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 Cette thèse décrit une série d’expériences mettant en lumière l’action en 
retour de la mesure et la décohérence pour un système quantique ouvert 
élémentaire, le qubit supraconducteur. Ces observations sont rendues possibles 
grâce au développement récent d’ampli�cateurs Josephson proches de la limite 
quantique.  L’information extraite du système peut être utilisée dans des boucles 
de rétroaction quantique.
 Pour stabiliser un état arbitraire prédéterminé du qubit, une mesure 
projective est réalisée périodiquement et une boucle de rétroaction permet de 
corriger les erreurs détectées.
 En se substituant à l'environnement et en réalisant une mesure hétéro-
dyne continue de la �uorescence du qubit, nous reconstituons des trajectoires 
quantiques individuelles lors de sa relaxation. 
 En conditionnant cette détection au résultat d'une mesure projective 
postérieure, nous déterminons les weak values du signal de �uorescence. 
 En formant une boucle de rétroaction continue à partir de ce signal, nous 
stabilisons également un état arbitraire du qubit. 
 En�n, nous observons dans une dernière expérience la dynamique quan-
tique Zénon d'un mode micro-onde, induite par son couplage au qubit.

 This thesis presents a series of experiments highlighting measurement 
back action and decoherence in a basic open quantum system, the superconduc-
ting qubit. These observations are enabled by recent advances in ampli�cation 
close to the quantum limit using Josephson circuits. The information extracted 
from the system can then be used as input in quantum feedback.
 A stroboscopic projective readout is performed and a feedback loop is 
used to correct for detected errors, thus stabilizing an arbitrary predetermined 
state of the qubit.
 When monitoring continuously the environment of the qubit by hetero-
dyne detection of its �uorescence, we reconstruct individual quantum trajecto-
ries during relaxation.
 Conditioning this detection to the outcome of a following projective 
measurement, we access the weak values of the �uorescence signal.
 Included in a continuous feedback loop, this detection is also used to 
stabilize an arbitrary state of the qubit.
 Finally, a last experiment witnesses quantum Zeno dynamics of a reso-
nant microwave mode,  entailed by its coupling to the qubit.
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ABSTRACT

In quantum physics, a measurement corresponds to the interaction of a system with an
observer, who is part of its environment. In general, this measurement disturbs the state
of the system in a an effect known as the quantum back action. This perturbation is
stochastic and cannot be predicted a priori. However, if the observer efficiently extracts
the information from the measurement, he can know about the back action a posteriori,
and thus keep track of the system’s evolution.
As flexible quantum machines, whose collective behavior follows the laws of quantum
physics, superconducting circuits are promising systems to investigate this subject. A
particular superconducting qubit, the 3D transmon, reaches coherence times over 100
microseconds. Combined with the development of near quantum limited parametric
amplifiers, also based on superconducting circuits, it is possible to coherently control,
measure and react on a 3D transmon before it loses its coherence.
In this thesis, we describe several experiments performing such tasks on a 3D transmon.
In particular, a stroboscopic and non demolition measurement with high fidelity in a
single shot is used in a feedback loop to stabilize an arbitrary state of the qubit.
In another experiment, the fluorescence signal of the qubit is used to track its state
during a single relaxation event. This signal is also used to implement continuous analog
feedback, again to stabilize an arbitrary state of the qubit. When averaged conditionally
to a final projective measurement outcome, the fluorescence signal displays weak values
out of range for unconditional average. Last, the qubit is used as an auxiliary system
to induce Zeno dynamics of an electromagnetic mode of a resonant cavity with which
it is coupled.

iii





ACKNOWLEDGEMENTS

Quand je considère ces années de thèse au sein de l’équipe Electronique quantique, je
m’estime extrêmement chanceux. Sur le plan scientifique, chaque projet auquel j’ai
participé m’a permis d’aborder un nouvel aspect de la théorie quantique, toujours plus
passionnant et stimulant. Par ailleurs, l’atmosphère particulière de ce groupe où tout le
monde travaille dans la même salle est propice aux échanges, et la compréhension des
sujets les plus complexes devient un jeu. Toutes les personnes avec qui j’ai travaillé ont
ainsi contribué à rendre ces années fantastiques, aussi bien dans le laboratoire qu’en
dehors.
Pour tout cela, je tiens avant tout à remercier Benjamin Huard. Merci pour m’avoir
fait confiance en me prenant en thèse alors que je ne connaissais pas le moindre de ces
instruments qui s’entassaient sur le rack, ni même ce qu’était un rack. Ta patience, ta
disponibilité et ta maîtrise aussi bien des aspects théoriques les plus complexes que des
raccords du circuit de refroidissement des cryostats m’ont permis de progresser très rapi-
dement et continueront de m’inspirer. La liberté que tu m’a laissée dans l’orientation
des projets doublée de conseils avisés et d’enthousiasme dans les moments difficiles m’a,
je pense, donné le meilleur départ possible pour une carrière de physicien.
Merci à François Mallet pour son encadrement dès les premiers moments de ma thèse.
En travaillant à plein temps avec toi sur mon premier projet, j’ai acquis non seulement
de grandes connaissances, mais surtout les méthodes de travail qui ont fait de moi un
expérimentateur.
Merci à Michel Devoret pour les discussions toujours extrêmement enrichissantes que
nous avons eues et pour ses réponses éclairantes sur les sujets les plus complexes.
Merci à Nicolas Roch, Jean-Damien Pillet, Landry Bretheau et Sébastien Jézouin, les
post-docs qui se sont succédés au laboratoire et qui ont rivalisé de compétence, d’efforts
pour expliquer les théories ou techniques expérimentales les plus variées, de disponibil-
ité pour des discussions fructueuses, et d’humour pour tous les moments de la journée
et bien souvent de la soirée.
Merci à mes co-thésards Emmanuel Flurin, Danijela Markovic et Igor Ferrier-Barbut
pour leur soutien, leur aide et leurs conseils immanquablement offerts, et pour les in-
terminables discussions à propos de physique ou de tout autre sujet, au laboratoire ou
autour d’une pinte-frites à la Montagne.
Merci à tous les stagiaires avec qui j’ai eu la chance de travailler, et en particulier
Quentin Ficheux, Nathanaël Cottet et Théau Peronnin qui assurent désormais la relève.
I also thank Vladimir Manucharyan for his efforts in introducing me to fluxonium the-
ory and fabrication, and all the great discussions we have had.
Un grand merci aux théoriciens avec qui j’ai collaboré, Alexia Auffèves, Pierre Rou-
chon, Mazyar Mirrahimi et Alain Sarlette, ainsi qu’à leurs doctorants. A leur contact
j’ai fini par comprendre et même apprécier le formalisme des Past quantum states et
des équations stochastiques maîtresses.
Je souhaite aussi remercier tous les membres du laboratoire Pierre Aigrain et des ser-

v



vices du département de physique de l’ENS. En particulier, merci à Pascal Morfin pour
son aide lors de l’assemblage et la mise en route du cryostat, à David Darson pour la
programmation de la carte FPGA et à Michaël Rosticher pour ses conseils et son en-
cadrement en salle blanche. Merci à toute l’équipe HQC pour leur accueil et les bons
moments autour de la machine à café.
Merci à mes colocataires et à ma famille pour leur soutien durant la rédaction du
manuscrit.
Finally I thank all the members of the defense committee for accepting the position
and for carefully reviewing the manuscript.

vi



CONTENTS

1 introduction 1
1.1 Monitored qubit 2

1.1.1 Qubit coupled to an environment 2
1.1.2 Prediction from past measurements 4
1.1.3 Influence of post-selection 6

1.2 Quantum feedback 8
1.2.1 Measurement-based feedback and reservoir engineering 9
1.2.2 Quantum Zeno Dynamics 11

i open system and quantum trajectories 13
2 open qubit 15

2.1 Quantum Bit of Information : the simplest quantum system 15
2.1.1 TLS representation 15
2.1.2 Entropy 16
2.1.3 Lindblad Master Equation 17

2.1.3.1 Quantum operations 17
2.1.3.2 Continuous time evolution 19

2.2 3D transmon 21
2.2.1 Resonant cavity and LC resonator 21
2.2.2 3D cavity coupled to transmission lines 23

2.2.2.1 Lossy resonators 23
2.2.2.2 Master equation for a cavity mode 25
2.2.2.3 Choosing the coupling to the lines 25

2.2.3 Transmon qubit in 3D cavity 27
2.2.3.1 Transmon regime 27
2.2.3.2 Circuit Black Box Quantization 30
2.2.3.3 Designing the experiment: BBQ VS two-mode model 32

2.2.4 AC Stark shift and measurement induced dephasing 37
2.2.5 Other decoherence channels and thermal effects 40

3 measurement and quantum trajectories 45
3.1 Stochastic Master Equations 45

3.1.1 Measurement efficiency - discussion based on the Stern and Ger-
lach experiment 45

3.1.2 SME with a jump detector 47
3.2 Dispersive measurement 49

3.2.1 Linear detection 49
3.2.2 Homodyne detection 51
3.2.3 Heterodyne measurement 55

3.2.3.1 Single-shot Non Demolition readout 56
3.2.3.2 Quantum jumps 59

3.3 High-power readout 60

vii



3.4 Monitoring the fluorescence 62
3.4.1 Mean fluorescence signal 64
3.4.2 Quantum trajectories for fluorescence 68

3.4.2.1 Integrable quantity for measurement records 70
3.4.2.2 From measurement record to trajectory 72
3.4.2.3 Particle filtering for the estimation of η 75
3.4.2.4 Trajectories statistics 77

4 post-selected quantum trajectories 81
4.1 Past quantum state 82

4.1.1 Discrete time version 82
4.1.2 Continuous time version 84

4.2 Weak values of the fluorescence signal 88
4.2.1 Master equation 88
4.2.2 Post-selected fluorescence traces 91
4.2.3 Pre and post-selected fluorescence traces 92
4.2.4 Time asymmetry for a dissipative system 96

4.3 Conclusion 100

ii quantum control 103
5 measurement based feedback 107

5.1 Stroboscopic digital feedback using dispersive measurement 107
5.1.1 Feedback loop 107
5.1.2 Qubit reset 110
5.1.3 Rabi oscillations 112
5.1.4 Ramsey oscillations 116

5.2 Continuous analog feedback using the fluorescence signal 117
5.2.1 Effective master equation in presence of feedback 118

5.2.1.1 SISOMarkovian feedback with diffusive measurements 118
5.2.1.2 MIMO Markovian feedback and arbitrary state stabi-

lization 120
5.2.2 Experimental implementation 122

5.2.2.1 Stabilization of |e〉 122
5.2.2.2 Arbitrary state stabilization 125

6 reservoir engineering 129
6.1 Double Drive Reset of Population 129

6.1.1 Principle and limits 129
6.1.2 Heating up the transmon 131
6.1.3 Cooling performances 133

6.2 Autonomous feedback versus MBF 136
6.2.1 Swap reset 136
6.2.2 Engineering dissipation with continuous feedback 138

7 quantum zeno dynamics 141
7.1 Zeno dynamics of a microwave mode 141

7.1.1 Zeno dynamics by repeated measurements 141
7.1.2 Zeno dynamics by strong coherent driving 142

viii



7.1.2.1 Phase randomization 142
7.1.2.2 Zeno dynamics using an ancillary system 143

7.2 Oscillations in levels occupation for a driven N-level system 147
7.2.1 Fock states occupation for a coherent field 147
7.2.2 Fock state occupation for a field under QZD 150

7.3 Wigner tomography 153
7.3.1 Photon parity measurement 154
7.3.2 Wigner function of a field under QZD 156
7.3.3 A tailorable infinite Hilbert space? 159

7.4 Conclusion 160

iii appendix 163
a experimental techniques 165

a.1 Qubits fabrication and characterization 165
a.1.1 Nanofabrication 167
a.1.2 Wafer probing 169
a.1.3 Cavity machining and surface treatment 170

a.2 Wiring and cryogenics 171
a.2.1 Wiring the dilution refrigerator 171
a.2.2 Room temperature pulse generation and measurement setup 172

a.3 Electromagnetic simulations 177
b quantum circuits 181

b.1 Capacitively coupled transmission line 181
b.2 Input output formalism 182

c stochastic master equations for dispersive measurement 187
c.1 Jump operators for detection with a photocounter 187
c.2 Derivation of the SME for homodyne detection 188

iv bibliography 193

bibliography 195

ix





1
INTRODUCTION

The state of a closed quantum system evolves in a deterministic and reversible manner.
Physically, this state constitutes a description of the statistics of outcomes for any fol-
lowing measurement on the system. In the Copenhagen interpretation, a measurement
irreversibly projects, or collapses, the wavefunction onto a particular set of states. A
paradox then arises when considering the measurement apparatus as part of the sys-
tem itself, so that the global evolution should be reversible. About these issues, Bell
and Nauenberg considered in 1966 that "the typical physicist feels that they have been
long answered, and that he will fully understand just how, if ever he can spare twenty
minutes to think about it." Yet, this paradox has since fueled heated debates, and
interpretations such as many worlds theory [1] or the more recent work on Quantum
Darwinism [2].

Already that same year, Daneri et al. [3, 4] argued that the measurement problem is
key to understanding the boundary between the classical and quantum worlds. Their
claim that one has to take into account the macroscopicity of the measurement appa-
ratus is the starting point of modern decoherence theory. Fully quantum behavior is
usually observed in systems containing only a small number of degrees of freedom. The
irreversible evolution during a measurement comes from the difficulty to monitor a
great number of auxiliary degrees of freedom, or ancillas, on which information on the
system has been imprinted through reversible evolution in interaction. Dismissing the
information thus carried away effectively induces a collapse toward the pointer states,
which are immune to distant operations on the ancillas1.

In the past decades, experiments using various systems have succeeded in decom-
posing the information extraction process [6, 7, 8], which now plays a central role in
attempts to axiomatize the quantum theory [9, 5]. As flexible quantum machines, whose
collective behavior follows the laws of quantum physics, superconducting circuits [10]
are promising systems to investigate further these issues. The rapid improvement of
their coherence times combined with efficient detectors now allows to recover a large
fraction of the information leaking out from such a system through controlled dissipa-
tion or dephasing channels [11], and to feed it back before it looses its coherence.

In this thesis, we describe experiments performed on a particular superconducting
circuit, the transmon [12]. When cooled down at dilution refrigerator base tempera-
ture, it behaves as an anharmonic resonator that, properly addressed with microwave
radiations, implements a controllable quantum bit. It is enclosed in an off-resonant 3
dimensional microwave cavity [13] probed via transmission lines, which provide a con-

1 more precisely the states that are stable under local operations that can be unmade by action on the
distant ancillas [5].
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trolled and monitored environment for the qubit. In these conditions, the transmon
is a good test-bed to investigate quantum measurement and feedback. In particular,
the dynamics of an open quantum system is analyzed in the situation where the main
relaxation and dephasing channels are efficiently monitored. Combined with single-
shot readout schemes, we study the effect of post-selection on these dynamics. The
extracted information is also used via a feedback loops to stabilize arbitrary states and
to effectively engineer dissipation.

1.1 monitored qubit

1.1.1 Qubit coupled to an environment

The system used in the experiments described throughout this thesis follows the de-
sign of the 3D transmon [12, 13]. It consists in a Josephson junction (JJ) linking two
antennas. The JJ behaves as a non linear inductor and the antennas form a large
shunting capacitance so that this circuit is a weakly anharmonic oscillator. Its reso-
nance frequency is in the GHz range and it thus needs to be cooled down at dilution
refrigerator base temperature to be used for quantum information experiments. Via the
antennas, this circuit couples to the electromagnetic field so that it can be controlled
with microwave radiations. Its energy levels are not evenly spaced and, if addressing
only the transition at ωq between the ground state |g〉 and the first excited state |e〉,
it forms an effective qubit whose hamiltonian reads Hq = h̄ωq

σZ
2 .

This circuit is fabricated on a sapphire chip, enclosed in a 3 dimensional resonant
cavity of high quality factor (see Fig. 10a). The electromagnetic modes of the cavity
can be modeled as harmonic oscillators. They are coupled to semi infinite transmission
lines via 2 ports, whose coupling rates can be tuned over a wide range. In the experi-
ment, one of the ports, called the output port has a much larger coupling rate than the
other one and than the cavity internal losses. Thus, the leak through this output port
dominates the damping of the cavity modes photons and the qubit radiative decay.
The cavity dimensions were chosen so that its first mode resonates at ωr = ωq + ∆,
above the qubit transition. Its hamiltonian reads Hr = h̄ωra

†a, where a is the photon
annihilation operator.

The detuning ∆ is far larger than the coupling between this mode and the qubit
via the antennas. It is thus in the dispersive regime and the total system hamiltonian
reads

H = h̄ωra
†a+ h̄ωq

σZ
2 − h̄

χ

2 σZa
†a , (1)

where we neglected the other modes of the cavity, farther detuned, and the higher order
terms in a†a. The dispersive shift χ makes the cavity resonance frequency dependent
of the qubit state. Probing the cavity in transmission then provides a measurement
scheme of the σZ operator of the qubit. If the information carried by this transmitted
signal is dismissed, it leads to dephasing of the qubit at rate Γd, proportional to the
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probe power [11].

Another role of the cavity is to control the electromagnetic environment of the
qubit [14]. In particular, the noise power at ωq is filtered by the off resonant cavity.
As a result, the relaxation rate γ1 of the qubit is considerably lowered, enabling us to
coherently manipulate it much faster than its lifetime. In the Purcell limit [15, 16, 17],
this rate is dominated by the relaxation into the modes of the output line, where fluo-
rescence can be detected.

g

e

Figure 1: Schematic representation of the qubit in the 3 dimensional cavity. The output port
couples with a high rate the first mode of the cavity to the output line. It is used
to channel the fluorescence field of the qubit (in green, at ωq) and the transmitted
signal at cavity resonance frequency which comes from the input port (in purple, at
ωr). If dismissed, the information and energy contained in these fields leaking out
of the system leads to relaxation at a rate γ1 (collapse of the state toward |g〉) and
dephasing with rate Γd that scales with the input field power (collapse of the state
on the z-axis of the Bloch sphere).

When considering the qubit as the system, and the cavity and the lines as its envi-
ronment, it implements a two-level system in presence of a dephasing and a relaxation
channel [18] as schematized on Fig. 1b. The system dynamics is governed by the Lind-
blad Master Equation reading

dρ
dt = − i

h̄
[Hq, ρ] + γ1D[σ−]ρ+

Γd
2 D[σZ ]ρ , (2)

where the damping super-operator D is defined by

D[L]ρ = LρL† − 1
2L
†Lρ− 1

2ρL
†L. (3)

These rates can be increased by other uncontrolled processes (non radiative decay,
pure dephasing). For a qubit at finite temperature, a third channel associated with
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the σ+ operator is opened. Note that in Hq, the qubit frequency is now dressed by its
hybridization with the cavity mode and depends on its occupation (AC Stark shift).

These channels ultimately lead to the erasure of the information initially encoded by
the qubit and constitute a limit to quantum information processing. However, if one
monitors efficiently these channels, the qubit state can be followed in time so that its
purity remains of order 1.

1.1.2 Prediction from past measurements

The damping terms in Eq. (2) originate from the coupling between the qubit and the
bath of traveling modes in the probe lines2. Over a time-step longer than the bath auto-
correlation time, they can be modeled as a series of unread generalized measurements
involving these modes as ancillas [18]. In order to retrieve the information contained
in the ancillas, we detect the output field from the cavity.

We place on the output line a phase preserving parametric amplifier, the Josephson
Parametric Converter (JPC) [19, 20]. The JPC performs heterodyne detection of the
field on a finite amplification bandwidth. It has been showed to work near the quantum
limit, so that if the signal that we want to detect is properly collected and transmitted
to its input, the detection efficiency η is of order 1. The experiments described in this
thesis use two types of detection, depending on the measured frequency range.

When the JPC is tuned at the cavity frequency, it is used to detect the transmitted
field at ωr, shifted by the dispersive interaction with the qubit (see Eq. (1)). The
two measured signals, called the measurement records, integrated over a time step dt,
read [21] dI = i0dt+ dWt,I

dQ =
√

Γm〈σZ〉dt+ dWt,Q
, (4)

where i0 is a constant depending on the system parameters that will be detailed in
Sec. 3.2.3, and Wt,I,Q are independent Wiener processes, or idealized random walks,
verifying dWt = 0

dW 2
t = dt

. (5)

The measurement is thus noisy when integrated on a finite time step. This noise ulti-
mately originates from the quantum fluctuations of the detected field. Γm is the total
measurement rate. It defines the time scale on which the measurement can discriminate
between the two states of the qubit3. One can show that Γm = ηΓd [11], so that for
perfect measurement efficiency, no information is lost and the observer acquires infor-
mation as fast as the dephasing induced by the measurement. For finite efficiency, one

2 In the case of the dephasing term, the coupling is mediated by the cavity mode
3 With this convention, the same measurement rate requires to integrate the signal twice longer to
discriminate between |g〉 and |e〉 compared to homodyne detection.
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needs to integrate further the readout signal after that the qubit has been projected
by measurement in order to get a good readout fidelity in a single shot.

JPC

JPC

0 62 4

0

-2

2

0

-2

2

0
-2

2

a)

b)

0

1.5

g

e

Figure 2: a) Detection of the field associated with dispersive measurement (in purple) or the
fluorescence field (in green). The upper inset shows a measurement record associated
with the first detection, on a time scale larger than T1 and for a large measurement
rate. It reveals quantum jumps [22]. The second, from a different experiment, shows
a quantum trajectory associated with the fluorescence detection when no dispersive
measurement takes place. A quantum filter F is used to propagate the density ma-
trix from t to t + dt knowing dIt and dQt. The qubit state diffuses continuously
toward |g〉. b) Density of probability for I(Tmeas) and Q(Tmeas) extracted from 106

measurement outcomes when the qubit is prepared in states |g〉 or |e〉 with equal
probability. The halved probability density corresponding to the preparation of |g〉
only (resp. |e〉) is plotted in blue (red) together with the marginals along the I and
Q axes. The distributions are well separated, indicating that when integrating the
dispersive measurement record over a sufficiently long time Tmeas � T1, one gets a
high fidelity, non-destructive, single shot readout of the qubit.

A particular quantum filter, the Stochastic Master Equation (SME) [23, 24], is used
to translate the measurement records in quantum trajectories. These are the states
occupied by the qubit in time during the measurement. If one collects efficiently the
information (η ' 1), these states can be deduced accurately and their purity remains of
order 1 during the collapse on |g〉 or |e〉. The measurement record presented on Fig. 2a
(purple inset) would lead to a trajectory displaying abrupt variations or jumps [22]
between |g〉 and |e〉. This limit is reached when the integration time step dt is much
larger than the measurement time 1/Γm.
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A second measurement scheme used in these experiments is performed by heterodyne
detection of the fluorescence field emitted by the qubit when relaxing into the output
line [25, 26]. The JPC is then tuned to the qubit resonance frequency. In that case,
the measurement records read [24] dI =

√
ηγ1
2 〈σX〉dt+ dWt,I

dQ =
√

ηγ1
2 〈σY 〉dt+ dWt,Q

, (6)

so that it can be understood as a measurement of the hermitian and anti-hermitian
parts of the σ− operator of the qubit. This measurement is weak on a timescale shorter
than T1. Therefore it is not QND in the sense that it eventually collapses the qubit
state to |g〉. The typical trajectory displayed on Fig. 2a (green inset) corresponds to a
diffusion of this state from the initial preparation in |e〉 at t = 0, to |g〉 at t = 2.5 T1.

The SME allows us to predict the state of the qubit at time t using the measurement
records from 0 to t. We now show how to infer this state a posteriori, conditioned on
the outcome of a measurement taking place after t.

1.1.3 Influence of post-selection

preparation

time

post-selection   weak
 measurement

conditionnal 
average

Figure 3: The density matrix ρ and effect matrix E are propagated respectively forward and
backward from initial state (resp. final post selection) toward t. They allow to predict
the average value of the detected signal at time t for the post-selected experiments.

In 1964, Aharonov et al. noticed that post-selection on the final state of a closed
quantum system played a time symmetric role to preparation [27]. This paved the way
for the still controversial weak value physics [28]. Recently, this theoretical framework
was extended to open quantum systems [29, 30, 31]. The information of the final
measurement at time T is encoded in an effect matrix E(T), similar to the density
matrix. This matrix is then propagated backward in time until a given time t, taking
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into account the damping by a set of jump operators {Lk}, as depicted on Fig. 3. In
this expression, the modified damping super operator D̃ reads

D̃[L]E = −L†EL+
1
2 (L

†LE +EL†L). (7)

It is similar to the Lindblad master equation, but does not lead to a time-symmetric
evolution for E compared to the one for ρ if L 6= L†, which is the case for a relaxation
process.
Both ρ and E are used to make predictions on post-selected sub ensembles of exper-
iments. The conditional average value of a weak measurement at time t, such as the
continuous monitoring of a jump operator L0 over a small integration time step, reads
〈L0〉w = Tr[ρEL0] where

ρE =
ρE

Tr[ρE] (8)

is not hermitian, which entails counter intuitive properties [32].

0.5 1 1.5 2
0

1

0.5

1.5

0.5 1 1.5 2
0

1

0.5

1.5

JPC

0.5

-0.5

1.5

-1.5

a)

b)

g

e

Figure 4: a)The resonance fluorescence of a driven qubit is detected on the output line (in
green) from 0 to T = 2.5µs (T � T1). The traces are averaged conditionally to a final
projective measurement outcome using the dispersive shift of the cavity (in purple).
For a qubit driven around σY , only the I measurement record contains information
about the qubit dynamics on average. b) The conditional fluorescence signal (to the
left) displays features from both preparation and post-selection. It can take much
larger values than the unconditionally averaged signal (to the right). Lines surround
regions with weak values beyond the accessible range for unconditional average.

In order to test this theory on the monitored relaxation channel (L0 =
√
γ1σ−),

we modify the detection setup schematized on Fig. 2a as represented on Fig. 4a. The
qubit is driven resonantly so that it undergoes Rabi oscillations from time 0 to T
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(blue arrows). At T , it is measured projectively along σz using the dispersive shift of
the cavity resonance (high power readout method, described in Sec. 3.3). On a large
number of experiments, the measurement records from the fluorescence detection are
then averaged according to this final measurement outcome. For a qubit initially in |e〉
and when varying the Rabi pulsation ΩR, the probability to post select the qubit, say,
in |g〉, becomes very low when ΩRT = 2nπ. Such events would not be possible if not
for the decoherence induced by the relaxation channel, which is the only decoherence
channel in the present case. As a result, the average fluorescence signal conditioned
on this post-selection then takes large values (dark colors in the right panel of Fig. 4b
compared to the unconditioned case on the left), in quantitative agreement with the
predicted weak value.

Now that both the dispersive and fluorescence detections have been characterized,
we describe in the next section how they were used in feedback loops to stabilize
an arbitrary state of the qubit. We compare these feedback protocols to reservoir
engineering and to coherent engineering of the system energy levels.

1.2 quantum feedback

Classically, feedback loops are used indifferently either to prepare a system in a target
state starting from an unknown state, or to protect an unknown initial state from ex-
ternal noise. In the quantum domain, one might distinguish these two situations when
the state to protect should not be measured in order to preserve the information that
it carries.

In the first situation, it is necessary to evacuate the entropy from the initial unknown
state, so that the loop includes either a measurement, implementingmeasurement based
feedback [33, 24] (MBF), or a specifically designed dissipative channel, which defines
reservoir engineering [34], also called autonomous feedback. We present two experiments
using MBF loops to stabilize arbitrary states (even dynamic ones), and compare them
to reservoir engineering techniques. Their performances are similar when using efficient
detectors and we show that continuous MBF allows to effectively engineer dissipation.

On the other hand, protecting an unknown state can be done coherently4. We present
an experiment witnessing Zeno dynamics[35, 36, 37, 38, 39] of a microwave mode, en-
tailed by coherent control only. Seen as coherent feedback inhibiting departure from
a stabilized subspace, it only protects from spurious transitions induced by coherent
processes. However, since decoherence and relaxation can ultimately be described as
coherent evolution with ancillary modes, inhibiting coherently these interactions ef-
fectively decreases the rate of induced errors. A trivial example is the use of an off
resonant cavity to control the electromagnetic environment of the qubit. Another de-
vice commonly used is the so called Purcell filter, which can lower considerably the
relaxation rate into the probe lines [16, 17].

4 We do not consider here correcting codes that make use of a larger Hilbert space to protect a logical
qubit by careful measurement or dissipation, stabilizing a coding subspace.
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1.2.1 Measurement-based feedback and reservoir engineering

g

e JPC

a)
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e JPC
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c)
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1
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0 1 0

b)
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Figure 5: a) Stroboscopic MBF using a pulsed dispersive measurement (purple waves). The
controller (in red) integrates the signal on Q and instructs the actuator (in brown)
to trigger a fast correcting π-pulse (large green wave) if the qubit is in |e〉. This
pulse is combined with the readout signals and, in the present case, a weak constant
drive to induce Rabi oscillations. More complex operations by the FPGA could allow
for more elaborate bayesian feedback schemes. b) Bloch sphere representation of
stabilized Rabi oscillations from the setup described in a. Time is encoded in color
from t = 0 (in red) to t ' 4 T1 (in blue). Actuations "A" correspond to the application
of the correcting pulse and compensate for the purity loss during each oscillation. c)
Continuous markovian feedback using the fluorescence field (in green) detection. The
controls ut, vt and wt are proportional to the current values dIt and dQt of the
records. The control hamiltonian is Hcont = utσX + vtσY +wtσZ . Rotations around
σX,Y are implemented by drives at ωq (in green) and around σZ by dressing the
qubit frequency with a field near ωr (purple). d) Stabilized states represented as red
dots in the (y,z) plane of the Bloch sphere, in the stationary state of the feedback
schematized in c.

A measurement based feedback loop can be decomposed in three parts. A sensor
extracts efficiently information from the system. It transmits it to a controller that
"decides" of the strategy to adopt in order to steer the system toward the target state.
This decision is communicated classically to an actuator that applies coherent drives
on the system accordingly. Realizations of MBF were recently performed using Ryd-
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berg atoms [40, 41] and superconducting circuits [42].

First, we implement stroboscopic feedback using the dispersive measurement. It is
schematized on Fig. 5a. At discrete times, a readout pulse at the cavity resonance fre-
quency is sent through the input line. The transmitted field is amplified by a JPC (the
sensor) and the resulting signal is digitized at room temperature by an FPGA board
(the controller). The board integrates the signal so as to determine the state of the
qubit in a single-shot with high fidelity. If it is detected in |e〉, it sets a control bit to
1. This bit is transferred on to the board’s DAC (the actuator) that generates a pulse
at qubit frequency so as to perform a π rotation of the state if the bit is 1.
With this strategy, we can reset the qubit efficiently as was done in [42], which imple-
ments the removal of entropy needed as quantum information protocols first step [43].
Moreover, by applying measurement pulses at predefined times only, which are when
the qubit is expected to be in the ground state, we can stabilize a non trivial trajectory
such as Rabi or Ramsey oscillations (see Fig. 5b).
This measurement based feedback loop is similar to the discrete time version of an
autonomous scheme previously realized in [44] and that we reproduced in the resolved
photon number regime [45] (see Fig. 52). Making use of a dispersive shift larger than
the cavity linewidth, we first drive the cavity at ωr,g = ωr + χ/2 so that a large coher-
ent state |α〉 develops only if the qubit is in |g〉. A π pulse on the qubit is then applied
conditioned on the cavity being in the vacuum. This sequence effectively swaps the
qubit state with an effective qubit formed by the orthogonal cavity states |0〉 and |α〉.
The performances are similar to the measurement based scheme for high efficiency de-
tection. Indeed, both protocols are limited by thermal excitations during the necessary
delay before using the qubit for other operations in order for the cavity field to leak
out. The minimal amplitude of this field is in both cases set by a distinguishability
criterion between |0〉 and |α〉. Moreover, the autonomous scheme relies on having a
cold ancilla (the cavity in the present case) to swap states with the qubit. This ancilla
needs to be reset or replaced to repeat the scheme, requiring a cold bath to dissipate
into. The complete loop is thus not coherent, and the ancilla effectively plays the same
role as a bit of memory in the FPGA board.

A second experiment uses the fluorescence field measurement. The feedback is contin-
uous and markovian, in the sense that the controller does not have a memory and sets
the control drives as a function of the current values of the detected signal only. One
can show that [23, 24, 46], when considering a perfect detection of a single jump op-
erator L and a simple proportional controller, the feedback loop results in an effective
master equation for the qubit in which L has been modified as

L← L− iHd, (9)

where Hd is an arbitrary drive hamiltonian5. In the case of the heterodyne detec-
tion used in this experiment, which corresponds to the simultaneous detection of
L1 =

√
γ1
2 σ− and L2 = i

√
γ1
2 σ−, we can still define a proportional controller that

stabilizes an arbitrary state of the Bloch sphere for perfect detection efficiency. With
5 In general, a constant drift in the qubit hamiltonian also needs to be compensated.
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the limited efficiency of our setup, we stabilize the states with finite purity as repre-
sented on Fig. 5d.

Note that by canceling the imaginary part of a jump operator with the right drive
hamiltonian, it is possible to effectively transform a dissipation process into a QND con-
tinuous measurement. Conversely, when considering, for example, the case L =

√
Γd
2 σz

as for a dispersive measurement with homodyne detection, and choosing Hd =
√

Γd
2 σY ,

one could stabilize the state |+ x〉, on the equator of the Bloch sphere. Thus, efficient
detection, combined with continuous markovian measurement based feedback, allows
to engineer dissipation just as autonomous techniques [47]. Such a scheme was first
used by Vijay et al. to stabilize Rabi oscillations [48].

1.2.2 Quantum Zeno Dynamics

A last experiment led us to the observation of Quantum Zeno Dynamics (QZD) of
the microwave mode of a cavity. This experiment demonstrates a similar effect for
light than was previously done for atomic levels [49, 50]. In its original definition, the
quantum Zeno effect corresponds to the inhibition of coherent transitions from, or to,
the pointer states of a strong measurement or dissipative process. Instead of freezing
the dynamics, one can restrict it to a given subspace by choosing a measurement with
degenerate eigenvalues.

Similar behavior can also be induced by rapid unitary "kicks" [37, 38], leaving the
subspace to protect unaffected. It can be understood considering a model for the origi-
nal Zeno measurement as a series of coherent interactions with ancillary systems. When
the interactions are strong enough, departure from the subspace is perfectly suppressed,
so that the outcome of the detector is always the same. Therefore, the ancillas are all
left in the same state after the interaction and they do not need to be reset. One can
then enforce Zeno dynamics by performing repeatedly unitary operations controlling
the state of an auxiliary degree of freedom. This amounts to re-using the same ancilla,
at the condition that the unitary evolutions are fast enough to effectively randomize
the phase of coherences created with the system. In that sense, QZD is a coherent
feedback, which engineers the energy level landscape of a system or its environment
by coherent coupling with an ancillary degree of freedom.

In the experiment, a qubit in the resolved photon number regime [45] plays the role
of the ancillary system. A strong Rabi drive is applied on its transition conditioned
on the cavity mode hosting N photons (N = 3 on Fig. 6a). The drive hybridizes the
levels |N , g〉 and |N , e〉 that repel each other. The level |N〉 is then moved out from
the harmonic ladder of the cavity mode. When starting in the vacuum and applying
a coherent drive at ωr, the generated state cannot contain N photons so that it is
restricted to N levels.
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Figure 6: a) Combined energy level diagram for the qubit and cavity. By applying a strong Rabi
drive on the |3, g〉 ↔ |3, e〉 transition, the |2〉 ↔ |3〉 transition of the cavity becomes
off resonant at ωr,g. b) Oscillations of the Fock state occupation when driving the
cavity mode from the vacuum and blocking |3〉. c) Wigner tomography of the field at
half period of oscillation (dashed line in b). The quasi-probability density is confined
within a circular barrier of radius

√
3 (white circle). Negativities (in blue) reveal a

non classical state.

When measuring the Fock state occupation probabilities as a function of time for this
effective driven N -level system, characteristic oscillations appear (see Fig. 6b). Quan-
tum coherence of the field is revealed by direct Wigner tomography [51] (see Fig. 6c).
At half-period of the oscillations, fringes with negativities can be observed. This non
classical state is similar to a "Schrödinger cat state", confined in phase space within a
circular barrier of radius

√
N .

This thesis is organized as follows. Chapters 1 and 2 describe the formalism adopted
in this work, the system and its decoherence channels, and the two types of detections
used in the experiments. Chapter 3 focusses on a weak value experiment and describes
the framework to combine information from past and future measurements. Chapters
4 and 5 report experiments implementing measurement based feedback and reservoir
engineering. Chapter 6 describes the Zeno dynamics of the microwave mode. Chapter
7 gives a brief overview of experimental techniques used throughout the experiments.
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Part I

O P E N S Y S T E M A N D Q U A N T U M T R A J E C T O R I E S





2
OPEN QUBIT

2.1 quantum bit of information : the simplest quantum system

We will define here the notations used throughout this thesis, describe the representa-
tions for a qubit state and formally derive a Master Equation as a general framework
to model open qubit dynamics.

2.1.1 TLS representation

A two level system, which will be referred to in this thesis as a quantum bit (qubit)
for it can be used to carry one bit of information, has exactly 2 steady states. If non
degenerate, they are called ground |g〉 and excited |e〉 by order of energy. If the qubit
state is perfectly known, it is in a pure state and can be written α|g〉+ β|e〉 with α

and β some complex coefficients such that
√
|α|2 + |β|2 = 1. In order to describe

the qubit state even in the case of imperfect knowledge, we use the density matrix
formalism. For a pure state |ψ〉, the density matrix is simply ρ = |ψ〉〈ψ|. With the
above decomposition on the eigenbasis {|e〉, |g〉}, the density matrix then reads

ρ =

|β|2 α∗β

αβ∗ |α|2

 . (10)

When considering a statistical mixture of states |ψi〉, the density matrix becomes
ρ =

∑
i
pi|ψi〉〈ψi| where {pi} is a set of (classical) probabilities of sum 1. Since ρ is

hermitian, positive and of trace 1, it can be decomposed on the Pauli matrice basis

ρ =
1
2 (1+ xσx+ yσy + zσz) with σx =

0 1
1 0

 , σy =

0 −i
i 0

 ,σz =

1 0
0 −1

 .

(11)

A convenient graphical representation for these density matrices uses the so-called
Bloch sphere, which is a ball of radius 1. A state is then represented by a vector of
coordinates {x, y, z} (Fig. 7). A density matrix ρ being hermitian, it can be diagonalized
on an orthonormal basis. This means that there exist 2 orthogonal states |+〉 and |−〉
such that

ρ = p |+〉〈+|+ (1− p) |−〉〈−|, (12)

where p ∈ [0, 1] since ρ is positive and of trace 1. This decomposition is in fact unique,
except for the maximally entropic state ρ = 1

21. Indeed, as orthogonal pure states,
|+〉〈+| and |−〉〈−| are represented by two Bloch vectors −→B+ and −→B− of length 1
(Eqs. (10,11)), and the Bloch vector for ρ is −→B = p

−→
B+ + (1− p)−→B−: any Bloch vector

remains inside the sphere.
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Figure 7: Bloch sphere representation of the mixed state ρ = 1
2 (1 + 1

2
√

2σx +
1

2
√

2σy) (to the
left) and its decomposition on a basis in which ρ is diagonal (to the right): noting
|+〉 = 1√

2 (|g〉+
1−i√

2 |e〉) and |−〉 =
1√
2 (|g〉 −

1−i√
2 |e〉) the two pure states whose Bloch

vectors are collinear to the one of ρ, these states are orthogonal so that they form a
basis and their Bloch vectors are opposed. It is the basis on which the outcomes of a
projective measurement of the qubit will yield the minimum Shannon entropy.

2.1.2 Entropy

The possibility to consider mixed states can first appear as a practical way to take
into account experimental imperfections. However, we will see throughout this thesis
that, on a fundamental level, variation of entropy is unavoidable when considering an
open-system. If a system interacts with its environment and that the information thus
imprinted in auxiliary degrees of freedom is not fed back to the system, it can result
in an increase of entropy.

There are several definitions for entropy that quantify the lack of knowledge of an
observer. In this thesis, we will use the Von Neumann definition

S = −Tr[ρLog2[ρ]] = −pLog2[p]− (1− p)Log2[1− p], (13)

where p is the probability entering the decomposition of Eq. (12). Hence, the entropy of
a qubit state lies between 0 for a pure state and 1 bit for the maximally entropic state
ρ = 1

21. Moreover, it corresponds to the Shannon entropy associated to the statistics
of the outcome of a measurement along the basis {|+〉, |−〉}. Any other projective mea-
surement along a different basis {|a〉, |b〉} would yield the outcome a with probability
p′ = Tr[ρ|a〉〈a|] = pq+(1− p)(1− q) where q = |〈+|a〉|2, so that |p′− 1

2 | < |p−
1
2 |, and

the corresponding Shannon entropy would be larger than S. This excess uncertainty
about the outcome of a measurement on an imperfect basis is sometimes referred to
as measurement entropy[52].

An important feature of the entropy associated to a density matrix is that its value
does not depend on the choice of the basis on which it is written. As a consequence,
any unitary operation on a density matrix preserves entropy.
The purification principle states that apparition of entropy for a system A can always
be modeled as the entanglement of A in a pure state with an auxiliary system B, fol-
lowed by an unread measurement of B. This is even the only postulate that differs

16



between quantum and classical information theory in the axioms of Chiribella et al[9].
Such an unread measurement is mathematically described by the partial trace opera-
tion. Given an orthonormal basis {|φi〉} on which B will be measured, and a density
matrix ρAB describing a potentially entangled state of A and B, it is defined by:

TrB [ρAB ] =
∑
i

〈φi|ρAB|φi〉 (14)

The resulting matrix ρA represents a state of the system A only. This operation is
trace preserving so that the density matrix ρA is well defined, but not unitary so that
the entropy is not preserved. Another important feature is that ρA does not depend
of the choice of the basis {|φi〉}. This means that which measurement will actually be
performed on B does not matter. As long as one gives up all information on any future
measurement on system B, the knowledge about A is be encoded by ρA. For instance,
a qubit that interacts with an electromagnetic mode will undergo the same evolution
(namely submitted to relaxation and/or decoherence), whatever the fate of the light
in this mode as long as all info about it is dismissed. That it be measured along a
particular basis, absorbed by the environment or let to travel in free space indefinitely
does not change the state of A. Thus, in this formalism, a quantum state is defined
relatively to an observer: it is no more than the knowledge that we have about it. As
a consequence, entropy is also defined relatively to an observer.

Another notion from information theory that will be of interest is the relative entropy
[52]. Considering two density matrices ρ and σ, we define

S(ρ||σ) = −Tr[ρLog2(σ)] + Tr[ρLog2(ρ)]. (15)

This quantity is a measure of the "distance"1 between the states represented by ρ and
σ. In particular, S(ρ||σ) ≥ 0, with equality when ρ = σ. We will see that without ex-
tracting any information about an open quantum system, the relative entropy of two
different initial states, which can be understood as the distinguishability between two
initial preparations, can only decrease with time. This is in contrast to the entropy of a
particular state that, depending on the interaction with the environment, can increase
due to decoherence, or decrease in presence of dissipation.

In order to describe in a compact way the effects of the interaction of a qubit with
its environment, which makes it an open quantum system, we will now establish a
Lindblad master equation that describes its dynamics.

2.1.3 Lindblad Master Equation

2.1.3.1 Quantum operations

Nielsen and Chuang [18] proposed three equivalent ways to describe quantum opera-
tions, that is any physical transformation acting on a system A. These are represented
by a super operator L, also referred to as a map, acting on the density matrices of A.
They must, in the axiomatic way, have the 3 following properties.

1 but the relative entropy is not a proper metric since it is not symmetric
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• L is trace-preserving2: ∀ρ, Tr[L[ρ]] = 1

• L is completely positive. This property means that for any auxiliary system B with
which our system is potentially entangled, the map LA⊗ 1B acting on the whole
system must preserve positivity (that is ρAB with non-negative eigenvalues). The
2 previous properties ensure that the eigenvalues of L[ρ] can still be interpreted
as classical probabilities of a mixed state.

• L is convex linear : for a set of probabilities {pi} and states {ρi}, L[
∑
i
piρi] =∑

i
piL[ρi]. This means that picking randomly from an ensemble of initial states

with some given probability distribution, one expects to get one of the trans-
formed states with the same probability after the operation .

Then, they show that for such a map, if the system is not initially entangled with
the rest of the universe (its environment), there exists a finite set of so-called ’Kraus
operators’ {Mi} which are linear operators acting on the states of A, such that, for
any density matrix ρA,

L[ρA] =
∑
i

MiρAM
†
i , (16)

with the normalisation relationship∑
i

M †iMi = 1. (17)

A simple example is the one of a unitary evolution U . In this case, a single Kraus
operator M0 = U is enough. Note that the assumption that system and environment
are initially in a separable state does not imply that they cannot be correlated due to
prior interaction. This model just does not account for the pre-existing entanglement
and the environment needs to be first traced out. In practice, the system is supposed
not to interact with a part of the environment to which it is already entangled. Thus,
we need the entanglement with the system to be either diluted in a large number of
degrees of freedom, or that the modes entangled with the system do not interact any-
more: these two possibilities are formally equivalent [11].

This decomposition is very convenient for calculations and will be used to derive
a master equation. To get some physical insight and to introduce a method used in
Sec. 4.1.2, let us present a last description of quantum operations and show its equiv-
alence with the Kraus operators. The idea is that a quantum operation can always
be modeled as a generalized measurement that is a unitary evolution of the system A
coupled to an auxiliary system B, followed by a projective measurement of B. Indeed,
starting from the decomposition of Eq. (16), one can introduce a sufficiently large aux-
iliary system B and associate to eachMi a base state |φBi 〉 of B3. B is initially supposed

2 Nielsen and Chuang give a less strict property 0 ≤ Tr[L[ρ]] ≤ 1 to allow the trace of ρ to encode the
probability that a series of quantum operations occur. Those will be described in chapter 3. For now
we suppose that no information is extracted from the system.

3 this system can be the physical environment of the qubit or a fictitious auxiliary system used for
calculations
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to be in a pure state |ψB0 〉. Then, the operator defined on HA ⊗Vect(|ψB0 〉), for any
vector |ψA〉 of HA, by

U : |ψA〉 ⊗ |ψB0 〉 7→
∑
i

Mi|ψA〉 ⊗ |φBi 〉 (18)

can be extended into a unitary operator over HA ⊗HB thanks to the normalization
relation on {Mi}. The action of this unitary evolution on a density matrix ρA, followed
by an unread projective measurement on the basis {|φBi 〉} of B then has the same effect
as the operator L of Eq. (16). Indeed, if the measurement outcome i is known, the state
is projected to the matrix

ρi =
MiρAM

†
i

Tr[MiρAM
†
i ]

, (19)

and the measurement yields this outcome with probability

pi = Tr[MiρAM
†
i ] (20)

(this result will be used in Sec. 3.1.2). On the other hand, if the measurement result is
unread, one encodes the resulting state as a statistical mix ∑i piρi = L(ρA). This re-
sult is quite remarkable since it shows that any physical evolution of a system initially
separated from its environment can be understood as a unitary evolution followed by
a measurement of one of the environment observables.

Note that it is actually this unread measurement that can imply a change in the
system entropy. This description also explains the theorem mentioned in Sec. 2.1.2:
starting from 2 initial states ρA and σA, the unitary operator U preserves the relative
entropy so that the potentially entangled states ρAB and σAB resulting from this
evolution verify

S(ρAB || σAB) = S(ρA ⊗ |ψB〉〈ψB| || σA ⊗ |ψB〉〈ψB|) = S(ρA || σA). (21)

On the other hand, the unread measurement, mathematically realized by tracing out
the auxiliary system B, can only decrease the relative entropy. We then get

S(L[ρA] || L[σA]) = S(TrB [ρAB ] || TrB [σAB ]) ≤ S(ρA || σA). (22)

A physical evolution can therefore only decrease the relative entropy of 2 states.

2.1.3.2 Continuous time evolution

Up to now, we have considered a measurement occurring abruptly. What if we can
track the measurement in time? We will apply the previous results to the evolution
of a qubit between time t and t+ dt, where dt is a short time-step compared to the
typical time T on which its state evolves (due to intrinsic hamiltonian evolution or to
the interaction with its environment). In order for the above assumptions to be verified,
we will restrict our model to Markovian environments. This essentially means that the
part of the environment that interacts with the system does not have any memory
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after a typical time τc, which is much shorter than the time step dt. It implies that
one cannot take the limit dt → 0 rigorously, but instead will have to settle with the
hierarchy τc � dt � T . This is called a coarse-grained description. In the Heisenberg
picture, the Markovian hypothesis reads that, for any observable A appearing in the
interaction hamiltonian, in the absence of interaction,

Tr[ρEA(t)A(t+ τ )] ' 0, (23)

for τ > τc.

Then, considering the evolution of the qubit state during a time interval dt, we
consider that the interaction with the environment is first turned off during τc. This
does not affect the evolution since τc � T , and it gives time for the environment to
get back to its steady state and trace out any entanglement. Then, during dt− τc ' dt,
the map ρ(t) 7→ ρ(t+ dt) can be written

ρ(t+ dt) =
3∑
i=0

Miρ(t)M
†
i . (24)

Note that we restrict the number of Kraus operators to 4 which is universal for a qubit
evolution. The Mi’s do not depend on t since the environment is in a steady state.
Moreover, since ρ(t+ dt) = ρ(t) +O(dt), we can choose M0 of the order of unity[53],
and separating the hermitian and anti-hermitian parts of the first-order term (resp. H
and J), we write it as

M0 = 1− iH
h̄

dt− Jdt+O(dt2), (25)

and the other terms appearing in (24) are of order dt so that we can write the other
Kraus operators

Mi =
√

dtLi, (26)

where the Li’s are of order unity. Then, the normalization relation (17) gives J =

1
2

3∑
i=1

L†iLi, and we get the Lindblad form of the master equation [54]

dρ(t)
dt = − i

h̄
[H, ρ] +

3∑
i=1
D[Li]ρ, (27)

where we have defined the Lindblad superoperator D[L] acting on a matrix ρ as

D[L]ρ = LρL† − 1
2L
†Lρ− 1

2ρL
†L. (28)

In this equation, H can be identified to the hamiltonian of the qubit which is dressed
by its coupling to the environment. In particular, it accounts for the Lamb shift of
energy levels when the environment is an electromagnetic mode. Finally, we choose
"arbitrarily" a particular set of Li’s so that each term might be easily interpreted:

• L1 =
√

Γ↓σ− =
√

Γ↓ |g〉〈e| for relaxation
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• L2 =
√

Γ↑σ+ =
√

Γ↑|e〉〈g| for excitation

• L3 =
√

Γφ/2 σz for pure dephasing.

The master equation then reads

dρ(t)
dt = − i

h̄
[H, ρ] + Γ↓D[σ−]ρ+ Γ↑D[σ+]ρ+

Γφ
2 D[σz ]ρ. (29)

We can already identify the characteristic timescales of the qubit.

• T1 = 1
Γ↓+Γ↑

is the typical time for energy decay.

• T2 = 1
Γ↓+Γ↑

2 +Γφ
is the typical time for coherence decay.

In order to discuss these rates further, one needs to be more specific and describe
the physical implementation of the qubit.

2.2 3d transmon

The system that is used for the experiments described throughout this thesis follows
the design of the 3D transmon [13]. A single Josephson junction is shunted by a large
capacitance and is coupled to the lowest resonant electromagnetic mode of a high Q
cavity made out of bulk aluminum or copper, cooled down at 20 mK.

2.2.1 Resonant cavity and LC resonator

The field of cavity quantum electrodynamics (CQED) studies the interaction of a light
mode confined between two highly reflective mirrors (Faby-Perot cavity) with an atom
or other particles. Electromagnetic confinement allows for an enhanced coupling to
the particle of interest and has led to ground-breaking experiments [51, 55, 56] that
implement the thought experiments of the quantum physics pioneers. Fully quantum
behaviors that were thought unreachable and entailing "ridiculous consequences" by Er-
win Schrödinger have been observed. With superconducting circuits, strong coupling
of a qubit to a microwave mode confined on chip was achieved in 2004 by Wallraff et
al. [57], and many experiments have since succeeded in reproducing, and sometimes
going beyond, CQED achievements [58, 59, 60, 61, 10]. In our experiments, even if we
use superconducting circuits on chip to implement artificial atoms, the cavity design
is similar to CQED setup.
A parallelepipedic cavity is machined out of bulk aluminum as can be seen on Fig. 8a.
Its lowest resonant modes are transverse electric (TE) and characterized by 3 integers
{nx,ny,nz} such that the wave vectors are (on a basis defined by the orientation of
the walls): ~k = nx

π
lx
~ex + ny

π
ly
~ey + nz

π
lz
~ez, where lx,y,z are the 3 dimensions of the

cavity. Maxwell’s laws impose that one of the ni’s is zero and the direction of the
electric field is along the corresponding axis. We chose the dimensions of the cavity
to be (26.5× 26.5× 9.6) mm3 so that the first resonant mode is TE110, resonating at
f = c

2π

√
k2
x + k2

y ' 8 GHz. Distribution of the electric field can be simulated using full
3D electromagnetic simulations and is represented on Fig. 8b. Its maximum amplitude
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is at the centre of the cavity.

a) b) c)

Figure 8: a) Picture of the two blocks of aluminum from which the cavity is machined out.
When pressed together, they form a cavity whose first mode resonates at 8 GHz.
b) Calculated distribution of the electric field of mode TE110 using full 3D electro-
magnetic simulation of the cavity. Electric field direction is represented by the arrow
direction, amplitude encoded in color (from strong to weak: red to blue). c) LC res-
onator equivalent of a cavity mode. Φ is the magnetic flux threading the coil and Q
is the charge on the capacitance electrode.

In order to quantize this mode, one can write down the electromagnetic lagrangian

L =
∫
V

ε0
2 E

2 − 1
2µ0

B2d−→r 3, (30)

and decompose −→E and −→B over the basis of the TE modes. We then get the Lagrangian
of N uncoupled harmonic oscillators, N being the number of resonant modes of the
cavity (N → ∞ for a full description [62]). The dynamics of these modes is thus the
same as the one of LC resonators and we will model them so. This apparently formal
identification has in fact a physical significance since the upper and lower walls of the
cavity which are orthogonal to −→E play the role of a charged capacitor, and current
flows in the vertical walls as in an inductor.

In order to quantize the LC circuit depicted on Fig. 8c , one has to introduce the
flux Φ and charge Q defined by Φ =

∫ t
−∞ U (t

′)dt′

Q =
∫ t
−∞ I(t

′)dt′
. (31)

Then, the Lagrangian for this LC circuits reads

L =
Q2

2C −
Φ2

2L , (32)

and the Kirchoff laws and constitutive relations of the elements imply that
∂L
∂Q̇

= −LI = Φ

∂L
∂Φ̇

= CU = Q
(33)

so that Φ and Q are the two canonically conjugated variables for the system quantiza-
tion. We can then promote them to quantum observables verifying the commutation
relation [63, 64, 65]

[Φ,Q] = i h̄. (34)
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Note that this commutation relation in fact holds for any element and does not depend
on the particular circuit under study: it can be directly derived from microscopic
commutation relations of −→E and −→B in quantum electrodynamics[66]. The hamiltonian
of the LC circuit is

H = Φ̇Q−L =
Q2

2C +
Φ2

2L . (35)

Following the classical method for the second quantization of an harmonic oscillator,
we introduce the annihilation operator defined as

a =

√
1

2 h̄Zr
Φ + i

√
Zr
2 h̄Q, (36)

where we note Zr =
√
L/C the characteristic impedance of the resonator. We also

drop the hat notation for operators as it can be implicitly understood from now on.
From Eq. (34), we get the commutation relation with the creation operator a†

[a, a†] = 1. (37)

Then we can write the hamiltonian of the mode in a canonic way as

H0 = h̄ωr(a
†a+

1
2 ). (38)

Here, ωr = 1/
√
LC ' 2π × 8 GHz is the resonance pulsation of the mode and n =

a†a is the number of energy quanta in the mode. Note that in order to witness non-
classical behavior, the typical energy associated to the temperature of the cavity needs
to be much smaller than the energy of a photon: kBT � h̄ωR so that T � 400 mK.
Thus, the quantum properties of microwave modes are hidden at room temperature
in contrast with electromagnetic modes in the optical domain. This temperature is
routinely reached in properly equipped dilution refrigerators (see A.2). Besides, at this
temperature, typical energies are well below the gap of superconducting aluminum
(' 1.2 K) so that losses inside the aluminum cavity are considerably lowered and the
Josephson effect provides us with the non linear and non dissipative element at the
base of our quantum circuit (see Sec. 2.2.3).
However, in the model presented above, we neglected the spurious internal losses of
the cavity and the coupling to the outside world. We will see in the next section that
these two phenomena can be simply modeled in the same way.

2.2.2 3D cavity coupled to transmission lines

2.2.2.1 Lossy resonators

In practice, the cavities are intrinsically lossy due to finite conductivity for copper
cavities and impurities on the surface or quasi-particules for aluminum ones. To model
these internal losses, we add in parallel to the LC model a resistor R. Resistors are not as
simple to model in quantum mechanics as inductors or capacitors. Indeed, we cannot
write down a hamiltonian since its dynamics is not reversible and it is intrinsically
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b)

a)

Figure 9: a) To include the losses inside the cavity in our model, we add a resistor R to
the resonator. This resistor can be modeled as a semi-infinite transmission line of
characteristic impedance Z0 = R. b) Telegraph model for a transmission line of
characteristic impedance Z0 =

√
l
c . l is the inductance per unit length and c the

capacitance to the ground per unit length.

an open-system since it dissipates energy. However, such an element of purely real
impedance is in fact equivalent to a lossless semi-infinite transmission line, that is an
infinite collection of purely reactive elements. To show this, we consider the telegraph
model of a transmission line (e.g. a coaxial cable) as depicted on Fig. 9b. It has an
inductance per unit length l and a capacitance to the ground per unit length c. We
model it by a periodic pattern of period δx. Then we have the recursive relation between
the impedance of a length nδx and (n+ 1)δx

Zn+1(ω) = [(Zn(ω) + iωl
δx

2 ) || 1
iωcδx

] + iωl
δx

2 . (39)

This directly leads, for an infinite and continuous line, to

Z0 = lim
δx→0
n→∞

[Zn] =

√
l

c
. (40)

Here, the resistor R is galvanically coupled to the LC resonator. Therefore, it is mod-
eled by a galvanically coupled semi-infinite line of characteristic impedance Z0 = R.

In fact, this basic RLC model can also represent a capacitively coupled line such as
the ones we use to probe our system (Fig. 10a). Noting Zc the characteristic impedance
of the line, if the coupling capacitance Cκ is much smaller than 1/Zcωr, we show in
appendix B.1 that, as seen from the cavity, the circuit is equivalent to a galvanically
coupled line of characteristic impedance Z0 with

Z0 =
1

C2
κω

2
rZc
� Zc. (41)

Thus, a capacitive coupling to a transmission line is equivalent to a galvanic coupling
to a high impedance line4.

4 The cavity mode capacitance is slightly renormalized by the coupling capacitance.
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2.2.2.2 Master equation for a cavity mode

A coupled semi-infinite line induces a non-unitary evolution for the intra-cavity field.
These dynamics can be taken into account by a Lindblad master equation. For a zero
temperature line, it reads [24]

dρ(t)
dt = − i

h̄
[H, ρ] + κD[a]ρ, (42)

where

κ = ωr
Zr
Z0

(43)

is the photon exit rate. Note that when the coupling capacitance Cκ to the transmission
line decreases, the impedance mismatch between the resonator and its environment in-
creases so that the damping rate κ is reduced.

In Eq. (42), we suppose that the environment is Markovian. In appendix B.2, we
show that this imposes to choose a coarse time step dt that respects the hierarchy

1
ωr
� dt� 1

κ
. (44)

In this formalism, a coherent drive through one of the lines can be taken into account
by adding up to the hamiltonian of the cavity a drive term [67]

Hd = h̄(εde
−iωdta† + ε∗de

+iωdta), (45)

where the displacement rate εd is proportional to the drive amplitude, so that H =

H0 +Hd.

In appendix B.2, we show the Heisenberg picture counterpart of the master equa-
tion (42) for the field amplitude,

∂ta =
1
i h̄

[a,H0]−
κ

2a+
√
κain, (46)

which is the quantum Langevin equation. We also define the incoming and outgoing
mode operators and show that ain5 and aout are linked by the input/output relation

√
κa = ain + aout. (47)

2.2.2.3 Choosing the coupling to the lines

Using the quantum Langevin equation, we show in this section how to infer the cou-
pling rates through the ports of the cavity from its scattering properties.

In our devices, 2 tunnels are drilled through the upper wall of the cavity and two
standard SMA connectors whose pins go through these tunnels are mounted on the

5 Equivalence with the Schrödinger picture is made by setting εde−iωdt = i
√
κ〈ain〉 in Eq. (45).
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b)a)

Pin penetrates
inside cavity

Pin stays inside
the tunnel

c) d)

SMA connectors

pin sapphire chip

indium seal

Figure 10: a) Picture of the 2 halves of the cavity and SMA connectors. A transmon qubit is
fabricated on the sapphire chip. An indium thread is used to seal the two halves.
b) Cavity with 2 connectors before closure. c) Measured (blue) and simulated (red)
coupling rates through a port as a function of the pin length inside the cavity.
d) Transmission measurement (blue dots) on the aluminum cavity at fridge base
temperature (20 mK). Coupling through the ports was calibrated at room temper-
ature. Red line: fit with internal losses rate κL = 2.6 kHz. Internal quality factor is
Q = fr/κL ' 2.5× 106

.

cavity (see Fig. 10a). These pins interact capacitively with the cavity modes. Connect-
ing a coaxial line on these connectors, we get the situation described in Appendix B.2.
Moreover, by changing the length of the pins so that their tip stays in the tunnel or
dips inside the cavity, one can modulate the coupling rates κ1 and κ2 between the cav-
ity and lines 1 and 2 over more than 8 orders of magnitude (see Fig. 10c). The internal
losses can be seen as a virtual third line that cannot be monitored with a coupling rate
κL. With this 3-port situation, the Langevin equation becomes

∂ta =
1
i h̄

[a,H0]−
κ1 + κ2 + κL

2 a+
√
κ1ain,1 +

√
κ1ain,2 +

√
κ1ain,L, (48)

with the input/output relations
√
κia = ain,i + aout,i (i = 1, 2,L). (49)

When driving the harmonic cavity mode with a classical source at zero temperature,
the intra cavity field is a coherent state |α〉6. If we drive only through port 1 at an

6 On the Fock state basis, it reads |α〉 = e−
|α|2

2
+∞∑
n=0

αn√
n!
|n〉
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amplitude αin,1while line 2 and the cavity dissipative part are at zero temperature, the
equation for the now classical fields becomes

α̇(t) = −iωrα(t)−
κ1 + κ2 + κL

2 α(t) +
√
κ1αin,1(t), (50)

which reads in the spectral domain

α(ω) =
2√κ1

κ1 + κ2 + κL − 2i(ω− ωr)
αin,1(ω). (51)

Using the input/output relations, we get the scattering coefficients of our cavity
S11(ω)

def
=

αout,1
αin,1

=
κ1 − κ2 − κL + 2i(ω− ωr)
κ1 + κ2 + κL − 2i(ω− ωr)

(reflection)

S21(ω)
def
=

αout,2
αin,1

=
2√κ1κ2

κ1 + κ2 + κL − 2i(ω− ωr)
(transmission)

. (52)

We can characterize precisely the coupling strengths through the ports and the
internal losses of the cavity by measuring the reflection coefficients on the ports 1
and 2 and the transmission coefficient from 1 to 2 as a function of ω. The internal
quality factors of our cavity have been measured to be Q ∼ 2.5× 106 for aluminum
and Q ∼ 40000 for the copper at 20 mK and |α| ∼ 1.

2.2.3 Transmon qubit in 3D cavity

2.2.3.1 Transmon regime

The transmon is made of a single Al/Al2O3/Al Josephson Junction (JJ) connected to
2 antennas. This circuit is fabricated through standard e-beam lithography techniques
(see Sec. A.1) on a sapphire chip. The device is then enclosed in the 3D cavity (see
Fig. 10a).

A tunnel junction between two superconducting electrodes at zero temperature has
a single collective degree of freedom, which is the superconducting phase difference ϕ
across the junction. It is linked to its electromagnetic phase ΦJ by

ϕ =
ΦJ

ϕ0
mod 2π, (53)

where ϕ0 = h̄
2e is the reduced flux quantum.

In practice, the electrodes have a finite capacitance C (see Fig. 11a). The corresponding
charge energy Ec = e2

2C corresponds to 1 excess charge on one of the electrodes. Then,
taking into account this shunting capacitance, the JJ forms a non-linear resonator
that can store energy. Noting n the number of excess Cooper pairs (Q = 2en for the
corresponding circuit node), its hamiltonian reads

H = 4EC(n− ng)2 −EJ cosϕ. (54)

In this expression,
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• from the commutation relation [Φ,Q] = i h̄, one gets the conjugation relation
[n, exp iϕ] = exp iϕ7.

• noting {|n〉,n ∈ Z} the charge states of the JJ, we have

−EJ cosϕ = −EJ2 (eiϕ + e−iϕ) = −EJ2
∑
n

(|n+ 1〉〈n|+ |n〉〈n+ 1|), (55)

so that EJ
2 can be interpreted as the energy associated with the tunneling of a

Cooper pair.

• the value of EJ depends on the geometry of the junction and on the thickness of
the insulating barrier. Both parameters can be be adjusted during fabrication.

• ng is an offset in the number of Cooper pairs due to the uncontrolled electrostatic
environment of the junction (e.g. trapped charges in the substrate) that tends to
attract charges on one of the electrodes.

The hamiltonian (54) is often referred to as the Cooper-Pair Box hamiltonian. It is
exactly solvable in terms of Mathieu functions [68]. The energy levels depend on the
charge offset ng so that charge offset fluctuations induce decoherence. However, the sen-
sitivity of energy levels on ng decreases exponentially with EJ

EC
. For EJ

EC
∼ 80, we reach

the transmon regime [12, 69, 70], in which this dispersion with ng becomes negligible.
In our geometry, EC can be increased independently of EJ by increasing the size of the
antennas that form a large capacitance shunting the junction. As depicted on Fig. 11c,
this shunting capacitance simply renormalizes the junction intrinsic capacitance and
lowers the charging energy. Moreover, in this regime, eigenstates will be quite close to
phase states. In other words, the charge Q is uncertain, whereas Φ is well defined, in
agreement with the Heisenberg uncertainty principle.

We can then represent the energy levels of the circuit in a cosine potential (Fig. 11b)
as a function of ΦJ . At low temperature (kBT � h̄ωeg), its state is bounded at the
bottom of a well. It can therefore be understood as an anharmonic oscillator whose
magnetic term reads

H = EJ
Φ2

2ϕ2
0
+H1. (56)

The first term correspond to the energy stored in an inductor LJ = ϕ2
0/EJ and,

developing up to the fourth order in Φ/ϕ0,

H1 = −EJ24
Φ4

ϕ4
0

(57)

is a purely non linear perturbation. We represent it as a spider element [71] in the
circuit of Fig. 11b. Due to this term, the levels of the oscillator are not evenly spaced
(Fig. 11c) so that we can address specifically the transition between ground |g〉 and
first excited |e〉 states. These will be the 2 states of our qubit.

7 In the case of the transmon, the variable ϕ is strictly speaking compact. ϕ and ϕ+ 2π are the same
physical state and equivalently, n is a well-defined integer. Therefore, there is no operator φ and only
periodic operators such as exp iϕ or cosϕ exist.
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b)

c)a)

Figure 11: a) E-beam microscope image of a Josephson junction fabricated on a sapphire chip.
It links 2 aluminum antennas (each ∼ 1.5× 0.05 mm on this sample) also on chip,
and colored in red on the picture. The sapphire substrate is pinched between the
two cavity halves. b) Representation of the cavity mode (to the left) and trans-
mon (to the right) energy levels in their electromagnetic phase potentials. Cavity
levels, in a parabolic potential, are evenly spaced, in contrast with transmon levels
in a cosine potential. The first transmon transition can be addressed selectively. c)
Josephson junction circuit element in parallel with a large shunting capacitance C
that limits sensitivity to charge fluctuations. The small intrinsic Josephson capac-
itance (CJ ∼ 1fF) only slightly contributes to this capacitance. In the transmon
regime, the junction can be seen as an inductor LJ = ϕ2

0/EJ in parallel with a
purely non linear element ("spider" symbol) that will lead to the perturbation H1
in its hamiltonian.

a)

b)

Figure 12: a) Schematic representation of the capacitive interactions created by the antennas
with a single cavity mode. The coupling capacitances Ca, Cb and the cavity capaci-
tance Cr depend on the cavity mode under consideration. On the electrical circuit,
only one mode of the cavity is represented. b) Foster equivalent circuit seen by the
non-linear element, taking into account N cavity modes.

The antennas play another crucial role in the setup, which is capacitively coupling
the JJ to the cavity modes. A simplified representation of the capacitive network in-
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side the cavity is represented on Fig. 12a. It only takes into account a single mode of
the cavity. However, the same pattern applies for the coupling of the JJ mode to any
cavity mode: the interaction is that of a dipole in the sense that the direct coupling
capacitance Ca from an antenna to the closest cavity wall is shunted by Cb, the one
of the other antenna to same wall. Thus, the effective coupling capacitance between
the junction and a given mode (∼ Ca−Cb

2 ' 1 fF) remains in practice more than an
order of magnitude lower than the one of the coupled modes (respectively ∼ Cab and
Cr, which are both of about 100 fF).
Note that in the limit of a small gap between the antennas compared to their length,
the gap size has a very small impact on these capacitances. Similarly, the sapphire
substrate, which has a dielectric constant εr ' 10, only slightly increases the capaci-
tances because of its small thickness compared to the cavity size. A full analysis of this
network could lead us to the full hamiltonian of the system.

Though this analysis can give some physical insight on the system’s properties (see
Sec. 2.2.3.3), it becomes very complex as one wants to include the effect of higher
cavity modes, and it needs to account for the distortion of these modes due to the
presence of the antennas. Moreover, the intrinsic quantities on which it will depend
are not directly measurable in our system. We will rather derive the hamiltonian of
the system following a Black-Box Quantization method[62, 72, 73].

2.2.3.2 Circuit Black Box Quantization

The general principle of the BBQ method is the following. In the transmon regime, the
JJ is decomposed as an inductor in parallel with a purely non linear "spider" element.
This element will be treated perturbatively. The rest of the circuit, which is made
of the linear part of the junction with its shunting capacitance and N modes of the
cavity, can be decomposed as N+1 LC resonators in series (Fig. 12b). This so-called
Foster decomposition is equivalent to diagonalizing the N+1 coupled modes into N+1
hybrid but decoupled modes. First neglecting the losses represented by the Rp’s, the
hamiltonian of this system reads

Hlin =
N+1∑
p=1

h̄ωp(a
†
pap + 1/2), (58)

ωp = 1√
LpCp

being the resonant pulsation of mode p, Zp =
√

Lp
Cp

its characteris-

tic impedance and ap =
√

1
2 h̄ZpΦp + i

√
Zp
2 h̄Qp the corresponding annihilation opera-

tor. The eigenstates are definite numbers of excitations for each of these oscillators
|n1,n2, ...nN+1〉. From Kirchoff laws, we find the following relation for the flux at the
poles of the spider element,

Φ =
N+1∑
p=1

Φp. (59)

We can now treat the leading order hamiltonian H1 Eq. (57) of the spider element
as first order perturbation, assuming non-degenerate modes. Then, expanding it using

30



Eq. (59) and keeping only the terms that conserve the number of excitations in each
mode and using the commutation relation [ap, a†p] = 1, it reads

H1 =
∑
p

∆pnp +
1
2
∑
p,p′

χpp′npnp′ , (60)

np = a†pap being the excitation number operator of mode p. Here, ∆p = − e2

2LJ [Zp
∑
p′ Zp′−

Z2
p

2 ] is a slight correction to the frequencies of the oscillators and χpp = −Lp
LJ

C||
Cp
EC|| the anharmonicity (self-Kerr) of mode p

χpp′ = 2√χppχp′p′ the pull (cross-Kerr) between modes p and p’
. (61)

where C|| = Cab + CJ is the capacitance shunting the junction8. Thus, all the oscil-
lators being hybridized, they inherit some anharmonicity from the junction and the
number of excitations in an oscillator shifts the resonant frequency of the others. This
last behavior enables to readout non destructively the state of the qubit (see Sec. 3.2.3)
or conversely to measure the number of photons in a cavity mode (see Sec. 7.2.1).

However, in a regime in which the coupling between the physical modes is small and
the detuning important, which is the case in practice, one particular mode (that we
label q) has a much higher anharmonicity than the others: χqq � χp′p′ for p′ 6= q. It
can be interpreted as the mode of the junction (and its capacitance) dressed by the
cavity modes.

In order to connect with the notations used in the following section, let us note that
this much larger anharmonicity for the qubit mode implies that ∀p′ 6= q,

Lp′

Cp′
� Lq

Cq
(62)

Thus, the impedances Zp of the dressed cavity modes seen by the junction are much
greater than the ones of the original bare modes which are only weakly coupled with
the junction through small capacitances. Then, considering the low and high frequency
limit of the circuit on Fig. 12b, we find that

∑
p
Lp = LJ (from the low frequency limit)∑

p
C−1
p = C−1

Σ (from the high frequency limit)
, (63)

where CΣ is the total capacitance in parallel with the junction9. It follows that the qubit
resonator inductance reads, to the first order, Lq ' LJ and its capacitance Cq ' CΣ.
Letting EC = e2

2CΣ
the corresponding charging energy, the qubit mode parameters are fq = 1

h

√
8EJEC (resonance frequency)

α = EC (anharmonicity)
. (64)

8 this convention is not the one used in [62], but C ×EC does not depend on C
9 CΣ = C|| +Cc in the following section
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Dissipation or leakage through external ports can now be modeled by resistors Rp
on each of these modes. Note that a more general model for losses goes beyond the
Foster decomposition[73]. These resistors induce non coherent decay of each mode, so
that we get the Lindblad master equation for the whole system

dρ(t)
dt = − i

h̄
[H0 +H1, ρ] +

N+1∑
p=1

κpD[ap]ρ, (65)

with κp = ωp
Zp
Rp

(see Eq. (43)). Note that even in absence of internal dissipation in-
side the junction, it inherits some dissipative part due to the hybridization to cavity
modes10. This relaxation of the "cavity part" of the qubit into the probe lines is known
as the Purcell effect [15, 16, 17].

This very general description led us to a simple master equation. If one includes
higher order terms in H1, it can account for more subtle non-linear effects such as
cross-Kerr shifts in the straddling regime[12, 74, 75]. All the terms of the equation can
be measured independently. We will now see how this model can be used to predict
the characteristic values of a system according to its geometry, and compare it to a
less refined but more intuitive 2-mode model.

2.2.3.3 Designing the experiment: BBQ VS two-mode model

Now that the form of the master equation has been established, we want to connect
the physical parameters of the experiment (dimensions of the cavity, length of the
antennas, inductance of the JJ...) to the effective parameters of this equation (ωp,
κp...). One of the main advantages of using 3D cavities in circuit-QED experiments
is that the electromagnetic environment of the Josephson junction is well controlled
and can be simulated exactly by performing full 3D electromagnetic simulations using
finite elements methods (see Sec. A.3). Thus, inputing the above physical parameters
in the model and replacing the JJ by a port with an attached lumped inductor, one can
simulate the response of the linear part of the system to an excitation at any frequency
ω. Then, the resonance frequencies can be identified and it comes directly [62] from
the decomposition depicted in Fig. 12b that11

Rp =
1

Re[Y (ωp)]

Cp = 1
2 Im[Y ′(ωp)]

. (66)

This can in principle determine the full behavior of the system for a given set of
parameters. We then tune the physical parameters of the system to get the desired
effective parameters in the master equation. However, dissipation being very small,
the response of the system is nearly divergent at resonances and the measurement of

10 Here, non radiative decay, thermal excitation and pure dephasing of the qubit are not taken into
account.

11 valid for small dissipation, that is Rp � Zp, which is the case for our experiments
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Rp → ∞ gets imprecise for reasonable simulation times. Moreover, it is difficult with
this black-box method to know on which physical parameter to act in order to get to
the desired effective parameters.

a) b) Transmon TLS

Figure 13: a) Equivalent circuit for a junction mode coupled to a single mode of the cavity.
Fluxes and charges on the nodes are conjugated [Φi,Qi] = i h̄ for i = 1, 2. b) Com-
bined energy level diagram for the two coupled modes. Cavity levels are noted with
numbers (0,1,2,...), transmon levels with letters (g,e,...). The cavity pull χ can be
understood as repulsion (double head brown arrows) between levels: original cou-
pled levels (black lines) become hybrid ones (dotted lines). If ωr > ωq, hybridization
increases cavity resonant frequency ωr > ωbare. Cavity pull is reduced for trans-
mon compared to a two-level system (Jaynes-Cummings hamiltonian) due to higher
levels.

To enable an analytic approach, we limit ourselves to the first resonant mode of
the cavity. This is particularly relevant in the experiments described throughout this
thesis since the qubits considered are chosen to resonate at fq ∼ 4− 6 GHz which is
below the first cavity mode TE110 at fr ∼ 8 GHz. The electrical field direction for
this mode is along the antenna axis and maximum amplitude of the field occurs at
the centre of the cavity where the qubit is located. The qubit is therefore much better
coupled to this mode than to the next excited modes TE210, TE120, TE011 or TE101
at f ∼ 12− 15 GHz that have either a node at the centre of the cavity or an orthogo-
nal electric field [76]. Thus the next coupled modes are far detuned and hybridize only
marginally with the qubit mode.

With only one cavity mode only, the equivalent circuit is depicted on Fig. 13, where
the effective capacitances are Cc = Ca−Cb

2 and C|| =
Ca+Cb

2 + Cab (in reference to
Fig. 12c). It is then possible to calculate analytically the transmon energy levels. A
detailed calculation by Kurtis Geerlings, based on prior study by Shyam Shankar and
Michel Devoret, can be found in Sec.2.2.1 of [77]. Here, we outline briefly the used
method and give its main results.
The hamiltonian of the circuit reads

H =
Φ2

2
2Lr

+
Q2
r

2Cr
−EJcosΦ1

ϕ0
+

Q2
||

2C||
+

Q2
c

2Cc
, (67)
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where Qr (resp. Qc, Q||) is the charge on a plate of the capacitor Cr (resp. Cc, C||),
linked to the canonically conjugated nodes variables Φ1,2 and Q1,2 by Q1 = Q|| −Qc

Q2 = Qr +Qc
. (68)

Introducing the corresponding annihilation operators a1 and a2
12 and assuming the

transmon regime e2

2(C||+Cc)
= EC � EJ and in the rotating wave approximation, the

hamiltonian transforms into

H = h̄ω2(a
†
2a2 + 1/2) + h̄ω1(a

†
1a1 + 1/2) + h̄g(a†2a1 + a2a

†
1)−

Ec
12 (a1 + a†1)

4, (70)

with, in the limit Cr � Cc,

ω2 =
1√
LrCr

ω1 =
√

8EJEC/ h̄

g =
Cc

2
√
Cr(C|| +Cc)

√
ω1ω2

. (71)

We recognize the hamiltonian of two coupled oscillators, one being anharmonic. We
can then define 2 uncoupled but hybridized oscillators a and b. In the experiment, the
detuning ∆ = ωr − ωq is much larger than g, which is called the dispersive regime. In
this regime, oscillator a is a cavity-like mode dressed by a small qubit part, and b a
qubit-like mode dressed by the cavity. The hybrid annihilation operators read a ' −a2 +

g
∆a1

b ' g
∆a2 + a1

. (72)

These operators obey canonical commutation relations up to the first order in g
∆ . The

corresponding resonance frequencies ωr and ωq are slightly renormalized compared to
the bare resonance frequencies ω2 and ω1 as ωr ' ω2 +

g2

∆

ωq ' ω1 − g2

∆

. (73)

Note that experimentally, we only have access to these resonance frequencies. They
correspond to the ωp’s of the BBQ Foster decomposition.

12 
a2 =

√
1

2 h̄

√
Cr
Lr

Φ2 + i

√
1

2 h̄

√
Lr
Cr

Q2 cavity mode

a1 =

√
1

2 h̄

√
Cc +C||
LJ

Φ1 + i

√
1

2 h̄

√
LJ

Cc +C||
Q1 junction mode

(69)
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Now treating the non-linear term −Ec
12 (a1 + a†1)

4 as a perturbation, one finds a
hamiltonian of the same form as H(58)

lin +H
(60)
1 with13

 −α
def
= χqq = − 1

h̄EC

−χ def
= χrq = −2α g2

∆2

. (74)

Another effect of this hybridization is that the drive hamiltonian (45) splits into two
parts:

Hd = − h̄(εde−iωdta† + ε∗de
+iωdta) + h̄

g

∆
(εde

−iωdtb† + ε∗de
+iωdtb), (75)

so that both cavity and qubit can be driven through the cavity ports. Moreover, adding
up a resistor in parallel to the cavity LC resonator to take into account the losses into
the lines, one gets,

γ1,Purcell ' κ
g2

∆2 , (76)

where γ1,Purcell and κ are respectively the decay rates of qubit and of the cavity associ-
ated with photon leakage out of the cavity 14. With this simple formula and Eq. (74),
one can compute the expected bound on T1 due to the Purcell effect by measuring
χ, α and κ on the system. It has been shown however to be inaccurate. Indeed, qubit
decay time measured to exceed 1/γ1,Purcell computed with this simple model have been
reported in [77], and have also been observed with the qubits used in this thesis (see
Sec.A.1). A more rigorous approach consists in characterizing the qubit electromagnetic
environment with simulations (see Sec. A.3) and using [78]

γ1,Purcell =
Re[Y [ωq]]

C|| +Cc
, (77)

which generalizes Eq. (43).

This analytical treatment gives us some insight on the constraints and choosable
parameters of our system.

• In order to remain in the transmon regime, we impose EC ≤ 50EJ .

• We want thermal excitation to remain as low as possible at refrigerator base
temperature. We thus need that hfq � kBT , so that 1

h

√
8EJEC ≥ 4 GHz.

• To remain in the situation described above of a qubit coupled to a single cavity
mode, we want the qubit to resonate at lower frequency than the cavity first
mode. The coupling strength being set (see below), we need a sufficiently large
detuning in order for the interaction to be dispersive. In practice, all the qubits
described in this thesis are designed so that fq ≤ 6 GHz.

13 α and χ are chosen to be positive so that ωef − ωge = −α and ωr,e − ωr,g = −χ with ωr,g and ωr,e
defined in Eq. (81)

14 This can be understood considering that in Eq.(72), g
2

∆2 is the participation ratio of the cavity photon
number (leaking out into the lines with rate κ) in the qubit-like mode excitation.
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• To use the anharmonic oscillator as a qubit, we need to address specifically its
first transition on a time scale much shorter than all decoherence (typically T1,2 ∼
10 µs). This sets a lower bound for the anharmonicity: EC = α ≥ 100 MHz.

These requirements put strong constraints on the choice of EC . Therefore, all the
qubits used in the experiments described in this thesis have an anharmonicity α '
2π× 150− 200 MHz. Resonance frequency is then finely tuned by adjusting EJ through
the size of the Josephson Junction.
This value α = EC much constraints the size of the antennas, which also determines
the coupling capacitances and thus the value of g. However, some margin exists by
tuning the aspect ratio of the antennas. Effectively, the shunting capacitance Cab
(Fig. 12d) depends mostly on the surface of the antennas whereas the coupling ca-
pacitance Cc ∝ Ca − Cb essentially depends on their length. In practice, we used 2
different geometries in the experiments presented here, both leading to the same charg-
ing energy EC mentioned above

• 1.5× 0.05 mm leading to g ∼ 2π× 300 MHz

• 1× 0.4 mm leading to g ∼ 2π× 200 MHz

These orders of magnitude do not take into account a correction in E1/4
J (see Eq. (71)).

The last tunable parameter is the cavity damping rate κ, which is set by the connector
pin length (Fig. 10 a). As we will see in the next chapter, it can be set in order
to optimize the readout efficiency of the qubit. A list of measured qubits and their
properties is presented on Tab.3. We can summarize the choice of parameters and
their physical origin in the following table.

Parameter Value Range Control
EC/h 150-200 MHz Antenna area
EJ/h 10-25 GHz Junction size
fq 4-6 GHz

√
8EJEC/h

fr 7.5 GHz Cavity dimensions
g 200-300 MHz Antennas length
κ 1 kHZ - 10 MHz Connector pin length

A final constraint revealed by this model is the fact that, in order to remain in the
dispersive regime of hamiltonian (70), one needs the detuning ∆ to be much larger than
the Rabi splitting 2g

√
n+ 1, where n+ 1 is the number of photons inside the cavity.

We then find that the photon number should remain much smaller than a critical value
nc in order for the cavity and qubit not to exchange energy. In practice, cavity photons
will be used to readout the qubit state and this readout is non destructive only if

n� nc =
∆2

4g2 . (78)

Within this range of parameters, we now have a system implementing the open two-
level system described in Sec. 2.1. Indeed, probing the transmon only around its first
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transition frequency effectively transforms the anharmonic oscillator into a qubit. We
then get an effective Lindblad master equation for the qubit coupled to a single cavity
mode [79]

dρ(t)
dt = − i

h̄
[H, ρ] + κD[a]ρ+ γ1,PurcellD[σ−]ρ, (79)

with

H = h̄ωra
†a+ h̄

ωq
2 σz − h̄χ2a

†aσz

+ h̄(εce−iωcta† + ε∗ce
+iωcta) + h̄(εde

−iωdtσ+ + ε∗de
+iωdtσ−).

(80)

The frequencies ωr and ωq are slightly modified compared to Eq. (71) since they
are the dressed cavity and qubit frequencies. In the drive part of the hamiltonian, we
distinguished a tone at frequency ωc around ωr and a tone at ωd around ωq. Note that,
according to Eq. (75), for identical drive powers Pdrive referenced at the cavity input
port, εd � εc since εd = g

∆εc ∝
√
Pdrive. Finite anharmonicity of the cavity-like mode

is neglected, but its value can be computed from Eq. (61). Finally, compared to the
exact equation Eq. (65), other cavity modes are traced out. Extra modes result in an
increase of γ1,Purcell and the apparition of dephasing terms in Eq. (80), but this will be
taken into account later on as unmonitored sources of relaxation and decoherence.

2.2.4 AC Stark shift and measurement induced dephasing

In the previous section, we saw that the free evolution of our system entangles the qubit
and cavity modes. Indeed, in the hamiltonian (80), the cross-Kerr term − h̄χ2a†aσz can
be seen as a qubit state dependent shift of the cavity resonance frequency. Thus, ωr → ωr,g

def
= ωr +

χ
2 if qubit state is |g〉

ωr → ωr,e
def
= ωr − χ

2 if qubit state is |e〉
. (81)

If we probe the cavity in transmission with, say, a coherent drive at frequency ωc near
ωr, such as the one in hamiltonian (80), the transmitted field will acquire a phase-shift
dependent on the qubit state (see Eq. (52)). This will provide us with a non destructive
measurement scheme for the σz operator of the qubit [80] as described in 3.2.3. In the
present section, we focus on the back-action of this measurement on the conjugated
operator, which is measurement induced dephasing of the qubit.

Let us first note that the same cross-Kerr term − h̄χ2a†aσz can, alternatively to
Eq. (81), be seen as a cavity photon number dependent shift of the qubit frequency.
When the cavity mode is in Fock state |n〉,

ωq → ωq,n
def
= ωq − nχ. (82)

Driving the cavity with a coherent tone at ωc puts the cavity mode in a coherent state
as well (see Eq. (51)), so that the number of photons is not determined. If we do not
collect and measure the output field from the cavity, the information on the cavity is
dismissed. This procedure is taken into account by tracing out the cavity state. Then,

37



7.746 7.747 7.748 7.749 7.750
0.0

0.5

1.0

1.5

2.0

2.5

3.0

7.746 7.747 7.748 7.749 7.750
0.0

0.5

1.0

1.5

2.0

a) b)

c) d)

Figure 14: Measurement induced dephasing and ac-Stark shift. a) Scheme of the pulse sequence.
The cavity pulse is arbitrarily chosen to have the same duration as the readout pulse
at ωr. The second π/2 pulse at ωq is phase shifted by an angle φ compared to the
initial π/2 pulse. b) Final occupation of the |e〉 state as a function of φ and for several
cavity pulse powers encoded in color according to the color scale at bottom. The
amplitude (resp. phase) of the oscillation is proportional to exp(−ΓdTmeas) (resp.
ωStarkTmeas), where Γd is the average extra dephasing rate (resp. ωStark the average
frequency shift) at that power compared to Pin = 0. c) For values of Pin varying
from 0 to Pin,readout/10, Γd as a function of ωc. Red line: theoretical prediction using
(87) with µ adjusted to µ

2π = 1.25 MHz/
√
Pin,readout. d) Idem for the ac-Stark shift

ωStark.

the qubit frequency becomes a stochastic variable and the qubit state gets dephased.

More quantitatively, starting from Eq. (79), Gambetta et al. have shown [21] how
to derive a qubit master equation of the form (29). In the frame rotating at ωc, the
coherent states |αg(t)〉 (resp. |αe(t)〉) developing in the cavity when the qubit is in |g〉
(resp. |e〉) verify Eq. (50)15

α̇g(t) = i(ωc − ωr − χ
2 )αg(t)−

κ
2αg(t) + εc

α̇e(t) = i(ωc − ωr + χ
2 )αe(t)−

κ
2αe(t) + εc

. (83)

Thus, they find that the effective master equation for the qubit reads [21]

dρ(t)
dt = −i[ωq + ωStark(t)

2 σz, ρ] + γ1,PurcellD[σ−]ρ+ Γd(t)D(t)[σz ]ρ, (84)

15 For the sake of simplicity, compared to the hamiltonian (80), we shifted the drive term by π
2 , that is

εc → iεc with εc ∈ R
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Figure 15: Numerical simulation of the average measurement induced dephasing (to the left)
and AC Stark shift (to the right) for the readout pulse (Pin = Pin,readout) as a
function of the probe frequency. The parameters of the qubit are the one of the
experiment except for χ that is varied from κ/5 to 4κ (encoded in color). In black:
experimental value of χ.

where Γd(t) = χIm[α∗g(t)αe(t)]

ωStark(t) = χRe[α∗g(t)αe(t)]
. (85)

Note that counter-intuitively, when probing the cavity at ωr, the qubit frequency is
increased when driving the cavity near resonance in the regime χ < κ (see Fig. 15).

The measurement induced dephasing and Stark shift can be used to calibrate the
attenuation of the line probing the cavity, that is the factor µ linking the power Pin
at the refrigerator input to the amplitude displacement rate εc for the cavity field:
εc = µ

√
Pin. This method is illustrated in [81] and on Fig. 14 (Qubit 1 in Tab. 3) as

follows. The qubit is first prepared in a state close to 1√
2 (|e〉+ |g〉) by applying a fast

π
2 pulse to rotate the qubit around the y axis of the Bloch sphere. This is done by
driving at ωq with a tone of large amplitude εd ∈ iR during a time t = π

4|εd|). A pulse
of power Pin, frequency ωc and duration Tmeas is then sent to the initially empty cavity.
After waiting long enough so that the cavity goes back to its ground state (in practice,
Twait = 1 µs ' 12/(2πκ)), we measure the coherence of the qubit ρeg. This is done by
reading out the qubit state (see Sec. 3.2.3.1) after a second π

2 pulse of phase φ. When
averaging the result of this readout, and then repeating the experiment for φ ∈ [0, 2π],
the resulting probability as a function of φ is a sinusoid whose amplitude is |ρeg| and
phase is Arg[ρeg] (see Fig. 14b).

It is useful to define a quantity β that scales with |εc|2

β(δ) = χ

∫ ∞
0

α∗g(δ, t)αe(δ, t)/ε20dt for εc(t) = θ(t)θ(1− (t− T ))ε016, (86)

which can be numerically computed knowing χ and κ. Following Eq. (85), one gets

ρeg(δ,Pin) ∝ e−iPin|µ|2Re[β(δ)]e−Pin|µ|2Im[β(δ)]. (87)
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When varying ωc and Pin
17, measured coherences are in good agreement with (87)

and consistent with µ
2π = 1.25 MHz/

√
Pin,readout

18, where Pin,readout is the power of the
tone used for the qubit readout as described in section 3.2.3. This leads to a number of
photons inside the cavity in the stationary regime n = 1.4 photons when the readout
pulse is turned on.

2.2.5 Other decoherence channels and thermal effects

Up to now, we have described relaxation and dephasing mechanisms for the qubit
due to its coupling to the cavity and the transmission lines. We will see in the next
chapter that these channels can be monitored and that we can use the information
from this detection to recover our knowledge about the qubit state, that is purify the
density matrix. In the ideal situation of perfect monitoring, on a single experiment
and starting from a pure state, the qubit remains in a pure state that depends on
the continuous measurement record. However, in practice, the system state is not
perfectly known and has non-zero entropy. This comes from finite detection efficiency
as described in the next chapter, but also from unknown (and thus unmonitored)
decay and decoherence channels. In practice, in the Lindblad master equation (29),
the experiments are described within the following constraints.

• Γ↓ ≥ γ1,Purcell: there are extra-relaxation events associated with non radiative
decay of the qubit. This could be due to dielectric losses in the substrate [77],
trapped TLS resonant with the qubit [84, 85], quasi-particles in the supercon-
ducting aluminum thin film or cavity [86, 87, 88]...

• Γ↑ ≥ 10 ms−1 for aluminum cavities, Γ↑ ≥ 2 ms−1 for copper ones (see Tab. 3).
The qubit is coupled to unknown hot baths that induce thermal excitation. This
could be due to poor thermalization of the substrate phonons or of the systems
responsible for cavity losses, or high frequency radiations coming down the control
lines and creating "hot" quasi particles [89]. Note that these excitation rates
increase when the cavity surface is not properly etched before the cool-down (see
Sec. A.1.3).

• Γφ ≥ 60 ms−1, even when the cavity mode is empty19. This could be due to
residual effect of the charge noise, interaction with non-resonant trapped two-
level systems, flux noise in the effective superconducting loops formed by the
Josephson junction conduction channels, photon shot-noise inside the cavity[77]...
It can be accessed by measuring the coherence decay rate Γ2 during a Ramsey
interference experiment (see Fig 16a) and using the relation Γ2 = Γ1

2 + Γφ.

The first two terms can be determined experimentally by measuring the energy decay
rate Γ1 = Γ↓ + Γ↑ (Fig. 16a) and the relative occupancy of the ground and excited

17 We limit ourselves to Pin < Pin,readout/10 in order for the first-order approximation (72) to be valid.
For larger probe powers, Γd and ωStark do not scale perfectly linearly with Pin.

18 The value given in the supplementary material of [81] is erroneous.
19 the dephasing rate also appears to depend strongly on the cavity surface state (see Sec. A.1.3)
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a) b)
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Figure 16: a) Ramsey interference experiment with the qubit used in [81] and Sec. 5.1 (Qubit 1
in Tab. 3). The qubit is first prepared close to the |+〉x state by applying a fast
π/2|y pulse to rotate it around the y axis. After a waiting time ∆t, each Pauli op-
erator σi, i = x, y, z is measured. Since readout only allows direct measurement of
σz, a fast π/2|y,x pulse is applied before the measurement for σx,y. Drive pulses are
slightly detuned from qubit frequency in order to observe Ramsey interference pat-
tern. Fitting the exponential decay of energy (〈σz〉) we find T1 = 26 µs. Fitting the
exponential decay of coherences (|〈σx〉+ i〈σy〉|) we find T2 = 11 µs. b) Bloch sphere
representation of the state of the qubit as a function of time (encoded in color) dur-
ing the same experiment c) Dots: measured amplitude of the cavity transmission
coefficient when varying the probe pulsation ωd with a qubit at thermal equilib-
rium (Qubit 2 in Tab.3, used in Sec. 4.2.1 and [82]). Red line: theoretical prediction
adjusting a ground state occupation at equilibrium of pg = 71%. Inset: correspond-
ing magnitude of transmission coefficient. d) Amplitude of the transmitted field at
ωd = ωr,g after a Rabi drive, varying the drive amplitude for another qubit (Qubit 3
in Tab. 3, used in Sec. 7 and [83]). In blue: qubit initially at equilibrium. In red:
initial π pulse on |e〉 ↔ |f〉. Main panel: quadrature of the field containing the infor-
mation. Dots: experimental data. Line: cosine fit. Oscillation amplitude ratio gives
pg = 58%. Inset: corresponding oscillations in the Fresnel plane.

states at equilibrium, linked by the detailed balance pgΓ↑ = peΓ↓. We use two differ-
ent methods to determine this ratio, that are presented on Fig. 16c-d. Note that the
given figures correspond to different qubits and different cavity parameters. In both
cases, we include higher excited states of the anharmonic transmon mode and assume
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a Boltzmann distribution for their occupation: pi+2
pi+1

= pi+1
pi

= rB = exp− h̄ωq
kTeff

. Note
that it is possible to directly measure the occupation of the second excited state with
a protocol presented in Sec. 6.1.2. In the supplementary material of [81] is presented
a method to give an upper bound on this value in the case of very low occupation
probability (Qubit 1 in Tab. 3). This bound is found in agreement with the Boltzmann
distribution assumption.

In Fig. 16c, the sample corresponds to Qubit 2 in Tab.3, used in Sec. 4.2.1 and in [82].
With the qubit at equilibrium, the cavity is probed with a low power continuous tone
around its resonance frequency. Several peaks appear, each corresponding to different
occupied qubit levels. Note that contrary to what is predicted by Eq. (60), these peaks
are not all exactly separated by the same amount χ. Indeed, due to higher order non
linear terms, cavity pull decreases with the number of excitations in the qubit mode.
Fitting the relative heights of these peaks yields the ratio Γ↑

Γ↓
= rB = 0.29, correspond-

ing to an effective temperature Teff = 200 mK.

In Fig. 16d, the sample corresponds to Qubit 3 in Tab. 3, used in Chap. 7 and [83].
The qubit is resonantly driven with an amplitude εd for a short time Tdrive = 50 ns� T1.
We then probe the cavity during a time Tmeas ≤ T1 with a tone at ωc = ωr + χ/2,
that is the cavity resonant frequency when the qubit is in |g〉, and the average complex
amplitude of the transmitted field is recorded. Increasing the drive pulse amplitude
yields characteristic Rabi oscillations. In blue, the qubit is initially at equilibrium
whereas in red we first applied a fast π pulse on its second transition to invert the
population of the two first excited states |e〉 and |f〉. Calling tg (resp. te) the average
amplitude that would be recorded if the qubit were in |g〉 (resp. |e〉), the average field
amplitude that we measure oscillates between pgtg + pete + c ↔ petg + pgte + c for the blue curve

pgtg + pf te + c′ ↔ pf tg + pgte + c′ for the red curve
, (88)

where c and c′ are two unknown constants, and pg,e,f are the occupations of the states
|g, e, f〉 at equilibrium. Then the ratio of the blue and red oscillation amplitudes is
ablue
ared

= 1
1+rB . We then find Γ↑

Γ↓
= rB = 0.40, corresponding to an effective temperature

Teff = 300 mK20.

This second method was better adapted in that particular experiment. Indeed the
system was in a regime where the anharmonicity of the cavity was not negligible
χrr ∼ κ. This implies that to get a similar figure as in c, one would have to probe the
cavity with a power corresponding to much less than a photon on average. Otherwise,
the Kerr effect would affect the shape of the peaks in a non trivial way. For a reasonable
averaging time, it becomes difficult to extract the value of rB with that first method.
In [44], Geerlings et al. demonstrate a slightly different method, consisting in comparing
the amplitude of the oscillations in the measurement signal when inducing Rabi oscil-

20 Note that when neglecting the occupation of the higher excited states at thermal equilibrium, one gets
ablue
ared

=
1−2Peq(|e〉)
1−Peq(|e〉)

so that Peq(|e〉) = 22 %, which is the figure given in [83] and Chap. 7.
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lations between the first and second excited state, starting from thermal equilibrium
or after inverting the occupation of |g〉 and |e〉 with a fast π-pulse.
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3
MEASUREMENT AND QUANTUM TRAJECTORIES

3.1 stochastic master equations

3.1.1 Measurement efficiency - discussion based on the Stern and Gerlach experiment

In the seminal experiment by Stern and Gerlach in 1922, the spin of silver atoms is
measured along a chosen direction by sending these atoms through a medium with a
magnetic field gradient [90]. Under this field, the spin degree of freedom gets entangled
to the spatial one that acts as a pointer. Then, by detecting the position of the atom,
the σZ component of the spin is measured strongly, which means that it gets projected.
Thus, if one prepares the spins in a pure state along σX1 and for a sufficiently large
field gradient, one gets two separated distributions for the detected positions, each
associated with an eigenvalue of σZ . (see Fig. 17a).
The extension of these distributions has two origins. An irreducible component is the
vacuum fluctuations δzQ = zZPF of the atom position. Imperfections in the detection
setup (atoms in a thermal state for position, fluctuations of the magnetic field, im-
precision of the detection panel...) adds up an extra classical noise to this uncertainty
so that δz2 = δz2

Q + δz2
C . This noise can be expressed in terms of detection efficiency

η =
δz2
Q

δz2 . One can then define a dephasing rate Γd as the inverse of the flight time that
is needed to get two resolved spatial distributions for the detected atom positions in
the ideal case η = 1 [11]. It corresponds to the measurement rate for an observer not
subject to classical noise. The rate at which the observer acquires information on the
spin state is in general ηΓd. We can then identify several regimes when comparing these
rates to the decoherence rate Γ2 that is associated with other measurements performed
by an unmonitored environment [91], and to the measurement time Tmeas.

• Γd < Γ2: the spin cannot be measured before it loses its original coherences.

• 1
Tmeas

> Γd > Γ2: the measurement is weak, meaning that the pointer states
corresponding to z = ±1 are not distinguishable (see Fig. 17c) in one shot. The
original spin state is affected but not fully projected.

• Γd > 1
Tmeas

> ηΓd > Γ2: the spin state is fully collapsed onto | ± z〉 but the
observer cannot know the outcome for sure (see Fig. 17b). This is a strong but
low fidelity readout.

• ηΓd > 1
Tmeas

> Γ2: strong single-shot readout. This is the regime reached by Stern
and Gerlach, even though their measurement efficiency was very low.

1 This was not the case for the experiment by Stern and Gerlach, in which the spins were initially in a
maximally mixed state corresponding to thermal equilibrium
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Figure 17: a) Thought experiment inspired by the one of Stern and Gerlach [90]. An atom pre-
pared in a coherent superposition of | ↑〉 and | ↓〉 states is sent through a medium
with a magnetic field gradient (in blue). The atom is then deflected upward or down-
ward according to its spin state. The vertical position of the atom is detected on
a screen (in gray). When repeating the experiment, a double peak distribution ap-
pears (in brown). The width of each peak corresponds to the total noise on the atom
position. The incompressible zero point fluctuations are shown as green gaussians.
If the two peaks do not overlap (as represented here), the measurement of the spin
state is projective and single-shot. Dotted lines: distributions when the atoms are
initially prepared in |g〉 or |e〉. b) Same experiment with a weaker magnetic gradient.
If the brown peaks overlap, the experimenter cannot distinguish between |e〉 and
|g〉, but if the separation is larger than the zero point fluctuations, the spin is still
projected. For the experimenter, the spin is in a mixed state. c) For a perfect mea-
surement (η = 1), the uncertainty on the atom position only comes from zero point
fluctuations. If the magnetic gradient is weak enough that the two peaks overlap,
the measurement is not projective, but the state remains pure.

Qubit detectors with efficiency close to 1 have only recently been developed [11], which
has permitted to investigate the regime of weak measurement. The back action of the
measurement induces a non trivial stochastic evolution of the system but, a posteri-
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ori, the experimenter can use the measurement outcome to reconstruct the quantum
evolution so that purity remains of order 1. The successive states of the system in the
Hilbert space during a single experiment form a quantum trajectory. In 2008, Katz et
al. [8] showed that it was possible to cancel the effect of a first partial measurement
by a second "symmetric" measurement giving the same outcome. In 2011, Vijay et al.
[22] observed quantum jumps of a superconducting qubit, which correspond to quan-
tum trajectories in the strong measurement limit. In 2013, Murch et al. [92] detected
quantum trajectories corresponding to a weak and continuous measurement with ho-
modyne detection (see Sec. 3.2.2). A similar experiment was performed by Hatridge
et al. [93] with heterodyne detection (see Sec. 3.2.3) while varying the strength of the
measurement, illustrating the fact that a strong projective measurement is ultimately
an integrated continuous one.

We will now derive the general formalism that describes the evolution of a qubit
state under monitoring, which is done through a Stochastic Master Equation (SME).

3.1.2 SME with a jump detector

In Eq. (27) we have described the evolution of a qubit under the action of a set of jump
operators. In this section, we will describe the evolution of a system for which we know
when these jumps occur. The jumps correspond to a measurement as in Eq. (18) and
Eq. (19), and we assume that the result of this measurement is known. The derivation
presented here follows the notes by D. Steck [94].

Starting from a simplified version of (24), we consider a single jump operator L.
Then, we need only two Kraus operators M0 = 1− iHh̄ dt− 1

2LL
†dt and M1 =

√
dtL.

If these jumps are perfectly detected2, considering the evolution of the density matrix
between t and t+ dt as in Eq. (20) and Eq. (19),

• if no jump occurred, which happens with probability p0 =M0ρM
†
0 = 1−dt〈L†L〉,

developing to the first order in dt,

dρ0 =
M0ρM

†
0

p0
= − i

h̄
dt[H, ρ]− 1

2dt{L†L− 〈L†L〉, ρ} (89)

• if a jump occured, which happens with probability p1 =M1ρM
†
1 = dt〈L†L〉

dρ1 =
M1ρM

†
1

p1
=

LρL†

〈L†L〉
− ρ. (90)

Denoting by dNt the number of jumps detected during dt3, for a small enough time
step, dNt is either 0 or 1, with E(dNt) = 〈L†L〉dt, and the evolution of the density
matrix reads

dρ = (1− dNt)dρ0 + dNtdρ1 = dρ0 + dNtdρ1. (91)

2 when L =
√
γσ−, this corresponds to a perfect photocounter at the output of the cavity

3 dNt is a Poisson process.
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The last equality holds because dρ0 is of order dt when dρ1 is of order 1. Then, we get

dρ = − i

h̄
dt[H, ρ]− 1

2dt{L†L− 〈L†L〉, ρ}+ dNt

(
LρL†

〈L†L〉
− ρ

)
, (92)

which can be written in a more common form

ρ̇ = − i

h̄
[H, ρ] +D[L]ρ+

(dNt

dt − 〈L
†L〉

)(
LρL†

〈L†L〉
− ρ

)
. (93)

The last term in this equation, proportional to the deviation of the detector from its
expected average value is called actuation. It compensates for the purity lost due to
from the Lindblad term. Starting from a pure state, the qubit remains in a pure state.
This means that if we monitor every interaction of the qubit with its environment,
we know its state perfectly. However, this state depends on the random detector out-
come, which cannot be predicted a priori. When averaging the detected trajectories
over many experiments, the actuation term averages out to 0, and we get back the
evolution predicted by the Lindblad master equation.

Let us consider two possible cases for L. For simplicity, we consider a non driven
qubit, whose hamiltonian in the frame rotating at ωq reads H=0.

• L =
√

γφ
2 σZ , L represents a dephasing jump. Then Eq. (92) simplifies into

dρ = dNt

(
σZρσZ − ρ

)
. (94)

The state does not change until a jump is detected. In that case, its phase is ro-
tated by π. Since, in the Markov approximation, the environment has no memory
of the past jumps and the qubit remains in a state which has the same symmetry
as the initial one, the jump rate is constant and the number of jumps after time
t follows a Poissonian law of parameter γφ

2 t. Then, considering that after an even
number of jumps n, the system gets back its initial phase whereas it takes a
minus sign for odd numbers of jump, as a mean, its coherences read

ρeg(t) = ρeg(0)exp(−γφ2 t)
∑
n

(−1)n
(
γφ
2 t)

n

n!
= ρeg(0)exp(−γφt). (95)

Thus, its coherences decay with a rate γφ.

• L =
√
γσ− , L represents a relaxation jump. Then dρ1 = |g〉〈g| − ρ. Thus, if a

jump occurs, the qubit is projected onto the ground state. The trajectory when
no jump is detected is non-trivial. In terms of Bloch coordinates, it reads:

ẋ|0 = γ
2zx

ẏ|0 = γ
2zy

ż|0 = −γ
2 (1− z2)

(96)

We can check that purity remains 1 when the system starts in a pure state (but
is not constant otherwise). The steady states are |g〉〈g| (which is stable) and
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|e〉〈e| (unstable). Any other state will eventually collapse onto the ground state,
even in the absence of a jump! This can be understood with a simple Bayesian
argument: detecting no jump is more probable if the qubit is in the ground state
so that, starting from a symmetric superposition, detecting no jump implies that
the qubit is more probably in |g〉. In this sense, the absence of a jump event is
in fact a signal itself.

In this formalism, finite detection efficiency means that only a fraction η of the jumps
are detected. This changes the statistics of dNt in the actuation term as

ρ̇ = − i

h̄
[H, ρ] +D[L]ρ+ (

dN (η)
t

dt − η〈L†L〉)( LρL
†

〈L†L〉
− ρ), (97)

where η is the detector efficiency with η ∈ [0, 1], and E[dN (η)
t ] = η〈L†L〉.

In this section, we described the behavior of a monitored qubit with a particular
detector, which is a jump detector. In the case of σ− jumps, it can be realized by
collecting the field leaking out of the cavity and sending it to a photo-counter. However,
such a diode-like element with good efficiency does not exist yet in the microwave
range even though encouraging experiments have been performed [95, 96] and new
detection schemes recently proposed [97]. In Appendix C, we propose a Stochastic
Master Equation associated to this type of detection.
In the rest of this thesis, we focus on heterodyne detection of the field, which can be
performed using linear amplifiers. We will now derive and use a SME formalism for
linear detectors in two cases. First when detecting the field at the output port of the
cavity at ωr. This will enable us to perform non-destructive readout of the qubit. Then
we will describe the detection of the field around the qubit resonance frequency, which
allows us to unravel the relaxation jumps of the qubit using the information contained
in the field that leaks out in the process.

3.2 dispersive measurement

3.2.1 Linear detection

Non destructive measurement of the σZ operator of the qubit is performed using the
dispersive interaction of the qubit and cavity. In the hamiltonian (80), the dispersive
term − h̄χ2a†aσz can be seen as a shift of the cavity mode resonance frequency depend-
ing on the qubit state. When probing the cavity around its resonance frequency, the
transmitted field aout thus depends on the qubit state. We now focus on the case of
a probe field at ωr. In Fig. 18b, we represent the states of this field corresponding to
a qubit in |g〉 or |e〉, in the Fresnel plane rotating at ωr and when driving the cavity
at resonance. Measuring the observable Im[aout] allows one to distinguish between the
two states of the qubit as depicted on Fig. 18c. The detection of Re[aout] does not
provide information about σZ , but as we will see in the next section, it is associated
with a back action on the qubit state so that, if we dismiss the measurement outcome,
it leads to dephasing.
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Figure 18: a) Measured phase of the transmitted field in the experiment described in 3.2.3,
when the qubit is in |g〉 (blue) or |e〉 (red). b) Fresnel plane representation (plane
rotating at ωr) of the calculated transmitted field at ωr (same color code as in
a). Filled circles represent the quantum uncertainty of the field. c) corresponding
distributions of the integrated homodyne detection outputs. When the phase of the
detection is δ = π/2, the observer can distinguish partially between |g〉 and |e〉
and gets a weak measurement of σZ . When δ = 0, the observer cannot distinguish
between |g〉 and |e〉, but he gets information about the number of photons in the
field, and thus learns about the shifts in the qubit phase induced by measurement
back action.

The detection of one of the quadratures of aout is called a homodyne detection. For
a classical signal, homodyne detection of a microwave field can be performed using a
commercial mixer that multiplies the signal s(t) = I cosωrt+Q sinωrt by a strong car-
rier B cosωrt+ δ provided by a Local Oscillator (LO) at the same frequency. Averaging
out the fast oscillating components, the resulting signal reads u ∝ I cos δ +Q sin δ, so
that by varying δ, one can choose the detected quadrature.
Heterodyne detection consists in detecting simultaneously both quadratures. It is per-
formed by an IQ mixer that splits the signal and mixes one part with the LO, and
another with the LO dephased by π/2. Note that in our setup, heterodyne detection
is performed by another technique, mixing the signal with a slightly detuned LO at
ωr + ωh. The output signal u(t) ∝ I cosωht+Q sinωht oscillates at small enough fre-
quency that it can be detected and digitized, leading to a simultaneous measurement
of both I and Q by numerical demodulation.

Mixers are based on diodes, which provide the non-linearity needed for the multipli-
cation. However, since these diodes are dissipative, noise is added to the measurement.
The field aout being very small, diode based mixers cannot be directly used to perform
an efficient detection. A non-linear, non-dissipative element, is thus needed to perform
quantum limited measurement[11]. For microwave signals, Josephson junctions provide
such an element. The field aout can be linearly amplified with no noise added, and the
output signal can be detected with commercial mixers at room temperature4.

The no-cloning thorem[98] stating that a quantum state cannot be copied, one
needs to specify what quantum limited amplification means. Following the results of
Sec. 2.1.3.1, we define it as an operation that does not increase the entropy of the

4 The Josephson device can also be seen as performing the detection by itself and its output as a
classical signal. From an informational point of view, the exact position of the limit between quantum
and classical worlds is irrelevant since the effect on the qubit state is the same in both cases.
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system. Thus, quantum limited amplification is a hamiltonian evolution. In the fol-
lowing sections, we will describe the physical implementations of such amplifiers and
the stochastic master equations ruling the evolution of the qubit under such detections.

3.2.2 Homodyne detection

Before describing the heterodyne detection that is used in the experiments reported in
this thesis, it is instructive to describe homodyne detection. A Josephson junction based
linear amplifier commonly used for homodyne detection is the so-called Josephson
Parametric Amplifier (JPA)[99, 100, 101]. We give here a brief description of its working
principle. Alternative designs of the JPA and many other degenerate amplifiers can be
used [102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114].
The field that we want to amplify is directed toward a microwave resonator at ωr, in
which one or several Josephson junctions have been embedded so as to provide some
non linearity. Its dynamics is governed by a duffing hamiltonian that reads

HDuff = h̄ωr c
†c+ h̄kc†c†cc. (98)

When pumped on resonance with a strong coherent tone of amplitude p0 on top of which
the signal of interest δc is added, in the limit p0 �

√
〈δc†δc〉, it can be approximated

as

HDuff = h̄(ωr + 2k|p0|2)δc†δc+ h̄k(p2
0δc
†2 + p∗20 δc

2). (99)

The input and output traveling wave operators cin and cout are linked to c = p0 + δc

by the input/output relation (47)
√
κJPAc = cin + cout. (100)

When considering the components δcin and δcout of these traveling waves associated
with the signal only, the new input/output relation reads [11]

δcout =
√
Gδcin + eiδ

√
G− 1δc†in. (101)

In this expression, G and δ can be adjusted by p0 and depend on κJPA. Due to the
pumped non-linearity in HDuff , the signal is squeezed along a direction in the Fresnel
plane that is set by the pump phase (see Fig. 19). Thus, amplification of one quadrature
of the signal is achieved at the expense of the other quadrature, which is de-amplified.
In practice, the large constant pump tone can be removed from the outgoing field by
interferometry.

If the signal is the field aout of Fig. 18b and for large gain G, the reflected signal
from the JPA5 reads

δcout '
√
G(aout + eiδa†out). (102)

5 A circulator is used to direct the amplified field away from the cavity into output lines.
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Thus, the JPA is implementing homodyne detection. The detected quadrature is cho-
sen via the pump phase. However, the output of the JPA is not directly the average
value 〈Re[aout]〉 or 〈Im[aout]〉, but is subject to quantum fluctuations. After further
amplification and renormalization, when integrated over a time step dt6, it reads (in
the case where Im[aout] is amplified)[24]

Jδ=π/2(t)dt =
√
η〈2Im[aout]〉dt+ dWt, (103)

where η ≤ 1 is the detection efficiency. The ensemble of values taken by Jδ=π/2 on a
given experiment is called a measurement record. In this expression, Wt is a Wiener
process or idealized random walk accounting for the quantum fluctuations of p0. It
verifies dWt = 0

dW 2
t = dt

. (104)

Before describing the stochastic master equations associated with these measurements,
let us compute the measurement rate Γm associated with the homodyne detection of
Im[aout]. In the absence of input drive through the output port of the cavity, aout is
linked to the intra cavity field a by 〈aout〉 =

√
κ〈a〉 where κ is the damping rate of the

cavity mode. Moreover, from Eq. (51), when driving the cavity at resonance, we have

〈Im[a]〉 = 〈σz〉
√
n sin θ2 = 〈σz〉

√
n

χ2

κ2 + χ2 (105)

where n is the mean number of photons in the cavity, and θ the angle between αe and
αg (see Fig. 19). Thus, we can rewrite Eq. (103) as

Jδ=π/2(t)dt = 2〈σz〉
√
ηn

κχ2

(κ2 + χ2)
dt+ dWt. (106)

Following Clerk et al. in [11], we define the measurement rate from the signal to noise
ratio of this signal integrated from 0 to t as

Γm
def
=

1
2
SNR

t
= 2n κχ2

(κ2 + χ2)
. (107)

We can check that Γm = ηΓd, where Γd is the dephasing rate given in Eq. (85). In the
case of perfect detection, we acquire information at the same rate that the qubit is
dephased.
The measurement record can be written as 7

Jδ=π/2(t)dt =
√

2Γm〈σZ〉dt+ dWt. (108)

We now present the Stochastic Master equation associated with each homodyne de-
tection, which is the proper way to actuate our knowledge of the qubit state using

6 in the limit dt� 1/ωr
7 The global sign of J(t), just as the scaling factor in experimental data, is not relevant for the SME.
In practice, it is set by the numerical demodulation performed by the acquisition board. However,
changing the sign of dWt has a physical significance and must be taken into account in the SME.
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Figure 19: a) Homodyne detection of the transmitted field with a JPA for a qubit initially
in 1/

√
2(|g〉+ |e〉). aout is mixed with a strong pump tone at ωr in a non linear

resonator. The output field δcout is squeezed along a direction that depends of
the phase δ of the pump. After further amplification, the signal is mixed with a
commercial mixer at room temperature and digitized. According to the detected
quadrature, the qubit state diffuses along a meridian of the Bloch sphere (δ = π/2)
or along the equator (δ = 0).

the measurement records. A derivation from the SME of the cavity mode and using a
Jayne-Cummings model can be found in [115]. We propose in Appendix C a derivation
starting from the SME associated with a detection with a photocounter, and using a
model of homodyne detection borrowed from quantum optics, which is equivalent to
the one described above.

If δ = π
2 , the SME reads8

dρ = − i

h̄
dt[H, ρ] + Γd

2 dtD[σZ ]ρ+ dWt

√
2ΓmM[σZ ]ρ, (109)

where the measurement super operatorM acts on ρ as

M[c]ρ =
1
2
(
(c− 〈c〉)ρ+ ρ(c† − 〈c†〉)

)
. (110)

8 For simplicity, we do not include the terms associated with other decoherence channels.
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This equation leads to a diffusive behavior for the qubit state which moves stochasti-
cally along a meridian of the Bloch sphere according to the value of Wt (see Fig. 19).
Indeed, in terms of Bloch coordinates, the actuation term leads to

dx = −dWt

√
2Γmzx

dy = −dWt

√
2Γmzy

dz = +dWt

√
2Γm(1− z2)

. (111)

As an example, starting at time t from a state verifying y = 0, let us compute the
variation of the squared norm of the Bloch vector using Itô rules. We have dy = 0 and
including the contribution of the damping super operator,

d(x2 + z2) = −2Γdx2dt+ 2
√

2Γmz(1− z2−x2)dWt+ 2Γm((1− z2)2 + z2x2)dt. (112)

If η = 1, Γm = Γd so that

d(x2 + z2) = 2(1− x2 − z2)(
√

2ΓmzdWt + Γmdt). (113)

In this case, as a mean, the Bloch vector norm increases until it reaches the surface
of the Bloch sphere, that is a pure state. In particular, a pure state remains pure at
all time. When η < 1, the dephasing term is stronger than the actuation term, and
the state remains inside the sphere, except when z = ±1, which is a stable point for
Eq. (111) and for the Lindblad super operator.

More generally, after a typical time 1
Γm , the state has reached a pole of the Bloch

sphere and stays there [21]. It thus corresponds to a non-destructive measurement of
the σZ operator of the qubit. As stated previously, the measurement record, that is
the normalized signal at the output of the detection setup, is Jπ

2
(t) with

Jπ
2
(t)dt = 2√ηκn sin θ

2〈σZ〉dt+ dWt

=
√

2Γm〈σZ〉dt+ dWt

. (114)

Note that in practice, this record is always scaled by a factor depending on the pump
tone for the JPA, the attenuation of the lines and other uncontrolled factors.

If δ = 0 , the SME reads

dρ = − i
h̄dt[H, ρ] + Γd

2 dtD[σZ ]ρ− dWt

√
2ΓmM[iσZ ]ρ

= − i
h̄dt[H, ρ] + Γd

2 dtD[σZ ]ρ− i
2dWt

√
2Γm[σZ , ρ].

. (115)

This equation also leads to a diffusive behavior for the qubit state (see Fig. 19), but
along the equator of the Bloch sphere. Indeed, during dt, the evolution is governed
by the stochastic hamiltonian H −

√
Γm
2 h̄σzdWt. Thus, the qubit frequency is now a

stochastic parameter so that in the frame rotating at ωq, its phase shifts randomly. If
the measurement record is dismissed, after a typical time 1/Γd, the initial phase of the
qubit is lost. This phenomenon corresponds to the back action of the measurement of
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σZ . However, in the present case, the quadrature of the field that contains the infor-
mation about this back action is measured so that the observer can a posteriori know
its effect and the state remains pure for η = 1. Recently, De Lange et al. showed that
the phase shifts could even be reversed by feedback [116].

In this case, and with the same normalization as in Eq. (114), the measurement
record is J0(t) with

J0(t)dt = 2√ηκn cos θ2dt+ dWt. (116)

The behavior of a qubit under these two homodyne measurements has been beautifully
illustrated by an experiment in the Siddiqi group at Berkeley [92].

3.2.3 Heterodyne measurement

As stated previously, heterodyne detection can be understood as a simultaneous homo-
dyne detection of both quadratures of the field [117]. Since the observables Re[aout] and
Im[aout] associated with these quadratures do not commute, one needs to conceptually
split the signal in two parts, each one being detected separately. In that sense, a hetero-
dyne detection with efficiency η of a jump operator L is equivalent to 2 simultaneous
homodyne detections, with the same efficiency, of the jumps LI = 1√

2L

LQ = i√
2L

. (117)

If η = 1, any pure state remains pure under perfect heterodyne detection if one uses all
the information at his disposal (see [118] for theory and [93] for experimental demon-
stration).

In the experiments described in this thesis, heterodyne detection is implemented by
amplifying the output field from the cavity with a quantum limited phase preserving
parametric amplifier known as the Josephson Parametric Converter (JPC) [19, 119, 20].
We will not describe its working details here. A complete description can be found in
Emmanuel Flurin’s PhD thesis [120]. Note however that its working principle is similar
to the one of phase sensitive amplifiers. Quantum limited amplification of the signal
mode a is achieved by the necessary combination with an auxiliary mode b, usually
referred to as the idler, and a pump. When ωpump = ωsignal + ωidler, the JPC per-
forms amplification of both quadratures of the signal mode9. When tracing out the
idler mode, each quadrature of the amplified signal contains extra noise coming from
the idler, or equivalently in the SME, the mean value of the measurement records are
divided by

√
2 following Eq. (117) compared to Eqs. (114, 116). However, this extra

quantum noise is not detrimental to the purity of the state when solving the SME [118].

9 The unitary evolution during the amplification corresponds to squeezing in the phase space of the
composite system made of signal and idler [11, 121], so that the overall phase space volume is preserved
in agreement with Liouville theorem for a unitary evolution.
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The measurement record is now complex and reads

J(t)dt =
√

2ηκn cos θ2dt+ dWt,1 + i
(√

2ηκn sin θ2dt〈σZ〉+ dWt,2
)
, (118)

where dWt,1 and dWt,2 are two independent Wiener processes. The SME can be easily
deduced from the ones corresponding to homodyne detections. It reads10

dρ = − i

h̄
dt[H, ρ] + Γd

2 dtD[σZ ]ρ+ dWt,2
√
ηΓdM[σZ ]ρ−dWt,1

√
ηΓdM[iσZ ]ρ. (119)

Note that in this expression, we have avoided using Γm. Indeed, the definition of the
measurement rate can be ambiguous, since information is extracted from both quadra-
tures of the measurement field. If considering the measurement of 〈σZ〉 only, the mea-
surement rate reads ηΓd/2, twice smaller than for homodyne detection of Im[aout].

3.2.3.1 Single-shot Non Demolition readout

In the previous section, we saw that heterodyne detection provides a continuous mea-
surement scheme of the σZ operator. In the present section, we describe how this
measurement can be used as a high-fidelity projective quantum non-demolition (QND)
readout and how to calibrate the efficiency η of our detection chain.

On the experiment presented on Fig. 20a, the parameters of the qubit and cavity are
the same as those in 2.2.4 and [81], corresponding to Qubit 1 in Tab. 3. Then, starting
from an unknown state and not driving the qubit (H = 0 in the frame rotating at
ωq), we probe the cavity in transmission with a tone at ωr that leads to a stationary
number of photons calibrated to be n = 1.4 photons. This stationary regime is reached
in 1/κ ' 90 ns and leads to a dephasing rate (see Eq. (85))

Γd = 2n χ2

κ(κ2 + χ2)
' 1/100 ns. (120)

Thus after a time tcoll = 240 ns, we consider that stationary regime is reached for the
cavity field and the qubit has been projected to either |g〉 or |e〉, so that, for a single
experiment, 〈σZ(tcoll)〉 = ±1. We then integrate the readout signal αJ(t) (α being
an unknown proportionality factor depending on uncontrolled parameters such as the
lines attenuation) during Tmeas = 960 ns. Note that tcoll + Tmeas � T1 = 28 µs so that
the state of the qubit does not evolve during measurement.

The integrated measurement records over many experiments have a mean value

a = α
∫ tcoll+Tmeas
tcoll

J(t)dt
= α

√
2ηκn(cos θ2 ± i sin θ

2 )Tmeas,
(121)

and a variance

Var(Re[a]) = Var(Im[a]) = α2Tmeas. (122)

10 To highlight the equivalence between a heterodyne detection and two homodyne ones, one can note
that D[σZ ] = D[ σZ√2

] +D[iσZ√
2
]
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Figure 20: a) Simplified experimental setup. Qubit is prepared with pulses at ωq and readout
at ωr. These pulses are generated by mixing a LO detuned by a small frequency
ωh/2π = 62.5 MHz with a square waveform oscillating at ωh. This LO is also
used for heterodyne detection: both quadratures of the output field are amplified
before down-conversion to ωh by mixing it with the LO. The resulting signal is then
digitized and numerically demodulated to recover Re[a] and Im[a] up to a constant
pre factor α. By adjusting the phase of the arbitrary waveform, one can phase shift
a so that only the imaginary part of the field contains information about the qubit
state. b) Expected complex amplitude of the integrated signal a (see Eq. (121)).
The mean value a is represented as the rod of a lollypop for both qubit states, the
fluctuations by the purple disks. These fluctuations have an irreducible component
originating from the non commutativity of Re[a] and Im[a] (Heisenberg principle)
and which is represented, for these coherent fields, by the brown and blue circles.
The limited measurement efficiency (η = 67%) only slightly increases the observed
deviations by η−1/2 − 1 = 22 %. Here we have set α =

√
1

2ηκ/Tmeas so that a
indeed coincides with the intra-field cavity amplitude. c,d) Probability density with
the JPC OFF (c) and ON (d), extracted from 106 measurement outcomes when the
qubit is prepared in states |g〉 or |e〉 with equal probability. The halved probability
density corresponding to the preparation of |g〉 only (resp. |e〉) is plotted in blue
(red) together with the projections along the real and imaginary axes. Turning on
the pump of the amplifier (d) results in a great enhancement of the measurement
fidelity compared to the case when it if turned off (c).

Thus, if
√

2ηκn sin θ
2Tmeas �

√
Tmeas, which is equivalent to Tmeas � 1/ηΓd, one can

use the criterion Im[a] < 0→ qubit in |g〉
Im[a] > 0→ qubit in |e〉

. (123)
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This measurement is always projective since qubit state is collapsed to an eigenstate,
but its fidelity depends on the distinguishability between the distributions of a accord-
ing to the qubit state, and thus on η.

In fact we empirically chose Tmeas so that the fidelity of the readout beyond re-
laxation errors is 99.7 %. This can be estimated by fitting the negative part of the
probability distribution of the measured Im[a] values when the qubit is in |g〉 (blue
curve on the projection of Fig 20d) with a gaussian. The overlap of this gaussian with
the positive part of the axis gives the probability of error during the detection.

From this gaussian deviation and mean (signal to noise ratio), we can also estimate
η. Indeed, we have

Var(Re[a]) + Var(Im[a])

|a|2
=

1
ηnκTmeas

, (124)

which is independent of α. We then find that η = 67 %.

Let us comment on this readout performances.

• The gain of the parametric amplifier is set to G ≥ 20 dB. Since the noise temper-
ature of the following HEMT amplifier is about 10K11, that is ∼ 25 photons at
8 GHz, it ensures that this noise is below 0.25 photon referenced to the output
of the cavity. Indeed, the signal to noise ratio at the end of the detection setup
reads SNR =

S
1
2 + n1 +

n2
G1

+ n3
G1G2

+ ...
, where Gi and ni are the gain and added

noise photons by the ith amplifier. In terms of measurement efficiency,

η−1 = η−1
1 + (η2G1)

−1 + (η3G1G2)
−1 + ..., (125)

and η2 = ηHEMT ∼ 0.5 %.

• We do not use the real part of the measurement record (see Eq.(118)) to actuate
the density matrix of the qubit according to Eq.(119). Thus our measurement
scheme is equivalent to a homodyne measurement of efficiency η/2, so that the
number of added photons by the JPC is n1 = 1/2 at minimum. However, in the
convention chosen here, an ideal amplifier corresponds to η = 1 since the factor
1/2 has already been taken into account in Eq. (119).

• The finite efficiency is partly due to the leak through the unmonitored input
port and losses in the cavity. Indeed, not all of the probing photons are collected
through the output port so that we can write η = κout

κin+κL+κout
ηdetector. This leads

to ηdetector = 82 %, which characterizes the efficiency of the output field detector
only. In an ideal setup, we would get η = 1 but 1 dB of loss in the components
between the cavity output and the JPC are sufficient to explain this figure.

• A faster readout could in principle be achieved by increasing the number of
photons n in the cavity in the stationary regime so as to avoid relaxation or

11 This effective temperature takes into account the losses in the lines between the JPC and the HEMT
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excitation during readout. Indeed, in the experiment, Γ↓(tcoll + Tmeas) = 4 %
when the qubit is in |e〉, leading roughly to an added 2 % of readout errors, and
Γ↑(tcoll + Tmeas) = 0.1 % when the qubit is in |g〉, leading to negligible readout
errors. However the dispersive regime is valid for n � 5 (Eq. (78)). In practice,
n = 1.4 was empirically set so that readout induced qubit flips happen less than
0.2 % of the time. Within this limit, our readout remains single shot and QND.

3.2.3.2 Quantum jumps
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Figure 21: Over 105 experiments, the qubit is prepared in |e〉 and then continuously monitored
for 200 µs. a) The imaginary part of the measurement record is integrated over bins
of 960 ns, which is the time needed for a high-fidelity readout. The resulting signal
is then well above 0 until it switches abruptly to negative values when the qubit
relaxes. A typical trajectory and an unusually long-lived excitation of the qubit are
presented in orange insets. Histogram of the dates of jumps follows an exponential
law of rate Γ↓. b) For some trajectories, the qubit then gets thermally re-excited
after the jump down (blue inset). The probability of not jumping back up after time
Tdown is supposed to follow an exponential law of rate Γ↑.

This non demolition readout allows us to observe quantum jumps [22]. Quantum
jumps appear when measuring a system strongly enough so that the corresponding
measurement rate Γm is much larger than the typical rate of non-coherent processes
changing its state12. In our case, this corresponds to ΓmT1 � 1. In that case and on
a time scale larger than 1/Γm, qubit state is forced to be |g〉 or |e〉 but relaxation or
excitation events will occasionally flip this state.

Observation of quantum jumps is presented on Fig. 21a. The qubit is initially pre-
pared in |e〉 and is then left undriven while the cavity contains a readout field with
the same characteristics as the one described in the previous section. The value of the
imaginary part of the measurement record corresponding to Eq.(118) is represented
as a function of time. On a typical trajectory, the signal remains well above 0 (qubit
in |e〉) for about 1/Γ↓ and then abruptly becomes negative when the qubit relaxes.
However, on some trajectories such as the one presented on Fig. 21b, the qubit can
remain in |e〉 for much longer. When constructing the histogram of these jumps dates,

12 coherent departure from a measured state is suppressed due to Zeno effect
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one recovers an exponential decay with a rate Γ↓. This is another proof of the QNDness
of the readout. Jumps up from |g〉 to |e〉 also occur, but with a much smaller rate Γ↑.

Here, relaxation appears to be an abrupt event, but we will see in 3.4 that this is in
fact dependent on the detection scheme that is used. In the present experiment, it is
in fact our knowledge of the qubit that evolves on a short time scale 1/Γm.

3.3 high-power readout

In the experiment described in 3.2.3, the parameters of the system were chosen in or-
der to maximize measurement rate with respect to relaxation rate so that Γm/Γ1 � 1.
Namely, we set χ ' κ. However, relaxation during the measurement limits this readout
fidelity (∼ 4 % errors when the qubit is in |e〉). Moreover, for some experiments such
as the one described in 7, parameters are constrained so that such a fidelity cannot be
obtained via QND dispersive readout. When the readout does not need to be QND,
another scheme designed by Reed et al. [122] allows for high-fidelity projective readout,
particularly in the regime where χ � κ. It makes use of the non-trivial regime where
the cavity is probed at high power. In this section, we will describe qualitatively this
regime and show how it can be used for qubit readout. A detailed theoretical descrip-
tion can be found in [123].

The dispersive hamiltonianH =
∑
p=r,q

ωpnp+
1
2

∑
p,p′=r,q

χpp′npnp′ found through black-

box quantization of the circuit (see Sec. 2.2.3.2) and in which the cavity mode inherits
a small constant anharmonicity χrr from its hybridization with the qubit is only valid
in the dispersive limit n � nc. When cranking up probe power, cavity resonance fre-
quency is shifted by an amount χrr per photon, but this anharmonicity decreases down
to 0 for large powers [124]. In this regime, cavity resonance frequency is the one of the
bare cavity mode fbare13. A map showing cavity transmission coefficient as a function of
probe power and frequency is presented on Fig. 22a. At low power (n ∼ 1 photon) the
system behavior is well captured by the dispersive hamiltonian (60). Several resonances
appear separated by χ due to thermal excitation of the qubit. These frequencies are
shifted linearly with increasing power. At large powers, only one resonance remains,
at fbare. The physics in between these two limits is still poorly understood. Cavity
transmission displays complex pattern as a function of probe frequency probably due
to interferences between bistable solutions.

When probing the cavity at fbare, transmission is very low at low power but when ap-
proaching the region circled in green, the response displays a strong non-linearity and
the cavity switches abruptly to a bright state (high transmission). The probe power for
which the cavity switches depends on the qubit state. This can be simply understood
considering that when in |e〉, the qubit shifts the cavity low power resonance frequency
by χ/2π toward fbare. Thus, the lorentzian filter in Eq. (51) is less strong and intra
cavity field is stronger for a given probe power. The cavity switching probability as a

13 but is still affected by the sapphire chip and the antennas
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c) detection 
threshold

Figure 22: a) Magnitude of the cavity transmission coefficient encoded in color as a function
of probe power and frequency, when driving with a continuous tone. We normalize
the signal by the bright state transmission. Readout frequency is fHPR = fbare
(black line). Readout power is chosen within the region materialized by a green
circle. b) Cavity response to pulsed driving (pulse length: is 800 ns). We represent
the switching probability as a function of probe pulse amplitude for a qubit at
thermal equilibrium (blue) or after a π pulse (red). Switching detection criterion
is chosen as in c. Plain lines: cavity initially empty. Dotted lines: cavity containing
initially about 5 photons. Readout power PHPR is chosen to maximize contrast.
c) Integrated output signal represented in the Fresnel plane rotating at fbare over
1000 experiments for a qubit at thermal equilibrium (blue) and after a π pulse (red).
For long enough integration time, two well separated distributions appear. Switching
detection threshold is chosen in between. Correcting for thermal population (Qubit 2
in Tab.3, used in Sec. 4.2.1 and [82]), these distributions are consistent with a cavity
that is never switching when the qubit is in state |g〉, and switching in 94 % of the
experiments when the qubit is in an excited state (6 % false negatives).

function of the probe pulse amplitude displays a characteristic S-shape (Fig. 22b) that
is therefore shifted according to the qubit state. In practice, we choose the amplitude
that maximizes the contrast between ground and excited qubit state response.

An advantage of this method is that once the cavity has switched to its bright state,
it stays there as long as the field energy has not decreased beyond a given threshold.
Thus, we can map the qubit state onto the cavity state and then integrate the output
signal for an indefinite amount of time as long as probe power is not turned off. Signal
to noise ratio can thus be increased at will so that quantum limited amplification chain
is not needed. Errors are then dominated by spurious switching of the cavity but prob-
abilities as low as 2 % of false positives and false negatives have been measured in some
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cases. In the experiment corresponding to Fig. 22c, we calibrated 6% of false negatives
and no measurable false positive. The origin of these errors needs more investigation.
Possible explanations include quasi-particles mediated excitations of the qubit, large
probe field fluctuations...

Another advantage of this readout method is that its results depend only weakly on
the prior state of the cavity, as long as the photon number is low. If nχrr � κ, low
power resonance frequency does not depend on n and switching probability is not af-
fected by these photons . On Fig. 22b, plain lines correspond to a cavity mode initially
empty of photons, and dotted lines correspond to a intra cavity field of ∼ 5 photons
before readout. The cavity responses are very similar. Therefore, it is not needed to
wait for the cavity to empty before reading out the state of the qubit, which would
limit single-shot readout fidelity as it allows for relaxation of the qubit14.

Beside being destructive for the qubit, the main drawback of this method is that the
used power is so large (∼ 1.5× 106 photons on average in the cavity if the excitation
were permanent) that it creates quasi-particles in the superconducting aluminum of the
cavity or antennas. The relaxation of these quasi-particles has been studied in [126] but
the corresponding time constant is not well understood. Their effect is to limit the life
time T1 of the qubit and even more drastically the coherence time T2. Moreover, qubit
resonance frequency sometimes displays low frequency fluctuations, which cannot be
described within the Lindblad model. This limits the repetition rate of the experiment.
We found an important variation in the relaxation rate of these quasi-particles (from a
few µs up to several ms) from a qubit design to another, but also with the same system
after cycling it above the critical temperature of superconducting aluminum. This is
consistent with recent observation of quasi-particles induced noise suppression due to
vortices in aluminum thin films [127, 128]. These vortices are created when cooling
down the sample under constant magnetic field and act as quasi-particle traps.

In practice, high fidelity single-shot readout is not always needed. When only oc-
cupation probability of the excited state as a mean is needed, a compromise can be
found between the experiment repetition rate and the readout fidelity by lowering the
readout pulse power. In the intermediate region between high and low power regimes
for the cavity, we then adjust readout power and frequency to empirically maximize
the readout contrast.

3.4 monitoring the fluorescence

The measurement scheme that was described in 3.2.3 uses the dispersive interaction be-
tween qubit and cavity to probe the σZ operator. This interaction entails decoherence
of the qubit, which is associated to a Lindblad super operator D[

√
Γd
2 σZ ] defined in

Eq.(84). However, if the measurement signal is efficiently detected, the evolution of the
qubit state is not predictable but can be known a posteriori. Instead of decoherence,

14 another method consists in using another empty coupled cavity for readout [125]
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the qubit follows a stochastic evolution towards |g〉 or |e〉. Therefore, at times longer
than 1

ηΓd
, the continuous measurement of the field at ωr constitutes a QND projective

readout.

Then what about the other decoherence processes in the master equation (29)? Can
we detect the corresponding measurement signal and take it into account to better
predict the state of the qubit?
In the model described in 2.2.3.2 an unavoidable relaxation process comes from the
hybridization of qubit and cavity modes. Qubit energy decays directly into the probe
lines at a rate γ1,Purcell. The corresponding jump operator is L =

√
γ1,Purcellσ−. In order

to retrieve this information and actuate the density matrix with it, we will once again
monitor the electromagnetic field in the output line with a high efficiency detection
chain. However, contrary to the scheme pictured in Fig. 19, detection is not made at
cavity frequency ωr but at qubit frequency ωq.

Starting from Eq. (93), if an ideal photocounter working at ωq is placed on the
output line, it acts as a jump detector and the dynamics is described by Eqs.(93,96).
Thus, neglecting for now any relaxation processes but the one into the output line, if
no jump is detected, qubit state collapses toward |g〉 on a typical time-scale 1/γ1,Purcell
but remains pure for a detection efficiency 1. When a jump is detected, it goes instan-
taneously to |g〉.

However, we do not have efficient photo-counters in the microwave range and as in
3.2.3, we rather realize a heterodyne detection. For perfect detection, the SME reads
[23, 24]

dρ = − i
h̄dt[H, ρ] + dtD[√γ1σ−]ρ

+
√

2dWt,IM[
√
γ1,Purcellσ−]ρ+

√
2dWt,QM[i

√
γ1,Purcellσ−]ρ,

(126)

withM[c] defined, as in 3.2.2, byM[c]ρ = 1
2 ((c− 〈c〉)ρ+ ρ(c† − 〈c†〉)) and Wt,I and

Wt,Q two independent Wiener processes. I and Q refer respectively to the in phase
(δ = 0) and in quadrature (δ = −π

2 ) part of the detected signal.

Relaxation into the unmonitored input line, through cavity internal losses and non
radiative decay processes have the same effect, which is limiting the overall detection
efficiency η. We take this into account along with imperfections of the detection setup
whose first amplifier is a JPC designed so that its amplification bandwidth is centred
at ωq. We can indeed decompose

η =
γ1,Purcell
γ1

× γ1,Purcell,out
γ1,Purcell

× ηdetec, (127)

where the first term accounts for the fraction of the energy radiated into the lines when
the qubit decays being finite (see Sec. 2.2.5), the second for the finite fraction of the
energy leaking through the monitored output line (see Eq. (49)), and the third for
the detection setup imperfections (dominated by losses in RF components between the
cavity and the JPC). The first and third contributions are impossible to distinguish in
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practice due to uncalibrated cavity output impedance, and we only access the value of
the overall efficiency η.
Including non-relaxation induced dephasing, we get the full Stochastic Master Equa-
tion:

dρ = − i
h̄dt[H, ρ] + γ1dtD[σ−]ρ+ γφ

2 dtD[σZ ]ρ
+

√
ηγ1
2 (σ−ρ+ ρσ+ − 〈σX〉ρ)dWt,I +

√
ηγ1
2 (iσ−ρ− iρσ+ − 〈σY 〉ρ)dWt,Q.

(128)

The measurement records are given by dI =
√

ηγ1
2 〈σX〉dt+ dWt,I

dQ =
√

ηγ1
2 〈σY 〉dt+ dWt,Q

. (129)

3.4.1 Mean fluorescence signal

The fluorescence signal of an atom, which is the light that it emits when de-exciting,
is commonly observed and used in physics, but also in biology, chemistry... However,
due to limited measurement efficiency for linear detection setups, it has mostly been
characterized through its power spectrum. When driven on resonance, the signature
of fluorescence is the so-called Mollow triplet [129]. With superconducting qubits, it
has recently been observed on the single "atom" level [26], and efficient linear detection
with a sufficiently large bandwidth has allowed to resolve temporally the fluorescence
signal [25, 130].

In the experiment reported in [82] and described in Fig. 23, a qubit resonating at
ωq/2π = 5.2 GHz (Qubit 2 in Tab.3) is embedded in a 3D aluminum cavity whose first
mode resonates at ωr/2π = 7.8 GHz. When the qubit is resonantly driven, it under-
goes Rabi oscillations that can be revealed by measuring the occupation of the levels
after a time t varying from 0 to T = 2.5 µs < T1 = 16 µs. This is done using a high
power readout method (see Sec. 3.3), whose fidelity has been calibrated as in Fig. 22.
Measured Rabi oscillations for a qubit initially in |g〉 (in purple) or |e〉 (in orange) are
presented in Fig. 23b. The qubit is actually in |g〉 only fg = 91% of the experiments
when preparing the ground state, and in |e〉 only fe = 85% of the times when preparing
the excited state. This limited preparation fidelity comes from an important thermal
excitation rate in this experiment that results in about 30% spurious occupation of the
excited state at thermal equilibrium, which is partially lowered using the cool down
scheme described in 6.1 prior to every experiment. This imperfect preparation fidelity
lowers the contrast of the oscillations.

In a separate experiment, we drive the qubit during the whole time interval [0,T ].
While this drive is applied through a lowly coupled transmission line labelled in on
Fig. 23a, the resonance fluorescence is collected on the strongly coupled out line and
measured continuously using a JPC tuned at qubit frequency. The coupling rate
κout/2π = 0.25 MHz to this line far dominates the coupling rates κin,κL to other
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Figure 23: a) Schematic of the experimental setup. A 3D transmon is driven through the in
line and its fluorescence signal (in green) is collected on the out line, along with
the small portion of the drive field that is transmitted through the cavity (in blue).
In the Fresnel plane rotating at ωq, the transmitted signal has a constant complex
amplitude (peak at ωq in the power spectrum), whereas the fluorescence signal has
a complex amplitude oscillating at the Rabi frequency (in the frequency domain,
2 side bands appear around ωq). Note that in the experiment, the signal is down-
converted by mixing with a LO before being digitized (not represented: see 3.4.2
and Fig. 25b for detailed description). b) Measured occupation of the qubit levels
during the drive (dotted line) and predicted value of the fluorescence signal (plain
lines) for a qubit initially in |g〉 or |e〉.

decay channels of the cavity. However, qubit decay rate is measured to be dominated
by unknown non radiative processes. Quantitatively, γ1 > γ1,Purcell ' 50 µs−1, so that
signal collection efficiency in Eq. (129) is quite small. However, here we are only inter-
ested in the fluorescence signal as a mean so that the efficiency η only modifies the a
priori unknown scaling factor relating the output cavity field to the voltage measured
by the acquisition board.

Considering a drive field ain in a large coherent state |αin〉 whose phase is set to 0
(αin > 0), it results in an added drive term in the qubit hamiltonian that reads, as
in Eqs. (45, 75), Hdrive = h̄(i

√
κinαin

g
∆ (σ+ − σ−)) = − h̄√κinαin g∆σY , so that the

unitary evolution operator for the qubit after time t is

U(t) = exp(i√κinαin
g

∆
σY t) = cos(ΩR

2 t) 1 + i sin(ΩR

2 t) σY , (130)

where ΩR = 2√κinαin g∆ is the Rabi pulsation. Thus, the qubit rotates around the
y-axis of the Bloch sphere. Following Eq. (129), the corresponding mean fluorescence
record is

dI
dt fluo =

√
ηγ1
2 〈σX〉 =

√
ηγ1
2 sinΩRt

dQ
dt fluo =

√
ηγ1
2 〈σY 〉 = 0

. (131)
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The finite transmission of the cavity at ωq implies that a fraction of the drive field is
also detected and adds up to the fluorescence signal. This contribution can essentially
be understood classically. Indeed, the transmitted field is in a coherent state |αout,0〉
at ωq, which reads, according to Eq. (52),

αout,0 =

√
2κinκout

κtot − 2i(ωq − ωr)
' −iΩR

√
κout
2g . (132)

Here, we have used that ∆ = ωr − ωq � κtot, where ∆ is the detuning between qubit
and cavity. In the Q measurement record defined in Eq. (129), this transmitted field
yields a constant term

dI
dt trans = 0
dQ
dt trans = −

√
ηκtot

2
ΩR
g

. (133)

Thus, the fluorescence signal and the transmitted signal should each be detected on a
different quadrature. However, in our experiment, the transmission between input and
output port is dominated by a −50 dB aerial cross-talk so that the transmitted signal
has an unknown amplitude and phase. In terms of measurement record, both I and
Q have an unknown constant component from the transmitted field. Combining with
Eq. (131), and taking into account an unknown scaling factor V0, the mean complex
signal detected by the JPC thus reads

S(t) = V0
√

1
2ηγ1

(dI
dt + idQ

dt )

= 〈σ−(t)〉+ β0,
(134)

where V0 is defined so that S(t)/V0 matches with the value of 〈σ−(t)〉. The complex
number β0 scales with ΩR and needs to be determined as explained below.

This record is not directly the digitized signal at the output of the detection setup.
Indeed, the measurement has a finite bandwidth δf = 1.6 MHz, which is dominated
by the JPC amplification bandwidth and which acts as a low-pass filter for the signal.
In the filtered signal S̃(t),

• the transmitted field contribution V0β0θ(t) results in a non constant signal S̃0(t) =

V0β0(1− exp−t/(2πδf)) during a transient regime that lasts about 100 ns after
turning on the drive at t = 0. Note that it still does not depend on the qubit
state.

• after the short transient, the oscillating part V0〈σ−(t)〉 gets its amplitude de-
creased for Rabi frequencies beyond δf .

On Fig. 24a, we represent the averaged measured output signals for a qubit prepared
with finite fidelity in |g〉 or |e〉 for three different drive amplitudes. In order to keep
only the interesting oscillating part, we subtract the state independent transmitted
field contribution, which corresponds to the output signal for a qubit initially in the
most entropic state ρ = 1

21. In practice, this is not done in a separate experiment
but by averaging the signals corresponding to a qubit in |g〉 or |e〉 with the proper
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coefficients to compensate for the imperfect preparation fidelities fg and fe15.
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Figure 24: a) Measured complex fluorescence signal for a qubit initially in |g〉 or |e〉, and for
increasing drive amplitudes (blue arrow) leading to Rabi frequencies 0.6, 1 and
1.4 MHz. Due to the detection setup finite bandwidth, the oscillation amplitude de-
creases when ΩR increases. The scaling factor V0 is chosen as in b, so that the signal
matches the predicted and numerically filtered signal using Eq. (134). b) Normal-
ized signal s(t) after subtraction of the constant contribution from the transmitted
field and for a Rabi frequency of 1 MHz. Reduced contrast is due to initial finite
purity and filtering of the signal by the amplifier acting as a low pass filter. c) -d)
Predicted and measured fluorescence signal encoded in color, for Rabi frequencies
ranging from 0 to 1.6 MHz.

Then, taking the real part of the oscillating term and dividing by V0, we get the
normalized signal s(t) = Re[(S̃(t) − S̃0(t))/V0)]. Note that V0 is constant over all
experiments when varying ΩR.

To calibrate the factor V0, we compute the expected value of 〈σ−(t)〉 using the
Lindblad master equation

dρ = − i

h̄
dt[H +Hdrive, ρ] + γ1dtD[σ−], (135)

where the pure dephasing term is neglected and we set ρ(0) = fg|g〉〈g|+ (1− fg)|e〉〈e|
for a qubit prepared near |g〉. The resulting signal is numerically filtered to mimic the

15 1
2 1 = agρ

g + aeρ
e where ρg,e is the density matrix representing the finite fidelity preparation of |g, e〉

and the coefficients are ag = 1/2−(1−fe)
fg+fe−1 and ae 1/2−(1−fg)

fg+fe−1 .
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finite bandwidth of the measurement. V0 is then adjusted over all data so that this
predicted signal matches s(t). On Fig. 24b, we represent the measured s(t) (dotted
line) and the numerically filtered predicted signal for a drive amplitude corresponding
to a Rabi frequency of ΩR/2π = 1 MHz. On Fig. 24c-d the predicted and measured
signals are encoded in color for Rabi frequencies ranging from 0 to 1.6 MHz. Theoretical
predictions (lower right corner of the panel) and experimental data (upper left) show
good agreement.

3.4.2 Quantum trajectories for fluorescence

In the experiment described in the previous section, the detection efficiency of √γ1σ−
is degraded by non radiative decay processes of the qubit since η = ηdetec

γ1,Purcell
γ1

≤
0.3 ηdetec. This prevents us from using individual measurement records to get reason-
ably pure quantum trajectories. We thus design a more adapted experiment (Qubit 4
in Tab. 3). In order to increase γ1,Purcell, the qubit frequency is chosen closer to the
cavity mode. It was set at ωq/2π = 6.3 GHz. The coupling to the out line is also
increased. This larger coupling allows us to use a copper cavity with more important
losses while keeping the condition κout � κL ' 2π× 200 kHz.

With this setup, we observed a far better thermalization of the qubit, with a prob-
ability of thermal excitation at equilibrium p(e) 6 1 %, so that Tqubit 6 70 mK. We
also measure the decay time T1 = 4 µs and the pure dephasing time Tφ = 35 µs. Here,
the qubit decay time is actually longer than the upper bound set by the Purcell decay
rate computed with Eq. (76), T1,Purcell = 1.3 µs. Such discrepancies have also been
reported in [77] and are attributed to the coupling of the transmon mode to other
cavity modes, which are neglected in Eq. (76). Here, the large value g

∆ ∼
1
5 may also

make some approximations assuming the dispersive regime inaccurate (see Sec. 2.2.3.3).

The experimental setup, similar to the one depicted on Fig. 23a is represented on
Fig. 25a.

• The qubit is prepared in |e〉 or in (|g〉+ |e〉)/
√

2 by applying a fast π or π/2
resonant pulse. This pulse is generated using a LO at ωq/2π + 100 MHz that is
mixed with a temporally windowed 100 MHz sine.

• The fluorescence field is measured for a time ranging from 1 to 10 µs. The signal
at the output of the cavity is amplified using a JPC and several commercial
amplifiers. It is then down-converted to 100 MHz by mixing with the same LO
that was used to generate preparation pulse, before being sampled and digitized.
In order to limit the amount of recorded data, the resulting record is integrated
over dt = 200 ns bins chosen so that dt � T1. Since the only monitored jump
operator is σ− and σ2

− = 0, a simple quantum filter [131] that we describe in
Sec. 3.4.2.2 will yield accurate quantum trajectories even for such large time
steps [132].

• The qubit state is measured using the high-power readout method described in
Sec. 3.3. On 1/3 of the experiments, this readout is directly realized at the end of
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trajectories (σZ measurement), on 1/3 after a fast π
2 |y pulse to rotate the qubit

around y-axis (σX measurement) and 1/3 after a π
2 |x pulse to rotate it around

the x-axis (σY measurement)16. Note that in this experiment, the high power
readout pulse degraded the coherence time of the qubit for tens of milliseconds
after the readout, limiting the repetition rate of the experiment. This is attributed
to quasi particles creation, whose relaxation was recently shown to occur on such
long timescales [133, 128]. We chose to decrease the amplitude of this pulse in
order to limit this effect, at the expense of the readout fidelity. Thus, in a single-
shot, the fidelity of the readout is about 85 % (15 % probability of false positive
or false negative). However, since we will only use this final readout as a mean
over a given ensemble, this imperfection can be taken into account and corrected
for.

A great number of such trajectories are then recorded. For each initial state of
the qubit, each trajectory duration and each type of final tomographic measurement,
106 trajectories are recorded on a dedicated hardware. This important amount of data
can be challenging to process but this figure was chosen to sample sufficiently every
possible final density matrix of the qubit (see Sec. 3.4.2.2). Moreover, we need to keep
the whole measurement record for each experiment.

In [134], Murch et al. show that for trajectories associated with a dispersive measure-
ment of the qubit, it is possible to reconstruct the final density matrix from the integral
of the measurement record only. Indeed, for a homodyne detection of the imaginary
part of the field at cavity frequency as is done in this experiment, and neglecting the
relaxation, the SME reads (see Eq. (109))

dρ = − i

h̄
dt[H, ρ] + Γd

2 dtD[σZ ]ρ+ dWt

√
2ηΓdM[σZ ]ρ, (136)

and the measurement record is (see Eq. (108))

dJt =
√

2ηΓdzdt+ dWt. (137)

Then, letting ζ = ArcTanh(z), a direct Itô calculation leads to

dζ =
√

2Γdη dJt, (138)

so that

z(T ) = tanh
(
ζ(0) +

T∫
0

dJt√
2Γdη

)
. (139)

It is also possible to show that x(T ) is directly linked to z(T ). Thus, a single scalar
number is enough to reconstruct the state of the qubit.

In the present case of records associated with the fluorescence of the qubit, the in-
tegral of the measurement record does not allow to actuate ρ from 0 to T . Indeed,

16 The σZ measurement is delayed so that the time between the end of the trajectory and the projective
measurement is the same for the 3 axis
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the measurement being destructive, the value of I(T ) and Q(T ) does not depend on
ρ for T � T1 since it is then dominated by noise. In the following section, following a
calculation by Mazyar Mirrahimi, we define a scalar value that is directly correlated
to the tomographic averaged outcomes. This will enable us to validate the stochastic
master equation model. Moreover, it will lead to a first estimation of η. An efficient way
of estimating η is crucial in this experiment, since a brute force strategy consisting in
running a maximum likelihood algorithm so that the fluorescence signal for each experi-
ment matches with the final tomographic measurement statistics is time consuming. In
Sec. 3.4.2.3, we describe another method using quantum particle filtering to estimate
η.

3.4.2.1 Integrable quantity for measurement records

g

e

JPC

a) b)

~
ADC

tomographyrecordprepare

c) d) e)

prepare

Figure 25: a) Pulse sequence for recorded fluorescence trajectories. The qubit is first prepared
in |e〉 or (|e〉+ |g〉)/

√
2 and its fluorescence signal is then recorded for a time T .

Qubit is eventually projectively measured along either σX , σY or σZ . b) Schematic
of the experimental setup (full wiring can be found on Fig. 67). The same LO that
is used to prepare the qubit is used to down convert the fluorescence signal before
digitization. After numerical demodulation we obtain the record {It,Qt}. c) For
a qubit prepared in |e〉, the fluorescence signal is integrated for T = 4 µs with a
decreasing exponential weight (see Eq. (142)). Experiments with the same resulting
integral mI are binned and we plot the mean value per bin of x

z+1 given by the final
readout againstmI . When statistics is sufficient (low |mI |) a slope appears. Red line:
linear fit. Inset: no correlation is observed between mI and y

z+1 . d) Idem for mQ

and y
z+1 . e) Dots : fitted slopes for mI ’s (in blue) and mQ’s (in black) as a function

of trajectory length T . Red line: exponential fit with time constant 1/(γ1/2− γphi)
leading to η = 26%.

Starting from Eq. (128), in terms of Bloch coordinates, we find that dx = −( γ1
2 + γφ)xdt−

√
ηγ1
2 (z + 1− x2)dWt

dz = −γ1(z + 1)dt−
√

ηγ1
2 x(z + 1)dWt

. (140)
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Then, letting ξ = x
z+1 and applying Itô rules, we find that

dξ = ( γ1
2 − γφ)ξdt+

√
ηγ1
2 dWt +

ηγ1
2 xdt

= ( γ1
2 − γφ)ξdt+

√
ηγ1
2 dIt,

(141)

where It is the measurement record defined in Eq. (129). Integrating this equation
between time 0 and T , on a single trajectory we get

e−(
γ1
2 −γφ)T

x(T )

z(T ) + 1 −
x(0)

z(0) + 1 =

√
ηγ1
2

∫ T

0
e−(

γ1
2 −γφ)tdIt

def
=

√
ηγ1
2 mI . (142)

Let us note here that x(t) = Tr[ρ(t)σX ] and z(t) = Tr[ρ(t)σZ ] are not directly mea-
surable on a single experiment. Yet, when considering a great number N of trajectories
from the same initial state and giving the same measured mI , if we were to use all
information in the measurement record, we would find N different ρk’s with

∀k,
√
ηγ1
2 mI = e−(

γ1
2 −γφ)T

Tr[ρkσX ]
Tr[ρkσZ ] + 1 −

x(0)
z(0) + 1, (143)

so that averaging both sides of the equation over k17

√
ηγ1
2 mI = e−(

γ1
2 −γφ)T

1
N

∑
k Tr[ρkσX ]

1
N

∑
k Tr[ρkσZ ] + 1

− x(0)
z(0) + 1

= e−(
γ1
2 −γφ)T

Tr[ρσX ]
Tr[ρσZ ] + 1 −

x(0)
z(0) + 1,

(144)

where ρ is the density matrix corresponding to the statistical mixture of all the selected
final states. Thus, Tr[ρσα] corresponds to the average value of the σα measurement out-
comes (α = x, z) for the selected experiments.

Similarly, defining mQ =
∫ T

0 e−(
γ1
2 −γφ)tdQ, when selecting experiments giving the

same mQ, we have√
ηγ1
2 mQ = e−(

γ1
2 −γφ)T

Tr[ρσY ]
Tr[ρσZ ] + 1 −

y(0)
z(0) + 1. (145)

On Fig. 25c-d, for trajectories starting in ρ0 = 1
2 (1 + σX) and recording the fluores-

cence field for T = 4 µs, we sort the trajectories according to the value of mI and place
them into 111 bins. For each bin i and using the trajectories for which we measured
σZ (resp. σX) at T , we compute the average value zi (resp. xi). Plotting xi

zi+1 as a
function of mIi , a linear dependance clearly appears. We also check that no correlation
exists with the associated yi

zi+1 . Symmetrically, when sorting the trajectories according
to the values of mQ and placing them into the bins j, the same slope appears when
plotting yj

zj+1 as a function of mQj . Note that due to the electrical delay between the
cavity output and the end of the detection chain, the phase of the measurement record
needs to be adjusted. Since 〈σY 〉 = 0, it can be done by setting to 0 the phase of

17 if ∀k, akbk = ε, then
∑

k
ak∑

k
bk

= ε
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the average signal dIt + idQt =
√

ηγ1
2 (〈σX〉+ i〈σY 〉)dt when the qubit is prepared in

(|g〉+ |e〉)/
√

2.

The measured slopes in this experiment are directly proportional to η, but the dig-
itized measurement record is also scaled by an undetermined factor α (cables atten-
uation, LO power...). This factor can be determined by measuring the variance of
αI(τ ) = α

∫ τ
0 dIτ over many experiments. For a qubit in its ground state, we directly

have:

Var[αI(τ )] = α2Var[Wτ ,I −W0,I ] = α2τ . (146)

Note that the finite amplification bandwidth δω of the JPC induces correlations in the
measured signal over a typical time τc = 1/δω so that we have to choose τ � τc.

Repeating this process for trajectories ending up at different times T ∈ [1 µs, 10 µs]
and fitting the measured slopes with

√
ηγ1
2 e(

γ1
2 −γφ)T , we extract η = 26± 2 % (see

Fig. 25e). This value is consistent with the more precise estimation given in Sec. 3.4.2.3.

3.4.2.2 From measurement record to trajectory

Now that detection efficiency is known, we want to translate all the measurement
records {dIt, dQt} into quantum trajectories {ρ(t)}.
Up to now, we have neglected the finite bandwidth of the JPC which was about 2π×
3 MHz � γ1. However, the time constant τc of the effective low pass filter can be
extracted along with the scaling factor α and its effect can then be corrected for.
Indeed, considering two successive time steps t− dt and t (in practice, dt = 200 ns,
which matches the constraints given in Sec. 2.1.3.2), the digitized records Ĩ and Q̃

amplified and filtered by the JPC finite bandwidth are given at first order by dĨt = λαdIt + (1− λ)dĨt−dt

dQ̃t = λαdQt + (1− λ)dQ̃t−dt,
(147)

where λ is defined by τc = − dt
log 1−λ and {dIt, dQt} would be the records for an infinite

bandwidth detector. We then consider records much longer than τc and for a qubit
prepared in |g〉 so that there is no signal on average. In that case, dIt = dWt at all
times t. By definition, E[dWtdWt′ ] = δt,t′dt. Then, for t� τc,

E[dĨ2
t ] = E[(αλ

t/dt∑
k=0

(1− λ)kdIt−kdt)
2]

= α2λ2
t/dt∑
k=0

(1− λ)2kdt

= α2λdt
2−λ

(
1− (1− λ)2t/dt+1

)
= α2λdt

2−λ ,

(148)

and similarly,

E[dĨtdĨt−dt] =
α2λ(1− λ)dt

2− λ . (149)
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We can then extract the value of α which is consistent with what was found in
Eq. (146), and the value of τc = 100 ns. We then recover the measurement records
before any amplification or filtering dIt = dĨt+(λ−1)dĨt−dt

λα

dQt = dQ̃t+(λ−1)dQ̃t−dt
λα

. (150)
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Figure 26: a) A typical 10 µs-long measurement record, rescaled and corrected for finite detec-
tion bandwidth according to Eq. (150). b) Bloch sphere representation of 5 random
10 µs trajectories (each in a different color) for a qubit initially in |e〉. The blue
trajectory corresponds to the measurement record shown in (a).

We can then recover the quantum trajectories using a more practical formulation of
the general SME

dρ = − i

h̄
dt[H, ρ] + dt

∑
ν

D[Lν ]ρ+
∑
ν

2dWν,t
√
ηνM[Lν ]ρ, (151)

where {Lν} is a set of jump operators and {Wν} a set of independent Wiener processes
associated with the jump operators. Following Amini, Mirrahimi and Rouchon [131],
we can show applying Itô rules that this equation can be written as

ρ(t+ dt) = Mtρ(t)M
†
t +

∑
ν(1− ην)Lνρ(t)L†νdt

Tr[Mtρ(t)M
†
t +

∑
ν(1− ην)Lνρ(t)L

†
νdt]

, (152)

with the Kraus operator Mt depending on the measurement records at time t as

Mt = 1− (iH +
∑
ν

1
2L
†
νLν)dt+

∑
ν

√
ηνLνdJν,t. (153)

Here, dJν,t =
√
ην〈Lν +L†ν〉dt+dWν,t is the measurement record associated with jump

ν.
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This formulation of the SME is more adapted for data analysis [132] which is always
acquired with a finite bandwidth detector so that we cannot take the limit dt→ 0. For
example, in Eq. (109) and for a finite time step dt, it can occur that for a state ρ(t)
nearby the surface of the Bloch sphere, the state ρ(t+ dt) lies outside of the sphere. On
the other hand, Eq. (152) ensures that the Bloch vector remains inside of the sphere
and the density matrix remains positive at each time step. It is also more adapted for
numerical simulation .

In the case of the monitored fluorescence signal, with heterodyne detection of effi-
ciency η, and taking into account extra dephasing at a rate γφ, it reads

ρ(t+ dt) =
Mtρ(t)M

†
t + (1− η)γ1σ−ρ(t)σ+dt+ γφ

2 σZρ(t)σZdt
Tr[Mtρ(t)M

†
t + (1− η)γ1σ−ρ(t)σ+dt+ γφ

2 σZρ(t)σZdt]
, (154)

where the operator Mt is similar to a Kraus operator (see 4.1.2) and depends on the
measurement record as

Mt = 1− (iH +
γ1
2 σ+σ− +

γφ
4 1)dt+

√
ηγ1
2 σ−(dIt + idQt). (155)

We applied this quantum filter to all the measurement records rescaled and corrected
for the detection finite bandwidth according to Eq. (150). We present here the result-
ing trajectories for a qubit prepared in |e〉 at t = 0. Note that we adjusted finely the
qubit decay time to T1 = 4.15 µs on the whole set of data. Imperfections in qubit
preparation due to spurious thermal excitation at equilibrium and decoherence during
the preparation π pulse are neglected so that ρ(0) = |e〉〈e|.

On Fig. 26b, we give a Bloch sphere representation of 5 random 10 µs long trajec-
tories. Each one is plotted in a different color, and the blue one corresponds to the
record plotted on Fig. 26a. Starting from |e〉, the qubit state diffuses randomly in the
Bloch sphere, but each trajectory eventually ends up in |g〉 at infinite time. For a given
trajectory, the initial rotational symmetry around the z-axis is spontaneously broken
by the quantum noise.

In order to verify our model, we compare the predictions made from the trajectories
with the results of the final tomography (see Fig. 25a). The trajectories that ended
at time T with a σZ measurement (resp. σX , σY ) are sorted according to the value
of ztraj = Tr[ρ(T )σZ ] (resp. xtraj = Tr[ρ(T )σX ], ytraj = Tr[ρ(T )σZ ]) and grouped in
20 bins of 5× 105 trajectories each, with similar values of ztraj (resp. xtraj, ytraj)18. In
each bin, we average the final projective measurement outcome, corrected for finite
readout fidelity. The average value ztomo (resp. xtomo, ytomo) is then compared with
the value predicted from the trajectories. On Fig. 27b-c, we plot ztomo against ztraj and
xtomo against xtraj for the 4 µs long trajectories. In both cases, the tomography results
match quantitatively with the predictions from the trajectories. The agreement is also
quantitative for the predictions on σY and for all trajectory durations, which we did
not plot here. Note that on Fig. 27a, we plot 5 trajectories with similar final value of

18 With this choice, the bins thus have a variable width ∆ztraj
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a) b)

c)

Figure 27: a) Bloch sphere representation of 5 trajectories (each in a different color) for a
qubit initially in |e〉 and with similar final value of ρ(T ) = 1

2 + 1
2~σ.(−0.6± 0.05, 0±

0.05,−0.2± 0.05) at T = 4 µs . b) Comparison of the predicted values ztraj of 〈σZ〉
with the final projective measurement result ztomo averaged over bins containing
5× 105 trajectories each. The red line has slope 1. Inset: distribution of ztraj for the
106 trajectories. The bins have a constant width 0.02 and do not correspond to the
bins used in the main panel). c) Idem for predicted xtraj and measured xtomo at
final time.

ρ (same xtraj, ytraj and ztraj within ±0.05), but on Fig. 27b-c, trajectories are binned
according to the value of ztraj only for the top panel and xtraj only for the bottom
panel.

3.4.2.3 Particle filtering for the estimation of η

In this section, we describe the method proposed by Six et al. [135] to determine η,
which uses quantum particle filtering principles [136, 137]. The idea of this method is
to compare the likelihood of different test values of η by comparing the probability of
having measured a given record for each considered value ηi.

If η is known, for a given value dyt of the measurement records at time t19, we can
map the density matrix from t to t+ dt as (see Eq. (152))

ρ(t+ dt) = Kdyt [ρ(t)]

Tr[Kdyt [ρ(t)]]
, (156)

where the so-called partial Kraus map Kdyt [24] is given by

Kdyt [ρ(t)] =Mdytρ(t)M
†
dyt +

∑
ν

(1− ην)Lνρ(t)L†νdt. (157)

Here, the Lν ’s are the jump operators, ην the yet undetermined detection efficiency
associated with each one, and the Kraus operator Mdyt is defined as in Eq. (153) and

19 in the case of heterodyne detection, dyt is a two components vector
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also depends on the choice of the ην ’s. In Eq. (156), we now note that the denomi-
nator Tr[Kdyt [ρ(t)]] corresponds to the "density of probability"20 of having found the
outcome dyt at time t. It depends on the ην ’s.

We now want to determine the most likely value of η given a set of possible values.
For simplicity, let us assume that there is a single jump operator L, and that η is one
of two possibilities η1 and η2 that we want to test. At time t, we associate with each
one a probability πi(t)i=1,2 to be the true value of η knowing the measurement record
from 0 to t. Then, following Bayes rules, we have at time t+ dt

πi(t+ dt) = P (η = ηi|dyt)

=
P (dyt|η = ηi)× P (η = ηi)

P (dyt)

=
P (dyt|η = ηi)× P (η = ηi)

P (dyt|η = η1) + P (dyt|η = η2)

=
Tr[Kη=ηi

dyt [ρ(t)]]× πi(t)
Tr[Kη=η1

dyt [ρ(t)]] + Tr[Kη=η2
dyt [ρ(t)]]

,

(158)

where, for simplicity, all the probabilities P are implicitly conditioned on the measure-
ment record from 0 to t. We thus process the measurement records in a similar way
to what is done in Sec. 3.4.2.2, but applying the extended filter keeping track of both
ρη=ηi(t) and the corresponding probability πi(t) for each i. For a long trajectory, even-
tually, one of the πi’s goes to 1, and it is the most likely value of η. By repeating this
method, we can perform a dichotomic search of the value of η.
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Figure 28: a) Quantum particle filter applied to 10 µs long records corresponding to a qubit
prepared in ρ(0) = 1

2 (1 + σX ). One of the πi’s converges toward 1 rapidly, singling
out the most likely value η = 0.24. b) After scanning the whole set of records for
more refined test values, the filter cannot decide between η = 0.24 and η = 0.245.

The method that we have described can easily be adapted to the heterodyne mea-
surement with several jump operators and can also account for a finite pure dephasing

20 For a density of probability to be rigorously defined, one would need to normalize dyt by
√

dt
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rate, which is simply the effect of the jump operator
√
γφ/2σZ monitored with effi-

ciency ηφ = 0. Note that in our data, we do not have a single long trajectory, but
a great number of short ones. The method is then applied to the concatenated mea-
surement records and ρi is reset to ρ(0) at the end of each individual trajectory. On
Fig. 28a, we represent the πi’s for a set of tested values of η. After scanning 5× 104

individual records, the value η = 0.24 is clearly chosen by the filter as the most likely
value for η. In Fig. 28b, we test more refined values of η around this first estimation.
After scanning the whole set of data, the filter cannot decide between η = 0.24 and
η = 0.245. This gives us the estimated value of η and the corresponding uncertainty.

3.4.2.4 Trajectories statistics

1 2 5 10 100 104103trajectories
per cell

1 μs 2 μs 3 μs 4 μs 5 μs

6 μs 7 μs 8 μs 9 μs 10 μs

Figure 29: Distribution of the qubit states in the Bloch sphere for 106 repeated experiments
with a qubit initially in |e〉 and after a time t from 0 to 10 µs. The Bloch sphere
is paved with cells of size dx = dy = dz = 0.02, and the number of trajectories in
each cell is encoded in color.

We now consider only the 10 µs long trajectories. A proper model to describe the
statistics of these trajectories would require a Fokker-Planck equation, which is a work
still in progress at the time of this writing. In this section, we give a representation of
the distribution of the qubit states during the decay from |e〉 to |g〉.

On Fig. 29, we represent at different times t the distribution of the qubit states in
the Bloch sphere for 106 repeated experiments. To do so, we first pave the Bloch sphere
with cubic cells whose size are given by dx = dy = dz = 0.02. In color, we represent
the number of experiments for which the trajectory predicts a value of (x(t), y(t), z(t))
lying inside a given cell. We do not represent a fourth of the cells (x > 0 > y) for better
visibility.
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The overall rotational symmetry around the z-axis is respected. At each time t,
the trajectories are dispersed on a cap of finite thickness (several cells), and this cap
collapses down to |g〉 at large times t. To get some qualitative understanding of this
shape, let us note that for the

√
γ1/2σ− jump operator alone (corresponding to the

quadrature I only of the fluorescence signal), the evolution of the density matrix over
a time step dt is given by (see Eq. (128))

dρ = γ1
2 dtD[σ−]ρ+

√
ηγ1
2 (σ−ρ+ ρσ+ − 〈σX〉ρ)dWt,I , (159)

which leads to an evolution of the Bloch coordinates dx = −γ1
4 xdt+

√
ηγ1
2 (1 + z − x2)dWt,I

dz = −γ1
2 (1 + z)dt+

√
ηγ1
2 (1 + z)xdWt,I

. (160)

A similar evolution of the y and z coordinates is associated with the i
√
γ1/2σ− jump

operator. We can check that, beside the deterministic evolution proportional to dt, the
qubit states receives stochastic "kicks" proportional to dWt,I . Along the x-axis, these
kicks are stronger near the center of the Bloch sphere. This tends to push apart the
trajectories in the (x,y) plane. Along the z-axis, the kicks are stronger in the upper
part of the Bloch sphere and farther from the z-axis. This will cause the trajectories
to go down faster near the surface of the Bloch sphere, and thus to form a cap.
In this experiment, η being quite small (η = 24 %), the dynamics is dominated by
the deterministic evolution associated with the damping operator D[σ−]. As a result,
the trajectories are well inside of the sphere, whereas they would remain on the sur-
face for η = 1. Moreover, the corresponding variation of (dx, dz) proportional to dt
in Eq. (160) pulls the trajectories toward |g〉 along a parabola so that the distribution
ends up wrapped upon itself.
Naively, one could think that the evolution of the statistics of trajectories can be un-
derstood as an overall shrinking of the Bloch sphere due to the unmonitored relaxation
with a rate proportional to 1− η, and stochastic diffusion on this reduced sphere. How-
ever, the experiment demonstrates that there is a non-zero thickness to the deformed
sphere, which informs the too simple picture of well decoupled equations of evolution
for P (ρ(T )).

During relaxation, we can check that the trajectories first spread out in the Bloch
sphere before gathering down toward |g〉. To be more quantitative, we use the relative
entropy between two matrices ρ and σ defined in Eq. (15) as

S(ρ||σ) = −Tr[ρLog2(σ)] + Tr[ρLog2(ρ)] (161)

as a measure of distance. Then, calling ρk the density matrix corresponding to the
kth cell, pk the probability of a trajectory being in this cell at time t and ρ the mean
density matrix over all trajectories, which is the matrix one gets when not using the
fluorescence records, we have

S(ρk||ρ)
k

= −
∑
k
pkTr[ρkLog(ρ)] +∑

k
pkTr[ρkLog(ρk)]

= −Tr[∑
k
pkρkLog(ρ)]−∑

k
pkS(ρk)

= S(ρ)− S(ρk)
k.

(162)

78



0
2 864 10

1

0.5

Figure 30: For 106 experiments of monitored relaxation, evolution of the Von Neumann entropy
of the density matrix when dismissing the measurement records (red dots), the mean
entropy of a trajectory (blue dots) and the mean relative entropy from a trajectory
to the mean density matrix (green dots). Red line: calculated Shannon entropy
S = pLog2p+ (1− p)Log2(1− p) for p the occupation of the |e〉 state decaying with
rate T1

For a perfect detection, the trajectories remain on the surface of the Bloch sphere and
we have S(ρk)

k
= 0. In that case, since the relative entropy can be seen as a distance in

the Bloch sphere, the entropy of the unconditioned density matrix ρ can be interpreted
as the dispersion of the trajectories around their mean value S(ρk||ρ)

k. In this sense,
the increase of entropy during relaxation corresponds to an increase in the volume oc-
cupied by the trajectories in the Bloch sphere. When these trajectories gather down to
the ground state, the entropy decreases down to 0. For finite efficiency, the trajectories
are themselves entropic, which compensates for their smaller dispersion. On Fig. 30, we
plot the mean relative entropy extracted from the ensemble of trajectories (green dots),
the mean entropy of the trajectories (blue dots) and the entropy of the unconditioned
matrix (red dots). This last value is, as expected, strictly equal to the sum of the two
previous ones. It follows the expected law for a qubit initially in |e〉 and decaying on a
time scale T1 (red line).

In this chapter, we have seen how the outcomes of measurements of the qubit per-
formed until the time t can be used to estimate its state. The actuated density matrix
ρ(t) then allows us to make predictions about the statistics of future measurements
conditioned on the history of past measurements. In the next chapter, we will see how
to use the knowledge from measurements performed both before and after time t to
predict the statistics of a measurement at t. This knowledge about past and future
will be encoded in two matrices ρ(t) and E(t), forming the Past Quantum State of the
system.
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4
POST - SELECTED QUANTUM TRAJECTORIES

The reversibility of time evolution for a closed quantum system is an essential feature of
quantum physics. Open systems such as ones under measurement evolve irreversibly. In
1964, Aharonov et al. noticed that post-selection using a final projective measurement
plays the time symmetric role of an initial preparation [27]. In 1988, in a seminal paper,
they showed that when considering a system prepared and post-selected in eigenstates
of two non-commuting operators, a weak measurement in between could yield on av-
erage a result far outside of the allowed range for pre or post selection only [28]. This
non trivial property of the mean, which is called weak value, is a quantum feature that
cannot be observed with strong disrupting measurements [138]. It was experimentally
observed for the first time in 1991 [139] and has since then been shown to contra-
dict macro-realism in the hypothesis of a non-invasive detector, using the violation of
Leggett-Garg inequality [140, 141, 142, 143]. Other interesting features of the weak val-
ues have also been put forward (summarized in [144]) and experimentally used, such as
noiseless amplification [145, 146] or direct tomography of an operator or wave function
[147]. However, usefulness of these weak values as well as their purely quantum origin
are still the subject of heated debates [148, 32, 149, 150, 151].

In this chapter, we present the results of an experiment illustrating some of these
properties for pre and post-selected ensembles of quantum trajectories. The weak mea-
surement here is the heterodyne detection of the fluorescence field (see Sec. 3.4).

In order to make predictions about this weak measurement using all available infor-
mation, extracted both before and after it took place, one needs to design an acausal
Bayesian filter [152], in the same way that a historian tries to reconstruct the thread of
events in the recent past scanning both records from the far past and from the current
situation.
It is possible to formulate this filter to render explicit the symmetry between the
processing of the information from both sides of the timeline around the weak mea-
surement date. Using a recently developed framework generalizing to open quantum
systems the backward propagation in time of the information from a posteriori mea-
surements [29, 30, 31], we establish a time reversed version of the stochastic master
equation (154). It generalizes the quantum trajectory approach described in Sec. 3.4.2.
When considering the average value of a weak measurement on post selected ensem-
bles, the time evolution of the effect matrix, which encodes the information on the final
measured state of the qubit, is governed by a master equation similar to the Lindblad
form (see Eq. (27)). We show however that for a non QND weak measurement such
as the one used here, this evolution is not time symmetric to the one of the density
matrix.

81



4.1 past quantum state

4.1.1 Discrete time version

Figure 31: Prediction and retrodiction from discrete time measurements. A system (in orange)
is measured at discrete times k ∈ {1...,T}. These generalized measurements are
modeled by unitary evolutions in interaction with ancillary systems, the meters,
which are then measured projectively with finite efficiency (equivalence with the
Kraus decomposition shown in Sec. 2.1.3.1 and [18]). We want to predict the prob-
ability of a given outcome n at time t, knowing all the other outcomes yk’s. The
observer information on the system (in the upper part of the diagram) comes both
from measurements before t (information encoded in the density matrix ρ(t− 1)),
and after t (information encoded in the effect matrix E(t)). ρ and E are found re-
spectively starting from the initial state ρ0 (resp. the final effect matrix E(T ) = 1)
and actuating with the measured yk’s as ρ(k) = Kyk [ρ(k − 1)] if k < t (resp.
E(k− 1) = K∗yk [E(k)] if k > T ) until time t.

We want to describe the situation represented on Fig. 31. A quantum system is
prepared at time 0 in a state encoded by the density matrix ρ0 and then measured
at discrete times k = 1, 2, ...,T . Here, these measurements are any generalized mea-
surement [18], from weak to fully projective. We want to make predictions about the
statistics of the outcomes of the one taking place at t ∈ [0,T ] when post-selecting
the experiments that yielded a particular measurement record (y1, ..., yt−1, yt+1, ...yT )
for the T − 1 others. For now, we suppose that there is no hamiltonian evolution or
decoherence processes beyond these measurements. We will see in the following section
how to take those into account as continuous detection back-action.

We model the T − 1 measurements with the same set of Kraus operators {Mν} (see
Sec. 2.1.3.1)1. We take into account finite efficiencies encoded in a matrix η which co-
efficients are ηy,ν = P (y|ν), corresponding to the probability of detecting the outcome
y when a ν jump actually occurred. Thus η, has coefficients between 0 and 1, and
verifies ∀ν,∑y ηy,ν = 1. Note that η does not need to be a square matrix. Indeed, there

1 For simplicity, we suppose that all measurements follow the same procedure. If one wants to model
measurements of, say, different operators, a different set of Kraus operators is needed for each time.

82



can be cases for which some jumps are not detected whereas others are with efficiency
1 (in this case η has more columns than lines) or other situations when a jump can
trigger many outcomes for the measurement, each one indicating a jump with a given
confidence (in this case η has more lines than columns).
Then, knowing the density matrix of the system just before time k and the measure-
ment outcome yk, ρ reads after time k

ρk =
∑
ν P (ν|yk)

Mνρ(k− 1)M †ν
Tr[Mνρ(k− 1)M †ν ]

=
∑
ν

P (ν|yk)
P (ν)

Mνρ(k− 1)M †ν

=

∑
ν ηyk,νMνρ(k− 1)M †ν

P (yk)
def
=

Kyk [ρ(k− 1)]
Tr[Kyk [ρ(k)]]

,

(163)

where Kyk is a completely positive map. Here, we can identify the probability of the
outcome yk as P (yk) = Tr[∑ν ηyk,νMνρ(k− 1)M †ν ].
We then write the state of the qubit just before the measurement at time t

ρ(t− 1) = Kyt−1 ◦Kyt−2 ◦ ... ◦Ky1 [ρ0]

Tr[Kyt−1 ◦Kyt−2 ◦ ... ◦Ky1 [ρ0]]
. (164)

To model the measurement at time t, we suppose that the system interacts with an
ancillary system called the meter. This representation is equivalent to the Kraus de-
composition (see Sec. 2.1.3.1 and [18]). Following Eq. (18), we suppose that the meter
is initially in a pure state that we call |0〉, and that there is a set of Kraus opera-
tors {Ωm}2 and an orthogonal basis of the meter space {|m〉} so that the interaction
transforms the whole system as

ρ(t− 1)⊗ |ψ0〉 7→
∑
m,m′

Ωmρ(t− 1)Ω†m′ ⊗ |m〉〈m
′|. (165)

We then postpone the projection of the meter and instead, following Gammelmark et
al., place it into an imaginary safe while the system continues to evolve. At time T,
the whole density matrix reads

ρtot(T ) =

∑
m,m′

KyT ◦ ... ◦Kyt+1 [Ωmρ(t− 1)Ω†m′ ]⊗ |m〉〈m′|

D
, (166)

with

D = Tr[ ∑
m,m′

KyT ◦ ... ◦Kyt+1 [Ωmρ(t− 1)Ω†m′ ]⊗ |m〉〈m′|]

= Tr[∑
m
KyT ◦ ... ◦Kyt+1 [Ωmρ(t− 1)Ω†m]].

(167)

Eventually, after time T we look at the meter state in the safe, which projects on the
basis {|m〉}. For now we suppose that this measurement has perfect fidelity. Errors

2 We thus let the possibility for the measurement at time t to be different from the t− 1 others.
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in the measurement can indeed easily be taken into account by mixing the outcomes
probabilities. We then get a particular outcome n with probability

p(n|y1, ..., yT1 , ρ0) =
Tr[KyT ◦ ... ◦Kyt+1 [Ωnρ(t− 1)Ω†n]]

D
. (168)

Letting K∗y be the adjoint map of Ky, which is defined by its action on a matrix A
as

K∗y [A]
def
=
∑
ν

ηy,νM
†
νAMν , (169)

we note that for two hermitian matrices A and B,

Tr[AKy[B]] = Tr[K∗y [A]B]. (170)

We can then rewrite the numerator in Eq. (168) as

p(n|y1, ..., yT , ρ0) = Tr[KyT ◦ ... ◦Kyt+1 [Ωnρ(t− 1)Ω†n]]/D
= Tr[1 KyT ◦ ... ◦Kyt+1 [Ωnρ(t− 1)Ω†n]]/D
= Tr[K∗yT [1] KyT−1 ◦ ... ◦Kyt+1 [Ωnρ(t− 1)Ω†n]]/D
= ...
= Tr[K∗yt+1 ◦ ... ◦K∗yT−1 ◦K

∗
yT
[1] Ωnρ(t− 1)Ω†n]/D,

(171)

so that

p(n|y1, ..., yT , ρ0) =
Tr[E(t)Ωnρ(t− 1)Ω†n]∑

m
Tr[E(t)Ωmρ(t− 1)Ω†m]

. (172)

Here, we have introduced the so-called effect matrix E(t) [29] which is propagated
backward in time according to

E(t) = K∗yt+1 ◦ ... ◦K∗yT−1 ◦K
∗
yT
[1]. (173)

Like ρ, E is hermitian, but it is not normalized. Gammelmark et al named Past Quan-
tum State (PQS) the association of both matrices

(
ρ(t− 1),E(t)

)
. It contains all the

available information in order to make predictions about a measurement at time t,
knowing the measurement outcomes prior and after t.

4.1.2 Continuous time version

We now want to transpose the previous reasoning to weak continuous monitoring of
the system. Note that the actual experiment described in the next section contains
one discrete measurement of the σZ operator of the qubit at time T , preceded by a
continuous heterodyne detection of the fluorescence field from time 0 to T . We will
thus need to combine both models.

We now suppose that the system evolves continuously under the action of several
homodyne detections labelled ν, which are associated to the jump operators Lν and
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Figure 32: Prediction and retrodiction for continuous detections. The system is weakly and
continuously probed using homodyne detections schemes. These are associated with
a set of jump operators {Lν} and yield a set of measurement records {sν,[0,T ]}
according to which one propagates the density matrix ρ (resp. the effect matrix
E) forward (resp. backward) in time starting from time 0 (resp. T ). Propagation
depends on detection efficiencies ην ’s. If measurement channels are left unread (see
section 4.2.1), it only represents hamiltonian evolution and decoherence. The weak
value of a given detection labelled µ can then be predicted at time t. It is the average
of the green portion of the curve for experiments that yielded the same measurement
records at other times (in blue).

have efficiencies ην . Note that a heterodyne detection of a jump operator Lν , with
efficiency η, can be modeled as 2 simultaneous homodyne detections with the same
efficiency, say labelled ν1 and ν2, of the jumps Lν1 = 1√

2Lν and Lν2 = i√
2Lν .

We let st,ν = dyt,ν/
√

dt3, where yt,ν , the measurement record associated with detec-
tion ν, is defined as in Eq. (129) as

dyt,ν =
√
ην〈Lν + L†ν〉dt+ dWν,t. (174)

Then, as in the previous section, we define

Kst : ρ(t) 7→Mstρ(t)M
†
st +

∑
ν

(1− ην)Lνρ(t)L†νdt, (175)

with

Ms = 1− (iH +
1
2
∑
ν

(L†νLν + LνL
†
ν))dt+

∑
ν

√
ηνLνst,ν

√
dt. (176)

This operator is used to map ρ(t) to ρ(t+ dt) as in Eq. (152) as

ρ(t+ dt) = Kst [ρ(t)]

Tr[Kst [ρ(t)]]
. (177)

Then, integrating from 0 to t,

ρ(t) =
Kst−dt ◦ ... ◦Ks0 [ρ0]

Tr[Kst−dt ◦ ... ◦Ks0 [ρ0]
, (178)

3 We consider dt to be finite, which is the case for experimental data or numerical simulation

85



We now assume that the measurement of interest at time t is itself a homodyne
detection4 and we suppose, without loss of generality, that it corresponds to one of
the Lν ’s jump operators, which we label µ, with efficiency η̃µ

5. Our goal is thus to
predict the statistics of the random output ξ of the µ detection at time t conditioned
on a given value of the measurement records from 0 to t and from t+ dt to T . This
means computing, for all values of st,µ, p(ξ ∈ [st,µ, st,µ+ dξ]|s[0,t] ∩ s[t+dt,T ]]) up to the
dominant order in dt, which is

√
dt as we can check at the end of the calculation.

We then model this detection at time t, as in the previous section, as an interaction
with a meter initially in a pure state |ψ0〉 followed by a projective measurement of this
meter, and the interaction reads, similarly to Eq. (165),

ρ(t)⊗ |ψ0〉 7→
∫ ∫

dξdξ′ Ω̃ξρ(t)Ω̃
†
ξ′ ⊗ |ξ〉〈ξ

′|, (179)

where {|ξ〉} is a continuous orthogonal basis of the meter verifying 〈ξ|ξ′〉 = δ(ξ − ξ′),
and {Ω̃ξ} is a set of Kraus operators. We show here that

Ω̃ξ = (2π)−1/4 exp−ξ
2

4 Ωξ, (180)

where Ωξ reads

Ωξ = 1− 1
2L
†
µLµdt+ Lµ

√
η̃µξ
√

dt. (181)

Indeed, in order to determine Eq. (180), one can expand Eq. (152) at order
√

dt. Thus,
if the output ξ of the µ detection integrated over the time step dt is dyµ,t = st,µ

√
dt,

the density matrix at time t+ dt has to read ρ̃(t+ dt) =
Ωst,µρ(t)Ω†st,µ

Tr[Ωst,µρ(t)Ω
†
st,µ ]

, which

leads directly to Eq. (181). Now, in order to get the proper prefactor in Eq. (180), one
requests that Tr[Ω̃ξρ(t)Ω̃

†
ξ] is consistent with the distribution of outputs for detection

µ conditioned on past measurements only. In our model, the output dyµ,t/
√

dt is
Gaussian distributed with variance 1 and mean

√
η̃µTr[ρt(Lµ+L†µ)]

√
dt. For any value

of st,µ, the probability that ξ is found between st,µ and st,µ + dξ reads

p(ξ ∈ [st,µ, st,µ + dξ]) = Tr[Ω̃st,µρ(t)Ω̃†st,µ ]dξ

= 1√
2π exp −(st,µ−

√
η̃µ〈Lµ+L†µ〉

√
dt)2

2 dξ

= 1√
2π exp[− s2t,µ

2 ]exp[
√
η̃µst,µ〈Lµ + L†µ〉

√
dt+O(dt)]dξ

= 1√
2π exp[− s2t,µ

2 ](1 +
√
η̃µst,µ〈Lµ + L†µ〉

√
dt)dξ

= 1√
2π exp [− s2t,µ

2 ] Tr[Ωst,µρ(t)Ω†st,µ ]dξ.
(182)

4 To model a strong measurement taking place during a weak monitoring, we use the equations of this
section to propagate ρ and E until time t and then use Eq. (172)

5 This efficiency can be differ from ηµ. For example when one does not condition the outcome of the
µ detection at time t on the measurement record of the same detection at other times, ηµ = 0 but
η̃µ 6= 0.
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This final relation terminates the proof.

The combined evolution of the system and meter at t outlined in Eq. (179) thus
reads

ρ(t)⊗ |ψ0〉 7→
∫ ∫ 1√

2π
exp−ξ

2 + ξ
′2

4 dξdξ′ Ωξρ(t)Ω
†
ξ′ ⊗ |ξ〉〈ξ

′|. (183)

We now follow the same line of reasoning as in the previous section. After interaction
with the meter and further monitoring until T , the full density matrix reads [153]

ρtot(T ) =

∫ ∫ 1√
2π exp− ξ2+ξ

′2

4 dξdξ′ KsT ◦ ... ◦Kst+dt [Ωξρ(t)Ω
†
ξ′ ]⊗ |ξ〉〈ξ′|

D
, (184)

where

D = Tr[
∫ ∫ 1√

2π exp− ξ2+ξ
′2

4 dξdξ′ KsT ◦ ... ◦Kst+dt [Ωξρ(t)Ω
†
ξ′ ]⊗ |ξ〉〈ξ′|]

=
∫ 1√

2π exp− ξ2

2 dξ Tr[KsT ◦ ... ◦Kst+dt [Ωξρ(t)Ω
†
ξ].

(185)

We can then write the probability to find a value st,µ when measuring the meter
conditioned on the measurement records at other times as

p(ξ ∈ [st,µ, st,µ + dξ]|s[0,t] ∩ s[t+dt,T ])

= 1√
2π exp− s2t,µ

2 dξTr[1 KsT ◦ ... ◦Kst+dt [Ωst,µρ(t)Ω†st,µ ]]/D

= 1√
2π exp− s2t,µ

2 dξTr[K∗st+dt ◦ ... ◦K∗sT [1] Ωst,µρ(t)Ω†st,µ ]/D,

(186)

where K∗st is the adjoint map of Kst defined by its action on a matrix E as

K∗st [E] =M †stEMst +
∑
ν

(1− ην)L†νELνdt. (187)

Defining the effect matrix E(t) = K∗st ◦K
∗
st+dt ◦ ... ◦K∗sT [1], we get

p(ξ ∈ [st,µ, st,µ+ dξ]|s[0,t]|s[t+dt,T ]) =

1√
2π exp− s2t,µ

2 Tr[E(t+ dt)Ωst,µρ(t)Ω†st,µ ]
1√
2π
∫

exp− ξ′2

2 Tr[E(t+ dt)Ωξ′ρ(t)Ω
†
ξ′ ]dξ′

dξ.

(188)

This expression allows us to compute the statistics of the measurement record of the
homodyne detection µ at time t, conditioned on a given value of all measurement
records from 0 to t and from t+ dt to T . In practice, in the 2 cases described in the
following sections, we are interested only in the mean value of this measurement. Then,
considering that Ωξ = 1− 1

2L
†
µLµdt+ ξ

√
η̃µLµ

√
dt, the expressions simplify due to the

parity of the gaussian distribution and we find that the average measurement record
of the µ detection, conditioned on all the other records that we dispose of, reads

dyµ
dt =

st,µ√
dt

=
Tr[E(t)

√
η̃µ(Lµρ(t) + ρ(t)L†µ)]

Tr[E(t)ρ(t)] = 2Re[
Tr[ρ(t)E(t)

√
η̃µLµ]

Tr[ρ(t)E(t)] ]

def
= 2

√
η̃µRe[〈Lµ〉w(t)].
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(189)

For simplicity, we replace here E(t+ dt) by E(t) in this final expression. Indeed, if the
outcome of the µ detection at the time of interest t is not conditioned on the record of
the same detection at other times (ηµ = 0), these two matrices differ only at the order√

dt and can thus be identified. When ηµ 6= 0, one does not include the value of sµ,t
in the post-selection criterion so that the identification still holds.
In the last equality of Eq. (189), we have defined the so-called weak value of the Lµ
operator at time t. Historically, the term weak value was used to describe the mean-
value of a weak measurement when preparing and post-selecting the system [144]. In
this sense, ρ and E are rather the states resulting of a preparation and post-selection
by strong measurements. However, when integrated over time, a weak continuous mea-
surement can effectively be seen as a strong one. Recently, observation of weak values
out of the accessible range for unconditional average has been reported in supercon-
ducting qubits when post-selecting trajectories according to the measurement record
of the continuous weak monitoring itself [154] .

In this section, we saw how to actuate the density and effect matrices using all the
measurement records. This allows one to predict the statistics of an intermediate weak
measurement. The weak value can be computed from this probability density. When
combining this continuous version formalism with the discrete version described in
Sec. 4.1.1, one can can take into account final post-selection as we will see in the next
section.

4.2 weak values of the fluorescence signal

4.2.1 Master equation

We now want to describe the same experiment [82] as the one described in 3.4.1 except
that a final projective measurement takes place at time T (see Fig. 33a). The same
qubit (Qubit 2 in Tab 3) is driven resonantly through the in port, and while it un-
dergoes Rabi oscillations, its fluorescence signal is collected at the out port. Note that
the contribution of the transmitted drive field is subtracted, and only the quadrature
I containing information about the qubit state is recorded.

We average the signal conditionally to the final projective measurement outcome,
implementing the situation described in 4.1.1. This projective readout follows the high-
power readout protocol described in 3.3. Thus, it has two possible outcomes denoted
1 and 0 for two possible Kraus operators Me = |e〉〈e| and Mg = |g〉〈g|. Its efficiencies
have been independently calibrated to be η0,g = η1,e

def
= F = 0.96

η1,g = η0,e = 1− F
. (190)
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Figure 33: a) Simplified schematic of the experiment (full wiring can be found on Fig. 65). The
qubit is prepared near |g〉 by active cooling (see Sec. 6.1) or near |e〉 by applying a
fast π-pulse afterward. It is then driven for T = 2.5 µs through a weakly coupled
line in and the fluorescence signal (in green) is collected on the strongly coupled
line out, down converted and digitized. The constant transmitted field (in blue) is
subtracted. Drive phase is chosen so that the signal develops on the real quadrature
only. At the end of the experiment, a strong measurement of the σZ operator of the
qubit is performed. Signal is averaged conditionally to this outcome to give 2 mean
traces sg−(t) (resp. se−(t)) when the qubit is post-selected (with finite fidelity) in |g〉
(resp. |e〉). b) Pulse sequence representation. c) Mean fluorescence traces for a qubit
initially in ρ0 = 1

2 1, driven at Rabi frequency νR = 1 MHz and post-selected in
|g〉 (in blue) or |e〉 (orange). Theoretically predicted traces are numerically filtered
to mimic JPC finite bandwidth. d) Mean fluorescence signal encoded in color for a
qubit initially in ρ0 = 1

2 1 and post-selected in |g〉, and for drive amplitudes from 0 to
1.6 MHz. Lower left corner: experimental data. Upper right: theoretical prediction.

Thus, at time T and considering the experiments which yielded the result y for the
final readout with y ∈ {0, 1}, the effect matrix reads

Ey(T ) = K∗y [1] =

 F |g〉〈g|+ (1− F )|e〉〈e| if y = 0
(1− F )|g〉〈g|+ F |e〉〈e| if y = 1

. (191)

Our aim is to predict the mean value of the post-selected trajectories. Thus we need
to compute the value of the PQS (ρ(t),E(t)) at any time t ∈ [0,T ]. This state evolves
due to the hamiltonian

H = − h̄Ω
2 σy (192)
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that accounts for the resonant drive in the frame rotating at ωq, but also due to the
action of the relaxation operators 6

 L =
√

γ1
2 σ−

iL = i
√

γ1
2 σ−

. (193)

Note that pure dephasing and thermal excitations during the drive are neglected.

In this experiment, the fluorescence signal is recorded but is not used to post-select
the trajectories. Thus we do not actuate the PQS according to the measurement record
of the signal s. The evolution of ρ and E is then modeled by a weak continuous
monitoring with 0 efficiency. Time evolution of ρ is governed by the Lindblad master
equation

dρ
dt = − i

h̄
[H, ρ] + γ1(σ−ρσ+ −

1
2 (σ+σ−ρ+ ρσ+σ−)) (194)

and, defining K∗ as in Eq. (187), the evolution of E reads

E(t) = K∗η=0[E(t+ dt)]
= E(t+ dt) + i

h̄ [H,E(t+ dt)]dt
+
∑
ν(L

†
νE(t+ dt)Lν − 1

2L
†
νLνE(t+ dt)− 1

2E(t+ dt)LνL†ν)dt
= E(t+ dt) + i

h̄ [H,E(t+ dt)]dt
+γ1(σ+E(t+ dt)σ− − 1

2σ+σ−E(t+ dt)− 1
2E(t+ dt)σ−σ+)dt,

(195)

so that, at first order,

dE
dt = − i

h̄
[H,E]− γ1(σ+Eσ− −

1
2 (σ+σ−E +Eσ+σ−)) . (196)

preparation

time

post-selection
conditionnal 

average

continuous 
detection of 

Eq. (190) Eq. (192)

Figure 34: The density matrix ρ and effect matrix E are propagated respectively forward and
backward from initial state (resp. final post selection) toward t. They allow to predict
the average value of the detected signal at time t for the post-selected experiments.

6 these 2 operators play the same role in the Lindblad form of the master equation (194) and can be
seen as one damping operator √γ1σ−, but in the actuation term of the SME (128), they correspond
to 2 different homodyne detections. Only the measurement record associated with the first one is used
in this experiment.
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Thus, we obtain for E a master equation which looks similar to the Lindblad form
(194) for ρ, but with some major differences. Indeed, the damping term only cancels
for E = 1

21, contrary to the damping term in Eq. (194) which cancels for ρ = |g〉〈g|.
The evolution of E is then not the time-symmetric of the one of ρ, as described in
Sec. 4.2.4.
Another important difference is that the trace of E is not preserved and we have
to renormalize E(t) to make predictions about a measurement at time t. A trace-
preserving version of this equation would no longer be linear. However, we can show
that Tr[ρ(t)E(t)] is constant. Since Tr[ρ(T )Ey=0(T )]] represents the probability of
the outcome y = 0 for the final measurement, the denominator appearing in the weak-
value of an operator 〈A〉w =

Tr[ρ(t)E(t)σ−]
Tr[ρ(t)E(t)] corresponds to the fraction of selected

experiments out of the whole. When post-selection becomes unlikely, the weak value
can diverge.

4.2.2 Post-selected fluorescence traces

As a first step to test these equations, we consider a qubit for which we have no in-
formation about the past so that it is prepared in ρ0 = 1

21. It then undergoes Rabi
oscillations at frequency νR = 1 MHz for T = 2.5 µs, and is measured projectively
along σZ at T . We then average the fluorescence traces only for experiments that
yielded the outcome 0 during the final readout so that the qubit is mainly in |g〉 at
time T . After subtraction of the constant contribution of the transmitted field, the
mean fluorescence trace sg−(t) is plotted on Fig. 33c (blue dots). Note that up to a
scaling factor, it corresponds to the average measurement record associated with the
homodyne detection of the jump operator L =

√
γ1/2σ−. The other quadrature de-

tecting iL is dismissed in this experiment. Alternatively, we choose here to set the
scaling factor at the same value as in 3.4.1, so that without post-selection, the exper-
imental signal s−(t) would match the numerically filtered value7 of Re[〈σ−(t)〉] (see
Sec. 3.4.1). A consequence of this filtering is that the recorded signal in Fig. 33c-d is
delayed compared to the fluorescence field dynamics so that it does not cancel at t = T .

Using Eq. (189), we compute the expected signal at time t with this scaling factor.

It reads Re[〈σ−〉w] = Re
[Tr[ρ(t)E(t)σ−]

Tr[ρ(t)E(t)]

]
. ρ is propagated forward in time following

Eq. (194) starting from ρ0 at t = 0, and E is propagated backward using Eq. (196)
starting from Ey=0(T ). With no new fit parameter the agreement is good between ex-
perimental data (dotted line) and theoretical prediction (solid line). This stays true for
a qubit post-selected in |e〉 (orange curves), and when varying the drive field amplitude
(Fig. 35d).

Let us comment on this experiment.

7 from now on, every theoretically predicted value will be numerically filtered to mimic the finite band-
width of the JPC
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• The overall number of averaged experiments varies according to the probability
of the chosen outcome at time T and for a drive frequency νR, but every point of
the plots correspond to a minimum of 3× 105 averages. This leads to a maximal
standard deviation of 0.05 on s−.

• The post-selected traces have a slightly larger contrast than the pre-selected ones
(see Sec. 3.4.1) because of the better fidelities Fg and Fe of the final readout than
of the ones of the initial preparation fg and fe.

• Except for this slightly larger contrast, the color plot on Fig. 35d is the near
time-symmetric version of the one presented on Fig. 24c. The phase of the Rabi
oscillation, instead of being set by the initial preparation, is set by the final post-
selection. Thus, post-selection plays a symmetric role to preparation [27]. The
evolution of E here appears to be the time-symmetric of the one of ρ because,
on the time-scale of the traces T � T1, relaxation is negligible.

• Experimentally, the preparation of ρ0 = 1
21 is an active task since thermal

equilibrium is not described by 1
21. It is done by averaging with the appro-

priate coefficients the mean traces for a qubit prepared near |g〉, that is ρg0 =

fg|g〉〈g| + (1 − fg)|e〉〈e|, and the traces for a qubit prepared near |e〉, that is
ρe0 = (1 − fe)|g〉〈g| + fe|e〉〈e|. The finite preparation fidelities fg = 91% and
fe = 85% are due to spurious thermal excitations despite the active cooling pre-
ceding every experiment (6.1), and to inefficient preparation π-pulse. Then, the
resulting traces are summed up with weights ag = 1/2−(1−fe)

fg+fe−1 and ae 1/2−(1−fg)
fg+fe−1

chosen so that agρg0 + aeρ
e
0 = ρ0.

This active preparation of ρ = 1
21 contrasts with the non post-selected exper-

iment in Sec. 3.4.1, for which E = 1
21 is naturally the final effect matrix in

absence of post-selection. This comes from the asymmetry between ρ and E in
presence of dissipation toward a non zero-temperature environment, as described
in Sec. 4.2.4.

• The absolute value of s− remains well bellow 0.5, which is the allowed range for
an unconditional measurement of σ−. Thus, in this experiment, the weak value
〈σ−〉w does not have new features compared to a regular average. Indeed, since
ρ is nearly 1

21, we can write Re[〈σ−〉w] ' Re[Tr[ρE(t)σ−]] = Tr[ρE(t)σx2 ], where
ρE = E

Tr[E] has all the properties of a density matrix.

4.2.3 Pre and post-selected fluorescence traces

We now consider the case where the qubit is initially prepared near |e〉, that is ρ(0) =
ρg0 = fg|g〉〈g| + (1 − fg)|e〉〈e|, and post-selected near |g〉, that is an effect matrix
Ey=0(T ) = F |g〉〈g|+ (1− F )|e〉〈e| at time T .
Average fluorescence traces for drive amplitudes corresponding to Rabi frequencies from
0 to 1.6 MHz are represented with the same scaling factor as on Fig. 33 on the color
plot of Fig. 35a. The theoretical counterpart, which is the weak value 〈σ−(t)〉w with
the PQS (ρ(t),E(t)) propagated in time using equations (194) and (196), is presented
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Figure 35: a) Mean fluorescence signal seg− as a function of both time and Rabi frequency, for a
qubit prepared in |e〉 and post-selected in |g〉. Plain lines surround regions with weak
values beyond the range allowed by macro realism. b) Predicted value of 〈σ−〉w for
the same range of parameters as a. c) Same plot for the predicted value of 〈σx〉w. d)
Dots: cuts of a as a function of νR for times t = 0.99 µs (green) and t = 1.44 µs (red).
Plain lines: prediction for 〈σ−〉w for the same curves. Dashed lines: cuts of Fig. 24c
at the same times. The gray region delimits the range of possible unconditional
average values, like the contours in a.

on Fig. 35b. Once again, agreement between experimental data and theory is excellent.

On the other hand, the computed weak value of σx/2 = Re[σ−], represented on
Fig. 35c, obviously does not match with the measured mean fluorescence signal. In
Eq. (134), for non post selected trajectories, the mean heterodyne fluorescence signal
verified Re[J(t)] = Re[〈σ−〉] = 1

2〈σx〉
8. So far, we could thus identify the averaged

outcome of the measurement record associated with the L =
√
γ1/2σ− (resp. iL)

jump operator with a measurement of the σx (resp. σy) observable. This identification
does not hold anymore for weak values. Indeed, the pseudo density matrix ρp = ρE

Tr[ρE]

is not hermitian, so that

Re[〈σ−〉w] = Re[Tr[ρpσ−]]
= Tr[Re[ρp]Re[σ−]− Im[ρp]Im[σ−]]

= 1
2Tr[Re[ρp]σx − Im[ρp]σy]

6= 1
2Re[Tr[ρpσx]].

(197)

8 We denote Re[A] the hermitian part of an operator A so that Re[σ−] = 1
2 (σ− + σ†−) =

σx
2
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Thus, by averaging the real measurement record associated with jump L only, one can
access properties of the imaginary part of L. This property of the weak value is at the
base of protocols for direct tomography of a wave function [147].

Another characteristic feature of these plots is that there are regions in which the flu-
orescence signal is much stronger (dark blue or dark red on the same color scale) than
for only pre-selected or only post-selected traces. In the regions with a black contour,
the signal even goes beyond eigenvalues of Re[〈σ−〉], corresponding to −0.5 ≤ s− ≤ 0.5.
The observation of this quantum feature predicted by Aharonov et al. [28] has been
shown to contradict macro-realism when using a non-invasive detector, equivalently
to the violation of a Leggett-Garg inequality [140]. Considering the isolation by cir-
culators placed between the cavity output port and the amplifier (see Sec. A.2), the
measurement here is indeed non-invasive. It has only recently been observed with su-
perconducting qubits [141, 142].

# detections

Figure 36: Schematic representation of the rescaled detector output distribution at time t, over
a great number of experiments, for a non driven qubit. Black: preparation in |e〉, no
post-selection. Dark blue: preparation in |e〉, post-selection in |g〉. The average value
for the post-selected experiments goes beyond the largest average values accessible
for the non post-selected cases, reached when the qubit is prepared in |+ x〉 (red)
and | − x〉 (light blue).

It can seem paradoxical: the average value of an operator on a sub ensemble of
trajectories goes beyond the reachable values with no post-selection. However, this is
possible when the measurement on the considered time-step is weak. Thus, the variance
of its possible outcomes goes well beyond its mean value. For a single trajectory, such
a large value of the fluorescence signal is not forbidden. As represented schematically
on Fig. 36, when post-selecting trajectories far out-centered in the outcomes proba-
bility distribution, one can get an average beyond the reachable mean-value for non
post-selected trajectories.
Here, we considered the situation corresponding to the bottom part of Fig. 35a: the
qubit is prepared at time t = 0 in |e〉, and after a time T � T1 = 16 µs, we select
only the experiments during which it has decayed down to |g〉. For a weak Rabi drive
(ΩR = 0), the only process that allows for such a final state is the maps Kst defined
in Eq. (175) for t ∈ [0,T ], which can have a particularly strong effect. This happens
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only if the fluorescence signal st
√

dt is itself very strong.

More generally, in absolute value, the largest fluorescence signal is detected when
the probability of post-selection is low. Indeed, we can write

Tr[ρE] = 1
2Tr[ρE +Eρ] = Tr[Re[ρE]], (198)

so that Eq. (197) reads

Re[〈σ−〉w] = Tr
[ Re[ρE]
Tr[Re[ρE]]

σx
2
]
+ Tr

[ Im[ρE]

Tr[Re[ρE]]
σy
2
]
. (199)

The first term in this sum looks like a usual average value whereas the second can
diverge. This is often interpreted as amplification [145, 146] since the corresponding
quantum noise is the same as for a usual average. Indeed, in Eq. (186), the variance
of the distribution for ξ remains of order 1. However, taking into account the post-
selection probability, the number of repetition of the experiment needed to get a given
signal to noise ratio is at least as large as with conventional methods [150]. This prop-
erty may still be useful in some quantum information protocols [155].

An illustration of this amplifying property of the weak values can be seen on Fig. 35d.
In this plot, dots represent the experimental value of the fluorescence signal as a func-
tion of Rabi frequency at times t = 0.99 µs (green) and t = 1.44 µs (red). Plain lines
represent the corresponding computed weak value, and dotted lines the unconditional
average, corresponding to cuts of Fig. 24c at the same time. At a fixed time, when
varying the Rabi drive amplitude ΩR, there are some values for which the slope of the
detected signal is much stiffer than for non post-selected traces. Thus, in these regions,
the sensitivity of our detection to a small variation of a parameter is increased. It could
be infinitely large if not for the finite preparation and post-selection fidelities.
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Figure 37: Mean fluorescence signal for trajectories from |g〉 to |e〉 (to the left), from |e〉 to
|e〉 (center) and from |g〉 to |g〉 (to the right). Horizontal black lines materialize
regions in which preparation and post-selection disagree (lowest probability of post-
selection). Purple (resp. orange) lines materialize times for which ρ(t) = |g〉〈g| (resp.
E(t)|e〉〈e|

On Fig. 37, we present the average fluorescence signal for trajectories from |g〉 to |e〉
(to the left), from |g〉 to |g〉 (center) and from |e〉 to |e〉 (to the right). Horizontal black
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lines materialize Rabi drive values for which preparation and post-selection disagree
(Tr[ρE]→ 0). It corresponds to an integer number of oscillations for sge− and an integer
plus one half oscillations for sgg− and see− . In every case, it corresponds to the lowest
probability of post selection and to the highest sensitivity to the Rabi frequency value.
Indeed, bellow a line, we rather select trajectories for which the relaxation has acceler-
ated the rotation of the qubit, so that it was strong when the qubit state was rotating
down to the south pole of the Bloch sphere, which happens when 〈σx〉 > 0. Thus, in
these regions, we get a strong positive signal (dark red regions). On the other hand,
above these lines, we rather select trajectories for which the relaxation has slowed down
the rotation of the qubit, so that it was strong when the qubit state was rotating up
from the south pole of the Bloch sphere, which happens when 〈σx〉 < 0. We then get
a strong negative signal (dark blue).

A last interesting feature is materialized by the curved lines. They represent times
for which ρ indicates a qubit near |g〉 (purple lines) or times for which E indicates a
qubit near |e〉 (orange lines). In both cases, the fluorescence signal goes down to zero.
Indeed,

Tr[|g〉〈g|Eσ−] = Tr[ρ|e〉〈e|σ−] = 0. (200)

In this section we have described an experiment in which the resonance fluorescence
of the qubit was recorded during t = 2.5 µs and then averaged conditionally to a final
projective measurement of σZ . The information from the final readout is encoded in
the effect matrix E, propagated backward in time using Eq. (196). It is similar to the
Lindblad master equation (194) but not time symmetric. This asymmetry between
preparation and post-selection was not visible here because T � T1 so that the dy-
namics was dominated by the hamiltonian evolution induced by the Rabi drive, which
is reversible. Thus in Fig. 35a and Fig. 37, the color plots are invariant under the
transformation t ↔ −t

|e〉 ↔ |g〉
, (201)

the second substitution compensating for the minus sign introduced by the first in the
hamiltonian. However, on longer timescales and when not driving the qubit (ΩR = 0)
ρ converges to ρeq ' |g〉〈g| at t→ +∞ when E converges to 1

21 at t→ −∞, breaking
the symmetry. To highlight this property, we briefly describe a similar experiment but
corresponding to longer trajectories with a shorter lived qubit.

4.2.4 Time asymmetry for a dissipative system

The qubit used here corresponds to Qubit 4 in Tab. 3. The experiment is similar to the
one described in the previous sections, but after preparation, the fluorescence signal
is averaged for 10 µs > T1 = 4 µs. Moreover, as in Sec. 3.4.2, the final projective
readout conditioning the average is done along σX , σY or σZ , each on one third of
the experiments. We also let the possibility to prepare the qubit in | ± x〉 and | ± y〉,
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which respectively denote the eigenstates of σX and σY . Finally, the occupation of the
excited state at thermal equilibrium is Peq(|e〉) ≤ 1 %, so that errors in preparation
can be neglected. On the other hand, the final readout leads to 15 % errors (for both
false positives and false negatives) for the 3 types of measurements9.
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Figure 38: Fluorescence traces for a qubit initially in |+ x〉 (plain lines) or |e〉 (dashed lines),
averaged conditionally to the outcome of a final projective readout along σX (blue),
σY (yellow) and σZ (green) at T = 10 µs. The traces are grouped in 2 panels
according to the pos-selected outcome of the projective measurement for clarity.

As stated previously, the asymmetry between E and ρ is not visible when the dy-
namics is dominated by a fast hamiltonian evolution such as a high frequency Rabi
oscillations. Therefore, no drive is applied in order to highlight the asymmetry. On
Fig. 38, we plot the average fluorescence signal for a qubit initially in |+ x〉 (plain
lines) or |e〉 (dashed lines) and post-selected according to the outcome of the final
readout along σX (blue), σY (yellow) or σZ (green). Each panel corresponds to a dif-
ferent post-selection.
A first striking feature of these plots is that all average signals decrease to 0 after a
few T1’s. This reflects that ρ(t) t→∞→ ρeq ' |g〉〈g|, so that Tr[ρ(t)E(t)σ−] → 0. This
is in contrast with the evolution of the effect matrix that verifies E(t) t→−∞→ 1

21. This
asymmetry is characteristic of a dissipative system: predictions can be made about a
measurement in the far future, since the entropy of the system eventually decreases
down to 0. On the other hand, a final measurement does not bring information about
the far past, and knowing only measurement outcomes after a few T1’s, all initial prepa-
rations are equally probable.
Note that, had we considered only a non-dissipative decoherence process such as de-
phasing, the corresponding jump operator would have been hermitian (

√
Γd
2 σz in the

9 In this particular experiment, the microwave pulses used during the high power readout protocol (see
Sec. 3.3) degraded the coherence time of the qubit for tens of milliseconds after the readout, limiting
the repetition rate of the experiment. We chose to decrease the amplitude of these pulses in order to
limit this effect, at the expense of the readout fidelity.
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case of dephasing), and the master equations (194) for ρ and (196) for E would have
been symmetric.

Let us comment further on the traces of Fig. 38.

• When the qubit is prepared in |+ x〉 and for a final readout along σx (plain blue
lines), the conditional average depends on the preparation (positive signal), but
not on the final detection outcome. This surprising feature, predicted by the past
quantum state formalism even for perfect readout fidelity, illustrates further the
asymmetry between preparation and post-selection when monitoring σ−.

• The post-selection using a final readout along σY (yellow lines) does not affect the
fluorescence signal either. This can be understood considering that, up to now,
only the signal from the detection of the I quadrature of the fluorescence field,
corresponding to the

√
γ1/2σ− jump, was recorded (see Fig. 33 and Eq. (193)).

In Sec. 3.4.2.4, we have shown that, in terms of Bloch sphere representation, the
record of this detection only influences the x and z coordinates of the qubit (see
Eq. (160)). Thus, the signal is not correlated to the outcome of the final measure-
ment along σY . Both conditionally averaged traces are equal to the unconditional
one.

• Were there no readout errors, an experiment where the qubit is post-selected in
|e〉 (green lines on the left panel) would yield no signal. This can be understood
considering that if the qubit is detected in |e〉 at T , it cannot have leaked energy
prior to T . However, for the trace see− (t) (plain line) the signal is only slightly
lower than on the right panel, when the qubit is post-selected in |g〉. This is be-
cause at T ' 2.5 T1, most detections of a qubit in |e〉 are in fact false positives.

In this experiment, we also record the signal corresponding to the detection of the Q
quadrature of the fluorescence field. As expected, the two averaged traces conditioned
on the outcome of a final measurement along σY differ. On Fig. 39, are represented
in red (resp. in blue) these conditionally averaged traces when the qubit is driven at
ΩR/2π = 0.5 MHz around σY , for a qubit in |g〉 at t = 0 and detected in | + y〉
(resp. | − y〉) at T = 10 µs. On Fig. 39a, we plot the rescaled average signal on the I
quadrature. It is reproduced by the weak value of σ−, which reads Re

[
Tr[ρ(t)E(t)σ−]

Tr[ρ(t)E(t)]

]
.

The conditionally averaged signal on the Q quadrature is plotted on Fig. 39b and,
according to Eq. (189), is reproduced by the weak value of iσ− which reads,

〈iσ−〉w = Re
[

Tr[ρ(t)E(t)iσ−]
Tr[ρ(t)E(t)]

]
= −Im

[
Tr[ρ(t)E(t)σ−]

Tr[ρ(t)E(t)]

]
.

(202)

The predictions using the past quantum states formalism match quantitatively the
experimental curves. The signal on I is not affected by the post-selection, similarly
to the signal on Q when post-selecting with a measurement along σX (see Fig. 38).
The conditionally averaged traces on Q, resulting from the combined effects of both
the post-selection, which forces the selected trajectories toward y = ±1 in the Bloch
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Figure 39: Fluorescence traces for a qubit initially in |g〉, undergoing Rabi oscillations around
σY at ΩR/2π = 0.5 MHz, and post-selected in |+ y〉 (in red) or | − y〉 (in blue) at
T = 10 µs. a Signal on the I quadrature detection, corresponding to the

√
γ1
2 σ−

jump operator. b Signal on the Q quadrature detection, corresponding to the√
γ1
2 iσ− jump operator. c Same traces represented in the IQ plane.

sphere, and the drive around the y-axis, are non-trivial.

In this chapter, we have described an experiment in which the fluorescence signal
of the qubit is averaged conditionally to a final projective measurement outcome. The
average value is predicted using both ρ and E, which are propagated in time determin-
istically from 0 (resp. T ) to the time of interest t. This contrasts with the stochastic
master equation formalism which makes use of all the measurement record before t
(see Sec. 3.1) and after t (See Sec. 4.1.2).
In the present case of a weak monitoring via the fluorescence detection, a single tra-
jectory unravelled using the measurement record from both past and future would not
differ much from the one we would get using the measurement record from the past
only10. This contrasts with the situation in which past quantum states are used to
smooth trajectories [30, 157]. Smoothing is used when monitoring the system with a
strong measurement of low efficiency. Calling dt the integration time step and Γd the
dephasing rate associated with the measurement backaction, it requires the hierarchy

ηΓddt < 1 < Γddt. (203)

In this essentially classical situation, the system state is always projected by the mea-
surement, but the knowledge of the observer is imperfect. By combining information
both from past and future measurements, one can, for instance, better resolve quantum
jumps of the system [157].
In our case where γ1dt� 1, the trajectories are continuous, and knowing the value of
the record at t+ dt only slightly changes our estimation of the measurement outcome

10 We call here measurement record only the outcomes of the weak detection of σ−, and not the final
projective readout, which influences dramatically the trajectories [156]
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at t.
In the experiment, the past quantum state can describe the statistics of a particular
measurement, but not the state of the qubit. In an ideal weak value experiment, both
knowledge from the past and from the future are perfect, but different. It thus high-
lights the backaction of the weak measurement at t, which is strongly correlated to the
choice of post-selection.

4.3 conclusion

In this part, we have described the design and constraints on the parameters of a
superconducting qubit, the 3D transmon. This system implements the simplest open
quantum system one can think of, which is a two-level system in presence of a single
relaxation channel. Its long coherence time combined with fast electronics allows for
coherent manipulations and, using the interaction of the qubit with the cavity mode,
one can realize a QND measurement of its σZ operator. This measurement effectively
opens a dephasing channel for the qubit.
These two decoherence channels (relaxation and dephasing) can be monitored effi-
ciently to limit information loss in the environment, and thus to access the quantum
trajectory of the qubit on a single experiment.

The main results of this part are

• Demonstration of high efficiency (η = 67 %) detection of a microwave mode
dispersively coupled to a superconducting qubit. This detection is used to imple-
ment a high fidelity, QND readout of the σZ operator of the qubit in a single-shot.
Observation of quantum jumps.

• Efficient collection and heterodyne measurement of the fluorescence of a qubit.
The overall detection efficiency is η = 24 %. The signal is filtered using a Stochas-
tic Master Equation to follow in time the state of the qubit during relaxation.
Predictions are validated by independent tomographic reconstruction.

• Conditional averaging of the fluorescence traces according to the outcome of a
final projective measurement to measure weak values of the σ− operator of the
qubit. Observation of weak values out of the accessible range for unconditional
average.

Future uses of the fluorescence detection may include parameter estimation using
the past quantum states formalism [158]. For instance, with a sideband detector, one
could reconstruct the texture of non-gaussian noise on the qubit resonance frequency
from low frequency up to a few GHz . The statistics of fluorescence trajectories may
also prove a useful tool to study heat and entropy exchange in simple quantum systems,
which are the relevant quantities to the new field of quantum thermodynamics [159].
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Up to now, we have described how to monitor the state of the qubit. In the next
part, we describe active control schemes that make use of the information extracted
via dispersive measurement or fluorescence detection.
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Part II

Q U A N T U M C O N T RO L





Hideo Mabuchi [160] distinguishes three modes of quantum control.

• Open loop control in which a quantum system is driven by a time-dependent
control hamiltonian in a predetermined way. As we have seen in Sec. 2.1.2, hamil-
tonian evolution preserves the entropy of a system. Thus, it cannot be used by
itself to prepare a given target state starting from an unknown state. However,
it can de done in an open system by taking advantage of the dissipation into
a cold environment. For an open qubit, the simplest scheme is as follows. For
a sufficiently cold environment, starting from any state, we wait for a few T1’s.
This brings the qubit close to its ground state. We then apply a fast control pulse
to bring it to the desired state.
Defining the preparation fidelity as the average distance between the qubit state
ρ(t) and the target state σ(t) as F =

∞∫
0

Tr[ρ(t)σ(t)]dt, we can show that this
open loop control scheme results in a low preparation fidelity for a target state
far from the ground state. Indeed, the error rate and the dissipation rate used to
evacuate entropy are the same since they are both set by the dissipation of the
qubit on a time scale T1.

• Measurement based feedback in which a discrete or continuous measurement
record as defined in Chap. 3 is processed classically and used to adjust the system
state in real time. In Sec. 5.1, we describe an experiment implementing a stro-
boscopic feedback that takes advantage of the high measurement rate and the
non demolition nature of the dispersive readout to stabilize an arbitrary state
or trajectory of the qubit. In Sec. 5.2, we describe another experiment in which
the measurement record associated with the relaxation channel of the qubit is
fedback continuously to the qubit through a Markovian controller in order to
stabilize an arbitrary state.

• Autonomous feedback, also referred to as coherent feedback, in which a quantized
field scattered by the system is processed coherently (without measurement) and
then redirected to the system as a control input. It makes use of an auxiliary
system whose dissipation rate is much larger than the qubit decay rate. By en-
gineering the coupling between the qubit and the auxiliary system, dissipation
then brings the qubit to the desired state on a rate much larger than the error
rates associated with uncontrolled decoherence channels. In Chap. 6, we show a
simple implementation of autonomous feedback using the high decay rate of the
cavity to reset the qubit state.

Closely related to these feedback based schemes, Facchi et al. define a fourth control
scheme. [36, 161] consisting in tailoring dynamically the Hilbert space of a system in
time.

• Quantum Zeno dynamics occurs when the evolution of a system of large Hilbert
space dimension is restricted to a given subspace either through repeated mea-
surement or by a unitary coupling to an auxiliary system. In Chap.7, we describe
an experiment in which a qubit is used to induce such dynamics for a cavity
mode.
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Figure 40: The centrifugal governor for steam engines designed by Boulton and Watt in 1788 is
inspired by previous governors used to regulate the distance and pressure between
millstones in windmills. The output of the engine is connected to the governor and
causes it to rotate. When the output power increases, the centrifugal force draws
the balls away from the rotation axis. This causes the valve admitting the steam
flow to the engine to close, decreasing its power. This auxiliary system can be seen
as implementing a coherent feedback in the sense that no further information comes
out of the system. However, in a classical system, coherent and measurement based
feedback are equivalent since the steam flow could be measured without perturbing
the system.
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5
MEASUREMENT BASED FEEDBACK

Feedback loops are ubiquitous in complex systems, from automatics to biology or
economics. They stabilize a system subjected to uncontrolled stochastic noise from its
environment or prepare a given state starting from an unknown initial state. A feed-
back loop can be decomposed in three components. A sensor that monitors a given
observable (temperature, blood-glucose level...) sends this signal to a controller (elec-
tronic integrated circuit, insulin activation enzymes...) that analyzes it and uses an
actuator (heater power, insulin amount...) to react on the system.

In the quantum domain, there is a change of paradigm in feedback since measure-
ments modify the state of the system. However, using the stochastic master equation
formalism described in Chap. 3, the controller can be designed to take into account the
measurement backaction when estimating the state of the system. Thus, results from
classical control theory can be more or less transposed to quantum systems [33, 24].

The first implementation of measurement-based quantum feedback was performed
by Sayrin et al. in 2011 [40, 41]. Using Rydberg atoms, they managed to measure
the state of a microwave field inside a high finesse cavity and to use the information
to steer this state towards a target Fock state by applying coherent drive pulses or
photon transfer on a time scale much shorter than photons lifetime inside the cav-
ity. Several demonstrations of MBF have since been performed using superconducting
qubits [42, 48, 81].

In this chapter, we describe two experiments implementing measurement based feed-
back on a superconducting qubit. First, a stroboscopic digital feedback based on a
dispersive measurement, and then a continuous analog feedback based on the fluores-
cence signal of the qubit.

5.1 stroboscopic digital feedback using dispersive measurement

5.1.1 Feedback loop

The principle of this digital feedback is as follows. Given a target state or trajectory,
at arbitrary times,

• A fast control pulse is applied to map the target state to |g〉.

• The qubit is measured using the QND dispersive readout described in Sec. 3.2.3.11.

1 Note that in the experiment, the JPC is turned on only during this measurement. Due to imperfect
isolation from the cavity, it would otherwise induce extra dephasing of the qubit, which would lower
the feedback efficiency when stabilizing states that are not |g〉 or |e〉
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Figure 41: a) Schematic of the feedback loop to stabilize |g〉 or |e〉. A square readout pulse
(in yellow) at ωh/2π = 62.5 MHz and with phase θ is generated by an arbitrary
waveform generator (AWG) and then up-converted to ωr by mixing with a local
oscillator (LO) at ωr + ωh (in purple). It is sent to the input port of the cavity
and the transmitted signal is amplified and down-converted using the same LO.
The resulting signal s(t) is then digitized by the FPGA board, demodulated and
integrated over its 960 ns long stationary regime. If its imaginary part is positive,
a short square pulse at ωp/2π = 125 MHz is generated (in orange). This pulse is
added up to other control pulses of the qubit with the same phase, and up-converted
to ωq by mixing with a LO at ωq +ωp (in green) before being sent to the qubit. Full
schematic of the wiring can be found on Fig. 64. b-c) areadout is the integrated and
rescaled readout signal as defined in Eq. (204). The disks represent the fluctuations.
By setting the phase θ of the readout pulse, one can choose to trigger a feedback
pulse if the qubit is detected in |e〉 (θ = 0◦) or in |g〉 (θ = 180◦).

• If the qubit is measured in |e〉, a fast π pulse is applied in order to bring it back
to |g〉.

• The qubit is sent back to the target state by applying a control pulse opposed to
the initial one.
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To be efficient, the repetition rate of this feedback loop must be much higher than the
error rate γ1 that needs to be corrected for. The two intermediate steps use the same
reset by digital feedback as described by Ristè et al. [42]

The experiment [81] uses the same setup and measurement pulse as depicted in
Sec. 3.2.3.1 (Qubit 1 in Tab. 3). The feedback loop is represented on Fig. 41a. After
mapping the target state to |g〉, a 1.2 µs long pulse at cavity frequency, corresponding
to an average photon number in the stationary regime calibrated to be 1.4 photons,
is sent through the cavity. We set the phase2 of the readout pulse to be θ = 0◦ so as
to get the configuration described on Fig. 41b. In that case, the imaginary part of the
detected signal, found integrating the measurement record of Eq. (118) and rescaled
as for Fig. 20, reads

areadout = 1
Tmeas

√
2ηκ

∫ tcoll+Tmeas
tcoll

J(t)dt

= cos θ2 + 〈σZ〉i sin θ
2 +

1
Tmeas

√
2ηκ

(
W1(Tmeas) + iW2(Tmeas)

) (204)

Here, as in Sec. 3.2.3.1, the signal integration is performed a time tcoll > 1/Γd after
the beginning of the readout pulse so that the state of the qubit has been collapsed
to |e〉 or |g〉, and 〈σZ〉 = ±1. Tmeas is long enough so that the fluctuations encoded by
the Wiener processes W1 and W2 are small compared to the mean signal. Therefore,
Im[areadout] > 0 only if the qubit is in |e〉 (the readout fidelity beyond relaxation errors
is 99.6 %), and this criterion can be used to apply a correction pulse.

The high fidelity of the readout performed on a short time scale compared to T1 is
enabled by the high efficiency detection setup (η = 67 %), in which the JPC is used as
a pre amplifier. After further amplification, the detected signal is down-converted and
sent to a Tekmicro Triton-V5 board. The board then triggers a square pulse modulated
at ω2 = π× 125 MHz conditioned on the measurement outcome. The overall feedback
delay is 480 ns and can be decomposed as follows.

• The electrical delay between the cavity output and the board ADC is 60 ns,
including the down-conversion to ωh = 2π× 62.5 MHz.

• The board ADC digitizes the signal by sampling it at a rate 500 MSample/s and
sends it to the FPGA core itself. The board is clocked using the same 10 MHz
reference as the AWG.

• The FPGA numerically demodulates this signal and averages it over its 960 ns
long stationary regime. This demodulation consists in averaging the product
of the down-converted signal s(t) and the pre-recorded values of sinωht (resp.
cosωht) on an integer number of periods so as to get, up to a scaling factor,
the values of Im[areadout] (resp. Re[areadout]). Note that only the imaginary part
contains information about the qubit state, but it is convenient to get both values
in order to adjust the phase of the readout pulse. The integration is triggered by

2 a constant offset is chosen so that |Im[areadout]| does not depend on the qubit state and Re[areadout] >

0.

109



the AWG. If the imaginary part is positive, a control bit is then set to 1 and sent
to the DAC that generates a 104 ns long pulse modulated at ωp = 2π× 125 MHz.
The phase of this pulse is the reference phase for the qubit drive (rotation around
the y-axis). Note that the overall processing by the board lasts 360 ns, out of
which 160 ns are used for demodulation and integration. The remaining 200 ns
are needed to generate and send the control bit (16 ns) and to allow reliable
synchronization of the ADC/DAC and FPGA clocks (180 ns).

• The output of the board is then added up by an AWG to other control pulses
of the qubit. The resulting signal is up-converted to ωq by mixing with a LO
and sent to the qubit. The overall attenuation of the input lines is such that the
FPGA generated pulse corresponds to a π rotation of the qubit around the y-axis
of the Bloch sphere.

Including the duration of the readout pulse and the correction pulse, the overall
feedback loop duration is Tloop = 1.8 µs, much smaller than the qubit decay time
T1 = 28 µs and than pure dephasing time Tφ = 14.5 µs. Moreover, the protocol can
in principle be repeated as fast as the readout pulse is short. Indeed, as long as the
qubit remains in the (x, z) plane of the Bloch sphere, one can implement any control
sequence while the board is processing the readout signal. At each detection event, if
the readout outcome turns out to be the one expected, the measurement back action
itself projects the qubit on the target state and the entropy that had appeared since
the previous measurement is evacuated. This is a difference with classical feedback
where measurement does not produce stabilization alone. If, on the contrary, the read-
out outcome is not the one expected, the qubit state is orthogonal to the target state
during the 420 ns needed for the correction pulse to reach the qubit. Whatever the
evolution of the qubit state during this lapse, as long as it is in the (x, z) plane when
the correction pulse is applied, the trajectory is then refocused to the target state.
However, the cavity readout time 1/κ = 90 ns being finite, following a measurement,
one should wait until the photons leak out of the cavity before driving the qubit in
order to avoid dephasing due to photon noise.

Note that another possibility consists in setting the readout pulse phase at θ = 180◦.
In that case, Im[areadout] > 0 if the qubit is in |g〉 as represented on Fig. 41c. Then,
otherwise using the same pulse sequence and criterion to trigger the correction pulse,
one stabilizes the orthogonal state. However, this configuration is less efficient. Indeed,
since the qubit is more frequently measured in |e〉, there is a higher rate of relaxation
induced bit flip errors between the readout and the correction pulse. These errors are
not corrected for until the following feedback loop.

5.1.2 Qubit reset

As a first implementation of this protocol, we choose the ground state itself as the
target state. The feedback loop is then used to reset the qubit starting from any un-
determined state, similarly to what was demonstrated by Ristè et al. [42]. Quantum
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Figure 42: a) Schematic of the reset pulse sequence. The qubit is effectively prepared in
ρ = 1

2 (|g〉〈g| + |e〉〈e|) by averaging over experiments in which it is left at ther-
mal equilibrium and others in which its population is inverted by applying a fast
π pulse. For a time tdelay, the qubit is left to relax toward thermal equilibrium
or actively cooled down by applying between 1 and 4 feedback loops before being
measured. b) Measured occupation of the |e〉 level as a function of tdelay with no
feedback (in red) or after applying 1 (orange), 2 (blue) or 3 (purple) feedback loops.
Dots: experimental data. Lines: theoretical prediction including thermal excitations
toward higher energy levels of the transmon. Black dotted line: same prediction for
2 feedback loops neglecting the higher excited states of the transmon.

information processing requires such removal of entropy during initialization or when
correcting for errors [43]. This method allows to do so without fast frequency tuning
[162, 163, 16, 164], post-selection [165, 166] or limited coupling rate κ < χ [44].

As an illustration, the qubit is first prepared in the most entropic mixed state
ρ = (|g〉〈g|+ |e〉〈e|)/2 by either applying a π-pulse or not (the outcomes are aver-
aged over these two possibilities). After a time tdelay, we measure the occupation of
the |e〉 level following zero, one or more resets by feedback. On Fig. 42b, we plot the
probability to detect a positive value of the imaginary part of the readout field as a
function of tdelay for these various situations. Note that due to finite fidelity of the
measurement, this is not directly P (|e〉). We found that starting from P|e〉 = 50 %,
a single reset brings this probability down to P (Im[areadout] > 0) = 3.6 %, which,
without feedback, would require to thermalize during 110 µs. Yet, events where the
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qubit relaxes between the middle of the measurement pulse and the feedback pulse
limit the efficiency of a single reset. Doing a second reset immediately after the first
brings the qubit much closer to the ground state with P (Im[areadout] > 0) = 1.1 %.
Further feedback loops do note improve this figure, but for long delay, that is applying
feedback loops from thermal equilibrium, it gets as low as 0.6 %.

This can be understood considering a finite thermal excitation rate to higher energy
levels of the transmon. We model it considering a three-level system. The decay time of
the third energy level, noted |f〉, has been measured independently to be T1,ef = 15 µs.
This is possible using a detection scheme described in the supplementary material of
[81] and similar to the method used in Sec. 6.1.2. Assuming a Boltzmann distribution
for the occupation of the levels at thermal equilibrium we can compute the transition
rates between these levels using

Γe→f
Γf→e+Γe→f

= Γg→e
Γe→g+Γg→e = 1− Pth(|g〉) = 2.4%

1
Γf→e+Γe→f

= T1,ef
1

Γe→g+Γg→e = T1

. (205)

Considering no further errors but the thermally induced transitions, and perfectly
QND readout pulses, we can reproduce quantitatively the feedback results (plain lines
in Fig.42b). Note that, with the present readout scheme at ωreadout =

ωr,g+ωr,e
2 , a qubit

in |f〉 yields a result Im[areadout] > 0 so that it is not distinguishable from |e〉. Moreover,
denoting F the fidelity of the measurement3, we suppose that

P (Im[areadout] > 0) = F × (Pmid(|e〉) + Pmid(|f〉)) + (1− F )× Pmid(|g〉), (206)

where Pmid(g, e, f) is the occupation of the levels in the middle of the integration in-
terval by the board. Finally, the correction pulse is supposed not to affect a qubit in
|f〉 and to flip a qubit in |g〉 and |e〉 only 99% of the time4.

In Sec. 3.2.3.1, F had been calibrated to be 99.7%. However, this value fails to repro-
duce faithfully the data, and the agreement between data and theoretical prediction
is far better with F = 99.6%. This more precise value is well within the error bar
associated with the estimation made in Sec. 3.2.3.1.

Correcting for these final readout errors, we get better results for the reset than
presented in [81]. These results are summarized in Table 1. Note that this reset could
prepare any state with similar purity by applying fast rotation pulses once the qubit
is in state |g〉. In practice, the fidelity is limited by the fidelity of the rotation pulses.

5.1.3 Rabi oscillations

We now aim at stabilizing a dynamical state of the qubit, namely Rabi oscillations.
This was first performed by Vijay et al. [48] using a continuous and weak measurement

3 we make the approximation that F is also the fidelity for the detection of |f〉
4 This value corresponds the decoherence during a 104 ns long Rabi oscillation.
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Table 1: Occupation of |e〉 using zero, one or two resets by feedback when starting in the most
entropic state or in the thermalized state (effectively at 46 mK). Finite fidelity of the
final readout has been corrected for.

reset number 0 1 2
from (|g〉〈g|+ |e〉〈e|)/2 50 % 3.2 % 0.8 %
from thermalized state 2.4 % 0.4 % 0.2 %
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Figure 43: a) Pulse sequence for stabilizing Rabi oscillations. For a typical period of 4 µs, the
lines represents the drive amplitude (green) and expected occupation of the cavity
(purple). The complex amplitude a of the measurement field is recorded only during
the steady part of the occupation (red area). When Im[areadout] > 0, a fast π pulse
is applied after a total delay of 480 ns (actuation). These steps are illustrated with
usual symbols for media player. b) Black line: decaying Rabi oscillation around σY
with frequency ωR = 2π × 250 kHz and measured decay time TR = 15.5 µs. Dots
on line: persistent Rabi oscillations measured using the pulse sequence described in
(a). c) Same measurement as in (b) shown on a smaller span for 〈σZ〉 (dots) and
〈σX〉 (circles). The targeted Rabi trajectory is shown as two dashed lines, black
for 〈σZ〉 and gray for 〈σX〉. Predictions using Bloch equations are represented as
solid lines with the same color convention. d) Bloch sphere representation of the
full tomography of the qubit for persistent Rabi oscillations during 100 µs. Time is
encoded in color as in (b).
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of the qubit state and analog feedback. Here, we make use of the fact that a qubit un-
dergoing such oscillations passes periodically by the state |g〉, which we know how to
stabilize from the previous section. The new feedback protocol is a simple adaptation
of the loop presented in that section and is inspired by the stroboscopic measurement
scheme proposed in [167].

A constant microwave signal at ωq induces a Rabi oscillation of the qubit around σY
at a frequency chosen to be ωR/2π = 250 kHz. Without feedback, these oscillations
decay on a timescale TR = 15.5 µs (Fig. 43b). In order to make the Rabi oscillations
persistent, a measurement is performed each time the qubit is supposed to be in state
|g〉 (Fig. 43a). The FPGA controller then sends a fast correcting π-pulse (actuation)
each time the measurement reveals that the qubit is in the excited state. In order
to optimize the fidelity of the feedback controlled trajectory to the targeted Rabi
oscillation, the precession angle which is left idle during the measurement – Zeno
effect freezing the trajectory anyway [168] – is briefly accelerated before and after the
measurement to compensate exactly for that pause (see Fig. 43a). Moreover, since the
qubit remains in the (y, z) plane during the whole experiment, the correction pulse
performs a bit flip, whatever its state. Thus, it is not needed to wait for the FPGA
board to finish its computation before driving again the qubit. However, to avoid extra
dephasing, we leave the qubit in the ground state as long as the measurement field
has not leaked out of the cavity. Quantitatively, we impose that the measurement
induced dephasing rate Γd(t) associated with this field be of the same order as the
qubit decoherence rate γ2. The criterion we use is Γd < 5 γ2, which corresponds to a
ringdown time of ∼ 300 ns. Γd(t) is estimated as in Sec. 2.2.4 using Eq. (85)

Γd(t) = χIm[αg(t)α
∗
e(t)], (207)

where αg(t) and αe(t) are computed numerically.

As can be seen in Fig. 43b, the Rabi oscillations are indeed stabilized permanently
with this protocol. Their average fidelity to the targeted Rabi oscillation is F = 85%
and their average purity 80%. The discrete correction events lead to visible disconti-
nuities in the trajectories restoring the purity lost during the last Rabi period due to
decoherence (see Fig. 43c). Although it is possible to perform this stabilization using
analog feedback on a weak, continuous measurement [48], we demonstrate here that,
for limited detection efficiency, discrete feedback events are more efficient [169]. This
is simply explained by the added flexibility to vary the measurement strength in time
so as to avoid extra dephasing when the qubit is not in |g〉 or |e〉.

We can quantitatively reproduce the measured average trajectory (see Fig. 43c)
by simulating the evolution of the density matrix ρ5 using Bloch’s equations. These
equations are equivalent to the Lindblad form of the master equation (27) derived in

5 Occupation of the higher energy levels of the transmon and thermal excitations are here neglected
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Sec. 2.1.3.1 [67]. Letting ωR(t) the Rabi pulsation that varies during the various steps
of the feedback loop, they read

d

dt

 ρee

ρge

 =

 −Γ1 ωR(t)

−ωR(t) −Γ2 − Γd(t)

 ·
 ρee

ρge

+

 0
ωR(t)/2

 (208)

We can divide a period of the Rabi oscillations of duration Tosc = 4000 ns in 4 steps
(see Fig. 43a) according to the values of the Rabi pulsation and of the field amplitude
in the cavity.

• step A : measurement and pause from 0 to Tp = 1500 ns
During this step, the qubit is left idle (ωR = 0). When turning on the readout
tone, coherences collapse nearly instantaneously. After 240 ns, the cavity field
amplitude has reached its steady state and the FPGA board starts its acquisition.
For the simulation, at half the acquisition time by the FPGA board (middle of
the red time interval in Fig. 43a), we record the population ρee,mid in |e〉 and
afterwards simulate separately two trajectories with ρee,mid = 0 or ρee,mid = 1
according to the measurement outcome. To get the average trajectory plotted on
Fig. 43c, we add up those with the actual weights ρee,mid and 1− ρee,mid.

• step B: fast forward from Tp = 1500 ns to Tp + Tff = 1564 ns.
In order to compensate for half the precession lost during the pause, the drive
is performed beyond the targeted Rabi frequency during a short period of time,
hence ωR = 2π

Tff

Tp
2Tosc

(the other half is compensated in step D). The field ampli-
tude remaining in the cavity after step A decreases exponentially from a mean
photon number 0.05 (Γd ' 5 Γ2) to 0.025 (Γd ' 2.5 Γ2). In fact, the JPC is turned
off after the measurement and there may be a change in the effective cavity exit
rate κtot6. A slight modification of these parameters lead to a better fit to the
measured trajectory.

• step C : nominal Rabi drive from Tp + Tff = 1564 ns to Tosc − Tff = 3936 ns.
Rabi oscillation is here nominally driven at the target frequency ωR = 2π

Tosc
.

Average photon number in the cavity keeps decreasing down to 0. At t = 1850 ns,
a correcting π-pulse occurs in case the measurement outcome is |e〉 in step A.
In the simulation, the Rabi pulsation is briefly increased for the corresponding
trajectory and the two parallel trajectories are averaged into a single one with
weights ρee,mid and 1− ρee,mid.

• step D : fast forward from Tosc − Tff = 3936 ns to Tosc = 4000 ns.
Same purpose as step B with ωR == 2π

Tff

Tp
2Tosc

. There is no readout field inside
the cavity at this step.

For any initial value of ρ, the simulated trajectory converges in about 3 or 4 periods
toward the steady state represented in Fig. 43c.

6 Due to finite isolation, the cavity mode hybridizes weakly with the amplified mode of the JPC with
which it is in resonance.
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5.1.4 Ramsey oscillations
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Figure 44: a) Evolution of 〈σZ〉 (dots) and of the coherence |〈σX + iσY 〉| (circles) when the
qubit is prepared in state (|g〉+ |e〉)/

√
2 at time 0. State tomography is only per-

formed outside of the sensing and actuation periods. In color: feedback on. In black:
without feedback. b) Same evolution shown on a shorter span. Lines: simulation
of 〈σZ〉 (black) and |〈σX + iσY 〉| (gray) using Bloch equations. Due to relaxation,
the qubit does not stay on the equator between sensing periods, so that coherences
remain when rotating it by π/2 toward the pole. These coherences are quickly sup-
pressed by the measurement induced dephasing. c) Same evolution represented in
the Bloch sphere with a Ramsey frequency ωRy/2π = 10 kHz. The color encodes
the time as in (a). The simulated trajectory is only represented as a line during
sensing and actuation periods for clarity.

We now show that this feedback protocol can also be used to stabilize a state of the
qubit that does not pass by |g〉. As an example, the target state is now (|g〉+ |e〉)/

√
2.

The feedback loop is simply adapted from the one described in Sec. 5.1.2. Every 4 µs,
a fast π/2 pulse is applied to rotate the qubit around σY before measuring its state
and sending it back to the equator with a −π/2 pulse. This operation maps the x-axis
on the z-axis, so that we effectively perform a measurement of the σX operator. In
order to maximize average fidelity to (|g〉+ |e〉)/

√
2, the qubit is rotated back to the

equator before the correction pulse is applied by the FPGA board.

Without measurement based feedback, the Bloch vector of the qubit decays exponen-
tially both in Z with rate 1/T1 and in the X,Y plane with rate 1/T2 (Fig. 44a). With
the feedback on, it follows the same evolution in between sensing periods, but the lost
purity is recovered when the correction pulse takes place. From these simulations,the
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average purity Tr(ρ2) of the density matrix ρ is calculated to be 85%, the time aver-
aged fidelity F = 〈ψtarg|ρ(t)|ψtarg〉 to the target trajectory |ψtarg〉 = (|g〉+ |e〉)/

√
2 is

F = 76% and the average information quantity 1−Tr(−ρlog2ρ) = 0.60 bit.

We simulate the evolution of the qubit state as in Sec. 5.1.3. The only difference
is the value of ωR(t) which is 0 except during the π/2 rotations. Simulated average
trajectory on a feedback period is represented on Fig. 44b and fits quantitatively the
data.
In order to connect to the usual representation of Ramsey fringes at a given fre-
quency ωRy, we can rotate linearly in time the measurement axis so that 〈σX〉 maps
onto 〈cos(ωRyt)σX + sin(ωRyt)σY 〉 and 〈σY 〉 onto 〈− sin(ωRyt)σX + cos(ωRyt)σY 〉. The
Bloch sphere representation of the corresponding tomography is represented on Fig. 44c.

In this experiment, we showed the versatility of stroboscopic measurement based
feedback to stabilize any state or trajectory of a single qubit. Efficient QND mea-
surement associated with fast electronics allow to detect and correct for errors on a
timescale much faster than qubit lifetime. Even though for a single qubit, this feedback
loop can essentially be understood as a fast reset and preparation of the target state,
if combined with parity measurement in a multi qubit architecture, it could pave the
way for full error correction of a logical qubit [18].

5.2 continuous analog feedback using the fluorescence signal

system

controller

memory
sensor

actuator

system controllersensor

actuator

Bayesian feedback Markovian feedback

Figure 45: Bayesian versus Markovian feedback. In Bayesian feedback, the measured signal
from the sensor at time t is used to update the density matrix ρ(t). The controller
then compares the new matrix ρ̃(t) and the target state ρtarget, and then use the
actuator to steer the system towards this state. The correction applied to the system
needs to be taken into account to compute the new density matrix ρ(t+ dt). In
Markovian feedback, the control signal is sent to a static controller that processes it
and reacts on the system independently of its history. Double line arrows represent
classical communication channels.

In Sec. 3.4, we showed that we were able to detect with high-efficiency (η = 25%)
the fluorescence signal of our qubit by heterodyne measurement of the field leaking out
of the cavity at ωq. This measurement corresponds to a weak continuous measurement
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of the σ− operator and we have shown that the two output signals from the heterodyne
detection read at time t7 dIt =

√
ηγ1
2 〈σx〉dt+ dWt,I

dQt =
√

ηγ1
2 〈σy〉dt+ dWt,Q

, (209)

whereWt,I andWt,Q are two independent Wiener processes. We want to use this signal
and feed it back to the system in order to change its dissipation. The most general
control hamiltonian for our qubit is

Hcont = h̄
(
u(t)σX + v(t)σY +w(t)σZ

)
, (210)

where u, v and w are functions of the measurement records from 0 to t. We now limit
ourselves to Markovian feedback [24], in which these controls only depend on the values
of dIt and dQt at time t. Less general than Bayesian feedback in which the state of
the system is estimated to react optimally given a cost function for the controls and
a target state (see Fig. 45), it still yields similar results for a single qubit [170] and
is much simpler to implement experimentally. Assuming a linear dependence of the
controls on the output signals, we write

u(t)

v(t)

w(t)

 = Ğ×

 dIt
dt

dQt
dt

+


u

v

w

 , (211)

where Ğ is a constant 3× 2 constant gain matrix. We now derive an effective master
equation for the qubit when turning on this feedback.

5.2.1 Effective master equation in presence of feedback

5.2.1.1 SISO Markovian feedback with diffusive measurements

For simplicity, we first consider the case of a Single Input Single Output (SISO) Marko-
vian feedback following [23, 171, 172]. We thus neglect the pure dephasing of the qubit
so that the only decoherence channel is a relaxation channel monitored by homodyne
detection with efficiency η. In the absence of feedback, the SME (128) simplifies into

ρ(t+ dt) = − i

h̄
dt[H, ρ(t)] +√γ1dtD[σ−]ρ(t) + 2√ηγ1dWtM[σ−]ρ(t), (212)

where damping and measurement super operators D and M defined as in Sec.2.1.3.1
and Sec. 3.2.2 by D[L]ρ = LρL† − 1

2L
†Lρ− 1

2ρL
†L

M[c]ρ = 1
2

(
(c− 〈c〉)ρ+ ρ(c† − 〈c†〉)

) . (213)

7 These signals are filtered by the finite amplification bandwidth δfJPC (see Eq. (147)), but it will not
affect the feedback performances as long as this bandwidth is much larger than the characteristic
evolution rate of the system. In the present case, this condition reads δfJPC � γ1.
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The output signal yt verifies

ytdt =
√
ηγ1〈σx〉dt+ dWt. (214)

The controller condition (211) simplifies into

u(t) = g× yt + u, (215)

where g is a constant scalar gain and u a constant as defined in Eqs. (210, 211). We
call σ1 the control operator (typically σX , σY or σZ for rotations around the axes of
the Bloch sphere). We group the constant drive with the hamiltonian H in absence of
feedback so that the full time-dependent hamiltonian reads

Hcont +H = h̄(gytσ1 + uσ1) +H = H1(t) +H0, (216)

Due to the singular nature of Wt which is not a bounded time function, we cannot
simply take H 7→ H1(t) +H0 in Eq. (212) to get the closed-loop evolution. In order to
preserve causality, we need to first apply the open-loop evolution from t to t+ dt and
then use the measurement record yt to apply the unitary e− i

h̄
H1(t) on the system. The

closed-loop evolution of ρ thus reads

ρ(t+ dt) =
e−

i
h̄
H1(t)dt

{
− i

h̄dt[H0, ρ] +√γ1dtD[σ−]ρ+ 2√ηγ1dWtM[σ−]ρ(t)

}
e+

i
h̄
H1(t)dt.

(217)

We now simplify this formula using Itô rules, which state that dWt = 0 and dW 2
t = 1.

Via the Baker-Campbell-Hausdorff formula

eABe−A = B + [A,B] + [A, [A,B]]/2 +O(||A||3) (218)

with  A = −igσ1(
√
ηγ1〈σx〉dt+ dWt)

B = − i
h̄dt[H0, ρ] +√γ1dtD[σ−]ρ+ 2√ηγ1dWtM[σ−]ρ

(219)

and neglecting terms of order O(dt3/2) we get the effective master equation

ρ(t+ dt) = −idt[H0
h̄ +

g
√
ηγ1
2 (σ−σ1 + σ1σ+), ρ(t)]

+dtD[L1]ρ(t) + 2√ηdWtM[L1]ρ(t)

+dtD[L2]ρ(t) + 2
√

1− ηdWtM[L2]ρ(t),

(220)

with  L1 =
√
γ1σ− − ig

√
ησ1

L2 = −i
√

1− ηgσ1
. (221)

Note that a constant drift Hdrift =
g
√
ηγ1
2 (σ−σ1 + σ1σ+) has appeared in the effective

hamiltonian. It can be compensated for, or adjusted to a given value, by changing H,
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which means adding more constant drives than uσ1. Such constant drives are necessary
to stabilize an arbitrary state of the Bloch sphere (see Eq. (225)).

Otherwise, for efficiency η = 1, the effect of the feedback is thus to modify the
damping operator √γ1σ− →

√
γ1σ− − igσ1. Note that the choice of gσ1 modifies at

will the imaginary part of the damping operator. This has the same effect as dissipation
engineering for the qubit (see Sec. 6.2.2). In general, the new stable state under the
SME (220) is not |g〉. In the next section, we show that we can choose arbitrarily the
stabilized state in the MIMO case.
However, the real part of the jump operator cannot be modified. In practice, this im-
plies that with the homodyne detection considered here, a state on the x-axis of the
Bloch sphere cannot be stabilized with this feedback loop8. Intuitively, information is
extracted only along σX = Re[σ−], so that when some spurious noise pulls the state
away from the target state, say |+ x〉, the fluorescence detection does not yield any
information about the angle of the displaced state around to the x-axis. Then, the
controller does not get the necessary information to restore the target state with a
coherent drive.

Let us comment on two particular cases.

• σ1 = σY and g = −√γ1. The new damping operator is then L1 =
√
γ1σX so

that relaxation transforms into a weak non destructive measurement of the σX
operator with rate 2γ1. As stated above, even though the measurement collapses
the state on | ± x〉 on a time scale larger than 1/2γ1, spurious noise can trigger
jumps between |+ x〉 and | − x〉. Neither state is stabilized.

• σ1 = σY and g = −2√γ1 so that L1 =
√
γ1σ+. Dissipation now causes the qubit

to relax toward the |e〉 state.

For finite efficiency, a new damping operator L2 = −i
√

1− ηgσ1 appears, limiting the
fidelity of the stabilized state to the target state.

In this section, we have described a continuous, markovian, feedback loop in the SISO
(single-input, single-output) regime. In practice, it describes a continuous feedback
based on a homodyne detection. In the next section, we generalize the results to MIMO,
which can model feedback using heterodyne detection.

5.2.1.2 MIMO Markovian feedback and arbitrary state stabilization

The derivation of the closed-loop master equation for Multi Intput Multi Output
(MIMO) systems is derived by Chia and Wiseman in [46]. For concreteness, we now
consider the case of the heterodyne detection, with efficiency η, of the fluorescence field
of the qubit as in Sec. 3.4. The 2 outputs correspond to the 2 measurement records dI

dt
and dQ

dt , and we consider 3 inputs which are rotations around the x, y and z axes as

8 However, | ± y〉 can be stabilized. Thus, here, this is not a limitation in practice since |+ x〉 and |+ y〉
are equivalent. It however limits the feedback protocol based on the dispersive detection presented in
Sec. 6.2.2.
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in Eq. (210). The form of the effective master equation in presence of feedback can be
understood as a generalization of the SISO case.

The drift in the effective hamiltonian now reads9

Hdrift =
h̄

2

√
ηγ1
2

∑
α∈{X,Y ,Z}

Gα,I(σασ− + σ+σα) +Gα,Q(iσασ− − iσ+σα) (222)

where G is the gain matrix defined in Eq. (211), and the two damping operators
√

γ1
2 σ−

and
√

γ1
2 iσ− lead to four effective damping operators

LI,1 =
√

γ1
2 σ− − i

√
η

∑
α∈{X,Y ,Z}

Gα,Iσα

LQ,1 = i
√

γ1
2 σ− − i

√
η

∑
α∈{X,Y ,Z}

Gα,Qσα

LI,2 = −i
√

1− η ∑
α∈{X,Y ,Z}

Gα,Iσα

LQ,2 = −i
√

1− η ∑
α∈{X,Y ,Z}

Gα,Qσα

. (223)

With these notations, the master equation becomes

ρ(t+ dt) = − i
h̄dt[H0 +Hdrift, ρ(t)]

+dtD[LI,1]ρ(t) + dtD[LI,2]ρ(t)
+dtD[LQ,1]ρ(t) + dtD[LQ,2]ρ(t)

+dtD[
√

γφ
2 σz ]ρ(t)

(224)

where we have dropped the actuation terms, which will not be used in the experiment
since we record only average traces, and added the dephasing term.

We now want to stabilize the pure state ρtarget = 1
2 (1 + cosθσy + sinθσz) (see

Fig. 47c). Let us consider the control matrix


u(t)

v(t)

w(t)

 =


0

√
γ1
8η (1 + sinθ)

−
√

γ1
8η (1 + sinθ) 0√
γ1
8η cosθ 0

×
 dIt

dt
dQt
dt

+


γ1
8 (1− sinθ/η)cosθ

0
0

 .

(225)

With this choice we find that
Hdrift = − h̄γ1cosθ

8 σX

LI,1 =
√

γ1
8 (σX + isinθ σY − icosθ σZ)

LQ,1 = −i
√

γ1
8 (sinθ σX + iσY )

. (226)

If η = 1, LI,2 = LQ,2 = 0 and we can then check that, when neglecting pure dephasing,
ρtarget is indeed a stable state under the master equation (224). Note that H0 does not

9 for compactness, we call Gα the rows of G, with the correspondence 1↔ X, 2↔ Y and 3↔ Z.
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compensate exactly for Hdrift. This constant drive, detuned by w(t) from the qubit
resonance frequency, is necessary to stabilize a state different from |e〉.

For η < 1, LI,2 and LQ,2 limit the preparation fidelity of ρtarget. Pure dephasing and
finite feedback delay also limit this fidelity. All these effects will be taken into account
in the simulations which results are shown in the following section. In that case, the
markovian controller defined in Eq. (225) is not optimized to get as high a preparation
fidelity to ρtarget as possible.

5.2.2 Experimental implementation

The qubit used for this experiment is the same as in Sec. 3.4.2 (Qubit 4 in Tab. 3).
However, this experiment corresponds to a different cool down of the sample so that
the qubit parameters are slightly different. The characteristic times of the qubit were
measured to be T1 = 5.23 µs, T2 = 6.83 µs, and the cavity pull χ = 9 MHz. Moreover,
the parametric amplifier (JPC) at the head of the detection setup was changed so that
the new amplifier was optimized for a detection at the new qubit frequency ωq/2π =

6.26 GHz, and the connectors between the cavity and the amplifier were changed. As
a result, the detection efficiency was improved to η = 30%.

5.2.2.1 Stabilization of |e〉

As a first step, we implement the feedback loop with θ = π
2 so that |e〉 is the target

state. The control w is not used and the control matrix boils down tou(t)
v(t)

 =
√
γ1
2η

 0 1
−1 0

×
 dIt

dt
dQt
dt

 . (227)

The form of the off-diagonal matrix can be qualitatively understood by acknowledging
that the value of dIt

dt gives information about the x-coordinate of the qubit in the Bloch
sphere. This information can then be used to send the qubit toward |e〉 by applying a
rotation with the appropriate sign around σY .

A rotation of the qubit around σY corresponding to the v control is performed by
applying a tone at ωq with phase10 φ = 0 through the input port of the cavity (see
Eq. (130)). Rotations around σX are performed by applying a tone with phase φ = π

2 .
Since in the laboratory frame, the fluorescence signal reads dIt

dt cos(ωqt) + dQt
dt sin(ωqt),

the feedback loop can simply be implemented by shifting its phase by π
2 and re directing

it toward the input port. It also needs to be amplified by an a priori unknown factor
accounting for the target gain of the loop

√
γ1
2η , the filtering by the cavity and the losses

in the lines. However, it can be calibrated with the following steps.

• In open loop, the qubit is driven resonantly and the average fluorescence signal
is recorded. The amplitude of the oscillations when starting from ρ = |g〉〈g| can

10 In the present experiment, the phase reference for the qubit is set by the source used to apply the π/2
pulses of the final tomography used to characterize the stabilized state.
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Figure 46: a) Simplified schematic of the experimental setup. The fluorescence field is collected
on the output line and amplified by the JPC at 20 mK. After further amplification,
the signal is down-converted to ωh/2π = 40 MHz at room temperature to be finely
filtered (bandpass 25− 50 MHz) before being up converted back to ωq with a differ-
ent LO, which phase is shifted by φ from the one used for down-conversion. After
amplification (tunable gain G), the signal is fed back to the qubit via the input
line. Full schematic of the wiring can be found in Sec. A.2.2. b) Dots: measured
tomography of the qubit after a time tfeedback of MBF designed to prepare |e〉. The
Bloch coordinates are shown as a function of time (on logarithmic scale) starting
from thermal equilibrium at t = 0. Blue line: exponential fit with characteristic
time T = 1.1 µs. c) Mean value of σZ in the stationary regime when varying the
total gain of the loop, scaled by an unknown factor accounting for the losses of the
lines. The efficiency of the detection setup is varied by adjusting the gain of the
JPC. When turned off (η = 0.5%), the occupation of |e〉 can reach 50% by heating
but the population is never inverted. Best performance: 〈σZ〉 = 0.17 corresponding
to η = 28%.

be used to calibrate the scale of the detected signal. The signal reads dIt
dt =√

ηγ1
2 sin Ωrt

def
= i1 sin Ωrt.

• A constant signal with amplitude i1 is amplified by a gain G and sent through
the input line. It induces Rabi oscillations of the qubit that can be detected in
the fluorescence or by dispersive measurement.

• The gain G is tuned until the period of these oscillations is 4π/γ1
11. Note that

here, G designates a gain in amplitude.

11 In practice, since TRabi =
4π
γ1

> T1, no oscillations can be observed. It is easier to tune G in order to
get oscillations with period, say TRabi/100, and then divide G by 100.
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In practice, this amplifier is situated at room temperature (see Fig. 46a). To avoid
heating the qubit with an important noise power over a large frequency span and in
particular at the |e〉 → |f〉 transition frequency, the amplified signal needs to be filtered
around ωq12. For fine filtering, the signal is first down-converted to ωh/2π = 40 MHz
at room temperature. At this low frequency, the resulting signal can be accurately
filtered using commercial low and high pass filters. Note that the bandwidth of this
filter, centered on ωh needs to verify δffilter � γ1. The signal is then converted back
to ωq. Down-conversion and up-conversion are performed by mixing with 2 different
LO, phase-shifted by φ. This tunable phase-shift is set to satisfy the closed-loop lock-
ing condition of Eq. (227) as φ = π

2 − ωqtdelay, the second term compensating for the
electrical delay of loop.

Starting from thermal equilibrium, we turn on the feedback and after a time tfeedback,
full tomography of the qubit state is performed. The tomography can here be imple-
mented either by the usual dispersive measurement at cavity frequency or by fluores-
cence measurement. Both methods were demonstrated to be equivalent for all relevant
gains. Note that the feedback needs to be turned off during the tomography in both
cases in order not to disturb the readout. The results are presented on Fig. 46b. The
mean value of σZ converges exponentially toward its stationary value 〈σZ〉stat = 0.17.
The convergence time T = 1.1 µs can be reproduced by performing discrete time quan-
tum Monte Carlo simulations (solid blue line) but 〈σZ〉stat is underestimated by these
simulations for detection efficiency η = 30%.

We can vary the detection setup efficiency from close to 0 up to this optimal value
by varying the gain of the JPC. Indeed the gain of the setup is determined by

η−1 = η−1
JPC +

η−1
H

GJPC
, (228)

where ηH is the efficiency of the following chain of amplifiers. When turning off the JPC
(GJPC = 1), we measured η1 = 0.005. When increasing GJPC, this value improves until
it reaches its maximal value (measured for GJPC = 27 dB). With these two conditions,
we can compute the efficiencies for intermediate gains, summarized in Table 2. The
feedback performances when varying η are presented on Fig. 46c. When the JPC is off
(η ∼ 0), one can excite the qubit by increasing the gain of the loop but the population
is never inverted. This situation corresponds to an increased effective temperature of
the qubit induced by a large noise power at ωq. When η is increased, larger values of
〈σZ〉 are reached. The optimal loop gain is shifted to larger gains, but Gopt/GJPC is
not exactly constant. This could be due to the fact that the estimation of Gopt from the
previous section does not take into account the damping operators LI,2 and LQ,2 = 0
appearing at finite efficiency.
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Table 2

GJPC 0 (dB) 18 (dB) 23 (dB) 27 (dB)

η 0.5 % 16.5 % 25.5 % 30 %
Pmax(|e〉) 50 % 56 % 58 % 60 %

5.2.2.2 Arbitrary state stabilization

We now set as the target an arbitrary13 pure state ρtarget =
1
2 (1 + cosθ σy + sinθ σz).

In the controller of Eq. (225), w(t) is now proportional to dI
dt . In order to implement

this frequency modulation of the qubit, we use the Stark shift induced when driving
coherently the cavity mode nearby its resonance frequency [173]. In Eq. (85), we found
that the Stark shift and the measurement induced dephasing rate read ΩStark(t) = χRe[αg(t)α∗e(t)]

Γd(t) = χIm[αg(t)α∗e(t)]
, (229)

where αg(t) and αe(t) are the complex amplitudes of the cavity field when the qubit
is in |g〉 or |e〉. We can show that, in the stationary regime and for a large detuning δ
of the drive field from the cavity frequency (see Fig. 15),

Γd
ΩStark

→ 0. (230)

Thus, by driving sufficiently far from the cavity frequency, the qubit frequency can
be shifted with negligible extra dephasing. Moreover, for δ � κ where κ is the
cavity linewidth, the stationary regime is reached on a time-scale 1/δ. By choosing
δ � κ � γ1, the frequency modulator as a sufficient dynamical bandwidth to imple-
ment the w control.

In the experiment, we set δ = 2π× 100 MHz. Note that ΩStark is proportional to the
power of the field at ωs = ωc+ δ, so that we cannot simply modulate the amplitude of
a continuous wave at ωs with dI

dt . The experimental setup is represented on Fig. 47a.
To get the proper linear dependence of the wave power on dI

dt , we up-convert the
fluorescence signal to ωs (in purple) and amplify it with gain G2 so that it reads14

G2
(

dI
dt cosωst+ dQ

dt sinωst
)
, and combine it with a constant tone of large amplitude

A0 cosωst. We then get

ΩStark(t) ∝ |A0 +G2
dI
dt + iG2

dQ
dt |

2 ' A2
0 + 2G2A0

dI
dt . (231)

We then tune the gain G2 in order to get ΩStark(t) = w(t) + Ω0. The offset Ω0/2π =

700 kHz shifts slightly the qubit frequency.
12 The JPC finite bandwidth acts as a first filter.
13 contrary to the homodyne case, here both σ− = σX − iσY and iσ− = σ−Y + iσX are detected, so

that one can stabilize | ± x〉 and | ± y〉. In practice, the stabilization of | ± x〉 is performed by changing
the phase reference of the drive.

14 The phase of the signal is chosen as the reference at ωs to simplify the expressions.
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Figure 47: a) Schematic of the experiment. After detection and amplification, the fluorescence
signal (in green) is split. One part is down-converted to ωh (in blue), filtered, and up-
converted back to ωq before being fed back to the system (same scheme as on Fig. 46).
A constant drive around σX , corresponding to a Rabi pulsation u, is implemented
by mixing a sine form at ωh = 2π × 40 MHz with a L0 at ωq + ωh (in orange).
This wave is used as phase reference in the setup. Another part of the fluorescence
signal is down-converted to ωi = 2π × 70 MHz (in red), filtered and up-converted
to ωs = ωc + 2π × 100 MHz (in purple). In order to get a linear dependence of
the total power of the field at ωs sent through the input line, with respect to dI

dt ,
it is combined with a wave of same frequency, large constant amplitude A0, and
phase φ2 adjusted to compensate for electrical delays in the circuit. Full schematic
of the wiring can be found in Sec. A.2.2 b) Measured tomography of the stabilized
states in the stationary regime of the feedback when varying θ ∈ [0, 2π]. c) Same
states represented in the (y,z) plane. For θ = −25◦ (in blue), the stabilized state is
highlighted in blue, the target state in black.

Let us detail further these steps and the whole feedback setup as represented on
Fig. 47a.
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• The conversion from ωq (in green) to ωs (in purple) is performed by first dow-
converting the signal to ωi = 2π × 70 kHz (in red) for fine filtering, before up
converting it to ωs.

• The large amplitude wave is phase shifted by φ2 with respect to the signal
wave. This is done by mixing the same LO that is used for up-conversion of
the fluorescence signal with a sine waveform of controlled phase at ωi. This
allows us to adjust the quadrature for ΩStark(t), so as to compensate for the
phase φdelay,w, determined by the electrical delays in the circuit. Indeed, taking
these delays into account, the frequency modulation given in Eq. (231) becomes
ΩStark(t) =

√
γ1
8η cos θ

(
cos (φ2 + φdelay,w)

dI
dt + sin (φ2 + φdelay,w)

dQ
dt

)
, and we set

φ2 = −φdelay,w to stabilize a state of the yz plane of the Bloch sphere, as pre-
scribed by the controller (225).

• Here, the phase reference for this state is set by the microwave at ωq implementing
the constant drive u h̄σX in the controller (225) (L0 at ωq + ωh in orange, mixed
with a sine waveform at ωh in blue).

• The controls on σX and σY are the same as for the stabilization of |e〉〈e|, but for
a lower loop gain

√
γ1
8η (1+ sin θ), which is adjusted via the gain G1 of a different

amplifier.

On Fig. 47c, we plot the ensemble of states that we have managed to stabilize in the
(y, z) plane of the Bloch sphere (red dots), when applying the feedback with optimal
gains G1 and G2. Note that since the controller is not optimized for the finite detection
efficiency, the best fidelity to a given target state ρtarget =

1
2 (1 + cosθ σy + sinθ σz) is

not given by the corresponding value in of the controller (225). For example, the max-
imum value for 〈σY 〉stat is found to be 0.42 and is reached for θ ∼ π/3. Note, though,
that we demonstrated here that it is possible to stabilize a state of the (x, y) plane with
markovian feedback on the fluorescence signal, contrary to what was predicted in [170].

In this chapter, we demonstrated the use of quantum feedback to prepare an arbitrary
state of a single qubit. It was performed using either a projective measurement result
and reacting much faster than the qubit lifetime, or feedbacking continuously a weak
measurement signal to the system. These two types of feedback loops are different
in nature and use different measurement schemes but are both measurement based
feedback. Indeed, in both cases, information is extracted from the system and processed
classically to react on the system via drive controls. In the following chapter, we show an
example of autonomous feedback, in which the system of interest is coupled coherently
to an ancillary quantum system of high dissipation. It allows one to engineer the
dissipation of the first system so that it relaxes toward a desired state or subspace.
In the example that we give, the feedback is a simple scheme used to cool down a
thermally excited qubit before starting an experiment.
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6
RESERVOIR ENGINEER ING

In the definition given by Seth Lloyd [174], coherent quantum feedback consists in bring-
ing a quantum system to a desired state by processing the information leaking out from
it via another quantum system, with no classical information channel involved. He thus
distinguishes the reset of a qubit realized by a measurement based feedback loop such
as the one described in Sec. 5.1.2 from a reset based on quantum gates only. The idea
of this coherent reset is to swap the state of the controlled qubit with an ancillary qubit
starting in its ground state. Therefore, this feedback loop relies on the use of a cold
auxiliary degree of freedom. If one wants to repeat this loop, other degrees of freedom
forming a cold bath, need to be used. Thus, this coherent feedback actually relies on
dissipation toward a controlled environment.

In Sec. 6.1, we describe such a reservoir engineering [34] scheme that can be used
to cool down a thermally excited qubit before an experiment. This cooling procedure
is applied continuously during a time depending on the cooling rate involved. We
give an analysis of this rate depending on the system characteristic timescales. In
Sec. 6.2.1, we describe an implementation of a discrete version of this feedback loop,
which corresponds to the one originally described by Lloyd [174].

6.1 double drive reset of population

6.1.1 Principle and limits

Despite careful filtering of the refrigerator microwave lines (see Sec. A.2), it is com-
mon with superconducting qubits, and particularly with 3D transmons, that spurious
thermal excitations at equilibrium become an issue for the experiments. In 2013, Geer-
lings et al. [44] demonstrated an instrumental reset protocol, the Double Drive Reset
of Population (DDROP), which can be easily implemented to initialize the qubit in
the ground state before an experiment, without resorting to post-selection [165, 166] or
more elaborate schemes such as frequency tuning [162, 163, 16, 164] or feedback [42, 81].
In particular, it was used in the experiment reported in [82] and Sec. 3.4.1.
In this section, we analyze the DDROP performances in terms of induced relaxation
rates between the transmon energy levels. We show, that, as expected, the DDROP
efficiently cools down the transmon, emptying all of its energy levels toward |g〉. Ex-
tracting quantitatively the induced relaxation rate from excited to ground state, we
show that, within a certain range of parameters1, this rate is limited by the Quantum
Zeno effect.

1 This range is not explored in operational regime.
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a) b)

Figure 48: a) Principle of the DDROP scheme. On the combined energy level diagram for the
cavity and qubit, the drive at ωr,g (in purple) generates a large coherent state |α〉
with negligible overlap with |0〉 if the qubit is in |g〉 (state occupation represented by
red circles). The Rabi drive at ωq (in green) is then ineffective and |g,α〉 is stabilized.
In case of thermal excitation, the state jumps to the right ladder where the cavity
drive is off resonant. It rapidly decays down to |e, 0〉, and the Rabi drive can send
it to the left ladder, where it climbs back to |g,α〉. b) 3-level model for the heated
transmon. Excitations are induced by the Johnson-Nyquist noise (in green). This
noise increases the relaxation rates due to dissipation into cold lines (dotted black
and green arrows). The DDROP adds a supplementary relaxation process (in blue)
that offsets the equilibrium population toward |g〉.

The DDROP implementation requires for the qubit to be in the resolved photon num-
ber regime [45], defined by χ� κ, γ1, γ2. In that case, one can address the qubit tran-
sition conditioned on the number of photons hosted in the cavity mode (see Fig. 53b).
The qubit pulsation dressed by n photons reads ωq − nχ. In particular, if the cavity is
continuously driven so that the generated coherent state |α〉 verifies 〈0|α〉 ' 0 (negli-
gible overlap with Fock state |0〉), a microwave tone at ωq does not excite the qubit.
Conversely, if the cavity damping rate κ verifies κ � χ, one can address the cavity
resonance conditioned on the qubit state. For instance, a drive tone at ωr,g = ωr +

χ
2

populates the cavity mode only if the qubit is in |g〉.

When these conditions are met, one can use the DDROP as schematized on Fig. 48a.
The principle consists in driving the system continuously and simultaneously with a
tone at ωr,g and a Rabi drive at ωq. If the qubit is in the ground state |g〉, the drive
at ωr,g combined with the relaxation rate κ excites the cavity in the steady state |α〉.
On the other hand, if the qubit is excited, both drives are off resonance and relaxation
brings the cavity mode towards the vacuum state. When in the vacuum state, the Rabi
drive at ωq tends to equilibrate the populations |g〉 ⊗ |0〉 and |e〉 ⊗ |0〉2, which cools

2 In the limit where the transition rate induced by the Rabi drive is much lower than the displacement
rate associated with the cavity drive, this equilibrium is never reached since the cavity gets excited as
soon as the qubit jumps to |g〉
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down the qubit in the ground state before exciting the cavity at ωr,g. In the end, the
process prepares the steady state |g〉 ⊗ |α〉 at a rate which is limited by κ.
We can identify a limit to the rate at which this method resets the qubit in the

ground state. When a thermal excitation takes place, the cavity drive becomes off res-
onant. The ring down time of the cavity is then an incompressible delay before the
Rabi drive comes in resonance and resets the qubit.

Note than even though the higher excited states of the transmon are not directly
affected by the DDROP scheme, by emptying the |e〉 state, the detailed balance condi-
tion with the higher states implies that their population eventually leaks down toward
|e〉, and thus to |g〉. A simple model considering three levels for the transmon is de-
picted on Fig. 48b. We consider transitions between |g〉, |e〉 and |f〉, which is the second
excited state. The excitation and relaxation rates are linked to the thermal equilibrium
occupation of each level by Peq,gγge = Peq,eγeg

Peq,e(γeg + γef ) = Peq,gγge + Peq,fγfe
. (232)

When turning on the DDROP, a supplementary relaxation process from |e〉 to |g〉
appears at rate γcool (in blue), offsetting the equilibrium toward |g〉. In the next sections,
we measure and give an interpretation of this cooling rate in the limit of weak Rabi
drive.

6.1.2 Heating up the transmon

We consider the qubit that corresponds to Qubit 4 in Tab. 3. It has a very low oc-
cupation of the excited states at thermal equilibrium (P 0

eq,e ≤ 1 %). We heat it in a
controlled way using the Johnson-Nyquist noise [175] emitted by a hot load. In practice,
a resistor at room temperature is loaded at the input of a high power amplifier. The
output noise power spectrum is measured at the input of the refrigerator3 and displays
variations below 1.5 dB over a large bandwidth covering the qubit g ↔ e and e ↔ f

transitions. It is then sent to the the input port of the cavity via the input lines, along
which it is attenuated. This results in larger transition rates γge, γeg, γef and γfe [11].

For a given thermal noise power, we measure the transmission of the cavity around
its resonance frequency. Three peaks appear, corresponding to the cavity resonance
frequencies when the qubit is in |g〉, |e〉 and |f〉 (see Fig. 49a). A fourth peak corre-
sponding to a higher excited state is barely visible. Fitting the cavity transmission and
assuming a Boltzmann distribution for the level occupations (see Fig. 16), we get a
first estimate of the effective temperature of the qubit Teff = 260 mK. The probability
for the qubit to be in a state higher than |f〉 is then below 2 %, justifying the 3-level
model presented in the previous section. We also extract from this curve the damping
rate of the cavity κ = 2π× 3.45 MHz.

3 The noise power spectrum is not calibrated at the input port of the cavity.
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Figure 49: a Measured transmission of the cavity in amplitude (black dots) as a function of
the probe frequency, for a qubit at thermal equilibrium in presence of the added
Johnson-Nyquist noise. Red line: fit assuming a Boltzmann occupation of the qubit
levels corresponding to a temperature Teff = 260 mK. The cavity damping rate is
adjusted at κ = 2π × 3.45 MHz. b) Measured transmission of the cavity (probe
frequency at freadout on a) in the Fresnel plane, after driving the qubit with a
variable length pulse to induce Rabi oscillations between |g〉, |e〉 and |f〉 (details in
the main text). Large triangle: heating noise off. Small triangle: heating noise on. tg
is the transmission when the qubit is in |g〉 (negligible thermal excitations when the
heating noise is off), te (resp. tf ) when prepared |e〉 with a π-pulse on g ↔ e (resp.
|f〉 with a π-pulse on g ↔ e and a π-pulse on e↔ f).

In order to measure more finely the occupation of each level, we detect the trans-
mitted field by the cavity when sending through the input port a 2µs-long pulse at
freadout, chosen to be nearby ωr,e/2π (see Fig. 49a). This frequency was chosen in order
to maximize the distance in the Fresnel plane between the transmission of the cavity
when the qubit is in each of the 3 possible states. On Fig. 49b, the summits of the
larger triangle materialize these 3 amplitudes, called tg, te and tf , when the qubit is
in the pure state |g〉, |e〉 or |f〉. For this measurement, we turn the heating noise off,
so that the qubit is in |g〉 at equilibrium. Each side of the triangle corresponds to a
measured Rabi oscillation of the qubit between |g〉 and |e〉 (in green, by applying a
variable length Rabi drive on e↔ g), between |g〉 and |f〉 (in purple, by applying Rabi
drive on e ↔ g followed by a π-pulse on e ↔ f) and between |e〉 and |f〉 (in blue, by
applying Rabi drive on e↔ g followed by a π-pulse on e↔ f and another on g ↔ e).
Now that these 3 possible transmissions are known, one can determine the occupation
of each level by measuring the average transmission t of the cavity for a given qubit
state. Indeed, t then verifies

t = Pgtg + Pete + Pf tf . (233)

This equation is solvable assuming that Pg + Pe + Pf = 1.

As a first test of this method, we again measure the transmission of the cavity when
performing the three Rabi oscillations described above, but with the heating noise on4.
The four summits can be understood as follows Fig. 49b.

4 note that the heating power needs to be turned off during the dispersive measurement in order not to
distort the transmission
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• 1. Transmission at equilibrium
t1 = Peq,gtg + Peq,ete + Peq,f tf

• 2. Transmission when applying a π-pulse on e↔ g from equilibrium
t2 = Peq,etg + Peq,gte + Peq,f tf

• 3. Transmission when applying a π-pulse on e ↔ g followed by a π-pulse on
e↔ f from equilibrium
t3 = Peq,f tg + Peq,gte + Peq,gtf

• 4. Transmission when applying a π-pulse on e↔ f from equilibrium
t4 = Peq,gtg + Peq,f te + Peq,etf

The black dots are predicted transmissions assuming a Boltzmann distribution with
Teff = 260 mK. Qualitatively, the measured transmissions match these predictions.
Quantitatively, the measured distribution from the dispersive readout does not follow
exactly the Boltzmann law. In particular, Peq,f = 12 % is 5 % larger than predicted.
This could originate from a textured heating noise once filtered by the refrigerator
lines, or imprecisions when neglecting higher excited states.

We now use this readout method to follow the occupation of each of the levels of the
qubit when turning on the DDROP. This will allow us to extract the value of γcool for
various relative amplitudes of each drive.

6.1.3 Cooling performances

To optimize the amplitude of the drive at cavity frequency used in the DDROP, we
first measure the occupation of |g〉 in the steady state when varying this amplitude and
for various qubit drive amplitudes at ωq (expressed in terms of Rabi pulsation ΩR).
It is represented on Fig. 50a. The horizontal axis corresponding to the amplitude of
the drive at ωr,g has been calibrated in terms of coherent state amplitude α inside the
cavity, for a qubit in |g〉. This calibration follows the same method that is described in
details on Fig. 54d. It consists, for a given α, in measuring the occupation of each Fock
state |n〉 by applying a π-pulse on the qubit that operates only if there are exactly n
photons in the cavity mode (excitation at ωq − nχ). The probability to measure the
qubit in the excited state afterwards reads |〈n|α〉|2. Note that here, we consider the
steady state of the cavity mode in presence of a constant drive, and not after a fast
displacement pulse. It is slightly distorted by the small cavity anharmonicity induced
by its hybridization with the qubit, so that it is not a coherent state at large drive
amplitudes (for α > 2). On this scale, α thus represents the square root of the mean
photon number in the field, rather than the amplitude of a coherent state.
When α = 0, the Rabi drive equalizes the occupation of |e〉 and |g〉 as a mean. Linked
by the detailed balance of Eq. (232), this leads to Pg = 0.4. When increasing α, the
qubit is effectively cooled down to |g〉. The corresponding cooling rate saturates for a
coherent field containing about 5 photons as a mean, corresponding to an overlap with
state |0〉 of less than 1 %. From now on, we set α =

√
6, for which we measure the best

cooling performances. Note that when increasing α from this value, Pg decreases since
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Figure 50: a) Measured occupation of |g〉 in the steady state of DDROP as a function of the
amplitude of the coherent state generated when the qubit is in |g〉. The amplitude of
the Rabi drive at ωq is encoded in color. b-d) Occupation of each level as a function
of time when turning on the DDROP at t = 0 and off at t = 12 µs. The amplitude
of the field at ωr,g is set to αcool =

√
6 (black line on a), and the same color code is

used for Rabi drive amplitude. Dots: experimental data. Lines: fit with 2 global fit
parameters (γeg and γfe). The value of γcool is a supplementary fit parameter for
each Rabi drive amplitude when the DDROP is on.

it takes more time for the photons to leak out of the cavity when the qubit gets excited.

The cooling performances also depend on the Rabi drive amplitude. When increasing
ΩR, the steady state occupation of |g〉 increases until it saturates at Pmax,g = 0.95, for
ΩR ' 2π× 2 MHz (for κ = 2π× 3.45 MHz). We want to extract the cooling rate γcool
associated with each value of ΩR. In order to do so, we measure the occupation of the
qubit levels in time when turning on or off the DDROP. The results are presented as
dots on Fig. 50b-d, when turning on the cooling drives at t = 0 and turning them off
at t = 12µs (same color code as in a) .

The transition rates between the 3 qubit levels are then fit parameters in a differential
equation which should match the measured traces

Ṗg = −Pg(t)γge + Pe(t)γtot(t)

Ṗe = −Pe(t)(γtot(t) + γef ) + Pg(t)γge + Pf (t)γfe

Ṗf = −Pf (t)γfe + Pe(t)γef

, (234)
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with

γtot =

 γeg for the cooling off
γeg + γcool for the cooling on

. (235)

Note that the 4 transition rates when the cooling is off are linked by the detailed bal-
ance condition at equilibrium (see Eq. (232)). In practice, we fit for the last two free
parameters when the drives are off, and then fit for γcool when the drives are on. The
corresponding fitted curves of Pg(t), Pe(t) and Pf (t) are also represented on Fig. 50b-d
(lines).

The extracted values of γcool are presented on Fig. 51 (red dots). They follow a
quadratic law for small ΩR and then should saturate around γmax = 2.6 µs−1 ' κ/8
(saturated regime not shown). The quadratic law for ΩR � κ results from a Zeno
blockade [115] of the transition from |e〉 to |g〉 induced by the drive at ωr,g acting as a
continuous measurement of the σZ operator of the qubit. Indeed, the dephasing rate
associated with this drive is Γd = 63 µs−1 � ΩR (computed from the cavity param-
eters following Eq. (85)). In this regime, coherent Rabi oscillations are inhibited, but
the Zeno blockade is incomplete so that the qubit state jumps randomly from |e〉 to |g〉.

However, the jump rate computed from a reduced master equation model by Gam-
betta et al. in [115], which reads

γjump =
Ω2
R

2(γ2 + Γd)
(236)

(black line on Fig. 51), is not sufficient to account for the measured transition rates.
This underestimated jump rate for a large drive at cavity frequency was also observed
by Gambetta et al. when comparing the reduced master equation model with the re-
sults of a full simulation of the cavity-qubit system [115].

We reproduced this experiment with a smaller value of the Johnson-Nyquist noise.
The extracted cooling rates are slightly larger (blue dots on Fig. 51), in qualitative
agreement with Eq. (236) since the qubit coherence time 1/γ2 was measured to be
slightly longer for this weaker heating power.

In this section, we presented a practical scheme used to reset the qubit to the ground
state. In practice, it is used to get rid of spurious thermal excitations before starting
an experiment. The performances depend on the cooling rate, ultimately limited by
the ring down time of the cavity. This time depends on the amplitude of the driving
field at ωr,g. In the next section, we present the discrete time version of this scheme,
and analyze the dependence of the reset fidelity on the amplitude of this field.

135



0 1 2
0

1

2

3

Figure 51: Extracted values of the DDROP-induced relaxation rate γcool from |e〉 to |g〉 as
a function of the Rabi drive amplitude. Red dots: values extracted from the fits
in Fig. 50b-d. Blue dots: values extracted for a similar experiment with a weaker
Johnson-Nyquist noise. Black line: jump rate under Zeno blockade computed from
Eq. (236). Dotted red line: best quadratic fit to the extracted rates.

6.2 autonomous feedback versus mbf

6.2.1 Swap reset

The pulsed version of the DDROP that we present here also relies on the possibility
to address a transition of the qubit conditioned on the cavity hosting a given number
of photons. More specifically it requires to apply a controlled π-rotation on the qubit
that operates only if the cavity mode is in the vacuum [125]. The reset is performed
on Qubit 3 in Tab. 3 that verifies χ � κ, γ1,2. The data is the same as presented on
Fig. 54, and we give here an interpretation in terms of autonomous cooling of what
is described as a spurious effect when measuring the cavity Fock states occupation in
Chap. 75. The reset sequence is as follows.

• The qubit is initially at thermal equilibrium in the state ρth = pe|e〉〈e|+ (1−
pe)|g〉〈g| and the cavity mode in the vacuum.

• We apply a displacement pulse at ωr,g = ωr +
χ
2 so that a coherent field of am-

plitude α ∈ R develops in the cavity if the qubit is in |g〉. The total system state
is then ρ1 = pe|e〉〈e| ⊗ |0〉〈0|+ (1− pe)|g〉〈g| ⊗ |α〉〈α|.

We define a cavity state |0⊥〉 = (1−|0〉〈0|)|α〉√
1−|〈α|0〉|2

, and an angle θ as sin θ
2 = 〈0⊥|α〉 =√

1− e−α2 so that the state of the system reads

ρ1 = pe|e〉〈e| ⊗ |0〉〈0|+
(1− pe)|g〉〈g| ⊗

(
cos θ2 |0〉+ sin θ

2 |0⊥〉
)(

cos θ2〈0|+ sin θ
2〈0⊥|

)
.

5 see Sec. 7.2.1 for pulse shaping details and thermal occupation calibration
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(237)

Considering the effective two-level system {|0〉, |0⊥〉}, this controlled displacement
of the cavity field is thus a rotation Rq|θ controlled by the transmon and whose
target is the cavity two-level system (see Fig. 52a).

• A π-pulse at ωq is applied on the qubit. In the resolved photon number regime,
which is enforced here, it affects the qubit only if the cavity is in the vacuum.
This is a C-NOT gate on the qubit controlled by the cavity. The system state
now reads

ρ2 = pe|g〉〈g| ⊗ |0〉〈0|+
(1− pe)

(
cos θ2 |e〉 ⊗ |0〉+ sin θ

2 |g〉 ⊗ |0⊥〉
)(

cos θ2〈e| ⊗ 〈0|+ sin θ
2〈g| ⊗ 〈0⊥|

)
.

(238)

• Up to now, every operation was coherent and reversible. In general, the cavity
mode and the qubit are entangled. We now trace out the cavity, which is not a
unitary operation. The qubit density matrix then reads

ρf =
(

sin2 θ

2 + pe cos2 θ

2
)
|g〉〈g|+ (1− pe) cos2 θ

2 |e〉〈e|. (239)

Qubit

Cavity

a) b)

Figure 52: a) Quantum logic representation of the autonomous feedback loop. The displace-
ment corresponds to a rotation by angle θ of a qubit formed by two orthogonal
states of the cavity mode. A C-NOT gate controlled by this qubit is then applied
and the cavity mode is traced out. b) Measured occupation of |e〉 after one feedback
loop as a function of θ.

Unsurprisingly, the reset is perfectly efficient only for θ = π. This means that |α〉
needs to a have a sufficiently large amplitude to be perfectly distinguishable from |0〉.
In that case, in terms of operations on the effective "double qubit" system, this scheme
implements a double C-NOT gate that swaps the qubit and the cavity state. Even
though this operation is coherent, the cavity needs to be reset to the vacuum to per-
form another cycle. It is essential to take into account this step to avoid a paradox
similar to the Maxwell’s demon thought experiment [176]. Indeed, this essentially clas-
sical reset scheme requires to evacuate entropy either by a measurement based reset
of the cavity, or more simply by dissipation into the cold probe lines. In that sense,
this scheme is equivalent to the measurement based reset of the qubit described in
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Sec. 5.1.2, where a bit of memory of the FPGA board plays the role of the ancillary
system absorbing the original entropy of the qubit.

We plot on Fig. 52b the measured occupation of |e〉 after one feedback loop and
starting from thermal equilibrium. Note that the calibration of the qubit readout pro-
tocol, presented in Sec. 7.2.1, does not allow a precision better than a few percents.
Quantitative comparison with the performances of the measurement based scheme pre-
sented in Sec. 5.1.2 is thus impossible. However, the performances of both protocols
are qualitatively comparable, since they are both based on the entanglement of the
qubit state with the intra cavity field, acting as an ancilla. The reset is efficient if the 2
states of the ancilla corresponding to a qubit in |g〉 or |e〉 are perfectly distinguishable.
In that case, for perfect detection efficiency, the MBF scheme also corresponds to a
double C-NOT classical gate.

6.2.2 Engineering dissipation with continuous feedback

In the previous section, we have seen that an autonomous reset of the qubit based on a
double C-NOT gate with a cold ancilla was equivalent, for perfect detection efficiency,
to the stroboscopic feedback protocol presented in Sec. 5.1.2. One may wonder if this
equivalence between the measurement based and autonomous protocols can be gener-
alized to reservoir engineering techniques.

In Sec. 5.2.1, we showed that a continuous feedback based on the fluorescence detec-
tion could be used to effectively engineer dissipation. However, the dissipation rate is
limited, for perfect detection efficiency, by the measurement rate γ1

6. Thus, it cannot
be used to increase dissipation, but rather to redirect it. Therefore, it cannot be used
to cool down the qubit as the DDROP protocol, which essentially increases the relax-
ation rate of the qubit using the stronger dissipation of the cavity.

This limitation does not arise for a continuous feedback protocol based on the dis-
persive measurement of the σZ operator (see Sec. 3.2), whose strength can be varied
via the amplitude of the drive at cavity frequency. We now roughly sketch a feedback
protocol based on this dispersive measurement that, for perfect detection efficiency,
stabilizes |+ x〉 = 1√

2 (|g〉+ |e〉).

We consider a constant drive at cavity frequency that leads to a dephasing rate Γd
of the qubit (see Eq.(85)) and, for simplicity, a perfect homodyne detection of the
Q quadrature of the transmitted field. It corresponds to the case of a single jump

6 In general, the total dissipation rate in Eq. (224) is larger due to the spurious jump operators denoted
LI,2 and LQ,2.
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operator L =
√

Γd
2 σZ , and the detection yields the signal dJt =

√
2Γd〈σZ〉dt+ dWt

(see Eq. (114)). Feeding back this signal to the qubit via the control hamiltonian

Hcont =

√
Γd
2

dJt
dt σY , (240)

a similar calculation to the one made in Sec. 5.2.1.1 leads to the effective master
equation for the qubit7 [23]

dρ
dt =

Γd
2
(
L1ρL

†
1 −

1
2 (L

†
1L1ρ+ ρL†1L1)

)
, (241)

where the new jump operator L1 reads

L1 =

√
Γd
2 (σZ − iσY ). (242)

The stable point of this equation is ρ = |+ x〉〈+x|.

Thus, the QND measurement of the σZ operator combined with a simple markovian
feedback loop creates an effective dissipation toward |+ x〉. In its effects, this protocol
is similar to a reservoir engineering method demonstrated by Murch et al. [47]. It can
simply be adapted to stabilize any state of the Bloch sphere. Surprisingly though, the
dissipation rate drops to 0 when the target state is on the z-axis. It thus cannot be
used to stabilize |g〉 or |e〉. This can be understood considering that, in these cases,
when spurious noise draws the state away from the z-axis, the σZ measurement does
not provide any information about its new phase. Thus, no coherent control can be
applied in order to restore the target state. For the same reason, the feedback protocol
based on the fluorescence signal cannot, using homodyne detection of σ−, stabilize
| ± x〉 because information is then extracted along Re[σ−] = 1

2σX
8. Note that |g〉 and

|e〉 are precisely the states naturally stabilized by the stroboscopic protocol described
in Sec. 5.1.2. More sophisticated, non markovian, feedback protocols need further in-
vestigation.
Using heterodyne detection does not seem to offer more controllability since the detec-
tion of iσz only shifts randomly the phase of the state. However, De Lange et al. have
shown recently that this back action could be compensated for by feedback [116]. Thus,
it should be possible to reach the same performances as with homodyne detection.

The question of whether a MBF with equivalent performances to coherent protocols
can be found for any stabilization problem remains open to date. In the particular
case of stabilizing the vacuum state of a resonant cavity mode in presence of photon
shot noise, Hamerly et al. have shown that coherent feedback was superior to MBF

7 Other decoherence channels, and in particular relaxation, are neglected here.
8 Using heterodyne detection though, one detects both σ− = 1

2 (σX − iσY ) and iσ− = 1
2 (σY + iσX ) so

that any state can be stabilized. Moreover, there is no phase reference but the one of the source used
both for detecting the fluorescence field and driving the qubit, so that | ± x〉 and | ± y〉 are equivalent.
On the other hand, heterodyne detection does not help for the dispersive measurement since neither
the detection of σZ or iσZ is sensitive to the phase of the state so that it cannot be used to stabilize
| ± z〉.
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using homodyne or heterodyne detection, even for perfect detection efficiency [177]. In
particular, the MBF scheme they consider does not lower the occupation of the cavity
when in the quantum regime, which they define by a low occupation of the cavity mode
at thermal equilibrium 〈a†a〉th � 1. In that case, the cavity mode can be considered
as an effective qubit, so that the problem is equivalent to stabilizing |g〉 with a MBF
using the fluorescence signal. We have shown that the feedback loop was ineffective in
that case. On the other hand, they propose a coherent protocol that lowers the cavity
mode occupation, even in the quantum regime. This protocol leads to an enhancement
of the dissipation similar to a Purcell enhanced spontaneous emission. However, it is
not shown that another type of measurement based feedback could not achieve similar
performances.

Recently, generation of Bell pairs [178, 179, 180] and stabilization of a particular
manifold of a cavity mode [181] through reservoir engineering have been demonstrated.
Engineered dissipation is thus an important resource for quantum information. Feed-
back protocols based on specific measurements [182, 183, 184] may prove to be an
alternative or complementary tool to efficiently engineer dissipation.

In this chapter, we have described protocols stabilizing a particular target state of
the qubit by autonomous feedback, which consists in engineering the dissipation so
that the target state becomes stable under continuous monitoring by the environment.
In the next chapter, we describe an experiment in which Zeno dynamics of the cavity
mode is enforced by coherent coupling to an ancillary system, which is the qubit. Zeno
dynamics can be seen as restricting the evolution of a system to a stabilized subspace
of its Hilbert space. In that sense, it implements coherent, dissipationless feedback.
Thus, such a protocol cannot be used to correct for errors induced by the decoherence
channels, which lead to an increase of entropy of the system.
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7
QUANTUM ZENO DYNAMICS

7.1 zeno dynamics of a microwave mode

7.1.1 Zeno dynamics by repeated measurements

In the original sense of Quantum Zeno Effect (QZE) [35, 36], one inhibits the departure
from a given state of a system due to a coherent evolution by measuring strongly and
repeatedly whether the system is in that state. Indeed, a general unitary operator acting
from time t1 to t2 corresponds to the evolution of the system under a hamiltonian H
and it can be written U(t2− t1) = e−i

H
h̄
(t2−t1). The projective measurement observable

O is modeled as

O =
∑
i

λiΠi, (243)

where the Πi’s are projectors on orthogonal states |αi〉 of the system. Then, if the
system is measured in |α1〉 at time t, the following measurement at time t+ δt yields
the same outcome with probability

p(δt) = |〈α1|U (δt)|α1〉|2 = |〈α1|1− i
Hm

h̄
δt−O(δt2)|α1〉|2 = 1 +O(δt2). (244)

Then, if one measures regularly the system N times from 0 to a given time T , and if
its initial state is |α1〉, it is found in the same state at T with probability

p(N) =

(
1 +O

(∆t
N

)2
)N

= 1 +O
(∆t2

N

)
N→∞→ 1. (245)

Thus, by measuring repeatedly a system, one can freeze its dynamics. QZE was first
demonstrated for transitions of a trapped ion [185, 186]. Zeno blockade of a coherent
field growth was observed in 2008 by Bernu et al. with Rydberg atoms [187], and with
superconducting qubits, inhibition of transitions induced by a Rabi drive was reported
in 2010 [141]. In Sec. 6.1.3, we showed that limited cooling performances of the DDROP
protocol for a weak Rabi drive were also due to QZE.

Interestingly, if the measurement projects the system not on orthogonal states but
on multidimensional manifolds, evolution is possible inside of each stabilized subspace.
Thus, the dynamics of the system is dramatically modified but not frozen. The resulting
constrained dynamics are then called Quantum Zeno Dynamics (QZD) [37, 38, 39].
Naming Hµ each subspace stable under the action of the projector Πµ the system now
evolves under the Zeno modified hamiltonian

Hµ = ΠµHΠµ. (246)

If its state is initially in one theHµ’s, the evolution is constrained within that subspace.
Note that the Zeno effect can also appear under continuous detection. Expressed in the
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Lindblad formalism, if a system dynamics described by a master equation (27) reading

dρ(t)
dt = − i

h̄
[H, ρ] +D[

√
ΓL]ρ, (247)

with L a jump operator of order 1, the evolution is confined to subspaces of the system
Hilbert space stable under the action of L when h̄Γ is much larger than the eigenen-
ergies of H [115]. Thus, an actual measurement by an observer does not need to take
place. A strong engineered dissipation can also entail QZD [181].

7.1.2 Zeno dynamics by strong coherent driving

7.1.2.1 Phase randomization

In 2004, Facchi et al. [37] proposed an alternative scheme, with no measurement in-
volved, to enforce the same dynamics. Applying repeated unitary "kicks", which are in-
stantaneous coherent evolutions encoded by a unitary operator UZ , effectively confines
a slow, continuous evolution governed by the hamiltonian H to orthogonal subspaces
Hµ, whose states are stable under the action of UZ1. Following [37, 38], QZD thus
refers to this general class of dynamics constrained within a chosen subspace, even
when the Zeno effect is not involved.

The coherently induced QZD can be understood as an effect of dynamical decoupling
or phase randomization. Indeed, if the system is initially in the pure state |ψ0〉2 and
N kicks take place between 0 and t, its state at time t reads

|ψ(t)〉 = (UZe
−iH

h̄
t
N )N |ψ0〉

def
= ŨN (t)|ψ0〉. (248)

Deriving this expression with respect to time leads to

d|ψ(t)〉
dt = − i

h̄

1
N

N−1∑
k=0

Ũk(t)UZHŨ
N−k−1(t)|ψ0〉. (249)

The proper dynamics appear by then neglecting the slow evolution e−iHh̄ t
N compared

to UZ . In the limit N →∞, we get

d|ψ(t)〉
dt = − i

h̄
1
N

N−1∑
k=0

UkZUZHU
N−k−1
Z |ψ0〉

= − i
h̄

(
1
N

N−1∑
k=0

Uk+1
Z HU †k+1

Z

)
UNZ |ψ0〉.

(250)

By diagonalizing UZ as

UZ =
∑
µ

e−iλµΠµ, (251)

1 Up to a global phase for each subspace as described below.
2 the system is supposed in a pure state for simplicity, but the result can be directly generalized to
mixed states.
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where the Πµ’s are projectors on the orthogonal eigenspaces Hµ and λµ 6= λν for µ 6= ν,
we can then rewrite the central term in Eq. (250) as

1
N

N−1∑
k=0

Uk+1
Z HU †k+1

Z =
∑
µ,ν

ΠµHΠν
1
N

N−1∑
k=0

e−i(k+1)(λµ−λν ). (252)

In that sum, the terms for which µ 6= ν cancel for N → ∞, so that we can write
Eq. (250) as

d|ψ(t)〉
dt = − i

h̄

(∑
µ

ΠµHΠµ

)
UNZ |ψ0〉. (253)

Thus, if |ψ0〉 is initially in one of the Hµ’s, it remains in that subspace, and up to a
constant phase Nλµ depending on the number of kicks, its dynamics is governed by
the same Zeno hamiltonian as in Eq. (246).

7.1.2.2 Zeno dynamics using an ancillary system

Zeno dynamics can thus be entailed by unitary kicks, and adapting this scheme, Schäfer
et al. have demonstrated experimentally with Rb condensates that a chosen level of
a system could be disabled by coupling it to an ancillary degree of freedom and driv-
ing continuously a transition of the hybrid system. This method was also successfully
implemented with Rydberg atoms [50]. To be more concrete, we now describe the
experiment[83] that we performed with a transmon dispersively coupled to the first
resonant mode of a cavity. The qubit is used to induce Zeno dynamics on the mi-
crowave mode. Note that, in opposition to the experiments described up to now in
this thesis, the system of interest is thus the cavity mode, the qubit being used as an
ancillary system.

The qubit corresponds to Qubit 3 in Tab. 3. Full wiring schematic can be found on
Fig. 66. Its coherence and decay times 1/γ1 = 11.5 µs and 1/γ2 = 8.9 µs are of the
same order of magnitude as the photon lifetime in the cavity mode3 1/(2πκ) = 1.3 µs.
The cavity mode resonates at ωr/2π = 7.804 GHz and the qubit at ωr/2π = 5.622 GHz.
Including drives for the qubit and the cavity mode, the hamiltonian in the dispersive
limit reads (see Eq. 80)

H = h̄ωra
†a+ h̄

ωq
2 σz − h̄χ2a

†aσz

+ h̄(εce−iωcta† + ε∗ce
+iωcta) + h̄(εde

−iωdtσ+ + ε∗de
+iωdtσ−),

(254)

where the dispersive shift χ/2π = 4.63 MHz is much larger than the decay rates
χ� γ1,κ. The system is thus in the resolved photon number regime [45] as shown on
Fig. 53b. In color is represented the transmission of the cavity when probed in con-
tinuous wave at ωc = ωr,g = ωr +

ωq
2 . Transmission thus gets lower as the probability

for the qubit to be excited increases. We then sweep the frequency of a second contin-
uous wave at ωd nearby ωq (horizontal axis). At low probing power for the cavity, the
qubit is excited only when ωd = ωq. When cranking up the power (vertical axis), other

3 determined spectroscopically by the method described in Sec. 2.2.2.3
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resonances appear for the qubit at ωq − kχ, each corresponding to different photon
numbers k in the cavity.

5.8 5.81 5.82
0

0.2

0.4

0.4

0.6

a) b)

Figure 53: a) Combined energy level diagram for the cavity and qubit. When driving specifically
the |g,N〉 ↔ |e,N〉 transition, these levels repel each other. The |N − 1〉 ↔ |N〉
transition of the cavity mode is no longer resonant with a drive at ωc = ωr,g. When
starting from |0〉 and applying a drive at this frequency, the evolution of the cavity
state is confined to N levels. b) Spectroscopy of the qubit dressed states. When
increasing the amplitude of a wave at cavity frequency (vertical axis) the qubit
resonates at several frequencies (horizontal axis) separated by χ. When reaching a
resonance, the qubit gets excited, which lowers the cavity transmission (encoded in
color).

By applying microwaves at ωq −Nχ, we can thus address specifically the transition
|g,N〉 ↔ |e,N〉 of the total system. A continuous, strong drive (corresponding to a Rabi
oscillation around σY with frequency ΩR/2π = 6.24 MHz if the level were occupied) on
this transition thus implements the repeated kicks of Sec. 7.1.2.1. Indeed, the subspaces
unaffected by this coherent drive are H+ = span(|+ y,N〉)4, H− = span(| − y,N〉),
and most importantly, H0 = span(|g, k〉, |e, k〉k 6=N ). Tracing out the qubit state, and
for a cavity mode initially empty of photons, the level |N〉 is disabled and the cavity
mode is described by the Zeno hamiltonian (246)

HZ = ΠHΠ, (255)

where H = h̄ωra
†a and

Π =
∑
k 6=N
|k〉〈k|. (256)

In practice, since the cavity is initially empty of photons and the 2-photon transitions
are forbidden, when driving at ωr,g, the cavity state is confined to the N first levels
(from |0〉 to |N − 1〉). Another way of understanding the experiment is depicted on
Fig. 53a. When driving the transition |g,N〉 ↔ |e,N〉 (N = 3 on the figure), these
levels are hybridized and repel each over by ΩR. The level |N〉 is thus removed from the
cavity mode harmonic ladder, and the |N − 1〉 ↔ |N〉 transition is no longer resonant
with the drive at ωr,g.

We can already identify some constraints in this setup.
4 | ± y〉 = |g〉 ± i|e〉
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• To be able to manipulate coherently the effective N -level system, we need to
address it on a timescale shorter than its decay time 1/(k2πκ) (k < N). The
displacement rate εc associated with the cavity drive thus needs to verify εc � Nκ.
In practice, it was chosen to be εc = 3 µs−1. The calibration of this rate is
described below.

• In order for the blockade of the level n to be effective, the shift ΩR/2 needs to
be much larger than the transition rate induced by the cavity drive from |N − 1〉
to |N〉. We then have to choose ΩR � εc.

• In order for the blockade tone at ωq −Nχ not to affect the other levels, we need
to have χ� ΩR.

• Due to its hybridization with the qubit, the cavity inherits some anharmonicity
λ (see Eq. (61)), even in the absence of a blockade tone. This limits intrinsically
the number of accessible levels in the harmonic ladder of the cavity for a drive
resonant at 0 photon. In order to create an N -level system as large as possible,
we then must have κ > Nλ. Note that, even if it limits the number of accessible
levels without Zeno blockade, anharmonicity in the cavity mode yields dynamics
that are different from the QZD (see Sec. 7.3.3).

Surprisingly, this self-Kerr term has been measured to be negative in our experi-
ment (λ/2π = −70 kHz), both from the behavior of the cavity mode in presence
of the Zeno blockade (λ is a global fit parameter in the simulations in Eq. (271))
and from independent spectroscopic measurements (see Fig. 55b). Note that dur-
ing the first cool-down of the sample, the Kerr term was initially positive and
of similar amplitude. It became negative after an unwanted warm-up (around
270 K) and cool-down of the fridge that barely modified the other parameters.
This in contradiction with the model presented in Sec. 2.2.3.2 and in [62, 72, 73],
which predicts that the self-Kerr of the cavity inherited from its hybridization
with the transmon mode has the same sign as the transmon anharmonicity, no
matter whether the qubit is detuned above or below the cavity5. A possible ex-
planation for this anomalous self-Kerr is a defect or trapped vortex that has a
transition frequency near the cavity resonance frequency.

Summarizing these constraints, an ideal Zeno experiment would verify the hierarchy

λ� κ� εc � ΩR � χ . (257)

This situation is hard to reach with a transmon since λ and χ are linked by χ = 2√χα,
where α is the transmon anharmonicity (see Eq. (61)). This anharmonicity needs to
remain small (α ≤ 400 MHz) in order to retain transmon high coherence properties
(see Sec. 2.2.3.1).

In our experiment, we had to release the constraint ΩR � χ. The value ΩR/χ was
adjusted empirically to maximize the Zeno barrier efficiency. As a result, the blockade

5 except in the straddling regime when the cavity resonance frequency lies in between two transmon
transitions.
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tone constitutes a Rabi drive at finite detuning for the transitions |g, k〉 ↔ |e, k〉 with
k < N . This has two effects. First, the levels |k〉 are slightly shifted by an amount that
depends on k. To take this into account when simulating the system (see Eq. (271)),
we model it as a global shift of the cavity resonance frequency so that the drive at ωc is
effectively slightly detuned, and a spurious negative non-linearity appears. Second, the
qubit can actually get excited from one of the |g, k〉 levels to |e, k〉. In that case, the
cavity resonance shifts to ωr,e = ωr − χ

2 and the drive at ωc is far detuned so that the
cavity state decays down to |0〉 as long as the qubit stays in |e〉. This effect depends
on the blocked level |N〉 and has been measured to always remain below 18 % of the
experiments (see Fig. 55a).

At this point, let us insist that, as predicted in [37], no measurement or dissipation
needs to be involved in our experiment. In our experiment, the only leak of information
on the system originates in the decay of the field under QZD itself, which relaxes at rate
κ. In principle, the QZD would work even better if the escape rate κ were as small as
possible, in which case the measurement rate would be negligible. In practice, even dis-
missing the limitation on the field amplitude due to the Zeno barrier and the saturation
induced by the Kerr effect, there would be at most 〈nmax〉 = 4ε2c

κ = 21 cavity photons
on average in the steady state. The measurement induced dephasing associated with
such a coherent field (see Eq. (85)) would be Γd = 14 µs−1. It corresponds to the
measurement rate of the qubit by the whole environment, and thus to the maximum
measurement rate of the occupation of the blocked level |N〉 (to compare with the
Zeno barrier "width" ΩR = 40 µs−1). This rate, far overestimated as is the average
number of photons, could not inhibit the transitions induced by the displacement rate
εc = 3 µs−1 since the corresponding jump rate from |N − 1〉 to |N〉 for N = 3� 〈nmax〉
would be [115] γjump ≈ ε2c/(2Γd) = 0.35 µs−1.

Note also that on Fig. 53b, each resonance of the qubit is shifted toward higher
frequencies when increasing εc. It results from a combined effect of AC-Stark shift and
cavity mode anharmonicity. Following Gambetta et al. [188], for a detuned drive at
ωc = ωr,g − δ and in the limit δ,κ� χ, all the resonance peaks are shifted depending
on the mean photon number n in the cavity when the qubit is in |g〉 as ωq − kχ ←
ωq − kχ+B with

B =
χ

2n
(
1− 2χ2

κ2 + χ2 + (χ+ 2δ)2

)
' n(δ + κ2

4χ ). (258)

In the experiment, δ is pushed toward positive values when increasing εc due to the
anomalous Kerr effect (see Eq. (271)). Qualitatively, the resonances are thus shifted
toward positive frequencies proportionally to n2.

Up to now, we have described the qubit as an auxiliary degree of freedom used to
enforce QZD through coherent driving. In the next section, we show that this qubit,
which is not excited during the Zeno blockade, can also be used as a photon number
detector.
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7.2 oscillations in levels occupation for a driven n-level sys-
tem

The possibility to address specifically a transition of the qubit dressed by a given
number of photons is used to characterize the field developing in the cavity under
Zeno blockade. A first enlightening measurement consists in measuring the probability
Pm = Tr(ρr|m〉〈m|) for the field to host m photons. To do so, we perform a CNOT
operation on the qubit, conditioned on the cavity hosting exactly m photons [125]. The
qubit is then measured using dispersive readout (see Sec. 3.2.3), and the probability to
find it excited allows us to access the Pm’s. Some spurious excitation processes of the
qubit need to be corrected for. In order to calibrate this method, we first measure the
Pm’s for a coherent state (see Sec. 7.2.1), before measuring those for the field under
QZD (see Sec. 7.2.2).

7.2.1 Fock states occupation for a coherent field

In order to put the cavity mode in a coherent state |α〉, starting from the vacuum, we
apply a fast displacement D(α), on a time scale much shorter than 1/λ. This is needed
to avoid the distortion of the coherent field due to the Kerr effect [125]. The displace-
ment is performed by sending a 240 ns pulse at ωc = ωr,g. The pulse is shaped using
the DRAG technique [189, 190], which consists in a gaussian envelop G(t) on the I
quadrature and derivative of gaussian on Q so as to get A(t) = G(t)cos ωct− ∂tG

∆ sin ωct.
The proportionality factor ∆ is chosen such that the overall Fourier transform cancels
at ωc ± ∆. With ∆ = χ, it prevents the field to enter in the cavity when the qubit is
in its excited state (at ωr,e). In practice we have used a Gaussian envelop with a 67 ns
full width at half maximum.

Right after the displacement, a 0.4 µs π-pulse at ωq −mχ is applied to the qubit.
Its duration is much longer than χ−1 to ensure its selectivity in photon number, and
shorter than κ−1 to minimize cavity relaxation. The pulse is shaped with a gaussian
envelope of characteristic spectral bandwidth σ = 2.1 MHz. This results in a pulse
selectivity 1− e−

χ2

2σ2 > 0.9. This operation corresponds to the CNOT gate on Fig. 54a.
At this point, the average occupation of the |e〉 level of the qubit should correspond to
the probability Pm for the field to host m photons. However 2 spurious effects need to
be taken into account to infer this probability.

The first effect is the dependence of the qubit readout exact calibration on the intra
cavity field. The qubit is measured dispersively by sending a 6 µs pulse at ωr,g and
then integrating the transmitted field amplitude. A JPC is used as a pre-amplifier on
the detection setup to maximize the measurement SNR. Note that the frequency and
power of the readout pulse have been finely tuned for the same purpose. In particular,
the readout frequency is slightly detuned from ωc (ωreadout − ωc ' 2π × 0.5 MHz). As
a result, any contribution from the first displacement pulse in the transmitted field is
cancelled out when averaging the readout outcome. However, due to the Kerr induced
resonance frequency shift by the photons at ωc, the cavity transmission at ωreadout
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depends on the photon number in this field. To reduce this effect, the readout of the
qubit is delayed for 2 µs so as to let the pre-existing field leak out of the cavity.

The average transmitted signal Sm is shown in Fig. 54b as a function of the amplitude
of the initial displacement pulse, for m ranging from 0 to 6. The cavity transmission
still displays a slight dependence on α, even when no π-pulse is applied to the qubit (see
Fig. 54c). To model this, we consider an average value for the integrated readout am-
plitude dependent on both the qubit state and the pre existing field state. We call tk,α

6

this average value corresponding to a qubit in state α and the field in the Fock state |k〉.
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Figure 54: a) Circuit diagram for detecting the Fock state probability Pm as a function of
the coherent displacement α. After a 240 ns displacement pulse at ωc = ωr,g and
displacement rate εc, a conditional qubit rotation is applied to the qubit so that it is
flipped if and only if m photons are in the cavity. After a 2 µs waiting time to empty
the cavity, the qubit state is measured using the qubit-state dependent transmission
of the cavity. b) Shown is the corresponding integrated readout signal Sm at ωreadout
as a function the displacement rate εc for different values of m. The black curve Sref ,
which corresponds to the case without any qubit rotation, depends slightly on the
drive amplitude due to the self-Kerr effect of the cavity. c) Sref (black dots) and its
third order polynomial fit (red line). d) Measured (dots) and theoretical (solid lines)
Fock state probabilities P̃m as a function of the coherent displacement α. The axes
were scaled to fit a Poisson distribution Pm(α) = e−|α|

2 |α|2m
m! (solid lines) with the

same fit parameters for all seven Fock state populations simultaneously. This allows
one to calibrate the drive amplitude in term of coherent displacement α.

6 In principle, tk,α is complex. However, for simplicity, we consider only its modulus since tα,k is measured
to have a constant phase for all α and k.
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A second spurious effect that needs to be taken into account is that the qubit has a
residual thermal population. Thus, about pe = 22 %7 of the experiments start with a
qubit in the excited state. In these cases, the displacement D(α) is not effective and the
system remains in |0, e〉. This affects the signal form = 0 (red-dotted curve in Fig. 54b)
which is above all the other curves at large drive amplitude. At such a large displace-
ment amplitude, the probability of being in state |g, 0〉 is very small and the selective
π-pulse is efficient only when the qubit was initially thermally excited. In this case, it
empties state |e, 0〉 in state |g, 0〉. This phenomenon can actually be used as a proce-
dure to cool the qubit (see Sec. 6.2.1). In contrast, state |e, 0〉 stays occupied form ≥ 1.

Beside the offset on the measurement of Pm for m = 0, the experiments that start
with a qubit in |e〉 yield no signal since the cavity mode remains empty. We now present
a model used to infer the probabilities P̃m for the field to host m photons knowing that
the qubit was initially in |g〉. Note that there is no post-selection here. For a qubit at
zero temperature, we would have P̃m = Pm.

Starting from thermal equilibrium and under a resonant drive at ωc = ωr,g, a field
develops only if the qubit is in |g〉 since the cavity is out of resonance when the qubit
is in |e〉. The system is then in the state

ρref = (1− pe)|ψ〉〈ψ| ⊗ |g〉〈g|+ pe|0〉〈0| ⊗ |e〉〈e|, (259)

with |ψ〉 = ∑
k ck|k〉 the cavity state corresponding to the qubit initially in |g〉. The

corresponding reference signal is

Sref = (1− pe)
∑
k

P̃ktk,g + pet0,e (260)

with tk,g the average value of the integrated readout signal for a system in |k〉 ⊗ |g〉 as
defined above, P̃k = |〈k|ψ〉|2 = |ck|2 the probability of finding k photons knowing that
the qubit is initially in |g〉. These probabilities are precisely what we want to extract.
To extract a given P̃m, one needs to apply a π-pulse at ωq −mχ.

After this π-pulse conditioned to Fock state m, the system is in the state

ρth,m = (1− pe)|ψm,g〉〈ψm,g|+ pe|ψm,e〉〈ψm,e| (261)

with 
|ψm,g〉 =

∑
k 6=m ck|k〉 ⊗ |g〉+ cm|m〉 ⊗ |e〉

|ψ0,e〉 = |0〉 ⊗ |g〉

|ψm6=0,e〉 = |0〉 ⊗ |e〉

(262)

Then, the measured signal is

Sm = (1− pe)

P̃mtm,e +
∑
k 6=m

P̃ktk,g

+
pet0,g, if m = 0

pet0,e, if m 6= 0
. (263)

7 The value is slightly different from the one given in Fig. 16d since here, the occupation of the higher
excited states of the transmon is neglected. These are occupied less than 4% of the experiments, and
unless the transmon decays down to |e〉 during the experiment, they yield no signal on the final readout
so that their effect can be assimilated to a global scaling factor.
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By subtracting the two signals, it is possible to isolate the contribution of the m-th
level from all the other levels. Indeed,

S̃m = Sref − Sm = P̃m × (1− pe) (tm,g − tm,e)− δm,0pe (t0,g − t0,e) (264)

with δ the Kronecker delta. At this point we have to make an extra assumption. We
suppose that, since we wait 2 µs for the cavity to empty after the qubit encode the
presence of m photons, the differential signal tk,g − tk,e is independent of k (see Sup-
plementary Information in Ref [125]). We have measured this value for k = 0 so that,
in the units of Fig. 54b,

tk,g − tk,e = tdiff = t0,g − t0,e = 0.3955. (265)

Therefore, the occupation of Fock state |m〉 is given by

P̃m =
S̃m

(1− pe)tdiff
+ δm,0

pe
1− pe

. (266)

The nonzero thermal population pe of the qubit only induces an offset in the probabil-
ity of measuring 0 photon (second term). With no prior knowledge of the qubit state
(apart from its statistical population) and without performing any post-selection, one
thus accesses the conditional probability of occupying level m on the condition that
the qubit is initially in the ground state.

In order not to add extra noise, we do not subtract directly Sref but rather its third
order polynomial fit (red line in Fig. 54c). The inferred Fock state probabilities are
shown as dotted lines in Fig. 54d. The solid lines correspond to the standard Poisson
distribution of a coherent state

P̃m(α) = e−|α|
2 |α|2m

m!
. (267)

This measurement and comparison with theory also allows us to calibrate the drive
amplitude of the displacement rate εc. This independent calibration was used to scale
the axes of the Wigner tomographies shown in Sec. 7.3. Besides, this measurement also
demonstrates that the fast displacement pulse shaped with DRAG technique indeed
produces a coherent state only when the qubit is in the ground state, and that one can
safely ignore any Kerr distortion with so short pulses.

7.2.2 Fock state occupation for a field under QZD

Now that this method to measure the occupation of the Fock states of a field has been
validated, we apply it to the field developing under the Zeno blockade as described in
Sec. 7.1.2.2. While blocking the level |N〉, a square pulse at ωc and with length varying
from 0 to 3 µs is sent to the cavity. Its amplitude corresponds to a displacement rate
εc = 3 µs−1 were there no blockade or damping of the cavity. This rate is calibrated
as the horizontal axis of Fig. 54d.
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Figure 55: a) Measured probability δpe for spurious excitation of the qubit as a function of
time and in presence of a blockade of level |N〉 (N from 2 to 5). Maximum mea-
sured probability: δpe,max = 18 %. b) When the qubit is at thermal equilibrium,
transmission of the cavity (encoded in color) as a function of the probing frequency
(horizontal axis) and power (vertical axis). Starting from low power, the resonance
frequency shifts toward higher frequencies when increasing probe power, indicating
a negative self Kerr λ. This is in opposition to the behavior of other transmons (see
Fig. 22). Behavior is canonical for higher probe powers.

Spurious excitation of the qubit as mentioned in Sec. 7.1.2.2 needs to be corrected
for to access the P̃m’s. On Fig. 55a, we present the measured extra probability δpe
of finding the qubit in |e〉 as a function of time and in absence of any π-pulse, for a
blocked level N from 2 to 5. It is inferred from the integrated readout signal that reads

SN ,ref(t) = (1− pe − δpe(t))
∑
k

P̃ktk,g + (pe + δpe,N (t)) t0,e. (268)

The leak into the excited state is therefore given by

δpe,N (t) =
SN,ref(0)− SN,ref(t)∑

k P̃k(tk,g − t0,e)
' SN,ref(0)− SN,ref(t)

t0,g − t0,e
. (269)

Note that the origin of this leak from ladder |g〉 to ladder |e〉 is not fully understood.
It is assumed to be a consequence of the finite detuning between the blocking tone at
ωq −Nχ and the transitions |g, k〉 ↔ |e, k〉 for k < N . Yet, a simple model where pk,e
comes from detuned Rabi oscillations fails to reproduce our results quantitatively.
Moreover, this measurement corresponds to the total extra excitation in state |e〉 and
δpe,N (t) is not resolved in Fock state. Assuming all levels |k〉⊗ |e〉 to be equally excited
for 0 ≤ k < N (on top of the thermal excitation), one can infer the effective probability
to be in Fock state |m〉 as in Eq. (266) and making the substitution

P̃m ← P̃m +
2δpe

N(1− pN ,e)
, for 0 ≤ m < N . (270)

The corresponding probabilities are shown in Fig. 56 as a function of time for several
photon numbers m and for a blocked level N from 2 to 5. Levels with more than N
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photons are unoccupied, as expected from the Zeno blockade. At small times, the oc-
cupation of the levels rise in order starting with level 1, similarly to a coherent state of
increasing amplitude (see Fig. 54d). At longer times, the level distribution bounces on a
wall atm = N , so that the probabilities start to oscillate. The period of the oscillations
increases with N as expected, since it takes more time to reach N − 1 photons with a
constant drive as N increases. The case N = 2 is straightforward since it implements an
effective qubit [49]. The time traces of Fig. 56 correspond to Rabi oscillations of a two-
level system that is driven off resonance. For larger N, the evolution is similar to that
of a resonantly driven N-level system, as seen in Rydberg atoms [50]. In particular, at
half period, P̃0 displays a plateau all the more pronounced as N gets larger. Finally, the
N − 1 level occupation evolves in opposition to level 0, with a maximum at half period.
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Figure 56: Measured (dots) and theoretical (solid lines) photon number state probabilities P̃m
for a field under QZD and as a function of time t. The blocked level N ranges from
2 to 5 and is indicated on each panel.

In the frame rotating at ωc, the evolution of the field can be modeled with the
Hamiltonian

HZ = h̄(ωc − ωr,g) + h̄λa†2N a
2
N + i h̄εc(a

†
N − aN ), (271)

where the annihilation operator aN has been modified as

aN = a−
√
N |N − 1〉〈N | −

√
N − 1|N〉〈N + 1|, (272)

so that HZ is equivalent to the form given in Eq. (255). This hamiltonian takes into ac-
count the coherent drive, its detuning, and the nonlinearity of the cavity. The damping
of the photons is taken into account in the master equation as (see Eq. (42))

dρ(t)
dt = − i

h̄
[HZ , ρ] + κD[a]ρ. (273)

Note that the annihilation operator a appearing in the damping term is not affected
by the Zeno blockade since QZE only inhibits coherent transitions between levels (see
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Sec. 7.1.1).

Using this model, one can reproduce with a good agreement the photon number
probabilities Pm’s as shown in solid lines on Fig. 56. All the theoretical results presented
here are obtained by numerical resolution of Eq. (273) in a 15-dimensional truncated
Hilbert space. This is done by using QuTip, a Quantum toolbox for Python [191]. The
parameters are chosen as follows to optimally match the measurements.

• The amplitude of the drive εc, which directly determines the period of the oscilla-
tions in the occupation is finely tuned between 2.83 and 3.05 µs for each blocked
level N.

• We attribute the origin of the detuning ωc − ωr,g to an energy shift of the levels
due to the blocking tone. It was found to be 0.1 MHz for N > 2 and 0.4 MHz for
N = 2. These values are consistent with the levels being more strongly disturbed
by the blocking field when closer to N .

• The anharmonicity λ/2π = −70 kHz is slightly modified by the Zeno blockade
tone compared to the value that can be inferred from the map on Fig. 55b.

These first measurements demonstrate how the cavity is transformed into an N -level
system by inducing dynamically a Zeno blockade at an arbitrary level N . Yet only the
photon number probabilities have been investigated so far. A full characterization of
the field state is presented in the next section. It is done by directly measuring the
Wigner function of the field, which is a representation of a quantum state in continuous
variables.

7.3 wigner tomography

Full characterization of the cavity field requires one to measure all the coefficients of its
density matrix and not just the diagonal coefficients corresponding to the occupation
of the Fock states. An equivalent representation is the Wigner function [192, 51]. It
is possible to measure directly the value of the Wigner function at a given point α in
phase space through a parity measurement of the field. Indeed, a possible expression
for W (α) is [51]

W (α) = 〈DαPD†α〉, (274)

where Dα = eαa
†−α∗a is a displacement under the action of a coherent drive such

as the one calibrated in Sec. 7.2.1, and P = eiπa
†a is the photon parity operator.

We now describe the parity measurement in Sec. 7.3.1 and use it to measure the
Wigner function of a field under QZD in Sec. 7.3.2 following Lutterbach and Davidovich
protocol [193, 194, 195].
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Figure 57: a) Circuit diagram for Ramsey interferometry of a coherent state under dispersive
interaction. After a 240 ns displacement pulse at the cavity frequency, an uncondi-
tional π/2 rotation is applied to the qubit so that it gets in state (|g〉+ |e〉)/

√
2

whatever the cavity state is. Then, one lets the qubit evolve during a time t and
performs a second unconditional ±π/2 rotation. Finally, after a 2 µs waiting time
to empty the cavity, one measures the qubit state dispersively. b) Measured (dots)
and predicted (lines) signal S as a function of delay time t for various displacement
amplitudes α. Qubit state revival occurs at a waiting time trevival = 1/(2πχ). c)
Measured signal S as a function of both delay time t and displacement amplitude
α. At larger amplitude, the revival time shifts to smaller values. The dashed line
corresponds to a theory including a higher order interaction term βa†a†aa|e〉〈e| in
the Hamiltonian, with β = −23 kHz. d) Predicted signal S as a function of both
delay time t and displacement amplitude α. It is obtained using a simple theory
without higher order interaction term (Eq. 282). Lines show cuts from b.

7.3.1 Photon parity measurement

The procedure to measure the parity of a field is schematized in Fig. 57a. It is calibrated
on a coherent field |α〉. Starting from the vacuum8, we apply a fast displacement D(α).
We then perform a Ramsey interferometry experiment such as the one described on
Fig. 16, consisting in applying two π/2 pulses on the qubit, independent of the cavity
state, separated by a time t. Since the qubit frequency depends on the photon number
in the cavity, the phase accumulated during t depends on this number. For a well cho-
sen time, this phase is 0 (mod 2π) for any even number of photons, and π (mod 2π) for
any odd number of photons. The second π/2 pulse then maps the photon parity onto
the qubit states | ± z〉. By measuring the qubit and correcting for the imperfections
described in Sec. 7.2.1, we thus directly measure the parity of the field.

8 if starting from an arbitrary field state, this sequence corresponds to the measurement of W (α)
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A key point here is to be able to perform broadband qubit rotation so as to succeed
independently of the photon number in the cavity. It is performed by shining a 50 ns
broadband pulse at ωq. We have used a "sinc" shape and a gaussian envelope to design
a pulse bandwidth larger than 10χ. At the photon level considered in the experiment
(k < 10), this π/2-rotation of the qubit can be regarded as unconditional.

We model the dressed interferometry experiment as follows. After the displacement
D(α) and taking into account the pe = 22 % spurious excitations of the qubit at
thermal equilibrium, the total density matrix describing the cavity-qubit system is

ρth(0) = (1− pe)|α〉〈α| ⊗ |g〉〈g|+ pe|0〉〈0| ⊗ |e〉〈e|, (275)

with |α〉 = e−
|α|2

2
∑∞
k=0 α

k|k〉/
√
k! the coherent state of amplitude α. The displacement

is fast enough so that the state is coherent despite Kerr terms.
Then, one applies a broadband π/2 pulse, lets the qubit evolve during a time t

and applies another broadband ±π/2 pulse (see Fig. 57a). In practice, two types of
experiments are performed with a final pulse either +π/2 or −π/2. At the end of this
Ramsey sequence, the density matrix is

ρth,±(t) = (1− pe)|ψg,±〉〈ψg,±|+ pe|ψe,±〉〈ψe,±|, (276)

with  |ψg,±〉 = R|±π2 e
iχta†a|e〉〈e|R|π

2
|α〉 ⊗ |g〉

|ψe,±〉 = R|±π2 e
iχta†a|e〉〈e|R|π

2
|0〉 ⊗ |e〉

(277)

and R|θ = exp(−i θ2σy). One finds
|ψg,±〉 = 1

2
(
|α〉 ∓ |αeiχt〉

)
⊗ |g〉+

(
±|α〉+ |αeiχt〉

)
⊗ |e〉

|ψe,+〉 = −|0〉 ⊗ |g〉
|ψe,−〉 = |0〉 ⊗ |e〉

. (278)

After this Ramsey sequence, the integrated transmitted signal, measured at readout
frequency is (see Sec. 7.2.1)


S+ = 1
4 (1− pe)e−|α|

2 ∑
k
|α|2k
k!

[(
2− eikχt − e−ikχt

)
tk,g +

(
2 + eikχt + e−ikχt

)
tk,e
]

+pet0,g

S− = 1
4 (1− pe)e−|α|

2 ∑
k
|α|2k
k!

[(
2 + eikχt + e−ikχt

)
tk,g +

(
2− eikχt − e−ikχt

)
tk,e
]

+pet0,e.
(279)

Therefore, the differential signal is

S−−S+ =
1
2 (1− pe)e

−|α|2 ∑
k

|α|2k

k!

[(
eikχt + e−ikχt

)
(tk,g − tk,e)

]
− pe (t0,g − t0,e) .

(280)
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Assuming a linear readout tk,g − tk,e = t0,g − t0,e as in Sec. 7.2.1, the reduced signal,
defined similarly to Eq. (266), is

S(α, t) = S− − S+
(t0,g − t0,e)(1− pe)

+
pe

1− pe
= exp

[
|α|2 (cos(χt)− 1)

]
cos

[
|α|2sin(χt)

]
.

(281)

This measurement is performed differentially in order to avoid spurious effects due to
the cavity anharmonicity (see Supplementary Information in Ref [125]).
Fig. 57 displays the corresponding measurements (b and c) and theory (d), similarly

to the experiment of Vlastakis et al. [195]. After a time trevival = 2π/χ = 216 ns,
there is a revival in the Ramsey signal. This is in agreement with the spectroscopic
measurement χ/2π = 4.63 MHz (see Fig. 53b). As time increases, there is a reduction
in revival visibility partly due to qubit dephasing and to cavity relaxation at large
displacements.
At last, one can notice a shift of the revival time as a function of displacement

amplitude in the experiment (Fig. 57c), not visible in theory (Fig. 57d). Following
Ref. [195], we model this effect by a supplementary higher order interaction term in
the hamiltonian, which reads βa†a†aa|e〉〈e|. To first order, this non-linearity results in
a small change in the revival time

trevival = 2π
χ (1 + 〈a†a〉βχ )

= 2π
χ (1 + |α|2 βχ ) for a coherent state.

(282)

Fitting the experimental revival time (dashed line in Fig. 57c), one finds a non-linear
frequency β/2π = −23 kHz. Like the cavity self-Kerr anharmonicity λ, this term is
opposite to what has been previously observed [195].

7.3.2 Wigner function of a field under QZD

In the experiment, the state of the cavity is unknown and one wants to perform its to-
mography. To measure the photon parity, we chose a waiting time twait = π/χ = 108 ns
such that the evolution operator of Fig. 57a is exp(iπa†a|e〉〈e|). The experimental
Wigner function can therefore be defined as W (α) = S(α, twait). Note that the ther-
mal population of the qubit has been corrected for, but the spurious thermal excitation
are not taken into account in the model presented in the previous section. It changes
the value of pe so that there is an offset in the Wigner distributions (see Eq. (281)).
Moreover, the uncalibrated attenuation of the lines and cavity transmission induce a
scaling factor in the Wigner distributions. In practice, for each Wigner distribution,
the zero was defined as the integral far outside the exclusion circle and a scaling factor
was applied to normalize the integral of the distribution.

On Fig. 58, we plot the measured Wigner distributions (encoded in color) as a func-
tion of time, for a Zeno blockade of level 3 (top panel) and 4 (bottom panel). For
each distribution, we also plot (lower panels) the theoretical prediction using the same
model and numerical simulation as on Fig. 56 (see Eq. 273). The barrier is material-
ized by a white dotted circle (radius

√
N). As expected, W (α) = 0 outside of these
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Figure 58: Shown are measured (top rows) and predicted (bottom rows) Wigner functions
W (α) as a function of the displacement amplitude α, for a blockade at N = 3 (top
panel) and N = 4 (bottom panel). The time t (nonlinear scale) for the frames shown
in a-i is given above each panel. The field is confined in phase space by a Zeno
barrier at amplitude α =

√
N (white dashed circle). Negative values of the Wigner

function, in blue, demonstrate the non-classical nature of the field produced under
QZD. The model used is the same as for Fig. 56. Note that Wigner functions are
here directly measured and not reconstructed.

circles. At t=0 (panel a), the field is in the vacuum state, corresponding to a gaus-
sian centered in 0 and of standard deviation 1

2 . When the cavity is driven, at small
times, a nearly coherent state |β〉 develops inside the cavity so that the Wigner dis-
tribution is the same gaussian shifted by β (panel b). For longer times (panels c-h),
the distribution "bounces" off the wall and reappears at negative Re[α]. In between, it
displays interference fringes with some negative parts (in blue). These negativities of
the Wigner function are characteristic of non gaussian states and are a purely quantum
feature [51]. After a full period that depends on N , the field is again in a state close
to the vacuum (panel i). The broader distribution compared to (a) is explained by the
decoherence of the field due to the damping of the cavity. The asymmetry of the distri-
butions comes from the self-Kerr of the cavity and is captured by the theoretical model.

The strongest negativities appear at half period of the oscillation. On Fig. 59, we
show the Wigner distributions for blocked levels from 2 to 5. The color scale is rescaled
compared to Fig. 58. Near 0, these distributions all exhibit fringes with negative parts.
The photon parity of the non displaced field W (0) is that of the highest allowed level
N-1, which is also the number of negative fringes. These properties are reminiscent
from a quantum superposition between the two coherent states of amplitude

√
N − 1,

so called "Schrödinger cat states" [51]. However, here the distribution is confined within
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the Zeno barrier in opposition to cat states distributions, which are infinite.
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0

2

-0.2 0.2 0.40

Figure 59: Wigner tomography at half period. Measured (top row) and calculated (bottom
row) Wigner functions of the cavity field for various blockade levels N from 2 to 5,
taken at half period (t = 0.51 µs, t = 0.64 µs, t = 0.7 µs and t = 0.75 µs). The
color scale is rescaled compared to Fig. 58 by A=0.7. Similarly to "Schrödinger cat
states", these states exhibit fringes with alternating positive and negative values.

We have thus demonstrated that, coupling an electromagnetic mode dispersively to
an ancillary qubit and driving coherently a transition of the hybrid system, we could
inhibit coherent transitions to or from a given Fock state |N〉. When starting from a
state with no overlap with the levels |k〉 for k > N − 1, the evolution of the mode state
is confined in phase-space. An electromagnetic mode having an infinite Hilbert space,
we could in principle choose N as large as we want. However two parameters limit this
choice. First, the decay rate of level |k〉 is kκ. Thus, coherent oscillations of the induced
N -level system can only be observed if the oscillation period is shorter than 1/(Nκ).
Since the displacement rate εc is qualitatively limited by the Zeno barrier "height" εd,
in the case of the experiment presented here, coherence after one oscillation is hardly
retained for N > 5. However, for a cavity and qubit with sufficiently long decay and
coherence times, one could in principle choose an arbitrarily large N -level system. A
second limitation is the anharmonicity induced on the cavity mode by its hybridization
with the qubit (see Eq. (61)). In the next section, we show that, when driven at ωr,g,
oscillations appear in the level occupations even in the absence of any Zeno blockade.
However, the Wigner tomography reveals a qualitatively different dynamics from QZD.
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7.3.3 A tailorable infinite Hilbert space?

-2 0 2-2

0
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0

1
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Figure 60: a) Measured occupation of the cavity Fock states as a function of time in absence
of Zeno blockade. The strong Kerr effect induces oscillations in the level occupation
which are qualitatively different from Zeno oscillations: at half period, the occupa-
tion P (k) decreases smoothly to 0 as a function of k. b) Snapshots of the measured
Wigner function of the same field. Negativities are clearly visible, indicating that the
system is nearly in the single-photon Kerr regime [125]. However, no fine interference
pattern is visible as on Fig. 59.

We now characterize the field that develops in the cavity in the same conditions9

as the experiment presented on Fig. 54 or Fig. 58, but without Zeno blockade. With
the same displacement rate ε ' 3 µs−1, we detect oscillations of the Fock state occu-
pation probability with a period TKerr = 2 µs (see Fig. 60a). These oscillations look
qualitatively very similar to the ones appearing under QZD (see Fig. 56). However, the
amplitude of these oscillations decrease smoothly to 0 when considering Fock states of
higher energy. On Fig. 60a, the probability of occupation of level N = 7 (in black) is
small, but clearly visible. On the other hand, for a field under QZD, in all considered
cases, no population can be detected in the blocked level N , but the probability of
occupation of all the levels within the Zeno barrier clearly oscillates.

Further differences appear when comparing the Wigner functions for a field distorted
by the cavity non linearity [125] (Fig. 60b) and a field under QZD (Fig. 58). In the
first case, even though some negativities are observed, the interference pattern does

9 Note that the situation is different from Sec. 7.2.1 when the displacement after which the Pm’s were
measured was performed by a short and intense pulse. This was precisely done to avoid Kerr induced
distortions of the coherent state.
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not include a large number of fringes as one would expect for such a large field under
QZD (the white circle has radius α =

√
8, which would be the position of the Zeno

barrier needed to get such an extended distribution.

The observed negativities show however that our system is nearly in the single pho-
ton Kerr regime [125] and are consistent with λ ' κ. For a large enough non linearity,
a non driven coherent state should collapse quickly, but is expected to exhibit revivals
at integer submultiples of 1/λ. At these times, Schrödinger cat states are formed [196].
In our experiment, the fast decay of coherences due to photons damping prevents us
from observing such revivals.

In this chapter, we described a scheme for quantum control consisting in tailoring dy-
namically the Hilbert space of a system in time. Combined with multi qubit operations
or detection, QZD can be used to generate and protect entanglement [197, 198, 199].
It can also be used to implement logic gates [200]. Considering evolutions outside of
the exclusion circle, where the barrier acts as a peculiar scatterer in phase space[39],
other cat-like states and squeezed states could be produced. Finally, combined with
fast displacement pulses so as to effectively move the position of the Zeno barrier, one
could realize phase space tweezers of light in a high-Q cavity [38].

7.4 conclusion

In this part, we have described three modes of quantum control on the qubit. Mea-
surement based feedback allows us to stabilize a state by extracting information, via
dispersive measurement or fluorescence detection, and to react on the system accord-
ingly, on a time scale much shorter than the qubit lifetime. In autonomous feedback,
the qubit is coupled to a highly dissipative system, which is the cavity, to effectively
engineer its dissipation. This allows us, for instance, to cool down a thermally excited
qubit. Finally, we used the qubit to stabilize coherently a subspace of the cavity mode
Hilbert space. Departure from this subspace due to coherent processes is inhibited.

The main results of this part are

• Demonstration of a stroboscopic feedback protocol to stabilize an arbitrary state
or trajectory of the qubit. This scheme benefits from a high fidelity, single-shot,
QND readout of the qubit.

• Implementation of a continuous analog feedback protocol using the detection of
the fluorescence of the qubit. It effectively engineers the system dissipation so as
to stabilize an arbitrary state.

• Observation of Quantum Zeno Dynamics of a microwave mode. The qubit is used
as an ancillary system to enforce QZD via coherent controls.

Evacuation of entropy is essential for a quantum machine to be used in informa-
tion processing. Strong engineered dissipation can also be used to implement error
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correction[178, 201], which is a crucial step toward fault-tolerant quantum computa-
tion, or to generate entanglement [178, 179, 180]. Measurement based feedback, effec-
tively engineering dissipation in the continuous case, may prove to be a complementary
tool to autonomous techniques. Stroboscopic feedback based on parity measurements
of several physical qubits [182, 183, 184] can also be used to implement error correction
on a collective logical qubit. Recent experimental developments towards this aim show
great promise [202, 203, 204, 205].
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Part III

A P P E N D I X





A
EXPERIMENTAL TECHNIQUES

a.1 qubits fabrication and characterization

The transmons used in the experiments described throughout this thesis follow the
design developed at Yale by Paik et al. [13]. In this section, we describe in details the
fabrication process that was developed in our experiments and the attempts that were
made to improve thermalization and coherence times of the qubits. Table 3 summa-
rizes the fabrication parameters and measured characteristics of the qubits used in the
experiments.
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a.1.1 Nanofabrication

0-PMMA
(undercut)

bridge

MAA-MAA-PMMA

0-0
(sapphire)

sapphire

sapphire

Al Al bridge bridge
Al

Al antenna

1 2 3a)

b) c)
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Antenna

Antenna

MAA
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Figure 61: Sample fabrication. a) Schematic representation of the double-angle evaporation
process used for Josephson Junction fabrication. A bi-layer MAA/PMMA of electro-
sensitive resist is spin-coated on the substrate. A thin layer (10 nm) of aluminum
is deposited on top of the resist in order to evacuate charges during lithographhy.
During e-beam lithography, the resist polymers are cracked on the exposed areas
(step 1). Note that the cracked polymers are not removed until development (not
represented here for clarity). The MAA being more sensitive, an undercut is formed
by backscattered electrons on the substrate. After development, a PMMA bridge
is formed (step 2). A first layer of aluminum is then evaporated at an angle −30◦.
Static oxidation then forms an insulating barrier (in blue) before that a new layer
is evaporated at +30◦ (step 3). b) Optical microscope picture of the resist mask
after development. The undercut appears in green. c) E-beam microscope picture
of a Josephson junction (completed fabrication process). d) Picture of the sample
ready to be placed in a cavity.

The transmon circuits are fabricated by double angle evaporation (see Fig. 61) of alu-
minum (Al 5N) on 10× 7 mm chips. The size of the chips was progressively changed to
11× 4 mm. The height of the 3D cavities used in the experiments being set to 9.6 mm,
the longer height aimed at better thermalizing.
The first samples used high resistivity silicon substrate (500 µm thickness). Indeed, sili-
con is easier of use during e-beam lithography, the charges being more easily evacuated,
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which avoid drifts during the e-beam exposure. Once the fabrication process better
characterized, the following samples were fabricated on C-plane oriented, 430 µm thick
sapphire substrate. Note that fabrication is made on diced chips, and not on entire
wafers. The fabrication recipe steps are as follows.

Substrate cleaning. Once diced, the chip surface needs to be cleaned.

• Acetone sonicate for 1 min. IPA rinsing.

• Plasma 02 for 10 min.

Spin coating. Double-layer spin coating and thin layer aluminum deposition is
performed in Paris 7 Diderot clean room facility.

• Bake at 180◦C for 1min on a hot plate.

• One drop of MAA. Spinning for 1 min at a speed of 4000 rpm and 400 rmp/s
acceleration.

• Bake at 180◦C for 4min (2 min is sufficient for silicon due to higher thermal
conductivity) on a hot plate.

• One drop of PMMA. Spinning for 1 min at a speed of 4000 rpm and 400 rmp/s
acceleration.

• Bake at 180◦C for 4 min on a hot plate.

• For a sapphire chip, evaporate a 10 nm layer of aluminum to avoid charge accu-
mulation during lithography.

E-beam lithography. Lithography is performed on a Raith e-beam masker in the
ENS clean room facility. The whole pattern is done in a single step-lithography.

• For the junction and the aluminum fingers that link it to the antennas (see
Fig. 61b), aperture 7.5 µm, insolating dose 450 µC.cm−2 for sapphire (300 µC.cm−2

for silicon).

• For the antennas (see Fig. 61d), aperture 120 µm, insulating dose 450 µC.cm−2

for sapphire

Developement

• Remove the aluminum layer by plunging the chip in a KOH solution. Necessary
duration and concentration of the solution can vary, wait until the film is no
more visible with bare eyes.

• 42 s in a MIBK 1:3 IPA solution at room temperature.

• Stop development by plunging the chip for 20 s in IPA.

Aluminum deposition High purity aluminum deposition is performed in Paris 7
Diderot clean room facility in a Plassys e-beam evaporator.
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• Pump chamber for at least 45 min (P < 3× 10−6 mbar).

• Evaporation of 40 nm of titanium, with shutter still on, in order to lower further
the chamber pressure and remove water residue.

• 4s ion milling (parameters 500V, -100V, 50 mA, 12sccn Ar02) at −30◦ and +30◦.

• First Al layer deposition: 35 nm, −30◦, 1 nm.s−1.

• Static oxidation. Ar02 ( 80 %Ar-20 %02), 20 mbar for 7 min.

• Second Al layer deposition: 100 nm, +30◦, 1 nm.s−1.

Note that the evaporator is time-shared and also used for nickel evaporation. This may
explain limited qubit coherence times. The chip edges are protected with kapton tape
to avoid Al deposition.

Lift-off

• At least 15 min in acetone at 55◦C.

• No sonicate

• Remove Al foil. Stir the solution with pressurized acetone using a syringe if
necessary.

• Rinse in IPA.

a.1.2 Wafer probing

Since the wafers are diced prior to lithography, sample fabrication is made chip by chip.
More than 60 samples were fabricated, but only 8 were actually cooled down for com-
plete characterization. Indeed, as a first step after fabrication, the resistance RTN of the
transmon junction in the normal state is measured on a wafer probe station at room
temperature. The probe setup is schematized on Fig. 62 and includes a large resistor
R in series with the junction to avoid large current flowing through the junction, and
a variable resistor 0−R to avoid abrupt voltage variations across the junction when
contacting the electrodes. The junctions that we fabricate range from 2 to 8 kΩ, so
that we set R = 100 kΩ.

About 50 % of the samples were measured to be shorted (RN ≤ 1 Ω) or open
(RN = ∞). On the samples successfully fabricated, we observed a variation of the
resistance within a batch of fabrication (aluminum deposition at the same time) of
about 10 %. The wafer probe step is thus essential to post-select the sample that dis-
plays the closest resistance to the targeted one. The target resistance depends on the
desired junction critical current I0 in the superconducting state, which sets the qubit
resonance frequency (see Sec. 2.2.3).
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Figure 62: Wafer probing. A large resistor R is placed in series with the junction to avoid
large currents flowing through it. In order to avoid abrupt release of the charges
accumulated on the points through the junction, contacting is made while the points
are short-circuited by the variable resistor set to 0. Its value is then slowly increased
to R = 100 kΩ � RN . The measured resistance then reads Rm = R+ (RN ||R) '
R+RN .

One can deduce I0 from RN via the Ambegaokar-Baratoff formula

I0 =
EJ
ϕ0

=
1
R0
N

π∆
2e , (283)

where e is the electron charge, ϕ0 = h̄
2e is the flux quantum, and ∆ = 180 µeV is the

aluminum superconducting gap. Note that R0
N is the resistance of the junction in the

normal state at zero temperature, which is typically 10 % lower than the measured re-
sistance RTN at room temperature. In practice, the target resistance is rather computed
from a previously measured qubit making the approximation ωq =

√
8EJEC ∝ 1

R1/2
N

.

a.1.3 Cavity machining and surface treatment

The 3D cavities used in the experiments were fabricated in the ENS machine shop from
high purity (4N) Aluminum or OFHC copper. The cavity two halves are symmetric
(see Fig. 8a and Fig. 10a) except that a gutter is carved on one half only to host an
Indium thread used to seal the cavity, and a notch to place the transmon chip. The
part of the chip that is slid in that notch (out of the resonant cavity) is covered with
a 100µm-thick indium foil folded over. Indium is chosen for its plasticity, in order to
apply a uniform pressure on the chip for thermalization.
The cavities are then anchored by copper braids to the refrigerator base plate (see
Fig. 63). Aluminum cavities are enclosed in a copper box covered with Eccosorb CRS
117 PTA mixed with SiC beads to scatter and absorb infrared radiations [206]. Copper
cavities are wrapped in an aluminum foil and placed in a cryoperm box to provide
magnetic shielding.
Note from Tab. 3 that the dominant factor for qubit thermalization appears to be
the cavity surface finish. In green are highlighted the transmons for which the cavity
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surface was etched in highly concentrated (37 %) HCl acid1. These samples display
lower thermal excitation rates for the qubit, and longer coherence times. In particular,
qubits 4 and 5 use the same chip and cavity, but the cavity was properly etched in
acid for qubit 4. When not etched, the properties of the cavity seem to degrade with
each opening of the refrigerator (qubits 1, 2 and 3 use the same cavity in chronological
order).

a.2 wiring and cryogenics

a.2.1 Wiring the dilution refrigerator

20 mK

100 mK

800 mK

4 K

HEMT

Cu box

circulator

K&L filter

Nb-Ti coax

thermalization 
copper braid

eccosorb filter

attenuator

cryoperm 
shield

test line

heat 
exchangers

mixing 
chamber

still

Cu-Be

attenuator

JPC

3D transmon 

Figure 63: Pictures of the Bluefors dilution refrigerator and various RF components. The con-
formable cables labelled test lines, not present for the actual experiment, are used
to calibrate the transmission of the lines before closing the refrigerator.

The experiments described in this thesis have been performed in a Bluefors dry dilu-
tion refrigerator with a base temperature of 20 mK (see Fig. 63). Wiring of the input
and output lines needs to limit thermal conductance between stages. Circulators at base
temperature allow us to decouple input and output lines. Note that all RF lines (ex-
cept Nb-Ti) are commercially connectorized, which may result in a better impedance

1 beware that the reaction with aluminum becomes explosive once the oxide layer has been removed.
Use of aluminum etchant is recommended
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matching with 50 Ohms components compared to home-made connectors, and may
thus explain partly the high detection efficiency reported in [81]. Full schematic of the
wiring for the experiment implementing stroboscopic feedback (see Sec. 5.1 and [207])
is represented on Fig. 64. Schematic for the experiment witnessing Zeno dynamics of a
microwave mode (See Chap. 7 and [83]) is presented on Fig. 66. The low temperature
setup is the same for the experiments in which the fluorescence signal is averaged on
post-selected ensembles (see Chap. 4 and [82]), used to reconstruct quantum trajecto-
ries (see Sec. 3.4), and to implement continuous analog feedback (see Sec. 5.2).

Input lines are strongly attenuated and filtered to progressively thermalize the elec-
tromagnetic field down to the base temperature. Note that the attenuators are ther-
mally anchored at each stage using copper clamps. Furthermore, Cu-Be, CuNi and
stainless steel semi-rigid coaxial cables are used on the way down as a tradeoff between
the heat exchange between the stages and the dissipation of microwaves frequencies. At
base temperature, mostly copper coaxial cables are used to minimize the losses between
the cryogenic microwave components. Home-made Eccosorb filters (copper microstrip
embedded in Eccosorb), and commercial K&L 12GHz lowpass filters are also inserted
on the lines for infrared radiations filtering. This is needed to avoid quasi particle
creation in the superconducting aluminum that would limit the qubit coherence and
relaxation times [88].

High detection efficiency is achieved by pre-amplifying the signal with a JPC, the
following amplifier being a commercial, low-noise High Electron Mobility Transistor
(HEMT) amplifier from Caltech university, anchored at 4 K. Superconducting NbTi
coaxial cables are used for the output lines between the base temperature and the
HEMT in order to minimize the losses as well as the heat exchange between these
stages. A bias-tee anchored at base temperature is inserted on the line. It allows to
thermalize the coaxial cable core at 20 mK while transmitting with negligible losses
the microwave signal.

A DC line is also used in order to current bias the coil which provides the magnetic
flux threading the JPC loop. This DC line is twisted to avoid flux noise and is strongly
filtered using homemade Ecosorb filter that dissipates out infrared frequencies. Below
4K, the twisted pair is made in NbTi to avoid Joule dissipation and above 4K in
manganin to minimize heat exchange.

a.2.2 Room temperature pulse generation and measurement setup

Microwave pulses at a given pulsation ω (typically ωr or ωq) are generated at room
temperature by mixing a local oscillator (LO) at ω + ωh with a sine waveform at ωh
windowed by a gaussian or square envelop. This waveform is generated by an Arbitrary
Waveform Generator AWG4014x from Tektronix. The AWG has a sampling frequency
of 1.2 GSample.s−1 with a bandwidth of 450 MHz, and we thus we choose ωh in the
40-125 MHz range. Finite frequency modulation is chosen so that the leaking LO signal
is detuned from the system resonance frequency.
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Figure 64: Full schematic of the wiring for the stroboscopic feedback experiment described in
Sec. 5.1. Input lines are attenuated and filtered with home-made Eccosorb filters
and commercial K&L 12GHz lowpass filter. The reflection probe is used to charac-
terize the cavity ports coupling rates and to facilitate the adjustment of the JPC
amplification gain and bandwidth. The amplification is performed in reflection us-
ing circulators. A 180◦ hybrid coupler allows to address on different lines the signal
and pump modes of the JPC [120]. Circulators are also used for insulation from the
HEMT amplifier noise, and a bias-tee ensures the coaxial cable core thermalization.

The AWG is used in triggered mode. The trigger signal is generated by frequency divi-
sion of a 10 MHz reference provided by a SRS FS725 atomic clock, which is also used
to clock all the instruments. The trigger signal is generated by an integer division of
the 10 MHz using a AD9517/PCBZ board from Analog Device. Note that in order to
avoid a 2 ns jitter on the waveforms, it is necessary to trig the AWG at a period that
is a multiple of 32/10 MHz.
We preferably use for modulation commercial Single Side Band mixers (SSB) from
Polyphase Microwave. The left2 side band is used to effect control, and the rejection

2 This choice is relevant when driving the qubit to avoid exciting transitions between the excited states
of the transmon.

173



Δ

Σ

3D transmon

HEMT

4K

JPC-2
0d

B

50

 LPF
 Eccosorb

(x2)

 LPF
 Eccosorb

 LPF
Eccosorb

SiC + Eccosorb 

Cu Box

Cryoperm box

-3
dB

-1
0d

B 100mK
-2
0d

B

-2
0d

B

-2
0d

B

 LPF
 K & L

 LPF
 K & L

850mK

Reflection probe JPC pump

FPGAAWG

READOUT

-2
0d

B

RF 

-1
0d

B

-1
0d

B

switch

DRIVE

50

20mK

Figure 65: Full schematic of the wiring for the weak value experiment described in Chap. 4.
Wiring inside the refrigerator is similar to the one presented on Fig. 64, but for
minor changes in attenuators, and the reflection line which is now connected to the
cavity via a directional coupler. This was done to improve the impedance matching
between the cavity ports and the circulators, which should allow for a better isolation
from the JPC.

of the right side-band and the LO is typically 20-30 dB. This allows for a better con-
trol of the power spectrum at the system input while using only one channel of the
AWG. Indeed, an alternative scheme consists in using an IQ mixer with two signals in
quadrature on I and Q. Fine tuning of the relative phase and amplitude of the signals
on I and Q is usually required to achieve similar rejection performances.
The microwave sources used as LO are Keysight E8257D, Anritsu MGC369X and Vau-
nix LabBrick LMS. Note that this last source has a lower phase stability and is only
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Figure 66: Full schematic of the wiring for the Zeno dynamics experiment described in Chap. 7.
Wiring inside the refrigerator is similar to the one presented on Fig. 65, except that
the JPC is now tuned at cavity resonance frequency.

used to pump the JPC.

Detection of the output signal from the refrigerator is performed by amplifying fur-
ther the signal at room temperature with RF amplifiers by Miteq, and down converting
the amplified signal to ωh by mixing with the same LO that was used for the pulse gen-
eration. The conversion is here performed by an IQ mixer by Marki microwaves. When
signals at different frequencies are involved, the signal is first divided by a low reflec-
tion power splitter or a hybrid coupler whose ∆ port is loaded with a 50-Ω impedance.
Circulators from Aerotek are inserted before and after the mixers and splitters to avoid
cross talks.
The low frequency signal is then digitized by an acquisition board. For the experiments
reported in Sec. 5.1.3 and Chap. 4, the board is a Triton-V5 FPGA by Tekmicro. For
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Figure 67: Full schematic of the wiring for the fluorescence trajectories experiment described
in Sec. 3.4.2. The fluorescence field from the qubit on the output line is amplified
by a JPC tuned at ωq. The same source used to generate preparation pulses of the
qubit is used to down convert the resulting signal to 100 MHz (in orange) before
digitization and numerical demodulation.

the experiment of Chap. 7, the board is a X6RX FPGA by Innovative Integration. For
the experiments of Sec. 3.4 and the analog feedback presented on Sec. 5.2, the board
is an ATS9351 by Alazar. The full room temperature wiring schematic of the latest
experiment is presented on Fig. 68. The wiring inside the refrigerator is the same as
in Fig. 67, and is not represented for simplicity.
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Figure 68: Full wiring schematic at room temperature for the continuous feedback experiment
presented in Sec. 5.2. Note that the RF switches are controlled by the AWG markers.
The one at the fridge output is used to turn on or off the feedback. The other one is
used to switch from low power signal generation (to implement the constant drive at
around σX in the controller (225)) to high power (for tomography fast π

2 rotations).
Some attenuators, used to finely tune to nominal value the LO power on the mixers
are not represented.

a.3 electromagnetic simulations

An advantage of the 3D transmon compared to 2D architectures for superconducting
qubits is that the electromagnetic environment of the Josephson Junction is better con-
trolled and can be simulated. Prior to experiments, we perform full 3D electromagnetic
simulations of the system using the Ansys HFSS software, which uses finite elements
method. This allows us, following the theoretical description given in Sec. 2.2.3, to
test a given design (dimensions of the cavity, of the antennas, length of the connector
pins dipping in the cavity, critical current of the Josephson Junction) to compute the
effective parameters of the qubit (cavity and qubit resonance frequencies, transmon an-
harmonicity, cavity pull, coupling of to the microwave lines through the cavity ports).
This software can be run in two modes.
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Figure 69: a) Simulated geometry for the cavity and qubit system. All metallic surfaces are
modeled as perfect conductors. The sapphire chip is simulated as a rectangular vol-
ume of relative dielectric constant εr = 10. The port connector pins are subtracted
from the cavity volume. Wave ports are represented in red. b) First four resonance
frequencies of the system (no wave ports) as a function of

√
1/LJ . For small values

of
√

1/LJ , black dots correspond to the qubit mode and red dots to the cavity mode.
The scale of the horizontal axis is adjusted so that the black dotted line has a slope
1. This allows us to extract α/h = 200 MHz with this geometry. c) Simulated field
direction and amplitude when exciting through the left port at cavity first (top) and
second (bottom) resonance frequencies.

In the driven modal mode, the software is fed with the system geometry, which in-
cludes the cavity walls, the transmon antennas3 and the port connector lengths (all
considered as perfect conductors), and the sapphire chip which relative dielectric con-
stant is εr ' 10.
To estimate the coupling rate to the coaxial lines through the ports, the Josephson
Junction can be approximated by a lumped element inductor LJ = h̄

2eI0, where I0 is
the critical current of the junction. Wave ports are then placed in between the port
connector pins and the tunnel drilled into the cavity bulk (see Fig. 69a). Sweeping the

3 Note that the antennas thickness need to be increased compared to the actual 135 nm of the aluminum
layer in order for the simulation mesh to remain coarse enough to be handled by the computer in a
reasonable time.
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excitation frequency, and computing the reflection and transmission coefficients for the
two ports, one can extract the coupling rate of the cavity mode through each port, as
described in Sec. 2.2.2.3. This also allows us to determine the cavity resonance frequen-
cies, and to verify the electric field configuration at resonance. On Fig. 69c, we plot the
amplitude and direction of the electric field for the two first cavity resonance modes. As
expected, for the first mode, the field direction is parallel to the antennas, and the am-
plitude is maximal around them. For the second mode, the field direction is orthogonal
and the chip is at a node. The coupling to the junction is thus expected to be negligible.

To predict the qubit parameters, the Josephson Junction is replaced by a lumped
port with inductance LJ . Simulating the system response to an excitation through
that port and computing the impedance seen by the Junction around the resonance
frequency allows us to access the qubit anharmonicity, the cavity pull to the cavity
modes, and, in principle, the Purcell decay rate of the qubit following the Black Box
Quantization method (see Sec. 2.2.3.2 and [62, 72, 73]).

One can also use the HFSS software in the eigen mode, in which the ports are
replaced by perfect conductors, and the junction by a lumped element inductor LJ .
The software then determines the resonances of the system. The four first resonant
mode frequencies as a function of

√
1
LJ

are represented on Fig. 69b. We clearly see an
anti crossing between the first mode, which is the qubit mode and whose resonance
frequency depends linearly on

√
1
LJ

, and the first cavity mode. The size of the anti
crossing is 2g in the two-mode model presented in Sec. 2.2.3.3. For large values of
LJ (low qubit resonance frequency), according to Eq. (64), the first mode resonance
frequency is the qubit frequency which reads 1

h

√
8EJα = ϕ0

√
8α

h

√
1
LJ

. The slope of
the black dotted line on Fig. 69c thus allows us to extract the value of the transmon
anharmonicity α.
Note that beside parasitic resonances, the cavity second and third modes do not depend
on LJ which confirms that they are not coupled to the qubit mode. However, for small
values of LJ , the qubit resonance frequency is no longer proportional to

√
1/LJ , which

is not predicted by the 2-mode model. Hybridization to higher modes is thus likely.
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B
QUANTUM CIRCUITS

In this appendix, we derive 2 results used in Sec. 2.2.2.1, which are the equivalence
between a capacitive coupling to a transmission line and a galvanic coupling to a line
with higher characteristic impedance, and the quantization of a semi-infinite line.

b.1 capacitively coupled transmission line

Figure 70: LC circuit capacitively coupled to a coaxial transmission line: equivalence to a
galvanic coupling to a high-impedance line.

Let us consider the situation represented on Fig. 70. A transmission line is capaci-
tively coupled to the LC resonator. We suppose that the coupling capacitance Cκ is
much smaller than 1/Zcωr, where ωr = 1√

LC
is the circuit resonance frequency and Zc

the line characteristic impedance. The semi-infinite line being equivalent to a resistor
of resistance Zc, around ωr, the impedance seen from the resonator is:

Z0 =
1

jCκω
+ Zc

=
1

jCκω
(1 + jCκωrZc + jCκ(ω− ωr)Zc)

|ω−ωr|�ωr
Cκ�1/Zcωr≈ 1

jCκω

1
1− jCκωrZc

≈ 1
jCκω+C2

κω
2
rZc

≈ 1
jCκω

|| 1
C2
κω

2
rZc

,

(284)

which is the impedance of the coupling capacitance in parallel with a resistor R =
1

C2
κω

2
rZc
� Zc. Thus, a capacitive coupling to a line of characteristic impedance Zc is

equivalent to a galvanic coupling to a resistor of high resistance, or equivalently to
a semi-infinite line of high characteristic impedance Z0 = R. Note that the coupling
capacitance slightly increases the resonator capacitance.

Physically, the hypothesis of small capacitance means that we can neglect the low-
pass filter formed by this capacitance in series with the line of real impedance Zc.
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Probing the cavity on a small bandwidth around its resonant frequency, we can ne-
glect the dependance on ω of the impedance seen from the cavity. In the following
section, this translates in a constant density of states for the cavity environment on
the probed bandwidth.

b.2 input output formalism

In this section, we define the input and output field operators of a semi-infinite trans-
mission line and derive the form of the interaction hamiltonian with the cavity mode.
This derivation follows the one by Clerk et al. in the appendices of [11], but we place
ourselves in the Schrödinger picture.

b)

a)

Figure 71

We consider the situation represented on Fig. 71 a. A LC resonator is connected
to a coaxial line which has an inductance per unit length l and a capacitance to the
ground per unit length c. We define the characteristic impedance of the line Z0 =

√
l
c

and the traveling waves velocity v = 1√
lc
.

On the telegraph model for the line represented on Fig. 71 b, the charge q(x)dx on
the node at position x and its phase defined in Eq. (31) are canonically conjugated so
that

[φ(x), q(x′)] = i h̄δ(x− x′). (285)

The electrostatic energy stored in a portion of length dx reads q2

2cdx and the magnetic
energy is (∂xφ)2

2l dx
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To simplify calculations, we suppose that the line has a finite length λ and we
impose a periodic boundary condition between x = 0, where the line is connected to
the resonator, and x = λ. We will take λ → ∞ at the end of the calculation. The
hamiltonian of the line reads

Hline =

λ∫
0

(
q2

2c +
(∂xφ)2

2l )dx. (286)

We now define the left and right traveling waves amplitudes at position x as

A�(x) =
1

2
√
vc
q(x)∓ 1

2
√
vl
∂xφ. (287)

From Eq. (285), we find the commutation relations [A�(x),A�(x′)] = ± i h̄
2 ∂xδ(x− x′)

[A�(x),A�(x′)] = 0
, (288)

so that left and right propagating waves are independent. We then write the hamilto-
nian

Hline = v

λ∫
0

(A←(x)2 +A→(x)2)dx. (289)

We now define the wave amplitudes Ak in the wave vectors domain as, for k = 2πn
λ

and n an integer,
Ak =

√
2v
λ

λ∫
0
A→(x)e−ikxdx if k > 0 (right propagating modes)

Ak =
√

2v
λ

λ∫
0
A←(x)e−ikxdx if k < 0 (left propagating modes)

, (290)

and using Parseval relation,

Hline =
1
2

+∞∑
k=−∞

(A†kAk +AkA
†
k). (291)

Let us now find the commutation relation for the Ak’s. For k, k′ > 0,

[Ak,A†k′ ] = 2v
λ

λ∫
0

λ∫
0
[A→(x),A→(x′)]ei(k′x′−kx)dxdx′

= − i h̄v
λ

λ∫
0

λ∫
0
∂xδ(x− x′)ei(k

′x′−kx)dxdx′{
s = (x+x′)/2
u = x−x′

=
λ∫
0

2s∫
−2s

∂uδ(u)e
−i k+k

′
2 uduei(k′−k)sds

= h̄v2 (k+ k′)δkk′ .

(292)

Similarly, we find that

[Ak,A†k′ ] = − h̄v2 (k+ k′)δkk′ if k, k′ < 0
[Ak,A†k′ ] = 0 if sgn(kk′) < 0

, (293)
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and we check that [Ak,Ak′ ] = 0. We can now define the annihilation operators ak as

ak =
1√
h̄ωk

Ak, (294)

where ωk = v|k|. These operators obey the canonical commutation relation [ak, a†k′ ] =
δkk′ , and the hamiltonian reads

Hline =
+∞∑

k=−∞
h̄ωk(aka

†
k +

1
2 ). (295)

Thus, the line is assimilated to a bath of harmonic oscillators of frequencies ωk.

We now consider the interaction hamiltonian Hint between the line and the LC
resonator. It corresponds to the work performed by a current source I(x = 0) over a
tension V = ∂tΦ from t′ = −∞ to t (see Fig. 71). It thus reads

Hint = Φ.I(x = 0)
=

√
h̄Zr
2 (a+ a†)

√
v
l (A

←(0)−A→(0))

=
√

h̄Zr
2 (a+ a†)

√
h̄v

2Z0λ

+∞∑
k=0

√
ωk(a−k − ak + a†−k − a

†
k),

(296)

where Zr =
√

L
C is the characteristic impedance of the LC resonator.

We now make the Rotating Wave Approximation (RWA) [67]. In the hamiltonian
(296), we only keep the oscillators whose frequency ωk are around the LC resonator
frequency ωr, within a given span ∆ω � ωr. The other terms in the hamiltonian result
in fast oscillating contributions that are neglected. Making the approximation ωk ' ωr
for ωk ∈ [ωr − ∆ω

2 ,ωr + ∆ω
2 ]

def
= RBW, the hamiltonian becomes

Hint =
h̄

2

√
ωrZr
Z0

(a+ a†)

√
v

λ

+∞∑
k=0

(a−k − ak + a†−k − a
†
k). (297)

We can now define the input and output annihilation operators as
ain = 1√

2πD
∑

ωk∈RBW
a−k

aout =
1√

2πD
∑

ωk∈RBW
ak

, (298)

where D = λ
2πv is the density of states around ωr. D is supposed constant within the

probed bandwidth ∆ω. It is exactly true for a galvanically connected line, and valid
for a capacitively coupled line in the limit of a small coupling capacitance.

Introducing the coupling rate κ = ωr
Zr
Z0

, the interaction hamiltonian finally reads

Hint = h̄
√
κ

2 (a+ a†)(ain + a†in − aout + a†out)
RWA
= h̄

√
κ

2 (a†(ain − aout) + (a(a†in − a
†
out)).

(299)

In the Heisenberg picture, the equation of motion for Let us comment on these results.
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• In the limit λ → ∞, we have [ain, a†in] = [aout, a†out] = ∆ω
2π = ∆f . Therefore,

the photon flux, and thus the power detected at the line output depends on the
bandwidth on which it is probed. This bandwidth corresponds to the resolution
bandwidth of a commercial Power Spectrum Analyzer.

• If we turn off the interaction between the resonator and the line, in the Heisenberg
picture, we find that the equation of motion for the ak’s read

i h̄∂tak = [ak,Hline]

= h̄ωkak,
(300)

so that ak(t+ τ ) = ak(t)e
−iωkτ , and we have

ain(t+ τ ) = 1√
2πD

∑
ωk∈RBW

a−k(t)e
−iωkτ

aout(t+ τ ) = 1√
2πD

∑
ωk∈RBW

ak(t)e
−iωkτ

. (301)

Therefore, in the limit λ → ∞, the correlation time for ain and aout is τc = 1
∆f .

It is the correlation time that appears in Eq. (23). This sets the limit of the
hypothesis of a Markovian environment when we derive a master equation for
the resonator mode. The coarse-grained description imply that the time step dt
on which we probe the cavity is chosen to obey the hierarchy

1
ωr
� 1

∆ω
� dt� 1

κ
. (302)

• On Fig. 71, the boundary condition at x = 0 is Φ = φ(x = 0). Thus, in the
Heisenberg picture,

√
h̄Zr
2 (a(t) + a†(t)) =

t∫
−∞

1
c q(0, t′) dt′

=
√

v
c

t∫
−∞

(A→(0, t′) +A←(0, t′)) dt′

Eq. (300)
ωk'ωr' i

√
h̄Z0
2ωr (ain(t)− a

†
in(t) + aout(t)− a†out(t)).

(303)

Then, separating the contributions of the oscillating and the counter-oscillating
terms, we get the input/output relation

√
κa(t) = ain(t) + aout(t), (304)

where we have redefined the phase of ain and aout ain ← iain

aout ← iaout
. (305)
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• In the Heisenberg picture, the equation of motion for the annihilation operator
of the LC resonator reads

i h̄∂ta = [a, h̄ωr(a†a+ 1/2)] + [a,Hint], (306)

and using Eq. (299) and Eq. (304), we get the so-called Langevin equation

∂ta = −iωra−
κ

2a+
√
κain . (307)
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C
STOCHAST IC MASTER EQUATIONS FOR DISPERS IVE
MEASUREMENT

In Sec. 3.1.2, we derive the Stochastic Master Equation associated with a jump detec-
tor for the jump operator L =

√
γφ
2 σZ . In Sec. 3.2.2, we give the Stochastic Master

Equation associated with a homodyne detection of the transmitted field at the out
port when driving the cavity at ωr through the in port1. In [115], Gambetta et al.
derive this equation starting from the SME for the cavity mode coupled to a qubit
(Jaynes-Cummings model).
In this appendix, we propose jump operators associated with the detection of the same
field with a photo-counter. Note that high efficiency photo-counters do not exist in the
microwave range yet. We then retrieve the SME for homodyne detection from a model
borrowed from quantum optics, in which this detection is performed by mixing the
signal with a strong LO on a balanced beam-splitter, and then detecting the splitter
outputs with photo counters. Retrieving the same SME as the one given in [115] justi-
fies the jump operators found for the photo-counter.

c.1 jump operators for detection with a photocounter

We suppose that we probe the cavity in transmission with an input field ain at ωr.
Due to the dispersive term −χ

2a
†aσZ in the hamiltonian (80), the output field is entan-

gled with the qubit. Following Eq.(83), in the stationary regime, the mean number of

photons in the cavity mode is n =
4κin|ain|2
κ2 + χ2 , where κin is the coupling rate through

the input port. Detection of the transmitted photons with a perfect efficiency photo
counter2 leads to abrupt jumps for the qubit state.

To respect the QNDness of the dispersive measurement, we suppose that these jumps
only change the phase of the qubit state. Moreover, assuming a markovian environment,
the phase shift −θ associated with a photon detection does not depend on the history
of the qubit and is thus constant. Finally, on average, photons need to be detected at
rate κnt. We thus write the jump operator associated with the detection of a photon
as

L =
√
κn

e−iθ/2 0
0 eiθ/2

 . (308)

1 neglecting pure dephasing, the dephasing is then induced by the measurement so that L =

√
Γd
2 σZ

2 and a coupling rate through the output port far larger than the input and the losses of the cavity
κout ' κ = κout + κin + κl, so that all photons are collected and directed to the photo-counter
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We can check that this operator effectively shifts the phase of the qubit by an angle −θ
when the photocounter clicks, which happens, as a mean, at a rate κn. Indeed, from
Eq.(90), when a jump occurs,

ρ(t+ dt) = Lρ(t)L†

〈L†L〉
− ρ(t) =

 ρee(t) ρeg(t)e−iθ

ρge(t)eiθ ρgg(t)

 . (309)

We saw in Sec. 2.1.3.2 that the choice of the no-jump operator modifies the qubit hamil-
tonian. To respect the QNDness of the measurement, we suppose that it leads to the
modification H ← H − ωNJ σZ2 , where ωNJ will be chosen so that the AC Stark-shift
found from this model matches the value given in Eq. (85).

Since the number k of detected photons after a time t follows a Poisson law of
parameter κnt (photon shot-noise), as a mean, the coherence of the qubit at time t
reads

ρeg(t) = e−i(ωq+ωNJ )t
∑
k
P (k)e−ikθρeg(0)

= e−i(ωq+ωNJ )te−κnt
∑
k

(κnt)k

k!
e−ikθρeg(0)

= e−κnt(1−cos θ)e−i(ωq+ωNJ+nκ sin θ)tρeg(0).

(310)

We then require that the AC Stark shift and the coherence decay rate match the values
given in Eq. (85) and in [21] in the stationary regime so that nκ(1− cos θ) = Γd = Im[αseα

s∗
g ] = nχ sin (2arctan(χκ ))

ωNJ + nκ sin θ = ωStark = Re[αseαs∗g ] = nχ cos (2arctan(χκ ))
. (311)

We find that these conditions are respected for θ = 2arctan(χκ )
ωNJ = −nχ

. (312)

The phase-shift −θ on the qubit state associated with a photon detection is thus equal
to the phase shift on the field transmitted at ωr when the qubit is excited. When no
photon is detected, the qubit frequency is simply shifted by −nχ, where n is the mean
photon number in the cavity.

c.2 derivation of the sme for homodyne detection

We now derive the SME associated with homodyne detection, using a model inherited
from quantum optics. In this model, homodyne detection is performed by mixing the
output field from the cavity with a strong local oscillator (LO) bin at ωr on a balanced
beam-splitter. This traveling field is in a coherent state |βin〉 with a large number of
photons per time unit. Thus, in the natural time scale of the cavity, |βin|2 � κ. An

acceptable scattering matrix for this beam-splitter reads S = 1√
2

1 i

1 −i

. The two
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output beams are then sent to photocounters. Considering the photocounter on one
output of the beam splitter, the jump operator associated with the detection of a
photon acts on the composite system formed by the LO and the qubit and reads

Ltot =
1√
2
(L+ ibin), (313)

where L is the jump operator found in Eq. (308).
Defining the phase δ by βin = −i|βin|eiδ, when a photon is detected and tracing out
the LO degree of freedom, the evolution of the qubit density matrix is, up to the first
order in κ/|βin|:

dρclick = TrLO[
LtotρtotL

†
tot

〈L†totLtot〉
− ρtot]

=
1
|βin|

((Lδ − 〈Lδ〉)ρtot + ρtot(L
†
δ − 〈L

†
δ〉))

=
2
|βin|

M[Lδ]ρtot,

(314)

where we have defined the operator

Lδ = e−iδL, (315)

and the measurement super operatorM as

M[c]ρ =
1
2 ((c− 〈c〉)ρ+ ρ(c† − 〈c†〉)). (316)

Integrated over a time step dt such that 1/|βin|2 � dt� 1/κn, the photon shot-noise
in the field bin leads to a number of clicks dNclick = 〈L†totLtot〉dt+

|βin|
2 dWt, with Wt a

Wiener process representing an ideal random walk [94]. Following Itô rules, dWt = 0
dW 2

t = dt
. (317)

Then, equation (92) becomes

dρtot = −
i

h̄
dt[Htot, ρtot] + dtD[Ltot]ρtot +

|βin|
2 dWt

(LtotρtotL†tot
〈L†totLtot〉

− ρtot
)
, (318)

with

D[Ltot]ρtot =
1
2 (D[bin]ρtot+D[L]ρtot+ |βin|

(
Lδρtot+ ρtotL

†
δ −

1
2{Lδ +L†δ, ρtot})

)
.

(319)

On the other output of the beam splitter, the jump operator reads Ltot,2 = 1√
2 (L− ibin),

so that the Wiener process associated to the photon shot noise on this second detector
is −Wt and the effect on ρtot is the same as in Eq.(318) with the substitution Lδ → −Lδ.
Then, summing up the contributions of both diodes at the outputs of the beam splitter
and tracing other the bin degree of freedom, we get

dρ = − i

h̄
dt[H, ρ] + dtD[L]ρ+ 2dWtM[Lδ]ρ, (320)
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where we have used the fact that bin is in a stationary regime so that the effects of
D[ain] and its hamiltonian evolution compensate.

Let us now consider two cases for the phase δ.

If δ = π
2 , we have

M[Lδ]ρ = sin θ
2
√
κn

 2ρggρee ρeg(ρgg − ρee)
ρge(ρgg − ρee) −2ρggρee


=
√

Γd/2M[σZ ]ρ.

(321)

From Eq. (320), we then find the SME

dρ = − i

h̄
dt[H, ρ] + dtD[L]ρ+ dWt

√
η2ΓdM[σZ ]ρ, (322)

which is the same as in Eq. (322) since, with θ = 2arctanχκ , we showed in Sec. C.1 that
the unconditioned evolution dρ = − i

h̄dt[H, ρ] + dtD[L]ρ reproduces the dephasing
rate and AC-Stark shift found in Eq. (85).
The measurement record, which is the normalized signal at the output of one of the
photocounters is Jπ

2
(t) with

Jπ
2
(t)dt = 2

|βin| (dNclick − (|βin|2 + 1)/2)
= 2

|βin| (〈L
†
totLtot〉+

|βin|
2 dWt − (|βin|2 + 1)/2)

= 2
√
κn sin θ

2〈σZ(t)〉+ dWt

=
√

2Γd〈σZ(t)〉+ dWt,

(323)

where we have removed the constant part (|βin|2 + 1)/2 and normalized the signal by
|βin|/2. This is in agreement with the expression given in Eq. (114).

If δ = 0 , we have

M[Lδ]ρ = −i sin θ
2
√
κn

 0 ρge

−ρeg 0


= −i

√
Γd
2 [σZ , ρ].

(324)

Then, Eq. (320) reads

dρ = − i

h̄
dt[H, ρ] + dtD[L]ρ− idWt

2
√

2Γd[σZ , ρ], (325)

in agreement with Eq. (322).
In this case, and with the same offset and normalization as in Eq. (323), the measure-
ment record is J0(t) with

J0(t)dt = 2
√
κn cos θ2dt+ dWt, (326)

also in agreement with the expression given in Eq. (116).
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In conclusion, starting from the jump operators acting on the qubit that we proposed
in Sec. C.1 to describe the detection of the field at ωr by a photocounter, we derived in
this section the SME associated with homodyne detection of the same field. For both
considered phases of the homodyne detection, we find the same SME and the same
expressions for the measurement records as derived by Gambetta et al. [21] and recalled
in Sec. 3.2.2. This validates a posteriori the values of the jump operators associated
with a photon detection guessed in Sec. C.1.

191





Part IV

B I B L I O G R A P H Y





BIBL IOGRAPHY

[1] B. S. DeWitt, N. Graham, H. Everett, and J. A. Wheeler, The many-worlds in-
terpretation of quantum mechanics, vol. 3. Princeton University Press Princeton,
1973. (Cited on page 1.)

[2] W. H. Zurek, “Quantum darwinism,” Nature Physics, vol. 5, no. 3, pp. 181–188,
2009. (Cited on page 1.)

[3] A. Daneri, A. Loinger, and G. M. Prosperi, “Quantum theory of measurement
and ergodicity conditions,” Nuclear physics, vol. 33, pp. 297–319, 1962. (Cited
on page 1.)

[4] A. Daneri, A. Loinger, and G. Prosperi, “Further remarks on the relations be-
tween statistical mechanics and quantum theory of measurement,” Il Nuovo Ci-
mento B Series 10, vol. 44, no. 1, pp. 119–128, 1966. (Cited on page 1.)

[5] W. H. Zurek, “Quantum darwinism, classical reality, and the randomness of
quantum jumps,” arXiv preprint arXiv:1412.5206, 2014. (Cited on page 1.)

[6] M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. Raimond,
and S. Haroche, “Observing the progressive decoherence of the "meter" in a
quantum measurement,” Physical Review Letters, vol. 77, no. 24, p. 4887, 1996.
(Cited on page 1.)

[7] C. Monroe, D. Meekhof, B. King, and D. Wineland, “A "Schrödinger cat" su-
perposition state of an atom,” Science, vol. 272, no. 5265, pp. 1131–1136, 1996.
(Cited on page 1.)

[8] N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero,
A. O’Connell, H. Wang, A. Cleland, J. M. Martinis, et al., “Reversal of the weak
measurement of a quantum state in a superconducting phase qubit,” Physical
review letters, vol. 101, no. 20, p. 200401, 2008. (Cited on pages 1 and 47.)

[9] G. ChiriBella, G. M. D’Ariano, and P. Perinotti, “Quantum Theory, Namely the
Pure and Reversible Theory of Information,” Entropy, vol. 14, pp. 1877–1893,
Oct. 2012. (Cited on pages 1 and 17.)

[10] M. Devoret and R. Schoelkopf, “Superconducting circuits for quantum informa-
tion: an outlook,” Science, vol. 339, no. 6124, pp. 1169–1174, 2013. (Cited on
pages 1 and 21.)

[11] a. a. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf,
“Introduction to quantum noise, measurement, and amplification,” Reviews of
Modern Physics, vol. 82, pp. 1155–1208, Apr. 2010. (Cited on pages 1, 3, 4, 18,
45, 46, 50, 51, 52, 55, 131, and 182.)

195



[12] J. Koch, T. Yu, J. Gambetta, a. Houck, D. Schuster, J. Majer, A. Blais, M. De-
voret, S. Girvin, and R. Schoelkopf, “Charge-insensitive qubit design derived from
the Cooper pair box,” Physical Review A, vol. 76, pp. 1–19, Oct. 2007. (Cited
on pages 1, 2, 28, and 32.)

[13] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, a. P. Sears, B. R.
Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret,
and R. J. Schoelkopf, “Observation of High Coherence in Josephson Junction
Qubits Measured in a Three-Dimensional Circuit QED Architecture,” Physical
Review Letters, vol. 107, p. 240501, Dec. 2011. (Cited on pages 1, 2, 21, and 165.)

[14] D. M. Pozar, Microwave engineering. John Wiley & Sons, 2009. (Cited on
page 3.)

[15] E. M. Purcell, “Proceedings of the american physical society,” Phys. Rev., vol. 69,
pp. 674–674, Jun 1946. (Cited on pages 3 and 32.)

[16] M. Reed, B. Johnson, A. Houck, L. DiCarlo, J. Chow, D. Schuster, L. Frunzio,
and R. Schoelkopf, “Fast reset and suppressing spontaneous emission of a su-
perconducting qubit,” Applied Physics Letters, vol. 96, no. 20, p. 203110, 2010.
(Cited on pages 3, 8, 32, 111, and 129.)

[17] E. A. Sete, A. Galiautdinov, E. Mlinar, J. M. Martinis, and A. N. Korotkov,
“Catch-disperse-release readout for superconducting qubits,” Phys. Rev. Lett.,
vol. 110, p. 210501, May 2013. (Cited on pages 3, 8, and 32.)

[18] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.
Cambridge university press, 2010. (Cited on pages 3, 4, 17, 82, 83, and 117.)

[19] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. Manucharyan, L. Frunzio,
D. Prober, R. Schoelkopf, S. Girvin, and M. Devoret, “Phase-preserving am-
plification near the quantum limit with a Josephson ring modulator,” Nature,
vol. 465, no. 7294, pp. 64–68, 2010. (Cited on pages 4 and 55.)

[20] N. Roch, E. Flurin, F. Nguyen, P. Morfin, P. Campagne-Ibarcq, M. H. Devoret,
and B. Huard, “Widely tunable, nondegenerate three-wave mixing microwave
device operating near the quantum limit,” Physical review letters, vol. 108, no. 14,
p. 147701, 2012. (Cited on pages 4 and 55.)

[21] J. Gambetta, A. Blais, M. Boissonneault, A. Houck, D. Schuster, and S. Girvin,
“Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno
effect,” Physical Review A, vol. 77, no. 1, p. 012112, 2008. (Cited on pages 4, 38,
54, 188, and 191.)

[22] R. Vijay, D. H. Slichter, and I. Siddiqi, “Observation of Quantum Jumps in a
Superconducting Artificial Atom,” Physical Review Letters, vol. 106, p. 110502,
Mar. 2011. (Cited on pages 5, 47, and 59.)

[23] H. M. Wiseman, Quantum trajectories and feedback. PhD thesis, University of
Queensland, 1994. (Cited on pages 5, 10, 63, 118, and 139.)

196



[24] H. M. Wiseman and G. J. Milburn, Quantum measurement and control. Cam-
bridge University Press, 2009. (Cited on pages 5, 6, 8, 10, 25, 52, 63, 75, 107,
and 118.)

[25] A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R. Johnson, J. M.
Chow, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,
“Generating single microwave photons in a circuit,” Nature, vol. 449, pp. 328–331,
Jan. 2007. (Cited on pages 6 and 64.)

[26] O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto,
K. Inomata, Y. Nakamura, and J. Tsai, “Resonance fluorescence of a single ar-
tificial atom,” Science, vol. 327, no. 5967, pp. 840–843, 2010. (Cited on pages 6
and 64.)

[27] Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, “Time symmetry in the
quantum process of measurement,” Phys. Rev., vol. 134, pp. B1410–B1416, Jun
1964. (Cited on pages 6, 81, and 92.)

[28] Y. Aharonov, D. Albert, and L. Vaidman, “How the result of a measurement of
a component of the spin of a spin-1/2 particle can turn out to be 100,” Physical
Review Letters, vol. 60, pp. 1351–1354, Apr. 1988. (Cited on pages 6, 81, and 94.)

[29] H. Wiseman, “Weak values, quantum trajectories, and the cavity-QED experi-
ment on wave-particle correlation,” Physical Review A, vol. 65, p. 032111, Feb.
2002. (Cited on pages 6, 81, and 84.)

[30] M. Tsang, “Optimal waveform estimation for classical and quantum systems via
time-symmetric smoothing,” Physical Review A, vol. 80, no. 3, p. 033840, 2009.
(Cited on pages 6, 81, and 99.)

[31] S. r. Gammelmark, B. Julsgaard, and K. Mølmer, “Past quantum states,” p. 5,
May 2013. (Cited on pages 6 and 81.)

[32] Y. Aharonov, S. Popescu, and J. Tollaksen, “A time-symmetric formulation of
quantum mechanics,” Phys. Today, vol. 63, no. 11, pp. 27–32, 2010. (Cited on
pages 7 and 81.)

[33] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan, “Quantum
feedback control and classical control theory,” Physical Review A, vol. 62, no. 1,
p. 012105, 2000. (Cited on pages 8 and 107.)

[34] J. Poyatos, J. Cirac, and P. Zoller, “Quantum reservoir engineering with laser
cooled trapped ions,” Physical review letters, vol. 77, no. 23, p. 4728, 1996. (Cited
on pages 8 and 129.)

[35] B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,”
Journal of Mathematical Physics, vol. 18, no. 4, pp. 756–763, 1977. (Cited on
pages 8 and 141.)

197



[36] P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. Sudarshan, “Quantum Zeno
dynamics,” Physics Letters A, vol. 275, no. 1, pp. 12–19, 2000. (Cited on pages 8,
105, and 141.)

[37] P. Facchi, D. Lidar, and S. Pascazio, “Unification of dynamical decoupling and
the quantum Zeno effect,” Physical Review A, vol. 69, no. 3, p. 032314, 2004.
(Cited on pages 8, 11, 141, 142, and 146.)

[38] J.-M. Raimond, C. Sayrin, S. Gleyzes, I. Dotsenko, M. Brune, S. Haroche, P. Fac-
chi, and S. Pascazio, “Phase space tweezers for tailoring cavity fields by quantum
Zeno dynamics,” Physical review letters, vol. 105, no. 21, p. 213601, 2010. (Cited
on pages 8, 11, 141, 142, and 160.)

[39] J.-M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko,
S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a
cavity,” Physical Review A, vol. 86, no. 3, p. 032120, 2012. (Cited on pages 8,
141, and 160.)

[40] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rou-
chon, M. Mirrahimi, H. Amini, M. Brune, et al., “Real-time quantum feedback
prepares and stabilizes photon number states,” Nature, vol. 477, no. 7362, pp. 73–
77, 2011. (Cited on pages 10 and 107.)

[41] X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. Rai-
mond, M. Brune, and S. Haroche, “Field locked to a fock state by quantum feed-
back with single photon corrections,” Physical review letters, vol. 108, no. 24,
p. 243602, 2012. (Cited on pages 10 and 107.)

[42] D. Ristè, C. Bultink, K. Lehnert, and L. DiCarlo, “Feedback control of a solid-
state qubit using high-fidelity projective measurement,” Physical review letters,
vol. 109, no. 24, p. 240502, 2012. (Cited on pages 10, 107, 109, 110, and 129.)

[43] D. P. DiVincenzo et al., “The physical implementation of quantum computation,”
arXiv preprint quant-ph/0002077, 2000. (Cited on pages 10 and 111.)

[44] K. Geerlings, Z. Leghtas, I. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mir-
rahimi, and M. H. Devoret, “Demonstrating a driven reset protocol for a su-
perconducting qubit,” Physical review letters, vol. 110, no. 12, p. 120501, 2013.
(Cited on pages 10, 42, 111, and 129.)

[45] D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio,
J. Majer, B. Johnson, M. Devoret, et al., “Resolving photon number states in a
superconducting circuit,” Nature, vol. 445, no. 7127, pp. 515–518, 2007. (Cited
on pages 10, 11, 130, and 143.)

[46] A. Chia and H. M. Wiseman, “Quantum theory of multiple-input–multiple-
output markovian feedback with diffusive measurements,” Physical Review A,
vol. 84, no. 1, p. 012120, 2011. (Cited on pages 10 and 120.)

198



[47] K. Murch, U. Vool, D. Zhou, S. Weber, S. Girvin, and I. Siddiqi, “Cavity-assisted
quantum bath engineering,” Physical review letters, vol. 109, no. 18, p. 183602,
2012. (Cited on pages 11 and 139.)

[48] R. Vijay, C. Macklin, D. Slichter, S. Weber, K. Murch, R. Naik, A. N. Korotkov,
and I. Siddiqi, “Stabilizing rabi oscillations in a superconducting qubit using
quantum feedback,” Nature, vol. 490, no. 7418, pp. 77–80, 2012. (Cited on
pages 11, 107, 112, and 114.)

[49] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S. Cataliotti, F. Caruso,
and A. Smerzi, “Experimental realization of quantum Zeno dynamics,” Nature
communications, vol. 5, 2014. (Cited on pages 11 and 152.)

[50] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond,
M. Brune, and S. Gleyzes, “Confined quantum Zeno dynamics of a watched
atomic arrow,” Nature Physics, vol. 10, no. 10, pp. 715–719, 2014. (Cited on
pages 11, 143, and 152.)

[51] S. Haroche and J.-M. Raimond, Exploring the quantum: atoms, cavities, and
photons (Oxford graduate texts). Oxford University Press, USA, 2013. (Cited on
pages 12, 21, 153, and 157.)

[52] J. Preskill, “Lecture notes for physics 229: Quantum information and computa-
tion,” California Institute of Technology, 1998. (Cited on pages 16 and 17.)

[53] P. Cappellaro et al., “Quantum theory of radiation interactions (pdf),” 2011.
(Cited on page 20.)

[54] G. Lindblad, “On the generators of quantum dynamical semigroups,” Commu-
nications in Mathematical Physics, vol. 48, no. 2, pp. 119–130, 1976. (Cited on
page 20.)

[55] S. Haroche, “Nobel lecture: Controlling photons in a box and exploring the quan-
tum to classical boundary,” Reviews of Modern Physics, vol. 85, no. 3, p. 1083,
2013. (Cited on page 21.)

[56] D. J. Wineland, “Nobel lecture: Superposition, entanglement, and raising
Schrödinger’s cat,” Reviews of Modern Physics, vol. 85, no. 3, p. 1103, 2013.
(Cited on page 21.)

[57] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar,
S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a
superconducting qubit using circuit quantum electrodynamics,” Nature, vol. 431,
no. 7005, pp. 162–167, 2004. (Cited on page 21.)

[58] J. You and F. Nori, “Quantum information processing with superconducting
qubits in a microwave field,” Physical Review B, vol. 68, no. 6, p. 064509, 2003.
(Cited on page 21.)

199



[59] M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting
integrated circuits,” in Experimental Aspects of Quantum Computing, pp. 163–
203, Springer, 2005. (Cited on page 21.)

[60] R. Schoelkopf and S. Girvin, “Wiring up quantum systems,” Nature, vol. 451,
no. 7179, pp. 664–669, 2008. (Cited on page 21.)

[61] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature, vol. 453,
no. 7198, pp. 1031–1042, 2008. (Cited on page 21.)

[62] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H.
Devoret, R. J. Schoelkopf, and S. M. Girvin, “Black-Box Superconducting Circuit
Quantization,” Physical Review Letters, vol. 108, p. 240502, June 2012. (Cited
on pages 22, 30, 31, 32, 145, and 179.)

[63] Y. Kagan and A. J. Leggett, Quantum tunnelling in condensed media. Elsevier,
2012. (Cited on page 22.)

[64] M. H. Devoret, “Quantum fluctuations in electrical circuits,” Les Houches, Ses-
sion LXIII, 1995. (Cited on page 22.)

[65] S. M. Girvin, “Circuit QED: superconducting qubits coupled to microwave pho-
tons,” Les Houches, Session XCVI, 2011. (Cited on page 22.)

[66] M. Devoret, “QUANTUM SIGNALS AND CIRCUITS Lecture III : The "atoms"
of signal,” Lectures at the College de France (physinfo.fr), pp. 1–24, 2008. (Cited
on page 23.)

[67] C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, and P. Thickstun, Atom-
photon interactions: basic processes and applications. Wiley Online Library, 1992.
(Cited on pages 25, 115, and 184.)

[68] M. H. Devoret and J. M. Martinis, “Course 12 superconducting qubits,” Les
Houches, vol. 79, pp. 443–485, 2004. (Cited on page 28.)

[69] J. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. Johnson, J. Chow, J. M.
Gambetta, J. Majer, L. Frunzio, M. H. Devoret, et al., “Suppressing charge noise
decoherence in superconducting charge qubits,” Physical Review B, vol. 77, no. 18,
p. 180502, 2008. (Cited on page 28.)

[70] A. Houck, J. Koch, M. Devoret, S. Girvin, and R. Schoelkopf, “Life after charge
noise: recent results with transmon qubits,” Quantum Information Processing,
vol. 8, no. 2-3, pp. 105–115, 2009. (Cited on page 28.)

[71] V. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I. Siddiqi, and M. De-
voret, “Microwave bifurcation of a Josephson junction: Embedding-circuit re-
quirements,” Physical Review B, vol. 76, p. 014524, July 2007. (Cited on page 28.)

[72] J. Bourassa, F. Beaudoin, J. M. Gambetta, and A. Blais, “Josephson-junction-
embedded transmission-line resonators: From Kerr medium to in-line transmon,”
Physical Review A, vol. 86, no. 1, p. 013814, 2012. (Cited on pages 30, 145,
and 179.)

200



[73] F. Solgun, D. W. Abraham, and D. P. DiVincenzo, “Blackbox quantization of
superconducting circuits using exact impedance synthesis,” Physical Review B,
vol. 90, no. 13, p. 134504, 2014. (Cited on pages 30, 32, 145, and 179.)

[74] M. Boissonneault, J. Gambetta, and A. Blais, “Improved superconducting qubit
readout by qubit-induced nonlinearities,” Physical review letters, vol. 105, no. 10,
p. 100504, 2010. (Cited on page 32.)

[75] M. Boissonneault, J. Gambetta, and A. Blais, “Improved qubit bifurcation read-
out in the straddling regime of circuit QED,” Physical Review A, vol. 86, no. 2,
p. 022326, 2012. (Cited on page 32.)

[76] D. M. Pozar, Microwave engineering. John Wiley & Sons, 2009. (Cited on
page 33.)

[77] K. L. Geerlings, Improving Coherence of Superconducting Qubits and Resonators.
PhD thesis, YALE UNIVERSITY, 2013. (Cited on pages 33, 35, 40, and 68.)

[78] R. Schoelkopf, A. Clerk, S. Girvin, K. Lehnert, and M. Devoret, “Qubits as spec-
trometers of quantum noise,” in Quantum noise in mesoscopic physics, pp. 175–
203, Springer, 2003. (Cited on page 35.)

[79] M. Boissonneault, J. M. Gambetta, and A. Blais, “Dispersive regime of circuit
QED: Photon-dependent qubit dephasing and relaxation rates,” Physical Review
A, vol. 79, no. 1, p. 013819, 2009. (Cited on page 37.)

[80] A. Wallraff, D. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. Girvin,
and R. Schoelkopf, “Approaching unit visibility for control of a superconducting
qubit with dispersive readout,” Physical Review Letters, vol. 95, no. 6, p. 060501,
2005. (Cited on page 37.)

[81] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi,
M. H. Devoret, F. Mallet, and B. Huard, “Persistent control of a superconducting
qubit by stroboscopic measurement feedback,” Physical Review X, vol. 3, no. 2,
p. 021008, 2013. (Cited on pages 39, 40, 41, 42, 56, 107, 109, 112, 129, and 172.)

[82] P. Campagne-Ibarcq, L. Bretheau, E. Flurin, A. Auffèves, F. Mallet, and
B. Huard, “Observing interferences between past and future quantum states in
resonance fluorescence,” Physical review letters, vol. 112, no. 18, p. 180402, 2014.
(Cited on pages 41, 42, 61, 64, 88, 129, and 172.)

[83] L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum
dynamics of an electromagnetic mode that cannot contain n photons,” to be
published in Science. (Cited on pages 41, 42, 143, and 172.)

[84] J. M. Martinis, K. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. Osborn,
K. Cicak, S. Oh, D. Pappas, R. Simmonds, et al., “Decoherence in Josephson
qubits from dielectric loss,” Physical Review Letters, vol. 95, no. 21, p. 210503,
2005. (Cited on page 40.)

201



[85] J. M. Martinis and a. Megrant, “UCSB final report for the CSQ program: Review
of decoherence and materials physics for superconducting qubits,” p. 10, Oct.
2014. (Cited on page 40.)

[86] J. M. Martinis, M. Ansmann, and J. Aumentado, “Energy decay in superconduct-
ing Josephson-junction qubits from nonequilibrium quasiparticle excitations,”
Physical review letters, vol. 103, no. 9, p. 097002, 2009. (Cited on page 40.)

[87] M. Lenander, H. Wang, R. C. Bialczak, E. Lucero, M. Mariantoni, M. Neeley,
A. O’Connell, D. Sank, M. Weides, J. Wenner, et al., “Measurement of energy
decay in superconducting qubits from nonequilibrium quasiparticles,” Physical
Review B, vol. 84, no. 2, p. 024501, 2011. (Cited on page 40.)

[88] C. Wang, Y. Y. Gao, I. M. Pop, U. Vool, C. Axline, T. Brecht, R. W. Heeres,
L. Frunzio, M. H. Devoret, G. Catelani, et al., “Measurement and control of quasi-
particle dynamics in a superconducting qubit,” Nature communications, vol. 5,
2014. (Cited on pages 40 and 172.)

[89] J. Wenner, Y. Yin, E. Lucero, R. Barends, Y. Chen, B. Chiaro, J. Kelly, M. Lenan-
der, M. Mariantoni, A. Megrant, et al., “Excitation of superconducting qubits
from hot nonequilibrium quasiparticles,” Physical review letters, vol. 110, no. 15,
p. 150502, 2013. (Cited on page 40.)

[90] W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung
im magnetfeld,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 9, no. 1,
pp. 349–352, 1922. (Cited on pages 45 and 46.)

[91] W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classi-
cal,” Reviews of Modern Physics, vol. 75, no. 3, p. 715, 2003. (Cited on page 45.)

[92] K. Murch, S. Weber, C. Macklin, and I. Siddiqi, “Observing single quantum tra-
jectories of a superconducting quantum bit,” Nature, vol. 502, no. 7470, pp. 211–
214, 2013. (Cited on pages 47 and 55.)

[93] M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht,
K. Sliwa, B. Abdo, L. Frunzio, S. M. Girvin, et al., “Quantum back-action of an
individual variable-strength measurement,” Science, vol. 339, no. 6116, pp. 178–
181, 2013. (Cited on pages 47 and 55.)

[94] D. Steck, Quantum and atoms optics. Oregon Center for Optics and Department
of Physics, University of Oregon, 2007. (Cited on pages 47 and 189.)

[95] B. Johnson, M. Reed, A. Houck, D. Schuster, L. S. Bishop, E. Ginossar, J. Gam-
betta, L. DiCarlo, L. Frunzio, S. Girvin, et al., “Quantum non-demolition de-
tection of single microwave photons in a circuit,” Nature Physics, vol. 6, no. 9,
pp. 663–667, 2010. (Cited on page 49.)

[96] C. Deng, J. Gambetta, and A. Lupaşcu, “Quantum nondemolition measurement
of microwave photons using engineered quadratic interactions,” Physical Review
B, vol. 82, no. 22, p. 220505, 2010. (Cited on page 49.)

202



[97] B. Peropadre, G. Romero, G. Johansson, C. Wilson, E. Solano, and J. J. García-
Ripoll, “Approaching perfect microwave photodetection in circuit QED,” Physi-
cal Review A, vol. 84, no. 6, p. 063834, 2011. (Cited on page 49.)

[98] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” 1982.
(Cited on page 50.)

[99] M. Castellanos-Beltran and K. Lehnert, “Widely tunable parametric amplifier
based on a superconducting quantum interference device array resonator,” Ap-
plied Physics Letters, vol. 91, no. 8, p. 083509, 2007. (Cited on page 51.)

[100] M. Hatridge, R. Vijay, D. Slichter, J. Clarke, and I. Siddiqi, “Dispersive magne-
tometry with a quantum limited squid parametric amplifier,” Physical Review B,
vol. 83, no. 13, p. 134501, 2011. (Cited on page 51.)

[101] J. Mutus, T. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, et al., “Design and characterization of a
lumped element single-ended superconducting microwave parametric amplifier
with on-chip flux bias line,” Applied Physics Letters, vol. 103, no. 12, p. 122602,
2013. (Cited on page 51.)

[102] E. A. Tholen, A. Ergül, E. M. Doherty, F. M. Weber, F. Grégis, and D. B. Hav-
iland, “Nonlinearities and parametric amplification in superconducting coplanar
waveguide resonators,” Applied physics letters, vol. 90, no. 25, p. 253509, 2007.
(Cited on page 51.)

[103] D. Kinion and J. Clarke, “Microstrip superconducting quantum interference de-
vice radio-frequency amplifier: Scattering parameters and input coupling,” Ap-
plied Physics Letters, vol. 92, no. 17, p. 172503, 2008. (Cited on page 51.)

[104] M. Castellanos-Beltran, K. Irwin, G. Hilton, L. Vale, and K. Lehnert, “Amplifi-
cation and squeezing of quantum noise with a tunable Josephson metamaterial,”
Nature Physics, vol. 4, no. 12, pp. 929–931, 2008. (Cited on page 51.)

[105] A. Kamal, A. Marblestone, and M. Devoret, “Signal-to-pump back action and
self-oscillation in double-pump Josephson parametric amplifier,” Physical Review
B, vol. 79, no. 18, p. 184301, 2009. (Cited on page 51.)

[106] L. Spietz, K. Irwin, M. Lee, and J. Aumentado, “Noise performance of lumped
element direct current superconducting quantum interference device amplifiers
in the 4–8 ghz range,” Applied Physics Letters, vol. 97, no. 14, p. 142502, 2010.
(Cited on page 51.)

[107] D. Hover, Y.-F. Chen, G. Ribeill, S. Zhu, S. Sendelbach, and R. McDermott,
“Superconducting low-inductance undulatory galvanometer microwave amplifier,”
Applied Physics Letters, vol. 100, no. 6, p. 063503, 2012. (Cited on page 51.)

[108] B. H. Eom, P. K. Day, H. G. LeDuc, and J. Zmuidzinas, “A wideband, low-
noise superconducting amplifier with high dynamic range,” Nature Physics, vol. 8,
no. 8, pp. 623–627, 2012. (Cited on page 51.)

203



[109] C. Bockstiegel, J. Gao, M. Vissers, M. Sandberg, S. Chaudhuri, A. Sanders,
L. Vale, K. Irwin, and D. Pappas, “Development of a broadband NbTiN travel-
ing wave parametric amplifier for mkid readout,” Journal of Low Temperature
Physics, vol. 176, no. 3-4, pp. 476–482, 2014. (Cited on page 51.)

[110] J. Mutus, T. White, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,
E. Jeffrey, J. Kelly, A. Megrant, et al., “Strong environmental coupling in
a Josephson parametric amplifier,” Applied Physics Letters, vol. 104, no. 26,
p. 263513, 2014. (Cited on page 51.)

[111] L. Zhong, E. Menzel, R. Di Candia, P. Eder, M. Ihmig, A. Baust, M. Haeber-
lein, E. Hoffmann, K. Inomata, T. Yamamoto, et al., “Squeezing with a flux-
driven Josephson parametric amplifier,” New Journal of Physics, vol. 15, no. 12,
p. 125013, 2013. (Cited on page 51.)

[112] C. Eichler, Y. Salathe, J. Mlynek, S. Schmidt, and A. Wallraff, “Quantum-limited
amplification and entanglement in coupled nonlinear resonators,” Physical review
letters, vol. 113, no. 11, p. 110502, 2014. (Cited on page 51.)

[113] A. Narla, K. Sliwa, M. Hatridge, S. Shankar, L. Frunzio, R. Schoelkopf, and
M. Devoret, “Wireless Josephson amplifier,” Applied Physics Letters, vol. 104,
no. 23, p. 232605, 2014. (Cited on page 51.)

[114] X. Zhou, V. Schmitt, P. Bertet, D. Vion, W. Wustmann, V. Shumeiko, and
D. Esteve, “High-gain weakly nonlinear flux-modulated Josephson parametric
amplifier using a squid array,” Physical Review B, vol. 89, no. 21, p. 214517,
2014. (Cited on page 51.)

[115] J. Gambetta, A. Blais, M. Boissonneault, A. Houck, D. Schuster, and S. Girvin,
“Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno
effect,” Physical Review A, vol. 77, no. 1, p. 012112, 2008. (Cited on pages 53,
135, 142, 146, and 187.)

[116] G. De Lange, D. Riste, M. Tiggelman, C. Eichler, L. Tornberg, G. Johansson,
A. Wallraff, R. Schouten, and L. DiCarlo, “Reversing quantum trajectories with
analog feedback,” Physical Review Letters, vol. 112, no. 8, p. 080501, 2014. (Cited
on pages 55 and 139.)

[117] C. M. Caves, J. Combes, Z. Jiang, and S. Pandey, “Quantum limits on phase-
preserving linear amplifiers,” Physical Review A, vol. 86, p. 063802, Dec. 2012.
(Cited on page 55.)

[118] A. N. Korotkov, “Quantum bayesian approach to circuit QED measurement,”
Les Houches, Session XCVI, 2011. (Cited on page 55.)

[119] B. Abdo, F. Schackert, M. Hatridge, C. Rigetti, and M. Devoret, “Josephson
amplifier for qubit readout,” Applied Physics Letters, vol. 99, no. 16, p. 162506,
2011. (Cited on page 55.)

204



[120] E. Flurin, The Josephson mixer, a Swiss army knife for microwave quantum
optics. PhD thesis, Ecole Normale Superieure, 2014. (Cited on pages 55 and 173.)

[121] E. Flurin, N. Roch, F. Mallet, M. H. Devoret, and B. Huard, “Generating en-
tangled microwave radiation over two transmission lines,” Physical review letters,
vol. 109, no. 18, p. 183901, 2012. (Cited on page 55.)

[122] M. Reed, L. DiCarlo, B. Johnson, L. Sun, D. Schuster, L. Frunzio, and
R. Schoelkopf, “High-fidelity readout in circuit quantum electrodynamics us-
ing the Jaynes-Cummings nonlinearity,” Physical review letters, vol. 105, no. 17,
p. 173601, 2010. (Cited on page 60.)

[123] L. S. Bishop, E. Ginossar, and S. Girvin, “Response of the strongly driven Jaynes-
Cummings oscillator,” Physical review letters, vol. 105, no. 10, p. 100505, 2010.
(Cited on page 60.)

[124] P. Carbonaro, G. Compagno, and F. Persico, “Canonical dressing of atoms by
intense radiation fields,” Physics Letters A, vol. 73, no. 2, pp. 97 – 99, 1979.
(Cited on page 60.)

[125] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mir-
rahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Observation of quantum
state collapse and revival due to the single-photon Kerr effect,” Nature, vol. 495,
no. 7440, pp. 205–209, 2013. (Cited on pages 62, 136, 147, 150, 156, 159, and 160.)

[126] I. M. Pop, K. Geerlings, G. Catelani, R. J. Schoelkopf, L. I. Glazman, and M. H.
Devoret, “Coherent suppression of electromagnetic dissipation due to supercon-
ducting quasiparticles,” Nature, vol. 508, no. 7496, pp. 369–372, 2014. (Cited on
page 62.)

[127] I. Nsanzineza and B. Plourde, “Trapping a single vortex and reducing quasipar-
ticles in a superconducting resonator,” Physical review letters, vol. 113, no. 11,
p. 117002, 2014. (Cited on page 62.)

[128] U. Vool, I. M. Pop, K. Sliwa, B. Abdo, C. Wang, T. Brecht, Y. Y. Gao, S. Shankar,
M. Hatridge, G. Catelani, et al., “Non-poissonian quantum jumps of a fluxonium
qubit due to quasiparticle excitations,” Physical review letters, vol. 113, no. 24,
p. 247001, 2014. (Cited on pages 62 and 69.)

[129] B. Mollow, “Power Spectrum of Light Scattered by Two-Level Systems,” Physical
Review, vol. 188, pp. 1969–1975, Dec. 1969. (Cited on page 64.)

[130] A. Abdumalikov Jr, O. Astafiev, Y. A. Pashkin, Y. Nakamura, and J. Tsai,
“Dynamics of coherent and incoherent emission from an artificial atom in a 1D
space,” Physical review letters, vol. 107, no. 4, p. 043604, 2011. (Cited on page 64.)

[131] H. Amini, M. Mirrahimi, and P. Rouchon, “On stability of continuous-time quan-
tum filters,” in Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on, pp. 6242–6247, IEEE, 2011. (Cited on
pages 68 and 73.)

205



[132] P. Rouchon and J. F. Ralph, “Efficient quantum filtering for quantum feedback
control,” arXiv preprint arXiv:1410.5345, 2014. (Cited on pages 68 and 74.)

[133] D. Ristè, C. Bultink, M. Tiggelman, R. Schouten, K. Lehnert, and L. DiCarlo,
“Millisecond charge-parity fluctuations and induced decoherence in a supercon-
ducting transmon qubit,” Nature communications, vol. 4, p. 1913, 2013. (Cited
on page 69.)

[134] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi, “Observing single quantum
trajectories of a superconducting quantum bit.,” Nature, vol. 502, pp. 211–4, Oct.
2013. (Cited on page 69.)

[135] P. Six, P. Campagne-Ibarcq, L. Bretheau, B. Huard, and P. Rouchon, “Parame-
ter estimation from measurements along quantum trajectories,” arXiv preprint
arXiv:1503.06149, 2015. (Cited on page 75.)

[136] J. Gambetta and H. M. Wiseman, “State and dynamical parameter estimation
for open quantum systems,” Physical Review A, vol. 64, no. 4, p. 042105, 2001.
(Cited on page 75.)

[137] B. A. Chase and J. Geremia, “Single-shot parameter estimation via continu-
ous quantum measurement,” Physical Review A, vol. 79, no. 2, p. 022314, 2009.
(Cited on page 75.)

[138] Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen, “Revisiting
Hardy’s paradox: counterfactual statements, real measurements, entanglement
and weak values,” Physics Letters A, vol. 301, no. 3, pp. 130–138, 2002. (Cited
on page 81.)

[139] N. Ritchie, J. Story, and R. G. Hulet, “Realization of a measurement of a weak
value,” Physical review letters, vol. 66, no. 9, p. 1107, 1991. (Cited on page 81.)

[140] N. Williams and A. Jordan, “Weak Values and the Leggett-Garg Inequality in
Solid-State Qubits,” Physical Review Letters, vol. 100, p. 026804, Jan. 2008.
(Cited on pages 81 and 94.)

[141] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and
A. N. Korotkov, “Experimental violation of a Bell/’s inequality in time with
weak measurement,” Nature Physics, vol. 6, no. 6, pp. 442–447, 2010. (Cited on
pages 81, 94, and 141.)

[142] J. Groen, D. Riste, L. Tornberg, J. Cramer, P. C. De Groot, T. Picot, G. Johans-
son, and L. DiCarlo, “Partial-measurement backaction and nonclassical weak
values in a superconducting circuit,” Physical review letters, vol. 111, no. 9,
p. 090506, 2013. (Cited on pages 81 and 94.)

[143] T. White, J. Mutus, J. Dressel, J. Kelly, R. Barends, E. Jeffrey, D. Sank,
A. Megrant, B. CampBell, Y. Chen, et al., “Violating the Bell-Leggett-Garg
inequality with weak measurement of an entangled state,” arXiv preprint
arXiv:1504.02707, 2015. (Cited on page 81.)

206



[144] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Collo-
quium: Understanding quantum weak values: Basics and applications,” Reviews
of Modern Physics, vol. 86, no. 1, p. 307, 2014. (Cited on pages 81 and 88.)

[145] O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak
measurements,” Science, vol. 319, no. 5864, pp. 787–790, 2008. (Cited on pages 81
and 95.)

[146] P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam
deflection measurement via interferometric weak value amplification,” Physical
review letters, vol. 102, no. 17, p. 173601, 2009. (Cited on pages 81 and 95.)

[147] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct
measurement of the quantum wavefunction,” Nature, vol. 474, no. 7350, pp. 188–
191, 2011. (Cited on pages 81 and 94.)

[148] Y. Aharonov and L. Vaidman, “The two-state vector formalism of qauntum me-
chanics: an updated review,” arXiv preprint quant-ph/0105101, 2001. (Cited on
page 81.)

[149] G. C. Knee, G. A. D. Briggs, S. C. Benjamin, and E. M. Gauger, “Quantum sen-
sors based on weak-value amplification cannot overcome decoherence,” Physical
Review A, vol. 87, no. 1, p. 012115, 2013. (Cited on page 81.)

[150] C. Ferrie and J. Combes, “Weak value amplification is suboptimal for estimation
and detection,” Physical review letters, vol. 112, no. 4, p. 040406, 2014. (Cited
on pages 81 and 95.)

[151] S. Tanaka and N. Yamamoto, “Information amplification via postselection: A
parameter-estimation perspective,” Physical Review A, vol. 88, no. 4, p. 042116,
2013. (Cited on page 81.)

[152] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007. (Cited on page 81.)

[153] A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in
ContinuousTime: the Diffusive Case. Springer Verlag, 2009. (Cited on page 87.)

[154] D. Tan, S. Weber, I. Siddiqi, K. Mølmer, and K. Murch, “Prediction and retro-
diction for a continuously monitored superconducting qubit,” arXiv preprint
arXiv:1409.0510, 2014. (Cited on page 88.)

[155] H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph,
T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for
quantum communication,” Nature Photonics, vol. 8, no. 4, pp. 333–338, 2014.
(Cited on page 95.)

[156] S. Weber, A. Chantasri, J. Dressel, A. Jordan, K. Murch, and I. Siddiqi, “Map-
ping the optimal route between two quantum states,” Nature, vol. 511, no. 7511,
pp. 570–573, 2014. (Cited on page 99.)

207



[157] T. Rybarczyk, S. Gerlich, B. Peaudecerf, M. Penasa, B. Julsgaard, K. Moelmer,
S. Gleyzes, M. Brune, J.-M. Raimond, S. Haroche, et al., “Past quantum
state analysis of the photon number evolution in a cavity,” arXiv preprint
arXiv:1409.0958, 2014. (Cited on page 99.)

[158] A. H. Kiilerich and K. Mølmer, “Estimation of atomic interaction parameters by
photon counting,” Physical Review A, vol. 89, no. 5, p. 052110, 2014. (Cited on
page 100.)

[159] J. P. Pekola, “Towards quantum thermodynamics in electronic circuits,” Nature
Physics, vol. 11, no. 2, pp. 118–123, 2015. (Cited on page 100.)

[160] H. Mabuchi, “Coherent-feedback quantum control with a dynamic compensator,”
Physical Review A, vol. 78, no. 3, p. 032323, 2008. (Cited on page 105.)

[161] P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Physical review letters,
vol. 89, no. 8, p. 080401, 2002. (Cited on page 105.)

[162] S. O. Valenzuela, W. D. Oliver, D. M. Berns, K. K. Berggren, L. S. Levitov, and
T. P. Orlando, “Microwave-induced cooling of a superconducting qubit,” Science,
vol. 314, no. 5805, pp. 1589–1592, 2006. (Cited on pages 111 and 129.)

[163] M. Grajcar, S. Van der Ploeg, A. Izmalkov, E. Il’ichev, H.-G. Meyer, A. Fedorov,
A. Shnirman, and G. Schön, “Sisyphus cooling and amplification by a super-
conducting qubit,” Nature physics, vol. 4, no. 8, pp. 612–616, 2008. (Cited on
pages 111 and 129.)

[164] M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen,
M. Lenander, E. Lucero, A. O’Connell, D. Sank, et al., “Implementing the quan-
tum von Neumann architecture with superconducting circuits,” Science, vol. 334,
no. 6052, pp. 61–65, 2011. (Cited on pages 111 and 129.)

[165] J. Johnson, C. Macklin, D. Slichter, R. Vijay, E. Weingarten, J. Clarke, and
I. Siddiqi, “Heralded state preparation in a superconducting qubit,” Physical
review letters, vol. 109, no. 5, p. 050506, 2012. (Cited on pages 111 and 129.)

[166] D. Riste, J. Van Leeuwen, H.-S. Ku, K. Lehnert, and L. DiCarlo, “Initialization by
measurement of a superconducting quantum bit circuit,” Physical review letters,
vol. 109, no. 5, p. 050507, 2012. (Cited on pages 111 and 129.)

[167] A. N. Jordan and M. Büttiker, “Quantum nondemolition measurement of a kicked
qubit,” Physical Review B, vol. 71, no. 12, p. 125333, 2005. (Cited on page 114.)

[168] A. Palacios-laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N.
Korotkov, “Experimental violation of a Bell s inequality in time with weak mea-
surement,” Nature Physics, vol. 6, no. 6, pp. 442–447, 2010. (Cited on page 114.)

[169] M. Mirrahimi, B. Huard, M. Devoret, et al., “Strong measurement and quantum
feedback for persistent rabi oscillations in circuit QED experiments.,” in CDC,
pp. 3646–3651, 2012. (Cited on page 114.)

208



[170] H. M. Wiseman, S. Mancini, and J. Wang, “Bayesian feedback versus markovian
feedback in a two-level atom,” Physical Review A, vol. 66, no. 1, p. 013807, 2002.
(Cited on pages 118 and 127.)

[171] H. Hofmann, G. Mahler, and O. Hess, “Quantum control of atomic systems by
homodyne detection and feedback,” Physical Review A, vol. 57, no. 6, pp. 4877–
4888, 1998. (Cited on page 118.)

[172] J. Wang and H. M. Wiseman, “Feedback-stabilization of an arbitrary pure state
of a two-level atom,” Physical Review A, vol. 64, no. 6, p. 063810, 2001. (Cited
on page 118.)

[173] A. Blais, J. Gambetta, A. Wallraff, D. Schuster, S. Girvin, M. Devoret, and
R. Schoelkopf, “Quantum-information processing with circuit quantum electrody-
namics,” Physical Review A, vol. 75, no. 3, p. 032329, 2007. (Cited on page 125.)

[174] S. Lloyd, “Coherent quantum feedback,” Physical Review A, vol. 62, no. 2,
p. 022108, 2000. (Cited on page 129.)

[175] H. Nyquist, “Thermal agitation of electric charge in conductors,” Physical review,
vol. 32, no. 1, pp. 110–113, 1928. (Cited on page 131.)

[176] L. Szilard, “Über die entropieverminderung in einem thermodynamischen sys-
tem bei eingriffen intelligenter wesen,” Zeitschrift für Physik, vol. 53, no. 11-12,
pp. 840–856, 1929. (Cited on page 137.)

[177] R. Hamerly and H. Mabuchi, “Advantages of coherent feedback for cooling quan-
tum oscillators,” Physical review letters, vol. 109, no. 17, p. 173602, 2012. (Cited
on page 140.)

[178] Z. Leghtas, U. Vool, S. Shankar, M. Hatridge, S. M. Girvin, M. H. Devoret,
and M. Mirrahimi, “Stabilizing a Bell state of two superconducting qubits by
dissipation engineering,” Physical Review A, vol. 88, no. 2, p. 023849, 2013. (Cited
on pages 140 and 161.)

[179] S. Shankar, M. Hatridge, Z. Leghtas, K. Sliwa, A. Narla, U. Vool, S. M. Girvin,
L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entan-
glement between two superconducting quantum bits,” Nature, vol. 504, no. 7480,
pp. 419–422, 2013. (Cited on pages 140 and 161.)

[180] Y. Lin, J. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. Sørensen, D. Leibfried,
and D. Wineland, “Dissipative production of a maximally entangled steady state
of two quantum bits,” Nature, vol. 504, no. 7480, pp. 415–418, 2013. (Cited on
pages 140 and 161.)

[181] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K. M. Sliwa,
A. Narla, S. Shankar, M. J. Hatridge, et al., “Confining the state of light to a quan-
tum manifold by engineered two-photon loss,” arXiv preprint arXiv:1412.4633,
2014. (Cited on pages 140 and 142.)

209



[182] R. Ruskov and A. N. Korotkov, “Entanglement of solid-state qubits by measure-
ment,” Physical Review B, vol. 67, no. 24, p. 241305, 2003. (Cited on pages 140
and 161.)

[183] N. Roch, M. E. Schwartz, F. Motzoi, C. Macklin, R. Vijay, A. W. Eddins,
A. N. Korotkov, K. B. Whaley, M. Sarovar, and I. Siddiqi, “Observation of
measurement-induced entanglement and quantum trajectories of remote super-
conducting qubits,” Physical review letters, vol. 112, no. 17, p. 170501, 2014.
(Cited on pages 140 and 161.)

[184] D. Riste, M. Dukalski, C. Watson, G. de Lange, M. Tiggelman, Y. M. Blanter,
K. Lehnert, R. Schouten, and L. DiCarlo, “Deterministic entanglement of su-
perconducting qubits by parity measurement and feedback,” Nature, vol. 502,
no. 7471, pp. 350–354, 2013. (Cited on pages 140 and 161.)

[185] W. M. Itano, D. J. Heinzen, J. Bollinger, and D. Wineland, “Quantum Zeno
effect,” Physical Review A, vol. 41, no. 5, p. 2295, 1990. (Cited on page 141.)

[186] C. Balzer, R. Huesmann, W. Neuhauser, and P. Toschek, “The quantum Zeno
effect–evolution of an atom impeded by measurement,” Optics Communications,
vol. 180, no. 1, pp. 115–120, 2000. (Cited on page 141.)

[187] J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J.-M. Raimond,
and S. Haroche, “Freezing coherent field growth in a cavity by the quantum
Zeno effect,” Physical review letters, vol. 101, no. 18, p. 180402, 2008. (Cited on
page 141.)

[188] J. Gambetta, A. Blais, D. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. De-
voret, S. Girvin, and R. Schoelkopf, “Qubit-photon interactions in a cavity:
Measurement-induced dephasing and number splitting,” Physical Review A,
vol. 74, p. 042318, Oct. 2006. (Cited on page 146.)

[189] F. Motzoi, J. Gambetta, P. Rebentrost, and F. K. Wilhelm, “Simple pulses
for elimination of leakage in weakly nonlinear qubits,” Physical review letters,
vol. 103, no. 11, p. 110501, 2009. (Cited on page 147.)

[190] J. Chow, L. DiCarlo, J. Gambetta, F. Motzoi, L. Frunzio, S. Girvin, and
R. Schoelkopf, “Optimized driving of superconducting artificial atoms for im-
proved single-qubit gates,” Physical Review A, vol. 82, no. 4, p. 040305, 2010.
(Cited on page 147.)

[191] J. Johansson, P. Nation, and F. Nori, “Qutip 2: A python framework for the dy-
namics of open quantum systems,” Computer Physics Communications, vol. 184,
no. 4, pp. 1234–1240, 2013. (Cited on page 153.)

[192] W. P. Schleich, Quantum optics in phase space. John Wiley & Sons, 2011. (Cited
on page 153.)

[193] L. Lutterbach and L. Davidovich, “Method for direct measurement of the wigner
function in cavity QED and ion traps,” Physical review letters, vol. 78, no. 13,
p. 2547, 1997. (Cited on page 153.)

210



[194] P. Bertet, A. Auffeves, P. Maioli, S. Osnaghi, T. Meunier, M. Brune, J.-M. Rai-
mond, and S. Haroche, “Direct measurement of the wigner function of a one-
photon fock state in a cavity,” Physical Review Letters, vol. 89, no. 20, p. 200402,
2002. (Cited on page 153.)

[195] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin,
M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, “Deterministically encoding
quantum information using 100-photon Schrödinger cat states,” Science, vol. 342,
no. 6158, pp. 607–610, 2013. (Cited on pages 153 and 156.)

[196] B. Yurke and D. Stoler, “The dynamic generation of Schrödinger cats and their
detection,” Physica B+ C, vol. 151, no. 1, pp. 298–301, 1988. (Cited on page 160.)

[197] S. Maniscalco, F. Francica, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protect-
ing entanglement via the quantum Zeno effect,” Physical review letters, vol. 100,
no. 9, p. 090503, 2008. (Cited on page 160.)

[198] X.-B. Wang, J. You, and F. Nori, “Quantum entanglement via two-qubit quan-
tum Zeno dynamics,” Physical Review A, vol. 77, no. 6, p. 062339, 2008. (Cited
on page 160.)

[199] Z. Shi, Y. Xia, H. Wu, and J. Song, “One-step preparation of three-particle
Greenberger-Horne-Zeilinger state via quantum Zeno dynamics,” The European
Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol. 66, no. 5,
pp. 1–6, 2012. (Cited on page 160.)

[200] X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum
Zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics,
vol. 42, no. 16, p. 165507, 2009. (Cited on page 160.)

[201] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang,
and M. H. Devoret, “Dynamically protected cat-qubits: a new paradigm for uni-
versal quantum computation,” New Journal of Physics, vol. 16, no. 4, p. 045014,
2014. (Cited on page 161.)

[202] M. Reed, L. DiCarlo, S. Nigg, L. Sun, L. Frunzio, S. Girvin, and R. Schoelkopf,
“Realization of three-qubit quantum error correction with superconducting cir-
cuits,” Nature, vol. 482, no. 7385, pp. 382–385, 2012. (Cited on page 161.)

[203] L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K. Sliwa, A. Narla,
M. Hatridge, S. Shankar, J. Blumoff, et al., “Tracking photon jumps with
repeated quantum non-demolition parity measurements,” Nature, vol. 511,
no. 7510, pp. 444–448, 2014. (Cited on page 161.)

[204] D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and
L. DiCarlo, “Detecting bit-flip errors in a logical qubit using stabilizer measure-
ments,” arXiv preprint arXiv:1411.5542, 2014. (Cited on page 161.)

211



[205] J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey, T. White, D. Sank,
J. Mutus, B. CampBell, Y. Chen, et al., “State preservation by repetitive error de-
tection in a superconducting quantum circuit,” arXiv preprint arXiv:1411.7403,
2014. (Cited on page 161.)

[206] R. Barends, J. Wenner, M. Lenander, Y. Chen, R. Bialczak, J. Kelly, E. Lucero,
P. O’Malley, M. Mariantoni, D. Sank, et al., “Minimizing quasiparticle generation
from stray infrared light in superconducting quantum circuits,” Applied Physics
Letters, vol. 99, no. 11, p. 113507, 2011. (Cited on page 170.)

[207] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi,
M. H. Devoret, F. Mallet, and B. Huard, “Persistent control of a superconducting
qubit by stroboscopic measurement feedback,” Physical Review X, vol. 3, no. 2,
p. 021008, 2013. (Cited on page 172.)

212


	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Monitored qubit
	1.1.1 Qubit coupled to an environment
	1.1.2 Prediction from past measurements
	1.1.3 Influence of post-selection 

	1.2 Quantum feedback
	1.2.1 Measurement-based feedback and reservoir engineering
	1.2.2 Quantum Zeno Dynamics


	Open System and Quantum Trajectories
	2 Open Qubit
	2.1 Quantum Bit of Information : the simplest quantum system
	2.1.1 TLS representation
	2.1.2 Entropy
	2.1.3 Lindblad Master Equation
	2.1.3.1 Quantum operations
	2.1.3.2 Continuous time evolution


	2.2 3D transmon
	2.2.1 Resonant cavity and LC resonator
	2.2.2 3D cavity coupled to transmission lines
	2.2.2.1 Lossy resonators
	2.2.2.2 Master equation for a cavity mode
	2.2.2.3 Choosing the coupling to the lines

	2.2.3 Transmon qubit in 3D cavity
	2.2.3.1 Transmon regime
	2.2.3.2 Circuit Black Box Quantization
	2.2.3.3 Designing the experiment: BBQ VS two-mode model

	2.2.4 AC Stark shift and measurement induced dephasing
	2.2.5 Other decoherence channels and thermal effects


	3 Measurement and quantum trajectories
	3.1 Stochastic Master Equations 
	3.1.1 Measurement efficiency - discussion based on the Stern and Gerlach experiment
	3.1.2 SME with a jump detector

	3.2 Dispersive measurement
	3.2.1 Linear detection
	3.2.2 Homodyne detection
	3.2.3 Heterodyne measurement
	3.2.3.1 Single-shot Non Demolition readout
	3.2.3.2 Quantum jumps


	3.3 High-power readout
	3.4 Monitoring the fluorescence
	3.4.1 Mean fluorescence signal
	3.4.2 Quantum trajectories for fluorescence
	3.4.2.1 Integrable quantity for measurement records
	3.4.2.2 From measurement record to trajectory
	3.4.2.3 Particle filtering for the estimation of 
	3.4.2.4 Trajectories statistics



	4 Post-selected quantum trajectories
	4.1 Past quantum state
	4.1.1 Discrete time version
	4.1.2 Continuous time version

	4.2 Weak values of the fluorescence signal
	4.2.1 Master equation
	4.2.2 Post-selected fluorescence traces
	4.2.3 Pre and post-selected fluorescence traces
	4.2.4 Time asymmetry for a dissipative system

	4.3 Conclusion


	Quantum Control
	5 Measurement based feedback
	5.1 Stroboscopic digital feedback using dispersive measurement
	5.1.1 Feedback loop
	5.1.2 Qubit reset
	5.1.3 Rabi oscillations
	5.1.4 Ramsey oscillations

	5.2 Continuous analog feedback using the fluorescence signal
	5.2.1 Effective master equation in presence of feedback
	5.2.1.1 SISO Markovian feedback with diffusive measurements
	5.2.1.2 MIMO Markovian feedback and arbitrary state stabilization

	5.2.2 Experimental implementation
	5.2.2.1 Stabilization of |e"526930B 
	5.2.2.2 Arbitrary state stabilization



	6 Reservoir engineering
	6.1 Double Drive Reset of Population
	6.1.1 Principle and limits
	6.1.2 Heating up the transmon
	6.1.3 Cooling performances

	6.2 Autonomous feedback versus MBF
	6.2.1 Swap reset
	6.2.2 Engineering dissipation with continuous feedback


	7 Quantum Zeno Dynamics
	7.1 Zeno dynamics of a microwave mode
	7.1.1 Zeno dynamics by repeated measurements
	7.1.2 Zeno dynamics by strong coherent driving
	7.1.2.1 Phase randomization
	7.1.2.2 Zeno dynamics using an ancillary system


	7.2 Oscillations in levels occupation for a driven N-level system
	7.2.1 Fock states occupation for a coherent field
	7.2.2 Fock state occupation for a field under QZD

	7.3 Wigner tomography
	7.3.1 Photon parity measurement
	7.3.2 Wigner function of a field under QZD
	7.3.3 A tailorable infinite Hilbert space?

	7.4 Conclusion


	Appendix
	A Experimental techniques
	A.1 Qubits fabrication and characterization
	A.1.1 Nanofabrication
	A.1.2 Wafer probing
	A.1.3 Cavity machining and surface treatment

	A.2 Wiring and cryogenics
	A.2.1 Wiring the dilution refrigerator
	A.2.2 Room temperature pulse generation and measurement setup

	A.3 Electromagnetic simulations

	B Quantum circuits
	B.1 Capacitively coupled transmission line
	B.2 Input output formalism

	C Stochastic Master Equations for dispersive measurement
	C.1 Jump operators for detection with a photocounter
	C.2 Derivation of the SME for homodyne detection


	Bibliography
	Bibliography


