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Abstract

In this thesis, we focus on the use of robot vision sensors to solve the path following

problem, which in recent years, has been a popular target for engaged researchers

around the world. Initially, we shall present the working assumptions that we used,

along with the relevant kinematic and sensor models of interest, and with the main

characteristics of visual servoing. Then, we shall attempt to survey the research

carried out in the field of vision-based path following. Following this, we shall present

two schemes that we designed for reaching and following paths. These respectively

involve nonholonomic robots and legged robots. Both schemes require only some visible

path features, along with a coarse camera model, and, under certain conditions, may

guarantee convergence even when the initial error is large. The first control scheme is

designed to enable nonholonomic mobile robots with a fixed pinhole camera to reach and

follow a continuous path on the ground. Two visual servoing controllers (position-based

and image-based) have been designed. For both controllers, a Lyapunov-based stability

analysis has been carried out. The performance of the two controllers is validated and

compared by simulations and experiments on a car-like robot. The second control

scheme is more application-oriented than the first and has been used in ASPICE,

an assistive robotics project, to enable the autonomous navigation of a legged robot

equipped with an actuated pinhole camera. The robot uses a position-based visual

servoing controller to follow artificial paths on the ground, and travel to some required

destinations. Apart from being a useful testing-ground for this path following scheme,

the ASPICE project has also permitted the development of many other aspects in the

field of assistive robotics. These shall be outlined at the end of the thesis.
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Introduction

Mobile land robots require a high degree of autonomy in their operations; a requirement

which calls for accurate and efficient position determination and verification in order

to guarantee safe navigation in different environments. In many recent works, this

has been done by processing information from the robot vision sensors [74]. In this

thesis, we shall present the case for utilizing the robot vision sensors for solving the

path following (PF) problem, which in recent years, has engaged numerous researchers

around the world. In the PF task, the controller must stabilize to zero some path error

function, indicating the position of the robot with respect to the path [16, 18]. The

path to be followed is defined as a continuous curve on the ground. In some works,

assumptions on the shape, curvature, and differential properties of the path have been

introduced, for focusing on specific applications and control designs.

Much work dealing with the design of visual controllers for the tracking of reference

paths has been carried out in the field of autonomous vehicle guidance [4]. In fact, some

of the earliest Automated Guided Vehicles (AGVs) were line following mobile robots.

They could follow a painted or embedded visual straight line on a floor or ceiling. Later,

visual servoing techniques [8] (which were originally developed for manipulator arms

with vision sensors mounted at their end-effector [23]) provided excellent results in the

field of mobile robot visual navigation. Visual servoing systems are classified in two

major categories: position-based control and image-based control. Position-based visual

servoing techniques can be used whenever the visual navigation system relies on the

geometry of the environment and on other metrical information. The feedback law is

computed by reducing errors in estimated pose space. For instance, in the field of PF,

many works address the problem by zeroing the lateral displacement and orientation

error of the vehicle at a lookahead distance [49]. Alternative visual navigation systems

use no explicit representation of the environment in which navigation takes place. In
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this case, image-based visual servoing techniques can be used to control the robot: an

error signal measured directly in the image is mapped to actuator commands. The

image-based approach reduces computational delay, eliminates the necessity for image

interpretation, and errors due to camera modeling and calibration [7, 13].

In this thesis, we present two vision-based approaches for path following with

mobile robots. The two approaches have respectively been designed and assessed on

nonholonomic and on legged robots. In both cases, a pinhole camera is used. However,

in the first approach, the camera is fixed, whereas in the second it is actuated. Both

approaches require only some visible path features, along with a coarse camera model,

and, under certain conditions, guarantee convergence even when the initial error is

large.

The first approach is designed to enable nonholonomic mobile robots with a fixed

pinhole camera to reach and follow a continuous path on the ground. In this regard, two

controllers (position-based and image-based) have been designed. For both controllers,

a Lyapunov-based stability analysis is carried out. The performance of the two

controllers is validated and compared by simulations and experiments on a car-like

robot equipped with a pinhole camera. To our knowledge, this is the first time that

an extensive comparison between position-based and image-based visual servoing for

nonholonomic mobile robot navigation is carried out.

The second approach is position-based and more application-oriented than the first

approach. It has been used in ASPICE, an assistive robotics project, to enable the

autonomous navigation of a legged robot in an indoor environment [10]. The robot

uses a position-based visual servoing control scheme to follow artificial paths on the

ground, and to travel to required targets in the environment. The paths are formed by

straight white lines connected by black and white coded square crossings. The approach

has been designed in relation to the ASPICE system requirements.

This thesis is organized as follows. In the first chapter we will present the working

assumptions that we used for tackling the path following problem. The PF problem is

defined, along with the relevant kinematic and sensor models. The main characteristics

of visual servoing are also outlined. In the second chapter, we attempt to survey the

research carried out in the field of vision-based path following. In Chapter 3, we present

two path following (PF) control schemes which enable nonholonomic mobile robots with

a fixed pinhole camera to reach and follow a continuous path on the ground. The design,
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stability analysis and experimental validation of the two controllers are described. In

the fourth chapter, we present the position-based visual path following controller that

has been used in the ASPICE project. The image processing aspects and the motion

controllers and experimental results of this work, are also presented. The ASPICE

project has both provided a useful testbed for this path following scheme and also

allowed the development of many other aspects in the field of assistive robotics. These

numerous aspects are described in Chapter 5.



Notations

The following notations will be used throughout this thesis.

W the robot workspace. It is modeled with the Euclidean space IR2.

FW the world reference frame, with origin W and axes x′, y′, z′.

R the robot. It is the compact subset of W occupied by the robot.

r the robot reference point. It is the point on the robot, with FW
coordinates [x′ y′]T , that should track the path.

θ the robot orientation in FW .

FR the robot reference frame, with origin r and axes x, y, z.

p the path. It is represented by a continuous curve in the workspace W.

n the number of robot generalized coordinates; in this work, n = 3.

m the number of control inputs applied to the robot; m ≤ n.

q the robot configuration: q = [x′ y′ θ]T .

u the control applied to the robot.

d the path desired reference point. It is the point with FW coordinates

[x′d y
′
d]

T that should be tracked by r.

θd the orientation of the path tangent at d in FW .

cd the path curvature at d.

qd the robot desired reference configuration: qd = [x′d y
′
d θd]

T .

FP the path reference frame, with origin d and axes xd, yd, zd.

et the tangential path error.

en the normal path error.

eθ the orientation path error.

C the principal projection center of the visual sensor.

4
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FC the camera reference frame, with origin C and axes xc, yc, zc.

I the image center, or principal point.

FI the image reference frame, with origin I and axes X and Y .

D the projection of d on the image plane, with FI coordinates [X Y ]T .

P the projection of the path p on the image plane.

f the focal length in the perspective camera model.

(XI YI) the principal point error in the perspective camera model.

(lX lY ) the metric size of the pixel in the perspective camera model.



Chapter 1

Working assumptions

The object of this chapter is to present the assumptions used in this thesis. Firstly,

we will formally introduce the path following problem for mobile ground robots.

Afterwards, the kinematic models of the two classes of robots (i.e., wheeled and legged)

that have been used in the experimental part of the thesis are presented. Regarding

wheeled robots, the main issues of nonholonomic motion control are discussed, and the

two most common models (unicycle and car-like) are outlined. As to legged robots, the

gait control algorithm (kinematic parameterized trot) which has been utilized in the

thesis is explained in the second section. In the third section, we present the general

visual sensor model (the central catadioptric model) which applies to all the systems

that will be cited in the survey of Chapter 2, as well as to the systems used in our work.

Finally, we recall the main concepts of visual servo control i.e., robot motion control

using computer vision data in the servo loop.

1.1 The path following problem

Let us consider a ground mobile robot R. We assume that the workspace where the

robot moves is planar (i.e, W = IR2) and we define FW (W,x′, y′, z′) the world frame

(shown in Fig. 1.1). The path p to be followed is represented by a continuous curve

in the workspace W. In some cases, a following direction can be associated to the

path. We assume that the robot has a symmetric plane (the sagittal plane) orthogonal

to W, and is forward oriented. We name r the robot reference point, i.e., the point

on the robot sagittal plane that should track the path, and FR (r, x, y, z) the robot

6
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p
θd(ε)

x’

y’

z’

W

d (x’d(ε), y’d(ε))

y

z

x

yd

xd

zd

et

θ(ε)
r (x’(ε), y’(ε))

eθ(ε)
en

Figure 1.1: Path following relevant variables.

frame. The y axis is the intersection line between the sagittal plane and W, oriented

in the robot forward orientation, and the x axis pertains to W and is oriented to the

right of the robot. The robot state coordinates (i.e., the robot generalized coordinates)

are q (ε) = [x′ (ε) y′ (ε) θ (ε)]T , where ε ∈ IR is a parameter with infinite domain,

[x′ (ε) y′ (ε)]T represent the Cartesian position of r in FW , and θ (ε) ∈ ]−π,+π] is the

orientation of the robot frame y axis with respect to the world frame x′ axis (positive

counterclockwise). Thus, the dimension of the robot configuration space is n = 3.

Recalling [18], the objective of PF is to drive the error e (ε) = q (ε) − qd (ε) =[
ex′ (ε) ey′ (ε) eθ (ε)

]T to a desired error ê (ε). Usually, ê (ε) is set to zero. The vector

qd (ε) = [x′d (ε) y′d (ε) θd (ε)]T defines a desired reference configuration, such that the

point d (ε) ∈ W of coordinates [x′d (ε) y′d (ε)]T belongs to p, and θd (ε) is the desired

robot orientation. If the tangent of p at d (ε) exists, and the path has a following

direction (as in Fig. 1.1), θd (ε) is the orientation of the tangent in FW considering the

direction. Otherwise, θd (ε) is defined by the PF specifications. If it exists, the path

curvature at d is noted cd. If there exist some constraints in the robot model (e.g.,

nonholonomic constraints), the path must be feasible with respect to such constraints,

i.e. qd (ε) must attend to these constraints. Moreover, we note u ∈ IRm the applied

control, which usually corresponds to the robot velocities; m ≤ n is the number of

control inputs. The reference path cannot contain points where the tracking control
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ud ≡ 0.

The PF task is often formalized by projecting the FW errors
[
ex′ (ε) ey′ (ε) eθ (ε)

]T

to the path frame FP (d, xd, yd, zd), shown in Fig. 3.1(a). Frame FP is linked to the

path at d, with zd parallel to z, yd coincident with the path tangent at d in the following

direction, and xd completing the right-handed frame. The path error in FP consists

of the tangent error et (i.e., the error projection on yd), the normal error en (i.e., the

error projection on xd), and the orientation error eθ, i.e.:
et = ex′ cos θd + ey′ sin θd

en = ex′ sin θd − ey′ cos θd

eθ = θ − θd

(1.1)

With this formalism, the PF task consists of driving error [et (ε) en (ε) eθ (ε)]T to a

desired error [êt ên êθ]
T . In the remainder of the thesis the desired error [êt ên êθ]

T is

set to [0 0 0]T , unless it is otherwise specified.

In opposition to the trajectory tracking problem, where the desired trajectory

evolution is determined by a rigid law like ε = ε (t) (i.e., parameter ε is associated

to the time t), in PF we can choose the relationship that defines the desired reference

configuration qd (ε) that the robot should track. We call such relationship path following

constraint. The path following constraint eliminates one of the three error coordinates.

Details regarding the choice of the projecting function used to define qd (ε) in this work

will be given later. In most works, the path following constraint is chosen by defining

d as the normal projection of r on p, i.e., by choosing d such that et =const = 0.

Finally, in PF, the robot should move at all times independently from qd (ε) (clearly,

a control law must concurrently ensure convergence to the path). Thus, a motion must

be imposed to the robot to guarantee that it moves or progresses. This is the motion

exigency condition defined in [18].

1.2 Kinematic model and motion control

In this section, we will focus on the kinematic model and motion control of the two

classes of robots that have been used in the experimental part of this thesis: wheeled

and legged robots.



1.2. Kinematic model and motion control 9

1.2.1 Wheeled robots

Motivations

Wheels are ubiquitous in human designed systems. As might be expected, the

vast majority of robots move on wheels. Wheeled mobile robots (WMRs) are

increasingly present in industrial and service robotics, particularly when flexible motion

capabilities are required on reasonably smooth grounds and surfaces. Several mobility

configurations (wheel number, type, location and actuation, single-body or multi-body

vehicle structure) can be found in the applications. The most common configurations

for single-body robots are differential drive and synchro drive (both kinematically

equivalent to a unicycle), tricycle or car-like drive, and omnidirectional steering [53].

Numerous wheeled robots were developed at the NASA Jet Propulsion Laboratory

(JPL) [3] in the 1970s, including various rovers for planetary exploration. These

developments culminated in the landing of the Sojourner robot on Mars in 2001. Today

the most common research robots are wheeled.

Beyond their relevance in applications, the problem of autonomous motion planning

and control of WMRs has attracted the interest of researchers in view of its theoretical

challenges. In particular, these systems are a typical example of nonholonomic

mechanisms due to the perfect rolling constraints on the wheel motion (no longitudinal

or lateral slipping).

The nonholonomic constraint

The notion of nonholonomy (borrowed from Mechanics) appears in literature on robot

motion planning because of the problem of car parking which the pioneering mobile

robot navigation systems had not managed to solve [51]. Nonholonomic systems are

characterized by constraint equations involving the time derivatives of the system

configuration variables. These equations are non integrable; they typically arise when

the system has less controls than configuration variables (m < n). For instance, a

car-like robot has m = 2 controls (linear and angular velocities) while it moves in a

configuration space of dimension n = 3. As a consequence, a path in the configuration

space does not necessarily correspond to a feasible path for the system. This explains

why the purely geometrical techniques developed in motion planning for holonomic

systems do not apply directly to nonholonomic systems.
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While the constraints due to the obstacles are expressed directly in the manifold of

configurations, nonholonomic constraints deal with the tangent space of such manifold.

In the presence of a link between the robot parameters and their derivatives, the first

question to be addressed is: does such a link reduce the accessible configuration space?

This question may be answered by studying the structure of the distribution spanned

by the Lie algebra of system controls. Thus, even in the absence of obstacles, planning

nonholonomic motions is not an easy task. Today there is no general algorithm which

enables one to plan motions for nonholonomic systems, in a way that guarantees that

the system reaches exactly a destination. The only existing results are for approximate

methods (which guarantee only that the system reaches a neighborhood of the goal)

or exact methods for special classes of systems. Fortunately, these classes cover almost

all the existing mobile robots.

In the absence of workspace obstacles, the basic motion tasks assigned to a WMR

may be reduced to moving between two robot postures and to the following of a given

trajectory. From a control viewpoint, the peculiar nature of nonholonomic kinematics

makes the second problem easier than the first. Indeed, it is a well known fact that

feedback stabilization at a given posture cannot be achieved via smooth time-invariant

control [5]. This indicates that the problem is truly nonlinear; linear control is

ineffective, even locally, and innovative design techniques are required.

Here, we will briefly outline the theory of Pfaffian nonholonomic systems. Further

details can be found in [51] and [53]. Recalling (Sect. 1.1) that q denotes the n-vector of

robot generalized coordinates, Pfaffian nonholonomic systems are characterized by the

presence of n −m non-integrable differential constraints on the generalized velocities

of the form:

A (q) q̇ = 0 (1.2)

with A (q) matrix of size (n−m) × n. For a WMR, these Pfaffian constraints arise

from the rolling without slipping condition for the wheels. All feasible instantaneous

motions can then be generated as:

q̇ = G (q)u (1.3)

for some control input: u(t) ∈ IRm. The columns gi, i = 1, . . . ,m of the n × m

matrix G (q) are chosen so as to span the null-space of matrix A (q). Different choices

are possible for G, according to the physical interpretation that may be given to the
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x’

y’
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W
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u1
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u2z
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Figure 1.2: Unicycle model relevant variables.

inputs u1, . . . , um. Equation 1.3, which is called the (first-order) kinematic model of the

system, represents a driftless nonlinear system. We will now present the two kinematic

modeling examples most commonly used in robotics: the unicycle model and the car-like

model.

The unicycle model

A classic locomotion system for a mobile robot is constituted by two parallel driving

wheels, the acceleration of each being controlled by an independent motor. The linear

accelerations are noted: ar and al respectively for the right and left wheel. The stability

of the platform is ensured by castors. We assume that the two wheels roll without

slipping. The robot reference point r is the midpoint of the two wheels; its coordinates,

with respect to FW are denoted by (x′, y′). The main direction of the vehicle is the

direction θ of the driving wheels. This kinematic model is equivalent to that of the

unicycle, which corresponds to a single upright wheel rolling on the plane (see Fig. 1.2).

With w designating the distance between the driving wheels, vr and vl the linear
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velocities respectively of the right and left wheel, the kinematic model is:

ẋ′

ẏ′

θ̇

v̇r

v̇l


=



vr+vl
2 cos θ

vr+vl
2 sin θ
vr−vl

w

0

0


+



0

0

0

1

0


ar +



0

0

0

0

1


al (1.4)

Clearly, ar, al, vr and vl are bounded; these bounds appear at this level as ’obstacles’

to avoid in the 5-dimensional manifold. By setting: u1 = vr+vl
2 and u2 = vr−vl

l

(respectively, the linear velocity of the wheel and its angular velocity around the vertical

axis), we get the kinematic model, which is expressed as the following 3-dimensional

system: 
ẋ′

ẏ′

θ̇

 = g1 (q)u1 + g2 (q)u2 =


cos θ

sin θ

0

u1 +


0

0

1

u2 (1.5)

where the generalized coordinates are q = [x′ y′ θ]T ∈ IR2 × SO1 (n = 3), and u1 and

u2 are the control inputs (m = 2). The bounds on vl and vr induce bounds u1,max and

u2,max on the new controls u1 and u2. System (1.5) is symmetric without drift, and

displays a number of structural control properties, most of which actually hold for the

general nonholonomic kinematic model (1.3).

The constraint that the wheel cannot slip in the lateral direction is given in the

form (1.2) as:

A (q) q̇ = [sin θ − cos θ 0] q̇ = ẋ′ sin θ − ẏ′ cos θ = 0

As expected, g1 and g2 span the null-space of matrix A (q).

The car-like model

From the driver’s point of view, a car has two controls: the accelerator and the steering

wheel. Let us consider a typical car-like model, where the front wheels can be steered,

while the orientation of the rear wheels is fixed. The reference point r with coordinates

(x′, y′) is the midpoint of the rear wheels, and θ indicates, as usual, the orientation of the

robot sagittal plane with respect to the x′ axis. We denote L the distance between rear

and front axles, and φ the steering angle. A mechanical constraint imposes |φ| ≤ φM
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Figure 1.3: Car-like model relevant variables.

and, consequently, a minimum turning radius. For simplicity, we assume that the

two wheels on each axis (front and rear) collapse into a single wheel located at the

midpoint of the axis (bicycle model). The generalized coordinates are q = [x′ y′ θ φ]T ∈
IR2 × SO1 × [−φM , φM ] (n = 4). These variables are shown in Fig. 1.3.

The system is subject to two nonholonomic constraints, one for each wheel:

ẋ′ sin θ − ẏ′ cos θ = 0

ẋ′f sin (θ + φ)− ẏ′f cos (θ + φ) = 0(
x′f , y

′
f

)
being the position of the front-axle midpoint. By using the rigid-body

constraint:
x′f = x′ + L cos θ

y′f = y′ + L sin θ

the second kinematic constraint becomes:

ẋ′ sin (θ + φ)− ẏ′ cos (θ + φ)− θ̇L cosφ = 0
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Hence, the constraint matrix is:

A (q) =

 sin θ − cos θ 0 0

sin (θ + φ) − cos (θ + φ) −L cosφ 0


and has constant rank 2. Its null-space is two-dimensional, and all the admissible

generalized velocities are obtained as:
ẋ′

ẏ′

θ̇

φ̇

 =


cos θ cosφ

sin θ cosφ
sin φ

L

0

u1 +


0

0

0

1

u2 (1.6)

Since the front wheel can be steered, we set u2 = φ̇, (φ̇ is the steering velocity input).

The expression of u1 depends on the location of the driving input. If the car has

front-wheel driving, i.e., front wheel velocity as control input u1, the control system

becomes: 
ẋ′

ẏ′

θ̇

φ̇

 =


cos θ cosφ

sin θ cosφ
sin φ

L

0

u1 +


0

0

0

1

u2 (1.7)

The control inputs u1 and u2 are respectively the front wheel velocity and the steering

velocity.

If the car has rear-wheel driving, i.e., rear wheel velocity as control input u1 , we

have: 
ẋ′

ẏ′

θ̇

φ̇

 =


cos θ

sin θ
tan φ

L

0

u1 +


0

0

0

1

u2 (1.8)

The control inputs u1 and u2 are respectively the rear wheel velocity and the steering

velocity. Note that in (1.8), there is a control singularity at φ = ±π
2 , where the first

vector field blows out. This corresponds to the rear-wheel drive car becoming jammed

when the front wheel is normal to the longitudinal axis of the car body. Instead,

this singularity does not occur for the front-wheel drive car (1.7), which in the same

situation may still pivot about its rear-axle midpoint.
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By setting u2 = u1 tan φ
L in (1.8), we get a 3-dimensional control system:

ẋ′

ẏ′

θ̇

 =


cos θ

sin θ

0

u1 +


0

0

1

u2 (1.9)

The control inputs u1 and u2 are respectively the rear wheel velocity and the robot

angular velocity with respect to r. This representation of the car-like model is consistent

with the definitions of Sect. 1.1, since the robot generalized coordinates become: q =

[x′ y′ θ]T ∈ IR2×SO1 (n = 4). Equation (1.9) can also represent the front-wheel driving

by using u1 cosφ as first control input, and u1 sin φ
L as second control input. System (1.9)

is identical to the unicycle kinematic model (1.5). By construction the values of u1

and u2 are bounded. The main difference lies on the admissible control domains,

since in (1.9) the constraints on u1 and u2 are no longer independent. Moreover, the

instantaneous applicable curvature of the car must be smaller than:

cM =
tanφM

L
(1.10)

In practice, the control inputs in (1.9) must verify:∣∣∣∣u2

u1

∣∣∣∣ < cM (1.11)

There is no such bound for the unicycle instantaneous applicable curvature.

1.2.2 Legged robots

Motivations

Walking on legs is particularly significant as a mode of locomotion in robotics.

Beginning with the automatons built in the nineteenth century, people have been

fascinated by legged machines, especially when they display some autonomy. Aside

from the sheer thrill of creating robots that actually run, there are two serious reasons

for exploring the use of legs for locomotion.

One reason is mobility: there is a need for vehicles that can travel in difficult terrains

where wheeled vehicles would not be able to get. Wheels excel on prepared surfaces

such as rails and roads, but perform poorly wherever the terrain is soft or uneven.

Because of these limitations, only about half of the earth’s landmass is accessible to
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existing wheeled and tracked vehicles, whereas a much greater area can be reached

by animals on foot [65]. Legs provide better mobility in rough terrain since they can

use isolated footholds that optimize support and traction, whereas a wheel requires

a continuous path of support. As a consequence, a legged robot can choose among

the best footholds in the reachable terrain; a wheeled vehicle must plunge into the

worst terrain. Another advantage of legs is that they provide an active suspension that

decouples the body trajectory from the path trajectory. The payload is free to travel

smoothly despite pronounced variations in the terrain. A legged system can also step

over obstacles. In principle, the performance of legged vehicles can, to a great extent,

be independent of the detailed roughness of the ground.

Another reason for exploring legged machines is to gain a better understanding of

human and animal locomotion. Despite the skill we apply in using our own legs for

locomotion, we are still at a primitive stage in understanding the control principles

that underlie walking and running. The concrete theories and algorithms developed

to design legged robots can guide biological research by suggesting specific models for

experimental testing and verification. This sort of interdisciplinary approach is already

becoming popular in other areas where biology and robotics have a common ground,

such as vision, speech, and manipulation.

In this work, we shall focus uniquely on robots with Nl ≥ 4 legs. In the remainder

of this section, we summarize some basic principles of legged locomotion, review some

works in the area of legged locomotion, and present the locomotion control algorithm

(kinematic parameterized trot) which has been utilized in the thesis.

Motion control

From a kinematic viewpoint, legged robots can be considered omnidirectional, i.e.,

m = 3 control inputs can be independently specified. Usually, these control inputs are

the absolute velocities applied in the robot reference point r: forward u1 in the y axis

direction, lateral u2 in the x axis direction, and angular u3 around the z axis.

Stable walking requires the generation of systematic periodic sequences of leg

movements at various speeds of progression [3]. At slow velocities, stable walking

is characterized by static stability: the center of mass of the body remains within the

polygon of support formed by the legs in contact with the ground. During motion,

the support forces of the legs, momentum and inertial forces are summed to produce
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dynamic stability. In both humans and animals, each leg alternates between stance

(the time its end point is in contact with the ground), and swing (the time it spends in

forward motion). To change speed, animals exhibit a variety of gaits. It now appears

that the switch from one gait pattern to another occurs, at least in part, by means of

mechanisms that attempt to keep the muscular forces and joint loads in the leg within

particular limits.

In practice, the major task in enabling a legged robot to walk is foot trajectory

generation. This can be based either on the dynamic or on the kinematic model of

the robot. A short overview of some approaches used to generate stable legged gaits

is presented in the next paragraph. Afterwards, we focus on the approach used in this

thesis.

Related work

Various approaches for generating stable walking have been explored in literature.

In [61], a graph search method is proposed to generate the gait for a quadruped

robot. To determine if a node in the graph is promising or not, each node is endowed

with an evaluating function that incorporates the robot configuration, the distance

the robot traveled, and the stability margin of a particular configuration. The search

method exhibits promising features under adverse terrain conditions. The generated

gait is: periodic when the terrain is flat, without obstacles, and free in the presence of

obstacles.

Goodwine and Burdick [32] present a general trajectory generation scheme for legged

robots. The scheme is based on an extension of a nonlinear trajectory generation

algorithm for smooth systems (e.g., wheeled robots) to the legged case, where the

relevant mechanics are not smooth. The extension utilizes a stratification model of the

legged robot configuration spaces. Experiments indicate that the approach is simple to

apply, independently from the number of legs.

Other researchers have successfully applied machine learning techniques for

generating stable legged gaits. Krasny and Orin have used an evolutionary algorithm to

generate an energy-efficient, natural, and unconstrained gallop for a quadrupedal robot

with articulated legs, asymmetric mass distribution, and compliant legs [50]. In [75],

a distributed neural architecture for the general control of robots has been applied for

walking gait generation on a Sony AIBO robot. Genetic algorithms have been used to
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evolve from scratch the walking gaits of eight-legged [31] and hexapod robots [62].

An important testbed for developing and improving motion control schemes for

legged robots has been the annual RoboCup Four-Legged league1. RoboCup is “an

attempt to promote AI and robotics research by providing a common task for evaluation

of various theories, algorithms, and agent architectures”; the ultimate goal is, “to

build a team of robot soccer players, which can beat a human World Cup champion

team” [47]. The Robocup Four-Legged League prescribes the use of a standard robot

platform: Sony AIBO. No hardware changes are permitted. In particular, since speed is

a major key to winning robot soccer games, in the past years, the Robocup Four-Legged

League has strongly fostered research in the field of legged motion control.

The kinematic parameterized trot walk approach

Here, we will illustrate the walking gait control scheme implemented in this thesis for

following paths with a legged robot. The scheme is inspired by the parameterized walk

approach developed by Hengst and others [37], which is widely used in the legged robot

community. In particular, we will hereby describe the version implemented on Sony

AIBO four-legged robots in [24], which inspired our control scheme. The algorithm can

be easily extended for gait generation on other platforms, including robots with more

than four legs (Nl > 4). The approach presented is based on the robot kinematic model,

i.e. dynamic effects are not taken into account. This choice is appropriate whenever

a complete dynamic model for the robot is unavailable, or whenever the on-board

resources are not sufficient for the computation of a dynamic controller (e.g. if the

resources are shared with other processes, such as image processing). Since the robot is

kinematically omnidirectional on the plane, the robot leg joint angles must be generated

in order to let the robot walk with absolute speed applied in r: u = [u1 u2 u3]
T . The

kinematic parameterized trot walk algorithm consists of two phases. In a first phase,

for a given u, the time trajectories of the robot feet in FR are derived. In practice, we

shall show that u imposes some constraints on these trajectories, without univocally

defining them. In a second phase, the robot leg joint angles enabling each foot to track

the time trajectories (derived in the first phase) are derived and used to control the

robot motors.
1www.tzi.de/4legged
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Figure 1.4: Foot loci during kinematic parameterized trot walk: the feet are indicated

in blue and the loci in red during stance, and in orange during swing.

Consider a robot with Nl legs noted l1 . . . lN,l linked to the robot body. The leg end

points (feet) are noted fi, with i = 1 . . . Nl, and shown in blue in Fig. 1.4. A trot gait

is used. Each gait step is formed by two phases of the same duration τ . During each

phase, one half of the legs is in stance on the ground, and the other half is swinging

in the air. The legs that were swinging in the previous phase are in stance in the

current phase, and viceversa. In practice, during a step, each foot fi tracks a 3-D

time trajectory in the robot frame FR, named foot locus. Each foot locus has a stance

portion (stance locus, red in Fig. 1.4) and a swing portion (swing locus, orange in the

figure). A wide set of parameters, noted with vector Υ, can be tuned independently

from u to determine the shape (rectangular in Fig. 1.4) and other characteristics of the

foot loci. These parameters allow implementation of completely different walks. Some

versions of the kinematic parameterized trot algorithm can interpolate between several

provided sets to generate an optimal parameter set Υ for each u (see [20]). In other

versions of the algorithm, since hand tuning the set Υ is not feasible, machine learning

approaches have been used to optimize Υ for each u (see [68] and [9]). However, there

are also some characteristics of the foot loci which are univocally defined by the desired

control input u, and the step duration τ .

In fact, the absolute robot speed u is generated by the stance legs, which ’push’ the

robot with respect to the ground. We design as stance loci, straight segments, and fix

constant stance feet velocities relative to the robot body, which we note: uf,i for each

foot fi. Then, the length and direction of the stance loci can be univocally derived from
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u and τ by applying the rigid body kinematic theory. Firstly, note that every desired

motion u results in turning around an Instantaneous Center of Rotation (degenerate for

pure translations), noted Ω in Fig. 1.4, left. Let us consider the case of pure translations

(i.e, u3 ≡ 0): uf,i for each stance foot must be −u, and the direction of all stance loci

must be identical to that of u. On the other hand, for u3 6= 0, the direction of each

stance locus is orthogonal to segment fiΩ. Moreover, for u3 6= 0, uf,i for each stance

foot must be proportional to the length of segment fiΩ, and the application of all

stance velocities uf,i in R must be −u. By imposing these two conditions, all stance

foot velocities uf,i can be calculated. In both cases (u3 ≡ 0 and u3 6= 0), since the

stance feet velocities are constant, the length of each stance locus is ‖ uf,i ‖ τ .
In summary, during the first phase of the algorithm, the 3-D time trajectories of

each foot in the robot frame FR are derived from u, τ , and Υ. Once the desired foot

loci are calculated, it is necessary to calculate the required leg joint angles to reach

the desired foot position on the locus at each time step. This is done in the second

phase of the algorithm. The joint angles necessary to track the desired foot position

are calculated by solving the inverse kinematics problem at each time step.

In general, the inverse kinematics problem is a set of non-linear equations, which

can only be solved numerically. Instead, we shall show that for the Sony AIBO

kinematics, it is possible to derive an analytical closed form solution. Firstly, a solution

to the forward kinematics problem is given. This will be used for solving the inverse

kinematics problem. The forward kinematics problem consists of calculating the foot

position resulting from a given set of joint angles. Consider the fore left leg model2

shown in Fig. 1.5. With reference to the figure, we define FS (S, xs, ys, zs) the shoulder

frame (also shown in Fig. 1.4), δu and δl the lengths of the upper and lower limb,

and %1, %2, and %3 the joint angles. The target foot position that should be tracked

(with FS coordinates [xs, ys, zs]
T ), is determined by using the following coordinate

transformations:

1. clockwise rotation about the ys axis by joint angle %1

2. counterclockwise rotation about the xs axis by joint angle %2

3. translation along the negative zs axis by upper limb length δu
2Using symmetrical considerations, the following calculations can be extended to all four legs.
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Figure 1.5: Fore left leg design: side view (left), and front view (right).

4. clockwise rotation about the ys axis by joint angle %3

5. translation along the negative zs axis by lower limb length δl

In homogeneous coordinates, by using the Denavit and Hartenberg method [35], this

transformation can be described as a concatenation of transformation matrices:
xs

ys

zs

1

 = Ry(−%1)Rx(%2)T−δuRy(−%3)T−δl


0

0

0

1

 (1.12)

where Ry(%i) is the rotation matrix of angle %i around the ys axis, and Tδ the translation

matrix associated to vector [0 0 δ]T . The solution of the forward kinematics problem

can be derived from (1.12):
xs = δl cos %1 sin %3 + δl sin %1 cos %2 cos %3 + δu sin %1 cos %2

ys = δu sin %2 + δl sin %2 cos %3

zs = δl sin %1 sin %3 − δl cos %1 cos %2 cos %3 − δu cos %1 cos %2

(1.13)

To solve the inverse kinematics problem, the knee joint angle %3 is initially calculated.

Since the knee joint position determines how far the leg is stretched, %3 can be calculated
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from the distance of the target position (xs, ys, zs) to the shoulder joint. According to

the law of cosine (see Fig. 1.4):

|%3| = arccos
x2

s + y2
s + z2

s − δ2u − δ2l
2δuδl

There exist two solutions, since there are two possible knee positions to reach the target

position (xs, ys, zs). Here, the positive value of %3 is chosen due to the larger freedom

of movement for positive %3.

Plugging the result for %3 into the forward kinematics solution (1.13) allows

determining %2 easily. According to equation (1.13):

ys = δu sin %2 + δl sin %2 cos %3

Consequently:

%2 = arcsin
(

ys

δl cos %3 + δu

)
Since |%2| < 90◦, the determination of %2 via arc sine is satisfactory.

Finally the joint angle %1 can be calculated. According to equation (1.13):

xs = δl cos %1 sin %3 + δl sin %1 cos %2 cos %3 + δu sin %1 cos %2

which can be transformed to:

xs = δ∗ cos (%1 + %∗)

with:
%∗ = arctan δl sin %3

− cos %2(δl cos %3+δu)

δ∗ = − cos %2(δl cos %3+δu)
sin %∗

Hence:

|%1 + %∗| = arccos
(
xs

δ∗

)
The sign of %1 + %∗ can be obtained by checking the zs component in (1.13):

zs = δl (sin %1 sin %3 − cos %1 cos %2 cos %3)− δu cos %1 cos %2 = δ∗ sin (%1 + %∗)

Since δ∗ > 0, %1 + %∗ has the same sign as zs. Hence the last joint value %1 can be

computed.
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1.3 Central catadioptric vision sensor model

1.3.1 Definitions

Here, we present the fundamental mathematical models of optical cameras and their

parameters. Part of this section is taken from [76]. We concentrate on illuminance

images, i.e. images measuring the amount of light impinging on a photosensitive device.

It is important to stress that any digital image, irrespective of its type, is a 2-D array

(matrix) of numbers. Hence, any information contained in the images (e.g. shape,

measurements, or object identity) must ultimately be extracted from 2-D numerical

arrays, in which it is encoded. A simple look at any ordinary photograph suggests the

variety of physical parameters playing a role in image formation. Here is an incomplete

list:

• optical parameters of the lens (lens type, focal length, field of view, angular

apertures);

• photometric parameters appearing in the model of the light power reaching the

sensor after being reflected from the objects in the scene (type, intensity, direction

of illumination, reflectance properties of the viewed surfaces);

• geometric parameters determining the image position on which a 3-D point is

projected (type of projections, position and orientation of the camera in space,

perspective distortions introduced by the imaging process).

The most common vision sensor designs used in robotics are based on the

conventional perspective camera model, and on the catadioptric camera model. The

latter is obtained by combining mirrors with a conventional imaging system, in order

to increase the field of view of the camera, which is restricted in the perspective

model. Originally introduced mainly for monitoring activities, catadioptric visual

sensors are now widely used in applications like: surveillance, immersive telepresence,

videoconferencing, mosaicing, robotics, and map building [30]. The larger field of view

eliminates the need for more cameras or for a mechanically turnable camera.

In literature, several methods have been proposed for increasing the field of view of

camera systems. Here, we focus uniquely on central catadioptric designs, i.e. designs

based on models that utilize a single projection center for world to image mapping.
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In central catadioptric vision sensors, all rays joining a world point and its projection

in the image plane pass through a single point called principal projection center. The

conventional perspective camera model, also known as pinhole camera model is a typical

example of central catadioptric vision sensor, based on the assumption that the mapping

of world points into image plane points is linear in homogeneous coordinates. There are

central catadioptric systems whose geometry cannot be modeled using the conventional

pinhole model. Baker and Nayar in [2] show that all central catadioptric systems with

a wide field of view may be built by combining an hyperbolic, elliptical or planar

mirror with a perspective camera and a parabolic mirror with an orthographic camera.

However, the mapping between world points and points in the image plane is no longer

linear. In [30], the unifying model for all central catadioptric imaging systems has been

introduced. In this model, which uses a virtual unitary sphere (shown in Fig. 1.6) as a

calculus artefact, the conventional perspective camera appears as a particular case. In

the remainder of this chapter, this unified central catadioptric model will be utilized to

derive the mapping between world points and corresponding image points.

With reference to Fig. 1.6, let us define the reference frames: camera frame

FC(C, xc, yc, zc) (C is the principal projection center of the central catadioptric system)

and image frame FI(I,X, Y ). The world frame FW(W,x′, y′, z′) has been defined in

Sect. 1.1. Point coordinates are expressed in meters in FW and FC , and in pixels in FI .
The virtual unitary sphere is centered in C, and the optical center of the conventional

camera (with coordinates [0 0 − ξ]T in FC) is denoted C ′. I is the image center, also

known as principal point. IC is the intersection between the zC axis and the image

plane. Its coordinates in FI , XI and YI , determine the signed offsets in pixels from

I to the zC axis, also known as principal point error. The image plane has equation

zc = ψ − 2ξ in FC . Parameters ξ and ψ describe the type of sensor and the shape of

the mirror, and are function of mirror shape parameters.

For any world point d (see Fig. 1.6), we want to derive the image coordinates of the

corresponding projected point D. The world point is denoted d, because in visual PF

it is often chosen coincident with the path desired reference point defined in Sect. 1.1.

This relationship can be written:

D =I TC
CTW

[
dT 1

]T
(1.14)
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Figure 1.6: The unified central catadioptric camera model: virtual unitary sphere,

image plane, and other relevant variables.

where the matrices ITC (size 2 × 3) and CTW (size 3 × 4) indicate respectively

the transformations: from camera to image, and from world to camera coordinates.

Deriving these transformations is equivalent to assuming knowledge of some camera

characteristics, known in vision as camera extrinsic and intrinsic parameters, necessary

to derive respectively CTW and ITC . The problem of estimating the value of these

parameters is called camera calibration.

1.3.2 Extrinsic parameters

The extrinsic camera parameters are defined as any set of geometric parameters that

identify uniquely the transformation CTW between FW and FC . A typical choice for

describing the transformation CTW , is to use:

• a 3-D translation vector T describing the relative positions of the origins of the

two reference frames;

• a 3 × 3 orthogonal rotation matrix R that brings the corresponding axes of the
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two frames onto each other (N.B: the orthogonality relations reduce the number

of degrees of freedom of R to three).

Thus, the relation between the world and camera coordinates (noted dc) of a point d,

is:

dc = R(d− T ) (1.15)

Hence, the 3× 4 matrix CTW is:

CTW = [R −RT ]

1.3.3 Intrinsic parameters

The intrinsic parameters are the set of parameters that characterize the optical,

geometric and digital characteristics of the viewing camera. They are necessary to

link the pixel coordinates of an image point with the corresponding coordinates in the

camera reference frame, i.e., to identify the transformation ITC .

For the conventional perspective camera model, for instance, we need three sets of

intrinsic parameters, respectively specifying:

• the perspective projection, for which the only parameter is the focal length f ;

• the transformation between FC and FI coordinates, for which the parameters

are: the metric size of the pixel lX and lY in the axis directions, and the principal

point error (XI , YI);

• the geometric distortion induced by the optics; usually, distortion is evident at the

periphery of the image (radial distortion3), or even elsewhere when using optics

with large fields of view; radial distortion is ignored whenever high accuracy is

not required in all regions of the image, or when the peripheral pixels can be

discarded.
3Radial distortions can be modeled rather accurately according to the relations:

X = X̃
(
1 + α1D̃

2 + α2D̃
4
)

Y = Ỹ
(
1 + α1D̃

2 + α2D̃
4
)

with X̃ and Ỹ the coordinates of the distorted points, and D̃2 = X̃2 + Ỹ 2. This distortion is a radial

displacement of the image points. A simplified model with α2 set to zero is often still accurate.
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Neglecting radial distortion, the relation between the camera and image coordinates

of a point d is:

[D 1]T = Mint

[
xc

zc + ξ ‖ dc ‖
yc

zc + ξ ‖ dc ‖
1
]T

The matrix Mint can be written as Mint = McMm where the upper triangular matrix

Mc contains the conventional camera intrinsic parameters, and the diagonal matrix Mm

contains the mirror intrinsic parameters:

Mc =


1
lY

0 XI

0 1
lX

YI

0 0 1

 Mm =


ψ − ξ 0 0

0 ψ − ξ 0

0 0 1


Note that, setting ξ = 0 and ψ = f , the general projection model becomes the well

known perspective projection model. In this case, the 2×3 matrix ITC relating camera

and image coordinates becomes:

ITC =
1
zc

 f
lX

0 XI

0 f
lY

YI

 (1.16)

The relationship:

D =I TCdc (1.17)

is nonlinear because of factor 1/zc, and does not preserve neither distances between

points (not even up to a common scaling factor) nor angles between lines. However, it

does map lines into lines. A classic approximation that makes this relationship linear

is the weak perspective camera model. This model requires that the relative distance

along the optical axis between any two scene points is much smaller than the average

distance z̄c, of the points from the viewing camera. In this case, (1.16) can be rewritten

by replacing zc with z̄c. Another simplification, the normalized perspective camera

model, is obtained by assuming: XI = YI = 0 and lX = lY = 1.

1.4 Visual servoing

In this Section, which is taken in part from [8], we describe the basic techniques that

are by now well established in the field of visual servoing. We first give an overview

of the general formulation of the visual servo control problem. We then describe the
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two basic visual servo control schemes: image-based and position-based visual servo

control. In position-based approaches, visual feedback is computed by reducing errors

in estimated pose space. In image-based servoing, control values are computed on the

basis of image features directly.

1.4.1 Outline

Visual servo control refers to the use of computer vision data to control the motion of

a robot. The vision data may be acquired from a camera that is mounted directly on

a robot manipulator or on a mobile robot (in this case, motion of the robot induces

camera motion). Otherwise, the camera can be fixed in the workspace (the camera

can observe the robot motion from a stationary configuration). Other configurations

can also be considered. However, the mathematical development of all these cases is

similar, and here we shall specifically focus on the former case (referred to as eye-in-hand

in the literature), since in this thesis we consider mobile robots with an on-board

camera. Visual servo control relies on techniques from image processing, computer

vision, and control theory. Since it is not possible to cover all of these in depth, we

will focus here primarily on issues related to control, and to those specific geometric

aspects of computer vision that are uniquely relevant to the study of visual servo

control. For instance, we will not specifically address issues related to feature tracking

or three-dimensional pose estimation.

The aim of all vision-based control schemes is to minimize a k-dimensional error

e(t), which is typically defined by:

e(t) = s (M(t),P)− s∗ (1.18)

In (1.18), The vector M(t) is a set of image measurements (e.g., the image coordinates

of interest points or the image coordinates of the centroid of an object). These image

measurements are used to compute a vector of k visual features, s (M(t),P), in which P
is a set of parameters that represent potential additional knowledge about the system

(e.g., coarse camera intrinsic parameters or 3-D models of objects). The vector s∗

contains the desired values of the features. Let us consider for simplicity the case of a

fixed goal pose and a motionless target, (i.e., s∗ = const, and changes in s depend only

on camera motion). Moreover, we consider the general case of controlling the motion of

a camera with six degrees of freedom: let the spatial velocity of the camera be denoted
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by uc. We consider uc as the input to the robot controller. Visual servoing schemes

mainly differ in the way that s is designed. Here, we shall consider two very different

approaches. First, we describe image-based visual servo control, in which s consists of

a set of features that are immediately available in the image data. Then, we describe

position-based visual servo control, in which s consists of a set of 3-D parameters,

which must be estimated from image measurements. Once s is selected, the design of

the control scheme can be quite simple. Perhaps the most straightforward approach is

to design a velocity controller. To do this, we require the relationship between the time

variation of s and the camera velocity. The relationship between ṡ and uc is given by:

ṡ = Lsuc (1.19)

where the k × 6 matrix Ls is named the interaction matrix related to s. The term

feature Jacobian is also used somewhat interchangeably in the visual servo literature.

Using (1.18) and (1.19), we immediately obtain the relationship between the camera

velocity and the time variation of the error:

ė = Lsuc (1.20)

If we wish to ensure an exponential decoupled decrease of the error (i.e., ė = −λe), we

obtain using (1.20):

uc = −λL+
s e, (1.21)

where the 6 × k matrix L+
s is chosen as the Moore-Penrose pseudoinverse of Ls, that

is: L+
s = (LT

s Ls)−1LT
s when Ls is of full rank 6. This choice allows ‖ ė−λLsL

+
s e ‖ and

‖ uc ‖ to be minimal. When k = 6, if detLs 6= 0, it is possible to invert Ls, giving the

control uc = −λL−1
s e. In real visual servo systems, it is impossible to know perfectly

in practice either Ls or L+
s . So an approximation or an estimation of one of these

two matrices must be realized. In the sequel, we denote both the pseudoinverse of the

approximation of the interaction matrix and the approximation of the pseudoinverse

of the interaction matrix by the symbol L̂+
s . Using this notation, the control law is in

fact:

uc = −λL̂+
s e (1.22)

This is the basic design implemented by most visual servo controllers. All that remains

is to fill in the details: How should s be chosen? What then is the form of Ls? How
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should we estimate L̂+
s ? What are the performance characteristics of the resulting

closed-loop system? These questions are addressed in the remainder of this Section.

1.4.2 Image-based visual servoing

Traditional image-based control schemes use the image-plane coordinates of a set of

points (other choices are possible, but we shall not discuss these here) to define the set

s. Consider the case of a conventional perspective camera. We assume (recalling the

notation from Sect. 1.3) that XI = YI = 0 and lX = lY = l. Then, for a 3-D point d

with image coordinates D = [X,Y ]T , the interaction matrix Ls is (s ≡ D):

Ls =

 − f
zcl 0 X

zc

lXY
f −f2+l2X2

fl Y

0 − f
zcl

Y
zc

f2+Y 2

fl − lXY
f −X

 (1.23)

In the matrix Ls, the value zc is the depth of the point d relative to the camera frame

FC . Therefore, any control scheme that uses this form of the interaction matrix must

estimate or approximate the value of zc. Similarly, the camera intrinsic parameters are

involved in the computation of Ls. Thus, Ls cannot be directly used in (1.21), and an

estimation or an approximation L̂s must be used. To control the 6 degrees of freedom,

at least three points are necessary (i.e., we require k ≥ 6).

1.4.3 Position-based visual servoing

Position-based control schemes use the pose of the camera with respect to some

reference coordinate frame to define s. Computing that pose from a set of measurements

in one image necessitates the camera intrinsic and extrinsic parameters to be known.

It is then typical to define s in terms of the parameterization used to represent the

camera pose. The image measurements M are usually the pixel coordinates of the set

of image points (but this is not the only possible choice), and the parameters P in the

definition of s = s(M,P) in (1.18) are the camera intrinsic and extrinsic parameters.

Many solutions for position-based visual servoing have been proposed in the literature.



Chapter 2

Related work

This chapter reviews some recent research works in the field of path following. First

we shall focus on general works on path following that do not specify the sensor used

to detect the path, but assume geometric knowledge of the path characteristics. These

works will be referred to as ’sensor-less’ approaches, since they focus on the control

aspects of PF rather than on the sensor processing required to detect and model the

path. In the second section, we shall instead focus on works that use a visual approach

to solve path following, and include considerations and practical implementation of the

sensing techniques, along with the control aspects. Throughout the chapter, we adopt

the notation defined in Chapter 1. Unless otherwise specified, in all works the PF task

consists of driving the path error e (ε) to ê (ε) ≡ 0.

2.1 Sensor-less path following

In [16], Canudas de Wit and others tackle the problem of following a path with a

unicycle robot. The path following constraint is chosen by defining d as the normal

projection of r on p, i.e., by choosing d such that et =const = 0. The authors assume

that the path curvature is differentiable, and the motion exigency is guaranteed by

imposing constant linear velocity: u1 = const > 0. Two alternative controllers on the

angular velocity u2 are designed. The first is a locally stabilizing linear feedback control

obtained by tangent linearization of the kinematic model:

u2 =
(
λ1en − λ2eθ +

cd cos eθ
1 + cden

)
u1 (2.1)

31
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The second controller is nonlinear:

u2 =
(
λ1en

sin eθ
eθ

+
cd cos eθ
1 + cden

)
u1 − λ2 (u1) eθ (2.2)

and is used to asymptotically stabilize the system under some conditions on the initial

robot configuration. A Lyapunov-based proof is carried out for the second controller.

In both controllers, λ1 and λ2 are positive gains. Note that in the nonlinear controller,

λ2 is a function of u1.

In [15], straight line following with a car-like robot is considered. Although the

implementation presented uses an on-board omnidirectional camera, the algorithm

relies only on the 3-D features of the line, which can be detected independently from

the sensor. For this reason, we consider this controller among the sensor-less path

following approaches. The authors use the car-like model (1.9). The path following

constraint is et =const = 0, and the linear velocity u1 is piecewise constant non-null

(hence, the motion exigency is guaranteed). Feedback linearization is used to design

a proportional-derivative path following controller on the robot angular velocity with

respect to the midpoint of the rear wheels:

u2 = λ1
en

u1 cos eθ
− λ2 tan eθ

λ1 and λ2 are positive controller gains. Critically damping behavior can be obtained

if λ2 = 2
√
λ1. Note that this controller presents a singularity for eθ = ±π

2 .

Frezza and others [29] enable a unicycle robot to follow paths assumed to be

representable in FR as: x = x (y, t) (the path changes over time under the action of

robot motion). They define moments νi as a chain of derivatives of the path function,

computed in y = 0: νi = ∂i−1x
∂i−1y

|y=0. The proposed controller should regulate to zero ν1

and ν2. Note that this formulation of PF is equivalent to imposing path following

constraint: et =const = 0. Since conventional control via feedback linearization

demands exact knowledge of the contour and is not robust to disturbances, they

define xb = xb (y, t) as a feasible cubic B-spline instantaneously approximating the

path. Under these assumptions, they show that the system can be locally stabilized by

controller:

u2 = u1
∂2xb

∂2y
(0, t)
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For u1 non-null, the motion exigency is guaranteed.

In [69], a smooth time-varying feedback stabilization method is proposed for a

nonholonomic mobile robot with m = 2 control inputs, and n ≤ 4 generalized

coordinates. The method is based on the chained form model, which is a

canonical model for which the nonholonomic motion planning problem can be solved

efficiently [58]. The author assumes that the robot kinematic model can be converted

into a chained form via input transformation and change of coordinates. An

appropriate chained form representation of the model is used: [χ̇1 χ̇2 . . . χ̇n−1 χ̇n]T =

[u′1 χ3u
′
1 . . . χnu

′
1 u

′
2]

T , where u′1 and u′2 are the new control inputs. Following a path

is equivalent to zeroing Ξ = [χ2 . . . χn]T . The author shows that a time-varying control

u′2 = u′2(u
′
1, t,Ξ) globally asymptotically stabilizes Ξ = 0 for any piecewise-continuous,

bounded and strictly positive u′1(t).

2.2 Vision-based path following

In [72], Skaff and others study vision-based following of straight lines for a six-legged

robot equipped with a fixed conventional perspective camera. The camera leans forward

with a constant tilt angle with respect to the ground. The legged robot is modeled as

a unicycle. The authors propose two steering policies u2, that in the article are called

’position-based controller’ and ’field of view respecting controller’ in the article. In

both controllers, the motion exigency is guaranteed by imposing: u1 = const > 0. In

the first case, the path following constraint is et = const = 0, and the controller is

identical to (2.1), in the particular case of straight path (cd ≡ 0):

u2 = (λ1en − λ2eθ)u1

For the ’field of view respecting controller’, the path following constraint is defined

in the image. It consists of centering the perspective projection of the line in the

image plane. This corresponds to zeroing Xtop and Xbot, which are defined (assuming

that they always exist) as the abscissas in FI of the intersection points of the image

projection of the line with the top and bottom sides of the field of view. Note that if

the camera optical axis is in the robot sagittal plane (as it is assumed in the article),

this is equivalent to imposing PF constraint et = const = 0. The states [Xtop Xbot]T
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are mapped to a new state space [ϕ1 ϕ2]
T defined by the projection of the image plane

on the ground. In the new state space, a closed loop policy (detailed in the paper):

u2 = u2 (ϕ1, ϕ2)

regulates the system to the desired set point. The controller is mapped back to

[XtopXbot]T coordinates, and a Lyapunov-like function is used to prove the asymptotic

stability of the system under given conditions on the camera parameters.

More recently, Coulaud and others [14] have proposed a vision-based feedback

controller and discussed the existence and stability of an equilibrium trajectory for

arbitrary paths. They focus on following paths with a unicycle robot equipped with a

fixed conventional perspective camera. The camera leans forward, with a tilt angle of

45◦. The motion exigency is verified by imposing constant linear velocity u1 = const

> 0. Having defined the horizon as the straight line parallel to the wheel axle and

at constant distance yh ahead of it, and d the intersection point between horizon and

path1, the proposed controller is:

u2 = λX

with λ positive gain and X abscissa in FI of the projection D of d in the image

plane. For a circular path, local asymptotic stability of an equilibrium state [θ X]Teq
that is function of cd, u1, and λ (i.e., [θ X]Teq = [θ (cd) X (c, u1, λ)]T ) is proved. The

authors show that tracking error is bounded for a path with continuously differentiable

curvature. Arbitrary paths can be tracked by dynamically adapting u1, λ and yh.

Design constraints, stability margin and convergence rate are represented in the phase

plane (θ, X).

Another interesting work is presented in [54], where vision-based PF for unicycle

and car-like robots equipped with a conventional perspective camera is achieved by

controlling the curve shape in the image plane. Similarly to [14] and [72], the camera

leans forward with non-null tilt angle. The approach is similar to [29]. The authors

assume that the curve orthographic projection on the zc = 1 plane in FC can be

represented as: xc = xc(yc, t) (N.B: time dependance is due to robot motion) and
1In case of multiple intersection points, D will be the closest to the robot sagittal plane.
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define νc
i = ∂i−1xc

∂i−1yc
, with i = 1, 2, . . .. Then, for linear curvature curves (clothoids), the

dynamics of the orthographic projection image curve (i.e. νc
i ) are proved equivalent

to those of the perspective projection image curve. Both can then be expressed

as a function of νc
1, ν

c
2 and νc

3 alone. Noting [xr
c y

r
c z

r
c ]

T the FC coordinates of the

contact point between wheel and ground (i.e., the robot reference point r), following

the path is equivalent to zeroing νc
1|yc=yr

c
and νc

2|yc=yr
c
. Again, this is equivalent to

imposing PF constraint et = const = 0. By transforming the system [ν̇c
1 ν̇

c
2 ν̇

c
3]

T

in canonical form, “clothoid following” is shown to be globally achievable with

piecewise smooth sinusoidal inputs. Such piecewise smooth controllers are given for an

arbitrary path, and asymptotic stability of the closed-loop system is proved. In this

formulation of PF, the motion exigency specification is not explicitly guaranteed. The

practical implementation is rather sophisticated, implying an extended Kalman filter

to dynamically estimate the path curve derivatives up to order three.

In [33], Hadj-Abdelkader and others present an image-based visual servoing scheme

which enable a mobile robot equipped with a para-catadioptric camera to follow straight

lines. The line following control law is designed for generic mobile robots, and is

implemented on a unicycle robot in the paper. The PF constraint is et = const

= 0, and the motion exigency is guaranteed by u1 = const > 0. Para-catadioptric

cameras are formed by a parabolic mirror combined with an orthographic camera. The

central catadioptric model described in Sect. 1.3 can be used for this kind of sensors by

appropriately setting ξ and ψ. The equation of the conic curve in FI , corresponding

to the straight path is derived. Then, a minimal and generic analytical form of the

central catadioptric interaction matrix Ls for the image of 3D straight lines is derived.

Finally, the authors rely on a number of experiments to show that the image-based

control law (1.22) on the angular velocity enables the unicycle robot to follow the line.



Chapter 3

Vision-based path following for a

nonholonomic mobile robot with

fixed pinhole camera

Applying visual servoing control techniques for navigation with wheeled mobile robots,

involves well known control problems related to the nonholonomic constraint. Firstly,

the linearization of these systems is uncontrollable, and, secondly, there do not

exist smooth state feedback laws for stabilizing these systems to an equilibrium.

Notwithstanding, visual servoing techniques have been successfully used to control

nonholonomic mobile robots in [36], [56], [77], and more recently in [55]. Here, we

present two path following (PF) control schemes (position-based and image based),

enabling nonholonomic mobile robots with a fixed pinhole camera to reach and follow a

continuous path on the ground by processing a small set of features in the image plane.

This chapter is organized as follows. In Sect. 3.1, all the relevant variables utilized

in our method are defined. In Sect. 3.2, we propose and illustrate the two controllers.

In Sect. 3.3 a Lyapunov-based stability analysis, which takes into account the robot

kinematic constraint on maximum curvature, is carried out. The experimental setup

and simulated and experimental results are respectively presented in Sect. 3.4, Sect. 3.5

and 3.6. In the conclusion, we summarize the results, and compare the two controllers.

36
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Figure 3.1: Relevant variables utilized in this work. The task for the robot (represented

in orange), equipped with a fixed pinhole camera (blue) is to follow the red path, noted

p. The figure represents: top view (a,d), image plane (b), and side view (c). The

camera field of view and its projection on the ground are represented in cyan. The

control inputs are represented in green.

3.1 Definitions

In this work, we focus on the path following task for nonholonomic mobile robots

equipped with a fixed pinhole camera. All relevant variables (most of which have been

defined in Chapter 1) are shown in Fig. 3.1. The camera optical axis has a constant

tilt offset 0 < ρ < π
2 with respect to the y axis and the optical center C is positioned

in the robot sagittal plane at [x y z]T = [0 ty tz]T (see Fig. 3.1(c)). We assume that in

FW , the path curve p, can be expressed by a twice differentiable function. A following

direction is associated to the path. Point r is chosen as the projection on the ground

of the wheels center in the case of a unicycle robot, and of the rear axis center in

the case of a car-like robot. We refer to the general nonholonomic model (1.9), which

is valid both for unicycle and car-like robots. In (1.9), control input u1 represents

the linear velocity, while control input u2 represents the angular velocity around the

z axis (positive counterclockwise). Recall (see Sect. 1.2.1) that for a car-like robot,

the steering angle constraint |φ| ≤ φM imposes the bound (1.11) on the instantaneous

applicable curvature; in the case of a unicycle robot, there is no such bound.

For the nonholonomic model (1.9), the dynamics of the FP path errors et, en and
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eθ (see Sect. 1.1) are: 
ėt = −ud1 − ud2 en + u1 cos eθ
ėn = ud2 et − u1 sin eθ
ėθ = u2 − ud2

(3.1)

where ud1 and ud2 are the components of the tracking control ud. These must be

compliant with the path curvature at d in FR, noted cd1:

ud2 = cd ud1 (3.2)

In most works (see Chapter 2), the path following constraint is chosen as

et = const = 0, and the motion exigency as u1 = const > 0. For this formulation of

the PF problem, the system becomes: ėn = −u1 sin eθ
ėθ = u2 − u1cd cos eθ

1+encd

The path following constraint et = const = 0 does not guarantee that the path is

visible. Instead, since in our work the robot camera is the only sensor available, we want

to ensure path visibility at all times. Hence, we use a path following constraint that

keeps the reference point d in the camera field of view. The path following constraint

chosen in this work will be detailed in the next section.

Similarly to [16], [72], and [14], we express the motion exigency as: u1 = const > 0,

and we apply a nonlinear feedback on u2 based on the features of a visible path point.

Under the assumption that a portion of the path is always visible, we utilize the features

of the first (considering the path direction, as defined by ud1) visible path point d of

coordinates [xy0]T in FR, projected to D = [XY ]T on the image plane (see Fig. 3.1(b)).

We note: P the projection of p on the image plane, Γ the oriented tangent of P at D,

CD the curvature of P at D, and Θ ∈ ]−π, π] the angular offset from Γ to the −Y axis

(positive counterclockwise) 2.
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.2: Seven possible configurations of P in the image plane. Point D is

represented by the red circle.

3.2 Control design

In both control schemes that we propose (position-based and image-based), the PF task

is defined by path image features. In practice, the PF task is to drive D to the bottom

pixel row of the image plane with X = Θ = 0, as shown in Fig. 3.2(g). Depending on

the position of D in the image plane, the control schemes switch between two primitive

controllers: a row controller and a column controller. In both primitive controllers,

the task is to drive the path features to a desired configuration, while D is constrained

to a line in the image plane: a row of pixels (Y = const) in the first case, and a

column of pixels (X = const) in the second case. These conditions determine the path

following constraint outlined in Sect. 3.1. The control schemes utilize the two primitive

controllers in general initial conditions, based on a switching mechanism. Consider for

instance the initial configuration shown in Fig. 3.2(a), with D on the top pixel row of

the image plane. Initially, the row controller must be used to drive D to a lateral pixel

column of the image plane (e.g., the left column, as in Fig. 3.2(b)). Afterwards, the

column controller will be used to drive D along the left pixel column of the image to

the bottom left corner (Figures 3.2(c), 3.2(d) and 3.2(e)). Finally, the row controller

should be used to drive D along the bottom row of the image plane to the desired

configuration (Fig. 3.2(g)).

The task of the position-based path follower is to control the path error in FP ,

whose dynamics, expressed by replacing (3.2) in (3.1), clearly depend on the curvature

cd. On the other hand, the task of the image-based path follower is to control the
1cd is always defined, since we have assumed that the path curve can be expressed by a twice

differentiable function in FW , and this property is preserved in FR.
2Γ and Θ are always defined, since we have assumed that the path curve can be expressed by a

twice differentiable function in FW and this property is preserved in FI .



3.2. Control design 40

error related to the image features X, Y , and Θ, without taking into account the

path curvature. Therefore, a major difference between the two proposed controllers is

that the position-based controller depends on cd, whereas the image-based controller

does not. In the remainder of this section, we shall describe how the 3D path

features are derived from the corresponding image path features. We shall also

illustrate the implementation of the two primitive controllers for both position-based

and image-based visual servoing.

3.2.1 Deriving the path 3D features

For the position-based approach, the path 3D features in FR must be derived from the

image features by considering a pinhole camera model; radial distortion and principal

point error are neglected. Hence, the five camera parameters used for projecting are:

P = [fX fY ρ ty tz]
T

where the focal lengths in horizontal and vertical pixel size fX and fY are the camera

intrinsic parameters, and ρ, ty and tz are the extrinsic parameters shown in Fig. 3.1(c).

For simplicity, let us consider a camera model with fX = fY = 1, known in the

literature as normalized perspective camera model. The mapping between the FI and

FC coordinates of a ground point gives3:

xc =
Xtz

sin ρ+ Y cos ρ
(3.3)

yc =
Y tz

sin ρ+ Y cos ρ
(3.4)

zc =
tz

sin ρ+ Y cos ρ
(3.5)

The robot frame coordinates of the ground point can then be easily derived by using

the homogenous transformation from FR to FC (i.e, the camera extrinsic parameters).

For the orientation of the tangent at d, we obtain:

eθ = ATAN2 (− sinΘ (sinρ+ Y cosρ)−X cosΘ cosρ, cosΘ)

To derive cd (i.e., the path curvature at d in FR), the image path points are initially

projected to FR. Afterwards, the equation of the path osculating circle in d (thus, the

value of cd) is derived using least square interpolation.
3Equations (3.3) - (3.5) do not present singularities, since by construction the image projection of

any ground point has Y > − tan ρ.
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3.2.2 Position-based path follower

Row controller

The task of the position-based row controller is to drive (x, y, eθ) to a desired set point

(x̂, ŷ, êθ) under constraint Y = const = Y ∗ (i.e., D is constrained to a pixel row in the

image plane).

This is equivalent to constraining d to the projection of the pixel row on the ground

(see Fig. 3.1(a)), i.e. to the line of equation:

y = const = y∗

The above equation, which defines the path following constraint, can be rewritten by

introducing the position errors in FP :

ẏ =
d

dt
(en sin eθ − et cos eθ) = 0

Using (3.1) simple calculations lead to:

ud1 =
u1 + u2x

cos eθ

under the constraint that |eθ| 6= ±π
2 , which is plausible, assuming that Γ is never

parallel to the the X axis of frame FI4. Replacing ud1 and using (3.1) in:

ẋ =
d

dt
(−en cos eθ − et sin eθ)

gives:

ẋ = (tan eθ)u1 + (y∗ + x tan eθ)u2

Hence, the system state equations are: ẋ

ėθ

 = Au1 +Bu2 (3.6)

where:

A =

 tan eθ
− cd

cos eθ

 B =

 y∗ + x tan eθ
1− cdx

cos eθ


4This singularity can be avoided by temporarily switching to the position-based column controller.
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When B 6= 0 (i.e. r is not at the center of the osculating circle of p at d), the system

is controllable and we select as control law:

u2 = −B+

 λxex

λθeθ̂

 +Au1

 (3.7)

where ex = x−x̂ and eθ̂ = eθ−êθ are the state errors, and λx, λθ are given positive gains.

Column controller

The task of the position-based column controller is to drive (x, y, eθ) to a desired set

point (x̂, ŷ, êθ) under constraint X = const = X∗ (i.e., D is constrained to a pixel

column in the image plane). This is equivalent to constraining d to the projection of

the pixel column on the ground (see Fig. 3.1(d)), i.e. to the line of equation:

y = y0 + x tanβ

where y0 and β ∈
]
−π

2 ,
π
2

]
(shown in Fig. 3.1(d)) are: y0 = ty − tz tan ρ

β = ATAN 1
X cos ρ

with β = π
2 at the singularity X = 05.

Let us redefine the system variables in a new frame F̄R(r, x̄, ȳ, z̄), obtained by

rotating FR by β around z and shown in Fig. 3.1(d).

In this new frame, noting ēθ = eθ + β, we have: x̄

ȳ

 =

 − cos ēθ − sin ēθ
sin ēθ − cos ēθ

  en

et


The path following constraint becomes:

ȳ = const = ȳ∗ (3.8)

with ȳ∗ = y0 cosβ. Hence, as before, but in F̄R:

˙̄y =
d

dt
(en sin ēθ − et cos ēθ) = 0

5In that case, the projection of the pixel column on the ground is the line of equation: x = 0.
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Using (3.1) simple calculations yield:

ud1 =
u1 cosβ + u2x̄

cos ēθ

under the constraint that |ēθ| 6= ±π
2 , which is plausible, assuming that Γ is never

parallel to the Y axis of frame FI6. Replacing ud1 and using (3.1) in:

˙̄x =
d

dt
(−en cos ēθ − et sin ēθ)

gives:
˙̄x = (tan ēθ cosβ − sinβ)u1 + (ȳ∗ + x̄ tan ēθ)u2

Hence, the system state equations are: ˙̄x
˙̄eθ

 = Āu1 + B̄u2 (3.9)

where:

Ā =

 tan ēθ cosβ − sinβ

− cd cos β
cos ēθ

 B̄ =

 ȳ∗ + x̄ tan ēθ
1− cdx̄

cos ēθ


When B̄ 6= 0 (i.e. r is not at the center of the osculating circle of p at d), the system

is controllable, and we select as control law:

u2 = −B̄+

 λ̄xēx

λ̄θēθ̂

 + Āu1

 (3.10)

where ēx = x̄ − ˆ̄x and ēθ̂ = ēθ − ˆ̄eθ are the state errors, and λ̄x, λ̄θ are given positive

gains. Note that in this case, the desired states ˆ̄x and ˆ̄eθ are expressed in F̄R.

3.2.3 Image-based path follower

Recalling Sect. 1.4, the interaction matrix Ls (X,Y,Θ), relating the path image features

with the spatial velocity of the robot camera uc, must be derived in order to design the

image-based path following controller. In this work:[
Ẋ Ẏ Θ̇

]T
= Ls (X,Y,Θ)uc

6This singularity can be avoided by temporarily switching to the position-based row controller.
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Ls (X, Y, Θ) =


− 1

zc
0 X

zc
XY −1−X2 Y

0 − 1
zc

Y
zc

1 + Y 2 −XY −X

cos ρ

tz

(
1+tan2 Θ

) 0
−Xcosρ+tanΘ[sinρ+(Y−1) cos ρ]

tz

(
1+tan2 Θ

) −X+(1−Y)tanΘ
1+tan2 Θ

− tanΘ(2X+tanΘ)
1+tan2 Θ

− 1
1+tan2 Θ


(3.11)

The expression of Ls (X,Y,Θ) for the normalized perspective camera model (introduced

in Sect. 3.2.1) is shown at the top of this page. In (3.11), zc is derived from (3.5). In the

following, we shall note LX , LY and LΘ the rows of Ls (respectively, top to bottom).

Note that the singularity at Θ = ±π
2 does not jeopardize the controller behavior, if, for

Θ tending to ±π
2 , LΘ is approximated with its limit L̂Θ:

L̂Θ = [0 0 0 0 − 1 0]

The robot velocity in FC can be expressed in function of u by using the homogenous

transformation from FR to FC :
uc =C TRu

with:

CTR =



0 −ty
− sin ρ 0

cos ρ 0

0 0

0 − cos ρ

0 − sin ρ


In the following, we shall note T1, T2 respectively the first and second columns of CTR.

Similarly to the position-based path follower, the image-based path follower also

utilizes a row a column primitive controllers. However, in this case, the controllers are

based on the reference path point image features instead of its 3D features.

Row controller

The task of the image-based row controller is to drive (X, Θ) to a desired set point

(X̂, Θ̂) under constraint Y = const = Y ∗ (i.e., D is constrained to a pixel row in the
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image plane). Since Ẏ = 0, the system state equations are: Ẋ

Θ̇

 = Acu1 +Bcu2 (3.12)

where:

Ac =

 LX

LΘ

T1 Bc =

 LX

LΘ

T2

When Bc 6= 0, the system is controllable, and we select as control law:

u2 = −B+
c

 λXeX

λΘeΘ

 +Acu1

 (3.13)

where eX = X − X̂ and eΘ = Θ − Θ̂ are the state errors defined in the image plane,

and λX , λΘ are given positive gains.

Column controller

The task of the image-based column controller is to drive (Y , Θ) to a desired set point

(Ŷ , Θ̂) under constraint X = const = X∗ (i.e., D is constrained to a pixel column in

the image plane). Since Ẋ = 0, the system state equations are: Ẏ

Θ̇

 = Ācu1 + B̄cu2 (3.14)

where:

Āc =

 LY

LΘ

T1 B̄c =

 LY

LΘ

T2

When B̄c 6= 0 the system is controllable, and we select as control law:

u2 = −B̄+
c

 λY eY

λΘeΘ

 + Ācu1

 (3.15)

where eY = Y − Ŷ and eΘ = Θ − Θ̂ are the state errors defined in the image plane,

and λY , λΘ are given positive gains.



3.3. Stability analysis 46

control scheme position-based image-based

primitive controller row column row column

X1 x x̄ X Y

X2 eθ ēθ Θ Θ

A1 tan eθ tan ēθ cosβ − sinβ LXT1 LY T1

A2 − cd
cos eθ

− cd cos β
cos ēθ

LΘT1 LΘT1

B1 y∗ + x tan eθ y∗ + x̄ tan ēθ LXT2 LY T2

B2 1− cdx
cos eθ

1− cdx̄
cos ēθ

LΘT2 LΘT2

G1 λx λ̄x λX λY

G2 λθ λ̄θ λΘ λΘ

E1 x− x̂ x̄− ˆ̄x X − X̂ Y − Ŷ

E2 eθ − êθ ēθ − ˆ̄eθ Θ− Θ̂ Θ− Θ̂

Table 3.1: Components of: X , A, B, G, and E for the four controllers

3.3 Stability analysis

The stability analysis has been carried out for both control schemes (position-based and

image-based) by using a Lyapunov-based approach. Note that the four state equations

(3.6), (3.9), (3.12) and (3.14) can be generally written:

Ẋ = Au1 + Bu2 (3.16)

and, similarly, when B 6= 07, the four control laws (3.7), (3.10), (3.13), and (3.15) can

be generally expressed as:

u2 = −B+ (GE +Au1) (3.17)

with X = [X1 X2]
T , A = [A1 A2]

T , B = [B1 B2]
T , and E = [E1 E2]

T two-dimensional

column vectors, and:

G =

 G1 0

0 G2


The components of X , A, B, G and E for the four controllers are recalled in Table 3.1.

Note that, as mentioned in Sect. 3.2, for the two primitive image-based controllers, as

opposed to the position-based controllers, these variables are independent from cd.
7We don’t manage singularity B = 0, since it is extremely unlikely to occur in practice.
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Hence, the following stability analysis is valid for all four controllers. Let us consider

the quadratic Lyapunov function candidate:

V =
|E|2

2

Taking the time derivative of this function along a solution of the closed-loop system

gives:

V̇ = ET Ẋ

Using (3.16) and (3.17) leads to:

V̇ = ET (
Au1 − BB+ (GE +Au1)

)
If we set G1 = G2 = G∗ > 0, since u1 > 0, V̇ is negative semidefinite if and only if:

ET (A− BB+A)
ETBB+E

<
G∗

u1
(3.18)

To verify the Lyapunov sufficient condition (3.18), the robot kinematic constraint on

the maximum applicable curvature cM must be analyzed, since it imposes a constraint

on the maximum applicable gain G∗. In fact, replacing (3.17) in (1.11), gives:

−cM + B+A < −G
∗

u1
BTE < cM + B+A

This equation can be used to derive a sufficient condition for (3.18):

∣∣∣∣∣ET (A− BB+A)
ETB

+ B+A
∣∣∣∣∣ < cM (3.19)

In (3.19) we have expressed a sufficient condition for asymptotic stability as a

condition on the maximum applicable curvature cM , hence on the robot kinematic

model. This condition is also determined by the path characteristics, which must be

compliant with the robot nonholonomic constraint. Condition (3.19) will be verified

numerically, depending on the controller used, on the robot parameters and on the

desired states, as will be shown in the next section.

3.4 Experimental setup

In the following section, we report the simulated and real experimental results obtained

by applying the two proposed PF control schemes. All experiments have been carried
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out with a CyCab. CyCabs are 4 wheel drive, 4 wheel steered intelligent vehicles

designed to carry two passengers. In our CyCab, all computations except the low-level

control have been executed on a laptop with a 2 GHz Centrino processor. A 70◦ field

of view, forward looking, B&W Marlin F-131B camera is mounted on the robot. The

robot is used in car-like mode (i.e., only the front wheels are used for steering), and

the camera is used in auto shutter mode, with image resolution 320× 240 pixels. The

maximum curvature constraint (1.10) must be considered. In particular, for CyCab,

φM = 0.40 rad and L = 1.21 m; thus, cM = 0.30 m−1.

The system has been coarsely calibrated, and we obtained: fX = fY = 240 pixels,

ρ = 0.545 rad, ty = 550 mm and tz = 1625 mm.

The applicable steering angle φ used to control CyCab is derived from the angular

speed u2 (calculated using either (3.7), (3.10), (3.13), or (3.15)):

φ = ATAN
Lu2

u1
(3.20)

In all the simulations and experiments, we set u1 = 0.2 ms−1. Short

video clips of the simulations and experiments can be viewed on the web site:

http://www.dis.uniroma1.it/∼labrob/research/VBPF.html).

3.5 Simulations

The possibility of testing the proposed path following scheme in a simulated

environment has been crucial from the very early stages of this work. To this

end, we have adopted Webots, a mobile robot simulation environment developed by

Cyberbotics, which is used by many universities worldwide for modeling and controlling

mobile robots. In Webots, a complete mobile robotics setup can be defined, by creating

complex environments and equipping robots with sensors and actuators. One can define

all physical properties for each object, and the simulated robot can be programmed with

the same development environment as the real one. By using Webots, it is possible to

debug the algorithms effectively and to test them without endangering the real robot.

Besides, the problem of tuning all the gains can be easily solved in the simulation before

porting on the CyCab.

In Webots, we have designed a simulated robot with the same kinematic and

sensorial characteristics of CyCab. A circular path of radius 12.5 m (i.e., cd = const
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Figure 3.3: Position-based simulation. The robot positions and corresponding

processed images at consecutive time frames are shown during PF.

= 0.08 m−1) has been drawn in the simulation environment. The two control schemes

(position-based and image-based) have been simulated in Webots starting from various

initial configurations.

Consider the initial configuration with the path intersecting the right pixel column

(see Fig. 3.3, top left). A switching strategy combining the column and row controllers

is used. Initially, the column controller (respectively (3.10) for the position-based

simulations, and (3.15) for the image-based simulations) is used to drive D along the

right pixel column of the image to the bottom right corner. For the position-based

controller, we use λ̄x = λ̄θ = 7.0. For the image-based controller, we use λ̄Y = λ̄Θ = 0.5.

Afterwards, the row controller (respectively (3.7) for the position-based simulations,
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Figure 3.4: Evolution of relevant variables during simulated PF with path initially

intersecting the right pixel column. Top: applied steering angle φ in rad (purple:

position-based, green: image-based). Center: state errors E1 (red, in m) and E2 (blue, in

rad) for the position-based column controller (left) and row controller (right). Bottom:

state errors E∗1 (red, non-dimensional) and E2 (blue, in rad) for the image-based column

controller (left) and row controller (right).

and (3.13) for the image-based simulations) is used to drive D along the bottom row of

the image plane to: X̂ = Θ̂ = 0. An adaptive gain is used. This design choice provides

fast convergence for large error values, while avoiding overshoot for small errors. For the

position-based simulations, we use: λx = λθ = 5 exp−10||E|| +5 with ||E|| =
√
e2x + e2θ

the error norm. For the image-based simulations, we use: λX = λΘ = 3 exp−10||E||

with ||E|| =
√
e2X + e2Θ the error norm. With both control schemes, the simulated

robot is able to successfully follow the path. For the position-based simulation, the

robot positions and processed images at consecutive time frames while Cycab follows

the path are shown in Fig. 3.3. The evolution of relevant variables (steering angle and
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Figure 3.5: Initial conditions used in the path following experiments. The point D and

tangent Γ derived by image processing are indicated respectively by a red circle and a

red line.

state errors) for the two control schemes, is plotted in Fig. 3.4. For the image-based

controller, instead of state errors E1 = eX and E1 = eY , we have respectively plotted

the scaled values E∗1 = eX
2XM

for the row controller, and E∗1 = eY
2YM

for the column

controller (2XM and 2YM respectively denote the image width and height). Note

that the steering angle φ, as well as the state errors E∗1 and E2, oscillate more in the

image-based simulations, than in the position-based simulations. This occurs because

the position-based controller utilizes the path curvature for feedback control, which

is not utilized in the image-based scheme: hence, the oscillations in the image-based

steering angle are necessary to compensate the state variations introduced by the path

curvature. Note that at the end of the first phase (after the column controllers have

been applied) the errors on the tangent orientation E2 have not reached 0. This is due

to the switching condition, which is imposed only by the error on the point position E1.

Nevertheless, for both control schemes, when the row controller is applied, the tracking

errors converge, and the mean value of the steering angle at steady state is as expected

from (3.20): ATAN Lcd = 0.096 rad.

3.6 Experiments

After the Webots simulations, the two control schemes have been tested on the real

CyCab in a series of outdoor experiments. The path used in the experiments is

composed of two straight lines of length 6 m joined by a 60◦ arc of circle of radius

10 m (i.e., cd = ±0.1 m−1, with the sign of cd depending on the path direction to be
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Figure 3.6: Position-based stability loci of the state variables (x, x̄ in m, etθ, eθ, ēθ in

rad) that verify the Lyapunov sufficient asymptotic stability condition (cyan) for cd = 0

(above) and cd = ±0.1 m−1 (below), and for: top row controller (left), right column

controller (center), and bottom row controller (right). The desired states are indicated

with the blue cross.

followed by the robot). The path features are derived by tracking straight lines and arcs

of parabola with the ViSP visual servoing software [21]. The tracker must be initialized

by clicking on five path points oriented in the desired path direction.

For each of the two control schemes, experiments with three different initial

conditions have been carried out. The three experiments are enumerated below, and

the corresponding initial conditions are shown in Fig. 3.5 (left to right).

1. Cycab is initially positioned on the path with the correct orientation and small

initial error. Hence, D is on the bottom pixel row of the image plane (see Fig. 3.5,

left). The row controller is used to drive D to X̂ = Θ̂ = 0.

2. CyCab is initially near the path, with D on the right pixel column of the image

plane (see Fig. 3.5, center). A switching strategy combining both row and column

controllers is used. Initially (phase 2.1), the column controller is used to drive D

along the right pixel column of the image to the bottom right corner. Afterwards
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Figure 3.7: Image-based stability loci of the state variables (X, Y in pixels, Θ, Θt

in rad) that verify the Lyapunov sufficient asymptotic stability condition (pink) for:

top row controller (left), right column controller (center), and bottom row controller

(right). The desired states are indicated with the black cross.

(phase 2.2), the row controller is used to drive D along the bottom row of the

image plane to X̂ = Θ̂ = 0.

3. CyCab is initially far from the path, with D on the top pixel row of the image

plane (see Fig. 3.5, right). Initially (phase 3.1), the row controller is used to drive

point D to a lateral pixel column of the image plane. Afterwards (phase 3.2), the

column controller is used to drive D along the right pixel column of the image to

the bottom right corner. Finally (phase 3.3), the row controller is used to drive

D along the bottom row of the image plane to X̂ = Θ̂ = 0.

In order to verify the robustness of the two controllers, the three experiments have

been repeated by considering a random calibration error of either +10% or −10% on

each of the five camera parameters in P.

For the calibrated camera experiments, we have numerically verified the system

sufficient asymptotic stability condition (3.19) as the system state variables evolve. The

state loci that verify condition (3.19) are represented in Fig. 3.6 for the position-based

controllers and in Fig. 3.7 for the image-based controllers. In the position-based case,

as mentioned in Sect. 3.3, the system state and the controller depend on the curvature

cd. In our experimental setup, the value of cd can be 0 (for the straight path portions)

or ±0.1 m−1 (for the arc of circle). Hence, in Fig. 3.6, the state loci are represented

for cd = 0 (above) and cd = ±0.1 m−1 (below). Besides, in the proposed experiments,

three instances of the primitive controllers are used:
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Figure 3.8: First position-based experiment: Cycab is initially positioned on the path

with small initial error. The robot positions and corresponding processed images at

consecutive time frames are shown during PF.

• bottom row controller (throughout the first experiment and during phases 2.2

and 3.3 of the two other experiments),

• right column controller (during phases 2.1 and 3.2),

• top row controller (during phase 3.1).

Hence, in Fig. 3.6 and 3.7, the state loci are represented for each of these three

controllers: top row (left in the two figures), right column (center), and bottom row

(right).

For the top row controllers, the range of X2 (i.e., the range of eθ for the
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path 1cal 06-09 x gamma curv steer deg steer rad exact_curv path 1err 06-09 x gamma curv stesteer rad path 1 22-08 x gamma curv steer

V=0.2 B=1.5 b=0 e=0 -0,03695 -0,007711 0 1,927581 0,033642 0 V=0.2 B=0.4 b=1.4 e=3 -0,013108 -0,051239 0 3 0,05504 0,148238 0,055265 0 -9,78791
-0,036987 -0,00752 0 1,919734 0,033505 0 -0,01303 -0,051335 0 3 0,055058 0,148238 0,055265 0 -9,78791
-0,037454 -0,00648 0 1,888206 0,032954 0 -0,0137 -0,049437 0 3 0,053995 0,148442 0,054825 0 -9,775116

-0,03746 -0,006573 0 1,893008 0,033038 0 -0,013676 -0,049515 0 3 0,054042 0,148463 0,054744 0 -9,772119
-0,037404 -0,006679 0 1,895883 0,033088 0 -0,0137 -0,049437 0 3 0,053995 0,14846 0,05475 0 -9,772243

-0,03743 -0,006632 0 1,894701 0,033068 0 -0,013662 -0,049387 0 3 0,053921 0,148463 0,054744 0 -9,772119
-0,037492 -0,006477 0 1,889651 0,03298 0 -0,0137 -0,049437 0 3 0,053995 0,148481 0,054663 0 -9,76897
-0,037642 -0,00677 0 1,910327 0,033341 0 -0,015015 -0,054635 0 3 0,05951 0,147363 0,052789 0 -9,634026
-0,037621 -0,006737 0 1,907805 0,033296 0 -0,015143 -0,054281 0 3 0,059316 0,147363 0,052789 0 -9,634026
-0,037621 -0,006737 0 1,907805 0,033296 0 -0,01511 -0,054472 0 3 0,05945 0,147363 0,052789 0 -9,634026

-0,03763 -0,00678 0 1,910318 0,03334 0 -0,015048 -0,054444 0 3 0,059375 0,147363 0,052789 0 -9,634026
-0,037612 -0,006898 0 1,915352 0,033428 0 -0,015158 -0,054517 0 3 0,059528 0,147363 0,052789 0 -9,634026
-0,037547 -0,006858 0 1,910686 0,033347 0 -0,015054 -0,054506 0 3 0,059433 0,147411 0,052667 0 -9,630116
-0,037524 -0,00648 0 1,891128 0,033005 0 -0,015012 -0,054739 0 3 0,059597 0,14742 0,05265 0 -9,629666
-0,037522 -0,006608 0 1,897317 0,033113 0 -0,015002 -0,0546 0 3 0,05947 0,14742 0,05265 0 -9,629666
-0,037545 -0,006381 0 1,887185 0,032937 0 -0,014939 -0,054788 0 3 0,059578 0,14742 0,05265 0 -9,629666
-0,037604 -0,006254 0 1,883403 0,032871 0 -0,014846 -0,054701 0 3 0,059427 0,147393 0,052656 0 -9,628855
-0,037609 -0,006174 0 1,879664 0,032805 0 -0,014949 -0,054367 0 3 0,059229 0,147371 0,05276 0 -9,632967
-0,037785 -0,006734 0 1,914535 0,033414 0 -0,014972 -0,053892 0 3 0,058843 0,147371 0,05276 0 -9,632967

-0,03761 -0,007169 0 1,928592 0,033659 0 -0,014883 -0,053991 0 3 0,058854 0,147361 0,052725 0 -9,630858
-0,037678 -0,006519 0 1,899523 0,033152 0 -0,015047 -0,054317 0 3 0,059267 0,1474 0,052708 0 -9,631609

-0,03743 -0,007019 0 1,91371 0,0334 0 -0,015552 -0,054443 0 3 0,059792 0,147423 0,052615 0 -9,628132
-0,037257 -0,006938 0 1,902488 0,033204 0 -0,015404 -0,054501 0 3 0,059719 0,14747 0,052407 0 -9,620038
-0,037268 -0,006696 0 1,891044 0,033004 0 -0,015298 -0,05436 0 3 0,059512 0,14747 0,052407 0 -9,620038
-0,037476 -0,006697 0 1,899806 0,033157 0 -0,015336 -0,054429 0 3 0,059601 0,14747 0,052407 0 -9,620038

-0,03727 -0,006697 0 1,891174 0,033006 0 -0,015057 -0,054583 0 3 0,059502 0,14747 0,052407 0 -9,620038
-0,037956 -0,009344 0 2,049855 0,035776 0 -0,014648 -0,053715 0 3 0,058425 0,14747 0,052407 0 -9,620038
-0,037978 -0,010786 0 2,121562 0,037027 0 -0,015267 -0,053885 0 3 0,059081 0,147596 0,052222 0 -9,616213
-0,037732 -0,011116 0 2,127496 0,037131 0 -0,015126 -0,053571 0 3 0,058698 0,147626 0,05243 0 -9,627462

-0,03802 -0,010804 0 2,124245 0,037074 0 -0,014835 -0,053692 0 3 0,05856 0,147677 0,052384 0 -9,627301
-0,037762 -0,011145 0 2,130164 0,037177 0 -0,01508 -0,053583 0 3 0,05867 0,147596 0,052222 0 -9,616213
-0,037991 -0,010919 0 2,12863 0,037151 0 -0,014963 -0,053662 0 3 0,05864 0,147545 0,052297 0 -9,617797
-0,037856 -0,010951 0 2,124548 0,037079 0 -0,015073 -0,053609 0 3 0,058686 0,147548 0,052453 0 -9,625386
-0,037844 -0,011121 0 2,132397 0,037216 0 -0,015016 -0,053588 0 3 0,058621 0,14756 0,05239 0 -9,622849
-0,037823 -0,011234 0 2,137066 0,037298 0 -0,015029 -0,053695 0 3 0,058723 0,147576 0,052511 0 -9,629316
-0,037778 -0,011097 0 2,128504 0,037148 0 -0,01516 -0,053435 0 3 0,05861 0,147548 0,052453 0 -9,625386
-0,037912 -0,011063 0 2,132372 0,037216 0 -0,014993 -0,053558 0 3 0,058576 0,147548 0,052453 0 -9,625386
-0,037964 -0,010794 0 2,121389 0,037024 0 -0,014991 -0,053844 0 3 0,058818 0,147493 0,052187 0 -9,610375
-0,037928 -0,0108 0 2,12019 0,037003 0 -0,014834 -0,05398 0 3 0,058804 0,147482 0,052343 0 -9,617468
-0,037964 -0,010794 0 2,121389 0,037024 0 -0,014885 -0,053903 0 3 0,058781 0,147495 0,052274 0 -9,614656
-0,037947 -0,010884 0 2,125093 0,037089 0 -0,014922 -0,053772 0 3 0,0587 0,147519 0,052181 0 -9,611169
-0,037969 -0,010671 0 2,115542 0,036922 0 -0,01493 -0,0538 0 3 0,058731 0,147506 0,052262 0 -9,614535
-0,037961 -0,010819 0 2,122498 0,037043 0 -0,014877 -0,053837 0 3 0,058718 0,147485 0,052505 0 -9,625362
-0,037911 -0,011019 0 2,130215 0,037178 0 -0,014963 -0,053681 0 3 0,058656 0,147485 0,052505 0 -9,625362
-0,037932 -0,010935 0 2,126969 0,037122 0 -0,014915 -0,053707 0 3 0,058639 0,14722 0,051991 0 -9,589869
-0,037911 -0,011019 0 2,130215 0,037178 0 -0,014842 -0,053701 0 3 0,058573 0,146816 0,05055 0 -9,504188
-0,037905 -0,011096 0 2,133727 0,037239 0 -0,014907 -0,053769 0 3 0,058685 0,146816 0,05055 0 -9,504188
-0,038005 -0,010926 0 2,129575 0,037167 0 -0,014779 -0,054015 0 3 0,058788 0,146593 0,050787 0 -9,506524
-0,037998 -0,011003 0 2,133087 0,037228 0 -0,014955 -0,053978 0 3 0,058902 0,146564 0,050752 0 -9,503703
-0,037975 -0,011028 0 2,133334 0,037233 0 -0,014811 -0,054166 0 3 0,058943 0,146593 0,050787 0 -9,506524
-0,038005 -0,010926 0 2,129575 0,037167 0 -0,014756 -0,054183 0 3 0,058912 0,146632 0,05077 0 -9,507288
-0,037998 -0,011003 0 2,133087 0,037228 0 -0,014907 -0,053986 0 3 0,058869 0,146617 0,050706 0 -9,503614
-0,037851 -0,011103 0 2,131837 0,037206 0 -0,014836 -0,054018 0 3 0,058837 0,146674 0,050642 0 -9,502871
-0,037822 -0,011219 0 2,136319 0,037285 0 -0,014923 -0,05379 0 3 0,058716 0,146714 0,050631 0 -9,503913
-0,037868 -0,011028 0 2,128842 0,037154 0 -0,014837 -0,054093 0 3 0,058903 0,146699 0,050556 0 -9,499683
-0,037851 -0,011103 0 2,131837 0,037206 0 -0,014921 -0,053751 0 3 0,058681 0,146674 0,050642 0 -9,502871
-0,037822 -0,011219 0 2,136319 0,037285 0 -0,01488 -0,053896 0 3 0,058771 0,146699 0,050556 0 -9,499683
-0,037885 -0,011023 0 2,129345 0,037163 0 -0,01489 -0,05371 0 3 0,058621 0,146791 0,050619 0 -9,506515
-0,037885 -0,011023 0 2,129345 0,037163 0 -0,014863 -0,053819 0 3 0,058691 0,146791 0,050619 0 -9,506515
-0,037905 -0,010939 0 2,126067 0,037106 0 -0,014868 -0,053899 0 3 0,058763 0,146791 0,050619 0 -9,506515
-0,037885 -0,011023 0 2,129345 0,037163 0 -0,014861 -0,05378 0 3 0,058656 0,146767 0,050694 0 -9,509152
-0,037905 -0,010939 0 2,126067 0,037106 0 -0,014964 -0,053719 0 3 0,058689 0,146791 0,050619 0 -9,506515
-0,038003 -0,010578 0 2,112416 0,036868 0 -0,014937 -0,053683 0 3 0,058637 0,146871 0,05066 0 -9,5117
-0,037952 -0,010733 0 2,117923 0,036964 0 -0,014857 -0,05392 0 3 0,058771 0,146871 0,05066 0 -9,5117
-0,037995 -0,010826 0 2,12427 0,037074 0 -0,014937 -0,053683 0 3 0,058637 0,146766 0,050764 0 -9,512456
-0,037982 -0,010677 0 2,116405 0,036937 0 -0,014883 -0,053719 0 3 0,058623 0,146766 0,050764 0 -9,512456

-0,03796 -0,010847 0 2,123809 0,037066 0 -0,014873 -0,053761 0 3 0,05865 0,146766 0,050764 0 -9,512456
-0,037894 -0,011195 0 2,138101 0,037316 0 -0,015013 -0,053638 0 3 0,058661 0,146651 0,050799 0 -9,509442

-0,03791 -0,011103 0 2,134301 0,037249 0 -0,014962 -0,053716 0 3 0,058686 0,146692 0,05077 0 -9,509718
-0,03791 -0,011103 0 2,134301 0,037249 0 -0,014975 -0,05377 0 3 0,058742 0,146599 0,050851 0 -9,509825
-0,03791 -0,011103 0 2,134301 0,037249 0 -0,015 -0,053584 0 3 0,058605 0,146651 0,050799 0 -9,509442
-0,03791 -0,011103 0 2,134301 0,037249 0 -0,014958 -0,053674 0 3 0,058646 0,146599 0,050851 0 -9,509825
-0,03796 -0,011063 0 2,134415 0,037251 0 -0,014845 -0,054139 0 3 0,058948 0,146799 0,050411 0 -9,496807

-0,038018 -0,011003 0 2,133911 0,037243 0 -0,01481 -0,054129 0 3 0,058911 0,146799 0,050411 0 -9,496807
-0,03796 -0,011063 0 2,134415 0,037251 0 -0,014939 -0,053974 0 3 0,058886 0,146747 0,050463 0 -9,497192

-0,038018 -0,011003 0 2,133911 0,037243 0 -0,014881 -0,053807 0 3 0,058696 0,146875 0,050411 0 -9,499898
-0,037976 -0,010984 0 2,131229 0,037196 0 -0,014961 -0,053787 0 3 0,058745 0,14683 0,05044 0 -9,499463
-0,038025 -0,010899 0 2,129088 0,037158 0 -0,01501 -0,053634 0 3 0,058655 0,146866 0,050596 0 -9,508432
-0,038099 -0,010748 0 2,124785 0,037083 0 -0,014926 -0,053849 0 3 0,058769 0,146845 0,050532 0 -9,504522
-0,038083 -0,010839 0 2,128584 0,03715 0 -0,014908 -0,05377 0 3 0,058686 0,146845 0,050532 0 -9,504522
-0,038055 -0,010941 0 2,132386 0,037216 0 -0,014892 -0,053984 0 3 0,058855 0,146866 0,050596 0 -9,508432
-0,038059 -0,010817 0 2,126493 0,037113 0 -0,015002 -0,053588 0 3 0,05861 0,146821 0,050631 0 -9,508283
-0,037991 -0,011035 0 2,134344 0,03725 0 -0,014947 -0,053478 0 3 0,058471 0,146875 0,05048 0 -9,503222
-0,038015 -0,011055 0 2,136342 0,037285 0 -0,015111 -0,053461 0 3 0,058591 0,14692 0,05044 0 -9,503093
-0,037991 -0,011035 0 2,134344 0,03725 0 -0,014847 -0,053599 0 3 0,058491 0,14692 0,05044 0 -9,503093
-0,038019 -0,010947 0 2,131177 0,037195 0 -0,014925 -0,053666 0 3 0,058612 0,146875 0,05048 0 -9,503222
-0,038015 -0,011055 0 2,136342 0,037285 0 -0,015016 -0,053497 0 3 0,058544 0,146875 0,05048 0 -9,503222
-0,037979 -0,011061 0 2,135118 0,037264 0 -0,015007 -0,053847 0 3 0,058834 0,146776 0,050446 0 -9,497517
-0,038025 -0,010768 0 2,122691 0,037047 0 -0,015075 -0,053667 0 3 0,058737 0,146882 0,050405 0 -9,499897
-0,038034 -0,010854 0 2,127239 0,037126 0 -0,015147 -0,053671 0 3 0,0588 0,146882 0,050405 0 -9,499897
-0,038014 -0,011054 0 2,136226 0,037283 0 -0,015007 -0,053847 0 3 0,058834 0,146838 0,050434 0 -9,499476
-0,038058 -0,010889 0 2,129949 0,037174 0 -0,015035 -0,053667 0 3 0,058704 0,146823 0,050417 0 -9,498048
-0,037843 -0,011164 0 2,134508 0,037253 0 -0,014934 -0,053624 0 3 0,058584 0,146943 0,050278 0 -9,496257
-0,037807 -0,01117 0 2,133284 0,037232 0 -0,015044 -0,053553 0 3 0,058614 0,146899 0,050295 0 -9,49528
-0,037802 -0,011074 0 2,128348 0,037146 0 -0,015029 -0,053515 0 3 0,058569 0,146943 0,050278 0 -9,496257
-0,037815 -0,011267 0 2,138366 0,03732 0 -0,014988 -0,053605 0 3 0,058612 0,146899 0,050295 0 -9,49528
-0,037826 -0,01108 0 2,129636 0,037168 0 -0,01508 -0,053437 0 3 0,058546 0,146851 0,050359 0 -9,49642
-0,038036 -0,010871 0 2,12819 0,037143 0 -0,014952 -0,053756 0 3 0,058711 0,146814 0,050637 0 -9,508272
-0,037947 -0,011028 0 2,132158 0,037212 0 -0,015004 -0,0537 0 3 0,058706 0,146716 0,050718 0 -9,508179
-0,038054 -0,010883 0 2,129507 0,037166 0 -0,014927 -0,053688 0 3 0,058633 0,146814 0,050637 0 -9,508272
-0,038042 -0,010965 0 2,133058 0,037228 0 -0,014999 -0,053764 0 3 0,058757 0,14667 0,050625 0 -9,501857
-0,037931 -0,011119 0 2,135957 0,037278 0 -0,014964 -0,053827 0 3 0,058781 0,146814 0,050637 0 -9,508272
-0,037923 -0,010935 0 2,126571 0,037115 0 -0,014903 -0,0538 0 3 0,058708 0,146837 0,050538 0 -9,50447
-0,037924 -0,011009 0 2,130244 0,037179 0 -0,014903 -0,0538 0 3 0,058708 0,146884 0,050498 0 -9,504436
-0,037924 -0,011009 0 2,130244 0,037179 0 -0,014908 -0,053843 0 3 0,058749 0,146881 0,050544 0 -9,50653
-0,037947 -0,010941 0 2,127859 0,037137 0 -0,014856 -0,053919 0 3 0,05877 0,146881 0,050544 0 -9,50653
-0,037924 -0,011009 0 2,130244 0,037179 0 -0,014941 -0,053724 0 3 0,058675 0,146881 0,050544 0 -9,50653
-0,037998 -0,010974 0 2,131648 0,037203 0 -0,01488 -0,05386 0 3 0,05874 0,146788 0,050613 0 -9,506086
-0,038054 -0,010912 0 2,130946 0,037191 0 -0,01488 -0,05386 0 3 0,05874 0,146733 0,050619 0 -9,504149
-0,037998 -0,010974 0 2,131648 0,037203 0 -0,014877 -0,053873 0 3 0,058748 0,14655 0,05033 0 -9,482758
-0,038054 -0,010912 0 2,130946 0,037191 0 -0,014886 -0,053977 0 3 0,058845 0,14655 0,05033 0 -9,482758
-0,038031 -0,010891 0 2,128966 0,037156 0 -0,014934 -0,053823 0 3 0,058753 0,146526 0,050272 0 -9,479011
-0,038041 -0,010748 0 2,122324 0,03704 0 -0,014968 -0,053651 0 3 0,058635 0,146544 0,050168 0 -9,474709
-0,038056 -0,01067 0 2,119141 0,036985 0 -0,015085 -0,053662 0 3 0,058742 0,146506 0,050197 0 -9,474545
-0,038061 -0,010678 0 2,119781 0,036996 0 -0,014992 -0,053828 0 3 0,058805 0,146506 0,050197 0 -9,474545
-0,038097 -0,010687 0 2,121693 0,037029 0 -0,014967 -0,053686 0 3 0,058664 0,146573 0,050168 0 -9,47591
-0,038017 -0,010728 0 2,120344 0,037006 0 -0,014984 -0,053745 0 3 0,058729 0,146544 0,050168 0 -9,474709

-0,03798 -0,011019 0 2,133101 0,037229 0 -0,01503 -0,053516 0 3 0,058572 0,146583 0,050278 0 -9,481606
-0,038023 -0,010839 0 2,126092 0,037106 0 -0,014898 -0,053775 0 3 0,058682 0,147135 0,050399 0 -9,509879

-0,03798 -0,011019 0 2,133101 0,037229 0 -0,014898 -0,053775 0 3 0,058682 0,147504 0,050353 0 -9,522624
-0,037996 -0,010942 0 2,129992 0,037174 0 -0,014903 -0,0538 0 3 0,058708 0,147445 0,05044 0 -9,524441

-0,038 -0,010817 0 2,124036 0,03707 0 -0,014883 -0,053719 0 3 0,058622 0,14674 0,050208 0 -9,484652
-0,037974 -0,010923 0 2,128138 0,037142 0 -0,015005 -0,053663 0 3 0,058676 0,144133 0,048848 0 -9,312513
-0,038001 -0,01082 0 2,124238 0,037074 0 -0,014948 -0,053696 0 3 0,058657 0,139555 0,045931 0 -8,981782
-0,038001 -0,01082 0 2,124238 0,037074 0 -0,015051 -0,053634 0 3 0,058689 0,137054 0,044026 0 -8,784274
-0,037974 -0,010923 0 2,128138 0,037142 0 -0,014907 -0,05377 0 3 0,058686 0,131041 0,040592 0 -8,361062
-0,038073 -0,010681 0 2,120415 0,037007 0 -0,014907 -0,05377 0 3 0,058686 0,124348 0,03597 0 -7,843288
-0,037971 -0,01089 0 2,126379 0,037111 0 -0,015067 -0,053728 0 3 0,058783 0,117066 0,031215 0 -7,285147
-0,037947 -0,010884 0 2,125091 0,037089 0 -0,015069 -0,053713 0 3 0,058772 0,109809 0,025848 0 -6,688725

-0,03803 -0,010833 0 2,126082 0,037106 0 -0,015075 -0,053486 0 3 0,058583 0,10242 0,020455 0 -6,076711
-0,038042 -0,01082 0 2,125925 0,037103 0 -0,015145 -0,053507 0 3 0,058659 0,095139 0,015108 0 -5,464237
-0,037901 -0,010961 0 2,126945 0,037121 0 -0,015041 -0,053694 0 3 0,058732 0,089236 0,011057 0 -4,977311
-0,037937 -0,011129 0 2,136733 0,037292 0 -0,014996 -0,053852 0 3 0,058829 0,08629 0,009804 0 -4,772975
-0,037971 -0,011135 0 2,138426 0,037321 0 -0,014938 -0,053828 0 3 0,058761 0,082586 0,007179 0 -4,459888
-0,038001 -0,010963 0 2,131192 0,037195 0 -0,014895 -0,053899 0 3 0,058786 0,079332 0,005099 0 -4,195532
-0,037971 -0,011135 0 2,138426 0,037321 0 -0,014895 -0,053899 0 3 0,058786 0,075973 0,002666 0 -3,906432
-0,037955 -0,010997 0 2,130985 0,037192 0 -0,014936 -0,053826 0 3 0,058757 0,071992 -0,000281 0 -3,559005
-0,037927 -0,011099 0 2,134811 0,037258 0 -0,014964 -0,053701 0 3 0,058674 0,067358 -0,003391 0 -3,16978

-0,03791 -0,011031 0 2,130724 0,037187 0 -0,014998 -0,053636 0 3 0,058647 0,064882 -0,004589 0 -2,985694
-0,037943 -0,011022 0 2,131707 0,037204 0 -0,014876 -0,053854 0 3 0,058732 0,060007 -0,007691 0 -2,582591
-0,037966 -0,011028 0 2,132963 0,037226 0 -0,014912 -0,05374 0 3 0,058664 0,055418 -0,010765 0 -2,19342
-0,037927 -0,011099 0 2,134811 0,037258 0 -0,014937 -0,053593 0 3 0,05856 0,051374 -0,0138 0 -1,832125
-0,037822 -0,011132 0 2,132045 0,03721 0 -0,014971 -0,053547 0 3 0,058549 0,049344 -0,014662 0 -1,68575
-0,037846 -0,010938 0 2,123501 0,037061 0 -0,014837 -0,053784 0 3 0,058639 0,045881 -0,017235 0 -1,376623
-0,037878 -0,01107 0 2,131309 0,037197 0 -0,014837 -0,053784 0 3 0,058639 0,042489 -0,019316 0 -1,096912
-0,037846 -0,010938 0 2,123501 0,037061 0 -0,014979 -0,053594 0 3 0,058595 0,039214 -0,020848 0 -0,851961
-0,037838 -0,011055 0 2,128936 0,037156 0 -0,014971 -0,053601 0 3 0,058594 0,03658 -0,023242 0 -0,592627
-0,037908 -0,010857 0 2,122123 0,037037 0 -0,01494 -0,053523 0 3 0,058503 0,035098 -0,023457 0 -0,507112
-0,037892 -0,010948 0 2,125943 0,037104 0 -0,014995 -0,053507 0 3 0,058535 0,032813 -0,025353 0 -0,291589
-0,037915 -0,010968 0 2,12791 0,037138 0 -0,0148 -0,053862 0 3 0,058675 0,030449 -0,026356 0 -0,119776
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Figure 3.9: Evolution of relevant variables during the first position-based experiment.

Top: errors E1 in m, and E2, in rad (red and blue: correct camera calibration, pink and

cyan: coarse calibration). Bottom: cd in m−1 (purple) and φ in rad (green: correct

camera calibration, black: coarse calibration).

position-based, and of Θ for the image-based cases) is discontinuous:
]
−π,−π

2

[
∪

]
π
2 , π

]
.

Thus, the top row loci are represented by using the orientation of yd with respect to

−y (noted etθ) in the position-based case and the orientation of Γ with respect to Y

(noted Θt) in the image-based case.

The desired state values are also indicated in the two figures for each controller.

Note that in all cases, the desired state values belong to the loci where the asymptotic

stability condition is verified. Moreover, the figures show that, for the right column and

the bottom row controllers, the loci area is much smaller in the image-based, than in

the position-based case. In our opinion, this is due to the fact that the position-based

controller takes into account the path curvature cd, which is not considered in the

image-based case. In Sections 3.6.1 and 3.6.2, the loci of Fig. 3.6 and 3.7 will be used

to verify the asymptotic stability condition on the system state during the experiments.

3.6.1 Position-based experiments

In the first position-based experiment (shown in Fig. 3.8), D is on the bottom pixel

row of the image plane. The row controller (3.7) is used with G∗ = 0.3. The evolution
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Figure 3.10: Second position-based experiment: D is initially on the right pixel column

of the image plane.

of the relevant variables during the experiment is shown in Fig. 3.9. The robot is able

to successfully follow the path, and the tracking errors ex and eθ (respectively red and

blue curves) are low throughout the experiment. At the end of the experiment, both

errors are below 0.10. Both errors increase when the robot reaches the discontinuity in

the path curvature (frame 335). Correspondingly, φ increases in order to compensate

for the error and enables CyCab to follow the curve. Using Fig. 3.6, we verify that

throughout the experiment, the state variables verify the stability condition.

In the second experiment (shown in Fig. 3.10), CyCab is initially near the path,

with D on the right pixel column of the image plane. During phase 2.1, the column

controller (3.10) is used, with adaptive gain: G∗ = 0.26 exp−15||E|| +0.24. Then (phase
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Figure 3.11: Evolution of relevant variables during the second position-based

experiment. Top: errors E1 (red, in m) and E2 (blue, in rad) with correct camera

calibration for phases 2.1 (left) and 2.2 (right). Center: same errors (E1 in pink, and

E2 in cyan) with coarse camera calibration. Bottom: cd in m−1 (purple) and φ in rad

(green: correct camera calibration, black: coarse calibration).

2.2), the row controller (3.7) is used with: G∗ = 0.34 exp−30||E|| +0.02. The state errors

are plotted in the top of Fig. 3.11, for phases 2.1 (left) and 2.2 (right). The path

curvature cd (purple) and steering angle φ (green) are plotted in the bottom graph of

Fig. 3.11. The robot is able to successfully follow the path, and the tracking errors

converge during both phases. Similarly to the first experiment, while the robot is on

the path curve (i.e., from frame 305), the error convergence rate is low. Nevertheless,

the steering angle increases to enable the robot to follow the curve and at the end of

the experiment both state errors are zeroed. Using Fig. 3.6, we verify that throughout

the experiment, the state variables verify the stability condition.

In the third experiment (shown in Fig. 3.12), CyCab is initially far from the path,

with D on the top pixel row of the image plane. During phase 3.1, the row controller
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Figure 3.12: Third position-based experiment: the initial error is large (D is on the top

pixel row of the image plane).

(3.7) is used to drive point D to a lateral pixel column of the image plane. Since

initially −π
2 < eθ < −π, the controller selects the right side column. We use G∗ = 24.

Afterwards (phase 3.2), the column controller (3.10) is used, with G∗ = 0.4. Finally

(phase 3.3), the row controller (3.7) is used with: G∗ = 0.34 exp−30||E|| +0.02. The state

errors are plotted in the top of Fig. 3.13, for phases 3.1 to 3.3 (left to right graphs).

The path curvature cd (purple) and steering angle φ (green) are plotted in the bottom

graph of Fig. 3.13. Once again, the robot is able to successfully follow the path and

the tracking errors converge. The controller initially saturates the steering angle φ to

its maximum value φM = 0.40 rad in order to enable the robot to reach the path.
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Figure 3.13: Evolution of relevant variables during the third position-based experiment.

Top: errors during phases 3.1 to 3.3 (left to right). E1 (in m) and E2 (rad) are plotted

(red and blue: correct camera calibration, pink and cyan: coarse calibration). The

iteration steps with state variables not verifying the stability condition are highlighted

in yellow. Bottom: cd in m−1 (purple) and φ in rad (green: correct camera calibration,

black: coarse calibration).

At the end of phase 3.3, both errors are below 0.10. The iteration steps with state

variables not meeting the asymptotic stability condition (i.e., values of X outside the

loci of Fig. 3.6) are highlighted in yellow in Fig. 3.13. The plots show that during most

of phase 3.2 and during the beginning of phase 3.3, condition (3.19) is not verified.

Nevertheless, the system is able to converge, as outlined above.

The three position-based experiments have been repeated by considering a

calibration error on the camera parameters. The evolution of the relevant variables

in the coarse calibration experiments is also shown in Fig. 3.9, 3.11, and 3.13 (pink and

cyan for the errors, black for φ), for comparison with the calibrated camera experiments.

The robot is able to successfully follow the path in all three cases. However, the

convergence rate is lower than in the calibrated camera experiments. In particular,

in the second experiment, the controller performance is considerably worsened (see

Fig. 3.11, center and bottom). Firstly, the column controller convergence is much
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Figure 3.14: First image-based experiment: Cycab is initially positioned on the path

with small initial error.

smaller than in the calibrated experiment (850 instead of 175 iterations are required

for switching from column to row control). Secondly, at the end of phase 2.2, ex is

higher than in the calibrated experiment (0.35 m instead of 0.05 m). Finally, note that

the values of the steering angle oscillate much more than in the calibrated experiment.

3.6.2 Image-based experiments

In the first image-based experiment (shown in Fig. 3.14), D is on the bottom pixel row

of the image plane. The row controller (3.13) is used, with: G∗ = 0.18 exp−30||E|| +0.02.

The evolution of the relevant variables during the experiment is shown in Fig. 3.15.

Instead of eX , we have plotted the scaled value E∗1 = eX
2XM

, where 2XM denotes the
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Figure 3.15: Evolution of relevant variables during the first image-based experiment.

Top: errors E∗1 (non-dimensional), and E2 (in rad) are plotted (red and blue: correct

camera calibration, pink and cyan: coarse calibration). Bottom: cd in m−1 (purple)

and φ in rad (green: correct camera calibration, black: coarse calibration).

image width in pixels. The robot is able to successfully follow the path and the tracking

errors are low throughout the experiment. At the end of the experiment, both errors are

below 0.03. As in the position-based experiment, both errors increase when the robot

reaches the discontinuity in the path curvature (frame 335), and correspondingly, φ

increases in order to compensate for the error. Using Fig. 3.7, we verify that throughout

the experiment, the state variables verify the stability condition.

In the second experiment (shown in Fig. 3.16), CyCab is initially near the path,

with D on the right pixel column of the image plane. During phase 2.1, the column

controller (3.15) is used, with: G∗ = 0.98 exp−3.6||E|| +0.05. Then (phase 2.2), the row

controller (3.13) is used with: G∗ = 0.18 exp−30||E|| +0.02 (as in the first experiment).

The state errors are plotted in the top of Fig. 3.17, for phases 2.1 (left) and 2.2 (right).

Instead of eX and eY , we have respectively plotted the scaled values E∗1 = eX
2XM

for phase

2.1, and E∗1 = eY
2YM

for phase 2.2 (2XM and 2YM respectively denote the image width

and height). The path curvature cd (purple) and steering angle φ (green) are plotted

in the bottom graph of Fig. 3.17. The robot is able to successfully follow the path, and

the tracking errors converge during both phases. At the end of the experiment both

state errors are zeroed. Note the completely different initial trend of φ, as compared
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Figure 3.16: Second image-based experiment: D is initially on the right pixel column

of the image plane.

to the position-based experiment (shown in Fig. 3.11, bottom). The iteration steps

with state variables not verifying the asymptotic stability condition (i.e., values of X
outside the loci of Fig. 3.7) are highlighted in yellow in Fig. 3.17. The plots show that,

throughout phase 2.1 and during the beginning of phase 2.2, condition (3.19) is not

verified. Nevertheless, the system is able to converge.

In the third experiment (shown in Fig. 3.18), CyCab is initially far from the path,

with D on the top pixel row of the image plane. The evolution of the relevant variables

during the experiment is shown in Fig. 3.19. Once again, in the graphs, the values of

E have been scaled by the image size. During phase 3.1, the row controller (3.13) is

applied, to drive point D to a lateral pixel column of the image plane. Since initially
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Figure 3.17: Evolution of relevant variables during the second image-based experiment.

Top: errors during phases 2.1 (left) and 2.2 (right). E∗1 (non-dimensional) and

E2 (in rad) are plotted (red and blue: correct camera calibration, pink and cyan:

coarse calibration). The iteration steps with state variables not verifying the stability

condition are highlighted in yellow. Bottom: cd in m−1 (purple) and φ in rad (green:

correct camera calibration, black: coarse calibration).

−π
2 < Θ < −π, the controller selects the right side column. We use: G∗ = 10.

Afterwards (phase 3.2), the column controller (3.15) is applied, with G∗ = 4.0. Finally

(phase 3.3), the row controller (3.15) is used with: G∗ = 0.18 exp−30||E|| +0.02. The

experiment fails during phase 3.3: the error eX diverges and the path exits the field of

view. Tests with other values of G∗ are also unsuccessful. The reason is the failure of

asymptotic stability condition (3.19) during the experiment. The iteration steps with

state variables not verifying (3.19) are highlighted in yellow in Fig. 3.19. The plots

show that, during most of phase 3.2 and throughout phase 3.3, the asymptotic stability

condition is not verified. Although during phase 3.2 the errors converge in spite of this,

during phase 3.3 the experiment fails. As we mentioned throughout this article, a flaw

of the image-based control law is that it does not take into account the curvature cd.

This is particularly relevant in this experiment, and causes, in our opinion, the failure.

In fact (see the bottom left snapshot of Fig. 3.18), the robot switches to phase 3.3

with a large error on E2, in a critically curve portion of the path. In contrast with the

position-based scheme, in this case, the error dynamics cannot be controlled since the
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Figure 3.18: Third image-based experiment: the initial error is large (D is on the top

pixel row of the image plane). The experiment fails.

curvature is not used to compute the feedback law. However, the initial state for phase

3.3 (which causes the failure) cannot be changed. In fact, the gains G∗ during phases

3.1 and 3.2, must be chosen so that the controller saturates the steering angle φ to its

maximum value φM = 0.40 rad, and thus determine the initial state of phase 3.3.

The two successful image-based experiments (i.e., first and second experiments)

have been repeated by considering a calibration error on the camera parameters.

The evolution of the relevant variables in the coarse calibration experiments is

also shown in Fig. 3.15 and 3.17 (pink and cyan for the errors, black for φ), for

comparison with the calibrated camera experiments. The robot is able to successfully

follow the path in both cases. The convergence rate is slightly lower than in the
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Figure 3.19: Evolution of relevant variables during the third image-based experiment

with correct camera calibration. Left to right: cd (purple, in m−1) with φ (green, in

rad), and errors E∗1 (red, non-dimensional) and E2 (blue, in rad) during phases 3.1 to

3.3. The iterations steps with state variables not verifying the stability condition are

highlighted in yellow.

calibrated camera experiments. However, in particular for the second experiment, the

image-based approach outperforms the position-based approach when the camera is

coarsely calibrated.

3.7 Conclusions and future work

In this chapter, we presented two visual servoing control schemes (position-based and

image-based) enabling nonholonomic mobile robots with a fixed pinhole camera to

follow a continuous path on the ground. The controllers utilize only a small set of

path features extracted from the image plane, without using the complete geometric

representation of the path. The features are: the position of a path point, and the path

tangent orientation at that point. For the position-based controller, the path curvature

at that point is also utilized. A major contribution of this work is that both approaches

can be used in general initial conditions, thanks to a switching strategy between

two primitive controllers. A Lyapunov-based stability analysis has been carried out.

The performance of both controllers has been experimentally validated on a car-like

robot equipped with a pinhole camera starting from three different initial conditions.

The scheme robustness was also verified, by adding camera model errors in all the

experiments.

The experiments point out the main characteristics of the two approaches for the

specific task of path following. The image-based primitive controllers have smaller
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stability zones than the corresponding position-based primitive controllers. As a

consequence, one of the three experiments fails when using the image-based approach

and succeeds with the position-based approach. On the other hand, for the two other

experiments, the image-based approach is more effective (a smoother control input φ

is needed to achieve the task), and robust to camera calibration errors.

These results confirm the properties of the two control schemes. The image-based

controller is less effective when the initial error is large, since it does not rely on the

curvature measure, which, acting as a second derivative, fosters the prediction of the

error dynamics. On the other hand, by using the path curvature measure, which is

typically more biased than path position and path tangent orientation measures, the

position-based control law is less smooth and less robust to calibration errors.



Chapter 4

Vision-based path following for a

legged robot with actuated

pinhole camera and its

application in the ASPICE

project

In this chapter, we present the design and implementation of a vision-based path

following scheme which has been integrated in the ASPICE (Assistive System for

Patient’s Increase of Communication, ambient control and mobility in absence of

muscular Effort) project [11].

One central feature of the ASPICE system is the possibility for the user to remotely

control the motion of a mobile robot (a Sony AIBO) by means of various input devices,

including a Brain-Computer Interface (BCI). While moving, the robot should assist

the user by monitoring the environment and by communicating specific requests to the

caregiver. Depending on the residual abilities of the user, as well as on the desired

task, it is possible to choose between three different navigating modes for controlling

the robot motion: Single step, Semi-autonomous and Autonomous navigation modes.

In this chapter, we focus on the development of the autonomous navigation mode,

which is based on a vision-based path following scheme. The other navigation modes

67
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are simply outlined in this chapter for the purpose of comparison with the autonomous

mode. They will be described in detail in the Chapter 5, along with other aspects of

ASPICE.

The chapter is organized as follows. In Sect. 4.1, the architecture of the ASPICE

system is briefly illustrated. In Sect. 4.2, the main features of the AIBO robot are

described. Sect. 4.3 presents the primitives developed for the robot PF framework,

at perception and motion levels. The robot visual path following scheme that we

implemented on the basis of the ASPICE requirements is outlined in Sect. 4.4. The

experiments are reported in Sect. 4.5. In the conclusion, we summarize the results.

4.1 The ASPICE project

4.1.1 Overview

The ASPICE project received in 2004 a two-year funding grant from TELETHON,

an italian medical research charity foundation. The project involves three partners,

including the Clinical Neurophysiopathology Laboratory of the Fondazione Santa Lucia

IRCCS and the Robotics Lab of the University of Rome “La Sapienza”.

The project is aimed at the development of a technological aid which allows

neuromotor-disabled users to improve or recover their mobility and communication

within the surrounding environment. The project is particularly addressed towards

those patients whose residual muscular strength is low and who is bed-ridden because

of practical obstacles or security concerns (see [11] for more details). Hence, the

major requirements are: adaptability to different levels of disability, low cost, and

robustness to the setting. Depending on the user requirements, the assistive device will

be a program running on a common low-power PC, on a palmtop, or on a powerful

workstation.

The ASPICE architecture, with input and output devices, is summarized in Fig. 4.1.

Some key elements of the system are:

• a variety of input devices for easy access to the Control Unit: these include

standard input devices (mouse, joystick, eye tracker, voice recognition) as well as

a Brain-Computer Interface;

• the Control Unit, which receives signals from the input devices through a Graphic
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Figure 4.1: The ASPICE architecture.

User Interface (GUI) and converts them into commands that drive the output

devices (either the domotic appliances or a mobile robot);

• the mobile robot;

• a number of domotic appliances, which must comply with the patient’s need for

ambient control (e.g., TV, lights, video camera, telephone, personal computer);

• visual feedback (either through the fixed video camera or through the robot

vision system) to provide the user with an increased sense of presence in the

environment.

The Control Unit contains drivers for all output devices; in some cases, previously

existing drivers are utilized, whereas in other cases (e.g., the mobile robot) the driver

has been designed “ad hoc” for the specific system. Note that all the signals between

the input devices and the Control Unit, and between the latter and the output devices
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(including visual feedback) are transmitted over a wireless connection. In the remainder

of this section, the BCI which is used as input device and the Robot Driver that we

implemented are briefly described.

4.1.2 The robot driver

In any assistive robotics project, a major requirement is the user friendliness of

the robotic platform. In fact, although in recent years users are becoming, on the

average, more acquainted with technology, characteristics such as low cost, safety, and

low request for maintenance are still fundamental needs of any biomedical robotic

application. Moreover, clinicians have often emphasized the importance of working

with a familiar, friendly-looking robot, in order to limit its psychological impact on

patients [42]. In our case, these considerations led to the choice of the dog-like robot

Sony AIBO ERS-7 (described in Sect. 4.2) for inclusion in the system. Besides, studies

using AIBO to improve the quality of life, among elderly, have given good results [44].

AIBO should be driven around the user home with a small set of commands,

depending on the residual abilities of the patient. It should also assist the impaired

patient in visually monitoring the environment and in communicating with the

caregiver. Partial autonomy should be implemented in order to avoid collisions with

unexpected obstacles present in the environment. The robot range sensors are used

to avoid obstacles, as we shall show in Chapter 5. Another requirement is that AIBO

should be able to charge its battery when needed without any user intervention. As

already stated, one of the objectives of the ASPICE project is compatibility with a

variety of users and their level of disability. In light of this, three navigation modes

have been developed: single step, semi-autonomous and autonomous mode. The user

is expected to choose single step navigation when he/she wants to retain complete

control of the robot motion; e.g., for fine motion in cluttered areas. In semi-autonomous

navigation, the user specifies the main direction of motion, leaving to the robot the task

of avoiding obstacles. Finally, in the autonomous navigation mode, only a target point

in the environment is assigned by the user. The robot then travels to the target; this

is useful for quickly reaching some important locations (a window, the front door, the

kitchen). This mode of operation is expected to be particularly useful for severely

impaired patients who are unable to send frequent commands. To implement the

autonomous mode, we have designed a physical roadmap (shown in Fig. 4.2) to reach
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Figure 4.2: The roadmap used in autonomous navigation mode. The ID labels of each

coded square are indicated. Note that crossings appear larger than they are.

and connect all the relevant destinations in the experimental arena, and utilized a visual

path following scheme that will be detailed further in this Chapter.

The roadmap is formed by streets and crossings, made by white adhesive tape, and

laid on the ground. The perception primitives that will be described in Sect. 4.3.1 are

used to identify the streets (i.e., straight white lines) and crossings (i.e., coded squares)

while the motion primitives that will be described in Sect. 4.3.2 are used to drive the

robot on the map.

Each navigation mode is associated to a GUI in the ASPICE Control Unit. The

three GUIs are shown in Fig. 4.3. By selecting the corresponding button from the single

step GUI, the user can control the direction of the step. From the semi-autonomous

mode GUI, the user can select one of six directions – the same of the single step mode

– or stop the robot. Instead, from the autonomous navigation mode GUI, each button
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Figure 4.3: The ASPICE navigation GUIs: single step (above), semi-autonomous

(center) and autonomous (below) modes. In each GUI, the home button brings back

to the ASPICE main GUI.

that the user can select corresponds to a destination in the user apartment (here, the

bedroom, the living room, the bathroom, and the kitchen).

4.2 The robot platform: AIBO

The platform used in this work is a quadruped robot, Sony AIBO ERS-7, pictured

in Fig. 4.4. AIBO is a very interesting low-cost robot, widely used for research

and entertainment purposes. AIBO has been chosen in ASPICE for its familiar and

friendly-looking aspect, since it has been shown that in assistive robotic applications,

an important role is played by the robot’s design, which should facilitate everyday

interaction with the patients [42, 44]. Practical advantages in using legged robots

have been outlined in Sect. 1.2.2. The robot is equipped with 20 actuated joints, a

CMOS camera, two distance sensors (on the head and on the chest), an accelerometer,

a stereo microphone, a MIDI speaker, a set of leds and pression sensors. A wireless

LAN card enables remote control and debugging. The actuated joints are: 3 for each

leg, 3 for the head (head tilt, head pan, and neck tilt), 2 for the tail, 1 for each ear

and 1 for the mouth. AIBO’s real-time operating system APERIOS runs a specialized
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Figure 4.4: The Sony AIBO ERS-7 used in the ASPICE Project.

layer called OPEN-R, a cross-development environment based on C++. The robot

behavior is programmed by loading all executable and configuration files on a memory

stick which is read by the on-board processor. In spite of the above features, the AIBO

robot presents many limitations, which made its use within the ASPICE project a real

challenge. The most severe are the following:

• the closed hardware prevents the addition of sensors and/or actuators;

• since Sony does not release the code of its driver, we had to realize from scratch

an ad hoc driver for this work;

• the head distance sensor and the CMOS camera move in accordance, making it

impossible for the distance sensor to detect obstacles in directions other than

the one pointed by the camera: a tradeoff between moving the head for video

feedback and moving it for obstacle detection/avoidance had to be reached;

• the chest distance sensor is constrained to the robot body and peculiarly oriented,

thus limiting its effective utility;

• vibrational and slipping effects during the quadruped gait cycle make odometric

reconstruction very inaccurate in the long run;
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• the variable attitude of AIBO during its gait precludes the use of an external

sensory system (e.g., based on infrared triangulation with a detector placed on

the robot) for solving the localization problem.

4.3 Primitives

In order to utilize AIBO, specific primitives have been developed and integrated in the

driver framework. The perception primitives have been designed to identify the visual

landmarks on the roadmap, while the motion primitives are used to drive the robot on

the map.

The three reference frames which will be used in this work are: the robot frame FR
(Fig. 4.7 and 4.6), the image frame FI (Fig. 4.5), and the camera frame FC (Fig. 4.6).

For the definition of these frames, refer to Chapter 1. We also note the robot neck tilt,

head pan, and head tilt joint angular positions respectively with: %h = [%nt %hp %ht]T .

4.3.1 Perception primitives

The features that the robot should perceive with the on-board camera are the landmarks

that it needs for localization and path planning purposes. The visual landmarks that

we use are straight white lines and coded squares placed on the floor. Thus, a straight

white line extractor and a coded square extractor have been developed. Moreover, the

visual landmarks should be located in sequential scenes. This task is accomplished by

a visual landmark tracker.

Straight white line extractor

A requirement of the robot driver is straight white line extraction. In order to be

independent from color classification, the straight white lines are detected by search on

the luminance signal I (X, Y ). Thus, line edges are searched at pixels with a strong

variation of luminance with respect to that of adjacent pixels. For each pixel located

in D = [X Y ]T the gradient of luminance ∇I (D) is computed, using the Roberts
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Figure 4.5: Extracting edges (in yellow) for straight white line (left) and coded square

(right) detection. The detected coded square center is marked in red and the dot centers

are marked in cyan.

operator [66] as in [24]:

Ixy (D) = I (X + 1, Y + 1)− I (X, Y )

I−xy (D) = I (X + 1, Y )− I (X, Y + 1)

|∇I (D)| =
√
I2

xy (D) + I2
−xy (D)

6 ∇I (D) = ATAN2 (Ixy (D) , I−xy (D))

(4.1)

where |∇I (D)| is the magnitude and 6 ∇I (D) ∈ (−π, π] is the direction of the pixel

luminance gradient (with respect to line Y = −X and positive clockwise, see Fig. 4.5.

Edges are then detected by applying a threshold test to |∇I (D)|. We use a threshold I∗

dependent on the mean value (noted µ|I|) of |I (D)| on the given image: I∗ = I∗
(
µ|I|

)
.

This adaptive thresholding makes the edge detection algorithm more robust to varying

light conditions, as compared to similar works implemented in environments where light

conditions had to be controlled. The threshold test may be written:

D ∈ De if |I (D)| ≥ I∗
(
µ|I|

)
D /∈ De else

(4.2)

where De is the set of image edge pixels (marked in yellow in Fig. 4.5).

Afterwards, by applying threshold tests to relative distances and to luminance

gradient directions of the edge pixels belonging to De, subsets of line pixels are derived.

Indicating with NSWL the total number of straight white lines extracted on the image,
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the line pixel subsets are noted: DSWL,i (i = 1 . . . NSWL). Each DSWL,i defines a line

detected on the image frame, must contain at least nSWL,min pixels. We note nSWL,i

the number of pixels contained in each line pixel subset DSWL,i (nSWL,i ≥ nSWL,min

for each i = 1 . . . NSWL).

We tested several other edge detection algorithms (Sobel [67], Susan [73]), but the

Roberts operator showed better results, although the aforementioned methods are more

efficient for color space based extraction [78]. Besides, due to its low computation time,

this line extraction method was preferred to the Hough Transform technique, which we

also tested, and which is widely used for line detection in noisy images, with extensions

also accounting for line connectivity and thickness, as in [82].

In conclusion, the straight white line extractor algorithm returns the coordinates of

the pixels belonging to the NSWL lines extracted on the image frame (Fig. 4.5):

[Xj Yj ]
T
SWL,i ∈ DSWL,i

j = 1, . . . , nSWL,i

i = 1, . . . , NSWL

(4.3)

Coded square extractor

Along with the straight white lines, we have chosen to use as visual landmarks a set of

white coded squares laid on the ground. The identity and orientation of each square

is uniquely identified through a dotted black code, similar to the one used in[6]. The

choice of binary coding, i.e., black and white, is aimed at using luminance variation

instead of color classification, for extracting the square characteristics. We arranged

from 1 to 7 black dots on the border of the squares, in order to generate configurations

which uniquely define the landmark identity (defined by its label: ID) and orientation.

The 15 landmarks that we used can be seen in Fig. 4.2. Note that all the used landmarks

are unambiguous with respect to multiple 90◦ orientation errors. Hence, the landmark

identity and orientation can be uniquely identified in spite of the square rotational

symmetry.

In practice, edges of squares are searched within the set of edge pixels De derived as

in the straight white line extractor. The robot frame coordinates of all edge pixels are

derived from their image frame coordinates, with the projection that will be presented

below. Then, the projected edges are compared with a reference square with the same

dimensions of the coded square, so that the square perimeter pixels are identified.
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These define a subset of De for each square (see Fig. 4.5). Indicating with NCS the

total number of coded squares extracted on the image, the subsets of edge pixels of

each square i are noted: DCS,j (j = 1 . . . NCS). Each DCS,j defines a coded square

detected on the image frame and must contain at least nCS,min pixels. Following this,

pixels on the segments (scanlines) leading from the center to the perimeter edges are

classified by using a binary segmentation which uses the mean value of I on the image

as threshold. Corke [13] showed how binary segmentation is affected by noise, threshold

selection and edge gradient. However, in this application, the choice of binary coding

and the use of binary segmentation in only a small image window, and with adaptive

thresholding, reduces these problems. Finally, black dots are extracted by associating

a sufficient number of near black pixels found on the scanlines.

In conclusion, for each of the NCS detected coded squares, the coded square

extractor returns: the image coordinates of the square center O and of the centers

of the ndots black dots (respectively marked in red, and in cyan in Fig. 4.5):

[XO YO]TCS,j j = 1, . . . , NCS

[Xi Yi]
T
CS,j i = 1, . . . , ndots ndots = 1, . . . , 7

(4.4)

Visual landmark tracker

The straight white line extractor and coded square extractor only take into account

information from the current image. They provide no long-term knowledge. Thus,

consistent landmarks must be obtained by comparing the extracted landmarks over

consecutive images. This is done by projecting the characteristic points of each

extracted visual landmark V L = SWL1, . . . , SWLNSWL
, CS1, . . . , CSNCS

from the

image frame FI (coordinates [X Y ]TV L) to the robot frame FR (coordinates [x y z]TV L).

Such mapping is not one-to-one, and can only determine the projecting ray of the point.

However, regarding our application, since all the visual landmarks are on the ground

plane, the problem can be solved in closed form.

In fact, recalling Sect. 1.3, the point coordinates in the camera and image frames

are related by:

D =I TCdc (4.5)



4.3. Primitives 78

with matrix ITC given by (1.16). This equation can be rewritten:

 − f
lX

0 X −XI

0 − f
lY

Y − YI



xc

yc

zc

 =

 0

0

 (4.6)

with the camera intrinsic parameters f , lX , lY , XI and YI defined in Sect. 1.3.

Moreover, given the homogeneous transformation matrix RTC representing the camera

frame pose with respect to the robot frame, the coordinates of a point in the two

reference frames are related by:


x

y

z

1

 =R TC


xc

yc

zc

1

 (4.7)

We neglect the distance between the robot head tilt and head pan axes, assuming

they intersect in a point which stays in a constant position ς = [0 yς zς ]
T in the

robot frame (see Fig. 4.6). We also assume that during its motion, the robot body

maintains constant orientation around the x axis, and null orientation around the two

other axes. Under these assumptions, RTC can be easily computed at every frame

through the three head joint positions %h = [%nt %hp %ht]T and ς, by using the Denavit

and Hartenberg method [35] as in [24]. Since landmarks are on the ground plane

(i.e. zV L = 0) the third equation from (4.7) can be expanded and used, along with (4.5):


t31 t32 t33

− f
lX

0 XV L −XI

0 − f
lY

YV L − YI



xc

yc

zc


V L

=


−t34

0

0

 (4.8)

where t31 . . . t34 indicate the elements of the third row of RTC . Inverting this equation

away from singularities, allows for computation of the landmark position [xc yc zc]
T
V L in

the camera frame, given the landmark position [X Y ]TV L in the image frame returned

by the straight white line extractor and coded square extractor. Finally, substituting

[xc yc zc]
T
V L in (4.7) gives the landmark position [x y 0]TV L in the robot frame.

The robot frame coordinates of all straight white line points [xj yj 0]TSWL,i are

then processed with a least square error algorithm in order to identify the path errors
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Figure 4.6: The camera frame and head joint positions.

[en eθ]
T
SWL,i of each of the NSWL lines (see Sect. 1.1). In this case, since the path

direction is not specified, the path following algorithm chooses the direction with

smaller orientation error. Hence, the path errors are defined as shown in Fig. 4.7a. The

orientation error eθ is always in the interval
(
−π

2 ,
π
2

]
. The normal path error en is chosen

accordingly. A similar approach is used to process all the coded squares characteristic

points [xo yo 0]TCS,j , and [xi yi 0]TCS,j , and obtain the identity IDj = 1 . . . 15 and

orientation γj , of each of the NCS coded squares (see Fig. 4.7b). Visual landmarks,

extracted and projected at previous frames, are displaced according to the robot

measured motion and compared with the current projected landmarks for checking

consistency and filtering out false positives. The algorithm returns the characteristics
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Figure 4.7: Relevant variables utilized in: (a) straight white line tracking, and (b)

coded square tracking.

of the visual landmarks, validated in a sufficient number of consecutive frames:

[en eθ]
T
SWL,i i = 1, . . . , NSWL

IDj γj [xo yo 0]TCS,j j = 1, . . . , NCS

(4.9)

4.3.2 Motion primitives

From a kinematic point of view, AIBO can be considered as an omnidirectional robot,

i.e., three velocities (forward u1, lateral u2, and angular u3 around the robot center,

positive for counterclockwise rotation) can be independently specified. In all cases

where the robot velocities are specified in FR coordinates as V = [Vx Vy]T (e.g., when

they are imposed by a user command), they must be mapped to the control input u.

To perform this conversion, we have used two strategies. The first (omnidirectional

translational motion), consists of simply setting:

u1 = Vy

u2 = Vx

(4.10)

with u1 forward velocity, and u2 lateral velocity. The robot orientation is not

controlled in this first kind of conversion. Instead, the second kind of conversion
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(nonholonomic-like motion), consists in setting:

u1 = Vy

u2 = ATAN2(Vx, Vy)
(4.11)

with u1 and u2 respectively forward and angular velocity. The advantages of each

strategy will be illustrated later.

Basic motion primitives for controlling the robot legs in order to obtain the desired

motion u are based on the kinematic parameterized trot walk algorithm described in

Sect. 1.2.2. Velocity commands computed by the motion primitives are suitably scaled

if any of them exceeds the physical limits of the actuators.

We also developed three primitives: Landmark fixer, Landmark approacher (LA),

and Straight line follower, which use visual information returned by the perception

primitives to guide the robot. In practice, the robot actuators are driven by a visual

servoing scheme. Since the visual landmark tracker returns the position of the visual

landmarks relative to the robot, position-based visual servo control turns out to offer

a better solution than image-based servoing. The three vision-based motion primitives

are explained below.

Landmark fixer

Referring to [13], “fixation” is defined as motion aimed at keeping one point in the

scene (the “target”, noted TG) at the same location in the image plane. In this work,

it is of great interest to apply this control technique to a visual landmark, by keeping it

centered in the image plane. Advantages include: reducing chances of losing sight of the

landmark during motion, reducing motion blur, and reducing the effect of geometric

distortion in the lens (since the optical axis will be pointed at the landmark). In

many visual servoing works, the knowledge of camera motion during fixation is used to

determine the 3D position of the target: [x y z]TTG. Instead, in this application, since

the 3D position of the target is returned by the visual landmark tracker algorithm

outlined above both for straight white lines and for coded squares, it can be used as is

for fixation.

For fixation of a straight white line with parameters [en eθ]
T , we choose the 3D

position of the target to be the normal projection of the robot center on the line

(which is also the point that should be tracked by the robot during PF): [x y z]TTG =
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[−en cos eθ en sin eθ 0]T . Instead, for fixation of a coded square with center [xo yo 0]T , we

choose: [x y z]TTG = [xo yo 0]T . In both cases, the position [x y z]TTG is used for solving

the inverse kinematics problem of finding the head joint coordinates for fixation. In

practice, given the target coordinates in the robot frame, the fixation task consists

in finding the robot head joint positions %h = [%nt %hp %ht]
T such that the target

coordinates in the camera frame are [xc =0 yc =0 zc]
T
TG (corresponding to centering

the target in the image plane). This is equivalent to solving equation:
0

0

zc

1


TG

=C TR


x

y

z

1


TG

(4.12)

for %h. CTR is the homogeneous transformation matrix representing the robot frame

pose with respect to the camera frame coordinates. It is derived by inverting RTC away

from singularities.

Apart from singular configurations, where no solution can be determined due either

to joint limits (e.g. target “behind” the robot head: in this case a different target point

must be chosen) or to singularities of RTC , for most configurations the solution of (4.12)

is non-unique. In fact, although the head pan joint position %hp can be derived from

the first equation in (4.12):

%hp = −ATAN2 (xTG, yTG − yς) (4.13)

replacing it in the two other equations does not guarantee a unique solution for the

head tilt and neck tilt joint positions. In our implementation, we choose, whenever

possible (i.e. when yTG is “sufficiently” large) to fix %nt to its lower bound (in order to

maximize scene depth zc), and derive %ht from (4.12). If it is not possible to adopt this

strategy, due to the %ht joint limits, we fix %ht to its limit and derive %nt.

Landmark approacher

When the robot finds a landmark (with the extractors described in Sect. 4.3.1), it should

approach it, in order to get a better perception which can be useful for localization

purposes. In practice, it is a posture stabilization task with reference configuration

defined by the absolute position and orientation of the landmark. As we suggested
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previously, some tasks can be accomplished more effectively if nonholonomic-like motion

is enforced. However, no smooth state-feedback control law can solve the non-square

posture stabilization problem for a nonholonomic mobile robot [16]. Alternative control

approaches (e.g. smooth time-varying [70] and discontinuous feedbacks) have shown

limitations such as slow convergence and oscillatory transient. These considerations,

along with the requirement of minimizing the path to the target, led us to the choice

of omnidirectional motion, instead of nonholonomic motion, in the implementation of

the landmark approacher.

The omnidirectional walk that drives the robot to the landmark implements a

proportional closed-loop control strategy for reducing the robot’s relative distance and

orientation with respect to the nearest landmark perceived. In the case of straight

white line approaching, this is done by setting robot velocities (respectively: forward,

lateral and angular): 
u1 = λT en sin eθ
u2 = −λT en cos eθ
u3 = −λReθ

(4.14)

A similar controller is used for coded square approaching; in this case the robot

velocities are set to: 
u1 = λT yo

u2 = λTxo

u3 = −λRγ

(4.15)

In both cases, λT and λR are positive given gains.

Straight line follower

This primitive should solve the path following problem for a straight white line. For

this problem, we decided to adopt a nonholonomic model for the robot, in order to

obtain more effective obstacle avoidance (as will be shown in Chapter 5), and a more

“natural-looking” walk. Moreover, the path following problem differs from the posture

stabilization problem in that both linear and non-linear smooth state-feedback control

solutions exist for nonholonomic mobile robots [16]. On the other hand, since the task

is less stringent than posture stabilization, it can be achieved by using only one control

variable. In this work, we utilize only the angular velocity u2. The PF constraint, as

defined in 1.1, is et =const = 0, since the robot center must track its normal projection
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on the line. AIBO is modeled as a unicycle robot, with velocities [u1 u2]
T and it is

rather simple to verify that the following kinematic equations hold:

ėn = −u1 sin eθ
ėθ = u2

(4.16)

Linear feedback control can be realized by tangent linearization of the two equations

above, in the neighborhood of (en = 0, eθ = 0). This gives the second order linear

system:
ėn = −u1eθ

ėθ = u2

(4.17)

which is clearly controllable, and thus asymptotically stabilizable by linear state

feedback on u2, when u1 is constant and strictly positive. Thus, the motion exigency

(see Sect. 1.1) for this application is: u1 = const > 0. It is rather simple to verify that

a stabilizing linear feedback is of the form:

u2 = (λ1en − λ2eθ)u1 (4.18)

with λ2 = 2ε
√
λ1. Gain λ1 > 0 must be chosen so as to specify the transient ’rise

distance’ and ε ∈ (0, 1) is the damping coefficient. The validity of this approach at

walking and jogging speeds has been proved by similar works (e.g., [72] and [16]), as

shown in Chapter 2.

4.4 Visual path following scheme

The visual path following scheme that will be described in this section has been used to

control the motion of AIBO in the ASPICE Autonomous navigation mode. With this

navigation mode, the ASPICE user selects a target destination on the roadmap (shown

in Fig. 4.2), and the robot utilizes the map features in order to reach the destination.

The map is formed by streets and crossings, all delineated through white adhesive tape

and laid on the ground. The streets are straight segments, which the robot follows

using the straight line following primitive. The crossings enable the self-localization of

the robot. In order to find the shortest path to the destination, the robot utilizes a

Dijkstra-based graph search [19]. Hence, given the initial robot configuration and the

desired destination in the workspace, the path to be followed is formed by a continuous,
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piecewise differentiable curve (i.e., a series of segments), which is compatible with the

definition of path given in Sect. 1.1

The perception primitives described in Sect. 4.3.1 are used to identify the streets

(i.e. straight white lines) and crossings (i.e. coded squares) while the motion primitives

described in Sect. 4.3.2 are used to drive the robot on the map. When approaching

a landmark or following a street, the robot concurrently implements landmark fixing,

in order to keep the landmark centered in the image plane. The robot autonomous

behavior is represented by a Petri Nets [57] based framework which has been successfully

deployed on the AIBO Platform in the Robocup field [83]. The Petri Net Plan formalism

allows for high level description of complex action interactions that are necessary in

programming a cognitive robot: non-instantaneous actions, sensing and conditional

actions, action failures, concurrent actions, interrupts, action synchronization.

The autonomous navigation plan uses the following actions (note that at all times

during the actions, the perception primitives are also executed for searching and

updating perceived data):

• Seek streets The robot seeks streets by exploring the environment, while avoiding

collisions. Motion directions are predefined: AIBO alternates forward and

rotation steps.

• Approach the nearest street When it perceives some streets with the straight white

line extractor, and tracks them with the visual landmark tracker, the robot uses

the landmark approacher to walk towards the nearest street.

• Follow the street When the robot is sufficiently close to the street, it implements

the linear straight line follower for walking on the street, until at least one crossing

is detected.

• Plan the path to destination When a crossing is detected with the coded square

extractor and is tracked with the visual landmark tracker, the robot will have

univocally identified its ID and orientation. This information, along with the

coded square positions in the robot frame, and with the map, identifies the robot

pose (position and orientation). The robot then utilizes a Dijkstra-based graph

search [19] to find the shortest path to the destination. Depending on the result

of the graph search, the robot will approach and follow another street (repeat
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Figure 4.8: The maximum distance at which the robot can detect the roadmap is

measured by positioning the robot in various configurations around a straight white

line.

the corresponding actions in the plan), or stop if the crossing corresponds to the

desired destination.

The autonomous navigation plan repeats the above actions until the destination is

reached. Transitions that start or terminate the actions represent events (e.g. Street

seen, or Crossing near) which are triggered by conditions on sensed information (e.g.

distance from a line). The plan must also deal with action failures. For instance,

whenever the robot loses visual contact with a street it was approaching, the system

aborts the current action and moves to the state where the street is not seen, and so

on, until the robot reaches the street again.

4.5 Experiments

In this section, we show the results of various experiments that were

performed with the visual path following scheme developed for the ASPICE

project. Short video clips of the experiments can be viewed on the web site:

http://www.dis.uniroma1.it/∼labrob/research/ASPICE.html.

In a first experiment, the performance of the straight white line extractor is

evaluated by estimating the maximum distance from the roadmap at which the robot is
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able to detect the straight lines. In our opinion, is also a good metric for evaluating the

performance of the ASPICE autonomous navigation mode. In fact, as soon as at least

one line is detected, the robot is able to reach the roadmap and find coded squares

’showing’ the way to the requested destination. Hence, line detection is the major

bottleneck in the visual path following scheme. For the experiment, the robot is placed

at a distance of 3 m from a straight white line, in various positions and orientations

(some configurations are shown in Fig. 4.8). The distance at which the robot detects

the line is measured and averaged along the experiments. After 20 experiments, the

average value is 2.14 m, with standard deviation 0.15 m. Clearly, these values are

strongly related to the environment light conditions and possible visual occlusions.In

the roadmap used for the ASPICE experiments (see Fig. 4.2), the robot is capable

of reaching the roadmap from every position in the environment, since the maximum

distance between lines is compatible with such results. Moreover, even when the initial

position is far from the roadmap, the seek streets action (see Sect. 4.4) will lead the

robot to a position where it is able to detect at least one line.

In a second series of experiments, the performance of the autonomous navigation

mode (and correspondingly, the visual path following scheme) is compared with the

other modes developed in ASPICE: single step and semi-autonomous modes. With

single step navigation, the user retains complete control of the robot motion: with a

fixed step size, the robot can be driven in six possible directions. Before the step, a

collision check is executed. Instead, in semi-autonomous navigation, the user specifies

the main direction of motion, leaving to the robot the task of avoiding obstacles: the

robot walks continuously in a specified direction until in receives a new command and

concurrently avoids obstacles that are on the way. Details on the implementation

of the ASPICE single step and semi-autonomous modes will be given in Chapter 5.

Here, we report the results of the experiment comparing the three navigation modes.

The comparison is carried out by driving the robot from a start point to a goal point

(noted respectively “S” and “G” in Figures 4.9 and 4.10). The task is repeated 5

times for each of the three navigation modes by using first a mouse (Fig. 4.9), and

afterwards a BCI (Fig. 4.10) as input devices. In the BCI experiments, a sequence

of icons corresponding to possible ASPICE commands is shown on a screen and aids

the user in choosing the command to be sent to the ASPICE Control Unit. The EEG

potentials are captured by means of an electrode cap. Details on the BCI will be given
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Figure 4.9: Comparison between the three ASPICE navigation modes: with the mouse

as input device, the user drives the robot from point S to point G using the single step

(above), semi-autonomous (center) and autonomous (below) modes.

in Chapter 5. The comparison between the three modes and between the two input

devices is based on execution time and user intervention (i.e. number of times the

user had to intervene by updating the commands) averaged over the experiments. As

expected, the results (plotted in Fig. 4.11) confirm the qualitative properties expected

for each mode. Note that the best choice depends not only on the user preference and

ability but also on the specific task (e.g., position of the start and goal points in the

environment, presence and position of obstacles). As expected, the user intervention

diminishes as the robot autonomy increases (both using BCI and mouse). On the other

hand, note that in the specific configuration used in the experiment, the execution
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Figure 4.10: BCI-driven single step navigation experiment. A feedback stimulus is

provided on the screen. The commands used to drive the robot from point S to point

G are displayed on the bottom.

time does not always decrease as autonomy increases. For example, when the robot is

mouse-driven, the task is executed in 1:23 minutes using the semi-autonomous mode

and in 1:30 using the autonomous mode. The differences may depend, among other

factors, on the distances of the start and goal points from the roadmap. The use of the

BCI introduces a time delay on each user intervention. This delay is due to the time

required for selection of each command. In fact, to reduce the effect of the EEG signal

noise, the command selection is validated after the user has ’confirmed’ it various

times (in our experiment, 6 times). Moreover, BCI control introduces errors during

the navigation, due to EEG noise and large user inaccuracy, as compared to mouse
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Figure 4.11: Comparison between the 3 navigation modes using 2 input devices: mouse

(blue) and BCI (red). Execution time (in minutes): dashed, user intervention (number

of commands): solid.

control. Hence, the user intervention is greater with the BCI, since the user must apply

extra commands to correct the errors. Consider, for example, the semi-autonomous

experiment: with the mouse, four clicks were sufficient, whereas with the BCI, the

user had to intervene 11 times. This specific result is related to the characteristics

of the semi-autonomous mode, which requires precise timing when switching between

walking directions. This requirement is hardly compatible with the BCI. For both the

aforementioned reasons (time delay on each command and errors), the total execution

time is particularly worsened when a high intervention is required. For instance, in

single step mode, the experiment requires 2:22 more with the BCI than with the mouse,

whereas in autonomous mode the difference is only 17 seconds. Thus, when using the

BCI, the autonomous navigation mode is the most appropriate.

The usefulness of the proposed scheme to increase patient independence in everyday

life is shown in an experiment where a domestic task is achieved by taking advantage

of the visual path follower. The task is shown in Fig. 4.12: the robot is used to verify

whether the bottle of water is on the green table in a domestic environment. The

visual feedback from the robot camera supports the user throughout navigation. The

robot is initially located far from the roadmap with an obstacle on the way. The user

perceives this information via the robot camera, and decides to control AIBO with the

semi-autonomous mode to approach the roadmap (Fig. 4.12a). When the user perceives

that the robot is sufficiently near the roadmap, the autonomous mode is used to drive

the robot to the target nearest to the green table (Fig. 4.12b, c and d). Then, in order

to obtain precise motion of the robot camera and check if the bottle is on the table,
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Figure 4.12: Executing a domestic task (check if the bottle is on the green table) by

taking advantage of all the characteristics of the ASPICE robot driver.

the user controls the robot with the single step mode, and finally displaces the robot

camera with the head control menu (Fig. 4.12e). Clearly, the task would have been

much harder to achieve in the absence of the path following controller.

Finally, in another experiment, autonomous robot battery charging, is implemented.

This behavior is also present in the commercial Sony Driver, but since Sony does not

release the code of its driver, we had to realize it ad hoc for this project. This experiment

not only fulfills an important ASPICE requirement, but also provides an additional

testbed for the visual path following scheme. In fact, the AIBO Charging Station is

placed near a marked crossing on the roadmap shown in Fig. 4.2, and as soon as the

battery level is low, the robot autonomously moves to the station. The experiment is

illustrated in Fig. 4.13. The robot position at consecutive time frames is shown while it

approaches the roadmap, follows the street up to the battery charger crossing, detects

it and makes a turn in order to reach its destination (the charging station) on the basis

of the plan.
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Figure 4.13: Battery charging experiment.

4.6 Conclusions

In this chapter, we have presented the development, integration, and experimental

validation of a vision-based path following scheme for a legged robot with actuated

camera, in ASPICE, an assistive robotics project. The path is formed by straight

segments connected by coded crossings and enables the robot to reach various desired

target-destinations in a domestic environment. The PF scheme has been used in the

ASPICE autonomous navigation mode, which enables a user to control the mobile

robot with a small set of commands. In particular, the experiments show that severely

impaired patients, who are unable to use standard ASPICE input devices and must

control the robot with a BCI, would profit greatly from the vision-based path following

scheme. In other experiments, the scheme has also been used to enable the robot to

autonomously recharge its battery without human intervention, and to execute simple

domestic tasks.



Chapter 5

Other aspects of the ASPICE

project

Although the ASPICE project has provided a useful testbed for the path following

scheme which has been described in Chapter 4, it has also permitted the development

of many other aspects in the field of assistive robotics. These numerous aspects are

described in this chapter.

An important objective in assistive technology is to design versatile systems, which

adapt to the user level of disability by offering various human-robot interfaces and

various levels of interaction. Semi-autonomous navigation systems for wheelchairs

which adapt to the patient autonomy level [27, 46] are an example of this approach.

Similarly, in ASPICE, as mentioned in Chapter 4, three navigation modes have

been developed. The autonomous navigation mode has been thoroughly described

in Chapter 4. In this chapter, we will describe the single step and semi-autonomous

navigation modes. Automatic obstacle detection and avoidance is integrated in all

navigation modes to guarantee safe, collision-free motion in cluttered environments.

This is done by generating an occupancy grid, which will also be described in this

chapter, along with the experimental validation of the obstacle avoidance algorithm.

Another objective of the ASPICE project is to enable robot control based on signals

from different sources, depending on the user residual abilities. In particular, in this

chapter, we will describe the Brain-Computer Interface which has been utilized to

control AIBO with the user electro-encephalographic brain signals. Other features

93
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of the system, such as the video feedback from the robotic platform to the user and

the use of AIBO as communication aid, are also briefly described. A third objective

of ASPICE is to aid or support a human user in everyday tasks. Hence, the system

must be assessed by considering its effects on the quality of the user’s life. Human-robot

interaction during the ASPICE experimentation has been assessed by patient feedback.

The ASPICE clinical assessment on potential users has also been briefly reported at

the end of the chapter.

The chapter is organized as follows. In Sect. 5.1, the occupancy grid generator

needed to avoid obstacles during navigation is illustrated. The ASPICE single step

and semi-autonomous navigation modes are described respectively in Sect. 5.2 and

in Sect. 5.3. In Sect. 5.4, we present the Brain-Computer interface used by severely

impaired patients to control AIBO and the other ASPICE appliances. Other aspects

of the ASPICE robot driver are described in Sect. 5.5. Simulations and experiments

are presented in Sect. 5.6. The ASPICE clinical validation is reported in Sect. 5.7.

5.1 Occupancy grid generator

The main features that the robot should perceive are the obstacles that it should

avoid. We chose to use the robot range sensors to detect obstacles. We use a

local two-dimensional occupancy grid to represent the detected obstacles, built by the

occupancy grid generator.

The robot should be able to recover robust and useful spatial descriptions of its

surrounding obstacles, using sensory information. These descriptions should be used for

short-term planning in the environment. To do this, we use a tesselated two-dimensional

representation of spatial information called the occupancy grid. In the past years,

the occupancy grid framework proved to be extremely efficient for performing path

planning and obstacle avoidance in unknown and unstructured environments, and

researchers have proposed different functions for updating the grid cells (e.g. Fuzzy [60],

Bayesian [40], Gaussian [22]). The occupancy grids have also been used for obstacle

detection on Sony AIBO. Fasola and others [26] make use of the robot camera to

generate a local occupancy grid, used for taking navigation decisions. A similar

approach is used in [39], where recent information is integrated along with current

information, based on odometric data. However, both works were used in the Robocup
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Figure 5.1: Relevant variables utilized in occupancy grid generation.

application, where free space can be easily identified by the green color (the color of the

soccer field). Instead, in unknown environments, using visual information for obstacle

detection is very challenging. The AIBO range sensors are a better tool, although only

two are available. In [41], a scanning motion of the AIBO head distance sensor is used

to map the obstacles locally and the position of the barycenter of the sensor readings

after every scan is used for robot navigation.

In our approach, the two range finders (head and chest) are used to detect obstacles,

although the chest sensor can only detect near obstacles, due to its limited range and

particular orientation (see Sect. 4.2), and hence is not used to compute the occupancy

grid. Thus, only the head sensor is utilized to build the local occupancy grid by moving

the head pan joint along a sinusoidal profile spanning an angular width of 90◦. While

the origin of the occupancy grid is always on the head pan axis and its longitudinal
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extent is limited by the range of the head distance sensor (1 m), its orientation (i.e., the

direction of its bisectrix) is the same as the direction of motion introduced in Sect. 4.3.2

V = [Vx Vy]T (see Fig. 5.1). As is shown in the figure, 30 grid cells are used. The cells

are annulus sectors of width 15◦ and height 0.2 m. Obviously, due to the joint limit, it is

impossible to build occupancy grids for backward motions. The grid may be built with

the robot when this is in stationary position or in motion. In the second case, the head

pan movement is synchronized with the gait cycle and odometric data (reconstructed

through the leg joint encoders) are used to build a consistent map: in practice, at every

time frame, the previous range readings are displaced on the map according to the robot

measured motion. When the pan cycle is complete, a cell in the grid is considered to

be occupied if there is a sensor reading indicating an obstacle inside that cell.

5.2 Single step navigation mode

With single step motion, the robot can be driven, with a fixed step size, in any of

six directions (forward, backward, lateral left/right, clockwise and counterclockwise

rotations). The user selects the desired direction from the corresponding GUI, shown

in Fig. 4.3, above. Before performing the motion command, the robot generates the

appropriate occupancy grid (oriented along the intention of motion) from its stationary

position and verifies whether the step can be performed without colliding with obstacles.

The collision is checked by applying a threshold test to the sum of the inverse distances

of all the occupied grid cells. We note ‖ζ‖ the distance of the occupied cell center from

the robot center. If the collision check is positive:

∑
ζ

1
‖ζ‖

> TSS

the robot will not step in the desired direction. Otherwise, the step will be performed.

Clearly, the contribution of near occupied cells to the above sum is greater than that

of far-occupied cells. Note that, since no occupancy grid can be built for backward or

rotational motions, the corresponding step commands should be used with care.
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5.3 Semi-autonomous navigation mode

With semi-autonomous motion, the user specifies the general directions of motion,

which the robot should track as closely as possible. The user selects the desired direction

from the corresponding GUI, shown in Fig. 4.3, center. This mode may be useful for

“gross” movements, leaving the user the possibility of returning to the single step

navigator for finer motion control. In contrast with single step navigation, in the

semi-autonomous mode, occupancy grid generation and motion control are executed

simultaneously. Instead of executing a single step, the robot walks continuously in

the specified direction until it receives a new command (either a new direction or a

stop). If the specified direction is forward or lateral1 (i.e., the user desired direction

of motion in the workspace is Vdes = [Vdes,x 0]T or Vdes = [0 Vdes,y]T ), autonomous

obstacle avoidance is obtained by the use of potential fields. The algorithm used in this

case is explained below.

In fact, the use of potential fields has proved to be a powerful technique for

controlling robot motion [45]. Some researchers have used potential fields to address the

problem of real time action selection both for navigation and manipulation purposes

on the AIBO [43]. Others [64] calculate the potential fields needed for autonomous

exploration of an environment, from an occupancy grid. We decided to use the latter

approach by generating the occupancy grid as the robot moves and then use it to

compute the robot velocities. Our algorithm uses a composition of vortex and repulsive

fields to build the velocity field. In particular, for each occupied cell on the occupancy

grid, centered at ζ = [xζ yζ ]T , with xζ and yζ cell coordinates in the robot frame (see

Fig. 5.1), define the repulsive potential as:

Ur (‖ζ‖ , η) =

 λr

(
1
‖ζ‖

− 1
η

)2

if ‖ζ‖ ≤ η

0 else
(5.1)

where ‖ζ‖ is the distance of the occupied cell from the robot center, η the radius of

influence of the potential, and λr a given gain. The repulsive field induced by each cell
1As for the single step mode, no obstacle avoidance can be performed when executing backward or

rotational motions.
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is simply obtained as the gradient of this potential, i.e.,

f r
ζ =

 f r
ζ,x

f r
ζ,y

 =


∂Ur(‖ζ‖ , ηr)

∂xζ

∂Ur(‖ζ‖ , ηr)
∂yζ

 (5.2)

while the vortex field [52] is defined as:

fv
ζ =

 fv
ζ,x

fv
ζ,y

 =


±∂Ur(‖ζ‖ , ηv)

∂yζ

∓∂Ur(‖ζ‖ , ηv)
∂xζ

 (5.3)

Note the different radii of influence ηr and ηv of repulsive and vortex fields, respectively.

By choosing ηv > ηr, we obtain velocity fields that are essentially vortices at large

distances, and become increasingly repulsive at close range. The signs of fv
ζ,x and fv

ζ,y

depend on the position of the occupied cell with respect to the robot sagittal plane: a

cell in the right (left) half of the grid will induce a clockwise (counterclockwise) vortex.

The fields generated by all the occupied grid cells are then superimposed with the

desired workspace velocity in order to obtain the total velocity field:

V =
∑
ζ

f r
ζ +

∑
ζ

fv
ζ + Vdes (5.4)

This velocity must be mapped to the configuration space velocities either with the

omnidirectional translational motion conversion or by enforcing nonholonomic-like

motion (4.11). The first is consistent with the objective of maintaining as much as

possible the robot orientation specified by the user. Instead, with the second kind of

conversion, the orientation of the robot is always tangent to the path; the grid provides

more effective collision avoidance since the direction of its angle bisector coincides with

the x axis (because the robot lateral velocity is null).

5.4 Brain-Computer Interface

The ASPICE system input devices are customized on the severely motor impaired

patients’ residual abilities, based on the technologies mentioned in Sect. 4.1.1 (mouse,

joystick, eye tracker, voice recognition). Users can utilize the aids they are already
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familiar with. On the other hand, the variety of input devices provides robustness to

the worsening of the patient abilities, which is a typical consequence of degenerative

diseases. When the patient is not able to use any of the standard input devices or

when a degenerative disease likely implies that in the future he/she will no more be

able to use them, a BCI should be utilized to access the Control Unit. The BCI gives

the user communication and control channels that do not depend on the brain normal

output channels of peripheral nerves and muscles [79]. In other terms, a BCI can

detect the activation patterns of the brain, and whenever the user induces a voluntary

modification of these patterns, it is able to detect it and to translate it into an action

that is associated to the user will. BCI technology has substantially improved in the

last decade and it is reasonable to expect that, in the near future, a wider class of users

will profit from it. Though the number of completely paralyzed patients is rather small

(some one hundred thousand worldwide), BCIs have the relevance that derives from

being the ’only’ option for such users, who would otherwise be locked in their bodies.

As it emerges from a concise review of related work, real time control tasks based

on human electro-encephalography (EEG) have been addressed to simple applications,

such as moving a computer cursor on a screen [81], opening a hand orthosis [63] or

driving a wheeled robot [17]. Recently, an experimental BCI which was implanted into

the brain motor cortex, enabled a tetraplegic to move a computer cursor [38]. However,

to our knowledge, the application of non-invasive BCI technology to interaction with a

wider set of devices has not been explored yet, and it represents one of the goals of the

ASPICE system.

The BCI used in ASPICE can be alternatively based on time domain (i.e., P300

evoked potentials [25]) or on frequency domain features (i.e., sensorimotor rhythms [80])

of the EEG signal. The performance of these two BCI versions varies on an individual

basis and the most reliable features are chosen depending on the user predisposition. In

both versions, a visual interface (on a screen) aids the user in choosing the command to

be sent to the ASPICE Control Unit. The EEG potentials are captured by means

of an electrode cap, amplified, digitized and transmitted to a personal computer.

Processing is handled by the BCI2000 software package [71]. After a preliminary signal

conditioning phase, which includes a linear mixture of channels implementing a high

pass spatial filter, the features (either in the time or frequency domain) are extracted

and used to identify the user desired command.
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When time domain features are employed, a sequence of icons corresponding to

possible ASPICE commands is shown on the screen to the user. The icons are

highlighted successively one by one (ca. 3 icons are highlighted per second). After

each sequence, classification is implemented and the command corresponding to the

identified target icon is forwarded to the ASPICE Control Unit. Time domain features

are the result of an averaging procedure: the mean of time samples at equal latency

from the stimulus (i.e., the icon display) is computed for each channel and for each

stimulus. Averaged potentials at specific latencies and channels are fed into a linear

classifier. The latency/channel choice and the weights for classification are determined

in advance by training the classifier. A threshold is used to assess reliability of the

classification. The BCI which has been used in the experiments presented in Sect. 4.5

is based on time domain features.

When frequency domain features are employed, two targets positioned at the top

and bottom edge of the screen are shown to the user. Two actions (scroll along all

possible ASPICE commands and select the desired command) are associated with the

targets. The subject controls the vertical velocity of a cursor on the visual interface

by modulating the amplitude of his EEG sensorimotor rhythms above or below a

dynamically adapted threshold value. When the cursor reaches either the top or the

bottom target, the corresponding action (scroll or select) is performed in order to choose

the command to be forwarded to the ASPICE Control Unit. Frequency domain features

are computed using a parametric estimation, which takes into account the latest 300

ms of signal and is updated every 100 ms. The power spectral density values at specific

channels and frequency bins (which are identified in advance during the training phase)

are linearly combined. The output is detrended using a moving average value, which

avoids drift of the control signal if the EEG amplitude is increased or decreased (e.g.,

due to non-voluntary arousal effects).

5.5 Other robot driver features

In this Section, we will describe the implementation of four features of the ASPICE

robot driver.
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5.5.1 Video feedback

Firstly, a fundamental requirement for effective remote controlled navigation is the

feedback of the robot camera to the Control Unit (i.e., to the user). This is not

only an essential aid for the user to drive the robot in the environment, but also

helpful for exploration and extension of virtual mobility. By driving the robot in a

desired spot of the apartment, the disabled person can monitor, with AIBO’s on board

camera, that area. Thus, an algorithm for feeding back to the ASPICE GUI the

image captured by the robot has been developed. Each new image captured by the

robot camera is compressed on board using the Independent JPEG Group libraries2,

before being streamed over a wireless connection to the ASPICE Control Unit. To

improve video quality in varying light conditions, the image luminosity is adaptively

icremented/reduced before compression, depending on the image average luminosity.

This simple approach reduces the variations in the average image luminosity during

video stream.

5.5.2 Vocal request interface

Another feature of the system is a GUI for vocal requests that has been included to

improve the communication of the patient with the caregiver. This feature covers an

important issue in ASPICE, enabling the robot to be socially interactive. Socially

interactive robots have been defined by Fong [28] to describe robots whose main task

is some form of interaction. Fong categorizes these robots by the aspects of social

interaction (speech, gestures, etc.) they use.

When the robot receives a vocal request (e.g., ‘I am thirsty’) from the control unit,

it plays the corresponding prerecorded audio file with its speakers in order to attract

the caregiver’s attention. The vocal request GUI is shown in Fig. 5.2 (bottom). In

the GUI, each button that the user can select corresponds to vocal request (here, ‘turn

on/off the light’, ‘Please come’, ‘I am thirsty’ ‘Close the window’ and ‘I am hungry’).

Each vocal request is associated to a robot gesture generated by a sequence of fixed

joint positions. Joint data containing angles for all joints, as well as timing information

that state for how long the values will be sent, is specified in a special description

language developed for AIBO and described in [24]. For each vocal request, there is a
2www.ijg.org
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Figure 5.2: The ASPICE GUIs for head control (top), and for vocal requests (bottom).

file in this description language which contains all the joint data.

5.5.3 Head control interface

To improve ambient exploration with the camera, a GUI for head control has also been

developed. This GUI allows the user to directly move the robot head and point the

camera in a desired direction. With this GUI, the user can control the head pan and

head tilt angles (%hp and %ht) with fixed steps, in order to point the camera in a desired

direction. The head control GUI is shown in Fig. 5.2 (top).

5.5.4 Walking gait

Finally, another issue that deserved attention is AIBO’s walking gait, which has been

modified on the basis of the ASPICE requirements (e.g., reducing the noise caused by

foot contact with the ground). The basic principles of the walking algorithm have been

described in Sect. 1.2.2. The goal of the algorithm is to move the robot feet alternatively

(in trot style) on rectangular trajectories. The directions and sizes of such rectangles

are determined by the motion command u. The joint angles required to drive the

feet on the rectangular trajectories are calculated by solving the inverse kinematics

problem for each leg. Nevertheless, many walking styles can be implemented, and a set

of parameters (e.g., the position of the rectangles with respect to AIBO’s body, or their

height) defines each possible walking style. Hence, a set of such parameters (noted Υ

in Sect. 1.2.2) was hand tuned and tested to fulfill ASPICE requirements. Clearly, the

limitations in the robot hardware forbid usage in environments with steps (e.g. stairs)
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GOAL

Figure 5.3: A simulation result for semi-autonomous navigation.

and steep slopes.

5.6 Simulations and experiments

In this section, we show the results of the simulations and experiments that were

performed with the robot obstacle avoidance algorithm. Moreover, we discuss

the ASPICE clinical validation and its results on the quality of life of potential

users. Short video clips of the experiments can be viewed on the web site:

http://www.dis.uniroma1.it/∼labrob/research/ASPICE.html.

The possibility of testing the robot obstacle avoidance algorithm in a simulated

environment without endangering the real robot has been crucial from the very early

stages of the ASPICE project. To this end, we have adopted Webots, a mobile robot

simulation environment, which has been described in Sect. 3.5. Webots supports a

physical model of the robot AIBO ERS7, including cross-compilation of C++ programs

based on the OPEN-R Software Development Kit. The simulation environment was

built according to the real environment where the ASPICE experiments take place, a

small apartment located at Fondazione Santa Lucia in Rome, intended for rehabilitation

purposes and the three ASPICE navigation modes have been implemented in Webots.
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Figure 5.4: Three experiments showing the performance of semi-autonomous

navigation. The user drives the robot using a single command: ’go forward’(top left

and bottom) and ’go right’ (top right).

A typical simulation of the ASPICE semi-autonomous mode is shown in Fig. 5.3. Here,

the user tried to drive AIBO to a given destination in the apartment (indicated by

a red arrow in the figure), through a single direction command (forward) along the

line joining the initial and final configuration. The obstacle avoidance algorithm was

able to successfully accomplish the task in spite of the many obstacles along the way.

Here, the nonholonomic conversion entailed by eq. (4.11) was used to map the reference

velocities to robot velocities. By using Webots, it was possible to debug the algorithms

effectively and to test them without endangering the real robot. It was also possible

to progressively develop the obstacle avoidance algorithms (initially based solely on
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repulsive potential fields) by reducing the local minima cases and developing adaptive

vortex fields. Besides, the problem of tuning all the parameters (gains, characteristics

of the grid-based map, etc.) could be easily solved in the simulation before porting on

the real AIBO.

After the Webots simulations, the obstacle avoidance algorithm has been tested

on AIBO in a series of experiments. In the experiments (shown in Fig. 5.4),

the performance of the obstacle avoidance algorithms is tested by using the

semi-autonomous navigation mode. Omnidirectional translational motion (4.10) is used

for mapping desired user velocities to the corresponding control inputs. In the first

(top left in the figure) and third (bottom) experiments, a single ’go forward’ command

is used. The robot is able to successfully avoid the obstacles while maintaining the

orientation desired by the user. In the second experiment (top right in the figure),

a single ’go right’ command is used. Again, the robot avoids the obstacle while

maintaining the desired orientation. The robustness of the obstacle avoidance algorithm

is evident in the third experiment, where the obstacle scenario is more complex than

in the two other experiments. In general, due to the vibrations in the quadruped gait

cycle and to the low-quality of AIBO’s distance sensors, small and mobile obstacles

might not be detected by the robot. However, using the robot camera video feedback

presented in Sect. 5.5.1, the user can detect such obstacles and intervene to prevent

collisions.

5.7 Clinical validation

At this stage of the ASPICE project, the system has been implemented and is available

at the Fondazione Santa Lucia in Rome for validation with patients [12]. All domotic

appliances used in ASPICE have been installed in the experimental apartment of

the Santa Lucia hospital. A portable computer runs the Control Unit program and

several input devices are available to cope with as many categories of users as possible.

The subjects have been admitted for a neuro-rehabilitation program and the whole

procedure underwent the approval of the local ethical committee. The patients have

been informed on the device and have given their voluntary informed written consent.

Furthermore, they have been interviewed and physically examined by the clinicians, in

order to evaluate some variables of interest: the degree of motor impairment and of
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reliance on the caregivers for everyday activities as assessed by current standardized

scale (Barthel Index BI), the familiarity with the system input devices, the ability to

speak or communicate, and the level of informatics alphabetization measured by the

number of hours per week spent in front of a computer. Then, for a period ranging from

3 to 4 weeks, the patient and (when required) her/his caregivers have been practising

weekly with the ASPICE system. During the whole period, patients had the assistance

of an engineer and a therapist in their interaction with the system. The experiments

have been carried out with eight subjects suffering from Spinal Muscular Atrophy type

II (SMA II) and six subjects suffering from Duchenne Muscular Dystrophy (DMD).

Depending on their level of disability, users controlled AIBO through keyboard, mouse,

touchpad, head tracker, microphone or BCI.

According to the score of the BI, all patients were on almost complete dependence

of caregivers, especially the six subjects suffering from DMD (BI < 35), who required

artificial ventilation, had minimal residual mobility of the upper limbs and very slow

speech. Because of the high level of muscular impairment, the DMD patients all had

access to the system via joypads. As for the eight SMA II subjects, their level of

dependency was slightly lower with respect the DMD patients, but they also required

continuous assistance for daily life activity (BI < 50). These patients have accessed

the system via joystick, touchpad, keyboard and microphone, since the residual motor

abilities were still functionally effective both in terms of muscular strength and range

of movements preserved. Four of them interacted with the system via BCI. All of the

patients were able to master the system and control AIBO within 5 sessions. Data

on user satisfaction, increase of independence, and reduction of caregiver workload,

have been collected and structured in questionnaires during the experimentation. For

instance, the users were asked to indicate with a number ranging from 0 (not satisfied)

to 5 (very satisfied) their degree of acceptance relative to each of the output devices.

The average grade given by the patients to their ’personal satisfaction in utilizing the

robot’ was 3.04 on a 5-point scale. This is a very promising result, considering that the

users were originally more accustomed to using and controlling the ’traditional’ ASPICE

appliances rather than the mobile robot. According to the results of the questionnaire,

all patients reported that they were independent in the use of the system at the end

of the training and they experienced (as they reported) “the possibility to interact

with the environment by myself”. From the clinical viewpoint, the robot navigation
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system was useful in blending the “desiderata” of the patients (e.g., being in the living

room with the relatives, reaching someone far from the patient’s location) with their

level of disability (which prevented them from acting as first-person in realizing such

“desiderata”). For example, patients with a partial preservation of distal arm muscular

ability (i.e., most SMA II patients) could have a complete control of the robot via

single step navigation. On the other hand, severely impaired patients (i.e. DMD

patients), who were unable to send frequent commands, could operate the robot in

semi-autonomous and autonomous navigation modes. In summary, the robot driver

has been designed in order to be effectively operated by low-speed input devices, such

as the ones developed in ASPICE (e.g., the BCI). Hence, in this work we did not

attempt to provide a new control interface for robot navigation, but rather focused on

the design and implementation of an appropriate robot navigation system, that can be

matched to various forms of detection of the user’s will. The clinical validation showed

feasibility of the proposed approach.

Further studies are necessary to confront a larger population of patients with

ASPICE, in order to assess the robot navigation system impact on the quality of life

by taking into account a range of outcomes (e.g. mood, motivation, caregiver burden,

employability, satisfaction, [48], [1], [59]). However, the results obtained from this pilot

study are encouraging for the establishment of a solid link between the field of human

machine interaction and neurorehabilitation strategy [34]. The ASPICE system cannot

substitute the assistance provided by humans. Nevertheless, it can contribute to relieve

the caregiver from the continuous presence in the room of the patient, since the latter

can perform some simple activities on his/her own. The perception of the patients

is that they no longer have to rely on the caregiver for each and every action. This

provides the patient with both a sense of independence, and a sense of privacy. For

both reasons, her/his quality of life is sensibly improved.
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