
HAL Id: tel-01246240
https://hal.science/tel-01246240v1

Submitted on 22 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hypernode graphs for learning from binary relations
between sets of objects

Thomas Ricatte

To cite this version:
Thomas Ricatte. Hypernode graphs for learning from binary relations between sets of objects. Arti-
ficial Intelligence [cs.AI]. Université de Lille, 2015. English. �NNT : �. �tel-01246240�

https://hal.science/tel-01246240v1
https://hal.archives-ouvertes.fr

Ecole Doctorale ED072 ”Sciences Pour l’Ingénieur”

Hypernode graphs for learning from
binary relations between sets of objects

Thèse préparée par Thomas Ricatte
pour l’obtention du grade de :

Docteur de l’Université de Lille
Domaine : Informatique

Soutenue le 23/01/2015 (Mention Très Honorable)

Centre de Recherche en Informatique, Signal et Automatique de Lille
(CRIStAL - UMR CNRS 9189)

Composition du Jury :

Yannick Cras Chief Development at SAP SE Examinateur
François Denis Professeur à l’Université d’Aix-Marseille Rapporteur
Gemma Garriga Data Scientist at Allianz SE Examinateur
Rémi Gilleron Professeur à l’Université de Lille Directeur
Mark Herbster Lecturer at University College London Rapporteur
Sophie Tison Professeur à l’Université de Lille Examinateur
Marc Tommasi Professeur à l’Université de Lille Examinateur

2

Contents

1 Introduction 5

2 Hypernode graphs 13

2.1 Undirected Graphs and Spectral Framework 13

2.1.1 Graphs and Laplacians 13

2.1.2 Graph kernels and distances 19

2.2 Hypernode graphs . 24

2.2.1 Model definition . 24

2.2.2 Hypernode graph Laplacians 27

2.2.3 Equivalent hypernode graphs 31

2.3 Expressiveness of the Laplacian framework 32

2.3.1 The case of hypernode graphs 34

2.3.2 The case of hypergraph Laplacians 35

2.4 Conclusion . 38

3 Properties of hypernode graphs 39

3.1 Hypernode graphs, graphs and signed graphs 39

3.1.1 Pairwise Weight Matrix and Laplacians 39

3.1.2 Signed graph reduction 41

3.2 Paths and components in hypernode graphs 46

3.2.1 Paths and signed components 48

3.2.2 Independent components and strong connectivity . . . 49

3.3 Hypernode graph kernels and distances 51

3.3.1 Definition and main properties 52

3.3.2 Diffusion on hypernode graphs and relations with d2 . 53

3.3.3 The transition matrix P “ D´1W 57

3.4 Conclusion . 58

4 Skill rating with hypernode graphs 59

4.1 Skill rating in multiplayer games 59

4.1.1 Notations and team additive model 60

4.1.2 The Elo rating system 62

4.1.3 The TrueSkill rating system 64

3

4 CONTENTS

4.2 Learning skill ratings with hypernode graphs 65
4.2.1 Modeling Games with Hypernode Graphs 65
4.2.2 Regularizing the hypernode graph 68
4.2.3 Inferring Skill Ratings and Predicting Game Outcomes 71

4.3 Experiments . 73
4.3.1 Tennis Singles . 74
4.3.2 Tennis Doubles . 75
4.3.3 Xbox Title Halo2 . 76

4.4 Conclusion . 77

5 Perspectives and open problems 79
5.1 Cuts in hypernode graphs . 79

5.1.1 Cuts in undirected graphs 80
5.1.2 Cuts and hypernode graphs 87
5.1.3 The Min-Cut problem on hypernode graphs 89
5.1.4 Relation with the signed graph cuts 92
5.1.5 Algorithmical perspectives and partial results 95

5.2 Directed hypernode graphs 96
5.3 An algebraical interpretation of hypernode graphs 99

5.3.1 The classes of Graph Kernels and Graph Laplacians . 99
5.3.2 The class of Hypernode graph Laplacians 101
5.3.3 A convex hull conjecture and an intermediate class Fpnq103
5.3.4 A Riemanian geometry for strongly connected hyper-

node graphs . 104

6 Conclusion 111

Appendices 115

A Multigraph learning with Hypernode graphs 115
A.1 Combining Graphs through Euclidean Embedded Spaces . . . 115

A.1.1 Embedded vector spaces 116
A.1.2 Combining embedded Euclidean spaces. 116
A.1.3 Convex Linear Combination 117
A.1.4 Sigmoid Combination 118
A.1.5 Combination Algorithm 119

A.2 Experiments . 119
A.2.1 Datasets . 120
A.2.2 Experimental setting 121
A.2.3 Experimental results 122

Chapter 1

Introduction

The present thesis has been prepared in partnership with the business soft-
ware company SAP (CIFRE industrial agreement) in the innovation depart-
ment dedicated to Business Intelligence (BI). The purpose of BI is to provide
decision-makers with the tools and methods that allow for efficient exploita-
tion of corporate data. To achieve this ultimate goal, BI systems have to
deal with large amounts of data that come from multiple sources. For this
reason, building efficient and robust algorithms often depends on our ability
to process complex and heterogeneous relational structures.

In this context, I have carried out in parallel applied research (internal SAP
projects) as well as theoretical research. In what follows, I present the out-
come of this theoretical research which was focused on the problem of learning
with complex inter-connected data.

The objective of Machine Learning techniques is to figure out how to auto-
matically perform tasks by generalizing from examples. Machine Learning
algorithms rely on existing data to build models that can be then applied
to new situations. Over the past decades, the rise of digital sciences has
led to an exponential growth in the volume of data (see for instance Gantz
and Reinsel 2012), making it possible to tackle more and more applica-
tions.

Data instances are commonly described in terms of features and inter-
relations. The features represent the individual properties of the instances
while the inter-relations characterize the dependencies that exist between in-
stances. As an illustration, let us consider the case of recommender systems
whose purpose is to propose new movies to users based on historical data.
The data contains two main types of instance: the users and the movies.

5

6 CHAPTER 1. INTRODUCTION

The movies are characterized by a set of features (title, style, duration, . . .).
The same goes for the users with a different set (name, age, occupation,
. . .). In addition of this information come the inter-relations that establish
connections between individual instances (e.g.user U1 is friend with user U2,
user U3 has watched movie M1 last week).

Many classical machine learning algorithms such as SVM (Vapnik 1998) or
AdaBoost (Freund and Schapire 1995) focus on the specific case where the
data is flat, i.e., where all the information lies into the individual features.
However, in many recent applications, the role played by the inter-relations
has become prominent. This is for example the case of social networks
that have known a fast evolution since the early 2000s (Friendster, 2002;
MySpace 2003; Facebook, Orkut, 2004). In this context, our knowledge
about a given user depends crucially on its relationships with the other
users (friendship relations, post interactions, . . .). On the contrary, the
information brought by the individual features (e.g., the user profile) is
often regarded as unreliable and noisy since in many cases, it is not subject
to any control.

Binary inter-relations and undirected graph model

The most common case of inter-relations are the binary relations between
pairs of individuals. We can find these relations for instance in the social
networks presented above (friendship relation, following relation, . . .) A
popular abstraction for this case lies into the notion of undirected graph.
An undirected graph consists in a set of nodes N together with a set of
edges E, where an edge is defined as an abstract connections between two
nodes.

A lot of effort has been put in the past years into the theory of graph learning.
We can distinguish between two main classes of graph learning problem.
The first class focuses on how to improve the graph structure. It includes
subproblems such as Link Prediction (find the edges that should be added to
the graph) and Entity Disambiguation (improve the nodeset by, for instance,
finding duplicates nodes). The second class of problems is the one on which
we will concentrate in the following. It focuses on node and edge valuation
and includes problems such as node clustering and node classification (both
are discrete node valuation problems).

Note, that, in all the situations mentioned above, the valuation function has
to somehow respect the configuration of the graph. We usually assume that
the graph is an homophilic structure, i.e., that any two nodes linked by an
edge should be regarded as similar and thus, should receive close valuations.
This reasonable assumption has been inspired by empirical studies on real

7

life networks. Indeed, we can observe that binary inter-relations often occur
between similar individuals. McPherson et al. (2001) provide an interesting
discussion and give additional pointers to former studies on this topic.

In the present work, we will put our focus on the continuous node valuation
problem where the objective is to find f : N Ñ R. Note that, since N is
finite, f can be regarded as a vector that belongs to R|N |. We consider a
specific branch of graph learning called spectral learning. Spectral learning
allows us to tackle the problem of the continuous node valuation by defining
the notion of graph Laplacian matrix. The graph Laplacian matrix ∆ is a
symmetric positive semi-definite matrix in R|N |ˆ|N | that encodes the struc-
ture of the graph. An interesting property of this matrix is that the term
fT∆f is small as soon as the function f tends to respect the homophilic
structure of the graph (i.e., as soon as it tends to assign close values the
nodes that are connected by edges). Such a function is told to be smooth
on the graph, and, for this reason, we denote the application Ω : f Ñ fT∆f
as the smoothness measure associated with the graph.

Since ∆ is a symmetric real matrix, it is possible to consider an orthogonal
basis R|N | formed with unit eigenvectors of ∆. An interesting property of
these vectors is that their smoothness is equal to their associated eigenvalue.
For this reason, the analysis of the eigenvectors and the eigenvalues of ∆ is of
central importance in many situations, which legitimates the term of spectral
learning (see also Chung 1997). An example of successful algorithm based
on this idea is the popular spectral clustering algorithm (see Von Luxburg
2007) that tackles the problem of 2-class clustering (discrete node valuation)
by considering an adequate relaxation of the objective function, thus leading
to a continuous node valuation problem.

Complex relations and higher-order learning

A main limitation of the graph learning framework is that it is inherently
limited to the case of binary relations. In the general case, inter-relations
between data instances can take various forms and involve an arbitrary
number of individuals. We call these general relations higher-order relations.
As an illustration, let us consider the case of text documents that address
different topics such as economics, health or environment. Note that a single
document can address multiple topics (for instance health and environment).
Belonging to a topic involves potentially more than two objects. Handling
this type of relations is beyond the scope of the graph model and require
specific tools.

Based on this observation, many people have started to consider generalized
graph models with the goal of providing new learning strategies. One of

8 CHAPTER 1. INTRODUCTION

the most popular framework that allows to encode naturally higher-order
relations is the hypergraph framework introduced by Berge (1989). Contrary
to the graph case, edges in hypergraphs can link more than two nodes and
are denoted as hyperedges. All the nodes that belong to the same hyperedge
share some common property and, therefore, are expected to be similar.
Hypergraphs are particularly suited to represent categorical relations such
as the topic-based relation presented above.

A considerable amount of work has been conducted on hypergraph learning
theory in the past decade (see for instance Agarwal et al. 2005; Tsuda 2005).
In particular, several attempts have been made to generalize the notion of
Laplacian matrix (Bolla 1993; Rodŕıguez 2003; Zhou et al. 2006). It can
be noted, however, that all these proposals are implicitly based on graph
reduction as shown in Agarwal et al. (2006) and, therefore, fail to capture the
specificity of the corresponding higher-order relations. From a theoretical
point of view, we expect a strict gain of expressiveness when we consider
more complex relations, which is not the case here.

Another interesting case of general inter-relations are the binary relations
between sets. Such relations occur for instance when we consider entities
producing and consuming resources. Each type of resource defines a rela-
tion between two groups: the producers and the consumers. In this context,
the goal can be to find an optimal way to split the entities in several au-
tonomous groups or to identify the most important nodes that require to be
monitored carefully. An other situation where binary relations between sets
occurs is in multiplayer games: each game can be seen as a relation between
several sets of players with an additional semantic associated to the game
outcome (winner team, scores, . . .) In this context, an interesting task is to
estimate the skill level of each player given a set of games. This task, known
as skill rating, is often associated to the match-making task that aims to
propose new equilibrated games from historical data. A well-known exam-
ple of algorithm that tackles these two problems is the Elo ranking system
originally designed for chess competitions. The recent explosion of online
gaming has again stressed the importance of developing efficient learning
techniques that can work with such relations. .

In the present work, we propose a new abstract model called hypernode graph
that allows to handle binary relations between sets. We define a hyperedge
as an abstract connection between two sets of nodes called hypernodes. A
hypernode graph h “ pN,Hq is simply a set of nodes N together with a set
of hyperedges H. In a given hyperedge, each node is associated to a posi-
tive weight that represent its contribution to the relation. We consider only
balanced relations in the sense where the total contributions of both hyper-
nodes have to be equal. Formally, this leads to a technical constraint on the
node weights called equilibrium condition. Note that as in the hypergraph

9

case, our structure is a direct generalization of undirected graphs. Indeed,
a classic edge is fully equivalent to a hyperedge where both hypernodes are
singletons. In this case, our equilibrium condition reduces to the existence
of a single weight associated to the binary relation.

As in the graph case, we regard hypernode graphs as a homophilic structure:
two hypernodes that are linked by a hyperedge should be somehow similar.
Note that we can extend a real-valued node function f : N Ñ R to the set
of hypernodes by considering the weighted sums of the values taken by f
(the individual contributions are use for the weighting). Similarly to the
graph case, we say that f is smooth on a hypernode graph h if it satisfies
the homophilic condition, i.e., if it takes similar values on the hypernodes
connected by a hyperedge.

In order to build efficient learning algorithms for hypernode graphs, we
introduce a discrete analysis framework similar to the one presented in Zhou
et al. (2005) for directed graphs. In particular, we define the notion of
discrete gradient which allows us to quantify the smoothness of a given
function f : N Ñ R. On this basis, we introduce a general version of the
graph Laplacian operator. The hypernode graph Laplacian matrix ∆ is
again a symmetric positive semi-definite matrix that belongs to R|N |ˆ|N |.
Similarly to the graph case, we can define the smoothness measure Ωpfq “
fT∆f . Note that, contrary to the hypergraph case described above, our
extension provides a real gain of expressiveness. Indeed, we show that the
smoothness measure Ω induced by a given hypernode graph cannot be in
general reduced to a graph smoothness measure, even if we allow the usage
of auxiliary nodes. This reason is that our model do not try to reduce the
higher-order relations to the classic binary case but rather try to capture
them as a whole.

As might be expected, many definitions and results coming from the graph
theory won’t hold in our generalized framework. In many cases, we have
to replace them with new concepts and properties. In the present work,
we review the most important changes and provide a detailed discussion
on all these points. We strongly believe that the hypernode graph exten-
sion and its related spectral framework pave the way for new algorithmic
applications.

As a proof of concept, we consider the skill rating problem described above
and propose a new algorithm based on hypernode graphs. We model mul-
tiplayer games using hyperedges and add auxiliary nodes to express the
dominance relations (winning team ą loosing team) We show that our algo-
rithm is able to outperform several dedicated algorithms for different game
configurations.

10 CHAPTER 1. INTRODUCTION

Outline of the thesis

This dissertation is organized as follows:

• Chapter 2 reviews essential background work and present the hyper-
node graph model. We start by introducing formally the notions of
undirected graph and spectral learning. We define the notion of graph
Laplacian matrix and discuss its main properties. Then, we present
our model and propose an extension of the spectral learning frame-
work. In particular, we introduce a generalized notion of Laplacian
and show that it provides a strict generalization of the graph Lapla-
cian in the sense that one cannot approximate it using a graph with a
finite number of nodes. This last property allows us to claim the strict
gain of expressiveness induced by our extension.

• Chapter 3 studies in detail the main properties of hypernode graphs
and reviews the main differences with the graph spectral framework.
We start by pointing out a strong relation between hypernode graphs
and a specific class of signed graphs, i.e., a specific class of graphs
where the edges can be weighted with some negative values. We intro-
duce the notion of reduced signed graph and discuss how our definition
of the Laplacian matrix can be related to the notions of Laplacian ma-
trix defined on signed graphs. In a second time, we discuss the notion
of path and connectivity in hypernode graphs. In particular, we show
that the notion of connected component can be replaced by two com-
plementary notions and introduce the concept of strongly connected
hypernode graph. Finally, we discuss the notion of distance in hy-
pernode graphs and highlight the role of the kernel matrix which can
be computed as the Moore-Penrose pseudo-inverse of the Laplacian
matrix.

• Chapter 4 presents an application of the hypernode graph framework
to the problem of skill rating in multiple players games. We start by
reviewing important background work for this specific issue. In par-
ticular, we will present two dedicated algorithms (Elo and Trueskill)
and review their main properties. We then use hypernode graphs to
model multiplayer games that involve two teams of distinct players
and extend classic graph algorithms in order to learn the skill of each
of the individual players. We use these learnt skills in order to predict
the outcome of new games, which allows us to compare our methods
with dedicated methods such as Elo and TrueSkill. We finally show ex-
perimentally that we are able to outperform these methods on various
datasets.

• Chapter 5 presents several research directions and discuss some in-

11

teresting open problems on hypernode graphs. We start by extending
the notion of graph cut to hypernode graphs and review the main
differences induced by this generalization. We believe especially that
interesting research problems lies in the design of algorithms for hy-
pernode graph MinCut. In a second part, we discuss the question
of directivity in hypernode graphs. Indeed, as in the graph case, it
makes sense in some applications to consider directed hyperedges. We
discuss how this idea can be related to the theory of directed hyper-
graphs popularized by Gallo et al. (1993). Finally, we present some
algebraical problems related to the hypernode graph extension. We
describe in detail the different spaces corresponding to the sets of
Laplacian matrix, Laplacian kernel, hypernode graph Laplacian and
hypernode graph kernel and formulate on this basis a convex hull con-
jecture. We propose a geodesically complete Riemanian geometry for
the set of strongly connected hypernode graphs, which paves the way
for building new algorithms.

12 CHAPTER 1. INTRODUCTION

Notation Description

R Set of real numbers

R` Set of nonnegative real numbers

N Set of natural numbers, i.e., t0, 1, . . . u

|S| Number of elements in the set S

x,y Arbitrary vectors

Spanpx1, . . . ,xpq Vector space spanned by the vectors x1, . . . ,xp

ei i-th basis vector

1 Uniform vector
`

1 1 . . . 1
˘T

g Arbitrary graph

g̃ Arbitrary signed graph

h Arbitrary hypernode graph

N Set of nodes (usually t1, . . . , |N |u)

E Set of edges

H Set of hyperedges

h Arbitrary hyperedge

M Arbitrary matrix (uppercase letter)

M : Moore-Penrose pseudo-inverse of matrix M

MT Adjoint matrix corresponding to matrix M

RankpMq Rank of matrix M

TrpMq Trace of matrix M

NullpMq Nullspace of operator M

M ľ 0 Positive semi-definiteness

M ą 0 Positive definiteness

Id Identity operator

f, g Arbitrary functions

f
ˇ

ˇ

S Function f restricted to the set S

δpi“jq Kronecker delta (equals 1 if i “ j, 0 otherwise)

δpi‰jq Negative Kronecker delta (equals 1 if i ‰ j, 0 otherwise)

sgnp¨q Sign operator (sgnpxq “ 1 if x ě 0, ´1 otherwise)

x¨, ¨y Inner product between vectors

} ¨ } Arbitrary norm

} ¨ }p Lp norm

P r¨s Probability of event

E r¨s Expectation of random variable

Summary of notation

Chapter 2

Hypernode graphs

Chapter abstract In this chapter, we introduce the notion of hypernode
graph, which is our main contribution to the modeling of binary relations
between sets of entities. Our main motivation is to define a model that
goes beyond pairwise relations and allows to encode set based similarities.
In the first part of the chapter, we review some important definitions
concerning undirected graphs as the main model to represent pairwise re-
lations between individuals. In particular, we recall the notion of Lapla-
cian matrix which is the cornerstone of the spectral theory and discuss
its main properties. In the second part, we introduce formally our model
and discuss how we can extend the notion of Laplacian matrix to this
new class of objects.
Finally, we discuss the expressiveness of our Laplacian framework and
compare it with other extensions for higher order learning.

2.1 Undirected Graphs and Spectral Framework

In the following, we recall the commonly accepted definitions of undirected
graphs, graph Laplacians and graph kernels.

2.1.1 Graphs and Laplacians

An undirected graph g “ pN,Eq is a set of nodes N together with a set
of undirected edges E. We define n “ |N | and p “ |E|. Each edge is an
unordered pair ti, ju of distinct nodes (no self-loops) and is associated with
a non negative weight wti,ju. We define the neighborhood N piq of a node i
to be the set of all nodes j that are connected to i by an edge:

13

14 CHAPTER 2. HYPERNODE GRAPHS

N piq “ tj P N such that ti, ju P Eu .

The adjacency matrix W is the nˆ n matrix defined by

Wi,j “

#

wti,ju if ti, ju P E

0 otherwise

W is a symmetric matrix and has a null diagonal. The degree of a node
i P N is defined as

dpiq “
ÿ

jPN piq
wti,ju “

ÿ

jPN

Wi,j .

Note that the degree of a node is always positive, unless it does not partic-
ipate in any edge (in this case, the degree is null). The degree matrix D is
the n ˆ n diagonal matrix defined by Di,i “ dpiq. We define the volume of
the graph to be the sum of the degrees of its nodes. Namely

Volpgq “
ÿ

iPN

dpiq .

We define a path on a graph to be a finite sequence of nodes that are con-
nected by a sequence of edges. A connected component is a maximal set of
nodes in which any two nodes are connected to each other by at least one
path.

Example 1. Let g1 be the undirected graph defined by N “ t1, 2, 3, 4u and
E “ tt1, 3u, t1, 4u, t2, 4u, t3, 4uu. The edge weights are set to wt1,3u “ 2,
wt1,4u “ 1, wt2,4u “ 1 and wt3,4u “ 0.5. We represent g1 in Figure 2.1
below, together with its adjacency matrix W1 and its degree matrix D1. The
sequence of nodes p1, 4, 3q is a path in the graph g1 but the set t1, 3, 4u is
not a connected component since we can add the node 2 without losing the
connectivity property.

2

1 3

4

1

2

0.5

1

W1 “

¨

˚

˚

˝

0 0 2 1
0 0 0 1
2 0 0 0.5
1 1 0.5 0

˛

‹

‹

‚

D1 “

¨

˚

˚

˝

3 0 0 0
0 1 0 0
0 0 2.5 0
0 0 0 2.5

˛

‹

‹

‚

Figure 2.1: Undirected graph g1 and matrices W1 and D1

2.1. UNDIRECTED GRAPHS AND SPECTRAL FRAMEWORK 15

We now consider the problem of collective node valuation: for a given graph
g “ pN,Eq, the objective is to find a node valuation function f : N Ñ R. As
said in the previous chapter, we expect from f that it assigns close values to
nodes that are linked by edges in the graph (homophilic assumption). When
it happens, we say that f is smooth on g. In order to quantify the smoothness
of a function f over g, let us first assume that each edge is associated with
an arbitrary orientation. Then, we define the gradient function grad for f
by, for every oriented edge pi, jq,

grad f : pi, jq Ñ
a

wti,jupfpjq ´ fpiqq .

We can note that | gradpfqpi, jq| is small whenever fpiq is close to fpjq. In
the following, we will regard the euclidean space Rn (resp. Rp) as the space
of real-valued node functions (resp. real-valued edge functions). Since the
gradient is a linear operator, we can denote by G P Rpˆn the corresponding
matrix. Then, the smoothness of a real-valued node function f over a graph
g is defined by

Ωpfq “
ÿ

i,jPV 2

| gradpfqpi, jq|2 “ fTGTGf ,

where G is the matrix of the linear mapping grad from Rn into Rp where
n “ |N | and p “ |E|. In the case of the graph g1 presented in Figure 2.1, a
possible gradient matrix is (for an arbitrary orientation of the edges)

G “

¨

˚

˚

˝

´
?

2 0
?

2 0
´1 0 0 1
0 ´1 0 1

0 0 ´
?

0.5
?

0.5

˛

‹

‹

‚

Edge 1 Ñ 3
Edge 1 Ñ 4
Edge 2 Ñ 4
Edge 3 Ñ 4

Note that Ω does not depend on the orientation of the edges. In the follow-
ing, we will denote Ω as the smoothness measure associated with the graph
g. Moreover, we can show that

Proposition 1.
?

Ω defines a semi-norm on Rn, i.e., it is positive, homo-
geneous and sub-additive.

Proof.
?

Ω “ }Gf}2 is positive by construction. We can write for all α P R
and f P Rn,

a

Ωpαfq “ }αGf}2 “ |α|
a

Ωpfq, which proves the homogeneity
of
?

Ω. Moreover, for all f, g P Rn,

a

Ωpf ` gq “ }Gf `Gg}2 ď }Gf}2 ` }Gg}2 “
a

Ωpfq `
a

Ωpgq ,

which proves the sub-additivity.

16 CHAPTER 2. HYPERNODE GRAPHS

The symmetric matrix ∆ “ GTG is called the (unnormalized) graph Lapla-
cian, which is also proved to be defined by ∆ “ D ´W where D and W
are the degree matrix and the adjacency matrix of the graph. Note that
the Laplacian operator is often introduced directly under the standard form
D´W , without considering the underlying concept of graph gradient. How-
ever, gradients prove to be essential when it comes to extend the notion of
Laplacian operator to the hypernode graphs.

Proposition 2. Let g be an undirected graph and ∆ its Laplacian matrix.
∆ is symmetric and positive semi-definite. Moreover, we have

Nullp∆q “ NullpGq “ NullpΩq “ Spanp1C1 , . . . ,1Cpq ,

where 1C1 , . . . ,1Cp are the indicator functions of the k connected compo-
nents of g and Nullp∆q denotes the nullspace of ∆. As a consequence, the
dimension of Nullp∆q is equal to the number of connected components.

Proof. The symmetricity and the positive semi-definiteness of ∆ comes di-
rectly from the fact that ∆ “ GTG. If f is in Nullp∆q, we have fT∆f “
0 “ }Gf}22 so f P NullpGq. Conversely if Gf “ 0, then ∆f “ GTGf “ 0.
Moreover, Gf “ 0 if and only if }Gf}22 “ 0 “ Ωpfq, which concludes the
proof of the equality between the three nullspaces.

Let us now consider f P NullpGq. We have, for every edge pi, jq,

gradpfqpi, jq “
?
wi,jpfpjq ´ fpiqq “ 0 .

As a consequence, as soon as two nodes i and j are linked by an edge, we
must have fpiq “ fpjq. By transitivity, all the nodes that belong to the same
connected component should have the same value. In the following, we will
denote by αt the value taken by f on the connected component Ct. Since by
definition the connected components have null intersections, we can write

f “

p
ÿ

t“1

αt1Ct ,

so f P Spanp1C1 , . . . ,1Cpq. The reverse is straightforward: let us choose f
in Spanp1C1 , . . . ,1Cpq. For any edge ti, ju P E, i and j have to belong to
the same connected component. Since fpiq “ fpjq, gradpfqpi, jq “ 0 and
∆f “ }Gf}22 “ 0.

A direct consequence of Proposition 2 is that Nullp∆q is never reduced to
t0u since it always contains the constant vector 1. Since ∆ is symmetric and
positive semi-definite, it is orthogonally diagonalizable and all its eigenvalues
are positive or null. In the following, we assume that the q ď n eigenvalues
are ordered as follow

0 “ λ1 ă λ2 ă ¨ ¨ ¨ ă λq

2.1. UNDIRECTED GRAPHS AND SPECTRAL FRAMEWORK 17

f1

1

2

3

4 5

6

7

8
1

1

1

1

1

1

1

1

1

1

1

1

0.2
1

f2

1

2

3

4 5

6

7

8
1

1

1

1

1

1

1

1

1

1

1

1

0.2

´0.36

0.36

Figure 2.2: Graph g2 colored using the modes f1 and f2

Note that if f is a unit eigenvector associated with the eigenvalue λ, then
Ωpfq “ fTλf “ λ. The unit eigenvectors of ∆ can be seen as the harmonic
modes of the graph and their smoothness depend on their related eigenvalue.
A mode associated with the eigenvalue λ1 “ 0 is a fundamental mode. Be-
cause of Proposition 2, any fundamental mode is a linear combination of the
indicator functions of the connected components.

Example 2. Let us consider the graph g2 with N “ t1, 2, 3, 4, 5, 6, 7, 8u
presented in Figure 2.2 below.

The Laplacian ∆2 of this graph has four distinct eigenvalues λ1 “ 0, λ2 “

0.092, λ3 “ 4 and λ4 “ 4.3. λ1 is associated to the fundamental mode
f1 “ 1N . λ2 is associated to a unique mode f2 (Ωpf2q “ λ2 “ 0.092). Since
λ4 ą λ3 ąą λ2 so the modes associated to λ3 and λ4 are far less smooth than
f2. We present in Figure 2.2 below the modes f1 and f2. Note that these
modes can be used to feed a clustering algorithm on the nodes. This idea
leads to the so-called spectral clustering algorithm (see Von Luxburg 2007).

Note that some papers also consider a different version of the Laplacian ma-
trix called normalized Laplacian that is defined by ∆n “ I´D´1{2WD´1{2.
As shown in (Zhou et al. 2005), this Laplacian can be obtained by consid-
ering the normalized gradient ngrad defined by

ngrad f : pi, jq Ñ
a

wti,ju

˜

fpjq
a

dpjq
´

fpiq
a

dpiq

¸

.

The only difference with the gradient operator presented above is that the
entries of f are divided by the degrees of the nodes. The related gradient

18 CHAPTER 2. HYPERNODE GRAPHS

matrix is Gn “ GD´1{2, which lead to

∆n “ GTnGn “ D´1{2∆D´1{2 “ I ´D´1{2WD´1{2 .

Note that the strong link between the number of connected components and
the nullspace is preserved in ∆n as stated in the following Proposition.

Proposition 3. Let g be an undirected graph and ∆n its normalized Lapla-
cian matrix. ∆n is symmetric and positive semi-definite. We have

Nullp∆nq “ NullpGnq “ SpanpD1{21C1 , . . . , D
1{21Cpq

where 1C1 , . . . ,1Cp are the indicator functions of the p connected compo-
nents of g. As a consequence, the dimension of Nullp∆nq is the number of
connected components.

Proof. The proof is very similar to the proof of Proposition 2. The sym-
metricity and the positive semi-definiteness of ∆n comes directly from the
fact that ∆n “ GTnGn. For every f in Nullp∆nq, we have fT∆nf “ 0 “
}Gnf}

2 so f P NullpGnq. Conversely, if Gnf “ 0, ∆f “ GTnGnf “ 0, which
proves the equality Nullp∆nq “ NullpGnq.

Let us now consider f P NullpGnq. We have, for every edge pi, jq,

ngradpfqpi, jq “
a

wti,ju

˜

fpjq
a

dpjq
´

fpiq
a

dpiq

¸

“ 0 .

As a consequence, as soon as two nodes i and j are linked by an edge, we
must have fpiq{

a

dpiq “ fpjq{
a

dpjq. By transitivity, all the nodes i that
belong to the same connected component C Ă N should share the same
ratio fpiq{

a

dpiq. Said differently,

Dα P R s.t. @i P C, fpiq “ α
a

dpiq “ pαD1{21Cqpiq ,

and, consequently, f P SpanpD1{21C1 , . . . , D
1{21Cpq.

Let us now f in SpanpD1{21C1 , . . . , D
1{21Cpq. We can write

f “

p
ÿ

t“1

αtD
1{21Ct .

For each edge pi, jq, we can find t P r1, ps such that i and j belong to Ct. We
have fpiq “ αt

a

dpiq and fpjq “ αt
a

dpjq, which leads to ngradpfqpi, jq “ 0.
Consequently, f P NullpGnq, which concludes the proof.

2.1. UNDIRECTED GRAPHS AND SPECTRAL FRAMEWORK 19

2.1.2 Graph kernels and distances

In this section, we review the notion of graph distance and introduce some
important notations for the next chapters. A graph distance is a function
d : N ˆ N Ñ R that defines a metric on the nodeset N . Namely, d has to
satisfy the following axioms:

1. Positivity: @pi, jq P N2, dpi, jq ě 0

2. Symmetricity: @pi, jq P N2, dpi, jq “ dpj, iq

3. Coincidence: @pi, jq P N2, dpi, jq “ 0 ô i “ j

4. Triangle Inequality: @pi, j, kq P N3, dpi, jq ď dpi, kq ` dpk, jq

A standard graph distance is the shortest-path distance and is defined for
any pair of nodes pi, jq as the minimum sum of weights along a path joining
i and j. For example, let us consider graph g3 presented in Figure 2.3. The
closest nodes to 4 in the sense of the shortest-path distance are 1, 2, 3 and 5
(the distance is equal to 1 for these four nodes). The shortest-path distance
can be computed using algorithms such as Djikstra’s algorithm and serves
as a basis for many applications.

A main limitation of this approach is that it does not take into account the
global connectivity of the graph. In the case of g3, the shortest-path distance
does not reflect the existence of the two clusters t1, 2, 3, 4u and t5, 6, 7, 8u.
In the following, we will introduce a family of graph distances based on the
Laplacian matrix ∆ that solves this issue. In particular, we will see that
one of these distances is strongly related to the notion of random walk on
graphs.

1

2

3

4 5

6

7

8
1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

2

Figure 2.3: Graph g3 and shortest-path distribution around the node 4

Let us consider in this section a graph g and its Laplacian ∆. Since ∆
is symmetric and positive semi-definite (Proposition 2), its Moore-Penrose
pseudo-inverse ∆: (see Penrose 1955) is also symmetric and positive semi-
definite. This matrix is called the graph kernel related to the graph Lapla-
cian ∆. Let us define dα for α ě 1 and for any pair of nodes pi, jq

dαpi, jq “

ˆ

b

∆:

i,i `∆:

j,j ´ 2∆:

i,j

˙α

. (2.1)

20 CHAPTER 2. HYPERNODE GRAPHS

Proposition 4. d1 defines a pseudometric on g, i.e., it is positive, sym-
metric and satisfies the triangle equality. Moreover, when g is connected,
d1 becomes a metric (it satisfies in addition the coincidence axiom dpi, jq “
0 ô i “ j). When g is connected, d2 is also a metric.

Proof. By definition, we have d1pi, jq “
a

pei ´ ejqT∆:pei ´ ejq where ei
and ej are respectively the i-th and j-th vectors of the standard basis. d1 is
positive, symmetric and satisfies the triangle equality since the inner product
defined by

xx, yy∆: “ xT∆:y P R

is positive semi-definite and satisfies the Cauchy-Schwarz inequality for any
pair of vectors px, yq. We conclude from these properties that d1 is a pseu-
dometric on g. d1 is not a metric in general since we can have d1pi, jq “ 0
for i ‰ j. As a simple example, consider a graph with two disconnected
nodes N “ t1, 2u. We have ∆ “ ∆: “ 0 and d1p1, 2q “ 0. Note that the
reverse property @i P N, d1pi, iq “ 0 always holds.

Let us now show that d1 is a metric if the graph g is connected. For this
purpose, we consider i, j P N such that d1pi, jq “ 0 and we show that
i “ j. We first write ∆: “ V Λ:V T where Λ is a diagonal matrix containing
the eigenvalues λ1, . . . , λn of ∆ and V is an orthogonal matrix. Since the
graph is connected, we know that dimpNullp∆qq “ dimpSpanp1qq “ 1 (see
Proposition 2) and, therefore, we can assume without loss of generality that
λ1 “ 0 ă λ2 ď ¨ ¨ ¨ ď λn. By definition of d1, we have

d1pi, jq “

d

ÿ

k

λ:k

´

V 2
i,k ` V

2
j,k ´ 2Vi,kVj,k

¯

“

d

ÿ

k

λ:kpVi,k ´ Vj,kq
2

Since d1pi, jq “ 0, we have Vi,k “ Vj,k for every k ě 2. Moreover, since
the graph is connected, the column vector V¨,1 associated to λ1 “ 0 is in
Spanp1q (see Proposition 2). Consequently, we also have Vi,1 “ Vj,1 and the
line vectors Vi,¨ and Vj,¨ are equals, which is only possible when i “ j since V
is an orthogonal matrix (V T

i,.Vj,. “ δpi“jq). This shows the coincidence axiom

for d1 and show that it defines an actual metric as soon as g is connected.

Since d2pi, jq “
`

d1pi, jq
˘2

, d2 is also positive, symmetric and satisfies the
coincidence axiom when g is connected. It remains to show that it satisfies
the triangle inequality, i.e., we have to prove that for all pi, j, kq P N3

d2pi, jq ď d2pi, kq ` d2pk, jq .

2.1. UNDIRECTED GRAPHS AND SPECTRAL FRAMEWORK 21

Klein and Randić (1993) gives a sketch proof of this property using an
electrical equivalence (all edges are replaced by 1-Ohm resistors). In the
following, we give a complete algebraic proof of this result, which will be
useful in the next chapters when we will consider the situation of hypernode
graphs. Let us first remark that for all pi, j, kq P N3

d2pi, jq “ pei ´ ejq
T∆:pei ´ ejq

“ pei ´ ejq
T∆:pei ´ ekq ` pei ´ ejq

T∆:pek ´ ejq (2.2)

Consequently, it is sufficient to prove that

@pi, j, k, `q P N4, pei ´ ejq
T∆:pek ´ e`q ď pek ´ e`q

T∆:pek ´ e`q (2.3)

Indeed, by combining this last inequality with Equation (2.2), we will get
the desired result:

d2pi, jq “ pei ´ ejq
T∆:pei ´ ekq ` pei ´ ejq

T∆:pek ´ ejq

ď pei ´ ekq
T∆:pei ´ ekq ` pek ´ ejq

T∆:pek ´ ejq

ď d2pi, kq ` d2pk, jq

In the following, we will assume that k ‰ ` (otherwise, Equation (2.3)
reduces to 0 ď 0). Let us define y “ ∆:pek ´ e`q. Our goal is to prove that
yi ´ yj ď yk ´ y`, or equivalently that mins ys “ y` and maxs ys “ yk. Since
g is connected, we have ek ´ e` P Nullp∆qK “ Spanp1qK. We know from
the general properties of the Moore-Penrose pseudo-inverse (see for example
Penrose 1955) that ∆∆: is the orthogonal projector on Nullp∆qK. Thus, it
follows that

∆y “ ek ´ e` (2.4)

Equation (2.4) can be seen as a diffusion equation where the input function
is equal to ek´e` (` corresponds to a sink node and k to a source node) and
where y plays the role of the corresponding potential function. Our goal is
thus to prove that the maximal difference of potential should occur between
the source node k and the sink node `. We illustrate this idea in Figure 2.4.

We now assume that y` ‰ mins ys and show that it leads to an absurdity.
First of all, let us notice that y cannot be uniform on N since ∆y ‰ 0.
Consequently and since the graph is connected, we can find two nodes u
and v that are connected by an edge and such that mins ys “ yu ă yv. Since
y` ‰ mins ys, we have ` ‰ u and we get from Equation (2.4)

p∆yqu “ δpu“kq ´ δpu“`q “ δpu“kq ě 0 .

22 CHAPTER 2. HYPERNODE GRAPHS

1

2

3

4 5

6

7

8
1

1

1

1

1

1

1

1

1

1

1

1

1

´1

0

1

Figure 2.4: Graph g3 and corresponding potential function y obtained for
k “ 2 and ` “ 7. The maximum difference of potential is y2 ´ y7 “ 2

We now expand the left side of this inequality to get

p∆yqu “ dpuqyu ´
ÿ

sPN puq
wts,uuys ě 0 ,

which leads to

yu ě
ÿ

sPN puq

wts,uu

dpuq
ys . (2.5)

We now have two cases to consider:

(˚) Either y is constant on N puq

(˚˚) Or y takes multiple values on N puq

Let us first consider (˚). Since v P N puq and dpuq “
ř

sPN puqwts,uu, Equa-
tion (2.5) reduces to

yu ě yv ,

which is inconsistent with our hypothesis yv ă yu. Consequently, the only
solution is to have (˚˚), which lead to rewrite Equation (2.5),

yu ě
ÿ

sPN puq

wts,uu

dpuq
ys ą min

sPN puq
ys

ÿ

sPN puq

wts,uu

dpuq
“ min

sPN puq
ys .

This last inequality is in contradiction with yu “ mins ys so the second
case (˚˚) is impossible as well. As a consequence, we have necessarily y` “
mins ys. We get similarly the second property maxs ys “ yk, which concludes
the proof.

Note that the fact that d2 is a metric is a very specific property of connected
graphs. Indeed, the square of a metric (resp. a pseudometric) is not a
metric (resp. a pseudometric) in general since it does not satisfy the triangle
inequality. Let us consider for example the very simple disconnected graph
g4 depicted in Figure 2.5. We present on the same figure the distance matrix

2.1. UNDIRECTED GRAPHS AND SPECTRAL FRAMEWORK 23

D2 defined by pD2qi,j “ d2pi, jq. g4 has two connected components and we
can notice that d2 does not satisfy the triangle equality since

d2p1, 2q “ 1 ą d2p1, 3q ` d2p3, 2q “ 0.75 .

1

2

3

4

1 2 D2 “

¨

˚

˚

˚

˚

˚

˝

0 1 0.375 0.375

1 0 0.375 0.375

0.375 0.375 0 0.5

0.375 0.375 0.5 0

˛

‹

‹

‹

‹

‹

‚

Figure 2.5: Graph g4 and distance matrix D2 associated with d2

The distance d1 serves as a basis for many popular algorithms. As an il-
lustration, we can consider the case of spectral clustering (see Von Luxburg
2007) where the main idea is to map the graph nodes to an euclidean la-
tent space where the distance corresponds to d1. As announced, a desirable
property of the family dα that makes it particularly attractive for learning
algorithms is that it allows to take into account the global connectivity of
the graph. We illustrate this fact by considering again the graph g3 pre-
sented in Figure 2.3 above. We have d2p4, 2q “ 0.5 ă d2p4, 5q “ 1 and the
closest nodes to 4 are now 1, 2 and 3, which reflects the existing clusters
t1, 2, 3, 4u and t5, 6, 7, 8u. We present in Figure 2.6 the distribution of d2 on
g3.

1

2

3

4 5

6

7

8
1

1

1

1

1

1

1

1

1

1

1

1

1

0

0.5

1

1.5

Figure 2.6: Graph g3 colored using the distribution of d2 around the node 4

Note that the semantic of d2 is closely related with the notion of random
walk on graphs. First, recall that random walk on g can be defined as a
Markov chain pXnqně0 whose state space is the set of nodes N and whose
probability transition is equal to

PiÑj “
Wi,j

dpiq
.

Intuitively, two nodes should be regarded as distant if it takes time for a
random walker to travel from the first one to the second one. For example,
in the global webgraph, this corresponds to the average number of (undi-
rected) hyperlinks that a random surfer should follow to travel between two
pages.

24 CHAPTER 2. HYPERNODE GRAPHS

Let us consider the random walk pXi
nqně0 defined by Xi

0 “ i for some node
i P N . The first passage time to a node j is the random variable TjpX

iq

whose value is the first time n that Xi
n “ j (or 8 if there is no such n). We

define the hitting time H : N ˆN Ñ R by

Hpi, jq “ E
“

TjpX
iq
‰

.

Note that Hpi, jq is not symmetrical, which is a required property for a met-
ric. In order to solve this issue, we focus on the symmetrized quantity

dctdpi, jq “ Hpi, jq `Hpj, iq .

dctdpi, jq is called commute-time distance between the nodes i and j and
corresponds to the time taken by a random walker to go from i to j and come
back. Note that, when g has several connected components, the hitting-time
between two nodes i and j can be infinite. For this reason, we usually do
not consider dctd on disconnected graphs. At the contrary, when the graph
is connected, we have the following result:

Proposition 5. If g is connected, dctd is a metric and dctd “ Volpgqd2.

Proof. A proof of this property based on a electrical equivalence can be
found in Chandra et al. (1996). In the next chapter, we will present a more
general proof for the case of hypernode graphs.

2.2 Hypernode graphs

In this section, we introduce our model for representing binary relations over
sets. As discussed in the previous chapter, our goal is to encode pairwise
similarity relations between sets of nodes. We start by defining formally the
notion of hypernode graph and present some important notations. Then, we
introduce our extension of the graph spectral framework (see Section 2.1)
and discussed its main properties.

2.2.1 Model definition

Definition 1. A hypernode graph h “ pN,Hq is a set of nodes N together
with a set of hyperedges H. Each hyperedge h P H is an unordered pair
tsh, thu of two non empty and disjoint hypernodes (a hypernode is a subset
of N). Each hyperedge h P H has a weight function wh mapping every node
i in shYth to a positive real number whpiq (for i R shYth, we define whpiq “
0). Each weight function wh of h “ tsh, thu must satisfy the Equilibrium
Condition defined by

2.2. HYPERNODE GRAPHS 25

ÿ

iPth

a

whpiq “
ÿ

iPsh

a

whpiq . (Equilibrium Condition)

We will say that a node i belongs to a hyperedge h (i P h) if whpiq ‰ 0.
In all that follows, we denote by n the number of edges |N | and by p the
number of hyperedges |H|. We define the degree of a node i by

dpiq “
ÿ

h

whpiq ě 0 . (2.6)

The degree of a node is positive when it participates in at least one hyper-
edge. We define the diagonal degree matrix by D “ diagpdp1q, . . . , dpnqq and
the volume of the hypernode graph by Volphq “

ř

iPN dpiq “ TrpDq.

Example 3. An example of hypernode graph is given in Figure 2.7 with
the hypernode graph h5. h5 has four nodes denoted by 1, 2, 3, 4 and two
hyperedges h1 “ tt1, 3u, t2, 4uu and h2 “ tt1, 4u, t2, 3uu. All the weights are
set to 1, which satisfy the Equilibrium Condition. The corresponding degree
matrix is

D5 “

¨

˚

˚

˝

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

˛

‹

‹

‚

and we have Volph5q “ TrpD5q “ 8.

2

1 3

4

1

1

1

1

1

1

1

1

Figure 2.7: Hypernode graph h5 depicted with the following formalism: each
hyperedge h “ tsh, thu is represented by a rectangle, each of whose long sides
is associated to a hypernode (sh or th). All the nodes in h are connected to
their corresponding long side.

When a hyperedge h is an unordered pair ttiu, tjuu of two nodes i, j, the
Equilibrium Condition states that the weights whpiq and whpjq are equals.
Therefore, every hypernode graph such that all hyperedges are unordered

26 CHAPTER 2. HYPERNODE GRAPHS

pairs of singleton nodes can be viewed as a graph, and we will say that
the hypernode graph is a graph. In this case, the adjacency matrix W
of the (equivalent) graph is defined by Wi,j “ Wj,i “ whpiq “ whpjq for
every hyperedge ttiu, tjuu, and 0 otherwise. Note that the hypernode graph
model allows for multiple hyperedges with the same hypernodes. In this
case we have to sum over all the hyperedges ttiu, tjuu in order to compute
the pairwise weight Wi,j in the corresponding graph. Conversely, a graph
can always be viewed as an hypernode graph by regarding every edge as a
hyperedge made up of two singletons.

Example 4. Let us consider the hypernode graph h6 presented in Figure
2.8. This hypernode graph corresponds to the undirected graph g1 presented
in Section 2.1.1. Indeed, every hyperdedge is an ordered pair of two nodes
and we have W1,2 “ 2,W1,4 “ 1,W2,4 “ 1 and W3,4 “

1
8 `

3
8 “

1
2 .

2

1 3

4

3{8

3{8 1{8

1{8

1 1

2 2

1

1

2

1 3

4

1

2

0.5

1

Figure 2.8: (left) Hypernode graph h6 and (right) corresponding graph g1

In some cases, we will need to define an arbitrary orientation of the hyper-
edges. For this, we define an orientation function to be a mapping from
ε : H ˆN to t´1, 0, 1u such that satisfies the following conditions:

1. εph, iq “ 0 if and only if i does not belong to h

2. If i and j are in the same hypernode of h then εph, iq “ εph, jq

3. If i and j are in different hypernodes, then εph, iq “ ´εph, jq

For h P H and an orientation function ε, the hypernode described by ti P
N s.t. εph, iq “ ´1u is called tail of h, while the hypernode described by
ti P N s.t. εph, iq “ 1u is called head of h.

Example 5. Let us consider the hypergraph h7 with N “ t1, 2, 3, 4u and
a single hyperedge h “ tt1, 2u, t3, 4uu (all weights are set to 1). A valid
orientation function for h7 is given by εph, 1q “ εph, 2q “ ´1 and εph, 3q “
εph, 4q “ 1. With this orientation, hypernode t1, 2u will be the tail of h
and the hypernode t3, 4u will be the head. The pair ph7, εq defines a directed
hypernode graph. We present h7 and ε on Figure 2.9 below.

Note that the quantity εph, iqεph, jq only depends on whether the two nodes

2.2. HYPERNODE GRAPHS 27

3

1 2

4

1

1

1

1

ε

ε

´1

1

Figure 2.9: Hypergraph h7 and orientation function ε

belong or not to the same hypernode in h. Indeed, if we define the mapping
P : H ˆN ˆN Ñ t´1, 1, 0u by

P ph, i, jq “

$

’

&

’

%

1 if i and j belong to different hypernodes of h ,

´1 if i and j belong to the same hypernode of h ,

0 if i or j does not belong to h ,

(2.7)

then for any orientation function ε, we have

P ph, i, jq “ ´εhpiqεhpjq .

The mapping P p¨, ¨, ¨q can be interpreted as a type of electrical polarity which
depends on whether or not the two nodes belong to the same hypernode in
a given hyperedge h.

2.2.2 Hypernode graph Laplacians

The graph Laplacian allows to define a smoothness semi-norm (see Section
2.1) which models the similarity between connected nodes. Indeed, when
assigning labels or scores to the nodes of a graph using a real-valued function
f , the smoothness operator allows to ensure that fpiq is close to fpjq when
i and j are connected. Note that the higher the edge weight connecting i
and j, the more important the closeness constraint. We extend this notion
of similarity to hypernode graphs by considering the weighted sums of the
values of f over all nodes in every end of the hyperedges. Namely, for
f : N Ñ R and h “ tsh, thu P H, we define f over the ends of h:

fpshq “
ÿ

iPsh

fpiq
a

whpiq; fpthq “
ÿ

iPth

fpiq
a

whpiq .

We will say that f is smooth on h if for every hyperedge h P H, fpshq
is close to fpthq. With this definition, we model the similarity between

28 CHAPTER 2. HYPERNODE GRAPHS

connected node sets by considering the total value of f on these sets. It
should be noted that when f is a constant function over N , then fpthq is
equal to fpshq because of the Equilibrium Condition. Let us consider an
example.

Example 6. (Example 3 continued)

Let us consider the hypernode graph h5 together with a real-valued node
function f . The smoothness of f on h5 will express that fp1q ` fp3q should
be close to fp2q ` fp4q and fp1q ` fp4q should be close to fp2q ` fp3q.

Note that if h “ ttiu, tjuu, then fptiuq “ fpiq
a

whpiq and fptjuq “ fpjq
a

whpjq.
Since in this case whpiq “ whpjq, the closeness constraint reduces to ”fpiq is
close to fpjq”, which is fully consistent with the graph case.

In order to quantify the smoothness of a node function f , we introduce a gra-
dient function similarly to the graph case described in Section 2.1.1.

Definition 2. Let h “ pN,Hq be a hypernode graph and ε an orientation
function. The gradient is a linear application that maps any real-valued node
function f : N Ñ R into a real-valued hyperedge function pgrad fq : H Ñ R.
It is defined for all h by

grad f : hÑ fpthq ´ fpshq “
ÿ

iPH

εph, iq
a

whpiqfpiq , (2.8)

where th (resp. sh) is the head of h (resp. the tail of h).

Note that the quantity | gradpfqphq|2 does not depend on the choice of ε
and, as expected, is small when fpshq is close to fpthq. If h is an undirected
hypernode graph, then the gradient is defined up to an arbitrary orientation
of the hyperedges. Similarly to Section 2.1, we regard the euclidean space
Rn (resp. Rp) as the space of real-valued node functions (resp. real-valued
hyperedge functions). We denote by G P Rpˆn the matrix of the gradient
mapping. We have for every hyperedge h and every node i,

Gh,i “ εph, iq
a

whpiq

We present examples of gradient matrices in Example 7 and we discuss the
relations between graph gradients and hypernode graph gradients. Recall
that a hypernode graph in which every hyperedge is a pair of singleton nodes
is a graph and conversely. It is easy to show that, for every graph g, the
graph gradient described in Section 2.1 coincides with the hypernode graph
gradient for the equivalent hypernode graph, and conversely.

Because of the Equilibrium Condition, the gradient of every constant node
function is the zero-valued hyperedge function. This can be written as 1 P
NullpGq, where NullpGq is the set of so-called harmonic functions.

2.2. HYPERNODE GRAPHS 29

As in the graph case, we define the smoothness of a real-valued node function
f over a hypernode graph h to be Ωpfq “ }Gf}2 P R`. We can show that?

Ω still defines a semi-norm on Rn (the proof of Proposition 1 remains
valid). As above, we rewrite Ω under the form

Ωpfq “ pGfqT pGfq “ fTGTGf .

The square nˆn real valued matrix GTG does not depend on the orientation
function ε since

@i, j, ∆i,j “
ÿ

hPH

Gh,iGh,j “
ÿ

hPH

´P ph, i, jq
a

whpiq
a

whpjq . (2.9)

This property allow us to define the hypernode graph Laplacian similarly to
the graph case:

Definition 3. Let h “ pN,Hq be a hypernode graph. The Laplacian ∆
is defined as GTG where G is the gradient matrix of h embedded with an
arbitrary orientation function ε.

When the hypernode graph is a graph, the hypernode graph Laplacian co-
incides with the unnormalized Laplacian described in Section 2.1. The hy-
pernode graph Laplacian shares several important properties with the graph
Laplacian.

Proposition 6. Let h be a hypernode graph and ε an orientation function.
Let us consider the related gradient G and the Laplacian matrix ∆. ∆ is
symmetric positive semidefinite and Nullp∆q “ NullpGq “ NullpΩq. As
direct consequences, 1 P Nullp∆q.

Proof. We have ∆T “ pGTGqT “ GTG “ ∆ so ∆ is symmetric. For any
f P Rn, we have

fT∆f “ fTGTGf “ }Gf}2 “ Ωpfq ě 0 .

So ∆ is positive semidefinite. Moreover, when ∆f “ 0, then fT∆f “

}Gf}22 “ 0 and Gf “ 0. Conversely, if Gf “ 0, then ∆f “ GTGf “ 0.
Consequently, we have Nullp∆q “ NullpGq. The last equality NullpGq “
NullpΩq is a direct consequence of }Gf}22 “ Ωpfq since Gf “ 0 if and only if
}Gf}22 “ 0.

Example 7. We consider three hypernode graphs over N “ t1, 2, 3u de-
picted in Figure 2.10. The hypernode graph h9 shown in the middle of
Figure 2.10 has two hyperedges h1 “ tt1u, t3uu and h2 “ tt1, 3u, t2uu. The
hypernode graph h8 shown on the left has two hyperedges h11 “ tt1u, t3uu and
h12 “ tt1u, t2uu. The hypernode graph h10 shown on the right has also two
hyperedges h21 “ tt1, 2u, t3, 4uu and h22 “ tt3u, t4uu. The hyperedge weights
are detailed in Figure 2.10. For instance in the left hypernode graph h8,

30 CHAPTER 2. HYPERNODE GRAPHS

we have wh1p1q “ wh2p3q “ 1 and wh2p1q “ wh2p2q “ 1. For each of the
three hypernode graphs, we compute a gradient matrix (based on an arbitrary
orientation of the hyperedges) and the Laplacian matrix.

G8 “

ˆ

´1 1 0
´1 0 1

˙

; ∆8 “

¨

˝

2 ´1 ´1
´1 1 0
´1 0 1

˛

‚

G9 “

˜

´
?

2
2

?
2 ´

?
2

2
´
?

2
2 0

?
2

2

¸

; ∆9 “

¨

˝

1 ´1 0
´1 2 ´1
0 ´1 1

˛

‚

G10 “

ˆ

1 1 ´1 ´1
0 0 ´1 1

˙

; ∆10 “

¨

˚

˚

˝

1 1 ´1 ´1
1 1 ´1 ´1
´1 ´1 2 0
´1 ´1 0 2

˛

‹

‹

‚

It can be noted that the Laplacian matrix ∆9 presented coincide with the
graph Laplacian corresponding to the adjacency matrix

W9 “

¨

˝

0 1 0
1 0 1
0 1 0

˛

‚ .

This is not the case for ∆10 who have positive extra-diagonal terms.

1

2

3

1

1

1

1

1

2

3

0.5

2

0.5
0.5

0.5

1

2

3

4

1

1

1

1

1

1

Figure 2.10: Hypernode graphs h8 (left), h9 (middle) and h10 (right).

As in the graph case, the Moore-Penrose pseudoinverse of the Laplacian
matrix ∆: of a hypernode graph h is symmetric and positive semidefinite.
We define the hypernode graph kernel of a hypernode graph h to be the
pseudoinverse ∆: of its Laplacian. We now give some additional properties
of the class of hypernode graph Laplacians.

2.2. HYPERNODE GRAPHS 31

Proposition 7. The class of hypernode graph Laplacians with n nodes is

Hpnq “ tM P Rnˆn |M “MT , 1 P NullpMq, M ľ 0u ,

where M ľ 0 denotes the positive semi-definiteness property.

Proof. It is an immediate consequence of Proposition 6 that a hypernode
graph Laplacian belongs to Hpnq. Conversely, we can use Algorithm 1 pre-
sented below in order to compute the hypernode graph corresponding to a
matrix M P Hpnq.

Algorithm 1 Computing an hypernode graph from M P Hpnq.
Require: M P Hpnq
1: Define N “ t1, . . . , nu and H “ H

2: Compute a square root decomposition M “ GTG
3: for each row r of G do
4: Create a new hyperedge h “ tsh, thu with sh “ th “ H
5: for each node i P N do
6: Define whpiq “ rpiq2

7: if rpiq ă 0 then
8: Add i to sh
9: else if rpiq ą 0 then

10: Add i to th
11: end if
12: end for
13: {Since 1 P NullpMq, we have

ř

i rpiq “ 0 and the Equilibrium Condi-
tion is satisfied for h}

14: Add h to H
15: end for
16: return The hypernode graph h “ pN,Hq
17: {G is a valid gradient matrix of h and consequently, M “ GTG is the

Laplacian of h}

2.2.3 Equivalent hypernode graphs

In the previous Section, we have defined the Laplacian matrix ∆ of a hy-
pernode graph h as GTG where G is a gradient of h (given an arbitrary
orientation of the hyperedges). An interesting question is whether h is the
unique hypernode graph associated to ∆, i.e., whether we can find a hyper-
node graph h1 ‰ h such that its Laplacian ∆1 coincide with ∆. The answer
to this question is positive and is a direct consequence of the non-uniqueness

32 CHAPTER 2. HYPERNODE GRAPHS

of the square root decomposition of a positive semi-definite matrix. To il-
lustrate this fact, let us consider the Laplacian ∆10 corresponding to the
hypernode graph h10 (see Example 7). The matrix

G11 “

˜

´
?

2
2 ´

?
2

2

?
2 0

´
?

2
2 ´

?
2

2 0
?

2

¸

is a square root of ∆10 since ∆10 “ GT11G11. From G11, we can define
the hypernode graph h11 ‰ h10 presented in Figure 2.11. Based on this
observation, we define the notion of hypernode graph equivalence:

Definition 4. Two hypernode graphs are said to be equivalent if they have
the same Laplacian matrix.

1

2

3

4

1

1

1

1

1

1

1

2

3

4

0.5

0.5

2

0.5

0.5

2

Figure 2.11: Equivalent hypernode graphs h10 (left) and h11 (right)

Equivalent hypernode graphs have the same Laplacian and therefore have
the same smoothness measure Ω. We can note that the smoothness con-
straints expressed by the hyperedges of h11 are consistent with the smooth-
ness constraints expressed by the hyperedges of h10. Indeed, any smooth
function f on h10 must satisfy fp1q`fp2q close to fp3q`fp4q and fp3q close
to fp4q. In h11, a smooth function should have fp1q ` fp2q close to 2fp3q
and to 2fp4q. Thus, the constraints from h11 are a linear combination of
the ones from h10. From an algebraical perspective, we can notice that G11

can be written as QG10 where

Q “
1
?

2

ˆ

´1 ´1
´1 1

˙

.

Q is an isometry (QTQ “ I) that expresses the linear relations between the
constraints of both hypernode graphs.

2.3 Expressiveness of the Laplacian framework

We address in this section the important question of the expressiveness of
hypernode graphs. We will base our reflexion on Agarwal et al. (2006) who

2.3. EXPRESSIVENESS OF THE LAPLACIAN FRAMEWORK 33

study the case of hypergraphs, a popular higher-order structure first intro-
duced by Berge (1989). Agarwal et al. (2006) shows notably that the differ-
ent attempts to build hypergraph Laplacians have actually led to learning
problems that can be expressed and analyzed using standard graph Lapla-
cians. The objective of this section is to show that the same does not happen
in the case of hypernode graphs, which will allow us to claim that our model
is strictly more expressive than the undirected graph model.

Let us first formalize the notion of expressivity. Recall that the main purpose
of a Laplacian matrix is to define a notion of smoothness for the real-valued
node functions. Consequently, two Laplacian can be regarded as equivalent
on a set of nodes S if they define consistent notions of smoothness for the
real-valued functions defined on S. We formalize this intuition using the
following definition.

Definition 5. A Laplacian pair pM, Eq consists of a positive semi-definite
matrix M P Rnˆn together with a discrete space E of size n. The associated
smoothness measure ΩM is defined by the mapping

ΩM : f P Rn Ñ fTMf P R` .

(Rn can be regarded as the set of real-valued functions defined on E)

In the case of a graph g “ pN,Eq associated with the Laplacian matrix
∆, p∆, Nq is a Laplacian pair and the associated smoothness measure is
the smoothness measure described in Section 2.1. We define the notion of
generalization using the associated smoothness measures:

Definition 6. Let pM1, E1q and pM2, E2q be two Laplacian pairs such that
E1 Ĺ E2. We say that M2 generalizes M1 if the smoothness measures asso-
ciated with M1 and M2 are consistent for the real-valued functions defined
on E1, i.e., if the following properties hold:

@f p1q P NullpΩM1q, Df p2q P NullpΩM2q such that f p2q
ˇ

ˇ

ˇ

E1
“ f p1q (˚)

@f p2q P NullpΩM2q, f p2q
ˇ

ˇ

ˇ

E1
P NullpΩM1q (˚˚)

The first property (˚) states that any function that is perfectly smooth on
the set E1 can be extended to a perfectly smooth function on the set E2.
Conversely, (˚˚) states that any function that is perfectly smooth on E2 can
be restricted to a perfectly smooth function on E1.

Note that, for any Laplacian pair pM, Eq, the relation NullpΩM q “ NullpMq
holds true. Indeed, if Mf “ 0, then ΩM pfq “ fTMf “ 0. The reverse
comes from the fact that M is positive semi-definite: we can write M “ GTG

34 CHAPTER 2. HYPERNODE GRAPHS

and ΩM pfq “ }Gf}22 so if ΩM pfq “ 0, Gf “ 0 and ∆f “ GTGf “ 0.
As a consequence, another way to look at Definition 6 is to say that the
eigenvalue problem M1f

p1q “ 0f p1q should be somehow equivalent to the
eigenvalue problem M2f

p2q “ 0f p2q. Agarwal et al. (2006) follow a similar
idea by considering that a hypergraph Laplacian ∆H can be reduced to
a graph Laplacian ∆ if the eigenvalue problem ∆Hf “ λf for λ P R` is
induced by a similar eigenvalue problem on ∆. In both cases, no constraints
are imposed on the shapes of the matrices: the generalizing matrix can be
strictly bigger than the original matrix. As a result, we will be able to
consider the case of graph approximations with additional nodes.

2.3.1 The case of hypernode graphs

Based on Definition 6, we now prove the following

Proposition 8. The class of hypernode graph Laplacians is more expressive
than the class of graph Laplacians, i.e., there exist some hypernode graph
Laplacians for which we cannot find any generalizing graph Laplacian.

Proof. Let us consider the hypergraph h7 from Example 5 and depicted in
Figure 2.12). Let us also define S “ t1, 3u. The indicator vector 1S is
in Nullp∆7q and, thus, define a smooth function on h7. Let us consider a
graph g “ pNe, Eeq whose nodeset Ne contains N7 and whose Laplacian ∆e

generalizes ∆7 as described in Definition 6. Following the first property (˚),
we can find fe : Ne Ñ R such that fe

ˇ

ˇ

N7
“ 1S and fe P Nullp∆eq.

Since ge is a graph, we know that Nullp∆eq is spanned by the indicator
vectors of the connected components of ge (see Proposition 2 in Section
2.1). Since fep1q “ 1Sp1q ‰ fep2q “ 1Sp2q, 1 and 2 must be in different
components in ge. Note that the same holds with fep1q ‰ fep4q, fep3q ‰
fep2q and fep3q ‰ fep4q. By following a similar reasoning with S “ t1, 4u,
we eventually deduce that the four original nodes 1, 2, 3 and 4 must be in
distinct components in ge.

Let us now consider the distinct components C1 and C2 in ge that contains
respectively the nodes 1 and 2. If f 1e denotes the indicator vector of C1YC2,
we have

f 1e P Nullp∆eq .

Consequently and because of the second property (˚˚) of Definition 6, the
restriction of f 1e to the original nodeset N7 should be in the nullspace of ∆7.
However, we have f 1e

ˇ

ˇ

N7
“ 1S1 where S1 “ t1, 2u and

∆71S1 “ 4 ‰ 0 .

2.3. EXPRESSIVENESS OF THE LAPLACIAN FRAMEWORK 35

1

2

3

4

1

1

1

1

∆7 “

¨

˚

˚

˚

˚

˚

˝

1 1 ´1 ´1

1 1 ´1 ´1

´1 ´1 1 1

´1 ´1 1 1

˛

‹

‹

‹

‹

‹

‚

Figure 2.12: Hypernode graph h7 and Laplacian ∆7

Thus, we can’t find a graph Laplacian which generalizes ∆7, which concludes
the proof.

Note that the Laplacian ∆7 has some positive extradiagonal terms and,
therefore, cannot coincide with a graph Laplacian. Proposition 8 goes fur-
ther and allows to claim as well that it cannot be approximated by a graph
with a finite nodeset.

2.3.2 The case of hypergraph Laplacians

In this section, we propose to review the case of hypergraphs and show that
the different hypergraph Laplacians that have been proposed in recent years
are not more expressive than graph Laplacians. First, let us recall basic
notions about hypergraphs.

Hypergraphs have been introduced by Berge (1989) in order to model prob-
lems where relationships are no longer binary, that is when they involve more
than two individuals. Hypergraphs have been used for instance in bioinfor-
matics (Klamt et al. 2009), computer vision (Zhang et al. 1993) and natural
language processing (Cai and Strube 2010). In the hypergraph model, a
hyperedge is simply a set of nodes. The key idea is to encode the fact that
several nodes share a common property. An example is given in Figure 2.13
where nodes are documents described by two features (type of document and
language). We create two hyperedges: the first one t1, 2, 3u contains all the
documents written in French while the second one t2, 3, 4u contains all the
reports. Note that we do not create any additional hyperedge since there is
only one document written in English and one book in the example dataset.
A hypergraph is formally defined as a set of nodes N together with a set
of hyperedges E. Each hyperedge e P E is a set of nodes and is embedded
with a positive weight wpeq P R`.

As said above, several attempts have been made to define Laplacian oper-
ators for hypergraphs. The most popular ones are the Laplacians ∆B from
Bolla (1993), ∆R from Rodŕıguez (2003) and ∆ZHS from Zhou et al. (2006).
We have the following result:

36 CHAPTER 2. HYPERNODE GRAPHS

Node Language Type

1 French Book

2 French Report

3 French Report

4 English Report

1
2

3 4

Figure 2.13: Hypergraph with two hyperedges e1 “ t1, 2, 3u and e2 “

t2, 3, 4u based on the categorical features Language and Type. wpe1q and
wpe2q are set to 1.

Proposition 9. Let us consider a hypergraph on a nodeset N and the Lapla-
cian pairs p∆R, Nq, p∆B, Nq and p∆ZHS, Nq. We can show that ∆R and ∆B

are equal to graph Laplacian using an adequate expansion. Moreover, we
can find a normalized graph Laplacian ∆s that generalizes ∆ZHS according
to Definition 6.

Proof. The proof of this proposition is partly based on Agarwal et al. (2006).
First note that hypergraphs can be approximated by graphs using two main
constructions:

• The clique expansion, where each hyperedge e is replaced by an unifor-
mally weighted clique. When the pair is contained in multiple hyper-
edges, the final weight is either the average or the sum of the weights
corresponding to each clique.
• The star expansion, where we introduce a new node for each hyperedge
e P E. Each of the original nodes of e is linked to the new node through
an edge. The star expansion is denoted by hs “ pN Y Ns, Esq where
Ns is the set of additional nodes.

Examples of clique expansion and star expansion are given in Figure 2.14.
Agarwal et al. (2006) shows that ∆B coincide with the graph Laplacian of a
clique expansion built from the original hypergraph. The same result holds
for ∆R with a slightly different clique expansion.

In the case of ∆ZHS, Agarwal et al. (2006) builds a star expansion hs “
pN YNs, Esq where the edges between the original nodes and the new nodes
are weighted by the original hyperedges weights wpeq. We denote by n the
size of the original nodeset N and by ns the size of the additional nodeset
Ns. Agarwal et al. (2006) shows that the normalized Laplacian of the star
expansion can be written as

∆s “

ˆ

In ´A
´AT Ins

˙

,

where A is a rectangular matrix nˆ ns that satisfies ∆ZHS “ I ´AAT .

2.3. EXPRESSIVENESS OF THE LAPLACIAN FRAMEWORK 37

1
2

3 4

1
2

3 4

1

2

3 4

e1

e2

paq pcq

pbq

Figure 2.14: Hypergraph paq, clique expansion pbq and star expansion pcq

Based on this property, Agarwal et al. (2006) shows a general relation be-
tween the eigenvalue problems on ∆ZHS and ∆s. Namely for λ P R`, we
have

∆s

ˆ

f
fs

˙

“ λ

ˆ

f
fs

˙

ñ

#

f ´Afs “ λf

´AT f ` fs “ λfs
ñ p1´ λq2f “ AAT f ,

which leads to ∆ZHSf “ p1´p1´λq
2qf . By taking λ “ 0, we get f P Nullp∆sq

which is exactly the property (˚˚). The reverse property (˚) does not figure
in Agarwal et al. (2006) but is easy to show as well. For any f P Nullp∆ZHSq,
the objective is to find fs such that

ˆ

f
fs

˙

P Nullp∆sq .

The choice fs “ AT f satisfies this requirement since

∆s

ˆ

f
AT f

˙

“

ˆ

In ´A
´AT Ins

˙ˆ

f
AT f

˙

“

ˆ

pI ´AAT qf
´AT f `AT f

˙

“

ˆ

0
0

˙

.

Consequently, ∆s generalizes ∆ZHS as described in Definition 6, which con-
cludes the proof.

A recent tentative to fully use the hypergraph structure was proposed by
Hein et al. (2013). In this paper, the authors propose to use a dedicated
hypergraph cut and introduce the total variation on a hypergraph as the
Lovasz extension of this cut. This allows to define a regularization functional
on hypergraphs for defining semi-supervised learning algorithms. However,
because of its nonlinearity, this term does not define a Laplacian matrix on
the hypergraph.

38 CHAPTER 2. HYPERNODE GRAPHS

2.4 Conclusion

In this chapter, we have introduced hypernode graphs as a new abstract
model that generalizes undirected graphs and allows to encode similarity
relations between sets of nodes. We have built a consistent extension of
the Laplacian framework for these objects and have shown that our new
class of hypernode graph Laplacians was more expressive than the class of
graph Laplacians, which is not the case for other higher-order models such
as hypergraphs. In the next chapter, we will show important properties
of hypernode graphs and study the notions of paths, connectivity and dis-
tances.

Chapter 3

Properties of hypernode
graphs

Chapter abstract In this chapter, we examine the properties of hyper-
node graphs. We first establish relations between hypernode graphs and a
specific class of signed graphs (that contains the undirected graphs). Sec-
ond, we study whether the notions of path and of connected component
can be extended to the case of (undirected) hypernode graphs. Finally,
we review the notions of kernels and distances for hypernode graphs and
compare them with the graph distances defined in Section 2.1.2.

3.1 Hypernode graphs, graphs and signed graphs

Recall that the Laplacian ∆ of a graph g “ pN,Eq can be computed from
the adjacency matrix W and the corresponding degree matrix D with the
equation ∆ “ D´W (see Section 2.1). The first objective of this section is
to show that the Laplacian of a hypernode graph h can be computed in a
similar way from a symmetrical matrix called pairwise weight matrix. Then,
we will discuss the relationships between hypernode graphs and a specific
class of signed graphs.

3.1.1 Pairwise Weight Matrix and Laplacians

Let us consider in this section a hypernode graph h “ pN,Hq with Laplacian
matrix ∆. We recall Equation (2.9) from Section 2.2.2:

@i, j, ∆i,j “
ÿ

hPH

´P ph, i, jq
a

whpiq
a

whpjq . (2.9)

39

40 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

In the case of a graph, the extradiagonal elements of ∆ are equal to the
opposite of the edge weights (see Section 2.1.1). Based on this constatation,
we define for every node pair pi, jq the pairwise weight Wi,j as the opposite
of the extradiagonal term ∆i,j . Formally, we get from (2.9)

@i ‰ j, Wi,j “
ÿ

hPH

P ph, i, jq
a

whpiq
a

whpjq . (3.1)

The pairwise weight Wi,j is computed as a sum over all the hyperedges and,
for this reason, can be understood as an aggregation of all the information
that exists between i and j. For every hyperedge h, we define the hyperedge
pairwise weight as

whpi, jq “ δpi‰jqP ph, i, jq
a

whpiq
a

whpjq ,

where δ stands for the negative Kronecker delta: δpi‰jq “ 1 if i ‰ j and 0
otherwise. With this definition, Equation (3.1) becomes

Wi,j “
ÿ

hPH

whpi, jq .

The quantity
a

whpiq can be viewed as the cost of entering the hyperedge
h at node i and

a

whpjq as the cost of exiting the hyperedge h at node j.
whpi, jq is null as soon as either i or j does not belong to the hyperedge
h. When h is a pair of two singletons tiu and tju, whpiq and whpjq are
equal because of the equilibrium condition, and the hyperedge pairwise edge
satisfies whpi, jq “

a

whpiq
a

whpjq “ whpiq “ whpjq.

We finally define the pairwise (hypernode graph) weight matrix W by fixing
Wi,i “ 0 for all i. It can be noted that the pairwise weight matrix of a
graph g (with no self-loops) considered as a hypernode graph is equal to the
adjacency matrix of the graph g. Indeed, for i ‰ j, the pairwise weight Wi,j

is by construction the opposite of the term ∆i,j , which is equal to the edge
weight in the graph case. Thus, the pairwise weight matrix can be seen as
the extension of the graph adjacency matrix. The hypernode graph degrees
(see Equation 2.6) can be computed directly from the pairwise weight matrix
because

@i P N,
ÿ

j

Wi,j “
ÿ

h

a

whpiq
ÿ

j‰i

P ph, i, jq
a

whpjq

“
ÿ

h

whpiq (Equilibrium Condition)

“ dpiq . (3.2)

Consequently, the diagonal degree matrix D is the unique matrix that sat-
isfies D1 “ W1. Based on these observations, we can now show that, as
in the graph case, the Laplacian matrix can be expressed in terms of the
pairwise weight matrix W and of the diagonal degree matrix D.

3.1. HYPERNODE GRAPHS, GRAPHS AND SIGNED GRAPHS 41

Proposition 10. Let h “ pN,Hq be a hypernode graph, let W be the pair-
wise weight matrix of h, and let D be the corresponding degree matrix. Then,
the unnormalized Laplacian of h is ∆ “ D ´W .

Proof. By construction, the extradiagonal terms of ∆ are the opposite of
the extra-diagonal terms of W . It remains to show that the diagonal terms
of ∆ are equal to the degree of the hypernode graph. Because of Equation
(2.9), we can write for i P N ,

∆i,i “
ÿ

h

P ph, i, iq
a

whpiq
a

whpiq “
ÿ

h

whpiq “ dpiq ,

which concludes the proof.

Example 8. (Example 7 continued) For each hypernode graph presented
in Example 7, we compute the pairwise weight matrix W and the diagonal
degree matrix D. We present the matrices in Figure 3.1, along with the orig-
inal hypernode graphs. One can verify that D´W is equal to the Laplacian
matrices presented in Example 7.

As a consequence of Proposition 10, we can leverage the pairwise weight
matrix to characterize equivalent hypernode graphs and give a property of
the degree matrices as

Corollary 1. Two hypernode graphs are equivalent if and only if they have
the same pairwise weight matrix. Two equivalent hypernode graphs have the
same degree matrix.

Proof. Proposition 10 states that a hypernode graph Laplacian ∆ can be
written in a unique way as D ´ W with D a diagonal matrix and W a
matrix with diagonal terms equal to 0. Thus, equivalent hypernode graphs
will necessarily share the same pairwise matrix W and the same degree
matrix D. Conversely, if two hypernode graphs share the same pairwise
weight matrix W , the uniqueness of the form D´W implies that they also
share the same Laplacian and are, therefore, equivalent.

3.1.2 Signed graph reduction

As shown in the previous section, the Laplacian matrix of a hypernode
graph can be written under the form D´W where W is the pairwise weight
matrix and D the corresponding degree matrix. As shown in Example 8,
the pairwise weight matrix can contain negative weights and, thus, cannot
be interpreted as an adjacency matrix of a graph. However, W can be
interpreted as the adjacency matrix of a signed graph, i.e., the adjacency
matrix of an undirected graph with possibly negative weights. Following
this idea, we define the notion of reduced signed graph.

42 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

1

2

3

1

1

1

1

W8 “

¨

˝

0 1 1
1 0 0
1 0 0

˛

‚ ; D8 “

¨

˝

2 0 0
0 1 0
0 0 1

˛

‚

1

2

3

0.5

2

0.5
0.5

0.5

W9 “

¨

˝

0 1 0
1 0 1
0 1 0

˛

‚ ; D9 “

¨

˝

1 0 0
0 2 0
0 0 1

˛

‚

1

2

3

4

1

1

1

1

1

1

W10 “

¨

˚

˚

˝

0 ´1 1 1
´1 0 1 1
1 1 0 0
1 1 0 0

˛

‹

‹

‚

; D10 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

˛

‹

‹

‚

Figure 3.1: Pairwise weights matrices and degree matrices for the hypernode
graphs h8, h9 and h10.

3.1. HYPERNODE GRAPHS, GRAPHS AND SIGNED GRAPHS 43

Definition 7. The reduced signed graph of a hypernode graph h is the
signed graph g̃ with adjacency matrix W , where W is the pairwise weight
matrix of the hypernode graph h.

Since equivalent hypernode graphs share the same pairwise weight matrix
(see Corollary 1), they also share the same reduced signed graph. It is
easy to see that the reduced signed graph g̃ of a graph g is equal to g.
Consequently, we can easily characterize the hypernode graphs that are
equivalent to a graph.

Proposition 11. A hypernode graph h is equivalent to a graph g if and
only if the reduced signed graph g̃ of h is a graph. And then, g “ g̃ is the
unique graph equivalent to h.

Proof. Let us assume that g is a graph equivalent to h. Necessarily, the
pairwise weight matrix W of h is also the pairwise weight matrix of g which
is equal to the adjacency matrix of g. Then h̃ is equal to the graph g.
Conversely, if h̃ is a graph, then its pairwise weight matrix is equal to the
adjacency matrix of a graph g. Since g and h share the same pairwise weight
matrix, Corollary 1 allows us to state that h and g are equivalent.

Example 9. (Example 8 continued) We consider again the hypernode graphs
h8, h9 and h10 presented in Figure 3.1. h8 is a graph and is consequently
equal to its reduced signed graph. The reduced signed graph g̃9 associated
with h9 is depicted on Figure 3.2. g̃9 is a graph and, therefore, is the unique
graph equivalent to h9. In the case of h10 the reduced signed graph g̃10 is
depicted in Figure 3.3 (we use wavy lines to represent edges with negative
weights). g̃10 is not a graph, which shows that h10 has no equivalent graph.

1

2

3

0.5

2

0.5
0.5

0.5

1

2

3

1

1

Figure 3.2: Hypernode graph h9 and its reduced signed graph g̃9

So far we have shown that every hypernode graph can be reduced to a signed
graph. That is, every hypernode graph can be associated to a signed graph
through its pairwise weight matrix. Note that the converse is not necessarily
true, as shown in the following proposition.

44 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

1

2

3

4

1

1

1

1

1

1

1

2

3

4

-1

1

1

1

1

Figure 3.3: Hypernode graph h10 and its reduced signed graph g̃10

Proposition 12. Let g̃ be a signed graph with adjacency matrix W . Sim-
ilarly to the graph case, we define the degree matrix D to be the unique
diagonal matrix such that W1 “ D1. g̃ is the reduced signed graph of a
hypernode graph if and only if the matrix D ´W is positive semi-definite.

Proof. Since W1 “ D1, we always have 1 P NullpD ´W q. Moreover, since
W is symmetric, D´W is also symmetric. Let us recall that Hpnq “ tM P

Rnˆn |M “MT , 1 P NullpMq, M ľ 0u. If D ´W is positive semidefinite,
then we have directly D´W P Hpnq. Conversely, if W is the pairwise weight
matrix of a hypernode graph, then D ´W is a hypernode graph Laplacian
and is thus positive semidefinite.

Example 10. Let us consider the signed graph g̃12 with N “ t1, 2u and
W1,2 “ ´1 presented on Figure 3.4. The matrix D ´ W is not positive
semidefinite so the signed graph g̃12 is not the reduced graph of a hypernode
graph.

1 2
-1

D ´W “

ˆ

´1 1
1 ´1

˙

Figure 3.4: Signed graph g̃12

Thus, the class of pairwise weight matrices corresponds to the case where
the matrix D´W is positive semi-definite, and such a matrix has a seman-
tic defined by a hypernode graph. The class of signed graphs introduced
in Proposition 12 is similar to the class of PSD-graphs introduced in Koren
et al. (2002) (in our case, the set of masses M is uniform). We now dis-
cuss the semantic link between a hypernode graph and its reduced signed
graph:

3.1. HYPERNODE GRAPHS, GRAPHS AND SIGNED GRAPHS 45

Proposition 13. For any real-valued function f : N Ñ R,

Ωpfq “
ÿ

ti,juPE

|Wi,j | rfpjq ´ sgnpWi,jqfpiqs
2

loooooooooooooooooooooomoooooooooooooooooooooon

ξ1pfq

`

n
ÿ

i“1

”

dpiq ´ d̃piq
ı

fpiq2

loooooooooooomoooooooooooon

ξ2pfq

, (3.3)

where d̃piq “
ř

j‰i |Wi,j | is the absolute degree of the node i and where sgn
denotes the sign operator: sgnpxq “ 1 if x ě 0 and ´1 otherwise.

Proof. This result comes directly from Herbster (2008) who computes a
development of fTMf for any symmetric matrix M . By definition of the
reduced signed graph, we can write Ωpfq “ fT pD ´W qf , which leads to
Equation 3.3. Note that we still have fT pD ´W qf “ ξ1pfq ` ξ2pfq when
D ´W is not positive semi-definite.

The first term ξ1pfq can be interpreted as follows: if a positive edge exists
between nodes i and j then fpiq must be close to fpjq; in the case of a
negative edge, fpiq must be close to ´fpjq. Note that this is the usual
semantic associate with a signed graph according to the social balance theory
(see for example Chiang et al. 2012). This theory is based on the following
principles:

1. A friend of my friend is my friend
2. An enemy of my friend is my enemy
3. An enemy of my enemy is my friend

A positive edge can be seen as a ”friendship” relation between two nodes,
while a negative edge indicates that the two nodes are ”enemies”. For in-
stance, let us assume that a node i is the enemy of a second node j, which
is itself the enemy of a third node k (chain of two negative edges). In order
to minimize ξ1pfq, we should have fpiq « ´fpjq and fpjq « ´fpkq, which
leads to fpiq « fpkq (friendship relation between i and k, as claimed by the
third principle).

The second term ξ2pfq involves the differences between the degrees and the
absolute degrees of the nodes. The semantic of this term is hard to interpret
in the general case. It can be noted that ξ2pfq ď 0 for all f since

@i, d̃piq “
ÿ

j‰i

|Wi,j | ě dpiq “
ÿ

j‰i

Wi,j .

We will see in Section 5.1.4 that, in the discrete case where f “ 1C with
C Ď N , the semantic of ξ1`ξ2 is far more easy to apprehend since it reduces
to a notion of cut on the reduced signed graph.

46 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

In the case of a hypernode graph, Ωpfq “ ξ1pfq ` ξ2pfq ě 0 (positive semi-
definiteness of D ´W). When D ´W is not positive semi-definite, we can
still write (as stated in the proof of Proposition 13)

fT pD ´W qf “ ξ1pfq ` ξ2pfq ,

but the quantity is not guaranteed to be greater than 0 anymore. When
D´W is indefinite (general case of a signed graph), many essential properties
are lost. Among others, it becomes impossible to define a valid notion of
smoothness measure and a valid notion of distance. A popular approach
that allows to circumvent this issue (see Hou 2005; Goldberg et al. 2007;
Kunegis et al. 2010) is to forget about ξ2pfq and focus on the first term
ξ1pfq. This idea leads to the definition of an alternate gradient operator
called signed gradient :

sgradpfqpi, jq “
b

|Wi,j | pfpjq ´ sgnpWi,jqfpiqq .

This gradient is fully consistent with the graph case since sgradpfqpi, jq “
gradpfqpi, jq as soon as Wi,j ě 0. The corresponding Laplacian is defined
as ∆s “ GTs Gs where Gs is the matrix of sgrad. We can observe that,
for any real-valued node function f , we have fT∆sf “ ξ1pfq. The (signed)
Laplacian ∆s is proven to be equal to D̃´W where D̃ is the diagonal matrix
formed with the absolute degrees d̃piq.

Herbster (2008) proposes a different approach and consider the class Spnq
of symmetric diagonally dominant matrices with nonnegative diagonal en-
tries

Spnq “ tM P Rnˆn such that M “MT and @i,Mi,i “ |Mi,i| ě
ÿ

j‰i

|Mi,j |u .

Note that all the matrices in Spnq are positive semidefinite by construc-
tion. The class Spnq contains all the signed Laplacians ∆s defined above
since

p∆sqi,i “ d̃piq “
ÿ

j‰i

|Wi,j | .

Any matrix of the form D´W that belongs to Spnq satisfies dpiq “ d̃piq and,
therefore, is a graph Laplacian. Indeed, the only solution to get dpiq “ d̃piq
for all i P N is to have Wi,j ě 0 for every pair pi, jq (in this case, ξ2pfq “
0).

3.2 Paths and components in hypernode graphs

A path on a graph g “ pN,Eq is usually defined as a sequence of distinct
nodes i1, . . . , ip P N that are connected by a sequence of edges. Formally,

3.2. PATHS AND COMPONENTS IN HYPERNODE GRAPHS 47

we must have (see Section 2.1.1)

@k “ 1 . . . p´ 1, Wik,ik`1
‰ 0 .

In this section, we discuss how to extend this definition in the case of hy-
pernode graphs. We will pay a particular attention to the definitions that
satisfies the following properties:

(a) If h is a hypernode graph which is also a graph, the paths on h should
be equal to the graph paths.

(b) If h and h1 are two equivalent hypernode graphs (see Section 2.2.3), a
path on h should be also a path on h1.

The first requirement (a) ensures the consistency with the graph case while
the second one (b) ensures the consistency with the hypernode graph se-
mantic. Indeed, two equivalent hypernode graphs can be regarded as se-
mantically equivalent in the sense that they share the same smoothness
measure.

As an illustration, let us consider the notion of path based on a simple hy-
peredge walk: a jump from node i to node j is regarded as valid if we can
find a hyperedge h such that P ph, i, jq “ 1 (i and j belong to different hy-
pernodes in h). We give an example in Figure 3.5 using the hypernode graph
h5 from Example 3. This notion of path appears to be intuitive and satisfy
the requirement (a). However it does not satisfy the second requirement
(b). Indeed, the reduced signed graph of h5 is a graph with two sepa-
rated components (also depicted in Figure 3.5) and no valid path between
1 and 3. Note that this limitation is actually not surprising since hyper-
edges corresponds to set-based interactions while a path should be regarded
as a sequence of pairwise interactions. Moreover, different hyperedges can
bring non orthogonal information that should be somehow gathered before
considering pairwise jumps.

2

1 3

4

1

1

1

1

1

1

1

1

2

1 3

4

2 2

Figure 3.5: (left) Hyperedge walk 1 Ñ 3 Ñ 2 on hypernode graph h5 and
(right) the reduced signed graph g̃5

48 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

In the next section, we propose a simple notion of path in hypernode graphs
that satisfies the requirements (a) and (b). Based on this definition, we
study the related notion of connectivity and components. Note that in the
graph case, a strong link exists between connected components and smooth
functions. Indeed, we have seen in Proposition 2 that the set of functions
that nullify the smoothness measure Ω was spanned by the indicator vectors
of the connected components. We discuss whether such a relation exists in
hypernode graphs.

3.2.1 Paths and signed components

In order to define a non-ambiguous notion of path, we base our analysis on
the pairwise weight matrix defined in Section 3.1.1 . Defined as a sum over
all the hyperedges, the pairwise weight allows to take into account all the
information between a given pair of nodes. Moreover, it is fully consistent
with the equivalence relation since two equivalent hypernode graphs share
the same pairwise weight matrix (see Corollary 1).

Definition 8. Let h “ pN,Hq be a hypernode graph with pairwise weight
matrix W . A path between two nodes i and j is a sequence of nodes i1 “
i, i2, . . . , ip´1, ip “ j such that Wik,ik`1

‰ 0 for 1 ď k ă p.

When the hypernode graph is a graph, the definition coincides with the
definition of path in undirected graphs since W is equal to the adjacency
matrix. Moreover, since two equivalent hypernode graphs share the same
pairwise weight matrix, this notion of path is consistent with the equivalence
relation. Consequently, the notion of path presented in Definition 8 satisfies
the two requirements (a) and (b).

We define a signed component to be a maximal connected set, i.e., a maximal
set of nodes such that there exists a path between any two nodes. By
definition, two signed components have necessarily a null intersection. In
the graph case, this definition coincides with the classic notion of connected
components presented in Section 2.1.1. With these definitions, h5 has two
signed components C1 “ t1, 2u and C2 “ t3, 4u. Indeed, there is no path
between 1 and 3, 1 and 4, 2 and 3 or 2 and 4.

As in the graph case, we now show that the indicator function of a signed
component nullify the smoothness measure Ω. Consequently, we can define
independently a constant label for each signed component, without modify-
ing the global smoothness.

Proposition 14. Let C1, . . . , C` be the ` signed components of a hypernode
graph h “ pN,Hq. Let Ω be the smoothness measure of h. We have

Spanp1C1 , . . . ,1C`q Ď NullpΩq . (3.4)

3.2. PATHS AND COMPONENTS IN HYPERNODE GRAPHS 49

Proof. Let C Ă N be a signed component. Let i be a node in S. By
definition C is a maximal connected set, hence @j P NzC, Wi,j “ 0 and we
have

p∆1Cqpiq “ dpiq ´
ÿ

jPC

Wi,j “ dpiq ´
ÿ

jPN

Wi,j “ 0 .

For i R C, we can write

p∆1Cqpiq “ 0´
ÿ

jPC

Wi,j “ 0 .

Consequently, ∆1C “ 0, which concludes the proof since Nullp∆q “ NullpΩq.

In the graph case, the inclusion in Equation (3.4) is replaced by an equality
(see Proposition 2) and the indicator vector of a set of nodes nullify the
smoothness measure Ω if and only if it is a connected component. In the
case of hypernode graphs, one can find a set of nodes S that isn’t a signed
component or an union of signed components and whose indicator vector 1S
nullify Ω. As an example, consider the hypernode graph h7 first introduced
in Example 5 and recalled in Figure 3.6 along with its reduced signed graph
g̃7. The indicator function 1S associated with the set S “ t1, 3u nullify
the Laplacian ∆7 while t1, 3u is a strict subset of the unique signed compo-
nent t1, 2, 3, 4u. In the next Section, we discuss the case of these ”smooth”
components.

1

2

3

4

1

1

1

1

∆7 “

¨

˚

˚

˝

1 1 ´1 ´1
1 1 ´1 ´1
´1 ´1 1 1
´1 ´1 1 1

˛

‹

‹

‚

1

2

3

4

-1 -1

1

1

1

1

Figure 3.6: (left) Hypernode graph h7 along with (center) its Laplacian ∆7

and (right) its reduced signed graph g̃7

3.2.2 Independent components and strong connectivity

Let us consider throughout this section a hypernode graph h “ pN,Hq and
its Laplacian matrix ∆. As announced above, our objective is to study the
sets of nodes whose indicator function nullify the smoothness measure Ω.
As shown in Proposition 14, this is in particular the case for all the signed
components (and all the possible unions of signed components). We show in

50 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

the following that many other sets satisfy this property. We call these sets
the independent components of the hypernode graph.

We start by defining the notion of node independency. A node i in N is said
to be independent of S Ĺ N if i R S and if the contribution of the nodes in
S to the degree of i is 0, i.e.if

ÿ

jPS

Wi,j “ 0 .

Proposition 15. Let us consider a set of nodes S Ĺ N . The indicator
function 1S is in NullpΩq if and only if the following conditions are satisfied:

1. All the nodes of S are independent of S
2. All the nodes of S are independent of S

Such a set S is called an independent component. As a consequence, if
C1, . . . , Cp are the signed components of h and if S1, . . . , Sm are the inde-
pendent components of h, we have

Spanp1C1 , . . . ,1Cpq Ď Spanp1S1 , . . . ,1Smq Ď NullpΩq .

Proof. Let h “ pN,Hq be a hypernode graph and let W be its edge weight
matrix. For any i P N , we have

p∆1Sqpiq “ dpiq1Spiq ´
ÿ

j‰i

Wi,j1Spjq .

We have ∆1S “ 0 if and only if for every node i P N , p∆1Sqpiq “ 0. If i R S
thenp∆1Sqpiq “

ř

jPSWi,j . Otherwise, if i P S then

p∆1Sqpiq “ dpiq ´
ÿ

jPSztiu

Wi,j “
ÿ

jRS

Wi,j .

Therefore we have ∆1S “ 0 if and only if for all i P S,
ř

jRSWi,j “ 0 and
for all i R S,

ř

jPSWi,j “ 0, which concludes the proof.

If S is a signed component, Proposition 14 implies that ∆1S “ 0 so accord-
ing to Proposition 15, S is also an independent component. In the graph
case, a signed component is strictly equivalent to an independent component
and these two notions are replaced by the unique notion of connected com-
ponent. Indeed, since the pairwise weights of a graph are all positive, the
independence conditions from Proposition 15 reduce to the non-existence of
edges between S and S. In the hypernode graph h7 depicted in Figure 3.6
the independent components are C1 “ t1, 2, 3, 4u , C2 “ t1, 4u, C3 “ t1, 3u,
C4 “ t2, 3u and C5 “ t2, 4u.

Note that two distinct independent components can have a non null inter-
section (for example t1, 3u and t1, 4u in the graph g5 shown in Figure 3.6).

3.3. HYPERNODE GRAPH KERNELS AND DISTANCES 51

This specificity plays a key role in our model and was used implicitely in
the proof of Proposition 8 that allows us to claim that hypernode graphs
are strictly more expressive than classic graphs.

It should be noted that, contrarily to the graph case, the relation

Spanp1C1 , . . . ,1Cpq “ Nullp∆q

does not hold in general, even for the independent components. One can
even find hypernode graphs where N is the only independent component
and where Spanp1q Ĺ Nullp∆q as shown in the following example.

Example 11. Let us consider the hypernode graph h13 presented in Figure
3.7. This hypernode graph has only one independent component N “ t1, 2, 3u
but has two null eigenvalues. Indeed, a corresponding gradient matrix is

G13 “
`

´0.5 ´0.5 1
˘

.

Consequently, we have Rankp∆13q “ 1 and dimpNullp∆13qq “ 2.

1

2

3

0.25

0.25

1
1

2

3

0.5

0.5

-0.25

Figure 3.7: Hypernode graph h13 and its reduced signed graph g̃13

Because of Proposition 15, any hypernode graph such that Nullp∆q “ Spanp1q
will have N as unique independent component. Based on this constatation,
we define the notion of strong connectivity in hypernode graphs.

Definition 9. Let h “ pN,Hq be a hypernode graph with Laplacian matrix
∆. Then h is said to be strongly connected if Nullp∆q “ Spanp1q.

If h is a strongly connected hypernode graph, then N will also be its unique
signed component. Indeed, since a signed component is always an indepen-
dent component, we only have to prove that h contains at least a connected
component. This result is direct since the node singletons are always con-
nected. The reverse does not hold as shown in Example 11.

3.3 Hypernode graph kernels and distances

One reason to use graph kernels for learning in graphs is their relation with
meaningful distances on graphs. In particular, we know that the commute-
time distance can be computed from the graph kernel (see Property 5 in Sec-
tion 2.1). We study how these results generalize to hypernode graphs.

52 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

3.3.1 Definition and main properties

We consider in this section a hypernode graph h “ pN,Hq and its Laplacian
matrix ∆. As in the graph case, we define the hypernode graph kernel to
be the Moore-Penrose pseudo-inverse ∆: of the Laplacian ∆. We consider
the family dα from Section 2.1.2:

dαpi, jq “

ˆ

b

∆:

i,i `∆:

j,j ´ 2∆:

i,j

˙α

. (3.5)

This family of functions allows to define metrics on connected graphs. In
the case of hypernode graphs, only a part of the properties presented in
Proposition 4 is preserved:

Proposition 16. d1 defines a pseudometric on h, i.e., it is positive, sym-
metric and satisfies the triangle equality. Moreover, when h is strongly con-
nected, d1 becomes an actual metric (it satisfies in addition the coincidence
axiom d1pi, jq “ 0 ñ i “ j). In the general case, d2 is positive and we
have @i, d2pi, iq “ 0. When h is strongly connected, d2 also satisfies the
coincidence axiom d2pi, jq ‰ 0 ñ i ‰ j.

Proof. Since ∆: is symmetric and positive semi-definite, all the properties of
d1 are similar to the graph case. In particular, when h is strongly connected,
we have Nullp∆q “ Spanp1q, which allow us to prove the coincidence axiom
for d1 (and d2 since d2pi, jq “ 0 ô d1pi, jq “ 0).

Note that the properties of d1 presented in Proposition 4 are mostly pre-
served in the hypernode graph case. The only difference is that the notion
of connectivity is replaced by the notion of strong connectivity presented in
Section 3.2.2. As a consequence, we can face new types of situations where
d1pi, jq “ 0 while i ‰ j. Recall that, in the graph case, this was only possible
when i and j were in distinct components. In this case, the null distance
between i and j was somehow artificial (no information between the two
nodes). In the hypernode graph case, the situation is a bit more complex
and we can find interesting configurations where d1pi, jq “ 0 with i ‰ j.
Let us for example consider the hypernode graph h7 from Example 5. We
present in Figure 3.8 the distribution of d2 around node 1 and we can notice
that d1p1, 2q “ 0. A way to interpret this specificity is to say that 1 and 2
are indistinguishable given the information contained in h7.

Contrary to d1, many properties of d2 are lost in the hypernode graph case.
In particular, d2 is not a metric, even in the strongly connected case since we
lose the triangle inequality property. Moreover, there is no direct equivalent
of the commute-time distance in hypernode graphs. One can prove, however,

3.3. HYPERNODE GRAPH KERNELS AND DISTANCES 53

1

2

3

4

1

1

1

1
0

0.5

Figure 3.8: Distribution of d1 around the node 1 in hypernode graph h7

that d2 is still linked to the diffusion of information in hypernode graphs, as
discussed in the next section.

3.3.2 Diffusion on hypernode graphs and relations with d2

In this section, we consider a strongly connected hypernode graph h and its
Laplacian matrix ∆. Our objective is to express d2 in terms of a diffusion
function in hypernode graphs mimicking the graph case. For this, we first
consider the Poisson equation ∆f “ In that models the diffusion of an input
charge In through a system associated with the hypernode graph Laplacian
∆. Let us consider a node j P N called sink node, we consider the input
function Inj defined by

Injpiq “

#

dpiq if i ‰ j ,

dpjq ´Volphq if i “ j ,
(3.6)

where dpiq denotes the degree of the node i. We define the set Sj as the set
of functions f P Rn which are solutions of the equation ∆f “ Inj . For every
pair of nodes pk, `q inN and for some f P Sj , we define Vjpk, `q “ fpkq´fp`q,
i.e., Vjpk, `q is the difference of potential between k and `. However, to make
the definition of Vj consistent, we first have to prove that it does not depend
on the choice of a solution f in the set Sj .

Lemma 1. For every sink node j, the solutions of ∆f “ Inj are the func-
tions f “ µ1`∆:Inj where µ P R.

Proof. Since g is strongly connected, we have Nullp∆q “ Spanp1q. There-
fore, Rn is the direct sum of the space Spanp1q and of the space Nullp∆qK.
Since f P Rn, it can be written f “ µ1 ` g where g P Nullp∆qK. Thus, we
have ∆f “ ∆pµ1` gq “ ∆g.

Let us suppose that f satisfies ∆f “ Inj , we deduce that ∆g “ Inj . As seen
above, we know that the operator ∆:∆ is the orthogonal projector operator
on Nullp∆qK. Since g P Nullp∆qK, we have g “ ∆:∆g “ ∆:Inj . Hence we
can write f under the form µ1`∆:Inj .

Conversely, let us consider f “ µ1 ` ∆:Inj with µ P R. We have ∆f “
∆
`

µ1`∆:Inj
˘

“ µ∆1 `∆∆:Inj . From the definition of Inj , we deduce

54 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

that Inj P Nullp∆qK. Since ∆ is symmetric, ∆∆: is also the orthogonal
projector on Nullp∆qK and thus ∆∆:Inj “ Inj . Since ∆1 “ 0, we get
∆f “ Inj which concludes the proof.

As a consequence, Vjpk, `q does not depend on the choice of f in the set of
the solutions of ∆f “ Inj . This allows us to write

Vjpk, `q “ pek ´ e`q
T∆:Inj ,

and we can give the main proposition that establish a link between d2 and
the difference of potential V .

Proposition 17. For every i, j in N , we have Volphqd2pi, jq “ Vjpi, jq `
Vipj, iq, and Vjpi, jq satisfies

$

’

’

&

’

’

%

Vjpi, jq “
ÿ

h|iPh

whpiq

dpiq

»

–1`
ÿ

kPh,k‰i

P ph, i, kq

d

whpkq

whpiq
Vjpk, jq

fi

fl if i ‰ j ,

Vjpi, iq “ 0 .
(3.7)

Proof. First, we show that Ωpi, jq “
Vjpi,jq`Vipj,iq

Volphq . For that, let us develop

the expression of Vjpi, jq obtained above

Vjpi, jq “pei ´ ejq
T∆:Inj

“
ÿ

k‰j

dpkqp∆:

k,i ´∆:

k,jq ´ pVolphq ´ dpjqqp∆:

i,j ´∆:

j,jq

“
ÿ

k‰i,j

dpkqp∆:

k,i ´∆:

k,jq ` dpiqp∆
:

i,i ´∆:

i,jq ` pVolphq ´ dpjqqp∆:

j,j ´∆:

i,jq

“Volphqp∆:

j,j ´∆:

i,jq `Rpj, iq ,

where

Rjpj, iq “
ÿ

k‰i,j

dpkqp∆:

k,i ´∆:

k,jq ` dpiqp∆
:

i,i ´∆:

i,jq ´ dpjqp∆
:

j,j ´∆:

i,jq .

We can observe that, for every node i and j in N , we have Ripi, jq`Rjpj, iq “
0. Thus, we can write

Vjpi, jq `Vipj, iq “Volphqp∆:

i,i `∆:

j,j ´∆:

i,j ´∆:

j,iq

“Volphqp∆:

i,i `∆:

j,j ´ 2∆:

i,jq

“Volphqd2pi, jq ,

3.3. HYPERNODE GRAPH KERNELS AND DISTANCES 55

which concludes the first part of the proof.

It remains to show that Vj satisfies Equation (3.7). By definition of Vj ,
we get that, for every node i, Vjpi, iq “ 0. Let us now consider i ‰ j and
let us consider f in Sj , i.e., a solution of ∆f “ Inj . As i ‰ j, we have
dpiq “ eTi Inj . Since f P Sj , we have Inj “ ∆f “ GTGf so we can rewrite
the previous equality as dpiq “ eTi G

TGf “ pGeiq
T pGfq. Now, because of

the Equilibrium Condition, we have G1 “ 0, thus Gf “ Gpf ´ fpjq1q. This
leads to

dpiq “ pGeiq
T pGpf ´ fpjq1q

“
ÿ

h

pGeiq phq ¨ pGpf ´ fpjq1q phq

“
ÿ

h

´

a

whpiqεhpiq
¯

¨

˜

ÿ

kPh

a

whpkqεhpkqpfpkq ´ fpjqq

¸

(see Equation (2.8))

“
ÿ

h|iPh

a

whpiq

#

ÿ

kPh

p´P ph, k, iqq
a

whpkqpfpkq ´ fpjqq

+

(see Equation (2.7))

“
ÿ

h|iPh

a

whpiq

#

ÿ

kPh

p´P ph, k, iqq
a

whpkqVjpk, jq

+

“ Vjpi, jq
ÿ

h|iPh

whpiqp´P ph, i, iqq `
ÿ

h|iPh

a

whpiq

$

&

%

ÿ

kPh,k‰i

p´P ph, k, iqq
a

whpkqVpk, jq

,

.

-

.

We have for all i, P ph, i, iq “ ´1 and
ř

hwhpiq “ dpiq so the previous
equality can be rewritten under the form

dpiq “ Vjpi, jqdpiq `
ÿ

h|iPh

a

whpiq

$

&

%

ÿ

kPh,k‰i

p´P ph, k, iqq
a

whpkqVjpk, jq

,

.

-

.

Hence, we get the linear system

Vjpi, jq “ 1`
ÿ

h|iPh

a

whpiq

dpiq

$

&

%

ÿ

kPh,k‰i

P ph, k, iq
a

whpkqVjpk, jq

,

.

-

“
ÿ

h|iPh

whpiq

dpiq

$

&

%

1`
ÿ

kPh,k‰i

P ph, k, iq

d

whpkq

whpiq
Vjpk, jq

,

.

-

,

56 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

which concludes the proof.

It should be noted that the above proof generalizes the classic proof for
graphs based on electrical equivalence. Indeed, the proof from Chandra
et al. (1996) considers an electrical network where each edge of the original
graph is replaced by a one Ohm resistor. He shows that, when we inject
dprq unit of current in each node r and remove an equivalent quantity from
a specific sink node j, the difference of potential between a random node i
and the sink node j is proportional to the hitting-time distance from i to j.
Please note that this definition of the input current is equivalent to our input
function In. Such a system can be seen as a density of charge that diffuses
through an electrical network. Chandra et al. (1996) leverages the classic
laws of electrostatic to solve this problem (Ohm’s law and Kirchoff’s law)
but from a more general perspective, the diffusion of a charge in a continuous
system can be described by Poisson’s equation for electrostatics

∆V “
´ρ

ε
,

where V is the electric potential, ρ describes the charges brought from out-
side (free charge density) and ε is a constant depending on the material. This
equation is similar to our diffusion equation ∆f “ In that links an input
function In with a function f which can be seen as the potential function of
the system. Thus, our definition of Vjpi, jq “ fpiq ´ fpjq is compliant with
the one of Chandra et al. (1996) since it denotes the difference of potential
between a node i and the system sink node j.

It should be noted that, in Proposition 17, the quantity Vjpi, jq ` Vipj, iq

is equal to pVj ´ Viqpi, jq. The function Vj
i “ Vj ´ Vi can be seen as the

potential function associated with the input function Inj´Ini “ Volphqpei´
ejq (current entering by a source node i and exiting by a sink node j). By
a proof similar to Lemma 1, we can show that

Vj
i pk, `q “ pek ´ e`q∆

:pInj ´ Iniq “ Volphqpek ´ e`q∆
:pei ´ ejq ,

which is consistent with the expression of Ωpi, jq.

When the hypernode graph is a graph, all the hyperedges h which contain i
are simple edges ttiu, tkuu with k P N . In Equation (3.7), whpiq and whpkq
reduces to Wi,k and the linear system reduces to

$

’

&

’

%

Vjpi, jq “
ÿ

kPN

Wi,k

dpiq
p1`Vjpk, jqq if i ‰ j ,

Vjpi, iq “ 0 .

Consequently, Vjpi, jq can be interpreted as the hitting-time distance from i
to j (average number of steps needed by a random walker to travel from i to

3.3. HYPERNODE GRAPH KERNELS AND DISTANCES 57

j). Therefore, the metric d2pi, jq coincides with the commute-time distance
divided by the overall volume in the case of graphs (see also Klein and
Randić 1993; Chandra et al. 1996; Fouss et al. 2007).

In the general hypernode graph case, the situation is more elaborated. In-

deed, let us define pph|iq “ whpiq
dpiq and ppk|h, iq “ P ph, i, kq

b

whpkq
whpiq

. Then, we

can rewrite the Equation (3.7) as
$

’

’

&

’

’

%

Vjpi, jq “
ÿ

h|iPh

pph|iq

»

–1`
ÿ

kPh,k‰i

ppk|h, iqVjpk, jq

fi

fl if i ‰ j ,

Vjpi, iq “ 0 .

Notice that pph|iq is non-negative and that
ř

h pph|iq “ 1. Thus, pph|iq can
be interpreted as a jumping probability from i to the hyperedge h. We also
have

ř

n ppk|h, iq “ 1 but ppk|h, iq is negative as soon as i and k belong to
the same end of h. This prevents us from interpreting this quantity as a
jumping probability from i to k by h. Therefore, in the general case, we
do not have a random walk interpretation of the d2. Notice however that
several theoretical approaches coming from the world of quantum physics
have been built to take into consideration quantities like ppk|h, iq. (See for
example Burgin 2010).

3.3.3 The transition matrix P “ D´1W

Another way to apprehend the semimetric d2 in strongly connected hyper-
node graphs is to rewrite Equation (3.7) as

Vjpi, jq “ 1`
ÿ

h|iPh

ÿ

kPh
k‰i

Wi,k

dpiq
Vjpk, jq

“ 1`
ÿ

kPN

Pi,kVjpk, jq ,

where W is the pairwise weight matrix of h and P is the transition matrix
defined by P “ D´1W . The rows of P sums to 1 but P is not a stochastic
matrix since it can contain negative values. However, P can still be seen as
a transition matrix associated with the reduced signed graph of h.

Let us now briefly discuss the existence of a stationary distribution based
on the transition matrix P . In the graph case, the transition matrix P is
a stochastic matrix. For connected graphs we can apply Perron-Frobenius
Theorem to show the uniqueness of a stationary distribution of nodes. In
the hypernode graph case, this is not possible in general but we can still
exhibit a stationary distribution based on the degrees.

58 CHAPTER 3. PROPERTIES OF HYPERNODE GRAPHS

Proposition 18. Let h “ pN,Hq be a hypernode graph with transition
matrix P . The vector π “ 1

Volphqpdp0q, . . . , dpnqq is a probability vector and
satisfies

πP “ π .

Proof. It is easy to see that
ř

iPN πi “ 1 since Volphq “
ř

iPN dpiq. Let us
consider a node i P N . From the definition of degrees, dpiq ą 0, thus πi ą 0.
So π is a probability vector and:

pπP qi “
ÿ

kPN

πkPk,i “
1

Volphq

ÿ

kPN

dpkq
Wk,i

dpkq
“

1

Volphq
dpiq “ πi .

3.4 Conclusion

In this chapter, we have highlighted important properties of hypernode
graphs and shown how the concepts defined on graphs can be extended
to our new framework. We have defined the notion of reduced signed graph
that allows us to build bridges between the theory of hypernode graphs and
the theory of signed graphs. We have also addressed the question of con-
nectivity in hypernode graphs and defined the notion of signed components
and independent components. Following this, we have discussed the notion
of metrics on hypernode graphs and studied the properties of the family
dα first introduced in Section 2.1.2. We have especially pointed out a very
general relation between the family dα and the notion of diffusion defined
by the matrix P “ D´1W .

In the next section, we put our framework into practice and propose a new
algorithm based on hypernode graphs that solves the skill rating problem in
multiplayer games.

Chapter 4

Skill rating with hypernode
graphs

Chapter abstract In this chapter, we apply the theory of hypernode
graphs to the problem of skill rating in multiplayer games. We use
hypernode graphs to represent games between teams of players and learn
the individual skills from the games outcomes. Then, we use the learnt
skill values in order to predict the outcomes of new games. We show that
our method outperform specialized algorithms such as Elo or Trueskill
for different datasets in the batch setting.

In the first part of the chapter, we introduce definitions and nota-
tions concerning the skill rating problem and describe specialized
algorithms that can be used to solve this problem. Then, in a second
part, we explain how we can encode games using hypernode graphs and
present our algorithm. Finally, we present some experimental results
and discuss the performance of the different algorithms.

4.1 Skill rating in multiplayer games

Throughout this chapter, we consider a set of individual players P “ t1, . . . , nu
and a set of games Γ “ tγ1, . . . , γpu. Every game is played with the same
rules by two teams of players. The result of a game may be a win for one of
the two teams playing or a draw. Skill rating methods aim to estimate the
skill ratings of the different players using the outcomes of the games. Skill
rating techniques are extensively used in competitive online games such as
Starcraft II or League Of Legend in order to propose equilibrated games

59

60 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

and, thus, improve player experience. In some cases, skill rating can also
be used to define ranks and classes of players. In chess games for example,
the title Grandmaster is awarded to players that have attained a specific
rating.

In the following sections, we introduce the notion of team additive model
that was notably used in Herbrich et al. (2006). Then, we present two
popular algorithms that solve the problem for different settings: Elo (and its
”duelling” extension) (Elo 1978) and TrueSkill (Herbrich et al. 2006).

4.1.1 Notations and team additive model

Let us consider a game γj P Γ and a player i P P involved in this game. We
assume that the contribution of player i to its team during the game can be
summarized into a non negative weight cjpiq. We denote by spiq the skill
rating vector of player i. The performance of player i in the game γj is a
real value denoted by xjpiq and is directly related to spiq using one of the
following model:

• The deterministic model where spiq P R and xjpiq “ spiq
• The probabilistic model where xjpiq is drawn from a probability distri-

bution parametrized by the skill vector spiq.

We assume that the outcome of γj can be predicted by comparing the
weighted sum of the performances of the players of each of the two teams.
Given two teams of players A “ ta1, a2, . . . , a`u and B “ tb1, b2, . . . , bku
playing game γj , then A is predicted to be the winner if

ÿ̀

i“1

cjpaiqxjpaiq ą
k
ÿ

i“1

cjpbiqxjpbiq . (Cj)

Said differently, we assume that the performance of a team is a weighted
sum of the individual performances of the players. This simple linear model
is called team additive model and was notably used in the TrueSkilll al-
gorithm (Herbrich et al. 2006). The contribution cjpiq can depend on the
general rules of the games (a priori knowledge such as asymmetricity of
roles in a team) or on the features of the specific game γj (asymmetricity
brought by the game conditions for example). This model is limited when it
comes to capture the complexity of the interactions between players (such
as complementarity) but is a fair approximation for the skill rating prob-
lem. Let us give a few more details about the deterministic and probabilistic
model.

4.1. SKILL RATING IN MULTIPLAYER GAMES 61

The deterministic skill model

In this model, we assume that spiq P R and xjpiq “ spiq. Thus, the perfor-
mance of a player is independent on the game and we can rewrite inequality
(Cj) as

ÿ̀

i“1

cjpaiqspaiq ą
k
ÿ

i“1

cjpbiqspbiq .

We can turn this equation into an equality by introducing a non negative
real number oj on the right hand that quantifies the game outcome:

ÿ̀

i“1

cjpaiqspaiq “ oj `
k
ÿ

i“1

cjpbiqspbiq . (C1j)

In the case of a draw, the game outcome oj is set to 0. In order to be con-
sistent with the game γj , the skill s must satisfy the equality (C1j). However,
for a given a set of games Γ “ tγ1, . . . , γpu, it may be impossible to satisfy
simultaneously all the constraints tC11, . . . , C1pu. Our goal is then to learn a
function s that respects the game constraints as much as possible. More
formally, we define the error vector εpsq P Rp by

εpsqj “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ̀

i“1

cjpaiqspaiq ´ oj ´
k
ÿ

i“1

cjpbiqspbiq

ˇ

ˇ

ˇ

ˇ

ˇ

.

εpsqj quantifies the consistency of s with the j-th game γj . Our goal is
to find a skill rating function s˚ that minimizes the norm of ε, i.e. search
for

s˚ “ arg min
s
}εpsq} (4.1)

The choice of the norm } ¨ } will directly impact on the properties of our
optimal function s˚. For instance, using the L1-norm will result in a skill
rating function s that neglects a minority of games in order to better satisfy
the majority, leading to a sparse residual error εps˚q. On the contrary, the
L2-norm will tend to smooth the residual error εps˚q.

The probabilistic skill model

In this model, we define the performances to be drawn from Dspiq where
pDθqθPR is a given parametric family. Again, the performance xjpiq does not
depend on the potential features of the game γj but should rather be seen

62 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

as a random variable Xi. This model is mainly used in the Bayesian rating
methods such as Elo or TrueSkill.

In what follows, we introduce a new skill rating method that is based on the
deterministic model and that leverages our hypernode graph framework.
We compare the performance of our algorithm with the abovementioned
methods Elo and TrueSkill. For this reason, we first review briefly these two
algorithms.

4.1.2 The Elo rating system

The Elo rating system is an online method proposed by Elo (1978) in order
to estimate the skills of chess players in international competitions. Even
today, it remains one of the most popular ranking system because of its
efficiency and simplicity. The original system was designed for single player
games but some ad-hoc extensions have been proposed for the case of mul-
tiplayer games.

In Elo, the skill rating of a player i P P is represented by a real value spiq P R.
The performance of a player in a game is assumed to be a random variable
Xi drawn from a symmetrical distribution centered in spiq with fixed width.
The original Elo system is based on normal distributions but some more
recent versions of the algorithm use logistic distributions1. For any pair
of players pi, jq, the random variable Xj ´ Xi represents the difference of
performance between player i and player j in a game. The probability pi
for i to win a game against j is given by

pi “ P rXj ´Xi ă 0s .

We illustrate the computation of pi and pj in Example 12 below.

Example 12. Let us consider the case of normal distributions and let i and
j be two players such that

Xi „ N p1, 1q and Xj „ N p2, 1q,

(spiq “ 1 and spjq “ 2) as presented in Figure 4.1 (left). If Xi and Xj

are independant, Xj ´Xi „ N p1, 2q so the probability for i to win a game
against j is pi “ 0.16. Conversely, we have pj “ 1´ pi “ 0.84.

Let us now assume that we observe a game between i and j where i defeats j.
Elo proposes to update the skills spiq and spjq by considering the posterior

1This is for instance the case of the implementation used by the United States Chess
Federation.

4.1. SKILL RATING IN MULTIPLAYER GAMES 63

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 0 2 4 6

Player i
Player j

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 0 2 4 6

i wins
j wins

Figure 4.1: [Left] Individual performances Xi and Xj [Right] Difference of
performances Xj ´Xi

probabilities pposti “ 1 and ppostj “ 0. The update formula is defined as the
simple descent

spiq Ð spiq `Kipp
post
i ´ piq

spjq Ð spjq `Kjpp
post
j ´ pjq ,

where Ki and Kj are in R`. Ki is the K-factor associated with player i and
allows to fix the convergence rate for the skill spiq. If we observe a draw
game between players i and j, the posterior probabilities pposti and ppostj to
be equal to 0.5.

When the system is not confident about the value spiq, a good option is to
use a big K-factor Ki, which allows important updates of the skill. This
is for instance the case of the newcomers that are assigned a default value.
Conversely, a smaller K-factor allows a finer tuning of the skill spiq and is a
good choice when the confidence in the current value is high. Note that the
estimation of the confidence is not part of the Elo algorithm and, therefore,
remains a tricky point of this approach. A simple heuristic used in official
chess rankings is to consider that the higher the skill, the more confident
we are about it. Indeed, good ratings are usually obtained after a high
number of played games, which reduces the uncertainty. For instance, the
world chess federation (FIDE) uses a three-stage strategy: K “ 40 for the
newcomers (first 30 games), K “ 20 for the ”standard” players (s ă 2400)
and K “ 10 for the ”master” players (s ą 2400).

The duelling extension for multiplayer games

The Elo rating system is not designed to handle directly multiplayer games.
Indeed, the skill update rule is limited to the one vs one case. The main
difficulty of the multiplayer case is to formulate an individual update rule

64 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

based on team information. We briefly present an extension based on the
duelling paradigm that allow us to circumvent this limitation. The main
idea is to see a game between two teams of respectively ` and k players as
a combination of ` ˚ k duels between two players.

To do so, we consider all the possible pairs of players pi, jq, where i belongs
to the first team and j to the second team. Each of these pairs is a duel and
we define the outcome of all duels to be the outcome of the original game (if
the first team wins then i should win his duel against j). For each duel, we
can apply the original Elo algorithm and compute the variation of skills for
the two players. Finally, we upgrade the skill of each player by considering
the average of the duel variations.

Example 13. As an example, let us consider the simple game presented in
Figure 4.2. We assume that team t1, 2u defeats team t3, 4u. We denote by

δ1ą3 (resp. δ1ą4) the variation of skill of 1 in the duel p1, 3q (resp. p1, 4q).

The final skill update for 1 is sp1q Ð sp1q ` pδ1ą3` δ1ą4q

2 .

1

2

3

4

Figure 4.2: Game between t1, 2u and t3, 4u. The duels of player 1 are p1, 3q
and p1, 4q.

4.1.3 The TrueSkill rating system

TrueSkill algorithm is an online algorithm introduced by Herbrich et al.
(2006). It allows to solve two main limitations of Elo:

1. the estimation of the confidence, which is now part of the player rating
2. the handling of multiplayer games through the usage of the additive

team model presented in Section 4.1.1 (note that it also allows to
handle more than two teams in a game but we won’t focus on this
case in our work)

As in the Elo framework, the idea is to express the outcome of a game as
a random variable depending on the skill rating s. The rating of a player
i P P is encoded through a pair of values spiq “ pµi, σiq P R2, which defines
a gaussian distribution. The instant skill Si of player i in a game is then
defined as a random variable drawn from this distribution. The variable

4.2. LEARNING SKILL RATINGS WITH HYPERNODE GRAPHS 65

width σi allows to keep trace of the uncertainty of the current skill value µi,
as shown in Figure 4.3.

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 0 2 4 6 8

Player i
Player j

Figure 4.3: Distributions of Si and Sj for i, j P P

The performance of player i is then given by the random variable Xi „

N pSi, β2q where β P R`. The total performance TI of a team I Ă P is then
defined using an additive model with unitary contributions:

TI “
ÿ

iPI

Xi .

Finally, the difference of performance TJ ´ TI between two teams I and J
is then directly related to the outcome of the game (a team is better than
another if its total performance exceeds the performance of the other one).
All this construction leads to a complex belief network that can be used to
infer the ratings pspiqqiPP based on the observed outcomes.

Example 14. Let us consider a set of three players P “ t1, 2, 3u and a
single game between the teams t1u and t2, 3u. The factor graph built by
Trueskill is depicted in Figure 4.4.

4.2 Learning skill ratings with hypernode graphs

In this section, we describe our contribution to the problem of skill rating
in multiplayer games. We consider the deterministic model described in
Section 4.1.1 and show that the minimization problem (4.1) instantiated
with the Euclidean norm (L2-norm) can be turned into a semi-supervised
learning problem on a hypernode graph.

4.2.1 Modeling Games with Hypernode Graphs

We model games using hypernode graphs and infer the skill ratings. We
use the deterministic skill model as presented in Section 4.1.1. Each game

66 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

S1

X1

T1

N pµ1, σ2
1q

N pS1, β2q

X1

S2

X2

T2,3

S3

X3

N pµ2, σ2
2q

N pS2, β2q

N pµ3, σ2
3q

N pS3, β2q

X2 `X3

O

T1 ´ T2,3

Figure 4.4: Trueskill factor graph for a single game between the player 1
and a team formed with the players 2 and 3

will be represented by a hyperedge with specific nodes related to the game
outcomes. We introduce the general construction by considering an example.
Let us consider a game γ between two teams A “ t1, 2u and B “ t3, 4u. Let
us also assume that all the players contribute to the game with the same
weight cp1q “ cp2q “ cp3q “ cp4q “ 1. Note that using uniform weights
implies that the roles of the players inside a team are interchangeable and
that uniform skills lead to draw games. Such a game can be modeled by
a hyperedge between sets of nodes t1, 2u and t3, 4u with weights equal to
1.

Now, let us suppose that A wins the game, then the skill rating function s
must satisfy Equation (C1j), which reduces in this simple case to

sp1q ` sp2q “ o` sp3q ` sp4q , (C1)

where o ą 0 represents the outcome of the game γ. In order to model the
game outcome in the hyperedge, we introduce a new node H called outcome
node. H is added to the hypernode t3, 4u and has a weight equal to 1. It can
be regarded as a virtual player that plays along with team B and whose skill
is fixed to spHq “ o ą 0. Last, for the hyperedge to satisfy the equilibrium
condition, we add a node Z called lazy node to the hypernode t1, 2u and set
its weight to 1. The skill spZq of the lazy node Z is fixed to be 0 such as
the equation (C1) can be rewritten as

sp1q ` sp2q ` spZq “ sp3q ` sp4q ` spHq ,

4.2. LEARNING SKILL RATINGS WITH HYPERNODE GRAPHS 67

2

1 3

4

Z H

1

1

1

1

1 1

Figure 4.5: Hyperedge h for a game γ between team A “ t1, 2u and B “

t3, 4u. We assume that team A wins and add an outcome node H and a
lazy node Z. The node contributions are set to 1.

where s satisfies spHq “ o and spZq “ 0. Similarly to H, Z can be seen as a
virtual player that plays along with team A (the only difference is that Z is
useless and does not help his team). Note that this equation is the definition
of the smoothness of a node real valued function s over the hyperedge h with
sh “ t1, 2, Zu and th “ t3, 4, Hu as depicted in Figure 4.5.

For each game γj P Γ, let us denote by Aj and Bj the two teams involved.
The winning team is known as well as the game outcome oj . We can define,
for every game γj a hyperedge hj as follows

1. The players of the first team Aj define one of the two hypernodes of
hj . The weight of a player node i is defined to be the square of the
player contribution cjpiq

2,
2. do the same construction for the second team Bj ,
3. add a outcome node Hj to the set of player nodes corresponding to

the losing team. Its weight is set to 1,
4. add a lazy node Zj to the set of player nodes corresponding to the

winning team. Its weight is chosen in order to ensure the Equilibrium
condition for the hyperedge h.

We follow the above procedure for all the games contained in Γ and build
a hypernode graph h “ pN,Hq. Now, the skill rating functions correspond
to the real-valued nodes functions over the hypernode graph. In order to
model the game outcomes in the computation of the player skills, we fix the
skill rating function values over the additional nodes for the virtual players.
A skill rating function s over h must thus satisfy, for every lazy node Zj ,
spZjq “ 0, and, for every outcome node Hj , spHjq “ oj (outcome value of
the corresponding game γj).

Formally, we assume that the first n nodes in N are the player nodes followed
by the t` lazy nodes, then followed by the to outcome nodes. Namely,

N “ t1, . . . , nu Y tn` 1, . . . , n` t`u Y tn` t` ` 1, . . . , n` t` ` tou (4.2)

In the following, we denote by m “ n ` t` ` to the total number of nodes.
Let ∆ be the unnormalized Laplacian of h, and let s be a real-valued node

68 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

function on h, s can be seen as a real vector in Rm where the first n entries
represent the skills of the n players. Then, it is easy to show that the skill
rating problem (4.1) is equivalent to find the optimal vector s solving the
optimization problem

minimize
sPRN

sT∆s

subject to @n` 1 ď j ď n` t`, spjq “ 0 (for lazy nodes)

@n` t` ` 1 ď j ď n` t` ` to, spjq “ oj (for outcome nodes)
(4.3)

4.2.2 Regularizing the hypernode graph

When the number of games is small, many players participate at most in
one game. Thus, in this case, the number of signed components can be
quite large. The player skills in each signed component can be defined
independently while satisfying the constraints. Thus, it will be irrelevant
to compare player skills in different signed components. In order to solve
this issue, we introduce in Equation (4.3) a regularization term based on the
standard deviation of the players skills σpspq, where sp “ psp1q, . . . , spnqq.
This leads to the new formulation

minimize
sPRN

sT∆s` µσpspq
2

subject to @n` 1 ď j ď n` t`, spjq “ 0 (lazy nodes)

@n` t` ` 1 ď j ď n` t` ` to, spjq “ oj (outcome nodes),
(4.4)

where µ is a regularization parameter. Thus, we control the spread of sp,
avoiding to have extreme values for players participating in a small number
of games.

In order to apply graph-based semi-supervised learning algorithms using
hypernode graph Laplacians, we now show that the regularized optimization
problem can be rewritten as an optimization problem for some hypernode
graph Laplacian. For this, we show that it suffices to add a regularizer node
in the hypernode graph h. First, let us recall that if s is the mean of the
player skills vector sp “ psp0q, . . . , spnqq, then, for all q P R, we have

σpspq
2 “

1

n

n
ÿ

i“1

pspiq ´ sq2 ď
1

n

n
ÿ

i“1

pspiq ´ qq2 .

Thus, in the problem 4.4, we can instead minimize sT∆s` µ
n

řn
i“1pspiq´qq

2

over s and q. We now show that this is also equivalent to minimize rT∆µr for

4.2. LEARNING SKILL RATINGS WITH HYPERNODE GRAPHS 69

. 1

2 3

4

Z H

1

1

1

1

1 1

R
µ
4

µ
4µ

4
µ
4

Figure 4.6: Adding a regularizer node R to the hypergraph presented in
Figure 4.5

some vector r and well chosen hypernode graph Laplacian ∆µ. For this, let
us consider the pˆm gradient matrix G of the hypernode graph h associated
with the set of games Γ, and let us define the matrix Gµ by

Gµ “

0

0

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

G

b

µ
n
B

,

where B is the nˆ pm` 1q matrix defined by

#

@i “ 1, . . . , n Bi,i “ ´1 and Bi,m`1 “ 1,

Bi,j “ 0 in all other cases.

The matrix Gµ is the gradient of the hypernode graph hµ obtained from the
hypernode graph h by adding a regularizer node R, an hyperedge between
every player node and the regularizer node R with node weights µ{n (such a
hyperedge can be viewed as an edge with edge weight µ{n). The construction
is illustrated in Figure 4.6 with the hypernode graph reduced to the single
hyperedge depicted in Figure 4.5.

Let us denote by r the vector psp0q, . . . , spmq, qq and by ∆µ the Laplacian
matrix of hµ. Since the original Laplacian ∆ is equal to GTG, we can
write

rT∆µr “ rTGTµGµr “ sT∆s`
µ

n
rBTBr .

Since rBTBr “
ř

ipsi ´ qq2, we can rewrite the regularized problem (4.4)
under the final form

70 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

minimize
rPRN`1

rT∆µr

subject to @n` 1 ď j ď n` t`, rpjq “ 0 (for lazy nodes)

@n` t` ` 1 ď j ď n` t` ` to, rpjq “ oj (for outcome nodes)
(4.5)

In order to provide some meaningful guidelines for the choice of µ, we have
to evaluate the relative magnitude of sT∆s and µσpspq

2.

Proposition 19. Let us consider a pool of players whose skills are drawn
from a Gaussian law N p0, σ2q and let us denote by G the random variable
that gives the difference of skills between two independent teams composed
of T independent players each. Then, if we consider p random variables
G1, . . . , Gp following the same law as G, we have

E

«

p
ÿ

i“1

G2
i

ff

“ 2Tpσ2

Proof. Let us consider a team of T independent players. The total skill
X of such a team follows again a centered Gaussian law N p0, Tσ2q. If Xa

and Xb are the total skills of two independent teams, we can assume that
covpXa, Xbq “ 0 and we can write

G “ Xa ´Xb „ N p0, 2Tσ2q (4.6)

Thus, it follows that G?
2Tσ

follows a standard normal law. We know that

if Z1, . . . , Zp are independent, standard normal random variables, then the
sum of their squares is distributed according to a chi-squared distribution
with p degrees of freedom. Thus, we have:

p
ÿ

i“1

G2
i

2Tσ2
„ χ2ppq .

We conclude the proof by noticing that the mean of a chi-squared distribu-
tion with p degree of freedom is p.

Let us now remark that the term sT∆s is the sum of the squared differences
of skills between teams, for all the games available in Γ. If we assume that
the player skills actually follow a Gaussian law, Proposition 19 allows us to
state that the expected value of sT∆s should be close to 2Tpσ2 where T is
the average number of players in a team. Note that the Gaussian hypothesis

4.2. LEARNING SKILL RATINGS WITH HYPERNODE GRAPHS 71

has been validated experimentally by studying the distribution of the learnt
skills for several values of µ.

As stated above, the regularization term is µσ2pspq « µσ2. In order to have
a consistent tradeoff in our optimization process, the quantity µ{n should
have the same order of magnitude as the expected value 2Tp{n. Note that
2Tp{n is the average number of games played by a player.

4.2.3 Inferring Skill Ratings and Predicting Game Outcomes

We have shown that predicting skill ratings can be rewritten as the opti-
mization problem (4.5). It should be noted that it can also be viewed as a
semi-supervised learning problem on the hypernode graph hµ because the
question is to predict node scores (skill ratings) for player nodes when node
scores for lazy nodes and outcome nodes are given. As shown for instance
in Proposition 6, ∆µ is a positive semidefinite real-valued matrix as a hy-
pernode graph Laplacian. We propose two algorithms based on this results
that allows to estimate the skill ratings and present our general protocol to
predict the game outcomes.

Algorithm 1: H-ZGL

This algorithm is a direct adaptation of the (graph) semi-supervised learning
algorithm presented in Zhu et al. (2003). The main idea is to focus on the
first order condition ∆µr “ 0 (also called harmonic condition). In order to
solve this condition, we consider the following block decomposition based on
the node ordering defined in (4.2):

r “

¨

˝

rP
rL
rO

˛

‚ ,

where rP P Rn (player nodes), rL P Rt` (lazy nodes) and rO P Rto (out-
come nodes). We rewrite the first-order condition using a corresponding
decomposition of the regularized Laplacian ∆µ:

¨

˚

˝

∆P,P
µ ∆P,L

µ ∆P,O
µ

∆L,P
µ ∆L,L

µ ∆L,O
µ

∆O,P
µ ∆O,L

µ ∆O,O
µ

˛

‹

‚

¨

˝

rP
rL
rO

˛

‚“

¨

˝

0
0
0

˛

‚ .

If we consider the first line of this block system, we get the following equa-
tion:

∆P,P
µ rP “ ´

`

∆P,L
µ rL `∆P,O

µ rO
˘

(4.7)

72 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

From the general properties of the Moore-Penrose pseudo-inverse, the least-
square solution to the last equation (4.7) is given by:

rP “ ´p∆
P,P
µ q:

`

∆P,L
µ rL `∆P,O

µ rO
˘

(4.8)

We can now inject our optimization constraints on rL and rO in (4.8): we
know that rL “ 0 (skills of the lazy nodes) and that rO “ o where o is the
vector formed with the outcomes pojqj“1,...,to of the different games. Finally,
we get the final closed formula for rP :

rP “ ´p∆
P,P
µ q:∆P,O

µ o (4.9)

It should be noted that, in general, the learnt vector rP won’t provide a fully
harmonic solution to ∆µr “ 0. We can define the error vector eP by

eP “ ∆P,P
µ rP `∆P,O

µ o P Rn .

For a given player i, the quantity eP piq can be interpreted as the uncertainty
of the skill rP piq. Indeed, if eP piq is high, we can deduce that the learnt skill
rP piq remains inconsistent with many games played by i. Conversely, if
eP piq is small, rP piq should satisfy most of the game constraints, which give
us more confidence about the result. An interesting question is whether we
can leverage this information in order to improve the hyperedge weights. A
solution could be to use a two-step algorithm (EM-like):

• Step 1 (Expectation): Estimate the best skill vector rP and the corre-
sponding error vector eP

• Step 2 (Minimization): Update the weights of the hyperedges in order
to reduce the norm of the error vector eP

Note that the second step should learn a weighting model and not directly
the weights of the game hyperedges. Indeed, we have to keep in mind that
the prediction of unknown games requires a node weighting model that
should remain consistent with the weighting model used in the training
set.

Algorithm 2: H-SVR

In order to predict skill ratings, another approach is to infer player nodes
scores from lazy nodes scores and outcome nodes scores using a regression
algorithm. For this, we consider the hypernode graph kernel ∆:

µ (defined as
the Moore-Penrose pseudoinverse of the Laplacian ∆µ) and train a regression
support vector machine (see Drucker et al. 1996) on the last t` ` to nodes
(lazy nodes and outcome nodes). Finally, we estimate the player skills rP
using the learnt SVM model. Note that this approach does not directly solve

4.3. EXPERIMENTS 73

the original optimization problem (4.5) but rather relies on the geometry
induced by the regularized hypernode graph hµ (pseudometric d1). Indeed,

the feature space associated to the kernel ∆:
µ is an Euclidean space where

the distance between two nodes i and j is equal to d1pi, jq.

Predicting game outcomes

Using the two previous methods, we can infer skill ratings for players from
a given set of games together with their outcomes. The inferred skill ratings
can be used to predict game outcomes for new games. For this, we suppose
that we are given a training set of games Γl with known outcomes together
with a set of testing games Γu for which game outcomes are hidden. The goal
is to predict game outcomes for the testing set Γu. Note that other works
have considered similar questions in the online setting as in Herbrich et al.
(2006), Elo (1978) while we consider the batch setting. For the prediction of
game outcomes, we first apply a skill rating prediction algorithm using the
training set Γl and output a skill rating function s˚. Then, for each game in
Γu, we evaluate the inequality (Cj) with the skills defined by s˚ and decide
the winner. Note that the evaluation of (Cj) require the definition of the
contributions cjpiq for the new game. This definition should be done in a
manner consistent with the weighting model used in the training set. For
every player who do not appear in the training set, the skill value is fixed a
priori to the mean of the known player skills.

Algorithm 2 Predicting game outcomes

Require: Training set of games Γl, set of testing games Γu
1: Build the regularized hypernode graph hµ as described in Sections 4.2.1

and 4.2.2
2: Compute an optimal skill rating s˚ using H-ZGL or H-SVR.
3: Compute the mean skill s̃ among players in Γl
4: for each game in Γu do
5: Assign skill given by s˚ for players involved in Γl, and s̃ otherwise
6: Evaluate the inequality (Cj) and predict the winner
7: end for

4.3 Experiments

In this section, we report our experimental results for the inference of
the player skills and the prediction of the game outcomes for different
datasets.

74 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
es

ti
n

g
E

rr
o
r

o
v
er

Γ
u

Proportion of games used for Γl

H-ZGL
Elo

Trueskill

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
es

ti
n

g
E

rr
o
r

o
v
er

Γ
u

Proportion of games used for Γl

H-ZGL
Elo

Trueskill

Figure 4.7: Predictive error for ATP games (left) and WTA games (right)

4.3.1 Tennis Singles

We consider two datasets of tennis singles collected between January 2011
and June 2014. Tennis singles are played by two players. Each game has a
winner (no draw is allowed). A game is played in two or three winning sets.
The final score corresponds to the number of sets won by each player during
the game. The first dataset comes from ATP tournaments (World Tour,
Challengers and Futures) and consists in 182665 games with 15385 players.
The second dataset comes from WTA tournaments (International Events,
Premier Events and ITF tournaments) and consists in 112499 games with
8292 players.

In each experiment, we randomly select a training subset Γl of games and all
the remaining games define a testing subset Γu. We will consider different
sizes for the training set Γl and will compute the outcome prediction error on
the corresponding set Γu. More precisely, for a given proportion ρ varying
from 10% to 90% , we build a training set Γl using ρ% of the games chosen
randomly among the full game set, the remaining games form the test set Γu.
Given a training set of games Γl and a test set Γu, we follow the experimental
process described in Algorithm 2.

All the player contributions are set to 1 both for the learning part and the
prediction part. We construct the hypernode graph hµ using the game set
Γl, as shown in Section 4.2. In the optimization problem 4.5, the game
outcomes oj are defined to be the net scores of the winner teams (that is,
the number of sets won minus the number of sets lost). This allows to
take account of the score gaps when computing player skills. In order to
reduce the number of nodes, all the lazy nodes are merged in a single one
that is shared by all the hyperedges. We do the same for the outcome nodes
because score differences can be 1, 2 or 3. In order to complete the definition
of hµ, we need also to fix the value of the regularization parameter µ{n. In

4.3. EXPERIMENTS 75

Section 4.2.2, we have shown that µ{n should have of magnitude similar to
the average number of games played by a player. For this reason, we use
µ{n “ 16 for these two datasets.

Given hµ, following Algorithm 2, we apply the skill rating prediction algo-
rithms H-ZGL and H-SVR. In order to compare our method, we also infer
skill ratings using Elo and Trueskill2 Then, we predict game outcomes from
the inferred skill ratings. The results are given in Figure 4.7 (for each value
of ρ, we repeat the experiment 10 times). We can notice that H-ZGL out-
performs strictly Trueskill and Elo for all values of ρ. It can be noted that
Elo and Trueskill are relatively close on these two datasets (1vs1 case). In
what follows, we focus on general multiplayer games where the sizes of the
teams are strictly greater than 1.

4.3.2 Tennis Doubles

We now consider a dataset of tennis doubles collected between January 2009
and September 2011 from ATP tournaments. Tennis doubles are played by
two teams of two players and, as in the case of tennis singles, no draw is
allowed. The dataset consists in 10028 games with 1834 players. We present
in Figure 4.8 and 4.9 several statistics related to the double dataset. It is
worth noticing that many players have only played once. Therefore, the
skill rating problem and the game outcome prediction problem become far
more difficult to solve when few games are used for learning. Indeed, when
the number of games in Γl, the number of players in the test set who are
involved in a game of the training set is small as well. In this case many
players will have a skill estimated to be the average skill.

We follow the same strategy as in Section 4.3.1 to build the hypernode graph
hµ. At the end, we have at most 1839 nodes: at most 1834 player nodes
(depending on the selected games), 1 lazy node, 3 outcome nodes, and 1
regularizer node. In this experiment, we fix µ{n to 16 as in the previous
case. Moreover, since the Elo algorithm is unable to handle multiplayer
games, we replace it by Elo Duelling described in Section 4.1.2. The results
are given in Figure 4.10 (for each value of ρ, we repeat the experiment 10
times). It should be noted that Elo duelling performs poorly, which is not
surprising since this method is mainly designed for the 1vs1 case. Also, it
can be noted that H-ZGL is significantly better than Trueskill whatever is
the chosen proportion.

2TrueSkill and Elo implementations are from Hamilton (2012). Results were double-
checked using Lee (2013b) and Lee (2013a). Parameters of Elo and TrueSkill are the
default parameters of Hamilton (2012) (K “ 32 for Elo, µ0 “ 25, β “ 12.5, σ “ 8.33 and
τ “ 0.25 for TrueSkill).

76 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

N
u

m
b

er
o
f

p
la

y
er

s

Played games

Figure 4.8: Distribution of the
number of player against the num-
ber of played games

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
er

ce
n
ta

g
e

o
f

k
n

o
w

n

p
la

y
er

s
in

Γ
u

Proportion of games used for Γl

Figure 4.9: Average percentage of
players in Γu which are involved in
some game in Γl

30

35

40

45

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
es

ti
n

g
E

rr
o
r

o
v
er

Γ
u

Proportion of games used for Γl

H-ZGL
Elo duelling

H-SVR
Trueskill

Figure 4.10: Predictive error depending on the proportion of games used to
build Γl

4.3.3 Xbox Title Halo2

The Halo2 dataset was generated by Bungie Studio during the beta testing
of the XBox title Halo2. It has been notably used in Herbrich et al. (2006)
to evaluate the performance of the Trueskill algorithm. We consider the
Small Teams dataset with 4992 players and 27536 games opposing up to
12 players in two teams which can have a different size. Each game can
result in a draw or a win of one of the two teams. The proportion of draws
is 22.8%. As reported in Herbrich et al. (2006), the prediction of draws is
challenging and it should be noted that Trueskill and our algorithm fail to
outperform significantly a random guess for the prediction of draw.

We again consider the experimental process described in Algorithm 2. As

4.4. CONCLUSION 77

for the Tennis datasets, we fix all the players contributions in games to 1.
In the optimization problem 4.5, the game outcomes oj are defined to be
equal to 1 when the game has a winner and 0 otherwise because the game
scores vary depending on the type of game. As above, we merge the lazy
nodes into a single one and do the same for the outcome nodes. The value
of µ{n is again set to 16. We represent in Figure 4.11 the value of the ratio
2pT
n as described in Proposition 19.

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Proportion of games used for Γ

2pT
n

Figure 4.11: Evolution of 2pT
n for the dataset Halo SmallTeams

As for the Tennis dataset, we compare the skill rating algorithms H-ZGL,
H-SVR, Elo Duelling and Trueskill. The number of prediction errors for
game outcomes is computed assuming that a draw can be regarded as half a
win, half a loss Lasek et al. (2013). We present the experimental results in
Figure 4.12. For a proportion of 10% of games in the training set, H-ZGL,
H-SVR and Trueskill give similar results while with larger training sets,
our hypernode graph learning algorithms outperform Trueskill. Contrary to
the previous experiment, H-SVR performs better than H-ZGL. This result
has however to be qualified given the fact that H-SVR depends on the soft
margin parameter C whereas H-ZGL is strictly non-parametric.

4.4 Conclusion

In this chapter, we have used the hypernode graph framework to address the
problem of skill rating. We have proposed a simple model for multiplayer
games and used dedicated nodes to represent the outcome of the games.
With a simple regularization term, we have shown that we can obtain very
competitive results compared to specialized algorithms such as Elo duelling
or Trueskill. It should be noted that we have used the kernel ∆: in a support

78 CHAPTER 4. SKILL RATING WITH HYPERNODE GRAPHS

30

35

40

45

50

55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
es

ti
n

g
E

rr
o
r

o
v
er

Γ
u

Proportion of games used for Γl

H-ZGL
Elo duelling

H-SVR
Trueskill

Figure 4.12: Predictive error depending on the proportion of games used to
build Γl

vector machine, which is equivalent to use the metric d1 on the hypernode
graph. We strongly believe that interesting work remains to be achieved in
order to build better models and algorithms. In particular, the question of
individual weights in hyperedge should be addressed to allow more flexibility
in skill rating. Note that there are two main ways to tackle this problem:
the first one is to leverage our apriori knowledge of the game to tune the
weights; the second one is to use our aposteriori knowledge (for instance, the
learning error as indicated in Section 4.2.3) in order to update a weighting
model. In the next chapter, we discuss how to define the notion of cut on
hypernode graphs and propose new applications.

Chapter 5

Perspectives and open
problems

Chapter abstract In this chapter, we present several open research
problems in hypernode graphs. We first study the notion of cut in hy-
pernode graphs and its main properties. We discuss the potential appli-
cations and review some promising lines of research. We then tackle the
issue of directivity in hypernode graphs and give some pointers to other
related theories. We finally discuss hypernode graphs from an algebraic
perspective and present a convex hull conjecture.

5.1 Cuts in hypernode graphs

In this section, we put our focus on the problems of graph and hypernode
graph partitioning. A p-way graph partition on a graph g “ pN,Eq is defined
as a collection of sets P “ pC1, . . . , Cpq such that

p
ď

i“1

Ci “ N and @i ‰ j, Ci X Cj “ H .

Note that, contrary to the classic definition of a p-way partition, we allow
P to contain the empty set.

When p “ 2, the graph partition is called cut and reduces to a couple pC,Cq.
Finding a ”good” cut according to some criteria is a fundamental problem
in graph theory, with applications in various fields such as computer vision
(Greig et al. 1989), communication networks (Karger 1993, section 7) and
operational research (Huang 2011).

79

80 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

The objective of this section is to discuss how we can define cuts for the
case of hypernode graphs. We start by recalling important definitions and
results from the graph case. Then we propose an extension for the hypernode
graphs and discuss the related research problems.

5.1.1 Cuts in undirected graphs

Let us consider a cut pC,Cq on a graph g “ pN,Eq. We define the corre-
sponding cut-set as the set of edges that have one endpoint in each subset
C and C. We define the cut-size Cut pCq “ Cut

`

C
˘

to be the sum of the
weights of all edges in the cut-set. Namely:

Cut pCq “
ÿ

iPC
jPC

Wi,j . (5.1)

1

2

3

4

5
6

1

2

1

1

0.5

1

2

Figure 5.1: Graph g14 and simple cut with C “ t5, 6u and Cut pCq “ 2.5.

An example of cut is depicted in Figure 5.1. We can observe that the cut-
size is always positive as a sum of positive weights. Moreover, we have
Cut pHq “ Cut pNq “ 0 by definition. It should be also noted that the
cut-size can be expressed using the gradient operator. Indeed, we have for
all C Ď N ,

Cut pCq “
ÿ

ti,juPE

rgradp1Cqpi, jqs
2
“ Ωp1Cq . (5.2)

For a given edge ti, ju P E, the quantity gradp1Cqpi, jq can be understood
as the disequilibrium induced by the partitioning pC,Cq. As a consequence
of Equation (5.2), the smoothness measure Ω can be regarded as a (convex)
continuous extension of the graph cut-size.

An other interesting property of the cut-size is given in the following propo-
sition.

Proposition 20. The cut-size is submodular, i.e., @C Ă C 1 Ă N and
i P NzC 1, it satisfies

Cut pC Y tiuq ´ Cut pCq ě Cut
`

C 1 Y tiu
˘

´ Cut
`

C 1
˘

. (5.3)

5.1. CUTS IN HYPERNODE GRAPHS 81

Proof. For any set C Ă N and any node i P C, we define

GpC, iq “ Cut pC Y tiuq ´ Cut pCq .

We have to show that, for all C Ă C 1 Ă N and for all i P NzC 1, GpC, iq ě
GpC 1, iq. Since 1tiu “ ei, we can write using Equation (5.2)

GpC, iq “ Ωp1C ` eiq ´ Ωp1Cq

“ p1C ` eiq
T∆p1C ` eiq ´ 1TC∆1C

“ eTi ∆ei ` 21TC∆ei .

We define D to be the (possibly empty) set C 1zC. We have similarly

GpC 1, iq “ eTi ∆ei ` 2 p1C ` 1Dq
T ∆ei .

Hence we get finally

GpC, iq ´ GpC 1, iq “ ´21D∆ei

“
ÿ

jPD

Wi,j

ě 0 ,

which concludes the proof.

Submodular functions are real-valued set functions which satisfy the dimin-
ishing return property defined in Equation 5.3. The class of functions has
been extensively studied from an optimization perspective, which has led
to many theoretical results. We can cite Nemhauser et al. (1978) that pro-
vides fundamental results on the approximate maximization problem and
Lovász et al. (1993, Chapter 10) that study, among others, the problem of
minimization. In particular, it shows that there exists an algorithm that
computes the minimum of any submodular function in polynomial time.
More recently, Iwata and Orlin (2009) have proposed a strongly polynomial
algorithm for exact minimization of submodular functions. In our context,
one may want to maximize or minimize the cut-size on a given graph g. We
investigate both cases in the following sections.

82 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

The Max-Cut problem

We first begin with the maximization problem presented below.

Problem 1: Maximum Cut

Input: Graph g “ pN,Eq

Solve:
Maximize

CĂN
Cut pCq

We illustrate the Max-Cut problem with Example 15 below.

Example 15. Let us consider the simple communication network repre-
sented by the undirected graph g15 (depicted in Figure 5.2). Each node rep-
resents a server that can communicate with its peers using different channels
(represented by the graph edges). For a given nodeset C, the associated cut
size Cut pCq can be seen as the number of broken connections implied by the
simultaneous failure of the servers that belong to C. For this reason, we can
define the criticality of a set C as its cut size Cut pCq. If our goal is to find
the set of nodes whose failure will impact the most strongly on the network,
we have to solve a Max-Cut problem.

In the case of g15, we can observe that the network is centered around the
”bottleneck” node 3 and we can verify that

Cut pt3uq “ 4 “ max
C

Cut pCq .

1

2

3

4

5

Figure 5.2: Simple graph g15 with bottleneck

Problem 1 is APX-hard (see Papadimitriou and Yannakakis 1991) and the
current best polynomial-time approximate solution is given by Goemans and
Williamson (1995), which achieves a guaranteed ratio of 0.87856. Solving
exactly the maximization is computationally challenging and leads to com-
plex algorithms (see for example Krislock et al. 2014, which use a branch-
and-bound paradigm). Some recent works propose to tackle the problem
by leveraging the submodularity property (see Buchbinder et al. 2014, with
some additional cardinality constraints).

5.1. CUTS IN HYPERNODE GRAPHS 83

The Min-Cut Problem

The Min-Cut problem can be seen as a 2-class partitioning problem: the
objective is to separate the nodeset N into two parts C and C such that
we have few links between C and C (small cut-size Cut pCq). Formally, we
write

Problem 2: Minimum Cut

Input: Graph g “ pN,Eq

Solve:
Minimize

CĂN
Cut pCq

Note that, contrary to Problem 1, it is very easy to find an optimal set C
for Problem 2. Indeed, as recalled in Proposition 20, we have

Cut pHq “ Cut pNq “ 0 “ min
CĂN

Cut pCq .

Actually, we can even carry the reasoning one step further by noticing
that

Proposition 21. A set C Ď N satisfies Cut pCq “ 0 if and only if C is a
(possibly empty) union of connected components.

Proof. As stated in (5.2), we have for all C, Cut pCq “ Ωp1Cq. If C is the
union of m connected components C1, . . . , Cm, then 1C “

řm
i“1 1Ci and

Cut pCq “ Ωp1Cq “
m
ÿ

i“1

m
ÿ

j“1

1TCi∆1Cj “ 0 ,

since Nullp∆q is spanned by the indicator vectors of the connected com-
ponents (see Proposition 2). Conversely, if Cut pCq “ 0, then 1C is in
NullpΩq “ Nullp∆q, and 1C can be expressed as a linear combination of the
indicator vectors of m1 connected components C1, . . . , Cm1 . Since 1C is an
indicator vector, the only solution is to have 1C “

řm1

i“1 1Ci and

C “
m1
ď

i“1

Ci .

When the graph is connected, the solution of the unconstrained Min-Cut
reduces to N and H. For this reason, we usually replace the plain Min-
Cut problem with a constrained Min-Cut problem. We distinguish between

84 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

two main type of constraints: the balancing contraints and the node con-
straints.

The objective of the balancing constraints is to prevent the trivial cases
C “ H and C “ N from happening by adding size constraints to the parti-
tion pC,Cq. A common example is the case of the Min-Ratio-Cut problem
presented below.

Problem 3: Minimum Ratio-Cut

Input: Graph g “ pN,Eq

Solve:
Minimize

CĂN
RatioCut pCq ,

where RatioCut pCq “
´

1
|C| `

1
|N |´|C|

¯

Cut pCq.

Note that it has been shown (see for instance Kunegis et al. 2010) that the
following relation holds for any C:

RatioCut pCq “ ΩprCq , (5.4)

where rC is defined by

rCpiq “

$

’

’

’

’

&

’

’

’

’

%

d

|N | ´ |C|

|N ||C|
if i P C

´

d

|C|

|N |p|N | ´ |C|q
otherwise

.

We can observe that }rC}2 “ 1 and rC P Spanp1qK. Consequently, a possible
continuous relaxation of Problem 3 is

Minimize Ωpfq subject to }f}2 “ 1 and f P Spanp1qK (5.5)

The additional constraints f P Spanp1q and }f}2 “ 1 allow to eliminate the
undesirable cases C “ N and C “ H. We know from Proposition 2 that
Spanp1q Ă Nullp∆q so Nullp∆qK Ă Spanp1qK, which leads to consider the
alternate problem

Minimize Ωpfq subject to }f}2 “ 1 and f P Nullp∆qK (5.6)

When the graph is connected, (5.5) and (5.6) are equivalent since Spanp1q “
Nullp∆q. In the other cases, considering (5.6) leads to disregard the cuts
pC,Cq where C is an union of connected components. The problem (5.6)

5.1. CUTS IN HYPERNODE GRAPHS 85

can be solved directly by conducting a spectral analysis of the Laplacian
matrix ∆. Indeed, since ∆ is symmetric, Nullp∆qK is a direct orthogonal
sum of the eigenspaces Eλ0 , Eλ1 , . . . , Eλk associated to the eigenvalues of
the Laplacian matrix λ0 “ 0 ă λ1 ă ¨ ¨ ¨ ă λk. Moreover, we know that
the smoothness of an unit vector in Eλi is equal to λi. Consequently, the
solutions of (5.6) are the unit vectors of the eigenspace Eλ1 associated to
the smallest but non-null eigenvalue λ1. When dimpEλ1q “ 1, there is an
unique solution called unit Fiedler vector.

Given a solution f of one of the relaxed problem (5.5) and (5.6), we can
define the set Cptq by

Cptq “ ti such that fpiq ě tu .

Several strategies exists to choose the threshold t but the most common ones
are the sign strategy (choose t “ 0) and the ratio strategy (choose t that
minimize the ratio 1

|Cptq| `
1

|N |´|Cptq|). This algorithm can be extended in
order to solve a m-class clustering problem instead of a cut, which lead to
the popular spectral clustering algorithm (see Von Luxburg 2007).

A major limitation of this approach is that we cannot guarantee in the gen-
eral case that the relaxed solutions of (5.5) or (5.6) are close to the optimal
solutions of Problem 3. Partial results rely on Cheeger’s inequality (see for
instance Chung 2005) that makes the connection between the eigenvalue λ1

and the discrete optimum.

Note that we can find other formulations of the minimum cut with balanc-
ing constraints (see for instance Bresson and Szlam 2010). Similarly, other
continuous relaxations of the cut-size Cut pCq can be envisaged such as the
popular Lovasz extension described in Lovász (1983). An interesting prop-
erty of the Lovasz extension is that it is convex as soon as the function is
submodular, which makes it particularly suitable for use with the cut-size
(see Proposition 20). However, we do not consider it in the following, since
the submodularity property do not hold for hypernode graphs, as shown in
the next section.

86 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

We can observe that the balancing constraints do not require any particular
expertise on the specific problem. On the contrary, the second type of
constraints called node constraints are based on a priori knowledge.

Problem 4: Minimum Cut With Node Constraints

Input: Graph g “ pN,Eq and nodesets N1, N2 Ă N

Solve:
Minimize

CĂN
Cut pCq ,

such that N1 Ď C and N2 Ď C.

Example 16. Let us consider the binary image depicted in Figure 5.3 (left).
Our objective is to denoise the image and find the vertical edge between the
”black” left part and the ”white” right part.

To do so, we first compute a prior distribution ppxq (probability of a pixel
to be black) based on the pixel values. Then, we build a graph g as shown in
Figure 5.3 (right) where each pixel is associated with a node. We add two
auxiliary nodes b and w (black and white) and create edges depending on
the prior ppxq (if ppxq ą 0.5, the node is linked to b; otherwise the node is
linked to w). Our denoising problem can be solved by considering Problem
4 instantiated with the pixel graph g, the nodeset N1 “ tbu and the nodeset
N2 “ twu.

4

3

2

1

8

7

6

5

12

11

10

9

16

15

14

13

b w

4

3

2

1

8

7

6

5

12

11

10

9

16

15

14

13

Min-Cut

Figure 5.3: Binary picture with noise and corresponding graph with Min-cut

When the input sets N1 and N2 are singletons, Problem 4 is proved to be
equivalent to an other problem called Max-Flow that can be solved in poly-
nomial time (see Edmonds and Karp 1972). The singleton node constraints
have many applications in networks as shown for instance in Picard and

5.1. CUTS IN HYPERNODE GRAPHS 87

Queyranne (1980) or in Greig et al. (1989). In the following, we will see
that the Min-Cut problem also leads to natural applications in the hypern-
ode graph case.

5.1.2 Cuts and hypernode graphs

In this section, we introduce a definition of cuts for hypernode graphs. We
first propose a motivating example.

Example 17. Let us consider four players 1,2,3 and 4 playing 1vs1 games.
We are given the following game log:

• 1 lost to 3
• 1 lost to 4
• 2 lost to 3
• 2 lost to 4

We can use an undirected hypernode graph to represent these games, as
shown in Figure 5.4. For the sake of simplicity, all the weights are set to 1.
We use the additional nodes Z (lazy helper) and H (active helper) in order
to express the known outcomes of the games.

Our objective is to cluster the players in two balanced groups: the skilled
players and the unskilled players. To do this, we have to find a partition
pC,C 1q of the nodeset N such that H P C and Z P C 1. Moreover, we expect
the players in C to have a different profile from the players in C 1, which
requires us to define an adequate objective function. We can notice that this
problem looks similar to Problem 4 presented above (partitioning problem
with node constraints).

1 H 2

3 Z 4

Figure 5.4: Hypernode graph h16

In the following, we will consider a hypernode graph h “ pN,Hq and an ar-
bitrary orientation function ε (see Section 2.2). The Equilibrium Condition
can be expressed as follows:

@h P h,
ÿ

iPh

a

whpiqεph, iq “ 0 (Equilibrium Condition)

88 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

In the graph case, a strong link exists between the cut-size and the gradient
operator, as stated in Equation 5.2. Based on this observation, we define
the cut-size for hypernode graphs as follows:

Definition 10. Let h “ pN,Hq be a hypernode graph and let C be a subset
of N . We define the cut-size of C by

Cut pCq “
ÿ

hPh

rgradp1Cqphqs
2
“

ÿ

hPh

«

ÿ

iPhXC

a

whpiqεhpiq

ff2

(5.7)

When all the nodes of h belong either to C or to C, gradp1Cqphq is null
because of the Equilibrium Condition. We illustrate Definition 10 with the
simple hypernode graph presented in Figure 5.5.

2

1 3

4

w1

w2

w3

w4

Figure 5.5: Hypernode graph cut with C “ t3u and Cut pCq “ r
?
w3s

2 “

r
?
w1 `

?
w2 ´

?
w4s

2

If the hypernode graph is a graph (i.e., if all the hypernodes are singletons),
then the hypernode graph cut-size coincide with the graph cut-size. Indeed,
for any set of nodes C, we have

Cut pCq “
ÿ

hPh

rgradp1Cqphqs
2
“ 1TC∆1C “ Ωp1Cq , (5.8)

which is similar to Equation 5.2.

Example 18. (Example 17 continued) As a consequence of Equation (5.8),
finding a Min-Cut on the hypernode graph h16 with H P C and Z P C 1

is equivalent to find a smooth skill rating s restricted to the values 0 and
1 and subject to the constraints spHq “ 1 and spZq “ 0. Thus, the 2-
class clustering problem originally described in Example 17 can be seen as a
hypernode graph Min-Cut problem with singleton node constraints on h16.

In the following proposition, we present the main properties of the hypernode
graph cut-size.

Proposition 22. The cut-size satisfies the following properties:

1. @C, Cut pCq ě 0

5.1. CUTS IN HYPERNODE GRAPHS 89

2. @C, Cut pCq “ Cut
`

C
˘

3. Cut pNq “ Cut pHq “ 0

Proof. For all C Ď N , Cut pCq ě 0 as a sum of squared values. To prove
the second property, we rewrite the Equilibrium Condition as:

ÿ

iPCXh

a

whpiqεhpiq `
ÿ

iPCXh

a

whpiqεhpiq “ 0 .

Hence, we get

gradp1Cqphq “
”

ř

iPCXh

a

whpiqεph, iq
ı2

“

”

´
ř

iPCXh

a

whpiqεph, iq
ı2

“ gradp1Cqphq .

Consequently, we have for all C, Cut pCq “ Cut
`

C
˘

. Finally, we have
Cut pHq “ 0 since 1H “ 0. Using the second property, we have Cut pNq “
Cut

`

N
˘

“ Cut pHq “ 0.

Note that, contrary to the graph case, the hypernode graph cut is not sub-
modular. This difference is a direct consequence of the negativity of the
pairwise weights. Indeed, let us consider a hypernode graph h that does not
reduce to a graph. By definition, we can find a pair of distinct nodes pi, jq
such that the pairwise weight Wi,j is negative. We define, similarly to the
proof of Proposition 20,

GpC, iq “ Cut pC Y tiuq ´ Cut pCq .

In order to be submodular, we must have for any C Ĺ C 1 and any i P
NzC 1, GpC, iq ą GpC 1, iq. However, we can show (direct from the graph
case) that GpH, iq ´ Gptju, iq “ Wi,j ă 0, which violates the submodularity
condition.

5.1.3 The Min-Cut problem on hypernode graphs

Similarly to the graph case, we now consider the minimization of the cut-size
as stated in Problem 5 below.

90 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

Problem 5: Minimum Cut on Hypernode graph

Input: Hypernode graph h “ pN,Hq

Solve:
Minimize

CĂN
Cut pCq ,

In the graph case, the optimal sets were given by the union of connected
components. A important difference with the graph case is that there exists
many non trivial cuts with a null cut-size.

Proposition 23. Let h “ pN,Hq be a hypernode graph. A subset C induces
a cut with null cut-size if and only if C is an independent component.

Proof. Let us consider C Ă N . Recall that we have

Cut pCq “ 1TC∆1C ,

where ∆ is the Laplacian matrix of h. Consequently, Cut pCq “ 0 if and
only if 1C P Nullp∆q, which is the exact characterization of an independent
component as stated in Proposition 15.

Proposition 23 is a generalization of Proposition 21 that allows to charac-
terize the sets with null cut-size in the graph case. We can observe that the
notion of independent component replaces the graph notion of connected
component and that the unconstrained Min-Cut problem reduces to the
search of the independent components of the hypernode graph. In Example
17, the ideal cut given by C “ t3, 4, Hu (unskilled players and lazy helper)
and C “ t1, 2, Zu (active helper and skilled players) has a null cut-size
(Cut pCq “ 0) and it is easy to verify that C and C are two independent
components of the graph.

Similarly to the graph case (see Section 5.1.1), we can also consider the
constrained Min-cut problem as in Example 17 where the objective is to
split the players into two groups: the ”good” players that should be similar
to H, and the ”bad” players that should be similar to Z. For this reason,
we consider the singleton node constraints H P C and Z P C. Note that
the issue of whether we can extend the Max-Flow Min-Cut theorem for
hypernode graphs remains open. We strongly believe that addressing this
question will allow a better understanding of the hypernode graph structure
and will open the way for the creation of new algorithms. Note that the
notion of flow is directly related to the notion of directivity in hypernode
graphs that we will address in the next section.

5.1. CUTS IN HYPERNODE GRAPHS 91

The case of the balancing constraints is also interesting since we do not
always have specific knowledge on the nodes. As in the graph case, we can
define the operator RatioCut as

RatioCut pCq “

ˆ

1

|C|
`

1

|N | ´ |C|

˙

Cut pCq ,

which leads to the Min Ratio-Cut problem for hypernode graphs (its formu-
lation is similar to Problem 3).

Note that Equation (5.4) from Section 5.1.1 remains true in the hypernode
graph case, which allows to make the connection between this problem and
the search of a smooth function in Spanp1qK:

RatioCut pcq “ ΩprCq .

Indeed, we can write for all C Ď N ,

ΩprCq “
ÿ

hPh

$

&

%

ÿ

iPC

«

εhpiq
a

whpiq

d

|N | ´ |C|

|N ||C|

ff

´
ÿ

iPC

«

εhpiq
a

whpiq

d

|C|

|N |p|N | ´ |C|q

ff

,

.

-

2

“
ÿ

hPh

#

ÿ

iPC

«

εhpiq
a

whpiq

d

|N | ´ |C|

|N ||C|

ff

`
ÿ

iPC

«

εhpiq
a

whpiq

d

|C|

|N |p|N | ´ |C|q

ff+2

“
ÿ

hPh

«

ÿ

iPC

εhpiq
a

whpiq

˜

d

|N | ´ |C|

|N ||C|
`

d

|C|

|N |p|N | ´ |C|q

¸ff2

“

ˆ

1

|C|
`

1

|N | ´ |C|

˙

ÿ

hPh

«

ÿ

iPC

εhpiq
a

whpiq

ff2

“ RatioCut pCq

As in the graph case, this result leads us to consider the following relaxed
problems (5.9) and (5.10):

Minimize Ωpfq subject to }f}2 “ 1 and f P Spanp1qK (5.9)

Minimize Ωpfq subject to }f}2 “ 1 and f P Nullp∆qK (5.10)

As above (5.9) corresponds to the relaxation of the Min-RatioCut problem
while (5.10) corresponds to a simpler but more restrictive problem that can
be solved by considering the eigenspace of ∆ which is associated with the
smallest but non-null eigenvalue. The main difference with the graph case is
a consequence of Proposition 23: when we replace Spanp1qK by Nullp∆qK, we
disregard the solutions corresponding to the independent components. Note
that both problems are equivalent when the hypernode graph is strongly
connected.

92 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

Based on this observation, an interesting question is whether we can con-
sider the spectral clustering algorithm in the case of hypernode graphs and
whether we can use it to solve real partitioning problems. This question
is beyond the scope of the present work but should be definitely addressed
in the future. Other promising research problems include whether we can
generalize theoretical results such as the Cheeger’s inequality for the case
of hypernode graphs. In the next section, we discuss how we can connect
the hypernode graph cuts to the notion of reduced signed graph presented
in Section 3.1.2.

5.1.4 Relation with the signed graph cuts

Recall that a hypernode graph h “ pV,Eq is equivalent to a signed graph g̃
where the weight between two arbitrary nodes u and v is given by:

Wi,j “
ÿ

hPh

´εhpiqεhpjq
a

whpiq
a

whpjq .

The pairwise matrix W defines a notion of reduced signed graph as de-
scribed in section 3.1.2. Moreover, we have shown in Proposition 13 that
the smoothness measure Ωpfq of a function f : N Ñ R could be expressed
directly on the reduced signed graph:

Ωpfq “
ÿ

ti,juPE

|Wi,j | rfpjq ´ sgnpWi,jqfpiqs
2

loooooooooooooooooooooomoooooooooooooooooooooon

ξ1pfq

`

n
ÿ

i“1

”

dpiq ´ d̃piq
ı

fpiq2

loooooooooooomoooooooooooon

ξ2pfq

.

(3.3)
As discussed above, the first term ξ1pfq carries the common semantic of a
signed graph according to the social balance theory. The second term ξ2pfq
is harder to interpret in the general case, which limit our ability to reason
directly on the signed graph.

However, when f “ 1C with C Ď N , we have Ωpfq “ Cut pCq (see Equation
5.8) and Equation 3.3 becomes much easier to interpret since

Proposition 24. For any set C Ď V , we have

Cut pCq “
ÿ

iPC
jRC

Wi,j (5.11)

Proof. This result can be obtained by taking f “ 1C into Equation 3.3.
However, for the sake of readability, we present here a shorter proof based

5.1. CUTS IN HYPERNODE GRAPHS 93

on the expression of the cut. Thus, we write for C Ď V ,

Cut pCq “
ÿ

hPh

«

ÿ

iPhXC

a

whpiqεhpiq

ff2

“
ÿ

hPh

«

ÿ

iPhXC

a

whpiqεhpiq

ff«

ÿ

iPhXC

a

whpiqεhpiq

ff

“
ÿ

hPh

«

ÿ

iPhXC

a

whpiqεhpiq

ff

»

–´
ÿ

jPhXC

a

whpjqεhpjq

fi

fl

(because of the Equilibrium Condition)

“
ÿ

hPh

ÿ

iPhXC
jPhXC

´εhpiqεhpjq
a

whpiq
a

whpjq

“
ÿ

iPC
jPC

ÿ

hPh

´εhpiqεhpjq
a

whpiq
a

whpjq

“
ÿ

iPC,jRC

Wi,j

We can rewrite Equation (5.11) as

Cut pCq “ Cut
g̃`
pCq ´ Cut

g̃´
pCq, (5.12)

where Cutg̃` (resp. Cutg̃´) is the classic graph cut defined on the positive
part (resp. negative part) of g̃. As a consequence, a cut on a hypernode
graph can be expressed as a cut on its reduced signed graph g̃.

Example 19. (Example 18 continued)
As a consequence of Proposition 24, the Min-Cut problem on hypernode
graph h16 presented in Example 17 is fully equivalent to a signed Min-Cut
problem on the reduced signed graph g̃16 depicted in Figure 5.6. For the sake
of readability, we use the thickness of the edge lines to figure the magnitude
of the weights. Note that a strong link exists in the signed graph between
Z and H. The reason is that the structure does not encode our additional
knowledge on these two nodes. In the previous chapter on skill rating, this
knowledge was injected as a supervision term. Here, we use a similar strategy
by adding the node constraint Z P C and H P C 1. As expected, the best cut
on this graph leads to the clusters C “ t3, 4, Hu (unskilled players and lazy
helper) and C 1 “ t1, 2, Zu (skilled players and active helper).

Note that Proposition 24 allows incidentally to get more information about
the signed graphs that corresponds to hypernode graphs. Indeed, let us recall

94 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

1

H

2

3

Z

4

Minimum cut

Figure 5.6: Reduced signed graph g̃16

that a signed graph is said to be balanced as soon as any cycle contains an
even number of negative edge. We can show that:

Corollary 2. The reduced signed graph of a hypernode graph is either a
graph or an unbalanced signed graph.

Proof. Let g̃ “ pN,Eq be a reduced signed graph associated with hypernode
graph h. We assume that g̃ has a least one negative edge and show that
it is necessarily unbalanced. If g̃ is balanced, a classic theorem (see Harary
1953) claims that we can split N in two non-empty sets N1 and N2 such
that:

• All the edges between N1 and N2 are negative
• All the edges inside N1 (resp. N2) are positive

The intuition behind this result is easy to apprehend: we can assign a label
in t´1, 1u to each of the nodes in N by starting from an arbitrary node
with label 1 and reversing the sign each time we traverse a negative edge.
This simple procedure is guaranteed to work without conflicts because every
cycle contains an even number of negative edge.

Consequently, and since we have at least one negative edge, we can write
ÿ

iPN1
jPN2

Wi,j ă 0 . (˚)

However, we know from Proposition 24 that
ÿ

iPN1
jPN2

Wi,j “ Cut pN1q ě 0 . (˚˚)

(the cut-size is always positive or null as stated in Proposition 22)
Equations (˚) and (˚˚) are incompatible so g̃ is necessarily unbalanced.

5.1. CUTS IN HYPERNODE GRAPHS 95

Note that the question of whether a signed graph is balanced or not is of
central importance in the signed graph theory. Indeed, a balanced graph is
considered as stable from the perspective of the social balance theory since
it does not contain any pathological patterns such as ”A and B are ennemies
but share C as a common friend”. Corollary 2 allows us to claim that all
the reduced signed graphs that are balanced are necessarily classic graphs.
An interesting research problem would be to establish connections between
a hypernode graph and the frustration index (measure of imbalance) of its
reduced signed graph.

5.1.5 Algorithmical perspectives and partial results

In the past sections, we have defined the notion of hypernode graph cut
and discussed its main properties. We have put our focus on the Min-Cut
problem and highlighted several interesting problems that should be tackled
in the future. In particular, we have reviewed the strong connection that
exists between the hypernode graph cut and the cut on the reduced signed
graph. In this section, we consider the Min-Cut problem from a purely
algorithmical perspective and derive some results that will be helpful for
future developments.

We first introduce the notion of positive set and positive sequence. We will
use the following notation for C1, C2 Ď N ,

dpC1, C2q “
ÿ

iPC1,jPC2

Wi,j

Definition 11. A positive sequence is a sequence of nodes pu1, u2, . . . q such
that:

@i, dptuiu, tu1, . . . , ui´1uq ě 0

A positive set is a set of nodes that can be ordered into a positive sequence.

As an example, let us consider the hypernode graph h7 recalled in Figure
5.7. t1, 3u is a positive set since dpt1u, t3uq “ 1. Conversely, t1, 2u is not a
positive set since dpt1u, t2uq “ ´1.

3

1 2

4

1

1

1

1

Figure 5.7: Hypernode graph h7

96 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

We now show the following result

Proposition 25. Let C Ď N be a set of nodes. Then if C is not a positive
set, we can build C 1 with |C 1| ă |C| such that Cut pC 1q ă Cut pCq

Proof. Let us consider C Ď N that is not a positive set and let ` “ |C|. We
can find an ordering of C, pi1, . . . , ip, ip`1, . . . , i`q such that for all k P rp`1, `s

dptiku, ti1, . . . , ipuq ă 0 .

As a consequence, we have

dpti1, . . . , ipu, tip`1, . . . , i`uq ă 0 .

In the following, we define C1 “ ti1, . . . , ipu and C2 “ tip`1, . . . , i`u. We can
write

Cut pC1q “ dpC1, Cq ` dpC1, C2q

“ dpC1, Cq ` dpC2, Cq ´ dpC2, Cq ` dpC1, C2q

ă dpC1, Cq ` dpC2, Cq ´ dpC2, Cq ´ dpC1, C2q

ă Cut pCq ´ Cut pC2q

ă Cut pCq , since a cut is always positive or null

We have |C1| ă |C|, which concludes the proof.

As a direct consequence of Proposition 25, we can state that the set of all
nodes N is a positive set. Indeed, if it was not the case, then we could find
a set C 1 such that Cut pC 1q ă Cut pNq “ 0. Due to a lack of time, we did
not go further into this direction. However, we hope that these first results
will help to design efficient Min-Cut algorithms.

5.2 Directed hypernode graphs

In Section 2.2, we introduced the notion of orientation function ε. Based on
this definition, we can introduce formally the notion of directed hypernode
graph:

Definition 12. A directed hypernode graph ph, εq is an hypernode graph h
together with an arbitrary orientation function ε.

5.2. DIRECTED HYPERNODE GRAPHS 97

As in the graph case, the orientation allows to encode relations such as set
causality and precedence relationships. However, as noted in Section 2.2.2,
the Laplacian matrix is unable to keep track of the orientation. Indeed, the
direction information contained in the gradient matrix G is lost as soon as
we consider the symmetrized quantity GTG.

Note that the exact same problem occurs in the graph case. We can even
carry the reasoning one step further and notice that a symmetric matrix
with a fully constrained diagonal lies in a space of dimension npn´1q

2 , which
is necessarily limited when it comes to capture the npn´1q distinct ordered
pairs of nodes of a directed graph. An interesting example is the case of
the Laplacian matrix proposed by Zhou et al. (2005) and Chung (2005)
for directed graphs. The reasoning is based on a notion of random walk
formalized through the transition matrix P and its associated stationary
law Π. The Laplacian introduced by Zhou et al. (2005) and Chung (2005)
is symmetric and can be written as

∆ “ I ´
Π

1
2PΠ´

1
2 `Π´

1
2P TΠ

1
2

2

If P “ D´1W and Π “ D (classic random walk), the Laplacian reduced
to

∆ “ I ´D´1{2

ˆ

W `W T

2

˙

D´1{2 ,

which is the classic normalized graph Laplacian defined on the undirected
graph with adjacency matrix W`WT

2 . In order to circumvent this issue,
recent works such as Boley et al. (2011) focus on the case of asymmetric
Laplacians. This approach allows to capture more deeply the specificities of
the directed graphs but also prevents us from working with positive semi-
definite matrices. It remains an open question to extend these results to the
case of directed hypernode graphs.

An other interesting line of research is to bring the theory of directed hy-
pernode graphs closer to the theory of directed hypergraphs, a model no-
tably popularized by Gallo et al. (1993). Directed hypergraphs (also called
AND/OR hypergraphs) are implicative structures that generalize over di-
rected graphs and were first introduced in order to formalize the notion of
functional dependency between objects.

The main idea is to represent the AND implication x1 ^ x2 Ñ x3 by a
directed link between the sets tx1, x2u and tx3u. Similarly, a directed link
between tx3u and tx1, x2u can be used to represent an OR implication x3 Ñ

x1 _ x2.

A directed hyperedge is defined as a directed link between two sets of nodes
respectively denoted as the tail and the head of the hyperedge. When the tail

98 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

(resp. the head) consists in a single node, the directed hyperedge is called
OR hyperedge (resp. AND hyperedge). A directed hypergraph is defined as
a set of nodes N “ p1, . . . , nq together with a set of directed hyperedges
H “ ph1, . . . , hpq. A simple example is presented in Figure 5.8.

1

2

3h1 h2

4

5

Figure 5.8: AND hyperedge h1 followed by OR hyperedge h2. We have
tail ph1q “ t1, 2u and head ph1q “ t3u.

A particular case arises when the directed hypergraph only contains AND
hyperedges. This restriction makes sense in multiple contexts where the goal
is to represent only many-to-one implications. Among many other examples,
may be cited the case of propositional logic (see notably Gallo et al. 1998).
The reader can refer to Ausiello et al. (2001) for a detailed list of applica-
tions. Note that a weighted version of these objects has also been defined in
Cambini et al. (1997) by attaching individual weights µhpvq for each node
v participating in a hyperedge h. By convention, the quantity µhpvq will be
negative (resp. positive) if v belong to tail phq (resp. head phq).

In terms of structure, directed hypernode graphs are very close to the di-
rected hypergraphs. The individual weights µhpiq can be regarded as equiv-
alent to the terms εhpiq

a

whpiq. In our framework, we choose to relax some
constraints (arbitrary number of nodes in the tails and the heads) and add
a new one on the weights (the equilibrium condition):

@h,
ÿ

iPtailphq

µiphq `
ÿ

iPheadphq

µiphq “ 0 .

Note that our notion of set similarity can be brought closer to the notion
of two way implication between sets (or set equivalence). Thus, we can
consider our (undirected) hyperedges as the superposition of two directed
hyperedges. As far as we know, the class of directed hypergraphs has not
been studied from the machine learning point of view and no attempt was
made to define a spectral framework for these objects.

It remains an open question to know whether our discrete analysis framework
designed for hypernode graphs can integrate with the theory of directed
hypergraphs and whether it can help to define new tools for the directed
and undirected cases. In this context, a promising line of research is to
investigate the notion of directed hypergraph flows as defined by Cambini

5.3. AN ALGEBRAICAL INTERPRETATIONOF HYPERNODEGRAPHS99

et al. (1997). Similarly to the graph case, a directed hypergraph flow is
defined as a real-valued function g : H Ñ R that should satisfy two main
properties. The first one called feasibility expresses the fact that the value
of g on a directed hyperedge h should be bounded by a specific constant
called upper capacity of the hyperedge. The second one is the conservativity
and is associated with a specific demand function b : N Ñ R. It states that
for any node i P N , the flow g must satisfy

ÿ

hziPheadphq

µiphqgphq ´
ÿ

hziPtailphq

µiphqgphq “ bpiq . (5.13)

In the graph case, a strong link exists between cuts and flows through the
Min-Cut Max-Flow theorem. It remains an open question to extend this
result to the case of hypernode graphs.

Note that if we denote by G the gradient matrix as defined in Section 2.2.2,
we can rewrite Equation (5.13) asGT g “ b. In (non-discrete) vector analysis,
the divergence operator is defined as minus gradient operator. Analogously,
we can define the discrete divergence operator div as the operator described
by the matrix ´GT , which allows us to rewrite again Equation (5.13) as
divpgq ` b “ 0, which is the shape of a standard local conservation law.
Thus, our discrete analysis framework allow us to express very naturally the
conservativity constraints from Cambini et al. (1997). We did not investigate
further this line of research since it was out of the concerns of the present
work but we strongly believe that future research will allow the fields of
directed hypergraphs and directed hypernode graphs to cross-fertilize each
other. In particular, it remains an open question to extend the Min-Cut
Max-Flow theorem to the hypernode graph case.

5.3 An algebraical interpretation of hypernode graphs

We now discuss some interesting properties concerning the classes of graph
Laplacians and graph kernels. In particular, we show that the class of hy-
pernode graph Laplacians can be seen as a convex relaxation of the class of
graph kernels. We also show that the class of hypernode graph Laplacians
is equal to the graph hypernode graph kernels.

5.3.1 The classes of Graph Kernels and Graph Laplacians

Let us consider the class

Lpnq “ tM P Rnˆn |M “MT , 1 P NullpMq, extradiag pMq ď 0u , (5.14)

where extradiag pMq is the matrix M with the diagonal removed.

100 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

Proposition 26. The class Lpnq is the set of unnormalized graph Lapla-
cians.

Proof. For M P Lpnq, let us consider W “ ´extradiag pMq. By definition
of Lpnq, W ě 0, thus W is a graph adjacency matrix. Let us denote by D
the degree matrix of W . For every i P N , Wi,i “ 0 and we have

Di,i “
ÿ

1ďjďn
j‰i

Wi,j “ ´
ÿ

1ďjďn
j‰i

Mi,j .

Since M1 “ 0 by definition of Lpnq, then, for every i P N ,
ř

1ďjďnMi,j “ 0,
and thus Di,i “ Mi,i. That is M “ D ´W , and therefore M is a graph
Laplacian.

Conversely if M “ D ´W is a graph Laplacian, then M “MT and M1 “
D1´W1 “ 0 by definition of the degree matrix. Finally, extradiag pMq “
´W ď 0, which concludes the proof.

The class Kpnq of graph kernels is the set of all matrices which are pseu-
doinverse of some matrix in Lpnq. Since the pseudoinverse operator is invo-
lutive, we can write equivalently Kpnq “ tM P Rnˆn | M : P Lpnqu. Then,
the classes Lpnq and Kpnq satisfy

Proposition 27.

(i) the set Lpnq of graph Laplacians is closed by convex linear combination
but is not closed by linear combination,

(ii) the set Kpnq of graph kernels is not closed by convex linear combina-
tion,

(iii) the sets Lpnq and Kpnq are not closed under pseudoinverse, and

(iv) Lpnq XKpnq ‰ H

Proof. (i) Let us consider ∆1,∆2 P Lpnq and let us denote by W1 and
W2 the corresponding adjacency matrices. For every α P r0, 1s, W “

αW1 ` p1 ´ αqW2 is symmetric and satisfies W ě 0 and W is therefore
the adjacency matrix of an undirected graph. Then ∆ “ α∆1`p1´αq∆2 is
the unnormalized Laplacian associated with W and thus ∆ P Lpnq. Hence,
Lpnq is closed by convex linear combination.

When α R r0, 1s, then W , defined as above, can have negative weights, thus
∆ R Lpnq. Therefore, Lpnq is not closed by linear combination.

5.3. AN ALGEBRAICAL INTERPRETATIONOF HYPERNODEGRAPHS101

(ii) Let us consider the matrices ∆1 and ∆2 in Lpnq defined by

∆1 “

¨

˚

˚

˝

2 0 ´1 ´1
0 1 ´1 0
´1 ´1 2 0
´1 0 0 1

˛

‹

‹

‚

∆2 “

¨

˚

˚

˝

1 0 ´1 0
0 1 0 ´1
´1 0 2 ´1
0 ´1 ´1 2

˛

‹

‹

‚

.

The matrices ∆:
1 and ∆:

2 are in Kpnq, but, let us consider the matrix 1
2p∆

:
1`

∆:
2q, its pseudoinverse is

„

1

2
p∆:

1 `∆:
2q

:

“
1

13

¨

˚

˚

˝

16 2 ´12 ´6
2 10 ´8 ´4
´12 ´8 22 ´2
´6 ´4 ´2 12

˛

‹

‹

‚

,

which is not in Lpnq since some extra-diagonal elements are non-negative.
Hence Kpnq is not closed by convex linear combination.

(iii) Let us consider the Laplacian ∆1 P Lpnq from (ii). Its pseudoinverse is

∆:
1 “

1

8

¨

˚

˚

˝

3 ´3 ´1 1
´3 7 1 ´5
´1 1 3 ´3
1 ´5 ´3 7

˛

‹

‹

‚

,

which is not in Lpnq since some extra-diagonal elements are non-negative.
Hence Lpnq is not closed by pseudoinverse.

The class Kpnq is not closed by pseudoinverse. Indeed, let us consider ∆:
1

in Kpnq, its pseudoinverse is p∆:
1q
: “ ∆1. And, ∆1 does not belong to Kpnq

since its pseudoinverse ∆:
1 R Lpnq.

(iv) Let us consider the matrices ∆ in Lpnq and ∆: in Kpnq defined by

∆ “

¨

˝

1 ´1 0
´1 3 ´2
0 ´2 2

˛

‚ ∆: “
1

6

¨

˝

3 ´1 ´2
´1 1 0
´2 0 2

˛

‚ .

We notice that ∆: P Lpnq, which concludes the proof: LpnqXKpnq ‰ H.

5.3.2 The class of Hypernode graph Laplacians

As shown in Proposition 7 from Section 2.2, the class of hypernode graph
Laplacian is the class Hpnq

102 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

Lpnq Kpnq

Hpnq

Lpnq: Graph Laplacians

Kpnq: Graph kernels (non-convex)

Hpnq: Hypernode graphs Laplacians/kernels

Figure 5.9: Schematic representation of the classes Lpnq, Kpnq and Hpnq

Hpnq “ tM P Rnˆn |M “MT , 1 P NullpMq, M ľ 0u . (5.15)

We review the properties of Hpnq in the next proposition.

Proposition 28.

(i) the class Hpnq is closed under pseudoinverse,

(ii) the class Hpnq contains the class of graph Laplacians Lpnq and the
class of graph kernels Kpnq,

(iii) the class Hpnq is closed by convex linear combination but is not closed
by linear combination.

Proof. (i) The pseudoinverse operation preserves the symmetry and the
semidefiniteness property since it does not modify the sign of the eigenvalues.
Moreover, for every real-valued symmetric matrix M , NullpM :q “ NullpMq
so 1 P NullpM :q.

(ii) Hpnq contains Lpnq because graph Laplacians are positive semidefinite.
From (i), Hpnq is closed by pseudoinverse then it contains also

Kpnq “ tM P Rnˆn |M : P Lpnqu .

(iii) Let us consider M1,M2 P Hpnq and a real α, and let us denote by Mα

the matrix αM1 ` p1´ αqM2. Mα is symmetric and Mα1 “ 0. Now, when
α P r0, 1s, for every x P Rn,

xTMαx “ αxTM1x` p1´ αqx
TM2x ě 0 ,

because M1 ľ 0 and M2 ľ 0. That is Mα ľ 0, hence Hpnq is closed
by convex linear combination. However, it is easy to see that there exist
M1,M2,x and α P R such that xTMαx ă 0. Thus, Hpnq is not closed by
linear combination, which concludes the proof.

5.3. AN ALGEBRAICAL INTERPRETATIONOF HYPERNODEGRAPHS103

1 2 3

4

100 100 1 1

4

Figure 5.10: Hypernode graph h17

5.3.3 A convex hull conjecture and an intermediate class
Fpnq

We have shown in the previous section that the class Hpnq of hypernode
graph Laplacians (and kernels) was a convex relaxation of the class of graph
kernels Kpnq that also contains the class of graph Laplacians Lpnq. We
propose the following conjecture:

Conjecture 1. Hpnq is the convex hull of Kpnq.

Note that this result does not hold in the case of connected graphs. Indeed,
let us consider the space of connected graph kernels K`pnq Ĺ Kpnq. If we
denote by Fpnq the set of hypernode graph kernels such that d2 is a pseu-
dometric (i.e., d2 is positive, symmetric and satisfies the triangle equality),
then the following property holds:

Proposition 29. Fpnq is convex and K`pnq Ĺ Fpnq Ĺ Hpnq.

Proof. We have Fpnq Ă Hpnq by definition and the inclusion is strict since
Hpnq contains the kernels of the disconnected graphs for which the triangle
inequality does not hold (see Section 2.1.2). Moreover, because of Propo-
sition 4, we know that d2 is always a metric in the case of a connected
graph. Consequently, we also have K`pnq Ă Fpnq. In order to prove that
K`pnq ‰ Fpnq, let us consider the hypernode graph h17 depicted in Figure
5.10. h17 consists of two hyperedges: the first one h1 is a classic graph
edge that links 1 and 2 while the second one h2 links the set t2, 3u to the
singleton t4u. We can observe that the hypernode graph is ”dominated”
by h1 because of its high weight but cannot reduced to a graph since the
pairwise weight W2,3 is negatice (equal to ´1). We can verify that d2 is a
pseudometric (actually, even a metric) on the nodeset “ t1, 2, 3, 4u.

It remains to show that Fpnq is convex. Let us consider, K1 and K2 in
Fpnq. For all α P r0, 1s, K “ αK1 ` p1´ αqK2 is in Hpnq so the quantity

d1
Kpi, jq “

a

Ki,i `Kj,j ´ 2Ki,j ,

defines a pseudometric on N “ t1, . . . , nu as stated in Proposition 16 (i.e.,
it is positive, symmetric and satisfies the triangle equality). Consequently,

104 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

the quantity d2 defined for all pi, jq by

d2
Kpi, jq “ Ki,i `Kj,j ´ 2Ki,j ,

is also positive and symmetric. We have to show that it satisfies the triangle
equality. Let us consider pi, j, kq P R3, we have:

d2
Kpi, kq “ αd2

K1
pi, kq ` p1´ αqd2

K2
pi, kq

ď α
`

d2
K1
pi, jq ` d2

K1
pj, kq

˘

` p1´ αq
`

d2
K2
pi, jq ` d2

K2
pj, kq

˘

since K1 and K2 are in Fpnq
ď d2

Kpi, jq ` d
2
Kpj, kq ,

which concludes the proof.

5.3.4 A Riemanian geometry for strongly connected hyper-
node graphs

In this section, we consider the case of strongly connected hypernode graphs
as described in Section 3.2. It is worth noting that all connected graphs are
also strongly connected hypernode graphs. The goal of this section is to show
that the class of Laplacians of strongly connected hypernode graphs can be
embedded with a complete Riemannian structure. The class of Laplacians
that corresponds to the strongly connected hypernode graphs is

H`pnq “ tM P Rnˆn |M “MT , NullpMq “ Spanp1q, M ľ 0u .

As mentioned above, the class Hpnq is closed by convex linear combination.
This is not the case for the class H`pnq which is a strict subspace of Hpnq.
The geodesic in the Euclidean space Rnˆn is a “straight line” but the Eu-
clidean geometry does not fit the class H`pnq. This is illustrated with a
simple metaphor for R2 in Figure 5.11 below where the class H`pnq is a
curved space which can be seen as a boundary space of Hpnq.

Thus, our goal is to exhibit a Riemannian geometry in which H`pnq is
geodesic complete. Geodesic completeness generalizes the notion of closure
by convex linear combination. The notion of shortest route in a curved
space derives from the notion of metric tensor that generalizes the inner
product of the Euclidean space. At any point of a given manifold, a tangent
space can be defined and the metric tensor defines an inner product for
all tangent spaces, which leads to the notion of Riemannian metric. In
order to define the Riemannian geometry over H`pnq, we use the property
that, for every ∆ in H`pnq, we have Nullp∆q “ Spanp1q. We also define
a smooth mapping between H`pnq and the space of symmetric positive

5.3. AN ALGEBRAICAL INTERPRETATIONOF HYPERNODEGRAPHS105

∆1

∆2

Euclidean geodesic curve

Natural geodesic curve

Hpnq

H`pnq

Figure 5.11: Schematic representation of convex space Hpnq and non-convex
spaceH`pnq. Euclidean geometry of Rnˆn is not suited forHpnq andH`pnq.

definite matrices Pn´1 “ tR P Rn´1ˆn´1 |M “MT , M ą 0u which can be
embedded in a Riemannian geometry.

Formally, as for every ∆ P H`pnq, we have Nullp∆q “ Spanp1q, we de-
duce that the restriction of ∆ to the vector space Spanp1qK is positive def-
inite, where Spanp1qK denotes the vector space orthogonal to Spanp1q. It
is important to note that the space Spanp1qK does not depend on ∆. In
order to define the mapping between Pn´1 and H`pnq, let us denote by
B “ pe1, . . . , enq the canonical basis of Rnˆn (the i-th component of ei is
one, the other components are zeros) and let us consider the orthogonal basis
B1 “ p1, e12, . . . , e1nq where pe12, . . . , e

1
nq is an orthogonal basis of Spanp1qK.

Let us now consider P , the change-of-coordinates operator B Ñ B1. We
define the mapping f between Pn´1 and H`pnq by

f : AÑ P T
ˆ

0 0
0 A

˙

P . (5.16)

We show some important properties of f that will allow us to transfer the
Riemannian structure from Pn´1 to H`pnq.

Proposition 30. f is a C8-diffeomorphism between Pn´1 and H`pnq. For
any A P Pn´1, we have fpA´1q “ fpAq: and TrpfpAqq “ TrpAq.

Proof. Let us consider A P Pn´1, NullpfpAqq “ Spanp1q by construction.
fpAq is symmetric positive semidefinite since A is symmetric positive definite
so we have fpAq P H`pnq. Conversely, let us consider M P H`pnq and
U “ PMP T . Since 1 P NullpMq, we can write

Ue1 “ PMP Te1 “ PM1 “ 0 . (5.17)

106 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

Thus, U can be written as

U “

ˆ

0 0
0 Q

˙

, (5.18)

with Q P Rn´1ˆn´1. Moreover Q P Pn´1 since the spectrum of Q is equal
to the spectrum of M without the null eigenvalue associated with 1. Since
NullpMq “ Spanp1q, the spectrum of Q is strictly positive. Finally, we have
M “ fpQq and f is a bijection between Pn´1 and H`pnq. f and f´1 are
infinitely differentiable as change-of-coordinates operators.

It remains to show the properties of f . First, let us consider A P Pn´1, then

fpAq: “

ˆ

P T
ˆ

0 0
0 A

˙

P

˙:

“ P :
ˆ

P T
ˆ

0 0
0 A

˙˙:

since P is orthogonal

“ P :
ˆ

0 0
0 A

˙:

pP T q: since P T is orthogonal

“ P T
ˆ

0 0
0 A´1

˙

P

“ fpA´1q .

Second, the property over traces can be proved by

TrpfpAqq “ Tr

ˆ

P T
ˆ

0 0
0 A

˙

P

˙

“ Tr

ˆ

PP T
ˆ

0 0
0 A

˙˙

“ TrpAq .

We will use Proposition 30 to transfer the geometrical structure of Pn´1 to
H`pnq. But, before let us review some results concerning the geometrical
structure of Pn´1. The set Pn´1 is a space of matrices which can also be
viewed as a space of multivariate Gaussian distributions with null mean (via
the covariance matrix). These two views can be used to derive a Riemannian
metric on Pn´1. The first one is based on a pure geometrical approach and
the second one is based on Fisher information theory. It is worth noting that
both approaches produce the same metric tensor (see for instance Bonnabel
and Sepulchre 2009) defined by, for every A P Pn´1,

g
Pn´1

A pD1, D2q “ TrpD1A
´1D2A

´1q , (5.19)

where D1 and D2 are in the tangent space at point A in Pn´1 denoted by
TPn´1pAq. A distance dPn´1 over Pn´1 can be derived from the definition of
the metric tensor (5.19) by, for every A1, A2 in Pn´1,

dPn´1pA1, A2q “ } logpA
´1{2
1 A2A

´1{2
1 q}2 . (5.20)

5.3. AN ALGEBRAICAL INTERPRETATIONOF HYPERNODEGRAPHS107

and, also the metric tensor defined in (5.19) allows defining a geodesic curve
from a matrix A1 in Pn´1 to a matrix A2 in Pn´1 by

γ
Pn´1

A1,A2
pαq “ A

1{2
1 exppα logpA

´1{2
1 A2A

´1{2
1 qqA

1{2
1 .

It should be noted the geodesic from A1 to A2 is not, in general, equal
the geodesic from A2 to A1. As noted in Bonnabel and Sepulchre (2009),
Pn´1 embedded with this natural geometry is geodesic complete, i.e., every
geodesic can be extended to a maximal geodesic defined for α P R. This
property allows to use efficient short-step methods to solve complex opti-
mization problems.

We are ready to define a Riemannian geometry over H`pnq using Propo-
sition 30 and the Riemannian geometry over Pn´1. First, the mapping f
between Pn´1 and H`pnq defined in Equation (5.16) can be extended to
a C8-diffeomorphism between SpanpPn´1q and SpanpH`pnqq. This allows
to define the tangent space at point M in H`pnq, denoted by TH`pnqpMq,
by

TH`pnqpMq “ fpTPn´1pf
´1pMqqq (5.21)

and to define the metric tensor for M in H`pnq, denoted by g
H`pnq
M . Let D1

and D2 be in the tangent space TH`pnqpMq. Then,

g
H`pnq
M pD1, D2q “ g

Pn´1

f´1pMq
pf´1pD1q, f

´1pD2qq . (5.22)

Proposition 31. g
H`pnq
M pD1, D2q can be expressed in function of M , D1

and D2 using the formula

g
H`pnq
M pD1, D2q “ TrpD1M

:D2M
:q .

Proof. First, note that the extension of the mapping f into a mapping
between SpanpPn´1q and SpanpH`pnqq can still be expressed using Equa-

108 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

tion (5.16). Thus, we get from Equation (5.22),

g
H`pnq
M pD1, D2q “ g

Pn´1

f´1pMq
pf´1pD1q, f

´1pD2qq

“ Tr
“

f´1pD1qpf
´1pMqq´1f´1pD2qpf

´1pMqq´1
‰

(see Eq. (5.19))

“ Tr

„

P

ˆ

0 0
0 f´1pD1qpf

´1pMqq´1f´1pD2qpf
´1pMqq´1

˙

P T

“ Tr

„

P

ˆ

0 0
0 f´1pD1q

˙

P TP

ˆ

0 0
0 pf´1pMqq´1

˙

P T

P

ˆ

0 0
0 f´1pD2q

˙

P TP

ˆ

0 0
0 pf´1pMqq´1

˙

P T

“ Tr
“

pf ˝ f´1pD1qqpf ˝ f
´1pMqq:pf ˝ f´1pD2qqpf ˝ f

´1pMqq:
‰

(see Prop. 30)

“ TrpD1M
:D2M

:q .

We can now define the Riemannian structure of H`pnq. The Riemannian
distance over H`pnq is defined for every M1, M2 in H`pnq by

dH`pnqpM1,M2q “ dPn´1pf
´1pM1q, f

´1pM2qq

and the geodesic curve from M1 to M2 in H`pnq is defined by

γ
H`pnq
M1,M2

pαq “ fpγ
Pn´1

f´1pM1q,f´1pM2q
pαqq .

Proposition 32. The Riemannian distance over H`pnq between M1, M2

in H`pnq can be expressed as

dH`pnqpM1,M2q “ } log
´

11T ` pM :
1q

1{2M2pM
:
1q

1{2
¯

}2

and the Riemannian distance is invariant by pseudoinverse.

5.3. AN ALGEBRAICAL INTERPRETATIONOF HYPERNODEGRAPHS109

Proof. Let M1, M2 in H`pnq, then

dH`pnqpM1,M2q “ dPn´1pf
´1pM1q, f

´1pM2qq by definition of dH`pnq

“

›

›

›

›

ˆ

0 0

0 logpf´1pM1q
´1{2f´1pM2qf

´1pM1q
´1{2q

˙›

›

›

›

2

by Equation (5.20)

“

›

›

›

›

log

„ˆ

1 0

0 f´1pM1q
´1{2f´1pM2qf

´1pM1q
´1{2

˙›

›

›

›

2

“

›

›

›

›

P T log

„ˆ

1 0

0 f´1pM1q
´1{2f´1pM2qf

´1pM1q
´1{2

˙

P

›

›

›

›

2

since P is orthogonal

“

›

›

›

›

log

„

P T
ˆ

1 0

0 f´1pM1q
´1{2f´1pM2qf

´1pM1q
´1{2

˙

P

›

›

›

›

2

“

›

›

›

›

log

„

11T ` P T
ˆ

0 0

0 f´1pM1q
´1{2

˙

PP T
ˆ

0 0
0 f´1pM2q

˙

PP T
ˆ

0 0

0 f´1pM1q
´1{2

˙

P

›

›

›

›

2

“

›

›

›
log

´

11T ` pM :
1q

1{2M2pM
:
1q

1{2
¯
›

›

›

2
.

The distance dH`pnq is invariant by pseudoinverse since the distance dPn´1

is invariant by matrix inversion (see for example Bonnabel and Sepulchre
2009), which concludes the proof.

It should be noted that, since f is a C8-diffeomorphism, the geodesic curves
of H`pnq can also be extended for α P R. Thus, H`pnq embedded with our
new metric is geodesic complete. Moreover, because of the pseudoinverse in-
variance property, the Riemannian distance between two graph Laplacians
in H`pnq is equal to the Riemannian distance between the corresponding
two graph kernels. The Riemannian structure of Pn´1 with the Riemannian
metric, also called the natural metric, has been used in many efficient appli-
cations in various fields (object detection in radar processing, bio medical
imaging, kernel optimization). The Riemannian structure over H`pnq in-
troduced in this section should open new algorithmic perspectives such as
Weiszfeld’s algorithm for mean and median computation, usage of complete
geodesics to express dissimilarities for graph kernels. This line of research
remains open for future work.

110 CHAPTER 5. PERSPECTIVES AND OPEN PROBLEMS

Chapter 6

Conclusion

In the present work, we have introduced a new model called hypernode graph
that generalizes classic graph and that allows to handle binary relations be-
tween groups in networks. We have defined a spectral theory allowing to
model homophilic relations between groups assuming an additive model for
individual valuations. In particular, we have defined the notion of hypern-
ode graph Laplacian that generalizes the classic graph Laplacian operator.
Similarly to the graph case, the Laplacian matrix is positive semidefinite,
which allows us to leverage many results and algorithms originating from
graph theory.

As expected, many classic results evolve when we consider the hypernode
graph extension. Several properties that hold in the graph case become un-
true in our general framework. Some others need to be modified and refined
in order to remain consistent with our definitions. In the past chapters, we
have studied the most important aspects of the hypernode graph learning
framework. We have shown that working with the extended Laplacian op-
erator provides a strict gain of expressiveness and allows to encode complex
notions of smoothness. Moreover, we have established important connec-
tions with the theory of signed graphs through the fundamental concept
of hypernode graph reduction. We have also shown that our model allows
to encode dominance relations by adding auxiliary nodes. As a proof of
concept, we have used hypernode graphs to model multiplayer games with
known outcomes and obtained competitive results on the problem of skill
rating (compared to the state-of-the-art).

Most of the difficulties surrounding the study of hypernode graph stems for
the data structure itself. Indeed, hyperedges are based on the concept of
group relations and, therefore, are fundamentally different in nature from
the pairwise relations that allows usually to define distances, paths and
walks. Moreover, the pieces of information brought by different hyperedges

111

112 CHAPTER 6. CONCLUSION

are often interdependent.

In the past chapters, we have often relied on the concept of reduced signed
graph mentioned above in order to work at the level of nodes. However, it
can be observed that the semantic connection between signed graphs and hy-
pernode graphs still remains unclear as discussed in Section 3.1.2. We believe
that a better understanding of this connection will bring new perspectives
for the theory of hypernode graphs and will allow us to better apprehend
the concept of hypernode graph diffusion defined in Section 3.3.2.

More generally, many theoretical results on hypernode graphs remains to be
discovered. In the previous chapters, we have presented several promising
research directions. Among others, we can cite the problems of generalizing
the Max-Flow Min-Cut theorem and defining new algorithmic approaches to
solve the node valuation problems. Many other topics that are beyond the
scope of this thesis are also worthy of considering. For instance, an interest-
ing idea is to consider the hypernode graph extension from the perspective
of information theory. Indeed, relationships between sets bring only par-
tial information about the individuals. Therefore, interesting connections
could be made with the problems of compression and anonymizations in
networks. Finally, we hope that the hypernode graph model will open the
way to solving new learning problems in networks.

Appendices

113

Appendix A

Multigraph learning with
Hypernode graphs

Chapter abstract In this appendix, we consider the problem of combin-
ing different graphs on the same set of nodes. We assume that the input
graphs are connected, which allow us to make a link between commute-
time distance and Laplacian matrices as stated in Proposition 5. We split
the combination process in two parts: first, we use the Laplacian matrix
to associate graphs with what we call embedded vector spaces; second, we
merge these spaces into a new vector space associated to a new positive
semi-definite kernel which we ensure to be a hypernode graph kernel.

A.1 Combining Graphs through Euclidean Embed-
ded Spaces

Let us consider k input graphs g1, . . . ,gk on the same node set N and a
set NL Ĺ N . We assume that we are given a labeling function yL : NL Ñ

t´1, 1u. We denote by n the number of nodes in N and by nL the number
of nodes in NL. Moreover, we will assume that nL ! n. Our objective
is to combine the k graphs into a hypernode graph that agrees as much
as possible with yL. We will show that the combined hypernode graph
outperforms significantly the original graphs when it come to classify the
nodes in NzNL. In the next subsection, we introduce the notion of embedded
Euclidean space that serves as a basis for our combination algorithm.

115

116APPENDIX A. MULTIGRAPH LEARNINGWITH HYPERNODEGRAPHS

A.1.1 Embedded vector spaces

Given a graph g “ pN,Eq, an embedded vector space is a tuple pE ,Kp¨, ¨q, φq
where

• E is a finite-dimensional vector space,
• Kp¨, ¨q is a positive semidefinite kernel on E ˆ E , and
• φ is an injective function, called node map, from N to E .

The Gram matrix K “ pKpφpiq, φpjqqqi,jPN is denoted as the kernel matrix
of the embedded vector space.

An embedded Euclidean space satisfies the commute-time property for g if,
for every pair of nodes i, j P N , we have Kpφpiq, φpjqq “ ∆:

i,j . In this

case, we have }φpiq ´ φpjq}2 “ ci,j{Volpgq, where }.} is the Euclidean norm
associated with Kp¨, ¨q, and ci,j is the commute-time distance between nodes
i and j. A simple choice of embedded space that satisfies the commute-time
property is

V pgq “
`

Rn, Kpx, yq “ xT∆:y, φ : iÑ ei
˘

.

Indeed, by construction, we have Kpφpiq, φpjqq “ eTi ∆:ej “ ∆:

i,j .

Note that we can reduce the inner dimension of V pgq while preserving ap-
proximately the commute-time property. Indeed, we can consider the sin-
gular value decomposition ∆ “ V ΛV T where V is an unitary matrix and
where Λ is the diagonal matrix of the eigenvalues of ∆. We have for all
x, y P Rn,

Kpx, yq “ xT∆:y “ xTV Λ:V T y .

The diagonal matrix Λ: contains the pseudo-inverses of the eigenvalues (1{x
if x ‰ 0, 0 otherwise). We can observe that, the higher the eigenvalue λi
in Λ, the lesser its contribution to the kernel K of V pgq. Therefore, we can
nullify the biggest eigenvalues of ∆ without too much of an impact on the
commute-time property. The main interest of this operation is to reduce
the rank of the kernel matrix, which will lead to a sturdier representation
of the input graph g. More information about this dimensionality reduction
method can be found in Fouss et al. (2005).

A.1.2 Combining embedded Euclidean spaces.

Using the definitions of Section A.1.1, we associate to each graph gi, the
space

V pgiq “ pRn,Kip¨, ¨qi, φ : iÑ eiq ,

A.1. COMBININGGRAPHS THROUGH EUCLIDEAN EMBEDDED SPACES117

that satisfies the commute-time property on graph gi Our objective is to
combine the different embedded space into a new one called K-merged space
and defined as

Vmerged “ pRn,K, φ : iÑ eiq ,

where K “ F pK1, . . . ,Kkq for some function F . It should be noted that,
when the original spaces satisfy the commute-time property (no dimension
reduction), the kernels Ki are equals to the original graph kernels ∆:

i and
we do not need to compute the full embedding. K allows us to combine
the geometries of the different embedded spaces and we will try to choose
F such that the resulting geometry agrees as much as possible with the
partial labeling yL. We also want K to be a hypernode graph kernel (i.e.,
K P Hpnq), which will allow us to use hypernode graph learning algorithms
(and preserve the semantic of the output). Note that an alternate goal
would be to look for a graph kernel (i.e., K P Kpnq) but this goal is much
harder to achieve because of the pathological topology of Kpnq (non-convex,
characterization through the Moore-Penrose pseudo-inverse).

A.1.3 Convex Linear Combination

A simple choice for the combination function F is the linear combination
operator:

KLIN “ FLINpK1, . . . ,Kkq “

k
ÿ

i“1

wiKi, (A.1)

with @1 ď i ď k,wi ě 0, and
řk
i“1wi “ 1. In this case, the Euclidean

distance in the merged space defined by KLIN is the weighted sum of the
square roots of the commute-time distances in the original graphs (recall
that the original embedded spaces satisfy the commute-time property). As
a consequence of Proposition 27, KLIN is a hypernode graph kernel and the
matrix ∆LIN “ K:

LIN is a hypernode graph Laplacian.

As mentioned above, we consider a partial supervision yL to drive our com-
bination process and find the best set of values for w1, . . . , wk. Argyriou
et al. (2006) describe a framework for the convex linear combination based
on the minimization of the following objective function:

Eγp∆LINq “ min
f

fT∆LINf ` γLpf, yLq
(

(A.2)

where Lpf, yLq is an arbitrary loss term. Thus, the minimization problem is
a semi-supervised problem defined as a trade-off between a loss term Lpf, yLq
and a smoothness regularization term fT∆LINf . Eγp∆LINq is the minimal
energy that can be obtained with the smoothness operator ∆LIN. Argyriou
et al. (2006) leverage the RKHS framework to simplify the computation

118APPENDIX A. MULTIGRAPH LEARNINGWITH HYPERNODEGRAPHS

of Eγ : with reasonable assumptions on the loss function L, we can apply
the representer theorem to state that the optimal point f of pA.2q can be
expressed as:

f “
nL
ÿ

i“1

cipKLINqi

where pKLINqi is the i-th column of KLIN. Thus, the energy can be computed
using the simpler dual formulation:

Eγ “ ´min
c

"

1

4γ
cT pKLINqLc` V

˚pc, yLq

*

(A.3)

where L˚ “ supλPRpλc ´ Lpy, λqq and pKLINqL is the submatrix of KLIN

corresponding to the nodes in NL. This dual optimization problem only
involves a nL ˆ nL matrix with nL ! n.

Leveraging former results from Argyriou et al. (2005), they finally propose
an algorithm to reduce the search of the minimum of Eγp∆LINq to a sequence
of line-search steps. A major drawback of this method is that we have to
choose carefully the parameter γ (trade-off between regularization and loss)
in order to get a meaningful energy Eγ .

As an alternative of this method, we consider a non-parametrical objective
function cv svmpKL, yLq defined as the cross-validation error on the set of
labeled example of an SVM classifier trained with kernel KL. It should be
noted that the framework of Argyriou et al. (2006) that allows to replace the
exhaustive search by a sequence of line search do not apply to our objective
function. Thus we will consider an exhaustive search of the parameters of
the linear combination.

A.1.4 Sigmoid Combination

We also consider the sigmoid combination of kernels defined by:

KSIGpi, jq “ 1{p1` expp´pKLINpi, jqq{σqq (A.4)

It has been observed (see Von Luxburg et al. 2010, part 4) that the sigmoid
can be used to improve the quality of the commute time distance (as a topo-
logical indicator) for highly connected graphs because of its “normalization”
effect. Indeed, the main idea is to normalize kernel values in r0, 1s. This
idea was leveraged in L. et al. (2007) in order to design an efficient kernel
clustering algorithm on a single graph.

Let us suppose that the wi are fixed and let us denote by KSIG the Gram
matrix of the combined kernel. The situation is more intricate because
the matrix K:

SIG may not be positive semi-definite and may not satisfy

A.2. EXPERIMENTS 119

K:

SIG1 “ 0. Thus it is not in general a hypernode graph kernel. Thus, the
solution is to define a “proxy” matrix in the space of smoothness operators.
It must be close to K:

SIG and positive semi-definite. Moreover, it must satisfy

the constant gauge property. To do this given as input the matrix K:

SIG, we
propose the flip method defined by:

1. Modify the diagonal terms of K:

SIG in order to have null sum for the

rows and columns (or equivalently, 1 P NullpK:

SIGq)

2. Compute the eigenvalues of the resulting matrix, and flip the negative
eigenvalues (replace λ by ´λ) to get a positive semi-definite matrix.

The resulting matrix ∆SIG is a hypernode graph Laplacian and is considered
as the final output of the sigmoid combination.

It should be noted that when the values KLINpi, jqq{σ are small, we observe
that }K:

SIG1} is close to 0 (sum of columns/rows). Note that the power
series expansion of the sigmoid function is 1

1`expp´xq „ 1{2 ` x{4, which

allows us to show that the sums of the rows of KSIG should be close to N{2;
therefore, from Schmidt and Trenkler (2001), the sums of the rows of K:

SIG

should be close to 2{N (also observed empirically). Also, it should be noted
that we do not use the usual shift trick which shifts the spectrum by minimal
eigenvalue λmin: ∆ Ð ∆` λminI because we want to preserve the nullspace
of the matrix..

We tune the parameters σ,w1, . . . , wk similarly to the case of the convex lin-
ear combination. We consider the objective functions Eγp∆SIGq and cv svm
and search for the best parameter values.

A.1.5 Combination Algorithm

We summarize our combination method in Algorithm 3. It should be noted
that in the experiments we do not consider the dimensionality reduction
mentioned in line 3. The parameter tuning methods of line 6 have been
described above. It should be noted that in line 7, for the two types of
combination, the output of our algorithm is a smoothness operator ∆LIN or
∆SIG allowing to compute the smoothness of any real valued node function
f with the regularization term fT∆LINf or fT∆SIGf .

A.2 Experiments

We now present some experimental results for our combination method. We
first describe the datasets and the graph construction process that we con-
sider in the experiments. Then, we detail the implementation of Algorithm 3

120APPENDIX A. MULTIGRAPH LEARNINGWITH HYPERNODEGRAPHS

Algorithm 3 Combining embedded spaces for graphs.

Require: graphs g1, . . . ,gk on a node set N ; labeled sample NL Ă N ;
1: for each graph gi do
2: Compute the embedded space V pgiq “ pEi,Ki, φiq
3: [Opt.] reduce the dimensionality: Ki Ð K 1

i

4: end for
5: Consider the parametric combination K “ F pK1, . . . ,Kkq (F “ FLIN or
FSIG)

6: Tune the parameters of F using one of the objective functions
tEγ , cv svmu

7: return A hypernode graph Laplacian ∆ computed from K (pseudo-
inversion + additional flip trick for the sigmoid)

and the experimental setting. Last, we apply graph-based semi-supervised
learning algorithms and compare results obtained using the Laplacian of
every graph, using the hypernode graph Laplacians ∆LIN and ∆SIG.

A.2.1 Datasets

We consider here similarity graphs defined from vectorial data or categorical
data and graphs given by network data. For every dataset, we identify or
build two graphs g1 and g2 that are given as input of Algorithm 3.

The datasets used are summarized in Table A.1. For the similarity graphs,
we choose UCI datasets with both numerical and categorical attributes. For
every UCI dataset, we build the graph g1 as the k-nearest neighbor graph
(k-nn) based on the Euclidean distance on normalized numerical attributes:
every node n in the graph represents a data point; two nodes i and j are
connected if j is among the k-nearest neighbors of i. As the k-nn relation
might not be symmetric, a common choice to make the final graph undirected
is by ignoring directions (if Ŵ is the non symmetric adjacency matrix built
from the k-nn algorithm, we consider the symmetric adjacency matrix W “

pmaxpŴi,j , Ŵ T
i,jqqi,j). We also build the graph g2 using the categorical

attributes. For every node i and j, we let

Wij “
ÿ

aPA

δpapiq“apjqq

Napapiqq
,

where A is the set of the categorical attributes; apiq is the value of the cat-
egorical attribute a P A for the node i; δpx“yq is the Kronecker delta; Napxq
is the number of times attribute a has value x in the whole set (common
values bring less information). This measure based on the work of Zhou
et al. (2006) defines the weight adjacency matrix of the graph g2.

A.2. EXPERIMENTS 121

We also consider the network datasets WebKB and IMDB (prodco). The
IMDB dataset contains two graphs g1 and g2 over a set of movies. For
the WebKB dataset, the two graphs g1 and g2 are defined over a set of
Web pages using respectively the hyperlinks and the co-citation links. See
http://netkit-srl.sourceforge.net/data.html for more details.

For the similarity graphs with numerical attributes to be connected, we
choose k such that the graph has only one connected component. For the
similarity graphs with categorical attributes and for the networks to be
connected, we adopt the teleporting random walk approach of Page et al.
(1999): we consider if needed a small jumping probability (0.05) and adapt
the adjacency matrices accordingly.

For every graph, we compute the graph Laplacian. Graph kernels are nor-
malized by their Frobenius norm as proposed in Argyriou et al. (2006).

Dataset Class attribute Size
Statlog heart Presence of disease 270
Credit approval Approval 690
Horse colic Surgical lesion 368
Flags Religion Catholic, Oth. Christians vs others 194
Adult (excerpt) Income ą 50K 1400
WebKB Page type: Student vs others 1477
IMDB Blockbuster 1441

Table A.1: UCI and network datasets, size and class label.

A.2.2 Experimental setting

Because we want to show that our combination method is independent of
the learning task, in order to evaluate our combination method, we consider
different performance indicators:

• The efficiency of two popular semi supervised learning (SSL) algo-
rithms described respectively in Zhu et al. (2003) (ZGL) and Zhou
et al. (2005) (ZHS) for the semi-supervised problem described in Equa-
tion (A.2)
• The compatibility measure between ∆ and the labeling function y,

given by the quality ratio

Qp∆, yq “ Ωpyq

2}G}2F
,

where }.}F denotes the Frobenius norm: }G}2F “ TrpGTGq “ Trp∆q.

In each experiment and for each pair of graphs (g1, g2) we repeat 12 times
the following protocol:

http://netkit-srl.sourceforge.net/data.html

122APPENDIX A. MULTIGRAPH LEARNINGWITH HYPERNODEGRAPHS

(i) Randomly sample unlabeled data preserving the class proportions

(ii) For each objective function cv svm and Eγ apply Algorithm 3 and out-
put two smoothness operators ∆LIN and ∆SIG (linear and sigmoid com-
bination). We denote by ∆LINpEγq, ∆SIGpEγq, ∆LINpcv svmq, ∆SIGpcv svmq

the outcomes of Algorithm 3 depending on the combination operator
and on the objective function. We use a basic implementation of the
algorithm that performs an exhaustive search over the parameters. At
the same time and for each performance indicator, we compute the best
possible linear and sigmoid combinations evaluated with fully labeled
graphs. This step allows us to add some optimal baselines ∆LINpoptq,
∆SIGpoptq.

(iii) Run the different performance indicators ZGL, ZHS and quality on
each input graph g1 and g2 and on the combined objects.

The value γ of Eγ has been manually tuned to 10. ∆LINpEγq is equivalent to
the algorithm proposed in Argyriou et al. (2006) (for two input graphs, it
reduces to a classic line search over the values of Eγ).

A.2.3 Experimental results

We first consider a fixed ratio of labeled examples chosen to be of nL
n “

0.3, thus 70% of nodes are unlabeled. Experimental results are shown in
Tables A.1 and A.3 for ZGL and quality. Results for ZHS are very similar
to the results for ZGL and therefore we do not report them. We will discuss
and compare a combination method (sigmoid or linear) embedded with an
objective function (Eγ or cv svm) for a specific task (ZGL, ZHS or quality)
with the two original graphs. We will also discuss whether we are close to
the optimal combination.

We observe that the performance of ∆LIN for ZGL is usually equivalent to
the best of the two input graphs. This confirms the results obtained in
previous works on linear combination of kernels (see for instance Argyriou
et al. (2006)). We should note that the objective function cv svm is slightly
better than the energy-based function Eγ . We also observe that, in both
cases, our combination method does not allow to obtain the accuracy of the
optimal linear combination.

Let us now consider the sigmoid combination. It is worth noting that the
accuracy of the SSL algorithm using ∆SIG is better than the accuracy of the
SSL algorithms on the two input graphs. To the best of our knowledge, it
is the first time that a combination method allows to outperform the best
of the input graphs.

A.2. EXPERIMENTS 123

Dataset MR ∆1 ∆2
LIN
(opt)

LIN
(Eγ)

LIN
(cv svm)

SIG
(opt)

SIG
(Eγ)

SIG
(cv svm)

Credit appr. 0.45
0.29 ˘

0.02
0.42 ˘

0.02
0.24 ˘

0.02
0.41 ˘

0.03
0.27 ˘

0.02
0.14 ˘

0.01
0.15 ˘

0.02
0.15 ˘

0.02

Flags 0.48
0.38 ˘

0.04
0.20 ˘

0.03
0.20 ˘

0.02
0.20 ˘

0.03
0.22 ˘

0.04
0.14 ˘

0.02
0.16 ˘

0.03
0.17 ˘

0.03

Stat. Heart 0.44
0.28 ˘

0.02
0.29 ˘

0.03
0.24 ˘

0.02
0.29 ˘

0.03
0.28 ˘

0.02
0.16 ˘

0.02
0.18 ˘

0.02
0.20 ˘

0.02

IMDB 0.43
0.27 ˘

0.01
0.43 ˘

0.0
0.27 ˘

0.01
0.33 ˘

0.07
0.27 ˘

0.01
0.21 ˘

0.01
0.22 ˘

0.01
0.22 ˘

0.01

WebKB 0.42
0.42 ˘

0.0
0.15 ˘

0.02
0.11 ˘

0.01
0.42 ˘

0.0
0.11 ˘

0.01
0.08 ˘

0.0
0.08 ˘

0.0
0.08 ˘

0.0

Adult 0.26
0.23 ˘

0.01
0.26 ˘

0.0
0.22 ˘

0.01
0.24 ˘

0.02
0.25 ˘

0.01
0.20 ˘

0.01
0.20 ˘

0.01
0.22 ˘

0.02

Horse 0.36
0.35 ˘

0.02
0.36 ˘

0.0
0.33 ˘

0.02
0.36 ˘

0.0
0.35 ˘

0.02
0.16 ˘

0.02
0.18 ˘

0.03
0.16 ˘

0.02

Figure A.1: Mean and standard deviation of error rates for the ZGL (Zhu
et al. (2003)) algorithm for an unlabeled proportion 1 ´ nL

n equal to 0.7.
Column MR corresponds to the majority vote rule; ∆i are results for ZGL on
graph gi without combination; opt is the optimal value for the combination
method ; other comlums give results for the two combination methods with
the two objective functions.

We obtain similar observations for the quality measure and the ZHS algo-
rithm. It should be noted that ZHS also depends on a learning parameter
that is usually hard to tune. In all experiments, the sigmoid combination
showed improved sturdiness with respect to the choice of this parameter
(compared to the original graphs g1,g2 and to the linear combination).

Now, let us vary the proportion 1 ´ nL
n of unlabeled examples. Figure A.2

shows the evolution of the accuracy of the ZGL algorithm when the unla-
beled proportion varies between 0.3 and 0.95 on the Credit data set. It can
be noted than the accuracy using the objective functions Eγ or cv svm and
the sigmoid combination are closed to the accuracy of the optimal combina-
tion. We can also note that are very good up to a unlabeled proportion of
0.9 and still good for 0.95.

Table A.3 reports the results where we can again observe that the sigmoid
combination is better, even if we are far from the ideal value. The reason
for this ”gap” is that the task is harder in this case: the true minimum is
computed using the complete knowledge of the labels.

124APPENDIX A. MULTIGRAPH LEARNINGWITH HYPERNODEGRAPHS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Z
G

L
E

rr
o
r

Unlabeled proportion (1´ nL
n

)

∆1

∆2

Majority Rule
∆SIGpoptq

∆SIGpcv svmq
∆SIGpEγq

Figure A.2: Evolution of the error rate of the ZGL algorithm for the sig-
moid combination on the Credit approval dataset depending of the ration
of unlabeled examples.

Dataset MR ∆1 ∆2
LIN
(opt)

LIN
pEγq

LIN
pcv svmq

SIG
(opt)

SIG
pEγq

SIG
pcv svmq

Credit appr. 0.45 0.28 0.44 0.28
0.44 ˘

0.0
0.35 ˘

0.03
0.08

0.27 ˘

0.0
0.27 ˘

0.01

Flags 0.48 0.39 0.45 0.39
0.45 ˘

0.0
0.44 ˘

0.0
0.04

0.22 ˘

0.0
0.26 ˘

0.0

Stat. Heart 0.44 0.36 0.41 0.36
0.39 ˘

0.02
0.36 ˘

0.01
0.13

0.28 ˘

0.02
0.26 ˘

0.05

IMDB 0.43 0.43 0.48 0.43
0.45 ˘

0.02
0.43 ˘

0.0
0.31

0.32 ˘

0.0
0.32 ˘

0.0

WebKB 0.42 0.49 0.32 0.32
0.49 ˘

0.0
0.38 ˘

0.01
0.13

0.13 ˘

0.0
0.14 ˘

0.01

Adult 0.26 0.30 0.35 0.30
0.31 ˘

0.01
0.33 ˘

0.01
0.21

0.27 ˘

0.0
0.31 ˘

0.04

Horse 0.36 0.41 0.42 0.41
0.42 ˘

0.0
0.42 ˘

0.0
0.21

0.24 ˘

0.04
0.21 ˘

0.01

Figure A.3: Quality measure Qp∆q of the resulting Laplacians for 1´ nL
n “

0.7.

Bibliography

Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David
Kriegman, and Serge Belongie. Beyond pairwise clustering. In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2005 (CVPR-05), volume 2, pages 838–845. IEEE,
2005.

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher Order Learn-
ing with Graphs. In Proceedings of the 23rd International conference on
Machine learning (ICML-06), pages 17–24, 2006.

Andreas Argyriou, Charles A Micchelli, and Massimiliano Pontil. Learn-
ing convex combinations of continuously parameterized basic kernels. In
Learning Theory, pages 338–352. Springer, 2005.

Andreas Argyriou, Mark Herbster, and Massimiliano Pontil. Combining
Graph Laplacians for Semi-Supervised Learning. In Proceedings of the 20th

conference Annual Conference on Neural Information Processing Systems
(NIPS-05), pages 67–74, Cambridge, MA, 2006. MIT Press.

Giorgio Ausiello, Paolo Giulio Franciosa, and Daniele Frigioni. Directed
Hypergraphs: Problems, Algorithmic Results, and a Novel Decremental
Approach. In Proceedings of the 7th Italian Conference on Theoretical
Computer Science, ICTCS ’01, pages 312–327, London, UK, UK, 2001.
Springer-Verlag. ISBN 3-540-42672-8.

Claude Berge. Hypergraphs: combinatorics of finite sets. North-Holland
Mathematical Library. Elsevier, Burlington, MA, 1989.

Daniel Boley, Gyan Ranjan, and Zhi-Li Zhang. Commute times for a di-
rected graph using an asymmetric Laplacian. Linear Algebra and its Ap-
plications, 435(2):224–242, 2011.

Marianna Bolla. Spectra, euclidean representations and clusterings of hy-
pergraphs. Discrete Mathematics, 117(1):19–39, 1993.

Silvere Bonnabel and Rodolphe Sepulchre. Riemannian metric and geomet-

125

126 BIBLIOGRAPHY

ric mean for positive semidefinite matrices of fixed rank. SIAM Journal
on Matrix Analysis and Applications, 31(3):1055–1070, 2009.

Xavier Bresson and Arthur D Szlam. Total Variation, Cheeger Cuts. In
Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 1039–1046, 2010.

Niv Buchbinder, M Feldman, J Naor, and R Schwartz. Submodular Maxi-
mization with Cardinality Constraints. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-14), pages 1433–
1452, 2014. doi: 10.1137/1.9781611973402.106.

Mark Burgin. Interpretations of Negative Probabilities. 2010.

Jie Cai and Michael Strube. End-to-end coreference resolution via hyper-
graph partitioning. In Proceedings of the 23rd International Conference
on Computational Linguistics (COLING-10), pages 143–151, 2010.

Riccardo Cambini, Giorgio Gallo, and MariaGrazia Scutella. Flows on hy-
pergraphs. Mathematical Programming, 78(2):195–217, 1997.

Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolen-
sky, and Prasoon Tiwari. The electrical resistance of a graph captures its
commute and cover times. Computational Complexity, 1996.

Kai-Yang Chiang, Joyce Jiyoung Whang, and Inderjit S Dhillon. Scalable
clustering of signed networks using balance normalized cut. In Proceedings
of the 21st ACM international conference on Information and knowledge
management, pages 615–624. ACM, 2012.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society,
1997.

Fan Chung. Laplacians and the Cheeger inequality for directed graphs.
Annals of Combinatorics, 9(1):1–19, 2005.

Harris Drucker, Chris JC Burges, Linda Kaufman, Alex Smola, and Vladimir
Vapnik. Support vector regression machines. In Proceedings of the 10th

Conference on Neural Information Processing Systems (NIPS-96), vol-
ume 9, pages 155–161. Morgan Kaufmann Publishers, 1996.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algo-
rithmic efficiency for network flow problems. Journal of the ACM, 19(2):
248–264, April 1972.

Arpad Emrick Elo. The Rating of Chess Players, Past and Present. Arco
Publishing, 1978.

F. Fouss, A. Pirotte, and M. Saerens. A novel way of computing similar-
ities between nodes of a graph, with application to collaborative recom-

BIBLIOGRAPHY 127

mendation. In Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence (WI-05), pages 550–556, 2005.

Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens.
Random-walk computation of similarities between nodes of a graph with
application to collaborative recommendation. Knowledge and Data Engi-
neering, IEEE Transactions on, 19(3):355–369, 2007.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of
on-line learning and an application to boosting. In Proceedings of the 2nd

European Conference On Computational Learning Theory (EuroCOLT-
95), pages 23–37. Springer, 1995.

Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Di-
rected hypergraphs and applications. Discrete Applied Mathematics, 42
(2-3):177–201, 1993.

Giorgio Gallo, Claudio Gentile, Daniele Pretolani, and Gabriella Rago. Max
Horn SAT and the minimum cut problem in directed hypergraphs. Math-
ematical Programming, 80(2):213–237, 1998.

John Gantz and David Reinsel. The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east. IDC iView:
IDC Analyze the Future, 2012.

MX Goemans and DP Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 1(212):1–27, 1995.

Andrew B Goldberg, Xiaojin Zhu, and Stephen J Wright. Dissimilarity in
graph-based semi-supervised classification. In Proceedings of the 11th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS-
07), pages 155–162, 2007.

DM Greig, BT Porteous, and Allan H Seheult. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society.
Series B (Methodological), pages 271–279, 1989.

Scott Hamilton. PythonSkills: Implementation of the TrueSkill, Glicko
and Elo Ranking Algorithms. https://pypi.python.org/pypi/skills,
2012.

Frank Harary. On the notion of balance of a signed graph. The Michi-
gan Mathematical Journal, 2(2):143–146, 1953. doi: 10.1307/mmj/
1028989917.

Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapu-
ram. The Total Variation on Hypergraphs - Learning on Hypergraphs

https://pypi.python.org/pypi/skills

128 BIBLIOGRAPHY

Revisited. In Proceedings of the 27th Conference on Neural Information
Processing Systems (NIPS-13), pages 2427–2435, 2013.

Ralf Herbrich, Tom Minka, and Thore Graepel. TrueSkillTM: A Bayesian
Skill Rating System. In Proceedings of the 20th Conference on Neural
Information Processing Systems (NIPS-06), pages 569–576, 2006.

Mark Herbster. Exploiting cluster-structure to predict the labeling
of a graph. Algorithmic Learning Theory, 2008. doi: 10.1007/
978-3-540-87987-9 9.

Yao Ping Hou. Bounds for the least Laplacian eigenvalue of a signed graph.
Acta Mathematica Sinica, 21(4):955–960, 2005.

Kun Huang. Maximum Flow Problem in Assembly Manufacturing Networks.
North Carolina State University, 2011.

Satoru Iwata and James B Orlin. A simple combinatorial algorithm for
submodular function minimization. In Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-09), pages 1230–
1237. Society for Industrial and Applied Mathematics, 2009.

David R Karger. Global min-cuts in RNC, and other ramifications of a
simple min-out algorithm. In Proceedings of the 4th Annual ACM-SIAM
Symposium on Discrete algorithms, pages 21–30. Society for Industrial
and Applied Mathematics, 1993.

Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hypergraphs and Cellular
Networks. PLoS Computational Biology, 5(5), May 2009.

Douglas J. Klein and M. Randić. Resistance distance. Journal of Mathe-
matical Chemistry, 12(1):81–95, 1993.

Y. Koren, L. Carmel, and D. Harel. ACE: a fast multiscale eigenvectors
computation for drawing huge graphs. In Proceedings of the 8th IEEE
Symposium on Information Visualization (INFOVIS 2002), pages 137–
144, 2002. doi: 10.1109/INFVIS.2002.1173159.

Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Improved semidef-
inite bounding procedure for solving Max-Cut problems to optimality.
Mathematical Programming, 143(1-2):61–86, 2014. ISSN 0025-5610. doi:
10.1007/s10107-012-0594-z.

Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner,
Ernesto William De Luca, and Sahin Albayrak. Spectral analysis of
signed graphs for clustering, prediction and visualization. In Proceedings
of the 10th SIAM International Conference on Data Mining (SDM-10),
volume 10, pages 559–559, 2010.

BIBLIOGRAPHY 129

Yen L., F. Fouss, C. Decaestecker, P. Francq, and M. Saerens. Graph Nodes
Clustering Based on the Commute-Time Kernel. In Proceedings of the
11th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD-07), volume 4426, pages 1037–1045, 2007.

Jan Lasek, Zoltán Szlávik, and Sandjai Bhulai. The predictive power of
ranking systems in association football. International Journal of Applied
Pattern Recognition, 1(1):27–46, 2013.

Heungsub Lee. Python implementation of Elo: A rating system for chess
tournaments. https://pypi.python.org/pypi/elo/0.1.dev, 2013a.

Heungsub Lee. Python implementation of TrueSkill: The video game rating
system. http://trueskill.org/, 2013b.

L Lovász, M Grötschel, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization, volume 2. Springer Berlin Heidelberg, 1993.

László Lovász. Submodular functions and convexity. In Mathematical Pro-
gramming The State of the Art, pages 235–257. Springer, 1983.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a
feather: Homophily in social networks. Annual review of sociology, pages
415–444, 2001.

GL Nemhauser, LA Wolsey, and ML Fisher. An analysis of approximations
for maximizing submodular set functions—I. Mathematical Programming,
14:265–294, 1978. doi: 10.1007/BF01588971.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford
InfoLab, 1999.

Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approxi-
mation, and complexity classes. Journal of computer and system sciences,
43(3):425–440, 1991.

Roger Penrose. A generalized inverse for matrices. In Proceedings of the
Cambridge Philosophical Society, volume 51, pages 406–413. Cambridge
Univ Press, 1955.

Jean-Claude Picard and Maurice Queyranne. On the structure of all mini-
mum cuts in a network and applications. In V.J. Rayward-Smith, editor,
Combinatorial Optimization II, volume 13 of Mathematical Programming
Studies, pages 8–16. Springer Berlin Heidelberg, 1980. ISBN 978-3-642-
00803-0. doi: 10.1007/BFb0120902.

JA Rodŕıguez. On the Laplacian spectrum and walk-regular hypergraphs.
Linear and Multilinear Algebra, 51(3):285–297, 2003.

https://pypi.python.org/pypi/elo/0.1.dev
http://trueskill.org/

130 BIBLIOGRAPHY

K. Schmidt and G. Trenkler. The Moore-Penrose inverse of a semi-magic
square is semi-magic. International Journal of Mathematical Education
in Science and Technology, 32(4):624–629, 2001.

Koji Tsuda. Propagating distributions on a hypergraph by dual information
regularization. In Proceedings of the 22nd international Conference on
Machine learning, pages 920–927. ACM, 2005.

Vladimir Naumovich Vapnik. Statistical learning theory, volume 2. Wiley
New York, 1998.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and com-
puting, 17(4):395–416, 2007.

Ulrike Von Luxburg, Agnes Radl, and Matthias Hein. Getting lost in space:
Large sample analysis of the commute distance. In Proceedings of the
24th Conference on Neural Information Processing Systems (NIPS-10),
volume 23, pages 2622–2630, 2010.

Shujun Zhang, Geoffrey D. Sullivan, and Keith D. Baker. The automatic
construction of a view-independent relational model for 3-D object recog-
nition. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 15(6):531–544, 1993.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning from
labeled and unlabeled data on a directed graph. In Proceedings of the 22nd

International conference on Machine learning (ICML-05), pages 1036–
1043. ACM, 2005.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with
hypergraphs: Clustering, classification, and embedding. In Proceedings
of the 20th Conference on Neural Information Processing Systems (NIPS-
06), pages 1601–1608, Cambridge, MA, 2006. MIT Press.

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of
the 20th International conference on Machine learning (ICML-03), vol-
ume 3, pages 912–919, 2003.

	Introduction
	hypernode graphs
	Undirected Graphs and Spectral Framework
	Graphs and Laplacians
	Graph kernels and distances

	hypernode graphs
	Model definition
	hypernode graph Laplacians
	Equivalent hypernode graphs

	Expressiveness of the Laplacian framework
	The case of hypernode graphs
	The case of hypergraph Laplacians

	Conclusion

	Properties of hypernode graphs
	hypernode graphs, graphs and signed graphs
	Pairwise Weight Matrix and Laplacians
	Signed graph reduction

	Paths and components in hypernode graphs
	Paths and signed components
	independent components and strong connectivity

	hypernode graph kernels and distances
	Definition and main properties
	Diffusion on hypernode graphs and relations with d2
	The transition matrix P=D-1W

	Conclusion

	Skill rating with hypernode graphs
	Skill rating in multiplayer games
	Notations and team additive model
	The Elo rating system
	The TrueSkill rating system

	Learning skill ratings with hypernode graphs
	Modeling Games with Hypernode Graphs
	Regularizing the hypernode graph
	Inferring Skill Ratings and Predicting Game Outcomes

	Experiments
	Tennis Singles
	Tennis Doubles
	Xbox Title Halo2

	Conclusion

	Perspectives and open problems
	Cuts in hypernode graphs
	Cuts in undirected graphs
	Cuts and hypernode graphs
	The Min-Cut problem on hypernode graphs
	Relation with the signed graph cuts
	Algorithmical perspectives and partial results

	Directed hypernode graphs
	An algebraical interpretation of hypernode graphs
	The classes of Graph Kernels and Graph Laplacians
	The class of hypernode graph Laplacians
	A convex hull conjecture and an intermediate class
	A Riemanian geometry for strongly connected hypernode graphs

	Conclusion
	Appendices
	Multigraph learning with hypernode graphs
	Combining Graphs through Euclidean Embedded Spaces
	Embedded vector spaces
	Combining embedded Euclidean spaces.
	Convex Linear Combination
	Sigmoid Combination
	Combination Algorithm

	Experiments
	Datasets
	Experimental setting
	Experimental results

