
HAL Id: tel-01247990
https://hal.science/tel-01247990

Submitted on 23 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation and control of noise amplifier flows using
data-based approaches

J. Guzman Inigo

To cite this version:
J. Guzman Inigo. Estimation and control of noise amplifier flows using data-based approaches. Fluids
mechanics [physics.class-ph]. ECOLE POLYTECHNIQUE, 2015. English. �NNT : �. �tel-01247990�

https://hal.science/tel-01247990
https://hal.archives-ouvertes.fr


 

 

Ecole Polytechnique 
 

Thèse présentée en vue de l’obtention du titre de 
 

 

Docteur de l’Ecole Polytechnique 
 

Par 
 

Juan Guzmán Iñigo 
 
 

 
Estimation and control of noise amplifier 

flows using data-based approaches 
_________________________________________ 
 
 

Soutenue le 4 novembre 2015 devant un jury 
composé de : 

 
François Gallaire  EPFL   Rapporteur 
Georgios Papadakis   Imperial College London   Rapporteur 
Jean-Luc Aider   ESPCI Paris   Examinateur 
Sherwin Bagheri   KTH   Examinateur 
Jean-Christophe Robinet   ENSAM Paris  Examinateur 
Denis Sipp   ONERA   Directeur de Thèse 
Peter Schmid   Imperial College London   Directeur de Thèse 



 



ESTIMATION AND CONTROL OF NOISE AMPLIFIER FLOWS USING

DATA-BASED APPROACHES

This work aims at providing new modelling strategies for noise-amplifier flows

using data-based approaches. This kind of flows are particularly difficult to model

since the upstream noise environment, triggering the flow via a receptivity process,

is not known. The proposed framework is illustrated on the case of a transitional

flat-plate boundary layer – a classical an generic flow that acts as a noise amplifier.

A system-identification approach, rather than a classical Galerkin technique, is

used to extract a model of the flow from time-synchronous velocity snapshots

and wall-shear stress measurements. The model obtained is then used to build

an efficient closed-loop controller to significantly reduce the kinetic energy of the

perturbation field and thus successfully delay transition.

Keywords: Noise-amplifier flows, Closed-loop control, System-identification,

Reduced-order models, Dynamic observer, Linear estimator.
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Chapter 1

Introduction

Flow control is a discipline which has grown substantially over the last few years.

Improving mixing processes, reducing noise emissions, suppressing instabilities, or

reducing drag are some examples of the problems to which flow control may provide

technological solutions. In the current economic context, with scarce energetic

resources and an increasing awareness about the environment, these solutions are

of special interest to the aeronautical and automotive industries.

The focus of this work is the suppression of unsteadiness arising from hydrody-

namic instabilities and, in particular, from convective instabilities. For this pur-

pose, a model-based closed-loop control strategy was considered. The aim of this

thesis is to contribute to the theoretical development of data-based techniques to

obtain models of the flow which can be used in the control design.

1.1 Flow unsteadiness

Unsteadiness in open flows can be classified into two main categories (Huerre and

Rossi, 1998): (i) oscillator-type flows, which are defined by a global instability

resulting in self-sustained oscillatory fluid behaviour (intrinsic dynamics); and (ii)

noise amplifiers, which are characterised by selectively amplifying the noise which

is already present in the upstream flow (extrinsic dynamics). Different control and

modelling strategies should be considered depending on the type of unsteadiness.

1



Introduction 2

1.1.1 Oscillator-type flows

Oscillator flows are characterized by a self-sustained beating of the flow at a cer-

tain frequency. The usual mechanism leading to the unsteadiness in oscillators

consists in the exponential growth of small perturbations of the flow field and the

subsequent saturation into a limit cycle due to non-linearities. At low Reynolds

number, the viscous terms damp any perturbation and the flow is steady. As the

Reynolds number increases, the convective terms become dominant and a Hopf

bifurcation may occur: a theoretical steady unstable solution (base flow) coexists

with an unsteady state which drives the system.

The dynamics of oscillator flows is well predicted by global stability analysis (Jack-

son, 1987). Conceptually, a stability analysis studies the linear development of

small perturbations around a fixed point solution of the Navier-Stokes equations

(base flow). The most unstable mode of the system determines the dynamics of the

flow and defines a characteristic frequency. The frequency predicted by the linear

analysis may, however, be shifted by non-linearities (Sipp and Lebedev, 2007).

1.1.2 Noise-amplifier flows

On the other hand, fluid systems that fall under the category of noise amplifiers

are characterized by a globally stable spectrum. In this case, the unsteadiness

arise from convective instabilities which amplify the existing environmental per-

turbations. The length scales and frequencies of the detected unsteadiness have

a broad range and only exist if the flow is perturbed by an external noise source

(extrinsic dynamics).

It is worth mentioning that a global stability analysis of noise-amplifier flows is an

ill-posed mathematical problem (Trefethen et al., 1993) due to the non-normality

of the linearised Navier-Stokes operator. The non-normality is also responsible for

the transient-growth which amplifies the external noise (Schmid and Henningson,

2001; Chomaz, 2005; Schmid, 2007). Consequently, these flows are preferably

studied using the resolvent operator which highlights the transient amplification

of perturbations in such systems (Sipp and Marquet, 2013).
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1.2 Flow control

Flow unsteadiness may be detrimental for engineering applications (structural

fatigue, noise generation, laminar-turbulent transition or combustion instabili-

ties (Dowling and Morgans, 2005)), or even endanger the safety of operation (shock

buffeting (Jacquin et al., 2009)). It is therefore of pivotal importance to design

robust and efficient techniques to manipulate the inherent flow behaviour. Flow

control is the field which deals with such problem. Among the different control

strategies, we can distinguish two main categories (Rowley and Williams, 2006;

Choi et al., 2008): (i) passive control, and (ii) active control.

1.2.1 Passive control

Passive control aims at modifying the flow behaviour by shape modifications or

by introducing passive elements into the flow. Some examples of passive control

used in fluid dynamics applications are the addition of vortex generators to control

boundary layer separation (Lin, 2002; Godard and Stanislas, 2006), the placement

of a small cylinder upstream of a cavity (Illy et al., 2004) or in the near wake of a

cylinder (Strykowski and Sreenivasan, 1990), or the use of roughness or dimples to

control the flow behind a cylinder (Shih et al., 1993; Bearman and Harvey, 1993)

or a separated boundary layer (Boiko et al., 2008).

Techniques to compute the sensitivity of the eigenvalues to base-flow modifications

have been proposed for laminar (Bottaro et al., 2003; Giannetti and Luchini, 2007;

Marquet et al., 2008) and turbulent flows (Meliga et al., 2012; Mettot et al.,

2014a,b). For noise-amplifier flows, the sensitivity of the singular values to base-

flow modifications has been studied by Brandt et al. (2011). All these techniques

are of great interest for the design and evaluation of passive control strategies.

Passive control strategies are easy to implement due to the absence of moving

devices (actuators). However, this implies that the control is designed for a specific

flow configuration and cannot adapt to possible changes in the flow state.
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1.2.2 Active control

Contrary to the passive approach, active control requires the supply of energy

to the system via an actuator. More aggressive control strategies can be imple-

mented. The supplementary cost of active control is generally justified by a pos-

itive energetic balance: the energy saving obtained by the control system should

be larger than the energy required. Examples of actuators used in flow control

applications include plasma devices, moving objects and small jets among others

(see Cattafesta III and Sheplak (2011) for a review on the subject).

Active control can be classified into two categories: (i) open-loop control, and (ii)

closed-loop control. Open-loop control implements a control law which is deter-

mined off-line. We can cite for instance, the work by (Tokumaru and Dimotakis,

1991; He et al., 2000; Protas and Wesfreid, 2002), where the authors show that

the rotatory movement of a cylinder significantly improves its aerodynamic per-

formance. Another example is Sipp (2012), where it is showed that a global mode

in a cavity may effectively be stabilized by harmonic forcing.

On the other hand, closed-loop control uses measurements extracted in real time

from the flow to produce a relevant control action. This strategy may adapt to flow

changes and, thus, more efficient and robust control systems are expected (Kim and

Bewley, 2007). However, closed-loop control generally requires the computation

of a model of the flow and of the actuators, which is a challenging problem for

flow applications (Section 1.3).

Genetic algorithms are a recent attempt to obtain model-free closed-loop con-

trollers (Parezanović et al., 2015; Gautier et al., 2015). This technique explores

a wide range of control laws and determines the optimum by minimizing a cost

function. However, the controllers obtained in such a way do not guarantee any

stability robustness and may lead to unstable compensated systems if the design

conditions are modified.

Closed-loop control has been widely applied to noise amplifier flows. The motiva-

tion of these studies was the delay of laminar-turbulent transition by suppressing

the linear transient growth of small perturbations (Joshi et al., 1997; Bewley and

Liu, 1998; Högberg and Henningson, 2002; Hogberg et al., 2003; Chevalier et al.,

2007; Monokrousos et al., 2008; McKernan et al., 2009a,b), the relaminarization
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of turbulent flows (Högberg et al., 2003; Sharma et al., 2011), and the reduction

of drag of turbulent channels (Cortelezzi et al., 1998; Lee et al., 2001).

1.3 Modelling

The high number of degrees of freedom of fluid systems (often O(106)) are far

beyond the capabilities of current control strategies, which typically can handle

O(102) variables. As a consequence, the full fluid system has to be properly

reduced, before a controller can be designed for the reduced-order model (ROM).

Three different strategies are commonly considered to obtain ROMs of the flow:

(i) simplified physical models, (ii) the projection of the Navier-Stokes equations

onto reduced bases, and (iii) system identification techniques.

The first strategy consists in tuning simple physical models of the flow to match

experimental data. This approach has been successfully used to model the flow

over a cavity (Rowley et al., 2006; Illingworth et al., 2012), and behind a tur-

bulent bluff body (Rigas et al., 2015). However, this approach requires a deep

physical understanding of the flow. Projection and identification techniques are

more general and systematic strategies and are introduced in Section 1.3.1 and

Section 1.3.2, respectively.

Recently, full-order optimal controllers and estimators have been obtained for a

two-dimensional boundary layer over a flat plate using a Ricatti-less approach (Se-

meraro et al., 2013a). The full- and reduced-order compensators turned out to be

in good agreement when a feed-forward control strategy was used.

1.3.1 Galerkin projection

The most popular approach to obtain ROMs of fluid systems is the Galerkin pro-

jection of the Navier-Stokes equations onto reduced-bases which capture the most

important features of the system dynamics. The choice of the reduced basis is of

great importance since it will determine the quality of the ROM. Three projection

bases have mainly been employed in fluid dynamics applications: (i) global modes,

(ii) proper orthogonal decomposition (POD)-modes, and (iii) balanced proper or-

thogonal decomposition (BPOD)-modes.
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The global modes are the eigenvectors of the linearized Navier-Stokes operator

(see Sipp et al. (2010)). By construction, global modes are related to the open-

loop dynamics of the flow of interest without any information about actuators and

sensors. For that reason, their efficiency as a projection basis for control-oriented

reduced-order models is questionable. Examples of closed-loop control applications

using global-modes-based ROMS include Åkervik et al. (2007), Ehrenstein et al.

(2011) and Barbagallo et al. (2011).

POD-modes (Lumley, 1967; Sirovich, 1987) are a popular choice for reduced-order

basis since this decomposition minimizes the averaged residual in the energy norm

for a given number of modes. See for instance the work by Aubry et al. (1988)

where the coherent structures of a turbulent boundary layer have been modelled

using this approach. However, reduced-order models using Galerkin projection

onto POD-modes may be unstable (Ma and Karniadakis, 2002). Different strate-

gies have been considered to improve these models; we can cite for instance the

addition of ”shift modes” and stability modes (Noack et al., 2003), the addition of a

pressure term (Noack et al., 2005) or a spectral viscosity (Sirisup and Karniadakis,

2004), the calibration of the model coefficients (Galletti et al., 2004; Bergmann

et al., 2009), or, recently, the use of a discrete empirical interpolation method

(DEIM) (Chaturantabut and Sorensen, 2010; Fosas de Pando et al., 2013). Ex-

amples of flow control results based on reduced-order models designed with POD

modes may be found in Bergmann et al. (2005); Bergmann and Cordier (2008);

Weller et al. (2009) and in the experimental work of Samimy et al. (2007).

Reduced-order models with better properties are obtained by projecting the equa-

tions onto a balanced basis and a subsequent truncation of the degrees of freedom.

In systems theory, a balanced realization implies that the degree of reachability and

the degree of observability of each state are the same (Moore, 1981). Reduced-

order models obtained by balanced truncation present a priori bounds for the

error and preserve stability. Balanced truncation, however, is not computationally

feasible for very large systems using the Gramians (Antoulas, 2005). An alterna-

tive algorithm based on snapshots was proposed by Willcox and Peraire (2002)

and Rowley (2005). This technique, referred to as balanced proper orthogonal

decomposition (BPOD), has been successfully applied in the control of a chan-

nel flow (Ilak and Rowley, 2008), the vortex shedding behind a plate (Ahuja and

Rowley, 2010), a boundary layer over a flat plate (Bagheri et al., 2009; Semeraro

et al., 2011), or the flow over a cavity (Barbagallo et al., 2009).
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Finally, it is worth to say that a ROM obtained by using BPOD in the time domain

only provides the information between a given input and all the outputs of the

system. However, noise-amplifier flows are driven by the external sources of noise

which are generally unknown and, consequently, an input of the system cannot be

defined. An alternative approach is a frequency-domain formulation of the BPOD

which allows to recover the transfer-function between all the inputs and all the

outputs (Dergham et al., 2011a,b, 2013).

1.3.2 System identification

An alternative approach to Galerkin projection is system identification (Ljung,

1999). System identification techniques represent a family of algorithms that ef-

ficiently determine the coefficients of an underlying model directly from observed

input–output data via a statistical learning process.

Examples of applications of system identification techniques to fluid dynamics

include the control of a separated flow using ARX models (Huang and Kim,

2008), ARMARKOV models to suppress thermoacoustic oscillations (Lacy et al.,

1998), or frequency-domain identification to reduce the pressure drag of a turbu-

lent backward-facing step (Dahan et al., 2012).

System identification techniques are better suited for noise-amplifier flows than

Galerkin projection. The reason is that projection techniques require detailed

knowledge of the spatial distribution of the upstream noise sources. This require-

ment imposes great limitations, especially in experimental situations, where infor-

mation about the noise environment is neither directly nor sufficiently available.

In contrast, system identification only requires the input-output data measured by

sensors. Hervé et al. (2012) used an ARMAX model for the control of a numerical

backward-facing step. This strategy was successfully extended by Gautier and

Aider (2014) to an experimental configuration. Recently, subspace identification

was employed to compute state-space models of numerical (Juillet et al., 2013)

and experimental channel flows (Juillet et al., 2014).

The eigensystem realisation algorithm (ERA) is an identification technique which

yields a ROM of the model which is theoretically equivalent to a model obtained

by BPOD (Juang and Pappa, 1985; Ma et al., 2011). This technique has been

widely applied to fluid systems: the flow over a cavity (Illingworth et al., 2011),
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or two-dimensional (Belson et al., 2013) and three-dimensional (Semeraro et al.,

2013a) boundary layers. ERA requires to apply an impulse-response to the system

and, consequently, is not well-suited for experimental noise-amplifier flows for the

reasons previously stated.

1.4 Objectives of this thesis and outline

The aim of this thesis is to provide new modelling strategies for noise-amplifier

flows using data-based approaches (system identification). The existing tech-

niques (Hervé et al., 2012; Juillet et al., 2013) determine the dynamics from an

estimation sensor and an actuator to a performance sensor. A control law which

minimizes the root-mean-square signal (rms) of the performance sensor is then

computed. Either the estimation and performance sensors are localized measure-

ments. In our case, we extend this approach: the inputs of the system are again

the estimation sensor and the actuator, but the output is the full velocity field.

This technique allows to directly target the velocity field as the objective of the

control. Moreover, the estimation performance obtained by our estimator is proven

to be far superior to existing data-based techniques (linear stochastic estimation

(LSE) (Adrian, 1979)) when dealing with convective flows. It is worth to say that

the spirit of this thesis is to propose techniques that can be used in experiments,

although they were developed using numerical simulations.

This thesis is organised as follows. Chapter 2 presents a technique to compute a

model for noise amplifiers based solely on data which may be readily available in

experiments. This technique is illustrated on a two-dimensional boundary layer

over a flat plate. The performance of the model was compared with respect to

a classical data-based estimator (LSE). Finally, the model was used in an opti-

mal closed-loop control framework to reduce the amplitude of the perturbations.

This chapter is presented in the form of an article published in the Journal of

Fluid Mechanics (Guzmán Iñigo et al., 2014). In Chapter 3, the model was used

to determine the intrinsic dynamics of the flow: the global modes of the ROM

were computed showing good qualitative agreement with the global modes of the

full-order system. This chapter is also presented as an article submitted to the

Journal of Fluid Mechanics. In Chapter 4, the performance of the data-based

estimator is assessed with respect to an optimal estimator (reduced-order Kalman
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filter obtained from the exact equations). Chapter 5 provides guidelines for a fu-

ture experimental implementation of the model. Finally, a summary of results and

conclusions is given in Chapter 6.





Chapter 2

A dynamic observer to capture

and control perturbation energy

in noise amplifiers

This chapter is presented in the form of a self-contained article published in the

Journal of Fluid Mechanics (Guzmán Iñigo et al., 2014). In this article, we intro-

duce a technique to obtain a reduced-order estimator of a noise-driven amplifier

flow. An estimator of the flow is a system which aims at approximating as best

as possible the state of the flow based solely on the limited information given by a

sensor. A classical procedure to obtain estimators in fluid dynamics applications

consists of the reduction of the degrees of freedom of the system by a Galerkin

projection and the computation of a Kalman filter by solving a Riccati equation

of the reduced-order model (ROM). However, this approach is not well-suited for

noise amplifiers since the external driving term is unknown in experimental sit-

uations. This chapter aims at providing an alternative technique to obtain an

estimator of the flow solely based on input-output data which is readily available

in experimental setups.

Abstract

In this article we introduce techniques to build a reduced-order model of a fluid

system which accurately predicts the dynamics of a flow from local wall mea-

surements. This is particularly difficult in the case of noise amplifiers where the

11
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upstream noise environment, triggering the flow via a receptivity process, is not

known. A system-identification approach, rather than a classical Galerkin tech-

nique, is used to extract the model from time-synchronous velocity snapshots and

wall-shear stress measurements. The technique will be illustrated on the case of a

transitional flat-plate boundary layer, where the snapshots of the flow are obtained

from direct numerical simulations. Particular attention is directed to limiting the

processed data to data that would be readily available in experiments, thus mak-

ing the technique applicable to an experimental setup. The proposed approach

combines a reduction of the degrees of freedom of the system by a projection of

the velocity snapshots onto a POD basis combined with a system-identification

technique to obtain a state-space model. This model is then used in a feedforward

control setup to significantly reduce the kinetic energy of the perturbation field

and thus successfully delay transition.

2.1 Introduction

Fluid systems that fall under the category of noise amplifiers are characterized by a

globally stable spectrum despite the presence of convective instabilities. Boundary

layers are examples of this type of fluid behavior. External perturbations permeate

the near-wall region during the receptivity phase and initiate disturbances that are

amplified into Tollmien-Schlichting waves as they are swept downstream. If these

instabilities reach sufficient amplitudes, breakdown of the flow into turbulent fluid

motion can occur. Much effort has been expended to understand and control this

breakdown into turbulence by manipulating the underlying instability processes.

While many open-loop control techniques have been developed to delay the tran-

sition process, closed-loop approaches, where actuation depends on sensor mea-

surements, are more effective and efficient (Kim and Bewley, 2007). However,

under realistic flow conditions, the direct application of closed-loop control tech-

niques is often not tractable. The high degrees of freedom of fluid systems (often

O(106)) are far beyond the capabilities of current control devices which typically

can handle O(102) variables. As a consequence, the full fluid system has to be

properly reduced, before a controller can be designed for the reduced-order model.

This methodology has been demonstrated to yield successful control designs, see

Bagheri et al. (2009) and Barbagallo et al. (2009), among others. In these inves-

tigations, model reduction is accomplished by a flow decomposition (e.g., POD or
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BPOD decomposition) followed by a Galerkin projection of the equations onto the

reduced basis.

In the case of noise amplifiers, external perturbations strongly influence the system

dynamics. Thus, it is very important for the reduced-order model (ROM) to

accurately capture the noise environment. In particular, ROMs obtained by means

of Galerkin projections require detailed knowledge of the spatial distribution of the

upstream noise sources. This requirement imposes great limitations, especially in

experimental situations where information about the noise environment is neither

directly nor sufficiently available. A promising alternative to control design based

on Galerkin projections derives from system-identification techniques as proposed

in Hervé et al. (2012); this approach also constitutes an encouraging step towards

the control of noise amplifiers in experimental situations.

This paper intends to provide a methodology to obtain reduced-order estimators

for noise amplifiers without using Galerkin projections. While in Hervé et al.

(2012) the model describes only the dynamics between one sensor (upstream mea-

surement) to another (downstream measurement), here we aim to capture the dy-

namics between upstream measurements and the entire perturbation field. This

will allow the reconstruction of the full flow field and, consequently, the design of

controllers that target the kinetic energy of the full perturbation field, not only the

variance of a wall-measurement signal. This reminds the Galerkin-based output

projection technique introduced by Rowley (2005) that captures the full pertur-

bation field from a given input. However, the latter technique requires precise

knowledge of the spatial distribution of the input, which is generally not avail-

able in amplifier flows. Therefore, Dergham et al. (2013) has extended it to also

account for any possible input, so as to obtain a model that captures any in-

put to any output. In the present work, we aim at obtaining a similar model —

capturing the dynamics from unknown input to any output — but with identi-

fication methods. The proposed approach consists of a reduction of the degrees

of freedom of the system by (i) a projection of the velocity fields onto a reduced

basis combined with (ii) a system-identification algorithm to obtain the dynamic

operators of a reduced-order system. In particular, a link between velocity fields

(e.g., from TR-PIV data) and time-synchronous wall-shear stress measurements

is established, and a dynamic observer is determined. A key feature of our proce-

dure is its reliance on a Galerkin model structure but on the determination of the
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model matrices by system identification rather than integral expressions (Galerkin

projections).

The link between velocity fields and wall measurements is reminiscent of linear

stochastic estimation (LSE) techniques (Adrian, 1979; Guezennec, 1989; Bonnet

et al., 1994; Tinney et al., 2006; Hudy et al., 2007; Taylor and Glauser, 2004;

Tu et al., 2013) where multiple, measured inputs are correlated to simultaneous,

multiple outputs by averaging over many realizations. Our proposed technique

generalizes this static approach by accounting for the dynamics of either measure-

ment data. The comparison between LSE and dynamic observers obtained by

Galerkin projection has already been considered in Rowley and Juttijudata (2005)

showing the superiority of dynamic estimators. A further relation can be demon-

strated to data-assimilation techniques, specifically, to the online variant (see,

e.g., Lewis et al., 1989) where streaming data are matched to an underlying model

which is then used to predict future measurement signals. Once a model has been

extracted by our technique from measured data, it can straightforwardly be used

in a closed-loop control application, as will be illustrated below.

The present study is structured as follows. After a brief description of the flow

configuration and the governing equations (§ 2.2) we present a dynamic observer

obtained by Galerkin projection (§ 2.3) and by the identification procedure (§ 2.4).

§ 2.5 will compare the identified observer with different well-known approaches,

while § 2.6 will demonstrate how to include the identified model in a control

framework. A summary of results and conclusions are given in § 2.7. The appendix

gives details about the employed subspace system identification techniques.

2.2 Problem formulation

2.2.1 Governing equations

We choose a zero-pressure gradient boundary layer — a classical and generic flow

that acts as a noise amplifier — as our configuration to design and test the dy-

namic observer. This flow is globally stable but selectively amplifies upstream

disturbances by convective instabilities. In a low-amplitude noise environment,

two-dimensional Tollmien-Schlichting waves appear as a result of this instability

mechanism.
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We consider the dynamics of disturbances u around a base-flow U0, which we

take as a Blasius boundary layer. The disturbances u are additionally driven by

an external forcing term, Fww(t), which acts as an upstream disturbance source

of unknown origin. For simplicity, we assume that w(t) is a random process of

zero mean and variance W, while Fw describes a spatial two-dimensional Gaussian

distribution centered at (xw, yw) of spread (σx, σy) and amplitude A. The spatio-

temporal evolution of the total flow field, Utot = U0 + u, is governed by the

incompressible Navier-Stokes equations, augmented by a forcing term,

∂tUtot+Utot ·∇Utot = −∇Ptot+Re−1
δ∗0
∆Utot+Fww(t), ∇·Utot = 0. (2.1)

The variables are non-dimensionalized using the displacement thickness δ∗0 of the

boundary-layer at the computational inlet (x0 = 0) and the free-stream velocity

U∞. Consequently, the Reynolds number is defined as Reδ∗0 = U∞δ∗0/ν. All sim-

ulations were performed at Reδ∗0 = 1000, which ensures the presence of strong

Tollmien-Schlichting instabilities since Reδ∗0 > Recritδ∗ = 520.

The governing equations (2.1) are solved in a computational domain Ω of size

(0, 1000) × (0, 40), sketched in figure 2.1. A Blasius profile of unit displacement

thickness is prescribed at the left boundary, outflow conditions are employed at

the upper and right boundaries, and a no-slip condition is imposed at the wall.

We use the spectral-element code Nek5000 (see https://nek5000.mcs.anl.gov) to

perform the computations below.

With the base flow U0 as a solution of the unforced (w = 0) steady Navier-Stokes

equations (2.1), the perturbations u are governed by the following equations

∂tu+U0 · ∇u+ u · ∇U0 = −∇p +Re−1
δ∗0
∆u+ Fww(t), ∇ · u = 0, (2.2)

where the nonlinear term u · ∇u has been omitted since only low-amplitude noise

W ≪ 1 will be considered. This assumption ensures linear perturbation dynamics,

as well as a linear response to the noise w. During the DNS simulations, white

noise is imposed via w(n) to mimic upstream excitations of unknown source and

distribution (mimicking conditions in physical experiments). We use a time-step

of dtdns = 0.1.
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Figure 2.1: Sketch of the flow configuration. The computational domain Ω is
of size (0, 1000)×(0, 40), represented by the light gray box. The upstream recep-
tivity of the boundary layer to external perturbations is modeled by the noise w
which is placed at (xw, yw) = (50, 0.95). A sensor located at (xs, ys) = (200, 0)
will identify incoming perturbations, while a velocity window (represented by
the dark gray box) is used to quantify the effect of the forcing on the velocity

field.
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Figure 2.2: Neutral curve obtained by a local spatial stability analysis in the
computational domain.

2.2.2 Perturbation dynamics

Choosing the Blasius boundary layer as an example of a noise amplifier and as-

suming a low-noise environment, perturbations may be amplified by two different

instability mechanisms: (i) the Tollmien-Schlichting instability which takes ad-

vantage of a critical layer as well as a wall layer to generate a non-zero Reynolds

stress, and (ii) the Orr instability where initial perturbations lean against the

mean shear but grow in amplitude as they are tilted by the mean velocity (Butler

and Farrell, 1992). The details of these mechanisms can be studied within a local

stability framework, considering perturbations of the form ei(αx−ωt), with ω as the

frequency and α as the streamwise wavenumber of the perturbation. An analy-

sis of this type shows that the Blasius boundary layer is convectively unstable to
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Figure 2.3: Spatial dispersion relation for the convectively unstable frequen-
cies at three different positions within the domain.

Tollmien-Schlichting waves when the Reynolds number based on the local displace-

ment thickness δ∗(x) is larger than the critical value of Re = 520. In figure 2.2,

the neutral curve obtained from a local spatial stability analysis performed with

wall-normal profiles extracted from the base flow U0 is displayed. The unstable

frequencies fall in the interval 0.055 < ω < 0.13 at the computational inlet and

0.015 < ω < 0.052 at the end of the domain. When a localized disturbance is

placed inside the boundary layer, the response is a wavepacket which convects

downstream at the local group velocity vg = dω/dα. The group velocity is a very

important parameter, as it sets a characteristic time for the perturbation, and can

easily be obtained from the dispersion relation ω = ω(α). In figure 2.3, the disper-

sion relation is represented for three different Reynolds numbers (corresponding

to streamwise locations at the computational inlet, middle and outlet). For the

considered configuration, the group velocity is estimated as vg ≈ 0.375U∞ using

the real-axis approximation.

2.2.3 Measurements

This paper aims at providing a data-based technique that is applicable in an

experimental setting. For this reason, special care must be taken to only use data

which is readily available in an experiment. We first consider a wall-friction sensor

s (see figure 2.1), located at xs = 200 and of spatial extension in the streamwise
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direction ∆x = 0.5, which measures the wall shear-stress:

stot =

∫ xs+∆x

xs

∂utot

∂y

∣∣∣∣
y=0

dx+ g =

∫ xs+∆x

xs

∂U0

∂y

∣∣∣∣
y=0

dx+

∫ xs+∆x

xs

∂u

∂y

∣∣∣∣
y=0

dx+ g

︸ ︷︷ ︸
s(t)

,
(2.3)

where s denotes the fluctuating part of the measurement, which may be obtained

by subtracting the time-averaged value of stot from the signal stot. For the case

of low-amplitude forcing, i.e., for linear perturbation dynamics, the time-averaged

value also corresponds to the base-flow value. The sensor stot (or s) may be

corrupted by white noise g, of variance G (with G small and of the order of

magnitude of W ).

In addition to the wall-friction sensor s, we also consider velocity snapshots usnap

in a given domain Ωsnap, which may be chosen smaller than the computational

domain Ω (see figure 2.1). The fluctuating parts of the velocity field may again

be obtained by subtracting the time-averaged snapshots from the total snapshot

sequence. In an experimental setup, the velocity snapshots may be obtained by

a PIV technique. In what follows, we will consider time-series of composite skin-

friction measurements and velocity snapshots.

2.3 Structure of a dynamic observer using Galerkin

projection

In this section the model reduction technique based on Galerkin projection will

be briefly discussed to motivate the use of identification methods in the design

of reduced-order models (ROMs). Special attention will be paid to the structure

of the resulting model since it will form the basis of the system-identification

approach. We proceed by developing and analyzing the ROM that would result

from a projection of the linearized Navier-Stokes equations onto a POD basis

(§ 2.3.1) which is followed by the introduction of a Kalman filter allowing us to

replace the unknown driving term w(t) by the known measurements s(t) (§ 2.3.2).
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2.3.1 Reduced-order model with Galerkin projection by

approximation of the controllability Gramian

A common method used to obtain a reduced-order model of a dynamical system is

based on Galerkin projection, i.e., a projection of the Navier-Stokes equations (2.2)

onto an appropriate basis, such that the input-output behavior of the full system

is preserved as accurately as possible. The choice of basis is critical. The two most

common options are based on: an approximation of the controllability Gramian

which yields a POD basis (Rowley, 2005; Barbagallo et al., 2009) that maximizes

the energy captured by the reduced-order model, and an approximation of the

controllability and observability Gramians which yields a balanced basis (Moore,

1981; Rowley, 2005; Bagheri et al., 2009) that directly focuses on the input-output

relation of the reduced system. In this article, only ROMs obtained by approxi-

mating the controllability Gramian will be considered.

After extracting the POD modes (taking data from the full computational domain)

from the approximation of the controllability Gramian by an impulse response

of the full system (see Barbagallo et al. (2009) for details), the governing equa-

tions (2.2) are projected onto the first k modes to obtain a reduced state-space

representation of the system according to

dX

dt
= A′

wX(t) +B′
ww(t), (2.4a)

s(t) = C′
sX(t) + g(t). (2.4b)

whereX(t) is a vector containing the k POD coefficients at time t. Denoting by 〈·〉

the energy based-inner product that has been used to extract the POD modes, the

components of the matrix A′
w and of the vectors B′

w, C
′
s are obtained as follows:

A′
w,ij = 〈Φi,A Φj〉 (with A as the linearized Navier-Stokes operator (2.2) on Ω),

B′
w,i = 〈Φi,Fw〉 and C′

s,i = CsΦi (with Cs as the measurement operator).

A Galerkin projection usually provides a continuous-time format for the state-

space system (2.4). With the remaining article pertaining to system identification

methods, it is more convenient to express the governing equations in a discrete-

time framework. In the discrete-time domain, the mapping of the state-vector X

from time t (index n) to t+∆t (index n + 1) reads
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X(n+ 1) = AwX(n) +Bww(n), (2.5a)

s(n) = CsX(n) + g(n), (2.5b)

with Bw =
∫ ∆t

0
exp[A′

w(∆t − τ)]B′
w dτ associated with the discrete driving term,

Aw = exp(A′
w∆t) denoting the evolution matrix over a time interval ∆t and Cs =

C′
s.

2.3.2 Kalman filter

When dealing with noise amplifiers, it is critical to accurately account for the

disturbance environment, as it both triggers and sustains the dynamics of the

system. Despite this requirement, in an experimental setup, access to accurate

information about the noise environment is, at best, very difficult or, in most cases,

impossible. We thus have to introduce an observer where the noise source-term

Bww(t) is replaced by a measurement term Ls(t) which drives, as best as possible,

the estimated state of the system. Formally, the observer may be obtained in a

straightforward manner by introducing a linear estimator of the form

Xe(n+ 1) = AwXe(n) + L [s(n)−CsXe(n)] = AsXe(n) + Ls(n), (2.6)

whereXe(n) is the estimated state, s(n) is the measurement signal from the friction

sensor (defined by (2.3)) and L represents the gain of the estimator which can be

selected by the designer to achieve different objectives. If the gain L is selected

to statistically minimize the error ‖Xe −X‖2, the estimator is referred to as a

Kalman filter and L is obtained by solving a Riccati equation (see Burl (1999)) of

the form

P = AwPA
∗
w − AwPC

∗
s (CsPC

∗
s +G)−1CsPA

∗
w +BwWB∗

w, (2.7a)

L = AwPC
∗
s (CsPC

∗
s +G)−1 . (2.7b)

In short, the dynamic observer (2.6) consists of a linear relationship between two

subsequent state-vectors Xe(n+1),Xe(n) and the measurement s(n). Its dynamics

are fully determined by the evolution matrix As = Aw−LCs and the observer gain
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L. We stress that this estimator is effective, only if the measurement s remains

constant over the sampling time ∆t; for this reason, a spectral analysis of the

measurement s must be employed to determine its frequency content and thus the

sampling time ∆t.

2.3.3 Limitations of Galerkin-based methods

Galerkin models based on Gramians are a popular choice for model reduction,

owing to their ease of use in feedback applications, the availability of mathematical

bounds on their convergence, and their link to physically relevant flow structures.

But despite their wide-spread use, Galerkin-based methods for the computation

of reduced-order models suffer from notable limitations when they are applied to

experimental situations.

The favorable properties of the Galerkin model presented in this section stem

from the fact that the POD modes were obtained by accurately discretizing the

integral involved in the controllability Gramian. This requires that an impulse of

w(t) can be generated and its response can be analyzed using velocity snapshots;

furthermore, a very small delay between two successive snapshots and a very

long series of snapshots is desirable. If such requirements are not met, Galerkin

projection then provides POD-based models which may even become unstable: a

posteriori regularization and calibration techniques are then required to render the

models stable again (Bergmann et al. (2009)).

One of the most important limitations of Galerkin-based models is linked to the

requirement of a very accurate distribution of the noise sources in the experiment

for amplifier flows, since these sources will drive the dynamics of the system.

Generally, the noise distribution in experimental setups will be complex, difficult

to represent, and mostly unknown, so that triggering by an impulse in w(t) is

nearly impossible.
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2.4 Dynamic observer using system-identification

techniques

This section introduces an alternative method to obtain a dynamic observer. We

will present a data-driven approach, based on system identification techniques,

that solely relies on observations of the system in the presence of unknown up-

stream noise w(t). System identification techniques represent a family of algo-

rithms which efficiently determine the coefficients of an underlying model directly

from observed input-output data via a statistical learning process. This section

aims at obtaining a dynamic observer model such as Eq. (2.6) directly from ob-

servations of the system. In the following, we will first briefly recall the basics of

system identification techniques, which generate a model governing the dynamics

of given outputs from known inputs (§2.4.1). Second, we will define the output of

our system as the coefficients of the velocity snapshots in a POD basis (§2.4.2).

Third, we will introduce the model structure of the dynamic observer (§2.4.3),

identify the coefficients of the model (§2.4.4) and validate the model (§2.4.5).

Finally, the influence of various parameters on the quality of the model will be

assessed (§2.4.6).

2.4.1 System identification based on subspace techniques

System identification comprises a wide range of methods of varying applicability

and complexity (see Ljung (1999)). In our case, we aim at obtaining a linear time-

invariant (LTI) multiple-input-multiple-output (MIMO) system, such as the one

given in Eq. (2.6). In general, we have u(n) as known inputs, w(n) as unknown

white plant noise and y(n) as known outputs corrupted by unknown white noise

v(n). We aim at determining the system matrices (A,B, C and D), which govern

a state x(n) such that

x(n+ 1) = Ax(n) + Bu(n) + w(n), (2.8a)

y(n) = Cx(n) +Du(n) + v(n). (2.8b)

The coefficients of the system matrices are chosen such that the estimated output

ye(n), obtained by time-marching (2.8) with w(n) = v(n) = 0, is as close as
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Figure 2.4: Procedural steps of system identification techniques. Step 1: The
system is forced with a frequency-rich input signal and data is acquired. The
forcing term w(n) driving the system should be either known, or replaced by a
known proxy measurement s(n). Step 2: After selecting a model structure and
appropriate parameters, the model coefficients are then computed by maximiz-
ing the fit between the output of the system and the prediction of the model for
a part of the available data. Step 3: The model is tested on a dataset different
than the one used for learning. If the model does not reproduce the system
dynamics with the required accuracy, a different model structure, a different

parametrization or even a different experiment should be considered.

possible to the measured output y(n) (subject to the white-noise sources w(n) and

v(n)), knowing the inputs u(n). We stress that the state x(n) does not necessarily

have to have a physical interpretation.

System identification consists of three procedural steps (see figure 2.4). First,

the system is excited by known and unknown input signals u(n) and w(n) while

the outputs y(n) (corrupted by noise v(n)) are recorded. In a second step, a

parametrized model is chosen, in our case a LTI system characterized by the system

matrices A,B, C and D, together with an appropriate identification algorithm. A

subsample of the full data set, referred to as the learning dataset, is then processed

to determine the system matrices of the model. In a third step, a different part of

the data, known as the testing dataset, is used to drive the identified system, and

the output ye(t) produced by the model is compared to the measured true output

y(t); based on this validation test, the model is accepted, adapted or rejected.

The form of the model given in (2.8) makes subspace identification algorithms a

convenient choice. Appendix A presents a brief introduction to these techniques;

a more comprehensive description is given in Qin (2006) and Van Overschee and
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De Moor (1996). In this study, the N4SID algorithm (Van Overschee and De Moor,

1994) has been used to obtain all the models.

2.4.2 Outputs as coefficients of velocity snapshots in a

POD basis

We would like to describe the system at each time instant with velocity snapshots

usnap. The large number of degrees of freedom in these snapshots makes direct

application of identification techniques excessively, or prohibitively, expensive. It

is thus necessary to reduce the dimensionality of the measured data. In this

article, we use the proper orthogonal decomposition (POD) modes (Lumley, 1967;

Sirovich, 1987) to form a reduced basis. Note that, contrary to the previous

section, the velocity snapshots used to build the POD basis are obtained in the

presence of the true, but unknown, noise environment w(t).

We consider a sequence of m velocity snapshots {Vsnap(n)}n=1..m extracted from

the Ωsnap-domain and containing the effect of upstream noise w. The sequence

needs to cover a sufficiently large time range to explore all states of the system.

Therefore, even though not mandatory, the time-delay between two snapshots

can be taken as quite large, so as to obtain nearly uncorrelated successive snap-

shots. The proper orthogonal decomposition then enables us to compute a ranked

orthonormal basis {Φi}i=1..m of flow fields, satisfying 〈Φi,Φj〉 = δij, i, j =

1, 2, ..., m, which can be expressed most conveniently as a linear combination of

thesem snapshots. Here, the scalar-product 〈·〉 is associated with the energy-based

inner product:
〈
u1
snap,u

2
snap

〉
=
∫
Ωsnap

(u1
snapu

2
snap + v1snapv

2
snap) dx dy. Any velocity

field V in Ωsnap can then be projected onto the first k POD modes according to

yi = 〈Φi,V〉 , i = 1, 2, ..., k, (2.9a)

V′ =
k∑

i=1

Φiyi, (2.9b)

to produce the approximate flow field V′. Properties of the POD guarantee that,

for all k, the error ‖V − V′‖2 = 〈V −V′,V −V′〉 is minimal for the set of m

measured snapshots. For the subsequent derivations, we define the reduced state

vector given by the k POD coefficients by Y = [y1, y2, ..., yk]
T and denote the

reduced POD basis by U = [Φ1,Φ2, ...,Φk].
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Figure 2.5: (a) First 100 POD eigenvalues λi of the correlation matrix. (b)
Contours of the streamwise velocity component of the first (Φ1) and tenth (Φ10)

POD-mode.

In what follows, snapshots have been obtained with the smaller Ωsnap-domain of

dimension (150, 950)× (0, 40). A total of 1500 snapshots sampled each ∆tpod = 5

have been used to obtain the POD basis. From figure 2.6 a cut-off for the lower

frequencies can be established at f ≈ 10−3 which, considering the total length T of

the time data used to compute the POD basis (T = 1500× 5 = 7500), guarantees

that the lowest physical frequencies f ≈ 10−3 have been explored approximately

7500 × 10−3 ≈ 8 times. Figure 2.5(a) shows the corresponding eigenvalues of the

correlation matrix, confirming a steady decay over about three decades in the first

thirty modes (95 % of the energy is contained in the first ten modes). Two selected

POD modes, Φ1 and Φ10, are displayed in figure 2.5(b).

The time-evolving POD coefficients Y(n) constitute the output of the system. In

the next section, we will seek a model structure for a dynamic observer that is

able to accurately predict Y(n) from the input to the system.

2.4.3 A dynamic observer obtained by identification tech-

nique

An approximation Ye of the temporal evolution of the reduced state vector Y can

be obtained by time marching a dynamic observer equation, whose structure is

similar to the one given in (2.6), that is,

Ye(n+ 1) = ÃsYe(n) + L̃s(n). (2.10)
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The quantities Ãs, L̃ and C̃s will be obtained with system identification techniques

that solely rely on knowledge of input-output datasets {s(n),Y(n)}n=1..m , rather

than by performing a Galerkin projection and solving a Riccati equation. A rela-

tion between the general formulation of subspace algorithms defined in § 2.4.1 and

the dynamic observer notation can straightforwardly be defined as Ãs = CAC−1

and L̃ = CB, assuming that D = 0.

The input s(n) is related to the state Ye(n) according to

s(n) = C̃sYe(n), (2.11)

where C̃s is a measurement matrix which can be obtained using two different

procedures: its exact definition or an identification techniques. In the first case,

we combine equations (2.3) and (2.9) to get

C̃exact
s,i =

∫ xs+∆x

xs

∂(Φi · τx)

∂y

∣∣∣∣
y=0

dx, τx =

(
1

0

)
. (2.12)

The evaluation of this expression involves either measuring the POD modes or

combining the measurements {s(n)}n=1..m associated with the velocity snapshots

{Vsnap(n)}n=1..m, that were used for the construction of the POD basis in §2.4.2.

In the second case, we use a simple least-squares method applied to a composite

time-series {s(n),Y(n)}n=1..m of the learning dataset. It is straightforward to show

that

C̃s = [s(1) · · · s(m)][Y(1) · · ·Y(m)]†, (2.13)

where † denotes the Moore-Penrose pseudo-inverse.

As shown in §2.3.1, the true evolution matrix for Y is not Ãs but Ãw. Considering

a model-structure for Y similar to the one obtained by Gakerkin projection in

(2.5), we see that the state Y(n) is governed by

Y(n+ 1) = ÃwY(n) + B̃ww(n), (2.14a)

s(n) = C̃sY(n) + g(n), (2.14b)

where the known input L̃s(n) has been replaced by the unknown driving term

B̃ww(n). The true evolution matrix Ãw in (2.14) can thus be obtained from the

observer matrix Ãs via

Ãw = Ãs + L̃C̃s. (2.15)
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Galerkin projection System identification

Reduced-order state X(n) Y(n)

ROM matrices Aw,Bw Ãw, B̃w

Estimated state Xe(n) Ye(n)

Observer matrices As,L Ãs, L̃

Measurement matrix Cs C̃exact
s (obtained by definition)

C̃s (obtained by least-squares)

Table 2.1: Notation used for the Galerkin-projection- and identification-based
design of a dynamic observer.
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Figure 2.6: Spectrum of the input signal s(t) obtained from the shear-stress
sensor placed at x = 200.

The different notations used for the models obtained with Galerkin projection and

identification techniques are summarized in table 2.1.

2.4.4 Identification of model coefficients with learning dataset

We obtain data by performing a linearized direct numerical simulation of the

boundary layer in the presence of unknown noise. We use a sampling interval

∆t = 5 for the velocity snapshots and the shear-stress measurements s. This choice

of sampling interval can be justified by regarding figure 2.6, where the frequency

spectrum of the input signal S(f) is represented. This figure shows that the

frequency content of s is rather low near the Nyquist frequency fnyquist = fs/2 =

0.1 defined by our sampling interval ∆t = 1/fs. The datasets to be processed are

composed of the input signal from the sensor s and several outputs yi corresponding

to the projection of the snapshots onto the set of POD modes {Φi} (figure 2.7).
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Figure 2.7: Learning dataset: (a) the measurement s capturing the influence
of external noise and (b) and (c) the POD coefficients yi obtained by projecting

the flow field onto the POD modes Φ1 and Φ10, respectively.

Using the N4SID algorithm (Van Overschee and De Moor, 1994) and the Moore-

Penrose pseuso-inverse, the model parameters Ãs, L̃ and C̃s are then determined

by fitting the model output to the true, measured output, as the model is forced

by the recorded input. A reduced-order model has been determined with k = 90

POD modes and a learning data set of length Nsnap = 2000.

2.4.5 Assessment of model performance with testing dataset

The validity of the identified parameters is subsequently confirmed by using a

different data set (referred to as the testing data set) and by comparing the model

output to the true output. As this testing data set has not been used in the

identification of the model, we can assess the predictive capability of the identified

model in this manner. The kinetic energy defined as E(t) = 〈usnap,usnap〉 ≈ Y∗Y

is an important variable of the system since it represents the global dynamics of

the flow. The quality of fit between the energy of the DNS, denoted by E(t), and

the value predicted by the model, denoted by Ẽ(t), can be stated as

FIT[%] = 100


1−

∥∥∥E(t)− Ẽ(t)
∥∥∥

‖E(t)−mean(E(t))‖


 (2.16)

and can be used to quantify the performance of the estimator. Figure 2.8(a)

displays the measured input signal s from the wall shear-stress sensor, from which
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Figure 2.8: Validation dataset: performance of the system-identified model,
initialized by Y = 0 at t = 2000. The input data from the wall shear-stress
sensor s is shown in (a); the remaining flow variables are recovered solely from
this measurement signal using the identified model. (b-e) Comparison between
the DNS (black) and the model prediction (red) for four variables from the
testing dataset: (b) the energy of the system, (c) and (d) the POD coefficients
yi for the first and tenth modes, respectively, and (e) a friction sensor cp placed
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Figure 2.9: Snapshots of the streamwise disturbance velocity component ob-
tained (a) from the DNS and (b) recovered from s(n) via the model for t = 3000

and t = 4000. See supplementary movie 1.
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all subsequent flow variables (figure 2.8(b-e)) can be derived using the identified

model. In our case, we show the evolution of energy (b), the first and tenth POD

coefficient (c,d) and the output from a friction sensor (e) placed at x = 600.

After a short transient period, the predicted flow variables closely track their

true DNS-equivalents, which yields a relative match of FITener = 93.72% when

evaluated over the time interval t ∈ [4000, 10000]. The length of the transient

period, estimated as Ttrans ≈ 2000, can be directly linked to the convective time

of the disturbances. As previously mentioned, Tollmien-Schlichting waves are

convected with a group velocity equal to vg = 0.375. This convective velocity

defines the characteristic time Tconv necessary for the wavepacket to cover the

distance between the sensor s and the downstream edge of the domain Ωsnap. This

time (Tconv ≈ 2000) accurately predicts the duration of transient effects Ttrans.

This match between the time the estimator needs to propagate information and

the time the system needs to convect a wavepacket confirms that the input-output

behavior of the system is well-captured by the model. From the POD coefficients

in Ye the full flow field can be reconstructed from the basis U. Two examples of

this reconstruction, visualized by the streamwise velocity component, are shown in

figure 2.9 and compared to the equivalent full DNS simulation. The first instant

at t = 3000 has been taken during the transient phase and shows a promising

but incomplete match over the entire flow domain; a second instant at t = 4000

displays an excellent agreement between the flow structure recovered from s(t) via

the identified model and the full DNS solution.

2.4.6 Influence of some model parameters on performance

System-identification techniques usually contain numerous model parameters which

have to be determined with care in order to obtain a representative and robust

model of the underlying physical process. Subspace identification methods are

particularly advantageous in this respect, when compared to parametrized models

(see Hervé et al. (2012)), due to the relative simplicity of their parametrization;

in fact, the size of the state-space model is the only user-defined parameter for

subspace techniques.

In this section, we study the influence of the state-space size k (in other words,

the number of POD modes), as well as the number of snapshots Nsnap contained
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Figure 2.10: Influence of the model parameters on the quality of the identifica-
tion. Mean (black) and standard deviation (blue) of the validation fit computed
from samples of ten models obtained from different learning datasets. (a) In-
fluence of the length of the learning dataset Nsnap (for a fixed number of POD
modes Npod = 90) and (b) of the number of POD modes k (for a fixed number

of snapshots Nsnap = 2000).

in the learning dataset, on the quality of our identified reduced-order model. Fig-

ure 2.10 represents the statistical mean and standard deviation of the fit between

the validation dataset and the predictions of different models. Both graphs have

been obtained by computing, for each point on the curves, ten models obtained

from distinct sections of a long learning dataset. The total length of the learning

dataset is Nsnap = 8000 (40000 time units) and the different learning sections i

begin at different time instants, tiniti=0..9 = 2500 + 500i. Figure 2.10(a) shows, for a

fixed number of POD modes (k = 90), the influence of the number of snapshots

Nsnap: we observe that a minimum number of snapshots are necessary to obtain

an accurate model. This observation is common in identification techniques, since

the algorithm requires sufficiently long time sequences from the dynamical system

to arrive at statistically converged data. In our case, the identification procedure

requires about 1500 × 5 = 7500 characteristic time units to obtain satisfactory

results (signal components of the lowest system frequency f = 10−3 have been

explored about 8 times).

The influence of the number of POD modes k on the model quality (fit) observed

in Figure 2.10(b) is far less trivial. For a fixed number of snapshots Nsnap = 2000,

a minimum number of k = 40 − 50 POD modes are required to obtain a good

performance of the dynamic observer: this is related to the concept of observability

of the POD basis.

Intuitively, a necessary condition for an observable system requires that the input
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Figure 2.11: Relative error between the signal s(t) obtained by DNS and the
signal given by C̃

exact
s Y(t) (exact definition) and C̃sY(t) (estimated by least-

squares) for different numbers of POD modes. ‖·‖ indicates the 2-norm on the
vertical axis.

s(n) and the state Y(n) are well correlated or, in other words, that the measure-

ment s(n) must be accurately representable by the POD coefficients according to

s(n) ≈ C̃sY(n). Figure 2.11 shows the relative error between the measurement

s(n) given by the sensor in the DNS simulation and the measurement s = C̃sY,

with Y obtained by projection of the velocity snapshots onto the POD modes.

The solid and dashed lines respectively represent the relative error for the case

where C̃s is obtained by measuring the POD modes (Eq. (2.12)) and by the

pseudo-inverse (Eq. (2.13)). Both curves show a similar behaviour, reflecting the

fact that, after a minimum number of POD modes are taken into account, the

POD basis accurately captures the temporal behaviour of the measurement signal

s(n). The relatively high degree of the system (Npod = k = 90) is related to the

inherent lack of observability of the POD basis. Proper orthogonal decomposition

maximizes the energy captured by a few orthogonal modes and, as is the case

for the boundary layers (and, more generally, flow amplifiers), the most energetic

structures are commonly localized downstream in the domain of interest. Conse-

quently, the first POD modes do not show much spatial support in the upstream

part of the domain, and higher modes are necessary to represent the full dynamics

of s(n). Figure 2.12 demonstrates this tendency, showing that the energy content

of the modes at the location of the estimation sensor is nearly zero up to the 22nd

POD-mode.
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Figure 2.12: Local kinetic energy Ey(x) =
∫∞
0 (u2 + v2)dy for four POD

modes: (a) Φ1, (b) Φ10, (c) Φ22 and (d) Φ24. The estimation sensor is located
at xs = 200.

2.5 Comparison of model obtained by system

identification with other techniques

In this section, we compare the performance of our identified dynamic observer to

that of a more common Galerkin-based observer (§2.5.1) and to that of a Linear-

Stochastic-Estimation (LSE)-based observer (§2.5.2).

2.5.1 Comparison with model obtained by Galerkin pro-

jection

The identification-based dynamic observer presented in this article is similar to

the one obtained by Galerkin projection. However, the identification process will

introduce a bias in the obtained model; this bias will be analyzed below. In fig-

ure 2.13, we compare the performances of the dynamic observer established in (2.6)

by Galerkin projection and the one obtained in (2.10) by identification methods.

Even though the temporal evolution of the POD coefficients is quite similar in

both models, a slight overestimation in energy is observed in the identified sys-

tem. The temporal evolution of the POD coefficients furthermore shows small

oscillations in the signal of the identified model (noticeable for sufficiently small

signal amplitudes; see 3000 < t < 4000 in figures 2.13(a,b)). This oscillatory effect

often appears in identified models and stems from an inadequate representation of

some frequencies. It is important, however, to keep in mind that both models are

associated with slightly different bases, but a fair comparison has to be performed
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on a common basis. To this end, we have chosen to project the estimated state

Xe onto the POD basis U used to obtain the identified model.

2.5.2 Comparison with model obtained by LSE

Linear stochastic estimation (LSE) postulates a static linear relationship between

a set of input signals (measurements from sensors) and a set of output variables

of the flow. The LSE estimator can be formulated as

Ye(n) = R̃S(n), (2.17)

where Ye(n) ∈ Rk and S(n) ∈ Rm are vectors containing, respectively, the k

estimated output variables by LSE at time n and the measurements fromm sensors

at time n, and R̃ is a matrix obtained by minimizing the mean-squared error

between the true output and the one predicted by the model, in other words,

‖Y −Ye‖
2 .
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Figure 2.14: Performance of LSE compared to the dynamic observer. The
input data used by the LSE model comes from ten equispaced shear-stress sen-
sors between x = 500 to x = 950, while the dynamic observer uses a single
sensor located at xs = 200 . (a-d) Comparison between the linearised DNS
(black), the identified dynamic observer prediction (red dashed) and the LSE
model (blue) for three variables from the testing dataset: (a) the energy of the
system and (b-d) the POD coefficients yi for the first, tenth and twentieth mode,

respectively.

In our numerical experiments, a linear estimator has been computed based on in-

put from ten shear-stress sensors (equispaced between x = 500 to x = 950) and 20

POD modes representing the flow state. Figure 2.14 shows a comparison of DNS

results with results obtained from applying either LSE or a dynamic observer. It

appears that, in the case of LSE, a great many more sensors are required to obtain

a model of similar quality (performance) than the one provided by the dynamic

observer. This observation corroborates the need of the estimator to correctly

identify the wavelengths of the Tollmien-Schlichting waves – a requirement that

can be met with very closely spaced sensors. By comparing different POD coef-

ficients, this point can be further substantiated. For instance, in figure 2.14, the

first POD coefficient y1 (corresponding to a structure with large wavelengths) is

well represented by the model, while the tenth and twentieth POD coefficients (y10

and y20), associated with far shorter wavelengths, deviate more noticeably from

the DNS results. Moreover, the energy predicted by the LSE-model appears rather
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noisy compared to the DNS. This feature arises, again, from the poor represen-

tation of the shorter wavelengths of the flow, but it also stems from the inherent

lack of accuracy of first-order truncated stochastic models. This second source

of inaccuracies can be alleviated by considering higher-order terms, while adding

closer-spaced sensors will achieve a better representation of the poorly estimated

wavelengths. It is also important to notice that the linear stochastic estimator

does not contain a transient phase, as the dynamic observer does. Furthermore, it

needs fewer POD modes: the dynamic observer requires a large number of POD

modes to fulfill the observability condition discussed in §2.4.6, whereas the linear

stochastic estimator is not subjected to this constraint. It has been verified that

including more than 20 POD modes does not further improve the performance of

the LSE model.

Figure 2.15 represents snapshots of the streamwise disturbance velocity at a given

instant (t = 8000) for six different cases. The first two snapshots represent results

from the DNS and from a reconstruction by the identified dynamic observer based

on a single sensor located at xs = 200, respectively. The last four snapshots are

obtained via LSE using different numbers of sensors placed at different positions.

In the first of the LSE-cases (figure 2.15(c)), seventeen equispaced sensors, located

between x = 150 and x = 950, are considered. A satisfactory prediction of the

velocity field is obtained with this configuration, even though the structures far

upstream are not as well represented when compared to the dynamic observer. In

figures 2.15(d,e) ten sensors have been placed equidistantly, in one case, between

x = 500 and x = 950 and, in a second case, between x = 150 and x = 600.

When the ten sensors are concentrated in the downstream part of the domain,

upstream information is lost and vice versa for an upstream placement of the

sensors. Finally, figure 2.15(f) uses only two sensors (at x = 200 and x = 950):

this time, LSE fails to recover any relevant information about the flow structures.

These results underline the fact that linear stochastic estimation requires spatial

support of the input information (sensors) over the whole domain due to the strong

convection, while the dynamic observer only needs information from a localized

input signal. In summary, the above numerical experiments show that a dynamic

observer model is preferable over a linear stochastic estimator (LSE) model in

providing an accurate approximation of the flow field from localized and sparse

measurements.
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Figure 2.15: Snapshots of the streamwise disturbance velocity at t = 8000
obtained (a) from linearized direct numerical simulations (DNS), (b) recovered
from a single sensor via the identified dynamic observer, (c-f) recovered from
shear-stress sensors via a LSE model: (c) from seventeen sensors equispaced
between x = 150 to x = 950, (d) from ten sensors equispaced between x = 500
to x = 950, (e) from ten sensors sensors equispaced between x = 150 to x = 600

and (f) from two sensors placed at x = 150 and x = 950.

2.6 Application of optimal control

The successful recovery of full-state information from single wall shear-stress mea-

surements by a dynamic observer enables the design of a variety of effective control

schemes, which we demonstrate next. For this purpose, a control signal u is placed

at (xu, yu) = (250, 1) (downstream of the sensor s), which constitutes a feedfor-

ward control configuration. The governing equations (2.6) of the dynamic observer

are modified to reflect this addition. We have

Ye(n+ 1) = ÃsYe(n) + L̃s(n) + B̃uu(n). (2.18)

Following Hervé et al. (2012), the system is excited with a frequency-rich signal

u in order to identify the new term B̃u. The unknown system matrices Ãs, L̃ and

B̃u may then be determined in a similar way as described in § 2.4. From there,

the true linear system matrix Ãw which governs the perturbation dynamics ((2.14)

with added control term) can be extracted following (2.15). This matrix is then

used for the design of an LQR-optimal controller u(n) = KY(n), which minimizes

the cost functional
∑∞

n=0Y(n)∗QY(n) + ℓ2|u(n)|2, where Q is a positive definite

weight matrix and ℓ is a user-specified parameter to balance disturbance energy

and exerted control energy. Following standard procedure (see Burl (1999)), the
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Figure 2.16: Results of the LQR-control design based on the dynamic ob-
server. (a) Temporal evolution of the perturbation energy E(t) for the un-
controlled simulation (red) and the controlled simulation targeting the energy
(black), together with the control signal u(t) obtained in the case of the energy
objective (see supplementary movie 2). (b) Time signal of the friction sensor
cp(t) placed at (xcp , ycp) = (600, 0) for the uncontrolled (red) and controlled
simulation targeting the sensor signal cp (black), together with the sensor signal

s, which is the same in all simulations discussed in this figure.

control gain K can be obtained by solving a Riccati equation involving Ãw, B̃u, Q

and ℓ.

Two different control objectives Q have been considered: (i) the suppression of

the energy E(t) inside the velocity window (Q = I) and (ii) the control of the

signal variance recorded by the downstream friction-sensor cp (Q = C̃∗
pC̃p, with

C̃p as the measurement vector associated with cp and obtained with the least-

squares technique introduced in § 2.4.3 to obtain C̃s). We use a model that

comprises 50 modes computed on a shorter domain (Ωsnap = (200, 700)× (0, 40)).

In the controlled simulation, the measurement s is used to reconstruct the full

perturbation fieldYe based on the identified model, and the control law is obtained

by applying the control gain K to this state. Results are shown in figure 2.16

together with the control signal u(t) and the friction-sensor signal s. In both

cases, a substantial reduction in the respective objectives can be accomplished.

The energy E(t) has been reduced by nearly two orders of magnitude (a reduction

of 96.81% in the mean perturbation energy), while the rms-value of the friction

sensor signal has been lowered by about 88.01%.
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2.7 Summary and conclusions

A dynamic observer recovering full-state information from single wall shear-stress

measurements has been designed that relies on a POD basis (from measured snap-

shots) and system identification techniques. For noise-amplifier flows, it success-

fully reproduces the perturbation dynamics (velocity fields) throughout the full

sampling domain and furnishes information about the flow that can subsequently

be used by itself, for flow diagnostics or, in a second step, for LQR-control design.

Within the limits of linear perturbation dynamics, the design process for the dy-

namic observer extracts the system matrix from a sequence of snapshots; this

system matrix describes a globally stable flow configuration that is sustained by

selectively amplified random perturbations from the noise environment. The pro-

posed method thus successfully separates the intrinsic, stable perturbation dynam-

ics from the external noise excitation, which previously could only be quantified

in its entirety.

A wide variety of flow analyses is possible once the system matrix has been ex-

tracted. In the present case, we chose to design a closed-loop control scheme which,

owing to the known system matrix, could now be accomplished using full-state in-

formation control (LQR) algorithms. As a consequence, a significant reduction

of the perturbation energy or sensor signal rms-values could be achieved. Even

though system identification could have been used to determine a direct input-

to-output control law targeting the variance of a downstream wall-sensor (Hervé

et al., 2012), the retrieval of full-state information gives a far more physical and

structural view of dynamic processes.

The input data for the design procedure of the dynamic observer are readily avail-

able in experiments, and an application of a dynamic observer in a suitable ex-

periment is currently planned and will be explored in a future effort. However,

difficulties not accounted for in the present paper are expected to arise in an ex-

perimental situation: noise corrupting the PIV and friction measurements, the

presence of non-localized external forcing or the presence of non-linearities are

some examples. These challenges will be addressed in a forthcoming study.
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Chapter 3

Recovery of the inherent

dynamics of noise-driven

amplifier flows

This chapter is presented in the form of a self-contained article submitted to the

Journal of Fluid Mechanics. The authors of this paper are J. Guzmán Iñigo, D.

Sipp and P. J. Schmid. In this article, we use the dynamic observer introduced in

Chapter 2 to separate the intrinsic dynamics from the external noise in a noise-

driven amplifier flow. The global modes of the reduced-order model are then

computed and qualitatively compared to global modes of the full-order system

reported in the literature. The frequency response of the ROM has also been

computed.

Abstract

A reduced-order model which accurately predicts the dynamics of a two-dimensional

boundary layer along a flat plate is determined from time-dependent input-output

data. A system-identification approach is used to extract such a model from time-

synchronous velocity field snapshots and wall-shear stress measurements. The

spectrum and frequency response of the model is subsequently computed and qual-

itatively compared to results reported for the full-order system. This comparison

confirms that the main characteristics of the boundary-layer are well captured by

41
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the reduced-order model. This data-driven technique represents a system-theoretic

attempt of separating the globally stable, linear flow dynamics from the driving by

an external noise environment that ultimately maintains the flow in a statistically

stationary state.

3.1 Introduction

Unsteadiness in open flows can be classified into two main categories: (i) oscillator-

type flows, which are defined by a global instability resulting in self-sustained

oscillatory fluid behaviour (intrinsic dynamics); and (ii) noise amplifiers, which

are characterised by selectively amplifying environmental noise that is present in

the upstream flow (extrinsic dynamics). Dynamic mode decomposition (Rowley

et al., 2009; Schmid, 2010) provides a powerful post-processing tool for analysing

oscillator-type flows from a sequence of measurement snapshots. DMD assumes

that a linear mapping A links the n-th flow field u(n) to the subsequent flow

field u(n+ 1), that is u(n+ 1) = A u(n). This technique has been proven to suc-

cessfully recover the oscillatory modes and frequencies in flows with self-sustained

oscillations (Schmid et al., 2011; Schmid, 2011; Seena and Sung, 2011; Bagheri,

2013).

The recovery of the intrinsic dynamics of amplifier flows, on the other hand, is

a more challenging problem. Amplifier flows are globally stable, but selectively

amplify upstream disturbances by convective instabilities. Consequently, the sys-

tem dynamics are entirely driven by the environmental noise. The assumption

of a linear mapping A , made by DMD, is thus only partially satisfied, and the

driving term remains undetermined. For this reason, an alternative data-based

technique, which takes into account the noise-driven characteristics of the flow, is

needed for the case of amplifier flows. In this article, we propose to separate the

noise from the inherent dynamics using a localised sensor together with system

identification. Over the past few years, system identification has proven to be a

promising approach for the extraction of amplifier-flow models from input-output

data. Several applications to closed-loop control have been successfully carried

out in numerical simulations (Hervé et al., 2012; Juillet et al., 2013) and experi-

mental setups (Juillet et al., 2014; Gautier and Aider, 2014). While in previous

studies the models focus on the dynamics between one upstream and one down-

stream sensor, Guzmán Iñigo et al. (2014) extended the technique to capture the
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dynamics between upstream measurements and the entire perturbation field. In

this work, we employ this latter technique to extract the inherent dynamics of a

boundary layer. More specifically, the eigenvalues, associated eigenvectors and the

frequency response of the identified model will be extracted from data sequences

of the noise-driven flow and, the flow characteristics will be compared to results

reported previously in the literature (Ehrenstein and Gallaire, 2005).

The article is organised as follows. § 3.2 briefly describes the flow configuration

and the governing equations. § 3.3 presents the equations of the dynamic observer

and analyses the intrinsic dynamics of the system that can be extracted from

such a model. The particular methodology to extract the unknown state-space

matrices of the system from the data is described in § 3.4. A summary of results

and conclusions are given in § 3.5.

3.2 Flow configuration and governing equations

The flow configuration chosen to illustrate the proposed techniques and concepts

consists of a transitional two-dimensional boundary layer over a flat plate. This

flow constitutes a classical and generic example of a noise amplifier, i.e., a glob-

ally stable system which selectively amplifies upstream disturbances by convective

instabilities. In a low-amplitude noise environment, two-dimensional Tollmien-

Schlichting waves appear as a result of this convective instability mechanism.

We consider the spatio-temporal evolution of small-amplitude disturbances u about

a given base-flow U0, which we take as a zero-pressure gradient boundary layer.

The disturbances u are driven by an external forcing term, Fww(t), which rep-

resents and models an upstream disturbance source of unknown origin. For sim-

plicity, we assume that w(t) is a random process of zero mean and variance W,

while Fw describes a spatial two-dimensional Gaussian distribution centred at

(xw, yw) = (50, 0.95), of width (σx, σy) = (1, 0.1) and amplitude A = 0.1. The

spatio-temporal evolution of the entire flow field, Utot = U0 + u, is governed by

the incompressible Navier-Stokes equations, augmented by the forcing term. With

the base flow U0 as a solution of the unforced steady Navier-Stokes equations, the

evolution of the perturbations is given by the following equations

∂tu+U0 · ∇u+ u · ∇U0 = −∇p +Re−1
δ∗0
∆u+ Fww(t), ∇ · u = 0, (3.1)
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Figure 3.1: Sketch of the flow configuration. The computational domain Ω
is of size (0, 1000) × (0, 40), represented by the light gray box. The upstream
receptivity of the boundary layer to external perturbations is modelled by the
noise w which is placed at (xw, yw) = (50, 0.95). A sensor located at (xs, ys) =
(200, 0) will identify incoming perturbations, while a velocity window of extent
(200, 900) × (0, 40) (represented by the dark gray box) is used to quantify the

effect of the forcing on the velocity field.

where the nonlinear term u · ∇u has been omitted since only low-amplitude noise

W ≪ 1 will be considered. This assumption ensures linear perturbation dynamics,

as well as a linear response to the noise w. During the direct numerical simula-

tions (DNS), white noise is imposed via w(t) to mimic upstream excitations of

unknown source and distribution (mimicking conditions in physical experiments).

For the temporal evolution, we use a time step of dtdns = 0.1 (CFL = 0.379). The

flow variables are non-dimensionalised using the displacement thickness δ∗0 of the

boundary layer at the computational inlet (x0 = 0) and the free-stream velocity

U∞. Consequently, the Reynolds number is defined as Reδ∗0 = U∞δ∗0/ν. All sim-

ulations were performed at Reδ∗0 = 1000, which guarantees strong amplification

produced by the Tollmien-Schlichting instability.

The governing equations (3.1) are solved in a computational domain Ω of size

(0, 1000) × (0, 40), sketched in figure 3.1. A Blasius profile of unit displacement

thickness is prescribed at the left boundary, outflow conditions are employed at

the upper and right boundaries, and a no-slip condition is imposed at the wall.

We use the spectral-element code Nek5000 (see https://nek5000.mcs.anl.gov) to

perform the computations below.

Two different measurements are extracted from the simulations in order to com-

pute the reduced-order model. Special emphasis is directed towards the use of

data that may be readily available in an experiment, since the application of our

technique to an experimental setup is the final objective of the procedure described

in this article. We first consider a wall-friction sensor s (see figure 3.1), located at
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xs = 200 and of spatial streamwise extent ∆x = 5, which records the wall shear-

stress stot. The fluctuating component s may be obtained by subtracting the time-

averaged value of stot from the signal stot. For the case of low-amplitude forcing,

i.e., for linear perturbation dynamics, the time-averaged value also corresponds

to the base-flow value. In addition to the wall-friction sensor s, we also consider

velocity snapshots usnap, taken in a given domain Ωsnap of size (200, 900)× (0, 40),

(see figure 3.1). The fluctuating components of the velocity field may again be

obtained by subtracting the time-averaged snapshots from the total snapshot se-

quence. In what follows, we will consider time series of composite data comprising

skin-friction measurements and velocity snapshots. The reduced-order model will

be extracted from these data.

3.3 A dynamic observer to recover the dynamics

of noise-amplifier flows

3.3.1 A reduced-order dynamic observer

Considering Eq. (3.1), the evolution of small-amplitude perturbations u about a

given base flow for the case of a noise amplifier can be represented in the time-

discrete domain by u(n + 1) = A u(n) + Fw(n), where A denotes the linear

system operator, Fw(n) represents the driving by external perturbations and n

stands for the nth time-step. Noise-amplifier flows are characterised by selectively

amplifying external perturbations – despite being globally stable systems. This

feature arises from the non-normality of the operator A (Chomaz, 2005). As a

consequence, the system dynamics are entirely driven by the term Fw(n), which

generally represents a random external noise of unknown distribution that would

be difficult, or even impossible, to measure in experimental situations. An indirect

quantification method is thus necessary to separate the intrinsic dynamics from the

noise. In the present work, we propose to capture the influence of the forcing term

Fw(n) by means of a localised sensor, specifically wall-shear stress measurements

s(n). This approach implies the loss of the receptivity information by correlating

the effect of the noise at a single point with the effect on the entire domain.
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A dynamic observer which describes the dynamics of ue(n) based on the input

s(n), instead of Fw(n), is introduced according to

ue(n+ 1) = Asue(n) + L s(n). (3.2)

The matrices As and L are chosen to render the temporal evolution of ue as

close as possible to the temporal evolution of u. We use the approach intro-

duced by Guzmán Iñigo et al. (2014) which consists of the extraction of the

above matrices from time-evolving data using system-identification techniques.

However, the large number of degrees of freedom contained in the snapshots u

makes direct application of identification techniques excessively expensive. It is

thus mandatory to reduce the dimensionality of the measured data. To this end,

we use proper orthogonal decomposition (POD) modes Lumley (1967); Sirovich

(1987) to form a reduced basis. We process a sequence of m velocity snap-

shots extracted from the simulation in the presence of the upstream noise w. The

proper orthogonal decomposition then enables us to compute a ranked orthonor-

mal basis {Φi}i=1..m of flow fields, satisfying 〈Φi,Φj〉 = δij , i, j = 1, 2, ..., m,

which can be expressed most conveniently as a linear combination of these m

snapshots. Here, the scalar-product 〈·〉 denotes the energy-based inner product:

〈u1,u2〉 =
∫
Ω
(u1u2 + v1v2) dx dy. Any velocity field V from the domain Ω can

then be projected onto the first k POD-modes according to

yi = 〈Φi,V〉 , i = 1, 2, ..., k, (3.3)

to produce the approximate flow field V′ =
∑k

i=1Φiyi. Properties of the POD

guarantee that, for all k, the error ‖V − V′‖2 = 〈V −V′,V −V′〉 is minimal

for the set of m measured snapshots. For the following derivations, we define the

reduced output vector given by the k POD-coefficients by Y = [y1, y2, . . . , yk]
T and

denote the reduced POD basis by U = [Φ1,Φ2, . . . ,Φk]. The velocity snapshots

u are projected onto these modes to obtain the time-evolving POD coefficients

Y(n) which constitute the new output of the system. The equation governing the

dynamic observer (3.2) can be projected as well onto the POD basis, leading to

the equation

Ye(n+ 1) = ÃsYe(n) + L̃s(n), (3.4)

where Ãs;i,j = 〈Φi,AsΦj〉 and L̃i = 〈Φi,L 〉. In what follows, we will seek to

recover and analyse the dynamics of the system by computing these reduced-order
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Figure 3.2: Eigenvalue spectrum in the (ωr, ωi)-plane for two different, iden-
tified reduced-order models using 60 and 100 POD-modes.

matrices from the projected data.

Our choice of the discrete-time formulation emerges naturally when data-based

methods are considered to analyse experimental situations. However, some of the

concepts of dynamical-systems theory that are introduced in the subsequent sec-

tions, such as modal analysis or the frequency response, have a more direct physical

interpretation and definition when a continuous-time framework is employed. The

continuous formulation of the dynamic observer (equation (3.4)) reads

dYe/dt = Ã′
sYe(t) + L̃′s(t). (3.5)

The time coordinate t is related to the time-index n by t = n∆t, with ∆t repre-

senting the sampling time. A relation between the matrices of equation (3.4) and

equation (3.5) can be derived, resulting in L̃ =
∫ ∆t

0
exp[Ã′

s(∆t−τ)]L̃′ dτ associated

with the discrete driving term and Ãs = exp(Ã′
s∆t) denoting the evolution matrix

over a time interval ∆t; see Antoulas (2005) for a more comprehensive description

of the discrete-to-continuous time transformation.

3.3.2 Global modes

The unknown matrices of equation (3.4) have been determined using a system-

identification technique presented in more detail in §3.4. Equation (3.4) then

allows the computation of the temporal global spectrum of the system via the

common assumption of an exponential time-dependence Ye(t) = Ŷee
−iωt. We
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consequently obtain a generalised eigenvalue problem for (ω, Ŷe) ∈ C of the form

Ã′
sŶe = −iωŶe. (3.6)

The eigenvalues ω = ωr + iωi are displayed in figure 3.2. The horizontal and

vertical axes correspond, respectively, to the frequency ωr and the growth rate ωi.

The figure is symmetric with respect to ωr = 0, and eigenvalues in the half plane

ωi < 0 represent stable eigenmodes.

Two different models have been used with k = 60 and k = 100 POD-modes, re-

spectively. We observe that, for both models, all extracted eigenvalues are stable

and show similar growth rates. The robustness of the spectrum with respect to the

number of used POD-modes reveals that the extracted modal dynamics appears to

be intrinsically related to the flow. The associated eigenvectors can be recovered

using the relation V̂ = UŶe. Based on the spectrum of the model composed of

60 POD-modes, the modal structure for eigenvalues with ωr ≈ 0.036, ωr ≈ 0.05,

ωr ≈ 0.059 and ωr ≈ 0.08 are displayed in figure 3.3. Contours of the real part

of the streamwise velocity component V̂ are depicted, and the perturbations are

seen to be located near the wall, with the typical wavelength of the structures

decreasing with increasing frequency. The amplitudes of the modes grow in the

downstream direction for the three lowest frequencies, while the highest frequency

presents a maximum that can be linked to the branch-II location for that partic-

ular frequency. A qualitative comparison between these results and the spectrum

obtained by Ehrenstein and Gallaire (2005) or Alizard and Robinet (2007) from

the full linearised operator A reveals that the most significant characteristics are

well-captured by the identified reduced-order model. A quantitative comparison,

however, is a non-trivial task due to the difficulty of defining representative bound-

ary conditions. Indeed, Ehrenstein and Gallaire (2005) demonstrates that some

of the eigenvalues are highly sensitive to the boundary conditions as well as to

the length of the domain. Brandt et al. (2011) showed that this phenomenon is

observed when branch I and branch II-locations (these define the upstream and

downstream boundaries of the wave-maker region) of the considered global mode

are not both included in the computational domain (which is the case for all

the global modes presented here). This feature is commonly observed for noise-

amplifier flows and stems from the non-normality of the operator A (Sipp et al.,

2010).
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Figure 3.3: Contours of the real part of the eigenmodes associated with four
of the eigenvalues depicted in figure 3.2 corresponding to the model based on

k = 60 POD-modes.

3.3.3 Frequency response

A more robust alternative for studying the dynamics of noise amplifiers involves

the frequency response. Assuming that the system 3.4 is forced by a harmonic

input s(t) = eiωt, a response is sought in the form Ye(t) = Yee
iωt, which leads to

the expression

R(ω) = Ye(ω)/s(ω) =
(
iωI− Ã′

s

)−1

L̃′, (3.7)

where R(ω) is defined as the frequency response and links the harmonic forcing

to its associated response. The frequency response from the input s to the first

k = 60 POD-modes can also be computed from the full-order model. In this

case, we cannot rely on an explicit matrix expression for Rf(ω). Instead, we need

to apply an impulse in w to the system, compute the Fourier-transform of the

responses in s and Y and finally apply the relation Rf(ω) = Y(ω)/s(ω).

In figure 3.4(a) the 2-norm of the vector R(ω) at each ω (which represents the

square-root of the kinetic energy of the perturbation) is shown (using a blue-

solid line) for the full-order system and (using a red-dashed line) for the reduced-

order model composed of k = 60 POD-modes. We can report a close agreement

between both models over a wide (and interesting) range of frequencies. Keeping

in mind that the frequency response for the full-order system has been based on

an impulse on w, the former result implies that the bulk of the forcing noise is

transmitted through the boundary layer and can be detected by a wall sensor. The

response of the reduced-order model at a given frequency can be expressed in the
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Figure 3.4: (a) Transfer function from s to the first 60 POD-coefficients of
the full-order system (blue, solid line) and of an identified reduced-order model
of size k = 60 (red, dashed line). (b) Streamwise component of the real part
of the transfer function (frequency response) from s to the velocity field V for
two given frequencies, ω = 0.05 and ω = 0.06. The velocity field has been

reconstructed from the identified reduced-order model depicted in (a).

full-order state using, once more, the relation V(ω) = UYe(ω). The streamwise

component of the real part of the frequency response for ω ≈ 0.05 and ω ≈ 0.06

are depicted in figure 3.4(b). The response for both frequencies is located near

the wall, and decreasing wavelengths are observed as the frequency is increased.

These characteristics have also been observed in the eigenmodes computed in

section 3.3.2.

The two-dimensional temporal modes exhibit a growth in amplitude as they progress

downstream; this growth may be quantified by computing A(x) =

√∫ yPIV

0
|V|2dy,

where | · | denotes the complex modulus, and compared to the amplitude growth

due to a convective instability, as predicted by a local stability analysis with

u = û(y)ei(αx−ωt) and ω and α as the frequency and streamwise wavenumber of the

perturbation, respectively. The comparison between the streamwise growth of the

global mode and the locally parallel flow prediction has been undertaken for the

two frequencies depicted in figure 3.4. The corresponding A(x)/A(0) are compared

in figure 3.5. We notice a similar trend for the two approaches (local analyses and

identified global structures), which means that a identified reduced-order model

robustly captures the intrinsic dynamics of the flow. The slight disagreement be-

tween the curves can be attributed to the non-parallelism of the flow (Gaster,

1974).
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Figure 3.5: Normalised amplitude A(x)/A(0) as a function of the streamwise
distance x for the reconstructed velocity field at the two frequencies shown in
figure 3.4(b); comparison with a local stability analysis (solid and dotted lines).

3.4 Computation of system matrices using sys-

tem identification

An objective of this article is the recovery of the intrinsic dynamics of experimental

noise amplifiers using a reduced-order observer (3.4). To this end, the unknown

coefficients of the system, the matrices Ãs and L̃, need to be computed using

a technique which solely relies on input-output data. We propose the approach

introduced by (Guzmán Iñigo et al., 2014), which is based on system-identification

algorithms. For the sake of completeness, a brief review of the methodology is given

in this section.

3.4.1 System-identification techniques

System identification aims at determining the system matrices such that Ỹe(n) re-

covers as close as possibleY(n) from the time-series of input-output data {s(n),Y(n)}

with n = n0, . . . , nf using statistical methods. A wide range of system-identification

algorithms are available. For our case, subspace identification is a particularly

convenient choice since our formulation relies on a state-space formulation (see

eq. (3.4)). A detailed explanation of the algorithm is beyond the scope of this

work; a comprehensive description is given, e.g., in Qin (2006). More specifically,

the N4SID-algorithm (Van Overschee and De Moor, 1994) has been used to obtain

all models in this study.
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Figure 3.6: (a) First 100 POD eigenvalues λi of the correlation matrix. (b)
Contours of the streamwise velocity component of the first (Φ1) and tenth (Φ10)

POD-mode.

3.4.2 Direct numerical simulation for learning and testing

We obtain data for the system identification by performing a linearised direct

numerical simulation of the boundary layer in the presence of unknown noise.

We use a sampling interval ∆t = 5 for the velocity snapshots and the shear-stress

measurements s. A dataset of length Nsnap = 4000 (T = 20000) has been extracted

from the simulation. A POD-basis has been computed for each dataset using a

total of 1500 snapshots. Guzmán Iñigo et al. (2014) reported that this length is

sufficient to capture the slowest time scale (frequency) of the system by a factor

of 8. Figure 3.6(a) shows the corresponding eigenvalues of the correlation matrix

for the second case, confirming a steady decay over about three decades in the

first thirty modes (95% of the energy is contained in the first ten modes). Two

representative POD-modes, Φ1 and Φ10, are displayed in figure 3.6(b).

The datasets to be processed are composed of the input signal from the sensor s

and several outputs yi corresponding to the projection of the snapshots onto the

basis of POD-modes Φi (figure 3.6). Using the N4SID algorithm (Van Overschee

and De Moor, 1994), the model parameters Ãs and L̃, can then be determined

by fitting the model output to the true, measured output, as the model is forced

by the recorded input. The ability of the model to capture the dynamics of the

system is then assessed on a different part of the data. For this purpose, we use

the perturbation kinetic energy E = 〈usnap,usnap〉 ≈ Y∗Y, taken from the system

measurements and predicted by the model Ẽ(t). The quality of the model can be

quantified based on the fit between the temporal evolution of both magnitudes.
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Figure 3.7 shows a reduced-order model determined using k = 60 POD-modes and

a learning data set of length T = 10000. Figure 3.7(a) displays the measurement

from the shear-stress sensor s from which all the subsequent variables (figure 3.7(b-

d)) can be recovered using the identified model. The plotted outputs correspond

to the energy (b), and the first and tenth POD-coefficients (c-d). The gray box

represents the data falling within the interval t ∈ (2500, 12500] used to compute the

model to FITener = 96.87%. The model is then initialised to Ye = 0 at t = 12500

and, after a transient period, the performance is evaluated within the interval

t ∈ (14500, 20000], which yields a relative match of FITener = 97.26%.

3.5 Summary and conclusions

The extraction and analysis of the inherent dynamics of noise amplifiers from

experimental data represents an important challenge due to the difficulty of sep-

arating the intrinsic (globally stable) behaviour from the surrounding noise envi-

ronment that continuously drives and maintains the system.
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A dynamic observer which accurately recovers full-state information from a single

wall shear-stress measurement has been designed that relies on a POD-basis and

system identification techniques. Within the limitations of linear perturbation

dynamics, the design process for the dynamic observer extracts the system ma-

trix from a sequence of snapshots and shear-stress measurements. The spectrum

of the system matrix describes a globally stable flow configuration that is sus-

tained by selectively amplified random perturbations from the noise environment.

The proposed method thus successfully separates the intrinsic, stable perturba-

tion dynamics from the external noise excitation; previously only the combined

(statistically stationary) dynamics could be described.

A principal limitation, however, resides in the restriction to a linear dynamics.

An extension of the present approach to nonlinear identification is possible, but

its higher computational cost and difficult convergence characteristics make this

extension a nontrivial undertaking.
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Comparison between the Kalman

filter and a data-extracted

estimator

An estimator of a dynamical system is a system which approximates as best as

possible the state of the full system based solely on the limited information given

by a sensor. In this chapter, we compare the performance of two estimators:

(i) the data-based dynamic observer introduced in Chapter 2, and (ii) a Kalman

filter based on an exact model. The Kalman filter is a good benchmark since it

represents the optimal estimator of the state where optimal is defined in terms of

minimizing the mean square estimation error.

Generally (but not always (Semeraro et al., 2013b)), the computation of a Kalman

filter involves solving a Riccati equation. Nevertheless, the high number of degrees

of freedom in fluid mechanics applications O(106) makes the direct computation

of the Kalman filter a difficult task. To work around this issue, the order of the

system is first reduced and, subsequently, the Riccati equation is solved for the

reduced order model (ROM). A classical approach to obtain such a ROM is to

project the full-order Navier-Stokes equations onto a reduced basis which captures

the most important features of the system dynamics. Proper orthogonal decompo-

sition (POD) and balanced proper orthogonal decomposition (BPOD)-bases have

been widely used in flow control applications for this purpose (see (Noack et al.,

2003; Rowley et al., 2004; Rowley and Juttijudata, 2005) for POD and (Rowley,

2005; Bagheri et al., 2009; Barbagallo et al., 2009) for BPOD). ROMs resulting

55
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from a projection of the full-order system onto BPOD-modes guarantee stability

and present a priori bounds for the truncation error. However, the computation

of a ROM using BPOD is expensive since it requires the simulation of impulse

responses of the direct and adjoint linearised-Navier-Stokes equations. An alter-

native technique to compute the balanced ROM is the eigensystem realisation

algorithm (ERA) (Juang and Pappa, 1985; Ma et al., 2011). ERA only needs a

time-evolving simulation of an impulse applied to the full-order system; the re-

quirement of adjoint modes is avoided and, therefore, the resulting algorithm is

computationally cheaper. ERA is considered to be the state of the art in reduced-

order modelling and, consequently, we use this approach in the following.

We then design a Kalman filter based on this ROM. ERA yields ROMs with more

states than outputs; the Kalman filter has the same dimension as the model from

which it was obtained. In order to perform a fair comparison between the Kalman

filter and the estimators obtained by identification, the size of the internal states

of both estimators should be the same. However, in the previous chapters, the size

of the internal states and outputs of the identified models were forced to be equal

(which gave a strong physical meaning to all elements of the dynamic observer).

Therefore, in this chapter, we additionally report on the potential of considering

the size of the internal states of the identified system as a new parameter.

The two estimators are compared for two different settings: (i) the estimation

sensor is ideal (the measurement is noise-free), and (ii) the estimation sensor is

corrupted by white noise. This is motivated by the capabilities of the Kalman

filter to take white noise into account. The identified observer does not have this

ability and, thus, a stronger performance loss with increasing levels of noise is

expected.

The chapter is organized as follows. Section 4.1 briefly reviews some concepts of

systems theory. The two estimators are compared in Section 4.2 for ideal sensors

and in Section 4.3 for corrupted measurements. The influence of the number of

elements of the states on the identification process is studied in Section 4.4. A

summary of the results and conclusions are given in Section 4.5.



57 Chapter 4

4.1 Problem formulation

In this section, we introduce the concepts necessary to obtain a Kalman filter and

to compare it with the identified estimator proposed in Chapter 2. Section 4.1.2

briefly introduces ERA and the resulting structure of the ROM. Section 4.1.3

presents the equations which govern: (i) an estimator, and (ii) the error between

the real and estimated states. The frequency response, as well as the H2− and

H∞-norms of a system, are defined in Section 4.1.4 to assess the performance of

the estimators.

4.1.1 Configuration

In this chapter, we consider the same configuration as the one used in Chapters 2

and 3. The driving term w is still located at (xw, yw) = (50, 0.95),while an actuator

u is placed at (xu, yu) = (250, 1). The velocity measurement Ωsnap has an extension

of (200, 900)× (0, 40) and the estimation sensor s is located at (xs, ys) = (200, 0).

4.1.2 Reduced-order equations based on POD output pro-

jection

As in the previous chapters, we consider the vector given by the k POD-coefficients

Y = [y1, y2, ..., yk]
T as the output of the system. The linearised Navier-Stokes

equations can be reduced by a Galerkin projection onto the computed POD basis.

However, a better reduced-order model can be obtained by projecting the equations

onto a balanced basis and a subsequent truncation of the degrees of freedom.

In systems theory, a balanced realization implies that the degree of reachability

and the degree of observability of each state are the same (Moore, 1981). While

not optimal, a reduced-order model obtained by balanced truncation presents a

priori bounds for the error and preserves stability. Balanced truncation is not

computationally feasible, so we use an approximation known as the Eigensystem

Realisation Algorithm (ERA) (Juang and Pappa, 1985; Ma et al., 2011). To

compute the ROM, ERA only requires the Markov parameters of a system, which

we obtain by measuring the time-evolving outputs of the system (Y, s) when an

impulse is applied to each input individually (w, u) (see Belson et al. (2013)). The
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details of the algorithm, as well as the performance of this system (to represent

the large-scale dynamics), are given in appendix B.

The input-output relation of the full linearised Navier-Stokes equations can be

approximated by the following ROM

X(n+ 1) = AwX(n) + BU(n), (4.1a)

Y(n) = CyX(n), (4.1b)

s(n) = CsX(n), (4.1c)

where X ∈ RNx is the reduced state, and Aw, B, Cy and Cs are the reduced-

order matrices. The vector U contains the two inputs of the system U(n) =(
w(n) u(n)

)T
; the matrix B can be decomposed into B =

(
Bw Bu

)
.

4.1.3 Equations governing the estimator and the estima-

tion error

In this thesis, a wall measurement s is used by an estimator to obtain an approx-

imated output Ye which aims at being as close as possible to the true output Y.

Generally, a linear estimator of the ROM described by Equation 4.1 can be defined

by the following equations

Xe(n+ 1) = AsXe(n) +Buu(n) + Ls(n), (4.2a)

s(n) = CsX(n) + gs(n), (4.2b)

Ye = CyXe(n), (4.2c)

where the unknown term Bww(n) is replaced by Ls(n). In real life applications,

the estimation sensor s is corrupted by a measurement error. Here, we model

this bias by a noise gs(n) of standard deviation G. For convenience, we define

G/W as the ratio between the standard deviations G and W of, respectively, the

corrupting noise gs(n) and the driving term w(n). The corrupting noise gs(n) can

then be replaced by a new input g(n) = Wg(n)/G of standard deviation W. This

change of variables will prove to be very useful in comparing the transfer functions

(w → Ye) (or (w → Z)) and (s → Ye) (or (w → Z)) since the ratio G/W for

which the estimator was designed is automatically applied.
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The estimation error can be defined by Z = (Y − Ye); its evolution is then

described by a dynamical system of the form

(
X(n+ 1)

Xe(n+ 1)

)
=

(
Aw 0

LCs As

)(
X(n)

Xe(n)

)
+

(
Bw Bu 0

0 Bu L G/W

)



w(n)

u(n)

g(n)


 , (4.3a)

Z(n) =
(
Cy −Cy

)(X(n)

Xe(n)

)
. (4.3b)

This description of the error is a convenient choice to investigate the performance

of the estimator since the norms that will be defined in Section 4.1.4 can directly

be applied to Equation (4.3).

Two different methods to compute the matrices which govern the estimator dy-

namics are considered in this work: (i) an identification technique which extracts

the matrices from time-dependent measured data (see Chapter 2), and (ii) a

Kalman filter computed from the ROM (4.1). The first technique has been widely

discussed in the previous chapters of this thesis, while the second one has been

briefly covered in Chapter 2. A brief reminder is given in this section.

A Kalman filter is formally defined as an estimator which minimizes the mean

square estimation error E [Z(n) · Z(n)] , with E [·] the expected value E [f(n)] =

(1/Nsnap)
∑Nsnap

n=1 (f(n)) and Nsnap the number of time-steps. It can be proven that

the gain L which satisfies this requirement is obtained by solving a Riccati equation

(see Burl (1999)). The matrix As is then given by As = Aw − LCs and Bu =

Bu. For the identified estimator, the matrices As, L, Bu and Cs which appear in

Equation 4.3 correspond to the matrices defined in Chapter 2 Ãs, L̃, B̃u and C̃s,

respectively.

4.1.4 Frequency response and norms

In this section, we define the frequency response, theH2- andH∞-norms of a linear

system. These ideas are used in Sections 4.2 and 4.3 to assess the performance

of the estimators. The continuous-time formulation is the most convenient choice

for the definition of these concepts; however, ERA yields a discrete-time model

given by Equation (4.1). For the sake of clarity, we transform the discrete-time

equations to the equivalent ones given in the continuous-time framework. For
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instance, equation (4.1) reads

dX(t)/dt = A′
wX(t) + B′U(t), Y(t) = C′

yX(t), s(t) = C′
sX(t). (4.4)

when continuous-time is used. The continuous-discrete transformation of the ma-

trices is given in Chapters 2 and 3.

Assuming that the system is forced by a harmonic input U = U0 eiωt, a response

is sought in the form Y(t) = Y0(ω)e
iωt, which leads to the expression

R(ω) = C′
y (iωI− A′

w)
−1

B′, (4.5)

where R(ω) is defined as the frequency response and links the harmonic forcing to

its associated response Y0(ω) = R(ω)U0.

The gain of a system can be defined as the magnitude of the output divided by

the magnitude of the input at some given frequency: G = ‖Y0(ω)‖2/‖U0‖2 =

‖R(ω)U0‖2/‖U0‖2, with ‖ · ‖2 denoting the Euclidean norm. For the case con-

sidered here, with the POD-coefficients as the outputs of the system, the gain

G represents the perturbation energy at a given frequency. For MIMO systems,

a unique gain cannot be defined, but rather a range of gains depending on the

frequency ω and the input U0. The singular value decomposition of the frequency

response R(ω) determines the upper and lower bounds of the gain of a system

(forced by an input of unit magnitude), which correspond to the maximum σmax

and minimum σmin singular values, respectively (Burl, 1999). The number of sin-

gular values for an input-output system is given by min(Nin, Nout), with Nin the

number of inputs and Nout the number of outputs. For instance, a system with

one input and several outputs only has one singular value, while the same system

with two inputs has two.

The previous concepts can be used to define the H∞-norm of the system (4.5) as

follows

‖Y‖∞ = max
ω

[σmax (R(ω))] . (4.6)

Moreover, the trace of a matrix being the sum of the eigenvalues, the H2-norm of

the same system is defined by

‖Y‖2 =

√
1

2π

∫ ∞

−∞

tr [RH(ω)R(ω)] dω =

√√√√ 1

2π

∫ ∞

−∞

min(Nin, Nout)∑

i=1

(σ2
i ) dω, (4.7)
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where RH denotes the Hermitian operation (complex conjugate transpose) of R.

Note also that the square of the H2−norm of a system with several outputs and

two inputs is given by the sum of the squares of the norms of the two systems

which are obtained by considering each input separately. This can be proved by

writing the frequency response as R =
(
Rw Ru

)
. The square of the H2-norm of

the system is then given by

‖Y‖22 =
1

2π

∫ ∞

−∞

[
R2

w +R2
u

]
dω = ‖Yw‖

2
2 + ‖Yu‖

2
2. (4.8)

4.2 Performance with an ideal estimation sensor

In this section, we compare the performance of the identified estimator and the

performance of the Kalman filter when noise-free (g = 0) sensors are considered.

The estimation performance of both models will be assessed in Section 4.2.1, while,

in Section 4.2.2, we report on the control performance when the estimators are

used in a closed-loop control application.

4.2.1 Estimation

The identification of a system simultaneously forced by the inputs w and u repre-

sents a more challenging task for an identification algorithm than a system solely

forced by w. This feature is naturally explained by the necessity for the algorithm

to separate the effect of each input on the various outputs of the system. In order

to assess the bias involved when the system is excited by both inputs, we studied

the estimation (w 6= 0, u = 0) and control (w 6= 0, u 6= 0) cases separately.

Two POD-bases (one for each case) were extracted from datasets composed of

Nsnap = 1500 snapshots with a sampling time ∆ t = 5 units of time . In both cases,

the eigenvalues of the correlation matrix and the structure of the POD-modes are

similar to the ones represented in figures 2.5 and 3.6. In the control case, the

snapshots were taken with the noise w and the control signal u simultaneously

forcing the system. The control signal u was selected to be a random binary

signal (RBS) which excites the characteristic frequencies of the system. Two

reduced-order outputs Y, which comprise 60 and 70 components, were defined for
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Figure 4.1: Comparison of the frequency response of four different models used
to estimate the input-output relation from w to the first 60 POD-coefficients.
(a) Kalman filter obtained from a ROM composed of 120 states, (b) identified
estimator using 120 states, (c) 100 states and (d) 60 states. The black solid line
represents the exact ROM obtained using ERA (Y), while the red dashed and
blue dashed-dotted lines refer to the estimator (Ye) and the error (Z = Y−Ye),

respectively.

the estimation and control cases, respectively. Both bases capture 99.99% of the

perturbation energy of the system.

A ROM (Eq. 4.1) which approximates the transfer function from w and u to Y

was computed using ERA (see appendix B). The ROM was composed of Nx = 120

states and yields a maximum error of 0.1% with respect to the full-order system.

To compute this error, we applied an impulse to w and u individually in the full-

and reduced-order systems. Subsequently, we computed the difference between the

time-evolution of the outputs (the first 60 POD-coefficients) for the two impulses

and we Fourier-transformed these two errors to obtain the frequency response from

each input. The error relative to a given input is defined as the H∞−norm of the

error divided by the H∞−norm of the full-order system. For simplicity’s sake, we

took the ROM as the true (full-order) transfer function in equation (4.3).

We first consider the estimation case with u = 0. Figure 4.1 compares the perfor-

mance of four different estimators: (a) a Kalman filter computed in the large-gain

limit (G/W ≪ 1 meaning that the measurement is not corrupted) from the ROM

with 60 outputs and 120 states, and (b-d) data-identified estimators based on 60



63 Chapter 4

outputs and using (b) Nx = 120, (c) Nx = 100 and (d) Nx = 60 states. In each

subplot, the gain is presented as a function of frequency for the exact ROM (black

solid line), the estimator (red dashed line) and the error (blue dash-dotted line)

systems. The Kalman filter (a) shows a good agreement with respect to the ROM

for the entire range of frequencies. This error does not account for the inaccuracies

related to the model order reduction, but still remains several orders of magnitude

below the error of an identified model of the same size (b). The three identified

models (b-d) are extracted from the same dataset of length Nsnap = 2000 and

match a validation dataset of length Nsnap = 1100 up to (b) FITener = 99.23%, (c)

FITener = 99.06% and FITener = 96.06%, respectively. The differences for the two

largest models (b-c), in terms of fit and error, are insignificant. On the other hand,

the smallest model (d) presents an obvious loss of performance: the gain of the

error is increased by one order of magnitude. Despite the poorer performance, the

small model exhibits a smoother error across the entire range of frequencies, while

the two others show strong peaks of the error at certain frequencies. This fact may

stem from a slight over-fitting of the models, which is made possible due to the

higher number of degrees of freedom in the state, or, in other words, the excessive

addition of more states than necessary to capture the system dynamics. For the

three cases, the maximum error is located around the frequency responsible for

the maximum gain.

A similar comparison can be made for a system excited by w and u. In this case, a

ROM composed of 120 states approximates the transfer function (from u and w to

the reduced output Y containing 70 POD-coefficients) up to a relative error of 3 %.

We identified and tested two models using a learning and a validation dataset com-

posed of Nsnap = 2500 and Nsnap = 1100 snapshots, respectively. These datasets

lead to a fit for the validatation dataset of FITener = 98.78% and FITener = 90.18%

for models composed of 120 and 70 states, respectively. The obtained results are

compared to a Kalman filter in Figure 4.2. The black, green, red, and blue lines

represent the ROM, a Kalman filter, an identified model formed by 70 states, and

an identified model formed by 120 states, respectively. The frequency responses

depicted in this figure correspond to the input-output relation: (a) (w → Ye), (b)

(w → Z), (c) (u → Ye) and (d) (u → Z). The difference of performance between

the Kalman filter and the identified estimators is more noticeable in this case be-

cause the identification algorithm needs to separate the contribution of each input.

The results with two inputs are nonetheless similar to the estimation case (u = 0):
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Figure 4.2: Comparison of the singular values of the transfer function of
three different models used to estimate the input-output relation from w and
u individually to the first 70 POD-coefficients: (green) Kalman filter computed
from an exact ROM composed of 120 states, and identified estimators using
(red) 70 and (blue) 120 states, respectively. The black dashed line represents the
exact ROM based on 70 outputs and 120 states obtained using ERA. Frequency

response of (a) (w → Ye), (b) (w → Z), (c) (u → Ye), and (d) (u → Z).

0 0.05 0.1 0.15 0.2
10-4
10-3
10-2
10-1
100
101
102
103
104

0 0.05 0.1 0.15 0.2
10-4
10-3
10-2
10-1
100
101
102
103
104

(a) (b)

ω ω

σ
m

a
x
,σ

m
in

σ
m

a
x
,σ

m
in

Y Y

Ye Kalman

Ye 70-70

Ye 70-120

Z Kalman

Z 70-70

Z 70-120

Figure 4.3: (a) Comparison of the singular values of the transfer function of
three different models used to estimate the input-output relation from w and u
to the first 70 POD-coefficients: (green) Kalman filter computed from a ROM
composed of 120 states, and identified estimators using (red) 70 and (blue) 120
states, respectively. (b) Frequency response of the error system Z = (Y −Ye)

for the identified models depicted in (a).
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the maximum error is located around the frequency leading to the maximum gain,

and sharp error peaks are found at certain frequencies for the largest model.

The estimators with two inputs can also be studied by considering the two gains

of the two inputs considered simultaneously: σmax and σmin. The frequency re-

sponses of ((w, u) → Ye) and ((w, u) → Z) for the three proposed estimators are

presented in Figures 4.3(a) and 4.3(b), respectively. The estimation errors shown

in Figure 4.2 must be inside the envelope given by Figure 4.3(b).

4.2.2 Closed-loop control

In this section, a closed-loop control strategy is considered in order to weaken

or suppress the amplification of the perturbations. The approach taken in our

study is based on the linear quadratic regulator (LQR) control framework al-

ready introduced in Chapter 2 (see Burl (1999)). The LQR proposes a con-

trol law of the form u(n) = −KX, which minimizes the cost functional J =

E [X(n)QX(n) + l2|u(n)|2] , where Q is a positive definite weight matrix and l is a

user-specified parameter to balance disturbance energy and exerted control energy.

Following a standard procedure, the control gain K can be obtained by solving a

Riccati equation involving Aw, Bu, Q and l.

The state X is required in order to compute the control law u; however, the

estimated stateXe may be used in its place since the former remains unknown. The

combination of an LQR controller together with a Kalman filter is called Linear

Quadratic Gaussian control (LQG), and the system which takes the measurement

s and computes the control law u is called a compensator. Figure 4.4 shows the

schematic representation of the control set-up.

The performance assessment of the compensator will follow the frequency-based

framework outlined in section 4.2.1. Considering the state-space system (4.1)

driven by an excitation w, the response of the compensated system reads

(
X(n+ 1)

Xe(n+ 1)

)
=

(
Aw −BuK

LCs As −BuK

)(
X(n)

Xe(n)

)
+

(
Bw

0

)
w(n), (4.9a)

Y(n) =
(
Cy 0

)(X(n)

Xe(n)

)
. (4.9b)
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Figure 4.4: Sketch of the control set-up.

Since the estimation sensors were considered to be ideal (g = 0) in this section,

the controllers are computed in the large gain limit (G/W ≪ 1). Figure 4.5(a)

compares the frequency response of the uncontrolled case (black solid line) to two

controlled systems using: (i) an LQR controller (red dashed), and (ii) an LQG

compensator (green dash-dotted). The control objective in all cases was chosen to

be the perturbation energy E = Y ·Y, which leads to Q = CT
y Cy. The maximum

gain of the system is reduced by nearly two orders of magnitude for either control

strategies. It turns out that this gain is very close to the minimum open-loop

gain of the system forced simultaneously by w and u (blue solid line). The good

agreement between the LQR-controlled and the LQG-compensated systems indi-

cates that the location of the sensor is optimal. This fact is not surprising: feed-

forward configurations are proven optimal for strongly convective noise-amplifier

flows (Juillet et al., 2013).

A similar comparison can be performed with the data-based dynamic observers.

Yet, in this case, to compute K, we solve the Riccati equation involving the iden-

tified matrix Ãs instead of Aw
1. The matrix Ãs corresponds to the dynamics of

the estimator: we therefore compute an LQR-controller for a system with input

s rather than w. In strongly convective flows, minimizing the transfer function

w → Y is indeed nearly equivalent to minimizing s → Y since the vast majority

of perturbations generated by w can be detected by s.

Figure 4.5(b) compares the compensated systems obtained by two controllers based

on the two identified models depicted in Figure 4.3. The reduction of the energy

1In chapter 2, the matrix As was converted to Aw using Ãw = Ãs + L̃C̃s. Here, we preferred
to use Ãs since this approach is not robust because the identification algorithm does not exactly
recover Ãs = Ãw − L̃C̃s.
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Figure 4.5: Frequency response of the closed-loop system. (a) The uncon-
trolled ERA model (black solid line) is compared to the LQR-based (red dashed
line) and LQG-based (green dashed-dotted line) controlled systems. The blue
solid line represents the smallest singular value of the transfer function from
the inputs (u and w) to the first 70 POD-coefficients. (b) The uncontrolled
ERA model (black solid line) is compared to two compensated systems using
two controllers computed from identified models composed of 70 (red dashed

line) and 120 states (blue solid line), respectively.

obtained with the largest model (Nx = 120) is very close to the one obtained with

LQG control, with poorer performances for the range of frequencies where the

estimation is worse. The smallest model shows a similar trend, though with an

overall reduction in performance.

Finally, the performance of the three compensators considered above is assessed

using a DNS simulation of the full-order system. Figure 4.6 presents the pertur-

bation energy of the uncontrolled case (black line), the LQG (red line), and the

controllers based on the identified models composed of 70 (green line) and 120 (blue

line) states. An effective reduction of the mean perturbation energy of about two

orders of magnitude is observed for the three cases. The ROM+LQG-compensator

shows the largest reduction in energy, closely followed by the identified model com-

posed of 120 states+LQR; and, finally, the one composed of 70 states+LQR. The

differences in the control signal u are nearly unnoticeable.
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Figure 4.6: Results of the closed-loop simulations based on three controllers
computed from three different models: (red line) LQG-based control obtained
from the ERA model, and (green line) and (blue line) LQR-based controllers
computed from identified models composed of 70 and 120 states, respectively.
(a) Temporal evolution of the perturbation energy E(t) for the uncontrolled
simulation (black) and the three controlled simulations. (b) Sensor signal s(t),
which is the same in all simulations discussed in this figure. (c) Control signal

u(t) obtained for the three controllers.

4.3 Performance with noise corrupting the esti-

mation sensor

In this section, we study the performance of the estimator when the sensor s is cor-

rupted by white noise g(n). This noise is defined by the parameter G/S(%), which

represents the standard deviation of the corrupting noise G over the standard de-

viation of the (noise-free) measurement S. This situation is specially difficult to

deal with in the case of noise amplifiers since these flows are fully governed by

an external driving term. The estimation sensor, which aims at capturing the

influence of the external forcing, has no mechanism to separate the corrupting

noise from the physical perturbations due to the wide band of frequencies which

characterises these flows. Moreover, since the system amplifies the perturbations,

the estimator will amplify the corrupting noise.

Figure 4.7 depicts the frequency response of the estimation error versus the level
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Figure 4.7: Performance of different estimators versus frequency using sen-
sors corrupted by different levels of noise G/S(%). Frequency response of the
estimation error Z = (Y−Ye) for the Kalman filter: (a) w → Z and (c) g → Z.
Frequency response of the estimation error for an identified model based on 60

outputs and 60 states: (b) w → Z and (d) g → Z .

of noise for two estimators: a Kalman filter obtained from a ROM based on 60

states and 120 outputs (Figure 4.7(a) and (c)), and an identified model of size

k = Nx = 60 (extracted using corrupted measurements)(Figure 4.7(b) and (d)).

The corrupting noise affects the performance of the estimators via two mechanisms:

(i) the error introduced directly by g (the transfer function g → Z), and (ii) the

loss of performance indirectly caused by g (the transfer function w → Z). The first

term is proportional to the gain of the estimator L. Consequently, a good estimator

should reduce it to improve the performance, which may yield simultaneously an

increase of the error of w → Z. The Kalman filter balances the two contributions

and delivers the optimal estimator. For the identified model, the error induced

by the second term is explained by a reduction of the quality of the identification

due to noise. Figure 4.7 shows that, in the large-gain limit (low level of noise), the

Kalman filter is far superior to the identified models: the error is several orders of

magnitude lower. In contrast, when the sensor is strongly corrupted by noise, the

performance of the Kalman filter dramatically decreases and recovers the results

obtained for the identified model.
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Figure 4.8: Comparison between the normalized performance of the Kalman
filter and the identified models for different levels of noise corrupting the esti-
mation sensor s. The identified models comprise 60 outputs and 60 states (red

line), and 60 outputs and 120 states (blue line).

An instructive way of assessing the performance of an estimator across all frequen-

cies is to directly compute the H2-norm (see equation (4.7)) of the error system

normalized by the H2-norm of the ROM. When this quantity is close to unity, the

estimation process has failed with a 100% estimation error; the smaller the value,

the better performing the estimator. This quantity is displayed in figure 4.8 versus

the noise parameter G/S(%) for the Kalman filter, and for two identified estima-

tors composed of 60 and 120 states, respectively. For noise-to-signal ratios above

100%, the sensor noise prohibits a correct estimation, resulting in an estimation

error close to 100%. As the noise-to-signal ratio diminishes, the performance of

the estimators progressively increases until it reaches the large-gain limit. The

black curve corresponds to the performance of the Kalman filter which represents

the optimal estimation and, consequently, can be used to assess the capabilities

of the data-extracted models. In the large-gain limit (clean sensors, G/S ≪ 1),

both identified models are far from the optimal error (3 10−4); the largest model

(Nx = 120) performs better than the smaller one (Nx = 60). However, the ten-

dency is inverted when the level of noise is increased: the additional degrees of

freedom included in the model help to obtain better results in a deterministic

situation, but when the sensor is corrupted by noise the same degrees of freedom

compromise the algorithm due to overlearning.
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4.4 The number of elements of the state as a

parameter

In Chapter 2, the number of elements of the state was selected to match the

number of outputs. This constraint gave a strong physical meaning to the state

of the identified system since a link to a ROM, obtained by a Galerkin projection

of the governing equations onto the POD basis, can be established. In that case,

a requirement for the minimum number of POD-modes was given based on the

observability of the reduced basis at the sensor location: the POD-coefficients must

be able to approximate the signal of the sensor s by s(n) ≈ C̃sY(n). Physically,

this condition implies that the basis must represent the flow at the position of the

sensor. In this chapter, the number of elements of the state and the output may

differ. The state Xe can no longer be interpreted as a projection of the velocity

field onto the POD-modes, but onto an unknown basis, and the requirement for the

minimum size of the system must be modified. The criterion is straightforwardly

extended by considering that the unknown basis (onto which the velocity field is

projected) must again be observable at the sensor location. This requirement is

given by s(n) = C̃yXe, where the true state Y has been replaced by the estimated

state Xe. However, this condition may only be verified a posteriori (when the

estimator is available), which makes it impractical. In this section, we provide

some empirical guidelines for a correct choice of the size of the system.

Figure 4.9(a) shows the FIT for the validation dataset versus the size of the state

for three groups of identified models: (solid) the number of POD modes k varies

with the number of states k = Nx, (dashed) and (dotted) the number of POD-

modes k is fixed to 20 and 30, respectively. The measurement s(n) can be recon-

structed from the state of the system by the relation C̃sXe, where C̃s was obtained

using the least-squares technique introduced in Chapter 2. The error between

the true measurement s and approximated measurement C̃sXe is depicted in Fig-

ure 4.9(b) for the three cases. The FIT obtained for the three groups of models

drastically grows when the error between the true and the estimated measurement

s falls below about 20%, which confirms the need for observability of the sensor.

The error between the signal s and its reconstruction from the POD-modes C̃sY is

also represented in Figure 4.9(b) by the + symbols. For the first model (for which

k = Nx), the latter error should be close to the former, because the state and the



Kalman filter vs. identification 72

POD-coefficients are equivalent. The disagreements, however, can be explained

by the error induced by the inaccuracies of the identification.

Two different trends are observed for the three cases. Cases one and three present

a similar behaviour: the performance is very poor until a critical value of 40 states

is reached and the FIT suddenly increases up to values close to 100 %.. The

performance of case three is slightly superior to the first one; this can be explained

by the extra degrees of freedom for the same number of outputs. On the other

hand, the FIT of the second group grows very slowly, reaching 90 % for about

60 states; it requires 20 more states than cases one and three. The difference of

behaviour is explained by the evolution of the error between the true measurement

and the measurement reconstructed from the projection of the velocity field onto

the POD basis C̃sY (figure 4.9(b), + symbols). For the third case, the output

of the models is composed of 30 POD-coefficients, which yields an error of 40 %,

while in the second case the models are composed of 20 POD-coefficients, with an

error close to 100 %. In case three, the identification process converges to a basis

which correctly extracts the signal from the sensor; this is not true for the second

case and, hence, the identification process will have to construct a non-trivial

correlation between a limited number of states and the measurement.

A rule of thumb for the choice of the size of the system is to (i) determine the

number of POD-coefficients required to approximately capture the behaviour of

the measurement (the same criterion as in Chapter 2), and to (ii) select a slightly

larger basis to obtain better accuracy. We want to stress that this criterion is only

valid for the case of ideal estimation sensors. As shown in section 4.3, the optimal

choice when the sensor is corrupted by noise is a model with as many states as

outputs (adding more degrees of freedom to the state may lead to overlearning).

4.5 Summary of results and conclusions

The performance of the identified dynamic observers has been assessed with respect

to the Kalman filter, which is optimal in the sense of minimizing the H2−norm of

the estimation error. This has been achieved by considering the system coupling

the exact dynamics of the system (ROM) and the different estimators. In order to

make the comparison as fair as possible, the number of elements in the state vector

has been included as a new parameter in the subspace identification algorithm.
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Figure 4.9: Influence of the number of internal states Nx on the quality of
the identification. (a) Mean of the validation fit computed from samples of ten
models obtained from different learning datasets. (b) Relative error between
the signal s(t) obtained by DNS and the signal reconstructed from the state of
the system C̃sX̃e(t) for different numbers of states Nx. Three cases have been
investigated: (solid) the number of POD modes k varies with the number of
states k = Nx; and (dashed-line), and (dotted-line) the number of POD modes
k is set to 20, and 30, respectively. The + symbols represent the relative error
between s(t) reconstructed from the exact POD coefficients Y. ‖·‖ indicates

the 2-norm on the vertical axis.

We have compared the estimators for two scenarios: (i) when the estimation sensor

is ideal and (ii) when it is corrupted by noise. In the first case, the Kalman filter

is far superior to the identified models across the entire range of frequencies and

the error shows a flat spectrum. The identified models, on the other hand, present

an error spectrum concentrated near the frequencies linked to the highest gains of

the system. A better performance can be achieved by including extra states in the

identification process; however, the extra degrees of freedom may lead to some over-

fitting by the algorithm. For the case (i), the closed-loop control performance has

also been quantified. An optimal controller has been computed from the ROM and

coupled to the Kalman filter to reduce the perturbation energy of the system. The

results show that this strategy leads to the minimum possible gain of the system.

The controllers obtained using system identification also lead to controlled systems

that are very close to the minimum possible gain, with the poorest performances

located in the range of frequencies with the highest estimation error.

When the estimation sensor is corrupted, the performance of the Kalman filter

quickly deteriorates and tends towards the performance of the identified estima-

tors. These identified estimators exhibit a surprising resilience to noise. Finally,

we have shown that an identified model composed of as many outputs as states is
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more robust to noise than a model with a state vector larger than the number of

outputs.
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On the role of the estimation

sensor on the performance of the

identification

In this thesis, we propose a data-based technique to obtain reduced-order models

(ROMs) for noise amplifier flows which predict the global dynamics of the flow

from localized measurements. Such models have several applications, e.g., the

estimation and control of the perturbation field, addressed in Chapter 2; or the

recovery of the inherent dynamics of the flow (Chapter 3). For these applications,

the proposed approach performs better than existing data-based techniques. De-

spite these encouraging results, the implementation of the dynamic observer in an

experimental setting remains a challenging problem due to three main limitations

inherent in experiments: three-dimensionality, non-linearities and non-ideal mea-

surements. The first two constraints are not investigated in this thesis and are left

for future work; however, we will investigate the influence of the quality of the two

measurements involved in the dynamic observer, i.e., the estimation sensor and

the velocity field measurement.

In this chapter, we address the influence of the estimation sensor. Specifically,

we report on the effect of noise corrupting the measurement on the quality of the

identification. For simplicity, the measurement error is generally modelled by white

noise. However, such errors usually arise from a combination of different physical

processes (e.g. electric noise from the circuitry, or external electromagnetic fields)

which yield a coloured spectrum. Here, we investigate white (Section 5.2.1) and

75
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coloured (Section 5.2.2) noise spectra. White noise was already introduced in

Chapter 4 to compare the performances of the identified dynamic observer and

a Kalman filter. In this chapter, we investigated the effect of the identification

parameters (number of POD-modes and length of the learning dataset) on the

performance of the estimation when white noise corrupts the sensor.

Another important consideration when setting up an experiment is the spatial

distribution of the various sensors. In this chapter, we determine the optimal

position of the sensor relative to the velocity window. The results of this study

may be of help in future experimental applications of data-extracted dynamic

observers.

The chapter is organized as follows. Section 5.1 addresses the study of the relative

position between the estimation sensor and the velocity measurements; Section 5.2

investigates the effect of noise corrupting the measurement s; and a summary of

results and conclusions is given in Section 5.3.

5.1 Influence of the position of the sensor on the

estimation performance

In this section, we report on the effect of the position of the estimation sensor

on the performance of the dynamic observer. We demonstrate that the absolute

position of the sensor itself is not the governing parameter (at least for boundary

layers), but its relative position with respect to the velocity window. Two different

scenarios are studied based on the relative location of the estimation sensor and the

velocity window: the estimation sensor is placed inside (Section 5.1.1) or upstream

(Section 5.1.2) of the velocity window.

Here, we consider the boundary layer already investigated in previous chapters.

The driving term w, as well as the actuator u, remain unchanged; the position

of the different measurements is modified. Specifically, we use a shorter velocity

window Ωsnap characterised by (500, 900)× (0, 40) and we study different positions

for the estimation sensor xs. We define a new parameter δx = (xs − xPIV
0 ), where

xPIV
0 corresponds to the location of the upstream edge of the velocity window

(here xPIV
0 = 500). If δx is positive, the sensor is inside the velocity window; if δx

is negative, the sensor is upstream of it.
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5.1.1 Sensor placed inside the velocity window

We determined three different identified estimators using 20 and 40, 40 and 40,

and 60 and 60 outputs and states, respectively. Figure 5.1 presents the mean

and standard deviation of the validation fit obtained from ten learning datasets

versus the relative position δx for the three models. The optimal placement for

the sensor is found at δx = 0, which corresponds to a sensor placed at the left edge

of the velocity window. At this position, the system yields a fit of nearly 100%

which gradually deteriorates as the sensor moves inside the velocity window. The

performances of the three models yield identical results; hence, it does not depend

on the size of the identified systems, but solely on the relative position of the

elements. Further insight was gained by computing the relative error between the

velocity field obtained from the DNS and the one recovered from a sensor placed

at xs = 700(δx = 200) via the model. The relative error, depicted in Figure 5.2(c)

and (d), shows that the model accurately predicts the velocity field downstream of

the estimation sensor, while it fails to recover any valuable information upstream

of it. This conclusion can be extended to the other positions of s.

The previous analysis was also applied to a configuration with a moving velocity

window and a fixed sensor s. For the sake of brevity, the results are not included

in this thesis, but the findings are equivalent. Therefore, we can conclude that the

dynamic observer can only effectively estimate the velocity information located

downstream of the sensor.

For a Kalman filter, on the other hand, the previous conclusions apply only par-

tially. In the interest of a fair comparison, we considered an identified estimator

of the same dimension as the Kalman filter. The Kalman filter was obtained by

solving a Riccati equation (in the large gain-limit G/W ≪ 1) based on a ROM

composed of 20 outputs and 100 states. Such a ROM is computed from an impulse

in w of the full-order system using ERA. Figure 5.3 shows a comparison between

the performance of this Kalman filter and two identified estimators characterized

by 20 outputs/100 states and 20 outputs/40 states. We can see that all models

exhibit a fit close to 100% when δx = 0, which decreases as the sensor is moved

downstream. Yet, for interior positions (δx > 0), we observe that the Kalman

filter is far superior to the identified models. This higher performance can be ex-

plained again by computing the relative error between the velocity field obtained

from the DNS and the one recovered from a sensor placed at xs = 700 via the
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Figure 5.1: Influence of the relative position of the sensor with repect to the
velocity window δx = (xs − xPIV

0 ) on the quality of the identification. (a-b)
Mean and standard deviation of the validation fit computed from samples of ten
models obtained from different learning datasets. The velocity window position
is fixed at xPIV

0 = 500; the sensor position varies between xs = 350 to xs = 800.
(a) The identified models are composed of (solid) 40 outputs and 40 states, and
(dashed) 60 outputs and 60 states. (b) The identified models are composed of

(solid) 40 outputs and 40 states, and (dashed) 20 outputs and 40 states.

Figure 5.2: Snapshot of the streamwise disturbance velocity component ob-
tained (a) from the DNS and (b) recovered from s(t) via an identified model
composed of 40 outputs and 40 states for t = 20000. The model computes the
input-output relation between a sensor placed at xs = 700 and a velocity win-
dow extending from xPIV

0 = 500 to xPIV
f = 900. The blue box represents the

position of the sensor. (c) Relative error between the two velocity snapshots.
(d) Temporal mean of the relative error from t = 20000 to t = 25000.
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Figure 5.3: Influence of the relative position of the sensor with respect to
the velocity window δx = (xs − xPIV

0 ) on the quality of the estimation using a
Kalman filter. The configuration is the same as in Figure 5.1. The black solid
line stands for the validation fit obtained for the Kalman filter. Comparison with
identificatied estimators: mean of the validation fit computed from samples of
ten models obtained from different learning datasets using (blue dashed) 20

outputs and 100 states, and (red dotted) 20 outputs and 40 states.

Kalman filter. Figure 5.4 depicts this error (c) at the time instant t = 20000 and

(d) time-averaged over the interval t ∈ (20000 25000] . For this case, the velocity

field is also correctly estimated in the region that is situated closely upstream of

the sensor, which explains the better fit and performance of the Kalman filter.

Although this result may seem surprising (the estimator does not receive any in-

formation about the perturbation before it reaches the sensor), the Kalman filter

is capable, to some extent, of predicting future states of the system. This ability

can be explained by the a priori knowledge of statistical information of the driv-

ing term that is required for its computation: the variance of the noises w and g.

Here, this forecasting skill translates into upstream visibility.

The mean fit of the identified model depicted in Figure 5.3 presents an unexpected

feature when δx = 100 : the performance is lower than for δx = 150. Again, we

believe that this fact arises from the over-fitting of the model. This hypothesis is

corroborated by the results in Figure 5.3, obtained for an identified model that

is formed by the same number of outputs but only by 40 states; the results are

overall similar, but smoother.

Going back to Figure 5.1, we see that, for negative δx, the identification fails.

This situation corresponds to the estimation sensor placed upstream of the velocity

window. In this case, a time-delay exists between the measurement s and all states
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Figure 5.4: Snapshot of the streamwise disturbance velocity component ob-
tained (a) from the DNS and (b) recovered from s(t) via a Kalman filter com-
posed of 20 outputs and 100 states for t = 20000 with the same configuration
as in Figure 5.2. (c) Relative error between the two velocity snapshots. (d)

Temporal mean of the relative error from t = 20000 to t = 25000.

of the system, which explains the failure. Adding further elements to the state of

the system may solve the problem: the supplementary degrees of freedom may be

used to account for the delay. Figure 5.3 illustrates this statement: at δx = −150,

an identified model based on 40 states fails to recover the system dynamics, while

a model which includes 60 additional states (Nx = 100) successfully captures it.

However, this solution requires the addition of many unnecessary states. A more

natural way of taking the time-delay into account is to explicitly include it into the

structure of the identified model. This strategy is investigated in the next section.

5.1.2 Sensor placed upstream of the velocity window

By placing the estimation sensor at x = 200 (δx = −300), as previously stated,

the instantaneous measured velocity field exhibits a time-delay with respect to

the estimation measure. For ROMs composed of as many states as outputs, the

state of the model is a projection of the velocity field onto the POD-modes and,

consequently, it is delayed with respect to the measurement s. Due to this fact, the

identification fails to recover a valid model. To solve this problem, we explicitly

include a time-delay nd in the state-space formulation of the system

Ỹe(n+ 1) = ÃsỸe(n) + L̃s(n− nd). (5.1)

Figure 5.5 shows the performance of the identified models versus the time-delay.

An optimum is found at nd ≈ 140 (or td ≈ 700 in time units); the performance
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quadratically decays for greater delays, and the estimation fails for smaller ones.

These results are reminiscent of the results obtained for a moving estimation sensor

(Figure 5.1), suggesting that the time delay can be interpreted as a virtual change

of position of the sensor.

More insight can be gained by applying an impulse in w and observing the evo-

lution of a wave-packet. Figure 5.6 depicts the time-evolving measurement of the

impulse response recorded by two sensors: (a) the sensor used to identify the

models, xs = 200; and (b) a sensor located at the left edge of the velocity win-

dow, x = 500. The wave-packet disperses while evolving downstream which makes

it difficult to accurately determine the time that it takes to propagate from one

sensor to the next. To work around this issue, we defined the energy-weighted x

centroid xc =
∫
Ω
(u2 xdv)/

∫
Ω
(u2 dv). The instant at which the centroid reaches

the sensors is represented by the vertical black lines in figure 5.6, and corresponds

to t = 352 and t = 1100 for xs = 200 and x = 500, respectively. The time it takes

the centroid to go from one sensor to the other is ∆t = 748, which is in close agree-

ment with the time-delay leading to the best performance in Figure 5.5: td = 700.

We thus conclude that, for a configuration where the estimation sensor is located

far upstream of the velocity window, the state-space model requires a time-delay

equal to the travelling time of a wave-packet from the estimation sensor to the

upstream edge of the velocity window, which corresponds to the optimal position

to place a sensor with zero delay.

In experimental situations, the external driving term w is unknown and, generally,

is continuously forcing the flow. It is thus not possible to apply an impulse to the

system and, consequently, it is difficult to determine the convective velocity of a

wave-packet using the previous methodology. An alternative approach is to use the

cross-correlation of two signals: the measurements from the estimation sensor and

from a sensor placed at the left edge of the velocity window. The cross-correlation

of two signals x(n) and y(n) of length N is defined by

Rxy(m) =
N−m∑

1

x(n+m)y(n). (5.2)

The maximum (or minimum, in case the functions are negatively correlated) of

the cross-correlation function indicates the point in time where the signals are

optimally aligned, i.e., the time delay between them. Figure 5.7 represents the

cross-correlation function of the two sensors previously considered. The maximum
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Figure 5.6: Measured impulse response at two sensor locations: (a) xs = 200
and (b) x = 500. The solid black vertical lines indicate the times when the

energy-based x−centroid of the wavepacket xc reaches the sensor.
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Figure 5.7: Cross-correlation between the signals measured from two sensors
placed at xs = 200 and x = 500, respectively. The solid black vertical line
indicates the maximum value of the cross-correlation function and corresponds

to a delay of nd = 147 (t = 735).

of the absolute value of the function corresponds to nd = 147 (td = 735 in time

units) which is close to the time determined using the impulse response of the

full-order system td = 748.

We now turn to the minimum number of POD-modes required to obtain a valid

model when a time-delay is introduced in the state-space formulation of the identi-

fied system. Figure 5.8(a) shows the mean and standard-deviation of the validation

fit for ten models versus the number of POD-modes; the selected time-delay is the

optimal one: nd = 140. For models with only few modes, the identification fails

to recover any valid information. Beyond a threshold number of POD-modes, the

model successfully recovers the flow dynamics. Here, this threshold value corre-

sponds to 20 POD-modes. To interpret this result, the criterion given in previous

chapters, which requires the observability of the sensor by the basis, must be

adapted. We propose that the time-delayed signal of the sensor must be observ-

able by the basis: s(n− nd) must be well represented by C̃sY(n). The matrix C̃s

can be obtained by solving the following overdetermined linear system

(Y(1 + nd), · · · ,Y(Nsnap + nd))
T C̃T = (s(1), · · · , s(Nsnap))

T . (5.3)

Figure 5.8(b) shows the relative error between the time-delayed measurement of

the estimation sensor s(n−nd) and the reconstruction C̃sY(n). The relative error

never falls below 60 %. This stems from the fact that the boundary layer filters

certain frequencies as the perturbation passes from the estimation sensor to the

velocity window and, consequently, those filtered frequencies (present in s) cannot

be correlated to the velocity snapshots further downstream. On the other hand,

the error for an estimation sensor placed at xs = 500 with a zero-time-delay

(nd = 0) drops below 10% when more than 20 POD-modes are used. This result
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Figure 5.8: (a) Mean and standard deviation of the validation fit computed
from samples of ten models obtained from different learning datasets for the
configuration investigated in figure 5.5 and a delay nd = 140. The investigated
models have as many outputs as states. (b) Relative error between the sig-
nal s(n − nd) obtained by DNS and the signals given by C̃sY(n) for different
numbers of POD modes and for two different positions of the sensor: (solid)
xs = 200, nd = 140, and (dashed) xs = 500, nd = 0. ‖·‖ indicates the 2-norm.

suggests that the appropriate number of POD modes (even in the case of an

upstream-placed estimation sensor) corresponds to the number of modes required

to accurately predict the signal of a sensor placed at the left-edge of the velocity

window.

5.2 Effect of noise corrupting the sensor

In Chapter 4, we investigated the effect of noise corrupting the estimation sensor

on the performance of two estimators: an identified model and a reduced-order

Kalman filter. The motivation in that case was to compare both estimators over

a wide range of working conditions. Here, we report on a similar study with

a different objective: we aim at providing guidelines for a future experimental

implementation.

Noise corrupting the estimation sensor was proven to be particularly harmful for

noise-amplifier flows. In Section 4.3, we determined that two factors contribute to

the loss of estimator performance: (i) the error introduced directly by g (g → Z)

and (ii) the one introduced indirectly during the more difficult learning process.

The magnitude of the error arising from the first source is similar for both the

identified model and the Kalman filter. In contrast, the error produced indirectly
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by g is more significant for the identified estimator than for the optimal estimator

(Kalman filter): the quality of the identification is greatly deteriorated by the

presence of noise. To improve the performance of identified estimators in the case

of noisy sensors, we investigated in Section 5.2.1 the effect of selected parameters,

i.e, the number of POD-modes and the length of the learning datasets, on the

identification process.

Commonly, white noise is considered a good model for the measurement error. In

reality, however, it is coloured for most sensors. Section 5.2.2 deals with coloured

noise corrupting the sensor. This study provides useful information about the

colour of the noise sources that are most detrimental for the estimator.

We consider the same configuration as in Chapter 4: the estimation sensor s is

placed at xs = 200 and the velocity window extends over the rectangle (200, 900)×

(0, 40).

5.2.1 White noise

A corrupting white noise g(n) was added to the measurement of the estimation

sensor. The amplitude of the noise is given by the parameter G/S(%), which

defines the ratio between the rms-value of the noise G and the clean measurement

S. Furthermore, we added white noise to both the learning and validation datasets.

Figure 5.9(a-b) shows the time evolution of the signal s corrupted by different

levels of noise: (a) G/S = 10% and (b) G/S = 50%. The effect of the noise on

the estimation performance is illustrated in Figure 5.9(c). A dataset of length

Nsnap = 1000 snapshots was used to identify, in the presence of noise, the two

models composed of k = 70 outputs and 70 states. As expected, a higher level of

corrupting noise leads to lower performance. More specifically, the model obtained

with 10% of noise matches the dataset depicted in Figure 5.9(c) to FITener =

66.50% and the model obtained with 50% to FITener = −18.52%. In view of this

fit, it appears, at first sight, that the identification process has completely failed

for the second case; however, if we look at the velocity field, this conclusion is

not true. Figure 5.10 depicts the velocity field at t = 20000 and t = 23500 (a)

obtained from the DNS, and (b) and (c) recovered from the identified models in

presence of 10% and 50% of corrupting noise, respectively. As we can observe the

results predicted by the first model are rather close to the DNS. In the second

case, there are some important differences, but the model manages to capture the
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Figure 5.9: (a-b) Noisy signal s corrupted by 10% and 50% of the rms of
s, respectively. The black solid lines represent the exact noise and the red
symbols the corrupted signal. (c) Temporal evolution of perturbation energy of
the system obtained (black) from the DNS, and (red) and (blue) recovered from

the noisy signals (a) and (b) via identified models.

general behaviour of the velocity field. These results show that matching based on

energy is a quite demanding criterion to quantify the performance of an estimator.

In experimental configurations, an alternative indicator may be the norm of the

error system introduced in Chapter 4. For instance, a model obtained with the

estimation sensor corrupted by 100% of noise matches the validation dataset to

FITener = −10%, while the norm of the error is ‖Z‖2/‖Y‖2 ≈ 60%. For a system

subjected to a stationary white noise input w, the norm of the error system Z is

approximated by ‖Z‖22 = E
[
ZT(n)Z(n)

]
/Sw, with E [·] the expected value and Sw

the spectral density of w. Nevertheless, evaluating this norm requires rather long

validation datasets.

We now turn our attention to the influence of the identification parameters when

the estimation sensor is corrupted by noise. To this end, we computed again the

mean and standard deviation of the validation fit for ten models obtained from

different learning datasets for each value of the parameter of interest. The to-

tal simulation has a length of Nsnap = 5000 snapshots (25000 time-units), and

the validation dataset is chosen within t = 20000 and t = 25000. The mod-

els were identified using ten learning datasets of length Nsnap = 2000 snapshots

(10000 time-units) with an overlap between consecutive datasets equal to 95%.
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Figure 5.10: Snapshots of the streamwise disturbance velocity component
obtained (a) from the DNS, and (b) and (c) recovered from the noisy signal
s(n) via the model for t = 20000 and t = 23500. The signals s(n) are corrupted

by 10% and 50% of the rms of s for (b) and (c), respectively.

Figure 5.11(a) shows the performance of the identification process versus the cor-

rupting noise level for models obtained from the described datasets and composed

of 40, 50 and 70 outputs (and states). The performance, as expected, diminishes

as the level of noise increases; however, no effect is noticed when increasing the

number of POD-coefficients involved in the identification process. Figure 5.11(b)

illustrates the influence of the length of the learning dataset on the quality of the

identification. In this case, k = 90 POD-modes are included in the model, and the

length of the learning dataset varies from Nsnap = 1000 to Nsnap = 3000 snapshots

with the maximum overlap between consecutive portions equal to 97.5%. The

performance drop due to corrupting noise is more pronounced for the shortest

learning dataset, i.e., Nsnap = 1000. Yet, for datasets longer than Nsnap = 2000

snapshots, the performance remains the same, so that additional data does not

translate into further improvement.

Finally, we used the models obtained in presence of noise to design an effective

controller seeking to reduce the perturbation energy of the boundary layer. The

control framework is the same as already introduced in chapters 2 and 4: the iden-

tified models are introduced in a Riccati equation to obtain the control gain K

which minimizes the perturbation energy; the control law is given by the expres-

sion u(n) = −KYe(n), where Ye(n) is obtained by time-marching the identified
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Figure 5.11: Mean and standard deviation of the validation fit computed from
samples of ten models obtained from different learning datasets for estimation
sensors corrupted by different levels of noise. (a) The considered models are ex-
tracted from learning datasets of length L = 2000 and comprise as many outputs
as states: (dotted) k = 40, (solid) k = 50 and (dashed) k = 70, respectively. (b)
The models comprise 90 outputs and 90 states and are computed from learning
datasets of different lengths: (solid) L = 1000, (dashed) L = 1500, (dotted)

L = 2000, (dash-dotted) L = 2500 and (double-dash-dotted) L = 3000.

dynamic observer. The controllers are then introduced into the DNS simulation

and used with corrupted estimation measurements. Figure 5.12 depicts the perfor-

mance of the controllers for different levels of noise: the mean of the perturbation

energy in the interval t ∈ (5000, 8000] is reduced by 99.6%, 98.14%, 77.17% and

53% for noise levels of 0%, 10%, 50%, 100%, respectively. The performance of

the controller is reduced as the amplitude of the noise is increased. However, the

controllers are remarkably robust in terms of performance: a significant reduction

of the energy is obtained even with noise at the same level as the measurement.

Feed-forward control theoretically guarantees infinite stability robustness margins

of the compensated system; in other words, the controller never renders the sys-

tem unstable for these configurations. Nevertheless, there is no theoretical result

concerning the performance-robustness, i.e., the ability of the controller to achieve

(to a certain extent) the task it has been designed to accomplish. We believe

that, in our case, the successful control observed for high levels of noise is due

to the sufficiently accurate prediction of the structures of the velocity field (see

Figure 5.10).
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Figure 5.12: Effect of noisy sensors on the overall controller performance,
measured by the perturbation energy. Noise levels are expressed in percentage

of the rms of the exact signals.

5.2.2 Coloured noise

In this section, coloured noise was added to the estimation sensor. To obtain

such a noise, we generated a white noise and subsequently filtered it to retain

a user-specified band of frequencies. The rms-value of the signal is reduced by

the filtering process; we therefore rescaled the amplitude of the signal to obtain

the same rms-value as the original white noise. Following this methodology, we

obtain noise with the same rms-value, but with a higher spectral content in specific

frequency bands.

Figure 5.13(a) depicts the frequency content of three corrupting noises. The blue

line, hereafter called low-frequency noise, is filtered to remove the frequencies

higher than ωc = 0.02, the red line (denoted high-frequency noise) to remove the

frequencies lower than ωc = 0.18, and the green line (medium-frequency noise)

by a pass-band filter covering the range ω ∈ [0.04 0.05]. The amplitudes were

selected as G/S = 100%, G/S = 20% and G/S = 500%, for the low-, medium-

and high-frequency noise, respectively. The temporal evolution of the corrupted

measurements is presented in Figure 5.13(b-d). The low- and high-frequency-noise-

corrupted measurements are greatly distorted due to the selected amplitudes. On

the other hand, the differences between the measurement corrupted by medium-

frequency noise and the measurement without any noise are rather insignificant.

Under these circumstances, we may expect a successful identification using the
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Figure 5.13: Influence of frequency-band-limited noise corrupting the esti-
mation sensor s on the quality of the identification. Three configurations are
investigated: (blue) low-, (green) medium- and (red) high-frequency noise. (a)
Amplitude of the frequency spectrum of the noise. (b-d) Exact (black) and cor-
rupted (red symbols) measurement s for the low-, medium- and high- frequency

noise, respectively. (e) Estimation performance.

latter signal and a failure using the former ones. However, this is not the case.

Figure 5.13(e) illustrates the performance obtained for each noise. Three models

composed of 60 outputs were computed from a learning dataset of length Nsnap =

1000 (t = 5000 time units). The models matches the validation dataset presented

in figure 5.13(e) to 53.92%, -1.12% and 85.36% for the low-, medium- and high-

frequency noises, respectively. Surprisingly, the models with the largest noise-

amplitudes are successful in predicting the dynamics of the flow. In contrast, the

model with the lowest level of noise (medium-frequency noise) fails.

To gain further insight, we computed the frequency response from the sensor s to

the first 60 POD-coefficients of the full-order system (Figure 5.14(a)). This choice
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was motivated by Equation (4.2). For an accurate estimation process, the transfer

function considered here s → Y is close to s → Ye which is equivalent to the

transfer function from the noise to the estimated state g → Ye. Consequently,

for low-amplitude noise, the most harmful frequencies are the ones where s → Y

is large. This reasoning may appear overly simplistic since it does not take into

account the loss in performance due to poor identification; nevertheless, it will

prove to be a good estimate.

Four zones were defined in different frequency-ranges depending on the amplitude

of the frequency response: zones 2 and 3 are located in the ranges with the largest

gains, while zones 4 and 1 correspond to the lowest gains. The estimation sensor

was again corrupted by successively adding noise coloured according to each zone.

Different models composed of 60 outputs were identified from a learning dataset

of length Nsnap = 2000 using the noise-corrupted measurements. Figure 5.14(b)

shows the performance versus the level of noise for the four zones as well as for

white noise. For zones 1 and 4 the performance is almost independent of the

level of noise: the quality of the identification is not significantly altered. On

the other hand, zones 2 and 3 present significantly lower agreement compared to

the white-noise-corrupted measurements. Therefore, we can conclude that noise

acting on the range of frequencies where high gains of the system are located is

most harmful for the estimator performance. The poorer performance of zones 3

and 4 compared to the white-noise scenario arises from the larger power spectral

density levels in the sensitive frequency bands for these two zones. Moreover, we

observe that zone 1 performs better than zone 4 which is again easily explained

by considering the magnitude of the gains for each zone.

Figure 5.15 presents the transfer function from w and g to the error of the estimator

Z for the three identified models depicted in Figure 5.13. As expected, the quality

of the learning process w → Y is greatly deteriorated for the medium-frequency

case, but not for the low- and high-frequency models. The transfer function g → Y

is large in the range of frequencies leading to highest gains of the system in the

three cases and, consequently, for the low- and high-frequency cases the decrease

of performance due to this term is very low.
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Figure 5.15: Frequency response of the estimation error for the identified
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5.3 Summary of results and conclusions

The influence of the estimation sensor characteristics on the identification process

has been investigated. Specifically, two situations of interest have been considered:

(i) the position of the sensor with respect to the velocity window and (ii) the

influence of adding corrupting noise on the quality of the estimation. Regarding the

relative position of the estimation sensor and the upstream position of the velocity

window, the optimal location for the sensor has been found to be the upstream edge

of the velocity window. In fact, the identified dynamic observer fails to recover

any information about the velocity field when situated upstream of the estimation

sensor. However, this conclusion does not hold for a Kalman filter, which has
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the capability of recovering some information (to a certain extent) upstream of

the sensor. If the sensor is located upstream of the velocity measurement, the

identification process fails due to the time-delay between the measurement s and

the state of the system inside the velocity window. To overcome this difficulty, a

time-delay can be explicitly introduced into the state-space model. An optimal

delay has been determined to be equivalent to the time that a wave-packet takes

to travel from the estimation sensor to the upstream edge of the velocity window.

The effect of white noise corrupting the measurement has also been studied. As

expected, increasing the amplitude of the noise reduces the performance. For levels

of noise higher than 100% the quality of the models is rather poor. However, such

models still capture the general shape of the velocity field. We therefore conclude

that matching based on the energy is too demanding a criterion to assess the

performance of a model. In experimental implementations, thus, a less restrictive

criterion should be selected. Moreover, the models obtained have been used to

design a closed-loop control strategy. The compensated systems are stable for

all considered levels of noise which is due to the properties of our feed-forward

design. Nevertheless, the ability of the controller to effectively reduce the energy,

even with the estimation measurements corrupted by noise with an amplitude of

100%, is remarkable.

We also examined the corruption of the estimation sensor by coloured noise. In

this case, we have shown that the effect of the noise on the estimation performance

greatly depends on the characteristic range of frequencies of the noise. In fact, we

have shown that the most detrimental frequencies correspond to the ones with the

highest system gains. In practical implementations, this information can be used

to judiciously select the kind of sensor used for the identification.





Chapter 6

Concluding remarks

A data-based technique to obtain an estimator of noise-amplifier flows has been

proposed. In Chapter 2, the technique was introduced and illustrated on a tran-

sitional two-dimensional boundary layer over a flat plate. In Chapter 3, the tech-

nique was used to approximate the global modes of a system and to estimate the

frequency response between the estimation sensor and the full velocity field. In

Chapter 4, the performance of the estimator was assessed with respect to the op-

timal estimator: the Kalman filter. Guidelines for a future implementation of the

dynamic observer in experimental settings were given in Chapter 5.

6.1 Summary of work completed

In chapter 2, a technique to obtain a dynamic observer recovering full-state infor-

mation from single wall-stress measurements has been introduced that relies on a

POD basis (from measured snapshots) and system identification techniques. For

noise-amplifier flows, it successfully reproduces the perturbation dynamics (veloc-

ity field) throughout the full sampling domain. The information produced by the

dynamic observer can be used by itself, for flow diagnostics or used to design a

closed-loop controller seeking to reduce the perturbation energy. The control ca-

pabilities have been illustrated using an LQR-control design and a reduction of

nearly two orders of magnitude of the mean perturbation energy has been achieved.

The estimation performance of the proposed model has been compared with a clas-

sical data-based estimator: the linear stochastic estimator (LSE) (Adrian, 1979).

95
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LSE proposes a static observer (the state of the system at a given time instant

is correlated to the measurements of the sensors at the same time instant) which

minimizes the mean-square estimation error of the system. For highly convective

flows, the dynamic approach proposed here has been proven to be far superior to

the static one (LSE) since the coherent structures are highly correlated in time,

but not in space. As a consequence, LSE requires many closely-spaced sensors to

overcome the lack of temporal information.

Within the limits of linear perturbation dynamics, the design process for the dy-

namic observer extracts the system matrix from a sequence of snapshots; this

system matrix describes a globally stable flow configuration that is sustained by

selectively amplified random perturbations from the noise environment. The pro-

posed method thus successfully separates the intrinsic, stable perturbation dynam-

ics from the external excitation noise. A wide variety of flow analysis is possible

once the system matrix has been extracted. In Chapter 3, the global modes of

the dynamic observer have been computed and qualitatively compared to results

reported in the literature (Ehrenstein and Gallaire, 2005) for the full-order system.

The most significant characteristics of the global modes are captured by the iden-

tified reduced-order model. A quantitative comparison, however, was not provided

due to the difficulty to define representative boundary conditions. The dynamic

observer has been proven to be an alternative to DMD for noise-amplifier flows,

since the latter cannot separate the extrinsic from the intrinsic dynamics.

The performance of the estimator was assessed with respect to a reduced-order

Kalman filter in Chapter 4. The Kalman filter is an optimal estimator in the

sense of minimizing the mean-square estimation error and, consequently, is a good

benchmark to compare with. The Kalman filter was computed using a classical

approach which consists of first reducing the order of the system using a balanced

projection and, then, solving a Riccati equation of the ROM to compute the el-

ements of the Kalman filter. The Kalman filter is far superior to the data-based

dynamic observer when noise-free measurements are employed. In contrast, when

noise-corrupted sensors are considered, the performance of the identified model

tends towards the optimal estimation. For noise-free estimation sensors, adding

supplementary states to the identified model was proven to greatly improve its

estimation performance; when dealing with noise-corrupted sensors the additional

states are detrimental. The models obtained with either strategy have been com-

pared in an optimal closed-loop application, showing that the control performances
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are in close agreement.

Finally, in Chapter 5, guidelines to an experimental application of the dynamic

observer have been given. Specifically, the relative position between the estimation

sensor and the velocity window has been investigated and two configurations have

been considered: (i) the sensor is inside, or (ii) upstream of the velocity window.

An optimal placement for the sensor has been found to be at the upstream edge of

the velocity window. The dynamic observer cannot provide any information from

the region placed upstream of the estimation sensor. In contrast, the Kalman

filter shows upstream visibility. In the second case, the identified model fails to

recover any valid information due to an existing delay between the measurement

of the estimation sensor and the state of the system. To overcome this difficulty, a

time delay has been explicitly introduced in the identified model. This delay has

been proven to be equivalent to move the sensor position, and an optimal delay

has been found to be the time that it takes for a wave-packet to travel from the

estimation sensor to the upstream edge of the velocity window.

The effect of adding corrupting noise to the estimation sensor has been assessed

using white and coloured noises. The identified model has proven to be surpris-

ingly resilient when the coloured noise is located in specific ranges of frequencies.

More insight has been gained by computing the transfer function from the esti-

mation sensor to the reduced-order state. The most pernicious frequencies for the

estimator are in close agreement with the frequencies leading to highest gains of

the system.

6.2 Main conclusions and limitations

A powerful technique to obtain reduced-order models from data that may be read-

ily available in experiments has been proposed for noise amplifier flows. Within

the limits of linear perturbation dynamics, our estimator performs better than

existing data-based techniques for various applications. For instance, the estima-

tion performance is superior to LSE. Furthermore, the model can separate the

intrinsic from the extrinsic dynamics and provides meaningful global modes of

the system, while the alternative technique (DMD) delivers modes containing the

external noise.
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A main limitation of the proposed approach resides in the assumption of lin-

ear dynamics. Although an extension of the approach dealing with non-linear

identification is possible, its higher computational cost and difficult convergence

characteristics make this extension a non-trivial undertaking.

6.3 Further work

An experimental implementation of the data-based dynamic observer is a key step

to demonstrate the capabilities of the technique. This task has been partially done

in the framework of a collaborative project with J. L. Aider and E. Varon. The

obtained results are encouraging.

In the same way that the effect of noise corrupting the estimation error was as-

sessed, the effect of noise corrupting the PIV window can be studied. In exper-

imental boundary layers, we expect rather noisy PIV images due to the strong

velocity gradient and the small amplitude of the perturbations. However, the

projection of the velocity measurements onto the POD-modes should filter the

error.

The large number of POD-modes required to compute suitable models suggests

that alternative bases should be considered for noise-amplifier flows. A possibility

is to use POD-modes weighted by a function of the x-coordinate which takes into

account the spatial growth rate of the perturbations.

An extension of the technique to three-dimensional configurations is necessary.

In that case, three-dimensional PIV (tomographic-PIV) measurements may be

used or two-dimensional PIV planes containing the important dynamical features.

An array of estimation sensors will also be necessary to determine the spanwise

wave-number of the incoming perturbations.

Non-linearities must be included into the identified model in order to make the

proposed framework a general and powerful technique. A plausible approach is

the use of Hammerstein-Wiener models which connect linear systems with static

non-linearities such as saturation and dead zone. POD-modes do not account for

dissipation and, consequently, extra equations modelling it may be required to

guarantee the stability of the models.



Appendix A

Subspace identification algorithms

Subspace identification algorithms consider the state-space formulation of a stochas-

tic linear system. Such a system can be written in the following process form

x(n + 1) = Ax(n) + Bu(n) + w(n) (A.1a)

y(n) = Cx(n) +Du(n) + v(n) (A.1b)

where y(n) ∈ Rny , x(n) ∈ Rn, u(n) ∈ Rnu, w(n) ∈ Rn, v(n) ∈ Rny are the system

output, state, input, state noise, and output measurement noise, respectively. The

matrices A, B, C and D are system matrices of appropiate dimensions. The noise

covariances of the system are defined as

E





(
wj

vj

)(
wi

vi

)T


 =

(
Q S

ST R

)
δij (A.2)

where E{x} stands for the expected-value operator.

The general problem of subspace identification consists of obtaining the system

matrices A, B, C and D, as well as the covariance matrices Q, S, and R, from

observing a set of input-output measurements.

A.1 Reformulation of the state-space system

The state-space system (A.1) can be rearranged into two equivalent formulations

that emphasize either prediction or estimation (Qin, 2006). Considering either
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formulation, the one-step linear equations can be written as a multi-step matrix-

based expression which will form the foundation of subspace system-identification

techniques.

Assuming that the system is observable, a Kalman filter can be designed to esti-

mate the state variable. We have

x̂(n+ 1) = Ax̂(n) + Bu(n) +K [y(n)− Cx̂(n)−Du(n)] (A.3)

which (omitting the ̂) leads to the following innovation form

x(n + 1) = Ax(n) + Bu(n) + Le(n) (A.4a)

y(n) = Cx(n) +Du(n) + e(n) (A.4b)

where L is the Kalman gain (which can be obtained from a Riccati equation) and

e(n) = y(n)− Cx̂(n)−Du(n) is the measurement error.

A third equivalent representation, the predictor form, can be written as follows

x(n + 1) = Aex(n) + Bez(n) (A.5a)

y(n) = Cx(n) +Du(n) + e(k) (A.5b)

where z(n) =
[
uT (n), yT (n)

]T
, Ae = A − LC, and Be = [B − LD,L]. It should

be stressed again that the three model forms can represent the input and ouput

data (u(n), y(n)) exactly. We thus have the choice of using any of these models

according to convenience.

As a next step, the above one-step vector-based linear difference equations are

recast into multi-step matrix-based expressions. We first define an extended

state sequence X(n) =
(
x(n), x(n + 1), . . . , x(n +N − 1)

)
which contains

N columns describing the state at N consecutive time steps. By iterating p times

the predictor form (A.5) it is straightforward to derive the following extended

equation,

X(n) = LpZp +Ap
eX(n− p) (A.6)
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where

Lp =
(
Be, AeBe, . . . , Ap−1

e Be

)
, (A.7a)

Zp =




z(n− 1) z(n) . . . z(n+N − 2)

z(n− 2) z(n− 1) . . . z(n+N − 3)
...

...
. . .

...

z(n− p) z(n− p+ 1) . . . z(n− p+N − 1)




. (A.7b)

Under the assumption that all eigenvalues of the estimator matrix Ae fall strictly

inside the unit circle and in the limit p → ∞, the term Ap
e can be neglected. This

result can be proven valid even for finite p (Van Overschee and De Moor (1994),

Van Overschee and De Moor (1996)). Equation (A.6) can then be simplified to

X(n) = LpZp. (A.8)

In addition, if a similar recursive iteration technique is applied to the innovation

form (A.4) we obtain

Yf = OfX(n) +HfUf + GfEf (A.9)

where the subscript f denotes the future horizon. Next, the input, output and

innovation data are arranged into Hankel matrices, denoted respectively by Uf ,

Yf and Ef . The structure of these matrices is as follows

Uf =




u(n) u(n+ 1) . . . u(n+N − 1)

u(n+ 1) u(n+ 2) . . . u(n+N)
...

...
. . .

...

u(n+ f − 1) u(n+ f) . . . u(n+ f +N − 2)




, (A.10)

and similar for Yf and Ef .
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Furthermore, Of is the extended observability matrix, and Hf , Gf are Toeplitz

matrices of the form

Of =




C

CA
...

CAf−1




, (A.11a)

Hf =




D 0 . . . 0

CB D . . . 0
...

...
. . .

...

CAf−2B CAf−3B . . . D




, (A.11b)

Gf =




I 0 . . . 0

CK I . . . 0
...

...
. . .

...

CAf−2K CAf−3K . . . I




. (A.11c)

Combining (A.8) and (A.9) we obtain

Yf = HfpZp +HfUf + GfEf (A.12)

where Hfp = OfLp is the product of the process observability matrix and the pre-

dictor controllability matrix. Equation (A.12) plays an essential role in subspace

identification algorithms.

A.2 Extraction of the observability matrix Of

The goal of the subsequent steps is to recover the matrix HfpZp, and then Of from

it. First, Uf is eliminated from equation (A.12) by post-multiplying by the pro-

jection onto its orthogonal complement P⊥
Uf

= I −UT
f (UfU

T
f )

−1Uf . In addition,

if we assume that the innovation sequence e(n) is composed of a stationary, white

noise completely uncorrelated with the input u(n) we have EfP
⊥
Uf

= Ef which

yields
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YfP
⊥
Uf

= HfpZpP
⊥
Uf

+ GfEf . (A.13)

It is also known from Kalman filter theory that Ef is uncorrelated to Zp. Con-

sequently, the noise term Ef can be removed by multiplying (from the right)

equation (A.13) by ZT
p which yields

YfP
⊥
Uf
ZT

p = HfpZpP
⊥
Uf
ZT

p , (A.14)

and

HfpZp = YfP
⊥
Uf
ZT

p (P
⊥
Uf
ZT

p )
−1. (A.15)

Finally, from equation A.8 we obtain that HfpZp = OfX(n). Assuming that the

input u(n) is sufficiently rich in temporal behavior to excite all the observable dy-

namics of the system, matrix X(n) is ensured to be full row-ranked. In addition,

Of has full column-rank under the assumption of full observability. These prop-

erties suggest applying a singular value decomposition (SVD): (i) to determine

the order of the identified system as the rank of OfX(n) and (ii) to isolate Of .

Mathematically, this amounts to

HfpZp =
(
U1 U2

)(S1 0

0 S2

)(
VT
1

VT
2

)
, (A.16)

where the diagonal matrix S has been partitioned so that S2 is negligible compared

to S1. The size of S1 then represents the order of the identified system. Moreover,

the extended observability matrix Of can be extracted according to

Of = U1S
1/2
1 . (A.17)

A.3 Extraction of the system matrices

Based on Of , two different approaches may be adopted to extract the system

matrices. The first one, denoted as estimation focus, extracts only the system

matrices A, B, C and D from the data. On the other hand, if the noise covariances

are needed, a more complex algorithm, a simulation focus technique, is called

for. In this article, we will briefly introduce the first approach, while a detailed
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description of the second one can be found in Van Overschee and De Moor (1994),

Van Overschee and De Moor (1996) or Juillet et al. (2013).

The first step consists in extracting the matrices A and C from Of . This can be

accomplished rather easily by computing the matrix Of−1 as previously done with

Of and by recalling that, by definition, both matrices are related by the equation

(
I 0

0 Of−1

)(
C

A

)
= Of , (A.18)

which can be solved by least-squares techniques. To determine the remaining

matrices B and D, one uses the fact that the problem is linear in these matrices; a

simple least-squares matching to the output data may be used to find the remaining

matrices (Van Overschee and De Moor (1996)).
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Model order reduction using the

Eigensystem Realization

Algorithm (ERA)

In this appendix, we introduce a technique to reduce the degrees of freedom of the

full-order system: the eigensystem realisation algorithm (ERA).

The full-order linearised Navier-Stokes equations are expressed as a linear-time

invariant system

v(n+ 1) = A v(n) + Bww(n) + Buu(n), (B.1a)

Yf(n) = Cyv(n), sf(n) = Csv(n), (B.1b)

where A , Bw, Bu, Cy and Cs are linear operators, v(n) is the full-order velocity

field, w(n) and u(n) are the inputs corresponding to the external driving term and

the controller, respectively; and Yf(n) and sf(n) are the outputs corresponding to

a vector of POD-coefficients and a wall-stress sensor measurement, respectively.

The ERA was proposed in (Juang and Pappa, 1985) as a system identification and

model reduction technique for linear systems. The algorithm follows three main

steps:

The first step consists in running impulse-responses of the system (B.1) for 2NP+2

time steps. Then, the snapshots of the outputs are collected in the following
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pattern:

(
C B, C A B, C A

P
B, C A

P+1
B, . . . , C A

2NP
B, C A

2NP+1
B
)

B ≡ (Bw Bu) C ≡

(
Cy

Cs

)

The terms C A kB are called Markov parameters. The variable P is the number

of time steps between each pair of Markov parameters, and N is the number of

pairs. The Markov parameters are subsequently ranged in two generalized Hankel

matrices of the form

H =




C B C A B · · · C A
NP

B

C A PB C A 2PB · · · C A (N+1)PB

...
...

. . .
...

C A NPB C A (N+1)PB · · · C A 2NPB




, (B.2)

and

H′ =




C A B C A P+1B · · · C A NP+1B

C A P+1B C A 2P+1B · · · C A (N+1)P+1B

...
...

. . .
...

C A NP+1B C A (N+1)P+1B · · · C A 2NP+1B




. (B.3)

The second step is to compute the singular value decomposition (SVD) of H to

obtain H = UΣVH , where U and V are unitary and Σ is diagonal. Then, we select

the order of the reduced-order model, Nx, and truncate the matrices, keeping the

first Nx columns of U and V to obtain Ur and Vr , and the first Nx rows and

columns of Σ to obtain Σr. Then, we find the reduced-order model matrices,

Aw = Σ
−1/2
r U

H
r H

′
V Σ

−1/2
r ;

B = the first [number of inputs] columns of Σ1/2
r VH ;

C = the first [number of outputs] rows of UrΣ
1/2
N

(B.4)
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Figure B.1: Comparison of the input-output behaviour ((w, u) → (s,Y))
between the full-state system and ROMs based on ERA. (a) Singular values of
the transfer functions from u and w to 70 POD-coefficients for (black solid) the
full-state system and two ROMs of size (blue solid) 90 and (red dashed) 120,
respectively. (b) Singular value of the transfer function from w to 60 POD-
coefficients for the full-state system (black solid) and two ROMs of size 80 (blue
solid) and 120 (red dashed). The full-state system comprises 392000 degrees of

freedom.

The reduced system is

X(n+ 1) = AwX(n) + BU(n), (B.5a)
(
Y(n)

s(n)

)
=

(
Cy

Cs

)
X(n) = CX(n), (B.5b)

where X ∈ RNx is the reduced state, and Aw, B and C are the reduced-order matri-

ces. The vector U contains the two inputs of the system U(n) =
(
w(n) u(n)

)T
;

the matrix B can be decomposed into B =
(
Bw Bu

)
.

This technique has been applied to the boundary layer considered in this thesis.

Figure B.1 presents the frequency response of the ROM compared to the full-order

system for two cases: (a) the transfer function from (w, u) to 70 POD-coefficients

Y, and (b) the transfer function from w to 60 POD-coefficients Y. The results

show that an increasing number of states improves the quality of the ROM.

The performance of the ROMs is summarized in Table B.1. To compute the

truncation error Zf = (Yf −Y), we applied an impulse to w and u individually

in the full- and reduced-order systems. Subsequently, we computed the difference

between the time-evolution of the outputs for the two impulses and we Fourier-

transformed these two errors to obtain the frequency response from each input.



Model order reduction using ERA 108

Transfer function Nx ‖Zf‖∞ ‖Zf‖∞/‖Yf‖∞

w → Zf (k = 60)
80 3.59 0.068
100 0.4 0.007
120 0.07 0.001

(w, u) → Zf (k = 70)
90 50.94 0.2
100 9.71 0.038
120 0.86 0.003
140 0.45 0.002

Table B.1: Performance of the reduced-order model versus the number of
elements of the reduced-state Nx. H∞−norm of the transfer function from w

and (w, u) to the truncation error of the ROM Zf = (Yf −Y).

The error relative to a given input is defined as the H∞−norm of the error divided

by the H∞−norm of the full-order system. The size of the ROMs that are used

in Chapter 4 was selected to be Nx = 120 for either the estimation w → Y and

(w, u) → Y control cases, and yield relative errors of 0.1% and 0.3%, respectively.
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Estimation and control of noise amplifier flows using data-based approaches

This work aims to provide new modelling strategies for noise amplifier flows using data-based techniques. This kind of flow is
particularly difficult to model since the upstream noise environment, triggering the flow via a receptivity process, is not known.
We propose a system-identification approach, rather than a classical Galerkin technique, to extract the model from
time-synchronous velocity snapshots and wall-shear stress measurements. The technique is illustrated using the case of a
transitional flat-plate boundary layer, where the snapshots of the flow are obtained from direct numerical simulations. Particular
attention is directed to limiting the processed data to data that would be readily available in experiments, thus making the
technique applicable to an experimental setup. The proposed approach combines a reduction of the degrees of freedom of the
system by projection of the velocity snapshots onto a POD basis combined with a system-identification technique to obtain a
state-space model. This model is then used in a feed-forward control setup to significantly reduce the kinetic energy of the
perturbation field and thus successfully delay transition.
In the second part of this work, the extracted model is used to determine coherent structures of the flow that are inherent to the
system and not a representation of the external driving noise. The global modes and frequency response of the reduced-order
model are qualitatively compared to global modes of the full-order boundary layer reported previously in the literature.
Finally, the estimator obtained using system identification is compared to an estimator obtained using a projection technique
together with a Kalman filter (this method is exact but it cannot be applied in experimental setups). Here, the influence that
different parameters have on the quality of the estimation has been analysed: noise in the estimation sensor, number of internal
states of the reduced order model and the position of the sensor with respect to the position of the window measuring the
velocity field.

Mots-clés : NOISE-AMPLIFIER FLOWS  ;  CLOSED-LOOP CONTROL  ;  SYSTEM-IDENTIFICATION  ;  REDUCED-ORDER MODELS  ; 
DYNAMIC OBSERVER

Estimation et contrôle des amplificateurs de bruit avec des stratégies basées sur les données

Ce travail est consacré à la modélisation des écoulements laminaires et incompressibles de type amplificateur de bruit avec des
stratégies basées sur les données. Ce type d'écoulement est particulièrement difficile à modéliser car le bruit en amont
gouvernant l'écoulement n'est pas connu. On propose ici une stratégie basée sur l'identification de systèmes (plutôt qu’une
technique classique de projection Galerkin) pour extraire un modèle à partir de clichés de champ de vitesse et de mesures d'un
capteur situé à l'amont de l'écoulement. La technique est appliquée dans le cas d'une couche limite sur une plaque plane, avec
des clichés de vitesse obtenus d'une simulation numérique des équations de Navier-Stokes. Le principe de la méthode consiste
à déterminer au préalable les modes POD du champ de perturbation, de projeter les clichés de l'écoulement à chaque instant
sur cette base et d'apprendre la dynamique de ces modes par des techniques d'identification. Le modèle résultant peut ensuite
être utilisé pour contrôler cette dynamique de manière à supprimer les instabilités du système. Dans la première partie de cette
thèse, la méthode est présentée en détail et la qualité des modèles est évaluée. 
La deuxième partie, propose d'exploiter la technique décrite ci-dessus pour extraire la dynamique intrinsèque d'un écoulement
de type amplificateur de bruit. On montre que la technique utilisée traditionnellement par la communauté (Dynamic Mode
Decomposition) présente un biais pour ce type d'écoulement, du fait qu'elle néglige les termes de forçage, présents de façon
inhérente dans ces écoulements. On propose alors d'utiliser la technique d'identification pour estimer les modes globaux de
l'écoulement de façon juste et d’extraire la fonction de transfert entre le capteur amont et l'énergie cinétique des perturbations
dans le champ.
La dernière partie compare de façon exhaustive les performances des modèles obtenus par la technique d'identification aux
performances des modèles obtenus par une méthode de projection avec un filtre de Kalman (méthodes exactes mais non
applicables dans un contexte expérimental).  Différents paramètres sont analysés ici : bruit de capteur, nombre d'états dans le
modèle réduit par rapport au nombre de modes POD estimés et position du capteur par rapport à la fenêtre des clichés de
champ de vitesse.

Keywords : AMPLIFICATEUR DE BRUIT ; CONTROLE EN BOUCLE FERMEE ; IDENTIFICATION DE SYSTEME ; MODELE REDUIT ;
OBSERVATEUR DYNAMIQUE
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