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Abstract

This thesis discusses the engineering of the doping profile in graphene by means of

nanostructured local gates for Dirac fermion electronics. The nanostructured gates en-

able a full control of the graphene doping profile at the Fermi wavelength scale which is

essential for Dirac Fermion optics experiments as well as for high frequency transistors.

In this work, I first present our technology based on local bottom gates and high mo-

bility graphene on thin boron nitride. This allows the realization of sharp, tunable and

ballistic p-n junctions which are the building blocks for Dirac Fermion optics. I will

discuss a direct application of this technology, the Klein tunneling transistor, which

takes advantage of the refractive properties of Dirac Fermions to switch ON and OFF a

graphene transistor. Then this technology is implemented to equip our devices of a gate

located underneath the contact area. Using this contact gate we have a full control of

the contacted graphene doping and the contact junction resistance is tunable up to the

gigahertz range.

The last two chapters are devoted to the study of our devices when they are driven at

high bias, which is relevant for high frequency applications ; in this regime the doping

profile will depend on the drain-source voltage as well. We observe and model the current

saturation as a consequence of two effects: scattering by surface phonons of the hBN

substrate and inhomogeneous doping profile in local gated graphene. Finally, the device

performances as a radio frequency transistor are evaluated in the saturation regime, in

terms of power gain cut-off frequency.



Résumé

Cette thèse traite du contrôle du profil de dopage dans le graphène au moyen de

grilles locales nano-structurées, pour l’électronique des fermions de Dirac. Cette nano-

structuration à l’échelle de la longueur d’onde de Fermi s’avère essentielle pour réaliser

des expériences d’optique de fermion de Dirac ainsi que, dans un registre plus appliqué,

pour l’électronique haute-fréquence. Dans ce travail, je commence par présenter notre

technologie, qui repose sur des grilles arrières locales et du graphène haute-mobilité sur

nitrure de bore hexagonal. Cela nous permet de réaliser des jonctions p-n abruptes,

accordables et balistiques, qui sont l’élement de base pour l’électronique des fermions

de Dirac. Je traiterai une application possible de cette technologie, le transistor à effet

tunnel de Klein, qui utilise la réfraction des fermions de Dirac pour controler l’ouverture

et la fermeture du canal d’un transistor graphène. Ensuite, cette technologie est mise

en application pour équiper un transistor d’une grille placée sous le métal de contact.

Cette grille de contact donne un contrôle complet du dopage du graphène contacté et

permet de moduler la resistance de la jonction de contact jusque dans le gigahertz.

Les deux derniers chapitres sont dévolus au régime de fort biais qui est pertinent pour

les applications hautes fréquences ; dans ce régime le profile de dopage dépend aussi

de la tension drain-source appliquée. Nous observons et modélisons la saturation de

courant comme la conséquence de deux effets : la diffusion par les phonons de surface du

substrat hBN et l’inhomogénéité de dopage dans les dispositifs à grilles locales. Enfin,

nous évaluons les performances de nos dispositifs comme transistors radio-fréquences

dans ce régime de saturation, notamment en terme de fréquence de coupure du gain de

puissance.
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dans la mise au point des techniques de fabrication des grilles nano-structurées et qui
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dont j’ai repris le travail. Merci au autres permanents du LPA avec qui j’ai été heureux
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Chapter 1

Introduction

1.1 General introduction

A decade after the discovery of graphene by A.K. Geim and K.S. Novoselov [1–3], many

of its fundamental properties have been intensely studied. Indeed, the early promise of

graphene has been kept, leading to a fruitful research in many fields as diverse as optics,

mechanics, chemistry or electronics, and graphene still deserves the name of wonder

material as among its attributes there is an exceptionally good conduction of heat and

electricity, it is one of the strongest known material while being light and optically

transparent. Its success was partly due to the easy micromechanical cleavage or scotch

tape exfoliation technique accessible to any laboratory without heavy equipment, that

allowed to study the properties of graphene with a wide range of experimental techniques.

Following the success of graphene, other two-dimensional (2D) materials were obtained

with the same technique, leading to a particularly rich physics.

In our field of interest, mesoscopic physics, there is another essential ingredient to the

success of graphene: its field effect tunability. Indeed, the carrier density of graphene can

be easily tuned over a large range ∼ 109 cm−2-1013 cm−2 with an electric field induced

by a gate electrode. This tunability is a consequence of the band structure of graphene,

but it is also due to the 2D nature of graphene as there is no charge screening in the

direction perpendicular to the graphene plane. Finally, thanks to its crystal symmetry,

graphene is not a regular conductor but a chiral conductor, and the charge carriers do

not follow the usual Schrödinger equation but rather a Dirac-like equation (thus they

are called Dirac fermions). Consequently, the electronic transport properties of graphene

are controlled by the conservation of a pseudo-spin locked to the momentum, leading to

an unusual behavior of electrons at potential steps. The peculiar transport properties of

Dirac fermion arise when the transport is ballistic, that is to say when the impurity level

1



2 Chapter 1: Introduction

is low enough that the electrons can propagate without scattering over a distance on

the order of the sample size. This is the regime of Dirac fermion optics, where electrons

trajectories are similar to light rays, experiencing refraction at potential steps.

As a 2D crystal, graphene is extremely sensitive to its environment, it is therefore es-

sential to work with a “graphene-friendly” environment. One solution is to remove the

environment and to work with suspended graphene [4, 5]. However, supported graphene

devices offer a better control and spatial resolution of the doping profile. The perfect

environment was found by depositing graphene on top of hexagonal boron nitride (hBN)

[6]. hBN is also a 2D material with a honeycomb lattice, thus atomically flat, but it is

insulating with a 6eV bandgap. It appeared that using hBN as a substrate for graphene

was a way to preserve the intrinsic properties of graphene while protecting it from the

environment. As a result, ballistic transport up to a few microns at room temperature

was demonstrated using hBN-encapsulated graphene [7, 8].

As discussed above, graphene is a very rich platform for fundamental science. It also

raised a strong interest for the possible industrial applications, which opens other per-

spectives. From a material point of view, there is a need for a large scale and reliable

graphene production. This issue is addressed for example by the development of the

chemical vapor deposition (CVD) technique [9–11] which is close to reach the quality of

exfoliated graphene. As a next step graphene has to be implemented in realistic devices

whose performances must be compared to the existing semiconductor devices.

Regarding the possible applications of graphene in electronics, the realization of digital

transistors seems elusive due to the absence of a bandgap in graphene, and the attempts

to open a gap, e.g. using graphene nanoribbons, have resulted in a mobility degradation.

However, the ability of graphene transistors to work as an amplifier up to hundreds

of gigahertz thanks to its high electronic mobility and high Fermi velocity has been

demonstrated and is still an active field of research [12–16]. The graphene radio frequency

(RF) transistor is comparable to the high electron mobility transistor (HEMT) that relies

on a two-dimensional electron gas at the interface of two semiconductors. In graphene

and in HEMT, the field effect is very efficient thanks to the 2D nature of the electron

gas, and the high mobility ensures fast operation.

In this thesis, our approach is to investigate the physics of graphene devices targeting

the high frequency electronics applications. To this end we have developed, in the clean

room of the Physics Department of the Ecole Normale Supérieure, a new technology

based on graphene on hexagonal boron nitride, on top of nanostructured bottom gates.

We call this technology GoBN for graphene on boron nitride. The use of hBN as a

substrate gives access to the high mobility necessary for the ballistic transport whereas

the nanostructured local gates allow us to finely control the doping profile of graphene
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through the sample. Engineering the doping profile of ballistic graphene at a spatial

resolution on the order of the Fermi wavelength enables the realization of devices working

in the regime of Dirac fermion optics. Nevertheless, having a realistic device compatible

with high frequency operations sets sharp geometrical constraints. First we work with

short channel two-terminal devices for which the contact resistance dominates the device

properties. It is therefore a major issue to understand and control the phenomena taking

place at a metal-graphene contact. Second, a graphene RF transistor works at high bias,

that is to say at high in-plane electric field in order to maximize the transconductance. In

that regime the scattering by phonons is not negligible and it leads to the saturation of

the current. In addition, for high biased devices equipped with a local gate, the graphene

doping profile is not uniform in the channel leading to an effect similar to the “pinch-off”

effect observed in semiconductor based transistors.

This thesis will be organized as follows. We begin by giving a short overview of the

graphene electronics basic concepts. The main features of the Dirac equation are dis-

cussed, and we give the useful elements describing an electronic transport experiment in

the diffusive regime and in the ballistic regime.

Chapter 2 introduces the fabrication techniques of our GoBN devices, presented from

the Dirac fermion optics application point of view. The use of hBN as a substrate and

a thin gate dielectric allows us to realize devices with a high mobility, a good doping

homogeneity, a low residual doping, and to avoid gate hysteresis effects. The local bottom

gates are structured prior to hBN and graphene deposition at the Fermi wavelength scale

(∼ 15 − 30 nm) in order to fully control the doping profile of graphene in the device.

We are able to create sharp potential barriers which can be tuned electrostatically to

create functionalities exploiting the optics-like properties of Dirac fermions. The chapter

is concluded with the description of our measurement setup for direct current (DC) and

radio frequency (RF) experiments. In particular, we introduce the RF measurement

principle of the devices admittance parameters using a vector network analyser (VNA).

Chapter 3 is devoted to Dirac fermion optics. We begin with an overview of the pro-

posals and experimental realization of devices exploiting the Dirac nature of graphene

electrons. Then we give theoretical elements to describe more precisely the Klein tun-

neling of Dirac fermions at a potential step which is the building block for Dirac fermion

optics. But the core of this chapter is our proposal of the Klein tunneling transistor

whose working principle follows the geometrical optics analogy of a reflector. The Klein

tunneling transistor is simulated using scattering theory and non equilibrium Green

function (NEGF) approaches. Its potential use as a RF transistor is discussed as well.

In chapter 4 we focus on the metal-graphene contact properties. As already mentioned,

this aspect is crucial for devices, and we give a short overview of the graphene contact
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physics and achievements. More specifically we give theoretical elements explaining how

the carrier density of contacted graphene is not solely determined by the metal induced

doping but can be tuned by field effect. To this end we describe the gating effect taking

into account the finite density of states of graphene close to neutrality. Our contribution

is to use the GoBN technology to introduce a local gate below the metal-graphene

contact area that can tune the carrier density of the contacted graphene. This contact

gate is used in addition of a channel gate which tunes the doping of graphene in the

channel. Both gates gives a full control of the contact junction whose transmission is

modelled using the Klein tunneling equations of chapter 3. The contact gating effect is

demonstrated on several devices, with exfoliated graphene flakes and with CVD. Finally,

the contact gate is actuated at gigahertz frequencies, demonstrating that a graphene RF

transistor can also work by modulation of the contact junction resistance.

In chapter 5, we drive our GoBN transistors at high bias and observe the current sat-

uration. Two principal regimes are identified. At large doping the saturation is due to

the scattering by optical phonons, and we are able to extract the phonon characteristic

energy, which points out a scattering mechanism dominated by the remote phonons of

the hBN substrate. At low doping we show that the saturation can be enhanced by a bias

induced non-uniform doping in the channel. We specify that this effect is a distinctive

feature of local gate devices for which the finite graphene density of states has to be

taken into account.

Finally, in chapter 6 we focus on the RF properties of our GoBN devices. First, the

relevant RF quantities and figures of merits are defined1, second we present our RF

experiments and attest the device performances in term of current and power gain cutoff

frequencies. In particular, we show how to take advantage of the current saturation

mechanisms discussed in chapter 5.

Four series of samples were fabricated and measured for the present thesis. Sample

GoBN1 is the prototype of the GoBN technology and is shown in appendix B. GoBN2

is a sample made of exfoliated graphene equipped with contact gates. It is presented

in chapter 4. GoBN3 is a series of samples made of CVD graphene and equipped with

contact gates. It is presented in chapters 4, 5 and 6. Finally there is a series named GoAl

that consists of control samples with Al2O3 as gate dielectric instead of hBN. They are

shown in 4. All sample characteristics are summarized in table 2.1.7 and in appendix C.

1The reader who is not familiar with RF transistor may refer to section 6.1.2 of this chapter whenever
RF properties are discussed.
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1.2 Graphene electronics basic concepts

There are numerous very good introductions and seminal papers about the basics of

graphene electronic properties [17–20]. Here, our objective is not a complete description

of those properties but rather a quick summary of the concepts and formulas that we

will need in this work.

1.2.1 From the honeycomb lattice to the Dirac equation

In graphene, the carbon atoms are arranged in a honeycomb lattice with a C-C distance

of a ≈ 0.142 nm. In terms of Bravais lattices, graphene is generally described as the

superposition of two triangular sub-lattices formed by the atoms A and B of Fig 1.1.

Figure 1.1: From left to right: graphene lattice with two unequivalent atoms A and
B ; corresponding Brillouin zone ; energy dispersion with a zoom to the Dirac point.

Adapted from [18].

The electronic properties of graphene are generally described by the tight binding ap-

proach within the nearest-neighbour approximation. It gives the complete electronic

band structure which is plotted in Fig. 1.1. The most important features of graphene

can be seen from the band structure: the conduction band and the valence band are

touching at two inequivalent points at zero energy. Thus, graphene is a zero-gap semi-

conductor or a semi-metal, and the Fermi level lies at the intersection between valence

and conduction bands. Close to the intersection points, the energy dispersion E(~k) has

a conical shape and is linear with the wave vector k.

E(~k) = ±~vF |~k|, (1.1)

where the + sign stands for the conduction band and the - sign for the valence band.

vF is the Fermi velocity which is defined as

vF =
3ta

2~
≈ 106ms−1, (1.2)

with the hopping energy t ≈ 2.8 eV [18].
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The linearity of the energy dispersion (Eq. 1.1) is a distinctive feature of graphene.

Indeed, the graphene quasiparticles are not described by the usual Schrödinger equation

but rather by the Dirac equation. Those quasiparticles are called Dirac fermions as

they behave as massless relativistic particles (with an effective speed of light vF ) by

opposition to the Schrödinger fermions in usual semiconductors which have a parabolic

energy dispersion. The two points where conduction and valence band are touching are

called Dirac points.

0

k

E

k

vF

k

vF

+σ-σ

0

k

E

k

vF

k

vF

n-doping p-doping

Valence 
band

Conduction 
band

+σ-σ

a) b)

Figure 1.2: Energy dispersion close to the Dirac point. (a) The Fermi level is in
the conduction band meaning that the graphene is n-doped. (b) The Fermi level is
in the valence band meaning that the graphene is p-doped. The two branches of the
band structure +~σ and −~σ define the pseudo-spin. The pseudo-spin is locked to the
momentum, they are parallel in the conduction and anti-parallel in the valence band.

The direction of motion is represented by ~vF . It remains constant for a given ~σ.

The energy dispersion. The conical energy dispersion close to the Dirac point is

shown in figure 1.2. The filled electronic levels are colored in orange, thus the Fermi

level is at the orange-white limit. If the Fermi level lies in the E > 0 part of the cone

(Fig. 1.2-a) then the doping is called n as negative charges are in excess in the graphene

sheet (the charge carriers are called electrons). If the Fermi level lies in the E < 0 part

of the cone (Fig. 1.2-b) then the doping is said p as positive charges are in excess in

the graphene sheet (the carriers are called holes 2). In the following, when we estimate

carrier density values using the n notation, a positive value will indicate a n-doping

(Fermi level in the conduction band) and a negative value a p-doping. On the opposite,

p > 0 will correspond to a p-doping and p < 0 to a n-doping.

2As explained in [19], even if E < 0, the charge carriers still are at the Fermi level, so they are
electrons. On the opposite, strictly speaking, a hole is the removal of an electron below the Fermi level.
Yet a Dirac fermion in the valence band is often called hole.
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A sublattice degree of freedom. There is another important consequence of the

lattice symmetry on the transport properties. Due to the two-atom basis of the Bravais

lattice, there is an additional degree of freedom that we call pseudo-spin. Thus, the

graphene’s quasiparticles are described by a two-component wave function defining the

relative contribution of sublattices A and B. Consequently the conical spectrum can be

seen as the intersection of two branches originating from sublattices A and B and a

pseudo-spin index ±~σ can be attributed to each branch, as pictured in blue and red in

Fig. 1.2. Electrons and holes belonging to the same branch have the same pseudo-spin

~σ.

The momentum ~k is parallel to the pseudo-spin ~σ in the conduction band and it is anti-

parallel in the valence band. Concerning the direction of propagation, it is represented

as the ~vF vector in Fig. 1.2. ~vF is parallel to the momentum ~k for the electrons and

anti-parallel to ~k for the holes, so that the direction of motion is constant for a given

pseudo-spin.

To summarize, there is a degree of freedom associated with the real spin, another one

associated with the two unequivalent Dirac point (valley degeneracy) 3 and that we

account for by a factor 4 in this thesis. By contrast the pseudo-spin degree of freedom

has a stronger impact on the transport properties.

k

E

vF

+σ

k

vF

n-doping p-doping

Fermi 
level EF

+σ

x

Figure 1.3: Energy dispersion at a potential step. The Fermi level (dotted line) is
constant and the band structure is shifted. A right moving electron (black dot) in a
n-doped area is transmitted to a p-doped area. The pseudo-spin ~σ is conserved, the
wave vector is reversed and the direction of motion ~vF is conserved. This is an example

of a so-called n-p junction (the case of the p-n junction is symmetric).

Consequence of the pseudo-spin: Klein tunneling. Let us consider a quasiparticle

incident on an electrostatic potential step (Fig. 1.3). The step height is chosen to inverse

3The inter-valley scattering can be neglected if there is no scatterer acting at the lattice constant
scale.
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the doping polarity, therefore it is called a n-p (or equivalently p-n) junction. The pseudo-

spin has to be conserved through the barrier (a pseudo-spin-flip process would require

a short range process acting differently on A and B sites - for example if the barrier

transition is shorter than the lattice constant). As a consequence, a right-moving incident

electron cannot be backscattered as ~vF to− ~vF would imply a change of branch. Therefore

it is transmitted inside the barrier as a hole state. This process is also responsible for

graphene’s high mobility, as if the barrier is replaced by an impurity or a defect, the

incident carrier is not backscattered resulting in a larger mean free path. The properties

of those p-n junctions will be discussed more specifically in chapter 3.

1.2.2 Important formulas

Dispersion relation. As already introduced, the dispersion relation is

EF = ~vFkF (1.3)

Density of states. The number of states per unit area in a two-dimensional system is:

N = g

∫ kF (EF )

0

kdk

2π
, (1.4)

where g = 4 due to the 2-fold valley and real spin degeneracy. Thus, close to the Dirac

point and using Eq. 1.3, the graphene density of states is

ρ =
∂N

∂E
=

2EF
π(~vF )2

(1.5)

Charge carrier density. The carrier density is obtained by integrating the density of

states over the whole energy range. It corresponds to the algebraic charge number per

unit area in the graphene sheet, the neutrality corresponding to the Dirac point. It is

equivalently referred to as doping in this thesis, and it is expressed in cm−2.

n =

∫ ∞
0

ρ(E)f(E)dE =
E2
F

π(~vF )2
, (1.6)

where f is the Fermi-Dirac distribution taken at zero temperature.

From Eqs. (1.6) and (1.3) one can obtain the following useful expression:

kF =
√
πn (1.7)
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Fermi wavelength. The Fermi wavelength of the Dirac fermions is expressed as:

λF =
2π

kF
(1.8)

The typical carrier density in our system is n = 1×1012 cm−2. It corresponds to a Fermi

energy EF = 116 meV , a wave vector kF = 1.77 × 108 m−1 and a Fermi wave length

λF = 35 nm.

1.2.3 Diffusive transport.

In opposition to the ballistic transport, in the diffusive regime, charge carriers experience

elastic scattering essentially due to collision with impurities. The less there are impurities

the better is the electrical conduction. In the Drude model, electrons are accelerated by

an electric field E and are scattered at a relaxation time τ , so that the equation of motion

in terms of momentum p = ~kF reads

dp

dt
= −p

τ
+ eE (1.9)

Which gives a steady state

p = ~kF = eEτ (1.10)

One defines the carrier mobility µ as

vd = µE , (1.11)

where vd is the carrier drift velocity, that is to say the average speed of electrons. vd

and τ are related through the mean free path lmfp = vdτ which is the mean distance

between two impurities. Thus

lmfp =
µ~kF
e

(1.12)

We say that the transport is diffusive when lmfp is smaller than the sample length. In

the opposite case the transport is ballistic.

From those quantities one can calculate the current density:

j = |n|evd, (1.13)

and the graphene sheet conductivity

σ = |n|eµ (1.14)
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The mobility is the main figure of merit to discuss the quality of a semiconductor. It is

generally expressed in units of cm2V −1s−1. A higher mobility implies a higher conduc-

tivity and a higher mean free path. The success of graphene in electronics is essentially

based on its exceptionally large mobility. In particular, a recent experiment [8] has shown

that the room temperature graphene mobility can reach µ & 100000 cm2V −1s−1 which

is the limit set by phonon scattering. This corresponds to a mean free path lmfp ≈ 1µm.

At cryogenic temperatures, the samples go ballistic and the mean free path is limited

by the size of the sample lmfp > 15 µm.

Device geometry and gate effect. A basic transport experiment is to measure the

resistance of a rectangular graphene channel between two contact electrodes that we call

drain and source (the source electrode being at 0V ). The distance between source and

drain electrodes is the length of the channel noted L ; the width is noted W and the

dielectric thickness tBN (see Fig. 1.4) . Therefore the channel resistance is

R =
L

W

1

|n|eµ
. (1.15)

L
n-dopingp-doping

gate  Vg

w

dielectric

source drain
graphene

R
(Ω
)

1000

1500

2000

2500

3000

3500

Vg (V)
−1 0 1

t

Figure 1.4: Left: image of a graphene transistor with a bottom gate. Right: resistance
as a function of gate voltage (transfer curve) for a device similar to the sketch on the
left. The dimension of the device are L = 1.4µm, W = 1.6µm. The dielectric is a hBN

flake of thickness tBN = 7 nm.

The carrier density is tuned by a gate electrode separated from graphene by a dielectric.

Within the plate capacitor model (this approximation is discussed in chapter 4) there is

an equal number of charge in the graphene and in the gate electrode, leading to

n =
CVg
e
, (1.16)

where C is the gate capacitance per unit area and Vg is the gate voltage. Therefore n

can be tuned from negative to positive values. The maximum accessible carrier density
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is set by the breakdown voltage of the gate dielectric, the minimum n depends on the

disorder and the temperature. In our experiment we can access |n| ∼ 0.1− 10 · 1012 cm2.

The minimum carrier density is also called the residual density and is noted n0. Thus a

more accurate estimation of the graphene doping is

n = sign(Vg)

√(
CVg
e

)2

+ n2
0 (1.17)

Consequently, the graphene resistance is tuned by the gate voltage with a maximum

at the so-called Dirac point. The value of the maximum is limited by n0 and µ in

our experiments4. An example of transport measurement is shown in Fig. 1.4, where

the resistance as a function of the local bottom gate voltage is plotted. Accordingly

to equation (1.15) a bipolar behavior is observed, as well as a resistance peak which

corresponds to the charge neutrality point (CNP) or Dirac point. Away from the Dirac

point the R(Vg) curve is not symmetric. This effect arises from additional resistance due

to the contact electrodes (contact resistance) and chapter 4 will discuss this asymmetry.

1.2.4 Ballistic transport

When the mean free path is larger than the sample size, the transport is said ballistic.

It cannot be described anymore by the Drude model. Instead, it is described within the

Landauer-Büttiker formalism where the electronic conduction can be seen as a wave

propagation in a waveguide.

The Landauer-Büttiker formalism. In this description, the conductance is quantized

by the number of modes allowed in the waveguide (Fig 1.5). Each mode contributes as

a quantum of conductance 2e2/h, where the pre-factor 2 takes into account the spin

degeneracy. The conductance of ballistic graphene is given by:

G =
4e2

h
M, (1.18)

where M is the mode number and the pre-factor 4 stands for both spin and valley

degeneracy. The mode number is set by the Fermi wavelength and the channel width

W:

M
λF
2

= W (1.19)

Therefore, the Landauer conductance of graphene reads

G =
4e2

h

kFW

π
(1.20)

4In cleaner systems it is on the order of L
W

πh
4e2

[21–23].



12 Chapter 1: Introduction

Figure 1.5: Sketch of the Landauer electronic modes.

For a typical carrier density n = 1012cm−2, we have G/W ≈ 9mSµm−1.

Then one may want to estimate the conductance of a junction in ballistic graphene. To

this end, the Landauer-Büttiker formalism enables us to think in term of transmission

T of the junction which yields for the conductance

G =
4e2

h

kFW

π
T (1.21)

This case is of great importance for the description of the graphene transistor properties

and it will be treated in more detail in chapter 3.



Chapter 2

Experimental methods

The fabrication of high mobility graphene devices has been a major challenge in the past

few years, and it has experienced considerable progress since the early measurements.

The use of an atomically flat and inert substrate, hexagonal Boron Nitride (hBN), en-

ables researcher to reach the ultimate phonon-limited mobility of µ ≈ 100000 cm2V −1s−1

at room temperature leading to a mean free path of a few µm [24]. However, the fabri-

cation of such devices remains particularly difficult, as it requires successive and delicate

transfer steps of graphene and hBN flakes. In the case of devices for Dirac Fermion optics

we need even more complex architectures resulting in a more challenging fabrication. As

a result a great effort in terms of fabrication processes has been made in this work, both

concerning the introduction at LPA of the state of the art transfer techniques of 2D

crystals (exfoliated and CVD) and in the realization of nano-patterned gate electrodes

for new Dirac Fermion optics architectures. In this chapter, we will first introduce the

techniques we developed in the LPA clean room that lead to the fabrication of devices

for Dirac Fermion Optics. This presentation focuses on the fabrication of the Klein

tunneling transistor whose working principle is introduced in Chapter 3. However, the

same fabrication techniques also apply for the fabrication of the gated contact transistor

whose experimental results are presented in Chapters 4, 5 and 6. In a second a part I

will present the electronic setup we used to characterize the devices.

2.1 Nanofabrication : the GoBN technology

2.1.1 Technological requirements for Dirac Fermion optics

The realization of devices for Dirac Fermion optics has high requirements that introduce

sharp constraints in the fabrication process. First of all, the carrier mobility has to be

13
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high enough to reach the ballistic regime. This sets some constraints on the graphene

quality, on the choice of substrate, and on the level of contamination accepted during the

process. Secondly, geometrical constraints can be defined using the analogy of the equiv-

alent optical index ñ of geometrical optics. Indeed, the building block for Dirac Fermion

optics is the p-n junction. A n-p junction separates two zones of different doping, n and

p, in a graphene sheet (see Fig. 2.1 and Chap. 3 for more details). And in the ballistic

regime the electrons incident on that junction follow the Snell-Descartes refraction law

with an equivalent optical index ñ = −
√
p/n. Besides, comparing the device dimensions

to the electronic wavelength λF allows to set the limits of the geometrical optics regime.

To mimic a simple geometrical optic elements as a dioptre our device should verify the

requirements of 2.1.

energy d

L

incident 
electron

transmited 
electron 

n-doping p-doping

Technological requirements 
for Dirac Fermions optics.

- High carrier mobility

- Tunable ñ

- Homogeneous ñ

- Sharp interfaces:        d << λF

- Flat interfaces compared to λF        

- Geometrical optics:   L >> λF

- RF compatibility

reflected 
electron

local gate n local gate p

Figure 2.1

Obviously, in regular optics, it is difficult to tune ñ, without changing the material !

In graphene however, ñ can be tuned very easily and over a very large range with an

electrostatic gate. The homogeneity of ñ over a certain area is improved by using a local

metallic gate, very close to the graphene which efficiently sets the graphene electrical

potential. The most simple optical device one can make is a dioptre separating two

areas of different ñ. In graphene electronics this dioptre or interface is called a junction

and is the result of contiguous regions with different doping. Doping can be induced

either electrostatically or chemically. The optical properties of this dioptre depend on

the typical length d over which ñ varies when going through the interface. We choose

to work with sharp interfaces, meaning that the Fermi wavelength of the electrons stays

larger than the interface length d. Typically a graphene device operates at a density
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n = 1012 cm−2 (energy: 116 meV ) which corresponds to a Fermi wavelength of λF =

35.4nm. The condition d . λF is critical to obtain a good transmission at the interfaces,

and achieving the 10 − 30 nm scale resolution is one of the major steps of the present

thesis. Similarly the roughness of the interface between both media has to be small

compared to λF in order to avoid scattering at the junction. By contrast, to stay within

the geometrical optic regime, the size of the device needs to be much larger than λF ,

otherwise the occurrence of diffraction would blur the particular effects we investigate.

In the end a compromise between mean free path and diffraction limit will have to be

found. Finally, we want to characterize the dynamical properties of Dirac Fermion in the

radio frequency (RF) regime, thus our device geometry has to be suitable with a 50 Ω

impedance matched environment. Moreover, in order to avoid RF losses, we have to use

an insulating substrate. For example SiO2 on doped silicon is not suitable, and we have

to use resistive silicon (ρ ∼ 2000 Ωcm) instead.

2.1.2 The local bottom gate technology

In order to meet the requirements presented above we propose an architecture, named

GoBN, that consists of a vertical stack of graphene on Boron Nitride on a set of local

bottom gates. The bottom gate voltages will imprint different media of different ñ and

their interfaces. The choice of bottom gates instead of the more common top gates offers

some advantages: First, it is a way to avoid a complicated and risky deposition of a

top dielectric on graphene followed by the evaporation of the metallic gate. As specified

above we need a 10 nm resolution in the gate geometry which is hardly possible using

a lift off technique. Second, the use of hBN as a substrate ensures a good mobility

(it is atomically flat) and good dielectric properties (no charge traps and breakdown

voltage approaching 1 V/nm). Third, we still have a free graphene surface that can be

cleaned and flattened if needed (a top dielectric could trap some impurities). Besides,

access to the graphene top surface allows for opto-electronic experiments as for example

photocurrent detection [25, 26], as well as gas sensitivity experiments [27]. Nevertheless,

graphene easily adsorbs molecules on its surface and it is necessary to clean the sample

by annealing prior to the measurement.

Stating the problem is rather simple: we need to be able to make a set of gates whose

separation is less than 30 nm, with even smaller edge roughness. Obviously the top

surface roughness of the gate has to be much smaller (ideally < 1 nm), the graphene

being very sensitive to the substrate’s roughness while a thin hBN layer does not smooth

out completely a rough surface. Moreover, as will be explained in more detail later, we

need to remove the resist residues after the graphene transfer which implies an annealing
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step at 300◦C under H2/Ar atmosphere. Thus the metal used for the gate needs to

sustain such conditions.

Si (h.r.)

SiO2

Local back gates

d

L

source side drain side

n-doping
gate

d

L

a) b)
p-doping 
gate

p-doping 
gate

Figure 2.2: (a) Perspective view of the local back gates of one unit of the Klein
tunneling transistor (without graphene yet). L is the total length of the device over
which the transport should be ballistic. d is the inter-gate gap, it sets the smoothness
of the junction. (b) Top view of the Klein tunneling transistor. Here it is composed of

four elementary units.

The principles of the fabrication are described taking as an example the Klein Tunneling

Transistor sketched in Fig. 2.2 and whose working principle is decribed in Chap. 3 but

it is expandable to other geometries. The same technology is used for the fabrication of

the devices presented in Chap. 4, 5 and 6.

As already mentioned above, a process involving standard e-beam lithography followed

by metal deposition and lift-off is ruled out: even if the lift-off of very fine structures

is possible, the edge of the remaining metal has an important roughness. Therefore our

route was to start with the deposition of a thin film followed by a dry etching step that

defined the gate geometry.

The gold way. The first attempts we made consisted in the deposition of a 20nm

thick layer of gold on a Si/SiO2 substrate, the etching being realized using a gallium

Focused Ion Beam (FIB) in the team of Jacques Gierac at LPN, Marcoussis. Notably,

this group is expert in cutting out 2D crystals [28]. Unfortunately, we were not able to

reach our resolution target. As seen in Fig. 2.3 the triangular shape is not achieved, and

although the rectangular gate seems correct, the gap between both gates is still too large

(> 50 nm) and the roughness is too high. Besides, we realized soon that such fine gold

structures do not sustain a thermal treatment at 300◦C needed to clean the sample. The

FIB is a powerful technique but it would have demanded more development to optimize

it to other materials. However a similar possibility would have been to use a Helium

FIB. Using that it could be possible to etch thicker gold structures (a 100nm gold layer
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78 nm

a) b)

d)

Figure 2.3: (a) Gold gate etched with a Gallium FIB targeting a sawtooth shape. (b)
Gold gate etched with a Gallium FIB targeting a rectangular shape. (c) A single line
etched with a Gallium FIB. The gap is varying around ∼ 50− 80 nm. The scale bar is

400nm for (a) and (b).

is nearly insensitive to a temperature of 300◦C) with a better accuracy (see for example

[29]).

Therefore we changed both the etching technique and the material. It appears that a

conventional e-beam lithography (20 keV ) pushed to its ultimate resolution (thin layer

of resist: 50 nm PMMA, and exposure steps of 2 nm) enables the realization of very

thin trenches in a resist, and that the gate material can be etched away efficiently using

Reactive Ion Etching (RIE). Both equipments are available in the ENS clean room

making the process development more efficient.

A quick review of ultimately thin metallic film properties This process has been

tested on quite a few materials with little success. To summarize we are looking for a

refractory material (even for very thin film) that does not react with H2 but that can

be etched either chemically or physically in RIE, provided that the RIE recipe does not

etch the resist faster than the material. Here is a compilation of gate materials that have

been tested:

• Palladium (evaporated Ti/Pd 1nm/15nm) can be etched physically with Ar ions

in RIE but it reacts with H2 during the annealing.

• Niobium can be etched with SF6 ions. For a 25nm thick Nb film deposited by sput-

tering, we measured a resistivity of ∼ 60µΩcm before annealing and ∼ 700µΩcm
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after annealing due to hydrogenation (and also its color and thickness have changed

!).

• Graphite can be etched with an O2 plasma and sustain the thermal treatment.

However its deposition by the exfoliation method make the process random as we

do not control its thickness. As a result a good calibration of the etching time was

not achieved.

• Silicon On Insulator (SOI) obtained from the CEA-LETI is a thin layer (20 nm)

of highly doped silicon. It is easy to etch, its flatness is very good as well as

its resistance to annealing. However, SOI is still highly resistive (we measured

∼ 1800 µΩcm, but the usual value for this material is ∼ 360 µΩcm) and above

all it is difficult to realize a good contact to the SOI gate due to the native oxide

layer always present at the surface. This route is promising but was developed in

parallel of tungsten which revealed simpler to use.

• Tungsten is a very refractory metal and it can be etched using SF6 ions. A

20 nm film is deposited by sputtering at INSP by Loic Becerra. Its resistivity

is ∼ 300 µΩcm

The best choice among the available materials is tungsten, an example of realization

can be seen in Fig. 2.4. Nevertheless a fine tuning of the RIE parameters was necessary

to etch completely and sharply the tungsten while some PMMA remains on the sample

to protect the other areas. Finally, a gap width of 20 nm with little roughness was

achieved in collaboration with Michael Rosticher and Jose Palomo from the ENS Physics

department. For a complete description of the fabrication of the tungsten local bottom

gate see appendix A. Let us emphasize that this choice is mainly dictated by our available

equipment: the 20nm targeted accuracy requires to use a thin layer of PMMA that itself

limits the etching time so that the gate material has to be thin. For example, with a

100keV e-beam we could reach the same resolution with a thicker PMMA and therefore

have a thicker (meaning less resistive and less sensitive to annealing) material.

2.1.3 High mobility graphene: material

Exfoliated graphene The historical technique of exfoliation or micro-mechanical cleav-

age of bulk graphite is still widely used. It remains the technique that gives the highest

mobility samples, but above all it allowed to explore the entire family of 2D materi-

als (hBN, MoS2, WS2, MoSe2, WSe2, MoTe2, Bi2Se3, Bi2Te3, black phophorus...) that

raised much interest recently [2, 30–33]. Indeed it is the simplest technique to implement

as one just needs to start with the bulk material and a piece of scotch tape. Moreover
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Figure 2.4: Local bottom gate in tungsten etched using an e-beam lithography fol-
lowed by RIE etching. Left: the complete sawtooth gate. The scale is set by the white
bar of 200 nm. Right: zoom onto the gap for which a resolution of 20 nm is achieved.

The scale is set by the white bar of 20 nm.

one can easily choose the number of layers (a posteriori) which is critical as the ma-

terial properties drastically depend on it. This technique relies on the weak Van der

Waals interaction between layers which is comparable to the graphene-scotch tape and

graphene-substrate interaction strength. Thus a small piece of graphite is stuck on the

adhesive tape (Blue Low Tack tape Semiconducor Equipment Corp) then the tape is suc-

cessively folded onto itself several times to peel away the graphite. Graphite is spread

out on the tape and gets thinner. Finally the tape is put on a Si/SiO2 substrate and

removed leaving some graphite on the chip. One obtains a surface covered with flakes

of various size and thickness. One of the great advantages of this technique is that the

number of atomic layers can be identified with a simple optical microscope. Indeed, due

to interferences between graphene and Si, provided that the SiO2 layer has a suitable

thickness, the optical contrast is enhanced, allowing to discriminate between a single

layer and a bi-layer graphene, as shown in Fig. 2.5. Though, it has to be stressed that

exfoliation is a random process, thus, in our fabrication process graphene cannot be

deposited directly on the desired area, it has to be exfoliated somewhere and then trans-

ferred on the BN-local gate stack. Besides, this technique produces only small flakes, of

a few µm2 (100µm2 at most) and is not suitable for systematic device characterization

or industrial applications.

CVD graphene A very successful method to grow graphene is Chemical Vapor Depo-

sition (CVD), demonstrated in 2008 by Yu et al. [9]. Graphene is grown from gaseous

precursors on a metallic surface acting as a catalyst in a furnace at high temperature.

The metallic catalyst can be chosen depending on the desired number of layers: Cu for

monolayer, Ni for multilayer. The CVD graphene quality has experienced considerable

improvement in the past few years, it now competes with the best exfoliated samples

with very few defects and millimeter-size grains. Mobilities as high as 350, 000 cm2/V/s

have been achieved when it is used in combination with a hBN substrate [11]. At the
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same time transfer techniques have also improved, even for large scale CVD, and it seems

very promising for industrial applications. In this work we used CVD graphene grown

on copper from 3 different origins:

• Commercial CVD graphene from Graphene Supermarket.

• Home grown CVD by Pascal Morfin. The CVD graphene is grown with an Aixtron

reactor on a 99.999% pure and 100µm thick copper foil. The growth occurs at a

temperature of 1020◦C, in an CH4/H2/Ar atmosphere at 25mbar for 5 minutes.

• CVD from V. Bouchiat’s group at Institut Néel in Grenoble [10]. Films are grown

following an original method called pulsed CVD. It consists in the intermittent

injection of the carbon precursor (CH4) while H2 is injected with a constant flux

at 1000◦C. The advantage of this technique lies in the reduction of carbon by

H2 that saturates at Cu defects. In a standard growth this saturation leads to the

formation of multilayer graphene around those defects. The pulsed CVD technique

suppresses those multilayer patches leading to a more homogeneous graphene layer

and in the end to a better mobility.

MLG

BLG

SiO2

CVD 
graphene

a) b)

Figure 2.5: (a) optical image of exfoliated graphene on SiO2. A monolayer (MLG) and
a bilayer (BLG) graphene flakes are pointed out by the black arrows. One can clearly
see the contrasts substrate-MLG and MLG-BLG. If needed it can be quantified by the
grayscale of the picture. (b) Optical image of a LPA CVD graphene film transferred on

SiO2. The scale bar is 5 µm for both images.

In each case it is delivered as a Cu foil covered with monolayer graphene that has to

be transferred onto the desired substrate. First, PMMA is spin-coated on the foil, then

Cu is gently etched away in an oxidant solution which leaves the PMMA-graphene stack

floating at the surface of the solution. The stack is carefully rinsed off using deionized

water before being “fished” with the target substrate (see Fig. 2.7-b). Finally, the PMMA

is dissolved in acetone. Typically we obtain a 90% graphene coverage over 1 cm2.
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2.1.4 High mobility graphene: hBN substrate

The first samples with very high mobility were obtained with suspended graphene as the

standard SiO2 substrates bring many sources of scattering for Dirac Fermions especially

due to its roughness and charge traps. Hexagonal boron nitride (hBN) is also a 2D

material, thus atomically flat. It also has an hexagonal lattice with a 1.8% lattice constant

mismatch with graphene, it is an insulator with a large bandgap (6eV ), and the van der

Waals interaction with graphene is very strong preventing the impurities to be trapped

at the graphene-hBN interface [34]. In particular, the impurities tend to cluster in some

area creating some bubbles. As can be seen on the AFM images of Fig. 2.6 these bubbles

are linked with wrinkles. Obviously a device for Dirac Fermion optics should avoid the

presence of such defects. Unfortunately it is more difficult to obtain a wrinkle free channel

when working with a local bottom gate as the location of the device is decided prior to

deposition.

In this work we used exfoliated hBN flakes from commercially available synthetic crystals

(provider: HQ graphene).

Other substrates. hBN was not the only substrate used. Some characterization have

been made directly on SiO2 and a few devices have been made with Al2O3 as a gate

dielectric. In that case, Al2O3 is deposited directly on the gates followed by the deposition

of CVD graphene on top of Al2O3. The 10 nm thick layer of Al2O3 is either deposited

by the successive evaporation and oxidation of 2nm Al, or by the evaporation of a single

2 nm of Al followed by Atomic Layer Deposition (ALD) of Al2O3 (performed at LPN

by Alan Durnez). The oxide obtained by ALD shows much better properties in terms of

leaking current, breakdown voltage, residual doping and even mobility. ALD is a good

technique for a fast and large scale characterization of new device geometries. Table

2.1.7 summarized the properties obtained for various graphene types and substrates.

2.1.5 High mobility graphene: transfers and cleaning

The transfer of 2D materials is a key step in the process of fabricating high quality

devices. Considering the GoBN geometry, two transfer steps are necessary to fabricate

a device: the transfer of hBN on top of the gates and the transfer of graphene on top

of hBN. After each transfer a cleaning step is performed. In this work, various transfer

techniques have been used:

Wet transfer. The wet transfer (or wedging transfer) was developed in Delft in 2010

[35], it was the first technique used to transfer graphene flakes. For a complete description

of the wet transfer see Andreas Betz’ thesis [36]. The process consists in exfoliating
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a. b.

c. d.

hBN hBN

graphene graphene

SiO2 SiO2

Figure 2.6: (a) Optical microscope image of a 7 nm thick hBN flake transferred on a
local tungsten gate. (b) Optical microscope image of a graphene flake transferred on the
hBN flake. For both optical images, the scale bar is 5 µm (c) Height sensor AFM scan
of a graphene flake partly on SiO2 and partly on hBN. The hBN thickness is 9.4 nm.
The SiO2-graphene step is 0.6 nm. We measured a roughness of 0.22 nm for graphene
on SiO2 and 0.15 nm for graphene on hBN. (d) Corresponding phase sensor. Looking
carefully at the phase image, one can notice the improved flatness of graphene on hBN.
However, the price to pay is the presence of wrinkles.For both AFM images, the scale

bar is 1 µm.

graphene (or hBN) on a silicon chip and spin-coating a hydrophobic polymer on the

chip. It is then immersed in water resulting for the graphene (or hBN) flakes to be

lifted-off with the polymer film that floats on the water surface (see Fig. 2.7-a). By

lowering the water level while monitoring the flake position one can precisely transfer

the flake on the desired area. Unfortunately the wet conditions and the polymer used

for the transfer bring many impurities which results in rather low mobilities.

Dry transfer. Numerous dry transfer techniques have been described recently [30, 33,

37]. For the fabrication of the GoBN1 and GoBN2 samples we used an all-dry technique

inspired from the one developed at Delft [33]. In this technique, the flakes are directly

exfoliated on a viscoelastic and transparent stamp. The stamp is adhered on a glass slide,

it consists of a home made 1mm thick layer of PDMS (Polydimethylsyloxane) covered

by a layer of spin-coated copolymer (MMA-MAA). The flakes deposited on top of the

copolymer are selected with an optical microscope (we checked we have a high enough
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contrast to identify a monolayer by performing a Raman spectroscopy on a transferred

flake). The stamp is turned upside down and attached to a XYZ micro-manipulator

located on the optical axis of a long working distance optical microscope. The target

substrate where one wants to transfer the 2D material flake is located below the stamp

and attached to a XY stage. The stamp being transparent, one can focus successively on

the flake and on the target substrate, and align the flake and the target area (in our case

the gates) with a sub-micron precision. Then the stamp is carefully lowered to be finally

brought into contact with the target substrate and gently pressed. The target substrate

temperature is raised above the glass transition of the copolymer while the stamp is

slowly peeled off. As a result, the copolymer sticks to the target substrate and remains

with the flakes on the substrate (see Fig. 2.7-c). This technique takes advantage of the

viscoelastic nature of the stamp which allows to fit the shape of a possibly patterned or

tilted substrate. Thus a perfect flatness of both the stamp and the target substrate is

not necessary to realize a good contact of the 2D flake with the substrate (metallic gate

or hBN). Besides the low rigidity of the stamp reduces the stress applied on the flake

during the transfer.

Pick-up transfer. The van der Waals pick-up technique, as developed in Columbia

by Wang et al. [8], is the most recent and the most successful transfer technique as

it allows multiple transfers for 2D material stacking without any contamination. In

particular, the realization of hBN-encapsulated graphene has given access to ultra-clean

graphene samples exhibiting a mobility only limited by phonons. Besides, this technique

is now used in several groups to fabricate complex heterostructures involving also TMDs

materials in addition to graphene and hBN. The principle is to use a viscoelastic stamp

similar to the one presented above but instead of exfoliating onto the stamp, we start by

exfoliating hBN flakes on a regular Si/SiO2 substrate and we use the stamp to pick-up

one “good” flake (size, thickness, flatness) that has been scanned by AFM previously.

Having a hBN flake on the stamp, one can take advantage of the very strong van der

Waals attraction between 2D materials by using it to pick up a graphene flake which

will then stick to the hBN flake. The procedure can be reiterated to pick up another

hBN flake on the bottom of the graphene flake. Finally the hBN/graphene/hBN stack

can be deposited on any substrate by using a heater to melt the transferring polymer

(Fig. 2.7-d). Therefore, the encapsulated graphene has never been in contact with a

solvent nor with a polymer, and at the end of the fabrication it is protected from its

environment by the top and bottom hBN flakes. However, a major drawback of this

technique lies in the realization of the electric contact on the encapsulated graphene:

there is no possible access for a top metallic contact. The solution found by Wang et

al. consists in etching a trench in the stack to realize an edge contact [8]. It has been

demonstrated in the same work that an edge contact can have a low contact resistance,
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Figure 2.7: (a) Wet transfer technique: the cellulose acetate butyrate (CAB) polymer
has been detached from the substrate taking away the graphene flake. Its position at
the water surface is controlled with a tip while the water level is lowered by a pump. (b)
CVD graphene transfer: The Cu foil has been dissolved, the remaining PMMA-graphene
stack is fished by the targeted substrate. As the CVD sheet is much larger, we do not
need the microscope nor the micro-manipulator for the alignment. (c) Dry transfer
technique. (d) Pick-up technique (final step, the stack being realized previously). The

large arrows indicate the moving parts and their direction during the transfer

however the reproducibility of good contact resistance is not achieved yet. As we need

a very good contact resistance for high frequency devices we chose to work with non-

encapsulated samples. In this work we used only the first step of this technique in the

fabrication process of GoBN3, meaning we transferred a single hBN flake. Subsequently

we transferred a CVD graphene film covering all the devices of the chip.

Annealing. The transfer techniques used in this work (CVD, wet, dry or pick-up)

require the graphene to be into contact with a resist. Most of it is removed in acetone

but we need a more efficient cleaning to access the high mobility. Consequently, we

perform an annealing procedure to clean the hBN surface prior to the graphene transfer
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and we perform another annealing step after the graphene transfer itself and before the

contact deposition. The annealing process takes place in a tubular furnace at 300◦C

at atmospheric pressure and under a flow of 100 sccm of H2 and 800 sccm of Ar for 2

hours. The H2 gas removes efficiently the resist polymer residues but should be used

with caution as it can also damage the graphene. Once the device fabrication is over we

may need further cleaning of the free graphene surface that we perform inside the probe

station: we can heat the samples up to 150◦C under a vacuum of 1 × 10−5 mbar. In

addition a current annealing at ∼ 1 A/µm can improve the device performance (Dirac

point moves toward zero gate voltage and the on/off ratio increases)

2.1.6 Graphene contact

Making a good graphene contact is a very delicate process. As a result in this work we

chose to follow the process developed by A. Betz in [36]: Standard e-beam lithography is

used to define the contact area in a PMMA resist. A 50nm layer of Pd metal is deposited

in an e-beam evaporator Plassys MEB 550S in Université Paris Diderot under a vacuum

of a few 10−7 mbar. A significant improvement of the contact resistance is observed

when one leaves the sample under high vacuum overnight prior to metal deposition. A

more detailed review of contact resistance origin and state of the art will be presented

in chapter 4.

2.1.7 Comments on the samples properties

During my thesis over a hundred devices have been fabricated with various graphene ori-

gins, substrates and transfer methods. Even though no systematic study was conducted,

our main figure of merit, the mobility, is given for a selection of samples in Table 2.1.7.

The mobility of our samples may seem low compared to the state of the art, however

one has to keep in mind that the mobility is usually extracted from a quantum Hall ef-

fect measurement, a 4-point measurement or a transfer length measurement (see section

4.2.3) to avoid the contact resistance, and usually with bigger samples. On the contrary

our devices are measured in a 2-point configuration and the mobility is extracted from

the transfer curve so that the contact resistance has to be estimated and removed. Be-

sides our devices are equipped with a local gate which can introduce more roughness

and pollution. Finally they are short which implies their resistance is dominated by the

contact resistance so it is more complicated to determine their intrinsic properties, they

could also be more sensitive to resist residues near the contacts. This issue has also been

pointed out in [14].

blank space
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Samples graphene / transfer substrate/transfer size RT mobility
L×W (µm2) (cm2V −1s−1)

GoBN1 exfoliated / dry hBN / dry 1.4× 1.6 12000
GoBN2 exfoliated / dry hBN / dry 0.2× 1.1 6000
GoBN3 CVD Bouchiat hBN / pick-up 0.5× 1.5 3500
GoAl0 CVD commercial Al2O3 evaporated 0.5× 1.5 1000
GoAl CVD commercial Al2O3 ALD 0.5× 1.5 2000

Morfin CVD LPA SiO2 1× 2 3000

Table 2.1: Important parameters of the fabricated samples. The mobility is estimated
from the transfer curve of a 2-points measurement taking into account the contact
resistance, at room temperature. As expected, the mobility is better on hBN substrate.
Besides, for a same substrate, we always observe a mobility degradation for smaller
samples (also observed by [14]). This can come from a less well defined electrostatic
environment, a dirtier graphene around the contacts, or simply a more difficult mobility
extraction when the overall resistance is dominated by the contact resistance. Note that

the dielectric breakdown voltage is around 1 V/nm for all the dielectrics used here.

2.1.8 Coplanar waveguide

All our devices are embedded in an impedance matched coplanar waveguide in order to

perform measurements in the radio-frequency range. Actually, the waveguide is fabri-

cated prior to the hBN transfer to avoid unnecessary contamination. It is made of 250nm

thick Joule evaporated Au. This large thickness is essential in case of probe measure-

ments, as the probes strongly damage the metallisations. The shape of the waveguide

has been carefully chosen to ensure a 50 Ω-match all along the line that interpolates

between the 100 µm pitch of the probes and the micrometer size of the actual device.

Some simulations using AppCAD have been performed to estimate both the metalli-

sation width and the gap between the gate and source (as well as drain and source)

electrodes. In addition we measured the transmission and reflection parameters of our

coplanar waveguide in the throughline configuration. As one can see in Fig. 2.8-c we

obtain a ∼ 97 % transmission of the throughline with a relatively flat spectrum up to

40 GHz. The oscillations observed at high frequency result from a slight drift of the

calibration (see next section).
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Figure 2.8: (a) Coplanar waveguide of a device with two gates (this is the sample
GoBN3). The CPW is reinforced at the probe location. The active part of the device
is located in a 100 × 100 µm2 square with alignment marks at the corners. The black
scale bar is 100 µm. (b) SEM picture of the active part of the device. The white scale
bar is 1 µm. (c) Module of the scattering parameter measured on a throughline with
our CPW geometry. S12 and S21 are the frequency dependant transmission coefficients

while S11 and S22 are the reflection coefficients (for both sides of the CPW).

2.2 Experimental setup

In that section we present our transport measurement setup. The devices are always

characterized first in DC and at room temperature. However, the graphene surface being

very sensitive to pollution from molecules in the air, the devices are characterized in

vacuum at 1 × 10−5 mbar. To let us the possibility to go to cryogenic temperatures on

one hand, and to perform measurements in the radio frequency (RF) range on the other

hand, all measurements are carried out in a RF cryogenic Janis probe station (Fig. 2.9).

2.2.1 The Janis probe station

This probe station is designed to operate in a 0 − 40 GHz frequency range, in vacuum

(1× 10−5 mbar) and with variable temperature from 6K to 450K by means of helium

circulation under a cold finger and heating of the sample holder. The station has 4 arms,
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each of them being equipped with RF lines and RF probes. The RF probes consist of

ground-signal-ground tips, with a pitch of 100µm between the tips (shown in Fig. 2.9).

The probe positioning is performed through an optical window. In addition, we have an

optical fiber mounted on a fifth arm that can be controlled with a XYZ stage within

micrometer accuracy.

VNA

Keithley
voltmeter

Bilt
sources

Optical 
fiber arm

Vacuum 
input

He input

Microwave 
probe arms

Figure 2.9: Top left: picture of the Janis probe station with the vacuum chamber
open. Bottom left: picture of the device being measured. One can see the 3 RF probes

on the CPW. Right: RF and DC measurement setup.

2.2.2 DC and radio frequency measurement

DC and AC actuations are provided to the probes through 500kHz−40GHz Marki bias-

tees. The sample is DC biased using BILT DC sources and Keithley 2000 voltmeters in

the voltage divider configuration for low bias measurements (Fig. 4.14) and in the voltage

source configuration for high bias measurements. This enables us to measure the sample

resistance and current as well as the possible leaking current through the gate dielectric

to prevent dielectric breakdown. Most of the RF measurements are performed with a four

port 70KHz-40GHz Anritsu Vector Network Analyser (VNA) providing the complex S-

parameter matrix in the frequency range. The excitation level is kept below the thermal

energy in order to preserve linear conditions, typically we apply −27dBm ≡ 10mV (in a
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Figure 2.10: Schematic circuit diagram of the electrical setup with a double gate
configuration. The drain side of the device is DC biased at V b

ds with a BILT source
through a bias resistance Rds

b , and the actual drain source voltage Vds is measured with
a Keithley2000 voltmeter. Therefore, the drain-source current is Ids = (V b

ds−Vds)/Rds
b .

A similar circuit is used to bias the two gates. For RF measurements, each port of the
VNA is connected through a bias tee to separate the high frequency signal from the

DC actuation. (A third VNA port can be connected to the contact gate as well.)

50 Ω environment) at room temperature. The spectra are generally acquired with 1601

frequency points, averaged 5 times and within a resolution bandwidth of 1 kHz.

Figure 2.11

Principle of VNA measurements A good description of the measurement principle

can be found in [36], here are the main points. A 2-terminal VNA measurement consists

in measuring successively the reflected and the transmitted signal from both terminals.

A signal is sent from the VNA to port i. At x = 0 a part of the signal is transmitted

and another part is reflected:
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Vi(ω, x < 0) = (V +
i e

ikx + V −i e
−ikx)e−iωt (2.1)

Vj(ω, x > 0) = V −j e
ikxe−iωt (2.2)

Where V +
i is the amplitude of the voltage wave incident on port i, V −i is the amplitude

of the voltage wave reflected from port i and V −j is the amplitude of the voltage wave

transmitted to port j. Similarly for the currents:

Ii(ω, x < 0) = (I+
i e

ikx − I−i e
−ikx)e−iωt (2.3)

Ij(ω, x > 0) = I−j e
ikxe−iωt (2.4)

So one should notice that the voltage wave is reflected keeping its sign (effective voltage

at the input of the device):

Vi = V +
i + V −i (2.5)

while the sign of the current is reversed (effective current at the input of the device):

Ii = I+
i − I

−
i (2.6)

The output of the VNA consists in the 4 scattering parameters (S-parameters) for each

frequency point. The S-parameter S12 (S21) is the transmission coefficient from port 2

to port 1 (port 1 to port 2 respectively). The S-parameter S11 (S22) is the reflection

coefficient of port 1 (of port 2 respectively). They are defined as below (Fig. 2.11):

(
V −1

V −2

)
=

(
S11 S12

S21 S22

)(
V +

1

V +
2

)
(2.7)

Besides, the S-parameters are complex values meaning that we have access to the phase

of the transmitted and reflected signals. They can be converted in admittance parameters

Yij following:

Y11 =
1

Z0
· (1− S11)(1 + S22) + S12S21

(1 + S11)(1 + S22)− S12S21
, Y12 =

1

Z0
· −2S12

(1 + S11)(1 + S22)− S12S21

(2.8)

Y21 =
1

Z0
· −2S21

(1 + S11)(1 + S22)− S12S21
, Y22 =

1

Z0
· (1 + S11)(1− S22) + S12S21

(1 + S11)(1 + S22)− S12S21
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Which can also be expressed as:(
I1

I2

)
=

(
Y11 Y12

Y21 Y22

)(
V1

V2

)
, (2.9)

where

Yij =

(
Ii
Vj

)
Vk 6=j=0

i, j = 1, 2 (2.10)

Calibration In order to remove the spurious contributions from connectors, cables and

probes (losses and dephasing) we perform a calibration following a Short-Open-Load-

Through (SOLT) procedure on a commercially available calibration substrate. After this

procedure the calibrated system has a virtual measurement reference plane located at

the tip end. Further parasitic contributions can come from the CPW itself as dephasing

through the access electrodes and parasitic capacitances between the pads. It can be

removed using a throughline structure. This is a coplanar waveguide identical to the

actual device except it is equipped with a continuous metalic line instead of a graphene

transistor. The dephasing due to the propagation along the 600µm long waveguide is

measured on the throughline. Generally it is on the order of:

φ =
ωD

v
≈ 2◦GHz−1 (2.11)

Where v ≈ 1.2 m/s is the speed of light in the system air/SiO2/Si. It has to be

noted that the effective CPW length depends on the tip positioning leading to a shorter

D ≈ 400 µm.

We also make a device with the exact same geometry than the actual device but without

graphene (called open structure or dummy structure). In that case, the measured signal

corresponds to parasitic capacitances. In most cases, the parasitic capacitances are in

parallel to the intrinsic ones meaning that a simple subtraction of the dummy Y-matrix

from the device one allows to remove them. However, one has to keep in mind that this

operation corresponds to a particular electrical model for a given device. For example it

does not take into account losses in the access electrodes or series capacitances between

the probes and the CPW. Those issues will be further discussed in the RF measurement

chapter (6).





Chapter 3

The Klein tunneling transistor

In ballistic semiconductors the classical trajectory of electrons is similar to rays in ge-

ometrical optics. In optics, the manipulation of photons relies on interfaces between

media of different indexes to make lenses and mirrors. Great efforts have been made

the last few years to investigate the analogy between optics and electronic transport in

two-dimensional electron systems such as GaAs-GasAlAs. For example, electron focusing

was achieved using an electrostatic gate to mimic a lens behavior [38] or with a quantum

point contact [39]. Similarly, quantum optic electronics is also an active research area

[40]. In graphene, as for other semiconductors, the building block for electron manipu-

lation is the p-n junction. Due to their chiral nature, the crossing of a p-n junction by

Dirac Fermions (DF) has very particular properties [41, 42]. First, the pseudo-spin con-

servation is responsible for a total transmission of a normally incident electron. In other

cases, the transmission probability depends on the incident angle, and the transmitted

electron is refracted following a Snell-Descartes type law, but with a negative index.

In graphene, large mean free paths are accessible thanks to the weak electron-phonon

interaction, moreover electrostatic barriers are easy to induce thanks to the 2D nature

of graphene. All those elements contribute to make graphene a very good candidate for

optic electronics.

The aim of this chapter is to describe the working principle of the Klein Tunneling

transistor [43]. This device has a triangular gate geometry to take advantage of the

refraction at a p-n junction. It allows in principle to suppress the channel conductance

at high densities. Although many proposals with similar geometries have been made, we

try here to give the key principles toward the realization of a practical device.

I start by reviewing the progress made toward the realization of devices for Dirac Fermion

optics, then I give the basic concepts useful to understand the physics of the p-n junction

in graphene. Finally I explain the working principle of the Klein Tunneling transistor.

33
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3.1 Transport in the ballistic regime: proposals and exper-

iments
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Figure 3.1

The requirements for Dirac Fermion optics from a technological point of view have

already been mentioned in the previous chapter. It is worth reminding the main points

(Fig. 3.1). First, the sample has to be ballistic meaning that the sample length L is

smaller than the mean free path lmfp
1. Then, to be in the geometrical optics regime, the

Fermi wavelength of Dirac Fermions at a given energy should be negligible with respect

to the sample length, in order to avoid diffraction. Regarding the junction itself, one

must be able to tune its transmission, meaning we should be able to control the doping

p and n on both sides of the junctions. Finally, the sharpness of the junction defined

by the length d to cross from the n-doped area to the p-doped area must be small with

respect to λF to ensure good dynamics of the junction transmission. Let us give first a

quick review on the graphene quality progress which is the real bottleneck for DF optics,

before moving toward devices for DF optics.

The first transport measurements on graphene samples by Novoselov et al. in Manch-

ester [2, 3] already exhibited high carrier mobilities, µ ' 5000 cm2/V/s. Since then,

the fabrication techniques have improved to reach mobilities higher than for any other

materials. Higher mobility means longer mean free path, thus approaching the ballistic

transport regime. This was first achieved in suspended samples, avoiding the rough-

ness of SiO2 substrates, with µ ' 200000 cm2/V/s [4, 5] but not practical for device

implementation. Then the use of hexagonal boron nitride (hBN) as an atomically flat

1The sample may not be ballistic over its full length but it should be at least ballistic over the active
part (the p-n junction, the p-n-p barrier...)
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substrate for graphene allowed to work with supported samples with mobilities up to

µ ' 100000 cm2/V/s [30] first, and then µ ' 500000 cm2/V/s [7, 8] by using hBN en-

capsulated graphene structures. At this point, the samples are generally smaller than

the mean free path, which is illustrated for example by a negative bend resistance in the

van der Pauw configuration [44] for samples of a few microns [7, 8]. Those improvements

in graphene sample quality opened the way to the regime of Dirac Fermion (DF) optics:

the first requirement for DF optics is to work with a transparent medium, i.e. to have a

mean free path lmfp larger than the sample length L.

a) b)

c) d)

Figure 3.2: a) Proposal by Katsnelson, Novoselov and Geim [41] of a Klein tunneling
experiment with tilted gates. b) Proposal by Cheianov, Fal’ko and Altshuler [45] of
the graphene Veselago lens and a prism shaped beam-splitter with p-n-p barriers. c)
Triangular gate for a graphene logic transistor [46]. d) Proposal by Sajjad and Gosh

[47] to open a transmission gap with tilted gates.

Along with this increase of mobility, the peculiar properties of graphene p-n junction

were investigated, generally with the combination of a remote back gate and a top gate to

create a p-n-p barriers [48, 49]. In those first experiments, the junctions were smooth and

the transport was not ballistic between the p-n and the n-p junctions. The observation

of quantum interferences due to multiple reflections inside a p-n-p barriers [13, 50–52]

(and predicted by [53]), namely Fabry-Pérot oscillations, gave a stronger evidence of the

transmission properties of a p-n junction.

Let us focus now on graphene devices taking advantage of geometrical optics effects.

One of the most striking properties of graphene is the total transmission of normally

incident DF across a potential barrier regardless of its height. This effect is responsible

for the graphene high mobility: a charged impurity cannot provoke a backscattering

of DF. Yet it also prevents the realisation of graphene digital transistors: a regular

electrostatic barrier cannot completely stop DFs. But that would be forgetting about
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the refractive properties of a graphene p-n junction. As will be shown in more detail

in the following section, the transmission of DF through a junction has an angular

dependence, and in particular, it presents a critical angle above which no electrons are

transmitted. Then, using tilted junctions in series, DF can be collimated first and then

totally reflected by the second junction. This can be regarded as a polarizer-analyser

geometry with respect to the pseudo spin degree of freedom. Thus one could suppress

the channel conductance of a graphene transistor. This is the basic idea behind the

Klein tunneling transistor [43] inspired by the early work of D. Torrin [54] in LPA.

Following a similar route, a few proposals have been made to take advantage of the

refraction/reflection effect [41, 45, 47, 55], along with experimental evidences of the

angular dependent transmission [56–58]. Some emblematic devices inspired by optics

have been realized: Taking advantage of the total reflection at a p-n junction allowed the

authors of [59] to achieve electron guiding, realizing the electronic equivalent to optical

fibers. More recently, focusing through a rectangular p-n-p barrier has been observed

[60]. This demonstrates the Veselago lens proposal of Cheianov et al. [45] as it relies on

the negative-index refraction of DF at a p-n junction.

Similarly to the Klein tunneling transistor presented in this thesis, other groups have

proposed to use triangular shaped gates in order to open a transmission gap in graphene

transistors [46, 61–65]. Those papers target digital applications with estimations of the

ON/OFF ratio around 102 − 105. We believe our approach to be more conservative in

accounting for diffusive transport in the leads as well as diffraction effects. The ON/OFF

ratio is more modest, the transconductance effect is significant and we target microwave

electronic applications rather than logic transistors.

Besides, we want to stress the importance of the p-n junction sharpness (or length d).

Experimentally, it is roughly given by the gate dielectric thickness. For instance, the use

of suspended graphene [51] or remote gates [57] leads to very smooth junctions. As it

will be shown later in this chapter, a smooth junction has a good angle selectivity but

a poor transmission. The combination of a remote back gate and a top gate with a thin

dielectric can lead to sharp junctions. For example the authors of [60] claim d = 12 nm.

The contact induced junction combined with a remote back gate also allows to study

sharp junctions [13]. Our route is different, we target a transistor working in the radio

frequency range. Hence we need at least two local gates and we need them to be close

to each other at the 20 nm scale, as presented in the fabrication section .
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a) b)

c)

Figure 3.3: (a) Adapted from [50]. Conductance oscillations (Fabry-Pérot effect) inside
the top gated area. (b) Adapted from [57]. Local split gates with buried highly doped
silicon. Comparison of straight and tilted junction within a same flake or within a
same CVD graphene grain to show the incidence angle dependence transmission. (c)
Adapted from [60]. hBN encapsulated graphene with a combination of top and bottom
gate is used. The top gated area plays the role of a negative refractive index medium. A
current peak is observed in OUT terminal when the top gated and bottom gated area
have opposite carrier densities which demonstrates the focusing effect of the top gate.

3.2 The p-n junction in graphene

3.2.1 Electron incident on a potential step

We describe here the situation of an electron in graphene incident on a potential step.

This description is mainly based on the pedagogical review by P.E. Allain and J.N.

Fuchs [19] where the reader can find more details if needed. The potential step is usu-

ally a consequence of a perpendicular electric field induced by a local gate, but it can

alternatively be achieved by chemical doping from a metallic contact (see next chapter).

We consider charge carriers at the Fermi level. If the Fermi level lies in the conduction

band, the doping is said ”n”, the charge carriers are electron-like and their energy is

positive. On the contrary, if the Fermi level is in the valence band the doping is said

”p”, the charge carriers are hole-like and their energy is negative. We are interested here

in the case of a n-p junction as depicted in Fig. 3.4 (the p-n junction case is completely
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symmetric). In that picture the band structure of graphene is shifted by the potential

step while the Fermi level is constant. It results in a transition from a n-doped region

to a p-doped region.

A particularly important property of the junction is its length d over which the change

of potential occurs. Notably, the junction sharpness controls the transmission of the

junction. To determine if the junction is sharp or smooth one has to compare d with the

electronic wavelength λF . It is given by λF = 2
√
π/n where n is the carrier density. In our

accessible density range n ∼ 0.2−10×1012cm−2 it corresponds to λF ∼ 11−80nm. The

junction will be sharp when d << λF and smooth when d >> λF . In that section we will

distinguish both cases and give expressions for their transmission following [19, 41, 42].

Then we give a transmission expression calculated by [66] for a more realistic potential

profile and which interpolates between sharp and smooth limits. Note also that the

given transmissions are angle dependent. In a realistic device the total transmission of

a junction will be given by integration over all incident angles.

Notations.

An electron of energy E and wave vector ~k =
(
kx, ky

)
= E

~vF

(
cos(θi), sin(θi)

)
is incident

on a potential step of height V0. The potential step is set at x = 0, it is translationally

invariant in the y direction, θi is the angle between the normal and the incident ray as

shown in Fig. 3.4. Note that due to the invariance of the potential along y direction the

wavevector projection along y, ky, is conserved.

V (x) = 0, −∞ < x < 0 (zone1) (3.1)

V (x) = V0, 0 < x <∞ (zone2) (3.2)

In the area x < 0 the electron kinetic energy is Ekin = E1 and for x > 0 Ekin = E2 =

E1 − V0. If 0 < E1 < V0 then E2 < 0 and we have indeed a n-p junction. In the case

V0 < E1 then E2 > 0 and it is a n-n’ junction. We define the following wave vectors and

associated angles:

Incident: ~ki =
(
kx, ky

)
= E1

~vF

(
cos(θi), sin(θi)

)
reflected: ~kr =

(
krx, kry

)
= E1

~vF

(
cos(θr), sin(θr)

)
transmitted: ~kt =

(
ktx, kty

)
= E2

~vF

(
cos(θt), sin(θt)

)
.

In Fig. 3.4 the black arrows correspond to the direction of propagation while the red

arrows correspond to the wave vector direction. So one can notice the wavevector is

reversed when going through the step (n-p case), but the direction of motion is preserved.

In fact, in the n-doped region momentum direction and velocity direction are the same
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ki 

kr

kt θi

θr

θt

energy

0

V0

E1

E2

x

Figure 3.4: Sketch of an electron incident on an abrupt potential step and its corre-
sponding band structure. The black arrows represent the direction of propagation and
the red arrows represents the electron wavevector. The left region is n-doped so that
momentum and propagation are in the same direction and the energy E1 > 0. The
right direction is p-doped, resulting in an energy E2 < 0. The pseudo-spin conservation
forces the electron to stay on the same branch of the band structure, therefore the
momentum is reversed. However the direction of propagation is unchanged to ensure

current conservation.

while in the p-doped region they are opposite. This is a peculiarity of Klein tunneling

which is also highlighted in the band structure of Fig. 3.4: The black arrow indicates

the direction of motion as well; the considered electron stays on the same branch of the

band structure according to the pseudo-spin conservation; both energy and momentum

change their sign; the direction of motion is conserved.

Anomalous refraction of Dirac Fermions.

From energy and ky momentum conservation one obtains the Snell-Descartes law :

For reflection : krx = −kx and θr = −θi.
And for transmission : kty = ky

Leading to :

E1sin(θi) = E2sin(θt) (3.3)

This equation can be seen as as an analogue of Snell-Descartes refraction law from a

medium of refraction index ñ1 ∝ E1 to a medium of refraction index ñ2 ∝ E2 = E1−V0

which can be negative. Thus, for a n-p junction there is refraction into a medium of

negative refraction index. Similarly to optics, if an electron is transmitted from a low

doping region to a large doping region (|E1| < |E2|) then the electron is collimated

(θt < θi). On the contrary, if |E1| > |E2| the transmitted wave vanishes beyond a certain
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critical incident angle θc defined as sinφc = V0−E1
E1

. Beyond this angle, an evanescent

wave is created in the zone x > 0 and a total reflection is observed.

3.2.2 Angle dependant transmission of p-n junctions

3.2.2.1 Abrupt n-p step (0 < E1 < V0)

Still considering the optical analogy one can give an equivalent of the Fresnel law for the

abrupt junction of Fig. 3.4. Let us write the wave function in zone left and right [19]:

Ψ1 = eikyy

[
eikxx

(
1

eiθi

)
+ re−ikxx

(
1

e−iθi

)]
(3.4)

Ψ2 = teikyyeiktxx

(
1

−eiθt

)
(3.5)

The continuity of the wave function in x = 0 leads to the transmission coefficient :

T (θi) = 1− |r|2 =
cosθicosθt

cos2( θi+θt2 )
(3.6)

Where θt is given by the Snell-Descartes law 3.3. Thus for the normal incident case

(θi = 0) the probability to go through the step is

T (θi = 0) = 1 (3.7)

Let us notice that for a symmetric step V0 = 2× E1 (ie E1 = −E2) one has

T (θi) = cos2θi (3.8)

3.2.2.2 Sharp n-n’ step (V0 < E1)

In this case the refraction law presents a positive index.

E1sinθ1 = (E1 − V0)sinθt (3.9)

And the formula (3.6) for the transmission coefficient T is still valid. Notice that the

angle convention chosen does not take into account the sign of kx. This leads to equivalent

formula for both E1 < V0 and E1 > V0 and a stronger analogy with optics. But for a
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more accurate description notice that in the case E1 < V0, kx changes sign at x=0. For

example at normal incidence θt = θi + π.

3.2.2.3 Smooth step

energy

V0

E1

E2

0

x

0 d
Figure 3.5: Potential profile of a smooth step of length d. The carrier density is

vanishing at xc = E1d/V0 = |ki|
|ki|+|kt|d.

We consider a smooth p-n junction (see figure 3.5). In that case, the junction length d

is defined by the oblique potential zone. In that transition zone 0 < x < d the electrons

energy is E(x) = E1 − V0x/d. To go from n to p areas the Fermi level has to cross

the charge neutrality point i.e. E(xc) = 0 when xc = E1d/V0 = |ki|
|ki|+|kt|d. The energy

dispersion reads:

E(x) = ~vF
√
k2
x(x) + k2

y (3.10)

Since ky is constant there is a classically forbidden zone defined by k2
x(x) = E(x)2/(~vF )2−

k2
y ≤ 0. Thus :

E1d

V0
(1− sin(θi)) ≤ x ≤

E1d

V0
(1 + sin(θi)) (3.11)

So the length of the forbidden zone is 2xcsinθi. The electron has to tunnel across this

zone to go through the junction. This leads to a transmission probability [42] :

T (θi) ≈ e−πky×2xcsin2θi ≈ e−π
2|ki|

2

|ki|+|kt|
dsin2θi (3.12)

The exponentially decreasing transmission of a smooth junction is similar to the well

known case of p-n junctions in semiconductors. Except for normal incidence where the

transmission is total. Therefore a smooth junction selects incident angles close to normal

resulting in a stronger collimating effect than for sharp junctions. For an exact solution

of such a smooth potential see also [67].



42 Chapter 3: The Klein tunneling transistor

3.2.2.4 The interpolation function

d
n-dopingp-doping

Energy
left side right side 

x

Figure 3.6: Fermi function-like doping profile assumed for the Cayssol’s formula, in
the case of a p-n junction.

Cayssol et al. have found a single interpolation formula giving the transmission T and

matching the above sharp and smooth limits [66]. The authors of [66] assume a Fermi

function-like potential step (shown in Fig. 3.6) and calculate an exact analytic formula

for the transmission across such a potential step. This formula is very interesting from

a practical point of view if one wants to estimate the transmission of a realistic p-

n junction. Indeed the typical energy range of a graphene device corresponds to Fermi

wavelengths extending over sharp and smooth regime. Moreover, the Fermi-like potential

is probably more realistic than the smooth one of Fig. 3.5. The potential profile is given

in terms of the wavevector by:

kF (x) = ki +
kt − ki

e−x/w + 1
(3.13)

Where w is a characteristic length of the junction which is not necessarily equals to

the junction length d. To find the correspondence between the w and d length scales

we calculate the transmissions with both formula in the limit of very smooth junctions

(d > 100nm). We find a good agreement by taking d ' 4.5w. This value also corresponds

to the 10-90% range of the Fermi step.

Finally, the solution of the Dirac equation with such a potential gives the transmission

coefficient of Dirac Fermions across the potential step :

T = 1− sinh(πwκ+−)sinh(πwκ−+)

sinh(πwκ++)sinh(πwκ−−)
(3.14)

With κab = kt − ki + aktx + bkix, and a, b = ±1.
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3.2.2.5 Comparing the transmissions

One can compare the angular dependent transmission of the different regimes in Fig.

3.7 : the abrupt junction (red lines, formula (3.6)), the smooth junction for d = 50 nm

(green lines, formula (3.12)) and Cayssol’s transmission (blue lines, formula 3.3) for

d = 20 nm. The incident medium has a fixed doping p = 3× 1012cm−2 hence the Fermi

wavelength is λF ≈ 20 nm. The transmission medium has a varying algebraic doping

n = sign(E)×E2/(π~2v2
F ). Therefore a negative n actually corresponds to a p-doping.

In Fig. 3.7-a. n > p and there is no critical angle. As a result, the total transmission of

the junction after integration over all incident angles is large. In Fig. 3.7-b. n < p and

there is a critical angle around 45◦ above which the transmission is vanishing. This leads

to a low total transmission. This effect can also be interpreted in term of mode number

: the mode number increases with the doping, and going from a large number of modes

to a low number of modes leads to a poor transmission.

Let us now focus on the sharpness dependence of the transmission. One can notice

that for the sharp junction the transmission is always larger. Similarly, the 20 nm long

junction used for Cayssol’s formula leads to a larger transmission than the smooth

formula with d = 50 nm. As already mentioned, it results in a stronger focusing for

smoother junctions. Nevertheless, the refraction effect of Dirac Fermions at a potential

barrier is more dramatic when the junction is sharp: As seen in Fig. 3.7 the contrast

for T (θ) between the n > p and n < p cases is much more pronounced for sharp than

smooth junctions. This property highlights the importance for us to work with junctions

as sharp as possible. With the objective of realizing tunable barriers for Dirac Fermions

we want to be able to close it efficiently (using the focusing effect) but also to open it

with a good transparency.

Finally, Fig. 3.7-c. shows T (n, θi) calculated with the Cayssol’s formula with d = 20nm.

Let us notice the T ∼ 1 in the n < 0 regime. This illustrates the much higher transmission

of a p-p’ junction. However, when |n| < p there still is a critical angle and the total

transmission is not maximum.

3.2.3 Conductance of p-n junctions

In the ballistic regime, the conductance is given by the Landauer-Büttiker formula :

G =
4e2

h

WkF1

π
T (3.15)

Where 4e2

h is the conductance quantum (for graphene there are two valley and two spin

degrees of freedom), WkF1
π is the number of conduction modes and T is the transmission
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Figure 3.7: Angle dependent transmission of a p-n junction. The electron propagating
in a medium doped at p = 3×1012cm−2 is incident on a potential step with an angle θi
and is transmitted into a n-doped medium. The transmission is calculated for an abrupt
junction (red lines) a smooth junction with d = 50nm (green lines) and using Cayssol’s
formula with d = 20nm (blue lines). (a) n = 6×1012cm−2 > p (b) n = 1×1012cm−2 < p.
One can notice the presence of a critical angle in the case n < p for which T = 0. (c)
Color plot of T (n, θi) calculated with the Cayssol’s formula and taking d = 20 nm.
Negative n values correspond in fact to a p-p’ junction for which the transmission is

∼ 1 for most angles.

of the junction. T is actually the total transmission obtained after integration of the

angle dependant transmission T (θi) over all incident angles weighted by the angular

density of states2.

T =
1

2

π/2∫
−π/2

cos(θi)T (θi)dθ (3.16)

The total transmission T (n) and the junction conductance are plotted in Fig. 3.8, in the

case of the Cayssol’s formula with d = 20nm. One can notice the rather low transmission

and conductance for the ambipolar junction (n > 0). Indeed, the conductance is mainly

set by the smallest number of modes available in the unipolar regime : T ≈ 1 and the

conductance is larger for p = 3×1012cm−2 than for p = 1×1012cm−2. Whereas in the p-n

regime, the angle dependent transmission limits the conductance. Finally, Fig. 3.9 shows

the junction length dependence of T . For p = 1 × 1012cm−2, the Fermi wavelength is

larger than the junction length we can achieve with our fabrication techniques d = 20nm.

This is the regime of sharp junctions where the transmission is rather large.

2Equivalent presentation: the Landauer formula reads G = 4e2

h
ΣT = 4e2

h

kF∫
−kF

W
2π
T (θi)dky where the

sum is over the transverse channels ky = kF sinθi
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Figure 3.8: Total transmission (a) and conductance (b) of a p-n junction as a function
of the algebraic doping n = sign(E)×E2/(π~2v2

F ) on the right side of the junction using
Cayssol’s formula with d = 20nm. The doping in the left area is set to p = 1×1012cm−2

(blue line) and p = 3 × 1012cm−2 (red line). One can notice the T = 1 transmission
when “n = −p”. Four regions are identified by dotted lines in (a): the p − p+ channel
presents a large transmission, and the conductance is limited by the number of modes
on the left side of the junction (p) ; the p − p− and p − n− are the regions where
the transmission is limited by the low doping on the right side of the junction (n) ;
the p− n+ region corresponds to the Klein tunneling regime where the transmission is
rather low due to the incident angle selection of the junction. Note that n < −p and

n > p regions show relatively flat T (n) and G(n).
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Figure 3.9: Effect of the junction length. The total transmission T is plotted as a
function of the junction length d using Cayssol’s formula. The doping is set to p =
1×1012cm−2 and n = 4×1012cm−2 (where the transmission is ∼ doping independent).
The top axis d/λF gives a more general trend of the junction transmission (λF is given
for the p region). For example, when p is increased, d/λF is increased as well and the

transmission decreases.



46 Chapter 3: The Klein tunneling transistor

3.3 The Klein tunneling transistor

By understanding the behavior of a simple p-n junction one can take advantage of this

angle dependence to open and close the channel of a graphene transistor. We propose in

this section a device geometry using the refractive effect of Dirac Fermions. We call that

device the Klein Tunneling Transistor (KTT)[43]. An artist view of the KTT is shown

in Fig. 3.10. The KTT consists of two junctions in series to make a p-n-p barrier. The

doping p in the leads is fixed and n is varying. Working in the regime p− n+ (|n| > |p|)
the first junction has a relatively large transmission. It collects most of the incident

electrons and focuses them. Therefore the role of the first junction is to select electrons

close to θt = 0. The second junction works in the regime n+ − p regime where total

reflection can occur for oblique incidence. By tilting the second junction with respect to

the first one, one enables reflecting most of the previously collimated electrons : their

incidence angle is close to normal for the first junction but away from it for the second

one.

The specific geometry we choose is the isosceles triangle. The base of the triangle is on

the source side and the two other sides define the drain of the channel. The angle at

the vertex is noted α. Intuitively one can say the best value for α is 45◦. This specific

angle maximises the chance of consecutive reflection on both faces. Imagine for example

an electron normally incident on the basis, it is transmitted through the first junction

and then has an incident angle of 45◦ on the second junction. It is completely reflected

toward the other face of the second junction with again an incident angle of 45◦. Finally,

it is reflected back toward the source. A sketch of this is shown in Fig. 3.11-d for a more

general case, where the incident angle is different from φ1 = 0

In the following we use Cayssol’s formula to calculate the transmission probability across

the junction. This is supported by the fact that a realistic junction will have a smoothness

of roughly 20 nm which is not completely negligible beyond λF at any doping.

3.3.1 Transmission probability from scattering calculation

We use scattering theory to model the behavior of the KTT. We calculate the transmis-

sion probability of a triangular barrier and we deduce the corresponding transistor. Let

us consider an electron incident from the source side of the device. It is characterized by

a set of variables:

• The energy E1 (which is equivalently defined by the wave vector kF1 = E1/~vF or

the carrier density on the drain side p=k2
F1/π)
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Figure 3.10: Artist view of the Klein tunneling transistor with its triangular gate
(right) and a regular transistor with a rectangular gate (left). The trajectory of an elec-
tron is sketched on the figure to highlight the total reflection occurring in the triangular

gate while the electron is transmitted through the rectangular gate.

• The y-intercept h of the electron incidence on the triangular potential on the source

side.

• The incident angle φ1.

The electron is then entering into the gated area and undergo consecutive reflections

inside the gate area as pictured in figure 3.11-d. At each incidence on a side of the

prism there is a change of trajectory and there is a probability for the electron to

be transmitted outside of the prism. The trajectory is calculated using Snell-Descartes’s

laws. The transmission probability is calculated at each incidence using Cayssol’s formula

(3.3). We sum up intensities for each incidence to get both the total transmission toward

the drain side and the total reflection toward the source side. We consider 20 reflections

inside the prism which ensures a negligible probability for the electron to remain inside

the prism.

Note that we sum up intensities and not complex amplitudes. This means that we neglect

coherent effects and consider only a geometrical optic effect. It will be shown later with

Green function simulations that coherent effects are indeed negligible.

Finally, assuming diffusive transport upstream of the barrier, the transmission proba-

bility is averaged over the all range of incident y-intercept h and incident angles (see

(3.16)).

G =
4e2

h
〈T 〉φ1,h (3.17)
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Figure 3.11: Electron trajectories (red lines) in the triangular gate area. (a) p-
n+-p regime. Regarding the first incidence on the p-n+ junction: The optical index
ñ= −

√
n/p is large so the refraction is strong and the electrons are collimated. The

blue lobe T (θ1) represents the transmission amplitude as a function of the transmitted
angle. θc is the critical angle over which no electrons are transmitted regardless of the
incident angle. Regarding the second incidence at the n+-p junction: The blue lobe
T (φ2) represents the transmission amplitude as a function of the incident angle. Here,
most incident angles φ2 are over the critical angle φc and there is no transmission. (b)
p-n-p regime. The optical index is ñ∼ −1 so the transmission lobes are larger and the
electrons can be easily transmitted through the two junctions. (c) Same situation than
(a) but for a rectangular junction. The lobes are narrow but the electrons close to nor-
mal incidence are transmitted anyway. (d) Example of a computed electron trajectory

with a number of 10 incidences.

The results of scattering calculations are plotted in Fig. 3.12. First of all, one can compare

the conductance of a triangular barrier in the left panel of Fig. 3.12 with that of a

rectangular barrier (Fig. 3.8). At low n, rectangular and triangular barriers show similar

behavior up to n ∼ p. Then, for the rectangular barrier the conductance saturates

whereas for the triangular barrier a maximum is reached at n ∼ p followed by a reduction

of the conductance. This decrease of G(n) is a direct consequence of the refractive effects
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Figure 3.12: Results of the scattering calculations. Left: conductance and transmis-
sion of a triangular gate device with d = 0 sharp junctions (blue line) and d = 20 nm
junctions (green line) respectively, with p = 1 × 1012 cm−2. We observe the refraction
effect leading to a vanishing conductance at n ∼ 6× p. Right: conductance and trans-
mission with d = 20nm junctions for different gate geometries, the opening angle of the
prism varying from 45◦ to 0◦ (rectangular gate). Inset: conductance and transmission

as a function of α for n = 6× p.

described above. Finally, the conductance completely vanishes at n ∼ 6× p. The effect

of the junction smoothness is shown as well : the same refractive effect is observed both

for a d = 0 sharp junction (blue lines) and a d = 20 nm long junction (green line), the

advantage of a sharper junction being to increase the ratio between the ON state at

n ∼ p and the OFF state at n ∼ 6p. The right panel of Fig. 3.12 shows the effect of the

geometry of the triangular barrier. G(n) curves are plotted for different prism angles

α and in the inset one can see the G(α) at n = 6p. In accordance with our previous

intuitive argument, we can say from the scattering calculations that the best geometry

for the barrier is α = 45◦ (so it is a right triangle). Indeed, the vanishing conductance

is quickly lost when α deviates from 45◦.

3.3.2 Non equilibrium Green function simulations

The above description relies on the geometrical optics approximation where λF << L. In

particular, diffraction effects are neglected and may drastically affect the total internal

reflection. Besides, direct drain-source tunneling, dispersion effects arising from finite

bias, as well as temperature effects have been neglected in the scattering approach. In

order to quantify these effects, numerical simulations are performed by means of non-

equilibrium Green function (NEGF) method.
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The NEGF simulations have been performed by Salim Berrada, V Hung Nguyen and

Philippe Dollfus at the Institute of Fundamental Electronics in Orsay. Their model is

based on a tight binding Hamiltonian, giving a realistic description of graphene field

effect transistors [68, 69]. In that model, the size of the sample is reduced compared to a

realistic device in order to ensure reasonable calculation times. The transistor gate can

be either rectangular or triangular to show the effect of geometry. For the rectangular

gate, the simulated dimensions are W = 80 nm, L = 40 nm; and for the triangular

gate they are W = 80 nm, L = 20 − 60 nm which ensures a same gate area for both

geometries. The junctions considered here are sharp (d = 0). The temperature is 300K

The source side doping is set to p = 2.3 × 1012 cm−2. The NEGF simulation provides

the transmission coefficient T (ε) through the device, ε being the carrier energy taking

the zero energy reference at the charge neutrality point of the source. Two situations

are considered : a low bias simulation Vds = 10mV (Fig.3.13-a and 3.14-a) allows direct

comparison with (zero bias) scattering theory calculations as eVds is small compared

to the Fermi energy (EF = ~vF
√
π ∗ p ' 0.15eV ). The high bias case is investigated

for Vds = 200 mV (Fig.3.13-b and 3.14-b) as eVds is larger than EF . This case is more

typical of transistor working conditions.

In Fig.3.13 T (ε) is displayed for the rectangular geometry (red lines) and the triangular

geometry (blue lines) for the ON state n ≈ p of the transistor (dotted lines) and the

OFF state n ≈ 6p (solid lines). In the ON state two minima of transmission appear

corresponding to the CNP of the lead and the CNP of the barrier. The maximum of

transmission lies between both CNPs, roughly at the Fermi energy of the lead, hence the

current can flow through the device. In the OFF state, the barrier height is increased

which means the CNP of the barrier is out of the range of Fig. 3.13. In the rectangular

case a similar pattern to that of the ON state is expected with the exception that the

transmission peak is broader and larger (not shown in the figure). For the triangular de-

vice, Klein tunneling effects take place at the asymmetric junctions and the transmission

is strongly reduced around the Fermi level. As a consequence current is suppressed in

the OFF state for a triangular transistor while it is increased for a rectangular transis-

tor. In these figures, one should notice the oscillation of T (ε) for the rectangular device,

it corresponds to the Fabry Pérot interferences inside the barrier. For the triangular

device, oscillations are smaller, more complex but above all they are irrelevant for our

model: they do not play any role in the geometrical refraction effect and they will be

smoothed out by the integration. As a matter of fact we have neglected interference

effects previously in the geometrical optics approach.
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Figure 3.13: Transmission of the device from NEGF simulations as a function of the
carrier energy ε for a given barrier height (from gate doping n) and a given Fermi
level (p). We choose ε = 0 at the CNP of the lead. Dotted lines (resp. solid lines)
correspond to the ON state (resp OFF state). Red lines (resp. blue lines) correspond
to the rectangular (resp. triangular) device. Panel (a) is for low bias (10 mV ), panel
(b) is for high bias (200mV ). They both show a similar transmission around the Fermi
level in the ON state for rectangular and triangular devices while the transmission is
suppressed in the OFF state for the triangular device only. (c) Band structure for the

barrier in the ON state.

3.3.3 Results and interpretation

From the transmission, one can deduce the current flowing through the device with

I = 4e2

h

∫∞
0 T (ε)(fS(ε)− fD(ε))dε where fS(ε) (resp. fD(ε)) is the Fermi function for the

source (resp. the drain). The current density I/W is shown in Fig. 3.14 as a function

of gate doping n for rectangular (red line) and triangular (blue line) barriers. For the
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sake of comparison, we also plot the results of scattering calculations for sharp junctions

with dotted lines.

First of all we notice a close agreement between scattering theory and NEGF simulation

for the rectangular barrier. Yet, only a qualitative agreement is obtained concerning the

triangular barrier: the NEGF simulation clearly shows a transmission maximum around

n ∼ p followed by a transmission decrease at higher densities, but without a total

suppression of the OFF current. Nevertheless, the NEGF simulations show a better

conductivity suppression with the refractive effect at high densities than at the Dirac

Point where σmin ≈ 4e2/h (in the limit W . L [13, 21]). In addition, the high bias

(Vds = 200mV ) response is plotted in Fig. 3.14-b, and it also shows a suppression of the

current at high densities. This result suggests that the Klein tunneling transistor could

be used at high bias, for example as a high frequency amplifier.
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Figure 3.14: Influence of the barrier doping n on the current density I / W (and corre-
sponding total transmission T) for (a) Vds = 10 mV and (b) Vds = 200 mV. Solid lines
(resp. dotted lines) correspond to NEGF simulations (resp. scattering calculations), red
lines (resp. blue lines) correspond to the rectangular (resp. triangular) device. In panel
(a) the scattering calculation for the rectangular device with sharp junctions (red dot-
ted line) is in good agreement with NEGF. The scattering calculation for the triangular
device with a smooth junction d = 10nm and opening angle α = 52◦ (green dotted line)
is a way to take into account diffraction effects and compares well with NEGF simula-
tions (blue solid line). Panel (b) inset: IVds characteristics of the triangular transistor
in the ON state n = 2× 1012cm−2 (black line) and in the OFF state n = 6× 1013cm−2

(green line).

We attribute the disagreement between scattering calculations and NEGF simulation

to diffraction effects. As a matter of fact, the NEGF simulations consider electronic

waves which are sensitive to diffraction while the scattering approach stays within the

geometrical optics approximation where all dimensions are large compared to the Fermi

wavelength. Moreover, the NEGF simulation is performed here on a relatively small
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device, the typical dimension is L = 60 nm, whereas the typical wavelength at n ∼
10×1012cm−2 is λF ∼ 10nm. Therefore we expect a blurring on the order of λF /L ∼ 15%

of the geometrical angles. A way to estimate the diffraction effect with the scattering

approach is to apply an uncertainty on the order of λF /L on the prism geometry. This is

illustrated by plotting in Fig. 3.14 (green dotted line) the transmission of the triangular

barrier calculated with an opening angle α = 52◦ which is a difference of 15% compared

to the ideal α = 45◦; it follows roughly the numerical simulations comforting us in that

interpretation.

3.3.4 Discussion

Scattering calculations and NEGF simulations represent two extreme cases between the

macroscopic and the nanometric Klein tunneling transistor. In fact, the size of an actual

device is size limited by the mean free path. Let us try to estimate the properties of

a realistic device: Taking the state of the art hBN encapsulated graphene devices, the

mean free path is on the order of 1 µm [8] at room temperature, therefore we choose

L = 500 nm. We set a lower doping p ∼ 0.5× 1012 cm−2 which gives an operating point

at n ∼ 6p ∼ 3× 1012 cm−2, thus d . λF ∼ 20− 50nm << L satisfying the requirements

for DF optics. In order to give a rough estimate of the KTT conductance with those

parameters we simulate a gate with an opening angle of α = 43.2◦ (corresponding to

λF /L ∼ 4% in the gated area). It gives an ON/OFF ratio of ∼ 50 and a minimum

conductivity σmin ∼ 3× 10−5S below Dirac point conduction 4e2/h ≈ 1.5× 10−4S.

Still using those parameters we can evaluate the radio frequency (RF) properties of such

a transistor. For the definition of the RF figures of merit, the relevant references and a

related discussion the reader can refer to chapter 6. Considering a 10nm hBN dielectric

thickness (thus the gate capacitance is Cg = 3.7fF/µm2) we estimate the bias depen-

dence of the transconductance per unit width gmV
−1
ds /W ≈ 7mSµm−1V −1, the voltage

gain AV −1
ds = gmV

−1
ds /gds ≈ 3 and the transit frequency fTV

−1
ds = gmV

−1
ds /W/(2πCgL) ≈

600GHzV −1, which compares very well with the state of the art graphene RF transis-

tor. The maximum oscillation frequency fmax is more difficult to estimate (see equation

(6.20)), but roughly, a 5-fold improvement in the conductance suppression should lead

to a
√

5-fold improvement in fmax. The latter should be the most interesting feature of

the KTT.
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3.4 Conclusion and perspective

In this chapter we have presented a graphene device, the Klein Tunneling Transistor,

whose working principle is based on the refractive properties of the graphene charge car-

riers at a potential barrier, to realize a tunable electrostatic barrier for Dirac fermions.

We have used two distinct approaches: scattering calculations based on the geomet-

rical optics approximation and non equilibrium Green function simulations, that give

consistent results.

This device architecture could be used for quantum confinement, for example to achieve

a single Dirac fermion pump for quantum optics experiments. It is also suited for mi-

crowave electronics.

Still, the fabrication of such a device is very demanding and we were not able to realize

it yet. Our main issue was the rather low mobility (3−10×103cm2/V/s) achievable with

our fabrication techniques whereas one needs at least a mobility of 20× 103cm2/V/s to

see the refractive effect. A possible solution is to use the hBN encapsulation of graphene

with the Van-der-Waals pick up technique. However, this technique requires uncertain

edge contacts with large contact resistances.

Let us notice that we focused our presentation on a double gate device for a full barrier

tunability, but the triangular shape could be given by the contacting metal itself. The

carrier density of the contacted graphene would be set by the doping from the metal

while a local gate would tune the carrier density of the triangular channel. The next

chapter will show how the doping of the contacted graphene can be tuned as well.
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A gated graphene contact

The physics of the contact between a metal and a semiconductor has been a major

subject in the development of modern electronics, and it is still of great importance for

both fundamental and technological issues. With the emergence of new 2D materials,

the contact physics has to be revisited. From the scientific point of view first, the metal-

graphene contact raises very interesting questions as its properties are intermediate

between a semiconductor-metal contact and a metal-metal contact. Besides, the 2D

nature of graphene strongly affects the usual screening that takes place near an interface.

As a result, the contacting metal induces a doping in graphene beneath the metal, and

there is a doping step building up at the contact edge. The direct consequence of this

potential barrier is a relatively large contact resistance which is a major drawback for

graphene electronic applications. Particularly, it is of high importance for radio frequency

(RF) devices. Indeed, a graphene RF transistor should have a short channel to reach

higher frequencies, but in that case, the channel contribution to the resistance becomes

smaller than the contact contribution. Consequently, the total current modulation is

reduced. The regime where contact dominates is called the “scaling limit” [70]. Reducing

the contact resistance allows to push the scaling limit toward smaller scales and higher

frequencies accordingly. Considerable efforts have been devoted in the community to

determine what should be the “right” contacting metal and how it should be deposited,

but no consensus has been reached yet.

Regarding now Dirac Fermion optics, we explained in the previous chapter how to take

advantage of sharp potential steps in graphene to exploit the refractive effect of Klein

tunneling. Dealing with a real device implies having some contacts on graphene, meaning

that one already starts with at least two junctions. But above all we can use those contact

junctions as the building blocks of Dirac Fermion optics devices. For that we exploit a

singularity coming from the 2D nature of graphene: due to the absence of screening, the

55
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Fermi level of contacted graphene is not pinned as it would be for a 3D conductor. This

means there is room for an electrostatic tuning of the graphene doping level. The aim

of this chapter is to present a new device architecture where a local gate is located just

below the contact in order to tune the carrier density of the contacted graphene, another

local back gate being dedicated to the channel. The spacing between both gates is kept as

small as possible to induce a sharp junction between contacted graphene and graphene

in the channel. Working with high mobility graphene and local back gates allows us

to tune the carrier density on both sides of a sharp junction in the ballistic regime,

thus we can use the model presented in the previous chapter to describe this junction.

I start by quickly introducing the metal-graphene contact and reviewing the state of

the art of low contact resistances. In a second part I present a theoretical description of

how the carrier density of contacted graphene can be modulated despite the screening

from the metal followed by a review of experimental works bringing evidences of contact

tunability. Then I show the experimental results obtained with our new architecture

first for a short channel device with exfoliated graphene on hBN, second for devices

with CVD graphene on hBN.

4.1 The graphene contact

4.1.1 What is a metal-graphene contact

The contact between a metal and a 3D semiconductor induces a charge flow to equilibrate

the Fermi levels on both sides of the metal-semiconductor junction. The relative shift

of the semiconductor Fermi level is on the order of the difference between the two work

functions. As a result there is a charge accumulation on both sides of the junction

that may induce a depletion region in the semiconductor. This effect is known as the

Schottky barrier. Then one has to solve the Poisson’s equation to determine the length of

the depletion region. Eventually, far from the contact, the Fermi level retrieve its initial

position [71]. By contrast, in a metal-metal contact there is a larger carrier density and

the electrons can screen efficiently the potential difference at the interface.

A major difference for graphene arises from its 2D nature: in the direction perpendicular

to the graphene surface there is no charge that can screen the potential step at the

interface. Horizontally, the graphene-metal contact is intermediate between the metal-

metal and the semiconductor-metal cases. On one hand there is no bandgap in graphene

so there is no depletion layer and thus no Schotkky barrier taking place at the interface.

On the other hand, graphene has a small density of states and the charge exchange with

the metal induces a shift of the Fermi level position. As a result, the graphene carrier
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density is modified in the contact’s vicinity. In an electronic transport experiment, the

current flows in the graphene layer between two metallic electrodes. If there is a different

carrier density in the contact area and in the bulk graphene then there is a junction at

each contact. Depending on the work function difference between the metal and the

graphene, the metal induced carrier density can be either n or p. Then, depending on

the graphene sheet doping one can either have an unipolar or a bipolar junction at the

contact, and a bipolar junction is more resistive than an unipolar one (as explained in

the previous chapter).

This effect has been widely observed when measuring a graphene device resistance as

a function of the gate voltage: the gate voltage tunes the bulk graphene carrier density

from p to n while in the contact area the carrier density is pinned by the metal. This

results in asymmetric transfer curves [13, 72, 73].

From a geometrical point of view, the above considerations suggest that the contact

resistance is inversely proportional to the width of the contact but should be relatively

independent of the contact length. It has been experimentally demonstrated that indeed

the contact resistance is not proportional to the contact surface area but to its width,

providing that the contact length is greater than ∼ 1µm [74]. As a result the contact

resistance is always expressed in Ωµm.

4.1.2 Imaging the contact

a) b) c)

Figure 4.1: (a) Optical image of a contacted graphene flake (b) Photocurrent scanning
experiment on the corresponding device. One can notice a much stronger current next
to the contacts. Moreover, the current is reversed from one contact to another. This
indicates the presence of a built in electric field between the free graphene area and the
contacted area. Adapted from [25]. (c) Scanning Kelvin probe microscopy (SKPM) for a
mapping of the graphene work function in the channel of a transistor, here for different
drain-source voltages. One can notice the potential steps at the contacts that make the
contact resistance visible. Here we also see the potential variation in the channel at

high bias. Adapted From Yu et al. [75].
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To provide a visual support of the metallic contact induced doping we show in Fig. 4.1

experiments that map the doping profile of graphene near a contact. Scanning photocur-

rent experiments efficiently detect potential steps in graphene. This technique was used

to study the metal-graphene contact junction [25, 76]. Those experiments have shown

the presence of a strong electric field close to the contact that corresponds to a doping

difference between the bulk graphene and graphene in the contact area (see Fig. 4.1).

According to photocurrent experiments [25, 76], the length of the p-n junction at the

contact would extend over at least 100 nm. This result presents a strong contrast with

our own findings. The contact junction is probably reduced in the case of local gating

of the channel which is the very idea of our device. In addition the use of a bottom

gate allows us to reduce the ungated access area of the channel. Similarly, the electric

potential of graphene in the channel and around the contact can be scanned using a

scanning Kelvin probe microscopy (SKPM). An illustration [75] is shown in Fig. 4.1. It

also shows a potential step when approaching the contact, and the step length seems to

be on the order of 100 nm.

4.1.3 A quest toward low contact resistance

A large contact resistance is a performance killer for future graphene devices. Therefore,

many routes to lower the contact resistance have been explored. The first parameter to

tune is of course the metal itself, but for the same metal the contact resistance values

vary from one sample to another. Thus, the process conditions, (type of resist, metal

deposition technique...) matter as well. Without claiming to be exhaustive, we summarize

some low contact resistance achievements in table 4.1.3. In [77] for example, the authors

claim an improvement of 40% in the contact resistance when graphene is encapsulated

between a top and a bottom contact.

Our route is to tune the contact induced carrier density with a local gate in order to

reduce in situ the resistance of the contact junction.

blank space
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Author metal contact type temperature Rc
K Ωµm

Xia [78] Pd top 6 110
Xia [78] Pd top 300 185
Xia [79] Ti top 300 430

Zhong [80] Pd top 78− 300 100
Sordana Au top with holes 300 90

Franklin [77] Ti/Pd (0.5/30nm) top and bottom 300 260
Wang [8] Cr/Pd (1/15nm) edge contact 4− 300K 140

Meric [14] rf Pd top 300 950
This work Pd top 300 150− 300
This work Pd top 10 75− 100

Table 4.1: State of the art contact resistance. aprivate communication.

4.2 Theory of contact gating

When metal and graphene are brought into contact, there is a charge exchange to achieve

a chemical and electrostatic equilibrium. As a result, there is a balance between the

electrochemical potential of graphene and that of the contacting metal. However, the

density of states in the metal is much larger than in graphene, thus the metal acts as

a reservoir that sets the electrochemical potential µ∗, which is determined by the work

function Wm and the potential Vm of the contacting metal as:

µ∗ = −Wm − eVm (4.1)

By gauge invariance we can set Vm = 0. The electrochemical potential of graphene

follows that of the metal, resulting in a shift of its Fermi Level as well as its electrical

potential. We note ∆EF = EF − EDirac the Fermi energy shift with respect to the

Dirac point EDirac. It is related to the carrier density n by n = sign(∆EF )
∆E2

F

π~2v2
F

. Then

Vgr is the electrostatic potential of graphene and Wgr is the work function of intrinsic

graphene. Close to the contact, the equality of electrochemical potential reads (see also

Fig. 4.2):

µ∗ = −Wm = −Wgr + ∆EF − eVgr (4.2)

Away from the contact, Vgr and ∆EF re-equilibrate to reach ∆EF = 0 (neutrality) and

Vgr = 0, when graphene is naturally undoped, as depicted in Fig. 4.2. Therefore we have

in the channel µ∗ = −Wgr. By contrast, using an electrostatic gate allows a full control

of the doping profile (Fig. 4.2).
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Figure 4.2: Graphene doping profile at the metal graphene interface. Left : Long screen-
ing length in the absence of gating (100nm according to [76]). Right : The contact gate
controls the contact doping thanks to the absence of vertical screening and the channel
gate sets the channel doping. The p-n junction length between contact and channel

areas is controlled by the gate geometry.

In this section, we start by describing the field effect doping of graphene in the channel.

In particular we emphasize the difference between local and remote gating. Then, we

present how one can use field effect to control the carrier density of contacted graphene.

4.2.1 Graphene gating

We consider a gate electrode separated from graphene by a thin hBN flake of thickness

tBN . In the standard classical picture, this gate just acts as a plate capacitor that sets

the charge (thus the carrier density n) of graphene, the charge carriers being provided

by the contact (therefore essential for the gating effect):

n =
Cg(V

0
g − VDP )

e
=
CVg
e

(4.3)

Where Cg = ε0εBN/tBN is the parallel plate capacitance per unit area, Vg = V 0
g − VDP

is the gate voltage measured from Dirac Point (DP), i.e. VDP is the gate voltage one

has to apply to induce a charge neutrality in graphene. The fact that in most cases

VDP 6= 0 results from the presence of chemical doping, for example lithography resist

residues, but in the case of graphene with free surface, it can also arise from molecular

adsorption. We should point out that the experimental VDP varies a lot from one sample

to another and within the same sample it varies throughout the measurement history.

Those impurities can be removed by thermal or current annealing of the sample. Our

process usually induces a p-doping (VDP > 0), but after efficient cleaning we usually

recover VDP ≈ 0.
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In fact, formula 4.3 is an approximation that does not take into account the finite (and

small) density of state of graphene near the Dirac point. For the sake of simplicity we

will take as a reference of electrochemical potentials:

µ∗ +Wgr = ∆EF − eVgr = 0 (4.4)

This is true far away from the contact for a clean graphene sheet. We will deal with

graphene close to a metallic contact in the next section.

From Gauss’ theorem we obtain the electrostatic relation between the charge on graphene

and the voltage across the gate dielectric1:

Cg(Vgr − Vg) = ne = −sign(EF )e
∆E2

F

π~2v2
F

(4.5)

Then combining (4.5) and (4.4) one obtains:

Cg(∆EF − eVg) = −sign(EF )e2 ∆E2
F

π~2v2
F

(4.6)

Defining a characteristic energy εc,

εc =
Cgπ~2v2

F

2e2
, (4.7)

Eq. (4.6) becomes:

sign(∆EF )∆E2
F + 2εc∆EF − 2εceVg = 0 (4.8)

Whose solution is:

∆EF = sign(eVg)× εc

√1 + 2
|eVg|
εc
− 1

 (4.9)

Two regimes can be considered:

• The high doping regime |eVg| >> εC , where

∆EF = εC

√
2
|eVg|
εc

= ~vF

√
π
CgVg
e

,

1If ∆EF > 0 then the doping is n, meaning that the charge on graphene is negative. It corresponds
to a gate voltage Vg > 0.
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Figure 4.3: Simulated Fermi level (left) and carrier density (right) as a function of
the gate induced electric field in the limit of very thin dielectric thickness (blue curves)
and for larger dielectric thickness (red curves). The range over which the dotted lines

and the ∆EF curves overlap defines the unscreened regime where |eVg| << εc

and

n =
∆E2

F
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F

=
CgVg
e

. (4.10)

We retrieve the capacitor plate formula of Eq. (4.3) of the classical metallic regime.

• The low doping regime where |eVg| << εc

∆EF ' eVg (4.11)

Therefore, in that regime, the gate directly sets the chemical potential of graphene.

This is the so called quantum capacitance regime [26, 81, 82].

We notice that εc represents the screening energy scale of the system. In the |eVg| << εc

regime there are too few electrons to screen the electric field of the gate and graphene is

transparent from the electrostatic point of view. In that case, the chemical potential just

follows the gate electrostatic potential. This regime is experimentally accessible in the

case of very thin gate dielectric as εc ∝ Cg ∝ 1/tBN . On the contrary, when |eVg| >> εc,

the graphene electrons can efficiently screen the electric field from the gate, and the

graphene acts as a metallic plate of a capacitor. The evolution of ∆EF and n in both

regimes is shown in Fig. 4.3. We plot them as a function of the gate induced electric

field (instead of the usual gate voltage). Therefore, the difference between the red and

blue curves in Fig. 4.3 illustrates the effect of the screening constant εc. In the case

tBN = 20 nm, we have εc = 7 meV and the plate capacitor approximation is almost

always valid. On the contrary, if tBN = 1 nm, we have εc = 150meV and we clearly see
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the regime where ∆EF ' eVg. As a result we get a carrier density and a Fermi level

lower than the one expected from a classical model. In particular, one can see that the

gate has only a very poor control on the carrier density close to the Dirac point.

This crossover can be seen in a capacitance measurement from which one can deduce

the quantum capacitance [26, 81, 82]. Indeed, the quantum capacitance is a direct mea-

sure of the density of states as it is described below. This approach where the total

gate capacitance is modelled as the geometrical capacitance in series with the quantum

capacitance CQ, is strictly equivalent to the approach shown above. First the quantum

capacitance is defined (at T = 0) as:

CQ =
2e2∆EF
π~2v2

F

=
Cg∆EF
εc

(4.12)

And the carrier density is evaluated using the capacitor plate model with the total

capacitance Ct =
CQCg
CQ+Cg

:

n =
CQCg
CQ + Cg

Vg
e

=
∆EF

∆EF + εc

CgVg
e

(4.13)

Replacing n by its energy formulation leads to formula (4.8).

We note that εc essentially depends on Cg. For a typical BN thickness of 10 nm we get

Cg = 3.5 fF/µm2 and εc = 15meV which is small compared to the energy resolution of

our measurements. Indeed the addition of the temperature (≈ 25meV at room temper-

ature) and the typical residual density from impurities (also ≈ 25 meV ) are combining

to make the quantum capacitance effect negligible for the channel of a transistor. On the

other hand this effect is observable in a graphene contact as described in the following

section.

4.2.2 Contact gating

In this part I present a model that explains how the carrier density of contacted graphene

can be tuned by field effect. It relies on two very basic principles (electrochemical equi-

librium and Maxwell-Gauss equation) and has been introduced for the first time by

Giovannetti et al. in 2008 [83]. This model was supported by ab-initio calculations and

was followed by a more detailed paper [84] on this subject. Let now us focus on the

contact area where ∆EF can be affected by the presence of the metal. We recall the

equality of electrochemical potentials:

µ∗ = −Wm = −Wgr + ∆EF − eVgr (4.14)
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At first sight one could think that a perfect contact imposes its electrostatic potential

as well as its chemical potential. In that case the Fermi level ∆EF = Wm −Wgr would

be pinned by the contact.

If we consider now that only the electrochemical potential is set by the contact and

that the balance between ∆EF and Vgr is free to change, we can improve the previous

equation but now by replacing Vgr = (−Wgr +∆EF +Wm)/e in (4.5). This is equivalent

to replacing Vg by eVg − (Wm −Wgr). We see that we expect a shift in the CNP gate

voltage given by the difference in work functions between graphene and metal. For

example for Pd, WPd −Wgr ≈ 5.5− 4.5 eV = 1 eV , one should apply +1 V on the gate

to compensate the doping by the contact. In other words, graphene is naturally p-doped

around Pd. On the other hand, for Al, WAl −Wgr ≈ 4.0− 4.5 eV = −0.5 eV , graphene

is naturally n-doped. However, this simple description is not complete; first it neglects

screening effects from the contact which depend strongly on the distance between metal

and graphene. Secondly, Giovannetti et al. have shown that there is a metal-graphene

chemical interaction in addition to the work function difference [83]. From now on we

will note ∆W the effective work function difference between metal and graphene that

includes this chemical interaction.

We follow the work by Giovannetti to understand the metal-graphene contact. A metal-

graphene interface is described as a tunnel junction, where charges can flow through

an ideally small resistance Rmg in parallel with a large capacitance Cdl. This simple

model explains well how the equality of electrochemical potentials does not lead to

equality of electrostatic and chemical potential necessarily. Indeed, even if charges can

flow through the junction there is still a charge accumulation on both sides of that

junction that forms an electrical double layer over a microscopic distance tdl and sets

the value of the capacitance Cdl = ε0/tdl. As a result there is a built-in potential drop

across the junction that is sensitive to field effect and that can be tuned by a gate. Let

us consider a graphene area which is just underneath the metallic contact. We note Ccont

the geometrical capacitance per unit area of the gate devoted to the contact (the value

of the capacitance is the same as before since the dielectric thickness is unchanged). The

electrostatic relation reads:

Ccont(Vgr − Vg) + Cdl(Vgr − Vm) = ne = −sign(EF )e
∆E2

F

π~2v2
F

(4.15)

That has to be combined with

∆W = −∆EF + eVgr (4.16)
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to give

∆W + ∆EF −
Ccont

Ccont + Cdl
eVg = −sign(EF )e2 ∆E2

F

π~2v2
F (Ccont + Cdl)

(4.17)

The characteristic energy constants of the system are:

εc = (Ccont + Cdl)
π~2v2

F

2e2
, (4.18)

and,

εW =
Ccont

Ccont + Cdl
eVg −∆W (4.19)

That leads to

sign(EF )∆E2
F + 2εc∆EF − 2εW εc = 0 (4.20)

And finally

∆EF = sign(εW )× εc(

√
1 + 2

|εW |
εc
− 1) (4.21)
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Figure 4.4: Calculated ∆EF and ncont as a function of the gate voltage Vcont in
the case of contacted graphene with a work function difference ∆W = 50 meV and a
metal-graphene distance tdl = 0.2 nm (and a gate capacitance calculated with 15nm

BN thickness)

This formula is similar to (4.9). However in addition to the gate voltage shift due to ∆W

we should emphasize that εc can be very large due to the large value of the double layer

capacitance Cdl. Consequently the screening by a metallic contact is much stronger than

in the channel. If we take a typical graphene-metal separation distance tdl = 0.3 nm

from Giovannetti’s ab initio calulations, we find Cdl = 30fF/µm2 while the geometrical

capacitance is Cg = 3.5 fF/µm2. Therefore we end up with εc = 136meV . Then εc has
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to be compared with εW which is also controlled by the ratio Cg/Cdl. Both effects work

together to put the graphene area under the contact in the unscreened regime for a wide

range of gate voltages. This can be seen in Fig. 4.4 where the calculated density ncont

strongly deviates from the classical one CgVg/e, and the calculated ∆EF is linear for

Vg ∼ 0 → 2 V hence in the εW < εc regime. Nevertheless, the aim of this chapter is to

show that a modulation is possible as we will see in the following section reviewing the

state of the art in this specific domain and in the last section about my experimental

results.

4.2.3 State of the art of the remote contact gating

Following the theoretical paper by Giovannetti and co-workers [83], a few experimentalist

groups made attempts to find evidence of contact doping modulation and to provide

some values of the metal induced doping. They always rely on the presence of a remote

back gate tuning at the same time both channel and contact graphene. Basically two

different principles are used: either the contact resistance is measured by the Transfer

Length Method (TLM) where measuring samples of various lengths provides the contact

resistance as a function of back gate voltage or a combination of top and remote back

gate is used, and in that case, the contact doping effect is extracted from the transfer

characteristic asymmetry or from the observation of a “secondary Dirac Point” that

corresponds to contact neutrality.

TLM measurement of the contact resistance

a) b)

Figure 4.5: TLM measurement by [78]. The contact resistance Rc is extracted from
the y-intercept of the resistance as a function of the sample length. Contact properties

are extracted from the Rc(Vg) curve

In [78], Xia and co-workers are using TLM to extract the contact resistance of an exfo-

liated single layer graphene sample with Pd contacts as a function of back gate voltage.

They use an analysis based on [66] to estimate the contact transmission (they assume
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a contact junction length of d = 40 nm) and use [83] to extract the contact proper-

ties (metal induced doping and metal-graphene distance). A graphene-metal distance

of 0.1 nm is found corresponding to a renormalisation of the work function difference

of ∆C ' 0.9 eV accounting for the chemical interaction between graphene and metal

orbitals. In our notation it corresponds to ∆W = 200 meV . They measure a contact

resistance of Rc = 110 Ωµm at 6K which is close to the Landauer limit and compatible

with Giovannetti’s predictions. A strong signature of contact doping modulation would

be the observation of a secondary Dirac point in the transfer curve arising when the

contacted graphene is brought to neutrality by the back gate. However, according to the

authors, the large energy broadening due to the metal smears out the second resistance

peak, preventing its experimental observation.

Similar measurements have been conducted by Zhong et al. [80]. The authors argue

that their good contact evaporation conditions (Pd purity of 99.95% and high vacuum

1×10−8mbar) allows them to obtain a lower contact resistance ≤ 100Ωµm with a good

reproducibility. They observe a strong asymmetry in the p-n branches of the transfer

curve which is, from my analysis, due to a larger junction length, as well as a secondary

Dirac point. If we apply Giovannetti’s model to their results and if we assume a typical

(but process dependent) double layer thickness of 0.1 nm we find a Pd effective work

function of ∆W = 50meV in accordance with our own measurement (see section 4.3).

Top and remote back gates

A combination of top gate and back gate with no ungated area is used by Knoch and

colleagues [85] to investigate the remote gating of Pd contacts. Indeed, this geometry

gives access to a broad doping range for both contact and channel areas. On one hand,

figure 4.6 shows a set of top gate transfer curves for given back gate voltages. Apart from

the shift of the transfer curves, the change in the asymmetry demonstrates the reversal

of the contact polarity: a lower resistance on the Vtg < VDirac side indicates a p-doping

of the contacts while a lower resistance on the Vtg > VDirac side indicates a n-doping. On

the other hand, Figure 4.6-b shows the remote back gate transfer curves at given top gate

voltages. Here, the back gate tunes at the same time the channel and contact doping.

The main peak corresponds to the regular charge neutrality point of the channel while a

smeared second peak is observed corresponding to the charge neutrality at the contact.

The occurrence of this second peak at a different VBG reflects both a chemical doping by

the metallic contact specific to the contact area and a different field effect efficiency from

the back gate to the channel and to the contact as explained in the previous section.

From the second peak position, the authors deduce a metal induced doping smaller than

100meV , according to them, this doping is too small to be observed with a single gate
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Back-gate

a)

b) c)

Figure 4.6: (a) Side view of a device with top and remote back gates (adapted from
[85]). (b) The back gate voltage is tuned, for various top gate voltages a second resistance
peak is observed suggesting the contact neutrality. (c) The top gate voltage is tuned
for various back gate voltages, the asymmetry reversal points out a polarity reversal of

contacted graphene.

where both resistance peaks would overlap. Having a second gate that tunes the contact

doping while a top gate sets the channel carrier density is then necessary.

Fano factor measurement

The noise of a graphene p-n junction has been calculated theoretically in [66] and [67].

As it has been shown before, a contact can act as a p-n junction, thus investigating the

noise of a 2 terminal graphene device provides additional information on the contact

properties.

Such an experiment, where the Fano factor is measured in RF, has been performed

recently in a suspended graphene sample [86] with Au contacts. The contact-channel

resistance is estimated assuming a trapezoidal p-n barrier in the ballistic regime and

using Klein tunneling transmission calculations by Sonin et al.[67]. The contact doping

is estimated from Giovannetti’s model. Experimental data fits well the model. Obtained

parameters: renormalized work function ∆W = 18 meV , barrier length: d = 20 nm,

double layer capacitance: Cdl = 190 fF/µm2 (thus a double layer thickness of 0.1 nm)

while the gate capacitance is Cg = 5 × 10−2 fF/µm2. This translates in our notation

to a screening constant εc ≈ 400 meV which is much greater than εW ∝ Cg
Cdl
eV g ∝

2.5× 10−4eVg. Thus tuning of the contact doping is limited due the fact that gating is
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Figure 4.7: From Laitinen et al. [86]. Left: Conductance of a suspended sample fitted
with contact doping model and Klein junction at the contact. Right: Measured (black
circle) and calculated (diamonds) Fano factor of the contact junction at finite bias. The
calculated Fano factors are shown for junction length of d = 1, 20, and 100 nm (blue,

red, green respectively)

Author metal contact Induced doping Metal-graphene Junction length εc
polarity (meV ) distance (nm) (nm) (meV )

Xia [78] Pd p ∼ 200 0.1 40
Xia [79] Ti n 40

Zhong [80] Pd p 50
Laitinen [86] Au p 18 0.1 20 400

GoBN1 Pd p 70 70
GoBN2 Pd p 50 2 30 28
GoBN3 Pd p 10 0.3 30 140

Table 4.2: Contact gating review

remote. Via DC measurement, a single gate makes a direct extraction of both chemical

doping and double layer capacitance difficult. However a rf measurement that provides

the Fano factor as a function of Vg gives an additional information. Laitinen et al. use

the information from the Fano factor to extract the junction length d, which removes a

fitting parameter for the zero bias conductance.

Table 4.2.3 summarizes the relevant contact properties from the litterature and from my

own measurements (see below).

blank space

4.3 The gated contact transistor (GoBN2)

In this section we present the measurements made on a transistor made of exfoliated,

graphene and equipped with independent and local channel and contact gates (shown in
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Fig. 4.8). The channel length is reduced to 200nm to approach ballistic transport. Con-

sequently, the device resistance is mainly dominated by the contact junction resistance.

The contact gate (same for source and drain) located just underneath the contacts will

allow to tune the carrier density of the contacted graphene. The consequences will be

visible in the transport properties and in particular in the tuning of the contact junction

transmission. Thus we will be able to use the model presented above to extract some

of the Pd contact properties such as the double layer capacitance, the effective work

function difference between Pd and graphene and the junction length.

a) b)

c) d)

e) f)

Contact 
gate

channel 
gate

source

drain

Figure 4.8: (a) Artist view of the device GoBN2. The change of color of graphene in
the channel and underneath the contact reflects the contact induced doping. (b) Side
view of the device. (c) TEM image of the gates before hBN and graphene deposition.
The white scale bar is 1 µm. (d) Zoom of (c) centered on the channel gate. The gap
between both gates is 30 nm. The white scale bar is 100 nm. (e) Optical image of
the device in its coplanar waveguide. The white scale bar is 50 µm (f) SEM image of
the contacted device. The graphene channel can be seen in gray, its dimensions are

L = 200 nm, W = 1.1 µm. The white scale bar is 500 nm.
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4.3.1 Device presentation and setup

As explained in the fabrication section 3.1 the local bottom gates are made out of a

20 nm thin tungsten film that is etched to define a 30 nm gap between the two gates.

The dry transfer technique is used to transfer successively a 16 nm hBN flake and a

monolayer graphene flake. A furnace annealing step (300◦C under Ar/H2) is performed

after each transfer to remove the MMA residues. The device is contacted with 50 nm

thick Pd leads whose edges lie in the gap between the contact and channel gates as

depicted in Fig. 4.8. A final annealing step is performed in the Janis probe station at

440 K and 1 × 10−5 mbar prior to measurement. The channel length and width are

L = 200 nm and W = 1.1 µm respectively. As seen in Fig. 4.8-e the device is embedded

in a three port coplanar waveguide to allow further RF characterization.

The sample is DC biased using three BILT DC sources and three Keithley 2000 volt-

meters in the voltage divider configuration. This allows to measure the sample resistance

and current as well as the possible leaking current through the gate dielectric. We note

Vch, Vcont and Vds the channel gate, contact gate and drain to source DC voltages re-

spectively.

4.3.2 Experimental DC results
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Figure 4.9: Transfer curves of GoBN2. Conductance (left) and resistance (right) as a
function of the channel gate voltage for various contact gate voltages. The Dirac point
is around zero gate voltage and the peak is sharp indicating a good device quality.
We observe a large tunability of the conductance with Vcont, which demonstrates the

efficiency of our contact gate.
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This part is dedicated to DC measurements of the device resistance at room temperature

as a function of the channel gate and contact gate voltages, Vch and Vcont respectively.

First we show in Fig. 4.9 the conductance G(Vch) and the resistance R(Vch) of the device

for contact gate voltages Vcont = −1.2 → 1.2 V . The transfer curve G(Vch) (or R(Vch))

is typical of a high mobility device with a charge neutrality point located near Vch = 0

and with an ON/OFF ratio that is large for such a short channel transistor [13] (the

corresponding density range is n = −5.8× 1012 cm−2 to n = +5.8× 1012 cm−2). But the

main feature of this measurement is the efficient modulation of conductance induced by

the contact gate away from charge neutrality. G(Vch) is tuned by a factor 2.3 for Vch < 0

and 1.3 for Vch > 0. By contrast, there is only a small variation of G near the Dirac

point which points out a channel dominated resistance with finite mobility. Regarding

the position of the CNP, it is not modulated by Vcont which confirms the independence

of both gates and differs from previous investigations using a combination of remote

back gate and local top gate [80].
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Figure 4.10: Typical resistance transfer curves for a subset of contact gate voltages.
The asymmetry of curves in panels a) and c) reflects the p and n doping of the contact
respectively ; the symmetry of the curve in panel b)suggests a neutral contact. The
dotted line in panel a) represents the transfer curve expected for a fully ballistic device.
Panels e) and f): Device resistance as a function of contact gate voltage for channel
gate voltages Vch = −4V → −0.5 V and Vch = +4V → +0.5 V (from bottom to top)

respectively.
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Let us focus on the transfer curves for three representative contact gate voltages (Fig.

4.10 top panel). We now plot the resistance in order to separate the serial contributions of

the contact junctions and the channel. At Vcont = −1.2V the transfer curve is asymmetric

suggesting a p-doping of the contact as the device is less resistive when the channel is

p-doped (Vch < 0). The asymmetry level can be changed gradually up to Vcont = +0.2V

where the transfer curve is symmetric. For higher contact gate voltages the asymmetry

is reversed suggesting a n-doping of the contacts as can be seen in Fig. 4.10-c for Vcont =

+1.2 V . This first result demonstrates that the gated contact geometry allows for an

extensive control over the doping of graphene in the contact area. As discussed in section

4.2.2 (Eq. (5.19)), tuning the contact gate voltage is like changing the natural doping

induced by the metallic contact. For example Vcont > +0.2 V emulates a low n-doping

metal as titanium and would give a maximum transconductance on the Vch > 0 side.

On the other hand applying a negative Vcont strengthens the p-doping nature of Pd and

lowers the contact resistance in the p-doped regime. In Fig. 4.10-a we reach a minimum

resistance R = 300 Ω corresponding to a contact resistance Rc . 150 Ωµm per contact

that compares well with the best achievements presented in table 4.1.3. For comparison,

we plot with a dotted line (Fig. 4.10-a) the expectation in the ballistic case where the

total resistance reduces to a ballistic p-n-p barrier (with a contact doping p set at

1.7 × 1012 cm−2). The theoretical curve shows an asymmetry which is consistent with

the measured one, ∆R(Vch = ±4V, Vcont = −1.2V ) ' 400Ω. The main deviation is an

overall resistance shift of ' 110Ω that we attribute to an additional (and not tunable)

metal-graphene resistance (Rmg ' 55Ω per contact). At the CNP a diffusive contribution

from the channel will have to be accounted for as well as smearing by thermal effect and

residual charge density.

As we deal with a dual gate transistor we can also plot the data as a function of the

contact gate voltage R(Vcont) in Fig. 4.10 d) and e) for various channel gate voltages.

Those curves show directly the effect of the contact gate on the total resistance, they show

a maximum and an asymmetry typical of a standard transfer curve and demonstrate

the ambipolar behavior of our gated contact. Note that those curves cannot be obtained

with a remote back gate that tunes channel and contact altogether and for which the

evidence of contact neutrality relies on the existence of a smeared second peak. Again,

the positions of the maxima are independent of Vch (given a channel polarity) confirming

the independence of the two gates. The R(Vcont) curves are mainly shifted upward when

Vch is approaching charge neutrality due to finite carrier mobility in the channel. One

can notice that the contact gate voltage range is limited to ±1.2V due to gate leakage at

higher voltages. We attribute this different behavior to a possible weakening of the hBN

dielectric underneath the contact during the metal evaporation. Finally, the entire set

of data is displayed as a color plot of R(Vch, Vcont) in Fig. 4.11 (left panel). Simulation
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Figure 4.11: Left: Color map of the device resistance as a function of contact and
channel gate voltages. Right: Corresponding simulation using the fitting model and

parameters.

results are displayed in the right panel in an attempt to reproduce R(Vch, Vcont) features.

The simulation relies mainly on the contact gating theory presented above and the

junction transmission presented in the previous chapter. It will be applied to the case of

the GoBN2 sample in the next subsection.

4.3.3 Device modelling and interpretation

This subsection aims to precise the modelling that leads to the simulated color plot of Fig.

4.11-(right panel). We assume two contact junctions at drain and source, whose doping

is calculated on the contacted side using the model presented in 4.2.2. Before using

Cayssol’s formula to calculate the transmission of such a junction, it is important to check

that the potential profile with a Fermi-like shape assumed in our p-n junction model is

realistic in our geometry. We do that with finite elements electrostatic simulation:

Electrostatics simulation

We use a finite elements solver, COMSOL Multiphysics, to solve the Poisson equation

and to calculate the 2d electrical potential map created by the 3 electrodes at the junction

area (Fig. 4.12-a). The electrode edges are rounded to a radius curvature of 1 nm. The

computation was done for a sub-domain size comprised between 0.04 nm and 2nm. A

cut in the color plot along the x-axis gives the potential variation across the junction

(Fig. 4.12-b blue line). From this we extract the characteristic length scale d ≈ 30nm for

the 10-90% extension of the potential step. In practice this length is determined by the

lithography limited gap between the contact gate and the channel gate. This length has

to be compared with the typical Fermi wavelength within the measurement range which
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varies from 15 nm to 50 nm. Therefore, the potential step length lies in the relatively

sharp regime where the junction transmission is very sensitive to this length. In order

to accurately model the transmission we need a formula accounting for the junction

length dependence. It should be noted that this simulation neglects graphene screening

and corresponds to the specific case where εW << εc which is relevant at low doping

and particularly in the contact area (see theoretical section). Nevertheless we are mainly

interested in the general aspect of the potential step giving its width and in comparison

with a Fermi-like function.
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Figure 4.12: Panel a) Electrical potential map of the device at the contact junction
from finite element simulation for two typical channel and contact gate voltages, Vcont =
−1V and Vch = +2V , the contact being at Vsource = 0V . The graphene layer is located
at z = 0. Panel b) Horizontal cut of the potential through the junction together with a

Fermi like function. The 10− 90% range is within d ≈ 30nm.

Transmission of the junction

We consider the transmission of the contact junction from the area underneath the

metal to the channel area. The COMSOL simulations tell us we can assume within good

approximation the shape of the electrostatic potential to be Fermi-Dirac like equation

(Fig. 4.12-b red line):

V (x) = V cont
gr +

V ch
gr − V cont

gr

e−x/w + 1
(4.22)

Taking this potential profile allows us to use the formula by Cayssol et al. [66] giving

the exact transmission T of the corresponding potential step for any junction length

d ≈ 4.5w as explained in chapter 3.

Proceeding as explained in section 3.2 we can calculate the contact junction transmission

and deduce its conductance.

GK(∆EcontF ,∆EchF ) =
4e2

h

WkcontF

π
T (∆EcontF ,∆EchF ), (4.23)
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where doping the levels of graphene in the contact and channel areas (∆EcontF (Vcont) and

∆EchF (Vch) respectively) are estimated from the model presented previously (in 4.2.2).
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Figure 4.13: (a) Device conductance as a function of the channel carrier density in
a logarithmic scale. The intercept of the two dotted lines gives an estimate of the
residual carrier density in the channel nch0 , following the method of ref. [52]. (b) Idem
but for the carrier density in the contact area. (c) Odd part of the resistance Rodd =
R(Vch)− R(−Vch) at Vch = ±4 V as a function of the contact gate voltage. The slope

of the linear part is related to Cdl while the x-intercept is related to ∆W .

This conductance is convoluted with a Gaussian function accounting for residual density

and thermal averaging in both Vcont and Vch direction:

Gausscont,ch =
1√

πtcont,ch
exp−

(
Econt,chF

tcont,ch

)2

(4.24)

Where tcont,ch = ~vF
√
π · ncont,ch0 is the energy width of the Gaussian function related

to the residual density ncont,ch0 of contact and of channel areas respectively. They can be

estimated by plotting G(n) in logarithmic scale as in Fig. 4.13-a,b.

Final electrical model and fit

Our model is based on a lumped element model as described in Fig. 4.14. The two

contact junctions are sketched with a K symbol (standing for Klein junction); they lie

at the source and drain of the device and are presumed to be identical, RK = G−1
K .

Transport is assumed to be incoherent within the channel, which implies that we simply

add up resistances of both contact junctions.

As our device is not ballistic over its full length, we assume a diffusive channel of

dimensions L = 200 nm and W = 1.1 µm. The resistance of the channel is calcu-

lated using Rch = L
Wncheµ

with a constant mobility µ and a carrier density given by
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Figure 4.14: (a) Electrical sketch of the device. (b) Different contributions to the
total resistance Rt (gray line): two contact junction resistance 2RK (thick blue line),
diffusive channel resistance Rch (red line) and additive (constant) contact resistance
2Rmg (thin dark blue line). (c) R(Vch, Vcont = −1.2V ) data point (green diamonds)
fitted using our model (Rt: gray line). The dotted line represents the contact junction

resistance without Gaussian broadening.

nch =
√

(nch0 )2 + CchVch/e, where nch0 is a residual carrier density. Thus the total resis-

tance is given by:

Rt(Vch, Vcont) = 2Rmg + 2RK(Vch, Vcont) +Rch(Vch) (4.25)

We have now all the ingredients we need to propose an accurate model interpreting the

measurement. A priori we have a large number of unknown parameters in the model: d,

∆W , Cdl, Rmg, n
ch
0 , ncont0 and µ. As already mentioned, the junction length d = 30nm is

determined from the COMSOL simulation. Let us enumerate the number of observables

in our measurement:

• In the R(Vch) curves we have a resistance peak around the charge neutrality.

Considering the amplitude of the peak and its width we have two observables

which are related to the mobility µ and the residual density nch0 .
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• In the R(Vch) curves, away from neutrality, the resistance tends toward a constant

value. It gives one observable which is related to Rmg.

• Considering the asymmetry of the R(Vch) curves as a function of Vcont, we plot the

odd part of the resistance: Rodd = R(Vch) − R(−Vch) in Fig. 4.13-c. Rodd(Vcont)

is roughly linear, so that we have two more observables: the x-intercept and the

slope, that are related to ∆W and Cdl.

• Finally, the width of the R(Vcont) peak resistance gives a final observable which is

related to the contact residual density ncont0 .

So we have as many observables as unknown parameters.

From a practical point of view, the residual densities are determined from the log-log

plots of the conductance of Fig. 4.13 following the method of ref. [52], nch0 = ncont0 =

3.5 × 1011cm−2. Moreover there is a relationship between ∆W and Cdl: the neutrality

of graphene underneath the contact is reached when Vcont = 0.2V (symmetric curve in

Fig. 4.10), therefore ∆EcontF (Vcont = 0.2V ) = 0⇔ εW (Vcont = 0.2V ) = 0, leading to

0 =
Ccont

Ccont + Cdl
eVcont −∆W (4.26)

∆W =
0.2V · eCcont
Ccont + Cdl

(4.27)

So we end up with three fitting parameters for a 2D plot : Cdl, µ and Rmg.

The fit gives Rmg = 55Ω, µ = 6000cm2V −1s−1 and Cdl = 4.5fF/µm2 which corresponds

to ∆W = 55meV .

Interpretation and partial conclusion

Regarding the contact properties, the most interesting outputs of the model are Cdl and

∆W that allow us to calculate the screening constant

εc = (Ccont + Cdl)
π~2v2

F

2e2
= 28meV (4.28)

and the tunable energy scale

εW =
Ccont

Ccont + Cdl
eVg −∆W ≈ 0.32× eVcont + 0.05 eV (4.29)

Therefore we work mainly in the screened regime where εW � εc. From this we deduce

our accessible energy range in the gated area: ∆EcontF = −130 → 110 meV , which

corresponds to a carrier density range of ncont = −1.25 × 1012 → 0.9 × 1012 cm−2. By

comparison, in the channel our energy window is ∆EchF = ±260 meV corresponding to
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nch = ±5.5× 1012 cm−2. The value of ∆W in itself is of great interest as it determines

the natural doping level of contacted graphene for a given metal and therefore will guide

the choice of the contacting metal depending on the application: large ∆W for a low

contact resistance (RF transistors for example), positive or negative ∆W for p-type or

n-type transistors (operating point at positive or negative gate voltage respectively), low

∆W if one wants to operate near charge neutrality or to create a barrier (for example

the KT transistor described in chapter 3 could be made from patterned contact with low

p-doping level), asymmetric contacts with positive and negative ∆W for non-opposite

photocurrent generation at the contacts, etc. It has to be specified that reported values

of Pd doping show a relatively large scattering [78, 80, 85] and appear to be even

more distant from the ab initio predictions [83, 84]. In fact the choice we made for the

definition of ∆W does not lead to the pure Pd work function. Actually it represents the

effective work function difference between graphene and Pd. For example, the presence

of PMMA residues on graphene affects its work function. In addition if we refer to the

work by Giovannetti we have to take into account a graphene-metal chemical interaction

(∆c ≈ 0.9 eV in [83]) that depends itself very strongly on the metal-graphene distance.

Therefore a thin layer of residual resist on the graphene can change ∆W a lot. Regarding

now the double layer capacitance value Cdl = 4.5 fF/µm2, it corresponds to a metal-

graphene distance of 2 nm which is much larger than the DFT prediction in [83, 84]

or the previously reported values [78, 80, 85, 86]. We attribute this discrepancy to the

slight shift between the contact edge and the inter-gate gap. Indeed there is a short non-

contacted graphene area on top of the contact gate as can be seen in Fig. 4.8-f. It leads

to a strong reduction of metal screening which is accounted for a larger metal-graphene

distance that means a smaller Cdl or a smaller εc. The large contact gate modulation that

we observed in this particular sample probably benefits from this small imperfection.

The next section will deal with a similar sample and it will show a lower modulation

and a more realistic graphene-metal distance. Nevertheless, a gated contact transistor

geometry with slightly backward contacts with respect to the inter-gate gap proves itself

to be more efficient if one wants to implement a device with a tunable contact resistance.

Finally we can comment on the value obtained for the channel mobility: µ = 6000cm2V −1s−1.

It corresponds to a mean free path in excess of 50nm which is consistent with our work-

ing hypothesis of a ballistic contact junction and a diffusive channel. Moreover, for a

charge injection within a few tens of nanometers from the contact edge, it confirms also

that we can neglect any diffusive propagation in the contact area. This analysis is rein-

forced by the low temperature measurement showing Fabry Pérot oscillations (see below

in Fig. 4.15).
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4.3.4 Low temperature measurement

A measurement run at 6K is performed in the Janis probe station to check the low

temperature properties of the device. The poor mechanical stability of the probes at low

temperature prevents exhaustive measurements. As a result, only a few transfer curves

have been acquired as the one shown in Fig. 4.15-a). First we observe a higher resistance

peak in the R(Vch), consistent with a lower thermal broadening. Interestingly, some low

frequency resistance oscillations are observed away from the Dirac point. These kind of

oscillations have been reported several times in high mobility devices at low temperature

[13, 50–52] and are usually attributed to Fabry Pérot interferences where electrons are

experiencing multiple reflections between two barriers.
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Figure 4.15: Device GoBN2 measured at 6 K. (a) Resistance as a function of the
channel gate voltage for Vcont = 0. Fabry Pérot oscillations observed on the n-side. (b)
Conductance as a function of the channel Fermi energy for Vcont = −0.05→ 0.1V from
bottom to top. Several oscillations are identified by the vertical dotted lines (maxima
of the red curve). A period of 50meV is observed, that corresponds to a 40 nm cavity.

Conductance resonances are expected whenever

λF = 2NL (4.30)

kF = Nπ/L (4.31)

EF = ~vFkF = ~vFNπ/L (4.32)

∆EF = ~vFπ/L ≈
2

L
eV, (4.33)

where N is an integer and L in nm.

First on a regular transfer curve, two resistance peaks are visible with a very good

contrast separated by ∆EF ≈ 70meV . Thus the corresponding cavity length is L =

π~vF /∆EF ≈ 30 nm. From Eq. (4.33) however, one can see that it is more convenient



The gated contact transistor (GoBN2) 81

to plot the conductance as a function of the Fermi energy. Fig. 4.15-b shows G(EF ) for

various contact gate voltages; it gives more numerous and regular oscillations. We extract

∆EF ≈ 50meV , hence L = 40nm. The 30−40nm observed length corresponds well to

the misalignment of the contact gate with the inter-gate gap. So the observed oscillation

is consistent with a cavity defined by a barrier at the contact edge and another barrier

at the channel gate edge on the drain side. It also defines a lower boundary for the mean

free path. We do not observe faster oscillations that would correspond to the 200 nm

length of the device, therefore the channel is not fully ballistic. Let us emphasize that

we directly plot the measured conductance, we do not need in this case to differentiate

G(Vch) to get a good contrast of the interferences.

4.3.5 Dynamical properties of the gated contact

If one wants to operate a transistor at RF frequencies it is necessary to be equipped with

local gates. Thus even if the DC gating effect of a graphene contact has been observed

before with remote gates, this work enables us for the first time to drive a contact gate

at high frequency. Here we show that our contact gate is still active in the GHz range,

meaning that its transconductance is preserved up to a few GHz. The main frequency

limitation of our geometry is extrinsic, it originates from the high resistivity of the thin

tungsten gates.

VNA measurement Using the Janis probe station in a 3 probe configuration we

measure the scattering matrix elements between the channel gate and the drain, and

between the contact gate and the drain, up to 20 GHz and extract the admittance

parameters of the device (see chapter 6 for more details). Note that we have to apply a

relatively large DC drain-source bias Vds & 100mV to observe a transconductance effect.

Being limited by the gate resistivity, we limit ourselves to the 0.1 − 3 GHz range and

we deduce the transconductance for both channel gate gchm = ∂I/∂Vch and contact gate

gcontm = ∂I/∂Vcont. Surprisingly, gchm and gcontm are of the same order of magnitude and

both compare well with graphene FET standards [12, 82, 87] (gm/W ∼ 0.25mSµm−1)

as seen in Fig. 4.16-a. One should note that gcontm depends strongly on the operating

conditions (Vch,Vcont,Vds). Indeed, for a given Vcont, g
cont
m can be tuned from positive to

negative when changing Vch. This can also be observed in DC and in a pulse measurement

(Fig. 4.10 and 4.16-b respectively)

The high contact gate transconductance value suggests that a transistor can be operated

by the contact gate only. In that geometry, a thin DC channel gate would be sufficient

to set the channel doping. A large contact gate (whose size is not limited by the channel

length) would command the drain source current acting on the contact resistance. This
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geometry would maximize the transit frequency, as the channel can be short, but above

all it would maximize the power gain frequency by keeping a low gate resistance (see

chapter 6 for the description of a RF transistor).
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Figure 4.16: Finite bias operation of the contact gated transistor. (a) RF transcon-
ductance measurements for channel gating: black circles for Vds = 300mV , Vcont = 0V ,
and for two typical contact gating conditions: green diamonds for Vds = 300 mV ,
Vcont = −1V , red squares for Vds = 100mV , Vcont = 0.6V . (b) drain current tem-
poral trace under contact-gate pulses of amplitude . 90mV for Vds = 120 mV ,

Vch = −1→ 1 V (top to bottom), Vcont = −0.2 V .
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Figure 4.17: Schematic of the electric circuit in the pulse measurement configuration.
The contact gate is actuated by a nanosecond pulse and the channel gate by a GHz sine-
wave ; the drain-source current variation is amplified and acquired with an oscilloscope.
This is the situation of Fig. 4.18-a. A DC bias is applied at each port through the bias

tees
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Figure 4.18: Finite bias operation of the contact gated transistor. (a) Drain current
modulation under combined sine-wave channel gate excitation at 2GHz and 5ns pulsed
contact gate actuation (see Fig. 4.17). The DC biases are Vcont = 0 V , Vds = 150mV .
Inset: same conditions but at zero DC bias (Vds = 0) ; the sine amplitude indicates
the crosstalk level. (b) Drain current modulation under combined 10ns pulsed channel
gate actuation and 0.5GHz sine-wave contact gate. The DC biases are Vch = −0.1 V ,
Vcont = 0 V , Vds = 150mV . Inset: same conditions but at Vds = 0 ; the sine amplitude

indicates the crosstalk level.

As an example of application we drive the contact gate with short pulses using a pulse

generator Picosecond - Pulse Labs. The resulting drain current variation is amplified by

a Miteq amplifier (35 dB-0.1→ 2GHz) and detected with a fast oscilloscope Tektronix-

DPO (16 GHz-100 GSample/s). Fig. 4.16-b shows the oscilloscope trace of the drain

current when a 30 ns voltage pulse is sent to the contact gate while the channel gate

DC bias varies from p to n doping. We notice a sign reversal of the current when the

channel polarity is changed. What is observed here is the contact gate transconductance

as we measure the current variation in response to a Vcont variation. The sign can be

understood by looking at the DC R(Vcont) of Fig. 4.10: at Vcont = −0.2 V , the slope of

R(Vcont) changes sign when the channel polarity is reversed.

Having 2 gates, we can operate both of them at high frequency to create new function-

alities. As an illustration we apply a 2GHz sinus-wave on the channel gate and a short

pulse on the contact gate (schematic of Fig. 4.17 and measurement of Fig. 4.18-a). The

output sine signal is strongly modulated by the pulsed contact gate voltage, meaning

that the channel transconductance can be switched ON and OFF by the contact gate.

The residual signal observed in the OFF state corresponds to the capacitive crosstalk

between gate and drain at Vds = 02 as shown in the inset of Fig. 4.18. We show as well

the reversed operation where the contact gate is driven by a sinus-wave and the channel

gate is pulsed (Fig. 4.18-b). Again, the capacitive crosstalk signal is shown in inset. In

2At Vds = 0 there is no transconductance so the observed sine-wave is the direct capacitive coupling
between the gate and drain electrodes.
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the current arbitrary units, the signal peak to peak amplitude in the ON state is 0.8, it

is 0.5 in the OFF state and 0.4 in the crosstalk, so we have a good efficiency of our RF

switch. Choosing other bias conditions, we can also have the output signal magnified

during the pulse duration.

This demonstration that the contact gate is active at high frequency is important in

terms of the application of our new architecture. The graphene contacts are no longer

a drawback but can be used for new functionalities. For instance we can imagine an

optoelectronic device where the photocurrent is generated at the contact junctions and

modulated by asymmetric contact gates.

4.4 The gated contact transistor with CVD graphene (sam-

ple GoBN3)

As already mentioned, a large scale and reliable graphene production technique is es-

sential for applications. Chemical vapor deposition (CVD) of graphene is a solution as

the quality of CVD graphene is improving regularly. It is then important to test the

compatibility of our GoBN technology with CVD graphene. In addition, the fabrication

process is much simpler with CVD than with exfoliated graphene as a single transfer

CVD transfer allows to cover many devices. As a result we obtain a much better yield

within one fabrication run: a rate of 6 out of 9 devices were successfully contacted and

measured, against ∼ 1 out of 10 for exfoliated graphene.

Figure 4.19: AFM image (phase mode) of the etched graphene channel (darker brown)
before contact deposition(device GoBN3-4x1). Some wrinkles (white lines) are visible on
the graphene. Elsewhere the white lines correspond to different depths of the partially
etched BN, the graphene wrinkles played the role of a shadow mask during the O2

etching. The white scale bar is 1µm.



The gated contact transistor with CVD graphene (sample GoBN3) 85

4.4.1 Sample presentation

device bdevice a
a)

b)

c)

Figure 4.20: (a) optical pictures of devices GoBN3-4x2 and GoBN3-1x2. One can
notice the remains of folded CVD graphene outside the BN flake. White scale bar:
10 µm. (b) AFM images (phase mode) of the two devices before contact deposition.
One can notice the presence of a few graphene wrinkles. White scale bar: 1 µm. (c)
SEM images of the devices. The channel of device 4x2 appears much cleaner than the
one of 1x2. White scale bar: 1 µm. Device dimensions: L = 500 nm, W = 1.5 µm and

t4×2
BN = 15 nm, t1×2

BN = 12 nm.

Devices with a similar geometry are fabricated using hBN flakes as gate dielectric and

CVD graphene. hBN flakes are transferred on local contact and channel tungsten gates

using the van der Waals pick-up technique [8]. This step is followed by an annealing of

the sample at 300◦C with Ar/H2 atmosphere to remove resist residues. CVD graphene

is provided by the group of V. Bouchiat (Institut Néel, Grenoble) and is transferred

on the wafer in wet conditions [10] at LPA. Another annealing procedure is performed

after the transfer. Contacts are made of 50 nm evaporated Pd. Note that the channel

dimensions slightly differ from the previous sample: for GoBN3 we have L = 500nm and

W = 1.5 µm. AFM scans of the devices are performed systematically once the channel
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has been defined by O2 etching but before contact deposition. On the phase channel

a good contrast between BN and graphene is observed. Unfortunately, many devices

exhibit wrinkles or defects in the channel like the device GoBN3-4x1 in Fig. 4.19. Two

other devices GoBN3-4x2 and GoBN3-1x2 are shown in Fig. 4.20

4.4.2 DC measurement: Contact gate effect at room temperature
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Figure 4.21: Device GoBN3-4x2. R(Vch) at room temperature fitted by the contact
gating model. The result of the model is: RK = 105 Ωµm, Rmg = 75 Ωµm, µ =
3500cm2/V/s, ∆W ' 10 meV and tdl = 0.3 nm. (sample dimensions L = 500 nm,

W = 1.5 µm, t4×2
BN = 15 nm)

We focus here on two devices, 4x2 and 1x2, showing typical properties of gated contact

transistors. As explained in the previous section, DC measurements are carried out to

extract R(Vch) for various Vcont which is shown in Fig. 4.21 and 4.22. Those samples show

good modulation with the contact gate although it seems less impressive than GoBN2

studied in the previous section. The most obvious reason comes from the longer channel

and lower sheet mobility for the CVD samples. Thus there is a larger contribution

from the channel resistance. Nevertheless the absolute modulation is not negligible:

∆R ≈ 140Ω for device 4x2 ∆R ≈ 230Ω for sample 1x2. Let us look deeper into the data

of sample 4x2 in Fig. 4.21. We see the asymmetry reversal of R(Vch) when the contact

gate is tuned over Vcont = −4 → +2 V , suggesting the polarity reversal of contacted

graphene. The symmetric curve is obtained for Vcont ≈ 0V , pointing out a very small

doping induced by Pd. The smaller resistance variation with Vcont indicates a higher

screening constant εc that is the result of a shorter metal-graphene distance tdl. The

model presented earlier is applied to this sample. At Vcont = −4V the total contact
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Figure 4.22: Transfer curves of Device GoBN3-1x2 as a function of channel gate
voltage (left panel) and contact gate voltage (right panel). We observe a maximum of
the R(Vcont) curve, suggesting that the contact neutrality is reached. The measured
resistance remains much higher than in Fig. 4.21 indicating a lower sample quality.

(sample dimensions L = 500 nm, W = 1.5 µm, t1×2
BN = 12 nm)

resistance is Rc = 240 Ω namely 180 Ωµm per contact. It is divided into the Klein

tunneling resistance RK = 105 Ωµm and an additive contact resistance Rmg = 75 Ωµm.

Besides, the mobility is estimated at µ = 3500cm2/V/s. Concerning the contact doping

properties, we extract ∆W ' 10meV and tdl = 0.3nm which is indeed much lower than

that of GoBN2. The corresponding double layer capacitance is Cdl = 30 fFµm−2 which

is an order of magnitude larger than Ccont = 2 fFµm−2. Thus the screening constant is

εc = 140meV , and the tunable energy scale is

εW =
Ccont

Cdl + Ccont
eVcont + ∆W ' 0.045eVcont + 0.01 eV, (4.34)

expressed in eV with Vcont in V . So εW varies from −170meV to 190meV . Therefore,

this device operates in both screened and unscreened regimes, and the carrier density

below the contacts is modulated as ncont ≈ ±1× 1012 cm−2.

In accordance with the images of Fig. 4.20 device GoBN3-1x2 shows some degraded

characteristics: it has a higher contact resistance (baseline at ∼ 800 Ω) and a higher

channel resistance (R(Vch) ∼ 4000Ω at Dirac point) indicating a lower mobility. However

a good modulation with contact gate is observed and R(Vcont) has a maximum, indicating

that we reach neutrality in the contacted area.
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Figure 4.23: 10 K measurement on device GoBN3-4x2. Sample dimensions: t4×1
BN =

15 nm, L = 500 nm, W = 1.5 µm. (a) Transfer curve R(Vch) for Vcont = −1V (black
line) and Vcont = +1V (red line) (b) Phase signal of the AFM scan of the channel. The
contact edge position is shown with white lines. The blue line highlights a wrinkle that
could be one barrier of the Fabry-Pérot cavity (the scale is set by the contact distance
of 0.5 µm) (c) Same as (a) but for the conductance. Inset: G(nch) in logarithmic scale
to determine the residual density n0 ≈ 7× 1010 cm−2. (d) Conductance in the n-doped
regime as a function of the Fermi level energy. The dashed lines identify conductance
peaks with a spacing of ≈ 16 meV which corresponds to the resonances in a cavity

whose length is ≈ 129nm.

4.4.3 Low temperature measurement

A measurement of the GoBN3 sample was carried out in the Janis probe station at

10−5 mbar and 10 K. Looking at the transfer curves of device 4 × 1 in Fig. 4.23, one

can notice first the amazing improvement in the channel gate modulation (now a factor

∼ 10), the sharpness of the resistance peak (n0 ≈ 7 × 1010 cm−2 determined from the

log G vs log n plot in the inset of Fig. 4.23) and the minimum resistance (100 Ω) which

implies a very low contact resistance (Rc ∼ 75Ωµm). This resistance value suggests that
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we now deal with a quasi-ballistic device as this is what we expect in the ballistic regime

when the transport is coherent through the sample.

RK = (
4e2

h

√
πnW

π
)−1 = 54 Ω (4.35)

When n = 2 × 1012cm−2. Another signature of ballistic transport is observed through

Fabry-Pérot oscillations. They are rather weak due to a good contact transparency.

Even though different frequencies seem to be mixed, we can identify some periodic

conductance peaks indicated by the dashed lines in Fig. 4.23. The spacing between peaks

is ∆EF ≈ 16meV which corresponds to a cavity length of ≈ 129nm. To understand that

cavity length one has to come back to the AFM image of sample 4× 1 (Fig. 4.19) that

shows a few wrinkles in the channel. Oscillations are less visible for Vcont = −1V and

Vch on the p-doping side, which is consistent with a higher transmission of the contact

junction on that side. For Vcont = +1V , conductance is low and the oscillations are visible

on both sides, indicating a low transmission barrier at the contacts, this suggests that

the contacted graphene is close to neutrality for Vcont = +1V . From those observations

and the cavity length of ≈ 129nm, we assume that the observed Fabry Pérot oscillations

are the result of reflections between a contact and a wrinkle. The cavity is depicted in

Fig. 4.19 between the contact edge in white and the wrinkle in blue. From this we can

estimate a lower boundary for the carrier mobility: µ = lmfpevF /EF > 12800 cm2/V/s

at EF = 100meV . Nevertheless, some faster oscillations but with lower contrast suggest

that the mobility could be higher.

The minimum conductivity that we measure is σmin = 1.16×10−4S which is higher than

the theoretical value of 4e2/(πh) [21, 22] but smaller than 4e2/h in accordance with the

W/L ratio [23].

4.5 Variations around the gated contact (GoAl samples)

In collaboration with Thales Research & Technology and Michael Rosticher (ENS) we

fabricated and measured a series of devices based on the same split local back gate in

tungsten but at a larger scale. In order to avoid tedious and uncertain flakes transfers and

looking for more reproducibility we used wafer scale fabrication techniques: the dielectric

is now made out of aluminium oxide deposited by Atomic Layer Deposition and graphene

is obtained using CVD (from Graphene Supermarket). Using those techniques we were

able to obtain many more devices in each fabrication run. This allowed us to play with

the geometry of the devices and in particular to vary the position of the contacts with

respect to the gates. Two particular geometries will be shown here, the shifted contacts

and the backward contacts.
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We can start with a comment about the dielectric quality of Al2O3 versus hBN. In Fig.

4.24 we plot the drain-current temporal trace under contact gate pulse actuation for

both dielectrics in the experimental conditions described in section 4.3.5. The current

relaxation observed in the case of Al2O3 indicates the presence of interface charges with

slow dynamics (typically 100 ns) [88, 89]. Those interface charges are also responsible

for gate hysteresis effects. They are not present in hBN which is thus a more stable
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Figure 4.24: Drain current temporal trace measured with an oscilloscope under pulsed
contact gating using h-BN (red line) and Al2O3 (blue line) for the gate dielectric. The
slow current decrease in the case of Al2O3 is reminiscent of an interface charge relaxation

effect. This measurement confirms the superiority of hBN as a dielectric.

4.5.1 The shifted contact (sample GoAl1)

The device GoAl1 has an inter-gate gap which is purposely set at the middle of the

channel (Fig. 4.25-c). The source and drain contact edges are each located on top of

a different gate electrode. Therefore, this device has 3 junctions in series: 2 contact

junctions (which are not symmetric) and another junction in the channel. This makes

the analysis of the transport properties more complex. In addition it has to be mentioned

that the graphene mobility is much lower in this case as both the dielectric and the

graphene itself are not optimized for high mobility. Thus the measured resistance is

dominated by the mobility limited sheet resistance and the contribution of the junction

is more elusive. Another factor that we could take into account is that the dielectric

takes the shape of the gate electrodes and thus there is an air gap in the inter-gate

space, where graphene is suspended (over ∼ 10nm).

Figure 4.26-a shows the transfer curve of GoAl1 R(Vg1) for different Vg2 (g1 being the

former channel gate and g2 the former contact gate). Unfortunately, the g2 gate is leaking
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a b
Vg2
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Vg2

Vg1
Drain
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Figure 4.25: Graphene on Al2O3 ALD with local split gates. (a) coplanar waveguide
with 3 terminal. White scale bar: 100µm. (b) zoom on the active area. The blue square
corresponds to the Al2O3 deposited, the gate tungsten electrodes are on the top right
and the palladium contacts are on the bottom left. White scale bar: 10 µm. (c) SEM
image of the shifted contact GoAl1. (d) SEM image of the backward contact GoAl2.

White scale bar: 1 µm.

at Vg2 > 0.6V which limits our working range. First we notice that the R(Vg1) curves

are mainly shifted when tuning Vg2. Second, we note that with our particular process

graphene is naturally p-doped. As a result, the CNP lies at Vg1 ≈ +2V (for the g1 area),

similarly the resistance increases with Vg2 which also indicates a CNP at positive voltage

although no maximum is visible when varying Vg2 (the voltage range is too small). We

do not aim to fully analyse those data, but we can make a few qualitative remarks:

it seems that the effect of our dual gate geometry is essentially to tune independently

the carrier density (n1 and n2) of two distinct areas in series (g1 and g2 respectively).

However, the transfer characteristic is not symmetric and it shows a shoulder for Vg1 <

2V = VDP . This deviation from the standard transfer curve is a sign of the presence of

two asymmetric junctions at both ends of the g1 area. On one side we have the sharp

contact junction studied before but here the carrier density of contacted graphene is

tuned by the same gate that controls the g1 area. On the other side there is a smoother

junction, defined by the inter-gate gap whose transmission is controlled by both Vg1
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and Vg2. The transition from a flat R(Vg1) for Vg1 < −2V to the shoulder could be set

by the transition from n1 < n2 → n1 > n2. Defining RK1, RK2 and RK12 to be the

resistances from the contact junction on the g1 side, on the g2 side, and between g1 and

g2 respectively we can write the total resistance:

R(Vg1, Vg2) = RK1 +
L

W
(CAl2O3Vg1µ)−1 +RK12 +

L

W
(CAl2O3Vg2µ)−1 +RK2 (4.36)

Where CAl2O3 is the gate capacitance and µ ≈ 2000cm2/V/s is the sheet carrier mobility.
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Figure 4.26: Left panel: GoAl1 device with shifted contact. Right panel: GoAl2 device
with backward contact. In both cases the curves are mainly shifted upward when the
second gate is tuned which is attributed to a finite mobility effect of the graphene sheet.

4.5.2 The backward contact (sample GoAl2)

GoAl2 has both contacts lying on top of the former contact gate (Fig. 4.25-d). Therefore

there are two symmetric contact junctions and two symmetric junctions (g2 → g1 and

g1→ g2′) in the channel. The device is symmetric, and accordingly the transfer curves

shown in Fig. 4.26-right are indeed symmetric. Again, the main feature of this mea-

surement is the shifting of the curves when Vg2 is tuned, indicating transport properties

limited by diffusion in areas with different carrier densities. The origin of the onset of a

secondary resistance peak at negative Vg1 is not clear and could for example be due to

the bending of the suspended graphene through the inter-gate gap.
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4.6 Conclusion and perspectives

In this chapter we have introduced a new architecture for a graphene transistor: the gated

contact. Having a specific gate for the contact and having this gate very close to the

contacted graphene opens new perspectives of applications for graphene devices. In DC,

the contact polarity is fully controlled by the contact gate, the metal induced doping

can be enhanced to lower the contact resistance or compensated to achieve contact

neutrality, it can even be reversed. The device transport properties are well understood

with standard contact gating and p-n junction transmission models. In addition, we

have demonstrated that the contact gate can be actuated at GHz frequencies with a

transconductance comparable to usual channel gating.

Pushing the RF gated transistor further, we could break the scaling limit by having only

a contact gate to actuate the transistor hence not limited by the length of the channel

gate. This contact gate could also prove to be useful for optoelectronic devices where the

photocurrent is often generated at the asymmetric contact junctions. To this end, the

asymmetric GoAl devices, presented in the last section, could be of great interest. Indeed,

it is a way to introduce a sharp p-n junction which is electrostatically controlled in the

channel of a graphene transistor. It has been shown several times that a photocurrent

is generated around a p-n junction [25, 76] through the photoelectric or the photo-

thermo electric effect. Here we could take advantage of the short channel, the sharp and

tunable junction, and the fact that our devices are embedded in a coplanar waveguide to

study fast photocurrent generation [90]. In particular, asymmetric contacts are generally

used to generate a non-compensated current at both contacts, here, the asymmetry

level is directly controlled by Vg1 and Vg2. We have started some preliminary photo-rf

transport experiments with those devices, unfortunately the optical part of our setup is

not yet optimized and the optical power incident on the device was too low to allow for

photocurrent detection.

In the longer term, the gated contact could be implemented in an electronic quantum

optics experiment for single electron sources [40].





Chapter 5

Velocity saturation in local gate

devices

In a transistor, the current saturation may have two origins. One is the pinch-off effect

that occurs when the depletion region appears at the drain side of a semiconductor

device. The other is when the current saturation is actually due to carrier velocity

saturation which is a consequence of the phonon scattering. It is the one that generally

prevails in graphene. In this chapter we aim to address the subject of the high bias

regime, that is to say high drain source voltage (Vds & 100 mV ). In this regime and

for high mobility samples, current saturation occurs, but with a peculiar aspect due the

local nature of the gating and related to the bias-induced doping profile in the channel.

Let us start with an experimental observation. In figure 5.1 we plot the I-V character-

istics and the differential resistance r(Vg) = dVds
dI (differentiated numerically or directly

extracted from a small signal measurement at finite frequency) at various Vds for two

types of devices: graphene on hBN with a remote back gate 1 (left panel) and graphene

on hBN with a local bottom gate (right panel, device GoBN3-4x2 of section 4.4.2).

First, we notice a trend toward current saturation in the I-V characteristics when Vds

increases. This sublinear behavior is also reflected in the increase of the differential

resistance with Vds for certain Vg. This effect is generally attributed to scattering by

optical phonons which are triggered at high bias due to their rather high energy ~Ω [91–

96]. A debated question arises here: whether the relevant optical phonon are the graphene

intrinsic ones (~Ωgr ≈ 150 meV [97]) or those of the substrate (~ΩSiO2 ≈ 55 meV ,

~ΩhBN ≈ 100 meV [95]). This is illustrated by the graphene phonon spectrum and the

hBN infrared spectroscopy of Fig. 5.2.

1The data is extracted from measurements by A. Betz [36]. The sample is a L×W = 2.2× 2.7 µm2

graphene flake on hBN, the Si substrate is used as a gate with a dielectric thickness of 1 µm

95
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Figure 5.1: Observation of high biased samples. The left panel is adapted from [36]

with a graphene sample L × W = 2.2 × 2.7 µm2 on hBN with a remote (silicon
substrate/1µm SiO2) back gate. (a) I-V characteristic for several gate voltages. (c)
Differential resistance r = dVds

dI as a function of gate voltage for increasing bias volt-
ages Vds = 0 → 1.2V . Right panel: measurements performed on sample GoBN3-4x2

(L ×W = 0.5 × 1.5 µm2, see section 4.4.2), with a local gate. (b) I-V characteristics
for various gate voltages. Thanks to a good mobility, the I-V curves show a trend to
saturation. (d) Differential resistance r(Vg) for Vds = 0→ 1.2V . The “boa digesting an

elephant” shape is a characteristic feature of a locally gated device

Secondly, we observe a peculiar differential resistance r(Vg) curve shape at high Vds for

the local gate device (Fig. 5.1-d), which is different from the one observed for the remote

gate device (Fig. 5.1-c). This particular shape, that we are going to call “a boa digesting

an elephant” (and not a hat) is characteristic of local gate devices. For those devices

the quantum capacitance effect is not negligible and the gate cannot set a homogeneous

carrier density in the channel. As a result, when driven at high bias, the device may

present a localized charge neutrality point (CNP) in the channel (analog to the “pinch-

off” effect in MOSFET) whose position depends on (Vg, Vds) [91]. Therefore our GoBN
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geometry is well suited to study both effects. In order to separate them we distinguish

three domains: in the range Vg = −3→ −1V of Fig. 5.1-d the channel is unipolar p and

the prominent mechanism is the optical phonon scattering, in the range Vg = −1→ 2V

the channel is bipolar and the main resistance contribution comes from the bias induced

CNP in the channel. For Vg > 2 V , the channel is unipolar n.

As we shall see in chapter 6, those high bias phenomena turn out to be of great impor-

tance for the realization of graphene radio frequency (RF) transistors as both large Vds

and local gates are needed to achieve high transconductances. On one hand, the device

speed is limited by the carrier saturation velocity vsat = (2/π)~ΩvF /EF that depends on

the optical phonon energy involved in the scattering mechanism. On the other hand the

increase of the differential resistance (hence the current saturation) leads to enhanced

voltage gains and ultimately to a higher power gain cut-off frequency fmax.

In the present chapter, we focus on the physical phenomena underlying the high bias

curves in Fig. 5.1-b and d. We first present a simple model (inspired from [98]) describing

the scattering by optical phonon. We use it to analyse our experimental results and single

out the most prominent scattering mechanism (intrinsic optical phonon or substrate

phonon). Finally we integrate this mechanism to a model for the heterogeneous doping

profile in the channel to explain the “boa digesting an elephant” shape of the transfer

curve at high bias.

5.1 Current saturation by optical phonon scattering

5.1.1 Introduction and overview

In graphene, acoustic phonons interact weakly with electrons, they are relevant at low

field and their effect is visible in high mobility samples. At room temperature, the in-

trinsic graphene resistivity is limited by acoustic phonon scattering corresponding to

a mobility of µ = 2 × 105 cm2/V/s [8, 102]. The low acoustic phonon-electron inter-

action is responsible for the exceptional conductivity of graphene and the fact that its

room temperature mobility exceeds that of any other semiconductor. At moderate fields,

acoustic phonons control the out-of-equilibrium electronic temperature [103, 104]. But

at very high field (V ∼ 1V/µm), the scattering by optical phonons becomes predominant

[96, 105]. The graphene intrinsic optical phonons energy threshold is ~Ωgr ≈ 150meV ;

they have been identified as the main source of relaxation at high energy by means of

shot noise thermometry in suspended bilayer graphene by Laitinen et al. [96]. However,
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Figure 5.2: (a) Phonon dispersion and electron energy loss spectroscopy data for
graphene (ref. [99]). The main optical phonon scattering mechanism is due to the longi-
tudinal optic (LO) phonons at the K point (red circle), that is to say ~Ωgr ≈ 150meV .
(b) Infrared nanospectroscopy of hBN and graphene on hBN from ref. [100]. A low
energy peak is observed at 817 cm−1 = 101.3 meV which corresponds to the surface
phonon of hBN relevant for electronic transport. This surface phonon energy can be

derived from the LO phonon energy [95, 101].

for supported samples, the measured saturation velocities vsat = (2/π)~ΩvF /EF
2, where

EF is the graphene Fermi level energy, are lower than the intrinsic optical phonon limit,

pointing out a lower energy of the phonon responsible for scattering [91, 92, 94, 95, 102]

(except for [93]). Consequently, the scattering by the substrate’s optical phonons, called

remote phonons or surface polar phonons (SPP) is invoked. Indeed, the impact of sub-

strate phonons on the electronic transport in semiconductors is well known since 1972

[106, 107], and it was soon considered in the case of graphene by Fratini and Guinea

[108]. As a result, the saturation velocity must depend on the substrate, for example, it

should be lower for graphene on SiO2, for which ~ΩSiO2 ≈ 59 meV than for graphene

on hBN ~ΩhBN ≈ 100meV [95]. We show in Fig. 5.2-a the graphene phonon spectrum

where the characteristic energy can be identified for the longitudinal optic phonon at

the K point. We show as well in Fig. 5.2-b, a spectroscopy measurement by Barcelos et

al. [100] indicating a surface phonon mode of hBN at ' 100meV .

We are aware of numerous saturation velocity measurements and analysis for SiO2 [91–

95], but very few for hBN [109]. Our study is therefore important to identify the satura-

tion mechanisms specific to graphene on hBN substrate that will limit the performance

of such transistors.

2Related to the saturation current by Isat = nevsatW , where n is the graphene carrier density and
W is the sample width.
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Substrates SiO2 Al2O3 HfO2 Sapphire Diamond SiC hBN

εr 3.9a 7.4a 11.7a 9a 5.5 9.7b 4.1b

~Ω (meV) 58.9b 55c 21.6b ≈ 48d 165e 116b 101.7b

Table 5.1: Dielectric constants εr and surface phonon energies ~Ω of usual graphene
substrates and gate dielectrics. A high εr dielectric is an advantage in term of gating
efficiency, but more important is the value of ~Ω as it determines the saturation velocity.
From this, the diamond, SiC and hBN seem to be the best substrates (note however

that diamond and SiC cannot be used with local bottom gating).
aprivate communication from D. Neumaier, AMO. bRef. [95]. cRef. [110]. dRef. [111].

eRef. [112].

In [93] (see Fig. 5.3-a) the current saturation is investigated for graphene on SiO2 with

a remote back gate. The contact resistance issue is solved by using a four-point mea-

surement. The data is compared to a model based on the Boltzmann equation including

impurity and optical phonon scattering. The energy of the graphene intrinsic optical

phonon ~Ω = 149 meV is taken as an input of the model and fits well the data. In

[91], (see Fig. 5.3-c) graphene on SiO2 is considered as well, but with local gating. As a

result there is “kink” in the I-V characteristic (also in Fig. 5.3-b). This effect is related

to the “elephant” effect observed above: it is due to a non-uniform doping profile in the

channel at high bias. For a certain couple of values (Vg,Vds) the CNP is localized in the

channel, and an increase in Vds just shifts the CNP position without changing the device

resistance. At higher Vds, the channel is unipolar again and a nearly linear I(Vds) is

restored (this will be further discussed in section 5.2). So it is important to distinguish

the current saturation from optical phonon scattering and the current saturation from a

bipolar channel. Nevertheless, in [91], the authors claim that they can take into account

this effect in their analysis of the I-V curve, and they extract a relevant phonon energy

of ~Ω = 54meV thus very close to the SiO2 phonon energy. However it is worth noting

that the definition used to extract ~Ω is not consistent with other studies [92–95] by a

factor 2/π (see also Eq. (5.7)). Finally, to our knowledge, one single current saturation

measurement of graphene on hBN has been reported so far [109], that is plotted in Fig.

5.3-b. The author extract a relevant phonon energy ~Ω = 40meV significantly far from

the hBN phonon energy of 100meV . However, the same comments as above can be made

concerning the analysis.

blank space

5.1.2 Theoretical elements of optical phonon scattering

Here we present a model to describe the current saturation observed in our samples. As

there is still a debate on the relevant phonon responsible for scattering we note ~Ω the
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Figure 5.3: (a) Current saturation measurement for graphene on SiO2 by Barreiro et
al. [93]. Sample size: L = 1.3µm, W = 0.35µm. The current is measured in a four-point
configuration, thus avoiding contact resistance effect and for various remote back gate
voltages Vg. (b) Current saturation measurement for graphene on hBN by Meric et al.
[109]. Sample size: L = 0.44µm. The current is measured within a 2-points configuration
and with a local gate. The light blue curve shows a “kink” effect, characteristic of a
local gated device, for which the current nearly saturates around Vds ∼ 0.5 → 1 V
before increasing again at Vds > 1 V . This effect is a sign of a bipolar channel (as
explained in [91]). Note that for both measurement the maximum current density is
around 1mA/µm (c) Current saturation measurement from [91]. The left plot is taken
at lower density to show the kink effect. The right plot is taken at higher density to
ensure an unipolar channel and extract the optical phonon energy, but the kink is also

observed at Vsd = 3V .

phonon energy whose value should settle the question about its nature.

To model the scattering by optical phonon we rely on a simple heuristic model which has

been introduced in the case of the Carbon Nanotube by Yao et al. [98] and for graphene

in [93] and in [113] where it is supported by Monte Carlo simulations. In that model,

one considers the graphene electrons being accelerated by an electric field E and it is

assumed that once an electron reaches the energy of the optical phonon (or of the SPP)

it is stopped and emits a phonon. Thus the phonon emission occurs when the electric

field work is equal to the phonon energy:

eElΩ = ~Ω (5.1)

lΩ =
~Ω

eE
(5.2)

Where lΩ is the scattering length associated with the emission of an optical phonon.
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In the case of ballistic graphene, where the optical phonons would be the only source of

scattering, this would lead to a conductance [114]:

G0 =
4e2

h

kFW

π

lΩ
L+ lΩ

(5.3)

Where L is the sample length and we assume L >> lΩ. Besides we have E = Vds/L.

From Eqs. (5.2) and (5.3) we get

G0 =
4e2

h

kFW

π

~Ω

eVds
, (5.4)

which gives a saturation current:

Isat =
4e2

h

kFW

π

~Ω

e
(5.5)

=
2ekFWΩ

π2
(5.6)

We can estimate this current. If the main source of scattering comes from the intrinsic

graphene optical phonons then ~Ω ≈ 150meV . Thus Isat = 1.3mA/µm at n = 1012cm−2

and Isat = 3.2mA/µm at n = 6× 1012cm−2 (this is the maximum density at which we

measured the saturation). On the contrary, if the dominant scatterers are the phonons of

the substrate, in the case of hBN: ~Ω ≈ 100meV . Which leads to Isat = 0.9mA/µm at

n = 1012cm−2 and Isat = 2.1mA/µm at n = 6×1012cm−2. Note that in [93] it is specified

that the Isat formula is valid only for EF ≥ ~Ω/
√

2, that is to say n ≥ 0.4× 1012cm−2

Velocity saturation This saturation can also be expressed in terms of carrier velocity

saturation vsat using Isat = nevsatW . Which gives:

vsat =
2

π

~Ω

EF
× vF (5.7)

Here, one should be careful with the 2/π pre-factor which was “forgotten” in [91, 115]

and which changes the calculated value of Ω when the measured quantity is Isat.

In the high bias limit, even for a diffusive device the smallest scattering length would

be the one associated with optical phonons, we therefore expect an actual saturation

current of the order of the estimations above. Theoretically its value should allow us to

discriminate between the intrinsic phonons and the SPP. However we never observe a

full saturation of the current and we need to include scattering by impurities for a more

accurate description.

Accounting for impurity scattering
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The impurity mean free path is given by

le =
2

π
µ~
√
πn/e (5.8)

We then use Matthiessen’s rule to add the different sources of scattering (see Fig. 5.4):

1

lscat
=

1

le
+

1

lΩ
, (5.9)
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Figure 5.4: Comparison between the impurity scattering length le from Eq. (5.8)
(black line) and the optical phonon scattering length lΩ for different bias voltages using
Eq. (5.2) (dotted lines). The total scattering length obtained with the Matthiessen’s

rule is plotted with a dark green solid line at high bias (phonon limited).

and the sample conductance is now given by [114]:

G =
4e2

h

kFW

π

lscat
L+ lscat

(5.10)

Which can be expressed as a resistance:

R =
hπ

4e2kFW
(1 + L(

1

le
+

1

lΩ
)) (5.11)

=
hπ

4e2
√
πnW

(1 +
eL

2
πµ~
√
πn+ eVds

~Ω

(5.12)

=
hπ

4e2kFW
+

L

Wneµ
+

hπ

4e2kFW

eVds
~Ω

(5.13)

We can easily identify the three terms in that expression: The first term is the ballistic

resistance, the second term is the well known diffusive term while the third term cor-

responds to the calculation above where the only source of scattering are the optical
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phonons, this is the term responsible for saturation. A convenient experimental way to

extract the saturation current is to write [98]:

R = R0 +
Vds
Isat

(5.14)

Where R0 contains the first 2 terms of Eq. 5.13 plus (in experimental conditions) the

contact resistance. Measuring R(Vds) one obtains a linear behavior where the constant

term gives information on the impurity scattering (hence the mobility) and the con-

tact resistance while the slope gives information on the optical phonon energy. This is

therefore a good way to decouple the optical phonon contribution from other scattering

sources.

Equivalently, taking Eq. 5.13, neglecting the ballistic term ( hπ
4e2kFW

) and using the pre-

viously calculated velocity saturation vsat one could express the current as:

I =
Vds
R

= Wne
µVds/L

1 + µVds/(Lvsat)
(5.15)

As a conclusion of this theoretical section we note that the effect of a low mobility is

mainly to increase the treshold voltage of saturation and to blur the transition toward

the current saturation regime. It explains why current saturation is only observed in

high-mobility samples. If the mobility is too low, the sample burns before showing a

saturation effect.

5.1.3 Experimental results

In Fig. 5.5 we show our experimental results at high bias obtained on the graphene on

hBN sample GoBN3-4x2 already presented in section 4.4. Several devices have been mea-

sured and show similar results, GoBN3-4x2 being chosen for its low contact resistance.

In this experiment, the contact gate is DC biased at a large negative value Vcont = −2V

to further reduce the contact resistance on the p-doping side. We apply a large DC bias

across the channel while probing the small signal device conductance at RF frequency.

The measurement takes place in the Janis probe station at 8 K. The S-parameters are

measured from 70 kHz to 20 GHz with an excitation level of −30dBm ≡ 7 mV . The

complex impedances (Y parameters) are extracted (see section 6.1.2 and in particular

Eq. 6.4) and from the real part of Y 22 one directly obtains the small signal conductance

of the device gds = r−1. First one can verify in Fig. 5.5 that gds(f) is flat between 70kHz

and ∼ 3GHz. We average over that range to get an accurate value of r = 1/gds which is

therefore the differential resistance mentioned above. From here we can go back to the
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Figure 5.5: High bias measurement on sample GoBN3-4x2 (L = 0.5µm, W = 1.5µm,
thBN = 15 nm) at T = 8 K. (a) VNA measurement of the small signal channel con-
ductance <(Y 22) = gds(f) as a function of frequency in the range 70 kHz → 200MHz
(inset) and up to 20 GHz (main panel). (b) Differential resistance r extracted from
panel (a) by averaging <(Y 22)−1 over the flat frequency range 70 kHz → 3GHz, as a
function of gate voltage Vch for various biases Vds. (c) I-V characteristics for Vch < 0. (d)
I-V characteristics for Vch > 0. We observe a trend toward saturation at high densities,

and a slight change of curvature near the Dirac point.

total current in the device by integrating gds:

I(Vds) =

∫ Vds

0
gdsdV (5.16)

The calculated current I is consistent with the one measured at DC, but the differential

resistance measured in RF is more accurate than the DC one, which is obtained through

numerical differentiation. I(Vds) and r(Vch) are displayed in Fig. 5.5. One can notice

again the elephant shape of r(Vch) and the trend toward saturation of I(Vds). We first

investigate the saturation due to optical phonons so we focus on the homogeneous p-

doped regime to avoid being disturbed by the elephant head. Moreover, the contact
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resistance is lower on that side. As already mentioned, there is a shift of the CNP gate

voltage when increasing Vds that can be seen in the color plot of r(Vch, Vds) in Fig. 5.6.

To ensure a constant average carrier density while increasing Vds, we take some oblique

cuts in the data, parallel to the black line of Fig. 5.6.

V
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Figure 5.6: Color plot of the differential resistance r(Vch, Vds). The shift of the Dirac
point gate voltage with respect to Vds is emphasized by the black dotted line.

From the theoretical section we know that it is convenient to plot Vds/I as a function

of Vds to extract the phonon energy. Following oblique cuts parallel to the dotted line

of Fig. 5.6, we replot I(Vds) and V/I(Vds) for various gate voltages Vch < 0 in Fig. 5.7.

As predicted by the model, we observe a linear behavior of Vds/I above the Vds < 0.3 V

region which is a regime where acoustic phonon scattering contribute significantly. We

also plot in Fig. 5.7 the curves (solid lines) obtained from the fit of the data with (see

Eq. 5.13):
Vds
I

= 2Rc +
L

Wneµ
+

hπ

4eW
√
πn

Vds
~Ω

(5.17)

The gate voltage range is restricted to −3.2 → −1.4 V to stay in the large doping

regime where the model is valid. The only fitting parameter is the phonon energy ~Ω.

The contact resistance 2 × Rc = 100 Ω (determined from 4.4.3) and the mobility µ =

3500 cm2/V/s are extracted independently from the gated contact model in 4.4.2. We

obtain a very good agreement with the model over a broad Vds and Vch range by taking

~Ω = 105meV . This value sets the energy scale of the dominant scattering mechanism

at high bias. It is consistent with the energy of the surface polar phonons of hBN.

Nevertheless, we do not reach the full saturation and the current stays below the

asymptotic Isat. As an illustration, in Fig. 5.8 we plot the measured drift velocity
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5.6 to ensure a nearly constant carrier density. The dots are experimental points, the
solid lines are plotted from Eq. (5.17) using ~Ω as a single fitting parameter. In the right
panel, the V/I(Vds) data shows a good agreement with the expected linear behavior for

Vds > 0.25 V .

vd = I/(neW ), first as a function of Vds to see the tendency to saturation and sec-

ond as a function of the carrier density n to compare with the saturation velocity

vsat = (2/π)~ΩvF /EF expected when ~Ω = 105meV . An extrapolation of the model at

higher Vds (or equivalently with a higher mobility) shows a full saturation and higher

drift velocities.

5.1.4 Partial conclusion

From the trend toward saturation of the I-V characteristics we were able to extract

an energy scale for the inelastic scattering mechanism of ~Ω = 105 ± 5 meV . To our

knowledge, this is the first time that such a value, close to the energy of the hBN surface

phonon is measured. It suggests that for graphene on hBN, the dominant scattering

mechanism at high bias is the scattering by remote phonons of the substrate. This

value is important for the design of future graphene RF transistor as it will set the

the saturation velocity limit hence the speed of the transistor. Let us notice that our

reference value ~ΩhBN ≈ 101.7 meV [95] stands for a semi-infinite hBN, whereas in

our measurement, the hBN thickness is 15 nm. An interesting further study would be

to estimate the phonon energy for different thickness of the hBN dielectric for which

~Ω may deviate as it was shown by Fischetti et al. [107] in the case of Si. The critical

thickness is related to the spatial extent of the remote phonon evanescent wave, which
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Figure 5.8: Left panel: Data of Fig. 5.7 replotted in terms of drift velocity vd =
I/(neW ) (without fit). Right panel: Maximum measured drift velocity at Vds = 0.8 V
compared to the saturation velocity one would expect for a full saturation by hBN
remote phonon scattering (Eq. (5.7)), as a function of the carrier density n. The low

density region is not plotted as (5.7) is no longer valid for |n| < 0.4× 1012cm−2

would be ≈ 6nm for hBN according to Viljas [116]. The effect of the remote phonons is

also important in terms of energy relaxation of hot electrons. For example, it has been

pointed out in [101], that the substrate phonon will limit the photocurrent generated in

optoelectronic devices. Finally, the remote phonons will play a role in graphene plasmonic

devices to form hybrid plasmon-phonon modes [117].

5.2 Bias induced doping profile

Let us return to the “elephant” shape of the differential resistance of Fig. 5.1-d which

is specific to locally gated devices. As already mentioned, this effect comes from a non-

uniform carrier density in the channel, related to the quantum capacitance effect or

equivalently to inhomogeneous screening effects. However, the remote phonon scattering

also has to be accounted for, to explain the overall shape of the high bias transfer curve.

In this section we combine the screening effect (or quantum capacitance) introduced in

section 4.2.2 with the scattering by the remote phonons of hBN in order to propose a

simple model reproducing the “boa digesting an elephant”.
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5.2.1 Modelling the potential profile

Applying an electrostatic potential to the drain electrode changes the electrochemical

potential landscape of graphene in the channel. The electrochemical potential difference

between source and drain is equal to Vds. We assume this potential is varying linearly in

the channel. The new electrochemical equilibrium equation depending on the x position

in the channel reads:

∆EF (x) + eVgr = −eVds ×
x

L
(5.18)

Following the procedure developed in the previous chapter, this equation is combined

with the electrostatic one: n(x)e = Cg(Vgr − Vg) to calculate ∆EF (x).

∆EF = sign(εW )× εc(

√
1 + 2

|εW |
εc
− 1) (5.19)

With

εc = Cg
π~2v2

F

2e2
(5.20)

and

εW (x) = eVg − eVds ×
x

L
(5.21)

Resulting in an inhomogeneous ∆EF within the channel. This effect is sketch in Fig.

5.9. Simulations using ∆EF (x) as calculated above are shown in Fig. 5.10. We observe

here that ∆EF is almost homogeneous in the channel at large doping. At lower doping

its variation is stronger and ∆EF is no longer linear with x. Starting from an n-doped

channel and decreasing Vg, we first reach neutrality at the drain side, then we have a

local neutral area whose location is shifted toward the source. At this point the channel

is ambipolar. Further decrease of Vg leads finally to a p-doped channel.

∆EF is converted into the local carrier density:

n(x) =

√
(

∆E2
F

π~2v2
F

)2 + n2
0 (5.22)

Here we have to take into account the residual carrier density n0. But for high biased

samples, the electronic temperature can rise up to 800K [103] and the resulting thermal

broadening that depends on Vds has to be accounted for as well. We propose to write the

residual carrier density as the sum of an impurity contribution term and a hot electron

term: n0 = nimp + nth, with:

nth = αV
4/3
ds (5.23)
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Figure 5.9: Potential profile in the channel at high bias for increasing gate voltages
from top to bottom. In (i) the gate voltage is negative and the channel is unipolar p. In
(ii) the CNP has entered into the channel from the source side, the channel is bipolar.
Here, tuning the gate voltage has little effect on the total resistance which translates
into a relatively flat R(Vch) around Vch = 0V . In (iii) the Dirac point leaves the channel
area at the Drain side. (iv) The gate voltage is positive and the channel is unipolar n.

Where α is a constant. The 4/3 exponent of Vds comes from the supercollision cooling

regime of undoped graphene [104] where the electronic temperature scale as3: T 3
e ∝ V 2

and n ∝ T 2
e .

3At high bias and low doping the Joule power obeys V 2/(RLW ) = AT 3
e where the pre-factor

A ∝ n and the resistance R ∝ 1/n so AR is constant. We take a typical value from [104]:

AR = 1.3 × 103V 2m−2K−3. Then we convert it in carrier density using: nth ∼ ∆E2
F

π~2v2
F

= (kBTe)2

π~2v2
F

=

k2B
π~2v2

F

1

(ARWL)2/3
V 4/3. So that α ≈ 4.4 × 1015/(1012WL)2/3 = 5.3 × 1012cm−2V −4/3 for our sample

dimensions L = 0.5µm, W = 1.5µm. (We do not intend here to quantitatively describe that effect but
just to give an insight into the bias dependent broadening.)
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Figure 5.10: Simulated ∆EF (x) along the channel, (a) Vds = 0→ 1.2V at Vg = 0.6V
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homogeneous in the channel, but when increasing Vds a bipolar channel can be reached.
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bipolar channel can be reached as well. (c) 2d map of the local resistivity as a function of
the x-position along the channel and the gate voltage Vch for a bias voltage Vds = 1.2V .

The total resistance of the device is the integration over x of this resistivity.

5.2.2 Combining potential profile and scattering

We write again the scattering by impurities and optical phonons.

The impurity mean free path is:

le(x) = µ~
√
πn(x)/e (5.24)

And the optical phonon mean free path is given by:

lΩ(x, Vds) =
~Ω

eVds
L (5.25)
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The total mean free path is given by the Matthiessen’s rule:

1

lscat
=

1

le
+

1

lΩ
(5.26)

Thus the local resistance is

r(x) =
πh

4e2W
√
n(x)π

dx

lscat(x)
(5.27)

We finally integrate over x to find the total resistance of the channel.

Rds =

∫ L

0
r(x) (5.28)

Equivalently we calculate the differential resistance rds from Ids = Vds/Rds and rds =

dVds/dIds.

5.2.3 Results and discussion

The results of this model are plotted in Fig. 5.11. We do not aim to fit our experimental

data exactly but only to be able to retrieve the overall shape of the high bias transfer

curve. The simulated sample has a size L = 500nm, W = 1.5µm and a typical mobility

µ = 5000 cm2/V/s. The phonon energy is taken at ~Ω = 100meV .

First we plot the differential resistance rds from our model using a dielectric thickness

thBN = 300 nm (top panel of Fig. 5.11), hence with a remote gate, in order to stress

the importance of thBN for the “elephant shape”. Basically, the effect of the bias is to

blur the resistance peak due to a thermal effect and to increase the resistance at higher

densities due to phonon scattering. Then we plot the simulated rds with thBN = 15 nm

in the middle panel of Fig. 5.11. A negative (positive) bias shifts the resistance peak

toward negative (positive) gate voltages respectively. For comparison, in the bottom

panel we plot the measured differential resistance for both negative and positive bias

voltages. The lack of symmetry between Vds < 0 and Vds > 0 is probably due to a

contact resistance effect. Finally, we also plot in Fig. 5.12 the 2D plot of the differential

resistance as a function of the gate voltage and the bias voltage from the experimental

data (left panel) and from the model (right panel).

The model captures the main features of experimental data. We argue that with the

ingredients of the model introduced in this section we obtain a good understanding of

the physics of a graphene on hBN transistor driven at high bias. This is important in

terms of RF applications:
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• One wants to maximize the current flowing through the device in order to maximize

the transconductance. This is achieved by using a substrate with high energy

surface phonons which translates into a large saturation velocity.

• A large velocity saturation also leads to a faster transistor, the current gain cut-off

frequency being fT = vdrift/(2πL) (L is the channel length).

• The small signal resistance must be large in order to increase the voltage gain of a

transistor. This generally comes from the phonon induced current saturation, but

one can also engineer the density profile to take advantage of the “Dirac pinch-

off” effect and further increase the differential resistance. Note as well that a good

mobility allows to reach the saturation regime at lower bias, hence to reduce the

transistor’s consumption and hot electron effects.

To illustrate the relevancy of velocity saturation for graphene electronics we finally plot

in Fig. 5.13 (a) the I-V curve of a typical MOSFET and (b) the simulated I-V curve

of our graphene transistor. In the simulation we just push Vds further and increase the

mobility to µ = 15 · 103 cm2/V/s to show the full saturation regime. Here, the graphene

transistor and the MOSFET show very similar properties, with a linear regime followed

by the current saturation, the main difference being the absence of current suppression

for graphene, which is not a drawback for high frequency electronics. Thanks to the high

mobility of graphene on hBN, there is a fast increase of Ids at low bias, and thanks to the

hBN high energy surface phonon, the current reaches values as large as Ids ≈ 2mAµm−1.

The full current saturation in Fig. 5.13-b is reached thanks to the combination of the

scattering by the hBN surface phonons and to the “Dirac pinch off” effect described

above.

In the next chapter we drive our devices in the current saturation regime and we show

measurement in the 0− 20GHz range to attest their performances as RF transistors.
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Figure 5.11: Differential resistance calculated with our model for remote and local
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and the quantum capacitance effect. Bottom panel: experimental data from sample

GoBN3-4x2 taken at room temperature. (L = 500 nm, W = 1.5 µm)
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Figure 5.13: (a) Typical I-V curves of a MOSFET from [71]. (b) Simulated I-V curves
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to the high mobility, and a saturation thanks to the scattering by the remote phonons

of hBN
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Application: the RF transistor

The use of graphene in radio frequency (RF) electronics has raised a great deal of interest

since the first attempts to make field effect transistors working at GHz frequencies ([91]

and [118]). Indeed, the high carrier mobility and the high Fermi velocity of graphene

should make it possible to realize transistors with cut-off frequencies in the sub-THz

range. However, real devices operate at high bias where the mobility decreases and the

drift velocity saturates.

In this last chapter, relying on the high bias properties discussed in the previous chapter,

we show the potential of our GoBN devices for application as RF transistors.

Very few RF transistors with graphene on hBN have been measured so far [14]. Although

our samples are not fully optimized to compete with the state of the art graphene RF

transistors1, it is interesting to see what is gained using an hBN substrate. Here we

take advantage of the current saturation shown in the previous chapter to maximize the

power gain cut-off frequency fmax.

6.1 The graphene RF transistor

6.1.1 A quick review

The past few years have seen a race for obtaining graphene RF transistor operating at

higher frequency [12, 13, 82, 118, 119]. But we need to specify what we mean by operating

frequency. There are two main figure of merits for RF transistors: the current gain cut-off

frequency also called transit frequency fT and the power gain cut-off frequency fmax. fT

1In particular our sample width W = 1.5 µm is not sufficient to ensure a large transconductance.
Moreover our tungsten gate electrode has a large resistivity, limiting the device performance in term of
power gain.

115
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a.
b.

c. d.

Figure 6.1: (a) TEM cross section of the world-record fT = 350GHz transistor [13].
Note the very short channel and very thin dielectric thickness. (b) Graphene on hBN
RF transistor [14] achieving fmax = 34 GHz. Note the non-gated access area in the
channel that suggests there is a room for improvement. (c) Epitaxial graphene RF
transistor with T-gates fmax = 74 GHz after de-embedding. (d) TEM cross section
of the world-record fmax = 105 GHz transistor [16] using an “ultra clean self aligned

process” with T-gates.

was the first figure of merit to be investigated for graphene. Rapid progress was made and

fT up to 350GHz were obtained [13] (Fig. 6.1-a) for devices with a short channel and a

thin dielectric. Nevertheless, fT is mostly useful in terms of digital applications as it sets

the speed of logical operations, but the low ON/OFF ratio of graphene transistors does

not allow such operations. fmax is a more important figure of merit for analog devices,

for example for low noise amplifiers, which are a more realistic application of graphene.

fmax depends more critically on parasitic capacitances and resistances of the device but

above all it requires current saturation as will be shown later. As a result, reported

fmax values remain low. Several routes can improve fmax: in [14] hBN substrate is used

to improve current saturation and fmax = 34 GHz is obtained (Fig. 6.1-b). In [15],

T-gates and self aligned contacts are used to reduce the gate resistance and spurious

capacitances. Besides the authors use a Si-C substrate which has high energy optical

phonons ~ΩSiC = 115 meV . They obtain fmax = 70 GHz (Fig. 6.1-c). Combining self

aligned fabrication, low contact resistance, very thin dielectric (tAl2O3 = 6 nm), and

above all low gate resistance thanks to T-gates (RG = 2.2Ω), the authors of [16] hold

the record with fmax = 105GHz (Fig. 6.1-d).
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6.1.2 Definitions and figures of merit

At high frequency, we describe the transistor with the small signal model [120]. The

equivalent electrical circuit of the transistor is shown in Fig. 6.2. The intrinsic elements

(the channel resistance rds = 1/gds, the gate to drain capacitance Cgd, the gate to source

capacitance Cgs and the transcondutance gm are within the green dotted line area). The

extrinsic elements are the gate, drain and source electrode’s access resistances RG, RD

and RS respectively and the parasitic capacitances C0
gs, C

0
gd and C0

ds, within the red

dotted line area.

Vg
VdsC0

gs

Cgs

C0
gd

Cgd

Cds

rdsgmVg

port 1 port 2

gate drain

source

Rg
Rd

C0
ds

Rs

Figure 6.2: Small signal equivalent circuit of a graphene transistor. The green dotted
line delimits the intrinsic electrical lumped elements of our transistor while the red

dotted line delimits the extrinsic elements (noted with a superscript 0).

From a VNA measurement we have direct access to the Y parameters (see section 2.2.2),

which are related to the device parameters using Yij = Ii
Vj Vi=0

. Here are the intrinsic Y

parameters:

Y11(ω) = j(Cgs + Cgd)ω (6.1)

Y21(ω) = gm − jCgdω (6.2)

Y22(ω) = gds + j(Cgd + Cds)ω (6.3)

Y12(ω) = jCgdω (6.4)
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However one may want to take into account some of the extrinsic elements which can

be useful to understand the measured spectrum:

Y11(ω) =
Rg(Cgs + C0

gs + Cgd + C0
gd)

2ω2 + j(Cgs + C0
gs + Cgd + C0

gd)ω

1 +R2
g(Cgs + C0

gs + Cgd + C0
gd)

2ω2
(6.5)

Y21(ω) = gm − j(Cgd + C0
gd)ω (6.6)

Y22(ω) = gds + j(Cgd + C0
gd + Cds + C0

ds)ω (6.7)

Y12(ω) =
−Rg(Cgd + C0

gd)
2ω2 − j(Cgd + C0

gd)ω

1 +R2
g(Cgd + C0

gd)
2ω2

(6.8)

The transconductance gm The device transconductance is defined as below:

gm =
∂I

∂Vg
(6.9)

In the diffusive regime the current is expressed as

I = neµ
W

L
Vds, (6.10)

with n =
CVg
e , where C = ε0εr/thBN is the gate capacitance per unit area. Therefore

gm =
∂(neµWVds/L)

∂Vg
(6.11)

= Ceµ
W

L
Vds (6.12)

So to maximize gm one must work with a high mobility sample, with a short length L

and large width W, at large bias voltage and with a thin dielectric. However, at large

bias a saturation of gm is observed. It is related to the current saturation as the upper

limit for the current is Isat = neWvsat. Thus, at n = 1012 cm−2, for C = 2.3mF · µm−2

(our sample) and considering scattering by the surface phonons of hBN (~Ω = 100meV ,

see section 5.1), one obtains:

gm/W =
CΩ

π3/2
√
n
≈ 0.6mSµm−1 (6.13)

This upper limit for gm is still larger than typical measured gm ≈ 0.25mS µm in the

literature [12, 14, 15, 82, 121] and in this work. That can be explained by the fact that

the full current saturation is never reached.

Current gain The current gain is defined as below:

H =
I1

I2
=
Y 21

Y 11
=

gm − jCgdω
j(Cgd + Cgs)ω

=
gm

j(Cgs + Cgd)ω
−

Cgd
Cgd + Cgs

(6.14)
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With
Cgd

Cgd+Cgs
generally equals to 1/2. fT is defined as the maximum frequency at which

|H| > 1, therefore the intrinsic fT reads:

fT =
gm

2π(Cgs + Cgd)
(6.15)

With gm and Cg ∝ LW/tBN , one has to minimize the channel length L and the dielectric

thickness to increase fT . Measurements show a clear 1/L dependence of fT [13].

A more realistic expression of fT accounting for spurious contribution in a real device is

[122]:

fT =
gm/2π

(Cgs + Cgd + C0
gs + C0

gd)(1 + (RS +RD)gds) + (Cgd + C0
gd)gm(RD +RS)

(6.16)

The intrinsic fT is directly related to the transit time of the carriers through the gate

length, so it is a way to measure the actual drift velocity:

ft =
vdrift
2πL

(6.17)

This method is used in [123] to extract vdrift. The difficulty here is to accurately remove

the parasitic capacitances.

Finally we point out that generally Cgd ≈ Cgs (if the device is symmetric) so that in the

limit f >> fT , one has H → 1/2.

Voltage gain

The voltage gain A reads:

A =
gm
gds

(6.18)

In graphene transistors, A is generally below 1. One can see that we need to go into the

current saturation regime to decrease gds in order to increase A.

Power gain As already mentionned, an important figure of merit for RF transistors is

the maximum oscillation frequency fmax which corresponds to the cut-off frequency of

the power gain. Formally, its definition relies on the Mason’s gain U [120]:

U =
|Y 21− Y 12|2

4(<(Y 11)<(Y 22)−<(Y 21)<(Y 12)
(6.19)
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And one has U(fmax) = 1. The fmax formula is therefore defined as below:

fmax =
fT

2
√

(RG +RS)gds + 2πfTCgdRG
(6.20)

The important parameters usually limiting fmax are the gate electrode resistance RG

and the channel resistance rds = 1/gds. Indeed, with our thin and resistive tungsten gate,

we can estimate RG ∼ 300Ω which is of the order of the low bias channel resistance.

In addition the access resistance RS also accounts for the contact resistance of ∼ 100Ω

so that we end up with fmax <∼ fT . Therefore the key to increase fmax is to have a

saturating current increasing rds.

About de-embedding The de-embedding procedure consists in removing the parasitic

capacitances by measuring an open structure similar to the device but without graphene.

The corresponding Y parameters (Yopen) would only contain the imaginary part with

the C0
gs and C0

gd capacitances. Then, the subtraction Y − Yopen for all Y-parameters

would lead to the intrinsic Y. However, this works only if one can neglect the spurious

gate resistance RG and access drain and source resistances RD and RS . Nevertheless,

this procedure is efficient to estimate the intrinsic fT . In principle, fmax should be less

sensitive to de-embedding as it is mostly limited by RG.

6.2 Experimental results

6.2.1 The RF measurement

Here I present a set of data from measurements on sample GoBN-4x2 (presented in

section 4.4.2). As a reminder, the sample’s dimensions are L = 0.5 µm, W = 1.5 µm

and tBN = 15 nm; its mobility is µ = 3500 cm2/V/s. This sample is equipped with a

contact gate which is tuned at Vcont = −4 V in order to minimize the contact resistance

to ∼ 180 Ωµm−1. The S-parameters are acquired between 20 MHz and 20 GHz after

SOLT calibration. They are converted in Y parameters as explained in section 2.2.2. A

first operation is performed on those spectra that consists in removing the propagative

phase due to the finite length of the coplanar wave guide. We apply Sij → Sije
jφ with:

φ = Dω/vp (6.21)

Where vp = 1 × 108m/s is the phase velocity for a CPW on Si/SiO2 substrate, and

D = 400µm is the CPW length between the probes. This dephasing is also directly

measured on a through line device to confirm this estimation.
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Figure 6.3: VNA measurement of the complex admittance parameters. The spectrum
are the de-embedded Y-parameters (Y − Yopen), supposedly intrinsic, for various gate
voltages. The red lines stand for the Y real parts and the black lines for the Y imaginary
parts. The <(Y 21) spectra reflect the variation of the transconductance, <(Y 22) reflects
the channel conductance. The =(Y 21) spectrum is linear and its slope corresponds to
the gate capacitance. The slope of =(Y 11) and =(Y 22) is higher suggesting a remaining

contribution of the parasitic capacitance.

The corrected spectra are shown in Fig. 6.3 with red lines for real parts and black lines

for imaginary parts, and for the gate voltages Vch = −3→ +3V . One can notice a strong

gate dependence for <(Y 21), which corresponds to the transconductance gm. As well the

low frequency part of <(Y 22) is finite and it varies with the gate voltage ; it corresponds

to gds. On the contrary, neither <(Y 11) nor <(Y 12) show gate dependence in accordance

with formulas 6.4. They show a parabolic behavior corresponding to a capacitance and

a resistor in series. Accordingly Y11 is fitted with formula 6.8 to estimate the gate

resistance: RG = 150 Ω (see Fig. 6.4-d). Concerning the imaginary parts, they are linear

and their slopes give the capacitance values. One can see similar magnitudes for Y21 and

Y12 on one hand and Y11 and Y22 on the other hand. Indeed, the capacitance extracted

from =(Y 11) (or =(Y 22)) is Cgs+C
0
gs+Cgd+C0

gd ∼ Cds+C0
ds+C

0
gd+Cgd ∼ 30fF (see fit



122 Chapter 6: Application: the RF transistor

Fig. 6.4-d) while the capacitance extracted from =(Y 12) (or =(Y 21)) is Cgd+C0
gd ∼ 3fF

(fit not shown). The variation observed in =(Y 21) is probably due to a phase rotation

2.
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Figure 6.4: Quantities extracted from Fig. 6.3. (a) Small signal resistance (b) transcon-
ductance and (c) voltage gain as a function of the gate voltage, for bias voltages
Vds = 0→ 1.6 V . (d) Y11 spectra real (blue line) and imaginary (red line) parts fitted
with Eq. 6.8 (solid lines). The fit gives RG = 150 Ω and Cgs +C0

gs +Cgd +C0
gd = 30 fF

Fig. 6.4 shows gm(Vch), rds(Vch) and A(Vch) for bias voltages Vds = 0 → 1.6V . One

can recognise the elephant shape of rds(Vch) associated with the current saturation. gm

changes sign when going from p to n doping. It has two extrema around n = ±2.2 ×
1012 cm−2, but one can notice a slightly larger value on the p-side gm = 0.38mS due to

a lower contact resistance. Besides gm saturates around Vds ≈ 1 V . The voltage gain is

more asymmetric, reflecting the ”elephant shape”. We obtain a maximum of A = 0.68

on the n-side where the saturation current effect dominates.

The current gain H and Mason’s gain U are plotted in logarithmic scale in Fig. 6.5 before

and after de-embedding for the higher bias voltage Vd = 1.6V and at Vch = 2V . H shows

2This variation is not due to quantum capacitance effect. If it was the case we would observe a variation
on the other channels as well. Besides the quantum capacitance is large beyond the geometrical one due
to a rather large tBN .
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a clear 1/f dependence. fT is improved from 1.9GHz before de-embedding to 9.3GHz

after de-embedding. The slope of U is slightly stronger than the expected 20dB/decade

before de-embedding, but the 1/f2 behavior is restored after de-embedding. As well,

fmax is improved from 3GHz before to 7GHz after de-embedding.
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Figure 6.5: Spectra of the current gain H = I1/I2 = Y21/Y11 (left panel) and Mason’s
gain U (right panel) before and after de-embedding. H(f) follows a 1/f dependence
while U(f) follows a 1/f2 dependence. fT (fmax) is determined from the intersection

of H(f) (U(f)) with H = 1 (U = 1) respectively.

fT (Vch, Vds) and fmax(Vch, Vds) are plotted in a color plot in Fig. 6.6. One can notice

that fT mainly follows gm and fmax mainly follows A, as expected. The Vch asymmetry

can be explained as follow: fT depends essentially on gm and therefore is higher on the

low contact resistance side (Vch < 0) while fmax benefits from the saturation on the

Vch > 0 side. As a result it seems that applying a negative bias would allow us to benefit

both from the saturation and the low contact resistance on the Vch < 0 side (see also

Fig. 5.11).

6.2.2 Results and discussion

Before de-embedding we obtain fT = 1.9GHz and fmax = 3GHz. It is interesting to note

that we obtain a larger value for fmax than for fT contrasting with most results on that

subject, and despite our particularly large gate resistance. This can be explained by our

relatively small channel width W leading to low a gm, hence a low fT . Apart from that we

have a relatively large channel length L and dielectric thickness tBN . It results in parasitic

capacitances larger than the intrinsic ones and contributes to the reduction of fT . As an

illustration let us calculate the expected extrinsic fT taking (Cgs + Cgd + C0
gs + C0

gd) =
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Figure 6.6: Bias voltage and gate voltage dependence of fT (left panel) and fmax

(right panel). The best fmax is obtained around Vch = 1.7 V , Vds = 1.3 V . A better
value may have been obtained for negative Vds and negative Vch for which the contact

resistance is lower.

30 fF and (Cgd + C0
gd) = 3 fF extracted from the imaginary part of Y11 and Y12

respectively (while the intrinsic capacitance is Cgd ≈ Cgs = ε0εrLW/tBN = 1.8 fF )

and access and contact resistances RD + RS ≈ 250Ω. Using formula 6.16 we obtain

fT ≈ 1.8 GHz, very close to the measured value. On the contrary, fmax benefits from

the pronounced saturation of the current. We use formula 6.20 with RG = 150Ω and

rds = 2000Ω to estimate fmax = 2.5GHz.

After de-embedding we obtain fT = 9.2GHz, well below the expected fT = gm/(2πCgs) =

32 GHz. We explain this discrepancy by the delicate de-embedding when we try to re-

move extrinsic contributions larger than the intrinsic ones. Surprisingly, fmax is improved

by the de-embedding. Although it is usually poorly sensitive to this procedure, it prob-

ably benefits here from the reduction of the large parasitic capacitance.

Even though we do not beat the state of the art fT and fmax, our measurements show

the potential of the GoBN technology for RF electronics: the use of hBN provides a good

mobility and high energy substrate phonons. In the I-V characteristics this translates

into a steep slope of I(Vds) followed by a large current saturation. In addition the use

of a contact gate can reduce the contact resistance. These first results can be improved

by optimizing the device geometry: the use of buried thick gold electrodes will reduce

the gate resistance which is the main limitation for fmax. Similarly, using a double gate

geometry and wider channels will improve fmax as well. This has been implemented in a

new generation of GoBN devices by Mohamed Boukhicha at Laboratoire Pierre Aigrain.

A picture of the device as well as some preliminary results are shown in Fig. 6.7.
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Figure 6.7: (a) Optimized graphene RF transistor with thick (200 nm) Au double
gates (W = 10 µm, L = 300 nm ) fabricated by M. Boukhicha. (b) Current and
(c) Mason gains at Vg = 1 V and Vds = 1.5 V without de-embedding. We obtain
ft ≈ 7GHz and fmax ≈ 14GHz (d) fmax and (e) rds as a function of the gate voltage
for Vds = 0 → 2.3 V . The device is driven on the low contact resistance side and with

positive Vds to take advantage of the pinch-off effect (Vg = 1 V , Vds = 1.5 V ).





Chapter 7

Conclusion and perspectives

In this thesis, we have discussed the realization and the operation of graphene on hexag-

onal boron nitride on nanostructured bottom gate devices that efficiently control the

doping profile of graphene for high frequency electronics. We have developed the fabri-

cation methods allowing us to induce sharp potential steps in graphene, based on precise

e-beam lithography and dry etching of a 20 nm-thin tungsten film followed by the dry

transfer of hBN and graphene. We discussed the use of this technology for the realiza-

tion of a Klein tunneling transistor, which can switch ON and OFF a graphene channel

transmission taking advantage of the refraction properties of Dirac fermions at a p-n

junction. This technology was first implemented experimentally in a gated contact tran-

sistor for which we demonstrated a full doping tunability of the contacted graphene area.

For this device, the Klein tunneling transmission of the contact junction is modulated

at GHz frequencies from the contact gate making possible the realization of graphene

transistors breaking the scaling limit. We investigated as well the high bias properties of

our devices. We observed the current saturation and identified two different mechanisms

that are specific to our technology: the scattering by the surface polar phonons of the

hBN substrate and a non-uniform doping profile arising for locally gated devices only,

both leading to a Dirac pinch-off. Finally, all those effects have been implemented for

the assessment of our devices as radio frequency transistors.

This work opens many perspectives for Dirac fermion electronics. In the short-term we

are expecting an experimental realization of the Klein tunneling transistor using the van

der Waals pick-up technique for a hBN encapsulated device. As well we should be able

to demonstrate a high frequency transistor based on the GoBN technology with a cut-off

frequency fmax above 100GHz. In the longer term, graphene is considered as the model-

system for Dirac fermion electronics, but this physics will also be investigated in other

systems. For example, there is a 2D Dirac fermion gas living at the surface of topological

127
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insulators, and the graphene issues can be revisited in these materials. In topological

insulators this is the real spin which is locked to the momentum. As in graphene, it

results in high mobility samples and the Klein tunneling effect should also be observed

for the surface states at a p-n junction. The issue of the Dirac fermion-phonon interaction

is fascinating as well since in topological insulator the scattering should be dominated

by the intrinsic surface phonon of the material instead of the substrate remote phonons

in graphene.

Regarding graphene itself, there is still a large scope of physics to investigate. The next

graphene device generation could rely on plasmonics for optoelectronic applications in

the terahertz range. The technology developed in this work will prove useful to realize a

plasma resonance transistor (Fig. 7.1), as a bottom local gate array of a carefully chosen

periodicity can induce plasmons of a given wavevector that can couple to a THz field.

Figure 7.1: Artist view of a plasma resonance transistor with an array of local inter-
digitated bottom gates for THz detection.



Appendix A

Fabrication processes

step description tool(s) notes

1 substrate preparation acetone & IPA & ultra-

sounds

10min

1b substrate preparation Harrick plasma oven 5min O2 plasma, 200 W, P .

20 µbar

2 tungsten deposition sputtering (at INSP) 20 nm

3 substrate preparation acetone & IPA & ultra-

sounds

10min

3b substrate preparation Harrick plasma oven 5min O2 plasma, 200 W, P .

20 µbar

4 spin coating spin coater & PMMA 30 s, 4000 rpm, 4000 rpm/s,

PMMA AZ6 (diluted)

→ 50 nm

5 baking heater plate 6min, 165 ◦ C

6 e-beam lithography fine

structure

Raith e-Line 7.5 µm aperture, 20 kV,

900 µC/cm2, 2 nm step

7 developing MIBK & IPA 30 s MIBK/30 s IPA

8 etching tungsten RIE SF6 (6mT - 10W - 75 s) / O2

100mT -30W -20 s
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9 spin coating spin coater & PMMA 30 s, 4000 rpm, 4000 rpm/s,

PMMA AZ6 (diluted)

→ 50 nm

10 baking heater plate 6min, 165 ◦ C

11 e-beam lithography

large structures

Raith e-Line 7.5 µm aperture, 20 kV,

240 µC/cm2, 10 nm step

12 developing MIBK & IPA 30 s MIBK/30 s IPA

13 etching tungsten RIE SF6 6 mT -10 W -75 s/ O2

100mT -30W -20 s

14 spin coating spin coater & PMMA 30 s, 4000 rpm, 4000 rpm/s,

PMMA AZ6 →∼ 500 nm

15 baking heater plate 12min, 165 ◦ C

16 e-beam lithography

(CPW)

Raith e-Line 120 µm aperture, 20 kV,

320 µC/cm2, 100 nm step

17 developing MIBK & IPA 90 s MIBK/30 s IPA

17 evaporation home made Joule evapo-

rator

Cr 2 nm/Au 200 nm 0.1 nm/s

10−5 mbar

18 lift-off acetone & IPA acetone 20min 50◦C / IPA 30s

19 hBN deposition dry transfer technique

20 annealing home made furnace Ar 800 sccm/H2 100 sccm

300◦C 2 hours

21 graphene deposition dry transfer technique or

CVD transfer technique

22 spin coating spin coater & PMMA 30 s, 4000 rpm, 4000 rpm/s,

PMMA AZ6 →∼ 150 nm

23 baking heater plate 10min, 165 ◦ C

24 e-beam lithography -

graphene etching

Raith e-Line 7.5 µm aperture, 20 kV,

300 µC/cm2, 10 nm step

25 developing MIBK & IPA 75 s MIBK/30 s IPA
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26 etching graphene RIE O2 50mT -60W -10 s

27 lift-off acetone & IPA acetone 2 h RT / IPA 30 s

28 annealing home made furnace Ar 800 sccm/H2 100 sccm

300◦C 2 hours

29 spin coating spin coater & PMMA 30 s, 4000 rpm, 4000 rpm/s,

PMMA AZ6 →∼ 150 nm

30 baking heater plate 10min, 165 ◦ C

31 e-beam lithography -

graphene contact

Raith e-Line 7.5 µm aperture, 20 kV,

200 µC/cm2, 10 nm step

32 developing MIBK & IPA 90 s MIBK/30 s IPA

33 evaporation e-gun evaporator Plassys

MEB 550S

Pd 50nm 0.2nm/s ·10−7mbar

(better if vacuum over night)

34 lift-off acetone & IPA acetone 4 h RT / IPA 30 s

35 annealing Janis probe station 10−5mbar 130◦C 2 hours

Table A.2: Complete GoBN process.





Appendix B

Sample GoBN1

B.1 Device presentation

a) b)

Figure B.1: (a) Optical image before the contact deposition and channel etching. The
white scale bar is 5µm. (b) AFM scan of the contacted device. The black lines indicate

the position of the channels etching. The white scale bar is 1 µm.

The sample GoBN1 is the prototype of the GoBN technology. It consists of a single

tungsten gate on a SiO2/Si substrate, over which a 7 nm thick hBN flake and a mono-

layer graphene flake have been successively deposited with a dry transfer technique. An

annealing step in a furnace at 300◦C in H2 and Ar atmosphere for 2 hours is performed

after each transfer. The graphene flake is etched in two rectangular channels to avoid a

wrinkle at the center of the flake (see Fig. B.1). The overall dimensions are W = 1.6µm

and L = 1.4 µm. It is contacted by Pd electrodes.
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B.2 DC measurement

Figure B.2 shows the transfer characteristic of the device at ambient conditions. The very

sharp resistance peak is the sign of a large mobility device. The asymmetric resistance is

due to contact doping by the Pd metal. A lower resistance on the p side (negative gate

voltage) indicates a p doping by the Pd contact. We attribute the large offset resistance

(750 Ω) to an additional contact resistance in series (Rmg in chapter 4).

Therefore we can use the model of chapter 4 to fit the data. We assume ballistic junctions

at the contact with a fixed doping ncont induced by the Pd metal. The channel is assumed

to be diffusive: Rch = L
Wn1eµ

. The fitting parameters are the channel mobility, the Pd in-

duced doping ncont and the contact junction length d. We obtain µ = 12000cm2V −1s−1,

ncont = 3.1012cm−2 and d = 70 nm. In addition we account for a broadening due to the

residual carrier density of n0 = 3.1011cm−2.

Figure B.2: Transfer characteristic of GoBN1 (red dots) fitted by the contact junction
model (black line). A mobility of µ = 12000 cm2V −1s−1 is extracted.

The good device mobility shows the potential of the GoBN technology for Dirac fermion

optics experiments.
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Samples characteristics

Samples graphene / transfer substrate/transfer size dielectric RT mobility
L×W (µm2) (nm) (cm2V −1s−1)

GoBN1 exfoliated / dry hBN / dry 1.4× 1.6 7 12000
GoBN2 exfoliated / dry hBN / dry 0.2× 1.1 15 6000

GoBN3 4× 1 CVD Bouchiat hBN / pick-up 0.5× 1.5 15 3500
GoBN3 4× 2 CVD Bouchiat hBN / pick-up 0.5× 1.5 15 3500
GoBN3 1× 2 CVD Bouchiat hBN / pick-up 0.5× 1.5 12 1200

GoAl CVD commercial Al2O3 ALD 0.5× 1.5 12 2000

Table C.1: Fabrication techniques, dimensions and mobility of devices discussed in
this thesis. All devices have tungsten bottom gates. GoBN1 is the prototype of the
GoBN technology and has a single gate. GoBN2 and GoBN3 have contact and channel

gates. GoAl have split gates as well but the contact position is shifted.
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Appendix D

List of acronyms

AFM: Atomic fore microscope

ALD: atomic layer deposition

CAB: cellulose acetate butyrate

CNP: Charge neutrality point

CPW: Coplanar waveguide

CVD: Chemical vapor deposition

DC: direct current

ENS: Ecole Normale Supérieure

FET: Field effect transistor

hBN: Hexagonal boron nitride

GoBN: Graphene on boron nitride

GoAl: Graphene on aluminium oxide

HEMT: High electron mobility transistor

KTT: Klein tuneling transistor

LPA: Laboratoire Pierre Aigrain

MOSFET: Metal-oxide-semiconductor field effect transistor

PMMA: Poly methyl methacrylate

RF: Radio frequency

RIE: Reactive ion etching

SPP: surface polar phonon

VNA: Vector network analyser
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Appendix E

Publication list

Graphene

1. Q. Wilmart, S. Berrada, D. Torrin, V. Hung Nguyen, G. Feve, J.-M. Berroir, P.

Dollfus and B. Placais, “A Klein-tunneling transistor with ballistic graphene”, 2D

Materials 1, 1, 011006 (April 2014).

2. Q. Wilmart, A. Inhofer, M. Boukhicha, W. Yang, M. Rosticher, P. Morfin, N.

Garroum, G. Feve, J.-M. Berroir, and B. Placais, “Gated-contact graphene tran-

sistor at gigahertz frequencies”, under referring.

3. Q. Wilmart, A. Inhofer, M. Boukhicha, W. Yang, M. Rosticher, P. Morfin, V.

Bouchiat, G. Feve, J.-M. Berroir, and B. Placais (preliminary author list). “Veloc-

ity saturation in graphene by Dirac pinch-off”, in preparation.

4. E. Pallecchi, Q. Wilmart, a. C. Betz, S.-H. Jhang, G. Feve, J.-M. Berroir, S.

Lepillet, G. Dambrine, H. Happy and B. Placais, “Graphene nanotransistors for

RF charge detection”, Journal of Physics D: Applied Physics 47, 9, 094004 (2014).

5. D. Brunel, S. Berthou, R. Parret, F. Vialla, P. Morfin, Q. Wilmart, G. Feve,

J-M. Berroir, P. Roussignol, C. Voisin and B. Placais, “Onset of optical-phonon

cooling in multilayer graphene revealed by RF noise and black-body radiation

thermometries”, J. Phys.: Condens. Matter 27, 164208 (2015).

In collaboration

6. A. Hemamouche, A. Morin, E. Bourhis, B. Toury, E. Tarnaud, J. Mathe, P. Gue-

gan, A. Madouri, X. Lafosse, C. Ulysse, S. Guilet, G. Patriarche, L. Auvray, F.
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