
HAL Id: tel-01253759
https://hal.science/tel-01253759

Submitted on 11 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving Query Execution using Tamper
Resistant Hardware. Design and Performance

Considerations
Cuong Quoc To

To cite this version:
Cuong Quoc To. Privacy-Preserving Query Execution using Tamper Resistant Hardware. Design and
Performance Considerations. Databases [cs.DB]. Universite de Versailles Saint-Quentin-en-Yvelines,
2015. English. �NNT : �. �tel-01253759�

https://hal.science/tel-01253759
https://hal.archives-ouvertes.fr

Département d’informatique
UFR de Sciences

 École Doctorale “STV”

Privacy-Preserving Query Execution
using Tamper Resistant Hardware

Design and Performance Considerations

THÈSE

Présentée et soutenue publiquement le mercredi 16 septembre 2015

pour l‟obtention du

Doctorat de l’université de Versailles Saint-Quentin-en-Yvelines
(spécialité informatique)

par

Quoc-Cuong TO

Composition du jury

Directeur : Philippe PUCHERAL Professeur, Université de Versailles Saint-Quentin-en-Yvelines et

INRIA Paris-Rocquencourt.

Co-directeur : Benjamin NGUYEN Professeur, INSA Centre-Val de Loire.

Rapporteurs : Sihem AMER-YAHIA Directrice de recherche, CNRS.
 Ernesto DAMIANI Professeur, Khalifa University.

Examinateurs : Philippe LAMARRE Professeur, INSA Lyon.
 Sébastien GAMBS Maitre de Conferences, IRISA / INRIA, Université de de Rennes.

i

Abstract

Current applications, from complex sensor systems (e.g. quantified self) to online e-

markets acquire vast quantities of personal information which usually end-up on

central servers. This massive amount of personal data, the new oil, represents an

unprecedented potential for applications and business. However, centralizing and

processing all one‟s data in a single server, where they are exposed to prying eyes,

poses a major problem with regards to privacy concern.

Conversely, decentralized architectures helping individuals keep full control of their

data, but they complexify global treatments and queries, impeding the development

of innovative services.

In this thesis, we aim at reconciling individual's privacy on one side and global

benefits for the community and business perspectives on the other side. It promotes

the idea of pushing the security to secure hardware devices controlling the data at

the place of their acquisition. Thanks to these tangible physical elements of trust,

secure distributed querying protocols can reestablish the capacity to perform global

computations, such as SQL aggregates, without revealing any sensitive information

to central servers.

This thesis studies the subset of SQL queries without external joins and shows how

to secure their execution in the presence of honest-but-curious attackers. It also

discusses how the resulting querying protocols can be integrated in a concrete

decentralized architecture. Cost models and experiments on SQL/AA, our distributed

prototype running on real tamper-resistant hardware, demonstrate that this approach

can scale to nationwide applications.

ii

iii

Résumé en français

Les applications actuelles, des systèmes de capteurs complexes (par exemple auto

quantifiée) aux applications de e-commerce, acquièrent de grandes quantités

d‟informations personnelles qui sont habituellement stockées sur des serveurs

centraux. Cette quantité massive de données personnelles, considéré comme le

nouveau pétrole, représente un important potentiel pour les applications et les

entreprises. Cependant, la centralisation et le traitement de toutes les données sur

un serveur unique, où elles sont exposées aux indiscrétions de son gestionnaire,

posent un problème majeur en ce qui concerne la vie privée.

Inversement, les architectures décentralisées aident les individus à conserver le

plein de contrôle sur leurs données, toutefois leurs traitements en particulier le calcul

de requêtes globales deviennent complexes.

Dans cette thèse, nous visons à concilier la vie privée de l'individu et l'exploitation de

ces données, qui présentent des avantages manifestes pour la communauté

(comme des études statistiques) ou encore des perspectives d‟affaires. Nous

promouvons l'idée de sécuriser l'acquisition des données par l'utilisation de matériel

sécurisé. Grâce à ces éléments matériels tangibles de confiance, sécuriser des

protocoles d'interrogation distribués permet d'effectuer des calculs globaux, tels que

les agrégats SQL, sans révéler d'informations sensibles à des serveurs centraux.

Cette thèse étudie le sous-groupe de requêtes SQL sans jointures et montre

comment sécuriser leur exécution en présence d'attaquants honnêtes-mais-curieux.

Cette thèse explique également comment les protocoles d'interrogation qui en

résultent peuvent être intégrés concrètement dans une architecture décentralisée.

Nous démontrons que notre approche est viable et peut passer à l'échelle

d'applications de la taille d'un pays par un modèle de coût et des expériences réelles

sur notre prototype, SQL/AA.

iv

v

Remerciements

Je tiens tout d‟abord à exprimer ma profonde gratitude à Philippe Pucheral, mon

directeur de thèse, et Benjamin Nguyen, co-directeur de cette thèse. Je les remercie

pour l'aide et le soutien qu'ils m'ont apporté pendant ces trois années. Je leur suis

très reconnaissant pour leurs conseils, leurs critiques, leurs qualités humaines et

leurs encouragements qui ont contribué à l'aboutissement de cette thèse.

J'adresse mes plus vifs remerciements aux membres du jury qui ont bien voulu

consacrer à ma thèse une partie de leur temps. Je cite en particulier Sihem Amer-

Yahia et Ernesto Damiani qui m‟ont fait l‟honneur d‟accepter d‟être rapporteurs de

ma thèse. Je remercie également Philippe Lamarre et Sébastien Gambs pour avoir

accepté de faire partie de mon jury de thèse.

Ma reconnaissance va aux membres de l'équipe SMIS, qui m'ont permis de réaliser

cette thèse dans des conditions privilégiées, qui font de SMIS un environnement très

agréable et motivant. Un grand merci à Alexei Troussov et Quentin Lefebvre pour sa

disponibilité et sa spontanéité à partager ses connaissances techniques lors de

l'implémentation et des expérimentations.

Je remercie Philippe Bonnet de ses contributions précieuses pour l‟article EDBT.

J‟adresse aussi mes remerciements à Anne Cantaut et à Matthieu Finiasz pour les

conseils prodigués sur les protocoles de gestion de clés de chiffrement. Je tiens

également à remercier Christophe Cérin et Nicolas Grenesche pour leur accueil et

les conditions de travail pour les expériences de MapReduce sur les clusters de

l‟Université Paris 13, ainsi que Christian Toinard de l'INSA Centre Val de Loire pour

avoir initié cette collaboration et m'avoir accueilli pour un court séjour à Bourges. Je

remercie également Daniel Le Métayer, directeur de la Collaborative Action on the

Protection of Privacy Rights in the Information Society qui a financé une partie de

mes recherches.

Tous mes remerciements à ma mère et ma femme qui m‟ont supporté durant ces

années de thèse, à ma famille et à mes amis qui m'ont aussi bien soutenu pour

franchir la dernière étape de mes études !

vi

vii

Table of contents

Chapter 1 Introduction ... 1

1.1 Personal Data & Privacy ... 1

1.2 A decentralized, secure, and general approach .. 3

1.3 Contributions ... 4

1.4 Illustrative Context ... 5

1.5 Outline ... 6

Chapter 2 Background Knowledge & Related Works 9

2.1 Group By SQL Query & StreamSQL ... 9

2.2 Cryptographic tools ... 13

2.3 Related Works on Querying Outsourced Databases 19

2.4 Other Secure Computation Frameworks ... 23

2.5 Conclusion .. 26

Chapter 3 Problem Statement .. 29

3.1 Scenarios and Queries of Interest ... 29

3.2 Trusted Data Server .. 32

3.3 Asymmetric Architecture ... 34

3.4 Problem Statement .. 38

Chapter 4 The Querying Protocols .. 41

4.1 Introduction ... 41

4.2 Select-From-Where statement .. 42

4.3 Group By Queries ... 45

4.4 Correctness ... 54

4.5 Security Analysis ... 55

Chapter 5 Implementation .. 63

5.1 Implementation Issues .. 63

5.2 Key Management .. 67

5.3 Prototype: SQL/AA .. 72

Chapter 6 Performance Evaluation ... 77

6.1 Cost Model .. 77

viii

6.2 Performance Evaluation .. 82

6.3 Performance measurement on real hardware ... 92

Chapter 7 Trusted MapReduce .. 99

7.1 Introduction ... 99

7.2 Proposed Solution ... 102

7.3 Performance Evaluation .. 108

7.4 Conclusion ... 111

Chapter 8 Conclusion and Future Work ... 113

8.1 Synthesis .. 113

8.2 Perspectives.. 115

Bibliography ... 119

ix

List of figures

Figure 1: Different scenarios of TDSs .. 30

Figure 2: Trusted Data Servers .. 33

Figure 3: The Asymmetric Architecture ... 36

Figure 4: Select-From-Where querying protocol .. 43

Figure 5: Group By querying protocol... 46

Figure 6: An example of (iterative partial) aggregation ... 48

Figure 7: Encryptions and IC tables ... 56

Figure 8: Information exposure among protocols ... 59

Figure 9: KISS Personal Data Server Architecture ... 64

Figure 10: Functional architecture of a trusted AC system [Anciaux09] 65

Figure 11: Adaptive Key Exchange Protocol .. 70

Figure 12: STM32F217 test platform .. 74

Figure 13: Demonstration graphical interface ... 75

Figure 14: Hardware device & its internal time consumption 83

Figure 15: Performance evaluations... 88

Figure 16: Comparison among solutions .. 91

Figure 17: ZED Secure device (front & back) ... 93

Figure 18: Twenty secure devices running parallel ... 93

Figure 19: Performance and error rate ... 96

Figure 20: Detail execution of map and reduce task [Herodotou11] 103

Figure 21: Example of nearly equi-depth histogram ... 104

Figure 22: Trusted MapReduce execution .. 106

Figure 23: Running time of clear & cipher texts. Scaling depth 110

Figure 24: Reduce time for 2 millions & 4 millions tuples .. 111

x

1

Chapter 1

Introduction

Current applications, from complex sensor systems (e.g. quantified self) to online e-

markets acquire vast quantities of personal information which usually ends-up on

central servers. Decentralized architectures, devised to help individuals keep full

control of their data, hinder global treatments and queries, impeding the development

of services of great interest. To address this challenge, we propose secure

distributed querying protocols based on the use of a tangible physical element of

trust, reestablishing the capacity to perform global computations without revealing

any sensitive information to central servers. Thank to the recent advances in low-

cost secure hardware, mass-storage secure devices are emerging and provide a real

breakthrough in the management of sensitive data. They can embed personal data

and/or metadata referencing documents stored encrypted in the Cloud and can

manage them under the holder‟s control. This thesis promotes the idea of pushing

the security to the edges of applications, through the use of secure hardware devices

controlling the data at the place of their acquisition. In this chapter, we first position

the value of personal data in our e-society nowadays; then we list the precise

objectives of the thesis. Third, we present the main contributions of this thesis.

Finally, we give an illustrative scenario and the outline of this manuscript.

1.1 Personal Data & Privacy

With the convergence of mobile communications, sensors and online social networks

technologies, we are witnessing an exponential increase in the creation and

consumption of personal data in today‟s digital society. Data is being collected on

who we are, whom we have relation with, where we were and will be, and what we

buy, etc. Some data is freely disclosed by users. Some other is transparently

2

acquired by sensor systems through analog processes (e.g., GPS tracking units,

smart meters, healthcare sensors) or mechanical interactions (e.g., as simple as

opening a door or putting a light on). In fine, all this data ends up in servers. This

massive amount of personal data is so valuable that the World Economic Forum

calls it "the new oil" [WEF12] since it represents an unprecedented potential for

applications and business (e.g., car insurance billing, traffic decongestion, smart

grids optimization, healthcare surveillance, participatory sensing). Mining and

analyzing this personal data gives us the ability to understand the human‟s behavior

and make profit from this knowledge. For example, to enjoy the “free” services

(social network, search engine, etc.) supplied by the Internet giants (Facebook,

Google, etc.), users have to provide them with unlimited free access to their data,

which they monetize for billions of dollars (e.g., Facebook, is valued at approximately

$50 per account). Surprisingly, while oil gives a maximum return of $0.5 per year and

per dollar, US companies spend $2 billion a year on third-party data about individuals,

with an estimated return around $30 for $1 invested [eMarketer].

However, centralizing and processing all one‟s data in a single server incurs a major

problem with regards to privacy concerns. As seen with the PRISM affair1 and the

Gemalto SIM card encryption hack2, the public opinion is starting to wonder whether

these new services are not bringing us closer to the science fiction dystopias, since

individuals‟ data is carefully scrutinized by governmental agencies and companies in

charge of processing it [Montjoye12]. Privacy violations also arise from negligence

and attacks and no current server-based approach, including cryptography based

and server-side secure hardware [Agrawal02], seems capable of closing the gap.

Conversely, decentralized architectures (e.g., personal data vault), providing better

control to the user over the management of her personal data, impede global

computations by construction.

This thesis aims to demonstrate that privacy protection and global computation are

not antagonist and can be reconciled to the best benefit of the individuals, the

community and the companies. To reach this goal, this thesis capitalizes on a novel

1
http://fas.org/irp/eprint/eu-nsa.pdf : the surveillance program of the United States National Security Agency that

collects internet communications of foreign nationals from at least nine major US internet companies.
2
The encryption keys to millions of SIM cards, used by dozens of cellular networks in the US and around the

world, were stolen by the UK and US intelligence communities.

http://fas.org/irp/eprint/eu-nsa.pdf

3

architectural approach called Trusted Cells [Anciaux13]. This approach capitalizes on

emerging practices and hardware advances representing a sea change in the

acquisition and protection of personal data. Trusted Cells push the security to the

edges of the network, through personal data servers [Allard10] running on secure

smart phones, set-top boxes, plug computers3 or secure portable secure devices4

forming a global decentralized data platform. Indeed, thanks to the emergence of

low-cost secure hardware and firmware technologies like ARM TrustZone5, a full

Trusted Execution Environment (TEE) will soon be present in any client device. In

this thesis, and up to the experiments section, we consider that personal data is

acquired and/or hosted by secure devices but make no additional assumption

regarding the technical solution they rely on.

Global queries definitely make sense in this context. Typically, it would be helpful to

compute aggregates over smart meters without disclosing individual's raw data (e.g.,

compute the mean energy consumption per time period and district). Identifying

queries also make sense assuming the identified subjects consent to participate (e.g.,

send an alert to people older than 80 and living in Paris if the number of people

suffering from flu in France has reached a given threshold). Computing SQL-like

queries on this distributed infrastructure leads to two major and different problems:

computing joins between data hosted at different locations and computing

aggregates over this same data. This thesis addresses the second issue: how to

compute global queries over decentralized personal data stores while respecting

users' privacy? Indeed, we believe that the computation of aggregates is central to

the many novel privacy preserving applications such as smart metering, e-

administration, etc.

1.2 A decentralized, secure, and general approach

We address in this thesis the problem of answering SQL queries on a distributed

infrastructure with strong guarantees of security. To this end, we suggest a radically

different way of computing SQL queries with three main objectives:

3
http://freedomboxfoundation.org/

4
 http://www.gd-sfs.com/portable-security-secure device

5
 http://www.arm.com/products/processors/technologies/trustzone.php

http://freedomboxfoundation.org/
http://www.gd-sfs.com/portable-security-token
http://www.arm.com/products/processors/technologies/trustzone.php

4

1. Decentralization: each individual manages his own data, under his control,

and participates voluntarily in a survey. Hence, the assumption of the trusted

central server is not necessary anymore.

2. Security: the protocol ensures that adversary cannot get sensitive data. The

only information that an adversary can get is a set of encrypted tuples, which

does not represent any benefit for him.

3. Generality: the protocol must scale up to nationwide dataset and must not rely

on a 24/7 availability of all participants.

Our objective is to make as few restrictions on the computation model as possible.

We model the information system as a global database formed by the union of a

mutitude of distributed local data stores (e.g., nation-wide context) and we consider

regular SQL queries (without external joins involving data from different data stores)

and a traditional access control model. Hence the context we are targeting is

different and more general than, (1) querying encrypted outsourced data where

restrictions are put on the predicates which can be evaluated [Agrawal04,

Amanatidis07, Popa11, Hacigümüs04], (2) performing privacy-preserving queries

usually restricted to statistical queries matching differential privacy constraints

[Fung10, Fayyoumi10] and (3) performing Secure-Multi-Party (SMC) query

computations which cannot meet both query generality and scalability objectives

[Kissner05].

1.3 Contributions

The contributions of this thesis are summarized as follows:

1) We propose different secure query execution techniques to evaluate regular

SQL “group by” queries over a set of distributed trusted personal data stores,

and study the range of applicability of these techniques.

2) We show how these techniques can be integrated in a concrete decentralized

architecture.

3) We demonstrate that our approach is compatible with nation-wide contexts

through a thorough analysis of cost models and performance measurements

of a prototype running on real secure hardware devices.

5

4) We apply our protocol to MapReduce to support the security aspect of this

framework.

In the first contribution of this thesis, we try to explore the design space of the

protocols by applying a variety of the encryption schemes corresponding to each

protocol. Then we compare these protocols to see in which scenario each suits best.

To put these protocols into practice, we integrate them into a concrete architecture,

leading to the second contribution. In the next contribution, cost models are

proposed for each method. After conducting the unit test on a development device,

we calibrate the result of this test to the cost models and compare the performance

among protocols. To verify the accuracy of the cost models, the prototype running on

real secure hardware devices are also implemented and its results are compared

with that of cost models to compute the error rate. Finally, we show that our protocol

can be applied to the MapReduce to support the security aspect of this framework.

1.4 Illustrative Context

To give the reader an overview of our system, this section gives a concrete context

illustrating the challenges we tackle and their importance.

In France, there are currently 35 million electricity meters, including 20 million

mechanical meters, and 15 million electronic meters. Modernization of electricity

meters is a legal obligation imposed by the European Commission. In a directive of

2006, they required the meters to be "smart" by 2020. In other words they must allow

users to control their consumption. The full nationwide rollout of 35 million smart

meters was set to be completed by the year 2020, with an investment of €5 billion.

To comply with this requirement, and in conjunction with the Energy Regulation

Commission, Electricité Réseau Distribution de France (ERDF) is implementing a

plan to modernize its 35 million electricity meters nationwide6. Those meters will

generate much more detailed data on energy consumption.

To reflect the extra granularity of the data, smart meter suppliers must comply with a

range of privacy requirements that go beyond what are required under the Data

6
http://www.erdf.fr/medias/dossiers_presse/DP_ERDF_210610_1_EN.pdf

http://www.erdf.fr/medias/dossiers_presse/DP_ERDF_210610_1_EN.pdf

6

Protection Act. Those requirements, imposed as licensing conditions, mean that

energy suppliers must obtain consumers' consent to collect and use consumption

data at a level of granularity more detailed than daily reads or to use consumption

data for marketing purposes. The suppliers can, under the framework, access

consumption data up a daily level detail but consumers must be given the

opportunity to opt out of that data collection.

Apparently, the challenge lies in the contradictory benefit of both parties. On one side,

ERDF wants to get as much information about electrical usage of residents as it can

so that it can provide its customers with better services and attractive tariff. On the

other side, clients do not want to give out so much information about their electrical

consumption since it can reveal their privacy (e.g., at the 1HZ granularity provided by

the French Linky power meters, most electrical appliances have a distinctive energy

signature. It is thus possible to infer from the power meter data inhabitants activities

[Lam07]).

1.5 Outline

This thesis is composed of four main parts. The first part includes Chapter 2 and

Chapter 3. Chapter 2 presents the background knowledge necessary to understand

the approaches proposed and positions it with respect to related works. Chapter 3

clearly states the problem tackled in this thesis, by formulating the assumptions

made on the participants, and the way we propose to securely execute the SQL

queries on the proposed architecture.

The second part contains Chapter 4 that details the design of our proposed protocols

and analysis of their correctness and security.

The third part is composed of Chapters 5 and 6 which focus on the implementation

and performance evaluation. Chapter 5 concentrates on the implementation issues

such as access control, fault tolerance, load balance, and key management. This

chapter also presents the prototype SQL/AA. Then, in Chapter 6, we build an

analytical cost model to analyze and compare the performance among protocols. We

also further evaluate the accuracy of the proposed cost model by verifying

experimentally on real hardware.

7

The fourth part is Chapter 7 in which we apply one of our protocols to the Map

Reduce to extend the security aspect of this framework.

Finally, Chapter 8 concludes and proposes some ideas for future work.

8

9

Chapter 2

Background Knowledge & Related Works

This chapter provides the necessary background knowledge to understand the

contributions of this thesis. We start by introducing the StreamSQL and the Group By

clauses in SQL query. Then, we give the background knowledge required for

understanding the cryptographic primitives used in this work. Specifically, we focus

on the properties and characteristics of deterministic and probabilistic encryptions,

the two main encryption schemes used in our protocols. Next, we focus on the ways

to defend against frequency-based attacks. We also explore other kinds of

encryptions such as homomorphic encryption, order-preserving encryption. Finally,

we overview the approaches related to this thesis. We explain why the current

outsourced database services cannot meet both the performance and security

requirements. We also point out the limitations of secure multi-party computation and

statistical database in terms of efficiency and security in our context. We finally

survey the related approaches that address different security aspects of other

frameworks.

2.1 Group By SQL Query & StreamSQL

Structured Query Language (SQL) is a special-purpose programming language

designed for managing data held in a relational database management system

(RDBMS). A query in SQL can consist of up to six clauses as follow:

SELECT <ATTRIBUTE AND FUNCTION LIST>
FROM <TABLE LIST>
[WHERE <CONDITION>]
[GROUP BY <GROUPING ATTRIBUTE(S)>]
[HAVING <GROUP CONDITION>]
[ORDER BY <ATTRIBUTE LIST>];

10

Answering the queries with only Select-From-Where clauses is quite simple. So, this

thesis deals with a more challenging problem: computing aggregate functions (i.e.,

including the Group By clause) in a distributed manner. In this section, we focus on

the Group By clauses.

In SQL, an aggregate function is a function where the values of multiple rows are

grouped together as input on certain criteria to return a single value. SQL offers

several aggregate functions as follows:

 MAX: Compute the maximum element of some data set.

 MIN: Compute the minimum element of some data set.

 COUNT: Compute the number of elements in some data set.

 SUM: Compute the sum of all values in some data set.

 AVG: Compute the average of all values in some data set.

 VAR: Compute the variance of all values in some data set.

 RANK(x): Compute the rank of a given element x in some data set.

 MEDIAN: Compute the median element of some data set.

 SMALLEST(k): Given a parameter k, compute the kth smallest element of

some data set.

 LARGEST(k): Given a parameter k, compute the kth largest element of some

data set.

 DISTINCT: Compute the number of distinct elements in some data set.

 MODE: Compute the element that occurs most often in some data set.

All functions mentioned, and combinations thereof, cover a wide range of reasonable

aggregation queries. Moreover, all discussed aggregate functions are traditionally

categorized into three classes [Locher09]: Distributive Aggregate Function, Algebraic

Aggregate Function, and Holistic Aggregate Function.

Aggregate functions belonging to the first class are called distributive. Given a

partition S1, . . . , Sn of S, a distributive aggregate function f has the property that the

aggregates f(S1), . . . , f(Sn) can be used to compute f(S). Formally, distributive

aggregate functions are defined as follows.

11

Definition (Distributive Aggregate Function). Let S be a multiset and let S1, . . . ,

Sn be a partition of S. An aggregate function f is called distributive if there is an

aggregate function g such that f(S) = g(f(S1), . . . , f(Sn)).

As the name suggests, distributive aggregate functions can easily be computed

distributively since partial solutions can be combined by means of a function g.

Distributive aggregate functions are for example COUNT, MAX, MIN, SUM, and

RANK. Apart from COUNT and RANK, it holds for these functions that the function g

that joins the partial aggregates together is the same as the function f (For example,

MAX(S) = MAX(MAX(S1),. . . ,MAX(Sn))). For the aggregate function COUNT the

function g is simply the aggregate function SUM. If we only consider the multisets

S‟1 , . . . , S‟r that contain element x, the rank of x in S is RANK(x, S) = SUM(RANK(x,

S‟1),. . . ,RANK(x, S‟r))−r + 1.

The second class of aggregate functions consists of the functions that can be

computed by combining distributive aggregate functions. If f(S) can be derived from

the results of distributive aggregate functions for any multiset S, then f is referred to

as an algebraic aggregate function.

Definition (Algebraic Aggregate Function). An aggregate function f is called

algebraic, if it can be computed with a fixed number of distributive aggregate

functions.

The function AVG, which computes the average of all elements in S, is an algebraic

aggregate function. Once SUM and COUNT have been computed, we get the

average value by simply dividing these values. The function VAR is an algebraic

aggregate function as well.

Algebraic aggregate functions are by definition not (much) harder to compute than

distributive aggregate functions. In both cases it is possible to exploit the fact that

sub-aggregates can be merged into the desired aggregate value. The third class

distinguishes itself quite clearly from the other classes in this regard. An aggregate

function is said to be holistic if it is not possible to combine sub-aggregates.

Definition (Holistic Aggregate Function). An aggregate function f is called holistic,

if there is no constant bound on the size of the storage needed to describe a sub-

aggregate.

12

Intuitively, a holistic aggregate function is a function that can only be computed by

looking at each element individually. Since all functions that cannot be computed by

combining sub-aggregates are considered holistic, the classification of aggregate

functions into these three categories is exhaustive. The remaining aggregate

functions, i.e., MEDIAN, SMALLEST(k), LARGEST(k), DISTINCT, and MODE, all

belong to this class.

The fact that sub-aggregates cannot be used directly to compute the final aggregate

entails that holistic functions are considerably more difficult to compute than

distributive and algebraic aggregate functions.

In our architecture, each secure device computes part of the aggregate function. In

order to compute the holistic functions, all data must be gathered in one place and

then comparing each element individually. In other words, the holistic aggregate

functions cannot be easily computed in a distributed way and therefore it does not fit

on our distributed architecture. So, in this work, we focus on the distributive and

algebraic aggregate functions and let holistic ones for future work.

StreamSQL [StreamSQL15] is a query language that extends SQL with the ability to

manipulate real-time data streams, which are infinite sequences of tuples that are

not all available at the same time. They are essentially all SQL extensions that

incorporate a notion of a window on a stream as a way to convert an infinite stream

into a finite relation in order to apply relational operators. In other words, a stream

can be windowed to create finite sets of tuples (e.g., a window of size 5 minutes

would contain all the tuples in a given 5 minutes period). Because of this extended

feature, a StreamSQL query can be in this form:

SELECT STREAM [ALL | DISTINCT] select_expr,
Analytic_function(select_expr) [OVER] window_als

FROM stream_reference
[WHERE where_condition]
[GROUP BY col_list]
[WINDOW window_als AS (RANGE)]

Queries of interest. We consider that local databases hosted by distributed devices

conform to a common schema which can be queried in SQL. For example, power

meter data (resp., GPS traces, healthcare records, etc) can be stored in one or

several table(s) whose schema is defined by the national distribution company (resp.,

an insurance company consortium, the Ministry of Health, etc) horizontally

13

partitioned on the local stores. Queries are regular SQL queries, borrowing the SIZE

clause from the definition of windows in the StreamSQL standard as mentioned

above. For example, an energy distribution company could issue the following query

on customers' smart meters.

SELECT C.district, AVG(Cons)
FROM Power P, Consumer C
WHERE C.accomodation='detached house'

 and C.cid = P.cid
GROUP BY C.district
HAVING Count(distinct C.cid) > 100
SIZE current_date() <= 2014-04-1

This query computes the mean energy consumption of people living in a detached

house, grouped by district, for districts where over 100 consumers answered the poll.

The poll is open until the 1st of April 2014.

In the example presented above, only the smart meter of customers who opt-in for

this service will participate in the computation. Needless to say that the querier, that

is the distribution company, must be prevented from seeing the raw data of its

customers for privacy concerns. In terms of privacy protection, the querying

protocol must guarantee that (1) the Querier gains access only to the final result of

authorized queries, as in a traditional database systems and (2) intermediate results

stored in SSI are fully obfuscated. The first requirement follows the regular access

control model in which each Querier with appropriate privileges is granted access to

specific views of the database. These views are the results of the SQL queries. In

our context, they are the results of the Group By StreamSQL queries, meaning that

the Queriers can see only the final aggregated results of the queries (but not the raw

data of each participant).

2.2 Cryptographic tools

As stated in chapter 1, the objective of this thesis is to perform global computations

by hiding the sensitive information from untrusted servers. Whatever the

architectures and solutions proposed, personal data need to be externalized and

therefore must be protected by cryptographic tools. As seen in following chapters,

corresponding to each encryption scheme (and therefore the level of security), there

are different types of computations that can be done on them and leads to different

14

performance. Due to their important role, various types of encryption schemes are

used in this thesis. We review these kinds of encryptions in this section.

2.2.1 Deterministic Encryption and Frequency-based Attacks

Deterministic Encryption

The first, also the simplest one, is the deterministic encryption scheme [Bellare07]

that always produces the same ciphertext for a given plaintext and key, even over

separate executions of the encryption algorithm. Examples of deterministic

encryption algorithms include the RSA cryptosystem (without encryption padding),

and many block ciphers when used in ECB mode.

Formal definition of deterministic encryption: A deterministic encryption scheme П =

(K, Ԑ, Ŋ) is specified by three polynomial-time algorithms (i.e., Key Generation,

Encryption, Decryption) as follows.

Key Generation (sk,pk) <- K(1k): on input a security parameter k expressed in the

unary representation 1k, the key generation algorithm outputs a public key pk and a

matching secret key sk. The pk includes a description of finite message space M and

a finite ciphertext space C.

Encryption c <- Ԑ(pk,m): on input pk and a message m ϵ M, the deterministic

encryption algorithm Ԑ outputs a ciphertext c ϵ C.

Decryption m <- Ŋ(sk,c): on input a secret key sk and a ciphertext c, the decryption

algorithm outputs a message m ϵ M.

While deterministic encryption permits logarithmic time search on encrypted data, it

is easy to detect if a message is sent twice, opening the door for frequency-based

attacks.

Frequency-based attacks

The frequency-based attack is a type of attack that exploits additional adversary

knowledge of domain values and/or their exact/approximate frequencies to crack the

encrypted data. To cope with frequency-based attacks, the straightforward 1-to-1

substitution encryption functions (e.g., deterministic encryption) are not sufficient. For

15

example, to protect user privacy in location-based services, their locations will be

encrypted in the storage. However, a 1-to-1 encryption scheme on locations is not

secure, as the attacker can map the encrypted data values of the highest frequency

to the popular locations easily. In reality, the attacker may possess approximate

knowledge of the frequencies or may know the exact/approximate supports of a

subset of data values in the network.

If the attacker knows the exact frequency of plaintext data values and utilizes such

knowledge to crack the data encryption by matching the encrypted data values with

original data values based on their frequency distribution. Therefore, our data

encryption strategy aims to transform the original frequency distribution of the

original data (i.e., plaintext) to a uniform distribution of the encrypted data (i.e.,

ciphertext) so that the attacker cannot derive the mapping relationship between

encrypted data and original data based on her knowledge of domain values and their

occurrence frequency.

Previous works [Wong07; Molloy09] consider how to defend against the frequency-

based attack in the data-mining-as-service paradigm (i.e., the data mining

computations are outsourced to a third-party service provider). For example, Wong

et al. [Wong07] propose a substitution cipher technique on transactional data for

secure outsourcing of association rule mining. It deploys a one-to-n item mapping

that transforms transactions non-deterministically. However, the mapping scheme

has potential security flaws; Molloy et al. [Molloy09] introduce an attack that could

break the encoding scheme in [Wong07]. Some other works [Wang06; Agrawal04]

consider the frequency-based attack in the scenario of the database-as-service

paradigm. The basic idea is to transform the dataset in a way that, no matter what

the frequency distribution of the cleartext dataset is, the ciphertext values always

follow some given target distribution. Therefore, the attacker cannot decide the

mapping relationship between plaintext and ciphertext values by the frequency of

plaintext and ciphertext values. Wang and Lakshmanan [Wang06] propose an

approach that could transform the original occurrence frequency distribution of

plaintext into a uniform distribution. Agrawal et al. [Agrawal04] proposes to transform

the original occurrence frequency distribution to a certain target distribution, such as

Gaussian distribution. However, all of these works coped with the frequency-based

attack in a centralized framework; none of the works can be applied directly to

distributed data storage of wireless networks.

16

This kind of attack inspired the development of probabilistic encryption schemes by

Goldwasser and Micali [Goldwasser84].

2.2.2 Probabilistic (Non-deterministic) Encryption

Probabilistic encryption is the use of randomness in an encryption algorithm, so that

when encrypting the same message several times it will, in general, yield different

ciphertexts. The first provably-secure probabilistic public-key encryption scheme was

proposed by Shafi Goldwasser and Silvio Micali, based on the hardness of the

quadratic residuosity problem and had a message expansion factor equal to the

public key size. Example of probabilistic encryption using any trapdoor permutation:

Enc(x) = (f(r), x XOR b(r))

Dec(y, z) = b(f-1(y)) XOR z

With x - single bit plaintext; f - trapdoor permutation (deterministic encryption

algorithm); b - hard core predicate of f; r - random string

Example of probabilistic encryption in the random oracle model:

Enc(x) = (f(r), x XOR h(r))

Dec(y, z) = h(f-1(y)) XOR z

With h being random oracle (typically implemented using a publicly specified hash

function).

Deterministic encryption permits logarithmic time search on encrypted data, while

probabilistic encryption only allows linear time search [Boneh04, Song00], meaning a

search requires scanning the whole database. This difference is crucial for large

outsourced databases which cannot afford to slow down search. Of course

deterministic encryption cannot achieve the classical notions of security of

randomized encryption due to its inability to hide the original frequency distribution of

the plaintext domain, especially if the plaintext domain has the skewed frequency

distribution. Deterministic encryption leaks equality and is only semantically secure if

it can ensure that the way the data is structured prevents redundant information (e.g.,

if the original frequency distribution is uniform). For example, to encrypt user

17

information, the user's id and username would be encrypted deterministically to allow

fast retrieval on these attributes; the rest of their information would be encrypted

probabilistically. Since user‟s ids and usernames are always unique, the adversary

cannot derive any knowledge (besides length / block size) from the encryptions.

Despite its high security due to its randomness, it is impossible to perform

computation on non-deterministically encrypted data without decrypting it (also

because of its randomness). Related works [Agrawal04, Gentry09, Hacigumus02]

introduce some encryption schemes and obfuscation techniques that allow

operations to be performed on encrypted data as if it were still in its plaintext form.

We review these encryption schemes in the next section.

2.2.3 Other Encryption Scheme

Beside the deterministic and non-deterministic encryptions which are the two

principal encryptions used in our thesis, there are some other kinds of encryptions

that can help compute directly on encrypted data to some extent.

Order-preserving encryptions

Order-preserving encryptions [Agrawal04, Boldyreva09] are deterministic encryption

schemes whose encryption function preserves numerical ordering of the plaintexts.

The reason for interest in such schemes is that they allow efficient range queries on

encrypted data.

Formally, for A,B ⊆ N with |A| ≤ |B|, a function f : A → B is order-preserving if for all i, j

∈ A, f(i) > f(j) iff i > j. We say that deterministic encryption scheme SE = (Ҡ, Enc, Dec)

with plaintext and ciphertext-spaces D, R is order-preserving if Enc(K, ·) is an order-

preserving function from D to R for all K output by Ҡ (with elements of D,R

interpreted as numbers, encoded as strings).

Homomorphic encryption

The homomorphic encryption [Gentry09] is a form of encryption where one can

perform a specific algebraic operation on the plaintext by performing a (possibly

different) algebraic operation on the ciphertext.

18

Informally speaking, a homomorphic cryptosystem is a cryptosystem with the

additional property that there exists an efficient algorithm to compute an encryption

of a function, of two messages given the public key and the encryptions of the

messages but not the messages themselves.

Formal definition of Homomorphic Property: A is an algorithm that on input 1k, ke, and

elements c1,c2 ϵ C outputs an element c3 ϵ C so that for all m1,m2 ϵ M it holds: if m3 =

m1 o m2 and c1=E(1k,ke,m1), and c2=E(1k,ke,m2), then Prob[D(A(1k,ke,c1,c2))] ≠ m3] is

negligible.

There are two kinds of homomorphic cryptosystems: partially and fully homomorphic

encryption.

Partially Homomorphic Encryption: allow homomorphic computation of some

operations on ciphertexts (e.g., additions, multiplications, quadratic functions, etc.).

Fully Homomorphic Encryption: A cryptosystem that supports arbitrary computation

on ciphertexts is known as fully homomorphic encryption and is far more powerful.

Such a scheme enables the construction of programs for any desirable functionality,

which can be run on encrypted inputs to produce an encryption of the result.

However, the performance of fully homomorphic encryption is still a big problem and

therefore it cannot be applicable in real applications [Tu13].

Bucketization-based techniques

Besides encrypting the actual data using some semantically secure encryption

algorithm like AES or homomorphic encryption, an alternative approach is to use

data partitioning (also known as bucketization in the literature). Bucketization can be

seen as a generalized partitioning algorithm that induces indistinguishability among

data in a controlled manner. Here, the data are first partitioned into buckets and the

bucket-id is set as the tag for each data item in the bucket. Hacigumus et al.

[Hacigumus02] were the first ones to propose the bucketization-based data

representation for query processing in an untrusted environment. Their bucketization

was simply a data partitioning step similar to those used for histogram construction

(e.g., equi-depth, equi-width partitioning, etc.) followed by assignment of a random

(index) tag to each bucket effectively making every element within a bucket

indistinguishable from another.

19

Generally speaking, a histogram on attribute is constructed by partitioning the data

distribution D into mutually disjoint β subsets called buckets and approximating the

frequencies f and values V in each bucket in some common fashion. The simplest

type of histograms is the traditional equi-width histogram, in which the input value

range is subdivided into buckets having the same width, and then the count of items

in each bucket is reported. Knowing the minimum and maximum values of the data,

the equi-width histograms are the easiest to implement both in databases and in data

streams. However, for many practical applications, such as fitting a distribution

function or optimizing queries, equi-width histograms may not provide useful enough

information [Greenwald96]. A better choice for these applications is an Equi-depth

histogram [Greenwald96, Muralikrishna88] (also known as equi-height or equi-

probable) in which the goal is to partition data into buckets such that the number of

tuples in each bucket is the same. This type of histograms is more effective than

equi-width histograms particularly for the data sets with skewed distributions

[Ioannidis03].

Other types of histograms proposed in the literature include the following: (i) V-

Optimal Histograms [Guha01, Jagadish98] that estimate the ordered input as a step-

function (or pairwise linear function) with a specific number of steps, (ii) MaxDiff

histograms [Poosala96] which aim to find the B − 1 largest gaps (boundaries) in the

sorted list of input, and (iii) Compressed histograms [Poosala96] which place the

highest frequency values in singleton buckets and use equi-width histogram for the

rest of input data. This third type can be used to construct biased histograms

[Cormode06]. Although these type of histograms can be more accurate than the

other histograms, they are more expensive to construct and update incrementally

[Halim09].

2.3 Related Works on Querying Outsourced Databases

This work has connections with related studies in different domains, namely

protection of outsourced (personal) databases, statistical databases and secures

aggregation in sensor networks. We review these works below.

20

2.3.1 Querying Encrypted Databases

Outsourced database services or Database-as-a-Service (DaaS) [Hacigumus02]

allow users to store sensitive data on a remote, untrusted server and retrieve desired

parts of it on request. Many works have addressed the security of DaaS by

encrypting the data at rest and pushing part of the processing to the server side.

Searchable encryption has been studied in the symmetric-key [Amanatidis07] and

public-key [Bellare07] settings but these works focus mainly on simple exact-match

queries and introduce a high computing cost. Agrawal et al. [Agrawal04] proposed an

order preserving encryption scheme (OPES), which ensures that the order among

plaintext data is preserved in the ciphertext domain, supporting range and aggregate

queries, but OPES relies on the strong assumption that all plaintexts in the database

are known in advance and order-preserving is usually synonym of weaker security.

The assumption on the a priori knowledge of all plaintext is not always practical (e.g.,

in our highly distributed database context, users do not know all plaintexts a priori),

so a stateless scheme whose encryption algorithm can process single plaintexts on

the fly is more practical.

Bucketization-based techniques [Hacigumus02, Hore12] use distributional properties

of the dataset to partition data and design indexing techniques that allow

approximate queries over encrypted data. Unlike cryptographic schemes that aim for

exact predicate evaluation, bucketization admits false positives while ensuring all

matching data is retrieved. A post-processing step is required at the client-side to

weed out the false positives. These techniques often support limited types of queries

and lack of a precise analysis of the performance/security tradeoff introduced by the

indexes. To overcome this limitation, the work in [Damiani03] quantitatively measures

the resulting inference exposure.

Other works introduce solutions to compute basic arithmetic over encrypted data, but

homomorphic encryption [Paillier99] supports only range queries, fully homomorphic

encryption [Gentry09] is unrealistic in terms of time, and privacy homomorphism

[Hacigumus04] is insecure under ciphertext-only attacks [Mykletun06]. In terms of

utility and security, the best approach would be to consider theoretical solution, the

fully homomorphic encryption [Gentry09], which allows servers to compute arbitrary

functions over encrypted data, while only clients see decrypted data. However, this

construction is prohibitively expensive in practice, requiring slowdowns on the order

21

of 109× [Tu13]. In term of performance, CryptDB [Popa11] is a system that provides

provable confidentiality by executing SQL queries over encrypted data using a

collection of efficient SQL-aware encryption schemes. However, this system is not

completely secure since it still uses some weak encryption schemes (e.g.,

deterministic encryption, order-preserving encryption [Boldyreva09]).

Recently, the Monomi system [Tu13] has been proposed for securely executing

analytical workloads over sensitive data on an untrusted database server. Although

this system can execute complex queries with a median overhead of only 1.24×

compared to an un-encrypted database, there can be only one trusted client

decrypting data, and therefore it cannot enjoy the benefit of parallel computing.

Another limitation of this system is that to perform the GROUP BY or equi-join

queries, it still uses some weak encryption schemes (e.g., deterministic encryption).

Hence, optimal performance/security tradeoff for outsourced databases is still

regarded as the Holy Grail.

Some works [Bajaj11, Arasu14] deploy the secure hardware at server side to ensure

the confidentiality of the system. By leveraging server-hosted tamper-proof hardware,

[Bajaj11] designs TrustedDB, a trusted hardware based relational database with full

data confidentiality and no limitations on query expressiveness. TrustedDB utilizes

tamper resistant hardware such as the IBM 4764/5 cryptographic coprocessors

deployed on the service provider‟s side to implement a complete SQL database

processing engine. Although tamper resistant hardware provides a secure execution

environment, it is significantly constrained in both computational ability and memory

capacity which makes implementing fully featured database solutions using secure

coprocessors very challenging. TrustedDB overcomes these limitations by utilizing

resources of untrusted server to the maximum extent possible. This eliminates the

limitations on the size of databases that can be supported. Moreover, client queries

are pre-processed to identify sensitive components to be run inside the secure CPU.

Non-sensitive operations are off-loaded to the untrusted server. However, TrustedDB

does not deploy any parallel processing, limiting its performance. [Arasu14] also

bases on the trusted hardware to securely decrypt data on the server and perform

computations in plaintext. In this setting, since the data access pattern from

untrusted storage has the potential to reveal sensitive information, they present

oblivious query processing algorithms so that an adversary observing the query

execution learns nothing about the underlying database.

22

Even equipped with secure hardware on server with strong encryption, these works

do not solve the two intrinsic problems of centralized approaches. First, users get

exposed to sudden changes in privacy policies by the managing infrastructures; their

data can also be unexpectedly exposed by negligence or because it is regulated by

too weak policies. Second, users are exposed to sophisticated attacks, whose cost-

benefit is high on a centralized database [Anciaux13] (i.e., a successful attack

compromises all the data stored in the centralized server while on the decentralized

approaches, adversary steals only the portion of data stored in that site). In contrast,

decentralized approaches return complete control of users on their data and

drastically reduce the benefits/cost ratio of an attack.

2.3.2 Querying Statistical Databases

Statistical databases (SDB) [Fayyoumi10] are motivated by the desire to compute

statistics without compromising sensitive information about individuals. This requires

trusting the server to perform query restriction or data perturbation, to produce the

approximate results, and to deliver them to untrusted queriers. Thus, the SDB model

is orthogonal to our context since (1) it assumes a trusted third party (i.e., the SDB

server) and (2) it usually produces approximate results to prevent queriers from

conducting inferential attack [Fayyoumi10].

2.3.3 Querying Sensor Network

Wireless sensor networks (WSN) [Alzaid08] consist of sensor nodes with limited

power, computation, storage, sensing and communication capabilities. In WSN, an

aggregator node can compute the sum, average, minimum or maximum of the data

from its children sensors, and send the aggregation results to a higher-level

aggregator. WSN have some connection with our context regarding the computation

of distributed aggregations. However, contrary to our context, WSN nodes are highly

available, can communicate with each other in order to form a network topology to

optimize calculations (In fact, secure devices can collaborate to form the topology

through untrusted server, but because of the weak connectivity of secure devices,

forming the topology is inefficient in term of time). Other work [Castelluccia05] uses

additively homomorphic encryption for computing aggregation function on encrypted

data in WSN but fails to consider queries with GROUP BY clauses. Liu et al. [Liu10]

23

protects data against frequency-based attacks but considers only point and range

queries.

2.4 Other Secure Computation Frameworks

Not restricted to SQL, this section reviews the works allowing other forms of

computations such as privacy-preserving data publishing, secure multi-party

computation, and Map/Reduce framework.

2.4.1 Privacy-Preserving Data Publishing

Privacy-Preserving Data Publishing (PPDP) [Fung10] provides a non trusted user

with some sanitized data produced by an anonymization process such as k-

anonymity, l-diversity or differential privacy to cite the most common ones [Fung10].

Similarly, PPDP is orthogonal to our context since it again assumes a trusted third

party (i.e., the publisher) and produces sanitized data of lower quality to match the

information exposure dictated by a specific privacy model. The work in [Allard14]

tackles the first limitation by pushing the trust to secure clients but keeps the

objective of producing sanitized releases. Contrary to these works, our thesis targets

the execution of general SQL queries, considers a traditional access control model

and does not rely on a secure server.

2.4.2 Secure multi-party computation

Secure multi-party computation (SMC) allows N parties to share a computation in

which each party learns only what can be inferred from their own inputs (which can

then be kept private) and the output of the computation. This problem is represented

as a combinatorial circuit which depends on the size of the input. The resulting cost

of a SMC protocol depends on the number of inter-participant interactions, which in

turn depends exponentially on the size of the input data, on the complexity of the

initial function, and on the number of participants. Despite their unquestionable

theoretical interest, generic SMC approaches are impractical where inputs are large

and the function to be computed complex. Ad-hoc SMC protocols have been

proposed [Kissner05] to solve specific problems/functions but they lack of generality

and usually make strong assumptions on participants‟ availability. Hence, SMC is

badly adapted to our context.

24

2.4.3 Security in MapReduce Framework

The related works address different security aspects of MapReduce as follows.

MAC and differential privacy

[Roy10] proposes the Airavat that integrates mandatory access control with

differential privacy in MapReduce framework. Since Airavat adds noise to the output

in the reduce function to achieve differential privacy, it requires that reducers must be

trusted. Furthermore, the types of computation supported by Airavat are limited (e.g.,

SUM, COUNT). If they want to support more kinds of computation, the mappers must

also be trusted. The other drawback of Airavat is that the security mechanisms,

including the integrity verification mechanisms, are implemented inside the open

infrastructure, that is, they are still services provided by the infrastructure. Hence,

their trustworthiness (i.e. whether they are enforced as expected) should still be

verified. Although Airavat does not trust the computation provider who writes the map

and reduce functions, it does trust the cloud provider and the cloud computing

infrastructure. Finally, they have to modify the original MapReduce framework to

support the mandatory access control.

Integrity verification

In other directions, [Wei09] replicates some map/reduce tasks and assigns them to

different mappers/reducers to validate the integrity of map/reduce tasks. Any

inconsistent intermediate results from those mappers/reducers reveal attacks.

However, even if those malicious mappers/reducers ensure the data integrity, they

cannot preserve the data privacy since the mappers/reducers directly access

sensitive data in cleartexts. Recent research [Ruan12] also focuses on integrity

verification, but missing the data privacy. So, these works are orthogonal to ours in

which we aim at protecting the data privacy.

Data anonymization

[Zhang14b] claims that it is challenging to process large-scale data to satisfy k-

anonymity in a tolerable elapsed time. So they anonymize data sets via

generalization to satisfy k-anonymity requirement in a highly scalable way using

MapReduce. Data sets are partitioned and anonymized in parallel in the first phase,

25

producing intermediate results. Then, the intermediate results are merged and

further anonymized to produce consistent k-anonymous data sets in the second

phase.

Hybrid Cloud

In stating that the data can be classified into secure and public data, some works

[Zhang11, Zhang14a] propose the hybrid cloud including the private cloud and the

public cloud. The main idea is to split the task, keeping the computation on the

private data within an organization‟s private cloud while moving the rest to the public

commercial cloud. Sedic, proposed in [Zhang11], automatically partitions a job

according to the security levels of the data and tries to outsource as much workload

to the public commercial cloud as possible, given sensitive data always stay on the

private cloud. However, this solution requires that reduction operations must be

associative and the original MapReduce framework must be modified. Also, the

sanitization approach taken by Sedic does not fit well with chained or iterative MR,

may still reveal relative locations and length of sensitive data, which could lead to

crucial information leakage in certain applications [Zhang14a]. To overcome this

weakness, [Zhang14a] proposes tagged-MapReduce that augments each key-value

pair in MR with a sensitivity tag. However, both solutions are not suitable for

MapReduce job where all data is sensitive and/or data owner does not want to reveal

any data.

Encrypting part of dataset

In arguing that encrypting all data sets in the Cloud is not effective, [Zhang13]

proposes an approach to identify which intermediate data sets need to be encrypted

while others are in cleartexts, in order to be cost-effective while the privacy

requirements of data holders can still be satisfied. The main idea is that the data with

high frequency of accessing will be encrypted while the others are unencrypted. This

solution is not suitable for the case where all data have the same frequency of

accessing or data owner does not want to reveal even a single tuple to the untrusted

Cloud.

26

Other works supporting very specific operations

Other works support very specific operations. [Blass12a] searches encrypted key-

words on the Cloud so that the cloud must not learn any information about the

content it hosts and search queries performed. [Blass12b] presents EPiC to count

the number of occurrences of a pattern specified by user in an oblivious manner on

the untrusted cloud. In contrast to these works, our work addresses more general

problems, supporting any kind of operations.

To the best of our knowledge, no state-of-the-art MapReducre works can satisfy the

three requirements of security, utility, performance and our TrustedMR proposed in

Chapter 7 is the first MapReduce-based proposal, that inherits the strong privacy

guarantees from [To14], achieving a secure solution to process large-scale

encrypted data using a large set of tamper-resistant hardware with low performance

overhead.

2.5 Conclusion

In this chapter, we first overviewed SQL queries, focusing on the Group By clause.

Then, StreamSQL was introduced, and the window concept of this kind of query was

emphasized due to the close relation with our interested query throughout this thesis.

After the listing of various types of encryption schemes which play important role in

this thesis, we reviewed different domains that apply these encryption schemes to

protect the data from untrusted server.

With these constraints in mind, we then survey the state of the art that use these

encryption schemes to conceal the sensitive data from the untrusted server, and find

that none of them could meet all the requirements of security and efficiency.

As a conclusion, and to the best of our knowledge, our work presented in this thesis

is the first proposal achieving a fully distributed and secure solution to compute

aggregate SQL queries over a large set of participants.

27

29

Chapter 3

Problem Statement

In this chapter, we illustrate the Trusted Data Server (TDS) vision through different

scenarios motivating our approach, and present the hypothesis related to the

security of TDSs and of the queries that we are interested in. Next, we describe the

asymmetric architecture, the role of a supporting server in this architecture, the

threat model, and define correctness and security under this threat model. Finally, we

give the problem statement.

3.1 Scenarios and Queries of Interest

As discussed in [Anciaux13], trusted hardware is more and more versatile and has

become a key enabler for all applications where trust is required at the edges of the

network. Figure 1 depicts different scenarios where a Trusted Data Server (TDS) is

called to play a central role, by reestablishing the capacity to perform global

computations without revealing any sensitive information to central servers. TDS can

be integrated in energy smart meters to gather energy consumption raw data, to

locally perform aggregate queries for billing or smart grid optimization purpose and

externalize only certified results, thereby reconciling individuals' privacy and energy

providers‟ benefits. Green button7 is another application example where individuals

accept sharing their data with their neighborhood through distributed queries for their

personal benefit. Similarly, TDS can be integrated in GPS trackers to protect

individuals' privacy while securely computing insurance fees or carbon tax and

participating in general interest distributed services such as traffic jam reduction.

Moreover, TDSs can be hosted in personal devices to implement secure personal

7
 http://www.greenbuttondata.org/

http://www.greenbuttondata.org/

30

folders like e.g., PCEHR (Personally Controlled Electronic Health Record) fed by the

individuals themselves thanks to the Blue Button initiative8 and/or quantified-self

devices. Distributed queries are useful in this context to help epidemiologists

performing global surveys or allow patients suffering from the same illness to share

their data in a controlled manner.

Figure 1: Different scenarios of TDSs

For the sake of generality, we make no assumption about how the data is actually

gathered by TDSs, this point being application dependent [Allard10, Montjoye12].

We simply consider that local databases conform to a common schema (Figure 3)

which can be queried in SQL. For example, power meter data (resp., GPS traces,

healthcare records, etc) can be stored in one (or several) table(s) whose schema is

defined by the national distribution company (resp., insurance company consortium,

Ministry of Health 9 , specific administration, etc). Since raw data can be highly

sensitive, it must also be protected by an access control policy defined either by the

producer organism, by the legislator or by a consumer association. Depending on

the scenario, each individual may also opt-in/out of a particular query. For sake of

generality again, we consider that each TDS participating in a distributed query

protocol enforces at the same time the access control policy protecting the local data

8
 http://healthit.gov/patients-families/your-health-data

9
 This is the case in France for instance.

http://healthit.gov/patients-families/your-health-data

31

it hosts, with no additional consideration for the access control model itself, the

choice of this model being orthogonal to this study. Hence, the objective is to let

queriers (users) query this decentralized database exactly as if it were centralized,

without restricting the expressive power of the language to statistical queries as in

many PPDP works [Fayyoumi10, Popa11].

Consequently, we assume that the querier can issue the following form of SQL

queries 10 , borrowing the SIZE clause from the definition of windows in the

StreamSQL standard [StreamSQL15]. This clause is used to indicate a maximum

number of tuples to be collected, and/or a collection duration.

For example, an energy distribution company would like to issue the following query

on its customers' smart meters:

SELECT AVG(Cons)

FROM Power P, Consumer C

WHERE C.accomodation='detached house' and C.cid = P.cid

GROUP BY C.district

HAVING Count(distinct C.cid) > 100

SIZE 50000

This query computes the mean energy consumption of consumers living in a

detached home grouped by district, for districts where over 100 consumers

answered the poll and the poll stops after having globally received at least 50.000

answers. The semantics of the query are the same as those of a stream relational

query [Abadi03]. Only the smart meter of customers who opt-in for this service will

participate in the computation. Needless to say that the querier, that is the

distribution company, must be prevented to see the raw data of its customers for

privacy concerns11.

10 As stated in the introduction, we do not consider joins between data stored in

different TDSs in this thesis. However, joins which can be executed locally by each

TDS are supported.

11 At the 1HZ granularity provided by the French Linky power meters, most electrical

appliances have a distinctive energy signature. It is thus possible to infer from the

power meter data inhabitants activities [Lam et al. 2007].

32

In other scenarios where TDSs are seldom connected (e.g., querying mobile

PCEHR), the time to collect the data is probably going to be quite large. Therefore

the challenge is not on the overall response time, but rather to show that the query

computation on the collected data is tractable in reasonable time, given local

resources.

Also note that our semantics make the Open World Assumption: since we assume

that data is not replicated over TDS, many true tuples will not be collected during the

specified period and/or due to the limit, both indicated in the SIZE clause.

3.2 Trusted Data Server

In the context of this thesis, the records of each individual are primarily hosted by the

individual's secure device. Whatever their form factor, secure devices are usually

composed of a tamper-resistant micro-controller connected by a bus to a gigabytes

size external secondary storage area (see Figure 2). We describe below the

properties that we expect a secure device to exhibit.

High Security Guarantees.

A secure device provides a trustworthy computing environment. This property relies

on the following security guarantees provided by a secure device:

 The microcontroller is tamper resistant, making hardware and side-channel

attacks highly difficult.

 Software is certified according to the Common Criteria certification12 making

software attacks highly difficult.

 The embedded software can be auto-administered more easily than its multi-

user central server counterpart thanks to its simplicity, removing the need for

DBAs and therefore eliminating such insider attacks.

 Even the secure device's owner cannot directly access the data stored locally

(she must authenticate, using a PIN code or a certificate, and only gets data

according to her privileges);

12

 http://www.commoncriteriaportal.org/

http://www.commoncriteriaportal.org/

33

The secure device's trustworthiness stems from the expected high Cost/Benefit ratio

of an attack: secure devices enforce the highest hardware and software security

standards (prohibitive costs), and each of them hosts the data of a single individual

(low benefits).

Figure 2: Trusted Data Servers

No Guarantee of Availability.

A secure device provides no guarantee of availability: it is physically controlled by its

owner who connects and disconnects it at will.

Modest Computing Resource.

A secure device provides modest computing resources. Although the tamper

resistance requirement restricts the general computing resources of the secure

environment, it is common that dedicated hardware circuits handle cryptographic

operations efficiently (e.g., dedicated AES and SHA hardware implementations). The

secure environment also contains a small amount of persistent memory in charge of

storing the code executed in the secure device and the cryptographic keys (also

called cryptographic material). For the sake of simplicity, we assume that each

secure device already contains its cryptographic material and privacy parameters

before the protocol starts. Chapter 5 discusses practical ways of setting these pre-

required data structures.

In summary, despite the diversity of existing hardware platforms, a secure device can

be abstracted by (1) a Trusted Execution Environment and (2) a (potentially

34

untrusted but cryptographically protected) mass storage area (see Figure 2)13. E.g.,

the former can be provided by a tamper-resistant microcontroller while the latter can

be provided by Flash memory. The important assumption is that the TDS code is

executed by the secure device hosting it and thus cannot be tampered, even by the

TDS holder herself.

3.3 Asymmetric Architecture

Now that we have described the properties that this thesis expects from the secure

portable secure device, and showed the different scenarios in which the TDS plays

the role. We are now ready to introduce the asymmetric architecture and its

components.

3.3.1 The Role of a Supporting Server

A natural approach to tackle the problem could consist in designing a distributed

protocol involving only secure devices, without any central server. They would share

their data together and jointly compute the results, e.g., in a peer-to-peer fashion. A

secure device is however an autonomous and highly disconnected device, that

moreover remains under the control of its owner. Guaranteeing the availability of

both the data and the results of intermediate computation given such highly volatile

devices would incur a prohibitively high network cost (data transfers between secure

devices). Such an approach would fail to meet the Generality objective stated in the

introduction.

A central supporting server is thus needed; we call it the Supporting Server

Infrastructure, SSI for short. It is required to manage the communications between

TDSs, run the distributed query protocol and store the intermediate results produced

by this protocol. Because SSI is implemented on regular server(s), e.g., in the Cloud,

it exhibits the same low level of trustworthiness, high computing resources, and

availability. Due to these characteristics of SSI, the objective is to allow SSI to

participate in the computation as much as possible to benefit its computing capability,

and therefore reduce the computation load on each secure device. On the other

13

 For illustration purpose, the secure device considered in our experiments is made of a tamper-resistant
microcontroller connected to a Flash memory chip.

35

hand, SSI is not allowed to see the sensitive information. We try to prevent SSI to

obtain information as much as we can to satisfy the Security objective. All the

information transferred to and stored at SSI must therefore be obfuscated

appropriately.

In order to delegate the computation to the SSI, secure devices must disclose

sufficient data for allowing it to compute part of the result, reducing the computation

on secure devices. Besides, each secure device must handle subsets of tuples

rather than the complete dataset at once to make them easily parallelizable. Thus,

the resulting execution sequence consists in the following steps. In the first step,

each participating secure device sends to the SSI a tuple made of its owner's record

obfuscated such that the SSI can use it for grouping the appropriate data but cannot

access the raw record. After grouping, in the second step, SSI sends these groups to

secure devices. Finally, secure devices perform in parallel the computation on

subsets of the collected dataset and return the final result. This general approach

obviously ensures that the partial disclosure necessary for enabling the participation

of the untrusted SSI does not thwart the privacy guarantees of the system.

In the following sections, we describe precisely the variants of this general approach,

and formalize the performance and security of each variant. Three protocols are

proposed and they differ in how SSI participates in the computation and which

information stored at SSI, corresponding to the performance efficiency and privacy

level. Intuitively, the more information exposed to SSI (and therefore the less security

guarantee), the more active role of SSI in the computation, leading to the

performance increase. This intuition will be formally proven in the following sections.

3.3.2 The Asymmetric Architecture

The architecture we consider is decentralized by nature. It is formed by a large set of

low power TDSs embedded in secure devices. Each TDS exhibits three important

properties as mention above.

36

Figure 3: The Asymmetric Architecture

The computing architecture, illustrated in Figure 3, is said to be asymmetric in the

sense that it is composed of a very large number of low power, weakly connected but

highly secure TDSs and of a powerful, highly available but untrusted SSI.

3.3.3 Threat model

TDSs are the unique elements of trust in the architecture and are considered honest.

As mentioned earlier, no trust assumption needs to be made on the TDS holder

herself because a TDS is tamper-resistant and enforces the access control rules

associated to its holder (just like a car driver cannot tamper the GPS tracker installed

in her car by its insurance company or a customer cannot gain access to any secret

data stored in her banking smartcard).

We consider honest-but-curious (also called semi-honest) SSI (i.e., which tries to

infer any information it can but strictly follows the protocol). Considering malicious

SSI (i.e., which may tamper the protocol with no limit, including denial-of-service) is

of little interest to this study. Indeed, a malicious SSI is likely to be detected with an

irreversible political/financial damage and even the risk of a class action.

The objective is thus to implement a querying protocol so that (1) the querier can

gain access only to the final result of authorized queries (not to the raw data

participating in the computation), as in a traditional database system and (2)

intermediate results stored in SSI are obfuscated. Preventing inferential attacks by

combining the result of a sequence of authorized queries as in statistical databases

and PPDP work (see Chapter 2) is orthogonal to this study.

37

3.3.4 Correct and secure computation

Correctness:

We compute the SQL queries on the data collected during the collection phase only

(i.e., when the SIZE clause is satisfied). That means that the aggregation is

computed over only the subset of the population. We cannot, of course, collect all

the data of the population due to the time restriction and feasibility. Then the crucial

question is how we can ensure that this subset correctly reflects the whole dataset.

The answer depends on many elements. The first one is the accuracy of the answer

that Queriers want. Apparently, the more accurate the answer, the bigger dataset we

need to collect. The second element is the distribution property of the dataset. The

third element is the confident level of the final result. These elements are formulized

in the Cochran‟s sample size formula [Cochran77]. We will delve into it in chapter 4.

Security:

In our context, the adversary is the SSI itself, and consequently accesses the

intermediate data of the execution sequence stored at SSI, in addition to the

encrypted output of the protocol.

In order to enable the participation of the SSI in the protocol, secure devices must

disclose some controlled amount of information to it. The information voluntarily

disclosed depends on each protocol to preserve the privacy guarantees (further

details will be given in the following chapters).

Non-deterministic encryption is often supported for the sole purpose of protecting the

data in storage and sacrifice the efficiency in execution on the encrypted data.

Deterministic encryption, on the other hand, efficiently supports the execution but

opens the door for frequency-based attack. So, balancing the trade-off between

efficiency requirements in query execution and protection requirements due to

possible inference attacks is inevitable. We investigate quantitative measures (i.e.,

Coefficient Exposure and Variance) to model inference exposure and provide some

comparisons. These measures show how much information exposure in exchange of

the efficient execution.

38

3.4 Problem Statement

The goal of this thesis is to design protocols to compute SQL query such that: (1) it is

executed on the asymmetric architecture where security is pushed to the edge of

applications, (2) its execution sequence is correct and secure, (3) where the SSI is

honest-but-curious, and (4) it is scalable to datasets containing million of records.

The objective was not to find the most efficient solution for a specific problem but

rather to perform a first exploration of the design space. We proposed three very

different protocols, compared them according to different axes, and investigated the

performance/security trade-off among protocols.

39

41

Chapter 4

The Querying Protocols

In this chapter, we first introduce the core infrastructure of our protocols, and then we

show how to deal with simple SQL queries. After that, we propose protocols that can

handle more complicated SQL queries, including Group By clauses. Finally, we show

that our protocols are correct and secure by analyzing correctness using Cochran's

model and security using the concept of coefficient exposure and variance.

4.1 Introduction

Our querying protocols share common basic mechanisms to make TDSs aware of

the queries to be computed and to organize the dataflow between TDSs and queriers

such that SSI cannot infer anything from the queries and their results.

Query and result delivery: queries are executed in pull mode. A querier posts its

query to SSI and TDSs download it at connection time. To this end, SSI can maintain

personal query boxes (in reference to mailboxes) where each TDS receives queries

directed to it (e.g., get the monthly energy consumption of consumer C) and a global

query box for queries directed to the crowd (e.g., get the mean of energy

consumption per month for people living in district D). Result tuples are gathered by

SSI in a temporary storage area. A query remains active until the SIZE clause is

evaluated to true by SSI, which then informs the querier that the result is ready.

Dataflow obfuscation: all data (queries and tuples) exchanged between the querier

and the TDSs, and between TDSs themselves, can be spied by SSI and must

therefore be encrypted. However, an honest-but-curious SSI can try to conduct

frequency-based attacks [Liu10], i.e., exploiting prior knowledge about the data

distribution to infer the plaintext values of ciphertexts. Depending on the protocols

42

(see later), two kinds of encryption schemes will be used to prevent frequency-based

attacks. With non-deterministic (aka probabilistic) encryption, denoted by nDet_Enc,

several encryptions of the same message yield different ciphertexts while

deterministic encryption (Det_Enc for short) always produces the same ciphertext for

a given plaintext and key [Bellare07]. Whatever the encryption scheme, symmetric

keys must be shared among TDSs: we note k1 the symmetric key used by the

querier and the TDSs to communicate together and k2 the key shared by TDSs to

exchange temporary results among them. Note that these keys may change over

time and the way they are delivered to TDSs is discussed more deeply in chapter 5.

4.2 Select-From-Where statement

This section presents the protocol to compute Select-From-Where queries. This

protocol is simple yet very useful in practice, since many queries are of this form. We

also use it to help the reader get used to our approach. We tackle the more difficult

Group By clause in the next section.

Let us first consider simple SQL queries of the form:

SELECT <attribute(s)>

FROM <Table(s)>

[WHERE <condition(s)>]

[SIZE <size condition(s)>]

These queries do not have a GROUP BY or HAVING clause nor involve aggregate

functions in the SELECT clause. Hence, the selected attributes may (or may not)

contain identifying information about the individuals. Though basic, these queries

answer a number of practical use-cases, e.g., a doctor querying the embedded

healthcare folders of her patients, or an energy provider willing to offer special prices

to people matching a specific consumption profile. To compute such queries, the

protocol is divided in two phases (see Figure 4):

Collection phase: (step 1) the querier posts on SSI a query Q encrypted with k1, its

credential C signed by an authority and S the SIZE clause of the query in cleartext

so that SSI can evaluate it; (step 2) targeted TDSs download Q when they connect;

(step 3) each of these TDSs decrypts Q, checks C, evaluates the AC policy

associated to the querier and computes the result of the WHERE clause on the local

43

data; then each TDS either sends its result tuples (step 4), or a dummy tuple14

whether the result is empty or the querier has not enough privilege to access these

local data (step 4'), non-deterministically encrypted with k2. The collection phase

stops when the SIZE condition has been reached. The result of the collection phase

is actually the result of the query, possibly complemented with dummy tuples. We

call it Covering Result.

Filtering phase: (step 5) SSI partitions the Covering Result with the objective to let

several TDSs manage next these partitions in parallel. The Covering Result being

fully encrypted, SSI sees partitions as uninterpreted chunks of bytes; (step 6)

connected TDSs download these partitions. These TDSs may be different from the

ones involved in the collection phase; (step 7) each of these TDS decrypts the

partition and filters out dummy tuples; (step 8) each TDS sends back the true tuples

encrypted with key k1 to SSI, which finally concatenates all results and informs the

querier that she can download the result (step 9).

Figure 4: Select-From-Where querying protocol

14

 Even if the query is encrypted, sending dummy tuples avoids SSI to learn the query selectivity (and from that
guess the query). It is also helpful in the case where SSI and querier are the same entity.

44

Informally speaking, the correctness, security and efficiency properties of the

protocol are as follows:

Correctness. Since SSI is honest-but-curious, it will deliver to the querier all tuples

returned by the TDSs. Dummy tuples are marked so that they can be recognized and

removed after decryption by each TDS. Therefore the final result contains only true

tuples. If a TDS goes offline in the middle of processing a partition, SSI resends that

partition to another available TDS after a given timeout so that the result is complete.

Security. Since SSI does not know key k1, it can decrypt neither the query nor the

result tuples. TDSs use nDet_Enc for encrypting the result tuples so that SSI can

neither launch any frequency-based attacks nor detect dummy tuples. There can be

two additional risks. The first risk is that SSI acquires a TDS with the objective to get

the cryptographic material. As stated in Chapter 3, TDS code cannot be tampered,

even by its holder. Whatever the information decrypted internally, the only output that

a TDS can deliver is a set of encrypted tuples, which does not represent any benefit

for SSI. The second risk is if SSI colludes with the querier. For the same reason, SSI

will only get the same information as the querier (i.e., the final result in clear text and

no more).

Efficiency. The efficiency of the protocol is linked to the frequency of TDSs

connection and to the SIZE clause. Both the collection and filtering phases are run in

parallel by all connected TDSs and no time-consuming task is performed by any of

them. As the experiment section will clarify, each TDS manages incoming partitions

in streaming because the internal time to decrypt the data and perform the filtering is

significantly less than the time needed to download the data.

While important in practice, executing Select-From-Where queries in the Trusted

Cells context shows no intractable difficulties and the main objective of this section

was to present the query framework in this simple context. Executing Group By

queries is far more challenging. The next section will present different alternatives to

tackle this problem. Rather than trying to get an optimal solution, which is context

dependent, the objective is to explore the design space and show that different

querying protocols may be devised to tackle a broad range of situations.

45

4.3 Group By Queries

The Group By clause introduces an extra phase: the computation of aggregates of

data produced by different TDSs, which is the weak point for frequency-based

attacks. In this section, we propose several protocols, discussing their strong and

weak points from both efficiency and security points of view.

4.3.1 Generic Query Evaluation Protocol

Let us now consider general SQL queries of the form15:

SELECT <attribute(s) and/or aggregate function(s)>

FROM <Table(s)>

[WHERE <condition(s)>]

[GROUP BY <grouping attribute(s)>]

[HAVING <grouping condition(s)>]

[SIZE <size condition(s)>]

These queries are more challenging to compute because they require performing

set-oriented computations over intermediate results sent by TDSs to SSI. The point

is that TDSs usually have limited RAM, limited computing resources and limited

connectivity. It is therefore unrealistic to devise a protocol where a single TDS

downloads the intermediate results of all participants, decrypts them and computes

the aggregation alone. On the other hand, SSI cannot help much in the processing

since (1) it is not allowed to decrypt any intermediate results and (2) it cannot gather

encrypted data into groups based on the encrypted value of the grouping attributes,

denoted by AG={Gi}, without gaining some knowledge about the data distribution.

This would indeed violate our security assumption since the knowledge of AG

distribution opens the door to frequency-based attacks by SSI: e.g. in the extreme

case where AG contains both quasi-identifiers and sensitive values, attribute linkage

would become obvious. Finally, the querier cannot help in the processing either since

she is only granted access to the final result, and not to the raw data.

To solve this problem, we suggest a generic aggregation protocol divided into three

phases (see Figure 5):

15

 For the sake of clarity, we concentrate on the management of distributive, algebraic and holistic aggregate
functions identified in [Locher 2009] as the most prominent and useful ones.

46

Collection phase: similar to the basic protocol.

Aggregation phase:(step 5) SSI partitions the result of the collection phase; (step 6)

connected TDSs (may be different from the ones involved in the collection phase)

download these partitions; (step 7) each of these TDS decrypts the partition,

eliminates the dummy tuples and computes partial aggregations (i.e., aggregates

data belonging to the same group inside each partition); (step 8) each TDS sends its

partial aggregations encrypted with k2 back to SSI; depending on the protocol (see

next sections), the aggregation phase is iterative, and continues until all tuples

belonging to the same group have been aggregated (steps 6', 7', 8'); The last

iteration produces a Covering Result containing a single (encrypted) aggregated

tuple for each group.

Figure 5: Group By querying protocol

Filtering phase: this phase is similar to the basic protocol except that the role of

step 11 is to eliminate the groups which do not satisfy the HAVING clause instead of

eliminating dummy tuples.

47

The rest of this section presents different variations of this generic protocol,

depending on which encryption scheme is used in the collection and aggregation

phases, how SSI constructs the partitions, and what information is revealed to SSI.

Each solution has its own strengths and weaknesses and therefore is suitable for a

specific situation. Three kinds of solutions are proposed: secure aggregation, noise-

based, and histogram-based. They are subsequently compared in terms of privacy

protection (Section 4.5) and performance (Chapter 6).

4.3.2 Secure Aggregation protocol

This protocol, denoted by S_Agg and detailed in Algorithm 1, instantiates the generic

protocol as follows. In the collection phase, each participating TDS encrypts its

result tuples using nDet_Enc (i.e., nEk2(tup)) to prevent any frequency-based attack

by SSI. The consequence is that SSI cannot get any knowledge about the group

each tuple belongs to. Thus, during step 5, tuples from the same group are randomly

distributed among the partitions. This imposes the aggregation phase to be iterative,

as illustrated in Figure 6. At each iteration, TDSs download encrypted partitions (i.e.,

Ωe) containing a sequence of (AG, Aggregate) value pairs ((City,

Energy_consumption) in the example), decrypt them to plaintext partitions (i.e., Ω ←

nEk2
-1(Ωe)), aggregate values belonging to the same grouping attributes (i.e., Ωnew =

Ωold⊕ Ω), and sends back to SSI a smaller encrypted sequence of (AG, Aggregate)

value pairs where values of the same group have been aggregated. SSI gathers

these partial aggregations to form new partitions, and so on and so forth until a

single partition (i.e., Ωfinal) is produced, which contains the final aggregation.

Correctness. The requirement for S_Agg to terminate is that TDSs have enough

resources to perform partial aggregations. Each TDS needs to maintain in memory a

data structure called partial aggregate which stores the current value of the

aggregate function being computed for each group. Each tuple read from the input

partition contributes to the current value of the aggregate function for the group this

tuple belongs to. Hence the partial aggregate structure must fit in RAM (or be

swapped in stable storage at much higher cost). If the number of groups is high (e.g.,

grouping on a key attribute) and TDSs have a tiny RAM, this may become a limiting

factor.

48

Figure 6: An example of (iterative partial) aggregation

Security. In all phases, the information revealed to SSI is a sequence of tuples or

value pairs (i.e., tupe and Ωe) encrypted non-deterministically (nDet_Enc) so that SSI

cannot conduct any frequency-based attack.

Efficiency. The aggregation process is such that the parallelism between TDSs

decreases at each iteration (i.e., , with being the number of

49

TDSs that participate in the ith partial aggregation phase), up to having a single TDS

producing the final aggregation (i.e., = 1). The cost model is proposed in

Chapter 6 to find the optimal value for the reduction factor . Note again that

incoming partitions are managed in streaming because the cost to download the data

significantly dominates the rest.

Suitable queries. Because of the limited RAM size, this algorithm is applicable for

the queries with small G such as Q1: SELECT AVG(Salary) FROM Paris_Population

WHERE Age>20 GROUP BY Zipcode (Paris has 20 different zip codes corresponding to

20 districts) or Q2: SELECT COUNT(*) FROM Paris_Population WHERE Age>20 GROUP

BY Gender.

4.3.3 Noise-based protocols

In these protocols, called Noise_based and detailed in Algorithm 2, Det_Enc is used

during the collection phase on the grouping attributes AG. This is a significant

change, since it allows SSI to help in data processing by assembling tuples

belonging to the same groups in the same partitions. However, the downside is that

using Det_Enc reveals the distribution of AG to SSI. To prevent this disclosure, the

fundamental idea is that TDSs add some noise (i.e., fake tuples) to the data in order

to hide the real distribution. The added fake tuples must have identified

characteristics, as dummy tuples, such that TDSs can filter them out in a later step.

The aggregation phase is roughly similar to S_Agg, except that the content of

partitions is no longer random, thereby accelerating convergence and allowing

parallelism up to the final iteration. Two solutions are introduced to generate noise:

random (white) noise, and noise controlled by complementary domains.

Random (white) noise solutions. In this solution, denoted Rnf_Noise, nf fake tuples

are generated randomly then added. TDSs apply Det-Enc on AG, and nDet_Enc on

ĀG (the attributes not appearing in the GROUP BY clause). However, because the

fake tuples are randomly generated, the distribution of mixed values may not be

different enough from that of true values especially if the disparity in frequency

among AG is big. To overcome this difficulty, a large quantity of fake tuples (nf>>1)

must be injected to make the fake distribution dominate the true one.

50

Noise controlled by complementary domains. This solution, called C_Noise,

overcomes the limitation of Rnf_Noise by generating fake tuples based on the prior

knowledge of the AG domain cardinality. Let us assume that AG domain cardinality is

nd(e.g., for attribute Age, nd ≈ 130), a TDS will generate nd - 1 fake tuples, one for

each value different from the true one. The resulting distribution is totally flat by

construction. However, if the domain cardinality is not readily available, a cardinality

discovering algorithm must be launched beforehand (see next section).

Correctness. True tuples are grouped in partitions according to the value of their AG

attributes so that the aggregate function can be computed correctly. Fake tuples are

eliminated during the aggregation phase by TDSs thanks to their identified

characteristics and do not contribute to the computation.

Security. Although TDSs apply Det-Enc on AG, AG distribution remains hidden to SSI

by injecting enough white noise such that the fake distribution dominates the true

one or by adding controlled noise producing a flat distribution.

Efficiency. TDSs do not need to materialize a large partial aggregate structure as in

S_Agg because each partition contains tuples belonging to a small set of (ideally one)

51

groups. Additionally, this property guarantees the convergence of the aggregation

process and increases the parallelism in all phases of the protocol. However, the

price to pay is the production and the elimination afterwards of a potentially very high

number of fake tuples (the value is algorithm and data dependent).

Suitable queries. Rnf_Noise with small nf is suitable for the queries in which there is

no wide disparity in frequency between AG such as Q3: SELECT COUNT(Child) FROM

Paris_Population GROUP BY Father’s_Name HAVING COUNT(Child) < 4. In contrast,

the white noise solution with big nf is suitable for queries with big disparity such as

Q4: SELECT COUNT(*) FROM Paris_Population GROUP BY Salary because the

number of very rich people (i.e, salary > 1 M€/year) is much less than that of people

having average salary. For the C_Noise, in term of the feasibility, because the

process of calculating aggregation is divided among connected TDSs in a distributed

and parallel way, better balancing the loads between TDSs, this protocol is

applicable not only for the queries where G is small (e.g., Q1, Q2) but also for those

with big G, such as Q5: SELECT AVG(Salary) FROM Paris_Population WHERE Age>20

GROUP BY Age (because the Age‟s domain is 130 at maximum). However, considering

the efficiency, because the number of fake tuples is proportional to G, this solution is

inappropriate for the queries with very big G (e.g., Q4) when it has to generate and

process a large amount number of fake tuples.

4.3.4 Equi-depth histogram-based protocol

Getting a prior knowledge of the domain extension of AG allows significant

optimizations as illustrated by C_Noise. Let us go one step further and exploit the

prior knowledge of the real distribution of AG attributes. The idea is no longer to

generate noisy data but rather to produce a uniform distribution of true data sent to

SSI by grouping them into equi-depth histograms, in a way similar to [Hacigumus02].

The protocol, named ED_Hist, works as follows. Before entering the protocol, the

distribution of AG attributes must be discovered and distributed to all TDSs. This

process needs to be done only once and refreshed from time to time instead of being

run for each query. The discovery process is similar to computing a Count function

on Group By AG and can therefore be performed using one of the protocol introduced

above. During the collection phase, each TDS uses this knowledge to calculate

nearly equi-depth histograms that is a decomposition of the AG domain into buckets

52

holding nearly the same number of true tuples. Each bucket is identified by a hash

value giving no information about the position of the bucket elements in the domain.

Then the TDS allocates its tuple(s) to the corresponding bucket(s) and sends to SSI

couples of the form (h(bucketId), nDet_Enc(tuple)). During the partitioning step of the

aggregation phase, SSI assembles tuples belonging to the same buckets in the

same partitions. Each partition may contain several groups since a same bucket

holds several distinct values. The first aggregation step computes partial

aggregations of these partitions and returns to SSI results of the form

(Det_Enc(group), nDet_Enc(partial aggregate)). A second aggregation step is

required to combine these partial aggregations and deliver the final aggregation.

Correctness. Only true tuples are delivered by TDSs and they are grouped in

partitions according to the bucket they belong to. Buckets are disjoint and partitions

contain a small set of grouping values so that partial aggregations can be easily

computed by TDSs.

Security. SSI only sees a nearly uniform distribution of h(bucketId) values and

cannot infer any information about the true distribution of AG attributes. Note that

h(bucketId) plays here the same role as Det_Enc(bucketId) values but is cheaper to

compute for TDSs.

Efficiency. TDSs do not need to materialize a large partial aggregate structure as in

S_Agg because each partition contains tuples belonging to a small set of groups

during the first phase and to a single group during the second phase. As for C_Noise,

this property guarantees convergence of the aggregation process and maximizes the

parallelism in all phases of the protocol. But contrary to C_Noise, this benefit does

not come at the price of managing fake tuples.

Suitable queries. This solution is suitable for both kinds of queries (i.e., with small G

like Q1, Q2 and big G like Q4, Q5) both in terms of efficiency (because it does not

handle fake data) and feasibility (because it divides the big group into smaller ones

and assigns the tasks for TDSs).

53

This section shows that the design space for executing complex queries with Group

By is large. It presented three different alternatives for computing these queries and

provided a short initial discussion about their respective correctness, security and

efficiency. Chapter 6 compares in a deeper way these alternatives in terms of

performance while section 4.5 analyzes the comparison of these same alternatives

in terms of security. The objective is to assess whether one solution dominates the

others in all situations or which parameters are the most influential in the selection of

the solution best adapted to each context.

54

4.4 Correctness

In scenarios where TDSs are seldom connected (e.g., TDSs hosting a PCEHR), the

collection phase of the querying protocol may be critical since its duration depends

on the connection rate of TDSs. However, many of these scenarios can

accommodate a result computed on a representative subset of the queried dataset

(e.g., if Querier wants to find out the average salary of people in France with the total

population of 65 millions, it is reasonable to survey only a fraction of the population).

The question thus becomes how to calibrate the dataset subset? Larger subsets

slow down the collection phase while smaller subsets diminish the accuracy and/or

utility of the results. To determine if a sample population accurately portrays the

actual population, we can estimate the sample size required to determine the actual

mean within a given error threshold [Cochran77].

We propose to use the Cochran‟s sample size formula [Cochran77] to calculate the

required sample size as follow:

with popm the size of the actual population, λ the user selected error rate, z the user

selected confidence level, and σ the standard deviation of the actual population. The

meaning of each parameter in this formula is explained below.

The error rate λ (sometimes called the level of precision) is the range in which the

true value of the population is estimated to be (e.g., if a report states that 60% of

people in the sample living in Paris have salary greater than 1300 EUR/month with

an error rate of ±5%, then we can conclude that between 55% and 65% of Parisian

earn more than 1300 EUR/month).

The confidence level z is originated from the ideas of the Central Limit Theorem

which states that when a population is repeatedly sampled, the average value of the

attribute obtained by those samples approaches to the true population value.

Moreover, the values obtained by these samples are distributed normally around the

real value (i.e., some samples having a higher value and some obtaining a lower

55

score than the true population value). In a normal distribution, approximately 95% of

the sample values are within two standard deviations of the true population value

(e.g., mean).

The degree of variability σ of the dataset refers to the distribution of attributes in the

population. A low standard deviation indicates that the data points tend to be very

close to the expected value; a high standard deviation indicates that the data points

are spread out over a large range of values. The more heterogeneous a population,

the larger the sample size required to obtain a given level of precision and vice versa.

To take into account the fact that some TDS‟s holders may opt out of the query, let us

call optout the percentage of TDSs that opt out of the survey. Then, the required

sample size we need to collect in the collection phase is:

Among the three parameters, λ and z are user selected but σ is data-dependent.

Cochran [Cochran77] listed four ways of estimating population variances for sample

size determinations: (1) take the sample in two steps, and use the results of the first

step to determine how many additional responses are needed to attain an

appropriate sample size based on the variance observed in the first step data; (2)

use pilot study results; (3) use data from previous studies of the same or a similar

population; or (4) estimate or guess the structure of the population assisted by some

logical mathematical results. Usually, z = 1.96 (i.e., within two standard deviations of

the mean of the actual population) is often chosen in statistics to reflect 95%

confidence level. In the experiment, because σ is data-dependent, we will vary this

parameter to see its impact to S. We also vary the error rate reflecting Querier‟s

preference.

4.5 Security Analysis

To analyze the security of our proposed protocols, we use two techniques to

evaluate based on the assumption of the adversary‟s knowledge. In the first way,

with the assumption that the attacker knows the distribution of the cleartext dataset,

we use the coefficient exposure to measure how much information revealed in each

56

protocols. Then, in the second way with stronger assumption that the attacker knows

exact probability distribution of the values within each bucket, variance is used to

analyze the security.

4.5.1 Coefficient Exposure

In this section, in order to quantify the confidentiality of each algorithm, we measure

the information exposure of the encrypted data they reveal to SSI by using the

approach proposed in [Damiani03] which introduces the concept of coefficient to

assess the exposure. To illustrate, let us consider the example in Figure 7 where

Figure 7a is taken from [Damiani03] and Figure 7b is the extension of [Damiani03]

applied in our context. The plaintext table Accounts is encrypted in different ways

corresponding to our proposed protocols. To measure the exposure, we consider the

probability that an attacker can reconstruct the plaintext table (or part of the table) by

using the encrypted table and his prior knowledge about global distributions of

plaintext attributes.

Figure 7: Encryptions and IC tables

Although the attacker does not know which encrypted column corresponds to which

plaintext attribute, he can determine the actual correspondence by comparing their

57

cardinalities. Namely, she can determine that IA, IC, and IB correspond to attributes

Account, Customer, and Balance respectively. Then, the IC table (the table of the

inverse of the cardinalities of the equivalence classes) is formed by calculating the

probability that an encrypted value can be correctly matched to a plaintext value. For

example, with Det_Enc, P(α = Alice) = 1 and P(κ = 200) = 1 since the attacker knows

that the plaintexts Alice and 200 have the most frequent occurrences in the Accounts

table (or in the global distribution) and observes that the ciphertexts α and κ have

highest frequencies in the encrypted table respectively. The attacker can infer with

certainty that not only α and κ represent values Alice and 200 (encryption inference)

but also that the plaintext table contains a tuple associating values Alice and 200

(association inference). The probability of disclosing a specific association (e.g.,

<Alice,200>) is the product of the inverses of the cardinalities (e.g., P(<α,κ> =

<Alice,200>) = P(α = Alice)× P(κ = 200) = 1). The exposure coefficient Ԑ of the whole

table is estimated as the average exposure of each tuple in it.

,

1 1

1 kn

i j

i j

IC
n


 

 

Here, n is the number of tuples, k is the number of attributes, and ICi,j is the value in

row i and column j in the IC table. Let‟s Nj be the number of distinct plaintext values

in the global distribution of attribute in column j (i.e., Nj ≤ n).

Using nDet_Enc, because the distribution of ciphertexts is obfuscated uniformly, the

probability of guessing the true plaintext of α is P(α = Alice) = 1/5. So, ICi,j = 1/Nj for

all i, j, and thus the exposure coefficient of S_Agg is:

_

1 1 1

1 1
1/

k kn

S Agg j

i j jj

N
n N


  

  

For the nearly equi-depth histogram, each hash value can correspond to multiple

plaintext values. Therefore, each hash value in the equivalence class of multiplicity

m can represent any m values extracted from the plaintext set, that is, there are
jN

m

 
 
 

different possibilities. The identification of the correspondence between hash and

plaintext values requires finding all possible partitions of the plaintext values such

that the sum of their occurrences is the cardinality of the hash value, equating to

58

solving the NP-Hard multiple subset sum problem [Ceselli05]. We consider two

critical values of collision factor h (defined as the ratio G/M between the number of

groups G and the number M of distinct hash values) that correspond to two extreme

cases (i.e., the least and most exposure) of ɛED_Hist: (1) h = G: all plaintext values

collide on the same hash value and (2) h = 1: distinct plaintext values are mapped to

distinct hash values (i.e., in this case, the nearly equi-depth histogram becomes

Det_Enc since the same plaintext values will be mapped to the same hash value).

In the first case, the optimal coefficient exposure of histogram is:

_

1

min() 1/
k

ED Hist j

j

N


 

because ICi,j = 1/Nj for all i, j. For the second case, the experiment in [Ceselli05]

(where they generated a number of random databases whose number of

occurrences of each plaintext value followed a Zipf distribution) varies the value of h

to see its impact to ɛED_Hist. This experiment shows that the smaller the value of h, the

bigger the ɛED_Hist and ɛED_Hist reaches maximum value (i.e., max(ɛED_Hist) ≈ 0.4) when

h = 1.

For Noise_based algorithms, when nf = 0 (i.e., no fake tuples), Rnf_Noise becomes

Det_Enc and therefore it has maximum exposure in this case. If nf is not big enough,

since each TDS generates very few fake tuples, the transformed distribution cannot

hide some ciphertexts with remarkable (highest or lowest) frequencies, increasing

the exposure. The bigger the nf, the lower the probability that these ciphertexts are

revealed. Exceptionally, when the noise is not random (but controlled by domain

cardinality of AG), C_Noise has better exposure since all ciphertexts have the same

frequency (ICi,j = 1/Nj for all i, j):

59

The exposure coefficient gets the highest value when no encryption is used at all and

therefore all plaintexts are displayed to attacker. In this case, ICi,j = 1 ∀ i, j, and thus

the exposure coefficient of plaintext table is (trivially)

_

1 1

1
1 1

kn

P Text

i jn


 

 

The information exposures among our proposed solutions are summarized in Figure

8. In conclusion, S_Agg is the most secure protocol. To reach the highest secure

level as the S_Agg, other protocols must pay some high prices. Specifically,

Rnf_Noise has to generate a very large amount of noise regardless of the value of G;

C_Noise also incurs large noise if G is big; and ED_Hist must have a significant

collision factor.

Figure 8: Information exposure among protocols

.

4.5.2 Variance

In this section, we propose a stronger assumption that the adversary (A for short)

possesses more knowledge of encrypted dataset than the previous section: A knows

the entire bucketization scheme and the exact probability distribution of the values

within each bucket. For example, given that bucket B has 10 elements, we assume A

knows that: 3 of them have value 85, 3 have value 87 and 4 have value 95, say.

However, since the elements within each bucket are indistinguishable, this does not

allow A to map values to elements with absolute certainty. Then, the A‟s goal is to

determine the precise values of sensitive attributes of some (all) individuals (records)

with high degree of confidence. Eg: What is the value of salary field for a specific

tuple? [Hore04] proposes the Variance of the distribution of values within a bucket B

60

as its measure of privacy guarantee. They first define the term Average Squared

Error of Estimation (ASEE) as follows.

Definition ASEE: Assume a random variable XB follows the same distribution as the

elements of bucket B and let PB denote its probability distribution. For the case of a

discrete (continuous) random variable, we can derive the corresponding probability

mass (density) function denoted by pB. Then, the goal of the adversary is to estimate

the true value of a random element chosen from this bucket. We assume that A

employs a statistical estimator for this purpose which is, itself a random variable, X’B

with probability distribution P’B.

In other words, A guesses that the value of X’B is xi, with probability p’B(xi). If there

are N values in the domain of B, then we define Average Squared Error of

Estimation (ASEE) as:

Theorem [Hore04]: ASEE(X, X’) = Var(X) + Var(X’) + (E(X) - E(X’))2 where X and X’

are random variables with probability mass (density) functions p and p0, respectively.

Also Var(X) and E(X) denote variance and expectation of X respectively.

Proof: interested readers refer to [Hore04] for a detail proof of this theorem.

Note that unlike coefficient exposure, the smaller value of ASEE implies the bigger

security breach because the distance between guessed values and actual values is

smaller, and vice versa. So the adversary tries to minimize ASEE as much as he can.

From the theorem above, it is easy to see that A can minimize ASEE(XB, X’B) in two

ways: 1) by reducing Var(X’B) or 2) by reducing the absolute value of the difference

E(XB) - E(X’B). Therefore, the best estimator of the value of an element from bucket B

that A can get, is the constant estimator equal to the mean of the distribution of the

elements in B (i.e., E(XB)). For the constant estimator X’B, Var(X’B) = 0. Also, as

follows from basic sampling theory, the “mean value of the sample-means is a good

estimator of the population (true) mean”. Thus, A can minimize the last term in the

above expression by drawing increasing number of samples or, equivalently,

obtaining a large sample of plaintext values from B. However, note that the one

61

factor that A cannot control (irrespective of the estimator he uses) is the true variance

of the bucket values, Var(XB). Therefore, even in the worst case scenario (i.e., E(X’B)

= E(XB) and Var(X’B) = 0), A still cannot reduce the ASEE below Var(XB), which,

therefore, forms the lowest bound of the accuracy achievable by A. Hence, the data

owners try to bucketize data in order to maximize the variance of the distribution of

values within each bucket. These two cases corresponds to the two extreme cases

of nearly equi-depth histogram (when h = 1 and h = G) as analyzed below.

When h = 1 (Det_Enc), since each bucket contains only the same plaintext values,

and with the assumption above about additional knowledge of adversary, he can

easily infer that the expected value of X’B equals to that of XB: E(X’B) = E(XB). For the

variance, with h = 1, the variance of X’B gets the minimum value Var(X’B) = 0

(because variance measures how far a set of numbers is spread out, a variance of

zero indicates that all the values are identical). In this case, the value of ASEE

equals to the lowest bound Var(XB).

When h = G, since all plaintext values collide on the same hash value, the difference

between E(X’2B) – (E(X’B))2 is big, leading to the big value of Var(X’B). So, the value

of ASEE approaches highest bound.

As you can see, although the coefficient exposure and average squared error of

estimation are different ways to measure privacy of equi-depth histogram depending

on the adversary‟s knowledge, they give the same result.

62

63

Chapter 5

Implementation

In this chapter, we describe how to turn the theoretical TDS concept into a real

computing infrastructure and how to solve related issues such as access control,

fault tolerance, load balance in order to make the protocols feasible. We also

propose the adaptive key exchange protocol, the important protocol that ensures the

safety in sharing the keys among participants. Finally, we detail the prototype

platform which is an instance of the architecture presented in previous chapter.

5.1 Implementation Issues

5.1.1 Making the TDS Concept Concrete

This work was partially supported by ANR grant KISS n° ANR-11-INSE-0005 with the

objective to add distributed query facilities to the Personal Data Server named

PlugDB16. PlugDB is a database engine embedded in a secure device combining the

tamper-resistance of a smartcard and the storage capacity of a SD card (see a

picture of the hardware platform in Figure 14). The PlugDB embedded database

engine is responsible for organizing all personal data in a relational database style,

indexing the data, executing queries on it and protecting it through access control

rules and encryption of the data at rest. The Yvelines district in France is currently

running a large scale field experiment using PlugDB to implement a secure and

portable medical-social folder improving the coordination of medical and social care

at home for elderly patients.

16

 https://project.inria.fr/plugdb/

64

Figure 9: KISS Personal Data Server Architecture

As pictured in Figure 9, the KISS consortium extends PlugDB towards the support (1)

of a wider form of personal data (spatio-temporal data, sensed data streams,

documents, links to remote - encrypted - files), (2) of usage control rules, notably by

integrating data provenance in the definition of the policies) and (3) of distributed

facilities to execute global queries and produce anonymized releases. We refer the

reader interested in a deeper description of the KISS project to [KISS12] and

concentrate the next subsections to specific aspects of the KISS architecture linked

to the management of distributed queries, namely how to enforce access control

during query execution, how to organize the collection phase and how to organize

the computation to guarantee fault tolerance and load balancing. This extension of

PlugDB to distributed queries has been demonstrated in [To14b].

5.1.2 Enforcing Access Control

Contrary to statistical databases or PPDP works where the protection resides on the

fact that aggregate queries or anonymized releases do not reveal any information

linkable to individuals, we consider here traditional SQL queries and a traditional

access control model where subjects (either users, roles or applications) are granted

access to objects (either tables or views). In the fully decentralized context we are

65

targeting, this impacts both the definition of the access control (AC for short) and its

enforcement.

AC policies can be defined and signed by trusted authorities (e.g., Ministry of Health,

bank consortium, consumer association). As for the cryptographic material, such

predefined policy can be either installed at burn time or be downloaded dynamically

by each TDS using the key exchange protocols discussed in section 5.2. In more

flexible scenarios, users may be allowed to modify the predefined AC policy to

personalize it or to define it from scratch. The latter case results in a decentralized

Hippocratic database [Agrawal02] in the sense that tuples belonging to a same table

vertically partitioned among individuals may be ruled by different AC policies. Lastly,

each individual may have the opportunity to opt-in/out of a given query. Our query

execution protocol accommodates this diversity by construction, each TDS checking

the querier's credentials and evaluating the AC policy locally before delivering any

result (either true or dummy tuples depending on the AC outcome).

Figure 10: Functional architecture of a trusted AC system [Anciaux09]

But how can AC be safely enforced at TDS side? The querier's credentials are

themselves certified by a trusted party (e.g., a public organization or a company

consortium delivering certificates to professionals to testify their identity and roles).

As shown in Figure 10, TDSs checks the querier's credentials and evaluates the AC

policies thanks to an AC engine embedded on the secure chip, thereby protecting

the control against any form of tampering. Details about the implementation of such a

tamper-resistant AC module can be found in [Anciaux09].

66

5.1.3 Organizing the computation

Fault tolerance. In scenarios where TDSs disconnect at will, or in case of local

failure, some tasks may be interrupted in the middle of their processing. To prevent

data loss, SSI handles failures by re-executing the failed job on some other TDSs.

SSI periodically pings the TDSs that received data in the previous steps. If SSI

receives no response from a TDS after the timeout period has expired, that TDS is

marked as faulty and its job is simply reassigned to another TDS. If the presumed

faulty TDS finally sends its result to SSI, this result is ignored.

Load balancing. The trivial protocol in which SSI would send all collected data to a

single TDS to compute the final result is meaningless in our setting because: (1) the

modest storage and computing resource of a TDS would not allow it to handle such

big data, (2) even if a TDS could handle that data in streaming, the computing time

would not be compatible with a normal use of TDSs, considering that the primary

objective of a TDS is usually not to participate in distributed queries (e.g., a patient

plugging his TDS to update his medical record will not wait for hours in the

physician's office until a distributed query is completed), (3) this TDS will become a

single point of attack as in the centralized model17.

Because of this, SSI mobilizes all connected TDSs to participate in a parallel

computation of a query. The total load is distributed to available TDSs in such a way

that the global execution time is minimal. In each step of the protocol, the load of the

next step is smaller than that of the previous step, and therefore the number of

mobilized TDSs reduces in each step (we call it the reduction factor). In the

experiment section below, we use a cost model to find out the optimal reduction

factor so that the execution time is smallest. The cost model also calculates the load

each TDS has to incur in average.

17

 In this thesis, we make the theoretical assumption that TDSs are unbreakable. The assumption that a TDS will
actually not be broken makes sense in practice thanks to the very high value of the ratio cost/benefit of an attack.
However, by concentrating the computation on a single TDS, this ratio significantly decreases because a
successful attack (still highly difficult to conduct) will reveal all the data.

67

5.2 Key Management

Our protocols rely heavily on the use of symmetric key cryptography. This section

explains how these keys (k1 for Querier-TDS communication and k2 for inter-TDS

communication) can be managed and shared in a secure way.

5.2.1 State-of-the-Art on Group Key Management

Group key management protocols can be roughly classified into three classes:

centralized, decentralized, and distributed [Rafaeli03]. In centralized group key

protocols, a single entity is employed to control the whole group and is responsible

for distributing group keys to group members. In the decentralized approaches, a set

of group managers is responsible for managing the group as opposed to a single

entity. In the distributed method, group members themselves contribute to the

formation of group keys and are equally responsible for the re-keying and distribution

of group keys. Their analysis [Rafaeli03] made clear that there is no unique solution

that can satisfy all requirements. While centralized key management schemes are

easy to implement, they tend to impose an overhead on a single entity.

Decentralized protocols are relatively harder to implement and raise other issues,

such as interfering with the data path or imposing security hazards on the group.

Moreover, distributed key management, by design, is simply not scalable. Hence it is

important to understand fully the requirements of the application to select the most

suitable GKE protocol. Under the computational Diffie-Hellman assumption, some

works [Wu11, Bresson04] proposed group key exchange protocol suitable for low-

power devices. These works achieve communication efficiency because they require

only two communication rounds to establish the shared key. They also require little

computing resources of participants and are thus suitable for the TDS context.

5.2.2 Overview of Key Management

There are numerous ways to share the keys between TDSs and Querier depending

on which context we consider.

In the closed context, we assume that all TDSs are produced by the same provider,

so the shared key k2 can be installed into TDSs at manufacturing time. If Querier

also owns a TDS, key k1 can be installed at manufacturing time as well. Otherwise,

68

Querier must create a private/public key and can use another way (PKI or GKE

described below) to exchange key k1. An illustrative scenario for the closed context

can be: patients and physicians in a hospital get each a TDS from the hospital, all

TDSs being produced by the same manufacturer, so that the required cryptographic

material is preinstalled in all TDSs before queries are executed.

In an open context, a Public Key Infrastructure (PKI) can be used so that queriers

and TDSs all have a public-private key pair. When a TDS or querier registers for an

application, it gets the required symmetric keys encrypted with its own public key.

Since the total number of TDS manufacturers is assumed to be very small (in

comparison with the total number of TDSs) and all the TDSs produced by the same

producer have the same private/public key pair, the total number of private/public key

pairs in the whole system is not big. Therefore, deploying a PKI in our architecture is

suitable since it does not require an enormous investment in managing a very large

number of private/public key pairs (i.e., proportional to the number of TDSs). PKI can

be used to exchange both keys k1 and k2 for both Querier cases i.e. owning a secure

device or not. In the case we want to exchange k2, we can apply the above protocol

for k1 with Querier being replaced by one of the TDSs. This TDS can be chosen

randomly or based on its connection time (e.g., the TDS that has the longest

connection time to SSI will be chosen).

An illustrative scenario for the open context can be: TDSs are integrated in smart

phones produced by different smart phone producers. Each producer has many

models (e.g., iPhone 1-6 of Apple, Galaxy S1-S5 of Samsung, Xperia Z1-Z4 of

Sony…) and we assume that it installs the same private/public key on each model. In

total, there are about one hundred models in the current market, so the number of

different private/public keys is manageable. The phone‟s owner can then securely

take part in surveys such as: what is the volume of 4G data people living in Paris

consume in one month, group by network operators (Orange, SFR…).

Another way to deliver the shared key to TDSs and Querier in the open context is to

use the Group Key Exchange protocol (GKE for short) [Wu11, Amir04, Wu08] so that

Querier can securely exchange the secret key to all TDSs. Some GKE protocols

[Amir04] require a broadcast operation in which a participant sends part of the key to

the rest. These protocols are not suitable for our architecture since TDSs

communicate together indirectly through SSI. This incurs a lot of operations for SSI

69

to broadcast the messages (i.e., O(n2), with n is the number of participants). Other

protocols [Wu08] overcome this weakness by requiring that participants form a tree

structure to reduce the communication cost. Unfortunately, SSI has no knowledge in

advance about TDSs thus this tree cannot be built. The work in [Wu11] proposes a

protocol with two rounds of communications and only one broadcast operation.

However, this protocol still has the inherent weakness of the GKE: all participants

must connect during the key exchange phase. This characteristic does not fit in our

architecture since TDSs are weakly connected. Finally, the Broadcast Encryption

Scheme (BES) [Castelluccia05] requires that all participants have a shared secret in

advance, preventing us from using it in a context where TDSs are produced by

different manufacturers.

In consequence, we must propose an adaptive GKE scheme, fitting our architecture

in the following section.

5.2.3 The Adaptive Key Exchange Protocol

Let p, q be two large primes satisfying p = 2q + 1; Gq be a subgroup of Zp* with the

order q; g be a generator of the group Gq; H1, H2 be two one-way hash functions

such that H1, H2: {0, 1}* -> Zq*; SID be a public session identity (note that each

session is assigned a unique SID). Without loss of generality, let {Q, U1, U2,…, Un}

be a set of participants who want to generate a group secret key, where Q is the

Querier and U1, U2,…, Un are TDSs. This dynamic GKE protocol is depicted in Figure

11 and the detailed steps are described as follows.

Step 1: Each client Ui (1 ≤ i ≤ n) computes ri = H1(Kpi) and zi = gri mod p with Kpi is

the private key of each TDS. Then, each Ui sends (Ui, zi) to SSI. Since all TDSs

produced by the same producer share the same private/public key pair, they

generate the same zi. When this collection phase stops, SSI forwards all these (Ui, zi)

to Querier Q.

Step 2: Querier Q first selects two random values r0, r ∈Zq* and computes z0 = gr0

mod p. Upon receiving n pairs (Ui, zi) (1 ≤ i ≤ n), Querier eliminates the duplicated zi,

(we assume that there remains only m pairs (Ui,zi) with distinct zi). Since the number

of producers is very small in comparison with the number of TDSs, we have m << n.

Q computes xi = zi
r0 mod p and yi = H2(xi|| SID) ⊕ r for i=1, 2,…, m. Finally, Q

70

computes the shared session key SK = H2(r||y1||y2||…||ym||SID) and broadcasts (Q,

y1, y2…, ym, z0, SID) to all TDSs. Since m << n, the length of the broadcast message

(U0,y1,y2…,ym,z0, SID) is very short, saving network bandwidth.

Step 3: Upon receiving the messages (Q, y1, y2…, ym, z0, SID), each TDS can

compute y‟i = H2(xi || SID‟)⊕ r‟ and uses r to obtain the shared key SK =

H2(r||y1||y2||…||ym||SID). In this step, even if some TDS did not participate in the first

step of the protocol, they still can get the secret group key SK because they can use

their private key and the public hash function H1 to compute the value ri that all the

TDSs belonging to the same manufacturer can compute.

Figure 11: Adaptive Key Exchange Protocol

Note that for the security of the proposed protocol, given the Diffie-Hellman problem

(see below), we make the following classical DDH and CDH assumptions, and

assume there exists a secure one-way hash function.

Decision Diffie-Hellman (DDH) problem: Given ya = gx1 mod p and yb = gx2 mod p

for some x1, x2 ∈ Z*
q, the DDH problem is to distinguish two tuples (ya, yb, g

x1x2 mod

p) and (ya, yb, R ∈ Gq).

71

DDH assumption: There exists no probabilistic polynomial-time algorithm can solve

the DDH problem with a non-negligible advantage.

Computational Diffie-Hellman (CDH) problem: Given a tuple (g, gx1 mod p, gx2

mod p) for some x1, x2 ∈ Z*
q, the CDH problem is to compute the value gx1x2 mod p

∈ Gq.

CDH assumption: There exists no probabilistic polynomial-time algorithm can solve

the CDH problem with a non-negligible advantage.

Hash function assumption: A secure one-way hash function H: X={0,1}* -> Y=Z*
q

must satisfy following requirements:

(i) for any y ∈ Y, it is hard to find x ∈ X such that H(x)=y.

(ii) for any x ∈ X, it is hard to find x‟ ∈ X such that x‟ ≠ x and H(x‟) = H(x).

(iii) it is hard to find x, x‟ ∈ X such that x‟ ≠ x and H(x)=H(x‟).

5.2.4 The Efficiency of the Adaptive Key Exchange Protocol

This method has two advantages in terms of asynchronous connection and

performance over other GKEs in literature. First, this adaptive protocol perfectly fits

our weakly connected assumption regarding the participating TDSs. Specifically, this

protocol does not require that all TDSs connect at the same time to form the group,

the connection of a single TDS per manufacturer being enough. The encrypted k2

could be stored temporarily on SSI so that the offline TDS can get it as soon as it

comes online and still take part in the protocol (i.e., any TDS that connects later can

use its private key to compute the ri, then SK, and after that can participate into the

computation). Second, even if a TDS opts out of a SQL query in the collection phase,

it can still contribute to the parallel computation in the aggregation phase. With a

traditional distributed key exchange, any TDS disconnected during setup will require

a new key exchange to take place. With our protocol, each TDS contributes to part of

the shared secret key, the only requirement is that at least one TDS per

manufacturer participates in step 1 to contribute to the value ri representing this

manufacturer.

72

In terms of performance, this protocol is not a burden because it requires only 2-

round of communications as shown in Figure 11. Furthermore, the first round can be

combined with the collection phase, helping reduce the protocol to only one phase.

Note that, even if SSI also possesses a TDS, it still cannot access the key shared

between TDSs. As stated above, TDS code and content cannot be tampered, even

by its holder. The only information that SSI in possession of a TDS can see is a

stream of encrypted tuples [To14b].

Similar to PKI, adaptive GKE can be used to exchange keys k1 and k2 in both cases

of Querier. However, although PKI and GKE are both based on the private/public

keys in the open context, they differ in the way to generate the shared key. PKI is

centralized and needs to trust the certification authority (which is a single point of

attack) to generate the shared key. In contrast, with the adaptive GKE every TDS

contributes part of the secret to generate the shared key.

5.3 Prototype: SQL/AA

In this section, we present our prototype platform and describe how we can

demonstrate the proposed protocols and their scalability and parallelism, through a

scenario illustrating a distributed architecture where a SSI connects to various TDSs

[To14b]. To make the demonstration user-friendly and easy to follow, we use a

graphical interface (Figure 13) that helps understand the overview of the system and

how data flows through the system.

5.3.1 Demonstration Platform

The Hardware Platform. The demonstration platform is an instance of the

architecture presented in Figure 3. A PC plays the role of the SSI, listens to

connections from TDSs, manages the communication between TDSs, runs the

distributed protocols, stores intermediate results, and shows encrypted data and

results it receives from TDSs. A number of development boards (Figure 12)

represent the TDSs and host the client application. This application can open a

connection to the SSI using an Ethernet connection via a switch. These boards

exhibit hardware characteristics representative of secure secure devices-like TDSs,

including those provided by Gemalto (the smartcard world leader), one of our

73

industrial partners. This board has the following characteristics: the microcontroller is

equipped with a 32 bit RISC CPU clocked at 120 MHz, a crypto-coprocessor

implementing AES and SHA in hardware (encrypting or decrypting a block of 128bits

costs 167 cycles), 64 KB of static RAM, 1 MB of NOR-Flash and is connected to a 1

GB external NAND-Flash and to a smartcard chip hosting the cryptographic material.

Other devices used to represent the TDSs are secure devices built by the ZED

company (Figure 17) that can connect to a host (e.g. a laptop connected to SSI via

Ethernet) by USB port. The ZED secure devices have the same characteristics as

the boards: they are equipped with a crypto coprocessor, run the same client

application to receive encrypted data from the SSI, decrypt data, compute the

aggregation, encrypt the result, and return the result to the SSI. Because both

boards and ZED secure device are by design unobservable, they are connected to

the PC through a COM port used by our demonstration to trace their behavior.

The Graphical User Interface (GUI). A GUI is used to control the system and show

what information each actor can see in our system. The GUI is divided into three

parts: Set of TDSs, SSI, and Querier. The first part shows the (fictional) geographic

location of the TDSs. The original cleartext distribution is displayed next to it. The

real distribution will be compared with the distribution of the cyphered data seen by

the SSI during each protocol. The second part displays the encrypted query that the

SSI receives from Querier, the encrypted data from the collection phase of each

protocol and its visualization to compare the difference between protocols. The final

part consists of a textbox that allows users to input any SQL query and a table to

display the final cleartext result of the query.

The test platform selected was an ARM-based development board

(STM32F217ZGT618).

Dataset. We use a randomly-generated dataset for the demonstration. We assume

that the result of the collection phase is stored in an encrypted table and all boards

and ZED secure devices share the same key to encrypt/decrypt data. The cardinality

of the encrypted table is one million tuples.

18

 Datasheet available at http://www.st.com/internet/mcu/product/250172.jsp (retrieved on 2012-06-15).

74

Figure 12: STM32F217 test platform

Algorithms. Our demonstration consists of three proposed protocols (i.e., S_Agg,

Noise_based, ED_Hist) presented in Chapter 4, plus a Naïve protocol which simply

uses deterministic encryption without any distribution obfuscation.

5.3.2 Demonstration Results

Security. Thanks to the demonstration platform, we can run the three proposed

protocols, visually show the difference between their distributions, and demonstrate

how they prevent frequency-based attacks. During the execution of the protocols, the

platform shows what information (i.e., encrypted data) the SSI can see and

demonstrate that the SSI cannot extract any meaningful information.

Performance. the platform also allows to compare the execution times of these

protocols to demonstrate their performances and show their feasibility (the protocols

with a small number of TDSs participating in the computation can be executed in few

seconds for a dataset of one million tuples). At the end of the execution, the plaintext

result is printed on the TDSs‟ side so that audience can compare with the SQL result

executed on the plaintext table. The audience can also be invited to propose

aggregate SQL queries to be tested.

75

Figure 13: Demonstration graphical interface

Scalability. To show the scalability and parallelism of our system, we can vary the

dataset‟s size and the number of TDSs used in our protocols. First, we run our

protocol with one TDS, then we increase the number of TDSs to show that the

execution time experimentally decreases by approximately the same value,

demonstrating the scalability of the system. During the execution of the protocol, we

print the encrypted intermediate result that SSI received from TDSs and show that

they interleave, demonstrating parallel execution.

76

77

Chapter 6

Performance Evaluation

In this chapter, we propose a cost model to evaluate our protocols using various

metrics, each representing a different aspect of the system such as execution time,

data load, and resource consumption. Then we experimentally conduct unit tests on

the real hardware that represents the characteristics of a secure device-like TDS.

The result of these unit tests allows to calibrate the cost model and then to compare

the performance between protocols. To verify the accuracy of the cost model, the

final part of this chapter performs the experiment with multiple secure devices

running in parallel and confronts the results with that of the cost model.

6.1 Cost Model

This section proposes an analytical cost model for the evaluation of our protocols.

We calibrate this model with basic performance measurements performed on a real

hardware platform (see section 6.2). We also show in section 6.3 that this model is

accurate when compared to real measures on a real system composed of a set of

TDSs. Thus the objective of this section is to provide an analytical model to assess

the efficiency of the deployment of a TDSs based infrastructure for a given

application without having to set up such a costly experiment.

The metrics of interest in this evaluation are the following.

MaxPTDS: The maximum number of TDSs concurrently needed in the computation. In

different phases of the protocol, the optimal number of TDSs needed for the parallel

computation varies and can exceed the number of connected TDSs available at that

time (i.e., demanding resource is greater than available resource), reducing the

78

parallelism degree. Nonetheless, this value should be considered to measure the

parallelism level of the protocol.

LoadQ: Global resource consumption for evaluating a query Q, expressed as the

total size of data that all TDSs and SSI have to process. This metric reflects the

scalability of the solution in terms of capacity of the system to manage a large set of

queries in parallel and/or a large set of TDSs to be queried. It also provides a global

view of the resource consumption (i.e., the bigger LoadQ, the more resource spent to

process that data).

LoadAVG: Average load of all participating TDSs in the computation. While LoadQ

reflects the global resource consumption, this metric reflects the local resource

consumption (i.e., how much load that each TDS has to incur locally in average).

LoadMAX: Maximum load of participating TDSs in the computation. Each TDS that

participates in the computation incurs different load because the same TDS can

participate in different steps of the protocol if connection time of that TDS is long

enough. LoadMAX reflects the possible worst case of load that a TDS can incur. This

is important to measure the feasibility of the protocol. If LoadMax is too large, maybe

no TDS will ever connect for long enough.

LoadBL: Load balance among participating TDSs in the parallel computation. It is

measured as the ratio of LoadMAX/LoadAVG. It reflects the protocol‟s ability to evenly

divide and deliver the parallel tasks to connected TDSs.

TQ: query response time, reflecting the responsiveness of the protocol. Since the

time in the collection phase is application-dependent and is similar for all protocols,

and since the time in the filtering phase is also similar for all protocols, TQ focuses on

the time spent on the aggregation phase, which is actually the most complex phase.

Tlocal: Average time that each participating TDS spends to compute the query. This

metric reflects the feasibility of the solution because the longer this time, (1) the

lower the probability that TDS stays connected during this time and (2) the higher the

burden for an individual to accept participating in distributed queries.

sRAM: Size of RAM required in each participating TDS for the computation.

79

The above metrics can be classified into: (i) Local resource consumption, reflecting

the resource consumed locally in each TDS; (ii) Global resource consumption,

reflecting the global resource needed for the whole system to answer a query. The

weight associated to each of these metrics is context-dependent, as discussed in

Section 6.2. These metrics are computed based on the following main parameters

which reflect the characteristics and resources of the architecture:

 Nt total number of encrypted tuples sent to SSI by TDSs (without loss of

generality, we consider in the model that each TDS produces a single tuple in

the collection phase, hence Nt reflects also the number of TDSs participating in

the collection phase);

 G number of groups;

 st size of an encrypted tuple (this size depends on the schema of the database,

number of attributes needed in the query, and size of each attribute);

 Tt time spent by each TDS to process one tuple (including transfer,

cryptographic and aggregation time);

 number of TDSs that participate in the ith partial aggregation phase

(protocol dependent);

 α, nNB, nED, reduction factors in the aggregation phase in S_Agg, Noise_based

and ED_Hist respectively;

 nf number of fake tuples per true tuple in Noise_based protocols;

 h average number of groups corresponding to each hash value in ED_Hist.

In the following sub sections, we detail the cost model for each protocol.

6.1.1 Secure Aggregation Protocol

Because the aggregation phase is iterative, the time spent in this phase is the total

time for all iterative steps. In the first step of this phase, the time required to

download data from SSI and return temporary result is: ; .

Similarly, in step i of the aggregation phase, we have.

80

6.1.2 Noise_based Protocols

Because all tuples belonging to one group may spread over multiple partitions, the

aggregation phase includes two steps.

In the first step, each group contains (nf + 1) * Nt / G tuples in average, and we

assume that there are nNB TDSs handling tuples belonging to one group. The time

required to download data from SSI and return temporary result in this step is:

81

6.1.3 Histogram-based Protocol

Let‟s h be the average number of groups corresponding to each hash value. By

applying the Cauchy‟s inequality and the same mechanism as in Rnf_Noise, the

optimal computation time is:

82

Note that this is just a subset of the complete cost model which can be found in the

technical report [To13].

6.2 Performance Evaluation

This section compares the performance among protocols using the cost model in

previous section. But the result is first calibrated by using the unit test as below.

6.2.1 Unit Test

To calibrate our model, we performed unit tests on the development board presented

in Figure 14a. This board exhibits hardware characteristics representative of secure

secure devices-like TDSs, including those provided by Gemalto (the smartcard world

leader), our industrial partner. This board has the following characteristics: the

microcontroller is equipped with a 32 bit RISC CPU clocked at 120 MHz, a crypto-

coprocessor implementing AES and SHA in hardware (encrypting or decrypting a

block of 128bits costs 167 cycles), 64 KB of static RAM, 1 MB of NOR-Flash and is

connected to a 1 GB external NAND-Flash and to a smartcard chip hosting the

cryptographic material. The device can communicate with the external world through

83

USB full speed. The speed in theory is 12 Mbps but the real speed measured with

the device is around 7.9 Mbps.

We measured on this device the performance of the main operations influencing the

global cost, that is: encryption, decryption, hashing, communication and CPU time,

and put these numbers as constants in the formulas. Figure 14b depicts the internal

time consumption of this platform to manage partitions of 4KB. The transfer cost

dominates the other costs due to the network latencies. The CPU cost is higher than

cryptographic cost because (1) the cryptographic operations are done in hardware

by the crypto-coprocessor and (2) TDS spends CPU time to convert the array of raw

bytes (resulting from the decryption) to the number format for calculation later.

Encryption time is much smaller than decryption time because only the result of the

aggregation of each partition needs to be encrypted.

 a) b)

Figure 14: Hardware device & its internal time consumption

Other TDSs (e.g., smart meters) may be more powerful than smart secure devices,

although client-based hardware security is always synonym of low power. Anyway,

as this section will make clear, the internal time consumption turns out not to be the

limiting factor. Hence our choice of considering low-power TDSs in this experiment is

expected to broaden our conclusions.

84

6.2.2 Performance Comparisons

In this study, we concentrate on the performance of Group By queries since they are

the most challenging to compute. We vary the dataset size (Nt varies from 5 to 65

million), the number of groups (G varies from 1 to 106) as well as the number of

TDSs participating in the computation as a percentage of all TDSs connected at a

given time (varying from 1% to 100%). For each study, we fix two parameters and

vary the others. When the parameters are fixed, Nt=106, G=103,st=16b, Tt=16μs, h=5

and the percentage of TDS connected is 10% of Nt. We also compute and use the

optimal value for all reduction factors as well as for . In the figures, we plot two

curves for Rnf_Noise protocols, R2_Noise (nf = 2) and R1000_Noise (nf = 1000) to

capture the impact of the ratio of fake tuples. We summarize below the main

conclusions of the performance evaluation. A more detailed study is provided in a

technical report [To13] and in [To14c].

In what follows, we study each of the aspects of the protocol that seem important.

We draw conclusions on the use cases for each protocol in section 6.2.

Parallelism requirement (MaxPTDS). Figure 15a presents MaxPTDS with varied G.

Since S_Agg does not need too many TDSs for parallel computing, the demand of

connected TDSs for computation is almost satisfied. Unlike S_Agg, the other

solutions need a lot of TDSs for the parallel computation, and when G increases to a

specific point, the available resource does not meet these demands, reducing the

parallel deployment of these solutions. In Figure 15b, when G is not too big (i.e.,

G=1000), most of the protocols can fully deploy de parallel computation (except

R1000_Noise).

Resource consumption (LoadQ). Figure 15c and 15d show LoadQ respectively in

terms of G and Nt. Not surprisingly, the total load of Noise_based protocols is highest

because of the extra processing incurred by fake tuples. However, nf depends only

on Nt, so when G increases, the total load of Noise_based protocols remains

constant. Other protocols generate much lower and roughly comparable loads. In

general, in Figure 15d, LoadQ increases steadily due to the increase of Nt.

85

Maximum load (LoadMAX). The maximum load of a particular TDS is illustrated in

Figure 15e. In S_Agg, when G increases, due to the increasing size of partial

aggregation, each TDS has to process bigger aggregation, resulting in the increase

of LoadMAX. Also, when G increases, the number of participating TDSs decreases, so

each participating TDS has to incur higher load. For others, when G increases, since

Nt remains unchanged, the number of tuples in each group decreases and the

number of participating TDSs increases. Consequently, each TDS processes less

tuples, and thus LoadMAX decreases. In other words, the parallel level in this case is

high, reducing the maximum load that a particular TDS incurs. In Figure 15f, when Nt

increases, the number of participating TDSs also increases proportionally. So, in

general, the LoadMAX remains stable except a slight increase in R1000_Noise and

C_Noise.

Average load (LoadAVG). Figure 15g is the average load of every participating TDS.

In S_Agg, since the total load stays almost constant and the number of participating

TDSs declines steeply when G increases, the average load goes up. In the

R1000_Noiseand C_Noise, the high total load is constant and all available connected

TDSs participate in the computation when G varies from 103-106, thus every TDSs

incur the same amount of load. For the rest, LoadAVG decreases when G increases,

because there is more number of participating TDSs but the total load is almost

unchanged. In Figure 15h, although C_Noise has higher LoadQ than S_Agg, the

number of participating TDSs in S_Agg is much less than that in C_Noise, and

therefore the LoadAVG of C_Noise is less than that of S_Agg.

Load balance (LoadBL). Figure 15i and 15j present the load balance of solutions.

Because of the low parallelism, S_Agg is the most unbalanced protocol. R2_Noise

divides the load evenly among participating TDSs. ED_Hist has worse load balance

than R2_Noise since each TDS has to process a partition including h groups while in

R2_Noise a partition composes of only one group.

Query response time (TQ). Figure 15k shows the impact of G over TQ. In all

protocols but S_Agg, TQ depends on the total number of tuples in each group (resp.

bucket for ED_Hist) because all groups (resp. buckets) are processed in parallel.

Hence, when G increases while Nt remains constant, the number of tuples in each

group (resp. bucket) decreases and so does TQ. In S_Agg, when G increases, the

size of each partial aggregation increases accordingly, and so does the time to

86

process it and in consequence, so does TQ. Figure 15l shows that, for ED_Hist,

when Nt increases, the number of TDSs which can be mobilized for processing

increases accordingly, leading to a minimal impact on execution time. This statement

is true also for Rnf_Noise protocols with the difference that the greater number of

fake tuples generates extra work which is not entirely absorbed by the increase of

parallelism. For S_Agg, the number of iterative steps increases with Nt and so does

TQ.

Local execution time (Tlocal). Figure 15m and 15n plot the average execution time

of every participating TDSs varying G and Nt respectively. It shows that all protocols

benefit from an increase of G except S_Agg. This is due to the fact that, in S_Agg,

less TDSs can participate in the parallel computation, and therefore each TDS has to

process a higher load of bigger partial aggregations. Other protocols benefit from the

fact that the computing load is shared evenly between TDSs. Figure 15n shows that

all protocols but Noise_based protocols are insensitive to an increase of Nt again

thanks to independent parallelism. The bad behavior of Noise_based protocols is

explained by the fact that the number of fake tuples increases linearly with Nt and

this increased load cannot be entirely absorbed by parallelism because the number

of TDSs available for the computation is bounded in this setting by 10% of the

participating TDSs.

Throughput. In general, throughput is the amount of work that a computer can do in

a given period of time. Applied in our case, throughput is measured as the number of

queries that our distributed system can answer in a given time period, reflecting the

efficiency of our protocols (cf., Figure 15o and 15p). In Figure 15o, when G increases,

the number of participating TDSs for each query increases and the execution time for

each query does not reduce considerably, resulting in the reduction of throughput for

all solutions. The throughput of S_Agg, however, increases because PTDS reduces

much faster than the execution time for each query when G increases. In Figure 15p,

when Nt increases, the throughput remains constant for all solutions due to the

proportional increase of participating TDSs. The ED_Hist solution has the highest

throughput because it needs least participating TDSs and shortest execution time for

each query. For S_Agg, although the response time for each query is long, the PTDS

is very low, resulting in high throughput. For the R1000_Noise, since it not only

demands very high number of PTDS (to process fake tuples), but also responses

slowly for each query, its throughput is worst.

87

Elasticity issues. A distributed and parallel system is said to be elastic if it can

mobilize smoothly a variable part of its computing resources to meet run time

requirements. Figure 15q,r,k measures the elasticity of all protocols by varying the

computing resource and assessing its impact on TQ. The computing resource is

materialized here by the number of TDSs which can be mobilized to contribute to a

given computation. It is expressed by a percentage of the TDSs contributing to the

collection phase. Figure 15q (resp. Figure 15r, Figure 15k) considers scarce (resp.

abundant, intermediate) computing resource in the sense that only 1% (resp. 100%,

10%) of the TDSs contributing to the collection phase contributes to the rest of the

query computation. Comparing these figures shows that, when the resource is

scarce, the parallel computation is not completely deployed, resulting in a longer time

to answer the query and vice-versa. Since S_Agg does not depend on the number of

available TDSs (but on G and on the memory size of TDS), its performance is not

impacted by a fluctuation of the resource available. In other words, S_Agg has

lowest elasticity.

88

Figure 15: Performance evaluations

89

Memory size. Figure 15s details the memory‟s size required for the computation in

each TDS when G is varied. Because the only factor that impacts the memory‟s size

requirement is G but not Nt, we assess this metric by varying only G. The

Noise_based solutions require least memory because each partition sent to TDS

contains tuples belonged to only one group due to the Det_Enc, and thus TDSs store

only one group in memory regardless of the value of G. The ED_Hist requires more

memory because each TDS needs to process the partition having the same hash

value and each hash value corresponds to multiple (i.e., h) groups in the first

aggregation phase. The S_Agg needs highest memory because each TDS has to

store the whole partial aggregation (which includes many groups) in the RAM. So,

when G increases, the memory needed for storing the whole aggregation also

increases linearly. When G is too big (i.e., G >1000), the sRAM exceeds the actual

RAM‟s size of TDS, and thus S_Agg is not feasible in this case19.

6.2.3 Comparisons with State of the Art

In order to provide a baseline comparison in terms of performance (and not security),

Figure 15t compares the performance of S_Agg, our most secure solution, with

server-based solutions working on encrypted data. We consider the performance of

two well-known encryption schemes, a symmetric one (i.e., DES) and a

homomorphic one (i.e., Paillier [Paillier99]), as measured in [Ge07]. In DES method,

each value is decrypted on the server and the computation is performed on the

plaintext. Clearly this method is not a viable solution in our security model, because

the database server must have access to the secret key or plaintext to answer the

query, violating the security requirements. In Paillier's method, the secure modern

homomorphic encryption scheme, which typically operates on a much larger

(encryption) block size (say 2K bits) than single numeric data values, is used to

densely pack data values in an encryption block. Then, the database server performs

the computation directly on ciphertext blocks which are then passed back to a trusted

agent (i.e., the Key Holder) to perform a final decryption and simple calculation of the

final result. The strength of this method is due to the dense packing of values to

reduce the number of modular multiplications and the minimization of the number of

expensive decryption operations. We refer to the author‟s experimentations, which

19

Swapping between FLASH memory and RAM is used in this case

90

were run on now outdated hardware20, since both methods were implemented in C-

Store21which was run on a Linux workstation with an AMD Athlon-64 2Ghz processor

and 512 MB memory [Ge07]. We also compare its performance with C-Store using

no encryption at all. We ran an AVG query varying G and the database size. The

result (Figure 15t) shows that, with homomorphic encryption scheme (generalized

Paillier), C-Store runs slightly faster than using DES for encryption due to the saving

in the decryption cost during execution. It turns out that S_Agg outperforms DES and

Paillier when the number of grouping attributes is small (i.e., G ≤ 1000) since it can

exploit the parallel calculation of TDSs to speed up the computation and becomes

worse after this threshold.

Although these algorithms are a little dated, the objective is simply to provide a

baseline comparison, to show the effectiveness of our approach and demonstrates

the strength of large-scale parallel computation even when modest hardware is

available on the participant's side. Figure 15t matches this objective explicitly.

6.2.4 Trade-off between Criteria

Figure 16 summarizes and complements the experimental results described above

through a qualitative comparison of our proposed protocols over all criteria of interest

to perform a choice.

Each axis can be interpreted as follows. Local resource consumption axis refers to

Tlocal metrics and compares the protocols in terms of feasibility, i.e., is the resource

consumed by a single TDS compatible with the actual computing power of the

targeted TDSs. This question is particularly relevant for low-end TDSs (e.g., smart

secure devices) and of lesser interest for high-end TDSs. S_Agg is at the worst

extremity of this axis because the final aggregation must be done by a single TDS

while ED_Hist occupies the other extremity thanks to its capacity to evenly share the

load among all TDSs. That also explains why in Load Balance axis ED_Hist better

balances the load among TDSs than S_Agg. Noise_based protocols are in between

because they also share the load evenly but at the price of managing a large number

of fake tuples. Note that the relative position of S_Agg and ED_Hist is reversed in

20

 However, this hardware is still orders of magnitude superior to the secure secure devices we use.
21

 http://db.csail.mit.edu/projects/cstore/

91

the Global Resource Consumption and Satisfied Level of Parallel Deployment axis

which refers to LoadQ and MaxPTDS metrics and compares the scalability of the

protocols in terms of number of parallel queries which can be computed and their

ability of fully parallel computation, respectively. Indeed, the total number of TDSs

mobilized by S_Agg for one single query computation is much smaller than that of

ED_Hist. Regarding the Responsiveness axis, the relative ordering of S_Agg and

ED_Hist actually differs depending on G. According to Figure 15, S_Agg outperforms

ED_Hist for small G (smaller than 10) and is dominated by ED_Hist for larger G.

Finally, Elasticity axis is a direct translation of the conclusions drawn in Section 6.2

and Confidentiality axis recalls the conclusion of Section 4.5.

Figure 16: Comparison among solutions

92

This figure makes clear that Noise_based protocols are always dominated either by

S_Agg or ED_Hist and should be avoided. However, choosing between the other two

depends on the application‟s characteristics, and Figure 16 should be used to decide.

Let us consider a first scenario where individuals manage their data (e.g., their

medical folder) using a secure Personal Data Server embedded in a smart secure

device-like TDS [Allard10]. In such a scenario, individuals are likely to connect their

TDS seldom, for short periods of time (e.g., when visiting a doctor) and would prefer

to save resource for executing their own tasks rather than being slowed down by the

computation of external queries. According to Figure 16, ED_Hist best matches the

above requirements. Conversely, let us consider a smart metering platform

composed of power meter-like TDSs, connected all the time and mostly idle. In this

case, TDSs‟ owners do not care how much resources are monopolized to compute

queries and the primary concern is for the distribution company to maximize the

capacity to perform global computation. S_Agg is more appropriate in this case. In

short, ED_Hist and S_Agg are the two best solutions and the final choice depends

on the weight associated to each axis for a given application.

6.3 Performance measurement on real hardware

To test the accuracy of our proposed cost models given in previous section, we

compare the values taken from experiments conducted on real hardware with that of

the cost models.

6.3.1 Experiment Setting

This section experimentally verifies the proposed cost models using 20 ZED secure

devices22 (Figure 18) playing the role of a pool of TDSs used during the processing

phase (ie. after the collection phase has been performed). The experiment is tested

on a Centrino Core 2 Duo PC with 2.4 Ghz CPU and 4 GB RAM, playing the role of

SSI. The 20 ZED secure devices communicate with the PC through USB port (Figure

17). We verify our cost models on (i) Query response time (TQ), (ii) Resource

consumption (LoadQ), (iii) Local execution time (Tlocal) and (iv) Load balance (LoadBL)

22

 These secure secure devices are used in different universities and FabLabs in France and will be soon
distributed under an open-hardware licence. In terms of hardware resources, they share many commonalities
with the development board described in Section 6.2.

93

among secure devices. The low number of secure devices has an influence on a

certain number of results, but overall we believe that our prototype demonstrates that

the cost model is accurate.

Figure 17: ZED Secure device (front & back)

The prediction accuracy is measured as the error between actual and estimated

values in answering a query. Specifically, let act be the actual values when running

on real secure devices and est be the estimated values when applying our proposed

cost model, we adopt the following error rate definition [Tao03]:

Figure 18: Twenty secure devices running parallel

94

Similar to the performance comparison done with the cost model in the previous

section, we vary two parameters (i.e., G and Nt) to see its impact to the error rate.

When Nt varies up to one million, G is fixed at 100, and when G varies from 50 to

400 groups, Nt is fixed to one million tuples.

6.3.2 Comparison

In the following figures, for each metric, the first graph represents the real absolute

value measured using the 20 ZED secure devices while the second graph

represents the relative error between these real values and the values predicted by

the cost model. This second graph captures the accuracy of our cost model.

The first set of experiments verifies the correctness of the query response time.

Figure 19a plots TQ varying G. The Noise protocol has the longest execution time

due to fake tuples, and S_Agg runs longer than ED_Hist since each secure device

has to process large partial aggregation. This observation is similar to that in Figure

15k, giving a maximum estimation error under 7% in Figure 19b. When Nt varies, TQ

increases linearly in Figure 19c, similarly to Figure 15l. However, the increase rate of

Figure 19c is bigger than that of Figure 15l because in the case of 20 participating

secure devices, parallelism is not fully deployed due to the limited number of secure

devices. On the contrary, in Figure 15l where we have many participating TDSs, the

parallel computation is completely deployed, resulting in a lower increase rate when

the data load increases. The maximum error is around 10% in Figure 19d.

Figures 19 e-h shows the resource consumption error rate. Similar to Figure 15c, all

protocols in Figure 19e incur constant loads (except a very small increase in case of

S_Agg) when G varies because the total number of tuples is fixed. This gives a very

low error rate for ED_Hist and Noise protocols (around 2%) and a rather low error

rate for S_Agg (less than 8%). Similarly, the variation of Nt yields the linear increase

of LoadQ in both Figures 15d and 19g, giving an accurate result (around 2%-3% error)

in Figure 19h.

Figure 19 i-l depicts the error rate on local execution time. Except the small linear

increase of S_Agg in figure 19i, Noise and ED_Hist remain constant. This contradicts

the decreasing trend of Noise and ED_Hist in Figure 15m when G varies. This can

be explained again by the limited number of secure devices. If the global data load

95

keeps unchanged, and the number of secure devices remains at twenty, each secure

device processes the same amount of data in average even when G varies (except

for S_Agg since the size of the aggregations depends on G). In contrast, when G

increases in Figure 15m, the number of participating secure devices also increases,

reducing the average connecting time for each secure device to process less load.

Notice that when G increases over 1000 in Figure 15m, the Tlocal of C_Noise and

R1000_Noise also remains constant since the number of connecting TDSs is less than

the required TDSs to fully deploy parallel computation. We believe this explanation

reinforces the credibility of our cost model since this trend repeats in Figure 19i.

When varying Nt, all protocols increase linearly in the experiment (Figure 19k), while

they remain unchanged in the cost model (Figure 15n), except for Noise protocols.

The reason of this difference is that when the total load increases while the number

of secure devices remain fixed (Figure 19k), or when the number of secure devices

increases but does not meet the demand for an optimal parallel computing (Noise

protocols in Figure 15n), each secure device has to connect longer to process a

bigger load. This is not the case for S_Agg and ED_Hist in the cost model since the

increase rate of total load is less than that of connecting TDSs (in the cost model we

assume that the percentage of connected TDSs is 10% of Nt).

Figure 19m displays the error rate of load balance among secure devices. Since the

total load is divided evenly among twenty secure devices, the load balance remains

at approximately 1 because all twenty secure devices incur nearly the same load,

yielding extremely accurate prediction (with maximum error less than 2% in Figure

19n, except for S_Agg). Similarly, when Nt varies in Figure 19o, Noise and ED_Hist

have better load balance than S_Agg since some secure devices in S_Agg have to

process big aggregations to produce the final result. This observation conforms to

the Figure 15j where S_Agg has also the most unbalanced load among protocols.

As a summary of this section, although we can measure some differences between

the cost model predictions and the real measurements, the error rate remains

around few percents and the trends of all graphs in Figure 19 are similar to the

trends observed in Figure 15. We believe the differences arise mostly from the

inability to fully deploy the parallel computation due to limited connecting TDSs in the

experiments. We plan on experimenting on larger sets of secure devices in the

future.

96

Figure 19: Performance and error rate

97

6.3.3 Scalability of the System

To test the ability of our system to scale up to millions of secure devices in real life

applications, we measure its speedup when increasing the number of secure devices.

Specifically, the speedup of our system is measured as follow:

S(n) = T(1)/T(n)

with T(n) being the execution time using n secure devices.

We vary the number of secure devices to measure the execution time in Figure 19q.

From that, we calculate the speedup when doubling the number of secure devices

each time

In Figure 19r, the speedup approaches 12x when we use 16 secure devices. When

the number of secure devices doubles, the average speedup ratios of S_Agg, Noise

and ED_Hist are 1.82, 1.81 and 1.83 respectively. These speedup ratios let us

expect that our system should be able to scale to millions of secure devices (given

an equivalent increase in power of the SSI) in real applications with reasonable

execution time and speedup. This result is not surprising considering that all

protocols exhibit mainly independent parallelism.

98

99

Chapter 7

Trusted MapReduce

Relational databases were not designed to cope with the scale and agility challenges

and therefore they are not suitable for big data processing that faces modern

applications. Previous chapter focuses on SQL-like computation which answers the

SQL queries and hence cannot tackle the more complex problems such as the

key/values pair problem. This problem, which is more general than SQL queries, can

be solved by MapReduce framework efficiently. With scalability, fault tolerance, ease

of programming, and flexibility, MapReduce is very attractive for large-scale data

processing. However, despite its merits, MapReduce does not focus on the problem

of data privacy, especially when processing sensitive data on untrusted

Mappers/Reducers. This chapter proposes TrustedMR, a trusted MapReduce system

based on the Trusted Cells with high security assurance provided by tamper-

resistant hardware, to enforce the security aspect of the MapReduce. TrustedMR

pushes the security to the edges of the network where data is produced and

encrypted data can be processed mostly on untrusted servers without any

modification to the existing MapReduce framework. Our evaluation shows that the

performance overheads of TrustedMR can easily be managed to within only few

percents, compared to original MapReduce framework that handles cleartexts.

7.1 Introduction

As mentioned in previous chapters, personal data most often ends up in the Cloud

for convenience and efficiency, stored within user‟s personal space. New companies

whose business is to manage user‟s personal cloud are appearing, such as the

100

French company CozyCloud23. But more generally, companies processing sensitive,

private or confidential data are looking for solutions to secure these operations, while

still being able to outsource the processing. Thus an important challenge for

Infrastructure as a Service (IaaS) companies is to be able to propose private and

secure data management and computing to their users.

In this chapter, we focus on the MapReduce framework [Dean08]. It stands out as

being the most popular solution due to its scalability, fault tolerance, ease of

programming, and flexibility. With MapReduce, developers can solve various

cumbersome tasks of distributed programming without the need to write complicated

codes. Indeed, a developer simply writes a map and a reduce function. The system

automatically distributes the workload over a cluster of commodity machines,

monitors the execution, and handles failures. Current trends show that MapReduce

is considered as a high-productivity alternative to traditional parallel programming

paradigms for a variety of applications, ranging from enterprise computing to peta-

scale scientific computing24. For example, power meter data can be used by the

national distribution company (e.g., EDF company in France) to enable new services

and products for customers. The volume of data created by energy networks is

substantial, leading companies like SunEdison into big data modeling and analytics

(e.g., going from one meter reading a month to smart meter readings every 15

minutes results in a huge increase data volume that must be efficiently handled).

However, the raw data can be highly sensitive: at the 1Hz granularity provided by the

French Linky power meters, most electrical appliances have a distinctive energy

signature. It is thus possible to infer from the power meter data inhabitants activities

[Lam07]. In consequence, raw data cannot simply be directly stored and processed

on the cloud in the clear: the data must be protected. This means that if data is to be

processed by the Cloud, it must be encrypted.

We consider that personal data stores are hosted by secure devices but make no

additional assumption regarding the technical solution they rely on (except in the

experiments section). These TDSs are deployed on the Cloud (i.e. plugged into the

blade servers) in order to manage the processing of the sensitive data. The TDSs on

23

 https://cozy.io/en/
24

 http://skynet.rubyforge.org

https://cozy.io/en/

101

the Cloud can either be rented by the customers of the IaaS, or could even be

provided by the customers themselves, who could in particular provide some specific

code to run in this secure environment.

Indeed, MapReduce was born to meet the demand of performance in processing big

data, but it is still missing the function of protecting user‟s sensitive data from

untrusted mappers/reducers. Although some state-of-the-art works have been

proposed to focus on the security aspect of MapReduce, none of them aims at data

privacy. They only solve the problem of integrity verification [Ruan12, Wei09] and

have some weak security assumptions about untrusted servers (e.g., they require

that the servers executing the Reducers must be trusted [Roy10]). Furthermore,

these works often require some modifications to the original MapReduce framework

to enforce the system‟s security (e.g., [Roy10] have to modify the original

MapReduce framework to support the mandatory access control).

Based on the Trusted Cells architecture and the protocol proposed in Chapter 4, this

chapter proposes a MapReduce-based system, addressing the following three

important issues that every secure system must meet:

 Security: How to process data using MapReduce framework without revealing

sensitive information to untrusted mappers/reducers?

 Utility/Functionality: How many types of operations (e.g., types of SQL

queries) the proposed system can support? Can the system support key-value

pair problem?

 Performance: How to process large amount of encrypted data using

MapReduce with small overhead, compared with performance in processing

cleartext data?

To solve this problem, we consider an approach where sensitive data is produced

and encrypted locally, then stored on the Cloud in the form of an encrypted data file.

The processing of this data is done on the Cloud, thus we consider (as in the

classical MapReduce paradigm) that this encrypted file is the input of the

MapReduce task. Indeed, to ensure the data privacy, data must be obfuscated

appropriately so that MapReduce framework can process encrypted data while

maintaining the privacy. To ensure the utility, we transfer the encrypted data to TDSs

plugged into the Cloud to decrypt and compute. Since TDSs are able to compute on

102

the cleartext, this approach can support any functions. To ensure the performance,

especially when we have to transfer large amount of data to TDSs, we use parallel

computing where each mapper/reducer splits big data into smaller ones and

transfers to multiple TDSs so that they can process in parallel, reducing the

transferring and computing time.

Hence, the contribution of this chapter is to propose a secure MapReduce-based

system that can: (1) preserve data‟s privacy from untrusted mappers/reducers, (2)

support unlimited types of operations, key/value pair problems and (3) have

acceptable and controllable performance overhead.

7.2 Proposed Solution

Our solution is the application of ED_Hist protocol into the MapReduce framework.

We introduce the execution phases of this framework and then explain how to apply

ED_Hist into it.

7.2.1 MapReduce Job Execution Phases

The MapReduce programming model consists of a map(k1; v1) function and a

reduce(k2; list(v2)) function. The map(k1; v1) function is invoked for every key-value

pair <k1; v1> in the input data to output zero or more key-value pairs of the form <k2;

v2>. The reduce(k2; list(v2)) function is invoked for every unique key k2 and

corresponding values list(v2) in the map output. reduce(k2; list(v2)) outputs zero or

more key-value pairs of the form <k3; v3>. The MapReduce programming model also

allows other functions such as (i) partition(k2), for controlling how the map output

key-value pairs are partitioned among the reduce tasks, and (ii) combine(k2; list(v2)),

for performing partial aggregation. The keys k1, k2, and k3 as well as the values v1, v2,

and v3 can be of different and arbitrary types. The detail of map and reduce tasks is

depicted in Figure 20.

103

Figure 20: Detail execution of map and reduce task [Herodotou11]

In the next section, we propose a solution so that we do not need to modify this

original model. We use the encryption scheme to allow the untrusted

mappers/reducers participate in the computation as much as possible and transfer

the necessary computations that cannot be processed on server to TDSs. These

transfer and computation on TDSs happen in parallel to speed up the running time.

7.2.2 Proposed Solutions

Our proposed solution inherits the histogram-based solution, called ED_Hist,

proposed in [To14a]. Informally speaking, to prevent the frequency-based attack on

deterministic encryption (dEnc for short) that encrypts the same cleartexts into the

same ciphertexts, and to allow untrusted server group and sort the encrypted tuples

(that have the same plaintext values) into the same partitions, ED_Hist transforms

the original distribution of grouping attributes, called AG, into a nearly equi-depth

histogram (due to the data distribution, we cannot have exact equi-depth histogram).

A nearly equi-depth histogram is a decomposition of the AG domain into buckets

holding nearly the same number of true tuples. Each bucket is identified by a hash

value giving no information about the position of the bucket elements in the domain.

Figure 21.a shows an example of an original distribution and Figure 21.b is its nearly

equi-depth histogram.

104

Figure 21: Example of nearly equi-depth histogram

There are three benefits in using nearly equi-depth histogram: i) allow

mappers/reducers participate in the computation as much as possible (i.e., except

the combine and reduce operations, all other operations can be processed in

ciphertexts), without modifying the existing MapReduce framework; ii) better balance

the load among mappers/reducers for skewed dataset; and iii) prevent frequency-

based attack.

The protocol is divided into three tasks (see Figure 20 & 22).

Collection Task: Each TDS allocates its tuple(s) to the corresponding bucket(s) and

sends to mappers/reducers tuples of the form (Ƒ(k), nEnc(u)) where Ƒ is the mapping

function that maps the keys to corresponding buckets.

bucketId = Ƒ(k)

and nEnc is the non-deterministic encryption that can encrypt the same cleartext into

different ciphertext

Assume the cardinality of k is n, and Ƒ maps this domain to b buckets, then we have

B1 = Ƒ(k11) = Ƒ(k12)=…= Ƒ(k1d)

B2 = Ƒ(k21) = Ƒ(k22)=…= Ƒ(k2e)

…

Bb= Ƒ(kb1)= Ƒ(kb2)=…= Ƒ(kbz)

105

From that, the average number of distinct plaintext in each bucket is:

h = (d + e +…+ z)/b = n/b

When this task stops, all the encrypted data sent by TDSs are stored in DFS, and

are ready for processed by mappers/reducers.

Map Task: This task is divided into five phases:

1. Read: Read the input split from DFS and create the input key-value pairs: (B1,

Enc(u1)), (B2, Enc(u2)),… (Bb, Enc(um)).

2. Map: Execute the user-defined map function to generate the map-output data:

map(Bi; nEnc(ui)) -> (B’i; nEnc(vi)). If the map function needs process complex

functions that cannot be done on encrypted data (i.e., vi = f(ui)), connections to TDSs

will be established to process these encrypted data.

3. Collect: Partition and collect the intermediate (map-output) data into a buffer

before spilling.

4. Spill: Sort, if the combine function is specified: parallel transfer encrypted data to

TDSs to decrypt, combine, encrypt, and return to mappers, perform compression if

specified, and finally write to local disk to create file spills.

5. Merge: Merge the file spills into a single map output file. Merging might be

performed in multiple rounds.

Reduce Task: This task includes four phases:

1. Shuffle: Transfer the intermediate data from the mapper nodes to a reducer's node

and decompress if needed. Partial merging and combining may also occur during

this phase.

2. Merge: Merge the sorted fragments from the different mappers to form the input to

the reduce function.

3. Reduce: Execute the user-defined reduce function to produce the final output data.

Since the reduce function can be arbitrary, and therefore encrypted data cannot be

executed in reducers, they must be transferred to TDSs to be decrypted, executed

106

the reduce function, encrypted, and returned to reducers. The difference between the

output of the reduce function of traditional MapReduce with TrustedMR is that each

input key represents different cleartext values, so the output key of the reduce

function also represents different values: (B’1; list(nEnc(v1)) -> (nEnc(k11);

nEnc(f(v1i))), …,(nEnc(k1d); nEnc(f(v1m))).

4. Write: Compressing, if specified, and writing the final output to DFS.

Figure 22: Trusted MapReduce execution

Among all phases in both map and reduce tasks, with the plaintext data mapped

using the ED_Hist, the existing MapReduce framework can be used without being

modified because each mappers/reducers can do all operations (i.e, map, partition,

collect, sort, compress, merge, shuffle) on the mapped data, except the combine and

reduce function. Since the combine and reduce functions must process on cleartexts,

107

encrypted data are transferred back to TDSs for decrypting, computing, encrypting

the result and returning to mappers/reducers. To reduce the overhead of transferring

large amount of data between TDSs and mappers/reducers, each mappers/reducers

split the data into smaller pieces and send it in parallel to multiple TDSs. With this

way, the transferring time is reduced. Below is the pseudocode for map/reduce

function.

7.2.3 How our proposed solution meets the requirements

Informally speaking, the security, utility and efficiency of the protocol are as follows

(the security analysis is on Chapter 4 and we formally prove the efficiency in the next

section):

Security. Since TDSs map the attributes to nearly equi-depth histogram,

mappers/reducers cannot launch any frequency-based attack. What if

mappers/reducers acquire a TDS with the objective to get the cryptographic material

(i.e., a sort of collusion attack between mappers/reducers and a TDS)? As stated in

Chapter 3, TDS code cannot be tampered, even by its holder. Whatever the

information decrypted internally, the only output that a TDS can deliver is a set of

encrypted tuples, which does not represent any benefit for mappers/reducers.

Utility. Since the data is processed by trusted TDSs in cleartext, our solution can

support any operations.

method Map (bucket B
i
; encrypted value nEnc(u

i
))

1. emit(bucket B’
i
, nEnc(v

i
))

method Combine (bucket B’

i
; list [nEnc(v

1
), nEnc(v

2
),..])

1. form the partition: nEnc(v
1
), nEnc(v

2
),..nEnc(v

p
)

2. create connection and send data to TDSs
3. in each TDS:

4. unmap bucket: Ƒ
-1
(B’

i
) -> k

i1
 , k

i2
, .., k

in

5. decrypt nEnc(v
i
) -> v

i

6. compute r
ij
 = f(v

i
) having the same k

ij

7. encrypt result r
ij
 -> nEnc(r

ij
)

8. map to bucket: Ƒ(k
i1
) = Ƒ(k

i2
) =..= Ƒ(k

in
) = B’

i

9. emit (bucket B’
i
; nEnc(r

ij
))

method Reduce (bucket B’

i
; list [nEnc(r

ij
),..])

1-7. similar to Combine function from step 1 to 7

8. emit (nEnc(k
ij
); nEnc(r’

ij
))

108

Performance. The efficiency of the protocol is linked to the parallel computing of

TDSs. Both the collection task and combine, reduce operations are run in parallel by

all connected TDSs and no time-consuming task is performed by any of them. As the

experiment section will clarify, each TDS manages incoming partitions in streaming

because the internal time to decrypt the data and perform the computation is

significantly less than the time needed to download the data. By combining the

parallel computing, streaming data, and the crypto processor that can handles

cryptographic operations efficiently in TDSs, our distributed model has acceptable

and controllable performance overhead as pointed out in experiment.

Beside the three essential requirements above, our proposed solution meets other

criteria as well: integrability and correctness.

Integrability: Because we do not need to modify the original MapReduce framework,

our proposed solution can easily integrate with the existing framework. ED_Hist

helps mappers/reducers run on encrypted data exactly as if they run on cleartext

data without modifying the original MapReduce framework (i.e., as pointed out in

previous sections, the only tasks that mappers/reducers cannot run on encrypted

data are combine and reduce).

Correctness. Since mappers/reducers are honest-but-curious, it will strictly follow

the protocol and deliver to the querier the final output. Unlike the differential privacy,

mappers/reducers do not sanitize the output (to achieve the differential privacy), so

the final output is correct. If a TDS goes offline in the middle of processing a partition,

and therefore cannot return result as expected, mappers/reducers will resend that

partition to another available TDS after waiting the response from disconnected TDS

a specific interval.

7.3 Performance Evaluation

This section evaluates the performance of our solutions. We first test with the

development board to see the detail time breakdown on the secure hardware (i.e.,

transfer, I/O, crypto, and CPU cost). Then we use the Z-secure device described

below, which has the same hardware characteristic with this development board to

test on the larger scale (i.e., running multiple Z-secure devices in parallel) in the real

cluster. We also compare the running time on ciphertext and that on cleartext to see

109

how much overhead incurred. We finally increase the power of the cluster by scaling

depth (i.e., increase the number of Z-secure devices plugged in each node) and

scaling width (i.e., increase the number of nodes) to see the difference between the

two ways of scaling.

7.3.1 Scaling with parallel computing

Experimental setup. Our experiment is conducted on a cluster of Paris Nord

University with 4 nodes. Each node is equipped with 4-core 3.1 GHz Intel Xeon

E31220 processor, 8GB of RAM, and 128GB of hard disk. These nodes run on

Debian Wheezy 7 with unmodified Hadoop 1.0.3.

Figure 23 shows the performance overhead when processing ciphertext over

cleartext. There is no difference in map time but the reduce time in ciphertext is

much longer than that of cleartext. This is due to the time to connect to Z-secure

device and process the encrypted data inside the Z-secure device. In this test, only

one Z-secure device is plugged to each node. That creates the bottleneck for the

ciphertext processing because Z-secure device is much less powerful than the node

that has to wait Z-secure device to process the encrypted data. While the cleartext

data is processed directly in the powerful node, the ciphertext has to be transferred

to secure devices for processing. In this way, computation on ciphertext incurs three

overhead in compared with the cleartext: i) time to transfer the data from node to

secure device (including the connection time and I/O cost), ii) time to decrypt the

data and encrypt the result, iii) the constraint on the CPU and memory size of secure

device for computation inside the secure device.

To alleviate this overhead, we plug multiple secure devices to the same node and

process the ciphertext in parallel in these secure devices. Figure 18 shows the 20

secure devices run in parallel and plugged to the same node. In Figure 23, when the

number of secure devices plugged to each node increases, the reduce time

decreases gradually and approaches that of cleartext. Specifically, when the number

of secure devices increases from 1 to 20, the average speedup is 1.75. So, if we

plug 32 secure devices to each node, the reduce time will be 5.49 (seconds), which

gives approximate 10% longer than cleartext.

110

Figure 23: Running time of clear & cipher texts. Scaling depth

We observe that the overhead is controllable by increasing the number of secure

devices plugged per reducer.

7.3.2 Scaling depth versus Scaling width

In traditional MapReduce, the cluster can be scaled depth by increasing number of

processors per node or scaled width by increasing number of nodes. In our

TrustedMR, since it depends on the secure devices for cryptographic operations, we

scale depth our cluster by increasing the number secure devices (i.e., from 1 to 4)

plugged to each node. We also scale width by increasing number of nodes (i.e., from

1 to 4), and then we compare the two ways of scaling. In this test, we also increase

the size of the dataset (i.e., from 2 million tuples to 4 million tuples) to see how the

running time varies.

In Figure 24, when we increase the number of nodes in the cluster and keep the

same number of secure devices on each node, the reduce time decreases

accordingly and vice versa. Also, with the same number of secure devices, plugging

them to the same node or to multiple nodes gives almost no difference in term of

running time (e.g., the reduce time of 4 nodes with each node having only 1 secure

111

device is only few percent difference from that of 1 node having 4 secure devices

plugged). Furthermore, the average speedup of scaling width is 1.74 which is only

2% different from that of scaling depth (i.e., 1.71). In conclusion, scaling depth yields

nearly the same performance as scaling width. The only factor that affects the overall

performance of the cluster is the total number of secure devices plugged to this

cluster, no matter how they are distributed to each node.

Figure 24: Reduce time for 2 millions & 4 millions tuples

7.4 Conclusion

In this chapter, we have proposed a new approach to deal with the problem of

processing big data using MapReduce while maintaining privacy guarantees. Our

approach draws its novelty from the fact that (private) user data remains under the

control of its owner, in a Trusted Data Server. As secure hardware become available

at any client device, such highly secure and decentralized architectures can no

longer be ignored. The security is pushed to the edge of the network where data is

produced, avoiding inherent weakness of the centralized database (single point of

attack, low cost/benefit ratio). The existing MapReduce framework keeps unchanged

and the types of supported operations are general. We study their efficiency in terms

of running time using real secure hardware. The results show the performance

overhead is acceptable (i.e., can be controlled to few percents when number of

secure devices plugged to each node is big enough).

112

113

Chapter 8

Conclusion and Future Work

The massive amount of personal data is generated at a tremendous pace. Citizens

have no way to opt-out because governments or companies that regulate our daily

life require them. Administrations and companies deliver an increasing amount of

personal data in electronic form, which often ends up in central servers at the user

convenience. Although data centralization has unquestionable benefits in terms of

resiliency, availability and even consistency of security policies, they must be

weighted carefully against the privacy risks.

Decentralized architectures, devised to help individuals better protect their privacy,

hinder global treatments and queries, impeding the development of services of great

interest. This thesis is a first attempt to fill this gap. It capitalizes on secure hardware

advances promising soon the presence of a Trusted Execution Environment at low

cost in any client device (trackers, smart meters, sensors, cell phones and other

personal devices).

The approach promoted in this thesis is part of the KISS Personal Data Server

Architecture. As described in previous sections, it outlines an individual-centric

architecture whose aim is to enable secure personal data server and at the same

time provide control over one‟s data with tangible enforcement guarantees.

This chapter concludes the thesis. We synthesize the work conducted, and close the

manuscript by opening exciting research perspectives.

8.1 Synthesis

We have proposed new query execution protocols to compute general SQL queries

(without multi-TDS joins) while maintaining strong privacy guarantees. The objective

114

was not to find the most efficient solution for a specific problem but rather to perform

a first exploration of the design space. By applying a variety of encryption scheme,

we proposed three very different protocols and compared them according to different

axes. The encouraging conclusion is that a good performance/security trade-off can

be found in many situations.

As stated in Chapter 1, we address in this thesis the problem of implementing

privacy-preserving SQL execution on asymmetric architecture based on distributed

secure device with three main objectives (i.e., Decentralization, Security, and

Generality). We summarize below how we successfully satisfy these objectives.

The approaches proposed in this thesis are based on a Trusted Data Server that

embeds a software suite, allowing it to provide a full-fledged database engine, while

enforcing the strong privacy guarantee. By using this secure device, each individual

can autonomously manage his own data, and under his control, without the need of

a trusted central server. In other words, the Decentralization objective is satisfied.

To prove the Generality of the system, we built a cost model to evaluate the

performance of each protocol. The unit test was conducted on a development device

and its result was calibrated into the cost model to produce the measurement in the

large scale. We found that the proposed protocols can scale up to nation-wide

contexts, proving the Generality of the system. To verify the accuracy of the cost

model, we performed the experiment on multiple secure ZED secure devices running

in parallel, and compared this result with that of the cost model to get the error rate.

These experiments have showed the accuracy of the proposed cost model,

reinforcing our proof of Generality.

In order to evaluate the Security objective, we used the two concepts of coefficient

exposure and variance depending on the assumption of attacker‟s knowledge about

dataset. In spite of the difference in the ways to measure the security, these two

methods give the same conclusion: the more information exposed to supporting

server to allow him to more actively participate into the computation (and thus the

less security level), the higher performance we gain, and vice versa.

Finally, we have shown that these protocols can be integrated in concrete software

and hardware platforms, thus providing a comprehensive solution to the problem

tackled in this thesis.

115

8.2 Perspectives

We expect that this work will pave the way for the definition of future fully

decentralized privacy-preserving querying protocols. The work conducted in this

thesis can be pursued in various directions. We identify below some challenging

issues and outline possible lines of thought to tackle them.

Support Multi-TDS Joins

Privacy-preserving joins referring to Information integration across databases owned

by multiple entities is important in many applications. It considers the problem of how

entities compute arbitrary joins function using their data in a secure way such that no

information – other than the join query results – is revealed.

While our protocols already support a wide range of queries including joins where

two joining relations are inside the same TDSs, additional effort is required to support

joins between several TDSs. It is more complex and time-consuming to execute

these join query on distributed databases where two tables participating in a join

query are stored at different TDSs. In future work, we plan on tackling the problem of

joins between several or more TDSs, to support social network type queries (e.g.

how many users have at least 10 friends that like "literature"). Such queries convey

obvious privacy problems, but also add some extra degree of trust, due to the fact

that there may exist a trust network inside the social network itself. Note that secure

join protocols could be devised based on recent work on efficient secure intersect

algorithms using smart cards [Fischlin11].

One straightforward solution to perform privacy-preserving multi-TDS joins is to rely

on the SSI to whom all parties submit their encrypted inputs using deterministic

encryption. The SSI then computes the join directly on the encrypted data and

returns the results. This approach is in general easy to implement and efficient. Yet

deterministic encryption is too vulnerable due to frequency-based attacks to be

ubiquitously accepted by all TDSs.

Another approach is based on the secure multi-party computation problem where

parties collectively perform a computation over their data. Each TDS sends

encrypted data indirectly to other TDSs through SSI. However, the communication

116

complexity of this approach is normally too high for them to be practical, especially

when we consider the unavailability constraint of TDSs in our context.

A natural question to ask is whether there exist solutions that strike a balance

between the level of required trust on SSI and performance.

Extend the Thread Model

Another important research direction is to extend the threat model to (a small

number of) compromised TDSs. In this thesis, the important assumption is that the

microcontroller inside TDS is tamper resistant. However, in reality, TDS still can be

compromised, though such attack is highly improbable due to its cost and complexity.

So we must think of a solution to deal with this situation when TDSs can be

compromised. In previous work, [Allard14] have shown that it is possible to convert

adapt secure protocols where TDS are unbreakable to secure protocols where a

small subset are corrupted.

Solutions can be devised either by clustering the keys so that breaking a TDS allows

only to decrypt a random subset of the data or by providing detection mechanisms

so that a compromised TDS is quickly blacklisted.

The first step of this solution is to detect which TDSs are compromised. Then, the

second step is to propose the new key exchange protocol that revokes the shared

key to these broken TDSs, generates the new one, and deliver to TDSs, excluding

the compromised ones.

Conduct Performance Study on Large Scale Platforms

Although the cost model is verified accurately using the real secure hardware, the

experiment conducted in this thesis is on quite small scale. A further study, therefore,

will perform the experiment on a very large scale, and put our protocols into practice.

The on-going deployment of very large TDS platforms (e.g., the Linky power meters

installed by EDF in France or the growing interest for PCEHR hosted in secure

secure devices) would enable us to perform the experiment on the larger scale.

This large scale platform also provides a strong motivation to investigate two future

works mentioned above.

117

Support MapReduce with other Architecture

The MapReduce architecture mentioned in chapter 7 in this thesis consider that map

and reduce functions are executed in the untrusted Cloud with the help of TDSs

plugged to mappers/reducers. In this case, TDSs partly participate in the

computation. A future study will consider the case in which the map and reduce

functions will be executed entirely inside the TDSs. To do this, we have to extend the

PlugDB engine so that it can support the MapReduce framework. In this case, the

challenge is to assert (1) that these functions are safe (since adversary can inject the

malicious code inside these functions) and (2) that each TDS really executes these

functions (but not others).

119

Bibliography

[Abadi03] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian

Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan B. Zdonik. 2003.

Aurora: a new model and architecture for data stream management. VLDB Journal. 12,

2, 120-139.

[Agrawal02] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.

2002. Hippocratic databases. In Proceedings of the 28th International Conference on

Very Large Data Bases (VLDB‟02). Hong Kong, 143-154.

[Agrawal04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.

2004. Order-preserving encryption for numeric data. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD‟04). Paris, 563-

574.

[Allard10] Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo, Lionel Le Folgoc,

Benjamin Nguyen, Philippe Pucheral, Indrajit Ray, Indrakshi Ray and Shaoyi Yin. 2010.

Secure Personal Data Servers: a Vision Paper. In Proceedings of the 36th International

Conference on Very Large Data Bases (VLDB‟10). Singapore, 25-35.

[Allard14] Tristan Allard, Benjamin Nguyen, and Philippe Pucheral. 2014. MetaP:

Revisiting Privacy-Preserving Data Publishing using Secure Devices. Distributed and

Parallel Databases. 32, 2, 191-244.

[Alzaid08] Hani Alzaid, Ernest Foo, and Juan G. Nieto. 2008. Secure Data Aggregation

inWireless Sensor Networks: A Survey. In Proceedings of the 6th Australasian

Information Security Conference (AISC‟08). 93-105.

[Amanatidis07] Georgios Amanatidis, Alexandra Boldyreva, and Adam O'Neill. 2007.

Provably-secure schemes for basic query support in outsourced databases. In DBSec.

Lecture Notes in Computer Science, volume 4602, Springer. 14-30.

120

[Amir04] Yair Amir, Yongdae Kim, Cristina Nita-Rotaru, and Gene Tsudik. 2004. On the

performance of group key agreement protocols. ACM Transactions on Information and

System Security (TISSEC). 7, 3, 457-488.

[Anciaux09] Nicolas Anciaux, Luc Bouganim, and Philippe Pucheral. 2009. Hardware

Approach for Trusted Access and Usage Control. Handbook of research on Secure

Multimedia Distribution (Chapter A). IGI Global.

[Anciaux13] Nicolas Anciaux, Philippe Bonnet, Luc Bouganim, Benjamin Nguyen,

Philippe Pucheral and Iulian Sandu-Popa. 2013. Trusted Cells: A Sea Change for

Personal Data Services. In CIDR. Asilomar, USA.

[Arasu14] Arvind Arasu & Raghav Kaushik: Oblivious Query Processing. ICDT 2014

[Bajaj11] Sumeet Bajaj, Radu Sion: TrustedDB: a trusted hardware based database with

privacy and data confidentiality. SIGMOD Conference 2011: 205-216

[Bellare07] Mihir Bellare, Alexandra Boldyreva, and Adam O‟Neill. 2007. Deterministic

and efficiently searchable encryption. In CRYPTO. Lecture Notes in Computer Science,

volume 4622. 535–552.

[Blass12a] Erik-Oliver Blass, Roberto Di Pietro, Refik Molva, Melek Önen: PRISM-

Privacy-Preserving Search in MapReduce. In PETS, pp 180-200, 2012.

[Blass12b] Erik-Oliver Blass, Guevara Noubir, Triet Vo Huu: EPiC: Efficient Privacy-

Preserving Counting for MapReduce. In IACR Cryptology ePrint Archive (2012) 452.

[Boldyreva09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O‟Neill.

Order-Preserving Symmetric Encryption. EUROCRYPT, pp 224-241, (2009).

[Boneh04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano.

Public key encryption with keyword search. In Advances in Cryptology – EUROCRYPT

„04, LNCS vol. 3027, pp. 506–522, 2004

[Bresson04] Emmanuel Bresson, Olivier Chevassut, Abdelilah Essiari, and David

Pointcheval. 2004. Mutual authentication and group key agreement for low-power mobile

devices. Computer Communications. 27, 17, 1730-1737.

[Castelluccia05] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. 2005. Efficient

Aggregation of Encrypted Data in Wireless Sensor Networks. In Mobiquitous. 109-117.

121

[Ceselli05] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil

Jajodia, Stefano Paraboschi, Pierangela Samarati. Modeling and assessing inference

exposure in encrypted databases. ACM TISSEC, vol 8(1), pp. 119-152, (2005)

[Cochran77] William Gemmell Cochran. 1977. Sampling Techniques. John Wiley, 3rd

edition.

[Cormode06] Graham Cormode, Flip Korn, S. Muthukrishnan, Divesh Srivastava. Space-

and time-efficient deterministic algorithms for biased quantiles over data streams. In

PODS, pages 263–272, 2006.

[Damiani03] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano

Paraboschi, and Pierangela Samarati. 2003. Balancing confidentiality and efficiency in

untrusted relational DBMSs. In ACM CCS. 93-102.

[Dean08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. Commun. ACM, 51(1):107–113, 2008.

[eMarketer12] Email Marketing Benchmarks: Key Data, Trends and Metrics. eMarketer,

2012.

[Fayyoumi10] Ebaa Fayyoumi and B. John Oommen. 2010. A survey on statistical

disclosure control and micro-aggregation techniques for secure statistical databases.

Software: Practice and Experience. 40, 12, 1161-1188.

[Fischlin11] Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider,

Ivan Visconti. Secure set intersection with untrusted hardware secure devices. In CT-

RSA, (2011)

[Fung10] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010. Privacy-

Preserving Data Publishing: A survey of Recent Developments. ACM Computing

Surveys. 42, 4, 1-53.

[Ge07] Tingjian Ge, and Stan Zdonik. 2007. Answering aggregation queries in a secure

system model. In VLDB. Vienna, 519–530.

[Gentry09] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In

STOC. Maryland. 169-178.

122

[Goldwasser84] Shafi Goldwasser and Silvio Micali, Probabilistic Encryption, Special

issue of Journal of Computer and Systems Sciences, Vol. 28, No. 2, pages 270-299,

April 1984

[Greenwald96] Michael Greenwald. Practical algorithms for self scaling histograms or

better than average data collection. Perform. Eval., 27/28(4):19–40, 1996

[Guha01] Sudipto Guha, Nick Koudas, Kyuseok Shim. Data-streams and histograms. In

STOC, pages 471–475, 2001.

[Hacigumus02] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002.

Executing SQL over encrypted data in database service provider model. In ACM

SIGMOD. Wisconsin, 216-227.

[Hacigumus04] Hakan Hacigümüs, Balakrishna R. Iyer, and Sharad Mehrotra. 2004.

Efficient execution of aggregation queries over encrypted relational databases. In

DASFAA. Korea, 125-136.

[Halim09] Felix Halim. Panagiotis Karras. Roland H. C. Yap. Fast and effective

histogram construction. In CIKM, pages 1167–1176, 2009.

[Herodotou11] Herodotos Herodotou, Shivnath Babu: Profiling, What-if Analysis, and

Cost-based Optimization of MapReduce Programs. PVLDB 4(11): 1111-1122 (2011)

[Hore04] Bijit Hore, Sharad Mehrotra, Gene Tsudik. A Privacy-Preserving Index for

Range Queries. VLDB, pp. 223-235, (2004)

[Hore12] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. 2012.

Secure multidimensional range queries over outsourced data. VLDB Journal. 21, 3, 333-

358.

[Ioannidis03] Yannis Ioannidis. The history of histograms (abridged). In VLDB, pages

19–30, 2003.

[Jagadish98] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala,

Kenneth C. Sevcik, Torsten Suel. Optimal histograms with quality guarantees. In VLDB,

pages 275–286, 1998.

123

[KISS12] INRIA, LIRIS, UVSQ, GEMALTO, CryptoExperts, CG78. 2012. Use cases and

functional architecture specification, KISS deliverable ANR-11-INSE-0005-D1,

21/12/2012.

[Kissner05] Lea Kissner and Dawn Song. 2005. Privacy-Preserving Set Operations. In

CRYPTO. 241–257.

[Lam07] H.Y. Lam, G.S.K. Fung, and W.K. Lee. 2007. A Novel Method to Construct

Taxonomy Electrical Appliances Based on Load Signatures. IEEE Transactions on

Consumer Electronics. 53, 2, 653-660.

[Liu10] Hongbo Liu, Hui Wang and Yingying Chen. 2010. Ensuring Data Storage

Security against Frequency-based Attacks in Wireless Networks. In DCOSS. California,

201-215.

[Locher09] Thomas Locher. 2009. Foundations of Aggregation and Synchronization in

Distributed Systems. ETH Zurich, isbn 978-3-86628-254-4.

[Mayberr12] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. PIRMAP: Efficient

Private Information Retrieval for MapReduce. IACR Cryptology ePrint Archive, 2012:398,

2012.

[Molloy09] Ian Molloy, Ninghui Li, and Tiancheng Li. 2009. On the (in)security and

(im)practicality of outsourcing precise association rule mining. In Proceedings of the 9th

IEEE International Conference on Data Mining (ICDM‟09). 872–877.

[Montjoye12] Yves-Alexandre de Montjoye, Samuel S Wang, Alex Pentland, Dinh Tien

Tuan Anh, Anwitaman Datta. 2012. On the Trusted Use of Large-Scale Personal Data.

IEEE Data Eng. Bull. 35, 4, 5-8.

[Muralikrishna88] M. Muralikrishna and David J. DeWitt. Equi-depth histograms for

estimating selectivity factors for multi-dimensional queries. In SIGMOD Conference,

pages 28–36, 1988.

[Mykletun06] Einar Mykletun, and Gene Tsudik. 2006. Aggregation queries in the

database-as-a-service model. In DBSec. France, 89-103.

[OJEC95] Directive 95/46/EC of the European Parliament and of the Council of 24

October 1995 on the protection of individuals with regard to the processing of personal

data. Official Journal of the EC, 23, 1995.

124

[Paillier99] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree

residuosity classes. In EUROCRYPT. 223-238.

[Poosala96] Viswanath Poosala, Yannis Ioannidis, Peter J. Haas, and Eugene J. Shekita.

Improved histograms for selectivity estimation of range predicates. In SIGMOD

Conference, pages 294–305, 1996.

[Popa11] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari

Balakrishnan. 2011. CryptDB: protecting confidentiality with encrypted query processing.

In ACM SOSP. New York, 85-100.

[Rafaeli03] Sandro Rafaeli and David Hutchison. 2003. A Survey of Key Management for

Secure Group Communication. ACM Computing Surveys. 35, 3, 309-329.

[Roy10] Indrajit Roy, Srinath T.V. Setty, Ann Kilzer, Vitaly Shmatikov, Emmett Witchel.

Airavat: Security and privacy for MapReduce. USENIX NSDI, pp. 297–312, 2010.

[Ruan12] Anbang Ruan and Andrew Martin. TMR: Towards a trusted mapreduce

infrastructure. IEEE World Congress on Services, pages 141–148, 2012.

[Song00] Dawn Xiaodong Song, David Wagner, Adrian Perrig. Practical techniques for

searches on encrypted data. In Symposium on Security and Privacy, IEEE, pp. 44-55,

2000.

[StreamSQL15] StreamSQL. 2015. Available at :

http://www.streambase.com/developers/docs/latest/streamsql/

[Tao03] Yufei Tao, Jimeng Sun, and Dimitris Papadias. 2003. Analysis of predictive

spatiotemporal queries. ACM Transactions on Database Systems (TODS). 28, 4, 295–

336.

[To13] Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2013. Secure Global

Protocol in Personal Data Server. SMIS Technical report. INRIA, France.

http://www.cse.hcmut.edu.vn/~qcuong/INRIA/TechReport.pdf

[To14a] Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2014a. Privacy-

Preserving Query Execution using a Decentralized Architecture and Tamper Resistant

Hardware. In EDBT. Athens, 487-498.

125

[To14b] Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2014b. SQL/AA :

Executing SQL on an Asymmetric Architecture. PVLDB. 7, 13, 1625-1628.

[To14c] Quoc-Cuong To, Benjamin Nguyen, Philippe Pucheral: Exécution sécurisée de

requêtes avec agrégats sur des données distribuées. Ingénierie des Systèmes

d'Information 19(4): 118-143 (2014)

[Tu13] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.

Processing analytical queries over encrypted data. PVLDB. 6, 5, 289–300.

[Wang06] Hui Wang and Laks V. Lakshmanan. 2006. Efficient secure query evaluation

over encrypted xml database. In Proceedings of the 32nd International Conference on

Very Large Data Bases.

[WEF12] The World Economic Forum. Rethinking Personal Data: Strengthening Trust.

Industrial Report. May 2012.

[Wei09] Wei Wei, Juan Du, Ting Yu, Xiaohui Gu. SecureMR: A Service Integrity

Assurance Framework for MapReduce. ACSAC, pp. 73–82, 2009.

[Wong07] Wai Kit Wong, David Cheung, Ben Kao and. Nikos Mamoulis. 2007. Security

in outsourcing of association rule mining. In Proceedings of the 33rd International

Conference on Very Large Data Bases (VLDB‟07). 111–122.

[Wu08] Bing Wu, Jie Wu, and Mihaela Cardei. 2008. A Survey of Key Management in

Mobile Ad Hoc Networks. Handbook of Research on Wireless Security. 479-499.

[Wu11] Tsu-Yang Wu, Yuh-Min Tseng, and Ching-Wen Yu. 2011. Two-round

contributory group key exchange protocol for wireless network environments. EURASIP

Journal on Wireless Communications and Networking. 1, 1-8.

[Zhang11] Kehuan Zhang, Xiaoyong Zhou, Yangyi Chen and XiaoFeng Wang. Sedic:

privacy-aware data intensive computing on hybrid clouds. CCS 2011: 515-526.

[Zhang13] Xuyun Zhang, Chang Liu, Surya Nepal, Suraj Pandey, Jinjun Chen. A Privacy

Leakage Upper-bound Constraint based Approach for Cost-effective Privacy Preserving

of Intermediate Datasets in Cloud, IEEE Transactions on Parallel and Distributed

Systems, 24(6): 1192-1202, 2013.

http://www.informatik.uni-trier.de/~ley/db/conf/ccs/ccs2011.html#ZhangZCWR11

126

[Zhang14a] Chunwang Zhang, Ee-Chien Chang, Roland H.C. Yap. Tagged-MapReduce:

A General Framework for Secure Computing with Mixed-Sensitivity Data on Hybrid

Clouds. CCGrid, pp 31-40, 2014.

[Zhang14b] Xuyun Zhang, Laurence T. Yang, Chang Liu, Jinjun Chen. A Scalable Two-

Phase Top-Down Specialization Approach for Data Anonymization Using MapReduce

on Cloud. Parallel and Distributed Systems, IEEE Transactions on , vol.25, no.2, pp.363-

373, 2014.

