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Résumé

Les travaux e�ectués durant cette thèse ont pour but de pallier le problème des corréla-
tions au sein des bases de données, particulièrement fréquentes dans le cadre industriel.
Une modélisation explicite des corrélations par un système de sous-régressions entre co-
variables permet de pointer les sources des corrélations et d’isoler certaines variables
redondantes.

Il en découle une pré-sélection de variables nettement moins corrélées sans perte sig-
nificative d’information et avec un fort potentiel explicatif (la pré-selection elle-même est
expliquée par la structure de sous-régression qui est simple à comprendre car uniquement
constituée de modèles linéaires).

Un algorithme de recherche de structure de sous-régressions est proposé, basé sur
un modèle génératif complet sur les données et utilisant une chaîne MCMC (Monte-
Carlo Markov Chain). Ce prétraitement est utilisé pour la régression linéaire comme une
présélection des variables explicatives à des fins illustratives mais ne dépend pas de la
variable réponse. Il peut donc être utilisé de manière générale pour toute problématique
de corrélations.

Par la suite, un estimateur plug-in pour la régression linéaire est proposé pour ré-
injecter l’information résiduelle contenue dans les variables redondantes de manière séquen-
tielle. On utilise ainsi toutes les variables sans sou�rir des corrélations entre covariables.

Enfin, le modèle génératif complet o�re la perspective de pouvoir être utilisé pour gérer
d’éventuelles valeurs manquantes dans les données. Cela permet la recherche de structure
malgré l’absence de certaines données. Mais un autre débouché est l’imputation multiple
des données manquantes, préalable à l’utilisation de méthodes classiques incompatibles
avec la présence de valeurs manquantes. De plus, l’imputation multiple des valeurs man-
quantes permet d’obtenir un estimateur de la variance des valeurs imputées. Encore
une fois, la régression linéaire vient illustrer l’apport de la méthode qui reste cependant
générique et pourrait être appliquée à d’autres contextes tels que le clustering.

Tout au long de ces travaux, l’accent est mis principalement sur l’interprétabilité des
résultats en raison du caractère industriel de cette thèse.

Le package R intitulé CorReg, disponible sur le cran1 sous licence CeCILL2, implé-
mente les méthodes développées durant cette thèse.

Mots clés: Prétraitement, Régression, Corrélations, Valeurs manquantes, MCMC, mod-
èle génératif, Critère Bayésien, sélection de variable, méthode séquentielle, graphes.

1http://cran.r-project.org
2http://www.cecill.info
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Abstract

This thesis was motivated by correlation issues in real datasets, in particular industrial
datasets. The main idea stands in explicit modeling of the correlations between covariates
by a structure of sub-regressions, that simply is a system of linear regressions between
the covariates. It points out redundant covariates that can be deleted in a pre-selection
step to improve matrix conditioning without significant loss of information and with
strong explicative potential because this pre-selection is explained by the structure of
sub-regressions, itself easy to interpret.

An algorithm to find the sub-regressions structure inherent to the dataset is provided,
based on a full generative model and using Monte-Carlo Markov Chain (MCMC) method.
This pre-treatment is then applied on linear regression to show its e�ciency but does not
depend on a response variable and thus can be used in a more general way with any
correlated datasets.

In a second part, a plug-in estimator is defined to get back the redundant covariates
sequentially. Then all the covariates are used but the sequential approach acts as a pro-
tection against correlations.

Finally, the generative model defined here allows, as a perspective, to manage missing
values both during the MCMC and then for imputation (for example multiple imputa-
tion). Then we are able to use classical methods that are not compatible with missing
datasets. Missing values can be imputed with a confidence interval to show estimation
accuracy. Once again, linear regression is used to illustrate the benefits of this method
but it remains a pre-treatment that can be used in other contexts, like clustering and so on.

The industrial motivation of this work defines interpretation as a stronghold at each
step.
The R package CorReg, is on cran3 now under CeCILL4 license. It implements the
methods created during this thesis.

Keywords: Pre-treatment, Regression, Correlations, Missing values, MCMC, genera-
tive model, Bayesian Criterion, variable selection, plug-in method,. . .

3http://cran.r-project.org
4http://www.cecill.info
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Glossary of notations

This glossary can be used to find the meaning of some notations without having to search
within the chapters. Bold characters are used to distinguish multidimensional objects.
Many objects are tuples.

• –j is the vector of the coe�cients of the j

th sub-regression.

• – = (–1, . . . , –d
r

) is the dr≠uple of the –j.

• –ú is the df ◊ dr matrix of the sub-regressions coe�cients.

• –̄ is the d ◊ d matrix of the sub-regression coe�cients with –̄i,j the coe�cients
associated to X i in the sub-regression explaining Xj.

• —f = —J
f

is the (d ≠ dr) ◊ 1 vector of the regression coe�cients associated to the
free covariates in the main regression on Y .

• —r = —J
r

is the dr ◊1 vector of the regression coe�cients associated to the responses
covariates.

• d is the number of covariates in the dataset X.

• df is the number of free covariates in the dataset.

• dp = (d1
p, . . . , d

d
r

p ) the dr-vector of the number of predictors in the sub-regressions.

• dr is the number of response covariates in the dataset (and consequently the number
of sub-regressions).

• Á is the n ◊ dr matrix of the Áj.

• Jf = {1, . . . , d}\Jr is the set of all non response covariates.

• Jp = (J1
p , . . . , J

d
r

p ) the dr-uple of all the predictors for all the sub-regressions.

• J

j
p is the vector of the predictors for the j

th sub-regression.

• Jr the set of the indices of the dr response variables.

• J r = (J1
r , . . . , J

d
r

r ) the dr-uple of all the response variables.

• J

j
r is the index of the j

th response variable.

• K is the number of components of the Gaussian mixture followed by X.

• Kj is the number of components of the Gaussian mixture followed by Xj.

• µX is the d≠uple of the K ◊ 1 vectors µXj

of the means associated to Xj in X.

• µXj

is the K ◊ 1 vector of the means associated to Xj in X.

9



• µj is the Kj ◊ 1 vector of the means of the Gaussian mixture followed by Xj with
j œ Jf .

• µi,Jj

r

is the Ki,Jj

r

≠uple of the means of the Gaussian mixture followed by the condi-
tional distribution of xi,Jj

r

knowing its observed regressors X
Jj

p

i,O.

• µj,k is the k

th element of µj.

• µi,Jj

r

,k is the mean of the k

th component of the Gaussian mixture followed by the
conditional distribution of xi,Jj

r

knowing its observed regressors X
Jj

p

i,O.

• fiX is the K ◊ 1 vector of proportions of the Gaussian mixture followed by X.

• fij is the Kj ◊ 1 vector of proportions of the Gaussian mixture followed by Xj.

• fik is the proportion of the k

th component of the Gaussian mixture followed by X.

• fii,Jj

r

is the Ki,Jj

r

≠uple of the proportions of the Gaussian mixture followed by the
conditional distribution of xi,Jj

r

knowing its observed regressors X
Jj

p

i,O.

• fij,k is the proportion of the k

th component of the Gaussian mixture followed by Xj.

• fii,Jj

r

,k is the proportion of the k

th component of the Gaussian mixture followed by
the conditional distribution of xi,Jj

r

knowing its observed regressors X
Jj

p

i,O.

• ‡

2
j is the variance of the residual of the j

t
h sub-regression.

• �X is the d≠uple of the K ◊ 1 vectors �Xl of the variances associated to X l in the
Gaussian mixture followed by X.

• �Xl is the K ◊ 1 vector of the variances associated to X l in the Gaussian mixture
followed by X.

• �i,Jj

r

is the Ki,Jj

r

≠uple of the variances of the Gaussian mixture followed by the
conditional distribution of xi,Jj

r

knowing its observed regressors X
Jj

p

i,O.

• �Xl,k is the variance of X l in the k

th component of X.

• �i,Jj

r

,k is the variance of the k

th component of the Gaussian mixture followed by the
conditional distribution of xi,Jj

r

knowing its observed regressors X
Jj

p

i,O.

• � is the set of the parameters associated to the Gaussian mixtures on Xf .

• X is the n ◊ d matrix whose columns are the covariates in the datasets and rows
are the individuals.

• Xj is the j

th column of X.

• Xr is the matrix of the response covariates.

• Xf is the matrix of the predictor covariates.

• XO = (X1,O, . . . , Xn,O) is the n≠uple of the X i,O.

• Xīj = (xi,1, . . . , xi,j≠1, xi,j+1, . . . , xi,d).
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• X i,O is the vector of the observed values for the i

th individual of X.

• X
J

f

i,O is the vector of the observed values for the i

th individual of Xf .

• XJ
r

i,O is the vector of the observed values for the i

th individual of Xr.

• Y is the n ◊ 1 response variable in the main regression.
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Chapter 1

Introduction

Abstract: This chapter describes the industrial constraints and the mathematical con-
text that have led to this work. This work takes place in a steel industry context and was
funded by ArcelorMittal, the world leading company in steel making.

1.1 Industrial motivation
1.1.1 Steel making process
Steel making starts from raw materials and aims to give highly specific products used in
automotive, beverage cans, etc. We first melt down a mix of iron ore and cock to obtain
cast iron that is then transformed in steel by addition of pure oxygen to remove carbon.
Liquid steel is then refreshed in a mould (continuous casting) to obtain steel slabs (nearly
20 tons each, 23 cm thick).

Cold slabs are then warmed to be pressed in a hot rolling mill to obtain coils (nearly
half a millimetre thick or less). This warming phase also allows to adjust mechanical
properties of the final product. It is the process that gave its name to the simulated an-
nealing algorithm that allows to escape from local extrema thanks to a parameter called
"temperature" in allusion to the steel making process.

If the final product requires a thinner strip of steel, coils pass through a cold rolling
mill. Figure 1.1 provides some illustrations of the steel making process. Each step of this
process involves a whole manufacture and the whole process can take several weeks. The
most sensitive products are the thinner ones and sometimes defects are generated by small
inclusions in the steel down to the dozen of microns. So even if quality is evaluated at each
step of the process, some defects are only found when the whole process is finished even
if the origin comes from the first part of this process. So we have hundreds of parameters
to analyse.

Steel making is continuously improving and we are now able to produce steel that is both
thinner and stronger. Steel is 100% recyclable unlike petroleum so we will continue to use
it widely in the future. This quickly evolving industry is associated to a lot of research
in metallurgy but also needs adapted statistical tools. That is why this thesis has been
made.
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Figure 1.1: Quick overview of the steel making process, from hot liquid metal to coils.

1.1.2 Impact of the industrial context
The main objective is to be able to solve quality crisis when they occur. In such a case,
a new type of unknown quality issue is observed and we may have no idea of its origin.
Defects, even generated at the beginning of the process, are often detected in its last part.
The steel-making process includes several sub-process. Thus we have many covariates
and no a priori on the relevant ones. Moreover, the values of each covariate are linked to
the characteristics of the final product, and many physical laws and tuning models are
implied in the process. Therefore the covariates are highly correlated. We have several
constraints:

• Being able to predict the defect and stop the process as early as possible to gain
time (and money)

• Being able to find parameters that can be changed and to understand the origin
of the defect because the objective is not only to understand but to adapt the
problematic part of the process.

• It also must be fast and automatic (without any a priori) to manage totally new
phenomenon on new products.

We will see in the state of the art that correlations are a real issue and that the number of
variables increases the problem. The stakes are very high because of the high productivity
of the steel plants and the extreme competition between steel makers but also because
steel making is now well-known and optimized thus new defects only appears on innovative
steels with high added value. Any improvement on such crisis can have important impact
on market shares and when the customer is impacted, each day won by the automation
of the data mining process can lead to substantial savings. So we really need a kind of
automatic method, able to manage correlations without any a priori and giving an easily
understandable and flexible model.
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1.1.3 Industrial tools
Our goal was also to demonstrate that statistics can provide e�cient methods for real
datasets, easy to use and understand. This was a battle against correlations but also
against scepticism.

Figure 1.2 shows the kind of results proposed by a rule-based software that is sold
as a non-statistical tool. It is just a partition of the sample by binary rules (like regres-
sion trees in Section 3.1.3). Some blur is added to the plot to help interpretation. The
algorithm used here is somewhere between exhaustive research and decision trees. It is
extremely slow (research with d > 10 would take years) and is less e�cient than regression
trees. Morever, it requires to discretize the response variable to obtain “good” and “bad”
values. The green rectangle is very far from the true green zone even for this toy example
provided by the reseller.

Ergonomy and quality of interpretation are stakes for us to make engineers use e�cient
methods instead of this kind of stu�.

(a) Without blur (b) With some blur proportional to the density of
points

Figure 1.2: Result on a toy example provided by FlashProcess, similar to decision
trees but less e�cient and extremely slower. Colors are part of the learning set.

1.2 Mathematical motivation
Every engineer, even non-statistician uses frequently linear regression to seek relation-
ship between some covariates. It is easy to understand, fast to do, and is used in
nearly all the fields where statistics are involved [Montgomery et al., 2012]: Astronomy
[Isobe et al., 1990], Sociology [Longford, 2012], and so on. It can be done directly in Mi-
crosoft Excel which is well known and often used by engineers to open and analyse most
of their datasets. Thus we have chosen to work in this way.

Popularity of regression can be confirmed by the fact that, as of 2014, Google Scholar
proposes more than 3.8 millions of papers related to regression and many of them were
cited several thousands times (in other papers). Linear regression is an old strategy
well known and with many derivatives (as we will see in the following) and can be ex-
tended to more general and complex problems using a link function between the response
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Figure 1.3: An example of simple linear regression

variable and the linear model (Generalized Linear Model, see [Kiebel and Holmes, 2003,
Wickens, 2004, Nelder and Baker, 1972] and also [McCullagh and Nelder, 1989]). Its sim-
plicity facilitates a wide spread usage in industry and other fields of application. It is also
a good tool for interpretation with the sign of the coe�cients indicating whether the as-
sociated covariate has a positive or negative impact on the response variable.

More complex situations can be described by evolved forms of linear regression like
the hierarchical linear model [Raudenbush, 2002, Woltman et al., 2012] or multilevel re-
gression [Moerbeek et al., 2003, Maas and Hox, 2004, Hox, 1998] that allows to consider
e�ects of the covariates on nested sub-populations in the dataset. It is like using interac-
tions but with a proper modeling that improves interpretation. It is not really a linear
model because it is not linear in the original covariates but can be seen as a basis ex-
pansion using new covariates (the interactions) composed of the product of some of the
original covariates.

But linear regression is in trouble when correlations between the covariates are strong,
as we will see later (Chapter 3). So we have decided to investigate some ways to over-
come correlations issues in linear regression, keeping in mind industrial constraints about
variable selection and interpretability.

1.3 Outline of the manuscript
After a substantial abstract in french (Chapter 2), we start with a brief state of the art
(Chapter 3) that lists some classical regression methods and explains that they do not
respect our industrial needs because of correlation issues or lack of variable selection or
interpretability. It leads us to define a new model.

In the first part, we define an explicit structure of sub-regressions (Chapter 4) to ex-
plain correlations between the covariates. Then we use this structure to obtain a reduced
model (by marginalization) with uncorrelated covariates. It can be seen as a kind of vari-
able pre-selection that allows further usage of any estimator (including variable selection
tools). The structure itself is used for interpretation by the distinction between redun-
dant and irrelevant covariates. An MCMC algorithm is provided (Chapter 5) to find the
sub-regressions structure, relying on a Bayesian criterion and a full generative model on
the covariates. Numerical results are then provided on both simulated datasets (Chapter
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6) and real datasets (Chapter 7) from steel industry without too much details because of
industrial secret. The package CorReg, on CRAN, implements all this work and allows
to retrieve the results given here.

In a second part, we use the marginal model and its estimated residuals to obtain a new
sequential model by plug-in (Chapter 8) that is asymptotically unbiased (the marginal
one could be biased). Another application of the generative model on the dataset and the
structure of sub-regressions is that we are able to compute conditional distributions and
then to manage missing values (Chapter 9).

Conclusion: Industrial context necessitates easily understandable models and the stakes
are frequently very high in terms of financial impact. These two points give strong con-
straints because used methods has to be accessible for non-statisticians in a minimum
amount of time and results obtained have to be clearly interpretable (no black-box). So
a powerful tool without interpretation becomes kind of useless in such a context.
Then we need a tool that is both easy to use and to understand, giving priority to inter-
pretation more than prediction. The tool will have to work without a priori and to be
able to select relevant covariates.
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Chapter 2

Résumé substantiel en français

2.1 Position du problème
La régression linéaire est l’outil de modélisation le plus classique et se résume à une
équation bien connue

Y = X— + ÁY

où Y est la variable réponse de taille n◊1 que l’on souhaite décrire à l’aide de d variables
explicatives1 observées sur n individus et dont les valeurs sont stockées dans la matrice
X de taille n ◊ d. Le vecteur — est le vecteur des coe�cients de régression qui permet de
décrire le lien linéaire entre Y et X. Le vecteur ÁY est un bruit blanc gaussien N (0, ‡

2
Y In)

qui représente l’inexactitude du modèle de régression.

On connaît l’estimateur sans biais de variance minimale (ESBVM) de — qui est obtenu
par Moindres Carrés Ordinaires (MCO) selon la formule :

—̂ = (X ÕX)≠1X ÕY .

Le calcul de cet estimateur nécessite l’inversion de la matrice (X ÕX) qui est mal condi-
tionnée si les variables explicatives sont corrélées entre elles. Ce mauvais conditionnement
nuit à la qualité de l’estimation et vient impacter la variance de l’estimateur comme le
montre la formule :

VarX(—̂) = ‡

2
Y (X ÕX)≠1

C’est cette situation problèmatique que nous nous proposons d’améliorer.

2.2 Modélisation explicite des corrélations
Le mauvais conditionnement de la matrice provient de la quasi-singularité (parfois singu-
larité numérique) de celle-ci quand les colonnes de X sont presque linéairement dépen-
dantes. Cette quasi dépendance linéaire peut être elle aussi modélisée par régression
lineaire. On se propose donc de considérer notre problématique comme l’existence d’un
modèle de sous-régressions au sein des variables explicatives avec certaines des variables
expliquées par d’autres, formant ainsi une partition des d variables en 2 blocs : les variables
réponses (expliquées) et les variables prédictives. Notre modèle repose sur 2 hypothèses
fondamentales :

1En général on ajoute une constante parmi les régresseurs. Par exemple X1 = (1, . . . , 1)Õ. Le coe�cient
associé dans — est alors la constante de régression —1.
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Hypothèse 1 Les corrélations entre covariables viennent uniquement de ce que certaines
d’entre elles dépendent linéairement d’autres covariables. Plus précisément, il y a dr Ø 0
“sous-regressions”, chaque sous-regression j = 1, . . . , dr ayant la variable XJj

r comme
variable réponse (J j

r œ {1, . . . , d} et J

j
r ”= J

jÕ
r pour j ”= j

Õ) et ayant les d

j
p > 0 variables

XJj

p comme variables predictives (J j
p µ {1, . . . , d}\J

j
r et d

j
p = |J j

p | le cardinal de J

j
p) :

XJj

r = XJj

p –j + Áj, (2.1)

où –j œ Rdj

r (–h
j ”= 0 pour tout j = 1, . . . , dr et h = 1, . . . , d

j
p) et Áj ≥ Nn(0, ‡

2
j I).

Hypothèse 2 Nous supposons également que les variables réponses et les variables pré-
dictives forment deux blocs disjoints dans X : pour toute sous-régression j = 1, . . . , dr,
J

j
p µ Jf où Jr = {J

1
r , . . . , J

d
r

r } est l’ensemble de toutes les variables réponses avec
Jf = {1, . . . , d}\Jr l’ensemble des variables non expliquées de cardinal df = d ≠ dr = |Jf |.
Cette seconde hypothèse garantit l’obtention d’un système de sous-régression très simple et
sans imbrications ni surtout aucun cycle. Cette hypothèse n’est pas trop restrictive dans
la mesure où tout système sans cycle peut (par substitutions) être reformulé sous cette
forme simplifiée (avec une variance accrue).

Notations Par la suite nous noterons J r = (J1
r , . . . , J

d
r

r ) le dr-uplet des variables
réponses (à ne pas confondre avec Jr défini plus haut), Jp = (J1

p , . . . , J

d
r

p ) le dr-uplet
des prédicteurs de toutes les sous-régressions, dp = (d1

p, . . . , d

d
r

p ) les nombres correspon-
dants de predicteurs et S = (J r, Jp) le model global (structure de sous-régressions). Pour
alléger les notations, on définit alors Xr = XJ

r la matrice des variables réponses et
Xf = XJ

f la matrice de toutes les autres variables, ainsi considérées comme libres (free
en anglais). Les valeurs des paramètres sont également concaténées : – = (–1, . . . , –d

r

)
est le dr≠uplet des vecteurs des coe�cients de sous-régression et ‡2 = (‡2

1, . . . , ‡

2
d

r

) le
vecteur des variances associées :

Xr = Xf–ú + Á (regression multiple multivariée)

où la matrice Á œ Rn◊d
r est la matrice des bruits des sous-régressions composée des

colonnes Áj ≥ N (0, ‡

2
j In) que nous supposons indépendantes entre elles et –ú œ Rd

f

◊d
r

est la matrice des coe�cients des sous-régressions avec (–ú
j)Jj

p

= –j et (–ú
j)J

f

\Jj

p

= 0. Ces
notations sont illustrées dans l’exemple ci-après.

Données d’exemple : d = 5 variables dont 4 gaussiennes centrées réduites i.i.d.
Xf = (X1

, X2
, X4

, X5) et une variable redondante Xr = X3 = X1 + X2 + Á1 avec
Á1 ≥ N (0, ‡

2
1In). Deux régressions principales en Y sont testées avec — = (1, 1, 1, 1, 1)Õ

et ‡Y œ {10, 20}. Le conditionnement de (X ÕX) se déteriore donc quand ‡1 diminue. Ici
Jf = {1, 2, 4, 5}, Jr = {3}, J r = (3), dp = 2, Jp = ({1, 2}), – = (–1) = ((1, 1)Õ), XJ1

p =
(X1

, X2), S = ((3), ({1, 2})). On note R

2 est le coe�cient de détermination :

R

2 = 1 ≠ Var(Á1)
Var(X3)

(2.2)

La figure 3.5 page 29 illustre la détérioration de l’estimation quand les sous-régressions
deviennent trop fortes (R2 proche de 1) pour di�érentes valeurs de n sur nos données
d’exemple.
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Remarques

• Les sous-régressions définies en (2.1) sont très simples à comprendre pour l’utilisateur
et permettent donc d’avoir un aperçu net des corrélations présentes dans les données
étudiées.

• S ne dépend pas de Y et peut donc être estimé séparément.

2.3 Modèle marginal
Le fait de modéliser explicitement les corrélations entre les covariables nous permet de
réécrire le modèle de régression principal. On peut en e�et substituer les variables redon-
dantes par leur sous-régression, ce qui revient à intégrer la régression sur Xr sachant la
structure de sous-régressions S. On fait alors une hypothèse supplémentaire :

Hypothèse 3 On suppose l’indépendance 2 à 2 entre les erreurs de régression ÁY et
les Áj, avec j œ {1, . . . , dr}. En particulier on a l’indépendance conditionnelle entre les
variables réponses : {XJj

r |XJj

p

, S; –j, ‡

2
j } définies par l’équation (2.1).

On a donc

P(Xr|Xf , S; –, ‡2) =
d

rŸ

j=1
P(XJj

r |XJj

p

, S; –j, ‡

2
j )

P(Y |Xf , S; —, –, ‡

2
Y , ‡2) =

⁄

Rd

r

P(Y |Xr, Xf , S; —, ‡

2
Y )P(Xr|Xf , S; –, ‡2)dXr,

ce qui donne

Y = Xf—f + Xr—r + ÁY

Y = Xf (—f +
d

rÿ

j=1
—Jj

r

–ú
j) +

d
rÿ

j=1
—Jj

r

Áj + ÁY (2.3)

= Xf—ú
f + Áú

Y

où —r = —J
r

, —f = —J
f

.

On se retrouve donc avec un modèle marginal plus parsimonieux, sans biais sur Y
(vrai modèle) mais avec une variance potentiellement accrue. Cet accroissement de la
variance est proportionnel à Á qui est la matrice des résidus des sous-régressions. Plus
les sous-régressions sont fortes et plus cette variance est faible. Tout le principe du
modèle marginal repose sur le compromis entre l’amélioration du conditionnement de
(X ÕX) par suppression des variables redondantes et aussi la réduction de la dimension
(le modèle marginal ne nécessite que l’inversion de (X Õ

fXf )) face au léger accroissement
de la variance issu de la marginalisation. On va donc comparer

—̂ = (X ÕX)≠1X ÕY au modèle marginal
—̂

ú
f = (X Õ

fXf )≠1X Õ
fY

Les deux modèles sont de dimension di�érente, on compare donc leurs erreurs moyennes
quadratiques respectives (mse en anglais pour Mean Squared Error):

mse(—̂|X) = ‡

2
Y Tr(X ÕX)≠1

mse(—̂ú
|X) = Î

d
rÿ

j=1
—Jj

r

–ú
j Î2

2 + Î —r Î2
2 +(‡2

Y +
d

rÿ

j=1
‡

2
j —

2
Jj

r

) Tr(X Õ
fXf )≠1
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Ces deux équations illustrent bien le compromis biais-variance du modèle marginal. La
figure 4.2 page 51 compare les erreurs d’estimation obtenues pour di�érentes valeurs des
paramètres, montrant la nette amélioration rendue possible par la marginalisation. Quand
n tend vers l’infini les traces tendent vers 0 et donc le modèle complet devient meilleur
(car sans biais). Mais pour n fixé, quand les ‡

2
j tendent vers 0 la trace dans le MSE du

modèle complet explose (les sous-régressions tendent à devenir exactes) et la variance du
modèle marginal diminue donc l’explosion du mse du modèle complet finit par dépasser
le biais du modèle marginal et le mse du modèle marginal devient le plus faible. On
remarque enfin que quand —r est nul, le modèle marginal est le vrai modèle et devient
donc meilleur que le modèle complet (qui estime en vain —r, même s’il est sans biais).

Remarque Les hypothèses 1 à 3, impliquent que les variables dans Xf ne sont pas
corrélées (covariance nulle : voir Lemme en section A.2).

2.4 Notion de prétraitement
Le modèle marginal peut être vu comme un pari: on décide (pour s’a�ranchir des prob-
lèmes liés aux corrélations) de ne retenir que Xf pour la prédiction. Il s’agit d’un
prétraitement par sélection de variables puisqu’on se ramène à un modèle de régres-
sion linéaire classique pour lequel n’importe quel estimateur peut être utilisé. Cela fait
de ce modèle un outil générique. La préselection permet de cibler des variables qui
n’interviendront pas dans le modèle final sans pour autant être indépendantes de Y .
Le modèle final est donc parsimonieux mais ne fausse pas l’interprétation. L’estimation
de —ú peut ensuite se faire en utilisant une quelconque méthode de sélection de variables
pour éliminer les variables qui, elles, ne sont pas pertinentes pour expliquer Y .

On obtient donc deux types de 0 : ceux de la marginalisation qui pointent les vari-
ables redondantes et ceux de sélection qui viennent dans un second temps et pointent les
variables indépendantes. L’interprétation est donc enrichie par rapport à une méthode
de sélection classique qui fournirait le même modèle final. Or, le contexte industriel de
ces travaux rend indispensable d’avoir une bonne qualité d’interprétation. L’objectif est
donc atteint pour ce point précis. Notre modèle marginal est un outil de décorrélation de
variables par préselection.

2.5 Estimation de la structure
La raison d’être de notre modèle marginal est la fragilité des méthodes de régression face
à des covariables fortement corrélées. Il serait donc vain d’essayer les sous-régression en
estimant les modèles de régression de chaque variable en fonction de toutes les autres car
les corrélations nuisent à l’e�cacité de ces modèles. Pour cette raison, nous avons établi
un algorithme MCMC pour trouver le meilleur modèle de sous-régressions. L’idée consiste
à voir la structure de sous-régression comme un paramètre binaire, une matrice binaire
creuse pour être plus précis. Cette matrice G de taille d ◊ d correspond à une matrice
d’adjacence qui indique les liaisons entre covariables de la manière suivante : Gi,j = 1 si,
et seulement si Xj est expliqué par X i.

Chaque étape (q + 1) de l’algorithme propose de garder la structure G(q) en cours ou
bien de bouger vers une structure candidate qui di�ère de G(q) en un unique point. Ainsi,
selon les cas, les candidats vont allonger ou réduire des sous-régressions, les supprimer ou
les créer.
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Pour pouvoir trancher entre plusieurs candidats, nous avons besoin d’une fonction coût
qui soit capable de comparer des modèles avec des nombres distincts de sous-régressions.
Nous définissons alors un modèle génératif complet sur X qui complète le modèle de
sous-régressions en établissant des modèles de mélanges gaussiens indépendants pour les
variables de Xf . Une fois ce modèle génératif établi, nous pouvons utiliser le critère bic
pour comparer les di�érents modèles et conduire chaque étape de la chaîne MCMC par
un tirage aléatoire pondéré par les écarts entre les bic des di�érents modèles proposés
(dont le modèle en cours). L’algorithme continue ainsi sa marche et fournit à l’utilisateur
le modèle rencontré (qu’il ait été choisi ou non) qui a le meilleur bic.

La chaîne MCMC est conditionnée par le critère de partitionnement : les variables
expliquées ne doivent en expliquer aucune autre (hypothèse 2). Chaque modèle réal-
isable peut être entièrement construit ou déconstruit pendant la marche aléatoire donc
l’algorithme suit une chaîne de Markov régulière [Grinstead and Snell, 1997]. Ainsi il est
certain que, asymptotiquement (en nombre d’étapes), l’algorithme trouve le modèle ayant
le meilleur bic.

2.6 Relaxation des contraintes et nouveau critère
Pour améliorer la mélangeance de l’algorithme et donc sa vitesse de convergence, on peut
jouer avec la contrainte de partitionnement par une méthode de relaxation semblable à
un recuit simulé. Quand une structure candidate n’est pas réalisable (ne produit pas de
partition), on peut la modifier en d’autres endroits pour la rendre réalisable. Il su�t de
suivre les formules suivantes pour une modification en (i, j) de la matrice G :

1. Modification (suppression/création) de l’arc (i, j) :

G
(q+1)
i,j = 1 ≠ G

(q)
i,j

2. Si la variable X i devient un prédicteur elle ne peut plus être une variable réponse :

G
(q+1)
.,i = G

(q)
i,j G

(q)
.,i

3. Si la variable Xj devient une variable réponse elle ne peut plus être un prédicteur :

G
(q+1)
j,. = G

(q)
i,j G

(q)
j,.

où G
(q+1)
i,j est la valeur de la matrice G(q+1) ligne i et colonne j, G

(q+1)
.,i est la i

ième colonne
de G(q+1) et G

(q+1)
j,. la j

ième ligne de G(q+1). Cette méthode de relaxation permet de
sortir rapidement des extrema locaux et améliore donc significativement l’e�cacité de
l’algorithme (Figure 5.10 page 77). La méthode est illustrée sur un exemple par les fig-
ures 5.1 à 5.6 (pages 72 à 73).

Mais il reste un problème. Le nombre de modèles envisageables est considérable
et le critère bic ne tient pas compte de cette quantité, menant à des modèles trop
complexes. On lui ajoute donc une pénalité qui tient compte du nombre de modèles
réalisables pour pénaliser plus lourdement les modèles complexes. De manière générale
quand on estime la vraisemblance d’une structure S dans une base de données X, bic
est utilisé comme approximation pour P(S|X) Ã P(X|S)P(S) car P(S) est consid-
éré comme suivant une loi uniforme. Ici on s’appuie sur une loi uniforme hiérarchique
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PH(S) = PU(Jp|dp, J r, dr)PU(dp|J r, dr)PU(J r|dr)PU(dr) pour ajouter une pénalité sup-
plémentaire aux structures complexes (même probabilité globale pour un plus grand
nombre de structures donc chaque structure devient moins probable). On note bicH

ce nouveau critère. Ce critère pénalise plus lourdement les modèles ayant de nombreux
paramètres mais conserve les propriétés asymptotiques de bic.

Ces deux outils viennent améliorer l’e�cacité de l’algorithme sans paramètre utilisa-
teur à optimiser par ailleurs. Tout reste naturel et intuitif pour une meilleure automati-
sation.

2.7 Résultats
La méthode a été testée sur données simulées puis réelles, montrant l’e�cacité du modèle
marginal s’appuyant sur la vraie structure de sous-régressions (section 4.7), l’e�cacité
de l’algorithme de recherche de structure (section 6.2), et l’e�cacité du modèle marginal
s’appuyant sur la structure estimée (section 6.3 et chapitre 7). Le bilan est très positif
comme le montrent les graphiques de ces di�érentes sections.

2.8 Modèle plug-in sur les résidus du modèle marginal
Une méthode séquentielle par plug-in a été développée pour tenter d’améliorer le modèle
marginal. Il s’agit de mettre à profit la formulation exacte du modèle marginal pour
estimer —r et ainsi réduire le bruit de la régression marginale puis d’utiliser ce nouvel
estimateur pour identifier —f et ainsi obtenir un nouveau modèle complet s’appuyant sur
X entier mais protégé des corrélations par l’estimation séquentielle.

Après estimation du modèle marginal on s’applique à essayer d’améliorer l’estimation
de —:

• Estimation de Áú
Y à partir de —̂

ú
f :

Á̂ú
Y = Y ≠ Xf —̂

ú
f .

• Estimation de Á à partir de –̂ú :

Á̂ = Xr ≠ Xf –̂ú
. (2.4)

Ces deux estimateurs permettent alors d’obtenir un estimateur de —r autre que le marginal
—̂

ú
r = 0.

• Estimation de —r basée sur la définition de Áú
Y = Á—r + ÁY (équation (2.3)) :

—̂
Á

r = (Á̂ÕÁ̂)≠1Á̂Õ(Y ≠ Xf —̂ú
f ).

Cet estimateur nous permet de réduire le bruit du modèle marginal, afin d’essayer d’estimer
Y plus précisément

Ŷ plug≠in = Xf —̂
ú
f + Á̂—̂

Á

r.

On peut ensuite dans une phase d’identification obtenir un estimateur de —f .
On a —ú

f = —f + –ú—r.
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• Estimateur de —f par identification :

—̂
Á

f = —̂
ú
f ≠ –̂ú—̂

Á

r.

La figure 8.1 (page 113) montre l’e�cacité du modèle plug-in et son champ d’application
recommandé : les cas avec assez de correlations pour que les méthodes classiques ap-
pliquées à X soient handicapées mais pas assez de corrélations pour que le retrait des
variables redondantes (modèle marginal) se fasse sans perte siginificative d’information.

2.9 Valeurs manquantes
Un coproduit du modèle de sous-régression concerne les valeurs manquantes. Le fait de
disposer d’un modèle génératif complet sur X avec modélisation explicite des dépendances
permet en e�et de composer avec les valeurs manquantes en utilisant les lois condition-
nelles. Tout d’abord, l’estimation de – peut se faire sur les données observées en intégrant
sur les données manquantes. On peut alors utiliser un algorithme de type EM (Expecta-
tion Maximization) pour estimer –̂.

En pratique, on fait appel à une variante de EM : l’algorithme Stochastic EM qui
remplace l’étape E par une étape stochastique d’imputation des valeurs manquantes, par
exemple en utilisant un échantillonneur de Gibbs. Cet algorithme de Gibbs peut alors
être utilisé pour faire de l’imputation multiple sur les valeurs manquantes en s’appuyant
sur le –̂ issu du Stochastic EM. Comme cette imputation tient compte des corrélations
entre les variables, elle est plus précise qu’une simple imputation par la moyenne. Un
avantage de l’imputation multiple est que l’on peut avoir une idée de la robustesse des
imputations en regardant simplement la variance des valeurs imputées. Encore une fois,
on y gagne en qualité d’interprétation. Autrement dit, le modèle génératif sur X donne
la loi conditionnelle des valeurs manquantes sachant les valeurs observées, ce qui permet
d’imputer les valeurs manquantes en connaissant la variance associée à ces imputations.
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Chapter 3

State of the art in linear regression

Abstract: Here is a focused state of the art to have an overview of regression meth-
ods.Most of the tools described here are explained with more details in the book from
Hastie, Tibshirani et Friedman: “The Elements of Statistical Learning: Data Mining,
Inference, and Prediction" accessible on web1 for free. The main goal of this chapter is
to to justify why a new method was needed in our industrial context.

Notations: In the following we respectively note classical ( L2, L1, LŒ) norms: Î — Î2
2=qd

i=1(—i)2, Î — Î1=
qd

i=1 |—i| and Î — ÎŒ= max(|—1|, . . . , |—d|). Vectors, matrices and
tuples are in bold characters.

3.1 Regression
3.1.1 General purpose
Regression methods are the statistical methods that aim to estimate relationships between
response variables and some predictor covariates. This relationship can have many shapes,
from linear relationship to any non-linear relationship. The term "Regression" comes from
a study of Francis GALTON in the 19th century about the heights of several successive
generations of citizens that tends to "regress" towards the mean.

3.1.2 Linear models
Linear regression is a statistical method modeling the relationship between a response
variable and some covariates by a linear function of these covariates.

Y = X— + Á (3.1)

where X is the n ◊ d matrix of the explicative variables, Y the n ◊ 1 response vector and
Á some n ◊ 1 noise vector (because the model is only a model and reality is not linear)
and — is the d ◊ 1 vector of the coe�cients of regression. This is an explicit modeling
of the relationship between the response variable and its predictors, easy to understand
even for non-statisticians. Several linear models and parameter estimation methods will
be detailed in this chapter, starting from the best known Ordinary Least Squares (ols)
in Section 3.2.1.

1 http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf
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Figure 3.1: Simple Bayesian network and its probability tables. Public domain image.

3.1.3 Non-linear models
Some non-linear models are known to be easy to interpret and have a good reputation in
industry.

Bayesian networks

Bayesian networks [Heckerman et al., 1995, Jensen and Nielsen, 2007, Friedman et al., 2000]
model the covariates and their conditional dependencies via a Directed Acyclic Graph
(DAG). Such an orientation is very user-friendly because it is similar to the way we imag-
ine causality. But it is only about conditional dependencies. The usual example is the
case of wet grass in a garden. You do not remember if the sprinkler was on or o� and you
do not know if it has rain.Then you look at the grass in your neighbour’s garden and it
is not wet . . .
You will deduce that your sprinkler was on. Such conditionals dependencies are used in
chapter 9 when confronted to missing values.

Figure 3.1.3 illustrates a simpler case with dependency between the sprinkler acti-
vation and rain. It also shows probability tables associated to the Bayesian network.
Bayesian networks are quite good in terms of interpretation because of that graphical and
oriented representation of conditional probabilities. But they su�er from great dimension
(combinatory issue) and require to transform the dataset arbitrary (discretisation), that
imply a loss of information and usage of a priori (that is explicitly not suitable in our
industrial context). The choice of the way to discretise the dataset has a great impact
on the results and nothing can help if you have no a priori on the result you want to
obtain. Computation relies on a table that describes all possible combinations for each
covariate. Hence it is extremely combinatory if the graph has too much edges or is not
sparse enough. Moreover, you need to define the graph before computing the bayesian
network and without a priori it can be challenging and time consuming.

The concept of representing dependencies with directed acyclic graph is good an we
keep it in our model. Thus we will keep the ease of interpretation.
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Figure 3.2: Regression tree obtain with the package CorReg (graphical layer on top of the
rpart package) on the running example.

Classification and Regression Trees (cart)

Classification And Regression Trees (cart) [Breiman, 1984] are extremely simple to use
and interpret, can work simultaneously with quantitative and qualitative covariates and
are very fast to compute. They consist in recursive partitioning of the sample according
to binary rules on the covariate (only one at a time) to obtain a hierarchy defined by
simple rules and containing pure leaves (same value). It is followed by a pruning method
to obtain leaves that are quite homogeneous and described with simple rules.

cart are implemented in the package rpart for R, on cran ([Therneau et al., 2014]).
Our CorReg package o�ers a function to compute and plot the tree in one command with
a subtitle to explain how to read the tree and global statistics on the dataset. But it is not
convenient for linear regression problems as we see in figure 3.3 because a same variable
will be used several times and the tree will fail to give a simple interpretation as “Y and
X1 are proportional”. Trivial case: Y = X1 + ÁY where ÁY ≥ N (0, ‡

2
Y In) with ‡

2
Y = 0.5.

So cart will be used as a complementary tool for datasets with both quantitative and
qualitative covariates or when the dependence between Y and X is not linear. We will
focus our research on linear models with only quantitative variables.

Apart from linear models, the main issues are the lack of smoothness (prediction
function with jumps) and especially instability because of the hierarchical partitioning.
Modifying only one value in the dataset can impact a split and then change the range
of possible splits in the resulting sub-samples so if a top split is modified the tree can
be widely changed. Random Forests are a way to solve this problem and can be seen
as a cross-validation method for regression trees. More details in the book from Hastie
[Hastie et al., 2009].
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(a) Tree found for the trivial case (b) True linear regression and splits obtained by
the tree.

Figure 3.3: Predictive model associated to the tree (red) and true model (black)

3.2 Parameter estimation
3.2.1 Maximum likelihood and Ordinary Least Squares (ols)
We note the linear regression model:

Y = X— + ÁY (3.2)

where X is the n ◊ d matrix of the explicative variables, Y the n ◊ 1 response vector
and ÁY ≥ N (0, ‡

2
Y In) the noise of the regression, with In the n-sized identity matrix

and ‡Y > 0. The d ◊ 1 vector — is the vector of the coe�cients of the regression.
Thus we suppose that Y linearly depends on X and that the residuals are Gaussian
and i.i.d. We also suppose that X has full column rank d. — can be estimated by —̂
with Ordinary Least Squares (ols), that is the unbiased maximum likelihood estimator
[Saporta, 2006, Dodge and Rousson, 2004]:

—̂OLS = (X ÕX)≠1
X ÕY (3.3)

with variance matrix
Var(—̂OLS) = ‡

2
Y (X ÕX)≠1

. (3.4)
In fact it is the Best Linear Unbiased Estimator (BLUE). The theoretical mse is given by

mse(—̂OLS) = ‡

2
Y Tr((X ÕX)≠1).

Equation (3.2) has no intercept but usually a constant is included as one of the regressors.
For example we can take X1 = (1, . . . , 1)Õ. The corresponding element of — is then the
intercept —1. In the following we do not consider the intercept to simplify notations. In
practice, an intercept is added by default.

Estimation of Y by ols can be viewed as a projection onto the linear space spanned
by the regressors X that minimizes the distance with each individual (X i, Yi) as shown
in figure 3.4. It can be written

—̂OLS = argmin—

Ó
Î Y ≠ X— Î2

2
Ô

.
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Figure 3.4: Multiple linear regression with Ordinary Least Squares seen as a projection
on the d≠dimensional hyperplane spanned by the regressors X. Public domain image.

Estimation of — requires the inversion of X ÕX which will be ill-conditioned or even
singular if some covariates depend linearly from each other. For a given number n of
individuals, conditioning of X ÕX get worse based on two aspects:

• The dimension d (number of covariates) of the model (the more covariates you have
the greater variance you get)

• The correlations within the covariates: strongly correlated covariates give bad-
conditioning and increase variance of the estimators .

When correlations between covariates are strong, the matrix (X ÕX)≠1 is ill-conditioned
and the variance of —̂OLS increases (equation (3.4)), giving unstable and unusable es-
timator [Hoerl and Kennard, 1970]. Another problem is that matrix inversion requires
to have more individuals than covariates (n Ø d). When matrices are not invertible,
classical packages like the function lm of R base package [R Core Team, 2014] use the
Moore-Penrose pseudoinverse [Penrose, 1955] to generalize ols.

Last but not least, Ordinary Least Squares is unbiased but if some —i are null (irrele-
vant covariates) the corresponding —̂i will only asymptotically tend to 0 so the number of
covariates in the estimated model remains d. This is a major issue because we are search-
ing for a statistical tool able to work without a priori on a big dataset containing many
irrelevant covariates. Pointing out some relevant covariates and how they really impact
the response is the main goal here. We will need a variable selection method one moment
or another. It could be as a pre-treatment (to run a first tool to select relevant covariates
and then estimate the values of the non-zero coe�cients) , during coe�cient estimation
(some estimators can lead to exact zeros in —̂) or by post-treatment (by thresholding with
tests of hypothesis, etc.).
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Figure 3.5: Evolution of observed Mean Squared error on —̂OLS with the strength of the
correlations for various sample sizes and strength of regression. d = 5 covariates (running
example).

Running example: We look at a simple case with d = 5 variables defined by four
independent scaled Gaussian N (0, 1) named X1

, X2
, X4

, X5 and X3 = X1 + X2 + Á1
where Á1 ≥ N (0, ‡

2
1In). We also define two scenarii for Y with — = (1, 1, 1, 1, 1)Õ and

‡Y œ {10, 20}. So there is no intercept (can be seen as a null intercept). It is clear that
X ÕX will become more ill-conditioned as ‡1 gets smaller. In the following, the R

2 stands
for the coe�cient of determination which is here:

R

2 = 1 ≠ Var(Á1)
Var(X3)

(3.5)

Many other estimation methods were created to obtain better estimations by playing
on the bias/variance trade-o� or by making additional hypotheses. To have an easier
comparison, we look at the empiric mse obtained on —̂.

Results shown in Figure 3.5 were obtained with usage of QR decomposition to inverse
matrices, that is less impacted by ill-conditioned matrices [Bulirsch and Stoer, 2002] and
used in the lm function from R to compute ols. But the correlations issue remains. Our
package CorReg also uses this decomposition. We show the mean obtained after 100 ex-
periences computed on our running example with validation sample of 1 000 individuals.
The mse does explode with growing values of R

2. The results confirm that the situation
gets better for large values of n but strong correlations can still make the mse exploding.
The variance of —̂ is proportional to ‡

2
Y so the mse are bigger when the main regression

is weak (as in the real life).

3.2.2 Ridge regression: a penalized estimator
We have seen that ols is the Best linear Unbiased Estimator for —̂, meaning that it has
the minimum variance. But it remains possible to play with the bias/variance trade-o�
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Figure 3.6: Evolution of observed Mean Squared error on —̂ridge with the strength of the
correlations for various sample sizes and strength of regression. d = 5 covariates.

to reduce the variance by adding some bias. The underlying idea is that a small bias and
a small variance could be preferred to a huge variance without bias. Many methods do
this by a penalization on —̂.

Ridge regression [Hoerl and Kennard, 1970, Marquardt and Snee, 1975] proposes a
possibly biased estimator for — that can be written in terms of a parametric L2 penalty:

—̂ = argmin—

Ó
Î Y ≠ X— Î2

2
Ô

subject to Î — Î2
2Æ ÷ with ÷ > 0 (3.6)

But this penalty is not guided by correlations. It introduces an additional parameter ÷ to
choose for the whole dataset whereas correlations may concern only some of the covariates
with several intensities.

The solution of the ridge regression is given by

—̂ = (X ÕX + ⁄In)≠1
X ÕY (3.7)

and we see in this equation that a global modification of X ÕX (on its diagonal) is done
for a given ⁄ > 0 to improve its conditioning. Methods do exist to automatically choose a
good value for ⁄ [Cule and De Iorio, 2013, Er et al., 2013] and a R package called ridge

is on cran [Cule, 2014]. We have computed the same experiment as in previous figure
but with the ridge package instead of ols. It is clear that the ridge regression is e�-
cient in variance reduction (it is what it is built for). Moreover, ridge allows to have n < d.

Like ols, coe�cients tend to 0 but do not reach 0 so it gives di�cult interpretations
for large values of d. Ridge regression is e�cient to improve conditioning of the estimator
but gives no clue to the origin of ill-conditioning and keep irrelevant covariates. It remains
a good candidate for prediction-only studies. Our industrial context makes necessary to
have a variable selection method so we look further.
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3.3 Variable selection methods
3.3.1 Stepwise
Stepwise [Seber and Lee, 2012] is an algorithm to choose a subset of covariates to use in
the final regression model. It is a variable selection method using ols for estimation. It
is proposed in the R package stats with the function step. The main idea is to start
with a first model (that can be either void or using the whole dataset or using any subset
of covariates) and then to add and remove covariates step by step to improve the chosen
criterion. The criterion to optimize can be adjusted R-square, Akaike information crite-
rion, Bayesian information criterion,etc.

• Starting with a void model and having only adding steps is called Forward Selection.
Covariates are added by choosing first the one that improves the most the criterion.
The algorithm stops when all the covariates are in or when remaining covariates
does not improve the model.

• Backward Elimination is the same as Forward selection but starting with the full
model and removing at each step the covariates that improves the most the criterion
once deleted.

• Bidirectional elimination is more flexible and allows to start from any model. Each
step proposes to add a covariate or to delete another so it is not a hierarchical
construction any more because successive models are not necessarily nested into
each other.

A critical value can be defined to stop the algorithm when improvement becomes too
small, in order to avoid over-fitting.

Stepwise regression is subject to over-fitting and the algorithm is in trouble when
confronted to correlated covariates [Miller, 2002] giving unstable results, especially for
nested strategies, just like regression trees that are unstable because of their discrete
nested nature. Figure 3.7 illustrate the consequences of correlations in the dataset.

3.3.2 Least Absolute Shrinkage and Selection Operator (lasso)
The Least Absolute Shrinkage and Selection Operator (lasso, [Tibshirani, 1996] and
[Tibshirani et al., ]) consists in a shrinkage of the regression coe�cients based on a ⁄

parametric L1 penalty to obtain zeros in —̂ instead of the L2 penalty of the ridge regression:

—̂ = argmin
Ó
Î Y ≠ X— Î2

2
Ô

subject to Î — Î1Æ ⁄ with ⁄ > 0.

Figure 3.8 shows the contour of error (red) and constraint function (blue) for both
lasso (left) and ridge regression (right). We see that the optimum will be found on an
axis for the lasso because its constraint zone is a polyhedron whose vertices are on the
axis but not for the ridge regression. Here the axis stands for the regression coe�cients.

Here again we have to choose a value for ⁄. The Least Angle Regression (LAR
[Efron et al., 2004]) algorithm o�ers a very e�cient way to obtain the whole lasso path.
It can be used through the lars package on cran ([Hastie and Efron, 2013]). But
like the ridge regression, the penalty does not distinguish correlated and independent
covariates so there is no guarantee to have less correlated covariates. In practice, we
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Figure 3.7: Evolution of observed Mean Squared error on —̂stepwise with the strength of
the correlations for various sample sizes and strength of regression. d = 5 covariates.

Figure 3.8: Geometric view of the Penalty for the lasso (left) compared to ridge regression
(right) as shown in the book from Hastie [Hastie et al., 2009]

know that the lasso faces consistency issues when confronted to correlated covariates
[Zhao and Yu, 2006]. When two covariates are correlated, it tends to keep only one of
them. For example, if two covariates are equal and have the same e�ect, the lasso will
keep only one of them. As explained earlier, variable selection is a real stake for us but
is necessary to have a good interpretation. The lasso does not distinguish a covariate
not selected because it is totally redundant with another already selected covariate from
an irrelevant covariate. And that is a problem. This consistency issue is illustrated in
section 8.3 and compared to our models.

Some recent variants of the lasso do exist for the choice of the penalization coe�cient
like the adaptive lasso [Zou, 2006] with the parcor package that can be found on cran
([Kraemer et al., 2009]) or the random lasso [Wang et al., 2011]. But the consistency
issue remains because it is still the same model. Only the choices of ⁄ di�er.

It is notable that the main goal of the lasso is to select some covariates, thus the
penalization is just a mean to achieve selection. But estimation of —̂ can be improved by
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a second estimation with ols based only on selected covariates [Zhang and Shen, 2010].

3.3.3 Least Angle Regression (lar)
The least Angle Regression algorithm solves the lasso problem. It requires only the same
order of magnitude of computational e�ort as ols applied to the full set of covariates. The
idea is to start with all coe�cients to zero and then to grow them starting with the most
correlated with the response variable until another variable is equally correlated with the
residual. So it is a progressive growth of the coe�cient leading to reduce the residual. It
finishes with the Ordinary Least Squares solution (on the right in figure 3.10). We then
have a list of models with several numbers of non-zero coe�cients and can choose between
them with cross-validation for example.

Figure 3.9: The geometry of Least Angle Regression

Figure 3.10: The lasso path computed by lars

Figure 3.11 shows that strong correlations make the mse explode even with lar.
Results obtained with the package lars for R, included in CorReg.
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Figure 3.11: Evolution of observed Mean Squared error on —̂lar with the strength of the
correlations for various sample sizes and strength of regression. d = 5 covariates.

3.3.4 Elasticnet
Elastic net [Zou and Hastie, 2005] is a method developed to be a trade-o� between Ridge
regression and lasso by mixing both L1 and L2 penalties:

—̂ = (1 + ⁄2) argmin
Ó
Î Y ≠ X— Î2

2
Ô

subject to
(1 ≠ –) Î — Î1 +– Î — Î2

2Æ t for some t

where – = ⁄2
(⁄1+⁄2) .

Figure 3.12: Geometric view of the penalty for elasticnet

But it is based on the grouping e�ect so correlated covariates get similar coe�cients
and are selected together whereas lasso will choose between one of them and will then
obtain same predictions with a more parsimonious model. Once again, nothing specif-
ically aims to reduce the correlations. Results obtained with the package elasticnet

([Zou and Hastie, 2012]) for R are given in Figure 3.13.
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Figure 3.13: Evolution of observed Mean Squared error on —̂elasticnet with the strength of
the correlations for various sample sizes and strength of regression. d = 5 covariates.

3.3.5 Octagonal Shrinkage and Clustering Algorithm for Re-
gression (oscar)

Like elasticnet, oscar [Bondell and Reich, 2008] uses combination of two norms for its
penalty. Here the objective is to group covariates with the same e�ect (by a pairwise
LŒ norm) and give them exactly the same coe�cient (reducing the dimension) with a
simultaneous variable selection (implied by the L1 norm). Thus correlations are avoided
if correlated covariates are in the same cluster (not extremely flexible). A possible bias is
added by the dimension reduction inherent to the coe�cients clustering.

—̂ = argmin— Î Y ≠ X— Î2
2 subject to

dÿ

j=1
|—j| + c

ÿ

j<k

max(|—j|, |—k|) Æ ⁄

Moreover oscar depends on two tuning parameters: c and ⁄. For a fixed c the ⁄ can be
found by the lar algorithm but c still has to be found "by hand" comparing final models
for many values of c.

Figure 3.14: Geometric view of the Penalty for oscar

Figure 3.14 show the geometric interpretation of the penalty. It follows the same
principle as the lasso with supplementary vertices in the four quarters to obtain equal
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values for the —j. So estimator will give both zero coe�cients and equal coe�cients
that can be grouped for interpretation and correspond to a dimension reduction. So two
covariates with a similar e�ect may obtain the same estimated coe�cient. But correlations
are only implicitly taken into account and only pairwise. It lacks of an e�cient algorithm
(to find c) and need a supplementary study to interpret the groups found.

3.4 Modeling the parameters
3.4.1 CLusterwise E�ect REgression (clere)
The CLusterwise E�ect REgression (clere [Yengo et al., 2012]) describes the —j no longer
as fixed e�ect parameters but as unobserved independent random variables with —j fol-
lowing a Gaussian mixture distribution, allowing to group them by their component mem-
bership.

The idea is that if the model has a small number of groups of covariates then the
mixture will have few enough components to have a number of parameters to estimate
significantly lower than d. In such a case, it improves interpretation and ability to yeld
reliable prediction with a smaller variance on —̂. A package clere for R does exist on
cran ([Yengo and Canouil, 2014]).

But we have to choose the maximum number of components g and have no method
to choose this value. Yengo recommends to use g = 5 in our case. It could be interpreted
as the possibility to have a group of irrelevant covariates and groups with small or big
values (both positives or negatives). The package is able to choose automatically the
best number of components between 1 and g based on a bic criterion but setting g = d

gives over-fitting. Here again, it has no specific protection against or specific model for
correlations.

3.4.2 Spike and Slab
Spike and Slab variable selection [Ishwaran and Rao, 2005] also relies on Gaussian mix-
ture (the spike and the slab) hypothesis for the —j and gives a subset of covariates (not
grouped) on which to compute ols but has no specific protection against correlations
issues. The —j are supposed to come from a mixture distribution as shown in Figure 3.15.
It allows to have some coe�cients set exactly to zero after some draws. The package
spikeslab for R is on cran.

Modeling the parameters implies to have no exact value to give to the coe�cient and
it is not really user-friendly, especially in our industrial context.
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Figure 3.15: The spike and the slab

3.5 Taking correlations into account
3.5.1 Principal Component Regression (pcr)
Principal Component Regression (pcr)[Jackson, 2005] consists in using the axis from the
Principal Component Analysis (pca) of X instead of X itself. Then we have orthogonal
covariates. The dataset X is standardized to have 0 mean and variance 1 for each of the
covariates. Dimension reduction is done by keeping only the M Æ d first components of
the pca. Because the axis are linear combination of the original covariates we can then
express the model in terms of coe�cients of the Xj.

—̂M = V M “̂M œ Rd where
“̂M = (W Õ

MW M)≠1W Õ
MY with

W M = XV M

with V M the submatrix of the M first columns of V d-square matrix of the orthonormal
set of right singular vectors of X defined by:

X = U�V Õ

with � the d ◊ d diagonal matrix which has on its diagonal the positive eigen values of
X in descending order and U is the n ◊ d matrix of the orthonormal set of left singular
vectors of X.

Principal Component Regression requires to choose M the number of axis to keep. Fi-
nally, even if dimension reduction is e�ective when M < d each axis depends on all original
covariates so it does not select any covariates and that is also a problem for interpretation.
We have to choose arbitrary how to interpret each axis and how many covariates really
explain each of them. So it is not really satisfying in our industrial context. Principal
Component method can be seen as a truncation method whereas the ridge regression is
a shrinkage method. Another problem is that principal components are constructed to
explain X instead of Y even if there is no reason that relevant variables to explain X
stay relevant to explain Y . So a method that would also use Y may give better results
in terms of prediction.
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3.5.2 Partial Least Squares Regression (pls)
Partial Least Square Regression (pls)[Abdi, 2003, Geladi and Kowalski, 1986] also relies
on a combination of the columns of X but this combination depends on Y . The dataset
X is also standardized to have 0 mean and variance 1 for each of the covariates. pls
regression searches for a set of components (called latent vectors) that performs a simul-
taneous decomposition of X and Y with the constraint that linear combination of these
components explain as much as possible of the variance of Y . It follows an algorithm that
leads to construct successively M orthogonal latent variables that are linear combination
of the Xj:

1. Standardize X and set Ŷ
(0) = (Ȳ , . . . , Ȳ ) and R

(0)
j = Xj

, j = 1, . . . , d

2. For m = 1, . . . , d do:

(a) zm = qd
j=1 Ï̂mjR

(m≠1)
j , where Ï̂mj = ÈR(m≠1)

j , Y Í.

(b) ◊̂m = Èzm, Y Í/Èzm, zmÍ.

(c) Ŷ
(m) = Ŷ

(m≠1) + ◊̂mzm.
(d) Orthogonalize each R

(m≠1)
j with respect to

zm : R
(m)
j = R

(m≠1)
j ≠

Ë
Èzm, R

(m≠1)
j Í/Èzm, zmÍ

È
zm, j = 1, . . . , d

.

3. Output the sequence of fitted vectors {Ŷ
(m)

}d
1. Since the {zl}M

1 are linear in X,
so is Ŷ

(M) = X—̂P LS(M) where —̂P LS(M) for a given value of M can be recovered
from the sequence of pls transformations.

where ÈA, BÍ = q
i AiBi is the classical scalar product for two equally sized vectors A

and B.
Like the pcr, pls regression can give an e�cient dimension reduction (with small values
of M) but does not really select relevant covariates and interpretation requires to first
interpret the latent variables generated so it is not adapted to our needs.

The R package pls on cran computes both Principal Component Regression and
Partial Least Squares Regression ([Mevik et al., 2013]).

3.5.3 Simultaneous Equation Model (sem) and Path Analysis
Applied statistics for non statisticians are well developed in sociology where interpretation
stakes are fare beyond prediction. Sociologists use simple models like linear regression
(often with R

2
< 0.2) and describe complex situations with systems of linear regres-

sions. Such systems are called Structural Equation Model or Simultaneaous Equation
Model, better known as sem [Davidson and MacKinnon, 1993]. Several softwares, from
the open-source Gretl [Cottrell and Lucchetti, 2007] to proprietary STATA, does imple-
ment the sem. The systems allow to describe which covariates have an influence on others
with an orientation that users can interpret as causality [Pearl, 2000, Pearl, 1998].

sem are easy to understand for non-statisticians and can be resumed by Directed
Acyclic Graphs (DAG) as the Bayesian networks do. But the problem is that the struc-
ture of regression between the covariates is defined a priori. sem are often used to confirm
sociological theories, not to create new theories.
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Moreover, estimation of recursive sem, without instrumental variables is exactly a
succession of independent ols (confirmed with both Gretl and STATA) so the structure
is only used for interpretation, not for estimation [Brito and Pearl, 2006]. Last but not
least, there is no specific status for a response variable, each regression has the same
status. We want to be able to model complex dependencies within the covariates and use
this knowledge to estimate and understand a specific distinct response variable.

3.5.4 Seemingly Unrelated Regression (sur)
Seemingly Unrelated Regression (sur [Zellner, 1962]) is an estimation method for mul-
tiples equations with correlated error terms. It does not take into account correlations
between the covariates but starts to estimate a system of M regressions jointly instead of
independent estimations. The M regressions are:

Y i = X i—i + Ái , j = 1, . . . , M,

where Y i is the n ◊ 1 vector of the response variable of the i

th equation, X i is the n ◊ di

matrix of the observations of the di explanatory variables for the i

th equation, —i is the
di ◊ 1 vector of the coe�cients associated with them and Ái is the n ◊ 1 vector of the
disturbances with variance ‡

2
i . Defining:

Y =

S

WWWWU

Y 1
Y 2
...

Y M

T

XXXXV
, X =

S

WWWWU

X1 0 · · · 0
0 X2 · · · 0
... 0 . . . ...
0 0 · · · XM

T

XXXXV
, — =

S

WWWWU

—1
—2
...

—M

T

XXXXV
, Á =

S

WWWWU

Á1
Á2
...

ÁM

T

XXXXV
,

the model is then expressed:

Y = X— + Á.

This estimation relies on Feasible Generalized Least Squares (fgls) that depends on �,
the M ◊ M variance-covariance matrix of the error terms:

—̂F GLS = [X Õ(�̂ ¢ In)X]≠1X Õ(�̂ ¢ In)Y ,

where �̂ is a consistent estimator of �, In is the n ◊ n identity matrix and ¢ is the
Kronecker product. But when the error terms are independent or the subset of covariates
are the same it is equivalent to successive independent ols. The R package systemfit

on cran computes sur ([Henningsen and Hamann, 2007]).

3.5.5 Selvarclust: Linear regression within covariates for clus-
tering

Selvarclust is a software written in C++ modeling dependencies within a dataset
[Maugis et al., 2009] in a Gaussian clustering context2. In other words, the population
is supposed to come from several sub-populations (called the clusters), each following a
Gaussian multivariate distribution with d dimensions. The idea is then to allow covariates
to have di�erent roles (S, R, U, W ) for the clustering:

• S stands for the subset of the relevant covariates for clustering
2http://www.math.univ-toulouse.fr/~maugis/SelvarClustHomepage.html
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• U and W form a partition of the complementary subset of S, with U the subset of
irrelevant covariates depending linearly from relevant covariates and W the subset
of covariates totally irrelevant and independent from relevant covariates

• R is the subset of S that contains the covariates explaining those in U , with RflU =
ÿ.

So we have a system of linear regression:

XU = a + XR– + Á

where X is the n ◊ d dataset as above, XR and XU are the sub-matrix of X formed by
the covariates in R and U respectively, – is the Card(R) ◊ Card(U) matrix of the regres-
sion coe�cients, a is the 1 ◊ Card(U) intercept vector and Á the n ◊ Card(U) matrix of
the Gaussian error terms with zero mean and variance � œ RCard(U)◊Card(U).

It leads to decompose the density of X in three terms fclust, freg, findep whose product
will give the joint density of X:

• The relevant variables for clustering of X are assumed to follow a Gaussian mixture
with K components and a form m (see [Biernacki et al., 2006] for more details about
the possible forms):

fclust(XS; K, m, ◊) =
Kÿ

k=1
pk�(XS; µk, �k)

where the parameter vector is ◊ = (p1, . . . , pk, µ1, . . . , µk, �1, . . . , �k), with qK
k=1 pk =

1, the proportion vector and the variance matrices satisfying the form m. � is the
Gaussian density function (and will always be in the following).

• The likelihood associated to the linear regression of XU on XR is then

freg(XU ; r, a + XR–, �) =
nŸ

i=1
�(XU

i ; a + XR
i –, �)

where r is the form of �, the variance matrix of the residual Á.

• Variables independent of the variables that are relevant for clustering are assumed
to follow a Gaussian distribution (If they were independent and following a Gaussian
mixture they would then be relevant for clustering) with mean vector “ and variance
matrix · with form l:

findep(XW ; l, “, ·) =
nŸ

i=1
�(XW

i ; “, ·)

Selvarclust is one step beyond Simultaneous Equation Modeling with an algorithm
to find the structure but:

• It is about clustering and not regression (not the same application field) so we
do not have here any response variable neither method to use this structure for
estimation of another regression. And the goal is not to find the structure but to
find a Gaussian clustering.

• It uses stepwise-like algorithm [Raftery and Dean, 2006] without protection against
correlations even if it is known to be often unstable [Miller, 2002] in such a context.
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In this work we propose to build a similar model of explicit dependencies between the
covariates and to use it as a pre-treatment for linear regression on correlated covariates.
We will see that, as a pre-treatment, it can be used then for a wide range of statistical
tools and not only linear regression.
We provide a specific MCMC algorithm to find the structure between the covariates and
propose two distinct models to use the structure for prediction: a marginal model and a
plug-in model. Both algorithm are compared on a dataset from Maugis in section 6.2.1.

Aiming to realize Gaussian clustering, Selvarclust does estimate a multivariate
Gaussian mixture on X with dependencies within the covariates. Our algorithm will
only aim to find a linear sub-regression structure within X, relying on some additional
hypotheses of independence so the two methods cannot be directly compared. The only
common point is the existence of a linear sub-regression model and an algorithm that
estimates it. Thus results in section 6.2.1 are just informative.

3.6 Conclusion
In linear regression there is a lack of methods that both select relevant covariates and
manage correlations with strong interpretability. However, some methods already give
some partial solutions, sometimes in the field of interpretation by variable selection and/or
by creation of groups of covariates, sometimes in the field of prediction by conditioning
improvements. We will try to act on both fields (with priority given to interpretation)
and then to allow usage of other methods on top of the model that we will propose in the
following.
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Part I

Model for regression with
correlation-free covariates
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Chapter 4

Structure of inter-covariates
regressions

Abstract: We give an explicit model for correlation between covariates by a linear
regression system. This conditional model on covariates, combined with the condi-
tional model on the response variable allows to remove correlated-redundant covariates
by marginalization. After this pretreatment-like method, any parameter estimation can
then be done including also variable selection steps. This pre-treatment allows to reduce
variance of all the estimators beyond distinguishing irrelevant covariates from redundant
covariates.

4.1 Introduction
Most of the above methods do not take explicitly the correlations into account, even if
the clustering methods may group the correlated covariates together. The idea of the
present thesis is that if we know explicitly the correlations, we could use this knowledge
to avoid specific problem it causes. Correlations are thus new information to reduce
the variance without adding any bias. Modeling explicitly linear correlation between
variables already exists in statistics. In Gaussian model-based clustering, Selvarclust

[Maugis et al., 2009] considers that some irrelevant covariates for clustering are in linear
regression with some relevant ones. We propose to transpose this method for linear regres-
sion. More precisely, correlations are modeled through a system of linear sub-regressions
between covariates. The set of covariates which are never at the place of a response vari-
able in these sub-regressions is finally the greatest set of orthogonal covariates.

Marginalizing over the dependent co-variables leads then to a linear regression (in rela-
tion to the initial response variable) with only orthogonal covariates. This marginalization
step can be viewed also as a variable selection step but guided only by the correlations
between covariates. Advantages of this approach is twofold. First, it improves interpreta-
tion through a good readability of dependency between covariates. Second, this marginal
model is still a “true” model provided that both the initial regression model and all the
sub-regressions are “true”. As a consequence, the associated ols will preserve an unbiased
estimate but with a possibly reduced variance comparing to the ols with the full regres-
sion model. The fact is that the variance decreases depends on the residual variances
involved in the sub-regressions: The more the sub-regressions are marked, the less will
be the variance of associated ols. In fact, any other estimation method than ols can
be plugged after the marginalization step. Indeed, it can be viewed as a pre-treatment
against correlation which can be chained after with dimension reduction methods, without
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no more su�ering from correlations this time.

4.2 Explicit modeling of the correlations
Let X = (X1

, . . . , Xd) be a n ◊ d matrix of observed covariates and Y be the n ◊ 1
matrix of the observed response variable. In the following, we note Xj the j

th column of
X and XJ where J = {j1, . . . , jk} the n ◊ k sub-matrix of X composed of the columns
of X whose indices are in the set J .

We focus now on an original manner to solve the covariates correlation problem. The
covariates number problem will be solved at a second stage by standard methods, once
only decorrelated covariates will be identified. The proposed method relies on the two
following hypotheses.

Hypothesis 1 In order to take into account the covariates correlation problem, we make
the hypothesis correlation between covariates is only the consequence that some covari-
ates linearly depend on some other covariates. More precisely, there are dr Ø 0 such
“sub-regressions”, each sub-regression j = 1, . . . , dr having the covariate XJj

r as response
variable (J j

r œ {1, . . . , p} and J

j
r ”= J

jÕ
r if j ”= j

Õ) and having the d

j
p > 0 covariates XJj

p as
predictor variables (J j

p µ {1, . . . , d}\J

j
r and d

j
p = |J j

p | the cardinal of J

j
p):

XJj

r = XJj

p –j + Áj, (4.1)

where –j œ Rdj

r (–h
j ”= 0 for all j = 1, . . . , dr and h = 1, . . . , d

j
p) and Áj ≥ Nn(0, ‡

2
j I).

Hypothesis 2 In addition, we make the complementary hypothesis that the response
covariates and the predictor covariates are totally disjoint: for any sub-regression j =
1, . . . , dr, J

j
p µ Jf where Jr = {J

1
r , . . . , J

d
r

r } is set of all response covariates and Jf =
{1, . . . , d}\Jr is the set of all non response covariates of cardinal df = d ≠ dr = |Jf |. We
call this hypothesis the uncrossing rule.

This second assumption allows to obtain very simple sub-regressions sequences, dis-
carding hierarchical ones, in particular uninteresting cyclic sub-regressions. However it is
not too much restrictive since any hierarchical (but non-cyclic) sequence of sub-regressions
can be agglomerated into a non-hierarchical sequence of sub-regressions, even if it may
implies to partially lose information through variance increase in the new non-hierarchical
sub-regressions. It is made by just successively replacing endogenous covariates by their
sub-regression when they are also exogenous in some other sub-regressions.

Further notations In the following, we will note also J r = (J1
r , . . . , J

d
r

r ) the dr-uple
of all the response variables (not to be confused with the corresponding set Jr previously
defined), Jp = (J1

p , . . . , J

d
r

p ) the dr-uple of all the predictors for all the sub-regressions,
dp = (d1

p, . . . , d

d
r

p ) the associated number of predictors and S = (J r, Jp) the global model
of all the sub-regressions. As more compact notations, we define also Xr = XJ

r the whole
set of response covariates and also Xf = XJ

f the all other covariates, denominating now
as free covariates, including those used as predictor covariates in Jp. An illustration of
all these notations is applied on the running example at the end of this section. The
parameters are also stacked together: – = (–1, . . . , –d

r

) denotes the global coe�cient of
sub-regressions and ‡2 = (‡2

1, . . . , ‡

2
d

r

) denotes the corresponding global variance.
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Remarks

• Sub-regressions defined in (4.1) are very easy to understand by any practitioner and,
thus, will give a clear view of all the correlations present in the dataset at hand.

• We have considered correlations between the covariates of the main regression on Y ,
not between the residuals. Thus S does not depend on Y and it can be estimated
independently as we will see in Chapter 5, even with a larger dataset (if missing
values in Y ).

• The model of sub-regressions S gives a system of linear regressions that can be
viewed ([Davidson and MacKinnon, 1993, Timm, 2002]) as a recursive Simultane-
ous Equation Model (sem) or also as a Seemingly Unrelated Regression (sur)
[Zellner, 1962] with Xr the set of endogenous covariates.

• Each sub-regression may imply a distinct subset of explicative covariates from Xf .

• Here we suppose the Áj independent so we estimate them by separate ols. But in
other cases sur takes into account correlations between residuals and could be used
to estimate the –j.

In the running example: Jf = {1, 2, 4, 5}, df = 4 and Xf = (X1
, X2

, X4
, X5). We

have dr = 1 response covariate X3 = X1 + X2 + Á1 where Á1 ≥ Nn(0, ‡

2
1I). Thus,

–1 = (1, 1)Õ, J r = (3), Jr = {3}, Xr = (X3), dp = (2), Jp = ({1, 2}), XJ1
p = (X1

, X2)
and S = ((3), ({1, 2})).

4.3 A by-product model: marginal regression with
decorrelated covariates

The aim is now to use the model of linear sub-regressions S (that we assume to be known
in this part) between some covariates of X to obtain a linear regression on Y relying only
on uncorrelated variables Xf . The way to proceed is to marginalize the joint distribution
of {(Y , Xr)|Xf , S; —, –, ‡

2
Y , ‡2} to obtain the distribution of {Y |Xf , S; —, –, ‡

2
Y , ‡2}

depending only on uncorrelated variables Xf :

P(Y |Xf , S; —, –, ‡

2
Y , ‡2) =

⁄

Rd

r

P(Y |Xf , Xr, S; —, ‡

2
Y )P(Xr|Xf , S; –, ‡2)dXr. (4.2)

We need the following new hypothesis:

Hypothesis 3 We assume that all errors ÁY and Áj (j = 1, . . . , dr) are mutually indepen-
dent. It implies in particular that conditional response covariates {XJj

r |XJj

p

, S; –j, ‡

2
j },

with distribution defined in (4.1), are mutually independent:

P(Xr|Xf , S; –, ‡2) =
d

rŸ

j=1
P(XJj

r |XJj

p

, S; –j, ‡

2
j ). (4.3)

Noting —r = —J
r

and —f = —J
f

the regression coe�cients associated respectively to
the responses and to the free covariates, we can rewrite (3.2):

Y = Xf—f + Xr—r + ÁY . (4.4)
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Combining now (4.4) with (4.1), (4.2) and (4.3), and also independence between each Áj

and ÁY , we obtain the following closed-form for the distribution of {Y |Xf , S; —, –, ‡

2
Y , ‡2}:

Y = Xf (—f +
d

rÿ

j=1
—Jj

r

–ú
j) +

d
rÿ

j=1
—Jj

r

Áj + ÁY (4.5)

= Xf—ú
f + Áú

Y , (4.6)
where –ú

j œ Rd
f with (–ú

j)Jj

p

= –j and (–ú
j)J

f

\Jj

p

= 0. We can then define the matrix
–ú œ R(d

f

◊d
r

) of the coe�cient of sub-regression to use more compact notations:
Xr = Xf–ú + Á

Y = Xf (—f + –ú—r) + Á—r + ÁY (4.7)
Where Á is the n ◊ dr matrix whose columns are the Áj, the noises of the sub-regressions.

Consequently, we have obtained a new regression expression of Y but relying now only
on uncorrelated covariates Xf . This decorrelation process has also acted like a specific
variable selection process because Xf ™ X. These two statements are expected to de-
crease the variance of further estimates of —.

However, the counterpart is twofold. First, this regression has a higher (or equal)
residual variance than the initial one since it is now ‡

2ú
Y = ‡

2
Y + qd

r

j=1 —

2
Jj

r

‡

2
j instead of

‡

2
Y . Second, variable selection being equivalent to set —̂r = 0, it implies possibly biased

estimates of —r. As a conclusion, we are faced with a typical bias-variance trade o�. We
will illustrate it in the chapter 4.8.

In practice, the strategy we propose is to rely estimate of —̂ upon the reduced model
given in Equation (4.6). The practitioner can choose any estimate of its choice, like ols
or any variable selection procedure like lasso. In other words, it is possible to see (4.6) as
a kind of pre-treatment by pre-selection to decorrelate covariates, while assuming nothing
on the subsequent estimate process.

In the following, we will denote by CorReg (for Correlations and Regression) the
new proposed strategy.

Remarks:
• Identifiability of (X, S) is not necessary to use a given structure but helps to find

it. Moreover, uncrossing rule restricts the size of Sd and improves identifiability.
A su�cient condition for identifiability is to have at least two regressors in each
sub-regression (definition of identifiability and proof of this criterion in appendix
A). In the following, true S is supposed to be identifiable.

• As a consequence of Hypotheses 1 to 3 , “free” covariates Xf are all decorrelated
(see the Lemma in appendix A).

Running example: Y = 2X1 + 2X2 + X4 + X5 + Á1 + ÁY .

4.4 Strategy of use: pre-treatment before classical
estimation/selection methods

As a pre-treatment, the model allows usage of any method in a second time to estimate
—ú

f , even with variable selection methods like lasso or a best subset algorithm like step-
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wise [Seber and Lee, 2012]. However, we always suppose —ú
r = 0.

After selection and estimation we will obtain a model with two steps of variable selec-
tion: the decorrelation step by marginalization (coerced selection associated to redundant
information defined in S) and the classical selection step, with di�erent meanings for ob-
tained zeros in —̂

ú
f (irrelevant covariates) and for —̂

ú
r = 0 (redundant information). Thus

we are able to distinguish the reasons that have lead to keep or remove each covariate
and consistency issues do not mean interpretation issues any more. So we dodge the
drawbacks of both grouping e�ect and variable selection.

The explicit structure is parsimonious and simply consists in linear regressions and
thus is easily understood by non statistician, allowing them to have a better knowledge
of the phenomenon inside the dataset and to take better actions. Expert knowledge can
even be added to the structure, physical models for example.

Moreover, the uncrossing constraint (partition of X) guarantee to keep a simple struc-
ture easily interpretable (no cycles and no chain-e�ect) and straightforward readable.

There is no theoretical guarantee that our model is better. It is just a compromise be-
tween numerical issues caused by correlations for estimation and selection versus increased
variability due to structural hypotheses. We just play on the traditional bias-variance
trade-o�.

4.5 Illustration of the trade-o� conveyed by the pre-
treatment

We compare the ols estimator on X defined in section 3.2.1 with the estimator obtained
by the pre-treatment that is Xf selection.

For the marginal regression model defined in (4.6) we have the ols unbiased estimator
of —ú:

—̂
ú
f = (X Õ

fXf )≠1X Õ
fY and —̂

ú
r = 0

We see in (4.5) that it gives an unbiased estimation of Y and —ú but in terms of — this
estimator could be biased:

E(—̂ú
f ) = —f +

d
rÿ

j=1
—Jj

r

–ú
j and E(—̂ú

r) = 0

In return, its variance could be reduced compared to this one of —̂ given in (3.4) as soon
as values of ‡j are small enough (it means strong correlations in sub-regressions) as we
can see in the following expression

Var(—̂ú
f ) = (‡2

Y +
d

rÿ

j=1
‡

2
j —

2
Jj

r

)(X Õ
fXf )≠1 and Var(—̂ú

r) = 0. (4.8)

Indeed, no correlations between covariates Xf imply that the matrix X Õ
fXf could be

su�ciently better conditioned than the matrix X ÕX involved in (3.4) to balance the
added variance qd

r

j=1 ‡

2
j —

2
Jj

r

in (4.8). This bias-variance trade o� can be resumed by the
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Mean Squared Error (mse) associated to both estimates:

mse(—̂) = Î Bias Î2
2 + Tr(Var(—̂))

= ‡

2
Y Tr((X ÕX)≠1),

mse(—̂ú) = Î
d

rÿ

j=1
—Jj

r

–ú
j Î2

2 + Î —r Î2
2 +(‡2

Y +
d

rÿ

j=1
‡

2
j —

2
Jj

r

) Tr((X Õ
fXf )≠1).

When n rises to +Œ, variances of both estimator tends to 0 but the bias of the reduced
model remains so the complete model would be better asymptotically in n. But for a
fixed value of n, when the ‡j’s tend to 0 then the variance of the complete model tends to
explode whereas the variance of the reduced model and its bias remain stable (the factor
before the inverse even shrinks to ‡

2
Y ). So the reduced model would be better for strong

linear relationship between the covariates. We finally observe for the reduced model that
when —r = 0 there is no bias, the number of parameters to estimate is smaller than
for the complete model and the matrix to invert is well-conditioned. It is the true model
estimated with uncorrelated covariates and “knowing” —r = 0 so it will give better results.

We also get an estimation of the residual Áú
Y relying on —̂

ú
f :

Á̂ú
Y = Y ≠ Xf —̂

ú
f (4.9)

that will be used in Chapter 8. And then:

Ŷ marginal = Xf —̂
ú
f .

The bias-variance trade-o� conveyed by the pre-treatment is then illustrated with the
running example (Section 4.7).

4.6 Connexion with graphs
We can also model S by a Directed Acyclic Graph (DAG) whose vertices are the d covari-
ates and directed edges are the links between them described by the adjacency matrix G
[Bondy and Murty, 1976]. This adjacency matrix is a binary d ◊ d matrix with Gi,j = 1
if j œ Jr and i œ J

j
p (that is Xj is explained by X i and can also be seen as –ú

i,j ”= 0) and
Gi,j = 0 elsewhere.

Motivations: Graphical representation of S helps to understand it and can be com-
pared to the Bayesian network or Simultaneous Equation Modeling representation. It
helps to interpret the structure and has also been used to construct the algorithm to find
S (Chapter 5). Another advantage of the modelization by a DAG is that it helps to
obtain the cardinal of Sd, the set of the feasible structures for d covariates.

The partition of X means that the associated graph is bipartite: vertices follow a par-
tition (Xr, Xf ) with directed edges only going from Xf to Xr. We know ([Biggs, 1993])
as a classical result of graph theory that the power of adjacency matrices give the paths
in the graph: Gk

i,j ”= 0 means that there is at least a path of length k going from X i to
Xj. We note Sd the set of feasible structures (verifying hypothesis 2) with d covariates.
Because the graph is bipartite we can deduce that G is nilpotent: G2 = 0. And we have
the following result:
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Theorem: Every binary nilpotent matrix of order 2 can be seen as an adjacency matrix
of a structure that respects the uncrossing rule, and vice versa. Then the number of
feasible structures with d covariates is the number of d-sized binary nilpotent matrices of
order 2:

• ’G̃ œ Mb,d, G̃
2 = 0 ∆ S̃ œ Sd,

• ’S̃ œ Sd, G̃
2 = 0,

where G̃ is the d ◊ d adjacency matrix associated to the structure S̃ and Mb,d is the set
of d ◊ d binary matrices (filled only with 1 and 0).

Proof: Every binary matrix can be associated to a structure as an adjacency matrix
and every structure can be described by its adjacency matrix. Thus we just have to
demonstrate equivalence between uncrossing and nilpotent G. If there exists a path of
length 2 between some vertices i and j (uncrossing rule violated) then G2

i,j ”= 0 so the
matrix is not nilpotent of order 2. So the set of nilpotent matrices includes the set of
adjacency matrices associated to Sd. If G is nilpotent then there is no path of length 2 in
the graph (uncrossing rule verified). So we have the reverse inclusion and then equivalence
between the set of adjacency matrices associated to Sd and the set of nilpotent matrices. ⇤

We see that G completely describes S that is in fact a sparse storage of G. We de-
compose the structure to enumerate all the feasible structures (and thus all the binary
nilpotent matrices of order 2).

The number of possible J r for given values of d and dr is
1

d
d

r

2
= d!

d
r

!(d≠d
r

)! (binomial
coe�cient).

The number of possible Jp for given values of d, dr and J r is (2d≠d
r ≠ 1)d

r , thus we
have

|Sd| =
d≠1ÿ

d
r

=0

A
d

dr

B

(2d≠d
r ≠ 1)d

r

.

We have then |S2| = 3, |S3| = 13 and |S10| > 13.26 ◊ 109 so the number of feasible
structures really explodes when d is growing. Next chapter shows results with d = 40
and it corresponds to |S40| > 7.32 ◊ 10131 feasible structures. The function ProbaZ of
the package CorReg gives the number of feasible structures for a given value of d, but R

returns +Œ for d > 62.

In the running example: |S5| = 841 and the adjacency matrix is:

G =

Q

cccccca

0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

R

ddddddb
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Figure 4.1: The bipartite graph associated to the running example. Xr is green and Xf

is blue.

4.7 mse comparison on the running example
In this section, all experiences have been made 100 times and we take the mean to obtain
smooth curves. So we have generated 100 times X and Y from the running example.
The mse on Ŷ is computed on a validation sample with 1 000 individuals.
Dataset generation, results and curves come from our CorReg package.

Observed mse for ols: It is clear in figures 4.2 and 4.3 that the marginal model is
more robust than ols on X. Colored areas indicate which curve has the minimum value
for faster comparison of the curves. This kind of plot will be widely used in this document.
Here blue areas stand for the marginal model so our marginal model is better (in terms
of mse) when the background is blue. We see in figures 4.2 and 4.3 that mse on Ŷ OLS

give the same global results as those on —̂OLS: the marginal model is better for stronger
sub-regressions, smaller samples and weaker main regression. But we notice that when
the mse on —̂OLS explodes, the mse on Ŷ OLS does not grow so much. This is a good
illustration of the problem generated by the correlations. The model seems to be good
in prediction but coe�cients are very far from the real value and interpretation can be
extremely misleading.

When sub-regression get weaker (R2 tends to 0) CorReg (our reduced model) re-
mains stable until extreme values (sub-regression nearly fully explained by the noise).The
marginal should be particularly useful when some covariates are highly correlated, when
the sample size is small or when the residual variance of Y is large. These three classical
problems for ols make CorReg better. It illustrates the importance of dimension re-
duction when the main model has a strong noise (very usual case on real datasets where
true model is not even exactly linear).

We notice that the curve is not totally smooth for small samples (n = 15) because of
numerical approximation of the theoretical mse. It confirms that matricial inversion is
not easy with correlated covariates even with a small number of covariates. But it is only
the theoretical mse and we want to know what happens in the real life.

We also look at the observed mse on both — and Y for some of the methods depicted
above.

Observed mse for variable selection methods: Figure 4.4 shows that variable se-
lection done by the lasso gives a biased —̂ by setting some coe�cients to 0 but strong
correlations makes this bias neutral for prediction (figure 4.5). Here the lasso tends to
propose the same model as we do with our marginal model, but without explanation. We
will see later in section 6.3 that it is not su�cient in higher dimension. Elasticnet and
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Figure 4.2: Observed mse on —̂ of ols (plain red) and CorReg’s marginal model (dashed
blue) estimators for varying R

2 of the sub-regression, n and ‡Y . d = 5 covariates.

stepwise give results quite similar to the lasso (figures 4.6 to 4.9).

51



Figure 4.3: Evolution of observed Mean Squared error on Ŷ OLS with the strength of the
correlations for various sample sizes and strength of regression. d = 5 covariates.

Figure 4.4: Observed mse on —̂ of lasso with LAR on both X (red) and CorReg’s
marginal XI

f (blue) for varying R

2 of the sub-regression, n and ‡Y . d = 5 covariates.
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Figure 4.5: Evolution of observed Mean Squared error on Ŷ LASSO with the strength of
the correlations for various sample sizes and strength of regression. d = 5 covariates.

Figure 4.6: Observed mse on —̂elasticnet on both X (red) and CorReg’s marginal Xf (blue)
for varying R

2 of the sub-regression, n and ‡Y . d = 5 covariates.

53



Figure 4.7: Evolution of observed Mean Squared error on Ŷ elasticnet with the strength of
the correlations for various sample sizes and strength of regression. d = 5 covariates.

Figure 4.8: Observed mse on —̂stepwise on both X (red) and CorReg’s marginal Xf (blue)
for varying R

2 of the sub-regression, n and ‡Y . d = 5 covariates.
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Figure 4.9: Evolution of observed Mean Squared error on Ŷ stepwise with the strength of
the correlations for various sample sizes and strength of regression. d = 5 covariates.

Figure 4.10: Observed mse on —̂ridge on both X (red) and CorReg’s marginal Xf (blue)
for varying R

2 of the sub-regression, n and ‡Y . d = 5 covariates.
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Figure 4.11: Evolution of observed Mean Squared error on Ŷ ridge with the strength of the
correlations for various sample sizes and strength of regression. d = 5 covariates.
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Observed mse for ridge regression: Here again (figures 4.10 and 4.11), ridge regres-
sion provides good results for this running example. But we will see later in section 6.3
that high dimension reduces the e�ciency of the ridge regression when some covariates
begin to be irrelevant or not enough relevant because ridge regression is not able to achieve
variable selection.

4.8 Numerical results with a known structure on more
complex datasets

Here are the first numerical results obtained for a known structure S on simulated
datasets. It illustrates e�ciency of the variable selection pre-treatment made by the
marginal model.

4.8.1 The datasets
We consider regressions on Y with d = 40 covariates and with a R

2 value equal to 0.4.
Sub-regressions will have R

2 successively set to (0.1, 0.3, 0.5, 0.7, 0.99). Each Variable
in Xf arise from a Gaussian mixture (real covariates won’t be Gaussian) model whose
the number of components follows a Poisson’s law of mean parameter equal to 5. The
coe�cients of — and of the –j’s are independently generated according to the same Pois-
son distribution but with a uniform random sign. All sub-regressions are of length two
(’j = 1, . . . , dr, d

j
p = 2) and we have dr = 16 sub-regressions. The datasets are then

scaled, to avoid large distortions for variances or for means due to the sub-regressions.
Di�erent sample sizes n œ (30, 50, 100, 400) are chosen, thus considering experiments in
both situations n < d and n > d. Results are based on the true S used to generate the
dataset (function mixture_genererator in the package CorReg).

When n < d, a frequently used method is the Moore-Penrose [Katsikis and Pappas, 2008]
generalized inverse , thus ols can obtain some results even with n < d. When using pe-
nalized estimators for selection, a last Ordinary Least Square step is added to improve
estimation because penalisation is made to select variables but also shrinks remaining
coe�cients. This last step allows to keep the benefits of shrinkage (variable selection)
without any impact on remaining coe�cients (see [Zhang and Shen, 2010]) and is applied
for both classical and marginal model. We compare di�erent estimation methods on both
the complete and the reduced model. All the results are provided by the CorReg package.
Here Y depends on all the covariate and the mse provided were computed on a validation
sample of 1 000 individuals each time. Figures will display both mean and inter-quartile
intervals, coloration of the background indicates which curve is lower (i.e. better in our
case).

4.8.2 Results when the response depends on all the covariates,
true structure known

As previously explained, we have added colored backgrounds for faster comparison of the
curves. The background takes the same color as the curve that is the lowest. So we want
to obtain as much blue areas as possible,meaning our marginal model is better (in terms
of mse or in terms of parsimony).
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With ols: Figure 4.12 compares ols on X to ols on Xf that is our reduced model.
CorReg’s pre-selection improves significantly the prediction power of ols for small val-
ues of n and/or heavy sub-regression structures. This advantage then shrinks when n

increases because the matrix to invert becomes better-conditioned and since CorReg
does not allow to retrieve that Y depends on all X because of the marginalization of
some covariates implicated in the sub-regressions. It also illustrates that the regression
in Y retained by CorReg is more parsimonious.

Variable selection methods: Figure 4.13 shows that even if the lasso is able to select
a subset of covariates and even if we have seen with ols that taking a subset can give
better results, the lasso does not do so and give more complex models than our marginal
model until correlations are extremely strong. We also observe that our marginal model
combined with the lasso has varying complexities so our pre-treatment by selection is
just a pre-treatment and not competitor against the lasso. Such combination improves
the results in a significant way when compared to the lasso on the complete dataset or
ols on the marginal model. We see that the complexity rises with n but the lasso never
keeps all the covariates even with n = 400 = 10 ◊ d when used on the whole dataset but
keep all the covariates in Xf when used on the marginal model. The main result here is
that the lasso can be improved by pre-treatment selection both with n < d and n >> d

with strong correlations so this well known variable selection method really su�ers from
correlations. Elasticnet and stepwise (Figures 4.14 and 4.15)gives results mostly equiva-
lent to the lasso but stepwise seems to be a bit less e�cient (higher mse values). This
last point illustrates why we need a specific algorithm to find the structure S and not
only variable selection by stepwise like in the method from Maugis [Maugis et al., 2009].

Ridge regression: Figure 4.16 shows that the predictive power of ridge regression is
not improved by the marginal model. Ridge regression is protected against correlations
but we see that ridge regression applied on Xf (even if it is not the true model) give
predictions quite similar to those from ridge regression but with less covariates. Ridge
regression will only be damaged by correlations when variable selection is needed.
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Using ols estimation

(a)

(b)

(c)

Figure 4.12: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c), plain
red=classical (complete) model, dashed blue=marginal model
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Using lasso estimation

(a)

(b)

(c)

Figure 4.13: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c), plain
red=classical (complete) model, dashed blue=marginal model
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Using Elasticnet estimation

(a)

(b)

(c)

Figure 4.14: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c), plain
red=classical (complete) model, dashed blue=marginal model
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Using Stepwise estimation

(a)

(b)

(c)

Figure 4.15: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c), plain
red=classical (complete) model, dashed blue=marginal model
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Using Ridge estimation

(a)

(b)

(c)

Figure 4.16: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c), plain
red=classical (complete) model, dashed blue=marginal model
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4.9 Conclusion
Explicit modeling of the correlations is good for interpretation but also leads to the con-
struction of the marginal model that is correlations-free and seem to significantly improve
the e�ciency of the model. These first results really are encouraging. Improvement in
prediction is significant and we hope that it will be su�cient to obtain good results even
when we will use Ŝ instead of S. Further results are provided with estimated Ŝ (Chapter
6) and then with real industrial datasets (Chapter 7) in the following but we need first
to obtain Ŝ (Chapter 5).

Remark: The marginal model proposed in this chapter is conditional to Xf which is
defined with S. In this chapter we suppose S to be known but in real case we will have
to estimate it and the estimator used Ŝ will depend on whole X (see Chapter 5) so the
marginal model will be in fact conditional to X but in a specific manner. It will be a
sequential estimation: we will first estimate the structure of correlations Ŝ based on X
before estimating Ŷ conditionally to Xf and Ŝ.
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Chapter 5

Estimation of the structure of
sub-regression

Abstract: In the previous chapters, structure S was supposed to be known, but it has
usually to be estimated. With this aim, we define a generative model on the dataset,
paired with a probabilistic hypothesis on the structure that allows to select the structure
S by introducing a new bic-like criterion which evaluates the quality of a structure of sub-
regression. This new criterion takes into account the huge number of feasible structures.
Then we have developed an MCMC algorithm to optimize the involved criterion.

5.1 Model choice: Brief state of the art
Structural equations models are often used in social sciences and economy where a struc-
ture is supposed a priori but here we want to find it automatically, even if it remains
possible to use expert knowledge to complete the structure. Graphical lasso o�ers a
method [Friedman et al., 2008] to obtain a structure based on the precision matrix (in-
verse of the variance-covariance matrix), setting some coe�cients of the precision matrix
to zero (see section 5.3.6). But the resulting matrix is symmetric and we need an oriented
structure for S to avoid cycles.

5.1.1 Cross validation
We want a model that would remain good for new individuals. To have an idea of the
stability of a model, it is recommended to test it on a validation sample. Model parameters
are estimated with a learning sample and then the model is evaluated (by its predictive
mse for example) on a validation sample to avoid over-fitting. But it is not always possible
to have a validation sample and over-fitting is a real problem. A solution is to use Cross-
Validation [Kohavi et al., 1995, Arlot et al., 2010]. It consists in splitting the dataset in
k sub-samples (k-fold cross-validation) and then each of the k sub-samples is successively
used as validation sample for the model learnt with the k ≠ 1 remaining sub-samples.
Each time a quality criterion is computed (predictive mse or other) and then the mean
of this criterion is taken as the global criterion. The global estimator is also the mean of
the estimators. The two main issues are:

• How to choose k the number of sub-samples?

• It can be time consuming as the model is estimated k times.

If k = n we call this method the “leave-one-out" cross-validation. Cross-validation allows
to learn the model using all individuals exactly once for validation. Cross-validation is
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computed on each model we want to compare and just allows to avoid over-fitting when
computing the comparison criterion. It is often used with the Mean Squared Error (mse),
for example on the prediction.

Cross-validation is very time-consuming and thus not friendly with combinatory prob-
lems. Moreover, we need a criterion compatible with structures of di�erent sizes (dr also
has to be estimated) and not related with Y because the structure is inherent to X only.
Thus it must be a global criterion. Because it is about model selection, we decide to follow
a Bayesian approach ([Raftery, 1995], [Andrieu and Doucet, 1999],[Chipman et al., 2001]).

5.1.2 Bayesian Information Criterion (bic)
The cross-validated Mean Squared Error is not the only criterion. Probabilistic crite-
ria can be used when we have an hypothesis on the distribution of the studied model.
Such criteria can also be used without cross-validation. The Akaike Information Crite-
rion [Akaike, 1974] known as aic is asymptotically optimal in selecting the model with
the least Mean Squared Error (see [Stone, 1977]). The Bayesian Information Criterion
[Lebarbier and Mary-Huard, 2006, Schwarz et al., 1978, Yang, 2005] is a widely used cri-
terion that relies on the likelihood of the dataset knowing the model and the estimated
parameters. The advantage of bic over simple usage of the likelihood is the penalty added
to take into account the number of parameters to estimate (complexity is then penalized)
and the number of individuals in the dataset. bic is consistent so it asymptotically points
out the true model when n grows. The Risk Inflation Criterion [Foster and George, 1994]
(ric) can also be used, or any other criterion [George and McCulloch, 1993] thought to
be better in a given context. In this work we decided to start with the bic that is given
by:

bic = ≠2 ln(L(◊|X)) + |◊| ln(n) (5.1)
where L(◊|X) = P(X|◊) is the estimated likelihood of the parameters ◊ given the dataset
X, |◊| is the number of free parameters to estimate and n the number of individuals in
the dataset. This choice comes from the popularity of bic and from the fact that it makes
a strong penalization on the complexity and we want to obtain a model that is easy to
understand so parsimony is a real stake.

5.2 Revisiting the Bayesian approach for an over-
penalized bic

We want to find the most probable structure S knowing the dataset, so we search for the
structure that maximizes P(S|X) and we have:

P(S|X) Ã P(X|S)P(S) = P(Xr|Xf , S)P(Xf |S)P(S) (5.2)

In order to implement this paradigm, we need first to describe the three probabilities
which are in the right hand of the previous equation.

5.2.1 Probability associated to the redundant covariates (re-
sponses)

Defining P(Xr|Xf , S) that is the integrated likelihood based on P(Xr|Xf , S; –, ‡2).
It can be approximated by a bic-like approach [Schwarz, 1978]

≠ 2 lnP(Xr|Xf , S) ¥ ≠2 lnP(Xr|Xf , S; –̂, ‡̂2) + (|–̂| + |‡̂2|) ln(n) = bicr(S),
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where –̂ and ‡̂2 designate respectively the Maximum Likelihood Estimates (mle) of –
and ‡2, and |Â| designates the number of free continuous parameters associated to the
space of any parameter Â.

P(Xr|Xf , S; –̂, ‡̂2) =
d

rŸ

j=1
P(XJj

r |XJj

p

, S; –̂j, ‡̂

2
j ),

product of independent Gaussians.

Estimation of the numerical parameters: S is a discrete parameter but it is as-
sociated to numerical parameters – and Á through Hypothesis 1. We can estimate the
coe�cients of sub-regression by ols for example because sub-regression are small, imply
independent covariates and do not need variable selection (parsimony comes directly from
S):

’j œ {1, . . . , dr}, –̂j = ((XJj

p )ÕXJj

p )≠1(XJj

p )ÕXJj

r

. (5.3)
And then we get the estimation of Á relying on –̂ú:

Á̂ = Xr ≠ Xf –̂ú
. (5.4)

These estimators will be used in Chapter 8.

5.2.2 Probability associated to the free covariates (predictors)
Defining P(Xf |S) = r

jœJ
f

P(Xj; S) It corresponds to the integrated likelihood based
on a not yet defined distribution P(Xf |S; ◊) on the uncorrelated covariates Xf and
parameterized by ◊. In this purpose, we need the following new hypothesis.

Hypothesis 4 All covariates Xj with j œ Jf are mutually independent and arise from
the following Gaussian mixture of Kj components

’1 Æ i Æ n,P(xi,j|S; fij, µj, �j) =
K

jÿ

h=1
fij,h�(xi,j; µj,h, �j,h),

where fij = (fij,1, . . . , fij,K
j

) is the vector of mixing proportions with ’1 Æ h Æ kj, fij,h > 0
and qK

j

h=1 fij,h = 1, µj = (µj,1, . . . , µj,K
j

) is the vector of centres and �j = (�j,1, . . . , �j,K
j

)
is the vector of variances and � is the Gaussian density function.
We stack together all these mixture parameters in ◊ = (fij, µj, �j; j œ Jf ). We now have
a full generative model on X.

Noting ◊̂ the mle of ◊, the bic approximation can then be used again:

≠ 2 lnP(Xf |S) ¥ ≠2 lnP(Xf |S; ◊̂) + |◊̂| ln(n) = bicf (S).

5.2.3 Probability associated to the discrete structure S

Defining P(S) The most standard choice consists of putting a uniform distribution on
the model space Sd, this choice being noted PU(S) = |Sd|≠1, with |Sd| the space dimension
of Sd as defined in section 4.6.
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Remarks

• Hypothesis 4 is the keystone to define a full generative model on the whole covariates
X. On the one hand, the bic criterion can be applied in this context, avoiding to use
a cross-validation criterion which can be much more time-consuming. On the other
hand, the great flexibility of Gaussian mixture models [McLachlan and Peel, 2004],
provided that the number of components kj has to be estimated, implies that Hy-
pothesis 4 is particularly weak in fact.

• In practice, Gaussian mixture models are estimated only once for each variable Xj

(j = 1, . . . , d). Thus, there is no combinatorial di�culty associated with them.
An em algorithm [Dempster et al., 1977] will be used for estimating the mixture
parameters and a classical bic criterion [Schwarz, 1978] will be used for selecting
the di�erent number of components kj.

5.2.4 Penalization of the integrated likelihood by P(S)
Sd being combinatorial, |Sd| is huge. It has two cumulated consequences: First, the
exact probability P(S|X) may be of the same order of magnitude for a large number of
candidates S, including the best one; Second, the bic approximations of this quantity may
introduce additional confusion to wisely distinguish between model probabilities because
the number of compared models is not taken into account [Massart and Picard, 2007]. In
order to limit this problem, we propose to introduce some information in P(S) promoting
simple models through the following hierarchical uniform distribution denoted by PH(S):

PH(S) = PH(J r, Jp)
= PH(J r, Jp, dr, dp)
= PU(Jp|dp, J r, dr) ◊ PU(dp|J r, dr) ◊ PU(J r|dr) ◊ PU(dr)

=
S

U
d

rŸ

j=1

A
d ≠ dr

d

j
p

BT

V
≠1

◊ [d ≠ dr]≠d
r ◊

CA
d

dr

BD≠1

◊ [d + 1]≠1
,

where
A

a

b

B

means the number of b-element subsets of an a-element set and where all

probabilities PU(·) denote uniform distribution on the related space at hand. PH(S)
gives decreasing probabilities to more complex models, provided that the following new
hypothesis is verified:

Hypothesis 5 We set dr < d/2 and also d

j
p < d/2 (j = 1, . . . , dr).

These two thresholds are su�ciently large to be wholly realistic.

Final approximation of P(S|X) Merging the previous three expressions, it leads to
the following two global bic criteria, to be minimized, denoted by bicU or bicH , depending
on the choice of PU(S) or PH(S) respectively:

bicU(S) = bicr(S) + bicf (S) ≠ 2 lnPU(S)
bicH(S) = bicr(S) + bicf (S) ≠ 2 lnPH(S).

In the following, we will denote by bicú any of both bicU and bicH . Numerical results
in Section 6.2 will allow to compare behaviour of both criteria.
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Remarks

• As a bic criterion [Lebarbier and Mary-Huard, 2006], the bicU and bicH criteria
are consistent .

• Even if it favors more parsimonious models, PH(S) can be also viewed as a poor
informative prior on S since it is a combination of non informative priors.

5.3 Random walk to optimize the new criterion
We have to choose a model from a finite space of models (S is a discrete parameter),
with a criterion to compare them. We choose to use a random walk (Markov Chain
[Robert and Casella, 2005])with some properties:

• The walk has to be able to go from any structure to any other.

• Each step has rely on the chosen quality criterion for the structure.

Then we have to define neighbourhoods and probability transitions that verify these two
properties.

5.3.1 Transition probabilities
Once we have neighbourhoods V(S) that allow to go from any structure to any other,
we have to choose a candidate for the next step. The walk follows a time-homogeneous
Markov Chain whose transition matrix has |Sd| rows and columns (extremely wide and
sparse matrix for d > 10 so we just compute the probabilities when we need them). At
each step the Markov chain moves with probability:

’S œ Sd, ’S+ œ V(S) : P(S+|V(S)) = exp (≠bicú(S+))
q

S̃œV(S) exp (≠bicú(S̃))
(5.5)

and Sd is a finite state space.
Because the walk follows a regular and thus ergodic Markov chain with a finite state

space, it has exactly one stationary distribution [Grinstead and Snell, 1997]. But the walk
can also be seen as a Gibbs sampler [Casella and George, 1992] that alternate draws of
S and V(S) with stationary distribution fi Ã exp(≠bicú(·)) on the space Sd. With more
details, the stationary distribution is:

’S œ Sd, fi(S) = exp (≠bicú(S))
q

S̃œS
d

exp (≠bicú(S̃))

The output of the algorithm will be the best structure in terms of P (S|X) which
weights each candidate, it is also the mode of the stationary distribution.

5.3.2 Deterministic neighbourhood
We define a global neighbourhood space V(S) of S composed of the following four specific
neighbourhood spaces V(S) = Vr+(S) fi Vr≠(S) fi Vp+(S) fi Vp≠(S) described below:

Adding a sub-regression: a new sub-regression with only one predictor covariate is
added to S

Vr+(S) =
Ó
S̃ : S̃ œ Sd, (J̃ r, J̃p)1,...,d

r = (J r, Jp), J̃

d
r

+1
r œ Jf , J̃

d
r

+1
p = {j}, j œ Jf

Ô
.
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Removing a sub-regression: a sub-regression is removed from S

Vr≠(S) =
Ó
S̃ : S̃ œ Sd, (J̃ r, J̃p) = (J r, Jp){1,...,d

r

}\j
, j œ {1, . . . , dr}

Ô
.

Adding a predictor covariate: a predictor covariate is added to one sub-regression
of S

Vp+(S) =
Ó
S̃ : S̃ œ Sd, J̃ r = J r, J̃p

{1,...,d
r

}\{j} = J

{1,...,d
r

}\{j}
p ,

J̃

j
p = J

j
p fi {h}, j œ {1, . . . , dr}, h œ Jf \ J

j
p

Ô
.

Removing a predictor covariate: a predictor covariate is removed from one sub-
regression of S

Vp≠(S) =
Ó
S̃ : S̃ œ Sd, J̃ r = J r, J̃p

{1,...,d
r

}\{j} = J

{1,...,d
r

}\{j}
p ,

J̃

j
p = J

j
p\{h}, j œ {1, . . . , dr}, h œ J

j
p

Ô
.

We just want to find the best model and this neighbourhood is deterministic so it does
not need to contain the current structure S.

5.3.3 Stochastic neighbourhood
We see that |V(S)| can be very large. Large neighbourhoods are bad in terms of compu-
tational cost but also in terms of e�ciency: the denominator in equation (5.5) increases
with the number of candidates. A classical way to avoid such a problem is to reduce
the neighbourhood to a random subset and then to allow stationarity (to keep the walk’s
properties). We redefine a neighbourhood based on the modification of the adjacency
matrix G associated to S instead of using the four previous neighbourhoods.

For each step (q), starting from S œ Sd we define a neighbourhood:

V(S|A(q)) = {S} fi {S(i,j) œ Sd|(i, j) œ A(q)}

where A(q) is a set of couples (i, j) œ {1, . . . , d}2 with i ”= j drawn at the step (q) according
to a strategy defined below and corresponding to the directed edge of the graph to modify
(add or remove). And we have for S̃ = S(i,j):

’(k, l) ”= (i, j), G̃k,l = Gk,l

G̃i,j = 1 ≠ Gi,j

where G̃ is the adjacency matrix associated to S̃. Any strategy can be chosen for A(q),
from uniform distribution to specific heuristics.

The main advantage of such a neighbourhood is that increasing and decreasing com-
plexities are tested at each step without arbitrary ratio. If we just look at the sub-
regression system, we have to choose for each sub-regression if we add, remove or keep
covariates and we also have to choose if we had or delete some sub-regressions. Adjacency
matrix makes the neighbourhood extremely natural with just the modification of a value
in a binary matrix.
Then the transition probability becomes, for step (q):

’S œ Sd, ’S+ œ V(S|A(q)) : P(S+|V(S|A(q))) = exp (≠bicú(S+))
q

S̃œV(S|A(q)) exp (≠bicú(S̃))

But the stationary distribution remains the same.
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Strategy to draw A(q)

Many strategies can be imagined. The only constraint on A(q) is that ’(i, j) œ A(q), i ”= j.
We propose, for step (q) to draw j from U({1, . . . , d}) and then

A(q)|j = {(i, j) œ {1, . . . , d}2 : i ”= j}.

Such a strategy can be interpreted as the uniform choice of a sub-regression to modify
followed by the proposal of each possible unary change. For large values of d, the number
of candidate at each step can become critical. Each candidate requires to re-estimate the
–j’s for each modified sub-regression and it requires matricial inversion (estimation by
ols) so computational cost can be high if n is also large. In such cases one solution (almost
as a warm-up phase) would be to only consider a randomly reduced neighbourhood to
reduce the computational cost of each step.

5.3.4 Enlarged neighbourhood by constraint relaxation
In practice, for some of the (i, j) œ A(q), we have S(i,j)

/œ Sd because of the uncrossing
rule. Such candidates are basically rejected so the number of candidates is not constant at
each step. Moreover, complex structures reduce the size of the potential neighbourhood
because of this uncrossing rule. Last but not least, even if the walk can reach any feasible
structure from any other feasible structure, local extrema may significantly slow down the
research of the optimal structure. Thus we propose a "constraints relaxation" method by
a new definition of S̃ = S(i,j) relying on a new definition of G̃:

Modification of the selected directed edge (i, j) on the graph: (Figure 5.2)

G̃i,j = 1 ≠ Gi,j as usual and
’k ”= i, l ”= j, G̃k,l = Gk,l

Column-wise relaxation : newly predictive covariate cannot be regressed anymore
(Figure 5.3):

’k œ {1, . . . , d} \ {i}, G̃k,j = Gi,jGk,j

(5.6)

Row-wise relaxation: newly regressed covariate cannot be predictive anymore (Figure
5.4):

’l œ {1, . . . , d} \ {j}, G̃i,l = Gi,jGi,l (row-wise relaxation)

It can be seen as forcing the modification by removing what would have made the
structure not feasible. So in one step we can test a model that remove completely a sub-
regression, remove the explicative role of a covariate in all sub-regressions (that was not
possible with the deterministic neighbourhood) and create a new pairwise sub-regression.
It drastically increases the scope of the neighbourhood (Figure 5.6) and guarantee to
always have the same number of candidates during the MCMC. It can be compared to
simulated annealing that sometimes proposes exotic candidates to avoid local extrema,
but here without any temperature to set. Here again, the neighbourhood remains nat-
ural, without arbitrary parameters to tune. This enlarged neighbourhood can also be
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G =

Q

cccccca

0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

R

ddddddb

Figure 5.1: We start from a structure S = ((4, 5), ({1, 2}, {2, 3})) and its associated
matrix G

Q

cccccca

0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0

R

ddddddb

Figure 5.2: We want to define the candidate S̃ = S(5,2) and its associated matrix but the
structure obtained would not be feasible (breaking the uncrossing rule).

randomly reduced, allowing to escape from local extremas but without increasing the
number of candidates.

Another advantage of the relaxation method is that it reduces complexity very quickly
without having to deconstruct a sub-regression (Figure 5.10), so it helps to have simpler
models in a small amount of time (asymptotical results are the same because the chain is
regular thus ergodic).

Numerical results (Section 4) illustrates the e�ciency of the walk when the true model
contains structures with various strength (section 6.2) and an example with a non-linear
structure (Figure 6.20(a)).

We give an example to better illustrate how it works in Figures 5.1 to 5.6:
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Q

cccccca

0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

R

ddddddb

Figure 5.3: Column-wise relaxation: newly predictive covariate cannot be regressed any-
more.

G̃ =

Q

cccccca

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

R

ddddddb

Figure 5.4: Row-wise relaxation: newly predictive covariate cannot be regressed anymore.

G̃ =

Q

cccccca

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

R

ddddddb

Figure 5.5: We get a feasible candidate S̃ = ((2, 4), ({5}, {1})) that does di�er from S in
many points.

Figure 5.6: All this modifications are made in only one step in the MCMC, meaning an
increased scope for the neighbourhoods.
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5.3.5 Pruning
If the complexity of S is too high (for example if the MCMC had a limited time to find
a good model), pruning methods can be used. We note that, for each of the following
pruning methods, the final complexity may stay the same.

Additional cleaning steps: Because the walk is not exhaustive in practice (does not
run enough steps), it does make sense to let the walk continue a few steps with neigh-
bourhood containing only suppressions in the structure. Every sub-graph of a bipartite
graph is bipartite thus every sub-graph can be reached. It is just an heuristic change in
the strategy with:

A(q) = {(i, J

j
r ), i œ Jf , j œ {1, . . . , dr} : i œ J

j
p}.

It is not based on any arbitrary parameter and change the result only if it finds a better
structure in terms of the criterion bicú used in the walk. So the criterion is the same,
only the neighbourhood is changed. For these reasons, it is our recommended pruning
method. The package CorReg allows to use this method automatically after the MCMC
with the parameter clean=TRUE.

But if n is small, then bicú might su�er from overfitting.So we propose some other
pruning methods (once again, they only potentially reduce complexity of the structure).

Variable selection We can use variable selection methods like the lasso on XJj

p to
estimate the coe�cients –j and obtain some supplementary zeros. Working on XJj

p

protects the lasso against dimension and correlations issues.

R

2 thresholding We can also define a minimal value for the R

2 of the sub-regression
to maintain them in the final structure. But this minimal value would be totally arbitrary
and we know that it is frequent to use linear regression with real datasets that only show
a R

2 between 0.1 and 0.2. It is particularly true in social sciences.

Test of hypotheses Another pruning method would be to delete sub-regressions that
o�er a F-statistic under a minimal value.

5.3.6 Initialization of the walk
Correlation-based initialization

If we have some knowledge about some sub-regressions (physical models for example) we
can add them in the found and/or initial structure. So the model is really expert-friendly.
The initial structure can be based on a first warming algorithm taking the correlations
into account. Coe�cients are randomly set to 1 into G, according to a Bernoulli draw
weighted by the absolute value of the correlations and with respect to the uncrossing
constraint. Uncrossing constraint will not allow some strong correlation to be taken into
account according to the ordering of the Bernoulli drawing so we can draw with a random
order or by ordering by descending correlations.

We note then that the bicú associated to initial model is often worse than the bicú
of the void structure, so we compare several chains in Figures 5.7 and 5.8. We see that
correlation-based initialization quickly beat the void structure. This can be explained by
local extrema. Correlations-based initialization gives structures with a smaller "structural
distance" to the true model and then the chains are less subject to local extrema.
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Figure 5.7: Amount of time each method is better for the 100 first steps of the MCMC.

Figure 5.8: Evolution of the bic (criterion to minimize in the MCMC) for each method.

Multiple intialization

Local extrema are a known issue for most of optimization methods, and one would rather
test multiple short chains than lose time in initialization or long chains [Gilks et al., 1996].
We also compare the results obtained with several number of chains. Figure 5.9 shows
the evolution of the bic of the best chain with a number of chains varying from 1 to 10,
so the model with 10 chains contain the others and is at least as good as they are (then
curves get lower as the number of initializations does increase, by construction). We see
that multiple initialization is e�cient but the gain seems to be logarithmic in the number
of tries so it is recommended to use multiple chains but not too much (time consuming).
Important remark: multiple chains can be computed in parallel so it is not really time
consuming.
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Figure 5.9: Comparison of distinct number of correlation-based initializations for the
MCMC. Dark blue=1 initialization, red=10 initializations, the cyan curves represent all
intermediate values for the number of initializations (from 2 to 9).

In the following, the chain was launched with twenty initializations each time, based on
the correlation matrix.

Graphical lasso

Graphical lasso ([Friedman et al., 2008], [Witten et al., 2011], [Tibshirani et al., ] and
[Friedman et al., 2010]) is set to give undirected (thus symmetric) graphs by selection in
the precision matrix (the inverse of the variance-covariance matrix). It cycles through
the variables, fitting a modified lasso regression to each variable in turn. The individ-
ual lasso problems are solved by coordinate descent. It is a variant of another method
([Meinshausen and Bühlmann, 2006]) that computes d lasso estimation (each covariate
regressed by all the others) and put zeros in the precision matrix when covariates seem to
be conditionally independent (zero as regression coe�cient). It does make sense for expo-
nential family because in these cases, zeros in the precision matrix �≠1 can be interpreted
in terms of conditional independence between covariates [Dempster, 1972]. But we have
supposed Gaussian mixture on X (not exponential family so the precision matrix cannot
be interpreted as easily) and we search an oriented graph. So it is not adapted to find
the structure of sub-regressions.

However, we could still try use it for initialization, for example by a Hadamard product
with G(0) the adjacency matrix of the initial structure. Another idea would be to make the
Hadamard product with the correlations matrix before computing the initial structure.
We can also try to give the graph a bipartite orientation. We first have to obtain a bipartite
graph, that mean to have no even cycles. A particular case would be the minimum
spanning tree [Graham and Hell, 1985, Moret and Shapiro, 1991, Gower and Ross, 1969]
because trees have no cycles. But it is time consuming (especially for an initialization
method) and has no theoretical properties relied to our problematic of minimizing bicú,
so the idea was left behind after some tries.
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5.3.7 Implementing and visualizing the walk by the CorReg soft-
ware

The CorReg package is now on cran and provides many parameters for the walk. If
wanted it can return some curves associated to the walk to have an idea of what happens
with distinct strategies.

We define the complexity of a structure S as the number of elements in the adjacency
matrix, that is the number of links between covariates and is obtained by:

Complexity(S) =
d

rÿ

j=1
d

j
p.

We compare some walks with each time the same dataset and the same seed for the
random generator. We have d = 100 and n = 50.

For Figures 5.10 and 5.11 we start from an arbitrary structure with a complexity of
62. We see that relaxation helps to delete these false sub-regressions and avoid to be
stuck in it, improving the bic much faster. We also observe that final complexities are
comparable. Here the MCMC was launched only once (with the totally arbitrary initial
structure based on nothing), the true structure had a complexity of 120.

Figure 5.10: Comparison of complexity evolution with or without constraint relaxation.
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Figure 5.11: Comparison of bic evolution with or without constraint relaxation.

Some indicators of the structure estimation quality

The criterion bicú is maximized in the MCMC. But its value does not have any intrinsic
meaning. To show how far the found structure is from the true one in terms of S we define
some indicators to compare the true model S and the found one Ŝ. Global indicators:

• Tr = |JrflĴr| (“True Responses”): it corresponds to the number of estimate response
covariates in Ŝ which are truly response covariates in the true model S.

• Wr = |Ĵr| ≠ Tr (“Wrong Responses”): it corresponds to the number of estimate
response covariates in Ŝ which are are wrongfully response covariates in the true
model S.

• Mr = dr ≠ Tr (“Missing Responses”): the number of true response variables not
found.

• �dr = dr ≠ d̂r: the gap between the number of sub-regression in both model. The
sign defines if Ŝ is too complex or too simple compared to the true model.

• �compl = qd
r

j=1 d

j
p: the di�erence in complexity between both models.

5.4 Conclusion
We now have an algorithm and a criterion to find the best structure of correlations. This
algorithm is extremely flexible: no heavy hypotheses on the dataset, no crucial parameter
to tune by hand. We want then to know how e�cient it is on simulated datasets first
(Chapter 6), and then on real industrial datasets from ArcelorMittal to confirm the utility
of both the new model and the algorithm in the real life (Chapter 7).

Remark: Choosing whether we have to use or not the structure to make a pre-treatment
is independent of the utility of the structure. Knowing explicitly the complex correlations
that hold the dataset is a real stake when times come to interpret the model and to decide
actions. Our explicit structure describes in details the complexity of the situation so we
can then act knowing what we do.
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Chapter 6

Numerical results on simulated
datasets

Abstract: Here are the numerical results obtained for an unknown structure S on
simulated datasets. It illustrates e�ciency of both the new bic-like criterion and the
MCMC algorithm used to find a relevant structure between the covariates. We also
evaluate its impact on the predictive ability of the model. We finish with a robustness
study for non-linear correlation designs.

6.1 Simulated datasets
Now we have defined the model and the way to obtain it, we can have a look on some
numerical results to evaluate the proposed strategy to find the structure and the e�ciency
of the resulting marginal model. The package CorReg has been tested on the simulated
datasets from section 4.8.1. Section 6.2 shows the results obtained in terms of Ŝ. Sec-
tion 6.3 shows the results obtained using only CorReg, or CorReg combined with other
methods. The graph in section 6.3 give both mean, first and third quartiles of the chosen
indicator. The mse on —̂ and Ŷ were computed on a validation sample of 1000 individu-
als. Several pattern for Y were tested to evaluate the impact of irrelevant covariates.

We used the package Rmixmod from cran [Auder et al., 2014] to estimate the densities
of each covariate. For each configuration, the MCMC walk was launched on 10 initial
structures with a maximum of 1 000 steps each time. When n < d, a frequently used
method is the Moore-Penrose generalized inverse [Katsikis and Pappas, 2008], thus ols
can obtain some results even with n < d. We compare di�erent methods with and
without CorReg as a pre-treatment. All the results are provided by the CorReg package.
Associated figures will display both mean and inter-quartile intervals.

6.2 Results about the estimation of the structure of
sub-regression

Figure 6.1 illustrates the impact of large samples. For n >> d the MCMC found most
of the truly redundant covariates and only few wrong redundant covariates. We also
observe that strong correlations (R2 Ø 0.7) get more wrong sub-regressions for a same
total number of sub-regressions. It comes from induced correlations. If two covariates are
explained by the same others, they may have a strong induced pairwise correlation and if
the walk tries to combine them in a single sub-regression we can have a local extremum.
Because we have constrained Jf fl Jr = ÿ, then when a redundant covariate is misplaced
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in a sub-regression, the associated true sub-regression cannot be kept simultaneously so
the number of true sub-regression is also slightly reduced when R

2 Ø 0.7. The walk is
ergodic but in a finite number of steps it can keep such a wrong sub-regression, that is
why we launch the walk several times with distinct initial structures. Such a wrong sub-
regressions is not totally wrong in that it describes real correlations. So interpretation is
not compromise and neither is the predictive e�ciency as shown in section 6.3.
For smaller values of n we observe that the number of true sub-regressions found increases
with their strength (growing R

2).
When comparing bicU to bicH it becomes evident that bicH is less confident to keep
sub-regressions (it is what it was made for). Weak sub-regressions are kept only if the
sample is large enough to be confident and when the R

2 rises, the number of kept true
sub-regressions grows quickly whereas wrong sub-regressions remain exceptional. Induced
pairwise correlations give weaker sub-regressions so the walk is less attracted by them.
We can then conclude that bicH does achieve its main purpose that was to reduce the
complexity of the structure by keeping only strong sub-regressions. In these simulated
datasets, the R

2 were equal for each sub-regression. We can see several reasons to explain
why the sub-regression are not all kept or all missing.

• The walk has only walked a finite number of steps so only a subset of all the feasible
structures has been tested.

• Some true sub-regressions are polluted by over-fitting and the non-crossing rule can
then make other true sub-regressions not compatible (the walk has to clean the
previous sub-regression first).

• bic relies on the likelihood and if marginal laws are well-estimated by Rmixmod, the
gap between the marginal and dependent likelihood might be small and thus the
walk can be slowed whereas we use a finite number of steps.

(a) With classical bicU criterion (b) With our bicH criterion

Figure 6.1: Quality of the sub-regressions found by the MCMC. True left (plain blue) and
Wrong left (dotted red) for n varying in (30, 50, 100, 400), the thicker the greater n.

6.2.1 Comparison with Selvarclust

Maugis provides results1 of SelvarClust on a dataset Data2.txt containing 2 000 data
points from a mixture of four Gaussian distributions N (µk, I2) with µ1 = (≠2, ≠2), µ2 =

1http://www.math.univ-toulouse.fr/~maugis/SelvarClustHomepage.html
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(≠2, 2), µ3 = (2, ≠2), µ4 = (2, 2) and with a proportion vector fi = (0.3, 0.2, 0.3, 0.2).
Variables X1

, X2 corresponds to the coordinates. Eight irrelevant variables (for cluster-
ing) are appended, simulated according to ’1 Æ i Æ 2 000:

X
{3,...,6}
i |X{1,2}

i ; –ú
, � ≥ N (X{1,2}

i –ú
, �)

with –ú =
A

0.5 0 2 0
0 1 0 3

B

and � = diag(1, 1, 0.5, 0.5)

X
{7,...,10}
i ≥ N (0, I4).

We compare results obtained on –̂ú by both CorReg and Selvarclust. Both SelvarClust

and CorReg add an intercept (default parameter) that is like using a constant covariate
X0 = 1 and then adding a first row to –ú containing the intercept of the sub-regressions.
This intercept is not part of the selection procedure so it will never have zero value in
practice. Hence we compare the second and third lines of the matrices (an horizontal line
is drawn to distinguish the intercept from the rest of the matrix).

SelvarClust finds –̂ú
Selvarclust =

A 0.006052 ≠0.025386 ≠0.006845 ≠0.015952 0.003420 0.007839 ≠0.047422 ≠0.005811
0.504791 ≠0.002147 2.007127 ≠0.001010 ≠0.000105 0.022403 0.013361 0.000083
≠0.006709 1.000927 0.007463 2.997941 ≠0.005955 ≠0.021958 ≠0.010387 0.010765

B

CorReg finds:

–̂ú
CorReg =

Q

ca
0.008698209 ≠0.02540033 ≠0.00978779 ≠0.01595849

0.504672402 0 2.00725861 0
0 1.00088836 0 2.99792339

R

db

Both software found that X1
, X2 are not in J r = (3, . . . , 6) but only CorReg found

the true model with Ĵ r = J r and Ĵp = Jp = ({1}, {2}, {1}, {2}). Selvarclust finds
Ŝ = ((3, . . . , 10), ({1, 2}, . . . , {1, 2})) that does not even give the true partition (Jr, Jf )
(so marginal model would be distinct). Our algorithm gives better results on –̂ú with
more parsimonious Ŝ (that is the true S), proving that a new algorithm was needed to
estimate the sub-regression structure and that the proposed MCMC is e�cient.

We then compare the two methods on theoretical aspects.

• Distinct goals: CorReg gives better results because it does not su�er from corre-
lations like stepwise does in the algorithm from Maugis but also because the goal
is not the same. Selvarclust aims to find the relevant covariates for clustering
and achieves this goal. We focus on the explicit structure of regression between the
covariate instead of Gaussian clustering. Distinct goals, distinct results even if the
sub-regression model is quite the same. To obtain better results is just a necessary
confirmation of that.

• Distinct hypotheses:

– Selvarclust allows dependencies between the regressors and also between the
noises of the sub-regressions. We suppose independence between the regressors
and between the conditional distributions (noises of the sub-regressions are
supposed to be independent). Our algorithm does not allow to find complex
distributions with dependencies as Selvarclust does.

– We estimate each marginal distribution separately (with Rmixmod for exam-
ple). It can lead to a joint distribution with a huge number of components
(see Chapter 9) whereas Selvarclust has to choose directly the number of
components of the joint distribution and then this number is limited.
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Both models use a sub-regression structure and propose an algorithm to find it, but the
comparison stops here. CorReg does not really beat Selvarclust because hypotheses and
objectives are not the same, so the result cannot really be compared. Our algorithm will
allow more components than Selvarclust and Selvarclust will allow more dependencies
between the covariates.
Selvarclust is not a competitor to CorReg but a confirmation that the concept of sub-
regressions within the covariates and the concept of redundant and irrelevant covariates
are pertinent.

6.2.2 Computational time
In terms of computation time, the most expansive thing in the MCMC is the computa-
tion of ols to estimate – for each candidate, that is mainly successive inversion of the
(XJj

p )ÕXJj

p matrices.
Figure 6.2 illustrate the evolution of the time needed to achieve 10 times (distinct initial-
izations) 1 000 steps on the datasets described above with the R

2 of the sub-regressions
set to 0.7. We see that time increases with n from less than 2 seconds for n = 30 to more
than 12 seconds for n = 400.

The main impact of a change of d will be the expansion of Sd that will require more

Figure 6.2: Evolution of the mean time for 10 times 1 000 steps of the MCMC, 39 candi-
dates each time (constraint relaxation). d = 40 covariates with dr = 16 sub-regressions

iteration/candidates to find the true structure. But the cost of each sub-regression re-
mains the same. Figure 6.3 show the evolution of the time for n = 30 and dr = 0.4 ◊ d

sub-regressions with R

2 = 0.7 each time. 40 candidates were tested each time. We first
observe that the increase seems slower for small values of d it is because of the amount
of time needed for initializations and other annex steps, when d rises they become less
significant and it reveals the non-linear time increase. For d = 1 000 time raises up to
26 minutes. This time could be reduced by using sparse matrices instead of full binary
matrices G, it would also be more e�cient with memory usage. Another way to reduce
this time is to compute each initializations in parallel, dividing this time by nearly 10.

Without constraint relaxation (Figure 6.4) the number of candidates evolves at each
step, reducing computational cost (but also convergence speed) and we know that only one
sub-regression is changed compared to the current so we only have to compute one sub-
regression (some candidates requires to compute several sub-regressions with constraint
relaxation) reducing again the time of each step. Hence, rejecting candidates is a good
way to achieve quickly a fixed number of step, so it could be used as a warming phase
before using constraint relaxation to avoid local extrema. All the results were obtained on
a laptop with intel(R) core(TM) i5 CPU with 2.4GHz and 2Go of RAM running Windows
XP.
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Figure 6.3: Evolution of the mean time for 10 times 1 000 steps of the MCMC, 40
candidates each time (constraint relaxation). dr = 0.4 ◊ d sub-regressions, n = 30.

Figure 6.4: Evolution of the mean time for 10 times 1 000 steps of the MCMC, 40
candidates each time (without constraint relaxation). dr = 0.4◊d sub-regressions, n = 30.
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6.3 Results on the main regression with specific de-
signs

6.3.1 Response variable depends on all the covariates
We try the method with a response variable depending on all covariates to compare the
results with those from section 4.8.1 (same X and Y ). (CorReg reduces the dimension
and cannot give the true model if there is a structure).

We see that CorReg tends to give more parsimonious models and better predictions,
even if the true model is not parsimonious. We logically observe that when n rises, all the
models get better and the correlations cease to be a problem so the complete model starts
to be better (CorReg does not allow the true model to be chosen). The main result here
is that results based on Ŝ are still good so the MCMC is e�cient enough to be useful for
the study of the response variable Y . Results are mostly the same than when using the
true structure.

Results for ols (Figure 6.5) are similar to those from section 4.8.1 excepted for small
correlations because the MCMC using bicH does not find the true structure for small
correlations and a void structure gives a marginal model equal to the complete one.
This phenomenon is not observed with variable selection method (Figures 6.6 to 6.8)
where covariates not deleted by the structure are deleted by the variable selection.
Ridge regression results (Figure 6.9) are also very similar to the previous (Figure 4.16 ).

Having simpler structure is important for interpretation so we keep the choice of using
bicH , but users of CorReg can use classical bicU with a single boolean parameter change.
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Ordinary Least Squares when Y depends on all variables in X

(a)

(b)

(c)

Figure 6.5: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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LASSO when Y depends on all variables in X

(a)

(b)

(c)

Figure 6.6: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Elasticnet when Y depends on all variables in X

(a)

(b)

(c)

Figure 6.7: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Stepwise when Y depends on all variables in X

(a)

(b)

(c)

Figure 6.8: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Ridge regression when Y depends on all variables in X

(a)

(b)

(c)

Figure 6.9: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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6.3.2 Response variable depends only on free covariates (pre-
dictors)

We want to see what happens in real life, when some covariates are irrelevant to describe
Y according to the given dataset. We could generate Y with a random subset of X but in
such a case, it would be impossible to say whether results come from sparsity or from the
ratio of covariates in the subset that are in Xr. Moreover, we will study real datasets in
the next chapter so the only pattern to test here are those with some irrelevant covariates
and relevant covariates only in one part of the partition on X.

We start with Y depending only on covariates in Xf . It is the best case for us because
our marginal model is then the true model (when the true structure is found) and the
complete model will need variable selection to reach the truth. Here Y depends on the
24 covariates in Xf with an intercept.

Smaller dimension makes the coe�cients easier to learn and we observe that mse are
smaller for both model with any method compared to those from section 6.3.1.

Ordinary Least Squares: In figure 6.10 we note the global improvement of the mse
but also a specific improvement for large values of n where our marginal model resists to
the complete model. It is logical because the complete model tends to reduce the coe�-
cients associated to irrelevant covariates whereas our marginal delete them.

Variable selection: When looking at variable selection methods (Figures 6.11 to 6.13)we
also have this improvement so it confirm the already observed fact that variable selection
method are theoretically able to find the true model but e�ciency is not really great
when confronted to correlated covariates. There is no surprise here after the results for
Y depending on the whole dataset X.

Ridge regression: Ridge regression (figure 6.14) is finally improved here by our pre-
treatment by selection, like if we had added variable selection feature to the ridge regres-
sion. It is the method that provides the best results, but only because Y depends on all
covariates in Xf . Our pre-treatment is limited in terms of variable selection.
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Ordinary Least Squares when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 6.10: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model

91



lasso when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 6.11: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Elasticnet when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 6.12: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Stepwise when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 6.13: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Ridge regression when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 6.14: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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6.3.3 Response variable depends only on redundant covariates
We now try the method with a response depending only on variables in Xr. The datasets
used here were still the same. Depending only on Xr implies sparsity and impossibility
to obtain the true model when using the true structure. We get unbiased models but with
an increase in the variance as described in equation 4.5.
In such a case, usage of bicH instead of bicU is more beneficial because each additional
sub-regression deletes a covariate in our marginal model and reduces the probability to
find the true model.

Ordinary Least Squares: We first look at ols (Figure 6.15) and see that we still
obtain better results for small values of n or strong correlations. In real studies we will
never know the true model but we can be confident that if correlations are strong or if
sample is small, using our marginal model can helps whatever the true model is. This is
a really encouraging result. Improvement for small correlations but n < d comes from
dimension reduction. When you do not have enough individual it becomes better to use
a small model that does not contain the true one but only covariates correlated to the
relevant one instead of trying to work with all the covariates. Let’s remember that ols
confronted to n < d only delete covariates to have n = d (or d + 1 when there is an
intercept). QR decomposition leads to delete the last covariates in the dataset but in our
simulations, covariates in Xr are placed randomly in the dataset so deletion by QR can
be seen as random deletion. The gain implied by dimension reduction remains for n > d

if correlations are high enough because the matrix to invert is ill-conditioned and ols
needs a lot of individuals to reduce the variance of the estimator. Correlations really put
ols in trouble and our marginal model seems to be a good solution.

Other methods: Variable selection methods (Figures 6.16 to 6.18) still are impacted
by correlations but not enough to be improved by our marginal model. Neither is the
ridge regression (Figure 6.19). The results confirm that this is the worst case for our
marginal model.

Real datasets will provide Y depending on a mix of covariates from both Xf and Xr

so our marginal model could help even with variable selection methods or ridge regression.
We also recall that the structure S is useful by itself to have a better comprehension of
the dataset and help the final client to be confident in statistical tools because he sees
small models that are known to be true and were found automatically by the method.
Thus CorReg also has a psychological impact on a study that should not be overlooked.
Once Ŝ is found, trying the marginal model has no cost and should be tested.
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Ordinary Least Squares when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 6.15: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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lasso when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 6.16: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Elasticnet when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 6.17: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Stepwise when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 6.18: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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Ridge regression when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 6.19: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
red=classical (complete) model, blue=marginal model
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6.3.4 Robustness with non-linear case
We have generated a non-linear structure to test the robustess of the model. Xf is a set
of 6 independent Gaussian mixtures defined as previously but with random signs for the
components means. And the we define X7 = a(X1)2 + X2 + X3 + Á1. The matrix X is
then scaled before doing

Y =
7ÿ

i=1
X i + ÁY .

We let a vary between 0 and 10 to increase progressively the non-linear part of the sub-
regression. Once again, simulations has been made 100 times and the mse were computed
with 1 000 individuals validation samples.

(a) Evolution of the quality of Ŝ when the paramater
a increases

(b) mse on the main regression for ols(thick) and
lasso (thin) used both with (plain) or without CorReg
(dotted).

Figure 6.20: Non-linear case analysis.

Figure 6.20(b) illustrates the advantage of using CorReg even with non-linear struc-
tures. Figure 6.20(a) shows that the MCMC have more di�culties to find a linear struc-
ture as the non-linear part of the sub-regression increases but the model is quite robust
(e�cient for small values of a).

6.4 Conclusion
The marginal model still gives good results even with Ŝ. We also observe that the
estimation of the structure is satisfying. But these are only simulated datasets and we
have to confirm that our hypotheses can face the reality of industrial datasets. Moreover,
we see that the pattern of the true regression on Y leads to fundamental changes in the
quality of the prediction. So we will test CorReg on real datasets (Chapter 7) and then
try to improve the marginal model to better fit the patterns that are not favorable (those
whith Y depending only on redundant covariates) to the marginal model (Chapter 8).
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Chapter 7

Experiments on steel industry

Abstract: Here are numerical results obtained from real datasets from steel industry.
As in the previous chapter we have to estimate the structure.

We will see if the model does make sense in these real life situations.We also assess
the corresponding predictive performance. These experiments were made on real datasets
from ArcelorMittal and some informations are confidential, explaining why some details
cannot be given here.

7.1 Quality case study
This work takes place in steel industry context, with quality oriented objective: to under-
stand and prevent quality problems on finished product, knowing the whole process. The
correlations are strong here (many parameters of the whole process without any a priori
and highly correlated because of physical laws, process rules, etc.).

We have :

• a quality parameter (confidential) as response variable,

• d = 205 variables from the whole process to explain it.

We get a training set of n = 3 000 products described by these 205 variables from the
industrial process and also a validation sample of 847 products.

The objective here is not only to predict non-quality but to understand and then to
avoid it. CorReg provides an automatic method without any a priori and can be com-
bined with any variable selection methods. So it allows to obtain, in a small amount of
time (several hours for this dataset), some indications on the source of the problem, and
to use human resources e�ciently. When quality crises occur, time is extremely precious
so automation is a real stake. The combinatorial aspect of the sub-regression models
makes it impossible to do manually.

To illustrate that some industrial variables are naturally highly correlated, we can
measure the correlation fl between some couple of variables. For instance, the width and
the weight of a steel slab gives |fl| = 0.905, the temperature before and after some tool
gives |fl| = 0.983, the roughness of both faces of the product gives |fl| = 0.919 and a
particular mean and a particular max gives |fl| = 0.911. For an overview of correlations,
Figure 7.1(a) gives an histogram of fl where we can see that, however, many other vari-
ables are not so highly correlated.
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CorReg estimated a structure of dr = 76 sub-regressions with a mean of d̄p = 5.17
predictors. In the resulting uncorrelated covariate set Xf the number of values |fl| > 0.7
is 79.33% smaller than in X. Indeed, Figure 7.1(b) displays the histogram of adjusted
R

2 value (R2
adj) and we can see that essentially large values of R

2
adj are present. When we

have a look at a more detailed level, we can see also that CorReg has been able non only
to retrieve the above correlations (the width and the weight of a steel slab, etc.) but also
to detect more complex structures describing physical models, like the width in function
of the mean flow and the mean speed, even if the true physical model is not linear since
“width = flow / (speed * thickness)” (here thickness is constant). Non-linear regulation
models used to optimize the process were also found (but are confidential). These first
results are easily understandable and meet metallurgists expertise. Sub-regressions with
small values of R

2 are associated with non-linear model (chemical kinetics for example).

(a) (b)

Figure 7.1: Quality case study: (a) Histogram of correlations fl in X, (b) histogram of
the adjusted R

2
adj for the dr = 76 sub-regressions.

Note that the uncorrelated variables can be very well-modeled by parsimonious Gaus-
sian mixtures as it is illustrated by Figure 7.2(a). In particular, the number of components
is quite moderate as seen in Figure 7.2(b).

(a) (b)

Figure 7.2: Quality case study: (a) Example of a non-Gaussian real variable easily mod-
eled by a Gaussian mixture, (b) distribution of the number of components found for each
covariate.

Table 7.1 displays predictive results associated to di�erent estimation methods with
and without pre-treatment. We can see that the reduced model improves the results for
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each method tested in terms of prediction, with generally a more parsimonious regression
on Y . In terms of interpretation, this regression gives a better understanding of the
consequences of corrective actions on the whole process. It typically permits to determine
the tuning parameters whereas variable selection alone would point variables we can not
directly act on. So it becomes easier to take corrective actions on the process to reach
the goal. The stakes are so important that even a little improvement leads to consequent
benefits, and we do not even talk about the impact on the market shares that is even
more important.

Method Indicator On X̂f (CorReg’s reduced model) On X (complete model)
ols mse 13.30 14.03

complexity 130 206
lasso mse 12.77 12.96

complexity 24 21
elasticnet mse 12.15 13.52

complexity 40 78
ridge mse 12.69 13.09

complexity 130 206

Table 7.1: Quality case study: Results obtained on a validation sample (n = 847 individ-
uals). In bold, the best mse value.

7.2 Production case study
This second example is about a phenomenon that impacts the productivity of a steel
plant. We have:

• a (confidential) response variable,

• p = 145 variables from the whole process to explain it but only n = 100 individuals.

• The stakes: 20% of productivity to gain on a specific product with high added value.

Figure 7.3(a) shows that many variables are highly correlated. CorReg found dr = 55
sub-regressions and corresponding R

2
adj values are displayed in Figure 7.3(b). One of them

seems to be weak (R2
adj = 0.17) but it corresponds in fact to a non-linear regression: It

points out a link between diameter of a coil and some shape indicator. In this precise
case, CorReg found a structure that helped to decorrelate covariates and to find the
relevant part of the process to optimize. This product is made by a long process that
requires several steel plants so it was necessary to point out the steel plant where the
problem occurred.

As in the previous quality case study, we note that the uncorrelated variables can be
very well-modeled by parsimonious Gaussian mixtures as it is illustrated by Figure 7.4(a).
In particular, the number of components is really moderate as seen in Figure 7.4(b).

Table 7.2 displays predictive results associated to di�erent estimation methods with
and without CorReg. Note that mse is calculated though a leave-one-out method be-
cause of the small sample size. We can again see that CorReg globally improves the
results for each method tested in terms of prediction, with always a more parsimonious
regression on Y .
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(a) (b)

Figure 7.3: Production case study: (a) Histogram of correlations fl in X, (b) histogram
of the adjusted R

2
adj for the dr = 55 sub-regressions.

(a) (b)

Figure 7.4: Production case study: (a) Example of a non-Gaussian real variable easily
modeled by a Gaussian mixture, (b) distribution of the number of components found for
each covariate.

Method Indicator With CorReg Without CorReg
ols mse 1.95 51 810

complexity 91 100
lasso mse 0.106 0.120

complexity 27 34
elasticnet mse 0.140 0.148

complexity 10 13
ridge mse 0.179 0.177

complexity 91 146

Table 7.2: Production case study: Results obtained with leave-one out cross-validation
(n = 100, d = 145). Predictive mse is calculated though a leave-one-out method because
of the small sample size. In bold, the best mse value.

The response variable was binary but n was too small compared to d to use logistic
regression so we have considered Y as a continuous variable and then made imputation
by 1 when Ŷ > 0.5 and by 0 else.

In this precise case, CorReg found a structure that helped to decorrelate covariates in
interpretation and to find the relevant part of the process to optimize. This product is
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made by a long process that requires several steel plants so it was necessary to point out
the steel plant where the problem occurred. We now have the proof that our method can
help on real statistical studies.

7.3 Conclusion
We have used the package CorReg with real datasets and the results obtained by our model
were better than those from classical methods in terms of prediction and parsimony. But
more than that we have found structures between the covariates that did make sense
for the metallurgists. The interpretation of both the sub-regressions structure and the
main regression model have helped to improve the process so it does confirm that explicit
modeling of the correlations and marginalization were good choices. However, we want to
investigate other manners to take benefits from the sub-regression structures: sequential
estimation and missing values management.
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Part II

Two extensions:
Re-injection of correlated covariates and

Dealing with missing data
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Chapter 8

Re-injection of correlated covariates
to improve prediction

Abstract: We have seen that eviction of redundant covariates can often improve the re-
sults by an e�cient trade-o� between dimension reduction and better conditioning versus
keeping all the covariates. But the fact is that we have lost some information by exclud-
ing some covariates So we propose a plug-in strategy to use the redundant covariates in
a second estimation step through an estimate of the residuals. It leads to a sequential
estimation of the whole regression parameters.

8.1 Motivations
The structure S of sub-regressions between the covariates has given us the opportunity to
introduce a marginal model that in fact removes the response covariates from the model.
We have seen that it is an e�cient method to decorrelate the covariates and thus to reduce
the variance of the estimator, not only on simulated but also on real datasets (Chapter
7). But even if the sub-regressions are strong, we face a loss of information that can be
damageable as we have seen in Section 6.3.3.

The redundant covariates Xr were only used to estimate S and only the partition
(given by Jr) was used to estimate Y . With the marginalization we have not used the
part of Xr that is independent of Xf (the noise of the sub-regressions). We will try to
use it with a sequential approach relying on the coe�cients of sub-regression –̂ú and on
the estimate —̂

ú
f by profile likelihood.

We know that using all the covariates simultaneously (Maximum Likelihood Estima-
tion mle by ols for instance) gives bad results due to correlations. But we can use them
sequentially by using the explicit decomposition of the marginal model (equation 4.7) that
makes appear the coe�cient —r in both the noise and —ú

f . Thus we are able to obtain by
plug-in new estimates of —r and —f . We will prove that they are asymptotically unbiased
and once again, final result will depend on the bias-variance trade-o� and numerical re-
sults will show what to expect.

In this chapter we note ≠æ the convergence in probability when n grows to +Œ.
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8.2 A plug-in model to reduce the noise
We propose a plug-in model to reduce the noise of the marginal model. We had the true
complete model:

Y = Xf—f + Xr—r + ÁY ,

with a structure S of sub-regressions on X:
Xr = Xf–ú + Á. (8.1)

Then by marginalization on Xr we obtained:
Y = Xf (—f + –ú—r)¸ ˚˙ ˝

—ú
f

+ Á—r + ÁY¸ ˚˙ ˝
Áú

Y

. (8.2)

Plug-in approach: We get from equation (8.2):
Áú

Y = Á—r + ÁY . (8.3)
Then the Best Linear Unbiased Estimator (BLUE) for —r is given (mle estimator) by:

—̂r = (ÁÕÁ)≠1ÁÕÁú
Y . (8.4)

But it is only a theoretical estimator because it depends on Á and Áú
Y that are unknown

(latent variables). The plug-in estimator of —r we propose in this chapter does rely on
the fact that we already have the following estimators (from equations (8.1) and (8.2)):

Á̂ = Xr ≠ Xf –̂ú and
Á̂ú

Y = Y ≠ Xf —̂
ú
f

that we can use by plug-in.

Estimation of —r: We define a plug-in estimator for —r (denoted by —̂
Á

r):

—̂
Á

r = (Á̂ÕÁ̂)≠1Á̂ÕÁ̂ú
Y

= ((Xr ≠ Xf –̂ú)Õ(Xr ≠ Xf –̂ú))≠1 (Xr ≠ Xf –̂ú)Õ(Y ≠ Xf —̂
ú
f ) (8.5)

that depends on all covariates in X and relies on the estimated coe�cients of sub-
regressions –̂ú and on the estimate —̂

ú
f of the coe�cients in the marginal model. It is

the Ordinary Least squares estimator but we can use any other linear regression estima-
tor, allowing then to make variable selection again, that is to decide which covariates will
come back in the model.

Remark: This second linear regression does not have any intercept. Even if a column of
1 was added in X for the global model (classical way to obtain an intercept), this virtual
covariate won’t depend on any other covariate (it is constant) and then won’t be part of
Xr. Then we know that Xr does not contain any constant covariate, then this second
linear regression has no intercept. It is good to remember that when using for coe�cients
estimation any software that automatically add intercepts in linear regressions (then user
has to explicitly mention that this regression has no intercept).

Then we can estimate Y by:
Ŷ plug≠in = Xf —̂

ú
f + Á̂—̂

Á

r. (8.6)
We have now (sequentially) used all the covariates to estimate the parameters of the re-
gression on Y . In the following we suppose that –̂ú and —̂

ú
f are ols estimators.
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Properties: The estimators –̂ú and —̂
ú
f sequentially used here by plug-in are consistent

(ols estimators):
–̂ú ≠æ –ú and —̂

ú
f ≠æ —ú

f .

Then, by the continuous mapping theorem, our new estimator from equation (8.5) con-
verges in probability to the ols estimator (defined in equation (8.4)):

((Xr ≠ Xf –̂ú)Õ(Xr ≠ Xf –̂ú))≠1 (Xr ≠ Xf –̂ú)Õ(Y ≠ Xf —̂
ú
f ) ≠ (ÁÕÁ)≠1ÁÕÁú

Y ≠æ 0,

—̂
Á

r ≠ —̂r ≠æ 0.

We know that ols estimators are consistent:

(ÁÕÁ)≠1ÁÕÁú
Y ≠æ —r

and then we obtain
—̂

Á

r ≠æ —r,

so the plug-in estimator —̂
Á

r is consistent (hence asymptotically unbiased). We have then

lim
næ+Œ

E(—̂Á

r) = —r,

and we have:

E(—̂Á

r) = E[(Á̂ÕÁ̂)≠1Á̂Õ(Y ≠ Xf —̂ú
f )]

= E[(Á̂ÕÁ̂)≠1Á̂Õ(Y ≠ Xf (X Õ
fXf )≠1X Õ

fY )]
= E[(Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Xf (X Õ

fXf )≠1X Õ
f )

¸ ˚˙ ˝
H

f

Y )]

= (Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )E(Y )
= (Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )X—.

The variance of the estimator is given by:

Var(—̂Á

r) = Var[(Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )
¸ ˚˙ ˝

(XÁ

r

)Õ

Y )]

= (Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )Á̂(Á̂ÕÁ̂)≠1 Var(Y )
= ‡

2
Y (Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )Á̂(Á̂ÕÁ̂)≠1 (8.7)

= ‡

2
Y

Ë
Á̂ÕÁ̂[Á̂Õ(In ≠ Hf )Á̂]≠1Á̂ÕÁ̂

È≠1

= ‡

2
Y

Ë
(XÁ

r)ÕXÁ
r

È≠1

where XÁ
r = [Á̂Õ(In ≠ Hf )Á̂]≠ 1

2 Á̂ÕÁ̂ is a dr ◊ dr matrix.
It is clear that when some of the ‡

2
j tends to 0 (especially if they all tend to 0) then the

plug-in estimator explodes (columns of Á̂ tends to 0 in equation 8.7). But in such cases
the marginal model tends to be the true model without bias. So when a sub-regression is
almost exact it is preferable to keep the associated redundant covariate out of the model.
The plug-in model was defined only to use the residuals of the sub-regressions when they
are not too small.
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Remark: We try to improve estimation of —f (in terms of bias) by doing an additional
identification step. Knowing how —ú

f is biased, we can correct its expression. We know
that —ú

f = —f + –ú—r from equation (8.2), so we naturally define the following estimator:

—̂
Á

f = —̂
ú
f ≠ –̂ú—̂

Á

r.

Properties of —̂
Á

f are the following:

—̂
Á

f ≠æ —ú
f ≠ –ú—r (consistent estimator hence asymptotically unbiased), then

lim
næ+Œ

E(—̂Á

f ) = —ú
f ≠ –ú—r = —f , and

E(—̂Á

f ) = E[—̂ú
f ≠ –̂ú—̂

Á

r]
= E[(X Õ

fXf )≠1X Õ
fY ≠ –̂ú(Á̂ÕÁ̂)≠1Á̂Õ(Y ≠ Xf —̂ú

f )]
= E[(X Õ

fXf )≠1X Õ
fY ≠ –̂ú(Á̂ÕÁ̂)≠1Á̂Õ(Y ≠ Xf (X Õ

fXf )≠1X Õ
fY )]

= E
Ë1

(X Õ
fXf )≠1X Õ

f ≠ –̂ú(Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )
2

Y
È

=
Ë
(X Õ

fXf )≠1X Õ
f ≠ –̂ú(Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )

È
X—.

The variance is given by:

Var(—̂Á

f ) = Var[—̂ú
f ≠ –̂ú—̂

Á

r]
= Var

Ë1
(X Õ

fXf )≠1X Õ
f ≠ –̂ú(Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )

2
Y

È

= ‡

2
Y [(X Õ

fXf )≠1 + –̂ú(Á̂ÕÁ̂)≠1Á̂Õ(In ≠ Hf )Á̂(Á̂ÕÁ̂)≠1(–̂ú)Õ]

= ‡

2
Y

Ë
(X Õ

fXf )≠1 + –̂ú
Ë
(XÁ

r)ÕXÁ
r

È≠1
(–̂ú)Õ

È
. (8.8)

Comparison with ols: Up to a permutation of the columns of X we have X =
(Xf , Xr) and then:

X ÕX = (Xf , Xr)Õ(Xf , Xr) =
A

X Õ
fXf X Õ

fXr

X Õ
rXf X Õ

rXr

B

.

We have Varols(—̂) = ‡

2
Y (X ÕX)≠1 and —̂ = (—̂f , —̂r) so we obtain, using block inversion

with Schur complement:

Varols(—̂f ) = ‡2
Y

#
(X Õ

f Xf )≠1 + (X Õ
f Xf )≠1X Õ

f Xr[X Õ
rXr ≠ X Õ

rXf (X Õ
f Xf )≠1X Õ

f Xr]≠1X Õ
rXf (X Õ

f Xf )≠1$
,

= ‡

2
Y

Ë
(X Õ

fXf )≠1+(X Õ
fXf )≠1X Õ

fXr
¸ ˚˙ ˝

–̂ú
ols

[X Õ
r(In≠Hf )Xr]≠1 X Õ

rXf (X Õ
fXf )≠1

¸ ˚˙ ˝
(–̂ú

ols

)Õ

È
, (8.9)

where –̂ú
ols is the sub-regression coe�cients matrix estimated by ols without parsimony

(all the covariates in Xr supposed to depend on all the covariates in Xf ). We also have

Varols(—̂r) = ‡

2
Y

Ë
X Õ

rXr ≠X Õ
rXf (X Õ

fXf )≠1X Õ
fXr

È≠1
= ‡

2
Y

Ë
X Õ

r(In ≠Hf )Xr

È≠1
. (8.10)

Variances in equations (8.7) and (8.8) rely on the estimated residuals of the sub-
regressions Á̂j that may give better conditioned matrices to invert than Xr that appears
with ols applied on X (equations (8.10) and (8.9)). We have supposed that the predictors
Xf are mutually independent (Hypothesis 4 page 67) and that (Hypothesis 3 page 45) the
noises of the sub-regressions are mutually independent (then we hope to have only small
correlations between the Á̂j) but sub-regressions can have common predictors and then
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the redundant covariates in Xr can be highly correlated, leading to an ill-conditioned
matrix in equations (8.10) and (8.9). So we hope that the plug-in estimator relies on
better-conditioned matrices than ols estimator.

When n rises to +Œ both models are consistent so convergence rates will make the
di�erence. Compared to ols we have a new bias-variance trade-o� to study with numer-
ical results.

Compared to the marginal model, the plug-in model uses all the covariates. But when
sub-regressions tends to be exact, the variance of the marginal estimator shrinks and Á̂
tends to the zero matrix (that is bad for conditioning). So the marginal model would be
better for extreme correlations. Exact sub-regressions (Á = 0) make the marginal model
the exact true model without additional noise (equation (8.2)) so the plug-in model is not
needed in such cases.
Equations (8.2) and (8.3) are linear regressions and both of them can use any estimator
for linear regression. Then the plug-in model can have two variable selection steps: one
for Xf and then another for Xr so there is no restriction for the final model.

Figure 8.1 illustrates the bias-variance trade-o� followed by this plug-in model. We
logically observe that the plug-in model gives better results than ols in the cases with
enough correlations to have problem when using whole X (ill-conditioned). The plug-in
model gives better results than the marginal when there are not enough correlations to
have truly redundant covariates and to be able to remove some of them (marginal model)
without significant information loss. We see that our new model is e�cient and enlarges
the range of cases where we can beat classical ols.

Figure 8.1: mse on —̂ of ols (plain red) and CorReg marginal (blue dashed) and CorReg

plug-in (green dotted) estimators for varying R

2 of the sub-regression, n and ‡Y . Results
obtained on the running example with d = 5 covariates.

Both marginal and plug-in model are easy to compute then we can use for example
the marginal model for interpretation (more parsimonious) and the plug-in model for
prediction. But we will see in the numerical results (Section 8.4) that it is not always
the better choice because even if the plug-in estimator can always be consistent (each
covariate can be used) contrary to the marginal model, cumulated variances are a real
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problem and the marginal model is often better in prediction.

Remarks:

• —r can be interpreted as the proper e�ect of Xr on Y in that it is the e�ect of the
part of Xr that is independent of other covariates. Then if Xr is correlated to Y
only through its correlation with Xf this sequential estimation will point it out and
give a parsimonious model (—̂r = 0).

• If Y depends only on Á (latent variables) then the plug-in model written as in
equation (8.6) will show it. Moreover, we have an estimator of Á and we know that
it is the proper of e�ect of Xr on Y and that it is independent of Xf . Thus we
have an idea of the values and meaning of Á. It can help to name the latent variable
and to add it in the dataset if possible.

8.3 Model selection consistency of lasso improved
Consistency issues of the lasso are well known and Zhao [Zhao and Yu, 2006] gives a
very simple example to illustrate it. We have taken the same example to show how our
method is better to find the true relevant covariates. Here d = 3 and n = 1 000.
We define X1

, X2
, ÁY , Á1 i.i.d. ≥ N (0, In) and then

X3 = 2
3X1 + 2

3X2 + 1
3Á1 and

Y = 2X1 + 3X2 + ÁY .

We compare consistencies of complete, marginal and full plug-in model with lasso
(and LAR) for selection. It happens on some tries that our MCMC algorithm do not find
the true structure but a permuted one so we both look at the results obtained with the
true S = ((3), ({1, 2})) (but –̂ is used) and with the structure found by the Markov chain
after a few seconds.

True S was found 991 times on 1 000 tries.

Classical lasso CorReg marginal + lasso CorReg full plug-in + lasso
True S 1.003303 (0.046) 1.002273 (0.046) 1.002812 (0.046)

Ŝ 1.003303 (0.046) 1.017622 (0.17) 1.002834 (0.046)

Table 8.1: mse observed on a validation sample (1 000 individuals) and their standard
deviation (between brackets).

We observe as we hoped that our marginal model is better when using true S (coercing
real zeros) and that marginal with Ŝ is penalised (coercing wrong coe�cients to be zeros
when true S is not found). We also see that the plug-in model stays better than the
classical one with the true S and corrects enough the marginal model to be better than
the classical lasso when using Ŝ.

But sadly, improvements in mse are very small and the mse in Table 8.1 are not
significantly distinct (Student’s t-Tests).

We look at the consistency (Table 8.2), that is the real stake of these numerical results:
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Classical lasso CorReg marginal + lasso CorReg full plug-in + lasso
True S 0 1000 835

Ŝ 0 991 829

Table 8.2: Number of consistent models found (Y depending on X1
, X2 and only them)

on 1 000 tries.

It is clear that the plug-in model significantly improves the consistency of the model
estimated on S when compared to the classical lasso. Both models have the choice to
keep or not each covariate but only the plug-in model find sometimes (and in most of
the cases) the true set of relevant covariates. Model using the true structure cannot be
improved because the marginal is already consistent so the plug-in is worse or equal to the
marginal one in terms of consistency. Classical lasso is never consistent on this example
but we do not only improve this situation, we give consistent models in most of the cases.

8.4 Numerical results with specific designs
We test the plug-in model with datasets generated the same way as for section 6.3.

8.4.1 Response variable depends on all the covariates
We first try the method with a response depending on all covariates. (The marginal model
reduces the dimension and cannot give the true model if there is a structure).

Ordinary Least Squares We observe for ols (Figure 8.2) that the plug-in model gives
results similar in e�ciency to the marginal model, but remains better than the complete
model for smaller correlations even for n = 400. We also observe that we can found
a model with more than n coe�cients when each estimation step computes less than n

coe�cients. It means that we estimate more coe�cients than the classical ols and keep
a smaller variance so the plug-in model can also be an alternative to the complete model.
It is interesting to see that ols combined with the plug-in model is a sort of sequential
estimation that allows to estimate more than n coe�cients.

Other methods: Combined with variable selection methods (Figures 8.3 to 8.5) it does
converge to the complete model results for large values of n so it improves the marginal
model for weak correlations (it is what it was built for) has no significant interest compared
to the complete model. Ridge regression (Figure 8.6) leads to the same conclusion.
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Ordinary Least Squares when Y depends on all variables in X

(a)

(b)

(c)

Figure 8.2: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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lasso when Y depends on all variables in X

(a)

(b)

(c)

Figure 8.3: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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Elasticnet when Y depends on all variables in X

(a)

(b)

(c)

Figure 8.4: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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Stepwise when Y depends on all variables in X

(a)

(b)

(c)

Figure 8.5: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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Ridge regression when Y depends on all variables in X

(a)

(b)

(c)

Figure 8.6: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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8.4.2 Response variable depends only on free covariates (pre-
dictors)

We look then at the case where Y depends only on covariates in Xf .

Ordinary Least Squares: Figure 8.7 shows that the plug-in model stays better than
ols even when Y depends only on covariates in Xf . These good results come from
the sequential estimation with the first part of the parameters estimated with a well-
conditioned matrix. Hence the variance is reduced even without

Other methods: Variable selection methods (Figures 8.8 to 8.10)are not improved by
the plug-in model and the marginal model remains the best. But ridge regression (Figure
8.11) is much similar to ols and then the plug-in model gives good results, even if the
marginal model is su�cient.

8.4.3 Response variable depends only on redundant covariates
We then try the method with a response depending only on variables in Xr. Depending
only on Xr implies sparsity and impossibility for the marginal model to obtain the true
model when using the true structure, so we hope to see an improvement with the plug-in
method. This case is the reason why we have developed the plug-in model.

Better but not su�cient: Concerning ols (Figure 8.12) we note that the plug-in
model improves results of the marginal model for large values of n. This is still the case
with variable selection methods (Figures 8.13 to 8.15) even if it is not su�cient to improve
the complete model. This phenomenon is still observed with the ridge regression (Figure
8.16) with more e�ciency but the complete model stays better.
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Ordinary Least Squares when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 8.7: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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lasso when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 8.8: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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Elasticnet when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 8.9: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-in
model.
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Stepwise when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 8.10: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-
in model.
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Ridge regression when Y depends only on covariates in Xf

(a)

(b)

(c)

Figure 8.11: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-
in model.
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Ordinary Least Squares when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 8.12: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-
in model.
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lasso when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 8.13: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-
in model.
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Elasticnet when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 8.14: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-
in model.
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Stepwise when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 8.15: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-
in model.
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Ridge regression when Y depends only on covariates in Xr

(a)

(b)

(c)

Figure 8.16: Comparison of the mse on Ŷ (a), complexities (b) and mse on —̂ (c),
plain red=classical (complete) model, dashed blue=marginal model, dotted green=plug-
in model.
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8.5 Conclusion
The plug-in model sounds good when described theoretically and figure 8.1 makes us hope
to obtain good results with it. But the reality is that the plug-in model (by definition)
relies on other estimators so it has a slow convergence speed.
Moreover, if Ŝ ”= S but Ĵr = Jr, then the marginal model is not impacted whereas the
plug-in model depends on both —̂

ú
f and –̂. Ordinary Least Squares really are in great

trouble when confronted to correlated datasets so the plug-in model improves ols anyway
but other methods are a bit less sensitive to correlations so it is di�cult to improve them
with a plug-in model relying on so many estimators. However, like the marginal model,
the plug-in model has a small computational cost compared to the estimation of S. So
we recommend to compute both complete, marginal and plug-in model and to compare
the results in a second time.
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Chapter 9

Using the full generative model to
manage missing data

Abstract: The full generative model defined on the covariates X with the structure S
naturally constrains the conditional distribution of missing values. It corresponds then
to a standard latent variable problem and we propose to solve it by a sem algorithm
invoking itself multiple imputations by Gibbs sampling at its SE step. Computation of
the bic in the MCMC will also rely on Gibbs sampling.

9.1 State of the art on missing data
Real datasets often have missing values and it is a very recurrent issue in industry. Here
we suppose that missing values are Missing Completely At Random (MCAR) but other
missing-data mechanisms do exist for missing values. For example, Missing values can
depend on the observed values and then we say that they are Missing At Random (MAR),
Missing value can also simply be not missing at random. Many methods do exist to
manage such problems in a regression context [Little, 1992]:

1. Complete-Case analysis is a listwise deletion of missing values that may lead to no
results if no individual is complete.

2. Available-Case analysis methods use the largest sets of available cases for estimating
individual parameters so it does not remove any additional value. But individual
estimation of the parameters leads to bad results when the covariates are highly
correlated [Haitovsky, 1968].

3. Imputation method are various, from imputation by the mean to conditional im-
putation based on X or based on X and Y . These methods are often used with
weighted least-squares to minimize the influence of imputed values.

4. Other methods are based on a full generative model, using the joint distribution to
estimate the regression parameters or to make multiple imputations.

We have a full generative model on X with explicit dependencies within the covariates:

P(X|S) = P(Xr|Xf , S)P(Xf |S).

So when a value is missing, we know its distribution but in addition, we know its condi-
tional distribution based on observed values for the same individual. Thus we are able to
make imputation and to describe the missing values with their conditional distribution.
This is a positive side-e�ect of the explicit generative model we have defined on X.
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SelvarclustMV: We have compared our method to Selvarclust in Section 6.2.1.
But Maugis has developed another software [Maugis-Rabusseau et al., 2012] that man-
age missing values: SelvarclustMV. It relies on the assumption of Missing At Random
(MAR) values and on the more constraining hypothesis that regressor covariates are
completely observed (with our notations: ’j œ {1, . . . , dr}, ’k œ J

j
p , ’1 Æ i Æ n, xi,k is

observed). The model (Partition, sub-regression parameters and Gaussian mixtures pa-
rameters) is then estimated with an Expectation-Maximization algorithm using all the
observed values (even incomplete individuals) without any imputation. Numerical results
shows that SelvarclustMV is highly competitive compared to imputation methods.
Here again the algorithm used in SelvarclustMV stands in a Gaussian clustering context
and is not exactly adapted to our situation. Estimation of S and –ú was inconclusive
(see section 6.2.1) without missing values so the situation would not be improved with
missing values. Moreover, we do not want to make any assumption on the position of
the missing values. Thus we investigate the possibility to estimate – by Maximum Like-
lihood as SelvarclustMV does but without supposing that any covariate is fully observed.

Notations: In the following we note xi,j the i

th individual of the j

th covariate in X
and M the n ◊ d binary matrix indicating whether a value is missing or not: M i,j = 1
if xi,j is missing, 0 else. We define XM = (X1,M , . . . , Xn,M) the n-uple of the vectors
X i,M = (xi,j)jœ{1,...,d}

M
i,j

=1
of the missing values for individual i, XO = (X1,O, . . . , Xn,O) the

n-uple of the vectors X i,O = (xi,j)jœ{1,...,d}
M

i,j

=0
of the observed values for individual i. We also

define the three vectors XJ
r

i,O = (xi,j) jœJ
r

M
i,j

=0
, X

J
f

i,O = (xi,j) jœJ
f

M
i,j

=0
, and X

Jj

p

i,O = (xi,l) lœJj

p

M
i,l

=0
to simplify the notations (that are a bit heavy) in the following.

–̄ is the d ◊ d matrix of the sub-regression coe�cients with –̄i,j the coe�cients associ-
ated to X i in the sub-regression explaining Xj and zeros where there is no sub-regression,
not to be confused with the –ú previously defined. –̄ is –ú completed with rows and
columns of zeros. As in previous part, we note � the Gaussian density function.

9.2 Choice of the model of sub-regressions despite
missing values

9.2.1 Marginal (observed) likelihood
The first thing we do with X in the CorReg process is to estimate S. It is done by
comparison of the bic that relies on the likelihood. Because covariates in Xf are orthog-
onal, complete-case estimation is equivalent to global estimation on the observed values,
so we just use Rmixmod for each covariate on the observed values to obtain the observed
likelihood of each marginal covariate. These likelihoods are computed only once before
the MCMC starts and are then used when needed to compute the bic of a given candidate.

During the MCMC, for each candidate we have to compute the likelihood of the can-
didate, depending on – the sub-regressions coe�cients. Each sub-regression is supposed
to be parsimonious and might be estimated by a Complete-Case method if the number of
missing values is not too high, or any other estimator. We will see later how to use the
generative model and maximum likelihood instead. The first challenge is to compute the
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Figure 9.1: Pattern of missing values that does not allow to use equation (9.2): one
missing value for a covariate that is common to 2 observed response covariates.

observed likelihood and then the associated bicú.

Observed likelihood: When missing values occur, we restrict the likelihood to the ob-
served likelihood, that is the likelihood of the known values. All individuals are supposed
i.i.d. in the following. We have ◊ the set of the parameters of the Gaussian mixtures on
Xf as defined in Hypothesis 4 page 67.

L(–, ‡, ◊, S; XO) = f(XO; –, ‡, ◊, S)

=
nŸ

i=1
f(XJ

r

i,O|XJ
f

i,O; –, ‡, ◊, S)f(XJ
f

i,O; –, ‡, ◊, S)

=
nŸ

i=1
f(XJ

r

i,O|XJ
f

i,O; –, ‡, ◊, S)
Ÿ

jœJ
f

M
i,j

=0

f(xi,j; –, ‡, ◊, S). (9.1)

And if there is no missing values in covariates that regress several observed response
covariates (see Figure 9.1) we can continue the decomposition of equation (9.1):

L(–, ‡, ◊, S; XO) =
nŸ

i=1

d
rŸ

j=1
M

i,J

j

r

=0

f(xi,Jj

r

|XJj

p

i,O; –, ‡, ◊, S)
Ÿ

jœJ
f

M
i,j

=0

f(xi,j; –, ‡, ◊, S). (9.2)

If each sub-regression is a distinct connected component then we can always use equation
(9.2) but it is not a necessary condition.

For the general case we need to manage the dependencies implied by missing values in
common covariates in the J

j
p . Then we use the global Gaussian mixture on XO whose pa-

rameters depend on those of X. Each component is Gaussian so conditional distributions
are explicit. Then we could just search to optimize P(XO|S), obtained by marginalization
of P(X|S) on XM .

But we will see that the number of components can be huge so in practice we won’t
compute the likelihood directly. We will work instead with multiple imputations (Section
9.3.2) to estimate – and the likelihood for bic (Section 9.3.2).

We know that X follows a Gaussian mixture because of hypothesis 4 in Section 5.2.2
page 67 (i.i.d. individuals, vectors of orthogonal Gaussian mixtures Xf and linear com-
binations of these Gaussian mixtures and some Gaussian for Xr) with K components.
The number of component K can be huge (combinations of all the components of the
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covariates in Xf ). In fact we have

K =
Ÿ

jœJ
f

Kj

where Kj is the number of components of the Gaussian mixture followed by Xj as defined
in Hypothesis 4 page 67. It is clear that K can really explode even if some components
may be identical (but it happens with zero probability). For instance, if X contains only
10 independent Gaussian mixtures and with only 2 components each, then X will have
up to K = 210 = 1 024 components. And if these mixtures have 3 components each,
then it rises up to K = 59 049 components. This huge complexity will close the door to
several classical optimization algorithms, as we will see later, because we have to optimize
P(XO|S) for each candidate of the MCMC.

9.2.2 Weighted penalty for bicú

Once defined a way to compute the likelihood (Section 9.3.2), other questions will remain:
how to define the number of parameters in the structure? How to take into account
missingness (structures relying on highly missing covariates should be penalized)? For
each parameter we have to estimate, the number of individuals that we can use is not the
same according to the position of the missing values. Then penalization of the complexity
of a model is not obvious.

To penalize models that suppose dependencies based only on a few individuals, we
propose to use the mean of the complexities obtained for a given covariate. We define

cj = 1
n

nÿ

i=1
ci,j,

where ci,j is the number of parameters to estimate in P(xi,j|X i \xi,j). If all predictors X
Jj

p

i

are observed then we have to estimate d

j
p coe�cients and an intercept and the variance

of the residual so ci,j = d

j
p + 2. But for each missing predictor, we have to estimate the

parameters of its distribution (Gaussian mixture with proportion, mean and variance to
estimate for each component) so we have

ci,j = d

j
p + 2 +

ÿ

lœJj

p

M
i,l

=1

(3Kl ≠ 1)

(the sum of the proportions is 1 so one estimation is useless for each mixture).
Then we have

≠ 2 logP(XO|S) ¥ bic = ≠2 ln (L(◊, –, ‡, S; XO)) + (|◊| + |–| + |‡|) ln(n)

= ≠2 ln (L(◊, –, ‡, S; XO)) + (
dÿ

j=1
cj) ln(n).

Thus if a structure is only touched by one missing value the penalty will be smaller than
if the same structure had more missing values implied. It only changes the weight of the
penalty but to detail its convergence it would require to define clearly the convergence
context. For example, if we add individuals without missing values, then the weighted
penalty will converge to the classical one and then we keep the convergence of the criterion.
The software is not fast enough to allow this kind of tests yet. Another way would be
to use ric (see [Foster and George, 1994]) so the penalty does not depend on n but is
associated with log(d).
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9.3 Maximum likelihood estimation of the coe�cients
of sub-regression

If we do not have an estimate of – we can just take the values that maximize the
likelihood. Sometimes the maximization of a likelihood is too complex to be solved
analytically. In such a case, we can use algorithms of Expectation-Maximization (em
[McLachlan and Krishnan, 2007]) family [McLachlan and Krishnan, 2007]. This kind of
algorithm allows to manage missing values [Dempster et al., 1977] but faces local extrema
problems so it is recommended to make multiple initializations and runs of the algorithm.
Each initialization can consist in random imputation of missing values and parameters.
EM is an iterative algorithm with a succession of two steps for each iteration (h):

E Step: Expectation step. Computation of the Expectation of the log likelihood func-
tion, with respect to the conditional distribution of the missing values knowing the ob-
served values, for fixed values of the parameters (first time with initial values of the
parameters and then with values from the M step).

Q(–, ‡|–(h)
, ‡(h)) = E

Ë
ln L(–, ‡, S, ◊; XO, XM)|XO, –(h)

, ‡(h)
, ◊, S

È

M Step: Maximization step. Maximization of the completed likelihood with respect to
– and ‡ based on the completed variables from the E step.

(–(h+1)
, ‡(h+1)) = argmax–,‡ = Q(–, ‡|–(h)

, ‡(h))

In our case, EM algorithm could be di�cult to compute because the number of com-
ponents of the global Gaussian mixture can explode so computation of the E step may be
a real problem.

Then we search an alternative for the E step. Some variants were developed like
the Stochastic EM [Diebolt and Ip, 1996], [Celeux and Diebolt, 1986] or the Classification
EM [Celeux and Govaert, 1992].

9.3.1 Stochastic EM
The observed likelihood depicted above (equation (9.1)) depends on the –j’s which were
formerly estimated by ols when there were no missing values. But when missing values
occur in a sub-regression we need another solution.

We use a Stochastic Expectation Maximization (sem [Celeux and Diebolt, 1986]) algo-
rithm to estimate – because missing values do not allow to use ols and the Expectation-
Maximization (em) algorithm necessitates to first write the observed likelihood whose
number of components can explode (as we have seen Section 9.2) so it would be di�cult
to compute.

Another method would be to estimate the –j with ols applied on sub-matrix of
(XJj

r

, XJj

p ) without missing values (complete-case method). Small sub-regressions may
increase the probability to find such sub-matrices. Moreover, small sub-regressions have
only few parameters and can be estimated even with only a small number of individuals.

The Stochastic EM algorithm is an iterative procedure that starts with an initialization
and then alternates SE steps (imputation of the missing values) and the M step that
maximizes the likelihood of the completed dataset on the parameter –.
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Initialization: We start with some imputation (for example by the mean) for each
missing value (done only once for the MCMC) to get X

(0)
M . –(0) and ‡(0) can be initialized

by complete-case method (sparse structure) or using imputed values in X and then ols.
And then at iteration (h):

SE step: We generate the missing values X̂
(h)
M according to P(XM |XO; –(h)

, ‡(h)
, ◊, S),

that is stochastic imputation. It can be done for example by Gibbs sampling, as we
propose in Section 9.3.2.

M step: We estimate

(–(h+1)
, ‡(h+1)) = argmax–,‡ E

Ë
ln L(–, ‡, S, ◊; XO, X

(h)
M )

È

where ◊ is the set of the mixture parameters of the marginal distributions of Xf (estimated
once by Rmixmod). We can use the same method as the one for classical case without
missing values (ols, sur, etc.).

We continue during m1 iterations. Then we make m2 iterations and take –̂ and ‡̂ as
the mean of these m2 last iterations.

Stochastic EM avoids the computation of the E step of the EM algorithm. Then,
the stochastic imputation done at the SE step is computed by Gibbs sampling in the
following, because of the potentially huge number of components that makes di�cult to
sample directly from the Gaussian mixture.
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9.3.2 Stochastic imputation by Gibbs sampling
General concept: Gibbs sampling [Casella and George, 1992] is a special case of Markov
Chain Monte Carlo algorithm (see [Gilks et al., 1996, Chib and Greenberg, 1995] and also
[Roberts and Rosenthal, 2001]) that allows to sample from a complex d≠multivariate dis-
tribution when direct sampling is di�cult. It is a randomized algorithm so each run may
give distinct results. It generates a Markov Chain that follows the desired distribution with
nearby draws. It starts from an initial value X(0) and then for each iteration (q) and suc-
cessively each variable x

(q+1)
j to draw, it draws from P(xj|x(q+1)

1 , . . . , x

(q+1)
j≠1 , x

(q)
j+1, . . . , x

(q)
d )

using the most recent drawn values each time.

Here we note Z the set of the Zi,j œ {1, . . . , Kj}, instrumental variables indicating
the component from which xi,j (the i

th individual of the j

th covariate of X) is generated
(component of the marginal Gaussian mixture followed by xi,j and defined by Hypothesis
4 page 67) with 1 Æ i Æ n and j œ Jf (Zi,j with j œ Jr will not be used). These instru-
mental variables will help to draw the missing values as we will see in this section.

In our case: Gibbs sampling method can be used to generate the missing values at each
h

th SE step of the previous Stochastic EM algorithm. Individuals are independent (can be
computed separately) so for each individual i having missing values we can start with ran-
dom values for the missing values and instrumental variables and then for each step (q+1):

• To draw missing value x

(q+1,h)
i,j with Mi,j = 1 we use:

P(xi,j|x(q+1,h)
i,1 , . . . , x

(q+1,h)
i,j≠1 , x

(q,h)
i,j+1, . . . , x

(q,h)
i,d , Z

(q,h)
i,1 , . . . , Z

(q,h)
i,d ; –(h)

, ‡(h)
, ◊, S)

= P(xi,j|x(q+1,h)
i,1 , . . . , x

(q+1,h)
i,j≠1 , x

(q,h)
i,j+1, . . . , x

(q,h)
i,d , Z

(q,h)
i,j ; –(h)

, ‡(h)
, ◊, S)

that will depend on if xi,j œ Xr or not.

• To draw instrumental variables Zi,j with j œ Jf and Mi,j = 1 we use:

P(Zi,j|x(q+1,h)
i,1 , . . . , x

(q+1,h)
i,d , Z

(q+1,h)
i,1 , . . . , Z

(q,h)
i,j≠1, Z

(q,h)
i,j+1, . . . , Z

(q,h)
i,d ; –(h)

, ‡(h)
, ◊, S) = P(Zi,j|x(q+1,h)

i,j ; ◊)

More detailed algorithm:

Initialization: X
(0,h)
M are imputed by the marginal means or drawn independently from

the univariate distribution estimated for the MCMC (by Rmixmod for example, following
hypothesis 4 page 67). All the Z

(0,h)
i,j are then randomly set based on the t

(0,h)
i,j,k as explained

below (we just need those of X
(0,h)
f ).

Iteration (q+1): We note X
(q+1,h)
īj = (x(q+1,h)

i,1 , . . . , x

(q+1,h)
i,j≠1 , x

(q,h)
i,j+1, . . . , x

(q,h)
i,d ) and

Z

(q,h)
i = {Z

(q,h)
i,j |1 Æ j Æ d, j œ Jf}. So X

(q+1,h)
¯

iJj

r

= (x(q+1,h)
i,1 , . . . , x

(q+1,h)
i,Jj

r

≠1 , x

(q,h)
i,Jj

r

+1, . . . , x

(q,h)
i,d ).

At each iteration of the Gibbs sampler we make successive imputations on the missing
values and instrumental variables as if instrumental variables were also missing values:

1. Imputation of the missing values:
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• Regressed covariates: ’1 Æ i Æ n, ’j œ {1, . . . , dr}, M i,Jj

r

= 1: x

(q+1,h)
i,Jj

r

is
generated using the corresponding sub-regression, that gives the Gaussian

P(xi,Jj

r

|X(q+1,h)
¯

iJj

r

, Z

(q,h)
i ; –(h)

, ‡(h)
, ◊, S) = �(xi,Jj

r

; (XJj

p

i )(q+1,h)–
(h)
j , (‡(h)

j )2).

• And for regressors: ’(i, j) œ {1, . . . , n} ◊ Jf , M i,j = 1: x

(q+1,h)
i,j is generated

according to the Gaussian

P(xi,j|X(q+1,h)
ij̄ , Z

(q,h)
i ; –(h)

, ‡(h)
, ◊, S) = �

1
xi,j; µ

(q,h)
i,j , (‡(q,h)

i,j )2
2

using Gaussian conditional distribution with Schur complement. µ

(q,h)
i,j and

(‡(q,h)
i,j )2 are the mean and variance associated to xi,j knowing the components

Z

(q,h)
i and are defined below (Section 9.3.3).

2. Imputation of the instrumental variables Z

(q+1,h)
i,j knowing X

(q+1,h)
M :

’1 Æ i Æ n, ’j œ Jf we draw the Z

(q+1,h)
i,j according to the Kj-multinomial distribu-

tion whose parameters are the (t(q+1,h)
i,j,1 , . . . , t

(q+1,h)
i,j,K

j

) defined by:

t

(q+1,h)
i,j,k =

fij,k�(x(q+1,h)
i,j ; µj,k, ‡

2
j,k)

qK
j

l=1 fij,l�(x(q+1,h)
i,j ; µj,l, ‡

2
j,l)

.

We see that Zi,j are not used if there is no missing values in X i and others are not
all needed so we can also optimize computation time by computing only the Zi,j that
are needed in the Gibbs. For the last iteration of the Gibbs, in the last iteration of the
Stochastic EM, we do not need to draw Z.

Output: We take for X
(h)
M the mean of the values drawn by the Gibbs sampler.

Remarks: Instead of using long chain for each Gibbs, we can use small chains be-
cause Stochastic EM iteration will simulate longer chains so it remains e�cient with a
smaller computation cost. Computation cost will be the main purpose here because we
need an iterative algorithm (Gibbs sampler) at each iteration of another iterative algo-
rithm (Stochastic EM) for each candidate of the MCMC. So alternative method should
be preferred for large datasets with many missing values and only a small amount of time.

Because the number of components to compute in the likelihood can be very large we
search a fast way to estimate the likelihood. We use the previous Gibbs algorithm with –̂
and ‡̂ the estimates resulting from the Stochastic EM as if we made a final l

th SE step:

P(XO; ◊̂, S, –̂, ‡̂) ¥ 1
Q

Qÿ

q=1

P(X(q,l)
M , XO, Z

(q,l); ◊̂, –̂, ‡̂, S)
P(X(q,l)

M |XO, Z

(q,l); ◊̂, –̂, ‡̂, S)
by the law of large numbers.

Here Q is the number of iterations of the Gibbs sampler.

9.3.3 Parameters computation for the Gibbs sampler
For the step q of the Gibbs sampler at the iteration h of the Stochastic EM, ’(i, j) œ
{1, . . . , n}◊Jf , M i,j = 1 we have (Multivariate Gaussian conditional distribution [Eaton, 1983])
for the mean:

µ

(q,h)
i,j = µ

j,Z
(q,h)
i,j

+ �
x

(q+1,h)
i,j

,X
(q+1,h)
īj

,Z
(q,h)
i

�≠1
X

(q+1,h)
īj

,X
(q+1,h)
īj

,Z
(q,h)
i

(X(q+1,h)
ij̄ ≠ µ

X
(q+1,h)
ij̄

,Z
(q,h)
i

), (9.3)
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and for the variance:

(‡(q,h)
i,j )2 = ‡

2
j,Z

(q,h)
i,j

≠ �
x

(q+1,h)
i,j

,X
(q+1,h)
īj

,Z
(q,h)
i

�≠1
X

(q+1,h)
īj

,X
(q+1,h)
īj

,Z
(q,h)
i

(�
x

(q+1,h)
i,j

,X
(q+1,h)
īj

,Z
(q,h)
i

)Õ
. (9.4)

We have µ

j,Z
(q,h)
i,j

the mean of the component Z

(q,h)
i,j of Xj (estimated once by Rmixmod)

and ‡

2
j,Z

(q,h)
i,j

the variance of the component Z

(q,h)
i,j of Xj (estimated once by Rmixmod).

�
x

(q+1,h)
i,j

,X
(q+1,h)
īj

,Z
(q,h)
i

is the vector of the covariances between x

(q+1,h)
i,j and the other covari-

ates (X(q+1,h)
īj ) knowing the components Z

(q,h)
i .

�
X

(q+1,h)
īj

,X
(q+1,h)
īj

,Z
(q,h)
i

is the variance-covariance matrix of the X
(q+1,h)
īj knowing the com-

ponents Z

(q,h)
i .

µ
X

(q+1,h)
ij̄

,Z
(q,h)
i

is the vector of the means associated to X
(q+1,h)
ij̄ knowing the components

Z

(q,h)
i .

In the following we use notations –̄j1,j2 to refer to the coe�cient of sub-regression
associated to the predictor Xj1 in the sub-regression that explains Xj2 . It is the (j1, j2)
coe�cient of the d ◊ d matrix –̄ previously defined. (–̄)J

r

J
f

= –ú and 0 elsewhere.

Means:

• Means associated to Xf are estimated once (by Rmixmod) following hypothesis 4
page 67.

• ’j œ {1, . . . , dr}, the mean associated to x

(q+1,h)
i,Jj

r

knowing Z

(q,h)
i is:

µ

i,Jj

r

,Z
(q,h)
i

=
ÿ

lœJj

p

–̄l,Jj

r

µ

l,Z
(q,h)
i,l

.

Variances:

• The variances ‡

2
l,Z

(q,h)
i

of the free covariates Xf are estimated once (by Rmixmod)
following hypothesis 4 page 67.

• ’j œ {1, . . . , dr}, the variance associated to x

(q+1,h)
i,Jj

r

knowing Z

(q,h)
i is:

‡

2
i,Jj

r

,Z
(q,h)
i

= ‡

2
j +

ÿ

lœJj

p

–̄

2
l,Jj

r

‡

2
l,Z

(q,h)
i,l

.

Covariances: We look then at the covariances between the covariates (that appear in
the previous mean and variance expressions, equations (9.3) and (9.4)):

• The covariance between two regressors is always zero:

’j1 œ Jf , ’j2 œ Jf , �
x

(q+1,h)
i,j1

,x
(q+1,h)
i,j2

,Z
(q,h)
i

= 0.

• The covariance between a response covariate and a free covariate that does not
regressed it is always zero by Hypothesis 1 page 44:

’j1 œ {1, . . . , dr}, j2 /œ J

j1
p fi Jr, �

x
(q+1,h)
i,J

j1
r

,x
(q+1,h)
i,j2

,Z
(q,h)
i

= 0.
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• The covariance between two response covariates without any common regressors is
always zero by Hypotheses 1 and 3 pages 44 and 45:

’j1 œ {1, . . . , dr}, j2 œ {1, . . . , dr}\{j1}, with J

j1
p flJ

j2
p = ÿ, �

x
(q+1,h)
i,J

j1
r

,x
(q+1,h)
i,J

j2
r

,Z
(q,h)
i

= 0.

• The covariance between two response covariates with common regressors is:
’j1 œ {1, . . . , dr}, j2 œ {1, . . . , dr} \ {j1}, with J

j1
p fl J

j2
p ”= ÿ:

�
x

(q+1,h)
i,J

j1
r

,x
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‡

2
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,

where ‡

2
l,Z

(q,h)
i,l

is the variance of X l knowing Z

(q,h)
i,l , estimated once (by Rmixmod)

following hypothesis 4 page 67.

• The covariance between a response covariate and one of its regressors is:

’j œ {1, . . . , dr}, l œ J

j
p , �

x
(q+1,h)
i,J

j

r

,x
(q+1,h)
i,l

,Z
(q,h)
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= –̄l,Jj

r

‡

2
l,Z

(q,h)
i,l

.

Then we are able to compute the Gibbs sampler.

9.4 Missing values in the main regression
The easier way to manage missing values in the main regression would be to draw missing
values and then use classical methods. Imputation could be done with the Stochastic
EM described above, with the possibility to repeat the estimation of the coe�cients of
regression a few times (with distinct imputations) and then take the mean. We should
for example try multiple draw and lasso for variable selection like variable selection by
random forest. One great advantage of multiple imputation procedures is that it gives an
idea of the precision of the imputations with the variance of these imputed values among
the multiple draws. So we know whether it is reliable or not.

But another way would be to consider classical estimation methods as likelihood op-
timizer and then adapt them to the integrated likelihood of our model. Thus we can
imagine to use lasso without imputation. But the choice of the penalty using the lar
algorithm needs also to adapt the lar that is based on correlations that are computed
on vectors with distinct number of individuals (due to missing values). So it requires
more work but could be a good perspective. Another possibility would be to use our
SEM/GIBBS algorithm with various regression models (kind of stepwise approach), op-
timizing P(Y , XO) instead of only P(XO). It would be like putting Y in the structure
S but allowing Y to be explained by some covariates in Xr. If we just focus on the
marginal model, then it is simply to consider Y as one of the regressed covariates and
then the main regression does not di�er from any other sub-regression.

9.5 Numerical results on simulated datasets
9.5.1 Estimation of the sub-regression coe�cients
We take datasets from the experiments in section 4.8.1 page 57 and then we compare
the mse obtained on – with our Stochastic EM to those obtain by classical ols after
imputation of the missing values by the marginal empirical means. Here d = 40 Gaussian
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mixtures with dr = 16 sub-regressions and n = 30 individuals, missing values positions
are generated randomly for each of the 100 datasets to obtain 10% of missing values each
time. Thus we have 120 missing values and none of the datasets contain a full individual
without missing values. Both methods were tested with the true structure S. Initial
value of – for the Stochastic EM was the result of the method using imputation by the
empirical mean. Only 10 iterations for the Stochastic EM after 2 warming steps with only
1 iteration for the Gibbs at each step.

Figure 9.2: mse on – is significantly lower and with smaller variance with our Stochastic
EM than with imputation by the mean.

We see (Figure 9.2) that our Stochastic EM is nearly 13 times more e�cient in mean
that estimation based on imputation by the mean. Our results are extremely good because
each sub-regression is true and we have 30 individuals (even if missing values kind of reduce
this number) to estimate 3 coe�cients only each time. Although, using imputed values
lead to learn a true regression with a factually incorrect dataset. Thus we should prefer
to work without imputing the missing values but using the full generative model and the
dependencies it implies. Imputation will always introduce some noise.

9.5.2 Multiple imputation
We have then imputed missing values in Xr by using the corresponding sub-regressions
after – has been estimated by the Stochastic EM. Missing values in Xf are estimated
by the mean of 50 Gibbs iterations after the Stochastic EM and 2 warming steps of the
Gibbs. Figure 9.3 shows the significant gain in mse produced by our method.
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Figure 9.3: mse on X̂ is significantly lower when using our Stochastic EM than with
imputation by the mean.

9.5.3 Results on the main regression
We use the previously (Section 9.5.2) imputed X̂ to estimate Y with — = (1, . . . , 1)
and ‡Y = 10. So we have d = 40 Gaussian mixtures with dr = 16 sub-regressions and
n = 30 individuals, missing values positions are generated randomly for each of the 100
datasets to obtain 10% of missing values, then missing values are imputed as described
above (Section 9.5.2) to obtain X̂ that will be used to estimate —̂.

Figure 9.4: mse on Ŷ are lower when using our Stochastic EM (blue) than with imputation
by the mean (red) for the three model (complete, marginal and plug-in) using ols or
lasso

We obtain on a validation sample of 1000 individuals a predictive mse smaller in mean
with our method (Figure 9.4). But the variances are too important to really conclude
(Figure 9.5). We can say that imputation by Stochastic EM is more robust, but the Gibbs
do not give satisfying results at the moment. Maybe the increase of the number of steps
allowed by a code optimization would help to improve these results. For now, we can just
say that our generative model significantly improves estimation of – and makes possible
to find S based on a dataset with missing values.

One big advantage with our regression model is that it does not depend on the response
variable Y so the structure can be learnt independently. Thus we can imagine to obtain
big samples to learn the structure without being annoyed by the missing values. Then
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Figure 9.5: our Stochastic EM (blue) provides more robust results than imputation by
the mean (red) but the variances are still too wide.

when a response variable is chosen, we can keep the same S and use previously computed
values of – as initial value for the Stochastic EM.

9.6 Numerical results on real datasets
To be able to evaluate the results on a real dataset, we have deleted some values in the
production dataset from section 7.2 to obtain 10% of missing values. Figure 9.6 shows the
pattern of the missing values (MCAR). It confirms that 10% of missing values is su�cient
to have no complete line or column in the dataset.

Figure 9.6: Graphical representation of the dataset with 10% of missing values

We see in figure 9.7 that our Stochastic EM gives a smaller mse with a smaller variance
than imputation by the mean.
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Figure 9.7: mse on X̂ is 1.32 times lower in mean when using our method (blue) than
with imputation by the mean (red).

9.7 Conclusion
We can see that our generative model on the dataset and the explicit modeling of the
correlations are powerful enough to manage missing values either to estimate –, S, the
main regression coe�cients or even to impute missing values with an indicator of the re-
liability of these imputations. But, as expected, if too many values are missing we won’t
get good results. Moreover, the algorithms used here have good asymptotic properties but
can take time. However, if there are not too many missing values or if they are not too
badly placed in the dataset we can hope to obtain good results in a reasonable amount
of time.
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Chapter 10

Conclusion and prospects

10.1 Conclusion
It is well-known that no model is the better in every situation. Here we propose two ad-
ditional models (marginal and plug-in) but the best idea is to compare the full, marginal
and plug-in and then choose the best for the study concerned. Our goal was not to re-
place any model but to enlarge the scope of statisticians in the real life. It is important
to note that our model can be useful for interpretation even if the full model is chosen
for interpretation, because we explicitly describe the correlations between the covariates.
Moreover, the marginal model can be seen as a pre-treatment so it could easily be used
with future statistical tools.

Our model is easy to understand and to use. Usage of linear regression to model the
correlations definitely separates us from "black boxes" so users are confident in what they
do. The well-known and trivial sub-regressions found comfort users in that if a structure
does exist, CorReg will find it so when a new sub-regression, or a new main regression is
given they are more likely to look further and try it. The automated aspect shows the
power of statistics without a priori so users begin to understand that statistics are not
only descriptive or predictive but based on a priori models. This method seems to have
a positive impact on the way users looks at the statistics (according to them).

It is good to see that sequential methods (plug-in model) and automation can pro-
duce good results. Probabilistic models are e�cient even without human expertise and
let the experts improve the results by adding their expertise in the model (coercing some
sub-regression for example). Last but not least, missing values management is a positive
side-e�ect of our explicit modeling of the correlations with promising perspectives. So we
hope that statistics will continue to be a central tool for engineers.

To conclude:

• We provide a full generative model on X with explicit dependencies within the
covariates by a structure of sub-regressions.

• We provide an e�cient algorithm to find the structure of sub-regressions.

• We propose a variable pre-selection that takes into account the correlations and
has proved (on both simulated and real datasets) to significantly improve predictive
results when correlations are strong.

• We propose a plug-in model that allows to manage correlations by sequential esti-
mation without deleting any covariates and that improves consistency (compared
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to the lasso).

• We provide a package CorReg (on CRAN) that implements our method.

• The full generative model on X also allows to manage missing values.

• Variable pre-selection is just a pretreatment so it can be used with any other sta-
tistical tool.

• The structure of sub-regression itself is useful for interpretation and makes the user
more confident.

• Every step of the proposed method is simple to understand even by non-statistician.

• The method can be fully automated.

We have made the bet that explicit modeling of the correlations between the covariates
would be valuable. Obtained results confirm that it was a good choice.

10.2 Prospects
This work was focused on linear regression and the ways to avoid correlations issues.
But statistics cover an extremely wider range of methods that sometimes also su�er from
correlations. Then the perspectives of this work are wide.

10.2.1 Qualitative variables
Sometimes the response variable is not quantitative but binary (defect observed or not,
etc.). In such cases logistic regression is widely used. It is [Hosmer and Lemeshow, 2000]
in fact a linear regression with a post-treatment on Y so it is clear that we would obtain
the same kind of phenomenon. It would be an easy generalization of CorReg to binary
response variables. Introduction of qualitative covariates would be another big improve-
ment for our method. It would require dummy coding for the categorical covariates, that
is to replace each categorical covariate by k ≠ 1 binary variables (where k is the number
of categories) that indicates which modality is observed for a given individual.

10.2.2 Regression mixture models
When the studied population can be decomposed into several classes of individuals (latent
categorical covariate), correlations between the covariates can depend on these classes.
One perspective would be to search mixture sub-regressions [De Veaux, 1989] with some
parameters and sub-regressions common to several classes and some other with distinct
values. In such a model, the contribution of the structure itself would be even greater for
the final user. An additional algorithm to search for distinct or equal coe�cients within
the classes would be to develop.

10.2.3 Using the response variable to estimate the structure of
sub-regression

As in pls regression (see Section 3.5.2 page 38 and [Abdi, 2003, Geladi and Kowalski, 1986]),
we could imagine to estimate S using also Y to find a structure that will give the best
results (in terms of a given criterion) when applied on Y .
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But it would probably give distinct structures according to the chosen model (marginal
or plug-in) and also for distinct response variables (a same dataset about the same process
to study distinct response variables) so it would not be very user-friendly. For this reason
it was not implemented, but we can look a bit further.

This perspective would require to rethink the criterion used to choose the structure
and (maybe) the algorithm to find it. The global criterion could be the bic associated
to the combination of both S and the chosen regression on Y , that is bic associated
to P(S|Y , X). In fact it would be like considering Y as a covariate in X but with
distinct structural constraints (no need for the uncrossing-rule (Hypothesis 2 page 44)
for example). Because P(Y |X) is independent from P(Xr|Xf , S) (by Hypothesis 3 page
45) then, to be of any interest, global optimization would require to constrain P(Y |X, S)
according to S (in terms of zeros in —).
P(Y |X, S) could be chosen to be the marginal model without variable selection, or the
marginal model with variable selection (by the lasso for example), or the plug-in model
with or without variable selection at each step.

One possible consequence of global optimization with such a constraint would be a
reduced marginalization with some response covariates kept when the correlations implied
are not too strong, as a trade-o� between the marginal and the plug-in model. A simpler
way to achieve this would be a kind of stepwise algorithm with forward variable selection
starting with our marginal model and allowing variable selection for each model tested
(by lasso for example). But it implies to use correlated covariates and we know that it
can be a source of problems (it is the main motivation of this thesis). Removing more
covariates (by global optimization) in the marginal model would not be of real interest
because we already propose to use variable selection methods (like the lasso) to estimate
the coe�cients and the implied covariates are supposed to be uncorrelated. Global opti-
mization could be replaced by a suitable variable selection algorithm for the regression of
Y by X taking the structure S into account, it would be preferable (for interpretation)
to have the same structure for every response variable and to only adapt the way to use
the structure to estimate the regression coe�cients.

However, to model P(X, Y ) instead of P(X) would also help to better manage miss-
ing values by using P(XM |XO, Y O) instead of P(XM |XO). Then we would have more
information to make imputations. But it would use in the Gibbs sampler P(Y |X) that
is what we search. So it would need some additional work.

10.2.4 Pre-treatment for non-linear regression
Polynomial regression, Classification and Regression Trees, and any other method could
also benefit from the variable selection pre-treatment implied by our marginal model.
Definition of a plug-in model for these methods would be of great interest so it is a
challenging perspective.

10.2.5 Missing values in classical methods
The full generative approach could be used to manage missing values without imputation
for many classical methods. It can notably be used for clustering and not only in response
variable prediction context. Missing values were just introduced here and represent a
consequent perspective.
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10.2.6 Improved programming and interpretation
Even if it is written in C++, the algorithm could be optimized by a better usage of
sparse matrices, memory usage optimization, and other small things that could reduce
computational cost to be faster and allow to work with larger datasets (already works
with thousands of covariates).
Ergonomics of the software should be improved to better fit industrial needs. This work
is in progress and further work will be provided just after this thesis to get closer to this
goal as CorReg will continue to be used and taught at ArcelorMittal’s steel plants of
Dunkerque and Florange.
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Appendix A

Identifiability

A.1 Definition
We call identifiability:

@(S, S̃) œ Sd ◊ Sd with S ”= S̃ and P(X; S) = P(X; S̃) (A.1)

To avoid label-switching consideration, we suppose here (without loss of generality) that
J r is ordered by ascending order of the labels of the covariates. Hence identifiability is
paired with the hypotheses we made on Sd. It is not su�cient to find a structure of
linear sub-regression, the structure also has to verify hypotheses 1 to 3 (uncrossing rule +
dependencies exhaustively described by the structure and then independence between the
conditional response covariates). As a consequence, the covariance between two covariates
is not null if and only if these covariates are linked by some sub-regressions.

A.2 Su�cient condition for identifiability
Identifiability criterion: The model S is identifiable if

’j œ {1, . . . , dr}, d

j
p > 1. (A.2)

That is to have at least two regressors in each sub-regression.

To prove the su�ciency of this condition for identifiability we rely on the following
lemma.

Lemma: With X and S following hypotheses 1 to 3, covariance between two distinct
covariates does di�er from 0 in only two cases:

1. One of the two variables is a regressor of the other in a sub-regression

j œ {1, . . . , dr}, i œ J

j
p then cov(X i

, XJj

r ) ”= 0 (A.3)

2. Both variables are regressed by a common covariate in their respective sub-regression:
÷k œ Jf , ÷(i, j) œ {1, . . . , dr} ◊ {1, . . . , dr} with i ”= j, k œ J

i
p and k œ J

j
p then:

cov(XJi

r

, XJj

r ) ”= 0.
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proof of the lemma: The two cases lead immediately to non-zero covariance so we
just look at other combinations of covariates.

• if ÷(i, j) œ {1, . . . , dr} ◊ {1, . . . , dr}, cov(XJi

r

, XJj

r ) ”= 0 then hypothesis 2 (uncross-
ing rule) guarantee that the two covariates are not in a same sub-regression so the
covariance must come from the noises of the sub-regression but hypothesis 3 say
that they are independent. The only remaining case is then the second case of the
lemma: common covariate in the sub-regressions.

• if (i, j) œ Jf ◊ Jf then cov(X i
, Xj) = 0 because covariates in Xf are orthogonal

(by hypotheses 1 and 2).

• if j œ {1, . . . , dr}, i œ Jf and cov(XJj

r

, X i) ”= 0 then i œ J

j
p by hypotheses 1 and 3

and equation 4.3.

⇤

proof of the identifiability criterion: We suppose that A.2 is verified and the model
is not identifiable:

÷(S, S̃) œ Sd ◊ Sd with S ”= S̃ and P(X; S) = P(X; S̃) (A.4)

S̃ = (J̃ r, J̃p) contains d̃r sub-regressions and is characterized by J̃ r = (J̃1
r , . . . , J̃

d̃
r

r ), J̃p =
(J̃1

p , . . . , J̃

d̃
r

p ).
Because S ”= S̃ we have J r ”= J̃ r or Jp ”= J̃p.

• If J r = J̃ r and S ”= S̃ then one sub-regression as a predictor that stands only in one
of the two structures. We suppose (without loss of generality) that ÷j œ {1, . . . , dr}
for which ÷i œ J

j
p with i /œ J̃

j
p so covS(XJj

r

, X i) ”= 0 and covS̃(XJj

r

, X i) = 0 (from
the lemma) so the two structure do not give the same joint distribution, leading to
a contradiction.

• If J r ”= J̃ r then one of the two models has a sub-regression that is not in the other.
We suppose (without loss of generality) that ÷J

j
r œ Jr with J

j
r /œ J̃r then J

j
r œ J̃f

(recall Jf = {1, . . . , d} \ Jr). We note that J

j
r œ Jr means ÷k1 ”= k2, {k1, k2} µ J

j
p µ

Jf . Then covS(XJj

r

, Xk1) ”= 0 and covS(XJj

r

, Xk2) ”= 0 so by the lemma k1 and k2
are responses variables in S̃: ÷(l1, l2) œ {1, . . . , d̃r} ◊ {1, . . . , d̃r}, J̃

l1
r = k1, J̃

l2
r = k2

and J

j
r is a regressor of k1 and k2: J

j
r œ J

l1
p , J

j
r œ J

l2
p thus covS̃(Xk1

, Xk2) ”= 0 that
is not possible because {k1, k2} µ J

j
p µ Jf and covariates in XJ

f are orthogonal by
hypotheses.

Finally, condition A.2 is su�cient for identifiability of S. ⇤

Remark: Because sub-regressions with at least two regressors are identifiable, the only
non-identifiable sub-regressions could be those with only one regressor, leading only to
pairwise correlations that can be seen directly in the correlation matrix. Such sub-
regression can be permuted without any impact on interpretation so such trivial sub-
regression are not a problem even if they may occur with real datasets. One more thing:
exact sub-regression with at least two sub-regressors are identifiable with our hypotheses.
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Appendix B

CorReg: Existing and coming
computer tools

The CorReg package is already downloadable on cran under CeCILL Licensing. This
package permits to generate datasets according to our generative model, to estimate the
structure (C++ code) of regression within a given dataset and to estimate both complete,
marginal and plug-in models with many regression tools (ols, stepwise, lasso, elastic-
net, clere, spike and slab, adaptive lasso and every models in the lars package). So
every simulation presented above can be done with CorReg. CorReg also provides tools
to interpret found structures and visualize the dataset (missing values and correlations).
The objective of CorReg is also to bring recent statistical tools to engineers. Thus it will
be made available in Microsoft Excel by 2015, using Basic Excel R Toolkit (BERT1). Fig-
ure B.1 gives a glimpse of what it will look like. Another project is to propose CorReg in
Gretl2 (Gnu Regression, Econometrics and Time Series Library) that already have tools
for Simultaneous Equation Modeling.

The package provides some small scripts put in functions to obtain graphical repre-
sentations and basic statistics with legends for non-statistician with only one command
line (or macro button in Excel).
One example of graphical tool is the matplot_zone function that allows to compare
several curves according to a given function (as an input parameter) and was widely
used to compare the mse and complexities in this document. Another example is the
recursive_tree function to plot classification and regression trees with basic statistics
and legend (see Figure 3.2) but also to successively compute trees removing some cor-
related covariates or covariates that cannot be changed in the process to see if they are
replaced by others more useful (this recursive aspect has given its name to the function).

More features will be added as statistics will continue to be taught to engineers at
ArcelorMittal Dunkerque to provide ergonomic and powerful statistical tools to non-
statisticians.

1https://github.com/StructuredDataLLC/Basic-Excel-R-Toolkit
2http://gretl.sourceforge.net/
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Figure B.1: Screenshot of the Graphical User Interface of CorReg in Excel.

Quick overview of the package: The following script gives an overview of CorReg

0.15.8.

We first generate a dataset:
> rm( l i s t=l s ( ) ) #c l e a r the workspace
> r e q u i r e ( CorReg ) #load CorReg i f not a l r eady done
#we f i r s t generate a datase t
> base=mixture_generator (

n=15, #number o f i n d i v i d u a l s
p=10, #number o f c o v a r i a t e s
r a t i o =0.4 , #r a t i o o f c o v a r i a t e s that are re sponse v a r i a b l e s
tp1=1,#r a t i o o f p r e d i c t o r c o v a r i a t e s a l lowed to
#appear in the r e g r e s s i o n o f Y
tp2=1,#r a t i o o f re sponse c o v a r i a t e s a l lowed to
#have a non≠zero c o e f f i c i e n t in the r e g r e s s i o n o f Y
tp3=1,#r a t i o o f s t r i c t l y independent c o v a r i a t e s a l lowed to
#have a non≠zero c o e f f i c i e n t in the r e g r e s s i o n o f Y
p o s i t i v e =0.5 ,#r a t i o o f p o s i t i v e c o e f f i c i e n t s in the r e g r e s s i o n s
R2Y=0.8 , #R≠squared o f the main r e g r e s s i o n
R2=0.9 , #R≠squared o f the sub≠r e g r e s s i o n s
s c a l e=TRUE,#to s c a l e the c o v a r i a t e s
#( then re sponse s do not have a g r e a t e r var i ance or mean)
max_compl=3,#maximum number o f p r e d i c t o r s in each sub≠r e g r e s s i o n

)
#l e a r n i n g s e t (n i n d i v i d u a l s )

> X_appr=base $X_appr
> Y_appr=base $Y_appr
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#v a l i d a t i o n sample (1 000 i n d i v i d u a l s by d e f a u l t )
> Y_t e s t=base $Y_t e s t
> X_t e s t=base $X_t e s t

TrueZ=base $Z#True gene ra t i v e s t r u c t u r e ( binary adjacency matrix )

Then we can start the study by estimation of the marginal densities:
#dens i ty e s t imat ion o f each c o v a r i a t e with a max o f 10 components
> dens i ty=dens i ty_es t imat ion (X=X_appr , nbclustmax =10, d e t a i l e d=TRUE)
> Bic_n u l l_vect=dens i ty $BIC_vect# vector o f the d BIC

The bic obtained comes as an input for the MCMC:
#MCMC to f i n d the s t r u c t u r e
> r e s=s t ruc tu r eF inde r (

X=X_appr ,#the datase t
verbose =0,#s e v e r a l l e v e l s o f d e t a i l s during the walk
r e j e c t =0,#c o n s t r a i n t r e l a x a t i o n
Maxiter =900 ,#max number o f s t ep s f o r each i n i t i a l i z a t i o n

nb in i =30,#number o f i n i t i a l i z a t i o n s
cand idate s=≠1,#s t r a t e g y f o r the neighbourhood
Bic_n u l l_vect=Bic_n u l l_vect ,
s t a r=TRUE,
p1max=15,#maximum complexity o f sub≠r e g r e s s i o n s
c l ean=TRUE#a d d i t i o n a l c l e an ing s t ep s at the end

)
> hatZ=r e s $Z_opt#best adjacency matrix found
> hatBic=r e s $ b i c_opt#a s s o c i a t e d BIC

Practically speaking, CorReg returns the best structure seen during the walk (even if
the corresponding candidate has never been chosen) as an adjacency matrix. The package
also gives the local structure when the walk stops so the user can relaunch the algorithm
from the same point if he wants to go further.
The main criterion to stop the walk is a maximum number of iterations but CorReg can
also stop the walk after a given number of steps on the best found model. Exact sub-
regressions are directly given to the user during the walk to allow to stop the walk and
relaunch it without one of the implied covariates (without any loss of information).
CorReg gives to the user the choice with stationarity, included in the neighbourhood by
default. Moreover, the package let the user choose many strategies for A(q) like a fixed
number of random couples (i, j) , or the union of the j

th line and column of G.

Once a structure is found, we can compare it to the true structure (see section 5.3.7):
#Structure comparison

> compZ=compare_s t r u c t ( trueZ=TrueZ , Zalgo=hatZ )#q u a l i t a t i v e comparison
> compZ$ true_l e f t #number o f " True Responses "
[ 1 ] 4

> compZ$ f a l s e_l e f t #number o f "Wrong re sponse s "
[ 1 ] 0

> compZ$ r a t i o_true1 #no c o r r e l a t i o n s are miss ing
[ 1 ] 1

> compZ$ f a l s e 1 #3 c o r r e l a t i o n s were added ( over≠ f i t t i n g ) .
[ 1 ] 3

So here we have found all the 4 sub-regressions. No correlations are missing but 3 were
added (some over-fitting).
We can also look for further details:
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#i n t e r p r e t a t i o n o f the s t r u c t u r e found , ordered by i n c r e a s i n g R2 :
> readZ (Z=hatZ , c r i t="R2" ,X=X_appr , output=" a l l " , order =1)

# (<NA>l i n e : name ( or index ) o f the re sponse c o v a r i a t e )
[ [ 1 ] ]

c o e f s var
1 0.9110810299677 R2
2 <NA> 6
3 ≠0.60389362304509 i n t e r c e p t
4 ≠0.5080670369077 2
5 0.262896800316838 3
6 ≠0.41335932330995 5

[ [ 2 ] ]
c o e f s var

1 0.942274685071874 R2
2 <NA> 10
3 0.802402741595218 i n t e r c e p t
4 ≠0.532932485555117 2
5 0.0972300933365791 4
6 ≠0.409558991808605 5

[ [ 3 ] ]
c o e f s var

1 0.947429765365844 R2
2 <NA> 9
3 ≠0.881772084905585 i n t e r c e p t
4 0.0743241715086655 2
5 ≠0.153741473798903 3
6 ≠0.371811407183514 4
7 0.192198139511508 5

[ [ 4 ] ]
c o e f s var

1 0.954402650897285 R2
2 <NA> 8
3 ≠0.867797429793816 i n t e r c e p t
4 0.213533111330489 1
5 ≠0.0367999079013308 2
6 ≠0.0405454729730624 3
7 0.312013168373898 5
8 0.265126747497754 7

Then we use the structure for the main regression on the response variable:
#Regres s ion c o e f f i c i e n t s e s t imat ion

> resY=cor r eg (X=X_appr ,Y=Y_appr , Z=hatZ ,#we g ive the datase t and the s t r u c t u r e
compl=TRUE, expl=TRUE, pred=TRUE,#we want the 3 models
s e l e c t="NULL" ,#we w i l l use OLS
K=10# number o f groups f o r the K≠f o l d cros s ≠v a l i d a t i o n
)

And we can compare the coe�cients of the three models (intercept in first position):
> resY$compl$A #c o e f f i c i e n t s o f the complete model
[ 1 ] ≠25.511666 ≠27.237825 24.890817 ≠7.268666 ≠27.829301

[ 6 ] 37 .510213 34.882207 ≠23.717979 48.738350 ≠41.933443
[ 1 1 ] 62.007268
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> resY$ expl $A #marginal model
[ 1 ] ≠6.769296 ≠10.152404 ≠32.502943 8.031446 ≠2.939350

[ 6 ] 5 .535478 0.000000 ≠19.134011 0.000000 0.000000
[ 1 1 ] 0 .000000

> resY$ pred $A #plug≠in model
[ [ 1 ] ≠29.008358 ≠13.188767 ≠6.823660 5.941027 ≠9.369883
[ 6 ] 21 .484112 6.201073 ≠22.904017 14.219635 ≠6.743260

[ 1 1 ] 40.350803
> base $A #true model

[ 1 ] ≠8 ≠10 ≠10 ≠5 ≠6 8 14 ≠13 9 ≠7 14

And we can use the validation sample to compare the models in terms of predictive
e�ciency:
> MSE_complete=MSE_l o c (Y=Y_tes t ,X=X_tes t ,A=resY$compl$A)#complete
> MSE_marginal=MSE_l o c (Y=Y_tes t ,X=X_tes t ,A=resY$ expl $A)#marginal
> MSE_plug in=MSE_l o c (Y=Y_tes t ,X=X_tes t ,A=resY$ pred$A)#plug≠in
> MSE_true=MSE_l o c (Y=Y_tes t ,X=X_tes t ,A=base $A)#true model

> data . frame (MSE_complete ,MSE_e x p l i c a t i v e ,MSE_p r e d i c t i v e ,MSE_true )
MSE_complete MSE_marginal MSE_plug in MSE_true

628.0226 467.119 454.7964 203.2154

We observe that the marginal model is better than the complete model but the plug-in
model is able to improve the results from the marginal model by using all the covariates.

This script describes the whole process of CorReg. We can see that it is really adapted
to an automated process as we have done for Excel.
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