.13).
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Theorem 2.10. If x1 < · · · < xr are the locations of the historical records of M , then the RDE (2.13)
admits exactly r solutions; moreover, these solutions can be stochastically ordered, say ν1 < · · · < νr,
and for any i ∈ {1, . . . , r}:

(i) νi({0}) = 1− xi;

(ii) Θp,p̂(νi) has mean M(xi).

In particular, E(T,o)[µ(T,o)({0})] = maxx∈[0,1]M(x).

We can now summarize our results as follows:

Theorem 2.11. Let (Gn)n≥1 be a sequence of finite graphs with uniformly bounded degrees such that
Gn ; (T, o) with (T, o) ∼ ugwt(p) for a certain p ∈ P(N). We have

lim
n→∞

µGn({0}) = max
x∈[0,1]

M(x)

lim
n→∞

ν(Gn)

n
=

1−maxx∈[0,1]M(x)

2
,

where M(x) is defined in (2.14).

In [29]1 and [30], it is shown how to relax the assumption of uniformly bounded degree to the weaker
assumption that p has a finite second moment.

So far, we stated our results for a sequence of deterministic graphs but it is easy to extend them
to random graphs introduced in Section 1.1 of the previous chapter. Under the assumption that the
degree sequence d satisfies Condition 1 with limiting distribution p, the local weak limit of G(n,d) (or
G∗(n,d)) is ugwt(p) almost-surely, see [26]. Hence, we can now summarize our previous results in
this setting in the following theorem. Note that so far, we only considered sequence of finite graphs
with uniformly bounded degrees but in the setting of random graphs, this assumption can be relaxed to∑
i∈[n] d

2
i = O(n) which is exactly Condition 1 (iii).

Theorem 2.12. Let G(n,d) be a sequence of random graphs for a sequence d satisfying Condition 1
with limiting distribution p. Let (T, o) ∼ ugwt(p) and µT = E(T,o)[µ(T,o)]. Then we have as n→∞,

µGn ⇒ µT , a.s.

ρGn ⇒ µT , a.s.

1

n
lnPGn(z) → 1

2

∫
R

ln(1 + zλ2)dµT (λ), a.s.

1

n
νz(Gn) → 1

2

∫
R

zλ2

1 + zλ2
dµT (λ), a.s.

1

n
ν(Gn) →

1−maxx∈[0,1]M(x)

2
, a.s.

where M(x) is defined in (2.14).

2.7 Extensions

In previous sections, we put emphasis on the matching measure and in this approach, Heilmann-Lieb
Theorem 2.1 is crucial. This theorem does not extend to the other combinatorial optimization problems
that we will discuss now [97]. However, using a slightly different approach, we now show that most of
previous results extend to a much more general setting.

Let start with a finite graph G with a distinguished root o. We define the root exposure probability

ro(z) = PG−o(z)
PG(z) where G − o is the graph obtained from G by removing vertex o (and all its incident

edges). We see that for z > 0, ro(z) is the probability for the root o to be exposed (i.e., such that∑
e∈∂oBe = 0) in a random matching B sampled according to the Gibbs distribution µzG defined by

1The result in [29] is weaker than Theorem 2.11 because we were not aware of Lück’s approximation, see Section 2.5 in
[27] for completeness.
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(2.4). A simple calculation shows that this root exposure probability can be expressed as a function of
the Borel-Stieltjes transform of µ(To(G),o) as follows:

ro(z) = −
√
−1√
z
Fµ(To(G),o)

(√
−1√
z

)
. (2.15)

In particular, instead of focusing on the matching measure and its Borel-Stieljes transform, we could
have obtained the results concerning the convergence of the various quantities 1

n lnPGn(z), 1
nν

z(Gn) or
1
nν(Gn) in term of the root exposure probability which satisfies now the local equations for z > 0:

ri(z) =
1

1 + z
∑
j→i rj(z)

.

These equations can be obtained by doing the appropriate change of variables to translate results from
Fµ(To(G),o)

to ro(z) as defined by (2.15) in (2.9). This is the approach followed in [30].
This approach is slightly modified in [71] by focusing on the probability for an edge to be covered

(instead of the vertex exposure probability). Of course, this is essentially similar but it allows to extend
easily to the problem of spanning subgraphs with degree constraints [88], [70] and to c-capacited b-
matching in [67]. Note however, that in all these works, the existence and uniqueness of a solution to the
cavity recursion relies heavily on the assumption that (G, o) is unimodular (which is not required for the
monomer-dimer problem as seen in Theorem 2.5). Finally, recently I explored the algorithmic aspects of
this line of work. In [73], we develop a sublinear-time algorithm for estimating lnPG(z) at an arbitrary
value z > 0 within additive error εn with high probability. In [72], I present an iterative loopy annealing
message passing algorithm which is shown to converge and to solve a Linear Programming relaxation of
the vertex cover or matching problem on general graphs.
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Chapter 3

Statistics in high dimension

This chapter is made of two independent parts. The first part follows closely my joint work with Mohsen
Bayati and Andrea Montanari on high-dimensional geometry [14]. This work is a good illustration of
the fruitful dialog between applied and theoretical scientific disciplines. The second part presents my
joint work with Laurent Massoulié and Jiaming Xu about community detection [68]. This work started
our collaboration in a relatively new field for the three of us. We raised very interesting open questions
in [68]. We are still actively working on these questions and we hope to give rigorous answers in a near
future!

3.1 Compressed sensing and the geometry of random polytope
in high-dimension

Let A ∈ RN×N be a random Wigner matrix, i.e. a symmetric random matrix with i.i.d. entries
Aij satisfying E{Aij} = 0 and E{A2

ij} = 1/N . Considerable effort has been devoted to studying the
distribution of the eigenvalues of such a matrix [11, 12, 93]. The universality phenomenon is a striking
recurring theme in these studies. Roughly speaking, many asymptotic properties of the joint eigenvalues
distribution are independent of the entries distribution as long as the latter has the prescribed first
two moments, and satisfies certain tail conditions. We refer to [11, 12, 93] and references therein for a
selection of such results. Universality is extremely useful because it allows to compute asymptotics for
one entries distribution (typically, for Gaussian entries) and then export the results to a broad class of
distributions.

In this paper we are concerned with random matrix universality, albeit we do not focus on eigenvalues
properties. Given A ∈ RN×N , and an initial condition x0 ∈ RN independent of A, we consider the
sequence (xt)t≥0 t ∈ N defined by letting, for t ≥ 0,

xt+1 = Af(xt; t)− bt f(xt−1; t− 1) , bt ≡
1

N
div(f(x; t))

∣∣
x=xt

, (3.1)

where, by convention, b0 = 0. Here for each t ≥ 0, f( · ; t) : RN → RN is a separable function,
i.e. f(z; t) = (f1(z1; t), . . . , fN (zN ; t)). We also assume that the functions fi( · ; t) : R → R are
polynomials of bounded degree. In addition, div denotes the divergence operator, and in particular,
bt = N−1

∑N
i=1 f

′
i(x

t
i; t).

The present paper is concerned with the asymptotic distribution of xt as N → ∞ with t fixed, and
establishes the following results:

Universality. As N →∞, the finite-dimensional marginals of the distribution of xt are asymptotically
insensitive to the distribution of the entries of Aij .

State evolution. The entries of xt are asymptotically Gaussian with zero mean, and variance that can
be explicitly computed through a one-dimensional recursion, that we will refer to as state evolution

Phase transitions in polytope geometry. As an application, we use state evolution to prove uni-
versality of a phase transition on polytope geometry, with connections to compressed sensing. This
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solves –for a broad class of random matrices with independent entries– a conjecture put forward
by David Donoho and Jared Tanner in [37, 43].

In order to illustrate the usefulness of the first two technical results, we will start the presentation of our
results from the third one.

Before stating our results, it is useful to comment on the special form of the iteration (3.1), and in
particular on the role of the memory term bt f(xt−1; t−1) (which is inspired from the so-called ‘Onsager
correction’ in statistical physics [94, 78, 25]). The function of this term is to cancel, to leading order, the
correlations between xt+1

i and {xsi : s ≤ t}. This cancellation is particularly transparent in our proof
technique (see [14]), whereby xti is expressed as a sum of monomials in Ajk, with 1 ≤ j, k ≤ n, and is
indexed by labeled trees. The memory term effectively cancels the contribution of ‘one-step reversing’
trees. We illustrate this idea on a simple example in Section 3.1.4

Without such memory term, the properties of the resulting iteration change crucially. In particular, it
is no longer true that xti is approximately Gaussian as N →∞ (see section 3.1.4 for further clarification
on this point).

3.1.1 Universality of polytope neighborliness

In this work, we only consider convex polytopes. A polytope Q is said to be centrosymmetric if x ∈ Q
implies −x ∈ Q. Following [37, 38] we say that such a polytope is k-neighborly if the condition below
holds:

(I) Every subset of k vertices of Q which does not contain an antipodal pair, spans a (k−1) dimensional
face.

The neighborliness of Q is the largest value of k for which this condition holds. The prototype of
neighborly polytope is the `1 ball also called the cross-polytope Cn ≡ {x ∈ Rn : ‖x‖1 ≤ 1}, whose
neighborliness is indeed equal to n.

It was shown in a series of papers [38, 37, 41, 40, 42] that polytope neighborliness has tight connections
with the geometric properties of random point clouds, and with sparsity-seeking methods to solve under-
determined systems of linear equations. The latter are in turn central in a number of applied domains,
including model selection for data analysis and compressed sensing. For the reader’s convenience, these
connections will be briefly reviewed in Section 3.1.5.

Intuitive images of low-dimensional polytopes suggest that ‘typical’ polytopes are not neighborly:
already selecting k = 2 vertices, does lead to a segment that connects them and passes through the interior
of Q. This conclusion is spectacularly wrong in high dimension. Natural random constructions lead to
polytopes whose neighborliness scales linearly in the dimension. Motivated by the above applications,
and following [38, 37, 41, 40], we focus here on a weaker notion of neighborliness. Roughly speaking, this
corresponds to the largest k such that most subsets of k vertices of Q span a (k − 1)-dimensional face.
In order to formalize this notion, we denote by F(Q; `) the number of b`c-dimensional faces of Q. Note
in particular that for ` ∈ N, we have F(Cn; `) = 2`+1

(
n
`+1

)
which is the maximum possible number of `

faces for a centrosymmetric polytope with 2n vertices.

Definition 1. Let Q = {Qn}n≥0 be a sequence of centrosymmetric polytopes indexed by n where Qn has
2n vertices and has dimension m = m(n): Qn ⊆ Rm. We say that Q has weak neighborliness ρ ∈ (0, 1)
if for any ξ > 0,

lim
n→∞

F(Qn;m(n)ρ(1− ξ))
F(Cn;m(n)ρ(1− ξ))

= 1,

lim
n→∞

F(Qn;m(n)ρ(1 + ξ))

F(Cn;m(n)ρ(1 + ξ))
= 0 .

If the sequence Q is random, we say that Q has weak neighborliness ρ (in probability) if the above limits
hold in probability.

In other words, a sequence of polytopes {Qn}n≥0 has weak neighborliness ρ, if for large n the m
dimensional polytope Qn has close to the maximum possible number of k faces, for all k < mρ(1− ξ).

The existence of weakly neighborly polytope sequences is clear when m(n) = n since in this case we
can take Qn = Cn with ρ = 1, but the existence is highly non-trivial when m is only a fraction of n.
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It comes indeed as a surprise that this is a generic situation as demonstrated by the following con-
struction. For a matrix A ∈ Rm×n, and S ⊆ Rn, let AS ≡ {Ax ∈ Rm : x ∈ S}. In particular, ACn

is the centrosymmetric m-dimensional polytope obtained by projecting the n-dimensional `1 ball to m
dimensions. The following result was proved in [37].

Theorem 3.1 (Donoho, 2005). There exists a function ρ∗ : (0, 1)→ (0, 1) such that the following holds.
Fix δ ∈ (0, 1). For each n ∈ N, let m(n) = bnδc and define A(n) ∈ Rm(n)×n to be a random matrix with
i.i.d. Gaussian entries.

Then, the sequence of polytopes {A(n)Cn}n≥0 has weak neighborliness ρ∗(δ) in probability.

A characterization of the curve δ 7→ ρ∗(δ) was provided in [37], but we omit it here since a more
explicit expression will be given below.

The proof of Theorem 3.1 is based on exact expressions for the number of faces F(A(n)Cn; `). These
are in turn derived from earlier works in polytope geometry by Affentranger and Schneider [4] and
by Vershik and Sporyshev [96]. This approach relies in a fundamental way on the invariance of the
distribution of A(n) under rotations.

Motivated by applications to data analysis and signal processing, Donoho and Tanner [43] carried
out extensive numerical simulations for random polytopes of the form A(n)Cn for several choices of the
distribution of A(n). They formulated a universality hypothesis according to which the conclusion of
Theorem 3.1 holds for a far broader class of random matrices. The results of their numerical simulations
were consistent with this hypothesis.

In [14], we establish the first rigorous result indicating universality of polytope neighborliness for a
broad class of random matrices. Define the curve (δ, ρ∗(δ)), δ ∈ (0, 1), parametrically by letting, for
α ∈ (0,∞):

δ =
2φ(α)

α+ 2(φ(α)− αΦ(−α))
, (3.2)

ρ = 1− αΦ(−α)

φ(α)
, (3.3)

where φ(z) = e−z
2/2/
√

2π is the Gaussian density and Φ(x) ≡
∫ x
−∞ φ(z) dz is the Gaussian distribution.

Explicitly, if the above functions on the right-hand side of Eqs. (3.2), (3.3) are denoted by fδ(α), fρ(α),
then1 ρ∗(δ) ≡ fρ(f−1

δ (δ)).

Here we extend the scope of Theorem 3.1 from Gaussian matrices to matrices with independent
subgaussian2 entries (not necessarily identically distributed).

Theorem 3.2. Fix δ ∈ (0, 1). For each n ∈ N, let m(n) = bnδc and define A(n) ∈ Rm(n)×n to be a
random matrix with independent subgaussian entries, with zero mean, unit variance, and common scale
factor s independent of n. Further assume Aij(n) = Ãij(n) + ν0Gij(n) where ν0 > 0 is a constant
independent of n and {Gij(n)}i∈[m],j∈[n] is a collection of i.i.d. N(0, 1) random variables independent of

Ã(n).

Then the sequence of polytopes {A(n)Cn}n≥0 has weak neighborliness ρ∗(δ) in probability.

It is likely that this theorem can be improved in two directions. First, a milder tail condition than
subgaussianity is probably sufficient. Second, we are assuming that the distribution of Aij has an
arbitrarily small Gaussian component. This is not necessary for the upper bound on neighborliness, and
appears to be an artifact of the proof of the lower bound.

By comparison, the most closely related result towards universality is by Adamczak, Litvak, Pajor,
and Tomczak-Jaegermann [3]. For a class of matrices A(n) with i.i.d. columns, these authors prove that
A(n)Cn has neighborliness scaling linearly with n. This however does not suggest that a limit weak
neighborliness exists, and is universal, as established instead in Theorem 3.2.

At the other extreme, universality of compressed sensing phase transitions can be conjectured from
the results of the non-rigorous replica method [64, 83].

1It is easy to show that fδ(α) is strictly decreasing in α ∈ [0,∞), with fδ(0) = 1, limα→∞ fδ(α) = 0, and hence f−1
δ is

well defined on [0, 1]. Further properties of this curve can be found in [39, 46].
2See Eq. (3.7) for the definition of subgaussian random variables.
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3.1.2 Universality of iterative algorithms

We will consider here and below a setting that is somewhat more general than the one described by
Eq. (3.1). Following the terminology of [39], we will refer to such an iteration as to the approximate
message passing (AMP) iteration/algorithm.

We generalize the iteration (3.1) to take place in the vector space Vq,N ≡ (Rq)N ' RN×q. Given a
vector x ∈ Vq,N , we shall most often regard it as an N -vector with entries in Rq, namely x = (x1, . . . ,xN ),
with xi ∈ Rq. Components of xi ∈ Rq will be indicated as (xi(1), . . . , xi(q)) ≡ xi.

There are several motivations for considering such a generalization. On one hand, it is necessary for
the application to high-dimensional polytope geometry presented in the previous section. The reader
might have noticed that the random matrix in Theorem 3.2 is rectangular. This is a different setting from
the one of iteration (3.1), whereby the random matrix A is square and symmetric. The generalization
to x ∈ Vq,N introduced here, with A square and symmetric, covers the case of rectangular matrices as
well through a suitable reduction. In a nutshell, given a rectangular random matrix A′, the reduction
consists in constructing a symmetric matrix that has A′ as submatrix.

Additional motivations for the generalization introduced here come from the application of AMP
algorithms to a variety of problems in signal processing. For instance [66, 44] study compressed sensing
reconstruction for ‘spatially coupled’ sensing matrices. These are random matrices with independent but
not identically distributed entries. As already discussed in [44, 62] for the case of Gaussian entries, a
rigorous analysis of this algorithm requires generalizing the setting of (3.1).

Several other applications require a generalization of the iteration (3.1), including the analysis of
generalized AMP algorithms [82], AMP reconstruction of block-sparse signals [45], the analysis of phase
retrieval algorithms [90] and so on. All of these applications can be treated within the setting introduced
here, although our rigorous analysis requires the use of polynomial non-linearities.

A brief sketch of some proof ideas for the ‘scalar’ case of Eq. (3.1) can be found in Section 3.1.4.

Given a matrix A ∈ RN×N , we let it act on Vq,N in the natural way, namely for v′, v ∈ Vq,N letting

v′ = Av be given by v′i =
∑N
j=1Aijvj for all i ∈ [N ], i.e. v′i(`) =

∑N
j=1Aijvj(`). Here and below

[N ] ≡ {1, . . . , N} is the set of first N integers. In other words we identify A with the Kronecker product
A⊗ Iq×q.

Definition 2. An AMP instance is a triple (A,F , x0) where:

1. A ∈ RN×N is a symmetric matrix with Ai,i = 0 for all i ∈ [N ].

2. F = {fk : k ∈ [N ]} is a collection of mappings fk : Rq ×N→ Rq, (x, t) 7→ fk(x, t) that are locally
Lipschitz in their first argument;

3. x0 ∈ Vq,N is an initial condition.

Given F = {fk : k ∈ [N ]}, we define f( · ; t) : Vq,N → Vq,N that maps v to v′ = f(v; t), and is given by
v′i = f i(vi; t) for all i ∈ [N ].

Definition 3. The approximate message passing orbit corresponding to the instance (A,F , x0) is the
sequence of vectors {xt}t≥0, xt ∈ Vq,N defined as follows, for t ≥ 0,

xt+1 = Af(xt; t)− Bt f(xt−1; t− 1) . (3.4)

Here Bt : Vq,N → Vq,N is the linear operator that maps v to v′ = Btv, and is defined by,

v′i =

∑
j∈[N ]

A2
ij

∂f j

∂x
(xtj , t)

vi , (3.5)

with ∂fj

∂x denoting the Jacobian matrix of f j( · ; t) : Rq → Rq.

The above definition can also be summarized by the following expression for the evolution of a single
coordinate under AMP

xt+1
i =

∑
j∈[N ]

Aijf
j(xtj , t)−

∑
j∈[N ]

A2
ij

∂f j

∂x
(xtj , t)f

i(xt−1
i , t− 1) . (3.6)
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Notice that Eq. (3.1) corresponds to the special case q = 1, in which we replaced A2
ij by E{A2

ij} = 1/N

for simplicity of exposition. The term Bt f(xt−1; t − 1) in Eq. (3.4) is the correct generalization of the
term bt f(xt−1; t − 1) introduced in the q = 1 case, cf. Eq. (3.1). Namely it cancels –to leading order–
the correlations between xt+1

i and {xsi , s ≤ t}.
Recall that a centered random variable X is subgaussian with scale factor σ2 if, for all λ > 0, we have

E
(
eλX

)
≤ eσ

2λ2

2 . (3.7)

Definition 4. Let {(A(N),FN , x0,N )}N≥1 be a sequence of AMP instances indexed by the dimension
N , with A(N) a random symmetric matrix and x0,N a random vector. For constants C, d (independent
of N), we say that the sequence is (C, d)-regular (or, for short, regular) polynomial sequence if

1. For each N , the entries (Aij(N))1≤i<j≤N are independent centered random variables. Further they
are subgaussian with common scale factor C/N (see Eq. (3.7)).

2. For each N , the functions f i( · ; t) in FN (possibly random, as long as they are independent from
A(N), x0,N ) are polynomials with maximum degree d and coefficients bounded by C.

3. For each N , A(N) and x0,N are independent. Further, we have
∑N
i=1 exp{‖x0,N

i ‖22/C} ≤ NC with
probability converging to one as N →∞.

We state now our universality result for the algorithm (3.4).

Theorem 3.3. Let (A(N),FN , x0,N )N≥1 and (Ã(N),FN , x0,N )N≥1 be any two (C, d)-regular polynomial

sequences of instances, that differ only in the distribution of the random matrices A(N) and Ã(N).
Denote by {xt}t≥0, {x̃t}t≥0 the corresponding AMP orbits. Assume further that for all N and all

i < j, E{A2
ij} = E{Ã2

ij}. Then, for any set of polynomials {pN,i}N≥0,1≤i≤N pN,i : Rq → R, with degree
bounded by d and coefficients bounded by a constant B for all N and i ∈ [N ], we have

lim
N→∞

1

N

N∑
i=1

{
EpN,i(xti)− EpN,i(x̃ti)

}
= 0 . (3.8)

3.1.3 State evolution

Theorem 3.3 establishes that the behavior of the sequence {xt}t≥0 is, in the high dimensional limit,
insensitive to the distribution of the entries of the random matrix A. In order to characterize this limit,
we need to make some assumption on the collection of functions FN . In particular, we need to relate
the functions FN to the functions FN ′ in order to have a high-dimensional (N →∞) limit.

Informally, we define a converging sequence by requiring that for each N there exists a partition
[N ] = CN1 ∪CN2 ∪ · · ·∪CNk (with k a fixed integer independent of N), and independent random variables
Y (i) taking values in Rq̃, indexed by i ∈ [N ], such that:

• The function f i only depends on the partition index of i ∈ [N ], and on the value of Y (i).

• The distribution of Y (i) only depends on the partition index of i ∈ [N ].

• The fractional size |CNa |/N is N -independent for large N .

There are a few points to make precise, and this is done in the definition below.

Definition 5. We say that the sequence of AMP instances {(A(N),FN , x0,N )}N≥0 is polynomial and
converging (or simply converging) if it is (C, d)-regular and there exists: (i) An integer k; (ii) A sym-
metric matrix W ∈ Rk×k with non-negative entries; (iii) A function g : Rq × Rq̃ × [k] × N → Rq,
with g(x, Y, a, t) = (g1(x, Y, a, t), . . . , gq(x, Y, a, t)) and, for each r ∈ [q], a ∈ [k], t ∈ N, gr( · , Y, a, t) a
polynomial with degree d and coefficients bounded by C; (iv) k probability measures P1, . . . , Pk on Rq̃,
with Pa a finite mixture of (possibly degenerate) Gaussians for each a ∈ [k]; (v) For each N , a finite

partition CN1 ∪ CN2 ∪ · · · ∪ CNk = [N ]; (vi) k positive semidefinite matrices Σ̂0
1,. . . Σ̂0

k ∈ Rq×q, such that
the following happens.

1. For each a ∈ [k], we have limN→∞ |CNa |/N = ca ∈ (0, 1).
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2. For each N ≥ 0, each a ∈ [k] and each i ∈ CNa , we have f i(x, t) = g(x, Y (i), a, t) where
Y (1), . . . , Y (N) are independent random variables with Y (i) ∼ Pa whenever i ∈ CNa for some
a ∈ [k].

3. For each N , the entries {Aij(N)}1≤i<j≤N are independent subgaussian random variables with scale
factor C/N , EAij = 0, and, for i ∈ CNa and j ∈ CNb , E{A2

ij} = Wab/N .

4. For each a ∈ [k], in probability,

lim
N→∞

1

|CNa |
∑
i∈CNa

g
(
x0
i , Y (i), a, 0

)
g
(
x0
i , Y (i), a, 0

)T
= Σ̂0

a . (3.9)

With a slight abuse of notation, we will sometimes denote a converging sequence by {(A(N), g, x0,N )}N≥0.
We use capital letters to denote the Y (i)’s to emphasize that they are random and do not change across
iterations.

Our next result establishes that the low-dimensional marginals of {xt} are asymptotically Gaussian.
State evolution characterizes the covariance of these marginals. For each t ≥ 1, state evolution defines
a set of k positive semidefinite matrices Σt = (Σt1,Σ

t
2, . . . ,Σ

t
k), with Σta ∈ Rq×q. These are obtained by

letting, for each t ≥ 1

Σta =

k∑
b=1

cbWab Σ̂t−1
b (3.10)

Σ̂ta = E
{
g(Zta, Ya, a, t)g(Zta, Ya, a, t)

T
}
, (3.11)

for all a ∈ [k]. Here Ya ∼ Pa, Zta ∼ N (0,Σta) and Ya and Zta are independent.

Theorem 3.4. Let (A(N),FN , x0)N≥0 be a polynomial and converging sequence of AMP instances, and
denote by {xt}t≥0 the corresponding AMP sequence. Then for each t ≥ 1, each a ∈ [k], and each locally
Lipschitz function ψ : Rq × Rq̃ → R such that |ψ(x, y)| ≤ K(1 + ‖y‖22 + ‖x‖22)K , we have, in probability,

lim
N→∞

1

|CNa |
∑
j∈CNa

ψ(xtj , Y (i)) = E{ψ(Za, Ya)} , (3.12)

where Za ∼ N(0,Σta) is independent of Ya ∼ Pa.

We conclude by mentioning that, following [39], generalizations of the algorithm (3.4) were studied
by several groups [89, 82, 74], for a number of applications. Universality results analogous to the one
proved here are expected to hold for such generalizations as well.

3.1.4 Universality of iterative algorithms: Sketch of main ideas

In this section we sketch some key ideas in the proof of Theorems 3.3 and 3.4. For the sake of clarity, we
shall focus on the special scalar recursion (3.1) with f(x; t) = f(x) kept constant across iterations and
(Aij)i<j independent centered subgaussian, with E{A2

ij} = 1/N . As in the statement of Theorem 3.3
and 3.4, we further assume that f( · ) is separable and polynomial. Finally, we shall only consider the
initial condition x0 = 1 (the all-ones vector). While this setting is significantly more restrictive than the
one of Theorems 3.3 and 3.4, it is sufficient to elucidate all the main ideas.

In order to clarify the role of the memory term in Eq. (3.1), it is instructive to first consider the case
k = 1, f(x) equal to the identity function i.e. f(x) = ((x1), (x2), . . . , (xn)), and drop the memory term,
thus defining the sequence x̄t ∈ RN by

x̄t+1 = A x̄t . (3.13)

Let us focus on –say– coordinate 1 of x̄t. An explicit calculation yields (recall that, by convention,
Aii = 0)

x̄1
1 =

∑
i∈[N ]

A1i , (3.14)

x̄2
1 =

∑
i∈[N ]

∑
j∈[N ]

A1iAij =
∑
i∈[N ]

A2
1i +

∑
i∈[N ]

∑
j∈[N ]\1

A1iAij . (3.15)
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Figure 3.1: Graphical representation of a term in Eq. (3.18).

Consider first t = 1. Under our assumptions, x̄1
1 is a sum of i.i.d. random variables with mean 0 and

variance 1/N . By the central limit theorem, it converges in distribution to a standard Gaussian random
variable, as predicted by Theorem 3.4.

Consider next t = 2. In Eq. (3.15) we decomposed the sum over {i, j} in a sum over terms with
j = 1, and a sum over terms with j 6= 1. The first sum

∑
i∈[N ]A

2
1i converges almost surely to 1 by the

law of large numbers. It is easy to see that the second sum has expectation equal to zero and variance
equal to (N − 1)/N that converges to 1. Indeed, a slightly more complicated calculation shows that it
converges to a standard Gaussian. Overall, x̄2

1 converges in distribution to a Gaussian with mean 1 and
variance 1, unlike what is predicted by Theorem 3.4 for x2

1. (Theorem 3.4 always predicts xti to have
asymptotically zero mean.)

Notice that the terms in the sum (3.15) are indexed by an ordered triple (1, i, j) with i, j ∈ [N ], 1 6= i,
i 6= j. We can identify such a triple with a length 2 rooted (directed acyclic) path with vertices labeled
by 1 (the root), i, j: 1 → i → j. The terms that lead to a non-zero mean are those corresponding to
j = 1, i.e. with a one-step reversal in the order in which they visit labels of [N ]. These are paths of the
form 1→ i→ 1.

Consider now adding back the memory term bt f(xt−1; t− 1). It is easy to check that, in the present
case (namely f(x; t) = x), Eq. (3.1) reduces to xt+1 = Axt − xt−1 and, in particular

x2 = A21− 1 .

Comparing with Eq. (3.15), we see that the memory term asymptotically cancels the effect of one-step
reversing paths. The same analysis can be developed, with additional labor, to subsequent iterations.
At each t, the memory term cancels the effect of one-step reversing paths, and the residual terms match
the prediction of Theorem 3.4.

The proof follows a similar argument for a general polynomial f(x). As in the linear case, each
coordinate xti can be expressed as a sum of monomials in the independent random variables (Aij)i<j .
The main difference is that now these monomials are indexed by rooted trees instead of rooted paths
with vertex labels in [N ]. To see this, consider the special case

f(x) = ((x1)3, (x2)3, . . . , (xn)3) . (3.16)

Then, a direct calculation of iteration (3.1) yields

x1
1 =

∑
i∈[N ]

A1i , (3.17)

x2
1 =

∑
i∈[N ]

∑
j,k,l∈[N ]

A1iAijAikAil − b1 , b1 =
1

N

∑
i∈[N ]

3
( ∑
j∈[N ]

Aij

)2

. (3.18)

The monomials in the sum appearing in the expression for x2
1 in Eq. (3.18) can be associated to rooted

directed trees as per Fig. 3.1. In this simple example it is easy to check that the memory term exactly
cancels the contribution of one-step reversing trees, i.e. the terms in the sum with labels j = 1, or k = 1,
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or l = 1. The other terms in the sum correspond to non-reversing trees and their total contribution is
asymptotically Gaussian with mean 0 and variance as predicted3 by state evolution, Eq. (3.10). Since
this sum is a polynomial in the independent random variables (Aij)i<j , the method of moments provides
a natural path to prove the last statement.

3.1.5 Proof of universality of polytope neighborliness

In this section we show how previous results allow us to prove Theorem 3.2. The approach we will
follow is based on the equivalence between weak neighborliness and compressed sensing reconstruction
developed in [38, 37, 41, 40]. Within compressed sensing, one considers the problem of reconstructing a
vector x ∈ Rn from a vector of linear ‘observations’ y = Ax with y ∈ Rm and m ≤ n. The measurement
matrix A ∈ Rm×n is assumed to be known. When m ≤ n, the problem is ill-posed because the system
At = y is highly under-determined. Thus to recover x, we need some information on its nature. The a
priori hypothesis that we investigate is sparsity.

For x = (x1, . . . , xn) ∈ Rn, we denote supp(x) = {i, 1 ≤ i ≤ n, xi 6= 0} the support of x. A vector
x is said to be k-sparse if |supp(x)| ≤ k. We denote by Σk the set of k-sparse vectors in Rn. The exact
reconstruction problem is then to reconstruct exactly any k-sparse vector x ∈ Σk from the given data
y = Ax.

An interesting approach towards reconstructing x from the linear observations y consists in solving
a convex program:

x̂(y) = arg min
{
‖t‖1 such that t ∈ Rn , y = At ,

}
. (3.19)

One says that the matrix A has the exact reconstruction property of order k by `1-minimization if for
every x ∈ Σk, the problem mint∈Rn ‖t‖1 subject to At = Ax has a unique solution equal to x. Donoho
in [38] proved the following remarkable result :

Proposition 3.5. Let A be an m × n matrix with columns X1, . . . , Xn ∈ Rm. The matrix A has the
exact reconstruction property of order k by `1-minimization iff its columns ±X1, . . . ,±Xn are the 2n
vertices of ACn and ACn is centrosymmetric k-neighborly.

More precisely, he observed that if A and x are such that the arg min in (3.19) is uniquely defined
and x̂(y) = x, then this will still be true for any x′ with supp(x′) = supp(x). Hence for a given matrix
A, the success of `1 minimization only depends on supp(x). Moreover the success of `1 minimization can
be read from the geometry of the polytope P = ACn if it has 2n vertices. In this case, `1 minimization
will succeed for I = supp(x) iff the polytope PI = P ∩ Span(Xi, i ∈ I) is a cross-polytope. In view of
this result, Theorem 3.2 follows from the following result on compressed sensing with random sensing
matrices.

Theorem 3.6. Fix δ ∈ (0, 1). For each n ∈ N, let m(n) = bnδc and define A(n) ∈ Rm(n)×n to
be a random matrix with independent subgaussian entries, with mean 0, variance 1/m, and common
scale factor s/m. Further assume Aij(n) = Ãij(n) + ν0Gij(n) where ν0 > 0 is independent of n and

{Gij(n)}i∈[m],j∈[n] is a collection of i.i.d. N(0, 1/m) random variables independent of Ã(n). Assume
that the matrix A(n) has independent but not identically distributed entries. The vectors x0(n) have
i.i.d. entries independent of A(n), with P{x0,i(n) 6= 0} = ρδ. Then the following holds. If ρ < ρ∗(δ)
then `1 minimization succeeds with high probability. Viceversa, if ρ > ρ∗(δ), then `1 minimization fails
with high probability. (Here probability is with respect to the realization of the random matrix A(n) and
x0(n).)

Notice that these matrices differ by a factor 1/
√
m from the matrices in the statement of Theorem 3.2.

Since neighborliness is invariant under scale transformations, this change is immaterial. Let us now turn
to the proof of Theorem 3.6. The following Lemma provides a useful sufficient condition for successful
reconstruction. Here and below, for a convex function F : Rq → R, ∂F (x) denotes the subgradient of
F at x ∈ Rq. In particular ∂‖x‖1 denotes the subgradient of the `1 norm at x. Further, for R ⊆ [n],
AR denotes the submatrix of A formed by columns with index in R. The singular values of a matrix
M ∈ Rd1×d2 are denoted by σmax(M) ≡ σ1(M) ≥ σ2(M) ≥ · · · ≥ σmin(d1,d2)(M) ≡ σmin(M).

3In the present case, since q = k = 1, state evolution is a recursion for the single scalar Σt. We have Σ1 = 1,
Σ2 = E{g(Z1)2} for Z1 ∼ N(0, 1) and g(x) = x3, whence Σ2 = 15.
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Lemma 1. For any c1, c2, c3 > 0, there exists ε0(c1, c2, c3) > 0 such that the following happens. If
x0 ∈ Rn, A ∈ Rm×n, y = Ax0 ∈ Rm, are such that

1. There exists v ∈ ∂‖x0‖1 and z ∈ Rm with v = ATz + w and ‖w‖2 ≤
√
n ε, with ε ≤ ε0(c1, c2, c3).

2. For c ∈ (0, 1), let S(c) ≡ {i ∈ [n] : |vi| ≥ 1− c}. Then, for any S′ ⊆ [n], |S′| ≤ c1n, the minimum
singular value of AS(c1)∪S′ satisfies σmin(AS(c1)∪S′) ≥ c2.

3. The maximum singular value of A satisfies c−1
3 ≤ σmax(A)2 ≤ c3.

Then x0 is the unique minimizer of ‖x‖1 over x ∈ Rn such that y = Ax.

The proof of Theorem 3.6 consists in two parts. For ρ > ρ∗(δ), we shall exhibit a vector x with
‖x‖1 < ‖x0‖1 and y = Ax. For ρ < ρ∗(δ) we will show that assumptions of Lemma 1 hold. In particular,
we will construct a subgradient v as per assumption 1. In both tasks, we will use an iterative message
passing algorithm analogous to the one in Section 3.1.2. The algorithm is defined by the following
recursion initialized with x0 = 0:

xt+1 = η(xt +ATzt;ασt) , (3.20)

zt = y −Axt + bt z
t−1 , (3.21)

where η(u; θ) = sign(u) (u− θ)+, α is a non-negative constant, and bt is a diagonal matrix whose precise
definition is immaterial here. Notice that the nonlinear mapping η( · ;ασt) is not a polynomial. This
point should be addressed by constructing suitable polynomial approximations of η. Note also, that the
matrix A is non-symmetric and we need to embed the rectangular matrix into a larger symmetric matrix
to apply our results about iterative algorithms (see Section 4 in [14]).

3.2 Community detection in the labeled stochastic block model

Community detection aims to identify underlying communities of similar characteristics in an overall
population from the observation of pairwise interactions between individuals [51]. The stochastic block
model, also known as planted partition model, is a popular random graph model for analyzing the com-
munity detection problem [86, 35], in which pairwise interactions are binary: an edge is either present
or absent between two individuals. In its simplest form, the stochastic block model consists of two
communities of approximately equal size, where the within-community edge is present at random with
probability p; while the across-community edge is present with probability q. If p > q, it corresponds to
assortative communities where interactions are more likely within rather than across communities; while
p < q corresponds to disassortative communities.

In practice, interactions can be of various types and these types reveal more information on the
underlying communities than the mere existence of the interaction itself. For example, in recommender
systems, interactions between users and items come with user ratings. Such ratings contain far more
information than the interaction itself to characterize the user and item types. Similarly, protein-protein
chemical interactions in biological networks can be exothermic and endothermic; email exchanges in
a club may be formal or informal; friendship in social networks may be strong or weak. The labeled
stochastic block model was recently proposed in [55] to capture rich interaction types. In this model
interaction types are described by labels drawn from an arbitrary collection. In particular, for the simple
two communities case, the within-community edge is labeled at random with distribution µ; while the
across-community edge is labeled with a different distribution ν. In this context an important question
is how to leverage the labeling information for detecting underlying communities.

3.2.1 Information-Scarce Regime

Here, we focus on the sparse labeled stochastic block model in which every node has a limited aver-
age degree. We will provide results for the two cases where either p, q = O(polylog(n)/n) or p, q =
O(1/n), where n is the number of nodes. It corresponds to the information-scarce regime where only
O(npolylog(n) or O(n) edges and labels are observed in total. This regime is of practical interest, aris-
ing in several contexts. For example, in recommender systems, users only give ratings to few items; in
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biological networks, only few protein-protein interactions are observed due to cost constraints; in social
networks, a person only has a limited number of friends.

For the stochastic block model in the regime p, q = O(1/n), there are Θ(n) isolated nodes, as in
Erdős-Rényi random graphs with bounded average degree. For these isolated nodes, it is impossible to
do better than a random guess and the probability to guess correctly their community membership is
1/2. In particular, exact reconstruction of communities is impossible. Therefore, we resort to finding a
partition into communities positively correlated to the true community partition (see Definition 6 below).

3.2.2 Main Results

Focusing on the two communities scenario, we show that a positively correlated reconstruction is fun-
damentally impossible when below a threshold. This establishes one half of the conjecture in [55]. In
the positive direction, we establish the following results. We introduce a graph weighted by a suitable
function of observed labels, on which we show that:

(1) Minimum bisection gives a positively correlated partition when above the threshold by a factor
of 32 ln 2.

(2) A spectral method combined with removal of nodes of high degree gives a positively correlated
partition when above the threshold by a constant factor.

3.2.3 Related Work

For the stochastic block model, most previous work focuses on the “dense” regime with an average degree
diverging as the size of the graph n grows and “exact” reconstruction, such as [47, 63, 34]. McSherry [76]
showed that the spectral method works as long as p− q ≥ Ω(

√
p log n/n) with average degree as low as

Ω(log6 n). Massoulié and Tomozei [75] reduced this lower bound on the average degree to Ω(log n). More
recently, it was shown in [31] that a matrix completion approach works when p − q ≥ Ω(r

√
p/n log2 n)

where the number of communities r could scale with n.

For the “sparse” regime with bounded average degrees, a sharp phase transition threshold for recon-
struction (as defined in Definition 6) is conjectured in [35] by analyzing the belief propagation algorithm.
The converse part of the conjecture was rigorously proved in [81]. In the converse direction, it is shown
in [33] that a variant of spectral method gives a positively correlated partition when above the threshold
by a large constant factor.

The labeled stochastic block was first proposed and studied in [55] and a new reconstruction threshold
that incorporates the extra labeling information was conjectured. Simulations further indicate that
the belief propagation algorithm works when above the threshold, but reconstruction algorithms that
provably work are still unknown.

3.2.4 Model and Notation

This section formally defines the labeled stochastic block model with two symmetric communities and
introduces the key notations and definitions used in the rest of this section.

The labeled stochastic block model G(n, p, q, µ, ν) is a random graph with n nodes of {±1} types and
{` ∈ L}-labeled edges, where L is a finite set of labels. To generate a particular realization (G,L, σ),
first assign type σu ∈ {±1} to each node u uniformly and independently at random. Then, for every
node pair (u, v), independently of everything else, draw an edge between u and v with probability p if
σu = σv and with probability q otherwise. Finally, each edge e = (u, v) is labeled as ` ∈ L independently
at random with probability µ(`) if σu = σv and with probability ν(`) otherwise.

When µ = ν, it reduces to the classical stochastic block model without labels. This paper focuses on
the sparse case where p = an/n and q = bn/n with max(an, bn) = o(n). If we write a, b instead of an
and bn, we implicitly assume that we are in the setting where a and b are fixed constants. The goal is to
reconstruct the true underlying types of nodes σ by observing the graph structure G and the labels on
edges L.

Our goal is to reconstruct a type assignment which is positively correlated to the true type assignment.
More formally, we adopt the following definition.
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Definition 6. A type assignment σ̂ is said to be correlated with the true type assignment σ if a.a.s.

1

n
min{d(σ, σ̂), d(σ,−σ̂)} < 1/2, (3.22)

where d is the Hamming distance.

The shorthand a.a.s. denotes asymptotically almost surely. A sequence of events An holds a.a.s. if
the probability of An converges to 1 as n→∞.

Define τ as

τ =
∑
`∈L

(aµ(`)− bν(`))
2

2 (aµ(`) + bν(`))
. (3.23)

It was conjectured in [55] that τ is the threshold for positively correlated reconstruction and more
precisely:

Conjecture 3.7. (i) If τ > 1, then it is possible to find a type assignment correlated with the true
assignment a.a.s.

(ii) If τ < 1, then it is not possible to find a type assignment correlated with the true assignment a.a.s.

In the sequel, we give a high-level view of the proof of (ii) and propose a simple spectral algorithm
able to find a type assignment correlated with the true assignment for τ large enough.

3.2.5 Minimum Bisection

To recover the community partition, a natural way is via maximum likelihood estimation, i.e., σ̂ =
arg maxσ logP(G,L|σ). The log-likelihood can be written as:

logP(G,L|σ) ∝
∑

(u,v)∈E(G)

log
aµ(Luv)

bν(Luv)
σuσv

+ log

(
1− a/n
1− b/n

) ∑
(u,v)/∈E(G)

σuσv

Using the constraint
∑
u σu = 0, maximum log likelihood estimation reduces to

max
σ

∑
(u,v)∈E(G)

(
log

aµ(Luv)

bν(Luv)
+ log

1− a/n
1− b/n

)
σuσv

s.t.
∑
u

σu = 0, σu ∈ {±1},

If we ignore the o(n) term in the sum above, this is equivalent to the minimum bisection on the weighted

graph with a specific weight function w(`) = log aµ(`)
bν(`) . For a general weighing function w : L → R, the

minimum bisection finds the balanced bipartite subgraph in G with the minimum weighted cut, i.e.,

min
σ

∑
(u,v):σu 6=σv

Wuv

s.t.
∑
u

σu = 0, σu ∈ {±1}, (3.24)

where Wuv = Auvw(Luv) and A is the adjacency matrix of G.

Theorem 3.8. Assume the technical condition:
∑
` aµ(`)w2(`),

∑
` bν(`)w2(`) > 8 ln 2. Then if

(
∑
`(aµ(`)− bν(`))w(`))

2∑
`(aµ(`) + bν(`))w2(`)

> 64 ln 2, (3.25)

solutions of the minimum bisection (3.24) are positively correlated to the true type assignment σ? a.a.s.

Moreover, the left hand side of (3.25) is maximized when w(`) = aµ(`)−bν(`)
aµ(`)+bν(`) , in which case (3.25) reduces

to τ > 32 ln 2.

Note that surprisingly, the weight function suggested by the maximum likelihood estimation is not
optimal.
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3.2.6 Spectral Method

The minimum bisection is NP-hard [52]. In this section, we present a simple spectral algorithm based
on the matrix W introduced above (see [32] for a similar approach in the unlabeled case). We show that
this algorithm finds an assignment correlated with the true assignment provided τ is large enough.

First note that we have E[W |σ] = α
n11> + β

nσσ
> − α+β

n I with

α =
1

2

∑
`

w(`)(aµ(`) + bν(`)),

β =
1

2

∑
`

w(`)(aµ(`)− bν(`)). (3.26)

The term α+β
n I is irrelevant to the main results (thanks to Weyl’s perturbation theorem) and neglected

for simplicity. Let D = W − α
n11> and then E[D|σ] = β

nσσ
> has rank one with singular value β.

Hence, it makes sense to define D̂ as the best rank-1 approximation of the matrix D. In other words, if
D =

∑
i vixiy

>
i is the singular value decomposition of D with singular values v1 ≥ v2 ≥ . . . , we define

D̂ = v1x1y
>
1 . Then if the matrix D is “close” to its mean E[D|σ], we expect v1 to be “close” to β and

sign(x1) to be correlated with σ, where sign(x) gives the sign of x component-wise. Unfortunately, in the
regime where a and b are constants, there are vertices of degree Ω( logn

log logn ) and thus the largest singular

value of W could reach Ω(
√

logn
log logn ) which is much higher than β.

In order to take care of this issue, we begin with a preliminary step to “clean” the spectrum of W :
we remove all vertices in the graph with degree larger than 3

2
a+b

2 . To summarize, for a given weight
function w(`), our algorithm Spectral− Reconstruction has the following structure:

1. Remove vertices with degree larger than 3
2
a+b

2 and assign a random type to these vertices.

2. Define W ′ by setting to zero the rows and columns of W corresponding to vertices removed.

3. Let x̂ be the left-singular vector associated with the largest singular value of D′ = W ′ − α
n11>.

Output sign(x̂) for the types of the remaining vertices.

Observe that step 3) can be seen as a relaxation of the minimum bisection (3.24) by replacing the
integer constraint with the unit-norm constraint and relaxing the hard constraint

∑
u σu = 0 to be a

regularized term in the objective function. Spectral− Reconstruction needs estimates of α and a + b,
which can be well approximated by 1

n1>W1 and 2
n1>A1 respectively. To simplify the analysis, we will

assume that the exact value of α and a+ b is known.

Theorem 3.9. Assume |w(`)| ≤ 1 for all `. There exists a universal constant C (i.e. not depending
on a, b, µ or ν) such that if β > C

√
a+ b, where β is defined in (3.26) then Spectral− Reconstruction

outputs a type assignment correlated with the true assignment a.a.s. In the particular case, where w(`) =
aµ(`)−bν(`)
aµ(`)+bν(`) , the condition β > C

√
a+ b reduces to τ > C ′

√
a+ b.

Compared to point (i) in the Conjecture 3.7, our result does not give the right order of magnitude
when a and b are large. Indeed, we are able to improve it if we allow an and bn to grow with n.

Theorem 3.10. Assume that min(an, bn) = Ω(log6 n). If

lim inf
n→∞

(
∑
`(anµ(`)− bnν(`))w(`))

2∑
`(anµ(`) + bnν(`))w2(`)

> 128, (3.27)

then Spectral− Reconstruction outputs a type assignment correlated with the true assignment a.a.s.

Moreover, the left hand side of (3.27) is maximized when w(`) = anµ(`)−bnν(`)
anµ(`)+bnν(`) , in which case (3.27)

reduces to τ > 64. With this choice of w(`), as soon as τ → ∞, Spectral− Reconstruction outputs the
true assignment for all vertices except o(n) a.a.s.

Note that in the regime min(an, bn) = Ω(log6 n), the degrees are very concentrated and step 1)
of the algorithm can be removed without harm. The simulation results, depicted in Fig. 3.2, further
indicate that Spectral− Reconstruction leaving out step 1) outputs a positively correlated assignment

32



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

O
v
e
rl
a
p

n=1000

 

 

a=12,b=8

a=6,b=4

a=3,b=1

Figure 3.2: The overlap Q against ε from 0.05 to 0.5.

when above the threshold. In the simulation, we assume for simplicity only two labels: r and b, and
define µ(r) = 0.5 + ε and ν(r) = 0.5− ε. We generate the graph from the labeled stochastic block model
with n = 1000 nodes for various a, b, ε. We define the overlap as:

Q = 1/2− 1

n
min{d(σ, σ̂), d(σ,−σ̂)} > 0.

Fix a, b, we plot the overlap Q against ε and indicate the threshold τ = 1 as a vertical dash line. All
plotted values are averages over 100 trials.

Note that our algorithm is most efficient when the parameters (a, b, µ and ν) of the model are
known as the optimal weight function depends on these parameters. In the case where the labels are
uninformative, i.e. µ = ν, our algorithm is very simple, does not require to know the values a and b and
is (in the range of Theorem 3.10) the algorithm with the best performance guarantees (see [31]).

3.2.7 Converse Result

In this section, we present the main steps for a proof of part (ii) in Conjecture 3.7: when τ < 1,
asymptotically it is impossible to tell whether any two nodes are more likely to belong to the same
community. Since reconstructing a positively correlated type assignment is harder than telling whether
any two nodes are more likely to belong to the same community, it further implies that reconstructing a
positively correlated type assignment is fundamentally impossible.

Theorem 3.11. If τ < 1, then for any fixed vertices ρ and v,

Pn(σρ = +1|G,L, σv = +1)→ 1/2 a.a.s. (3.28)

Theorem 3.11 is related to the Ising spin model in the statistical physics [50, 80], and it essentially
says that there is no long range correlation in the type assignment when τ < 1. The main idea in the
proof of Theorem 3.11 is borrowed from [81] and works as follows: (1) pick any two fixed vertices ρ, v
and consider the local neighborhood of ρ up to distance O(log(n)). The vertex v lies outside of the
local neighborhood of ρ a.a.s.. (2) conditional on the type assignment at the boundary of the local
neighborhood, σρ is asymptotically independent with σv. (3) the local neighborhood of ρ looks like a
Markov process on a labeled Galton-Watson tree rooted at ρ. (4) For the Markov process on the labeled
Galton-Watson tree, the types of leaves provide no information about the type of the root ρ when the
depth of tree goes to infinity.

3.2.8 Conclusion

Our results show that when τ < 1 it is fundamentally impossible to give a positively correlated recon-
struction; when τ > 1, the labeling information can be effectively exploited through the suitably weighted
graph. An interesting future work is to prove the positive part of Conjecture 3.7.
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