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Introduction

Le processus de formation des prix est au coeur de tout modèles de mathématiques financières. D’abord approximé
par un mouvement brownien (cf. [Karatzas & Shreve, 1998]), puis en y intégrant des sauts (voir [Shiryaev, 1999]) tant
qu’il s’agissait d’échelles de temps longues, la prise en compte des volumes échangés est arrivée par la suite :

– Dans un cadre économétrique (voir par exemple [Tauchen & Pitts, 1983]) pour tenter de mieux expliquer la
dynamique des prix

– dans le cadre d’études théoriques d’équilibres généraux où le“jeu d’enchère”est modélisé (comme dans [Kyle, 1985],
[Ho & Stoll, 1983] ou [Glosten & Milgrom, 1985]).

La régulation poussant de plus en plus d’échanges vers des marchés électroniques, de très grosses bases de données
sont aujourd’hui disponibles. Elles contiennent non seulement les transactions e↵ectives, mais aussi les déclarations
d’intérêt de tous les participants. Ceci à ouvert la porte à des études empiriques (comme [Lillo et al. , 2003]) qui
fournissent des pistes intéressantes à de nouvelles familles de modèles (voir par exemple [Bacry & Muzy, 2013]).

Bien modéliser le processus de formation des prix permet de guider les régulateurs, qui tentent de favoriser les
échanges sur des marchés électroniques (car il sont plus facilement traçables). Il permet aussi de mettre au point
des techniques de trading optimal, qui, utilisées par les investisseurs et intermédiaires financiers, vont minimiser la
perturbation des prix due à l’intensité des échanges. Nous verrons Section 2 que cette dégradation naturelle des prix
(que l’on appelle communément le market impact) peut être modélisée, et la Section 1 montrera comment utiliser ces
modèles pour choisir un profil de trading qui minimise cette dégradation, ce qui profite simultanément à l’utilisateur
du profil et à l’e�cience et la valeur des prix. L’apport des mathématiques appliquées à cette direction de recherche a
par exemple été discutée lors d’un symposium de l’ESAIM à Seignosse en 2013 [Ho↵mann et al. , 2013].

Les travaux présentés ici couvrent l’essentiel des thèmes abordés ces quinze dernières années par les mathématiques
appliquées autour du processus de formation des prix :

– le trading optimal, qui considère un acteur qui doit acheter ou vendre une large quantité d’actions (cf. [Gökay et al. , 2011]
pour un survey)

– la microstructure, qui se focalise sur le processus de formation des prix (i.e. la dynamique qui émerge de la
confrontation des intérêts acheteurs et vendeurs [Lehalle et al. , 2013])

– l’apprentissage en ligne de paramètres sensés capturer des caractéristiques fugaces de la liquidité afin de les
prendre en compte dans un processus de trading, ou de surveillance.

Ce mémoire se compose donc de trois parties, chacune détaillant un aspect de ces trois grands thèmes.

Chaque partie est composée d’une introduction en français, qui expose la problématique qui va être traitée en
termes simples. Elle est suivie à chaque fois de sections en anglais, qui reprennent les éléments essentiels d’articles
publiés. Ces sections ont en préambule un court propos introductif en anglais, qui positionne la problématique du ou
des articles en question.
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1 TRADING OPTIMAL

1 Trading Optimal

Le“Trading Optimal”est un champ qui a débuté avec la publication de [Bertsimas & Lo, 1998] et [Almgren & Chriss, 2000].
Il s’agissait à l’époque de développer un point de vue sur l’achat ou la vente de grande quantité d’actions en peu de
temps, de façon analogue à ce que Markowitz avait fait pour les portefeuilles. Markowitz [Markowitz, 1952] avait mis en
place un cadre mathématique basé sur une optimisation moyenne-variance où la moyenne est tirée par les rendements
attendus des actifs du portefeuille et la variance provient d’une estimation historique de leurs corrélations.

Dans le trading optimal, le rendement est remplacé par le “Market Impact” (dégradation des rendement due
à la taille de l’achat ou la vente –cf. Section 2.3–) et les corrélations entre les composantes d’un portefeuille par
l’autocorrélation du prix au cours de la journée. En e↵et la bonne analogie avec Markowitz consiste à considérer
une allocation non pas au sein des composantes d’un portefeuille, mais tout au long de la journée. De façon un peu
approximative pour l’instant, on peut écrire :
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�

�

�

�

�

max E (
P

k wkrk)� �V (
P

k wkrk)
w

1

, . . . , wK
P
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| {z }

Portfolio Allocation

�!
�

�

�

�

�

�

max �E (
P

t ⇢t(St +�St(⇢tQ)))
⇢
1

, . . . , ⇢T ��V (
P

t(St +�St(⇢tQ)))
P

t ⇢t = 1
| {z }

Mean-Variance Optimal Trading

,

où on noterait
– pour un portefeuille : rk les rendements de la kème ligne du portefeuille et wk la proportion de l’investissement
dans cette ligne ;

– pour le trading (i.e. l’achat de Q actions d’un instrument donné) : St le prix en t, �S(q) le market impact (ici
additif) provoqué par un achat de q actions, et ⇢t la fraction de l’achat e↵ectuée en t.

Ce framework, initialement proposé par Almgren et Chriss (là où Bertsimas et Lo se focalisaient surtout sur le market
impact et l’aspect multi-lignes), est encore aujourd’hui utilisé par de nombreuses institutions financières : banques
d’investissement, fonds, ou courtiers.

Extension du trading en moyenne-variance. Le recours encore très vivace à ce cadre de modélisation par
l’industrie justifie les propositions universitaires qui le ra�nent. Comme on va le voir dans la Section 1.1.1, il est en
e↵et possible d’éclairer l’e↵et d’une minimisation moyenne-variance sur un portefeuille. Il s’agit alors de comprendre
comment la combinaison du market impact et des correlations permet de trouver des trajectoires de trading (i.e. la
distribution des (⇢t)t, qui trace un profil temporel, cf. Figure 5) jointes moins coûteuses que les rythmes individuels
optimaux.

Par ailleurs, nous verrons en Section 2.3 que le market impact (noté un peu plus haut symboliquement �S(q))
est une fonction de la volatilité intraday, du volume habituellement échangé sur le titre, voire de la fourchette o↵re-
demande (i.e. Bid-Ask spread en anglais). Ces grandeurs ne sont jamais connues à l’avance, il s’agit donc a minima de
variables aléatoires (obtenues grâce à des estimations). Il est donc tout à fait à propos de regarder (cf. Section 1.1.2)
ce qui se passe lorsqu’on les considère comme telles dans l’expression de l’espérance et de la variance.

Les utilisateurs du trading optimal en moyenne-variance ont en outre parfois besoin de prendre en compte certains
a priori sur la dynamique des prix. Cela peut par exemple se produire s’ils implémentent une stratégie de retour à
la moyenne (typiquement utilisée en arbitrage statistique). Ou bien s’ils pensent que la dynamique des prix à court
terme est sous di↵usive (ce vers quoi certaines études empiriques tendent, cf. [Huang et al. , 2013] et sa bibliographie).
La Section 1.1.3 ouvre des pistes dans ces directions.

En dernier lieu, les praticiens mettent souvent des bornes à la vitesse de leur trading. En e↵et, même s’ils utilisent
des modèles de market impact qui rendent compte de la relation entre l’intensité de trading (i.e. la vitesse fois la
quantité ; ⇢TQ dans l’écriture précédente) et la dégradation du prix, ils préfèrent, dans le cadre d’un contrôle de risque
rigoureux, s’astreindre à ne pas participer à plus de q% des volumes échangés (par exemple toutes les 5 minutes
glissantes). Au lieu de borner les trajectoires de trading optimales par qVt (où Vt seraient les volumes échangés de
t� 5min à t), les résultats de la Section 1.1.4 leur permettent d’obtenir des trajectoires optimales sous contrainte.

Recours au Contrôle Optimal Stochastique. Lorsqu’il a s’agit d’étendre le cadre moyenne-variance, les choix
furent nombreux. Un peu comme si on voulait étendre la régression linéaire : on peut uniquement modifier la métrique
(et récemment aboutir à des régressions Ridge ou LASSO [Wang et al. , 2007]), ou bien se concentrer sur l’orthogo-
nalisation des variables explicatives (et par exemple proposer la régression Partial Least Square), ou même travailler
sur des combinaisons non linéaires de ces variables (ce qui mène aux régressions du type Support Vector Machine
[Vapnik, 1998]), etc.

En ce qui concerne le trading optimal, les chemins possibles sont :
– changer le critère à minimiser de telle sorte qu’il soit nécessaire de recourir au principe de programmation
dynamique pour obtenir des résultats,

– ne pas se restreindre à un découpage du temps uniforme, mais le soumettre lui aussi à l’optimisation,
– modéliser plus finement le processus de trading (par exemple en prenant en compte les interactions avec le carnet
d’ordres).
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1 TRADING OPTIMAL

Comme la Section 1.1.3 le montre, il est possible de prendre en compte d’autres versions réalistes du critère en
restant dans un cadre proche d’une moyenne-variance. En revanche la question de la discrétisation temporelle se pose
clairement : rythmer le trading de tous les instruments que l’on achète ou vend par multiples de 5, 10 ou 15 minute
n’a a priori pas de sens. Il faudrait en e↵et a minima s’adapter à la liquidité de chaque instrument. Qui plus est, on
peut se demander s’il est opportun d’acheter ou vendre continument tout le long de la période de trading. Pourquoi
ne pas faire de pause ?

On peut écrire encore un peu approximativement, en restant dans le cadre d’un contrôle à temps discret :
�
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Stochastic Optimal Trading

,

où dans l’expression de droite, X est la variable d’état, ⇢ reste le contrôle, et V (t, x, ⇢) est une fonction de coût (qui
doit inclure le market impact). G est un coût terminal en T , souvent le coût de liquidation de la position restante.
La dynamique de X n’est pas bien spécifiée puisque on a simplement écrit Xt+1

|x, ⇢ pour “la variable aléatoire Xt+1

sachant que Xt = x et que le contrôle ⇢ est appliqué entre t et t+ 1”.
On voit immédiatement que le premier intérêt de ce framework est d’introduire une dépendence en x du contrôle

(i.e. en remplaçant ⇢t à gauche par ⇢(t, x) à droite).

Le modèle de la Section 1.2 propose un cadre pour le trading optimal avec pause. Pour se faire elle considère un
cadre de contrôle impulsionnel qui consiste à déclencher à di↵érents temps d’arrêt ⌧

1

, . . . , ⌧N des robots de trading. Le
ième robot va acheter pendant une durée �i une quantité "i. Ces couples de paramètres sont eux soumis à l’optimisation.
Chaque robot va provoquer un market impact qui va a↵ecter son e�cacité et celle des suivants (conformément à une
dynamique markovienne arbitraire). Chacun de ces robots peut par ailleurs être modélisé de façon indépendante, par
example conformément à ce que la Section 3.1 propose.

Cela étant fait, la puissance de la programmation dynamique peut être mise au service du trading optimal pour
déterminer non pas un rythme de trading optimal (i.e. le nombre d’actions à acheter ou vendre à chaque instant), mais
pour choisir comment acheter ou vendre. Pour cela il faut bien comprendre le processus d’achat ou de vente sur les
marchés financier, qui est détaillé dans la Section 2 (pour plus de détail cf. [Lehalle et al. , 2013]). A ce stade disons
simplement qu’il s’agit d’un processus d’enchère double en temps continu : les participants envoient des messages avec
un sens (achat ou vente), prix et une quantité. Tous les messages participent aux enchères et permettent de fixer un
prix walrasien : certains obtiennent des transactions (ceux qui o↵rent les prix les plus bas ou demande les prix les plus
hauts), d’autres n’ont plus qu’à tenter leur chance à l’instant (infinitésimal) d’après. Sous l’hypothèse que l’on envoie
des messages avec toujours la même quantité, le contrôle est alors uniquement constitué des di↵érents prix proposés
dans ce cadre. Le rythme de trading est une conséquence des prix choisis : si un acheteur choisit des prix très bas, le
rythme sera lent ; si il choisit des prix très hauts, le rythme sera rapide. Comment acheter ou vendre revient alors à
choisir les prix auxquels on envoie des messages.

La Section 1.3.1 expose un cadre de contrôle par les prix pour le market making (i.e. tenue de marché en français)
optimal : le participant envoie simultanément des messages d’achat et de vente (à des prix di↵érent bien entendu).
Ce type de participant a un rôle très important : dans un processus d’enchère peu liquide, ce genre de comportement
permet à des acheteurs et vendeurs mal synchronisés (au sens ou par exemple tous les vendeurs arrivent d’abord, puis
tous les acheteurs quelques heures plus tard) les teneurs de marché achètent aux premiers et revendent aux seconds.
Ils maintiennent ainsi les prix dans une fourchette o↵re-demande optimale, réalisant un équilibre entre le risque de
porter la position (quelques heures) et le gain apporté par l’achat-vente.

Le même point de vue peut être adopté pour un acheteur ou un vendeur, qui serait ainsi comparable à un teneur
de marché qui n’aurait pas la possibilité d’envoyer des messages d’achat et commencerait la journée avec un inventaire
important. Quelle est le processus des prix optimaux à proposer tout au long de la journée ? Et le rythme de trading
finalement obtenu est-il comparable à ce que préconise une stratégie de type moyenne-variance ? La Section 1.3.2
répond à cette question.
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1.1 Mean-Variance Optimal Trading

The Almgren-Chriss framework allows an asset manager to schedule optimally the execution of a large trade, under
a mean variance criterion taking into account the market impact and the volatility risk.

This framework is largely used in practice, justifying some ellaborations and fine tuning. The contributions presented
here cover

– a portfolio version of this framework, implementing a compensation of the market impact on some components
of the portfolio by slowing down their execution when the covariance reduces the market risk on a given market
factor. The e↵ect of this compensation is studied.

– the understanding of the di↵erence between
– plugging values of the average volatility and the average traded volume in the final reccurence equation
– considering them as estimators (with their own expectation and variance)

– the modification of the criterion to take the mean reversion of intraday prices into account (following and somehow
generalizing the viewpoint of [Gatheral et al. , 2012])

– taking into account risk bounds ; i.e. a maximum trading rate (preventing to impact too much the price formation
process). This put some emphasis on the stopping time of an Implementation Shortfall as designed by Almgren
and Chriss in [Almgren & Chriss, 2000]. It also put emphasis on the starting time of a Target Close, that had
never been formalized before the work presented in Section 1.1.4, despite the associated criterion is widely used
by practitioners.

This works does not ignore the interesting literature expanding the seminal work of Almgren-Chriss and Bertsimas-
Lo, like the bridges with stochastic control established by Schied [Schied & Schöneborn, 2009], or the extension to a
dynamic version of market impact (like in [Obizhaeva & Wang, 2005, Alfonsi & Schied, 2010, Graewe et al. , 2013]). It
is worthwhile to note this last trend of research produces“U-shaped”trading curves, essentially because of the resiliency
of the market model they use when the criterion is no more computed (i.e. at the last trade of the algorithm). The
work presented here never goes into this direction for practical reasons : the authors wanted to not produce optimal
strategies detrimental to the price formation process.

Recent work like [Alfonsi & Blanc, 2014] propose very interesting continuation of the Almgren-Chriss framework,
using Hawkes processes to model the background noise in place of the “usual”Brownian ones. Introducing hedring and
splitting behaviour in optimal trading is for sure a very realistic proposal.

1.1.1 Joint Mean-Variance Optimization (Balanced Portfolio)

This Section has been published as a part of Rigorous Strategic Trading : Balanced Portfolio and
Mean-Reversion (2009 The Journal of Trading 4, 40–46) [Lehalle, 2009]

Once an asset manager or a proprietary trader decides to buy or sell a reasonably large portfolio with given weights,
it is now well known that the micro structure scale has to be taken into account during the process of buying or selling
the shares on the markets. The reference paper presenting the optimal way to build a multi-dimensional trading curve
for such a portfolio ([Almgren & Chriss, 2000]) does not constrain the balance between the lines to be controlled during
the trading process. This section deals with this constraint and analyses the results obtained.

The usual formalism is to take a discretized K-dimensional correlated Bachelier process for the di↵usion of the “fair

price” : S(k)
n+1

= S
(k)
n + ⇠

(k)
n+1

(where ⇠n follows an i.i.d. K-dimensional Gaussian distribution with covariance matrix
⌃n supporting the natural filtration (Fn)n used throughout this paper). The time discretization is taken as uniformly
sampled (the time interval between any tn and tn+1

is a constant equal to �t) ; but this hypothesis can be relaxed
to any stopping time adapted to (Fn)n (with an impact on the expression of the covariances ⌃n). The “execution

cost” for the buy (or the sell) of v shares of the kth line of the portfolio during the nth time interval is ⌘(k)n (v). This
execution cost is usually called “temporary Market Impact”. In this paper, only temporary execution costs will be
considered, mainly for notational simplifications : any permanent component can be added to execution costs without
any structural change to the equations as long as it is linear.

Thus the paid price to buy v shares of the kth line of the portfolio between n �t and (n+1)�t is v (S(k)
n + ⌘

(k)
n (v)).

Finally, the wealth needed to buy a portfolio the kth component of which is a buy of "k ⇡kv⇤ ("k = +1 for long
lines and �1 for short ones) shares is :

W =
K
X

k=1

N
X

n=1

"k v
(n)
k

⇣

S(k)
n + "k ⌘

(k)
n (v(k)n )

⌘

where
PN

n=1

v
(k)
n = ⇡kv

⇤ for any k. For notational convenience a long-only portfolio ("k = +1 for any k) will be

considered. The optimal values for the v
(k)
n are obtained through the minimization of a �-combination of the mean

and the variance of W :
J� = E(W ) + �V(W )

With the change of variable ⇥(k, n) = PN
`=n v

(k)
` (i.e. the remaining quantity of line k to buy at n) and a linear

assumption for ⌘(k)n (v) = ⌘k�
(k)
n v/V

(k)
n (where ⌘k is a parameter for the kth line, �(k)

n and V
(k)
n its volatility and the
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usual traded volume at time n), we have (xn is the vectorial notation for (⇥(1, n), . . . ,⇥(K,n))) :

J� =
N
X

n=1

 

�x0n⌃nxn +
K
X

k=1

⌘k
�
(k)
n

V
(k)
n

(⇥(k, n)�⇥(k, n+ 1))2
!

The minimization of J� under terminal constraints ⇥(k, 1) = ⇡kv
⇤ and ⇥(k,N+1) = 0 for any k is solved by cancelling

its gradient. This leads to the following K-dimensional recurrence equation (Dn is the K ⇥K diagonal matrix the kth

element of which is ⌘k �
(k)
n /V

(k)
n ) :

xn+1

= (1 + �D�1

n ⌃n +D�1

n Dn�1

)xn �D�1

n Dn�1

xn�1

(1)

that is a rewriting of the classical equation (31) of [Almgren & Chriss, 2000] under the notational simplifications of
this paper.

Recurrence equation for a balanced portfolio. To project equation (9) on a balancing constraint it is su�cient

to write ⇡k ṽn (where ṽn is a scalar) instead of v(k)n . This ensures control of the balance of the portfolio at a �t time
scale, and translates the original K ⇥N dimensional problem into a N dimensional one.

The corresponding recurrence equation is scalar :

x̃n+1

=

✓

1 + �
⇡0⌃n⇡

D⇡
n

+
D⇡

n�1

D⇡
n

◆

x̃n �
D⇡

n�1

D⇡
n

x̃n�1

(2)

where ⇡ is the vector (⇡
1

, . . . ,⇡K) and D⇡
n =

PK
k=1

⌘k �
(k)
n ⇡2

k/V
(k)
n (i.e. a scalar). The terminal conditions for the

recurrence are x̃
0

= v⇤ and x̃N+1

= 0.

Comparing the influence of execution costs. When execution cost coe�cients (i.e. Market Impact) ⌘k are large
compared to the risk aversion parameter �, the recurrence equation (9) becomes K independent equations such as this
one :

⇥ (k, n+ 1) =

 

1 +
�
(k)
n�1

�
(k)
n

V
(k)
n

V
(k)
n�1

!

⇥ (k, n)� �
(k)
n�1

�
(k)
n

V
(k)
n

V
(k)
n�1

⇥ (k, n� 1) (3)

as the balanced recurrence equation (12) is quite similar replacing the coe�cient a(k)n = �
(k)
n�1

/�
(k)
n · V (k)

n /V
(k)
n�1

by its
⇡2⌘“averaged version” :

An =

 

PK
k=1

⇡2

k⌘k �
(k)
n�1

/V
(k)
n�1

PK
k=1

⇡2

k⌘k

! 

PK
k=1

⇡2

k⌘k �
(k)
n /V

(k)
n

PK
k=1

⇡2

k⌘k

!�1

The first element to note is that the execution costs coe�cients ⌘k no longer appear in the portfolio equation (12).
The parameters that influence the optimal trading curves are ratios of usual volumes and usual volatility. As a conse-
quence, the optimal trading curve will be the same for any asset that has the same intra-day volume and volatility
shapes. If the volatility of an asset is regularly twice that of another asset, they will have the same optimal portfolio
curves.

For the balanced portfolio, all optimal curves will be based on the same profile obtained from an averaged version
of the execution costs. The di↵erence between the two curves (the balanced one, to be used for instance by program
trading algorithms, and the classic portfolio one) is due to the averaging : the values of the weights ⇡k and the

scale parameter ⌘k of the execution costs can lead to very di↵erent An from the same values of a(k)n . A geometrical

interpretation helps to understand the e↵ect of the averaging : plotting yk = �
(k)
n�1

/V
(k)
n�1

on the vertical axis and

xk = �
(k)
n /V

(k)
n on the horizontal one obtains a

(k)
n as the slope to origin (Figure 1). An is the slope to origin of the

barycenter of the (x, y)k associated with the weights (⇡2

k⌘k). The wide spectrum of values that can be taken by An

can be seen in Figure 1.
Figure 2 (left) compares the optimal curves found by the classical method (unbroken lines) and the one found

for the balanced portfolio (dotted lines) on a numerical example. As expected, all the balanced curves have the same
shape ; the di↵erence between the classical curves and their balanced equivalent are plotted in Figure 2 (right).

Measuring the covariance e↵ects. When execution costs do not dominate the market risk (i.e. ⌘ is not far larger
than �), we can study the stylized fact of two identical assets (in terms of usual volatility, market volume and execu-
tion costs) that have a correlation of ⇢. For numerical illustrations all constants will be taken equal to one. The two
remaning variables are the correlation ⇢ between the two lines of the portfolio and their weights ⇡ and 1� ⇡.
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1 TRADING OPTIMAL

Figure 1 – Geometrical interpretation of the ⇡2⌘ averaging : for arbitrary weights and 10 lines, the barycenter to be
used for the balanced portfolio is marked by a star, and the minimum and maximum slopes are the unbroken lines.

Figure 2 – Left : optimal liquidation curves for a classical portfolio (unbroken lines) and the balanced equivalent
(dotted lines). Right : di↵erence between optimal liquidation curves for a classical portfolio and its balanced equivalent.
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Simple algebraic computations on the two recurrence equations lead to this matrix equivalent :
0

B

B

@

⇥(1, n+ 1)
⇥(2, n+ 1)
⇥(1, n)
⇥(2, n)

1

C

C

A

=

2

6

6

4

2 + � ⇢� �1 0
⇢� 2 + � 0 �1
1 0 0 0
0 1 0 0

3

7

7

5

0

B

B

@

⇥(1, n)
⇥(2, n)
⇥(1, n� 1)
⇥(2, n� 1)

1

C

C

A

(4)

for the dynamic of the classical portfolio equation (9), and for the balanced one :

✓

x̃n+1

x̃n

◆

=



2 + �(1 + w⇡⇢) �1
1 0

�

| {z }

F

✓

x̃n

x̃n�1

◆

(5)

where w⇡ = 2⇡(1� ⇡)/(⇡2 + (1� ⇡)2) is a weight depending only on the composition of the portfolio (cf Figure 3,
left).

It is quite easy to solve explicitly those dynamics ; the terminal conditions (all the lines have to be fully executed)
can be inferred to find x̃

1

= �FN
1,2/F

N
1,1v

⇤ (where F is the matrix of equation (15)) and its vectorial equivalent
(⇥(1, 1),⇥(2, 1))0.

To obtain illustrations, � and v⇤ set at one and the weight ⇡ = 25% (dotted line on Figure 3, left).
As a qualitative analysis of recurrence equations (14) and (15), first note that they are the same when the assets

are not correlated (i.e. ⇢ = 0), and that the eigenvalues of F increase with ⇢ : the more the assets are correlated
and the more the algorithm “fears” market risk. As a consequence, a highly correlated portfolio should optimally be
liquidated faster than a diversified one. Figures 3 (right) and 4 (left) show the optimal trajectories for each algorithm
as functions of correlations, and Figure 4 (right) compares the two surfaces.

It can be seen that the surfaces are the same when ⇢ = 0 and the imbalance between the positive and the negative
parts of the surface comes from the e↵ect of w⇡ when ⇡ is not 1/2.

Balanced portfolio vs. classical optimization. This analysis shows that trading algorithms dedicated to a
balanced portfolio can be optimized within the Almgren-Chriss framework following the dynamics of equation (11).
It can be extended to non-linear execution costs and take into account more trading e↵ects (such as the variability of
the main exogeneous variables : usual volumes as in [Lehalle, 2008] or usual volatilities).

The approach presented here uses an algebraic view of the dynamics through equations (14) and (15) that enables
a computational e�ciency to be reached even when no closed form solution exists. The execution cost analysis has
shown that the geometrical interpretation of the execution costs (Figure 1) can be used to understand the way that
the balanced portfolio takes individual costs into account. The correlation analysis has shown on the one hand that the
imbalance between the lines (through the w⇡ coe�cient) influence the averaged trading trajectory, and on the other
hand that a diversified portfolio can be traded slower that a concentrated one (decreasing its overall market impact).

1.1.2 Pluging Estimators in the Almgren-Chriss Framework

This Section has been published as a part of Market Microstructure knowledge needed to control an intra-day
trading process (2013 in : Handbook on Systemic Risk) [Lehalle, 2013]

A now widely used framework to control the overall costs of the liquidation of a portfolio has been proposed by
Almgren and Chriss in the late nineties [Almgren & Chriss, 2000]. Applied to trade a single stock, this framework :

– cut the trading period into an arbitrary number of intervals N of a chosen duration �t,
– models the fair price moves thanks to a Gaussian random walk :

Sn+1

= Sn + �n+1

p
�t ⇠n+1

(6)

– models the temporary market impact ⌘n inside each time bin using a power law of the trading rate (i.e. the ratio
of the traded shares vn by the trader over the market traded volume during the same period Vn) :

⌘(vn) = a n + �n
p
�t

✓

vn
Vn

◆�

(7)

where a,  and � are parameters, and  is the half bid-ask spread ;
– the permanent market impact is taken linear in the participation rate ;
– uses a mean-variance criterion and minimise it to obtain the optimal sequence of shares to buy (or sell) through
time.

It is first important to notice that there is an implicit relationship between the time interval �t and the temporary
market impact function : without changing ⌘ and simply by choosing a di↵erent slicing of time, the cost of trading is
changed. It is in fact not possible to choose (a,, �) and �t independently ; they have to be chosen accordingly to the
decay of the market impact on the stock, provided that most of the impact is kept in a time bin of size �t. Not all the
decay functions are compatible with this view (see [Gatheral & Schied, 2012] for details about available market impact
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1 TRADING OPTIMAL

Figure 3 – Left : weighting to be used for the balanced portfolio dynamic. Right : optimal trajectory for one of the
correlated assets as a function of time and correlation (classical portfolio case).

Figure 4 – Left : optimal trajectory for one of the correlated assets as a function of time and correlation (balanced
portfolio case). Right : comparison of optimal trajectories associated to the classical case and the balanced one.
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1 TRADING OPTIMAL

models and their interactions with trading). Up to now the terms in
p
�t has been ignored. It will also be considered

that the parameters (a,, �) exist at this time scale.
It this not mandatory to see this framework as if it was based on structural model assumptions (i.e. that the

market impact really have this shape, or that the price moves are really Brownian), but as a statistical one. With such
a viewpoint, any practitioner can use the database of its past executed orders and perform an econometric study of its
“trading costs” on any �t interval of time (see [Engle et al. , 2012] for an analysis of this kind on the whole duration
of the order). If a given time scale succeeds into capturing the parameters of a model of trading cost with enough
accuracy, then this model can be used to optimise trading. Formally, the result of such a statistical approach will be
the same as the structural one, as it will be shown later in this paper, it is besides possible to go one step further,
taking into account the statistical properties of the variables (and parameters) or interest.

Going back to the simple case of the liquidation of one stock without any permanent market impact, the value
(which is a random variable) of a buy of v⇤ shares in N bins of size v

1

, v
2

, . . . , vN is (see [Bouchard et al. , 2011] for
a more sophisticated model and more generic utility functions ; since a stylized model is used here to obtain easier
illustrations of phenomena of interest) is :

W (v
1

, v
2

, . . . , vN ) =
N
X

n=1

vn( Sn + ⌘n(vn))

= S
0

v⇤ +
N
X

n=1

�n⇠nxn

| {z }

market move

+

N
X

n=1

a n(xn � xn+1

) + 
�n
V �
n

(xn � xn+1

)�+1

| {z }

market impact

(8)

using the remaining quantity to buy : xn =
P

k�n vk instead of the instantaneous volumes vn. To obtain as much
closed form formula as possible, � will be taken equal to 1 (i.e. linear market impact).

To add a practitioner-oriented flavor to our upcoming optimisation problems, just introduce a set of independent
random variables (An)1nN to model the arbitrage opportunities during time slices. It will reflect the anticipation
that the trader will be able to buy shares at price Sn �An during slice n rather than at price Sn.

Such an e↵ect can be used to inject a statistical arbitrage approach into optimal trading or to take into account
the anticipation of the opportunity to cross orders at mid price in Dark Pools or Broker Crossing Networks (meaning
that the expected trading costs should be smaller during given time slices). Now the cost to buy v⇤ shares is :

W (v) = S
0

v⇤ +
N
X

n=1

�n⇠nxn +
N
X

n=1

(a n �An)vn + 
�n
Vn

v2n (9)

Conditioned expectation optimisation. The expectation of this cost E(W |(Vn,�n, n)1nN ) given the market
state writes :

C
0

= S
0

v⇤ +
N
X

n=1

(a n � EAn)vn + 
�n
Vn

v2n (10)

a simple optimisation under constraint (to ensure
PN

n=1

vn = v⇤) gives :

vn = wn

 

v⇤ +
1



  

EAn �
N
X

`=1

w`EA`

!

� a

 

 n �
N
X

`=1

w` `

!!!

(11)

where wn are weights proportional to the inverse of the market impact factor :

wn =
Vn

�n

 

N
X

`=1

V`

�`

!�1

Simple e↵ects can be deduced from this first stylized result :

1. without any arbitrage opportunity and without any bid-ask cost (i.e. EAn = 0 for any n and a = 0), the optimal
trading rate is proportional to the inverse of the market impact coe�cient : vn = wn · v⇤. Moreover, when the
market impact has no intra-day seasonality, wn = 1/N implying that the optimal trading rate is linear.

2. following formula (11) it can be seen that : the largest the expected arbitrage gain (or the lower the spread cost)
on a slice compared to the market-impact-weighted expected arbitrage gain (or spread cost) over the trading full
interval, the largest quantity to trade during this slice. More quantitatively :

@vn
@EAn

=
wn

2
(1� wn) > 0,

@vn
@ n

= � a

2
(1� wn)wn < 0
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This result gives the adequate weight to apply to the expected arbitrage gain to translate it in an adequate
trading rate to take profit on arbitrage opportunities on average. Just note that usually the expected arbitrage
gains increase with market volatility, the wn-weighting is consequently of interest to balance this e↵ect optimally.

Conditioned mean-variance optimisation. Going back to a mean-variance optimisation of the cost to buy pro-
gressively v⇤ shares, the criteria to minimise (using a risk aversion parameter �) writes :

C� = E(W |(Vn,�n, n)1nN ) + �V(W |(Vn,�n, n)1nN ) (12)

= S
0

v⇤ +
N
X

n=1

(a n � EAn)X(n) +
✓


�n
Vn

+ �VAn

◆

X(n)2

To minimise C� being only constrained by terminal conditions on x (i.e. x
0

= v⇤ and vN+1

= 0) it is enough to
cancel its derivatives with respect to any xn, leading to a recurrence relation :

✓

�n
Vn

+
�


VAn

◆

xn+1

=
1

2
(a( n�1

�  n)� (EAn�1

� EAn)) (13)

+

✓

�


�2

n +

✓

�n
Vn

+
�


VAn +

�n�1

Vn�1

+
�


VAn�1

◆◆

xn

�
✓

�n�1

Vn�1

+
�


VAn�1

◆

xn�1

It shows that the variance of the arbitrage has a similar e↵ect than the market impact (through a risk-aversion
rescaling), and that the risk aversion parameter acts as a multiplicative factor to the market impact, meaning that
within an arbitrage-free and spread-costs-free framework (i.e. a = 0 and EAn = 0 for all n), the market impact model
by any constant b has no e↵ect on the final result as far as � is replaced by b�.

Figure 5 compares optimal trajectories coming from di↵erent criteria and parameter values.

Figure 5 – Examples of optimal trading trajectories for mean-variance criteria : the classical result (Almgren-Chriss)
in solid line, the dotted line is for high variance of the variable of interest (�/V ), the semi-dotted ones for an arbitrage
opportunity (A

11+

means : after the 11th period and A
11+

+ VA means : adding expected variance to the arbitrage
opportunity).
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A statistical viewpoint. The two previous examples show how easy it is to include e↵ects in this sliced mean-
variance framework, the implicit assumptions are :

– on one time-slice, it is possible to capture the market impact (or trading costs) using model (7),
– the trader has a view on the traded volumes and market volatility at the same time-scale.

Practically, the two assumptions come from statistical modelling :
– the market impact parameters a, and � are estimated on a large database of trades using a maximum likelihood
or MSE methods ; the reality is consequently that the market model has the following shape :

⌘(vn) = a n + �n
p
�t

✓

vn
Vn

◆�

+ " (14)

where " is an i.i.d. noise.
– moreover, the market volatility and traded volumes are estimated using historical data and market context
assumptions (to take into account at least the scheduled news, like the impact of the expiry of derivative products
on the volume of the cash market, see Figure 6 for typical estimates).

Figure 6 – Typical intra-day traded volume (top-left) and realized volatility (bottom-left) profiles (i.e. intra-day
seasonalities on traded volumes and market volatility) with their quantiles of level 25% and 75%. X-axis is time. The
top-right chart figures the quantiles of the ratio of interest �/V . The bottom-right ones shows the di↵erence between
the expectation of the ratio (solid line) and the ratio of the expectations (dotted line).
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Taking these statistical modelling steps into account in the classical mean-variance criteria of equation (12) changes
it into its unconditioned version :

C̃� = E(W ) + �V(W ) (15)

= S
0

v⇤ +
N
X

n=1

(aE n � EAn)X(n)

+

✓

E
✓

�n
Vn

◆

+ �(a2V n + VAn + V")
◆

X(n)2

+��2

nx
2

n + �2V
✓

�n
Vn

◆

X(n)4

The consequence of using this criteria rather than the conditioned one are clear :
– the simple plug-in of empirical averages of volumes and volatility in criteria (12) instead of the needed expectation
of the overall trading costs leads to use (E�n)/(EVn) instead of E(�n/Vn), Figure 6 shows typical di↵erences
between the two quantities.

– if the uncertainty on the market impact is huge (i.e. the V" term dominates all others), then the optimal trading
strategy is to trade linearly, which is also the solution of a pure expectation-driven minimisation with no specific
market behaviour linked with time.

Within this new statistical trading framework, the inaccuracy of the models and the variability of the market
context are taken into account : the obtained optimal trajectories will no more have to follow sophisticated behaviours
if the models are not realistic enough.

Moreover, it is not di�cult to solve the optimisation program associated to this new criteria ; the new recurrence
equation is a polynomial of degree 3. Figure 5 gives illustrations of obtained results.

A lot of other e↵ects can be introduce in the framework, like auto-correlations on the volume-volatility couple. This
statistical framework does not embed recent and valuable proposals like the decay of market impact [Gatheral & Schied, 2012]
or a set of optimal stopping times to do not stick to an uniform and a priory sampled time [Bouchard et al. , 2011].
It is nevertheless simple enough so that most practitioners can use it to include their views of the market conditions
and the e�ciency of their interactions with the market at a given time scale ; it can be compared to the Markowitz
approach for quantitative portfolio allocation [Markowitz, 1952].

1.1.3 Modifying the Framework to Take Into Account other Dynamics

This Section has been published as a part of Optimal starting times, stopping times and risk measures for
algorithmic trading (2014 The Journal of Investment Strategies 3) [Labadie & Lehalle, 2014]

The p-variation model. Let p > 1 and y = (y
1

, . . . , yN ) 2 RN be a random vector of mean zero. We define the
p-variation of y as

Vp(y) :=
N
X

n=1

E [ | yn|p ] .

The p-variation Vp(y) and the lp-norm in RN are related via

kykp = Vp(y)
1/p.

Notice that if y = (y
1

, . . . , yN ) is a time series of i.i.d. random variables then the 2-variation reduces to the variance,
i.e.

V
2

(y) = Var(y) .

Moreover, it is easy to show that the p-variation defines a metric on RN , and since all norms in RN are equivalent
there exist 0 < �

1

< �
2

such that
�
1

kykp  kyk2  �2kykp.
Therefore, the variance (i.e. the 2-variation) and the p-variation are two equivalent metrics on RN , and in particular

Vp(y) ⇠ V
2

(y)p/2 . (16)

Now let us define the p-variation for a special family of functions of random variables. Let y = (y
1

, . . . , yN ) a random
vector of mean zero and consider the function F : RN ! R defined as

F (y) =
N
X

n=1

yn.

We define the p-variation of F as

Vp(F ) =
N
X

n=1

E [ | yn|p ] .
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Observe that if y = (y
1

, . . . , yN ) is a time series of mean zero then Vp(F ) is the sample p-th moment of the time series
y multiplied by N . Finally, for general functions F such that

F � E(F ) =
N
X

n=1

yn

we define their p-variation as
Vp(F ) := Vp(F � E(F )) = Vp(y).

It is worth o remark that if the random variables y = (y
1

, . . . , yN ) are i.i.d. of mean zero and variance 1 then the
2-variation and the variance of y coincide :

V
2

(F ) = Var(y) .

Optimal trading algorithms using p-variance as risk measure. Let H 2 (0, 1) and assume that the price
dynamics is self-similar, i.e.

Sn+1

= Sn + �n+1

⌧H"n+1

, (17)

where H 2 (0, 1) and ("n)1nN are i.i.d. random variables such that E ["n] = 0. We will assume a power market
impact of the form

h(vn) = �n⌧
H

✓

vn
Vn

◆�

. (18)

In order to use the p-variation as a risk measure, we have to choose the right p. From (17) we see that if H = 1/2
we recover the classical Brownian motion, for which the variance is the most common choice for a risk measure. In
this case we have H = 1/2 and p = 2, which implies that the risk measure is linear in time. This suggests that the
correct choice of p is p = 1/H, since it is the only p that renders the risk p-variation as a risk measure linear in time.

We would like to remark that the idea of a risk measure that is linear in time was also introduced by [Gatheral & Schied, 2012],
where the risk measure was the expectation of the time-average. The advantage of our approach is that we do not fix
a priori the dynamics of the price process. Indeed, we first find empirically the right exponent of self-similarity H and
then we choose the correct risk measure via p = 1/H.

In order to derive the recursive formula for a process following (17), we normalise the relative wealth as in the
previous case of Brownian motion. Under this framework, the normalised relative wealth of a TC algorithm is

W̃ = �
N�1

X

n=1

xn�n+1

"n+1

+
N
X

n=1

�n
(xn � xn�1

)�+1

V �
n

.

We will assume that the process (17) is normalised, i.e. E [|"n|p] = 1 for all n. In the case of Brownian motion (H = 1/2
and p = 2) this is equivalent to suppose that the increments ("n)1nN have variance 1. Under this framework, the
average and p-variation of W̃ are

E(W̃ ) =
N
X

n=1

�n
(xn � xn�1

)�+1

V �
n

, Vp(W̃ ) =
N�1

X

n=1

xp
n�

p
n+1

.

Therefore, the corresponding p-functional is

Jp(x1

, . . . , xN ) = E(W̃ ) + �Vp(W̃ )

=
N
X

n=1

�n
(xn � xn�1

)�+1

V �
n

+ �

N�1

X

n=1

xp
n�

p
n+1

.

The optimal trading curve is determined by solving

@Jp
@xn

= 0 , n = 1, . . . , N ,

i.e.

�n(� + 1)
(xn � xn�1

)�

V �
n

� �n+1

(� + 1)
(xn+1

� xn)�

V �
n+1

+ p�µN (n)�p
n+1

xp�1

n = 0 ,

where µN (n) = 1 if n < N and µN (N) = 0.

Returning to the variables vn we get

�n(� + 1)

✓

vn
Vn

◆�

� �n+1

(� + 1)

✓

vn+1

Vn+1

◆�

+ p�µN (n)�p
n+1

 

n
X

i=1

vi

!p�1

= 0 .
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We thus obtain the recursive nonlinear formula for the optimal TC trading curve for a self-similar process :

vn+1

= Vn+1

2

4

�n
�n+1

✓

vn
Vn

◆�

+
p�µN (n)

(� + 1)
�p�1

n+1

 

n
X

i=1

vi

!p�1

3

5

1/�

. (19)

As in the Brownian case, if we were interested in the IS algorithm then an argument similar to the previous one would
show that the optimal trading curve for IS satisfies

vn�1

= Vn�1

2

4

�n
�n�1

✓

vn
Vn

◆�

+
p�µ

1

(n)

(� + 1)

�p
n

�n�1

 

N
X

i=n

vi

!p�1

3

5

1/�

, (20)

where µN (n) = 1 if n > 1 and µ
1

(1) = 0.

Examples of self-similar processes. Amongst the class of continuous stochastic processes that admit a discretisa-
tion of the form (17), we have three proceses in mind : Lévy processes, fractional Brownian motion and fractal processes
(for more details we suggest [Bacry et al. , 2001], [Bouchaud & Potters, 2004][Embrechts, 2002], [Mandelbrot & Hudson, 2004]
and [Mantegna & Stanley, 1994]) :

– Truncated Lévy processes. p-stable Lévy processes are the only self-similar processes satisfying (17) with
H = 1/p and with independent, stationary increments. If p = 2 we recover the classical Brownian motion.
However, for such processes the p-th moment is infinite, and as such they cannot be used in our framework.
Nevertheless, one can consider the so-called truncated Lévy distributions, which are Lévy within a bounded
interval and exponential on the tails. This allows moments of any order, in particular the p-th moment, whilst
within the bounded interval we keep the self-similarity given by (17).

– Fractional Brownian motion. The fractional Brownian motion is the only self-similar process with stationary,
Gaussian increments. Its exponent of self-similarity H is called Hurst exponent). If H = 1/2 we recover the
classical Brownian motion. The fractional brownian motion has moments of all orders, hence the p-variation is
well-defined and we can apply our model. However, for H 6= 1/2 the increments are auto-correlated (positively if
H > 1/2 and negatively if H < 1/2) and our model does not take into account the autocorrelations. Therefore,
we can consider our model as an approximation when autocorrelations are weak with respect to the market
impact and the p-variance.

– Multifractal processes. Multifractal processes are defined as follows. Given a stochastic process X(t) its
fluctuation is defined as

�lX(t) := X(t+ l)�X(t) .

For any q > 0 define
m(q, l) := E [|�lX(t)|q] .

We say that X(t) is multifractal of exponents ⇣(q) if for any q > 0 there exists K(q) > 0 such that

m(q, l) = K(q)l⇣(q) .

In the case where ⇣(q) is linear, i.e. ⇣(q) = qH the process X(t) is called monofractal. If ⇣(q) is not linear
then X(t) is called multifractal. Notice that all self-similar processes are monofractal, in particular the fractional
Brownian motion and Lévy processes. However, we will continue to use the term self-similar, even for monofractal
process, since it is more common in the literature.

Numerical results. In Figure 7 we plotted three TC curves under the PVol constraint for three di↵erent self-
similarity exponents H, which gives three di↵erent p’s for the p-variation (recall p = 1/H).

H p start pillar switch pillar
0.55 1.8 17 102
0.50 2.0 34 94
0.45 2.2 50 89

Our numerical example renders the following evidence, which has been found in all runs we have performed :
– If H increases then the starting pillar of the execution decreases, i.e. the execution starts earlier.
– If H increases then the pillar at with we switch from TC to PVol increases, i.e. the PVol constraint is saturated
later.

Since starting the execution later and saturating the PVol constraint earlier is related to higher levels of aggres-
siveness, we can infer from Figure 7 that the level of aggressiveness of TC under the PVol constraint decreases as H
increases. This finding is quite natural if we assume that the model is a fractional Brownian motion and H is the Hurst
exponent :

17



1 TRADING OPTIMAL

10 20 30 40 50 60 70 80 90 100
0

5

10

15
x 104

pillar number

cu
m

. s
ha

re
s

Cum. Target Close with PVol constraint

 

 

H=0.55 (p=1.8 start=17 switch=102)
H=0.50 (p=2.0 start=34 switch=94)
H=0.45 (p=2.2 start=50 switch=89)

Figure 7 – Cumulative TC curves under PVol constraint for di↵erent values of H.

– For H < 1/2 the process has negative autocorrelations, i.e. it behaves as a mean-reverting process. Therefore,
the market impact is reduced because prices go back to their level after an execution. In consequence, we can
execute the order faster than in the case of a classical Brownian motion : we start the execution later and we go
as fast as possible, and as such we saturate the constraint earlier.

– For H > 1/2 the process has positive autocorrelations, i.e. it has a trend. Therefore, the market impact is of
paramount importance because if we execute too fast then prices will move in the wrong direction. In consequence,
we start the execution earlier and we go as slow as possible, and as such we saturate the constraint later.

In the next section we will study in detail, in the TC algorithm without PVol constraint, the relation between the risk
measures of p-variation type and both the starting time and the slope at the last pillar.

1.1.4 Mean-Variance Optimal Trading under Volume Constraints

This Section has been published as a part of Optimal starting times, stopping times and risk measures for
algorithmic trading (2014 The Journal of Investment Strategies 3) [Labadie & Lehalle, 2014]

Inverting the optimal liquidation problem putting the emphasis on observables of the obtained trading
process. We will show that the TC (Target Close) algorithm can be seen as a“reverse IS”(Implementation Shortfall)
–see equation (23) and following for details–. In this framework, the starting time for a TC is the time-reverted
equivalent of the ending time for an IS. However, for practitioners this distinction is even critical : shortening the
trading duration of an IS to capitalise a profitable price opportunity can always be justified, but changing the “expected
optimal start time” for a TC can be di�cult to explain.

The paper also shows that the results obtained for the TC criterion can be applied to the IS criterion because
TC and IS are both sides of the same coin. Indeed, on the one hand, the TC has a pre-determined stopping time, its
benchmark is the price at the end of the execution and the starting time is unknown. On the other hand, IS has a
pre-determined starting time, its benchmark is the price at the beginning of the execution and the stopping time is
unknown. Therefore, there is no surprise that the recursive formula for IS turns out to be almost the same that for
TC but with the time running backwards.

It is customary for practitioners to put constraints on the maximum participation rate of a trading algorithms
(say 20% of the volume traded by the market). Therefore, it is of paramount importance to find a systematic way of
computing the starting time of a TC under a percentage of volume (PVol) constraint. Such an “optimal trading policy
under PVol constraint” is properly defined and solved in this paper. A numerical example with real data is provided,
where the optimal trading curves and their corresponding optimal starting times are computed.

Solving the TC problem under constraints allows us to analyse the impact of the parameters of the optiomisation
criterion on the observable variables of the trading process. It should be straightforward for quantitative traders to
implement our results numerically, i.e. to choose the characteristics of the trading process they would like to target
and then infer the proper value of the parameters of the criterion they need.
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Derivation of the Target Close (TC) algorithm. As in [Almgren, 2003] and [Bouchaud, 2010], we will consider
a power market impact function, i.e.

h(vn) = �n⌧
1/2

✓

vn
Vn

◆�

, (21)

where vn is the amount of shares executed at the n-th pillar (i.e. at time tn), Vn is the (historical) volume at the n-th
pillar, �n is the normalised volatility at the n-th pillar, and  and � are positive constants. Under this framework, the
wealth process takes the form

W =
N
X

n=1

vnSn +
N
X

n=1

�n⌧
1/2vn

✓

vn
Vn

◆�

, (22)

where N is the number of slices in the trading algorithm. The first term in the right-hand side of (22) is the cost of

executing v⇤ :=
PN

i=1

vi shares ; the second term models the market impact of the execution as a power law of the
percentage of volume executed at each pillar n = 1, . . . , N .

For a TC algorithm, the benchmark is the closing price. Therefore, the wealth process relative to this benchmark
is

W ] = W � SN

N
X

n=1

vn . (23)

Let us assume again a Brownian motion model for the asset, i.e.

Sn+1

= Sn + �n+1

⌧1/2"n+1

.

Under the the change of variables

xn :=
n
X

i=1

vi () vn = xn � xn�1

the relative wealth process takes the form

W ] = �
N
X

n=1

xn�n⌧
1/2"n +

N
X

n=1

�n⌧
1/2 (xn � xn�1

)�+1

V �
n

=

 

�
N�1

X

n=1

xn�n+1

"n+1

+
N
X

n=1

�n
(xn � xn�1

)�+1

V �
n

!

⌧1/2 .

Since the time-step ⌧1/2 is a constant multiplicative factor, we can consider a normalised relative wealth

W̃ :=
W ]

⌧1/2
.

We are not losing any generality with the normalisation because it is equivalent to use a normalised volatility �̃n :=
�n⌧

1/2. Under this new framework, the average and variance of W̃ are, respectively,

E(W̃ ) =
N
X

n=1

�n
(xn � xn�1

)�+1

V �
n

, V(W̃ ) =
N�1

X

n=1

x2

n�
2

n+1

.

The corresponding mean-variance functional is thus

J�(x1

, . . . , xN ) = E(W̃ ) + �V(W̃ )

=
N
X

n=1

�n
(xn � xn�1

)�+1

V �
n

+ �

N�1

X

n=1

x2

n�
2

n .

The optimal trading curve is determined by solving

@J�
@xn

= 0 , n = 1, . . . , N ,

i.e.

�n(� + 1)
(xn � xn�1

)�

V �
n

� �n+1

(� + 1)
(xn+1

� xn)�

V �
n+1

+ 2�µN (n)�2

n+1

xn = 0 ,

where µN (n) = 1 if n < N and µN (N) = 0.
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Returning to the variables vn we get

�n(� + 1)

✓

vn
Vn

◆�

� �n+1

(� + 1)

✓

vn+1

Vn+1

◆�

+ 2�µN (n)�2

n+1

 

n
X

i=1

vi

!

= 0 . (24)

Finally, we obtain an explicit, nonlinear recursive formula of the optimal trading curve for a TC algorithm :

vn+1

= Vn+1

"

�n
�n+1

✓

vn
Vn

◆�

+
2�µN (n)

(� + 1)
�n+1

 

n
X

i=1

vi

!#

1/�

. (25)

Derivation of the Implementation Shortfall (IS) algorithm. For an IS algorithm, the starting time is given
and we have to find the optimal stopping time for our execution. Since the benchmark is the price at the moment
when the execution starts, the relative wealth of an IS algorithm is

W ] = W � S
1

N
X

n=1

vn .

Using the change of variables

xn :=
N
X

i=n

vi () vn = xn � xn+1

,

it can be shown that the relative wealth process is

W ] =
N
X

n=2

xn�n⌧
1/2"n +

N
X

n=1

�n⌧
1/2 (xn � xn�1

)�+1

V �
n

=

 

N
X

n=2

xn�n"n +
N
X

n=1

�n
(xn � xn�1

)�+1

V �
n

!

⌧1/2 .

As in the TC case, we can consider a normalised relative wealth

W̃ :=
W ]

⌧1/2
,

whose average and variance are, respectively,

E(W̃ ) =
N
X

n=1

�n
(xn � xn+1

)�+1

V �
n

, V(W̃ ) =
N
X

n=2

x2

n�
2

n .

In consequence, the corresponding mean-variance functional is

J�(x1

, . . . , xN ) = E(W̃ ) + �V(W̃ )

=
N
X

n=1

�n
(xn � xn+1

)�+1

V �
n

+ �

N
X

n=2

x2

n�
2

n .

The optimal trading curve is determined by solving

@J�
@xn

= 0 , n = 1, . . . , N ,

i.e.

�n(� + 1)
(xn � xn+1

)�

V �
n

� �n�1

(� + 1)
(xn�1

� xn)�

V �
n+1

+ 2�µ
1

(n)�2

nxn = 0 ,

where µ
1

(n) = 1 if n > 1 and µ
1

(1) = 0.

Returning to the variables vn we get

�n(� + 1)

✓

vn
Vn

◆�

� �n�1

(� + 1)

✓

vn�1

Vn+1

◆�

+ 2�µ
1

(n)�2

n

 

N
X

i=n

vi

!

= 0 .

We thus obtain the recursive nonlinear formula for the optimal IS trading curve :

vn�1

= Vn�1

"

�n
�n�1

✓

vn
Vn

◆�

+
2�µ

1

(n)

(� + 1)

�2

n

�n�1

 

N
X

i=n

vi

!#

1/�

. (26)
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Comparison between TC and IS. If the volatility �n is constant then (26) is exactly the same recursion as in (25),
except for the time in IS running backwards. In the light of this mirror property, the analysis we will be performing
for TC can be naturally extrapolated for IS, esp. adding a maximum participation rate constraint and computing the
starting time.

If the volatility is not constant then there is a slight di↵erence in the formula, namely a factor for �n+1

= �2

n+1

/�n+1

for TC and a factor �2

n/�n�1

for IS. From the practitioner point of view, this di↵erence is paramount. For TC it is the

forward volatility �n+1

which determines the weight of
PN

i=n vi i.e. the shares already executed. This comes from the
fact that the ending time is fixed (it is the market close, in fact) and the number of shares to trade per pillar increases
in time. Therefore, not only the trader has little room for changing her schedule, but also she has to anticipate the
volatility one step ahead in order to avoid nasty surprises. For IS it is the spot volatility �n that counts. This is because
the number of shares decreases in time, which gives more room to change the trading schedule the closer the trader is
to the end of her execution, giving room for capitalising potential arbitrage opportunities.

Adding constraints : Percentage of Volume (PVol). The TC algorithm can have a constraint of , meaning
that the size of each slice cannot exceed a fixed percentage of the current available volume. This algorithm is called
Percentage of Volume (PVol). Under a PVol constraint, the trading slices vn of the TC algorithm satisfy the constraint

vn  qVn , q 2 (0, 1) .

It is worth to notice that the PVol algorithm is not a solution of the Almgren-Chriss optimisation. Indeed, if it were
then

vn
Vn

= q 8n = 1, . . . , N ,

and from (24) we would have that
n
X

i=1

vi = 0 .

The two algorithms TC and PVol are mutually exclusive. This implies that a classical optimisation scheme of TC
with the PVol constraint via Lagrange multipliers is not straightforward, to say the least. We thus have to find another
way to obtain a solution of the TC algorithm under the PVol constraint.

From (25) we see that given vn, the corresponding vn+1

depends on
Pn

i=1

vi, i.e. the cumulative execution up to n,
which implies that curve is in general increasing. Therefore, in order to satisfy the constraint of maximum percentage
of volume (PVol), if the total volume to execute is large then the algorithm has to be divided into two patterns :

1. As long as the constraint of maximum participation rate (PVol) is not reached, we execute the slices according
to the Almgren-Chriss recursive formula. This corresponds to the TC pattern.

2. As soon as the PVol constraint is attained, the algorithm executes the minimum between the TC curve and PVol
curve.

Loosely speaking, we start with a TC algorithm, but once the slices are saturated we switch to a PVol algorithm until
the end of the execution. However, it can happen that the algo switches back to TC if the PVol curve is bigger at
a further pillar ; this situation is exceptional though, save for cases where the volume curve presents sharp peaks or
gaps.

It is worth to mention that adding a PVol constraint to IS is the same as adding the constraint for TC and running
the TC algorithm backwards.

Computing the optimal stopping time for TC. Let us describe in detail all the steps of our TC algorithm
under PVol constraint. Let n

0

be the starting time and n
1

the switching time (i.e. when we change from TC to PVol).

1. According to the historical estimates of the available volume at the close auction, plus the desired participation
rate, we define the execution at the pillar n = 103 (the close auction), denoted v].

2. We compute the Almgren-Chriss algorithm for the residual shares v[ = v⇤ � v] i.e. the shares to execute in
continuous, outside of the close auction. We start with n = 1 and n

1

= 102 and launch the TC recursive
argument (25). Since the algorithm is completely determined by v

1

= ↵, it su�ces to find the right ↵ such that
the cumulative shares at n

1

= 102 are equal to v[.

3. We compare the trading curve of the previous step with the PVol curve. If the PVol constraint is satisfied then
we are done. If not, we saturate pillar n = 102 with the PVol constraint and redefine the parameters : v[ is now
the shares to execute outside both pillars 103 and 102, i.e. v[ = v[ � v

102

. We set n
1

= 101, i.e. n
1

= n
1

� 1 and
repeat the procedure.

4. Eventually, we will obtain a TC curve starting at n = 1, switching to PVol at n
1

 102 and satisfying the PVol
constraint. Moreover, the algorithm finds the right number of shares ↵ = ↵

1

to trade at pillar n = 1 such that
the total execution from n = 1 to n = 103 is equal to v⇤. Remark that the whole algorithm executes TC between
n = 1 to n

1

, PVol between n
1

and n = 102, and the desired participation at the close auction at n = 103.
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5. In order to find the right starting time n
0

, we choose a minimal trading size for each slice, that we denote ↵min.
For example, ↵min can be either the average trading size or a percentage of the available liquidity. If ↵

1

< ↵min

then we advance one pillar and we recompute the trading curve, which now starts at n = 2 and has a first slice
of size ↵

2

. We continue until we find the first pillar n
0

such that ↵ = ↵n
0

� ↵min.

Therefore, n
1

is determined by the PVol constraint whilst n
0

is determined by the minimal trading size constraint
↵min. Notice however that the optimal starting pillar n

0

is determined after n
1

, which implies that n
0

depends not
only on ↵

0

but also on the rest of the parameters like the PVol curve, the participation rate at the close auction and
the market impact parameters.

Observe that there is a systematic way of computing the stopping pillar for an IS algorithm : it corresponds to the
backwards or symmetrical image of the starting time we computed for the TC algorithm.
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Figure 8 – TC (above) and cumulative TC curves under PVol constraint. The starting and switching pillars are resp. n0 = 34

and n1 = 94.

Numerical results. In the first plot of Figure 8 we have the TC curve (solid line) under PVol constraint vs the
PVol curve (broken line) of stock AIRP.PA (Air Liquide). In the second plot we have the cumulative execution of the
TC curve (solid line) under PVol constraint vs the volume to execute v⇤ (broken line). The parameters we used are
v⇤ = 150, 000 shares, ↵min = 500 shares and a maximum participation of 20% in both the continuous trading period
and the close auction. The historical volatility and volume curves, the market impact parameters  and � and the
risk-aversion coe�cient � were provided by the Quantitative Research at Cheuvreux - Crédit Agricole.

In Figure 8 we can also observe that the algorithm finds the optimal starting time at pillar n = 34 (beginning of
the horizontal axis), at which it starts to execute the order following the TC algorithm based on the Almgren-Chriss
optimisation. At pillar n = 94 (vertical line) the algorithm switches to PVol in order to satisfy the constraint. Notice
that during the whole execution, the PVol constraint has been satisfied, and that the number of traded shares per pillar
is increasing in time. Finally, in the second plot we can see that the TC algorithm under PVol constraint successfully
executed the whole order.
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1.2 Going Further : Impulse Control for Optimal Liquidation by Robots

Stochastic control is the next expected step after mean variance optimization along discretized trajectories. The
work presented here is with Pham [Kharroubi & Pham, 2010] one of the first proposals in this direction.

The unique added values of this work is to answer to two practical questions :
– how to choose trading time during an optimal trading scheme ? Using impulse control is the only way to answer.
The answers we provided have not really be improved yet.

– how to render the realistic aspect of trading ? In real world algorithmic traders rely on two decision layers :
– one being “strategic”, planning the trading at an horizon from few hours to few days
– one being “tactic”, very close to orderbook dynamics and liquidity seeking.
The framework presented here allows to model this useful trading architecture.

Moreover, one should note the“tactical layer”, modeled here by a“trading robot”, is modelled in the work presented
in this section by a “black box”. It is perfectly suited to be modelled by a stochastic algorithm like the ones presented
in section 3.1 or 1.3.

This remark sheds light on a possible articulation of the work presented here :
– the section on microstructure, and in particular Section 2.1 allows to understand orderbooks and liquidity
dynamics, and to isolate some “invariants” (in the sense that they are Markovian, and if possible with transitions
independent of time)

– The section on statistical learning allows to build “optimal” updating rules (i.e. learning robots) at a very small
time scale, relying on the upper invariants.

– last but not least, this section arrange the optimal use of such learning robots along an optimal trajectory (in
the sens of stochastic control).

It is worthwhile to note one of the unique aspect of the work presented thereafter is the capability o↵ered by
mathematical tools to interact with the price formation process, in a way practitioners can use them and hence
improve the e�ciency and the risk control of their practices.

This Section has been published as a part of Optimal control of trading algorithms : a general impulse control
approach (2011 SIAM J. Financial Mathematics 2, 404–438) [Bouchard et al. , 2011]

1.2.1 Problem formulation

Let (⌦,F ,P) be a probability space supporting a d-dimensional Brownian motion W , d � 1. Let F := (Ft)t�0

denote the right-continuous complete filtration generated by W , and let T > 0 be a finite time horizon.

Control policies We first describe how the trading algorithms are controlled, precise dynamics will be imposed in
Section 1.2.1 below. Note that di↵erent algorithms can be viewed as a single parameterized one. In what follow, we
therefore consider that we have only one algorithm.

A control policy of the trading algorithm is described by a non-decreasing sequence of stopping times (⌧i)i�1

and
a sequence of [�,1) ⇥ E-valued random variables (�i, Ei)i�1

. The stopping times ⌧i describe the times at which an
order is given to the algorithm, Ei is the value of the parameters with which the algorithm is run and �i the length of
the period (duration of the trading for this “robot”) during which it is run with the value Ei. The set E is a compact
subset of Rd, which represents the possible values of the parameters, the quantity

0 < � < T

denotes the minimum length of the time period during which the algorithm can be run. To be consistent we impose
that

⌧i + �i  ⌧i+1

and (�i > 0) ⌧i + �i  T ) , i � 1 . (27)

The first condition expresses the fact that a new order can not be given before the end of the time period associated
to the previous order. The second one means that an order should be given only if it ends before the final time horizon
T .

Remark 1 1. The minimal duration constraint, �i � � with � > 0, has been justified from a practical point of view in
the introduction. From the mathematical point of view, the problem described in Sections 1.2.1 and 1.2.1 below would
not make sense without this condition, if no additional cost related to launching the algorithm with new parameters is
introduced. Indeed, for � = 0, and without additional costs, the controller could, at the limit, control the parameters
continuously, and this would actually certainly be optimal. The controller will then act, at the limit, as a trader acting
continuously on the market.

2. Models with � = 0 and with an additional cost (paid each time the algorithm is launched with new parameters)
could be discussed by following the lines of this paper. Such a cost is actually already embedded in the general dynamics
of Section 1.2.1, up to an additional assumption on the function �, see example below. This would however require
to justify this cost, and to evaluate it in practice. Moreover, certain bounds like the one stated in Remark 2 below
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would not be true anymore and other conditions would be required. For sake of simplicity, we therefore stick to the
case � > 0 which corresponds more, from our point of view, to practical situations.

3. In the absence of a cost penalizing frequent changes in the parameters, it may be optimal to choose �i = � most
of the time (depending whether � is small or not). However, other values of �i may also be optimal. Our algorithm
provides a way to select the maximal optimal value, the one for which the trader changes the parameters the least
often (which is desirable in practice).

As usual the value of the parameters and the size of the durations can not be chosen in some anticipative way, i.e.
we impose that

(�i, Ei) is F⌧
i

-measurable , i � 1 . (28)

At time t 2 [⌧i, ⌧i + �i), the value of the parameter of the trading algorithm is denoted by ⌫t. For t 2 A((⌧i, �i)i�1

),
defined as

A((⌧i, �i)i�1

) := R
+

\
0

@

[

i�1

[⌧i, ⌧i + �i)

1

A ,

we set ⌫t = $, where $ 2 Rd \ E can be viewed as a cemetery point, recall that E is compact.

It follows that the value of the parameters of the trading algorithm ⌫ can be written as

⌫t = $1t2A((⌧
i

,�
i

)

i�1

)

+
X

i�1

Ei1t2[⌧
i

,⌧
i

+�
i

)

, t 2 [0, T ] , (29)

where ⌫t = $ means that the algorithm is not running at time t.

In the following, we denote by S the set of adapted processes ⌫ that can be written in the form (29) for some
sequence of stopping times (⌧i)i�1

and of [�,1)⇥ E-valued random variables (�i, Ei)i�1

satisfying (27) and (28).
For ease of notations, we shall now write

(⌧⌫i , �
⌫
i , E⌫

i )i�1

the sequence associated to ⌫ 2 S,
and define, for all stopping times #

1

and #
2

satisfying #
1

 #
2

P-a.s., the set of indices corresponding to orders whose
execution ends between #

1

and #
2

:

I⌫#
1

,#
2

:= {i � 1 : #
1

< ⌧⌫i + �⌫i  #2} .

Remark 2 Note that the constraint �⌫i � � for all i � 1 and ⌫ 2 S implies that

card(I⌫
0,T )  card ({⌧⌫i  T, i � 1})  T/� .

For ease of notations, we also set
Ē := E [ {$} ⇢ Rd ,

and introduce the process �⌫
·

�⌫
t :=

X

i�1

[⌧⌫i + �⌫i � t]+1t�⌧⌫

i

, t 2 [0, T ] .

The quantity �⌫
t denotes the remaining duration during which no new order can be passed to the algorithm. When

�⌫
t > 0, the algorithm is running with a value of the parameters ⌫t. When �⌫

t = 0, the algorithm is not running
anymore, ⌫t = $, and a new order can be passed.

The following picture sums up the dynamics of the control.

6

-

⌫

T ime

$

E⌫
i [ [

E⌫
i+1

[ [

⌧⌫i

-�
�⌫i

[
⌧⌫i + �⌫i

[
⌧⌫i+1

-� �⌫i+1

t

-� �⌫
t

⌧⌫i+1

+ �⌫i+1
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Output of the trading algorithm. Given some initial data (t, x) 2 [0, T ]⇥Rd, the output of the trading algorithm
associated to some control policy ⌫ 2 S is defined as the strong solution X⌫

t,x on [0, T ] of the stochastic di↵erential
equation

X⌫
t,x(s) = x+ 1s�t

0

@

Z s

t

b(X⌫
t,x(r), ⌫r)dr +

Z s

t

a(X⌫
t,x(r), ⌫r)dWr +

X

i�1

�(X⌫
t,x(⌧

⌫
i �), E⌫

i , �
⌫
i )1t<⌧⌫

i

s

1

A , (30)

where � : Rd ⇥ Ē ⇥ [�, T ]! Rd and (b, a) : Rd ⇥ Ē ! Rd ⇥Md are continuous functions such that there exists K > 0
for which, for all x, x0 2 Rd, e, e0 2 Ē, �, �0 2 [�, T ],

8

<

:

| (x, e, �)�  (x0, e, �)|)  K|x� x0|
| (x, e, �)|  K(1 + |x|)

| (x, e, �)�  (x, e0, �0)|  K(1 + |x|)(|e� e0|+ |� � �0|)
for  = b, a,� . (31)

We do not di↵erentiate here between the components that correspond to real outputs of the algorithm (cumulated
gains, cumulated volumes executed by the algorithm, etc...) and others that simply describe the evolution of financial
data or market factors (prices of the traded assets, global traded volumes on the markets, volatilities, etc...).

The jumps on the dynamics are introduced to model the changes in the initial conditions on the variables of interest
for the trading algorithm when it is launched (e.g. volume to be executed between ⌧⌫i and ⌧⌫i + �⌫i ).

Moreover, there is no loss of generality in assuming that X, W and ⌫ have the same dimension d. One can always
reduce more general situations to this case by playing with the coe�cients b, a, � and with the choice of E. Time
dependent coe�cients can similarly be considered by putting the first line of a and � equal to 0, and the first component
of b equal to 1, so that the first component of X actually coincides with the time parameter.

We refer to Section 1.2.2 for the description of simple examples of application which illustrate the flexibility of the
above model.

Gain function. The aim of the controller is to maximize the expected value of the gain functional

⌫ 2 S 7! ⇧t,x(⌫) := g(X⌫
t,x(T )) +

X

i2I⌫
t,T

f(X⌫
t,x(⌧

⌫
i + �⌫i �), E⌫

i ) ,

with the usual convention
P

; = 0, among the set

St,�,e :=

⇢ �

⌫ 2 S : ⌫s = e for s 2 [t, t+ �) and �⌫
t+� = 0

 

if e 6= $ and � > 0
{⌫ 2 S : ⌫t = $} otherwise

where (�, e) 2 R
+

⇥ Ē denotes the initial state of the remaining duration and value of the parameters.
In this section (cf. [Bouchard et al. , 2011] for all the details), we provide a rigorous formulation which follows ideas

introduced in [Bouchard & Touzi, 2011]. Namely, we only provide a weak formulation in terms of test functions. The
main advantage of this approach is that it does not require any regularity on the value function V itself, but only some
lower-semicontinuity of the objective function J(·; ⌫), see below. We refer to [Bouchard & Touzi, 2011] for a general
discussion.

Lemma 1 (Weak Dynamic Programming Principle) Fix (t, x, �, e) 2 D and let {#⌫ , ⌫ 2 Sa
t,�,e} be a family of

[t, T ]-valued stopping times independent of Ft. Then, we have

V (t, x, �, e)  sup
⌫2Sa

t,�,e

E

2

4[V ⇤, g](#⌫ , X⌫
t,x(#

⌫),�⌫
#⌫

, ⌫#⌫ ) +
X

i2I⌫
t,#

⌫

f(X⌫
t,x(⌧

⌫
i + �⌫i �), E⌫

i )

3

5 , (32)

where [V ⇤, g](s, ·) := V ⇤(s, ·)1s<T + g1s=T , and

sup
⌫2Sa

t,�,e

E

2

4'(#⌫ , X⌫
t,x(#

⌫),�⌫
#⌫

, ⌫#⌫ ) +
X

i2I⌫
t,#

⌫

f(X⌫
t,x(⌧

⌫
i + �⌫i �), E⌫

i )

3

5  V (t, x, �, e) (33)

for all upper semi-continuous function ' such that V � ' on D̄.

As in [Bouchard & Touzi, 2011], the proof of the above result relies on some lower-semicontinuity property of the
function J .
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1.2.2 An Illustration

A Simple Example. Consider the case where the aim of the controller is to buy a number Q
0

of one stock S
between 0 and T > 0. The dynamics of (S, V ) is given as in the previous example.

Here E⌫
i stands for the intensity at which the stocks are bought, i.e. the algorithm buys a number E⌫

i dt = ⌫t1⌫
t

6=$dt
of stocks on [t, t+dt], t 2 [⌧⌫i , ⌧

⌫
i + �⌫i ). The dynamics of the remaining number of stocks to be bought before T is thus

given by :

Q⌫
t = Q

0

�
Z t

0

q(⌫s)ds

where q is now defined as q(e) = e1e 6=$. It follows that the cumulated wealth’s dynamic is

Y ⌫
t = 0 +

Z t

0

S̃rq(⌫r)dr = 0 +

Z t

0

(Sr + ⌘(⌫r, Sr, Vr))q(⌫r)dr ,

where ⌘ is a given market impact function.
If the number Q

0

of shares is not liquidated at time T , the remaining part Q⌫
T is instantaneously bought on the

market at the price ST + c(Q⌫
T , ST , VT ), for some Lipschitz continuous function c.

The total cost after the final transaction is thus given by :

Y ⌫
T + (ST + c(Q⌫

T , ST , VT )) (Q
⌫
T )

+ .

The aim of the controller is to minimize the expectation of the quantity

`(Y ⌫
T + (ST + c(Q⌫

T , ST , VT )) (Q
⌫
T )

+)

for some convex function ` with polynomial growth.

Numerics. We consider the following set of parameters. The trading period corresponds to a period of 3 hours. The
price process is assumed to follow a Black and Scholes dynamics with zero drift St = S

0

e�
1

2

�2t+�W
t , where S

0

:= 13
and the annualized volatility is 25%. Adding a drift would only change the optimal strategy in an obvious manner,
depending on its sign. We assume a deterministic evolution of the instantaneous volume traded on the market (Vt)tT

as given below. It corresponds to an intensity in minutes. The impact function ⌘ is given by ⌘(e, v) = 0.4(e/v)1.1.
This coincides with plausible calibrated data. We take � = 5 minutes. For this numerical test, we restrict to values
of the duration in the set 5, 10, . . . , 60 minutes. The di↵erent values of the buying rate are 50, 100, 150, . . ., 500. It
correspond to numbers of bought stocks per minute.

The final cost is given by c(Q, v) = ⌘(Q/(0.417v)), which implicitly means that the trader has 25 seconds to finalize
the operation, i.e. he must buy Q in 0.417 minutes at a rate Q/0.417.

We consider two di↵erent types of functions ` : either ` is the identity, `(r) = r, or ` is of exponential type,

`(r) = e10
�5r ^ 100. The value 100 corresponds to more than four times the cost evaluated with the exponential

function r 7! e10
�5r of the operation which consists in buying 15000 stocks with a constant rate, assuming that the

market volume takes the minimal value corresponding to the U -shaped path defined below, and for a constant stock
price equal to 26. This is an extreme scenario. However, truncating the exponential function is needed in order to
ensure that the value function is finite, since a log normal distribution does not admit exponential moments.

We first consider the case where ` is linear. In this case, the controller is risk neutral so that he has no incentive to
buy the stock quickly because of a risk of increase of the price (recall that here the price is a martingale). In Figure 9
and Figure 10, we compare the case where the market volume is constant Vt = 50000, on the left, to the case where the
market volume is strongly U-shaped : Vt = 50000(1.1�0.9 sin(⇡t/T )) with T = 180 minutes. This volume is also given
per minutes. Both figures provide the optimal buying rate in terms of the remaining time T � t and the remaining
quantity to buy Qt, for St = S

0

. A typical path has to be read from north-west to south-east, since Q decreases as
time goes buy. As expected, when the path of the market volume is U-shaped the optimal rate strongly decreases in
the middle of the period, when the market volume is low and the impact on the price of the stock is high. This is
compensated by a higher rate at the beginning of the period.

In Figure 13 and Figure 14, we provide the maximal value of the optimal duration �. Recall that the existence
of multiple optima is possible since there is no additional cost related to the launching of a new slice, see Remark
1. In most cases, the maximal value is strictly above the minimal threshold of 5 minutes. This support our choice of
considering the duration as a control, even in the absence of a cost associated to a change of parameters : when a
duration of, e.g., 15 minutes is optimal, the trader can let the algorithm run for this time period without having to
launch it again every 5 minutes, and thus take care of his other positions.

In the case where the market volume is strongly U-shaped, it is smaller at the beginning of the trading period, in
comparison to the constant volume case. This is due to the fact that the algorithm knows that the market volume is
going to decrease strongly (since it is deterministic) and that he will need to reduce the buying rate. It is small near
the terminal time because of the constraint t + �  T . When looking at the picture backward in time, i.e. as T � t
increases, we see that the maximal value first increases and then drops down very quickly. The first phenomena is due
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to the fact that the buying rate is essentially kept constant at its maximal value near the terminal time. Then, this
rate decreases as the algorithm has more time to buy the shares. The period during which the algorithm reduces the
buying rate naturally coincides with a lower duration.

We next consider the case where ` is of exponential type. The optimal buying rates are reported in Figures 11-12.
Because the controller is now risk adverse, he has an incentive to buy the stocks more quickly in order to avoid an
increase of the price. This can be seen by comparing Figures 11-12 with Figures 9-10. However, we do not observe
significant changes in the maximal optimal duration.

Figure 9 – Buying rate - flat volume - Linear cost Figure 10 – Buying rate - U-shaped volume - Linear cost

Figure 11 – Buying rate - flat volume - Exponential cost
Figure 12 – Buying rate - U-shaped volume - Exponential
cost
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Figure 13 – Latency period - flat volume - Linear cost
Figure 14 – Latency period - U-shaped volume - Linear
cost

Figure 15 – Latency period - flat volume - Exponential
cost

Figure 16 – Latency period - U-shaped volume - Expo-
nential cost
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1.3 Controlling the Trading Process by Prices

This section belong to the most covered viewpoint on optimal trading by applied mathematics : the use of stochastic
control to deduce optimal trading strategies from a model on which the dynamic programming principle applies.

In these kind of article, all is modelled a way suited to obtain easy to write PDEs : time is continuous, point
processes intensities have an exponential dependence to controls, etc.

The two works presented here share the same underlying logic :
– controlling the trading using “contribution prices”, like a market maker would do,
– a model of the probability to be “hit” at a given distance � of the midpoint (or other any reference price), follows
a point process with an exponential intensity A exp�k� , following [Avellaneda & Stoikov, 2008]

– the capability to include a trend to the underlying process, but no dependence between the trend and a potential
asymmetry of the intensities of incoming selling and buying orders.

This work has to be put in perspective with other optimal trading frameworks. Like [Bayraktar & Ludkovski, 2012]
with a less generic utility function than ours. [Kharroubi et al. , 2013, Guilbaud & Pham, 2011] cover a lot of dif-
ferent aspects of optimal trading. A recent and very interesting stream of research targets to exploit exogenous in-
formation ; [Cartea et al. , 2011] is a typical reference. Optimal trading of options is not covered here but a very
good survey Soner [Gökay et al. , 2011] gives good references, just cite [Li & Almgren, 2014, Guéant & Pu, 2013,
Stoikov & Saglam, 2009, El Aoud & Abergel, 2014] as entry points, the latter being very interesting in the sense it
mixes options trading and hedging on the underlying as a coupled optimal market making problem.

1.3.1 Optimal Market Making

This Section has been published as a part of Dealing with the inventory risk : a solution to the market making
problem (2013 Mathematics and Financial Economics 4, 477–507) [Guéant et al. , 2013]

Setup of the model. Let us fix a probability space (⌦,F ,P) equipped with a filtration (Ft)t�0

satisfying the usual
conditions. We assume that all random variables and stochastic processes are defined on (⌦,F , (Ft)t�0

,P).
We consider a high-frequency market maker operating on a single stock We suppose that the mid-price of this stock

or more generally a reference price of the stock moves as an arithmetic Brownian motion

dSt = �dWt

The market maker under consideration will continuously propose bid and ask prices denoted respectively Sb
t and Sa

t

and will hence buy and sell shares according to the rate of arrival of market orders at the quoted prices. His inventory
q, that is the (signed) quantity of shares he holds, is given by

qt = N b
t �Na

t

where N b and Na are the point processes (independent of (Wt)t) giving the number of shares the market maker
respectively bought and sold (we assume that transactions are of constant size, scaled to 1). Arrival rates obviously
depend on the prices Sb

t and Sa
t quoted by the market maker and we assume, in accordance with the model proposed

by Avellaneda and Stoikov [Avellaneda & Stoikov, 2008] , that intensities �b and �a associated respectively to N b and
Na depend on the di↵erence between the quoted prices and the reference price (i.e. �bt = St � Sb

t and �at = Sa
t � St)

and are of the following form :

�b(�b) = Ae�k�b = A exp(�k(s� sb)) �a(�a) = Ae�k�a = A exp(�k(sa � s))

where A and k are positive constants that characterize the liquidity of the stock. In particular, this specification means
– for positive �b and �a – that the closer to the reference price an order is posted, the faster it will be executed.

As a consequence of his trades, the market maker has an amount of cash evolving according to the following
dynamics :

dXt = (St + �at )dN
a
t � (St � �bt )dN b

t

To this original setting introduced by Avellaneda and Stoikov ([Avellaneda & Stoikov, 2008], itself following par-
tially Ho and Stoll [Ho & Stoll, 1981]), we add a bound Q to the inventory that a market maker is authorized to have.
In other words, we assume that a market maker with inventory Q (Q > 0 depending in practice on risk limits) will
never set a bid quote and symmetrically that a market maker with inventory �Q, that is a short position of Q shares
in the stock under consideration, will never set an ask quote. This realistic restriction may be read as a risk limit and
allows to solve rigorously the problem.

Now, coming to the objective function, the market maker has a time horizon T and his goal is to optimize the
expected utility of his P&L at time T . We will focus on CARA utility functions and we suppose that the market maker
optimizes :

sup
(�a

t

)

t

,(�b
t

)

t

2A
E [� exp (��(XT + qTST ))]

where A is the set of predictable processes bounded from below, � is the absolute risk aversion coe�cient characterizing
the market maker, XT is the amount of cash at time T and qTST is the evaluation of the (signed) remaining quantity
of shares in the inventory at time T (liquidation at the reference price ST
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Characterization of the optimal quotes. The optimization problem set up in the preceding section can be
solved using the classical tools of stochastic optimal control. The first step of our reasoning is therefore to introduce
the Hamilton-Jacobi-Bellman (HJB) equation associated to the problem. More exactly, we introduce a system of
Hamilton-Jacobi-Bellman partial di↵erential equations which mainly consists of the following equation (for |q| < Q,
other cases can be found in [Guéant et al. , 2013]) indexed by q 2 {�Q, . . . , Q} for (t, s, x) 2 [0, T ]⇥ R2 :

@tu(t, x, q, s) +
1

2
�2@2ssu(t, x, q, s)

+ sup
�b
�b(�b)

⇥

u(t, x� s+ �b, q + 1, s)� u(t, x, q, s)
⇤

+sup
�a

�a(�a) [u(t, x+ s+ �a, q � 1, s)� u(t, x, q, s)] = 0.

To solve these equations we will use a change of variables based on two di↵erent ideas. First, the choice of a CARA
utility function allows to factor out the Mark-to-Market value of the portfolio (x + qs). Then, the exponential decay
for the intensity functions �b and �a allows to reduce the Hamilton-Jacobi-Bellman (HJB) equations associated to our
control problem to a linear system of ordinary di↵erential equations :

Proposition 1 (Change of variables for (HJB)) Let us consider a family (vq)|q|Q of positive functions solution
of :

8q 2 {�Q+ 1, . . . , Q� 1}, v̇q(t) = ↵q2vq(t)� ⌘ (vq�1

(t) + vq+1

(t))

and on the borders : v̇Q(t) = ↵Q2vQ(t)� ⌘vQ�1

(t), v̇�Q(t) = ↵Q2v�Q(t)� ⌘v�Q+1

(t)

with 8q 2 {�Q, . . . , Q}, vq(T ) = 1, where ↵ = k
2

��2 and ⌘ = A(1 + �
k )
�(1+

k

�

).

Then, u(t, x, q, s) = � exp(��(x+ qs))vq(t)
� �

k is solution of (HJB).

Then, the following proposition proves that there exists such a family of positive functions :

Proposition 2 (Solution of the ordinary di↵erential equations) Let us introduce the matrix M defined by :

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

↵Q2 �⌘ 0 · · · · · · · · · 0

�⌘ ↵(Q� 1)2 �⌘ 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 �⌘ ↵(Q� 1)2 �⌘
0 · · · · · · · · · 0 �⌘ ↵Q2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where ↵ = k
2

��2 and ⌘ = A(1 + �
k )
�(1+

k

�

).

Let us define
v(t) = (v�Q(t), v�Q+1

(t), . . . , v
0

(t), . . . , vQ�1

(t), vQ(t))
0

= exp(�M(T � t))⇥ (1, . . . , 1)0

Then, (vq)|q|Q is a family of positive functions solution of the equations of Proposition 1.

Using the above change of variables and a verification approach, we are now able to solve the stochastic control
problem, that is to find the value function of the problem and the optimal quotes :

Theorem 1 (Solution of the control problem) Let consider (vq)|q|Q as in Proposition 2.

Then u(t, x, q, s) = � exp(��(x+ qs))vq(t)
� �

k is the value function of the control problem.
Moreover, the optimal quotes are given by :
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and the resulting bid-ask spread quoted by the market maker is given by :

 ⇤(t, q) = �1
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1.3.2 Optimal Trading with Limit Orders

This Section has been published as a part of Optimal Portfolio Liquidation with Limit Orders (2012 SIAM
Journal on Financial Mathematics 13, 740–764) [Guéant et al. , 2012]

Setup of the model. Let us fix a probability space (⌦,F ,P) equipped with a filtration (Ft)t�0

satisfying the usual
conditions. We assume that all random variables and stochastic processes are defined on (⌦,F , (Ft)t�0

,P).
We consider a trader who has to liquidate a portfolio containing a large quantity q

0

of a given stock. We suppose
that the reference price of the stock (which can be considered the mid-price or the best bid quote for example) moves
as a brownian motion with a drift :

dSt = µdt+ �dWt

The trader under consideration will continuously propose an ask quote denoted Sa
t = St+ �at and will hence sell shares

according to the rate of arrival of aggressive orders at the prices he quotes.
His inventory q, that is the quantity he holds, is given by qt = q

0

�Na
t where Na is the jump process counting the

number of shares he sold . We assume that jumps are of unitary size and it is important to notice that 1 share may
be understood as 1 bunch of shares, each bunch being of the same size . Arrival rates obviously depend on the price
Sa
t quoted by the trader and we assume that intensity �a associated to Na is of the following form :

�a(�a) = A exp(�k�a) = A exp(�k(sa � s))

This means that the lower the order price, the faster it will be executed.
As a consequence of his trades, the trader has an amount of cash whose dynamics is given by :

dXt = (St + �at )dN
a
t

The trader has a time horizon T to liquidate the portfolio and his goal is to optimize the expected utility of his
P&L at time T . We will focus on CARA utility functions and we suppose that the trader optimizes :

sup
(�a

t

)

t

2A
E [� exp (��(XT + qT (ST � b)))]

where A is the set of predictable processes on [0,T], bounded from below, where � is the absolute risk aversion
characterizing the trader, where XT is the amount of cash at time T , where qT is the remaining quantity of shares in
the inventory at time T and where b is a cost (per share) one has to incur to liquidate the remaining quantity at time
T

Optimal quotes. The optimization problem set up in the preceding section can be solved using classical Bellman
tools. To this purpose, we introduce the Hamilton-Jacobi-Bellman equation associated to the optimization problem,
where u is an unknown function that is going to be the value function of the control problem :

(HJB) @tu(t, x, q, s) + µ@su(t, x, q, s) +
1

2
�2@2ssu(t, x, q, s)

+ sup
�a

�a(�a) [u(t, x+ s+ �a, q � 1, s)� u(t, x, q, s)] = 0

with the final condition :
u(T, x, q, s) = � exp (��(x+ q(s� b)))

and the boundary condition :
u(t, x, 0, s) = � exp (��x)

To solve the Hamilton-Jacobi-Belmann equation, we will use a change of variables that transforms the PDEs in a
system of linear ODEs.

Proposition 3 (A system of linear ODEs) Let us consider a family of functions (wq)q2N solution of the linear
system of ODEs (S) that follows :

8q 2 N, ẇq(t) = (↵q2 � �q)wq(t)� ⌘wq�1

(t)

with wq(T ) = e�kqb and w
0

= 1, where ↵ = k
2

��2, � = kµ and ⌘ = A(1 + �
k )
�(1+

k

�

).

Then u(t, x, q, s) = � exp(��(x+ qs))wq(t)
� �

k is solution of (HJB).

The change of variables used in Proposition 2.1 is based on two di↵erent ideas. First, the choice of a CARA utility
function allows to factor out the Mark-to-Market value of the portfolio (x+ qs). Then, the exponential decay for the
intensity allows to introduce wq(t) and to end up with a linear system of ordinary di↵erential equations.

Now, using this system of ODEs, we can find the optimal quotes through a verification theorem :

Theorem 2 (Verification theorem and optimal quotes) Let us consider the solution w of the system (S) of

Proposition 2.1. Then, u(t, x, q, s) = � exp(��(x + qs))wq(t)
� �

k is the value function of the control problem and the
optimal ask quote can be expressed as :

�a⇤(t, q) =
1

k
ln

✓

wq(t)

wq�1

(t)

◆

+
1

�
ln
⇣

1 +
�

k

⌘
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Simple case : optimal price. We now derive tractable formulae for w and for the optimal quotes :

Proposition 4 (The no-drift/no-volatility case) Assume that � = 0 and that there is no drift (µ = 0).
Let us define :

wq(t) =
q
X

j=0

⌘j

j!
e�kb(q�j)(T � t)j

Then w defines a solution of the system (S) and the optimal quote is :

�a⇤(t, q) = �b+ 1

k
ln

 

1 +
⌘q

q! (T � t)q

Pq�1

j=0

⌘j

j! e
�kb(q�j)(T � t)j

!

+
1

�
ln
⇣

1 +
�

k

⌘

In this no-drift/no-volatility case, the optimal quote still is an increasing function of A and a decreasing function
of � . If the above closed-form formula does not shed any particular light on the dependence on k, it highlights the
role played by the liquidation cost b. Di↵erentiating the above formula with respect to b, we indeed get a negative sign
and therefore that optimal quote is a decreasing function of b. Since b is the cost to pay for each share remaining at
time T , an increase in b gives an incentive to speed up execution and hence to lower the quotes.

We also see that the optimal quote is bounded from below by �b+ 1

� ln
�

1 + �
k

�

. Since execution is guaranteed at
price s� b at time T , it is in particular natural in the absence of price risk, that quotes never go below �b.

Now, if one wants to remove risk aversion with respect to both price risk and non-execution risk, one can consider
the limit of the above solution when � tends to 0.

One then obtains :

�a⇤(t, q) = �b+ 1

k
ln

 

1 +
Aq

eqq! (T � t)q

Pq�1

j=0

Aj

ejj!e
�kb(q�j)(T � t)j

!
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1

k

and this is the result of Bayraktar and Ludkovski [Bayraktar & Ludkovski, 2012] in the case b = 0, because they do
not consider any liquidation cost. In particular, the optimal quote of [Bayraktar & Ludkovski, 2012] does not converge
to a limit value as T tends to +1, but rather increases with no upper bound. This is an important di↵erence between
the risk-neutral case and our risk-adverse framework.

Simple case : optimal trading curve. Let us now consider the limiting case b ! +1. Sending b to infinity
corresponds to a situation in which a very high incentive is given to the trader for complete liquidation before time
T . If we look at the Almgren-Chriss-like literature on optimal execution, the authors are often assuming that qT = 0
. Hence, if one writes the value functions associated to most liquidity-consuming optimal strategies, it turns out that
they are equal to �1 at the time horizon T except when the inventory is equal to nought (hence b = +1, in our
framework). However, here, due to the uncertainty on execution, we cannot write a well-defined control problem when
b is equal to +1. Rather, we are interested in the limiting behavior when b! +1, i.e. when the incentive to liquidate
before time T is large.

By analogy with the initial literature on optimal liquidation [Almgren & Chriss, 2000], we can also have some
limiting results on the trading curve.

Hereafter we denote wb,q(t) the solution of the system (S) for a given liquidation cost b, �a⇤b (t, q) the associated
optimal quote and qb,t the resulting process modeling the number of stocks in the portfolio.

More results can be obtained in the no-volatility case :

Proposition 5 (no-volatility case, b! +1) Assume that � = 0 and consider first the case µ 6= 0. We have :

lim
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⌘q

q!

✓

e�(T�t) � 1

�

◆q

The limit of the optimal quote is :
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The limit of the associated trading curve is V (t) = q
0
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.

Now, in the no-volatility/no-drift case (� = µ = 0), similar results can be obtained, either directly or sending µ to
0 in the above formulae :

lim
b!+1

wb,q(t) =
⌘q

q!
(T � t)q

The limit of the optimal quote is given by :
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The limit of the associated trading curve is V (t) = q
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2 Etude de la Microstructure

La section précédente a détaillé plusieurs cadres pour l’optimisation du passage de gros ordres sur un marché
à enchères doubles. On y a vu apparâıtre des quantités comme la volatilité intraday, les volumes habituellement
échangés, le Bid-Ask spread, le mid-price, ou la probabilité d’obtenir une transaction lorsqu’on est à une distance
fixée de ce mid-price. La Section 1.1.2 a notamment détaillé le cas où on veut prendre en compte la variabilité des
estimateurs de certaines de ces grandeurs. En pratique il est indispensable de bien comprendre pourquoi ces grandeurs
sont particulièrement importantes, et comment les estimer au mieux.

L’étude de la microstructure tente de répondre à ces questions. Elle va même plus loin dans le sens où ce champ
de recherche passe parfois par l’étude théorique des interactions entre peu de participants, afin de comprende en quoi
des équilibres long terme peuvent émerger. Le modèle de market impact de Kyle [Kyle, 1985] est typiquement de cette
sorte : il n’utilise pas de données mais postule quelques interactions simples entre un market maker (i.e. un teneur
de marché en français) et un investisseur qui désire acheter un grand nombre d’actions. Il en déduit l’existence d’un
market impact bien superieur à ce que les économistes avaient en tête à l’époque

D’autres approches plus empiriques complètent ces points de vue théorique : à l’aide de bases de données des
ordres passés par un gestionnaire de portefeuille et en les confrontant aux données publiques de toutes les transactions
atomiques survenue sur le ou les marchés concernés, on peut essayer de dégager des modèles statistiques. Le modèle
de market impact utilisé Section 1.1 a été construit de cette façon.

Dynamique des carnets d’ordres. L’augmentation des capacité d’acquisition, de stockage, et de traitement (que
l’on qualifie souvent de big data) permet une étude de plus en plus fine des comportements joints pendant les jeux
d’enchères qui se déroulent en temps continu sur les marchés électroniques. [Lehalle et al. , 2013] détaille l’évolution
récente de ces jeux d’enchères, et explique pourquoi la crise financière de 2008 et les évolutions règlementaires amènent
de plus en plus de participants vers des marchés électroniques.

Comme cela a été détaillé dans l’introduction de la section précédente (cf. [Lehalle, 2013] pour plus de détails),
les participants aux jeux d’enchère envoient des messages à un serveur central avec leurs intentions. Ces messages
détaillent le sens (achat ou vente), le prix et la quantité des intérêt du participant. Tout nouveau message est comparé
à la liste de ceux déjà stockés dans la mémoire du serveur d’appariement (i.e. Matching Engine en anglais) :

Si un message entrant à la vente (respectivement à l’achat) a un prix inférieur (resp. supérieur) à celui d’un message
d’achat (resp. de vente) déjà présent en mémoire :

Alors une transaction est générée entre les deux parties (i.e. l’acheteur et le vendeur) ;

Sinon le message entrant rejoint le stock des messages mémorisés par le serveur. Ce stock s’appelle le Carnet d’Ordres
(ou Carnet d’Ordres Limites : LOB, Limit Order Book en anglais) , en référence aux petits carnets de papier sur
lesquels les courtiers notaient leurs achats et leurs ventes pendant le déroulement de la criée, afin de procéder à
leur dépouillement en fin de journée (cf. [Muniesa, 2003]).

Ces carnets d’ordres sont organisés par limite de prix ; croissantes pour les ventes et décroissantes pour les achats.
On s’attend à ce que la dynamiques d’un LOB (acronyme anglais de Limit Order Book) soit soumise à quelques e↵ets
simples :

(i) Les “premières limites” du LOB sont manifestement les plus informatives puisque les acheteurs proposant les
plus hauts prix et les vendeurs proposant les plus hauts prix sont les plus susceptibles de participer aux prochaines
transactions.

(ii) Le déséquilibre entre les deux premières limites (achat et vente) conditionne fortement le signe de la prochaine
transaction (i.e. sera-t-elle initiée par un nouveau message d’achat ou de vente ?).

(iii) Les autres limites, plus profondes, auront quant à elles une influence sur la dynamique future des transaction
et des messages lorsque le prix “les atteindra”. Ce sont elles qui permettront ou non au prix de continuer à
di↵user. Ou au contraire qui le ramèneront à ses niveaux précédents.

La Section 2.1 apporte un éclairage empirique et théorique à cette dynamique a priori sophistiquée. Elle documente
aussi les réponses possibles à des interrogations du type : “sachant l’état des limites, quelle est la probabilité d’obtenir
une transaction à horizon T si on envoie un message d’achat au kème meilleur prix ?”.

Dégageant ainsi une modélisation markovienne du LOB, cette section montre comment il est nécessaire d’ajouter
une composante de saut au prix (paramètrée par ✓ dans ce modèle dit Queue Reactive) pour obtenir un modèle réaliste
à toutes les échelles.

La nécessité d’ajouter ainsi une composante exogène à la dynamique des carnets d’ordres pour compenser la
composante “retour à la moyenne” d’un modèle markovien de carnets peut être interprété de plusieurs façons. Du
point de vue du choix d’un modèle, il faut noter qu’il est par exemple possible remplacer cette composante exogène ✓
par la distribution conditionnelle d’une limite de prix sachant que la limite précédente vient de se vider, comme dans
[Cont & De Larrard, 2013].

Dans les deux cas émerge l’idée que certains participants décident de tenir un changement de prix pour aquis ou
non suivant un critère extérieur à la simple dynamique markovienne des carnets (ce qui est conforme au fait stylisé
(iii) énuméré précédemment). Cela ne devrait pas surprendre le lecteur de la Section 1 sur le trading optimal puisque
qu’on y détaille comment la fonction d’utilité d’un participant (prenant en compte les prix courants, leur historique,
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et surtout son propre inventaire, qui n’est pas observable par le reste des joueurs) le pousse à participer plus ou moins
au jeu d’enchères (et donc à accepter plus ou moins le prix).

Chaque participant implémente une optimisation à la volée, qui prend en compte non seulement les observables
microscopiques passés, mais aussi ses propres informations et surtout son inventaire et ses contraintes individuelles.

Afin de bien comprendre le rôle de ces stratégies individuelles, la Section 2.2 propose une modélisation de la
dynamique des deux premières limites du carnet d’ordres (celle des vendeurs et celle des acheteurs), lorsque chacun
met en œuvre une stratégie de trading optimal. Elle recours à un modèle de Jeux à Champ Moyen (MFG : Mean Field
Game en anglais).

Modélisation du Market Impact. Au delà d’une meilleure compréhension de la dynamique des carnets, qui peut
nourrir les modèles utilisés dans les Sections 1.3 et 3.2, une des composantes primordiales de la microstructure reste
le Market Impact. Il s’agit du mouvement de prix dû à un pression durable à l’achat ou à la vente d’un gros ordre. De
cas chroniques démontrent l’existence de ce phénomène (comme la liquidation de l’inventaire de Jérôme Kerviel par la
Société Générale,ou bien les mouvements de prix du 19 Juillet 2012 sur les marchés américains [Lehalle et al. , 2012]).
Des bases de données de plusieurs centaines de milliers de métaordres (i.e. un gros ordre qui va être découpé en
plusieurs transactions, souvent suivant une stratégie de trading optimal) permettent de mettre à jour le même e↵et
avec moins d’intensité pour des tailles nettement moins importantes que l’inventaire de Kerviel.

La Section 2.3 explicite et propose des modèles pour toutes les phases du market impact :
– le market impact temporaire : le mouvement de prix entre le début et la fin d’un métaordre ;
– le market impact transient : la dynamique temporelle du prix entre le début et la fin d’un métaordre ;
– la relaxation du market impact : le mouvement de prix après la fin du métaordre ;
– l’e↵et permanent suite à l’impact : ce qui reste dans le prix plusieurs jours après la fin du métaordres.

Cette section propose aussi un modèle jouet basé sur les processus de Hawkes.

English introduction to the section

Orderbooks modelling. Orderbook modelling is at the crossing of a lot of di↵erent research strands :

Approach Z – Zero intelligence models (like [Smith et al. , 2003]), that are unconditioned models using data to
fit marginal distributions on their first moments only. This has been the first attempts of modelling order-
books dynamics a statistical way, and that for they are of importance (for a quite exhaustive review see
[Chakraborti et al. , 2011]).

Approach F – Flow driven (or event driven) dynamics, with papers focussing on the link between the price moves and
the quantities at first limits. Typical papers of this kind are [Cont et al. , 2008] and [Cont & De Larrard, 2013].
their major take away is to provide asymptotics of the price di↵usive behaviour. One of their very interesting
feature is they replace the marked process of price moves by the stopping times generated by the crossing of the
vertical and horizontal axis by a two dimensional Markovian process (a two dimensional Brownian motion at
the limit). Another interesting paper using a similar angle is [Gareche et al. , 2013], where authors extend the
previous dynamics in a PDE framework and comfort it with real data.

Approach E – Economic models, like [Roşu, 2009] or [Jaisson, 2014] are more theoretic and adopt a global equili-
brium viewpoint.

Approach D – more descriptive than microfunded empirical studies exist too. They span a broad spectrum of models
from the “uncertainty bands” one ([Robert & Rosenbaum, 2011], focussing on the tick size and the local time of
Brownian motions), to more liquidity driven ones (like Pham [Fodra & Pham, 2013]). The Hawkes models (see
[Bacry et al. , 2015]) are part of this family of descriptive models, with a success due to their self exciting or
inhibitory natural properties.

The works presented here is at the crossing of these di↵erent approaches. First of all the Queue Reactive model starts
with simple statistics on the distribution of di↵erent flows increasing or decreasing the queues of liquidity providers
waiting for a transaction : insertion of new limit orders, cancellations and trades (this flow being the intensity of liquidity
consumers, accepting to pay the bid-ask spread in exchange of the immediacy and the certainty of a transaction). Going
further than the first limits only (unlike most models of Z and F), it considers these intensities for any limit. It shows
these point processes have to be conditioned by the state of, not only the limit on the same side (ask for sellers and
bid for buyers), but also of the best opposite one. At this stage it shows that for the considered stocks, the three first
limits are enough to understand liquidity formation.

Going one step forward, it shows this Markovian process of liquidity is not enough to reproduce the price formation.
At this point it joins the models of F, and use a straightforward way to catch up with the understanding provided
by models E : since the price generated by the Markovian process is not di↵usive enough, let’s add a component
(parametrized by ✓) modelling the “acceptance by market participants” of a new price. It reproduces the di↵usive
property of [Cont & De Larrard, 2013] at the limit, in which the size of any “discovered limit” (after the consumption
of 100% of the 1st limit) is drawn according to an iid random variable F. Without the e↵ect provided by ✓ in the QR
model, the size of any “discovered limit” is too large to enable di↵usion.

The need of “more memory” than the one provided by a Markovian process of liquidity to obtain a di↵usive limit
can be obtain di↵erent ways : Z and F do not care that much about the size of limits after the first ones, D starts from
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a di↵usive process and adjusts it to emulate mean reversion at small scales. The assumption underlying the E approach
is tho distinguish the behaviours at small time scales (where agents competes for liquidity) from the behaviours at
large time scales (where they compete for prices), stems from agents utility functions. To understand this viewpoint it
is enough to come back to our Section 1 : agents are implementing stochastic control (explicitly if they read our work,
implicitly otherwise). In Section 1, it is assumed, via a implicit mean field assumption, the actions of other agents sum
up to a background noise. On the path from small scales to large ones, it seems this assumption no more holds.

Section 2.2 explores a continuation of this mean field approximation and proposes a mean field game (MFG) model
for orderbook dynamics.

Thanks to this MFG view, one can question and study the importance of taking into account the optimal behaviour
of all market participants, without any mean field approximation, but inside a mean field game. The work of Section 2.2
focus on orderbook dynamics and obtain the stady-state behaviour of strategic agents trading in a pro-rata orderbook
(see [Field & Large, 2008] for details of this kind of matching mechanisms). The result on pro-rata books can be
extended to first in first out (FIFO) ones under the assumption (like in [Roşu, 2009]) that participant can cancel and
re enter their orders at any time.

More than obtaining the stationary joint distribution of the size of the two first queues, the study deciphers the
e↵ect of having participants with di↵erent speeds in the same market. Paying attention that all participants have the
same flow on average (i.e. size of their orders times the intensity of the Poisson process governing the decision rate),
we have shown how liquidity stabilizes with the diversity of participants speeds. The more diverse speed, the more
stable states around the Q

bid

= Q
ask

diagonal and the smaller the e↵ective bid-ask spread. We could also show that,
under our MFG model, this apparent improvement of the liquidity benefits more the faster agents than to the others.

Market Impact. Another important component of market microstructure is the market impact arising from large
metaorders. This topic appear at largest scale than the one of orderbook dynamics. It appears when a large trader
sells or buys a lot of shares ; the trading pressure on the auction mechanisms pushes the price a detrimental way (i.e.
up for a buy order and down for a sell order).

We will not go in the details of impact of atomic trades, see [Lehalle & Dang, 2010] for bibliographic references and
an empirical study of the part price formation process due to market orders, and ref :deal/book for a decomposition
of prices moves between quotes tmoves and trade impact.

A good understanding of market impact and of its components allows traders to minimize it, and therefore is at
the advantage of all market participants, since it maintains the price closer to its faire value or latent value. The link
between this latent value and the impact is of importance : does the trading pressure from t

0

to tf drives the price to
a value that would be nevertheless attained at tf , because the price move comes from an informational e↵ect rather
than a mechanical one on orderbooks ? or does the price moves only when participants trade ? Being a little more
formal, we could follow [Lehalle et al. , 2010] and design a theoretical model with two main components

– market participants’ views on the price, aggregated in a latent or theoretical orderbook Lt,
– the real orderbooks Bt,

and condition the arrival of events on Bt to the distance between Bt and Lt. It can be seen as a continuation of the
previous discussion on mixing the Markovian process of liquidity of Bt by the acceptance or not of the price by market
participants because of the distance between B and L (i.e. participants “accept” a price move when it drives B to L,
and let it follow the upper Markov process when B is already to L).

The work presented in Section 2.3 is more data-driven that a theoretical model. Nevertheless there is an attempt
to explain our observations using a Hawkes process (coming from approach D). This study is the only one describing
market impact at all scales :

– first the intraday formation of the impact (transient phase),
– then after a peak (the temporary impact, that can be approximated by a square root of the daily participation

rate), its decay,
– and after few days, once the impact of correlated trades is removed (in an attempt to reproduce the methodology

of [Gomes & Waelbroeck, 2013] and [Brokmann et al. , 2014]), the remaning price move can be explained by
investors anticipations (given the assumption investors of our database expect to see the systematic moves of
the price in a CAPM like model, see [Fama & French, 2003] about the CAPM).

The added value of this work is to give a consistent explanation of metaorders market impact at any scale, at
the daily scale it provides a separation between information-driven move and trading-pressure one. At this stage it is
not possible to make the di↵erence between pure information-driven price moves (like when a news is simultaneously
disclosed to all market participants), and the coordinated market impact of participants that are not in the database,
but are progressively trading this information, hence building the price moves by their own impact.

May be studies on market impact at small scales during the trading of large orders (like [Lehalle & Dang, 2010]),
could provide insight to answer to this informational puzzle. Full databases like the bitcoin one used in [Donier & Bonart, 2014]
could also provide answers.
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Figure 17 – First Limit Intensities, France Telecom

2.1 Limit Orderbook Dynamics : the Queue Reactive Model

This Section has been published as a part of Simulating and analyzing order book data : The queue-reactive
model (accepted by UASA : Journal of the American Statistical Association) [Huang et al. , 2013]

2.1.1 A Collection of Models

Model I : Collection of independent queues. In this model, we assume independence between the queues at
di↵erent limits. Thus, the order flow intensities at di↵erent limits are functions of their own queue size. To have inde-
pendence between the di↵erent limits, we also suppose that market orders sent to Qi consume directly the quantities
available at Qi, without consuming firstly the liquidity which may be present at limits closer to pref . This assumption
is reasonable for large tick assets for which the intensity of the market order flow is almost fully concentrated on the
first limits to the left and to the right of the reference price (since the spread is essentially equal to one tick). Note
that consequently, we replace the market buy/sell flows NM

buy and NM
sell by market order flows sent at each limit NM

i .
Hence, the principle of “price priority” that states that market orders should be matched with the current best bid/ask
o↵er is neglected in this model.

The flows NL
i (t), N

C
i (t) and NM

i (t) are modeled as independent point processes (with respect to the index i). Fur-
thermore, the associated jump sizes are equal to one at each jump time. Their intensities �Li ,�

C
i and �Mi are assumed

to be functions of the corresponding queue size Qi. The values of these intensities when Qi = n are denoted by �Li (n),
�Ci (n) and �

M
i (n). Under the above assumptions, the LOB becomes a queuing system of 2K independent queues, and

each queue is a birth and death process.
In Figures 17, 18, 19, based on data collected from Jan 2010 to March 2012, we present the estimated intensities and
the arrival/departure ratios ⇢i(n), defined as :

⇢i(n) =
�Li (n)

(�Ci (n+ 1) + �Mi (n+ 1))

Data at Qi and Q�i are aggregated together (by combining simply the two collected samples) in order to estimate
the intensities at distance i� 0.5 ticks to the reference price. Confidence intervals in these figures are computed using
central limit approximations detailed in the appendix.

Model II : Two sets of dependent queues. One important element not considered in Model I is the notion of
“best o↵er” limit. Institutional traders and brokers tend to place most of their limit orders in these best limits (defined
as the nearest non-empty bid/ask queue to the reference price), while many market makers, arbitragers and other high
frequency traders stand also in queues behind these best limits. This suggests that the dynamics at Q±2

may not only
depend on their own queue siz, but also on whether they are the current best o↵er limits, that is, whether Q±1

= 0.
Our empirical studies of intensity functions at Q±2

under di↵erent state of (Q±1

, Q±2

) show also a significant pattern
change in the estimated intensity functions at Q±2

when Q±1

becomes zero, while intensity functions at Q±1

stay
almost the same for di↵erent values of Q±2

.
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Figure 18 – Second Limit Intensities, France Telecom

Figure 19 – Third Limit Intensities, France Telecom
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Figure 20 – Q
2

Intensities as a function of M(Q
1

) and its own size, France Telecom

We thus propose to use the following intensity functions for the queue Q±2

: �L
2

and �C
2

(resp. �L�2

and �C�2

) are
functions of 1Q

1

>0

and Q
2

(resp. 1Q�1

>0

and Q�2

). Intensities at Qi, i 6= ±2 remain functions of Qi only. For large tick
assets, the probability that Q±3

, i � 3 is the best ask/bid o↵er limit being negligible, it is thus reasonable to assume
that market orders are only sent to Q±1

, Q±2

. This enables us to keep the independence property between Q±3

and
(Q±1

, Q±2

). When Q
1

(resp. Q�1

) > 0, the market order consumption intensity QM
buy (resp. QM

sell) is a function of Q
1

(resp. Q�1

). When Q
1

(resp. Q�1

) = 0, the market order consumption intensity QM
buy (resp. QM

sell) is a function of Q
2

(resp. Q�2

).

Compared to Model I, Model II includes the price priority principle into the market order arrival processes and a
regime switching for the dynamics at Q±2

, depending on whether Q±2

is the best limit. This model neglects, however,
the interactions between the bid side (Qi, i < 0) and the ask side (Qi, i > 0), which will be studied in Section 2.1.1. The
2K dimensional Markov process can be split into two identical (in law) 2-dimensional Markov processes ((Q�2

, Q�1

)
and (Q

1

, Q
2

)) and (2K � 4) independent queues. Thus the problem is reduced to the study of the 2-dimensional
continuous time Markov jump process (Q

1

, Q
2

).
The dynamics at Q

1

actually depend only on its size, the estimated values of �
1

are thus very close to those estimated
in Model I (they are not exactly the same because the recording process is di↵erent) and will not be shown here. The
intensity functions at Q

2

are given in Figure 20.

An agent based interpretation. We develop here a simple agent based trading model in order to explain these two
curves. Suppose we have two kinds of traders in the market, noise traders and arbitragers. Noise traders make trading
decisions regardless to the state of the LOB, while arbitragers adjust carefully their trading behaviors according to
what they see in the LOB. So, we assume that the noise traders send their orders according to a time-homogeneous
Poisson process whereas arbitragers insert orders when they think they can make profit. Consequently, the insertion
rate of limit orders of arbitragers decreases to zero when the corresponding queue size increases to infinity, as the
priority value of a newly inserted limit order is a decreasing function of the corresponding queue size. The observed
limit order insertion intensity function is then the sum of a decreasing function (due to the arbitragers) and a constant
function (due to the noise traders).

Model II belongs to a special class of Markov processes, called Quasi Birth and Death processes (QBD). Their asymp-
totic behaviors can be studied by the matrix geometric method. Definitions for QBD processes and explanations of
the matrix geometric method can be found in the appendix.

Model III : modeling bid-ask dependence. The bid and ask side are treated separately in Model II : the
dynamics at Q

1

and Q�1

are supposed to be independent. In Model III, we remove this assumption and study
interactions between the bid queues and the ask queues. First we define the function Lm,l(x) :

Lm,l(x) = 0, if, x <= m

Lm,l(x) = 1, if, m < x <= l

Lm,l(x) = 2, if, x > l (34)
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Figure 21 – Model III : Joint Distribution of Q�1

, Q
1

, France Telecom

This function splits the queue size into three di↵erent ranges : small ([0,m]), usual ((m, l]) and large ((l,+1)). We set
m the lower 33% quantile value of Q±1

and l the higher 33% quantile value of Q±1

. We assume market participants
at Q±1

adjust their behaviors not only according to the size of the target queue, but also to whether the opposite
queue size is small, usual or large. The functions �L

1

and �C
1

(resp. �L�1

and �C�1

) are modeled as functions of Q
1

and
Lm,l(Q�1

). As in Model II, we suppose that market orders consume quantities at the best limits and are sent only to
Q±1

and Q±2

. When Q
1

> 0 (resp. Q�1

> 0), the market order consumption intensity QM
buy (resp. QM

sell) is assumed
to be function of Q

1

and L(Q�1

) (resp.Q�1

and Lm,l(Q1

) ). Price priority and regime switching at Q±2

are kept in
Model III : �L±2

, �C±2

are, as in Model II, functions of 1Q±1

>0

and Q±2

, and when Q
1

= 0 (resp. Q�1

= 0), the market
order consumption intensity QM

buy (resp. QM
sell) is modeled as a function of Q

2

(resp. Q�2

).

In Model III, the 2K dimensional Markov process can be split into a 4-dimensional Markov process and (2K�4) inde-
pendent queues. Thus the problem is reduced to the study of the 4-dimensional continuous time Markov jump process
(Q�2

, Q�1

, Q
1

, Q
2

). One important feature of Model III is that the queues Q±2

have no influence on the dynamics at
Q±1

. Therefore, we only need to study the 3-dimensional process (Q�1

, Q
1

, Q
2

) (or even the two dimensional problem
Q�1

, Q
1

if one is only interested by the dynamics at Q�1

and Q
1

).

Of course, other choices are possible for the intensity functions at Q±1

. For example, one can consider them as functions
of the first level bid/ask imbalance, defined as Q

1

�Q�1

Q
1

+Q�1

, or simply as functions of the spread size.
– Limit order insertion : we notice that the limit order insertion rate is a decreasing function of its opposite limit’s
size. The curves have similar shapes but di↵erent asymptotic values. In particular, when the opposite queue is
small (blue curve), it is significantly larger than the others. When quantities available at Q�1

are small, the
implicit fair price is probably close to p�1

. Market participants are thus happy to insert orders at Q
1

, where
they either get cheap executions (with respect to the far price), or gain priority value by staying at the queue.

– Limit order cancellation : the cancellation rates for di↵erent ranges of Q�1

are similar in their forms but have
di↵erent asymptotic values. This rate, being an indicator of market participants’ patience, is not surprisingly a
decreasing function of liquidity level at the opposite side.

– Market order consumption : we see that when the liquidity available at Q�1

is abundant, more market orders
are sent to Q

1

. Indeed, in that case, the fair price is closer to the side of Q
1

so that market order are not too
costly.

Asymptotic behaviors in Model III. To obtain the invariant distribution of the order book in Model III, we use
the Monte-Carlo method. We consider 105 simulations of periods of 104 seconds. The theoretical and empirical joint
distributions of Q�1

and Q
1

are shown in Figure 21. As for Model II, the shape of the empirical distribution is well
approximated by the theoretical one. However, the error in estimating the boundary probability at Q±1

= 0 leads to
some overestimation in the theoretical values for this example.
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2.1.2 The Queue Reactive Market Model : Going Further than Orderbooks-driven Dynamics

In the previous paragraphs, we present three di↵erent models. Model I assumes that the trading activities at
di↵erent limits are independent. The only factor that influences traders intention to send limit/market orders, or to
cancel existing orders is the queue size at which these orders will be sent. This assumption is very convenient in order
to focus on the features of the limits at di↵erent distances to the reference price. Furthermore, invariant measures
can be computed explicitly, and they approximate very well the empirical LOB distributions. Model II enlarges the
information set used by Model I by including the notion of “best”, that is, whether the studied limit is the current
best o↵ering limit. Regarding Q±2

, it means that market participants adjust their trading behaviors according to
whether Q±1

is empty. Empirical results show significantly di↵erent behaviors of market participants between this two
situations. Moreover, an agent based explanation for this di↵erence is provided. Also, we design a method which allows
for numerical computation of the LOB distribution. Model III adds dependence between the bid and ask queues. In
this setting, our empirical study enables us to understand the impact of the shape of one side of the order book on
the trading activity on the other side.

Two large tick stocks (France Telecom and Alcatel-Lucent) are considered. We have presented in this section the
empirical results of the stock France Telecom. The comments made for the intensity functions of this stock under
Model I, Model II and Model III apply also to the stock Alcatel-Lucent (in the appendix). Two particularly interesting
empirical facts have been discovered for these large tick assets :

– the sub-linear, increasing, cancellation rate,
– the decreasing limit order insertion rate for non-best limits.

The first of these facts can be viewed as a consequence of the priority value. The second one is probably related to the
existence of arbitragers at those secondary limits.

Asymptotic studies are carried for all these three models. Their results strongly suggest the following important
conclusion :

– For large tick assets, the empirical LOB distribution is actually an asymptotic equilibrium created by market
participants as they act di↵erently in di↵erent states of the LOB.

The Queue Reactive Model. A key aspect in the price dynamics is the shape of the LOB right after a price
change, which is closely linked to the mean reversion ratio of the asset and thus to its volatility. We have seen in the
preceding section that the price fluctuations generated by LOB dynamics alone are usually not su�cient to reproduce
the empirical volatility level, as large queues behind the two best limits create barriers that prevent further price
movement in the same direction and thus push the price back to its previous level.

To overcome this di�culty, we assume that the price process is not only driven by its order book dynamics but also
by some exogenous movements. Hence the “realized” volatility is considered as the combined e↵ect of the “mechani-
cal” volatility due to temporary fluctuations of the LOB and the “informational” volatility due to exogenous market
movements. To that purpose, we suppose that with probability ✓reinit, the state of the LOB is redrawn from its
invariant distribution around the new reference price when it changes. The parameter ✓reinit can be understood as
the percentage of price changes due to exogenous price movements. Indeed, in this case, market participants readjust
very quickly their order flows around the new reference price, as if a new state of the LOB were drawn from its
invariant distribution. A similar approach has been used by Cont et al. in [Cont & De Larrard, 2013] , where they fix
the value ✓reinit to 1 and use the empirically estimated queue distributions immediately after a price move instead of
the invariant distribution at the corresponding queue to reinitialize the state of the LOB.

This new element related to exogenous information is added to the purely order book driven model to build the
“Queue reactive market model”. We calibrate the LOB reinitialization probability ✓reinit and the reference price move
probability ✓ using the 10 minutes standard deviation of the price returns (the volatility) and the mean reversion ratio
⌘. In Figure 22, we show the surface of the 10 min volatility and ⌘ for di↵erent values of these two parameters.

2.1.3 Market impact profile

Tactic 1 and Tactic 2 have shown very di↵erent performances when being coupled with the same scheduling strategy.
We now study in detail their market impact profiles during the order placement period. Recall that the execution
algorithm has two parameters : the period length T and the total quantity to execute n. In the following experiments,
T will still be set to 10 minutes, and we vary the value of n from 1 to 60 AES. We denote by MIi(t, n) the market impact
of Tactic i with total quantity n at the moment t, defined by : MIi(t, n) = Exp[St

�S
0

S
0

|. We launch 1000 simulations
for each value of n, t between 1� 60 AES and 1� 600 seconds.

Impact profiles of Tactic 1 and Tactic 2 are given in Figure 23. In agreement with the famous square-root law, see
[Gatheral, 2010a] , the market impact curve is shown here to be concave both in time and total execution volume. The
price relaxation (for a buying order, it means that the price falls on average to a lower level after the trader stops his
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Figure 22 – 10 min volatility and Mean-reversion ratio, France Telecom

trading activity, see [Bacry & Muzy, 2013] ) cannot be observed in our framework. Actually, under the Markov setting,
the price dynamics will continue its usual path after the terminal time T . By staying passive in the best limit until
full execution, Tactic 2 causes larger impact than Tactic 1, especially when dealing with large quantities. To conclude,
Tactic 2 performs better when dealing with small quantities. However, when one needs to trade large quantities, Tactic
1 becomes a more suitable choice as now the cost of market impact outweighs the benefit of passive execution.
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Figure 23 – Market Impact Profile
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2.2 A Controlled View on the Limit Orderbook dynamics using a MFG approach

This Section has been published as a part of E�ciency of the Price Formation Process in Presence of High
Frequency Participants : a Mean Field Game analysis (in review process at MAFE : Mathematics and Financial

Economics) [Lachapelle et al. , 2013]

2.2.1 A simple single-queue model with anticipations

The purpose of introducing first a single queue model is didactic and does not aim at directly providing insights
on order book modeling. However we believe this single queue is the occasion to introduce some key concepts, such
as endogenous strategic entries of agents that anticipate the future. Consequently, sellers entering the system are
also called players since we locate the modeling approach in the game theoretic framework (agents perform actions
optimizing their respective pay-o↵).
In particular, when new sellers arrive, they look at the queue size and decide whether to enter the queue or not (action),
after considering their expected pay-o↵ (value function assessment).

With this simplified model we introduce anticipatory behaviors in a very stylized one-sided order book, where patient
sellers arrive at exogenous Poisson rate and where the arrival rate of impatient buyers increases as soon as the queue
size increases. We will finally use it to provide insights on the modeling of distinct execution protocols, namely process
sharing and First In First Out protocol.

The model. The arrival rate of players is continuous and stochastic. In this simplified model, it is exogenous.
– As usual, they arrive following a Poisson process with intensity �.
– Impatient buyers arrive at rate µ(x) � 0, a given increasing function of x ; i.e. the more patient sellers in the
queue, the higher arrival rate of impatient buyers.

– The unit size of an order in the queue is q. The queuing discipline is a process sharing one (with no priority), i.e.
individual service in a queue of size x is worth q/x. In terms of trading rules, one may think about a pro-rata
one [Field & Large, 2008].

– The pay-o↵ gained by a player per unit of order is a nonnegative decreasing function of the queue size : P (x).
Typical cases are P (x) := p > 0 and P (x) = 1/x. On the other hand, there is a cost c of waiting in the queue.

Now, as usual in game theory, there is a value function u for any player. The value function depends upon the queue
size x. It is the expected Profit & Loss (P&L) of a player entering the queue. Note that we assume that agents are risk
neutral and that their reservation utility is set to 0, which means that an agent decides to enter the queue as soon as
the value function is positive : u(x) > 0.

The value function dynamic comes from an infinitesimal expression of events impacting it :
– a newcomer enters the queue as soon as u(x) > 0 (remember u is the “expected value received if you enter the
queue”).

– the queue is consumed by a Poisson process of intensity µ(x). Each time an order already waiting in the queue
is partially executed (according to a prorata rule) : its owner will sell q/x shares for a price P (x). The new
expected value for a participant waiting in the queue in this case is thus q/x ·P (x)+ (1� q/x) ·u(x� q) (i.e. the
first part of the expression comes from the sell of q/x shares and the second one from the expected value of the
queue that is now of size x� q).

– in all other cases, the expected value does not change.
– the waiting cost is proportional to q (the size of the orders) ; it decreases the expected value of u by c q dt, where

dt is the time unit.
More formally (with the notations dN

µ(x)
t for the queue-consuming point process and dN

�1{u(x)>0}
t for the queue-

increasing one), the dynamics of the value function u(x) is driven by :
– a stochastic di↵erential equation on the size of the queue xt :

dxt =
⇣

dN
�1{u(x)>0}
t � dN

µ(x)
t

⌘

q,

– and a running cost function J(x) :

dJ(xt) =
h q

x t
P (xt) + (1� q

x t
)J(xt � q)

i

dN
µ(x)
t � cq dt.

The additive waiting costs are compatible with the very short time scale having a sense for orderbook dynamics.
It can be noted here that another cost function J could be defined here as :

dJ (xt) = [!(q, xt)P (xt) + (1� !(q, xt))J (xt � q)] dNµ(x)
t � cq dt,

where !(q, xt) is a random variable taking value 1 with a probability q/x and 0 otherwise. In such a case, instead
of a prorata rule, we will have a trading rule for which an order is fully executed with a probability q/x, or not
at all. This case covers the trading model of [Roşu, 2009], in which the orderbook matching rule is FIFO (First
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In, First Out), but any agent can modify and reinsert his order at any time. In such a case the probability for
one specific agent to be first in the queue (and thus be fully filled), is q/x.
Since EdJ = EdJ , the emerging dynamics are the same.

With such a formalism, the value function can be defined as u(X) = E
R T

t=0

J(xt) dt given x
0

= X, with T “large
enough” at the intraday time sale.

Equilibrium : the value function equation. In this paragraph we introduce the equation verified by the value
function at the equilibrium. Below we detail the equilibrium equation for each probability event.

u(x) = (1� �1{u(x)>0}dt� µ(x)dt) · u(x)  nothing happens (35)

+ �1{u(x)>0}dt · u(x+ q)  new queue entrance

+ µ(x)dt ·
⇣ q

x
P (x) + (1� q

x
)u(x� q)

⌘

 service

� cq dt  waiting cost

We can perform a Taylor expansion for small q in the discrete equation above. In this way we derive the following
di↵erential equation :

0 =
µ(x)

x
(P (x)� u)�c+ (�1{u>0}� µ(x))u0 +q

⇣1

2
(�1{u>0}�µ(x))u00+µ(x)

x
u0
⌘

,

where the second order term is the last one (blue term).

First order analysis. Before approximating numerically the solution to (35), we propose to get some insights on
the shape of the solution by doing a first order analysis. More precisely, the solution to the queuing system described
above is characterized by the sign of the value function u. Consequently we are interested in finding potential sign
switching points of u.
The core modeling ingredient is the value of the Poisson arrival rate � relative to µ(x).
For the first order analysis we look at the first order equation :

0 =
µ(x)

x

⇣

P (x)� u(x)
⌘

� c+
⇣

�1{u(x)>0} � µ(x)
⌘

u0(x). (36)

Remark 1 Let us remark that equation (36) corresponds to a trivial shared risk Mean Field Game monotone system
with N = 1, as described in the previous section. Note that in the framework of this model, the mean field aspect does
not come from the continuum of agents (for every instant, the number of players is finite), but rather to the stochastic
continuous structure of entries and exits of players.

Now we look at the case where the stylized limit order book presented here has an infinite resiliency, meaning once
the orderbook is partially consumed by a marketable order, the remaining liquidity rearranges itself to fill the gap.
Moreover, we will consider the non degenerated case where sellers arrive at rate �, larger than the exogenous consuming
rate µ(x), for all x.

An example with anticipatory behavior. Assume the arrival rate of buyers has the specificity to take two values :
– a low value µ

1

below a certain queue size threshold S,
– a higher value µ

2

( µ
2

> µ
1

), above the threshold S.
As a function depending upon the queue size variable x, it reads :

µ(x) = µ
1

1x<S + µ
2

1x�S , 0  µ
1

< µ
2

.

Here there are at least two points where u changes sign :

x⇤
1

= µ
1

P (x⇤
1

)/c and x⇤
2

= µ
2

P (x⇤
2

)/c. (37)

Figure 24 shows the plot of the solution (numerical approximation of the solution to equation (35)) for a certain set
of parameters (for P constant). We can see that the first switching point is close to the first order approximation x⇤

1

,
while the last sign switch significantly deviates from the first order approximation x⇤

2

. It means that higher order terms
have a non-negligible e↵ect.
But most importantly, we observe that there is another sign switch strictly below the threshold S. The existence of
such a switching point means that players anticipate the improved service before the threshold is reached. Indeed,
their value function becomes positive meaning that players enter the queue strictly before the improved service starts.
This is why we talk about an anticipation switching point. Consequently, we can conclude that at the equilibrium, the
strategical players adopt an anticipatory behavior.
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Figure 24 – Here we notice that there is a point strictly before S where u switches from negative to positive. It means
that players anticipate improved service µ

2

and therefore are newly interested in entering the queue.

First In First Out model. Finally we want to show that our approach allows to model distinct execution processes,
and how the resulting equilibrium equations are impacted.
To do so, we consider the First In First Out (FIFO) protocol. This is the only change we make in the model. To
consider such a priority protocol, we have to introduce a new variable z denoting the position of a trader in the queue
of size x. Consequently the problem becomes bi-dimensional.
The equation becomes :

u(z, x) = (1� �1u(x,x)>0

dt� µ(x)dt) · u(z, x)  nothing happens (38)

+ �1{u(x,x)>0}dt · u(z, x+ q)  new queue entrance

+ µ(x)dt · u(z � q, x� q)  execution of the first order

� cqdt  waiting cost,

in the domain q < z < x, and the boundary condition for z = q is :

u(q, x) = (1� �1u(x,x)>0

dt� µ(x)dt) · u(q, x)  nothing happens (39)

+ �1{u(x,x)>0}dt · u(q, x+ q)  new queue entrance

+ µ(x)dt · P (x)  execution of the first order

� cqdt  waiting cost.

System (38-39) can be easily solved numerically.

2.2.2 The Mean Field Game Orderbook Model

The matching mechanisms of order books. One of the roles of financial markets is to form prices according to
the balance between o↵er and demand. In modern markets, this mechanism takes place inside electronic order books
where multilateral trading takes place. They implement the following dynamic :

1. buyers and sellers can send electronic messages to a “matching engine”. These messages, called orders, contain a
side (“buy” or “sell”), a limit price and a quantity.

2. The matching engine contains a list of all pending orders it received in its memory. When it receives a new buy
(respectively sell) order, it looks if pending sell (resp. buy) orders at a lower (resp. higher) price are available.
– If it is the case, it generates transactions between the owner of the incoming order and the owners of the
compatible opposite orders, and removes the corresponding quantities in its list of pending orders ;

– if the incoming order has a remaining quantity, it is inserted in the list of pending orders.
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The list of pending orders waiting in the matching engine is called its “limit order book” (LOB).
During the matching process, it is possible that the quantity of an incoming order does not match exactly the

quantity made available at a compatible price (i.e. lower prices for a buy order and higher prices for a sell order) by
opposite orders in the order book. To handle such cases, matching engines need to implement a priority mechanism.
The most used (see [Mendelson & Amihud, 1991] for more details) are :

– time priority : the “oldest” pending orders in the order book are matched first ;
– size priority : the largest pending orders are matched first in case of competition between resting orders at the
same price ;

– pro rata : pending orders are matched for a fraction of their quantity proportionally to their relative size to the
one of the whole queue (see [Field & Large, 2008]).

Each trading platform discloses its matching mechanism in detail to market participants in a rulebook (like
[Euronext, 2006]).

Rendering di↵erent trading styles in an order book model. To understand the features of our MFG model,
we will first study its dynamics in a market with homogenous participants. Since we are in a MFG framework, it will
render a continuum of agents, at this stage they share the same macroscopic parameters :

– the same messaging intensity �,
– the same size of orders they send q,
– the same waiting cost c.

Beside, we enrich the model with one more feature : the use of SOR (Smart Order Router). A Smart Order Router
(see [Foucault & Menkveld, 2008] for an e�ciency study or [Lehalle et al. , 2013] for a generic presentation) is a device
containing a software dedicated to“smartly route”orders. In our model, only SOR users will be able to act strategically
instead of being blindly impatient.

It can be considered that agents not using a SOR have an infinite waiting cost. Since institutional investors take
decisions independently of the current state of the orderbook, it is realistic to consider that a fraction of them will not
take time to implement sophisticated microscopic strategies on some of their orders.

The proportion of market participants using a SOR (i.e. not infinitely impatient market participants) will be pa-
rametrized thanks to a specific flow of intensity ��.

Instit. Investors HFT
Order size large small
Speed normal fast
SOR often used always used

Table 1 – Qualitative modeling of Institutional Investors and HFT.

In a second stage we will mix heterogenous agents, with di↵erent behaviours summarized in Table 1 :

1. Institutional investors, trading large quantities not using systematically a SOR ;

2. HFT (High Frequency Traders), faster than the former participants, using smaller orders, more patient (in the
sense that they bare a lower cost per share waiting in a queue), and all of them using a SOR.

Transaction price. The market price will be centered on a constant P . The market depth is �, meaning that no
transaction will take place at a price lower than P � � or higher than P + �. The (time varying) size of the bid queue
(waiting buy orders) is Qb

t and the size of the ask one (waiting sell orders) is Qa
t .

When a market (buying) order hits the ask queue, the transaction price is pbuy and when the bid queue is lifted by a
market (selling) order, the transaction price is psell. The price takes into account instantaneous queue size adjustments
depending upon the order size q.

pbuyq (Qa
t ) := P +

�q

Qa
t � q

, psellq (Qb
t) := P � �q

Qb
t � q

(40)

Qualitatively, it means that the market impact is linear. Boundary conditions, to be introduced later, impose Qa
t , Q

b
t >

q, so that there is no definition problem of the transaction prices

Value functions. The value function for a trader submitting a buy order in the bid queue is v(Qa
t , Q

b
t) and the

one of a sell order in the ask queue is u(Qa
t , Q

b
t). In the model agents have risk-neutral preferences, thus the utility

functions coincide with price expectations.

Orders arrival rates. We distinguish between SOR and non-SOR orders. The proportion of these two types of
orders is exogenous, and set as an input of the model.

Buy and sell SOR orders arrive according to two Poisson processes with intensity �
buy

and �
sell

. Several cases can be
considered :
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1. Homogeneous Poisson processes :
�
buy

= �
sell

= �. (41)

2. Heterogeneous (in space) Poisson processes

�
buy

= �f(Qb
t), �sell = �f(Qa

t ),

where f(x) is a decreasing function. Typical instances are f(x) = 1/x, f(x) = 1x ¯Q likewise.

However, we will focus in this paper on the homogenous case.
Let us remark that the previous rates could be endogenized and set as the result of an optimization problem involving
the utility functions, consequently depending upon the queue sizes Q•

t .

Figure 25 – Idealized diagram of the decision tree of agents in the model.

Non-SOR orders (i.e. belonging to very impatient investors or traders) are always liquidity remover, with arriving rate
2�� (equally distributed between buyers and sellers).

Market participants decision processes. When a buy (resp. sell) order arrives, its owner has to make a routing
decision (see Figure 25 for an idealized diagram of this process) :

– if v(Qa
t , Q

b
t + q) < pbuy(Qa

t ) (resp. u(Qa
t + q,Qb

t) > psell(Qb
t)) it is more valuable to route the order to the bid

(resp. ask) queue (i.e. sending a limit order). In such a case the order will be a Liquidity Provider (LP). We
define symmetrically Liquidity Consumer (LC) orders. This decision is formalized in the model by setting the
variable R�

buy

(v,Qa
t , Q

b
t + q) to 1 when v(Qa

t , Q
b
t + q) < pbuy(Qa

t ), and to zero otherwise :

R�
buy

(v,Qa
t , Q

b
t + q) := 1v(Qa

t

,Qb

t

+q)<pbuy

(Qa

t

)

, LP buy order

R�
sell

(u,Qa
t + q,Qb

t) := 1u(Qa

t

+q,Qb

t

)>psell

(Qb

t

)

, LP sell order.
(42)

– otherwise the order goes Liquidity Consumerly to the ask (resp. bid) queue to obtain a trade. It will be a liquidity
remover in this case :

R 
buy

(Qa
t, Q

b
t) := 1�R�

buy

(Qa
t, Q

b
t), LC buy order

R 
sell

(Qa
t, Q

b
t) := 1�R�

sell

(Qa
t, Q

b
t), LC sell order.

The price of such a transaction is pbuy (resp. psell) as defined by equality (40). Note that we omit the dependence
on u, v when it is unnecessary for the understanding of the equations.
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We impose the following boundary conditions :

Min liquidity condition : R�
buy

(r,Qb
t) = 1, R�

sell

(Qa
t , r) = 1, 8r  q,

Technical condition : R�
buy

(Qa
t , r) = 1, R�

sell

(r,Qb
t) = 1, 8r < q.

(43)

In particular, conditions (43) ensure that (Qa
0

, Qb
0

) � (q, q)) (Qa
t , Q

b
t) � (q, q), 8t > 0.

SDE formalism. The dynamics associated with this matching mechanism can be written :
– for the size of the ask queue Qa

t :

dQa
t =

⇣

dN�
sell

R�
sell � (dN�

buy

R 
buy + dN��)

⌘

q,

– and for the cost function at the ask :

dJu(Qa, Qb) =



q

Qa
pbuy(Qa) +

✓

1� q

Qa

◆

Ju(Qa � q,Qb)

�

(dN�
buy

R 
buy + dN��)� caq dt.

Again, with T large enough, u(Qa,Qb) = E
R T

t=0

J(Qa
t , Q

b
t) dt given Qa

0

= Qq, Qb
0

= Qb.

Matching process. The matching process is close to a pro-rata one [Field & Large, 2008] : in case of a liquidity
consuming buy order of size Q to be matched, all market participants having a quantity q resting in the ask queue
will obtain a transaction for a fraction Q · q/Qa

t of its order at price pbuy(Qa
t ), the remaining quantity staying in the

orderbook.
At a first glance one may think that this matching process will induce intricate terms in the equations, but in fact it
will not since we only consider utilities by units of good transactions.

– The orderbook shape is assumed to be linear (in the price), meaning that if a newcomer decide to provide
liquidity to the market, her order will be split proportionally to the liquidity already present in the book : the
orderbook will remain linear in price with a higher slope.

– Hence when a Liquidity Consumer order occurs, it will partially fill all Liquidity Provider orders according to a
proportional rule.

2.2.3 Introducing the equations of the Price Formation Process dynamics

We characterize an equilibrium via recursive equations of the expected value of future payo↵s (value functions).

u(Qa
t , Q

b
t) = (44)

(1� �
buy

dt� �
sell

dt� 2��dt) u(Qa
t , Q

b
t)  nothing

+ (�
sell

R 
sell

(u,Qa
t + q,Qb

t) + ��)dt u(Qa
t , Q

b
t � q)  sell order, LC

+ �
sell

R�
sell

(u,Qa
t + q,Qb

t)dt u(Q
a
t + q,Qb

t)  sell order, LP

+ (�
buy

R 
buy

(v,Qa
t , Q

b
t + q) + ��)dt · ⇥  buy order, LC

q

Qa
t

pbuy(Qa
t )

| {z }

trade part (ask)

+ (1� q

Qa
t

)u(Qa
t � q,Qb

t)

| {z }

removing (ask)

⇤

+ �
buy

R�
buy

(v,Qa
t , Q

b
t + q)dt u(Qa

t , Q
b
t + q)  buy order, LP

� caq dt.  cost to maintain inventory

Symmetrically, we have :

v(Qa
t , Q

b
t) = (45)

(1� �
buy

dt� �
sell

dt� 2��dt) v(Qa
t , Q

b
t)  nothing

+ (�
buy

R 
buy

(v,Qa
t , Q

b
t + q) + ��)dt v(Qa

t � q,Qb
t)  buy order, LC

+ �
buy

R�
buy

(v,Qa
t , Q

b
t + q)dt v(Qa

t , Q
b
t + q)  buy order, LP

+ (�
sell

R 
sell

(u,Qa
t + q,Qb

t) + ��)dt · [  sell order, LC
q

Qb
t

psell(Qb
t)

| {z }

trade part (bid)

+ (1� q

Qb
t

) v(Qa
t , Q

b
t � q)

| {z }

removing (bid)

⇤

+ �
sell

R�
sell

(u,Qa
t + q,Qb

t)dt v(Q
a
t + q,Qb

t)  sell order, LP

� cbq dt.  cost to maintain inventory
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Remind that R
buy

and R
sell

are functionals of Qa and Qb and also implicitly depends on u and v. Of course the
previous principles hold for Qa

t , Q
b
t > q, which is always the case thanks to conditions (43). In the equations above,

ca and cb are positive constants modeling the cost to maintain inventory per unit, that is the cost of never being
processed once waiting in the queue.

Symmetric case. In the case where �
sell

= �
buy

= �, and ca = cb = c, we have the following results.
For the sake of simplicity we will often use new notations for the queue size variables : x and y stand for Qa and Qb.

Lemma 2
8(x, y), R�

sell

(u, x, y) = R�
buy

(2P � v, y, x)

This simple symmetry result is useful to get a necessary condition for the solution.

Proposition 6 If system (44)-(45) has a unique solution (u, v), then

8(x, y), u(x, y) + P = P � v(y, x).

That is, u and v are antisymmetric up to the constant P .

Take Equation (44) then perform the change of variable w(y, x) = 2P � u(x, y), then apply the previous Lemma,
switch the roles of x and y and multiply by �1. Then you get equation (45), hence the conclusion.

Continuous approximation. In this paragraph we formally derive di↵erential equations corresponding to the PFP
dynamic discrete equations (44-45) as presented in the previous section. Hopefully, this will lead us to get easily some
qualitative insights on the solutions u and v.
To do so, we write the Taylor expansion of order 1 at the point (x, y) in system (44-45). After a quick computation,
we get the following system of Partial Di↵erential Equations (PDEs). Note that for the sake of simplicity we shorten
the notations as follows : sell becomes s, buy becomes b, Qa becomes x and Qb becomes y.

(Ask) 0 = [(�bR
 
b + ��)

1

x
(pb(x)� u)� ca]

+ [�sR
�
s � �bR b � ��] · @xu+ [�bR

�
b � �sR s � ��] · @yu,

(Bid) 0 = [(�sR
 
s + ��)

1

y
(ps(y)� v) + cb]

+ [�sR
�
s � �bR b � ��] · @xv + [�bR

�
b � �sR s � ��] · @yv.

Recall that u, v,Rb, Rs are estimated at (x, y) and Rb depends upon v, resp. Rs depends upon u. Consequently, Rb

and Rs are the coupling terms in the PDE system (Ask)-(Bid).
The system has to be understood locally in the four regions

R++= {(x, y), R�s (x, y) = R�b (x, y) = 1}, R��= {(x, y), R s (x, y) = R b (x, y) = 1},
R+�= {(x, y), R�s (x, y) = R b (x, y) = 1}, R�+= {(x, y), R s (x, y) = R�b (x, y) = 1}.

Now we can write the general form of the first order system of coupled PDEs.

0 = �a(u, v, x, y) + ↵(u, v, x, y)@xu+ �(u, v, x, y)@yu (46)

0 = �b(u, v, x, y) + ↵(u, v, x, y)@xv + �(u, v, x, y)@yv, (47)

where �a, �b, ↵,� have some good symmetry properties to be described later on.

The MFG framework. The model is of course a Mean Field Game. As mentioned in section 2.2, there are continuous
entries and exits of players (modeled with Poisson processes). Therefore the basis assumptions are fulfilled : continuum
of atomized and anonymous players.

Second order terms. We kept only the first order terms in the equations. The second order terms to be added to
the equations are :

In (Ask)

q2

2



2

x
(�bR

 
b +��)@xu+���u+(�sR

�
s +�bR

 
b )@xxu+(�sR

 
s +�bR

�
b )@yyu

�

,

In (Bid)

q2

2



2

y
(�sR

 
s +��)@yv+���v +(�sR

�
s +�bR

 
b )@xxv+(�sR

 
s +�bR

�
b )@yyv

�

.
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2.2.4 Equilibrium analysis

Change of variables. From now on we focus on the symmetric case where �s = �b = � and ca = cb = c. First it is
convenient to notice that in this important case, we have the following property :

↵ = � = [�(R�s (u, x, y)�R b (v, x, y))� ��].

We will see later that this property allows to solve the problem thanks to the characteristics method.
There is a very welcome change of variables that we will use throughout this section. We define

ũ = (u� P )/q and ṽ = (v � P )/q. (48)

Then the (Ask)-(Bid) system reads

0 = [(�R̃ b + ��)
1

x
(

�

x� q
� ũ)� c

q
] + [�R̃�s � �R̃ b � ��] · (@xũ+ @yũ),

0 = [(�R̃ s + ��)
1

y
(
��
y � q

� ṽ) +
c

q
] + [�R̃�s � �R̃ b � ��] · (@xṽ + @y ṽ).

(49)

Proposition 7 Assume that system (49) admits a unique solution (ũ, ṽ), then it is antisymmetric, that is :

8(x, y), ṽ(x, y) = �ũ(y, x).

The general form of the system (49) is as follows :

0 = �(ũ, ṽ, x, y) + ↵(ũ, ṽ, x, y)(@xũ+ @yũ) (50)

0 =��(ṽ, ũ, y, x) + ↵(ũ, ṽ, x, y)(@xṽ + @y ṽ). (51)

First Order Analysis. Here we explore formally some aspects of the first order approximation to the solution.
The key point of the analysis is that in the two equations of system (49), the derivative terms are the same, so that
we conclude that the characteristics satisfy

ẋ = ẏ = ↵) x = y + k.

Note that the reasoning of this paragraph holds on the region below the diagonal, but can be trivially extended to the
whole domain by symmetry arguments.
We heuristically suppose that for a given k, and along the characteristic line y = x�k, there is a first pointM

0

= (x
0

, y
0

)
where the sellers become Liquidity Consumer, that is M

0

is a point at the boundary of the regions R++ and R�+.
Then there is a second point M

1

= (x
1

, y
1

), with x
1

� x
0

and y
1

� y
0

where the buyers become Liquidity Consumer,
that is M

1

is a point at the boundary of the regions R�+ and R��.
First recall that :

R++ is defined by R�s = 1 and R�b = 1,

R�+ is defined by R�s = 0 and R�b = 1,

R�� is defined by R�s = 0 and R�b = 0.

We can write the di↵erential equations on the three regions mentioned above :

(AR++) 0 =
h��

x
(

�

x� q
� ũ)� c

q

i

+ [�� ��] · (@xũ+ @yũ),

(BR++) 0 =
h��

y
(
��
y � q

� ṽ) +
c

q

i

+ [�� ��] · (@xṽ + @y ṽ),

(AR�+) 0 =
h��

x
(

�

x� q
� ũ)� c

q

i

+ [���] · (@xũ+ @yũ),

(BR�+) 0 =
h�+ ��

y
(
��
y � q

� ṽ) +
c

q

i

+ [���] · (@xṽ + @y ṽ),

(AR��) 0 =
h�+ ��

x
(

�

x� q
� ũ)� c

q

i

+ [��� ��] · (@xũ+ @yũ),

(BR��) 0 =
h�+ ��

y
(
��
y � q

� ṽ) +
c

q

i

+ [��� ��] · (@xṽ + @y ṽ).

(52)

The equations are relatively simple in each region. The tricky point is, as always, to stick together the solutions of
each region. First we compute the boundaries of the regions.

50



2 ETUDE DE LA MICROSTRUCTURE

First order boundaries. Let’s note M
0

the first order boundary between R++ and R�+ and M
1

between R�+

and R��.

Proposition 8 (First order boundary between R++ and R�+) The diagonal point of the boundary M
0

is the
point

(x⇤
0

, x⇤
0

) = (q +
p

q2 + 8/⌘)/2 (53)

and the boundary M
0

is given by the set of points (x
0

, y
0

) verifying :

(x
0

, y
0

) =
⇣

x
0

, l(x
0

) := q +
⇣

⌘x
0

� 1

x
0

� q

⌘�1

⌘

, 8x
0

� x⇤
0

, (54)

where ⌘ := c/(�q��).

Proposition 9 (First order boundary between R�+ and R��) The boundary M
1

is defined by the set of points
(y

1

+ x
0

� l(x
0

), y
1

), 8x
0

� x⇤
0

, where

y
1

verifies fx
0

�l(x
0

)

(y
1

) =
�

y
1

+ x
0

� l(x
0

)� q
. (55)

Figure 26 exhibits an instance of the first order curves. We observe that near the diagonal, there is a region where
several solutions could happen. The first order analysis thus shows the global form of the shape of the solution (since
it is based on the curves M

0

, M
1

), and that considering higher order terms is necessary to understand what happens
in the region near the diagonal.

Figure 26 – First order decision curves
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Figure 27 – Test 1 : the numerically computed switching curves (red and green dots) tries to conciliate the curves
analytically computed at order 1 (dotted and solid lines).

Figure 28 – There are nine regions in terms of trader type (HFTvs Institutional Investor) and trader action (LP vs
LC)

52



2 ETUDE DE LA MICROSTRUCTURE

2.3 Market Impact Modelling : some Microscopic Statistics and a Macroscopic Un-
derstanding

This Section has been published as a part of Market Impacts and the Life Cycle of Investors Orders (in
review process at MML : Market Microstructure and Liquidity) [Bacry et al. , 2014]

Figure 29 – The profile obtained averaging the prices on the 61,000 metaorders of database ⌦(de).

2.3.1 The main database

The database ⌦ is made of nearly 400,000 metaorders. The selected metaorders have been traded electronically by
a single large broker during year 2010 on European markets. We built di↵erent databases from the original 400,000
database (see Table 2 for complete list of all database and associated filters) in order to adapt to the part of the market
impact curve under study and to have as much orders as possible for each time scale :

– For intraday studies, we only kept orders traded by trading algorithms whose trading rate is as much as possible
independent from the market conditions. Note in [Zarinelli et al. , 2014] , authors underline the potential in-
fluence of the trading rate on the market impact components. It allows to avoid sudden accelerated trading rates
having an hidden influence on the price moves. Hence we kept VWAP, TWAP, PoV and only few Implementation
Shortfall instances.

– We kept orders large enough to protect our estimation from noise.
– For the decay market impact curve, we needed the metaorder execution to stop halfway to the market close in
order to observe prices relaxation long enough between the end of the metaorder and the closing time.

We ended up with five main databases : ⌦(te) to study temporary impact, ⌦(tr) to study transient impact and impact
decay, and ⌦(de) to study decay impact and ⌦(day) to study daily e↵ects. The filter consistency with market data means
that we reject metaorders such that we cannot identify their child orders in the market data within the same second
(i.e. when a child order is sent or is partially fill or fill, we try to find the correposning modification in the market
data : same price, same quantity, same second ; if we cannot, we reject the metaorder).

2.3.2 Temporary Market Impact

The temporary market impact has been mainly studied from three viewpoints :
– As the main source of trading costs. The obtained model can then be used in an optimal trading scheme
(see [Almgren et al. , 2005], [Gatheral, 2010b] and [Lehalle & Dang, 2010] and for link with optimal trading see
[Almgren & Chriss, 2000], [Gatheral & Schied, 2012] and [Bouchard et al. , 2011]), or used by an investment firm
to understand its trading costs (like in [Engle et al. , 2012], [Bershova & Rakhlin, 2013], [Brokmann et al. , 2014]
or [Mastromatteo et al. , 2013] written by author involved in investment firms).

– It can be viewed as an important explanatory variable of price discovery and studied as such, often by economists,
like the seminal work of Kyle [Kyle, 1985] or later in [Hautsch & Huang, 2012] or [Farmer et al. , 2004].
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Databases ⌦ Filters Number of meta-orders
Original database ⌦ ; 398.812
Daily database ⌦(day) smooth execution condition 299.824

Database for temporary impact ⌦(te) 10 atomic orders minimum 191.324
consistency with HF market data 157.061

Database for transient impact ⌦(tr)

number of daily trades on the stock � 500 150.100
T > 3 minutes 134.529
r 2 [3%, 40%] 94.818

R 2 [0.1%, 20%] 92.100
Database for decay impact ⌦(de) t

0

(!) + 2T (!) < closing time 61.671

Table 2 – Di↵erent databases and filters used to obtain them.

– Last but not least, statistical tools have been built to be able to estimate the temporary market impact at the
scale of one trade (see [Bacry & Muzy, 2013] or [Eisler et al. , 2011]). The implicit conditioning of such “atomic”
orders by metaorders is sometimes discussed in such papers, but it is not their main goal.

To study temporary market impact and its dependence to explanatory variables, we use the ⌦(te) database (see
Table 2) and followed a direct regression approach. As an example, we tested the dependence in the daily participation
X = R, since it has been identified as significant by other papers.

✏(!)�PT (!) = a ·R(!)� + ✏(!)�WT (!),

and found an exponent � ' 0.449 using the L2 distance and a lower exponent (around 0.40) using the L1 distance (see
regression (R.1) in Table 3). The fact that we obtain di↵erent estimation when using the two distances L1 and L2 can
be explained by the fact that the joint distribution of ✏�P and R is skewed to large values of �P . The L2 distance
has no other choice than to render this skewness by setting an high value to �, while the L1 distance focuses more on
the center of the distribution. The source of this skewness could stem from an informational e↵ect as a dependence
between ✏ and WT . However, we do not have enough elements to conclude on this point.

Figure 30 – The estimated market impact ⌘̂X (defined as a function of the daily participation X = R (left) or of the
trading rate X = r (right). Each point is the average of one decile of the X variable, dotted lines are 25% and 75%
quantiles, showing the amplitude of market moves.

2.3.3 Transient Market Impact

Previous section confirms, as many other empirical studies before us, that the temporary market impact of a metaor-
der of size v is proportional to v� (with � close to 0.5). Thus, we expect the temporary market impact of the first half of
the execution (the first v/2 contracts) to be more important than the one of the second half (the last v/2 contracts). Ge-
neralizing this argument to any portion of the metaorder, we expect the transient market impact curve to be a concave
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Regression Parameter Coef. (log-log) Coef. (L2) Coef. (L1)
(R.1)

Daily participation 0.54 0.45 0.40
(R.2)

Daily participation 0.59 0.54 0.59
Duration �0.23 �0.35 �0.23

(R.3)
Daily participation 0.44 � �

Bid-ask spread 0.28 � �
(R.4)

Daily participation 0.53 � �
Volatility 0.96 � �

(R0.1)
Trading rate 0.43 0.33 0.43

(R0.2)
Trading rate 0.37 0.56 0.45

Duration 0.15 0.24 0.23
(R0.3)

Trading rate 0.32 � �
Bid-ask spread 0.57 � �

(R0.4)
Trading rate 0.32 � �

Volatility 0.88 � �

Table 3 – Direct regression approach algorithm of the temporary market impact for various sets of explanatory
variables. For each set, the power exponent estimations are given using L1 distance, L2 distance and regular log-log
regressions. There is an horizontal line � when there is not significant di↵erence between the three regressions.

function of the time. The first empirical study confirming this intuition is due to Moro et al. ([Moro et al. , 2009]),
lately, it has also been confirmed by the work of Bershova & Rakhlin ([Bershova & Rakhlin, 2013]). In both cases, be-
havior close to power-laws were found. Let us point out that the latent order book model of [Mastromatteo et al. , 2013]
can be seen as a possible qualitative explanation of this well established stylized fact. In this model the agents place
limit orders only when the price is close enough to their vision of the price. Thus, more and more liquidity is revealed
as the price is trending, it results in “slowing down” this trend.

In this section we use our ⌦(tr) database (see Table 2.3.1) and first confirm the concavity of the transient market
impact curve. Apart from this well known stylized fact, we study the link between the curvature of the transient
market impact curve and the execution duration.

Let us recall that the transient market impact curve corresponds to restricting the market impact curve to time
t  T . In practice, we compute

⌘̂s = h✏(!)�PsT (!)iT=1

. (56)

Let us recall that h. . .iT means that averaging is performed after rescaling in time for each metaorder ! so that all
durations correspond to T = 1. So the function ⌘̂s is a function of the rescaled time s (let us recall that in the paper
we use the letter s to refer to the rescaled time, whereas t stands for the physical time). We sampled this estimation
in s 2 [0, 1] on 100 points using a uniform sampling grid. One can show on the dataset that a power law behavior

⌘̂s / s�
(tr)

(57)

with �(tr) = 0.64 fits the curve according to a log-log regression when s  1 (the (tr) subscript in �(tr) = 0.68 stands
for transient). Our empirical findings are compatible whit Moro et al. ([Moro et al. , 2009] ) which found an exponent
equal to 0.62 for metaorders executed on London Stock Exchange (LSE) and 0.71 for metaorders executed on Spanish
Stock Exchange (BME, Bolsas y Mercados Espãnoles).

2.3.4 Convexity of market impact decay

During the execution of the metaorder the price is pushed in the adverse direction making it less attractive as
time goes by reaching higher level (temporary impact) at the end of the execution. After the execution a reversal
e↵ect is expected. as seen in Fig. 29. This is the decay part or relaxation of the market impact. Some qualitative
explanations can be sketches. For instance, consider the whole market impact cycle (transient, temporary and decay
phases) in the spirit of a continuous version of Kyle’s model [Kyle, 1985] : a stylized market maker makes a price from
0 to T and unwinds its accumulated inventory after T at a price compatible with the risk he usually take to accept
the position. Another potential explanation is mechanical : if the orderbooks refill with a constant rate independent
of the metaorder, the metaorder will first consume the limit orderbook on one side, pushing the price in its direction,
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Subset name Execution time Average �(tr) Q5% Q25% Q25% Q75% Q95%

T
1

T = [3, 15] 0.80 0.76 0.78 0.80 0.82 0.85
T
2

T = [15, 30] 0.66 0.62 0.65 0.66 0.68 0.70
T
3

T = [30, 60] 0.62 0.58 0.60 0.62 0.64 0.66
T
4

T = [60, 90] 0.55 0.49 0.52 0.56 0.58 0.62
T
5

T = [90, 300] 0.54 0.48 0.52 0.55 0.57 0.62

Table 4 – Statistics (mean and quantiles) on the distribution of the power-law exponent �(tr) of the transient market
impact estimation of metaorders with a participation rate R 2 [1%, 3%]. The exponent is estimated using log-log
regression conditioned on di↵erent duration intervals. The larger T the larger the curvature of the transient market
impact and the smaller the temporary market impact.

and then let an orderbook imbalanced enough at T such that symmetric and random consumption of liquidity on the
two sides of the books will implement a mechanical decay. It is typically supported by a latent orderbook model like
the one developed in [Mastromatteo et al. , 2013]. Last but not least, a model of impact plus decay at an atomic size
(i.e. for each child order generated by the metaorder, like in [Farmer et al. , 2013] ) will generate a transient phase as
soon as the decay does not end when the next child order is generated (this will typically be the case for power law
decay) ; after T , the “cumulated decay” will express itself, generating an observable reversal.

The existing empirical literature of decay metaorders market impact is limited ([Moro et al. , 2009], [Bershova & Rakhlin, 2013]
) since the di�culty of obtaining data is very high. In the first study, Moro et al. are the first showing a decay of the
impact to a level roughly equal to 0.5 ⇠ 0.7 of its highest peak. In the second study, Bershova and Rakhlin shows the
decay is a two-regime process : slow initial power decay followed by a faster relaxation.

In this section we confirm that the transient market impact curve is convex and that it seems to have a slow initial
regime.

Numerical results. To have a chance to observe intraday decay, it is needed to restrict the numerical study to
orders ending long enough before the close. We chose to follow [Moro et al. , 2009] and selected metaorders ending
before the close, i.e. such that t

0

(!)+ 2T (!) takes place before closing time. This exactly corresponds to the database
⌦(de) defined in Table 2.

Following the same lines as in the previous section, we use an averaging methodology to compute ⌘̂s for s  2 for
di↵erent intervals of duration (as previously, s corresponds here to the rescaled time, so s = 2, corresponds to the
physical time t = 2T ).

Fig. 31 shows such estimations (of both transient and market impact decay curves) for first four intervals.

Figure 31 – Transient and market impact decay curve estimations ⌘̂s for R 2 [1%, 3%] and for di↵erent T ranges
Power-law fit of the transient part are shown. Fits with the HIM model (see Section 2.3.5) are also displayed. (a)
T 2 [3, 15[, (b) T 2 [15, 30[, (c) T 2 [30, 60[ and (d) T 2 [60, 90[.
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In order to study the decay rate (towards the permanent impact value), we displayed log-log plots of ⌘̂s � ⌘̂s=2

as functions of s � 1 for s 2]1, 2]. They clearly show that the decay is much slower at the very beginning (i.e., right
after the end of the execution of the metaorder). We have checked that changing the daily participation R does not
a↵ect qualitatively the result. This result confirms the ones obtained previously by [Bershova & Rakhlin, 2013] and
[Waelbroeck & Gomes, 2013].

2.3.5 The Hawkes Impact Model (HIM) for market impact of a metaorder

Hawkes based models for microstructure. Hawkes processes have already been proved successful for modeling
high frequency financial time-series (see [Bacry et al. , 2012, Bacry & Muzy, 2013, Hewlett, 2006]) and in optimal
trading schemes (see [Alfonsi & Blanc, 2014] ). Hawkes processes are point processes with a stochastic intensity which
depends on the past of the process.

Following [Bacry et al. , 2012], we consider the following price model. Let Pt be a proxy for the high-frequency
price of an asset (e.g., last-traded price, mid-price, . . . ). For the sake of simplicity, we shall not consider the size of
the jumps in the price and consider that they are only of size 1. Let (J+

t , J�t ) be the point processes representing
respectively upward and downward jumps of Pt.

Pt = J+

t � J�t . (58)

Let �+ and �� the respective intensities of (J+

t , J�t ). It is well known that at microstructure level, the price is highly
mean reverting (at least for large tick-size assets). It has been shown ([Bacry et al. , 2012]) that this mean-reversion
property is well mimicked using a 2-dimensional Hawkes process using only a single “cross” kernel '(t) :

�+t = µ+ ' ? dJ�s and and ��t = µ+ ' ? dJ+

s (59)

where '(t) is a causal (i.e., supported by R+), positive function and where ? stands for the convolution product

' ? dJt =
R t

�1 '(t � s)dJ(t). The mean reversion property reads clearly from these last two equations : the more

Pt goes up (resp. down), the greater the intensity ��t (resp. �+t ) will be. A criteria for the price increments and the
intensities to be stationary is given by ||'||

1

< 1, where ||.||
1

denotes the L1(R) norm (for a complete mathematical
study of Hawkes process, see [Daley & Vere-Jones, 2003] ).

The Hawkes Impact Model. We model the impact of a metaorder starting at time t
0

, ending at time t
0

+ T and
corresponding to a continuous flow of buying orders with a trading rate rt supported by [t

0

, t
0

+ T ] (rt 6= 0 only for
t /2 [t

0

, t
0

+ T ]) by a perturbation of the intensities.
For the sake of simplicity, we will follow the microstructure model above and just consider mean-reversion reaction

of the market (e.g., [Bacry & Muzy, 2013], [Da Fonseca & Zaatour, 2014]). Let us point out that this is clearly not a
realistic hypothesis if one is interested in mimicking precisely the microstructure. However, this is not our goal. In this
section, we want to build a structural model that allows to explain the main dynamics of the market impact curve. In
the same line as Bouchaud [Bouchaud et al. , 2004], Gatheral [Gatheral, 2010b] and [Bacry & Muzy, 2013], we shall
build a linear model, in the sense that the impact of the metaorder is nothing but the sum of the impact of its child
order.

The HIM model. This model consists in replacing (59) by the two equations :

�+t = µ+ ' ? dJ�t +

Z t

t
0

f(rs)g
+(s� t

0

)ds and ��t = µ+ ' ? dJ+

t +

Z t

t
0

f(rs)g
�(s� t

0

)ds, (60)

where f(rs)ds (with f(0) = 0) codes the infinitesimal impact of a buy order of volume rsds. The f function cor-
responds to the instantaneous impact function and g+ and g� are the impact kernel functions. As empirical found
in [Bouchaud & Potters, 2004] and used by others authors before us ([Gatheral, 2010b, Bouchaud et al. , 2004]), we
suppose the market impact can be separated in a factorized form : one depending on volume (or volume per time) and
the other depending only on time.

The impulsive-HIM model : a particular choice for the kernels. Following [Bacry & Muzy, 2013] , it is reaso-
nable to consider that the only “upward” impact of a single buying order is instantaneous, i.e., either the corresponding
order ate up the whole first limit (in which case there is an instantaneous jump in the price) or it did not (in which
case a limit order fills up the missing volume). This case corresponds to consider that g+ is “purely” impulsive, i.e.,

g+(t) = g+i (t) = �(t), (61)

where �(t) stands for the Dirac distribution. As for the “downward”component, we shall consider that the market
reacts to the newly arrived order as if it triggered an upward jump. Doing so leads to the choice

g�(t) = g�i (t) = C
'(t)

||'||
1

, (62)
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where C > 0 is a very intuitive parameter that quantifies the ratio of contrarian reaction (i.e. impact decay) and of the
“herding” reaction (i.e. impact amplification). Indeed the L1 norm of the herding reaction to an impulsive buying order
is f(rt)||g+i ||1 = f(rt)||�||1 = f(rt) (with the notation rt for the instatanous trading rate), whereas the contrarian
reaction to the same order is f(rt)||g�i ||1 = f(rt)||'||C/||'|| = Cf(rt). Thus, one can distinguish 3 cases of interests
(see (67) of Proposition 10 for analytical expressions) :

– C = 0 : no contrarian reaction ; we expect a permanent e↵ect on prices from metaorders,
– C = 1 : the contrarian reaction is as “strong” (in terms of the norm ||.||

1

) as the herding one. So we expect the
two to compensate asymptotically, i.e., we expect the permanent e↵ect of the metaorder on prices to be 0 (see
Eq. (67) of Proposition 10 for confirmation),

– C 2]0, 1[ : the contrarian reaction is not zero but strictly smaller than the herding reaction.
Thus the impulsive-HIM model corresponds to the equations

�+t = µ+ ' ? dJ�t + f(rt) and ��t = µ+ ' ? dJ+

t + C

Z t

t
0

f(rs)'(s� t
0

)ds, (63)

where C is a positive constant that controls the contrarian vs. herding reaction of the market.

Market impact curve within HIM. According to our definition of market impact : the di↵erence between the
observed price moves and what it would have been without this specific order, within HIM, the market impact of a
metaorder (starting at time t

0

) writes :
⌘t = E[Pt], 8t � t

0

. (64)

Then, one can prove

Proposition 10 (Transient, decay curves and permanent e↵ect)
In the framework of the HIM model (60), for all t � t

0

(t
0

is the starting time of the metaorder), one has :

⌘t =

Z 1

t
0

f(rs)
⇣

G(t� s)� ( ?G)(t� s)
⌘

ds, (65)

where
– G(t) =

R t

0

(g+(u)� g�(u))du
–  =

P1
n=1

(�1)n�1'(?n), where '(?1) = ' and '(?n) = '(?n�1) ? '.
In the case of the impulsive-HIM model (63) , this formula gives

⌘t =

Z t

t
0

f(rs)H
C
' (t� s)ds, t � t

0

, (66)

where HC
' (t) = 1�(1+C/||'||

1

)
R t

0

(s)ds. Moreover in the case of a constant rate strategy (i.e., rt = r, 8t 2 [t
0

, t
0

+T ]
and rt = 0 otherwise), the permanent e↵ect of the metaorder on prices is

⌘1 = lim
t!+1 ⌘t = f(r)T

1� C

1 + ||'||
1

(67)

Let us point out that several recent empirical results ([Bacry et al. , 2011] and [Hardiman et al. , 2013] ) seem to
show that the Hawkes kernel ' decays as a power-law. Both studies found the exponent in the interval [�1.5,�1].
The following corollary shows that, in the framework of the impulsive-HIM model, and in the case of a constant rate
strategy, then if ' is power-law then the market impact curve asymptotically decays (to the limit permanent e↵ect)
as a power-law, with an exponent which is related to the exponent of '. More precisely :

Corollary 1 In the framework of the impulsive-HIM model, let us consider a constant rate strategy, i.e., rt = r, 8t 2
[t
0

, t
0

+ T ] and rt = 0 otherwise. Assume that ' is such that
– ' � '(?2) and,
– 9K > 0, limt!1 '(t)t�b = K, with b 2]� 2,�1[.

Then, the market impact curve decays to the permanent market impact ⌘1 asymptotically as a power-law with exponent
b+ 1, in the sense that

inf

⇢

�, :

Z 1

1

(⌘t � ⌘1)t���1dt <1
�

= b+ 1. (68)

Qualitative understanding of the impulsive-HIM model. One can give a qualitative understanding of the
impulsive-HIM model, especially of the meaning of C. Assuming an idealized market where the metaorder is only
traded against one market maker and potentially noise traders (i.e. no other metaorders), this impulsive-HIM model
can be seen as modelling the market maker inventory I = �+ � ��. This market maker accepts to provide liquidity
to metaorders under his own risk limits. He tunes the level of interaction he accepts with metaorders (in short : the
distance of his quotes to the mid-price and the inventory thresholds he uses to unwind his risk, stopping any interaction
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with the market for a while) using backtests or experience given his risk budget. As a result : with a small risk budget
he will provide very attractive quotes until his inventory crosses a given threshold.

It is typically the case for high frequency market makers (HFMM) ; they are confident their technology investment
allow them to capture most of the flows on both sides of the book, and be able to detect fast that they are adversely
selected. In this model they “provide” to the market a small value for the parameter C of the impulsive-HIM model.
On the other hand, market makers with a large risk budget will provide lazier quotes and accept a larger inventory
before unwinding it. It is typically the traditional behaviour of market makers in a quote driven market. In this model
such market makers will provide a large value for the parameter C.

Thus, a market maker with a small C does not provide a lot of resistance to the metaorder pressure and does
not generate a large herding e↵ect when he unwinds its inventory. A market maker with a large C will generate large
contrarian pressure to metaorders and, once his risk thresholds are crossed, will unwinding a large position, generating
a large herding move (partly compensated by slower market makers with larger inventory).

Moreover, since market makers calibrate their C to earn money under their risk constraint (and potentially other
operational and regulatory constraints), each of them will“specialize” its activity around a given duration of metaorders
T (C). They will earn money providing liquidity to metaorders with a duration smaller than T (C), and loose money
interacting with longer metaorders.

Consequently, in the impulsive-HIM model, we have used a single market maker only with a given value of C
but in practice we should consider an extension of this model with a continuum of market makers, implementing a
distribution of C reflecting the distribution of metaorders in a given market.

This interpretation of the impulsive-HIM model can explain the concavity of transient impact stems from the
market makers “triggered” by a given metaorder. Since T (C) is increasing in C : at the start of the trading, the
metaorder interacts with market makers with small C (i.e. typically HFMM). After a while, such participants consider
they are adversely selected, stop trading and unwind their inventory in front of market makers having a largest C.
The longer the metaorder, the more market makers with large C, the more contrarian pressure and concavity to the
transient impact. Once the metaorder stops, it is currently interacting with market makers with a perfectly adapted
C (from their viewpoint) ; the later now have to unwind slowly their inventory to realize their gain.
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3 L’Apport des Algorithmes Stochastiques et de l’Apprentissage Statis-
tique

Sans même trop réfléchir, les algorithmes stochastiques et l’apprentissage statistique semblent pouvoir apporter
des réponses dans le cadre de l’étude et du contrôle du processus de formation des prix :

– on sait l’apprentissage statistique adapté à la construction à la volée d’estimateurs sur de larges bases de données ;
– les algorithmes stochastiques ont quant à eux apporté des réponses aux problèmes d’exploration - exploitation
comme celui des bandits manchots (cf. [Lamberton & Pagès, 2008]).

Trading Optimal “Forward”. Bien entendu le contrôle stochastique répond précisément à question lorsqu’il s’agit
de planifier le trading sur plusieurs heures (pourvu que le modèle de dynamique renferme su�samment d’information
à ces horizons de temps), mais l’étude de la dynamique des carnets d’ordres montre qu’une échelle de temps entre “le
prochain mouvement de carnet” et les “quelques heures” peut être utile.

La Section 1.2 tente d’o↵rir un cadre pour conjuguer ces deux échelles :
– à moyen terme, le contrôle stochastique o↵re une planification des interactions avec les autres participants ;
– à court terme, il se repose sur des “robots de trading” qui vont faire leur possible pour obtenir au meilleur prix
la quantité souhaité dans le delais spécifié.

Nous allons nous reposer sur les algorithmes stochastiques pour construire des tels robots :
– dans la Section 3.1 il s’agira de répartir la quantité à acheter ou vendre sur plusieurs plateformes de négociation.
Ce genre de répartition répond à la fragmentation des marchés apparue depuis une petite dizaine d’année (cf.
[Lehalle et al. , 2013] pour des détails).

– Quant à la Section 3.2, elle montrera comment adapter le prix auquel on poste un ordre d’achat ou de vente,
non pas à une probabilité d’exécution espérée d’après une loi en A exp�k� vérifiée en moyenne (comme cela est
fait dans la Section 1.3), mais en fonction des transactions obtenues tout récemment.

Il s’agit donc dans les deux cas de mettre en œuvre un processus d’exploration-exploitation, visant à optimiser non
pas l’espérance future suivant la loi jointe bien spécifiée des contrôles et de l’état, mais à l’espérance sur le long terme,
en se reposant sur une hypothèse de stationnarité de la loi sous jascente jamais spécifiée.

Ces deux approches très complémentaires sont di�ciles à articuler, ici nous choisirons l’échelle de temps : l’opti-
misation rétrograde (i.e. backward en anglais) du contrôle stochastique restera dédiée aux grandes échelles, alors que
dans les section qui suivent nous spécialiserons l’optimisation progressive (i.e. forward) des algorithmes stochastiques
pour les petites échelles (sur quelques dixaines de minutes tout au plus).

Pour rester, comme lors de l’introduction de la Section 1, dans un formalisme approximatif, on peut résumer ainsi
le passage du trading optimal stochastique au trading optimal par apprentissage :

�

�

�

�

�

�

EV(t, x) = max⇢(t,x) E
�

V (t,Xt = x, ⇢(t, x))
+EV(t+ 1, Xt+1

|x, ⇢(t, x))�
EV(T, x) = G(x)

| {z }

Stochastic Optimal Trading

�!
�

�

�

�

�

�

⇢(t+ 1) = ⇢(t)� �t@⇢h(Xt, ⇢(t))

H(⇢) = EXh(X, ⇢)
| {z }

Optimal Trading by Learning

.

Ici on cherche à maximiser un critère en espérance H(⇢) qui s’exprime en fonction d’une valeur instantanée d’une action
h(X, ⇢). Cette dernière dépend à la fois de l’état du système et du contrôle ⇢. Plutôt que de maximiser explicitement
le critère, on va construire une suite de contrôle, qui prend en compte les actions passées et leurs valeurs, de telle sorte
de la limite de cette suite maximisera le critère : ⇢(1) = argmax⇢ H(⇢). Classiquement, cela recours à une descente
de gradient stochastique d’un pas �t qui vérifie les hypothèses habituelles de Robbins-Monro[Robbins & Monro, 1951]
(tend vers zéro mais de somme divergente). Il s’agit donc ici de maximiser le long des trajectoires, ce qui, via le
théorème ergodique, permettra d’obtenir le manimum de l’espérance selon la bonne mesure sur X.

Monitoring d’un grand nombre d’ordres automatisés. L’apprentissage statistique n’est pas seulement utile
pour la construction d’algorithmes de trading, il permet aussi de comprendre en temps réel la cause d’une baisse de
performance d’un sous ensemble d’algorithmes au sein d’un très grand nombre. C’est ce à quoi s’attache la Section
3.3 : elle montre comment on peut construire un système de focalisation d’attention pour la surveillance d’un très
grand nombre d’algorithmes de trading en cours de fonctionnement.

En e↵et, en pratique (cf. [Lehalle et al. , 2013]), les intermédiaires (courtiers et banques d’investissement) qui
fournissent aux investisseurs finaux des algorithmes de trading paramétrables constituent des équipes de 2 à 12 traders
chargés de surveiller chacun entre 200 et 1,000 algorithmes. Leur rôle est d’ajuster manuellement un ou deux paramètres
de règlage (comme l’aggressivité –qui correspond à un paramètre d’avertion au risque–), voire d’arrêter le trading.

Ces execution traders ont un temps et une attention limités, et ils se doivent de les consacrer aux algorithmes
qui ont “le plus de di�culté”. La Section 3.3 construit à la volée des prédicteurs de bonne ou mauvaise qualité du
trading. Ces prédicteurs ayant la capacité de sélectionner à chaque instant t les variables explicatives qu’ils utilisent
comme régresseurs, on va considérer que les meilleurs prédicteurs pointent en fait du doigt les meilleures variables
explicatives de mauvaise performance. Les traders peuvent ainsi accéder à une première forme d’interprétation et un
regrouppement des baisses de performance.
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English introduction to the section

The two preceding sections deal respectively with optimal trading (in the sense of the minimization of an expected
cost) and market microstructure (modelling and understanding the price formation process in general). They both
model averaged or usual behaviours. Nevertheless the reality is not that predictable, hence the noise (or the unexpected
fluctuations around dynamics that are, on average, understood) around the expected behaviour by previous section,
is high.

An answer to this would be to use recent data to build on the fly models capturing the current state of liquidity,
or the current relationship between the e�ciency of trading algorithms and some observables. By chance electronic
markets are transparents, since regulators or any market participant have access to an order-by-ordrer update of the
state of matching engines. Regulators have even more information since they have the identity of each owner of orders.
The typical number of trades on a liquid stock per day being around 40,000 and the number of orderbook update being
around ten times this number, we have access to a lot of data. Enough to put in place statistical learning approaches
in attempts to capture oscillations around average behaviours.

This section presents two ways to use statistical learning on high frequency data :
– improve the e�ciency of optimal trading scheme of Section 1,
– monitor a large number of trading algorithms and provide online decision support to human operators.

The work presented here is not just an application of known techniques, but it goes back to the root of stochastic
algorithms (see [Benveniste et al. , 1991] and [Duflo, 1997]) and of statistical learning and non parametric modelling
(see [Vapnik, 2006]) to provide an accurate description (in terms of bound or convergence rate) of the obtained tools.

The use of an exploration-exploitation learning approach inside robots synchronized thanks to stochastic control
has been underlined in the introduction of Section 1. The learning by trading approaches presented here are the first
attempts to give a mathematical framework to tricks and tips used by traders to improve the e�ciency of their trading
algorithms.

The alternatives to this stochastic algorithm approach would be :
– to put in place estimators as robust as possible of needed variables and plug them as if they were deterministic
into a deterministically optimal strategy,

– to use a minimum regret approach, being more afraid by doing mistakes than being confident in the e�ciency
of a strategy designed to be optimal “on expectation”.

By chance these two other approaches have been proposed in the scope of “Dark Pool trading” as alternatives of
the work exposed in Section 3.1 and published in [Pagès et al. , 2011]. [Ganchev et al. , 2010] for a sensored statistics
proposal and [Agarwal et al. , 2010] for a minimum regret one. As usual in learning, there is no best algorithm with
respect to any criterion, just that :

– our stochastic algorithm approach is suitable for a participant having enough trading flow to attain the“expected
optimal” (typically a broker) ;

– the sensus statistics is good for an opportunistic hedge fund primarily interested to know what is available in
the dark rather than trading massively in it,

– the minimum regret is nice for an investor who trades not that often but would like to systematically send a
fraction of its orders in Dark Pools.

The monitoring framework of Section 3.3 is the only paper providing a mathematical grasp to o↵er decision
support to human operating or supervising trading algorithms. It can be adapted to the use of investment banks,
market operators or regulators.
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3.1 Trading in the Dark : an Exploration-Exploitation Solution

This Section has been published as a part of Optimal split of orders across liquidity pools : a stochastic
algorithm approach (2011 SIAM Journal on Financial Mathematics 2, 1042–1076) [Pagès et al. , 2011]

3.1.1 A simple model for the execution of orders by dark pools

The execution model. As mentioned in the introduction, we will focus in this paper on the splitting order problem
in the case of (competing) dark pools. The execution policy of a dark pool di↵ers from a primary market : thus a
dark pool proposes bid/ask prices with no guarantee of executed quantity at the occasion of an over the counter
transaction. Its bid and ask prices are slightly di↵erent from those o↵ered on the primary market (practically, it is
often a small modification of the mid-price). Let us temporarily focus on a buy order to be split across several dark
pools. We do not aim at specifying a given dynamics for the bid and ask prices, but just to make some reasonable
generic assumptions. We mean assumptions not too far from reality which makes possible to connect the problem with
a stochastic optimization that can be solved on line (hence in a forward way).

One can model the impact of the existence of N dark pools (N � 2) on a given transaction started at time t as
follows : let V (t) > 0 be the random volume to be executed between time t and t +�t. If St denotes the (bid) price
of the asset at time t on the primary market and Si

t the one of dark pool i, we assume that

(H
1

) ⌘ 8 t � 0, E(Si
t |St) = ✓iSt, i = 1, . . . , N.

where ✓i2 (0, 1) can be seen as the mean discount factor proposed by the dark pool i2 {1, . . . , N} with respect to the
best opposite. Let ri(t) denote the percentage of V (t) sent to the dark pool i for execution and let Di(t) � 0 be the
quantity of securities that can be delivered (or made available) by the dark pool i at price Si

t . In case of of a remaining
quantity on the order, what is left is sent at time t+�t for agressive execution on the primary market, at price St+�t.
Then the total cost C(t) of the executed order is given by

C(t) =
N
X

i=1

Si
t min(ri(t)V,Di(t)) + St+�t

 

V (t)�
N
X

i=1

min(ri(t)V (t), Di(t))

!

.

The second assumption is that, at the scale we consider (say around 10 minutes with an execution every few
seconds) :

(H
2

) ⌘ The price process (St)t and (V (t), D
1

(t), . . . , D
N

(t))t are independent.

(H
3

) ⌘ The process (V (t), D
1

(t), . . . , D
N

(t))t is stationary with marginal distribution ⌫.

(From a mathematical viewpoint, we only need this process to be mean-reverting and to converge toward a steady
regime.) We will also need in the next section that this shares a slightly more stringent ⌫-ergodic/averaging property
under this steady regime.

Finally we assume that (St)t is either a martingale or more generally

(H
4

) ⌘ 8 t � 0, E
�

St | FS
s

�

= at�sSs, au2 (0,1). where au satisfies lim
u!0

au = 1 (Typically, one may think at au as

a discount factor like e�µu, µ > 0).
Then elementary computations show that

E(Ct) = E(St+�t)E(V (t))� a
�tE(St)

N
X

i=1

⇣

1� ✓i
a
�t

⌘

E
⇣

min(ri(t)V (t), Di(t))
⌘

.

At this stage, one may wish to minimize the mean execution cost E(Ct). Taking into account the stationarity assumption
(H

3

), this amounts to solving the following (conditional) maximization problem

max

(

N
X

i=1

⇢iE [min(riV,Di)] , r2 P
N

)

. (69)

where the expectation is taken with respect to the marginal distribution ⌫ and ⇢i = 1 � ✓
i

a
�t

, i = 1, . . . , N . If one of
the ⇢i is negative, dark pool i is out of the game and the problem is ill-posed. So we make the assumption that �t is
chosen small enough so that

max
1iN

✓i < a
�t

which implies in turn that ⇢i > 0, i = 1, . . . , N .

If one considers symmetrically a sell order to be executed, the dark pool is supposed to propose a higher price ✓iS,
✓i > 1, than the best opposite of the visible order book. The seller aims at maximizing the execution global (mean)
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price of the transaction. This leads to the same formal optimization problem, this time with ⇢i = ✓i�a�t, i = 1, . . . , N ,
all assumed to be positive which requires the assumption mini ✓i > a

�

t

.
In both cases, the restriction on �t means that, if e.g. (au)u�0

is also nonincreasing, [0, 1]-valued with limu!1 au 
0, one must complete the execution of the order fast enough to limit the exposure to the market risk in order to take
advantage of dark pool executions.

All these considerations lead us to focus on the abstract optimal allocation problem (69) in which the price variable
S no longer appears in what follow which means in some sense that we can forget about the primary market. In fact
this is a sine qua non condition to define an on line approach to the optimal splitting based on a learning procedure.

3.1.2 The Learning Scheme

In practice, there is no a priori assumption – or information available – on the joint distribution of (V,D
1

, . . . , D
N

)
under P. So the only reasonable way to provide a procedure to solve this allocation problem is to devise an on-line
learning algorithm based on historical data, namely the results of former transactions with the dark pools on this
security executed in the past. This underlines that our agent dealing with the dark pools is a financial institution like
an investment bank, a broker or possibly a large investor which often – that means at least daily – faces some large
scale execution problems on the same securities.

This means that we will have to make some assumptions on the dynamics of these transactions i.e. on the data
input sequence (V n, Dn

1

, . . . , Dn
N

)n�1

supposed to be defined on the same probability space (⌦,A,P) (where superscript
n stands for an execution launched at time tn (to be consistent we assume that the execution are made successively
that is tn > tn�1

+�t).

Our basic assumption on the sequence (Dn
i , V

n, i = 1, . . . , N)n�1

is of statistical – or ergodic – nature : we ask this
sequence to be ⌫-averaging (a.s. and in Lp(P)), at least on bounded continuous functions, where ⌫ is a distribution on
(RN+1

+

,Bor(RN+1

+

)). This leads to the following formal assumption :

(ERG)⌫ ⌘

8

>

>

>

<

>

>

>

:

(i) the sequence (V n, Dn
i , i = 1, . . . , N)n�1

is averaging i.e.

P-a.s. 1

n

n
X

k=1

�
(V k,Dk

1

,...,Dk

N

)

(RN+1

+

)

=) ⌫,

(ii) supn E(V n)2 < +1.

where
(RN+1

+

)

=) denotes the weak convergence of probability measures on RN+1

+

. For convenience, we will denote (V,D
1

, . . . , D
N

)

the canonical random vector on RN+1

+

so that we can write ⌫ = L(V,D
1

, . . . , D
N

).
Assumption (ii) on the marginal distribution of the sequence (V n)n�1

is mainly technical. In fact standard argu-
ments from weak convergence theory show that combining (i) and (ii) implies

1

n

n
X

k=1

V k �! EV as n!1

(supn E(V n)1+" < +1 would be enough). An important sub case is the the (IID) setting

(IID) ⌘
⇢

(i) the sequence (V n, Dn
1

, . . . , Dn
N

)n�1

is i.i.d. with distribution ⌫ = L(V,D
1

, . . . , D
N

),
(ii) V 2 L2(P).

This more restrictive assumption is undoubtedly less realistic from a modeling point of view but it remains ac-
ceptable as a first approximation. It is the most common framework to apply the standard Stochastic Approximation
machinery (a.s. convergence, asymptotically normal fluctuations, etc). So, its interest may be considered at least as
pedagogical. The (ERG) setting is slightly more demanding in terms of assumptions and needs more specific methods
of proof. It will be investigated as a second step, using some recent results established in [Laruelle & Pagès, 2012]
which are well suited to the specificities of our problem (in particular we will not need to assume the existence of a
solution to the Poisson equation related to the procedure like in the reference book [Benveniste et al. , 1991])

The mean execution function of a dark pool In view of the modeling section, we need to briefly describe the
precise behaviour of the mean execution function ' : [0, 1]! R

+

of a single dark pool.
Let (V,D) be an R2

+

-valued random vector defined on a probability space (⌦,A,P) representing the global volume
to be executed and the deliverable quantity (by the dark pool) respectively. Throughout this paper we will assume the
following consistency assumption

V > 0 P-a.s. and P(D > 0) > 0. (70)

The a.s. positivity of V means that we only consider true orders. The fact that D is not identically 0 means that
the dark pool does exist in practice. The “rebate” coe�cient ⇢ is specific to the dark pool.

To define in a consistent way the mean execution function of a dark pool we only need to assume that V 2 L1(P)
(although more stringent integrability assumptions are made throughout the paper).
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Here the mean execution function ' : [0, 1]! R
+

of the dark pool is defined by

8 r2 [0, 1], '(r) = ⇢E(min(rV,D)) (71)

where ⇢ > 0. The function ' is finite, non-identically 0. It is clearly a concave non-decreasing bounded function.
Furthermore, one easily checks that its right and left derivatives are given at every r2 [0, 1] by

'0l(r) = ⇢E
�

1{rVD}V
�

and '0r(r) = ⇢E
�

1{rV <D}V
�

. (72)

In particular,
'0(0) = ⇢E(V 1{D>0}) > 0

and if

the (right continuous) distribution function of D
V is continuous on R

+

, (73)

then
' is everywhere di↵erentiable on the unit interval [0, 1] with '0 = '0l on (0, 1].

Assumption (73) means that the distribution of D
V has no atom except possibly at 0. It can be interpreted as the

fact that a dark pool has no “quantized” answer to an order.
More general models of execution functions in which the rebate ⇢ and the deliverable quantity D may depend upon

the quantity to be executed rV are briefly discussed further on.

Design of the stochastic Lagrangian algorithm. Let V be the quantity to be executed by N dark pools. For
every dark pool i2 I

N

the available quantity Di is defined on the same probability space (⌦,A,P) as V . We assume
that all couples (V,Di) satisfy the consistency assumption (70).

To each dark pool i2 I
N

is attached a (bounded concave) mean execution function 'i of type (71), introduced in
Section 3.1.2.

Then for every r = (r
1

, . . . , r
N

)2 P
N

,

�(r
1

, . . . , r
N

) :=
N
X

i=1

'i(ri). (74)

In order to design the algorithm we will need to extend the mean execution function ' (whatever its form is) as a
concave function on the whole real line by setting

'(r) =

✓

r � r2

2

◆

'0(0) if r < 0 and '(r) = '(1) + '0(1) log r if r > 1. (75)

Based on the extension of the functions 'i defined by (75), we can formally extend � on the whole a�ne hyperplane
spanned by P

N

i.e.

H
N

:= {r2 RN |
X

i

ri = 1}.

As announced, we aim at solving the following maximization problem

max
r2P

N

�(r)

but we will deal for algorithmic purpose with the same maximization problem when r runs over H
N

.
Before stating a rigorous result, let us a have a look at a Lagrangian approach that only takes into account the

a�ne constraint that is max
r

�(r)� �
X

i

ri. Straightforward formal computations suggest that

r⇤2 argmaxP
N

� i↵ '0i(r
⇤
i ) is constant when i runs over I

N

or equivalently if

8 i2 I
N

, '0i(r
⇤
i ) =

1

N

N
X

j=1

'0j(r
⇤
j ). (76)

In fact this statement is not correct in full generality because the Lagrangian method does not provide a necessary
and su�cient condition for a point to be a maximum of a (concave) function ; thus, it does not take into account the
case where � reaches its maximum on the boundary @P

N

where the above condition on the derivatives may fail. So,
an additional assumption is necessary to make it true as established in the proposition below.
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Proposition 11 Assume that (V,Di) satisfies the consistency assumptions (70) and (73) for every i2 I
N

.

(a) Assume that the functions 'i defined by (71) satisfy the following assumption

(C) ⌘ min
i2I

N

'0i(0) � max
i2I

N

'0i

✓

1

N � 1

◆

.

Then argmaxP
N

� is a compact convex set and

argmaxP
N

� = {r2 P
N

, |'0i(ri) = '0
1

(r
1

), i = 1, . . . , N}.

Furthermore argmaxH
N

� = argmaxP
N

�.

(b) If the functions 'i satisfy the slightly more stringent assumption,

(C<) ⌘ min
i2I

N

'0i(0) > max
i2I

N

'0i

✓

1

N � 1

◆

.

then
argmaxH

N

� = argmaxP
N

� ⇢ int(P
N

).

Remarks. • If N = 2, one checks that Assumption (C) is also necessary to derive the conclusion of item (a).
• As a by-product of the proof below we have the following more precise result on the optimal allocation r⇤ : if
r⇤2 argmaxP

N

and I
0

(r⇤) := {i2 I
N

| r⇤i = 0}, then

max
i2I

0

(r⇤)
'0i(0)  min

i2I
0

(r⇤)c
'0i(0).

Interpretation and comments : • In the case of a “regular”mean execution function, Assumption (C) is a kind of
homogeneity assumption on the rebates made by the involved dark pools. If we assume that P(Di = 0) = 0 for every
i2 I

N

(all dark pools buy or sell at least one security with the announced rebate), then (C) reads

min
i2I

N

⇢i � max
i2I

N

 

⇢i
EV 1{ V

N�1

D
i

}
EV

!

since '0i(0) = ⇢i EV . In particular,

Assumption (C) is always satisfied when all the ⇢i’s are equal

i.e. all dark pools propose the same rebates which usually is usually the mid-price (defined as the middle between bid
and ask prices).

• Assumption (C) is in fact our main assumption in terms of modeling. It may look somewhat di�cult to satisfy when
the rebates are not equal. But the crucial fact in order to preserve the generality of what follows is that it contains no
assumption about the dependence between the volume V and the “answers”Di from the dark pools.

Design of the stochastic algorithm. Now we are in position to devise the stochastic algorithm for the optimal
allocation among the dark pools, taking advantage of the characterization of argmaxP

N

�. In fact we will simply use
the obvious remark that N numbers a

1

,. . ., a
N

are equal if and only if they are all equal to their arithmetic mean
a
1

+···+a
N

N .
We consider the mean execution function as defined by (71). We assume from now on that the continuity assump-

tion (73) holds so that the representation (72) of its derivative can be taken as its right or its left derivative on (0, 1]
(and its right derivative only at 0).

Using this representation (72) for all the derivatives '0i yields that, if Assumption (C) is satisfied, then argmaxH
N

� =
argmaxP

N

� and

r⇤2 argmaxP
N

�() 8 i2 {1, . . . , N}, E
0

@V

0

@⇢i1{r⇤
i

VD
i

} � 1

N

N
X

j=1

⇢j1{r⇤
j

VD
j

}

1

A

1

A = 0.

However, the set P
N

is not stable for the “naive” zero search algorithm naturally derived from the above characteriza-
tion, we are led to devise the procedure on the hyperplane H

N

.
Consequently, this leads to devise the following zero search procedure

rn = rn�1 + �nH(rn�1, V n, Dn
1

, . . . , Dn
N

), n � 1, r02 P
N

, (77)
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where, for every i2 I
N

, every r2 H
N

, every V > 0 and every D
1

, . . . , D
N

� 0,

Hi(r, V,D1

, . . . , D
N

) = V
⇣

⇢i1{r
i

VD
i

}\{r
i

2[0,1]} � 1

N

N
X

j=1

⇢j1{r
j

VD
j

}\{r
j

2[0,1]} (78)

+Ri(r, V,D1

, . . . , D
N

)
⌘

and the “innovation” (V n, Dn
1

, . . . , Dn
N

)n�1

is a sequence of random vectors with non negative components such that,

for every n � 1, (V n, Dn
i , i = 1,, N)

d
= (V,Di, i = 1,, N) and the remainder terms Ri have a mean-reverting e↵ect

to pull back the algorithm into P
N

. They are designed from the extension (75) of the derivative functions '0i outside
the unit interval [0, 1] ; to be precise, for every i2 I

N

,

Ri(r, V,D1

, . . . , D
N

) = ⇢i

✓

(1� ri)1{D
i

>0}\{r
i

<0} +
1

ri
1{VD

i

}\{r
i

>1}

◆

� 1

N

N
X

j=1

⇢j

✓

(1� rj)1{D
j

>0}\{r
j

<0} +
1

rj
1{VD

j

}\{r
j

>1}

◆

.

3.1.3 Interpretation and implementability of the procedure

B Implementability. The vector (rni )1iN in (77) represents the dispatching of the orders among the N dark pools
to be sent at time n + 1 by the investor. It is computed at time n. On the other hand V n represents the volume to
be executed (or its monetary value if one keeps in mind that we “plugged” the price into the volume) and the Dn

i the
“answer” of dark pool i, still at time n.

The point is that the investor does have no access to the quantities Dn
i . However, he/she knows what he/she

receives from dark pool i, i.e. min(Dn
i , r

n�1

i V n). As a consequence, the investor has access to the event

{min(Dn
i , r

n�1

i V n) = rn�1

i V n} = {rn�1

i V n  Dn
i }

which in turn makes possible the updating of the procedure although he/she has no access to the true value of Dn
i .

So, except for edge e↵ects outside the simplex P
N

, the procedure as set can be implemented on real data.

B Interpretation. As long as r is a true allocation vector, i.e. lies in the simplex P
N

, the interpretation of the
procedure is the following : assume first that all the factors ⇢i are equal (to 1). Then the dark pools which fully
executed the sent orders (riV  Di) are rewarded proportionally to the numbers of dark pools which did not fully
executed the request they received. Symmetrically, the dark pools which could not execute the whole request are
penalized proportionally to the number of dark pools which satisfied the request.

Thus, if only one dark pool, say dark pool 1, fully executes the request at time n, its pourcentage will be increased
for the request at time n + 1 by �n(1 � 1

N )V n i.e. it will asked to execute rn
1

= rn�1

1

+ �n(1 � 1

N )V n % of the total
order V n+1. The other N � 1 dark pools will be penalized symmetrically : the pourcentage rni of the total request
V n+1 each of them will receive at time n+ 1 will be reduced by �n

1

N V n.

If k dark pools totally execute their request at time n and the N � k other fail, the pourcentages of V n+1 that the
“successful” dark pools will receive for execution at time n + 1 will be increased by �n(1 � k

N )V n, each of the N � k

“failing dark pools” being reduced by �n
k
N V n .

If no dark pool was able to satisfy their received request at time n, none will be penalized and if all dark pools
fully execute the received orders, none will be rewarded.

In short, the dark pools are rewarded or penalized by comparing their mutual performances. When the“attractivity”
coe�cients ⇢i are not equal, the reasoning is the same but weighted by these attractivities.

B Practical implementation. One may force the above procedure to stay in the simplex P
N

by projecting, once
updated, the procedure on P

N

each time it exits the simplex. This amounts to replace the possibly negative ri by 0,
the ri > 1 by 1 and to renormalize the vector r by dividing it by the sum of its terms.

Furthermore, to avoid that the algorithm leaves too often the simplex, one may simply normalize the step �n by
considering the predictable step

�̃n = �n ⇥ n� 1

V 1 + · · ·+ V n�1

⇡ �n
EV

.

3.1.4 Simulations

The pseudo-real data setting. Firstly we explain how the data have been created. We have considered for V the
traded volumes of a very liquid security – namely the asset BNP – during an 11 day period. Then we selected the N
most correlated assets (in terms of traded volumes) with the original asset. These assets are denoted Si, i = 1, . . . , N
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and we considered their traded volumes during the same 11 day period. Finally, the available volumes of each dark
pool i have been modeled as follows using the mixing function

81  i  N, Di := �i

✓

(1� ↵i)V + ↵iSi
EV

ESi

◆

where ↵i 2 (0, 1), i = 1, . . . , N are the recombining coe�cients, �i, i = 1, . . . , N are some scaling factors and EV and
ESi stand for the empirical mean of the data sets of V and Si.

The shortage situation corresponds to
PN

i=1

�i < 1 since it implies E
h

PN
i=1

Di

i

< EV .

The simulations presented here have been made with four dark pools (N = 4). Since the data used here covers 11
days and it is clear that unlike the simulated data, these pseudo-real data are not stationary : in particular they are
subject to daily changes of trend and volatility (at least). To highlight these resulting changes in the response of the
algorithms, we have specified the days by drawing vertical doted lines. The dark pool pseudo-data parameters are set
to

� =

0

B

B

@

0.1
0.2
0.3
0.2

1

C

C

A

and ↵ =

0

B

B

@

0.4
0.6
0.8
0.2

1

C

C

A

and the dark pool trading (rebate) parameters are set to ⇢ =

0

B

B

@

0.01
0.02
0.04
0.06

1

C

C

A

.

The mean and variance characteristics of the data sets of (V n)n�1

and (Dn
i )n�1

, i = 1, . . . , 4 are the following :

V D
1

D
2

D
3

D
4

Mean 955.42 95.54 191.08 286.63 191.08
Variance 2.01⇥ 106 9.05⇥ 103 4.29⇥ 104 4.73⇥ 105 5.95⇥ 104

Firstly, we benchmarked both algorithms on the whole data set (11 days) as though it were stationary without
any resetting (step, starting allocation, etc.). In particular, the running means of the satisfactions ratios are computed
from the very beginning for the first 1500 data, and by a moving average on a window of 1500 data. As a second step,
we proceed on a daily basis by resetting the parameters of both algorithms (initial allocation for both and the step
parameter �n of the optimization procedure) at the beginning of every day.

B Long-term optimization We observe that, except for the first and the fourth days where they behave similarly,
the optimization algorithm is more performing than the reinforcement one. Its performance is approximately 30%
higher on average (see Figure 3).
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Figure 32 – Long term optimization : Case N = 4,
PN

i=1

�i < 1, 0.2  ↵i  0.8 and r0i = 1/N , 1  i  N .

This test confirms that the statistical features of the data are strongly varying from one day to another (see Fi-
gure 32), so there is no hope that our procedures converge in standard sense on a long term period. Consequently, it
is necessary to switch to a short term monitoring by resetting the parameters of the algorithms on a daily basis as
detailed below.
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B Daily resetting of the procedure We consider now that we reset on a daily basis all the parameters of the
algorithm, namely we reset the step �n at the beginning of each day and the satisfaction parameters and we keep the
allocation coe�cients of the preceding day. We obtain the following results
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Figure 33 – Daily resetting of the algorithms parameters : Case N = 4,
PN

i=1

�i < 1, 0.2  ↵i  0.8 and r0i = 1/N
1  i  N .

We observe (see Figure 33) that the optimization algorithm still significantly outperforms the reinforcement one,
reaching more 95% of the performance of the oracle. Furthermore, although not represented here, the allocation
coe�cients look more stable.
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3.2 Choosing a Price to Post Without a Priori : Forward Optimality

This Section has been published as a part of Optimal posting price of limit orders : learning by trading (2013
Mathematics and Financial Economics 7, 359–403) [Laruelle et al. , 2013]

3.2.1 Modeling and design of the algorithm

We focus our work on the problem of optimal trading with limit orders on one security without needing to model
the limit order book dynamics. To be more precise, we will focus on buy orders rather than sell orders in all that
follows. We only model the execution flow which reaches the price where the limit order is posted with a general price
dynamics (St)t2[0,T ]

since we intend to use real data. However there will be two frameworks for the price dynamics :
either (St)t2[0,T ]

is a process bounded by a constant L (which is obviously an unusual assumption but not unrealistic
on a short time scale see Section 3.2.2) or (St)t2[0,T ]

is ruled by a Brownian di↵usion model (see Section 3.2.2).
We consider on a short period T , say a dozen seconds, a Poisson process modeling the execution of posted passive

buy orders on the market, namely

�

N
(�)
t

�

0tT
with intensity �(St � (S

0

� �)) at time t2 [0, T ], (79)

where 0  �  �
max

(�
max

2 (0, S
0

) is the depth of the order book), � : [�S
0

,+1) ! R
+

is non-negative non-
increasing function and (St)t�0

is a stochastic process modeling the dynamics of the “fair price” of a security stock
(from an economic point of view). In practice one may consider that St represents the best opposite price at time t.
Il will be convenient to introduce the cumulated intensity defined by

⇤t(�, S) :=

Z t

0

�(Ss � (S
0

� �))ds (80)

One way to build N (�) is to set

N
(�)
t = eNR

t

0

�(S
s

�(S
0

��))ds

where eN is a Poisson process with intensity 1 independent of the price (St)t2[0,T ]

.
This representation underlines the fact that for one given trajectory of the price St, the intensity of the Point

process N is decreasing with � : in fact the above representation for N (�) is even pathwise consistent in the sense that
if 0 < � < �0 then

P-a.s.
⇣

8t 2 [0, T ], N
(�)
t  N

(�0)
t

⌘

.

One natural question is how to account for simultaneously placing limit orders at multiple prices (which happens in
reality) ; this case is much harder to handle and is not studied in this paper. In particular, due to interacting impact
features, we would need a more sophisticated approach then simply considering (N �(k))

1kK , processes as above with
�(1) < �(2) < . . . < �(K) (with the same N).

We assume that the function � is defined on [�S
0

,+1) as a finite non-increasing convex function. Its specification
will rely on parametric or non parametric statistical estimation based on previously obtained transactions (see Figure 34
below. At time t = 0, buy orders are posted in the limit order book at price S

0

��. Between t and t+�t, the probability
for such an order to be executed is �(St � (S

0

� �))�t where St � (S
0

� �) is the distance to the current fair price
of our posted order at time t. The further the order is at time t, the lower is the probability for this order to be
executed since � is decreasing on [�S

0

,+1). Empirical tests strongly confirm this kind of relationship with a convex
function � (even close to an exponential shape, see Figure34 and [Avellaneda & Stoikov, 2008, Guéant et al. , 2013,
Bayraktar & Ludkovski, 2012] ).

Figure 34 – Empirical probabilities of execution (blue stars) and its fit with an exponential law (red dotted line) with
respect to the distance to the “fair price”.
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Over the period [0, T ], we aim to execute a portfolio of size QT 2 N invested in the asset S. The execution cost for a

distance � is E
h

(S
0

� �)
⇣

QT ^N
(�)
T

⌘i

. We add to this execution cost a penalty function depending on the remaining

quantity to be executed, namely we want to have QT assets in the portfolio at the end of the period T , so we buy the

remaining quantity
⇣

QT �N
(�)
T

⌘

+

at price ST .

At this stage, we introduce a market impact penalty function � : R 7! R
+

, non-decreasing and convex, with
�(0) = 0 to model the additional cost of the execution of the remaining quantity (including the market impact). Then
the resulting cost of execution on a period [0, T ] reads

C(�) := E
h

(S
0

� �)
⇣

QT ^N
(�)
T

⌘

+ ST �
⇣

�

QT �N
(�)
T

�

+

⌘i

(81)

where  > 0 is a free tuning parameter (the true cost is with  = 1, but we could overcost the market order due to the
bad estimation of the market impact of this order or conversely). When �(Q) = Q, we assume we buy the remaining
quantity at the end price ST . Introducing a market impact penalty function �(x) = (1 + ⌘(x))x, where ⌘ � 0, ⌘ 6⌘ 0,

models the market impact induced by the execution of
�

QT �N
(�)
T

�

+

at time T while neglecting the market impact

of the execution process via limit orders over [0, T ). Our aim is then to minimize this cost by choosing the distance to
post at, namely to solve the following optimization problem

min
0��

max

C(�). (82)

Our strategy to solve (82) numerically using a large enough dataset is to take advantage of the representation of C
and its first two derivatives as expectations to devise a recursive stochastic algorithm, specifically a stochastic gradient
procedure, to find the minimum of the (penalized) cost function (see below). Furthermore we will show that under
natural assumptions on the quantity QT to be executed and on the parameter , the function C is twice di↵erentiable
and strictly convex on [0, �

max

] with C 0(0) < 0. Consequently,

argmin�2[0,�
max

]

C(�) = {�⇤}, �⇤ 2 (0, �
max

]

and
�⇤ = �

max

i↵ C is non-increasing on [0, �
max

].

Criteria involving  and based on both the risky asset S and the trading process especially the execution intensity
� can be established. We specify representations as expectations of the function C and its derivatives C 0 and C 00. In
particular we will exhibit a Borel functional

H : [0, �
max

]⇥ D ([0, T ],R) �! R

such that
8� 2 [0, �

max

], C 0(�) = E
h

H
�

�, (St)t2[0,T ]

�

i

.

The functional H has an explicit form involving integrals over [0, T ] of the intensity �(St � S
0

+ �) of the Poisson

process (N (�)
t )t2[0,T ]

. In particular, any quantity H
�

�, (St)t2[0,T ]

�

can be simulated, up to a natural time discretization,
either from a true dataset (of past executed orders) or from the stepwise constant discretization scheme of a formerly
calibrated di↵usion process modeling (St)t2[0,T ]

(see below). This will lead us to replace, for practical implementations,
the continuous time process (St)t2[0,T ]

over [0, T ] with either a discrete time sample, i.e. a finite dimensional Rm+1-

valued random vector (St
i

)
0im (where t

0

= 0 and tm = T ) or with a time discretization scheme with step T
m

(typically the Euler scheme when (St)t2[0,T ]

is a di↵usion).

A theoretical stochastic learning procedure : Based on this representation of C 0, we can formally devise
a recursive stochastic gradient descent a.s. converging toward �⇤. However to make it consistent, we need to in-
troduce constraints so that it lives in [0, �

max

]. In the classical literature on Stochastic Approximation Theory (see
[Kushner & Yin, 2003] and [Kushner & Clark, 1980] ) this amounts to using a variant with projection on the “order
book depth interval” [0, �

max

], namely

�n+1

= Proj
[0,�

max

]

⇣

�n � �n+1

H
⇣

�n,
�

S
(n+1)

t

�

t2[0,T ]

⌘⌘

, n � 0, �
0

2 (0, �
max

), (83)

where
– Proj

[0,�
max

]

: (x 7! 0) _ x ^ �
max

denotes the projection on the (nonempty closed convex) [0, �
max

],
– (�n)n�1

is a positive step sequence satisfying (at least) the minimal decreasing step assumption
P

n�1

�n = +1
and �n ! 0.

– the sequence
n

(S(n)
t )t2[0,T ]

, n � 0
o

, is the “innovation” sequence of the procedure : ideally it is either a sequence

of simulable independent copies of (St)t2[0,T ]

or a sequence sharing some ergodic (or averaging) properties with
respect to the distribution of (St)t2[0,T ]

.
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The case of independent copies can be understood as a framework where the dynamics of S is typically a Brownian
di↵usion solution to a stochastic di↵erential equation, which has been calibrated beforehand on a dataset in order to
be simulated on a computer. The case of ergodic copies corresponds to a dataset which is directly plugged into the

procedure i.e. S(n)
t = St�n�t, t 2 [0, T ], n � 0, where �t > 0 is a fixed shift parameter. To make this second approach

consistent, we need to make the assumption that at least within a laps of a few minutes, the dynamics of the asset S
(starting in the past) is stationary and shares e.g. mixing properties.

The resulting implementable procedure : In practice, the above procedure cannot be implemented since the
full path (St(!))t2[0,T ]

of a continuous process cannot be simulated nor a functional H(�, (St(!))t2[0,T ]

) of such a path

can be computed. So we are led in practice to replace the “copies” S(n) by copies S̄(n) of a time discretization S̄ of
step, say �t = T

m , (m 2 N⇤). The time discretizations are formally defined in continuous time as follows

S̄t = S̄t
i

, t 2 [ti, ti+1

), i = 0, . . . ,m� 1 with ti =
iT

m
, i = 0, . . . ,m,

where

– (S̄t
i

)
0im = (St

i

)
0im when (St

i

)
0im can be simulated exactly at a reasonable cost (see e.g. [Beskos & Roberts, 2005]

for 1D-Brownian di↵usions processes).

– (S̄t
i

)
0im is a time discretization scheme (at times ti) of (St)t2[0,T ]

, typically an Euler scheme with step T
m .

Then, with an obvious abuse of notation for the function H, we can write the implementable procedure as follows :

�n+1

= Proj
[0,�

max

]

⇣

�n � �n+1

H
⇣

�n,
�

S̄
(n+1)

t
i

�

0im

⌘⌘

, n � 0, �
0

2 [0, �
max

] (84)

where
�

S̄
(n)
t
i

�

0im
are copies of (S̄t

i

�

0im
either independent or sharing“ergodic”properties, namely some averaging

properties in the sense of [Laruelle & Pagès, 2012]. In the first case, one will think about simulated data after a
calibration process and in the second case to a direct implementation using a historical high frequency database of

best opposite prices of the asset S (with e.g. S̄
(n)
t
i

= St
i

�n T

m

).

3.2.2 Main convergence results

The following theorems give a.s. convergence results for the stochastic procedure (83) : the first one for i.i.d.
sequences and the second one for “averaging” sequences (see [Laruelle & Pagès, 2012]).

I.i.d. simulated data from a formerly calibrated model. In this section, we consider innovation process
��

S̄
(n)
t
i

�

0im
, n � 0

 

coming from a di↵usion model beforehand calibrated on real data, which can be simulated
at time ti, 0  i  m, either exactly or via a stepwise constant time discretization scheme.

Theorem 3 (a) Theoretical procedure. Assume that C is strictly convex [0, �
max

] with C 0(0) < 0. Let
�

S
(n)
t

�

t2[0,T ]

,

n � 1, be a sequence of i.i.d. copies of (St)t2[0,T ]

. Furthermore, assume that the decreasing step sequence satisfies the
standard “decreasing step assumption”

X

n�1

�n = +1 and
X

n�1

�2n < +1. (85)

Then the recursive procedure defined by (83) converges a.s. towards its target �⇤ = argmin�2[0,�
max

]

C(�) :

�n
a.s.�! �⇤.

(b) Implementable procedure. Assume the cost function C̄ related to the discretization scheme (S̄t)t2[0,T ]

is strictly

convex [0, �
max

] with C̄ 0(0) < 0 and the step sequence satisfies the“decreasing step”assumption. Let
�

S̄
(n)
t
i

�

0im
, n � 1,

be a sequence of i.i.d. copies of
�

S̄t
i

�

0im
, then the recursive procedure defined by (84) converges a.s. towards its target

�̄⇤ = argmin�2[0,�
max

]

C̄(�).

This theorem is a straightforward application of the classical a.s. convergence for constrained stochastic algorithms.
In particular, the fact that in the original theorem the innovation process takes values in a finite dimensional space
Rq plays no role in the proof.
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Direct implementation on a historical high frequency dataset sharing averaging properties. In this
framework we will focus on the time discretized procedure i.e. on (S̄t)t2[0,T ]

rather than on (St)t2[0,T ]

itself. Keep in
mind that, when directly implementing a high frequency dataset, then

S̄t = St
i

, t 2 [ti, ti+1

), i = 0, . . . ,m and S̄T = ST .

and that the sequence (S̄(n)
t
i

)
0im, n � 1, is usually obtained by shifting the data as follows : if �t > 0 denotes a

fixed time shift parameter such that ti � ti�1

= �t = T
m , we set

8 t 2 [0, T ], S̄
(n)
t
i

= S̄t
i

�n�t = S̄t
i�n

.

We will assume that the sequence (S̄(n)
t
i

)
0im shares an averaging property with respect to a distribution ⌫ as

developed in [Laruelle & Pagès, 2012]. The definition is recalled below.

Definition 1 Let m 2 N and ⌫ be a probability measure on ([0, L]m+1,Bor([0, L]m+1)). A [0, L]m+1-valued sequence
(⇠n)n�1

is ⌫-averaging if

1

n

n
X

k=1

�⇠
k

(Rm+1)
=) ⌫ as n!1.

Then (⇠n)n�1

satisfies

D⇤n(⇠) := sup
x2[0,L]

m+1

�

�

�

1

n

n
X

k=1

1{0,x}(⇠k)� ⌫({0, x})
�

�

�

�! 0 as n!1,

where D⇤n(⇠) is called the discrepancy at the origin or star discrepancy.

The resulting execution cost function C̄ is defined by (81) where S is replaced by (S̄t)t2[0,T ]

whose distribution
is entirely characterized by the distribution ⌫. In some sense this function C̄ is the best possible approximation of the
true execution function C that we can get from the high frequency database.

In this setting, we apply the previous results to the price sequence
��

S̄
(n)
t
i

�

0im
, n � 0

 

, i.e. we set for every

n � 1, ⇠n =
�

S̄
(n)
t
i

�

0im
. In particular we will make the assumption that the dataset is bounded by a real number

L 2 (0,+1) so that ⇠n 2 [0, L]m+1 for every n � 1 . Moreover, we will need to prove the existence of a pathwise
Lyapunov function, which means in this one dimensional setting that H(·, ((̄st

i

)
0im) is non-decreasing for every

(st
i

)
0im 2 Rm+1

+

, n � 1.

Theorem 4 Implementable procedure. Let �(x) = Ae�ax, A > 0, a > 0. Assume
�

S̄(n)
�

n�1

is an [0, L]m+1-

valued ⌫-averaging sequence where ⌫ is a probability measure on (Rm+1,Bor(Rm+1)). Assume that the execution cost
function C is strictly convex over [0, �

max

] with C̄ 0(0) < 0 and C̄ 0(�
max

) > 0. Finally assume that the step sequence
(�n)n�1

is a positive non-increasing sequence satisfying

X

n�1

�n = +1, nD⇤n(S̄)�n �!
n!1 0, and

X

n�1

nD⇤n(S̄)max
�

�2n, |��n+1

|� < +1. (86)

Furthermore (having in mind that S̄
0

= S
0

), assume that

QT � 2T�(�S̄
0

) and   1 + a(S̄
0

� �
max

)

a
�

�S̄
�

�

1 (�(QT )� �(QT � 1))
(87)

Then the recursive procedure defined by (84) converges a.s. towards its target �̄⇤ = argmin�2[0,�
max

]

C̄(�) :

�n
a.s.�! �̄⇤.

Practical comments on the needed bounds.
– The constraint QT � 2T�(�S

0

) is structural : it only involves parameters of the model and the asked quantity
QT . It means that QT is likely not to be fully executed before the end of a slice of duration T (i.e. the intensity
of trades obtained very far away from the current price is smaller than QT /2).

– The criterion involving the free parameter  may be interpreted in two di↵erent ways, depending on the modeling
of the “market impact”.
– The market impact does not depend on the remaining quantity to be traded (i.e. when � = id or ⌘ ⌘ 0 which
implies that �(QT )��(QT �1) = 1). This setting is appropriate for executing very small quantities or trading
very liquid assets (like equity futures). Then the criterion on the free parameter  reads

  S̄
0

� �
max

�

�S̄
�

�

1
+

1

k
�

�S̄
�

�

1
.
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It states that in this case, the constant premium to pay for the remaining quantity (i.e. , in basis points) has
to be lower than the price range inside which we wish to trade (i.e. (S

0

� �
max

)/ kSk1) plus a margin, namely
1/(a kSk1). It can be seen as a symmetry argument : a model where one cannot imagine buying at a lower
price than a given threshold, one cannot accept paying (on the other side) more market impact than this very
threshold either.

– The market impact of the remaining quantity is a function of the quantity. The interpretation is very similar
to the previous one. In this case a quantity homogeneous to the market impact (i.e. (�(QT )��(QT � 1)) in
basis points) should not exceed (S̄

0

� �
max

)/
�

�S̄
�

�

1+1/(a
�

�S̄
�

�

1). Here again it is a symmetry argument : the
trader cannot accept paying more market impact for almost one share (i.e. �(QT )��(QT � 1) plays the role
of �(1) but “taken around QT ”) than his reasonable trading range ((S̄

0

� �
max

)/
�

�S̄
�

�

1 in basis points again),

plus a margin. Looking more carefully at this margin : 1/(a
�

�S̄
�

�

1) (the same as in the constant market impact
case), we see that it is in basis points, and means that if one considers large intensities of fill rates (i.e. a is
small) then the trader can be lazy on the market impact constraint (because his margin, proportional to 1/a,
is large in such a case), mainly because he will have to pay market impact not that often. If on the contrary, a
is large (i.e. he will have remaining quantities) then he needs to really fulfill his constraint on market impact.

The needed bounds to obtain the convergence of �n toward �⇤ are thus not only fulfilled naturally. They also emphasis
the consistency of the model and the mechanisms of the proofs.

3.2.3 Simulations

Setting1 : With market impact (�(x) = (1 +A0ea
0x)x)
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Figure 35 – � 6⌘ id : A = 1/50, a = 50, Q = 100,  = 1, A0 = 0.001, a0 = 0.0005 and N
cycles

= 220.
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Figure 36 – Crude algorithm : A = 1/50, a = 50, Q = 100,  = 1, A0 = 0.001, a0 = 0.0005, N
cycles

= 220 and
�n = 1

550n , 1  n  N
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.

Once we checked that our algorithm converges using real data for the optimization on a whole day, we can implement
the on-line procedure for practical implementation. We use the same data (Accor SA on 11/11/2010) and the same
parameters for the cost and penalty functions, but also for the algorithm. Thus we consider a period T=15 trades and
we use N

cycles

= 220 for the recursive stochastic procedure. The di↵erence is that we do not consider distinct periods
of 15 trades, but we use a sliding window of 15 trades along the path of the fair price (St)t2[0,T ]

moving back a trade
at each step of the algorithm. Consequently, this procedure takes into account all the possible periods of 15 trades
over the day and requires less data than the previous one to converge.
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We consider now that we reset the step �n at the beginning of each period and we keep the posting price of the
end of the previous period. To highlight these resulting changes in the response of the algorithm, we have specified the
periods by drawing vertical doted lines. We present the results on both market impact frameworks (namely � 6= id
and � = id) and for crude and averaged algorithms as in the long-term optimization section.

Setting 1 : With market impact (�(x) = (1 +A0ea
0x)x)
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Figure 37 – Crude algorithm : A = 1/50, a = 50, Q = 100,  = 1, A0 = 0.001, a0 = 0.0005 and �n = 1

550n .
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3.3 On the Fly Monitoring of Large Automated Portfolios

This Section has been published as a part of Realtime market microstructure analysis : online Transaction
Cost Analysis ( 2014 Quantitative Finance , 0–19) [Azencott et al. , 2014]

Motivated by the practical challenge in monitoring the performance of a large number of algorithmic trading orders,
this paper provides a methodology that leads to automatic discovery of causes that lie behind poor trading performance.
It also gives theoretical foundations to a generic framework for real-time trading analysis. The common acronym for
investigating the causes of bad and good performance of trading is TCA (Transaction Cost Analysis [Rosenthal, 2009]).
Automated algorithms take care of most of the traded flows on electronic markets (more than 70% in the US, 45% in
Europe and 35% in Japan in 2012). Academic literature provides di↵erent ways to formalize these algorithms and show
how optimal they can be from a mean-variance [Almgren & Chriss, 2000], a stochastic control [Guéant et al. , 2013],
an impulse control [Bouchard et al. , 2011] or a statistical learning [Laruelle et al. , 2013] viewpoint. This paper is
agnostic about the way the algorithm has been built and provides a theoretical formalism to identify in real-time
the market conditions that influenced its e�ciency or ine�ciency. For a given set of characteristics describing the
market context, selected by a practitioner, we first show how a set of additional derived explanatory factors, called
anomaly detectors, can be created for each market order (following for instance [Basseville & Nikiforov, 1993]). We then
will present an online methodology to quantify how this extended set of factors, at any given time, predicts (i.e. have
influence, in the sense of predictive power or information defined in [Cristianini & Shawe-Taylor, 2000], [Shannon, 1948]
and [Alkoot & Kittler, 1999]) which of the orders are underperforming while calculating the predictive power of this
explanatory factor set. Armed with this information, which we call influence analysis, we intend to empower the order
monitoring user to take appropriate action on any a↵ected orders by re-calibrating the trading algorithms working
the order through new parameters, pausing their execution or taking over more direct trading control. Also we intend
that use of this method in the post trade analysis of algorithms can be taken advantage of to automatically adjust
their trading action.

We consider a portfolio of at most K trading orders T(k), k = 1, . . . ,K driven by automatic trading algorithms,
and supervised by one or more traders. Each trading order is defined by a few “static” variables such as buy/sell label,
order size, trading place, section, country, capitalisation, free-float, benchmark type (VWAP, arrival price, etc), etc. In
our intra-day benchmark studies a portfolio typically involves 200  Kt  700 active orders at any arbitrary 5 minute
time slice.

3.3.1 The Monitoring Framework

Market descriptors. Each trading order T(k) focuses on a specific asset whose dynamics is recorded at each time
point t through a fixed number of basic “market descriptors”M1

t (k),M
2

t (k),M
3

t (k), . . . ; in our benchmark study below,
we have focused on a subset of the following market descriptors :

– M1 = Volatility
– M2 = Spread
– M3 = Momentum in bid-ask spread
– M4 = Momentum in bp

This list can be augmented by the rarity scores Score(M i) of the market variables M i. These scores are defined by
Score(M i) = F i(M i) where F i is the cunulative distribution function of Mi. Each such score necessarily has a uniform
distribution [Borovkov, 1998]. If poor performance on a given set of stocks is due to a strong increase in the volatility
level, the concrete cause may either be due to volatility reaching an “absolute” psychological threshold, or to volatility
being high relatively to its usual levels. In this last case the volatility score will be a better explanatory factor for poor
performance. We will use here the following scores, increasing our number of market variables :

– M5 = Volume Rarity Score
– M6 = Volatility Rarity Score
– M7 = Spread Rarity Score
Figure 40 displays typical intraday (January 14, 2011) plots of the time series corresponding to the 7 basic market

variables listed above for an anonymous stock.
We also display heat map representations of rarity scores for multiple stocks in Figures 38 and 41, where each row

displays the time series of rarity scores for one single stock (associated to one trading order in our benchmark data),
and each column represents one time slice. Clearly “extreme” rarity scores tend to appear in clusters, and to co-occur
across multiple stocks.

As will be seen below, high co-occurrence frequency of “dynamic anomalies” such as peaks, jumps, etc within a
group of stocks tend to “explain” simultaneous lack of performance for the corresponding trading orders.

Trading performance evaluation. We also select a “trading performance evaluator” PE providing at each time
point t, and for each active trading order T(k), a quantitative evaluation PEt(k) for the current performance of T(k).

In our study we have selected by default PE = “slippage in bid-ask spread” (slippage being the average price
of the order minus the benchmark –VWAP, arrival price, close price, etc– for a sell order, and the opposite for a
buy order), but there are no restrictions on the user choice for this PE variable. In particular, other examples of PE
include “slippage in bp” (basis points), “Slippage in Dollars”, “Absolute value of slippage in bid-ask spread”, etc. We are
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Figure 38 – Heatmap of online performances of a traded basket of 7 orders (top) in conjunction with values of
one explanatory variable (the volatility ; bottom), the correspondance between the two heatmaps is not obvious.The
abcissa represents the evolution over five-minute time slices.

assuming that degraded performances are associated to low values of PE. For each trading order T(k) the performance
evaluator and the 7 market descriptors are volume averaged over successive time slices of arbitrary duration (set at
5 minutes for our benchmark study). Thus we generate 8 time series M1

t (k), . . . ,M
7

t (k) and PEt(k) indexed by time
slices t. These time series generically have missing values since orders do not necessarily begin or end at the same time.
Fix a low percentile threshold q such as q = 5% or q = 3% to binarise the performance evaluator.

At time slice t, call Kt  K the number of currently active trading orders T(k). The q%- quantile of the cor-
responding Kt performance evaluations PEt(k) is denoted by `t. We consider `t as a PE-threshold, separating “bad
trading performances”(tagged“1”) from“normal trading performances”(tagged“0”). We then binarize the performance
evaluations PEt(k) by setting

Yt(k) = 1 if PEt(k) < `t,

Yt(k) = 0 if PEt(k) � `t.
(88)

In Figure 40, we plot an example of the intraday behaviour of a trading algorithm. Its trading performance evaluation
PEt can observed within a trading day, in real-time, like some of the market context variable we used. A trading order
may or may not be active at a given time slice as observed in Figure 38.

Figure 41 displays synchronous intraday plots of trading performance evaluations in conjunction with the values
of a few selected market variables. An essential goal of our methodology is, for each fixed time slice, to quantify on
line the current influence of a market variable on trading performance degradation. Our automated online influence
quantification replaces expert visual inspection of current trading orders performances, to identify critical market
variables explaining trading performance degradations. For instance, visual inspection of Figures 38 and 41 will natu-
rally “explain” the low performances observed at time slices t = 39, 40, 41 by the obvious trend changes simultaneously
observed on rarity scores as well as by the volatility peak.
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Figure 39 – Heatmap of online performances of the some basket of 7 orders (top) in conjunction with the scores of
the same explanatory variable (the volatility ; bottom), compared to Figure 38, one can see that the scores change
the high and low values of the explanatory variables, giving birth to more potential conjunctions with bad trading
performances.

3.3.2 Online anomaly detectors

Anomaly detection. Online anomaly detection is a critical step in many applications, such as safety of complex sys-
tems, safety monitoring in automotive or aeronautics industries, remote health monitoring in biomedicine, real-time
quality control for industrial production lines, etc (See [Aviv, 1991, Basseville & Nikiforov, 1993, Basseville, 1988,
Gustafsson, 2000] [Lehalle & Azencott, 2004]).
In the context of trading performance online monitoring, it is also quite natural to systematically enrich raw mar-
ket descriptors by automated detection of anomalies a↵ecting their dynamics. We have thus developed algorithmics
dedicated to the online implementation of this processing step.

The occurrence of visually evident anomalies can be detected by algorithmic tracking of local regime changes in
market descriptors dynamics, and may have potentially strong influence on performance degradation for the correspon-
ding trading orders. We have hence developed and implemented a set of 3 parametrized anomaly detectors, dedicated
to the online identification of “significant”Peaks or Crenels, Jumps, and Trend Changes on generic time series. These
3 detectors automatically locate emerging anomalies, quantify their intensities, and filter them through adjustable
gravity thresholds.

Building online detectors. Consider a generic discrete time series Ut. A smoothed “baseline”BUt is generated as
a moving local median of Ut. One then computes the local standard deviation �t of the “noise”Ut�BUt, and in turn,
this defines “outlier” values of Ut. Our three online anomaly detectors are based on local trend extractions at each time
slice t by fitting linear or quadratic regression models on short moving time windows to the left and the right of t.
The detector parameters have simple geometric interpretations for the users and are kept fixed during online influence
analysis. Each anomaly detector is dedicated to a fixed type of anomaly, and generates a binary time series encoding
the presence or absence of this anomaly type at successive time slices of Ut.
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Figure 40 – Example of intraday behaviour of performance variables for a given order. Top : the prices (the variations
of the average obtained price is in gray, the market VWAP in dark) ; bottom : the cumulated traded volume (grey)
and market volume (dark).

Peaks/ crenels detector. A“peak”is the sudden occurrence of a high“outlier”value of Ut. More generally, a“crenel”
is a cluster of successive high“outliers”with approximately equal values. Each crenel is described by 3 geometric“crenel
features”, namely, its time duration, its thickness (i.e., absolute di↵erence between highest and lowest crenel points),
and its height above the baseline BUt. Minimal threshold values are imposed on these 3 features, as well as a minimal
time gap between successive crenels.

To detect peaks and/or crenels on the series Ut, one first extracts outliers with respect to the baseline BUt ; then
one applies simple filters to detect local geometric configurations of outliers which satisfy the threshold constraints
imposed on the three “crenel features” described above. If a peak or crenel is detected at time t, then “peak/crenel
intensity”Peakt is set equal to “height” of the peak/crenel above the baseline. If no peak or crenel is detected at time
t, one sets Peakt = 0.

Jumps detector. A “jump” at time t is a sudden level change between the Us values on finite time windows to the
left and to the right of t. Bona fide jumps are described by 2 features, namely, a duration 2L and a minimal jump size
�. For each t, one fits two distinct quadratic regressions to the baseline BUs, namely Reg� for (t�1�L)  s  (t�1)
and Reg+ for t  s  (t+ L), where L is a fixed parameter.

A jump is detected at t if the“jump size”JS(t) = |Reg+(t)�Reg�(t)| is larger than �, provided the two regressions
have small enough residuals. If a jump is detected at time t on the series Ut, then “jump intensity” Jumpt is set equal
to the “jump size” JS(t). If no trend change is detected at time t, one sets Jumpt = 0.

Trend changes detector. Bona fide “trend changes” are described by 3 features, a duration 2L, a minimal slope
change �, and a continuity modulus ". For each t, one fits as above two quadratic regressions to the baseline BUs,
namely Reg� to the left of t and Reg+ to the right of t. Call ↵+,↵� the slopes of Reg+, Reg�, and define the “trend
change size”

TCS(t) = |↵+ � ↵�|.
A local “trend change” is detected at time t if Reg+, Reg� have su�ciently small residuals and verify

TCS(t) > � ; and |Reg+(t)�Reg�(t)| < ".

If a Trend Change is detected at time t on the series Ut, then “trend change intensity”Trendt is set equal to the “trend
change size” TCS(t). If no jump is detected at time t, one sets Trendt = 0.
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Figure 41 – Conjunction of the performance (top curve) of one traded order (first line of Figure 41) with the market
context (bottom heatmap).

3.3.3 Online Influence Computation : Result

Influence computation for a single explanatory factor. Consider any real valued single explanatory factor Z
having a continuous conditional density function w(z) given Y = 1. To predict Y given Z the best binarization of Z
should select a subset B of S maximizing the predictive power of the predictor 1B(Z). It can be shown that any optimal
B should be the set of all z 2 R such that w(z) > c for some c > 0. Thus an optimal B must be a closed level set L of
the unknown conditional density function w(z). The family of all closed sets in R is well known to have infinite Vapnik-
Cervonenkis dimension (see [Vapnik & Chervonenkis, 1971],[Vapnik & Chervonenkis, 1971],[Vapnik, 2010]). So, in view
of Vapnik’s theorems on automated learning (see [Vapnik, 2006],[Cristianini & Shawe-Taylor, 2000]), empirical opti-
mal selection of B among all closed sets will have weak generalization capacity, increasing extremely slowly with the
number Kt of data. This has naturally led us to select sub-optimal but much more robust classes of predictors, whith
radically reduced Vapnik-Cervonenkis dimension.
In the cases where w(z) can be considered as roughly unimodal or monotonous, the level sets of w are unions of at
most two disjoint intervals. We thus deliberately restrict our class of binary predictors of Y to two-sided ones :

Definition 2 (Two-sided binary predictor) Two-sided binary predictors are of the form h✓ = 1B(Z) where B
is the union of the two disjoint intervals (�1, ✓�) and (✓+,+1) , indexed by the vector ✓ = (✓�, ✓+) 2 R2, with
✓� < ✓+.

Note that h✓ predicts bad trading performances if and only if the explanatory factor Z takes su�ciently large or
su�ciently small values. Hence these estimators of trading performance degradation have an immediate interpretability
for natural users of online trading performance monitoring.

At time t, given the current Kt joint observations of the explanatory factor Z and of the binarized trading perfor-
mance Y , an immediate counting provides for each ✓ the empirical estimates P̂ 1 and P̂ 0 of the probabilities of correct
prediction P 1, P 0 for the estimator h✓, given by

P 1 = P{(Z < ✓�) \ (Y = 1)}+ P{(Z > ✓+) \ (Y = 1)}
P 0 = P{(✓� < Z < ✓+) \ (Y = 0)}
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Figure 42 – The three abnormal patterns targeted by our three anomaly detectors : (1) price trends, (2) price jump,
(3) volume peak, (4) volume crenel.

Figure 43 – Typical predictor defined by two intervals (�1, ✓�) and (✓+,+1).

The predictive power ⇡(✓) of h✓ is then readily estimated by the explicit formula

⇡̂(✓) = Qr(P̂
1, P̂ 0).

The influence coe�cient I(Z, Y ) of Z on Y at time t is then estimated by maximizing ⇡̂(✓) over all ✓ in R2. At time
t, the set S of currently observed values of Z has cardinal inferior or equal to Kt. The previous formulas show that to
maximize ⇡̂(✓), we may in fact restrict both ✓� and ✓+ to belong to S, so one needs only explore at most K2

t /2 values
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of ✓.
Clearly this computation tends to underestimate the influence I(Z, Y ) . Nevertheless in our benchmark studies we

have systematically applied this approach for the following reasons.
– the set of binary predictors h✓ has the merit of having finite Vapnik-Cervonenkis dimension equal to 2 , so that
our empirical estimate of the maximum of ⇡(✓) will be statistically robust even for moderate realistic values of
Kt ⌘ 700 ;

– the immediate interpretability of the predictors h✓ enables user friendly online graphic displays of the explanatory
factors currently having high influence on performance degradation.

– at each time t, at most K3

t basic operations su�ce to implement the brute force maximization of ⇡(✓) which
generates our current evaluation of I(Z, Y ).

Note that the two optimal thresholds (✓�, ✓+) will of course strongly depend on the time slice t.
When the explanatory factor Z is one of the 21 smoothed anomaly detectors [[At]] � 0 introduced above in section

3.3.2, the preceding implementation can be simplified. Recall that [[At]] records the maximal gravity of very recent
anomalies of fixed type a↵ecting the dynamics of a fixed market variable, and that for “most” time slices, [[At]] takes
the values 0. Thus it is natural to expect that only higher values of [[At]] to be potential explanations for currently
degraded trading performances. So for practical applications to Z = [[At]] of the preceding approach, we may actually
impose the constraint ✓� = 0, with essentially no loss of predictive power.

A few examples for single explanatory factors. The empirical strategy just presented to estimate the influence
J(G) when cardinal(G) equals 1 has been numerically validated on our benchmark set of intraday data. We now
outline a few examples. Recall that our benchmark study used the predictive power functional ⇡ = Qr(P 1, P 0), which
is specifically sensitive to predictors capacity to detect degradations of trading performances. On our intraday data
sets, we have methodically tested the values r = 70%, 75%, 80%, 85%, 90%, 95% for the “floor predictive power” r ; the
value r = 85% turned out to be the best choice for these data sets, and was adopted for all results presented below.

Figure 44 illustrates for the fixed time slice t = 45, the predictive power of the predictors h✓ based on the single
market variable Z = “Momentum in Bid-Ask Spread” .

The trading performance evaluator PE is the “slippage in bid-ask spread”. The PE-thresholds `t = `
45

determining
low trading performance is fixed at the 3% -quantile of all performance evaluations observed at time t = 45.
The x and y axes in the graph (figure 44) indicate the threshold values (✓�, ✓+) for the market variable Z =“Momentum
in Bid-Ask Spread”. The z axis displays the predictive power ⇡(✓) of h✓. The red marker indicates at time t = 45, the
estimated influence coe�cient I(Z, Y ) on Y for this specific market variable Z, which turns out to be equal to 100%.
The threshold vector ✓ = ✓

45

which achieves maximum predictive power at time 45 is equal to (66.76, 3.87). At each
time t, our 7 basic market variables can then be ranked on the basis of their approximate influence values computed
as above, which provides a ranking of their respective capacity to explain current bad trading performances.

Influence computation for pairs of explanatory factors. Again at fixed time t, we now sketch our online
“optimized fusion” of predictors to estimate the influence coe�cient J(G) when G is a group of 2 explanatory factors
Z = [ Z1, Z2 ]. Our statistical robustness analysis above indicates the necessity to consider only classes of trading
performance predictors having radically low Vapnik-Cervonenkis dimension. So our predictive power maximization
among predictors based on Z is deliberately restricted to the following class of predictors.

Let P
2

be the set of all 16 functions mapping {0; 1}2 into {0; 1}. The class H will be the set of all predictors of the
form

h(Z) = m(f(Z
1

), g(Z
2

))

where m 2 P
2

, and the indicator functions f(z) and g(z) are both two-sided binary predictors in the sense of definition
2. The class of binary predictors H has Vapnik-Cervonenkis dimension equal to 4. Hence the estimation of maximal
predictive power within H by empirical estimation of probabilities P 1 and P 0 on the basis of the current Kt joint
observations of Y, Z

1

, Z
2

will be statistically robust. This provides at time t a stable estimator of J(G), which as above
tends to undervalue the true J(G).

In concrete implementation of this approach at fixed time t, we first select only pairs of predictors f(Z
1

), g(Z
2

)
which already have reasonably high probabilities of correctly predicting Y . To maximize the predictive power of
h(Z) = m(f(Z

1

), g(Z
2

)) we need to select the best binary polynomial m among the 16 elements of P
2

. We then
impose m(0, 0) = 0 and m(1, 1) = 1, so that whenever the predictions of f(Z

1

), and g(Z
2

) agree, we also have
h(Z) = f(Z

1

) = g(Z
2

). This “accelerated fusion” is fairly classical in multi-experts fusion (see [Alkoot & Kittler, 1999])
and obviously provides an acceleration multiplier of 4 in the online computation of J(G).

For groups G of k = 3 or k = 4 explanatory factors, one could estimate J(G) by similar sub-optimal but imple-
mentable strategies. However the corresponding predictor classes have Vapnik-Cervonenkis dimensions 6 and 8, and
their statistical robustness is hence much weaker in the concrete context of our intraday datas set, since at each time t
the key Vapnik ratios Kt/6 and Kt/8 were resp. inferior to 120 and 70, values which are much too small and strongly
suggested to avoid the estimation of J(G) for cardinal(G) � 3.
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Figure 44 – Predictive power as a functional of the two thresholds ✓+ (y-axis) and ✓� (x-axis) of the market variable
Volume Score at time slice t = 72. It can be seen that ✓� lower than 10 and ✓+ around 65 generate an e�cient
predictor of bad trading performance during this time slice.

3.3.4 Numerical results

We now present the numerical results obtained by applying the above methodology to our benchmark dataset of
intra-day trading records.

Dataset (portfolio) description. Recall that our intra-day benchmark data involve a total of 79 time slices of 5
minutes each (i.e. this portfolio has been traded from 8 :55 to 15 :30 London time), and that we are monitoring a
portfolio of 1037 trading orders, with a maximum of 700 trading orders active simultaneously at each time slice.

At each fixed time slice t, we compute the current influence coe�cient for each one of our 28 explanatory factors,
namely the 7 market descriptors M j themselves and the 3 ⇥ 7 smoothed anomaly detectors monitoring the dynamic
of these market descriptors.

These 28 explanatory factors generate 378 = 28⇥27/2 pairs of factors. By accelerated fusion as above, we compute,
at each time slice t, the influence of each one of these 378 pairs of explanatory factors.

Among these 406 = (378 + 28) groups of explanatory factors, at each time t, we retain only those having both
conditional probabilities of correct predictions (p1, p0) larger than r%. Here r% > 70% is the user selected “floor
predictive power”. Note that each single factor or pair of factors retained at time t can predict current degraded
performance degradations with a false alarm rate FAR = 1� p0 inferior to (100� r)%.

Among the retained groups of explanatory factors, we compute the maximal influence max Jt achievable at time
t. We also determine the set Dt of dominating groups of explanatory factors, defined as the groups of 1 or 2 factors
having an influence equal to Jt and achieving the minimal false alarm rate (100� r)%.

Predictive power of market descriptors. Figure 45 gives an heatmap of the predictive power of a selected subset
of market descriptors on the whole portfolio. The display shows that :

– no market descriptor is used before slice 60 (i.e. 14 :00), meaning that there are no significant predictive links
between bad trading performances and specific values of the descriptors.
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Figure 45 – Predictive powers of some explanatory variables (horizontal scale is time in slices of 5 minutes).

– Then the Volume Score has the capability to explain bad trading performance from 14 :10 to 14 :20 and from
14 :50 to 15 :00. It means that during these two time intervals, bad performances occurred simultaneously with
quite unusual levels of traded volumes.

– The Volatility Score emerges as a complementary explanatory factor between 14 :55 and 15 :05 ; orders with bad
trading performances focussed on stocks having unexpectedly high volatility levels during these 10 minutes.

– The Bid-Ask Spread Score conforts this automated diagnosis : a rare event did indeed degrade trading perfor-
mances around 15 :00. Keeping in mind that scores are computed according to historical values during last weeks,
it means that for this portfolio, the worst performances occurred on stocks for which volumes, volatility, and
bid-ask spread had abnormal values.

It is interesting to note that, before scoring, market performances do not explain that well bad performances.

How alarm zones explain bad trading performance. Since the two-sided binary predictors are built to explain
the degraded performances of the worst trading orders, it is easy to identify the most impacted orders one given market
descriptor. Here we consider the trading order T(139) whose lifecycle is shown on Figure 41, in order to visualize the
impact of its Volume Score, Volatility Score, and Bid-Ask Score on the order performance. First note that this order
has been active from 10 :55 to 15 :30 London time, with a start time two hours after the launch of the portfolio. It
means that 5 minutes slices on this order are numbered from 0 to 49 ; they have to be shifted by 30 to be synchronized
with the time scale of the other portfolio orders.

Alarm zones on the Volume Score. Figure 46 shows alarm zones for the Volume Score of order T(139) : the top
subplot draws the value of the volume score through time and the associated alarm zones have been added on top of
it, when triggered.

For the whole portfolio (Figure 45), alarm zones are triggered on the Volume Score from 14 :10 to 14 :20 and from
14 :50 to 15 :00 (i.e. slices 32 to 32 and 40 to 41 for this specific order). They are drawn like “gates” from the low
threshold (✓�t ) to the high one (✓+t ) ; if the value of the Volume Score is outside bounds for the given order : we thus
state that “the Volume Score contributed to the degradation of trading performance for order T(139)”.

It is important to note that if if our thresholds had not been adaptive as proposed by our “influence analysis”
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Figure 46 – Auto adaptive alarm zones on the Volume Score explanatory variable for the order T (139) displayed in
Figure 41 ; Top : four alarm zones are active, two realizations of the Volume Score exceed the auto adaptive thresholds
and thus emerge as a highly likely explanation for the bad performance exhibited by this order (see Bottom graph.).

methodology, they would have generated false explanations at the start of the order (around slice 4, i.e. 11 :15 London
time).

Specifically for this order, the Volume Score does not enter the first alarm zone (around 14.15) ; it is in line with
the performance of order T(139) that is normal (bottom subplot of Figure 46). The boundaries of the next alarm zone
(around 15 :00) are crossed by the order Volume Score ; indeed this order performs quite poorly at that time.

Alarm zones on the Bid-Ask Spread Score. Only one alarm zone has been activated on the portfolio (around
15 :00) and the advantage of the auto adaptive approach proposed in this paper is straightforward : a unique threshold
for all the duration of the portfolio would clearly not have been able to separate the 41st slice of order T(139) from
the others.

Alarm zones on the Volatility Score. Once again it is clear that the alarm zones succeeded in isolating slices to
e�ciently explain the bad trading performance around 15 :00.

To summarize. When applied applied to our real portfolio of 1037 orders traded during 6 hours and 35 minutes, the
automated influence analysis methodology presented and studied from a theoretical viewpoint in this paper e�ciently
selects quite pertinent explanatory factors for degraded trading performance :

– our alarm zones use thresholds that are automatically adapted online to successive time slices, as computed via
the predicting power of two-sided binary predictors (see Definition 2) based on market descriptors.

– Our approach generates generates auto adaptive thresholds taking into account currently observed synchronicity
between the user selected performance criterion (chosen according to the trading goal)with market descriptors
market descriptors.

– At each time slice, the computed adaptive thresholds on market descriptors apply to the whole portfolio, bad
trading performance of orders for which market descriptors take values outside alarm zones are said to be
explained or influenced by the given descriptors. We commented real examples to illustrate these automated
selection of explanatory factors.

– The added value of augmenting the state space of market descriptors using scores has been illustrated on several
examples within our benchmark data set o trading orders..
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Figure 47 – Auto adaptive alarm zones on the Bid-Ask spread Score explanatory variable for the order of Figure 41 ;
Top : one alarm zone is active, since the Bid-Ask Score exceeds the auto adaptive thresholds, and thus emerges as a
quite likely explanation of bad trading performance ( as validated on the bottom figure).

Figure 48 – Auto adaptive alarm zones for the Volatility Score explanatory variable for the order of Figure 41 ; Top :
two alarm zones are active, one realization of the Volatility Score exceeds the auto adaptive thresholds giving and thus
provides a highly likely explanation of the current bad trading performance (as displayed on the bottom graph).
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Conclusion

Le trading optimal est désormais un champ à part entière des mathématiques financières :
– initié dans un cadre moyenne-variance, nous avons montré comment même dans ce cadre des explorations théo-
riques peuvent apporter des réponses aux ingénieurs financiers en charge des algorithmes de trading,

– ses prolongations à des critères plus réalistes fait apparâıtre des problématiques sophistiquées du contrôle sto-
chastique, dont l’exploration et parfois la résolution éclaire la pratique des di↵érents acteurs (teneurs de marché,
banques d’investissement, investisseurs finaux).

Tout comme le reste des mathématiques financières, il apporte un point de vue “contrôle du risque” aux praticiens qui
sans cela mettraient en production des algorithmes de trading guidés par d’éventuels paris sur les prix futurs, encadrés
par des bornes approximatives et mal mâıtrisées.

En permettant de poser clairement un critère mélangeant gains ou pertes attendus et risques courus, le trading
optimal fait émerger des algorithmiques qui conjuguent au mieux les deux aspects. Il permet de bien comprendre
comment des paramètres comme l’aversion au risque modifient le comportement d’un algorithme de trading.

L’étude de la microstructure des marchés est restée longtemps l’apanage des économistes qui utilisent des modèles
grossiers pour obtenir des résultats d’équilibre généraux. Avec la disponibilité de larges bases de données précises, nous
avons montré comment la dynamique des carnets d’ordres peut désormais être modélisée finement et de façon réaliste
par des modèles mathématiques complexes, comme des files d’attente couplées, ou les processus de Hawkes.

Il est même possible d’envisager l’étude d’équilibres généraux, grâce au cadre des jeux à champ moyen, aboutissant
à des systèmes d’EDP couplées.

La microstructure est finalement le lieu qui permet de confronter données empiriques et des mélanges de stratégies
optimales tentant de rendre compte de comportements stylisés. Cette confrontation donne lieu à une meilleure com-
préhension de la relation entre les décisions d’investissement, le processus de trading, et les prix. Portée à l’attention
des régulateurs ces travaux devraient permettre de mieux réguler la formation des prix.

Par ailleurs, les algorithmes stochastiques et l’apprentissage statistique permettent d’adapter le processus d’achat
ou de vente aux variations fugaces de liquidité et de prix. Ils permettent aussi de mettre en place d’aide à la décision
dans le cadre de la surveillance de la formation des prix.
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[Lachapelle et al. , 2013] Lachapelle, Aimé, Lasry, Jean-Michel, Lehalle, Charles-Albert, & Lions, Pierre-Louis. 2013
(May). E�ciency of the Price Formation Process in Presence of High Frequency Participants : a Mean Field Game
analysis.

[Lamberton & Pagès, 2008] Lamberton, Damien, & Pagès, Gilles. 2008. A penalized bandit algorithm. Electronic
Journal of Probability, 13(0).

[Laruelle & Pagès, 2012] Laruelle, Sophie, & Pagès, Gilles. 2012. Stochastic approximation with averaging innovation
applied to Finance. Monte Carlo Methods and Applications, 18(1), 1–51.

[Laruelle et al. , 2013] Laruelle, Sophie, Lehalle, Charles-Albert, & Pagès, Gilles. 2013. Optimal posting price of limit
orders : learning by trading. Mathematics and Financial Economics, 7(3), 359–403.

[Lehalle, 2008] Lehalle, Charle-Albert. 2008. Rigorous optimisation of intra day trading. Wilmott Magazine, Nov.

89
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Convergence to a Gaussian : The Truncated Lévy Flight. Physical Review Letters, 73(22), 2946–2949.

[Markowitz, 1952] Markowitz, Harry. 1952. Portfolio Selection. The Journal of Finance, 7(1), 77–91.

[Mastromatteo et al. , 2013] Mastromatteo, Iacopo, Toth, Bence, & Bouchaud, Jean-Philippe. 2013 (Nov.). Agent-
based models for latent liquidity and concave price impact.

[Mendelson & Amihud, 1991] Mendelson, Haim, & Amihud, Yakov. 1991. How (Not) to Integrate the European Capital
Markets. Cambridge University Press.

[Moro et al. , 2009] Moro, Esteban, Vicente, Javier, Moyano, Luis G., Gerig, Austin, Farmer, Doyne J., Vaglica, Ga-
briella, Lillo, Fabrizio, & Mantegna, Rosario N. 2009. Market impact and trading profile of hidden orders in stock
markets. Physical Review E, 80(Dec.), 066102+.

[Muniesa, 2003] Muniesa, Fabian. 2003. Des marchés comme algorithmes : sociologie de la cotation électronique à la
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Motivation

Motivations: The Context Changed

Following the financial crisis (2008):

I complex financial products have been replaced by more linear ones, the activity of investment
banks moved from hedging a large inventory to trade massive flows;

I the cost of trading (i.e. the transaction costs) are now of paramount importance;

Simultaneously:

I regulators pushed towards more trading on electronic platforms;

I exchanges and clearing houses are now in competition, generating a more complex trading
process, demanding real-time choices to be made;

I more data than ever are available to describe the price formation process, and participants have
better capabilities to record, store, and process those data.
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Motivation

Motivations: A New Field for Financial Mathematics (?)

I Innovative frameworks allowing the application of optimization techniques to the trading process
have been initiated by mathematicians [Almgren and Chriss, 2000, Bertsimas and Lo, 1998];

I The main fatures of the price formation process have been modelled a suitable way
[Almgren et al., 2005, Smith et al., 2003]; especially the market impact;

I The transitory nature of liquidity and the high dimension of the trading state space needs
statistical estimates to be built and used during the optimization process.

The conjunction of these three components: optimal trading, price formation modelling, and statistical
learning, gave birth to a new area of financial mathematics.

For generic considerations, see Market Microstructure knowledge needed to control an intra-day
trading process [L. 2013], Market Microstructure in Practice [L. and Laruelle, 2013], or Market
Microstructure Confronting Many Viewpoints [Abergel, Bouchaud, Foucault, L., Rosenbaum, 2012].
For focussed papers, see Market Microstructure and Liquidity issues.
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Optimal Trading Speed Against Temporary Impact

Optimal Trading Speed Against Temporary Impact

Optimal trading is about optimizing a trading activity taking into
account “microscopic” e↵ect.
The first of such e↵ect is the price impact: when you send a liquidity
consuming order (example: a sell order ), you impact negatively the
price of your trade, you can expect the liquidity to come back if you
wait enough (empirics in [Bouchaud et al., 2004], example of models for
trading in [Obizhaeva and Wang, 2005] and [Alfonsi et al., 2009]).

From a (large orders) trading perspective, this aggregates in temporary impact . At a mesoscopic

scale [Almgren et al., 2005], you can a↵ord to model this impact as a local price premium to pay as a
function of your trading intensity.

Because of this penalty, it is not optimal to trade immediately after a decision. Even with no
information on future prices, you have to cut your large order into small pieces and to wait for
relaxation after each trade.
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Optimal Trading Speed Against Temporary Impact

The Almgren-Chriss Framework And Its Analogy With Portfolio Construction

The first models proposed in [Bertsimas and Lo, 1998], [Grinold and Kahn, 1999, Chap. 16]
and [Almgren and Chriss, 2000] can be seen as natural extensions of portfolio allocation. They
are based on discretization of time into T time bins (of around 5 min for liquid instruments).
You have to allocate a volume

P
n vn = V

⇤ over these T bins.
Replace portfolio components by time bins and expected returns by (negative) market impact.
But it is a little more sophisticated since price at bin t + h is conditioned by price at time t.
Assume this Markov chain for the price St+1 = St + �t+1 ⇠t+1, and use ⌘t(vt) for the additive
temporary market impact function. The price of buying over T reads

W (v1, . . . , vT ) =
TX

t=1

vt · (St + ⌘t(vt)).

Now you can use a mean-variance criterion on W , cancels its derivative with respect to
xt =

P
s>t vt . Provided the market impact is linear (i.e. ⌘t(vt) = ⌘ · �t vt/Vt), you obtain this

recurrence relation:

xt+1 =

✓
1 +

�t�1

�t

Vt

Vt�1
+

�

⌘
�2
t

◆
xt �

�t�1

�t

Vt

Vt�1
xt�1, x0 = V

⇤, xT = 0.
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Optimal Trading Speed Against Temporary Impact

This is The Swiss Knife of Trading Curves

It introduced the idea of optimal trading curves !
crucial for risk control.
A lot of e↵ects can be easily added to the AC framework:

I seasonalities and predictions of V and � can be plugged,

I arbitrage opportunities can be added, [L. 2013]

I E(W |V ,�) + �V(W |V ,�) can be replaced by
E(W ) + �V(W ), to take uncertainty into account, [L.
2008]

I backtest parametric trading curves directly, etc.

Open questions (within this framework)

I the control is the trading rate,

I the choice of the criterion can be discussed (PoV, VWAP, TWAP, TC, etc.),

I the variance term has a strong influence,

I what can you choose ? (�).
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Optimal Trading Speed Against Temporary Impact

More Within the AC Framework

Why introduce a variance term in the cost function?

I you took the decision ) you want to realize it as soon as possible. With a small change of the
criterion, Cartea-Jaimungal studied a lot of variations based on this cost function
[Cartea et al., 2013]:

Ht(v) := Et

✓
W v

T + Qv
T (ST � ⌘(Qv

T ))� �

Z T

t

(Qv
s )

2ds

◆
.

I with � = 0 and an explicit (exponential) form of orderbook relaxation, Alfonsi and Schied
elaborated in this direction ([Alfonsi et al., 2009, Gatheral et al., 2012]). A U-shaped trading
curve generally stems from such choice (due to market impact relaxation and blindness after the
last transaction).

I The choice of a variance term (instead of any p-variation) can be discussed, too [Labadie and L.
2014].Especially if you think intraday price dynamics are more mean reverting than daily ones.
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Optimal Trading Speed Against Temporary Impact

Practical Use of Automated Trading: Adding Constraints
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The Almgren-Chriss criterion is the Implementation
Shortfall (i.e. W (v)), but other “trading styles” are possible,
like VWAP (follow the usually traded volume
[Cartea and Jaimungal, 2014]), PoV (follow the real-time
market volume), and Target Close.

I The latter targets the closing fixing, trying to avoid a
too large impact.

I It limits the volume in the fixing auction at q%,

I And does the remaining in an Almgren-Chriss way on
W (v)� ST

In practice users put some participation constraints to their trading flow (i.e. v < ⇢V ). For the
Target Close it raises an interesting problem, especially if you use an estimate of the future volume or
if you want to start you European trading for sure after the opening of US markets. With Mauricio L,
we proposed a model and solved it for fractional Brownian motions [Labadie and L. 2014].
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Optimal Trading Against Permanent Impact: stylized facts

On our database of 300,000 large orders

Market Impact takes place in di↵erent phases

I the transient impact, concave in time,

I reaches its maximum, the temporary impact, at the end
of the metaorder,

I then it decays,

I up to a stationary level; the price moved by a permanent
shift.

In [Bacry, Iuga, Lasnier, L. 2014] we studied all the phases, using intraday and daily analysis (for the
first time). We underlined the importance of some “normalization variables”: the uncertainty on the
price formation process , the capability of the orderbook to resist to volume pressure , and the duration
of the metaorder.
Following [Waelbroeck and Gomes, 2013] and simultaneously with [Brokmann et al., 2014], we

proposed an explanation of permanent impact .
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Optimal Trading Against Permanent Impact?

Is it Really Possible to Minimize Permanent Impact?

We used an Hawkes-based toy model to show how the concavity of the market impact and the decay
can form. Nevertheless an external parameter C is needed to control the permanent market impact. In
such a framework the intensity of the Hawkes process can be seen as an implicit inventory of the
market makers.

I Part of the price move while an asset manager is buying is due to its trading activity,

I But evidences on the permanent components could be explained by an informational e↵ect:
you buy because you anticipated the price will move. Buy or not: it will move in any case!

This e↵ect seems to have been identified by Waelbroeck and Gomes on “cash trades”, by the CFM
team on daily “deconvoluted trades”, and by us on the idiosyncratic component of price moves.

I The best way to take such permanent market impact into account could simply be to add a
deterministic trend to price dynamics (i.e. “usually, when I decide to buy, the price will go up that
way”)... Beside, it could justify the use of a variance term in the cost function.

This kind of analysis is linked with a potential understanding of the whole market dynamics and the
way prices form.
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Two Natural Scales For Trading

Optimal Trading Against Orderbook Dynamics

This idea of a decision process in two scales is close to reality:

1. the investor takes a decision according to its views on
the price / risk, but he does not buy or sell himself;

2. he delegates to a executing broker or to a trading
algorithm the trading process.

At the scale of the large order itself there is a similar split in
two scales:

I a scheduler or a human trader takes care of a trading
curve (close to the outcome of an Almgren-Chriss
optimization),

I it uses trading robots for high frequency interactions
with the orderbook.
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Two Natural Scales For Trading

Optimizing a Two-Scales Controller

The control
⌫ = (⌧⌫

i , �
⌫
i , E⌫

i )i ,

The dynamics
X ⌫(t) = x0 +

R
st

(b dt + � dW )

+
P

i �(⌧
⌫
i , �

⌫
i , E⌫

i )1⌧⌫
i t ,

The gainX

⌧⌫
i <T

f (X (⌧⌫
i +�⌫i ), E⌫

i )+g(X ⌫(T )).

In [Bouchard, Dang, L. 2011], we developed a model describing
this two scales process:

I The Scheduler launches trading robots, known in
probabilistic terms (the joint laws of their duration and their
e�ciency) at any time.

I It is an impulse control problem embedded in a
continuous-time framework: the controls are the stopping
times at which robots are launched and the quantities given
to the robots. The scheduler has to wait the max between a
given duration and the end of the robot work before launching
the next one.

The outcome of this work has been a better understanding of the discretization bias. It is probably
not really possible to go further with the trading rate as control.
Of course you can try to control directly (and solely) the interactions with orderbooks. We did it in
several papers [Guéant, Fernandez-Tapia, L. 2012; Guéant, Fernandez-Tapia, L. 2013; Guéant and L.

2013]. I am not sure it is the best in terms of risk control (from an operational perspective at least).
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Statistical Learning For Tactical Trading

Using Stochastic Algorithms to Optimize Trading Robots

In 2008, R Berenstein’s internship Algorithmes d’exécution optimale pour les Dark Pools has been the
beginning of a research project with G Pagès and S Laruelle, initially inspired by R Almgren’s
whitepaper on Smart Order Routing embedding an hidden orders detector.
The goal was to use the results of stochastic algorithms theory to address questions raised during the
construction of the small trading robots to be used by optimal schedulers focused on trading rates.

In such a framework

I You do not focus on medium term dynamics and on the usual terminal constraints (i.e. flat
position at the end of the day).

I You strongly rely on short term ergodicity to minimize the expectation of the cost thanks to
the realizations of this cost along the observed trajectory.

I Starting from the criterion, you obtain an updating rule for your controls thanks to a
stochastic descent -like algorithm,

I you obtain CLT-like results to guaranteeing a given convergence rate.
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Statistical Learning For Tactical Trading

Learning by Trading: an Online Approche to Optimal Trading

With S Laruelle and G Pagès, we mainly addressed two applications:

Dark Pool online learning

¿ Trading in Dark Pools [Pagès, Laruelle, L. 2011] is by essence an

exploration-exploitation problem. The control is the split (rn)n of a
large order V across N Dark Pools, each of them accepting transactions
up to invisible quantities (Dn)n. The cost is hence

C(r) =
X

t

X

n

✓n(rnV (t) ^ Dn(t)) + [rnV (t)� (rnV (t) ^ Dn(t))]+.

It can be shown the associated updating rule for r is

rn(t + 1) = rn(t) + �t+1⇡(1rn(t)>Dn(t)/V (t) � 1
N

P
k 1rk (t)>Dk (t)/V (t)).

where � verifies the usual Robbins-Monro assumptions and ⇡ is a
projection on the simplex.
Two other frameworks for optimal Dark Pool splitting exist: one using censored statictics
[Ganchev et al., 2010] and the under minimum regret [Agarwal et al., 2010].

¡ Adjusting the price of limit orders into a visible orderbook [Laruelle, Pagès, L. 2013] can be a way
to take into account liquidity dynamics around the mid price.
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Need For a Better Understanding of Orderbook dynamics

Towards a Better Understanding of Orderbook dynamics: The Queue Reactive Model (QRM)

The most commonly used framework for orderbook dynamics in stochastic control of trading
algorithms [Avellaneda and Stoikov, 2008] is: “when you insert an order at a distance �P of the mid
price, it is consumed by a Poisson process of intensity A exp�k�P”. It is in fact well suited as far as
you cannot observe the orderbook dynamics with accuracy during the trading process. In [Huang,
Rosenbaum, L. 2015] we went deeper in the details.

y�axis: quantities; x�axis: prices.

I Each orderbook queue can be filled by insertions and depleted
via cancellations and transactions.

I The state flow a↵ecting each queue is influenced by its
neighbourhood.

I When a tick is fully depleted, the price changes. This can
have a long range influence.
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Need For a Better Understanding of Orderbook dynamics

Typical Empirical Intensities

(a) (b) (c)

Edq(1) = (�L(q(1), q(�1))
��C (q(1), q(�1))
��M(q(1), q(�1))) dt.

At left: The empirical intensities of
the process of arrivals (a) and
departures (b-c) at the first queue
as a function of its own size
(x-axis) and of the size of the
opposite queue (colors).

From a control perspective (of the rank r of an infinitesimal order in the first queue):

Edr ' �(r/q(1)�C (q(1), q(�1)) + �M(q(1), q(�1)))dt and Pr(q(1) + dq(1) < 0) is known .
More importantly the strength of adverse selection E(qnew(1)|q(1) + dq(1) < 0) can be controlled.
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The Limit Orderbook Liquidity (Mean Field) Game

Optimal Trading Against the Crowd

If one wants to take into account the fact other participants are
playing a similar game in posting limit orders (waiting for a possible
transaction at a better price) or sending market orders (paying the
bid-ask spread and price impact to gain immediacy), you face to a very
complex problem. In [Lachapelle, Lasry, L., Lions 2013] we have made
an attempt to understand the outcome of such a (mean field) game.

I We assumed (1) no exogenous price change, (2) pro-rata rule, (3) uniform shape of the book —i.e.
focus on the first limit(s). We take profit of existing convergence results in Shared Risk MFG.

I The 2-dim Mean Field is made of the two first sizes (Qa,Qb).
I For a newcomer, the choice (i.e. control) is made by waiting into its own queue (and paying a

waiting cost but potentially being rewarded by a better price), or consuming the opposite queue
(and paying an immediate cost).

I Participants can anticipate others’ behaviour.
I We are interested by the stationary state of the queues and the stationary value of waiting in

the cost.
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The Limit Orderbook Liquidity (Mean Field) Game

Main Components of the Liquidity Game

Note that thanks to the pro rata assumption all limit orders in the queue face similarly all the events.

The events a↵ecting the value functions u (sellers) and v (buyers) during an
infinitesimal time dt:

I the queue is consumed: a fraction of its value increases by the price
impact, the remaining quantity is valued with a smaller queue,

I the queue increases: its value decreases,

I in any case the value decreases by a waiting cost.

I the increase of the queue is conditioned by the value function being
greater than the mid price,

I the decrease of the queue is conditioned by the opposite value function
being greater than the mid price.

First order (forward) PDE satisfied by u and v (with the notation x = Qa, y = Qb, �s being intensities, and R
the control, i.e. backward, components associated to the controls):

0 = [(�R b +��)(pb(x)�u)/x�c] + [�R�s ��R b ���] · (@xu+@y u)
) We found some stable configurations of liquidity imbalance, that can be reduced when the diversity of
players increases. It explain some virtues of market making .

Our theoretical results are confirmed empirically by [Gareche et al., 2013].

C.-A. Lehalle [19 / 22]



Motivation OT vs. Temporary Impact OT vs. Permanent Impact OT vs. Orderbooks OT vs. the Crowd Conclusion

Conclusion

Outline

Motivation

Optimal Trading Speed Against Temporary Impact

Optimal Trading Against Permanent Impact?

Optimal Trading Against Orderbook Dynamics

Optimal Trading Against the Crowd

Conclusion

C.-A. Lehalle [20 / 22]



Motivation OT vs. Temporary Impact OT vs. Permanent Impact OT vs. Orderbooks OT vs. the Crowd Conclusion

Conclusion

Conclusion

The control of a trading process in an auction game lies at the crossing of a wide variety of fields:

I Optimal Control, from mean variance optimality to impulse or hybrid control.

I Stochastic Algorithms, to adapt in real-time to liquidity variations.

I Statistics of Random Processes, to capture limit orderbook dynamics.

I Game Theory, to go deeper in the details and assess robustness.

This research agenda has been driven by the necessity to answer to practitioners’ needs and
regulators’ questions.

Financial Mathematics have a important role to play in providing results and tools in terms of risk
control, thanks to a good understanding of the cost functions involved in the optimizations solved by
practitioners.
It can prevent trading systems to become black boxes opaques for users, risk departments and
regulators.
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Monitoring a Large Collection of Automated Orders

With the increase of electronization of the trading process, we have more transparency of the price
formation process (with the recording of any order, on any trading floor), but it became more complex
to capture. It does no more take place a localized way. I.e. on few trading floors where you can
stand and have a “sentiment” of what is happening. It takes place over a connected network of
computers fed by human decisions incorporating real-time valuations of assets.

A great challenge is to have humans and machines sharing information:

I humans should have access to parameters to tune the behaviour of algorithms under controlled
risk,

I machines should deliver synthetic description of their internal state.

In 2010, we started a research project to provide decision support to human traders monitoring
simultaneously hundreds of trading algorithms. Our goal was to extract implicit clusters of algos.
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Conjunction Detection as a way to Understand Market Behaviour

Say you succeed into modelling in real-time the relationship
between the instantaneous performance of 1,000 trading
algorithms and a collection of explanatory variables.

I First extract features of the price, volume, volatility, and
bid-ask spread process (see at Left)

I Then normalize these features (“scoring” them) to
obtain a collection of variables Z1, . . . ,ZK .

I Use binary predictors: Zk(t) 62 (✓�k , ✓+k ) predicts a bad
performance at t and combinations of such predictors.

In [Azencott, Beri, Gadhyan, Joseph, L., Rowley 2014] we have shown how to select the best predictors
very fast a reliable way (i.e. confidence intervals).

) A good predictor at t provides information on influencing variables .
You can hence group trading algos by influencing variables, to help human traders to understand what
is happening and take enlighten actions.
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A First Attempt of Price Formation Modelling

In practice we need synthetic markets to test trading algorithms. In [Guéant, Razafinimanana, L.
2010]we develop a microfunded market simulator based on a Mean Field Game approach.
We introduced the concept of orderbook of the views, now best known as latent orderbook. We
described the price formation process dynamics taking place in two stages:

I the mean field: a latent orderbook is shaped by the aggregated views of all investors (thanks to
isolated actualization of anticipations),

I the exchanges orderbooks , where the price forms at high frequency.

Dynamics of the latent ordebook m, where p is the price, p⇤(t) the (temporary) equilibrium:

(1) dm =
"2

2
@2
ppm(t, p)dt � "2

2
@pm (t, p⇤(t)) [source(t, p)] dt + ⌫g(p, p⇤(t))dW p

t

With three types of agents: trend followers, mean reverters and noise traders. Each of the two first
agent type has a gamma distribution for his time horizon.

I The distance between the observed orderbook and this latent one (the one of the views)
conditions the occurrences of market events (insert or cancel) on the observed one .
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Markov Chains on the Sizes in the Book is Not Enough

In [Huang et al., 2015] we have shown

I how to properly (theoretically) define a model in which the
intensity of the point processes of arrival and departures (via
cancellations and transactions) are functions of the state of all the
queues of the book,

I using HF data to fit the conditional intensities of such a model
enables to render with accuracy the liquidity game (i.e. dynamics
of queues sizes),

I nevertheless it does not fit well the price changes dynamics.

I Adding an exogenous component allows to recover price
dynamics. When a queue is completely deplete, reinitialize the
orderbook state according to its usual distribution.

Note this modelling is orthogonal to the (usual) Hawkes process one
[Bacry and Muzy, 2013], in which the past intensities of the flows are
conditioning the future flows . Our Queue Reactive Model is a
conditionning on the observed sizes of the queues.

What Drives Orderbook
Dynamics?

Two di↵erent phases

I Usually a liquidity game
takes place, driven by
QRM-like dynamics.

! this phase has a very short
term memory and shapes
orderbooks.

I Time to time, all agents
seems to agree on a price
change.

! this phase has a long(er)
term memory and shapes
price trajectories.

) In reality each participant
adjusts his views according to a
lot of external parameters.
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