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Optimal Transport for Image Processing

Abstract

Optimal Transport is a well developed mathematical theory that defines robust metrics between
probability distributions. The computation of optimal displacements between densities through
the associated transport map makes this theory mainstream in several applicative fields.
For image processing applications, the transport map can for instance be used to compute
geodesics between images or to transfer characteristics of one image to another. In this con-
text, it is of major interest to preserve the nature of the observed objects, in order to synthesize
images that are physically and visually plausible. In this document, generalized Optimal Trans-
port distances including relaxation and regularization are considered to improve the modeling
of image processing problems. New models and algorithms within the continuous and discrete
formulations of Optimal Transport are presented.
With the continuous setting, the integration of physical regularization of the transport plan
makes possible the interpolation of ocean images containing complex structures.
In the discrete setting, the regularization of the transport plan is considered for color transfer
between images. Convex and non-convex models are proposed to define automatic methods
that adapt the proportion of colors required to synthesize visually plausible images. These
methods are extended to the computation of barycenters to deal with the color normalization
of multiple images.
Finally, the entropy regularization of discrete Optimal Transport is used for image segmenta-
tion. A fast and convex model is designed to segment images, while respecting global color
distribution constraints.

Keywords : Generalized Wasserstein distance, image processing, image interpolation,
color transfer, segmentation, (non)convex optimization.

Résumé

Le Transport Optimal est une théorie mathématique très développée permettant de définir des
métriques robustes entre distributions de probabilité. Le calcul du déplacement optimal entre
densités par le plan de transport associé rend cette théorie attractive du point de vue applicatif.
En traitement d’images, le plan de transport peut par exemple être utilisé pour calculer des
géodésiques entre images ou encore transférer des caractéristiques d’une image vers une autre.
Dans ce contexte, il est important de préserver le nature des objets observés afin de synthétiser
des images physiquement et visuellement plausibles.
Dans ce document, des distances de Transport Optimal généralisées sont considérées pour
améliorer la modélisation de problèmes de traitement d’images. De nouveaux modèles et algo-
rithmes sont présentés pour les formulations continues et discrètes du Transport Optimal.
Dans le cas continu, l’intégration de régularisation physique du plan de transport permet alors
d’interpoler des images d’océan contenant des structures complexes.
Dans la formulation discrète, la régularisation du plan de transport est considérée pour le trans-
fert de couleurs entre images. Des modèles convexes et non-convexes sont proposés pour définir
des méthodes automatiques adaptant la proportion de couleur nécéssaire pour un transfert
visuellement plausible. Ces méthodes sont également étendues aux barycentres afin d’aborder
le problème de normalisation de couleurs entre plus de deux images.
La régularisation entropique du Transport Optimal discret est finalement utilisée pour la seg-
mentation d’image. Un modèle convexe et rapide est proposé pour segmenter des images tout
en respectant des contraintes globales sur les distributions de couleurs.

Mots-clefs : Distance de Wasserstein généralisée, interpolation d’images, transfert de
couleur, segmentation, optimisation (non)convexe.
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Chapter 1

Introduction

This habilitation manuscript presents a selected subset of the research activities realized
in the period 2011-2015. It focuses on the use of Optimal Transport for image processing
purposes. These works have been initiated through the supervision of two PhD thesis
and one post-doctorate.

In this introduction, the applicative and scientific motivations of the realized works
are presented. The main limitations of the use of Optimal Transport for Image Pro-
cessing are then exposed. The related contributions are finally briefly presented, before
detailing the organization of the document.

1.1 Motivations

Computer Vision Image and video contents are omnipresent in the world today,
both in our personal and professional lives. Technology is in constant evolution and
the amount of data is everyday dramatically increasing. Market data indicates that the
number of acquisition mobile devices is going to considerably increase. In particular,
a spectacular growth in video users for the years to come is expected. In 2016, more
than 1.6 billion electronic devices capable of recording and sharing pictures and videos
will be used all around the world. Billions of raw images and videos are consequently
diffused on the Internet. For instance, approximately 2 millions of pictures are uploaded
on Flickr on a daily basis and the volume of videos uploaded to Youtube is gigantic,
and constantly increasing (300 hours per minute). However, most of this video content
is not exploitable because it has not been properly edited.

Due to the diversity of applications in which images are involved, the type of data
is completely heterogeneous: color images, 3D images or even multidimensional images
(including transparency, depth, etc), animated sequence and videos, multispectral im-
ages, depth images, light-field, etc. Additionally, pictures are often captured at different
resolutions and under different lighting conditions.

The need for generic methods to deal with this huge amount of data is increasing.
The development of methods for a given application implies the control of the statistics
of the images targeted by this application. An example is presented in Figure 1.1. Raw
images diffused on the Internet are used for 3D reconstruction of buildings (using e.g.
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12 Motivations

geolocalized Flickr images) or virtual synthesis of 2D views of cities (Google street-view,
Institut National de l’Information Géographique et Forestière, IGN). For these appli-
cations, image harmonization is a key step to merge heterogeneous data with different
color statistics. In order to circumvent this challenging task, the current methods only
select a small subset of available images that are sufficiently close in terms of color and
illuminations. As a consequence, most of existing data is not even used, whereas it could
lead to significant improvements.

(a) (b)
Figure 1.1 – Example of massive use of images. (a) Reconstruction of the Colosseum
from Flickr images [2]. (b) UrbanDive navigation system of IGN.

In order to use more images in this context or simply when one looks for pictures
on the Internet to illustrate professional or personal presentations, the huge quantity of
images needs to be efficiently indexed and retrieved. This requires very fast and efficient
comparison tools between descriptors of image statistics, which are also of interest for
object segmentation, editing or harmonization.

Histograms are popularly used in image processing, computer vision and machine
learning to represent complex visual objects. To that end, relevant features such as color,
contours, orientations or textures are first extracted from images. Histograms are built
from the quantization of the space of features into discrete bins. One can further define
normalized histograms that describe the frequencies of each of the observed features.
The problems of retrieving a similar image in a database or segmenting a particular
object can thus be recasted as a problem of histograms comparison. In this context, even
if adapted metrics can be learned by neural networks for specific application, generic
robust comparison tools are still needed for a broad use.

While a lot of research effort is dedicated to the enhancement of image descriptors
(by adding additional information such as text or context) in a “big data” perspective,
the common metrics used for statistics comparison are still not developed enough to deal
with various perturbation effects (such as histogram quantization, shifts, deformation,
etc) or large amount of data outliers. Namely, spatial information is not efficiently
considered as it is mainly used to enhance the feature description [196]. Including spatial
information into the distance defined on the feature space is an interesting alternative
to improve the quality of the results.

The Optimal Transport framework is the proper way to compare statistic distribu-
tions. In contrast to most distances from information theory, it takes into account the
spatial location of the density modes [216]. By incorporating in its definition a ground
metric between the features themselves, the Optimal Transport distance (that corre-
sponds to the Wasserstein distance when the ground metric is the quadratic Euclidean
distance) can compare sparse histograms even if their supports do not overlap signif-
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icantly. Additionally, Optimal Transport provides a warping (the so-called transport
plan) between histograms which can be used to perform image editing such as color
transfer.

Optimal Transport framework has been shown to produce robust state of the art
results for the comparison of statistical descriptors through the so-called Earth Mover’s
Distance [187]. Various works on color image retrieval [162] or artistic image indexation
[121] have shown on small datasets (i.e. thousands of images) that Optimal Transport
framework is intrinsically designed to carry this spatial information. However, unless
considering some crude approximations and/or simple ground metrics, it involves pro-
hibitive computational costs. Though Optimal Transport would lead to a significant gap
in performance improvement, this computational limitation is clearly an obstacle to its
study and large scale deployment, when considering the dimension of image databases
or the data itself (multi-spectral images, patch representation, tensor-field imaging, etc).

Geosciences Since the late seventies, many satellites have been launched to improve
our knowledge of the atmosphere and the oceans. Geostationary satellites provide,
among other data, photographic images of the earth system. Sequences of such images
show the dynamical evolution of identified meteorological or oceanic “objects”: fronts,
clouds, eddies, vortices, etc. The human vision can easily detect the dynamics in this
kind of image sequences and it clearly has a strong predictive potential. This aspect is
favoured by the fact that image data, contrary to many other measurements, is dense in
space and time. Indeed the spatial resolution of current METEOSAT satellites is close
to one kilometer and they produce an image every 15 minutes. This frequency will be
improved up to one every 10 minutes (and even every 2.5 minutes for Europe only) with
the upcoming third satellite generation. It implies a huge quantity of information which
can be seen as an asset but also induces difficulties for the assimilation system that has
to cope with such amount of data.

Satellite data is currently used in operational systems for calibrating Numerical
Weather Prediction models, mainly through the assimilation of the radiance measured
by the satellite at each pixel of the image. As illustrated in Figure 1.2, satellite images
are related to physical quantities such as surface temperature, sea surface height, cloud
pressure, chlorophyll concentration, etc.

(a) (b) (c)

Figure 1.2 – Different examples of satellite images used for data assimilation. (a)
Altimetric reconstruction from JASON satellite data. (b) Ocean color/ Chlorophyll
from the MODIS captor of ENVISAT satellite. (c) Sea surface Temperature from the
MODIS captor of ENVISAT satellite.
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In practice only a tiny percentage (about 3 − 5%) of total satellite (from polar
orbiting and geostationary) data is used in operational systems, while being given low
confidence with respect to synoptic data, collected by stations, aircrafts, radiosounding,
ballons or drifters. Considering the cost of satellite observing systems (the cost of the
launch of the Meteosat Third Generation is estimated to about 2.5 billion Euros) and of
the infrastructures required for the collection of the data itself, improving their impact
on forecasting systems is an important topic of research.

As a consequence, there is a need to provide pertinent distances to interpolate be-
tween the observed satellite images and the images of physical variables provided by the
numerical models. The spatial information contained in satellite images is currently not
taken into account, as the classical “pixel-to pixel” L2 distance used in data assimilation
is not adapted to deal with bad localization of structures such as clouds, vortex or fronts
[209], [52]. If the same structure is contained in both images at different locations, an
interpolation should deal with the spatial shift. While a L2 interpolation would create
two structures, Optimal Transport is intrinsically designed to correctly interpolate the
position of the structure along the geodesic in the Wasserstein space.

Considering images as densities, interpolation between images can be realized with
the Optimal Transport map [112]. It is thus an interesting framework in order to pro-
pose new metrics for data assimilation [159]. In this context, an important challenge
is to model the topology of the considered domain (coasts or islands in oceanography)
for estimating image interpolations that have a real physical meaning. In this context,
even if Optical Flow methods can be considered for data assimilation to compute dis-
crepancies between atmospheric images [68], they can not deal with complex domains
in oceanography [27].

Optimal Transport Optimal Transport is a well developed mathematical theory that
defines a family of metrics between probability distributions [105, 216]. These metrics
measure the amplitude of an optimal displacement according to a so-called ground cost
defined on the space supporting the distributions. The resulting distance is referred to
as the Wasserstein distance in the case of Lp ground costs C(x, y) = ||x−y||p. As shown
in Figure 1.3, it measures the minimal effort required for filling a “remblai” (−µ1) with
a “déblai” (µ0), i.e. transporting one distribution to another. The geometric nature of
Optimal Transport, as well as the ability to compute optimal displacements between
densities through the corresponding transport map T , make this theory progressively
mainstream in several applicative fields.

Figure 1.3 – Illustration of Optimal Transport between distributions µ0 and µ1 as
introduced in [145] with the “déblais” and “remblais” problem . Interpolations (µt)t∈[0;1]

between µ0 and µ1 can be compted with the transport map T .
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Early successes of applications of Optimal Transport were mostly theoretical, such
as the study of shape recognition [106], the derivation of functional inequalities [67], the
construction of solutions of non-linear partial differential equations [124] or the study of
gradient flows in Wasserstein spaces [5].

In computer vision, the Wasserstein distance has been shown to outperform other
metrics between distributions for machine learning tasks [187, 163, 75] or image segmen-
tation [151, 165, 206].

In image processing, the warping provided by the Optimal Transport has been used
for video restoration [82], color transfer [168], texture synthesis [95], optical nanoscopy
[45] and medical imaging registration [112]. It has also been applied to interpolation in
computer graphics [35, 199] and surface reconstruction in computational geometry [85].
Optimal Transport is either used to model various physical phenomena, such as for
instance in astrophysics [101] and oceanography [17, 97].

1.2 Limitations of Optimal Transport in Imaging

The numerical resolution of the Optimal Transport problem raises several challenges.
This is the main reason why it has been poorly used in image processing until re-
cently. Computing Optimal Transport distance is only an easy task when dealing with
one-dimensional densities, such as histograms of grayscale images, or multi-dimensional
densities roughly discretized. However, when considering transport between images
themselves or when dealing with statistics of color images, the densities are defined on
higher dimensional spaces. Hence, the versatility and high quality of Optimal Transport
distances come at a price for general image applications: they require the resolution of
high dimensional problems that scale with the product of the dimensions of the dis-
cretized densities.

In this context, the fluid dynamic formulation of the Optimal Transport problem
introduced in [19] is an interesting approach for dealing with higher dimensions. The
entropic regularization proposed in [73] has also offered new perspectives as faster algo-
rithms based on Sinkhorn distances can be designed for computing approximate Optimal
Transport in larger dimensions. This last approach gives interesting approximations of
the transport distance but leads to transport maps that may be too far from the optimal
ones for transfer and interpolation purposes.

Hence, generalizations of the Optimal Transport distances are still necessary to adapt
to applications involving image processing. For instance, when the transport plan is
used to interpolate between densities that have very different “shapes” or contain data
outliers, partial models able to relax the constraint of transporting the whole mass are
required. In this context, another flaw for the use of Optimal Transport plan is that it is
usually highly irregular. For the interpolation between images or histograms of features,
dedicated regularizations of the transport plan are needed to preserve either the nature
of the objects contained in the images or the modes of the statistics.

Such property is illustrated in Figure 1.4 with an example of color transfer between
images. If the exact prescription of color is realized with the Optimal Transport map,
visual artifacts may appear.
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Figure 1.4 – Illustration of the limitation of Optimal Transport for color transfer. The
Optimal Transport map T between the color distributions of the middle parrot µ0 and
the left parrot µ1 is computed. The map is then used to modify the colors of the middle
parrot in order to obtain the right one. As the transport map is highly irregular, very
different colors are assigned to pixels of the background that were originally close both
in spatial and color spaces.

Finally, introducing Optimal Transport distances in more general image problems
such as segmentation, involving histogram data fitting and spatial regularization in the
image domain, is even more challenging. Spatial regularization can be incorporated
through graph or variational modeling. However, graph based approaches are limited
to simple bin-to-bin metrics between histograms [185] and cannot deal with Optimal
Transport distances without leading to problems of gigantic size [200]. Slow hybrid
methods that alternate optimization on graph and Optimal Transport computation
should be designed. Variational methods may thus be more adapted to such problems,
since the computation of Optimal Transport distances can be integrated into a general
model that can directly be optimized.

1.3 Contributions and Organization of the document

In this document, some new variational image processing models using Optimal Trans-
port distances are exposed. The main common contribution of the presented works is
to propose original modeling of classical problems such as image interpolation, color
transfer or image segmentation, while considering recent optimization methods able to
solve these problems with “reasonable” computational cost (several seconds to several
minutes).

For that purpose, extended Optimal Transport models including relaxation of the
mass constraint and regularization of the transport map are introduced. These gener-
alized Optimal Transport models have been designed in both continuous and discrete
settings. The continuous formulation is applied to image interpolation, while the discrete
one is used for color transfer and image segmentation.
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The problems associated to both formulations of Optimal Transport are illustrated
in Figure 1.5. In the continuous framework, the images are considered as continuous
densities µ0 and µ1 defined on a domain Ω. The transport map is in this case a vector
field, defined from Ω to Ω, that transfers µ0 onto µ1. The problem can be expressed in a
dynamic way through a fluid mechanics formulation. In the discrete setting, normalized
histograms of features extracted from images are considered. When computing the static
transport between histograms X and Y discretized with M and N bins, an acceptable
transport map is a M × N matrix describing a joint distribution P which marginals
are the given histograms (i.e.

∑
j Pi,j = Xi and

∑
i Pi,j = Yj). Hence Pi,j is the mass

transferred from Xi to Yj.

(a) Continuous transport (b) Discrete transport matrix P
velocity field T : Ω→ Ω coupling histograms X and Y

Figure 1.5 – Illustration of the transport map in the (a) continuous and (b) discrete
formulations of the Optimal Transport problem. In (b), white color represents Pi,j = 0.

Overview of the manuscript The first part of this document is dedicated to some
contributions in the continuous setting. Chapter 2 is based on [160] and presents an ap-
proach for the numerical estimation of the geodesic path between two densities according
to the L2 Wasserstein metric. Generalizations including additional physical constraints
proposed during the PhD of R. Hug in [120] for application to the interpolation of ocean
images are next presented in Chapter 3.

The second part focuses on contributions in the discrete setting. Chapter 4 presents
the relaxed and regularized formalism proposed in [93] as well as entropic regularization
recently introduced in the literature [73]. Chapters 5 and 6 are respectively dedicated to
the application of these tools to color transfer between images and image segmentation.
Chapter 5 gathers methods initiated during the Postdoctorate of S. Ferrandans [94, 178],
while Chapter 6 reviews some models introduced during the PhD of R. Yıldızoğlu [221,
222, 176].

In order to make the manuscript self-content, standard first-order proximal algo-
rithms dedicated to the optimization of non-smooth functionals used all along the doc-
ument are finally presented in Appendix A.
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Continuous Optimal Transport
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Chapter 2

Dynamic Optimal Transport

This chapter is focused on the computation of geodesics for the Optimal Transport
metric associated to the L2 ground cost. It reviews various methods and extends the
approach pioneered in [19] from the perspective of proximal operator splitting in convex
optimization [160]. It shows the simplicity and efficiency of this method, which can easily
be extended beyond the setting of Optimal Transport by considering various convex cost
functions that will be presented in Chapter 3.

2.1 Estimation of the Transport Map

Let Ω be a convex and bounded domain of Rd and ρ0, ρ1 be two non-negative L1 functions
on Ω, of equal mass. We will assume without loss of generality that∫

Ω

ρ0(x) dx =

∫
Ω

ρ1(x) dx = 1. (2.1)

The original formulation of the Optimal Transport problem in [145] corresponds to
minimizing the cost for transporting a ρ0 onto ρ1 using a map T . In the following, we
restrict our exposition to maps T : Ω ⊂ Rd 7→ Ω. A valid transport map T : Ω → Ω
then pushes forward the measure ρ0(x)dx onto ρ1(x) dx, that is T#ρ0 = ρ1 or for all
bounded set A ⊂ Ω: ∫

A

ρ1(x)dx =

∫
T (x)∈A

ρ0(x)dx. (2.2)

In term of densities, when T is smooth and one-to-one, the constraint T#ρ0 = ρ1

corresponds to
ρ0(x) = ρ1(T (x)) |det(∇T (x))| (2.3)

where ∇T (x) ∈ Rd×d is the differential of T at x. This is known as the Jacobian
equation. We call T (ρ0, ρ1) the set of transport maps that satisfy the constraint (2.3).
The Lp Kantorovitch-Wassertein distance between ρ0 and ρ1 is then defined by

Wp(ρ0, ρ1)p = inf
T∈T (ρ0,ρ1)

∫
|T (x)− x|pρ0(x)dx.

21



22 Estimation of the Transport Map

The Lp Monge-Kantorovitch problem corresponds to finding a mapping T such that
this infimum is achieved. It can be recasted as

Wp(ρ0, ρ1)p = min
T∈T (ρ0,ρ1)

∫
C(x, T (x))ρ0(x) dx (2.4)

where C(x0,x1) ≥ 0 is the ground cost of transporting x0 ∈ Ω onto x1 ∈ Ω.

Let us now detail how estimating the transport map T with Partial Differential
Equations.

Optimal Transport and PDEs The Optimal Transport for the L2 ground cost has
a special structure. It can be shown to be uniquely defined (see e.g. [216] page 66) and
the transport map is the gradient of a convex potential Ψ from Ω to R:

T (x) = ∇Ψ(x). (2.5)

Hence, one can show that the mass transfer associated to a L2 ground cost follows
straight lines [41], which can be used for developing specific Lagrangian solvers [122].

Other class of methods relies on the fact that from relations (2.3) and (2.5), the
convex function Ψ is solution of the Monge-Ampère equation:

det(D2Ψ)ρ1(∇Ψ(x)) = ρ0(x).

This equation being highly nonlinear, numerical methods to solve the Monge-
Kantorovitch problem based on discretization of the Monge-Ampère equation have been
investigated [157, 135, 79, 154, 23, 24]. A major difficulty in these approaches is to deal
with compactly supported densities, which requires a careful handing of the boundary
conditions [102].

Another line of methods iteratively constructs mass preserving mappings converging
to the Optimal Transport [6, 111, 38]. This explicitly constructs the so-called polar
factorization of the initial map, see also [18] for a different approach. These PDE’s based
approaches to the resolution of the Optimal Transport have found several applications,
such as image registration [112], density regularization [46], optical flow [63] and grid
generation [204].

A last axis of research consists in using gradient flows where the gradient direction
is computed according to the Wasserstein distance. This was initially proposed in [124]
to build solutions to certain non-linear PDE’s. This technique is now being used to
design numerical approximation schemes for the solution of these equations, see for
instance [51, 89, 96, 22].

All these approaches are nevertheless limited to positive densities, or to non-negative
densities with a convex support of the target density ρ1, which is a real limitation for
image processing applications. The only numerical method that can deal with
non-negative data has been proposed by Y. Brenier et J.D. Benamou through a Fluid
Mechanics formulation [19].
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2.2 Fluid Mechanics Formulation

Instead of computing directly the transport, it is possible to consider the geodesic path
between the two densities according to the Wasserstein metric (the so-called displace-
ment interpolation [142]). For the L2 ground cost, the geodesic path between the mea-
sures with densities ρ0 and ρ1 can be shown to have density t 7→ ρ(t,x) where the
additional dimension t ∈ [0, 1] parameterizes the path interpolating linearly between
the identity map Idd and the Optimal Transport map T :

ρ0(x) = ρ(t, Tt(x)) |det(∇Tt(x))| where Tt = (1− t) Idd +tT.

The geodesic can thus be computed by first obtaining the transport and then making
the densities evolve. In [19], it has been demonstrated that this geodesic solves the
following non-convex problem over the densities ρ(t,x) ∈ R+ and a velocity field v(t,x) ∈
Rd checking the continuity equation.

Theorem 1 (Benamou-Brenier). In case p = 2 the Wasserstein distance between ρ0

and ρ1 is such that:

W (ρ0, ρ1) = inf
ρ,v

∫
Ω

∫ 1

0

ρ(t,x)|v(t,x)|2dxdt (2.6)

the infimum being taken on ρ, v verifying the non-linear constraint

C0 = {(ρ, v), ∂tρ+ divx(ρv) = 0, 〈v, ~n〉 = 0, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1}, (2.7)

with homogeneous Neumann conditions on the velocity field v, through ~n which is the
normal of the domain Ω.

While the estimation of the L2 Wasserstein distance (2.4) is a static problem over Ω,
the introduction of the additional dimension t and the velocity field v leads to a dynamic
problem involving kinetic energy (2.6) and continuity equation (2.7) on Ω× [0; 1].

2.3 Convexification

Following [19] and introducing the change of variable (ρ, v) 7→ (ρ,m), where m is the
momentum m = ρv, we obtain a convex optimization problem over the couple (ρ,m):

min
(ρ,m)∈C

J (ρ,m) :=

∫ 1

0

∫
Ω

J(ρ,m)dxdt (2.8)

which deals the positivity constraint [49]:

J(ρ,m) =


||m||2

2ρ
if ρ > 0

0 if (ρ,m) = (0, 0)
+∞ otherwise.

(2.9)

The set of constraint C becomes linear and reads:

C(ρ,m) = {(ρ,m), ∂tρ+ divxm = 0, 〈m,~n〉 = 0, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1}. (2.10)
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Denoting as ιC(x) = 0 if x ∈ C, +∞ otherwise, the convex problem introduced in
[19] reads:

(ρ∗,m∗) = argmin
ρ,m

J (ρ,m) + ιC(ρ,m). (2.11)

Notice that with this formulation, we are not able to compute the transport map and
we only estimate the geodesic ρ(x, t). The existence of minimizers of such a problem
in the space of measures has been studied in [217]. The existence of L2 minimizers
for positive data (ρ0, ρ1) has been studied in [110]. The existence of L2 minimizers for
nonnegative data (ρ0, ρ1) has been shown during the PhD of Romain Hug [119], in which
the uniqueness of the variable ρ has also been established.

As the problem (2.11) is convex and non-smooth, the Alternating Direction Method
of Multipliers (ADMM, see (A.9)) algorithm was considered in [19] to compute a global
minimizer. Nevertheless, other proximal method that are introduced in Appendix A can
be used to compute a global minimizer.

2.4 Discretization and Optimization

In order to solve problem (2.11) over the sptaial domain of the image denoted as Ω, the
dimension has to be increased with T time steps of artificial time t. The dimension of
the variable ρ to estimate is therefore of size |Ω|T .

In [160], it has been proposed to rely on a staggered grid for the discretization of the
continuity equation (2.10), similarly to the discretization of PDE’s in incompressible
fluid dynamics (see for instance [113]). An interpolation operator I has then been
considered for computing the cost function (2.9) on the regular grid. The use of a
staggered grid is very natural in the context of the discretization of a divergence operator
associated to a vector field on Rd.

The basic idea is to perform an accurate evaluation of every partial derivative at
prescribed nodes of a cartesian grid using standard centered finite differences. Hence,
the discrete problem (2.11) can be reformulated as:

(ρ∗,m∗) = argmin
(ρ,m)∈Es

J (I(ρ,m)) + ιC(ρ,m), (2.12)

The problem (2.12) consists in minimizing the sum of two non-smooth convex func-
tionals, the first one being composed with a linear operator I. We can thus make use
of proximal splitting methods such as Douglas Rachford (A.6) or Primal Dual (A.15)
algorithms to solve this problem. As illustrated in the Figure 2.2, faster convergence
was observed considering these algorithms instead of the ADMM one. To apply such
algorithms that are described in the Appendix, the fundamental point is to be able to
compute the proximal operators (defined in relation A.2) of functions J and ιC .

Since the functional J is separable, the proximal operator of J can be computed
independently as the proximal operator of J for each point (ρ̃, m̃)(t,x) ∈ R × Rd with
(t,x) ∈ [0; 1]×Ω. As shown in [160], it simply requires to solve a third order polynomial
in each grid point.
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Finally, the proximal mapping of ιC is ProjC the orthogonal projector on the convex
set C. It requires solving a Poisson equation on the centered grid with prescribed
boundary conditions. It can be achieved with Fast Fourier Transform in O(NP log(NP ))
operations where N and P are number of spatial and temporal points, see [201].

Using this method, one can estimate the geodesic path between densities that van-
ishes on the spatial domain, as illustrated in Figure 2.1.

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Figure 2.1 – Transport between characteristic functions. Evolution of ρ?(·, t) for several
values of t. The red curve denotes the boundary of the area with positive density.

2.5 Limitations and Motivations

A first limitation of this approach concerns the computational time. As exhibited in
Figure 2.2, as the problem is not strictly convex, the convergence of the cost function
J is fast but the convergence of the iterates (ρk,mk) is much slower.

(a) J (ρk,mk) (b) ||ρk − ρ∗||2

Figure 2.2 – Illustration of the convergence of the minimization process. (a) The cost
function J reaches its minimum with a thousand iterations. (b) The convergence of
the iterates ρk to ρ∗ is slower. The reference solution ρ∗ has been previously obtained
with 108 iterations. Different proximal algorithms (ADMM, symmetric and asymmetric
Douglas Rachford, Primal Dual) tunned with their best parameters are compared.
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Numerical instabilities may also happen when input data are not smooth enough, as
illustrated by Figure 2.3. This is nevertheless not a issue for the targeted application
where data are images of the ocean representing continuous fluids.

ρ0 ρ(1/6) ρ(1/3) ρ(1/2) ρ(2/3) ρ(5/6) ρ1

Figure 2.3 – Image interpolation between Gaspard Monge (ρ0) and Leonid Kantorovitch
(ρ1). Numerical instabilities appear (mainly on the boundaries of the head) since the
data are not smooth enough.

Next, when solving the Optimal Transport problem between two densities, we know
that the mass transfer will follow straight lines. The structures contained in the original
data can thus disappear along the optimal path. Such behavior is illustrated in Figure
2.4 that presents the optimal path between images containing two Gaussians.

ρ(0) = ρ0 ρ(1/4) ρ(1/2) ρ(3/4) ρ(1) = ρ1

Figure 2.4 – Two Gaussians examples. The Gaussians, represnted by their level lines,
split along the optimal path between ρ0 and ρ1.

One main objective for image interpolation is to incorporate some physical priors
in order to preserve the structures contained in the data along the optimal path. This
will be of main interest for geoscience imaging applications. Ocean and atmosphere,
observed with satellites, are indeed driven by complex physical laws. The temporal
interpolation of such satellite images is an important problem in this community and it
should correspond to the underlying dynamics. As interpolation with Optimal Transport
involves constant mass transport along straight lines, it is not a satisfactory solution.

In order to be able to process oceanographic images that contains “obstacles” such
that continent or islands, the topology of the considered spatial model should be carefully
taken into account.

Some generalizations are proposed in the next chapter to tackle such issues.



Chapter 3

Generalizations for Image
Interpolation

In this Chapter, we consider generalized distances based on convex ground costs within
the dynamical Optimal Transport formulation. In the aim of interpolating satellite
images of the ocean in the presence of coasts, the computation of Optimal Transport on
Riemannian manifolds modeling the spatial domain is tackled. Physical regularizations
of the transport map are also considered. The numerical scheme proposed in the Chapter
2 can be used with only slight modifications with respect to the L2-Wasserstein case.

3.1 Generalized Cost Functions

The formulation of the geodesic computation as a convex optimization problem pre-
sented in Chapter 2 enables the definition of various metrics obtained by changing the
objective function. Transport with congested dynamics [48] or unbalanced transport
between densities that have different mass [136, 60] are namely possible. One can also
interpolate between different distances. An interpolation between the L2-Wasserstein
and L2 distances is proposed in [20]. Lastly, an interpolation between L2-Wasserstein
and H−1 distances is described in [86]. This extension relies in a crucial manner on
the convexity of the extended objective function, which enables a theoretical analysis to
characterize minimizing geodesics [49].

Optimal Transport on Riemannian manifolds Many properties of the L2-Was-
serstein distance can be extended to the setting where the ground cost is the square
of the geodesic distance on a Riemannian manifold. This includes in particular the
existence and uniqueness of the transport map [141]. Displacement interpolation for
transport on manifolds has the same variational characterization as the one introduced
in [20] for Euclidean transport, see [217] for a detailed review of Optimal Transport on
manifolds.

Displacement interpolation between two measures, each one composed of a single
Dirac, amounts to computing a single geodesic curve on the manifold. Discretization
and numerical solutions to this problem are numerous. A popular method is the Fast
Marching algorithm introduced jointly by [195, 211] for isotropic Riemannian metrics

27
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(i.e. when the metric at each point is a scalar multiple of the identity) discretized on
a rectangular grid. This algorithm has been extended to compute geodesics on 2-D
triangular meshes with only acute angles [128]. More general discretizations require the
use of slower iterative schemes, see for instance [36].

Interpolation between pairs of measures in Riemannian manifolds generalizes to
barycenters of a family of measures, see [127]. The numerical computation of Optimal
Transport on manifolds has been less studied. For weighted sums of Diracs, displace-
ment interpolation is achieved by solving a linear program to compute the coupling
between the Diracs and then advancing the Diracs with the corresponding weights and
constant velocity along the geodesics.

Hence, we have proposed in [160] to extend the method of [20] to solve for the
displacement interpolation on a Riemannian manifold. Following [86, 49], we use a
generalized cost function that allows one to compute geodesics that interpolate between
the L2-Wasserstein and the H−1 geodesics . To introduce further flexibility, we have
also considered a spatially varying tensor [120], which corresponds to approximating a
transportation problem on a Riemannian manifold.

To that end, the convex cost functional (2.9) is generalized, for β ∈ [0; 1] and A(t,x)
a symmetric positive definite tensor, as

JAβ (ρ,m) =


‖Am‖2

2ρβ
if f > 0,

0 if (m, ρ) = (0, 0),
+∞ otherwise.

(3.1)

and we now consider the problem:

(ρ∗,m∗) = argmin
ρ,m

∫ 1

0

∫
Ω

JAβ (ρ,m) dx d t+ ιC(ρ,m). (3.2)

The matrix A(t,x) is of size d × d and represents the anisotropic penalization of the
displacement energy. The isotropic case of constant weights A = Idd is studied in [86, 49].
The case β = 1 corresponds to the Wasserstein L2 distance. In a continuous (not
discretized) domain, the value of the problem (3.2) for β = 0 is equal to the H−1 Sobolev
norm over densities ‖ρ0 − ρ1‖H−1 , as detailed in [86]. In this case, the induced distance
is an Hilbertian norm, and the corresponding geodesic is a linear interpolation of the
input measures. Thus, for measures having densities, one obtains ρt = (1− t)ρ0 + tρ1.

3.1.1 Interpolation between L2-Wasserstein and H−1

With this previous formulation (3.1), it is possible to interpolate between L2-Wasserstein
and H−1 geodesics. This is illustrated in Figure 3.1, which presents the level-lines of the
estimated densities ρ(t, ·) for A = Idd and different values of β. It shows the evolution of
the solution between a linear interpolation of the densities (β = 0) and a displacement
interpolation with transport (β = 1).

With this β parameter, smoother interpolation are then obtained. As illustrated
in Figure 3.2, it is of interest for interpolating between non-smooth images and avoid
numerical instabilities.
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β
=

0
β

=
1/

4
β

=
1/

2
β

=
3/

4
β

=
1

t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2 t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 3.1 – Display of the level sets of ρ(t, ·) for several value of t and β. For t = 0
and t = 1, ρ(t, ·) exactly corresponds to ρ0 and ρ1.

β
=

1
β

=
3/

4

ρ0 ρ(1/6) ρ(1/3) ρ(1/2) ρ(2/3) ρ(5/6) ρ1

Figure 3.2 – Interpolation between Gaspard Monge (ρ0) and Leonid Kantorovitch (ρ1).
The first line is the same as in Figure 2.3. On the second line, by taking β = 0.75, a
smoother interpolation between images is estimated.

3.1.2 Modelling of obstacle

When β = 1 and the matrices A(t,x) = Iddw(x) are diagonal and constant in time,
the solution of (2.12) discretizes the displacement interpolation between the densities
(ρ0, ρ1) for a ground cost being the squared geodesic distance on a Riemannian manifold.

We exemplify this setting by considering Optimal Transport with obstacles, which
corresponds to choosing weights w that are infinity on the obstacle O ⊂ R× Rd, i.e.

w(t,x) = 1 + ιO(t,x) ∈ {1,+∞}.
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Note that with such definition, the obstacles can be dynamic, i.e. the weight w does
not need to be constant in time. Figure 3.3 shows a first example where O is a 2-D
(d = 2) static labyrinth map (the walls of the labyrinth being the obstacles are displayed
in black). We use a 50 × 50 × 100 discretization grid of the space-time domain [0, 1]3

and the input measures (ρ0, ρ1) are Gaussians with standard deviations equal to 0.04.
For Gaussians with such a small variance, this example shows that the displacement
interpolation is located closely to the geodesic path between the centers of the gaussians.

t = 0 t = 1/9 t = 2/9 t = 1/3 t = 4/9

t = 5/9 t = 2/3 t = 7/9 t = 8/9 t = 1

Figure 3.3 – Evolution of ρ(t, ·) for several values of t, using a Riemannian manifold
with weights w(x) (constant in time) restricting the densities to lie within a 2-D static
labyrinth map.

Isotropic Riemannian metrics corresponds to matrices A(t,x) = w(x) Idd propor-
tional to the identity at each point, but this extends to arbitrary Riemannian metrics
A(t,x) = A(x). The existence of a solution of the Monge-Kantorovitch problem on Rie-
mannian manifolds has been shown in [141]. The equivalence with a fluid mechanism
formulation has been studied in [120]. In the case of a time dependent tensor A(t,x),
even if the numerical algorithms are still providing a seemingly sound solution (see Fig-
ure 3.4), there are no equivalence with any static Optimal Transport problem and the
proof of existence of solutions remains an open subject.

Figure 3.4 shows a more complicated setting that includes a labyrinth with moving
walls: a green wall appears at time t = 1/4 and a red one disappears at time 1/2. The
difference with respect to the previous example is the fact that w is now time dependent.
This simple modification has a strong impact on the displacement interpolation. Indeed,
the speed of propagation of the mean of the density is not constant anymore since the
density measure is confined in a small area surrounded by the walls for t ∈ [1/4, 1/2].

3.1.3 Anisotropic transport

The introduction of the anisotropy modeling through non diagonal matrices A is now
illustrated. With adequate matrices A, it is now possible to define a polarization of
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t = 0 t = 1/9 t = 2/9 t = 1/3 t = 4/9

t = 5/9 t = 2/3 t = 7/9 t = 8/9 t = 1

Figure 3.4 – Evolution of ρ(t, ·) for several values of t, using a Riemannian manifold with
weights w(t,x) (evolving in time) restricting the densities to lie within a 2-D dynamic
labyrinth map (i.e. with moving walls in green and red).

the space for modeling anisotropic domain priors. This problem is illustrated in Figure
3.5, which presents the optimal path between a horizontal and a vertical line on a
square image. For these experiments, we defined different complex anisotropies, that are
represented with the arrows of the first image of each line. If prior knowledge is available
on the data, one can build a specific Riemannian manifold and the anisotropic model
will therefore be able to simulate rigid or divergence free transports. This modelling
is nevertheless not sufficient for more general purposes and we now propose to directly
include physical prior into the model and not into the domain.

ρ0 ρ∗(1/8) ρ∗(1/4) ρ∗(3/8) ρ∗(1/2) ρ∗(5/8) ρ∗(3/4) ρ∗(7/8) ρ1

Figure 3.5 – Illustration of the mass ρ∗(t) estimated between ρ0 and ρ1, through the
computation of the transport costs defined by two different anisotropic domains Ak,
illustrated by the blue directions in the first column of the two last rows. The first row
is the isotropic transport.



32 Optimal Transport with physical priors

3.2 Optimal Transport with physical priors

With the previous formulation, it is now possible to deal with islands for processing
ocean images. Our underlying objective is to incorporate physic priors into the Optimal
Transport model. More precisely, for general images, we would like to consider incom-
pressible or rigid transports. Such transports can indeed prevent the object contained
within the data from splitting along the computed paths, as for classical transport of
Figure 2.4. The physical constraints can be characterized using the velocity, that is not
a variable of the problem (2.11) anymore and should be reintroduced. We thus come
back to the classic Optimal Transport framework with β = 1 and A = Idd.

3.2.1 Non-convex coupling

In order to have a coupling between the variables (ρ,m) and v, a natural idea is to
consider the term ιD(ρ,m, v) = 0, with the set D = {m = ρv}. As D is not convex and
ιD non-smooth, we rather consider a differentiable coupling1:

K(ρ,m, v) =
1

2

∫
Ω

∫ 1

0

||m− ρv||2 dx d t.

In [120], specific kind of transports were promoted regarding velocity priors that depend
on the targeted application, as can be done with physical regularization of Optical Flow
for fluid image sequences [69, 223]. A new functional term R(v) is thus introduced. This
term can be defined as:

• Divergence-free:R(v) = ιCv(v),Cv = {divx v(t, ·) = 0, 〈v(t, ·), ~n〉 = 0, ∀ t ∈ [0; 1]},

• Incompressible penalization: R(v) =
∫ 1

0
|| divx(v(t, ·))||2L2(Ω) d t,

• Rigid penalization: R(v) =
∫ 1

0
||(∇xv(t, ·) + (∇xv(t, ·))T )/2||2L2(Ω) d t,

• Translation penalization: R(v) =
∫ 1

0
||(∇xv(t, ·)||2L2(Ω) d t.

By translation penalization, we mean a penalization of the deviation of a velocity field
from translations. These terms are convex and the three last ones are differentiable. The
existence of minimizers for the translation case has been shown in [120]. The generalized
Optimal Transport model we are interested in now reads:

min
ρ,m,v

F (ρ,m, v) := J (I(ρ,m)) + ιC(ρ,m) + λK(I(ρ,m), I(v)) + αR(v) (3.3)

where λ, α ≥ 0 respectively weight the coupling between variables and the velocity
regularization term. The problem (3.3) is not convex in (ρ,m, v) but it is separately
convex in (ρ,m) and in v. As the coupling is differentiable and the non-smooth terms
are separable, following [210], we can perform a block coordinate descent with Algorithm
(A.19) and minimize alternatively each convex problem in (ρ,m) and in v to obtain a
critical point of the joint problem (3.3). Each subproblem can be solved with Algorithms
presented in Appendix A.

1In [139], a different choice has been made and the problem is solved on (ρ, v) while penalizing the
non convex constraint ||∂ρ+ div(ρv)||2.
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3.2.2 Synthetic tests

First of all, we compare in Figure 3.6 the results obtained with the incompressible,
translation and rigid penalizations on the two Gaussians example. Contrary to standard
transport shown in Figure 2.4, such physical priors prevent the mass from splitting along
the computed path. The Gaussians are deformed with the divergence-free prior, but it
can be seen that the length of the level lines of the densities are preserved along the path.
It is also important to underline that both translation and rigid penalizations keep the
exact shapes of the two Gaussians along time. One can see in Figure 3.7 representing
both computed paths, that the rigid penalization really performs a rotation and not a
translation, so that the optimal path is no more composed of straight lines.
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ρ(0) = ρ0 ρ(1/4) ρ(1/2) ρ(3/4) ρ(1) = ρ1

Figure 3.6 – Two Gaussians experiments with penalization and a null initialization.
Plot of the isolevels of the density ρ(t) along the different computed optimal path. The
top line is realized with incompressibility (i.e. divergence free) penalization, the second
with a translation penalization and the last one with a rigid penalization.

Translation penalization Rigid penalization

Figure 3.7 – Two Gaussians experiment. Plot of the whole trajectory computed with
the translation and the rigid penalization models. The rigidity here involves a rotation.
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In the example of Figure 3.8 that presents a rotating bar, the rigid penalization (last
line) recovers a quasi-rotation, which better preserves the prior physics with respect
to pure Optimal Transport (first line). As expected, it can also be observed in Figure
3.9 that the length of the level lines of the estimated density are preserved with the
incompressible and rigid penalization approaches. We refer the reader to [39, 120] for
more synthetic examples involving such penalizations.
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ρ(0) = ρ0 ρ(1/4) ρ(1/2) ρ(3/4) ρ(1) = ρ1

Figure 3.8 – Bar experiment. Plot of the isolevels of the density ρ(t) along the optimal
path computed with different approaches. The first line is the Optimal Transport, the
second is the proposed approach with an incompressible penalization and the last one
with a rigid penalization that conserves the nature of the object to transport.

Optimal Transport Incompressible penalization Rigid penalization

Figure 3.9 – Bar experiment. Evolution of the length of the upper level lines of the
estimated density along time t: |ρ(t,x) > i/10|, for i = 1 . . . 9 . The left plot is the classic
Optimal Transport, the middle one corresponds to the incompressible penalization and
the right one corresponds to a rigid penalization. Penalizing the norm of the velocity
makes the level lines almost preserved along the computed path.
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3.2.3 Image interpolation in oceanography

In order to study the state of the oceans, snapshot images are produced by opera-
tional numerical codes such as the Ocean Circulation Model NEMO (http://www.nemo-
ocean.eu/) . The synthesis process is nevertheless time-consuming and the oceanogra-
phers would like to create a few images and then realize a temporal interpolation between
these images. This would be of particular interest to visualize and diffuse movies of dy-
namic structures of the ocean. The main issue comes from the coast that appears in a
lot of interesting places, as illustrated in Figure 3.10. It makes useless classical image
registration techniques such as optical flow or diffeomorphism estimations that can not
deal with such complex domain.

With our formulation, the image domain can be represented as a Riemannian man-
ifold, by taking A(t,x) = w(x) Id2. The variable w(x) describes the manifold. It is set
to 1 in the ocean and to a huge value in the land in order to restrict the transport into
the ocean.

The successive optimal paths between 10 pairs of Sea Surface Height images of size
843 × 516 produced by the NEMO model have been computed with a temporal dis-
cretization of 9 steps. The brightest colors correspond to the highest sea height. The
image sequence illustrates the Agulhas Current and the creation of vortexes in Cap
Point. As shown in Figure 3.10, that presents the computed path between two consec-
utive images, by adding the proposed divergence-free penalization, we can induce some
rotational prior within the transport estimation and recover the creation of vortexes.

ρ0 ρ(1/8) ρ(1/4)

ρ(3/8) ρ(1/2) ρ(5/8)

ρ(3/4) ρ(7/8) ρ1

Figure 3.10 – Interpolation of Sea Surface Height images (ρ0 and ρ1) in oceanography:
the creation of vortexes in Cap Point is finely estimated.





Conclusion of Part I

In this first part, we have shown how proximal splitting schemes offer an elegant and
unifying framework to describe computational methods to solve the dynamical Optimal
Transport with an Eulerian discretization. It allowed us to extend the original method
of [19] in several directions, most notably the use of staggered grid discretization and
the introduction of generalized, spatially variant, cost functions.

We have studied generalized Optimal Transport models which attach a multiphysics
model to the images to be registrated. This is of particular interest for image inter-
polation purposes, where the results obtained using a simple minimization of a kinetic
energy under some constraints do not preserve image characteristics along the optimal
interpolation path, which is not physical. These generalizations are not limited by the
expressions we consider here and others physical terms can also be considered taking
into account more complex physics.

Promising results have been obtained on high-resolution oceanographic images. Fu-
ture works will therefore be dedicated to the modeling of more accurate physical priors.

From the optimization point of view, we also focused on the minimization of non-
convex and non-smooth functionals. Contrary to the block coordinate descent method
we considered in (3.3), defining an algorithm without inner loops (on (ρ,m) and v)
would be of main interest to obtain a faster computation of minima of our non-convex
problems. Recent advances of proximal splitting methods have been made for related
problems [8, 31], but they are still limited to simple functionals and would still require
inner loops to deal with our generalized Optimal Transport formulation.

Finally, for the anisotropic Optimal Transport, we plan to study the existence of
minimizers when the anisotropy varies with respect to time. This is a challenging prob-
lem as, in this case, there are no correspondences with any static Monge problem.

Notice that this method has found interest in the Computer Graphics community.
Our original Matlab code has indeed been optimally reimplemented in C++ [32], where
56× speed up has been observed. It is therefore possible to estimate a good geodesic
path discretized with 256 timesteps between 256 × 256 grayscale images in 3 minutes.
An extension of the proposed model to the interpolation of color images have also been
proposed in [98].
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Part II

Discrete Optimal Transport
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Chapter 4

Relaxation and Regularization of
Optimal Transport

An easiest way to discretize and compute numerically Optimal Transport is to consider
finite sums of weighted Diracs. In this specific case, the Optimal Transport is a multi-
valued map between the Diracs locations. The dimension of the transport map then
scales with the product of the dimensions of the discretized densities. Despite being
numerically intensive for finely discretized distributions, this discrete transport frame-
work has found many applications. It first includes image retrieval with the well-kwown
Earth Mover’s Distance [187], and also color transfer between images [168], shape re-
trieval [181] or surface reconstruction [78] and interpolation for computer graphics [35].

As already seen in the previous part, the Optimal Transport map between compli-
cated densities is usually irregular, which is a real drawback for interpolating between
densities or for transfer purposes. In this chapter, we first recall the discrete setting of
Optimal Transport and next present some regularization approaches that will be used
for image processing purposes in Chapters 5 and 6.

4.1 Discrete Formulation

Monge’s original formulation of the Optimal Transport problem aims at minimizing the
cost for transporting a distribution µ onto another distribution ν using a map T

min
T

∫
X

c(x, T (x))dµ(x), where T#µ = ν. (4.1)

Here, µ, ν are measures in Rd, T : Rd → Rd is a µ-measurable function, c : Rd×Rd → R+

is a µ⊗ νY -measurable function, and # is the push forward operator. We now consider
the discrete formulation of the optimal mass transportation problem between a pair of
histograms µ and ν. In the most general setting, histograms can be viewed as weighted
sum of dirac distributions

µ =

NX∑
i=1

µiδXi and ν =

NY∑
j=1

νjδYj ,
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where δX is the Dirac measure at location X ∈ Rd and X = {Xi ∈ Rn}NXi=1 and Y =

{Yj ∈ Rn}NYj=1 are point-clouds in a feature space Rd (for instance position, color, gabor
filter coefficients, etc). These points are often referred to as “bins” when considering a
regular grid. Without loss of generality, we assume from now that the two histograms
have positive weights µi, νj > 0, the same number of bins (NX = NY = N) and the
same total mass

∑
i µi =

∑
j νj.

4.1.1 Monge-Kantorovitch Formulation

Given a fixed cost matrix C = (Ci,j)i,j measuring a distance between locations Xi and
Yj, we can consider the Kantorovitch formulation of the Optimal Transport problem,
which corresponds to estimating the Optimal Transport plan P ∗ between histograms.
The Monge-Kantorovitch distance MK reads [125]

MK(µ, ν) = 〈P ?, C〉 = min
P∈S(µ,ν)

{
〈P, C〉 =

N∑
i=1

N∑
j=1

Pi,jCi,j

}
, (4.2)

where the set of admissible transport matrices S(µ, ν) is the set of measures defined on
the product space of considered histograms which marginals are given by µ and ν:

S(µ, ν) := {P ∈ RN×N
+ , P1N = µ and P T1N = ν}. (4.3)

As illustrated in Figure 4.1, the value Pi,j of matrix P then corresponds to the proportion
of the mass µi of cluster Xi that is transferred to the cluster Yj. If Ci,j = ‖Xi − Yj‖p,
the value of the optimization problem (4.2) is called the Lp-Wasserstein distance (to
the power p) and is denoted Wp(µ, ν)p = MK(µ, ν). It can be shown that Wp defines a
distance on the set of distributions that have moments of order p.

(a) (b)

Figure 4.1 – (a) Optimal Transport matrix P between histograms X (in blue) and Y (in
red). The white color correspond to Pi,j = 0. (b) The transport map does not impose
one-to-one mappings betweens bins and the bin Xi is transported to several bins Yj.
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Problem (4.2) can be reformulated as a linear program that scales with the product
of the dimensions of the consider histogram. The computation of the transport cost is
therefore limited in practice to histograms discretized with a low number of bins.

Linear programming methods (interior-point method [150], simplex algorithm [77])
or first-order methods (Proximal Algorithms presented in Appendix A, Frank–Wolfe
algorithm, as proposed in [225]) can be applied to estimate the transport matrix P .
Faster schemes exist for specific cost functions CX,Y , such as for instance convex cost of
the distance on the line (where it boils down to sorting the positions as d = 1) and the
circle [83], concave costs on the line [84], the `1 distance [133].

In case d > 1, various approximations of the transportation distance have been
proposed using Kantorovitch-Rubinstein discrepency [197] or iterative explicit 1D com-
putations [33]. The computation can also be accelerated with multi-scale cluster-
ing [144, 190, 155], using the structure of the cost function [189] or considering Voronoi
diagrams [12, 132].
Remark 1 (Transport between clouds of points). In the case where the measures are
discrete, have the same number of points, and all points have the same mass, µ and ν
are cloud of points and the transport T between them is a one-to-one assignment, which
corresponds to optimizing over the set of permutation matrix P in the Kantorovitch
formulation (4.2). Standard combinatorial methods such as the Hungarian Algorithm
[130] or the Auction Algorithm [26] can thus be used to compute the transport matrix.
Notice that the set of permutation matrices is not convex, so one can rely on its convex
hull, the set of bi-stochastic matrices. It is shown that the relaxation over this set is
tight, meaning that there exists a solution of (4.2) which is a binary matrix, hence being
also a solution of the original non-convex problem over permutation matrices, see [216].

4.1.2 Dual formulation

An alternative for solving the Optimal Transport problem (4.2) consists in looking at
its dual formulation:

MK(µ, ν) = max
u∈RN , v∈RN

s.t. ui+vj≤Ci,j , ∀ i,j

µTu+ νTv, (4.4)

which comes from the Legendre-Frenchel transform of the primal problem:

MK∗(u, v) = ιui+vj≤Ci,j(u, v) (4.5)

where ιK stands for the characteristic function of the convex set K. In this case the
number of unknowns boils down to 2N but the number of linear constraints is N2.
Hence, solving the dual problem is as hard as solving the primal one. This dual formu-
lation presents some advantages for particular image processing applications. It can for
instance be considered to convexify vecto-valued labelling problems [202].

4.2 Relaxed and Regularized Transport

For applications such as color transfer, the regularization of the transport map is a neces-
sary ingredient to provide visually plausible images. To that end, a simple idea consists
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in adding a regularization penalty to the Optimal Transport energy (4.2). However,
it leads to difficult non-convex problems, that have not yet been solved in a satisfying
manner either theoretically or numerically.

Graph regularization and matching Based on concepts developed in manifold
learning [208], regularizations built on top of a graph structure connecting neighboring
points in the input density are classically used in imaging applications [92]. With graphs,
one can design regularizations that are adapted to the geometry of the input density,
that often has a manifold-like structure.

This idea of graph-based regularization of Optimal Transport can be interpreted as
a soft version of the graph matching problem, which is at the heart of many computer
vision tasks, see [16, 227]. Graph matching is a quadratic assignment problem, known to
be NP-hard. Several convex approximations have been proposed, including for instance
linear programming [4] and SDP programming [188].

Transport relaxation In the recent work of [138], it has been shown that in 1-D,
no regularization is possible if one maintains a one-to-one assignment between the two
densities. This is a first motivation for introducing a relaxed transport which is not a
bijection between the densities. Another (more practical) motivation is that relaxation is
crucial to solve imaging problems such as color transfer. Indeed, the color distributions
of natural images are multi-modals. An ideal color transfer should match the modes
together. This cannot be achieved by classical Optimal Transport because these modes
often do not have the same mass.

A typical example is for two images with strong foreground and background dominant
colors (thus having bi-modal densities) but where the proportion of pixels in foreground
and background are not the same. Such simple examples cannot be handled prop-
erly with Optimal Transport. Monitoring the variation of mass between the matched
densities requires an appropriate relaxation of the mass conservation constraint. Mass
conservation relaxation is related to the relaxation of the bijectivity constraint in graph
matching, for which a convex formulation is proposed in [226].

In the previous section, we introduced the Monge-Kantorovitch formulation for the
computation of the Optimal Transport between two distributions as the minimization
of the energy (4.2). In this section, we modify this energy in order to obtain a regular
Optimal Transport mapping. We will also consider the recent entropic regularization of
OT proposed in [73] that presents different and interesting properties, namely in terms
of computational cost.

4.2.1 Relaxed Transport

In many applications in imaging, strict mass conservation should be avoided. As a con-
sequence, it is not desirable to impose a one-to-one mapping between the points in µ and
ν. The relaxation proposed in [94] allows each point of µ to be transported to multiple
points of ν and vice versa. For this purpose, the Optimal Transport problem (4.2) is
modified as:

min
P∈Sκ(µ,ν)

〈CX,Y , P 〉 (4.6)
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where
Sκ(µ, ν) =

{
P ∈ [0, 1]N×N \ kXµ ≤ P1 ≤ KXµ,

kY ν ≤ P T1 ≤ KY ν,
1TP1 = M

}
. (4.7)

In this new problem, κ = (kX , KX , kY , KY ) ∈ (R+)4 are the parameters of the
method. They describe the minimum (kX , kY ) and maximum (KX , KY ) proportion of
each bin that can be transported. To impose the total amount of mass M transported
between the densities, it is necessary to further set the constraint 1TP1 = M , where
M > 0 is a parameter, basically taken as M = 1 for transporting all the mass from µ
to ν. To ensure that Sκ is non empty, the condition max(kX , kY ) ≤M ≤ min(KX , KY )
has to be fulfilled. Notice that problem (4.6) can still be solved using standard linear
programming algorithms.

4.2.2 Case of cloud of points

In the special case where µ and ν are cloud of points, one can consider µ = ν = 1.
The following proposition shows that an optimal P is binary when the parameters κ are
integers. Such a binary P can be interpreted as a set of pairwise assignments between
the points in X and Y . Note that this is not true in general when the parameters κ are
not integers.

Proposition 1. For (kX , KX , kY , KY ,M) ∈ (N∗)5, there exists a solution P̃ of (4.6)
which is binary, i.e. P̃ ∈ {0, 1}N×N .

This property is due to the fact that binary matrices P ∈ Sκ(µ, ν) are totally uni-
modular and the polytope Sκ(µ, ν) has integer vertices for integer values κ. Since there
is always a solution of the linear program (4.6) which is a vertex of Sκ(µ, ν), it has
coefficients in {0, 1} [193].

It is illustrated in Figure 4.2. Given a set of points X (in blue) and Y (in red), the
optimal P is computed solving (4.6) for different values of κ. For each values of κ, a
line between Xi and Yj is drawn if the value of the associated optimal Pi,j > 0.1, solid
if Pi,j = 1, and dashed otherwise. For non integer values of KX , KY , the mappings Pi,j
are in [0, 1] while for integer values, Pi,j ∈ {0, 1}. As the values of KX , KY are increased
(Figure 4.2, right), the points in X tend to be mapped to the closer points in Y .

4.2.3 Mean Optimal Transport Map

As stated before, when general distributions are concerned, optimal matrices P mini-
mizing (4.6) are in general non binary and their non zero entries do not define one-to-one
maps between the points of X and Y . As illustrated in Figure 4.3, it is however possible
to define a map T from X to Y by mapping each point Xi to a weighted barycenter of
its neighbors in Y as defined by P . This corresponds to defining

T (Xi) =

∑N
j=1 Pi,jYj∑N
j=1 Pi,j

(4.8)
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κ = (1, 1, 1, 1) κ = (1, 1, 0, 2) κ = (1, 1, 0.1, 10)

κ = (1, 1, 0.1, 1.5) κ = (0, 2, 1, 1) κ = (0.1, 10, 0.1, 10)

Figure 4.2 – Relaxed transport computed between X (blue dots) and Y (red dots)
for different values of κ. Note that κ = (1, 1, 1, 1) corresponds to classical Optimal
Transport. The mappings Pi,j that relate Xi and Yj are plotted as line segments. The
segments are dashed if Pi,j ∈]0.1, 1[ and solid if Pi,j = 1. The parameter κ = (1, 1, 0, 2)
mean that the sum of links connecting each red point to blue points equals 1, while the
sum of links connecting each blue point to red points is in [0; 2]. In this case, as all
the parameters are integers, assignments are obtained (solid lines) and each red point
is assigned to exactly one blue point, whereas each blue point can be connected to 0, 1
or 2 red points.

which in vectorial form can be expressed as T (Xi) = ((diag(P1))−1PY )i, where the
operator diag(v) creates a diagonal matrix in RN×N with the vector v ∈ RN on the
diagonal. To insure that the map is well defined, we impose that kX > 0. Note that it
is possible to define a map from Y to X by replacing P by P T in the previous formula
and exchanging the roles of X and Y .

4.2.4 Discrete Regularized Transport

So far, a transport problem where the mass conservation constraint is relaxed has been
presented. The second step is to define its regularization. A classic way of imposing
regularity on a mapping V : Rd → Rd is to measure the amplitude of its derivatives.
Two examples for continuous functions are the quadratic Tikhonov regularizations such
as the Sobolev semi-norm ‖∇V ‖2, and the anisotropic total variation semi-norm ‖∇V ‖1

regularization. However, the differential operator ∇ cannot be applied directly to a
point clouds Xi due to the lack of neighborhood definition. To extend the definition of
the gradient operator, a graph structure on each point cloud has to be designed.

In the current setting, the goal is to regularize the discrete map T introduced in (4.8),
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(a) (b)

Figure 4.3 – Computation of the mean transport map T from the Optimal Transport
matrix P between histograms X (in blue) and Y (in red). (a) The bin Xi is transported
to several bins Yj. (b) The mean transport from bin Xi is T (Xi) = Ȳi, obtained from
relation (4.8). The white color correspond to Pi,j = 0.

which is only defined at the location of the points as Xi 7→ Ṽi = Xi − T (Xi) =
Xi − diag(P1)−1(PY )i. To avoid the normalization diag(P1) (which typically leads
to non-convex optimization problems), the regularity can be imposed on the map
Xi 7→ Vi = diag(P1)Xi − (PY )i. This switch also has the advantage of imposing a
stronger regularization in regions with large weights and to further regularize the varia-
tions of the weights P1 ∈ RN . These are actually interesting features to reduce artifacts
for imaging applications.

Gradient on Graphs A natural way to define a gradient on a point cloud X is by
using the gradient on a weighted graph GX = (X,EX ,WX) where EX ⊂ {1, . . . , N}2 is
the set of edges and WX is the set of weights, WX = (wi,j)

N
i,j=1 : {1, . . . , N}2 7→ R+,

satisfying wi,j = 0 if (i, j) /∈ EX . The edges of this graph are defined depending on the
application. A typical example is the n-nearest neighbor graph, where every vertex Xi

is connected to Xj if Xj is one of the n-closest points to Xi in X, creating the edge
(i, j) ∈ EX , with a weight wi,j. Because the edges are directed, the adjacency matrix is
not symmetric.

The gradient operator on GX is defined as GX : RN×d → RP×d, where P = ‖EX‖ is
the number of edges and where, for each V = (Vi)

N
i=1 ∈ Rd,

GXV = (wi,j(Vi − Vj))(i,j)∈EX ∈ RP×d.

A classic choice for the weights to ensure consistency with the directional derivative is
wi,j = ‖Xi −Xj‖−1, see for instance [107].
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Regularity Term The regularity of a transport map V ∈ RN×d is measured according
to some norm of GXV , that we choose here for simplicity to be the following

Jp,q(GXV ) =
∑

(i,j)∈Ex

(
‖wi,j(Vi − Vj)‖q

)p
,

where ‖.‖q is the `q norm in Rd.

The case (p, q) = (1, 1) is the graph anisotropic total variation, (p, q) = (2, 2) is the
graph Sobolev semi-norm, and (p, q) = (1, 2) is the graph isotropic total variation, see
for instance [92] for applications of these functionals to imaging problems such as image
segmentation and regularization. In practice, we observe that the optimal matrix P
is somehow sparser with the total variation prior, i.e. the resulting weights are more
concentrated on a few entries.

4.2.5 Symmetric Regular Optimal Transport Formulation

Given two histograms µ and ν, a relaxed and regularized Optimal Transport mapping
between them can be computed. In order to make the mapping regular with respect to
both histograms, the displacement fields to be regularized are:

TX,Y (P ) = diag(P1)X − PY and TY,X(P ∗) = diag(P1)Y − P TX.

In order to obtain a partial matching that is regular according to X and Y , two
graphs GX and GY are created (as described Page 47) and the corresponding gradient
operators are denoted GX ∈ RnX×N and GY ∈ RnY ×N , where nX and nY are the number
of edges in the respective graphs. The symmetric regularized discrete Optimal Transport
energy proposed in [93] is defined as:

min
P∈Sκ
〈P, CX,Y 〉+ λXJp,q(GXTX,Y (P )) + λY Jp,q(GY TY,X(P )), (4.9)

where (λX , λY ) ∈ (R+)2 controls the desired amount of regularity. The case κ =
(1, 1, 1, 1) and (λX , λY ) = (0, 0) corresponds to the usual Optimal Transport defined
in (4.2), and (λX , λY ) = (0, 0) corresponds to the un-regularized formulation (4.6).

By setting the parameters q = p = 1 to obtain the anisotropic Total Variation (TV)
norm, problem (4.9) can again be re-written as a linear program by introducing the
auxiliary variables UX ∈ RnX×d and nY ∈ RPY ×d

min
P,UX ,UY

〈CX,Y , P 〉+ λX〈UX , 1〉+ λY 〈UY , 1〉

subject to


−UX ≤ GX(PY − diag(P1)X) ≤ UX ,

−UY ≤ GY (P TX − diag(P T1)Y ) ≤ UY ,

P ∈ Sκ.

(4.10)

In Figure 4.4, the influence of the parameters κ and (λX , λY ), from equation (4.9) are
illustrated on a synthetic example. For λX = λY = 0 one obtains the relaxed symmetric
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Optimal Transport solution, where the transport maps the points in X to the closest
point on Y , and vice versa. As we increase the values of λX and λY to 0.001, we can
see how the regularization affects the mapping. Let us analyze Jp,q(GXTX,Y (P )) =
‖GX diag(P1)X − GXPY ‖2, for instance. The term GX diag(P1)X is measuring the
regularity of the weights diag(P1) onX and the consequence is that for λX = λY = 0.001
there are plenty of connections with low weight (there are few solid lines), while for
λX = λY = 0 there are several mappings with Pi,j = 1 (solid lines). So, the regularization
promotes a spreading of the matchings.

The minimum of Jp,q(GXTX,Y (P )) is reached when GX diag(P1)X = GXPY , that
is, when the graph structure of X has the same shape as the graph structure of PY ,
which both can be observed in the last column and row. For high values of λX = λY
the matchings tend to link the clusters by their shape, that is, the big cluster on X with
the big cluster of Y , and similarly for the small clusters (note that the links with higher
value are between the small clusters).

We will show in the next chapter how such framework can be efficiently applied
to color transfer. In the meanwhile, we finally present the entropic regularization of
Optimal Transport that will be mainly used for segmentation purposes.

λX = λY = 0 λX = λY = 0.001 λX = λY = 10 Graphs

Figure 4.4 – Given two sets of points X (in blue) and Y (in red), we show the points
Z = diag(P1)−1PY (in green), and the mappings Pi,j as line segments connecting Xi

and Yj, which are dashed if Pi,j ∈]0.1, 1[ and solid if Pi,j = 1. The results were obtained
with the relaxed and regularized Optimal Transport formulation, setting the parameters
to κ = (0.1, 8, 0.1, 8). Note the influence of a change in λX and λY on the final result:
with no regularization (λX = λY = 0) only few points in the data set are matched.
The introduction of regularization (λX = λY = 0.001) spreads the connections among
the clusters, while maintaining the cluster-to-cluster matching. For a high value of
λX = λY = 10, the regularization tends to match the clusters with similar shape with
each other, where the shape is defined by the graph structure. The graphs GX and GY
are represented with the nodes on blue and red respectively, and the edges as solid lines.

4.3 Approximate MK cost using Sinkhorn distances

The entropy smoothing of Optimal Transport proposed in [218, 73] reads

MKλ(µ, ν) = 〈P λ, C〉 = min
P∈S(µ,ν)

{
〈P, C〉 − 1

λ
h(P )

}
, (4.11)
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where the entropy of the matrix P is defined as h(P ) := −
∑

i,j Pi,j logPi,j. As shown
in [183], it acts as a barrier function that ensures the positivity of Pi,j while making the
problem strongly convex. The transport costMKλ(µ, ν) is called the Sinkhorn distance.
Denoting as K = e−λC , it can be shown [198, 73] that the optimal transport map can be
written as P λ = diag(u)Kdiag(v) and can be estimated with the following fixed point
iteration algorithm on u and v:

ui =
µi∑

jKi,jvj
, vj =

νj∑
iKi,jui

(4.12)

One should note that such type of normalization, i.e. x 7→ x
‖x‖1 is the projection on the

`1 ball (or equivalently probability simplex) using the Kullback-Leibler divergence [21].
Indeed, another way to express the regularization term is:

MKλ(µ, ν) = min
P∈S(µ,ν)

〈P, C〉+
1

λ
KL(P‖1).

When regular grids Xi and Yj are involved and the cost Ci,j ∝ Xi − Yj, the previous
algorithm (4.12) corresponds to convolutions with the kernel Ki,j = e−λCi,j . For Ci,j =
||Xi − Yj||2, one recovers convolutions with Gaussian Kernels that can be implemented
separately in each dimension thus leading to very fast algorithms [199].

In Figure 4.5, the matrices P of transport flows computed with the different regular-
ization methods are illustrated. The null values Pi,j are displayed in white color. These
matrices describe how the mass from the bins of the input histogram (in rows) are sent
to the bins of the target histogram (in columns). As a bin µi corresponds to the line i
of the matrix, the variance of the transport map is larger when a lot of columns j are
active (i.e. Pi,j > 0) and correspond to very different bins Yj.

(a) Histogram a (b) Histogram b (c) Optimal (d) Relaxed/ (e) Entropy
Transport regularized regularization

Figure 4.5 – Illustration of the effect of different regularizations of Optimal Transport
computed between histograms (a) and (b). The standard Optimal Transport map is
shown in (c). Relaxaed and Regularized Optimal Transport flow of [94] is presented in
(d) and the entropic reguarization of [73] in (e).

Even if both regularizations have very different origins, we can see on this illustration
that the influence over the transport matrix P is quite similar, as the mass of each bin
of one histogram is spread to several bins on the other histogram.

The parameter λ of the entropy regularization [73] directly measures this dispersion.
In the asymptotic case λ → 0, the transport matrix is the one with the minimum
entropy: P = µνT . In the case λ → ∞, one recovers the standard transport matrix
(Figure 4.5 (c)), which is the one of maximum entropy. In practice the convergence of



the algorithm (4.12) that estimates the 2N variables is faster for small values of λ. A
trade-off between computational cost and quality of the approximate transport has to
be chosen.

On the other hand, even if it leads to slower algorithms (since a linear program with
N2 variables has to be solved), the explicit regularization of the transport plan [94] has
a physical meaning which presents some advantages as will be seen later.

Dual formulation As shown in [75], the Fenchel transform of (4.11) reads

MK∗λ(u, v) =
1

λ

∑
i,j

(
e−λ(Ci,j−ui−vj)−1

)
. (4.13)

Note that the indicator function for condition Ci,j−αµi−βνj of the standard transform
(4.5) has been smoothed by an exponential function. As noticed in [76], such function
is smooth and its gradient can be computed explicitly, which is a main advantage for
incorporating MK terms in more general functionals to be minimized.

More generally, generalized constraints can be naturally integrated with the dual
formulation of the entropic regularization. A simple example concerns unnormalized
histograms µ and ν. In order to impose them to have a total mass ofM , the regularized
Optimal Transport function has been extended in [176] as follows:

MKλ,M(µ, ν) = min
P∈S(µ,ν)

{
〈P, C〉 − M

λ
h

(
P

M

)}
+ ιHM (µ, ν), (4.14)

where
HM := {µ, ν ∈ RN

+ , 〈µ,1N〉 = 〈ν,1N〉 = M}. (4.15)

The Fenchel transform of the regularized transport cost (4.14) reads:

MK∗λ,M(u, v) =
M

λ
log
∑
i,j

(
e−λ(Ci,j−ui−vj)

)
, (4.16)

which directly encodes the mass constraint.

In the next chapters, we will see how these different regularizations can be used to
deal with image processing problems.





Chapter 5

Application to Color Transfer

Many image processing applications require the modification or the prescription of some
characteristics (colors, frequencies or wavelet coefficients) of a given image, while pre-
serving other features. Statistics to be prescribed may come from prior knowledge, or
more generally, are learned from an example. In such a case, another image is selected
from a database to define a template. Such a framework arises for image enhancement,
inpainting, colorization of grayscale or infrared images, tone mapping, color grading or
color transfer. In this paper, we will focus on this last application through histogram
transfer between images.

Color transfer consists in modifying an image to match the color palette of another
one, while preserving its geometry. In the literature, the different interpretations and
definitions of color palettes have led to various algorithms. In the following, we only
consider unsupervised approaches. Since the seminal work of [184], methods have been
designed to transfer some simple color statistics (i.e. the mean and standard deviation)
in any color space [220]. These works share some common features with texture synthesis
by example (see in particular [171]). More general approaches match the complete
histogram of features from two images. When considering grayscale images, the problem
is known as 1-D histogram specification. This framework has been extended for color
histograms, using for instance 1-D ∆E-color index [146].

Histogram matching via optimal transportation There exist strong links be-
tween histogram specification and the Monge-Kantorovich Optimal Transport problem.
Histogram transfer between grayscale images indeed corresponds to the application of
the 1-D Optimal Transport plan between the gray levels of the pixels of the images,
as noted by [81] for the case of histogram equalization. Some approaches to find fast
approximate solution of OT for color images were investigated in [168, 180].

Spatial information As illustrated in Figure 5.1 (c), the exact transfer of color
palette is generally not satisfying for practical applications in image processing [172].
The color distributions to be matched may have very different shapes, so that outliers
generally appear in the processed image. Moreover, as the process is performed in the
color space, it may not transfer coherent colors to neighboring pixels. It results in unde-
sirable artifacts, such as JPEG compression blocks, enhanced noise, saturation or con-
trast inversion that should be corrected with specific post-processings [168, 174, 203]. As
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a consequence, various models have been designed to incorporate some regularity priors
on the image domain, such as Total Variation [153]. Color transfer may be formal-
ized [161] as a variational problem in the image domain, in order to directly incorporate
a spatial regularization of colors.

(a) IX (b) IY (c) OT transfer (d) Post-processing

Figure 5.1 – Artifacts of color transfer with Optimal Transport. (a) Input image Ix.
(b) Target color palette IY . (c) Exact color specification with optimal transport. (d)
Post-processing with spatial regularization.

While spatial regularization suppresses small artifacts due to exact histogram spec-
ification (see Figure 5.1 (d)), it cannot handle strong artifacts due to an irregular OT
map [179] and deal with potential very different modes (i.e. the dominant colors) be-
tween each distribution. For instance, one would like to only transfer a limited quantity
of purple color into the flower example of Figure 5.1.

Hence, we investigate in this chapter the use of relaxed and regularized Optimal
Transport for proposing models robust to color outliers that directly include spatial
information in the image domain.

5.1 Convex and regularized Optimal Transport model

This section shows how the relaxed and regularized Optimal Transport formulation
introduced in Chapter 4 can be applied to color transfer, and how the regularization
and the relaxation improve the results obtained by previous methods.

The color transfer problem consists in modifying a source image IX so that its colors
match the colors of a target image IY . We denote as IX : Ω ⊂ Z2 7→ Σ ⊂ R3, where Ω
is the regular pixel grid and Σ is the quantized 3D RGB color space. The problem is
to find a new image IZ whose geometry is as close as possible to the source image IX
and whose color distribution is close to the one of the exemplar image IY . The color
histogram of such an image IX can be estimated using the empirical distribution µX .
The goal of color transfer algorithms is to compute a transformation T such that for
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all pixel x ∈ Ω, IZ(x) = T (IX(x)), where the new empirical distribution µZ is close (or
equal) to µY . Figure 5.2 shows an example where IX , IY are the original input images,
the second row displays the 2-D projection of the 3-D distribution of pixels µX and µY ,
and in the third column, we show the distribution µZ which is the result of applying T
to IX , where T is computed using the Optimal Transport framework. The associated
image IZ has the geometry of IX and the color palette (3-D histogram) of IY .

IX IY IZ
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Figure 5.2 – Example of color transfer. Given images IX and IY with their corresponding
3-D RGB color distributions µX and µY (represented here using the 2-D projection of
every pixel in the RG plane), the goal is to define an image IZ that has the geometry
of IX and a histogram µZ that is similar to µY .

Problem Formulation We consider the bipartite weighted matching problem be-
tween two histograms. Let µ and ν be two discrete and normalized distributions of
features X ∈ RNX×d and Y ∈ RNY ×d, respectively. Taking NX = NY = N , their corre-
sponding weights are µ ∈ RN and ν ∈ RN , so that: µ =

∑
i µi δXi and ν =

∑
j νj δYj .

We look for a mapping T : Rd 7→ Rd between X and Y , referred to as transfer map
in the following. In order to transport µ towards ν, we define T#µ =

∑
i µiδT (Xi). For

color transfer, the mapping should have the following properties: (i) T#µ should be
close to or match the target distribution ν, (ii) T should be regular in some sense.

5.1.1 Adaptive OT

Relaxing the mass conservation constraint is crucial in order to better match the modes
(i.e. the dominant colors) of each distribution. Regularizing the transport is also im-
portant to reduce colorization artifacts. Inspired from functional (4.9), the regularized
model proposed in [175] aims at tackling the aforementioned issues by relaxing the
matching constraint towards the target distribution ν on the matrix P .
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This is done by introducing the set of acceptable transfer maps Pκ(µ, ν):

Pκ(µ, ν) = {P ∈ [0, 1]N×N\ P 1N = µ, P T1N = κ⊗ ν}
where κ ∈ RN , κ ≥ 0, κ⊗ ν = (κj νj)j and s.t. 〈κ, ν〉 ≥ 1.

Observe here that the second constraint involves a set of local relaxation parameters
κ = (κj). With respect to the previous admissible set (4.7), the relaxation with these
parameters allow the model to increase or decrease the capacity value of the correspond-
ing feature Yj of the target histogram µY ; the maximum amount of mass from µ that Yj
can receive is now bounded by κj νj. If κ = 1NY , we get the previous Optimal Transport
problem. The last constraint 〈κ, ν〉 ≥ 1 prevents the set of acceptable transport maps
Pκ(µ, ν) from being empty. With this relaxed parameterization, a model that locally
adapt itself to the data can be defined.

Convex formulation When considering color transfer, we would like the transport
to be piecewise constant, since we do not want to penalize color shift. To that end, as
in (4.8), we consider the regularization of the average transport displacement T (Xi) =
(DµPY − X)i, where Dµ = diag(µ−1). As in the previous chapter, this regularization
is done on the gradient GX of the average transport T , that is computed on the graph
created from the nodesXi. Moreover, in order to control that the relaxed and regularized
transported color palette is close to the target, an additional term ‖κ− 1N‖ is added
to check that the relaxation is tight, i.e. that the final transported density will be close
enough to the proportion of colors in ν.

Introducing the regularization parameter λ ≥ 0 and the fidelity one ρ ≥ 0, the model
derived from (4.9) is the following convex optimization problem with linear constraints:

{P ?, κ?} ∈ argmin
P∈Pκ(µ,ν)

κ∈RN ,κ≥0,〈κ, ν〉≥1

〈CXY , P 〉+ λ ‖GX(DµPY −X))‖1 + ρ‖κ− 1‖1. (5.1)

This energy can be minimized with a linear solver by introducing auxiliary variables
to deal with the L1 norms, as detailed in (4.10). This formulation generalizes the
Optimal Transport model proposed in [94] on cloud of points, to handle distributions.
Observe that the transport is here automatically relaxed, since we do not require the
user to tune the capacity vector κ.

Spatio-color clustering To make the optimization problem (5.1) tractable for his-
tograms obtained from large scale images, a joint clustering is performed on the pixel
grid and on the color space (d = 5). The images IX and IY are quantized to generate X
and Y with N clusters. We denote Xi = (xi, ci) ∈ R5, to specify the spatial component
(xi ∈ Ω) and the color component (ci ∈ Σ). These values (xi, ci) represent the mean
spatial and color values of the set of pixels in IX (and equivalently for IY ) assigned to
cluster Xi. As illustrated in Figure 5.3 (a-b), this assignment is computed using the
fast super-pixels method [1]. Note that each cluster Xi has an assigned group of pixels
{Ni ⊂ Ω × Σ}i that can have a different amount |Ni| of pixels. We define the cluster
weight as µi = |Ni|/|Ω|.

Thus, we consider from now the measure µ : X = (x, c) 7→
∑

i µiδXi(X) =∑
i µiδxi(x)δci(c), and similarly for the measure ν obtained from image IY .
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Graph With this clustering involving spatial information of color location, color con-
sistency in the image domain can be ensured through graph regularization. A graph is
created from the nodes Xi that are assumed to be linked to P nodes Xj. The gradient
GXV ∈ RN×P×d of a field V = {V l

i } ∈ RN×d on GX is computed at point Xi as

(GXV )i = (wij(Vi − Vj))j) ∈ RP×d,

where the weight wij between cluster Xi and Xj is non null if the nodes are linked in the
graph. In this case, the weight relies on the clusters’ distances: wij ∝ exp(−||Xi−Yj||).

Image Synthesis As we work at a super-pixel scale to speed-up the Optimal Trans-
port computation, the last step is to synthesize a new full resolution image IZ from the
source image IX using the new color palette T#µ. Following [207], a maximum like-
lihood estimation can be used to incorporate geometrical information from the source
image IX into the synthesis process. For each pixel X̃ = (x, IX(x)) of the source image,
the idea is to use the likelihood to all clusters {Xi}i through the weights {ωi}i in or-
der to compute a linear combination of the estimated transferred colors T (Xi). Hence,
we finally get for each pixel x ∈ Ω: (x, IZ(x)) = Zi(x) = 1

W (X̃)

∑
iwi(x̃)T (Xi), with

wi(·) = exp
(
−1

2
‖· −Xi‖2), and the normalizing factor W (X̃) =

∑
iwi(X̃).

5.1.2 Color transfer experiments

A first example is presented in Figure 5.3, where the super-pixel segmentation of the
input (a) and target images (b) are first displayed. The color transfers obtained without
(c) and with (d) the automatic tuning of the relaxation parameters are then presented.

(a) Source image IX (b) Target image IY

(c) Optimal Transport (d) Adaptive model

Figure 5.3 – Color transfer process. Super-pixel segmentation of (a) source image IX and (b)
target image Iy. Color transfer without (c) and with (d) relaxation (i.e. ρ =∞ and ρ = 103).
Photo credit: Nicolas Le Dilhuit
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A comparison with state-of-the art methods [168], [161, 94] is given in Figure 5.4.
Notice that the simplified optimal transport of colors with Principal Component Anal-
ysis of [168] has been improved with a post-processing [174]. Thanks to the super-pixel
segmentation, the process only requires a few seconds whereas the methods of the liter-
ature last a few minutes. Contrary to [168, 161], the target color palette is not perfectly
matched, since the model adapts itself to the source image data. It leads to a transfer
visually more plausible, as illustrated in the flower example of Figure 5.5 where the cor-
rect proportion of purple has been selected. With respect to [94], the improvement of
the spatial regularization involved by the super-pixel clustering removes artifacts that
appear for instance in the background. Figure 5.6 finally presents examples of color
transfer on HDR images.

IX IY [94]

[168] [161] [175]

Figure 5.4 – Comparison of the adaptive approach with [168] (with the post-processing of
[174]), [161] and [94]. Photo credit: Elektrofisch

(a) IX (b) IY (c) Adaptive model Relaxed palette

Figure 5.5 – Adaptive color transfer with relaxed Optimal Transport. (a) Input image
Ix. (b) Target color palette IY . (c) Transfer with adaptive relaxation. (d) Relaxed color
palette κ⊗ ν (the darker, the less a color is used). The model adapts itself to the color
distributions and automatically selects the adequate proportion of color to transfer.
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(a) (b)
Figure 5.6 – Examples of color transfer. (a) source image u and target color image v. (b)
Final image w with post-processing. Photo credit: ‘Waves’ photo by Daniele Zedda, ‘Grafiti’
and ‘fire exits’ by Thomas Leuthard, ‘Canyon’ by Chen Su, ‘Desert’ by Steve Yabek, and ‘Creek’
by Nicolas Le Dilhuit.
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5.1.3 Extension to Barycenters

Until now, we focused on the computation of transport between pairs of distributions.
Dealing with more that 2 distributions can nevertheless be useful to compute barycenters
of color palettes for color normalization of multiple images.

Geodesics between pairs of distributions can indeed be extended to barycenters be-
tween an arbitrary finite collection of distributions. Existence and uniqueness of this
barycenter is studied in [3]. Computing the barycenter between discrete distributions
requires the resolution of a linear program that corresponds to a multi-marginal optimal
transportation, as proved in [3]. However, in contrast with the case of two distributions,
the case of un-weighted sums of Diracs is not anymore equivalent to an assignment
problem, which is known to be NP-hard [47]. Computing numerically this barycenter
for large scale problems can however be tackled using a non-convex formulation solved
with a Lagrangian discretization, which finds applications in image processing [180].

Let us now detail how the previous model can be extended to find a new distribution
in-between two or more distributions. Given a set of r = 1 · · ·R input histograms
µr ∈ RN associated to clusters Yr ∈ RN×d, and weights (ρr)r∈R ∈ (R+)R, the regularized
histogram barycenter µ on the fixed cluster X is a local minimizer of

min
µ

∑
r∈R

ρrE(µ, µr), (5.2)

where

E(µ, µr) = min
Pr∈Pκr (µ,µr)

κr∈RN ,κr≥0,〈κr, ν〉≥1

〈CXY , Pr〉+ λ ‖GX(DµPrYr −X))‖1 + ρ‖κr − 1‖1. (5.3)

The minimization of (5.2) can be performed by doing a joint minimization on both
the barycenter histogram µ and the set of matrices Pr and relaxation parameters κr.
This is a non-convex optimization problem. Fortunately, it is separately convex with
respect to each of separate group of variables µ and (Pr, κr)r∈R, so one can use the block
coordinate descent algorithm (A.19) that iteratively minimizes with respect to each of
these variables.

The updates of (Pr, κr)r∈R can be done in parallel, still using linear solvers. The
update of µ is also a linear program which can be solved using for instance interior
point solvers [150]. An alternative option is to use first order proximal splitting schemes
[56] as algorithm (A.15), that is well tailored for such highly structured problems. The
convergence of such process has been shown in [93].

Remark 2. In the cloud of points formulation where all the mass is uniformly dis-
tributed over the clusters X and Yr, the previous problem can be reformulated in terms of
clusters positions X instead of histogram weights µ. In the case where λ = 0, ρ→ +∞,
one recovers the barycenter over the Wasserstein space.

Experiments Figure 5.7 shows the results of histogram barycenter computed between
images IX and IY and then transferred to image IX . The geometry of IX is maintained
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(row #1) and its histogram matches the computed barycenter distribution. Note how
the colors change smoothly from (1, 0) to (0, 1) without generating artifacts and match
the color and contrast of image IY for ρ = (0, 1). The change in contrast is specially
visible for the (b) wheat image.
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Figure 5.7 – Results for the barycenter algorithm on different images. Note how as ρ ap-
proaches (0, 1), the histogram of the barycenter image becomes similar to the histogram
of IY .

As a final example, we show in Figure 5.8 how this method can be applied as a color
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normalization preprocessing before comparing/registering images of the same object
obtained under different illumination conditions.

Color normalization is the process of imposing the same color palette on a group of
images. This color palette is always somehow related to the color palettes of the original
images. For instance, if the goal is to cancel the illumination of a scene (avoid color
cast), then the imposed histogram should be the histogram of the same scene illumi-
nated with white light. Of course, in many occasions this information is not available.
Following [161], an in-between histogram is chosen as the regularized Optimal Transport
barycenter and then transferred to each image with the corresponding transport matrix
Pr.

Finally notice that the entropic regularization of optimal transport can also be con-
sidered to compute regularized histogram barycenters in a very efficient way [199].

Figure 5.8 – The proposed method can be applied as a preprocessing step in a pipeline
for objects detection or image registration, where canceling illumination is important.
On the first row, a set of pictures of the same object taken at different hours of the day
or night is displayed. On the second row, the histogram barycenter has been transfered
to the 3 images. Note how the algorithm is able to normalize the illumination conditions
of all the images.

5.1.4 Limitations

Due to the one-to-many relaxation and the fact that only the gradient of the average
transport flow is penalized, the regularization does not prevent the transport map to
associate very different colors to a single pixel or cluster. This leads to undesirable



5.1.4 - Limitations 63

results such as color mixing or color inconsistencies in the modified image. Indeed, new
drab colors that do not exist in the target palette ν can be created with regularization.
This is illustrated in Figure 5.9, by increasing the regularization parameter λ of model
(5.1) or when using instead the entropic regularization of model (4.11).

These experiments show that a large regularization involves an important mixing
between colors. Hence, the incorporation of a non-convex constraint that minimizes the
variance of colors assigned to each cluster has been proposed in [178].

(a) Input IX (b) Target IY

(c) λ = 400 (d) λ = 100 (e) λ = 10 (f) λ = 1

(g) γ = 0.1 (h) γ = 0.05 (i) γ = 0.025 (j) γ = 0.01

Figure 5.9 – Creation of drab colors with the regularization. The influence of the reg-
ularization of the average transport (5.1) and the entropic regularization of [73] are
exhibited for color transfer. The second row illustrates the tradeoff between spatial
regularity and color fidelity with decreasing regularization parameter λ in (5.1). In
the last row, a similar tradeoff is obtained with the method of [73], when tuning the
regularization parameter γ = 1/λ in (4.11).



64 Non-convex relaxation of regularized Optimal Transport

5.2 Non-convex relaxation of regularized Optimal
Transport

By using linear programming to optimize the regularized problem (5.1), the dimension
of the variables to estimate is greatly increased as one additional variable is needed for
each regularization constraint. Simplifications of the regularization term (through the
mean transport) is thus needed to reduce the complexity, as illustrated in Figure 4.3.
As previously noticed, such regularization limits the inter-cluster color dispersion but it
induces the creation of new drab colors since an important interpolation of the target
color palette may occur (i.e. the intra-cluster color variance may be large with the
one-to-many assignment). To cope with this issue, the penalization of the dispersion
of assigned colors with a non-convex constraint has been introduced in [178]. With
this new formulation, a different optimization tool which decreases the dimension of the
problem with respect to linear programming can be considered in order to only deal
with the estimation of the transport matrix without considering additional variables for
the constraints as in (4.10).

However, to be able to define an algorithm that efficently deals with such non-convex
penalization of the color dispersion, differentiable funtional terms have to be considered.
Hence, the relaxation here presented is different from the capacity relaxation of the
target histogramt proposed in previous section. The closeness to the target histogram is
now imposed through a data fidelity term which makes easier the control of the results
while simplifying the projection onto the set of acceptable transport matrices.

5.2.1 Dispersion penalization

In order to deal with the aforementioned limitations which are intrinsic to the optimal
transport framework, the following relaxed and regularized optimal transport problem
can be considered:

P ? ∈ argmin
P∈Pµ

〈CX,Y , P 〉+ ρFν(P ) + λR(P ) + αD(P ) (5.4)

where:

• Pµ = {RN×N , P ≥ 0, P1N = µ} is the convex set of right stochastic matrices
(where each row sums to the corresponding bin value in µ),

• Fν(P ) is the fidelity term w.r.t the target histogram ν,

• R(P ) is the regularization prior on the average transport mapping,

• D(P ) measures the dispersion of the average transport map.

To solve efficiently this problem with projected gradient descent, differentiable functions
F , R and P are considered.

Linear Constraint The linear constraint P ∈ Pµ may be incorporated using an
indicator function ιPµ(P ) = 0 if P ∈ Pµ and +∞ otherwise. As the constraint on
acceptable transport matrices Pµ only concerns the rows, the projection onto this set
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is simple. The Euclidean orthogonal projector ProjPµ onto the simplex Pµ can be com-
puted in O(nm log(m)) by using, for each row of the matrix, a variant of the Euclidean
projector onto the probability simplex (see for instance [59]).

Fidelity term As the set of acceptable transport matrices Pµ does not take into
account the target distribution, an additional constraint is required to make sure that
the transported histogram P T1N is close enough to the target histogram ν. To do so,
we rely on the Pearson’s χ2 statistics, which writes for any bistochastic matrix P ∈ Pµ

Fν(P ) = 1
2
χ2
ν(P

T1n) = 1
2

∥∥∥1TnPD1/2
ν

∥∥∥2

− 1
2
, (5.5)

where Dµ = diag(ν−1) We assume from here, without loss of generality, that ν has
non empty bins. Observe that the corresponding fidelity term can be interpreted as a
weighted L2 metric, which further penalizes bins of the target histogram that has small
values. This will prevent the model from using very rare features in the exemplar image.

Regularity term A Tikhonov regularization of the gradient of a flow V can be used
for incorporating spatial information from the input feature distribution in the gradient
operator GX defined on the graph of clusters GX . The norm of the gradient of the mean
flow V = DhuPY −X can therefore be measured as:

R(P ) =
1

2
‖DµGX(DµPY −X)‖2

2, (5.6)

where the value of the gradient norm is weighted by the corresponding histogram bin
value: (Dµ

−1)ii = µi.

Dispersion term As pointed out before, the regularized transfer induces a high vari-
ability of color assigned to each input color. The simple idea is thus to consider the
minimization of the variance of the flow. Denoting Y = DµPY , where Y i is the mean
color assigned to cluster Xi, the intra-cluster variance of the color assigned to Xi is

defined as Var(Y )i = (Y 2)i − Y
2

i = 1
µi

∑
j Pi,j‖Yj‖2 −

∥∥∥ 1
µi

∑
j Pi,jYj

∥∥∥2

.

This variance is finally penalized with respect to each cluster weight to obtain the
last functional term:

D(P ) =
∑
i

µiVar(Y )i.

Minimizing this term will promote sparser transport matrices and will prevent strong
color mixing in the tackled applications.

Optimization Because of this last term penalizing the variance of the flow, the objec-
tive function (5.4) is not convex in P . The inertial Forward-Backward algorithm (A.17)
can be used to find a critical point of this non-convex problem [8, 156], since it contains
a convex non-smooth term (the linear constraint ιPµ(P )) and the sum of differentiable
terms G(P ) = 〈CXY , P 〉+λR(P )+ρF (P )+αD(P ), which all have a Lipschitz gradient
on the set Pµ.
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5.2.2 Experiments

Figure 5.10 illustrates the interest of the proposed approach to cancel the effect of
transport dispersion. The first row shows input and target histograms, respectively in
(a) and (b). The colormap in (a) is arbitrary, and used to illustrate the location reach
with the optimal transport map in (b). Observe that the mapping is highly irregular,
sending neighboring colors (orange) in two distant locations, as illustrated in (f). Figures
(c) and (d), respectively proposed in [94] and [73], provides more regular mapping of the
average flow, as illustrated in (g) and(h), but the colors are spread out to many different
locations.

The non-convex model, illustrated in (e), relaxes the matching constraint while con-
trolling the variance of the mapping and the χ2 statistics with the desired output his-
togram. This leads to sparser transport flow (i) and almost no color mixing.

The matrices P of transport flows computed with the different methods are illus-
trated in Figures (f) to (i). The null values Pi,j are displayed in white color. These
matrices describe how the mass from the bins of the input histogram (in rows) are sent
to the bins of the target histogram (in columns). As a bin µi corresponds to the line i
of the matrix, the variance of this bin is larger when a lot of columns j are active (i.e.
Pi,j > 0) and corresponds to very different features Yj.

(a) Input histogram (b) Output histogram using
OT

(c) Gradient-based Regular-
ization (5.1)

(d) Entropy-based Regulariza-
tion (4.11)

(e) Non-convex model

(f) OT flow (g) Gradient regular-
ized OT flow (5.1)

(h) Entropy regular-
ized OT flow (4.11)

(i) Non-convex regu-
larization (5.4)

Figure 5.10 – Illustration with 1D histograms of various models for regularized optimal
transport.
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As illustrated in Figure 5.11, the colors of the target palette are better recovered
with increasing penalization of the color variance. When no penalization is applied to
the color variance (i.e. α = 0), it corresponds to the model of (5.1). By monitoring the
capacity of the target histogram and regularizing the average flow [175], the synthesized
images look plausible (5.11b) but they contain new drab colors (that do not exist in
the target image) and they are over-smoothed. On the other hand, the transfer is far
better when the color variance is penalized (with high values of α). In this case, the
final images only contain the colors of the target images.

(a) Input (b) α = 0 (c) α = 10 (d) α = 100 (e) Exemplar

Figure 5.11 – Color transfer. The colors of the exemplar images (e) are transfered to
the input images (a).

5.3 Discussion

In the future, one interesting aspect to study is the behavior of the non-convex dispersion
penalization with respect to the convex entropic regularization. The combination of non-
convex terms with the entropy has for instance been proposed for the domain adaptation
problem [70]. At first sight, it may seem contradictory to minimize the variance of the
flow while maximizing its entropy. Nevertheless, the variance penalization corresponds
to the minimization of a local entropy, on the rows of the transport matrix, whereas
the method of [73] corresponds to the maximization of the global entropy of the matrix.
Optimization methods dedicated to problems formulated as the difference of convex
functions, known as DC programming methods [118], may thus be an interesting way
to compute efficiently the related transport maps.

Finally, it is important to underline that the regularization of the average optimal
transport map allows removing artifacts for color transfer purpose, but its related com-
putational cost is prohibitive and limited in practice to histograms discretized with a
few hundreds of bins. On the other hand, the entropic regularization is not designed to
deal with transfer artifacts, but it leads to extremely fast computations of approximate
transport distances between large scale histograms. Hence, we will see in the next chap-
ter that such regularization is very efficient for involving transport distances in more
general problems.





Chapter 6

Application to Image Segmentation

Image segmentation has been the subject of active research for more than 20 years (see
e.g. [10, 71] and references therein). For instance, we can refer to the seminal work
of [147], or to its very popular approximation with level sets developed in [58]. This
last work provides a very flexible algorithm to segment an image into two homogeneous
regions, each one being characterized by its mean gray level value.

In the case of textured images, a lot of extensions of [58] have been proposed to
enhance the mean value image segmentation model. For instance, local histograms
are used in [228, 151], Gabor filters in [213], wavelet packets in [11] and textures are
characterized thanks to the structure tensor in [43, 186].

When considering the global histograms of the regions to segment, there also exist a
large range of methods in the literature [9, 126, 44, 116] also based on [58]. Recent works
make use of the the Wasserstein distance [165] to compare globally the histograms. It
is important to notice that this class of approaches involves complex shape gradient
computations [80] for the level set evolution equation. Moreover, as these methods all
rely on the evolution of a level set function [158], it leads to non-convex methods that
are sensitive to the initialization choice and only a local minimizer of the associated
energy is computed.

Recently, convexification methods have been proposed to tackle this problem, as in
[152, 53, 54, 25, 170, 56, 42, 221]. The original model [58] can indeed be convexified, and
a global solution can be efficiently computed, for instance with a primal-dual algorithm.
Thanks to the coarea formula, a simple thresholding of this global solution provides a
global minimizer of the original non-convex problem. Such approaches have not been
developed yet for global histogram segmentation with length boundary regularization.

Other models as in [185, 214, 13, 109, 224] that use graph-based methods and max-
flow formulations [173], obtain good minima without level-sets. Nevertheless, these
algorithms just consider simple bin-to-bin distances between histograms (for instance
`1 or Bhattacharyya) which are not robust enough to deal with coarse quantification of
histograms or data outliers.

The use of Optimal Transport for image segmentation has been first investigated
in [151] for comparing local 1D histograms. In [165, 143], active contours approaches
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using the Wasserstein distance for comparing global multi-dimensional histograms of
the region of interest have then been proposed. Again, such non-convex methods are
sensitive to the initial contour. Moreover, their computational cost is too important
(several minutes) even if they include some approximations of the Wasserstein distance.

In order to include more robust metrics between histograms while being independent
of any initialization choice, we now describe some convex [206] and fast [222, 176, 177]
segmentation models including Optimal Transport between global color histograms.

6.1 Convex histogram-based image segmentation

Let I : x ∈ Ω 7→ I(x) ∈ Rn be a color image, defined over the N -pixels domain Ω
(N = |Ω|), and F a feature-transform of n-dimensional descriptors (i.e. colors, gradient
orientations...) such that FI(x) ∈ Rd. The feature space F is assumed to be clustered
in M regular bins Fj ∈ Rd. Hence, one can design a linear assignment operator H of
size M ×N such that for each pixel x, H(x, j) = 1 if FI(x) ∈ Fj and 0 otherwise.

The objective is to segment the image I into 2 regions, by defining a binary seg-
mentation map u : Ω 7→ {0, 1} of the whole image domain with respect to two fixed
probability distributions of features µ1 for the foreground and µ0 for the background
defined in F . This prior information is commonly obtained by scribbles given by a
user in an interactive segmentation process [40]. In a local model, the distance to the
scribble information is considered to perform the segmentation, using for instance local
histogram comparison [30, 151] or geodesic distances [72]. As illustrated in Figure 6.1,
the goal is here different as global statistics of the regions to segment are compared.

µ1 µ0 I u

Figure 6.1 – Segmentation problem. The objective is to find a segmentation of the
image I into 2 regions with a binary map u such that the color distributions of the
region defined by u = 1 (resp. u = 0) matches the prior color distribution µ1 (resp. µ0)
obtained from the given scribbles visible in image I.

As proposed in [222], the following model is considered:

J(u) = D(µ1, π(u)) +D(µ0, π(1− u)) + ρ TV (u) (6.1)

where TV (u) =
∫
|Du| is the total variation of u measuring the length of its level sets

and ρ ≥ 0 is the regularization parameter. The function D is a convex distance between
feature distributions. Finally, π(u) is the empirical discrete probability distribution of
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features FI using the binary map u which writes:

π(u) : u ∈ RN 7→ Hu

|u|1
∈ RM ,

where |u|1 =
∑

x |u(x)| = 〈u,1〉 = 1Tu for positive values of u denotes the size of the
region defined by u = 1, i.e. the mass of the histogram Hu. The functional (6.1)
is highly non-convex since π is a non linear operator, and the objective is to find a
minimum over the non-convex set {0, 1}N .

In order to avoid the use of combinatorial algorithms for solving this problem, a
convex relaxed model has been proposed in [222] and [206] by considering the minimiza-
tion over the convex set u ∈ [0, 1]N and the comparison of the non normalized color
histograms instead of normalized distributions:

J(u) = D(µ11
Tu,Hu) +D(µ0〈1− u,1〉, H1T (1− u)) + ρ TV (u). (6.2)

The distribution µ1 (resp. µ0) is here normalized with respect to the mass of the
histogram Hu (resp. H(1− u)).

Once a global minimizer u∗ of problem (6.2) has been computed, a threshold ε ∈ [0; 1[
is required to get a binary segmentation of the image into two regions uε(x) = if u∗(x) ≥ ε
and 0 otherwise. Notice that contrary to local data terms [53, 152], the thresholded
solution may lead to a greater value of the functional, i.e. J(uε(x)) ≥ J(u∗), since the
coarea formula does not hold for general nonlinear functions D involving linear operators
H, µ11

T and µ01
T . One other solution could be to rely on integer linear programming

with methods such as branch-and cut [149], in order to directly estimate a global binary
solution of problem 6.2.

In the following, the use of distances D related to Optimal Transport are described.

6.2 Optimal Transport between non normalized his-
tograms

In order to have a robust distance between the non-normalized histogram, one would
like to take D as the Wasserstein distance. Nevertheless, as the computation of Opti-
mal Transport involves prohibitive computational costs, some approximations are now
described.

6.2.1 Wasserstein-`1 for 1−D histograms

When considering 1−D histograms µ and ν defined over a d = 1 dimensional space (for
instance distributions of gray levels), the `p Wasserstein distance reads [216]:

W p
p (µ, ν) = ||C−1

µ − C−1
ν ||p,
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where Cµ is the cumulative distribution function of µ and C−1
µ its pesudo-inverse. In

the case p = 1, the disance can be simplified as:

W 1
1 (µ, ν) = ||Cµ − Cν ||1.

As noticed in [222], by defining the M ×M cumulative matrix C(i, j) = 1 if i ≤ j and
0 otherwise, the Wasserstein- `1 distance between histograms can be included in the
model (6.2) by taking:

D(µ, ν) = ||C(µ− ν)||1.

Proximal algorithm such as the Primal-Dual one (A.15) can be thus used to compute
a global minimizer u∗ of the associated non-smooth convex problem. An illustration of
the application of the method is given in Figure 6.2. Notice that similar results can
be obtained with graph approaches [185] when `1 norm between 1D histograms are
involved.

(a) Initial image (b) Segmentation

Figure 6.2 – Segmentation of a natural image. The input histogram prior µ1 (resp. µ0)
is given by the white (resp. green) area. The final contour is obtained by thresholding
the solution with ε = 0.5.

6.2.2 Approximate MK distance for general histograms

For general feature space F of dimension d > 1, the previous reformulation in term
of cumulative histograms does not hold. Hence, we would like to consider D as the
Monge-Kantorovitch distance between the histograms µ, ν ∈ RM :

MK(µ, ν) := min
P∈S(µ,ν)

{
〈P, C〉 =

M∑
i=1

M∑
j=1

Pi,jCi,j

}
. (6.3)

where the sets of admissible transport matrices is

S(µ, ν) := {P ∈ RM×M
+ , P1M = µ and P T1M = ν}. (6.4)

and the M ×M matrix C is defined as Ci,j = ||Fi − Fj||2, the distance between bins Fi
and Fj.

The MK distance can naturally be incorporated into the model (6.2), as proposed
in [206]. However, as the MK distance is not smooth, when solving the associated
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problem with a proximal algorithm, one requires, at each iteration of the algorithm, the
computation of the proximal operators ofMK(µ11

Tu,Hu) andMK(µ11
T (1−u), H(1−

u)):

ProxMK(µ11T ·,H·)(v) = argmin
u

1

2
||u− v||2 + MK(µ11

Tu,Hu),

which is a quadratic programming problem that involves inner loops in the process. It
has been suggested in [176] to rely on the entropic regularization of Optimal Transport
by extending the works of [76]. The entropy-regularized Optimal Transport problem is
now reformulated as the Sinkhorn distance:

MKλ,≤N(µ, ν) := min
P∈S(µ,ν)

{
〈P, C〉 − N

λ
h(P/N)

}
+ ιH≤N (µ, ν), (6.5)

where the entropy of the matrix P is defined as h(P ) := −〈P, logP 〉 and the set H≤N
of admissible histograms prescribes the masses of histograms, that are bounded above
by N , the number of pixels of the image domain Ω:

H≤N :=
{
µ ∈ RM , ν ∈ RM

∣∣∣µ ≥ 0, ν ≥ 0, 〈µ, 1〉 = 〈ν, 1〉 ≤ N
}
. (6.6)

By introducing the matrix-valued function Qλ(α, β)i,j = eλ(αi+βj−Ci,j)−1 defined for
α, β ∈ RM , one can show that the Legendre transform of MKλ,≤N reads:

MK∗λ,≤N(α, β) =

{
N
λ
〈Qλ(α, β),1〉 if 〈Qλ(α, β),1〉 ≤ 1

N
λ

log〈Qλ(α, β),1〉+ N
λ

if 〈Qλ(α, β),1〉 ≥ 1.
(6.7)

The constraint ιH≤N is thus absorbed in this dual formulation. A last interesting
point to notice is that this dual function is differentiable and its gradient can be explicitly
written as:

∇MK∗λ,≤N(α, β) =

{
N (Qλ(α, β)1, Qλ(α, β)1) if 〈Qλ(α, β),1〉 ≤ 1

N
〈Qλ(α,β),1〉

(
Qλ(α, β)1, Qλ(α, β)T1

)
if 〈Qλ(α, β),1〉 ≥ 1

.

(6.8)

Moreover, it can be shown that the gradient ∇MK∗λ,≤N is a Lipschitz continuous
function of constant bounded by 2λN .

We emphasis here that we retrieve a similar expression to the one originatively
demonstrated in [76], where the authors consider the Sinkhorn distance on the proba-
bility simplex (i.e. the special case where N = 1 and 〈Q,1〉 = 1).

Optimization The general final problem we want to solve can be expressed as:

min
u

MKλ,≤N
(
µ11

Tu,Hu
)
+ MKλ,≤N

(
µ01

T (1− u), H(1− u)
)
+ ρ TV (u) + ι[0,1]N (u). (6.9)

Using the Legendre–Fenchel transform, the problem (6.9) can be reformulated as:

min
u

max
α1,β1
α0,β0,z

〈µ11
Tu, α1〉+ 〈Hu, β1〉+ 〈µ01

T (1 − u), α0〉+ 〈H(1 − u), β0〉+ 〈∇u, z〉

+ ι[0,1]N (u)−MK∗λ,≤N(α1, β1)−MK∗λ,≤N(α0, β0)− ι‖.‖≤ρ(z),
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where the dual variables αi, βi for the MK term are in RN and the dual variable z for
the TV term is in R2N .

This problem can be efficiently optimized with the Preconditionned formulation [137]
of the Primal-Dual algorithm (A.15) proposed in [57] that combines implicit schemes
with the proximal operators of ι[0,1]N (u) and ι‖.‖≤ρ(z) and explicit schemes with the
gradient of the other terms. Notice that the process does not require the computation
of Optimal Transport and only involves variables of dimensions scaling with N or M .

However, the time steps of this algorithm are bounded by the inverse of the Lipschitz
constant of the differentiable terms which is proportional to ∇MK∗λ,≤N = 2λN . It
thus involves a slow explicit gradient ascent in the dual update (A.15) for accurate
approximations of the MK distance (i.e. large values of λ). In practice, good results
are nevertheless obtained in a few hundred iterations, for relatively high values of λ.

Remark 3. As noticed in [176], one can resort to the bidualization of MK or MK∗λ,≤N
in order to remove the dependency of time steps to λ and have algorithms without inner
loops. This nevertheless induces a new dual variable which dimension scales with M2,
the dimension of the transport matrix P .

6.2.3 Experiments

In this experimental section, exemplar regions are defined by the user with scribbles.
These regions are only used to built prior histograms, so erroneous labeling is tolerated.
Histograms µ1 and µ0 are built using hard-assignment on M = 8d clusters. We use
either RGB color features (F = Id and n = d = 3) or the gradient norm of color features
(F = ‖∇.‖ and again n = d = 3). The cost matrix is defined from the Euclidean metric
‖·‖ in Rd space. Final regions are obtained with threshold ε = 0.5. A few seconds are
required to run 100 iterations and segment a 1 Megapixel color image.

Comparison with a local histogram-based approach In order to illustrate the
importance of global histogram comparisons over local ones, a local histogram segmen-
tation model is introduced. It looks at the local probability of a pixel to belong to a
class (foreground or background). This can be formulated with the functional:

Jlocal(u) = TV (u) +
∑
x

u(x)
(
‖ h0 − hV (x) ‖1 − ‖ h1 − hV (x) ‖1

)
, (6.10)

where hV (x) is the histogram estimated on a neighborhood V (x) of x ∈ Ω. Notice
that the data term can be computed pointwise (once the map of distances with local
histograms has been calculated for the local model). This is a main difference with the
previous data term which values depend on the whole state u. On the other hand, it
is important to underline that such functionals can be globally minimized on {0; 1}N ,
using graph methods [40] or convexification approaches [53, 152, 25, 56].

In Figure 6.3, we can see that the reference color distributions are here not homo-
geneous in the sense that the histogram of the whole region is not similar to the ones
computed in local neighborhoods. Here the orange colors are more probable in the re-
gion related to the butterfly. With the local model, the flowers are thus classified as
the butterfly, and the darker regions are segmented as being in the background. This
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example illustrates the importance of global histogram comparisons to get a global seg-
mentation of an image. Indeed, the convex model (c) is able to recover the butterfly,
whereas the local approach (b) completely fails.

(a) Original image (b) Local model (c) Global model

Figure 6.3 – Segmentation of an image where local histograms (9 × 9 neighborhoods)
are different from the global ones. The user defines scribbles which indicate the object
to be segmented (here in white) and the background to be discarded (in green). The
segmentation fails for the local histogram model as it classifies the orange areas in the
first class and the darker ones in the second class.

Comparison with a shape gradient approach The advantage of the convex model
that does not depend on the initialization is finally illustrated through a comparison
with the Wasserstein Active Contour method proposed in [165].This approach consists
in deforming a level set function in order to minimize globally the Wasserstein distance
between the reference histograms and the one induced by the segmentation. To make
the level set evolve, this formulation requires complex shape gradients computations.
As shown in Figure 6.4, even if this model can give good segmentations that are close
to the one obtained in Figure 6.3 (c), its initialization may be a critical step as really
different segmentations are obtained with very similar initializations.

(a) (b) (c) (d)
Figure 6.4 – The Wasserstein active contours method [165] has been initialized in two
different ways (a-b), the corresponding segmentations being presented in (c-d). When
carefully initialized, it leads to a segmentation close to the one obtained with the convex
approach (see Figure 6.3 (c)).

General results Figure 6.5 shows the influence of the threshold ε used to get a binary
segmentation. A comparison with the bin-to-bin `1 distance between color histograms is
then given in Figure 6.6. This underlines the robustness of Optimal Transport distance
with respect to bin-to-bin distance. Contrary to Optimal Transport, when a color is not
present in the reference histograms, the `1 distance does not take into account the color
distance between bins which can lead to incorrect segmentation.

This robustness is further illustrated in Figure 6.7. It is indeed possible to use a prior
histogram from a different image, even with a different clustering of the feature space.
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Input u ε = 0.5

ε = 0.1 ε = 0.2 ε = 0.9

Figure 6.5 – Illustration of the influence of the threshold parameter ε on the segmentation
result. The output image u is a regularized weight map that gives the probability of
a pixel to belong to the object. This probability map u is finally thresholded with a
parameter ε to segment the input image into a region, which contour is displayed in
red. The value ε = 0.5 is used by default, but other strategies may be defined, such as
selecting the threshold value that minimizes the non-relaxed energy (6.1).

Inputs `1 λ =∞ λ = 1000

Figure 6.6 – Comparison of the segmentation results obtained from the segmentation
models using MKλ distances, together with the bin-to-bin `1 distance. The same regu-
larization parameter ρ is used for every segmentations. Note that the Optimal Transport
similarity measure is a more robust statistical metric between histograms than `1.

Note that it is not possible with a bin-to-bin metric, which requires the same clustering.
Figure 6.8 shows comparisons between the non-regularized model, quite fast but high
dimensional model, with the regularized model, using a low dimensional formulation.
One can see that setting a large value of λ gives interesting results. On the other hand,
using a very small value of λ always yields poor segmentation results.

Some last examples on texture segmentation are presented in Figure 6.9 where the
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Input histograms Image 1 Image 2 Image 3

Figure 6.7 – Illustration of the interest of Optimal Transport for the comparison of
histograms. Its robustness makes it possible to use prior histograms from different
images (here histograms are taken from image 1 and used to segment images 2 and
3), even with a different clustering of feature space. Note that it is not possible with
bin-to-bin metric, which requires the same clustering.

Input λ =∞ λ = 100 λ = 10

Figure 6.8 – Comparison of segmentations obtained from the proposed models. The
input areas are used to compute the reference color distributions µ1 and µ0. The non-
regularized model corresponds to λ = +∞. The influence of entropy regularization of
Optimal Transport is shown with decreasing parameters λ.

proposed method is perfectly able to recover the textured areas. We consider in this
example the joint histograms of gradient norms on the 3 color channels. Note that the
complexity of the algorithm is the same as for color features, as long as we use the same
number of clusters to quantize the feature space.

The natural extension of the presented 2 region-based model is the definition of
a convex multi-phase segmentation model using Optimal Transport, as done for image
restoration in [205]. In this case, the problem of thresholding the final solution to obtain
a labeling map may have to be studied more in details. Indeed, even in the case of local
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Input λ =∞

Figure 6.9 – Texture segmentation using joint histograms of color gradient norms.

data terms, the final binarization of the solution of the multi-phase problem does not
ensure to recover a global minima of the original non-convex energy [170].

6.3 Co-segmentation

As proposed in [206], the previous framework can be extended to deal with the un-
supervised co-segmentation of multiple images. The problem of co-segmentation [215]
consists in segmenting simultaneously multiple images that contain the same object of
interest without any prior information. In [177], the regularized Optimal Transport dis-
tance has been considered to solve this problem. Let us consider K images Ik defined
over domains Ωk, and Hk the associated assignment operators that match each pixel of
images Ik to a bin of the feature space.

The co-segmentation functional defined over the segmentation maps u = (uk) reads:

J(u) := ιH(u) +
K∑
k=1

(∑
l>k

MKλ

(
Hkuk, H lul

)
+ TV (uk)− α

∥∥uk∥∥
1

)
(6.11)

where −α
∥∥uk∥∥

1
is a balloon force that prevents from estimating empty areas. In this

model, the histograms of regions defined by uk on each image Ik are all compared with
the MKλ distance. The common mass of all histograms is ensure through the convex
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set of admissible maps:

H(u) = {u = (uk), s.t. uk ≥ 0,
∑
Ωk

uk = constant}.

As illustrated in Figure 6.10, this model does not require any prior and automatically
find regions in the different images with common color histograms. One main limitation
is that the area of the two regions has to be the same through the constraint ιH, which
makes the method not invariant to different scales of the same object. The introduction
of unbalanced transport distances [61] able to compare histograms of different masses is
thus the next step to define a more flexible model.

u1 u2

Figure 6.10 – Example of co-segmentation of two images.

Finally notice that the term of functional (6.11) that compares all pairs of histogram
with theMKλ distance is linked to the problem of estimating the regularized barycenter
between K histograms µk:

min
µ

∑
k

MKλ(µ
k, µ),

which is another interesting aspect to study since regularized barycenters can be com-
puted efficiently with a parallel implementation [199].





Conclusion of Part II

In this second part, regularized discrete Optimal Transport distances have been pre-
sented and applied to color transfer and image segmentation. The aim of the presented
works is to enhance the modeling of these image procesing applications using Optimal
Transport, while defining fast and unsupervised methods able to automatically process
given images.

With the integration of regularization of the transport map, it is possible to de-
sign relaxed model able to adapt themselves to heterogeneous color histograms for color
transfer purposes. Spatio-color clustering is an important element to decrease the dimen-
sion of the Optimal Transport problem, while facilitating the incorporation of spatial
consistency in the image domain, and preventing from additional post-processing. The
penalization of the color dispersion has been considered with a non-convex model that
encourages one-to-one bin associations. Contrary to average transport or entropic regu-
larization of Optimal Transport, it prevents from large mixing of colors contained in the
palette of the target image. Notice that the presented methods can be pushed forward
to consider other features such that color, gray or gradient patches around each pixel,
in order to transfer texture, grain, tone or stylish attributes [91, 117, 164, 219, 99].

It is important to underline that there exist semi-automatic color transfer methods
using high level segmentation and/or semantic analysis, while relying on standard Op-
timal Transport [34, 100]. They give fast and accurate color transfer results even for
videos. However, enhancing the Optimal Transport framework is an important step to
make these semi-automatic methods more robust to color outliers.

For the segmentation application, convex methods using user’s information and com-
paring global color distributions have been proposed. The unsupervised automatic co-
segmentation of multiple images is a challenge that has been partially addressed. Graph
based segmentation approaches can not deal directly with Optimal Transport distances
without involving algorithms with inner loops or graph of gigantic size [200]. In this
context, the dual formulation of the Monge-Kantorivitsch problem is a very relevant so-
lution to propose fast algorithms that directly include the minimization of the transport
distances without computing explicitly the transport. Indeed, unavoidable constraints
(as the unknown size of the region to segment) can be absorbed within the dual formula-
tion. Moreover, the entropy regularization provides explicit expressions of the gradient
of Monge-Kantorovitch distances that are useful for the minimization of general varia-
tional problems involving Optimal Transport terms.
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General Conclusions and Perspectives

As shown all along the document, generalized Optimal Transport distances including
relaxation and regularization can be considered to improve the accuracy performances
of image processing applications. New models and algorithms for the continuous and
discrete formulations of Optimal Transport have been presented.

Dynamic Optimal Transport With the fluid dynamic setting, one can compute
geodesics between continuous and vanishing densities. The integration of physical regu-
larization of the transport plan is explicit with this formulation and it has made possible
the interpolation of ocean images containing complex structures. These works open new
possibilities to integrate Optimal Transport distances in numerical weather prediction
systems.

Discrete Optimal Transport In the discrete setting, the regularization of the mean
transport plan has been considered for application to color transfer between images.
Convex and non-convex models have been proposed in this context in order to define
state-of-the-art automatic methods that adapt the proportion of colors contained in the
given palette. These methods have also been extended to the computation of barycenters
to deal with color normalization of multiple images.

Finally, the entropy regularization of discrete Optimal Transport has been used for
image segmentation. A fast and convex model has been designed to segment images,
while respecting global color constraints. Whereas it does not reach yet the computa-
tional time of global graph-based segmentation approaches, this model is more robust
to color histogram quantization thanks to the use of the Optimal Transport distance.

Pros and cons of both formulations With the dynamical formulation, high dimen-
sional continuous and non-negative images can be interpolated and the regularization of
the transport map can be done explicitly. Nevertheless, the convergence of this process
is slow. On the other hand, the discrete setting can deal with any kind of distributions,
but it is limited to small dimensions unless considering the entropic regularization. How-
ever, even if such process gives good and fast estimation of the transport cost, it requires
positive densities and the transport map is in practice too smooth to be directly used
for interpolation purposes.

Future works Problems involving Optimal Transport distances have the potential to
impact a very wide range of applications: data assimilation in geophysics [97], sound
processing, unsupervised clustering through the computation of barycenters [75], statis-
tical analysis of population estimators [29], computer graphics [35, 199].
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Hence, there is a need to provide regularized Optimal Transport distances that can be
efficiently minimized using standard optimization algorithms. The recent development of
proximal algorithms for non-convex problems (see Appendix A) offers new perspectives
for integrating generalized transport distances in a larger range of applications. A
specific work is also required to adapt generic models to the targeted applications.
Hence, the main perspectives of the presented works will concern the following points.

Geoscience For assimilating satellite images in geosciences, the first direction to in-
vestigate is the integration of mass relaxation constraint [166]. There is indeed no reason
for an image to have the same mass than the corresponding physical variable in a numer-
ical model. This problem, known as unbalanced Optimal Transport [136] is crucial for
applying the dynamical Optimal Transport framework to real applications, as noticed
in [60] for biological images.

The main limitation of this dynamical approach is the related computational cost.
However, when considering adequate basis for decomposing the density and the velocity,
faster algorithms can be designed [115]. The integration of the entropic regularization
could be a solution to propose accelerated methods but it should include the modeling
of advanced physical priors that is necessary to preserve the topology of the structures
contained in the images [139].

All these issues are fundamental problems to solve for integrating Optimal Transport
in operational data assimilation systems for numerical weather prediction.

Image Processing Other direct perspectives of the works presented in this
manuscript are the development of discrete models for transferring general features,
multi-phase segmentation models, unbalanced models [103, 61] for co-segmentation or
the integration of additional priors such as the shape of the objects [191, 192].

The interest of Optimal Transport is nevertheless not limited to image segmentation
or color transfer and its relation with image denoising or cartoon decomposition for
instance has already been shown [131]. A yet not studied problem concerns its use in
non-local models. The introduction of Optimal Transport for defining regular non-local
weight distributions between adjacent pixels is for instance an option to enhance the
construction of nonlocal graphs.

Computer Vision and Machine Learning Various works on color image retrieval
[162] or artistic image indexation [121] have shown on small datasets that the Optimal
Transport framework is able to increase retrieval performances. Spatial information is
typically only considered to enhance the feature description [196] but not used in the
metric itself. Partial transport models, that relax the constraint of transporting the
whole histograms mass, are nevertheless still required to increase the robustness to data
outliers.

The development of approximate Monge-Kantorovitch distances with the entropic
regularization has made possible the real-time comparison of histograms quantized with
thousands of bins. In order to transfer such tools for data retrieval, a research effort is
still required. It involves the learning of the ground cost [74] inside the transport distance
as well as efficient implementation, to reach the performances of local descriptors and
more simple metrics in optimized frameworks [123].



Data analysis and Clustering The definition and computation of barycenters rela-
tive to Optimal Transport distance is a major issue for proposing clustering algorithms
adapted to the analysis of structured data. The notion of mean and variance with
respect to the Optimal transport distance is then necessary. Recent studies on Wasser-
stein barycenters [3] have led to practical algorithms both for standard [50] or regularized
barycenters [93] [200].

An interesting direction of research is the definition of geodesic Principal Component
Analysis in the Wasserstein space [28]. First algorithmic works [194] have been developed
with applications to color transfer, but this subject deserves to be explored more in depth
to propose new clustering algorithms.

Audio Processing The transfer of Optimal Transport tools into the audio commu-
nity is an open subject of research. As for image processing, the transport distance
could define a robust dissimilarity measure and the transport map could be used for
interpolation purposes (voice, prosody, music, etc).

A fundamental difference with images is that the audio signal is described with phase
and modulus, and can not be represented by non negative densities to apply the Optimal
Transport framework. Computing transport distances between distributions of features
extracted from audio signal is nevertheless possible. Dictionary learning models could
also be considered [76] to separate different sources presents in a signal. For audio
interpolation, the use of the Optimal Transport map is more challenging and dedicated
tools should be defined. Works on phase retrieval from signal modulus [140] are thus an
interesting direction to handle such issue.

In conclusion This document presents contributions in the field of Optimal Transport
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rick Coupé, MArco Cuturi, Laurent Debreu, Charles Deledalle, Jérémie Demange, Ar-
naud Dessein, Charles Dossal, Baudouin Denis de Senneville, Vincent Duval, Jalal Fadili,
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Appendix A

Non-smooth Optimisation

We consider functionals that can be written as the sum of different terms being non-
smooth or non-convex, which is a common setup for problems in image processing. The
objectif of this chapter is to review classical proximal splitting algorithms dedicated to
the estimation of global or local minima of such functionals. Proximal splitting schemes
are indeed first order optimization methods that present good performances for large
scale problems, as the ones that will be considered in Parts II and III of this document.
This chapter is inspired from [14, 87] in which rigorous proofs can be found.

A.1 Definitions

In the following, E is an Euclidean vectorial space of finite dimension equipped with an
inner product 〈·, ·〉 and a norm ||.|| = 〈·, ·〉 12 .

Definition 1 (Domain). Let f be a function defined from E to R̄ = R∪+∞, we denote
the domain of f as dom(f) = {x ∈ E such that f(x) 6= +∞}.

Definition 2 (Convexity). Let f be a function defined from E to R̄, f is convex iff for
all pairs (x, y) ∈ E ×E and ∀λ ∈ [0, 1], f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y). If the
inequality is strict, then f is strictly convex.

Definition 3 (Coercivity). A function f defined on E is coercive if lim
‖x‖→+∞

f(x) = +∞.

Definition 4 (Lower semicontinuity). A function f defined from E to R∪+∞ is lower
semicontinuous (l.s.c) if, ∀x ∈ E, lim inf

y→x
f(y) > f(x).

Definition 5 (Proper). A function f from E to R̄ = R ∪ {±∞} is proper if ∃x ∈ E
such that f(x) < +∞ and f(x) > −∞, ∀x ∈ E.

Proposition 2. Let J be a convex, proper, l.s.c and coercive function defined on E with
values in R̄, then J is bounded from below and admits at least one minimizer. If J is
strictly convex then the minimizer is unique.

87
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In the following, we will consider smooth and non-smooth functions. We will refer
to a smooth function as soon as it can be differentiated once ∀x ∈ E, i.e. f ∈ Ck(E, R̄),
for k ≥ 1. A smooth functional is thus differentiable and its gradient will be denoted as
∇f . Hence, a function f is called non-smooth if is at most in C0(E, R̄).

Definition 6 (Lipschitz). A function f defined from E to R ∪ +∞, is L-Lipschitz is
there exists L > 0 such that ∀(x, y) ∈ E × E:

||f(x)− f(y)|| ≤ L||x− y||.

if L < 1 then f is said firmly non-expansive.

In order to minimize a convex and differentiable function that admits minimizers,
gradient descent algorithms are standard optimisation tools. Second-order methods
such as the Newton’s one, can be considered to algorithms with faster convergence
rates. Before detailing the non-smooth context, we finally recall the explicit first order
gradient descent algorithm.

Theorem 2 (Gradient descent Algorithm). Let f be a convex, proper, l.s.c and differ-
entiable function defined from E to R∪+∞ with a L-Lipschitz gradient. Let τ be a real

parameter checking τ <
1

L
, so that the operator Id− τ∇f is firmly non-expansive. Let

x0 ∈ E, then the sequence (xn)n∈N defined ∀n ∈ N as

xn+1 = (Id− τ∇f)(xn), (A.1)

converges to a minimizer of f .

A.1.1 Subdifferential

In order to consider the minimization of non-smooth functionals, we now recall standard
results.

Definition 7 (Subdifferential). Let f be a convex function defined from E to R∪+∞,
the subdifferential of fat point x ∈ E is the multivalued operator that associates to x the
set:

∂f(x) = {u ∈ E such that ∀y ∈ E, 〈y − x, u〉+ f(x) 6 f(y)}.

The subdifferential of a function at a point x can be empty or it can be a convex set.
If f is convex et differentiable ∀x ∈ E, the subdifferential is reduced to the singleton
{∇f(x)}, the gradient of f at point x.

The minimizers of non-smooth convex functions can be characterized with the sub-
differential.

Theorem 3. Let f be a convex, l.s.c and proper function defined from E to R ∪ +∞,
then

argmin f = zer ∂f = {x ∈ E such that 0 ∈ ∂f(x)}.
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The subdifferential also has the summability property:

Lemma 1. Let f and g be two convex, l.s.c and proper functions. If dom (f) ∩
dom (g) 6= ∅ then, for J = f + g, we have ∂J = ∂f + ∂g.

A.1.2 Proximal operator

The proximal operator associated to a convex function is defined as follows.

Definition 8 (Proximal operator). Let f be a convex function and x ∈ E, Proxf (x) is
the unique minimizer of the strictly convex function:

x 7→ f(y) +
1

2
‖x− y‖2 . (A.2)

The proximal operator can be seen as the generalization of the concept of the pro-
jection onto a convex set. Indeed, if f is the characteristic function of a close convex set
C then Proxf (x) is the orthogonal projection of x onto C.

In the following, we will say that f is simple if its proximal operator can be
computed explicitly.

When f is not a convex function; then the proximal operator may not be defined
or it can be multivalued. The convexity of f is a sufficient but not necessary condition
for the existence and uniqueness of Proxf (x). In the following, a function will be said
proximable if the proximal operator Proxf (x) is defined for every point x ∈ E. A
proximable function can therefore be non-convex.

An important property of the proximal operator is now given.

Proposition 3. Let f be a convex, l.s.c and proper function defined on E, then Proxf
is a 1-Lipschitz operator.

With the proximal operator, it is thus possible to minimize non-smooth convex
functional through an implicit descent method.

Theorem 4 (Proximal Algorithm). Let f be a convex, l.s.c and proper function defined
from E to R ∪+∞, then the fixed points of Proxf are minimizers of f . Hence, ∀τ > 0
and x0 ∈ E, the sequence (xn)∈N defined as

xn+1 = Proxτf (xn)

converges to a minimizer of f .

A.1.3 Conjugate function

A large range of approaches use the duality of convex functionals to design minimization
algorithms. For all function f from E to R̄, one can associate a conjugate function f ∗
through the following relation.
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Definition 9 (Convex conjugate). Let f be a function defined from E to R̄, the Fenchel
conjugate of f is the convex function defined from E to R̄ by

f ∗(u) = sup
x∈E

(〈x, u〉 − f(x)). (A.3)

Conjugate functions plays an essential role in the optimisation of convex functionals.
There exists strong relations between conjugation subdifferential and proximal opera-
tors, from which the equivalence between primal and dual problems can be established.
One main property of this transform is the following.

Theorem 5 (Biconjugate). All function f defined on E with values in [−∞,+∞],
convex, l.s.c and proper is equal o its biconjugate: f ∗∗ = f .

One useful corollary can be shown from this relation.

Corollary 1 (Moreau’s identity). If f is convex, l.s.c and proper, then , for all τ > 0:
Proxτf (x) + τProxf∗/τ (x/τ) = x, that is to say Proxf + Proxf∗ = Id.

A.2 Convex functionals

Standard algorithms for the minimization of convex and non-smooth functionals are now
introduced. We will assume that the considered functions admit at leat one minimizer.

A.2.1 Primal Proximal Algorithms

In this subsection, we first consider the problem:

min
x∈E

J(x) = f(x) + g(x), (A.4)

where f and g are convex, l.s.c, proper, coercive and bounded from below functions.
We first assume that f is differentiable with a L-Lipschitz gradient and that the

condition of Lemma 1 is satisfied so that the subdifferential of J is equal to the sum
of the subdifferentials of f and g for all point of the domain of ∂J . From Theorem
3, a minimizer x∗ of J then checks −∇f(x∗) ∈ ∂g(x∗). Under these assumptions, a
minimizer of J can be estimated with the Forward-Backward (FB) Algorithm.

Theorem 6 (Forward-Backward Algorithm). Let J = f + g be the sum of two convex,
l.s.c, proper and coercive functions. Let f be differentiable with a L-Lipschitz gradient.

Let τ <
1

L
and x0 ∈ E then the sequence (xn)n∈N defined ∀n ∈ N as

xn+1 = Proxτg(Id− τ∇f)(xn) (A.5)

converges to a minimizer of J .

A complete description of this algorithm can be found in [65]. Notice that using an
sadequate sequence of time steps τn, it is possible to accelerate its convergence [15, 55].
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The FB algorithm can also be generalized to deal with a differentiable convex function
and the sum of proximable convex ones [182].

When both functions f and g are non-smooth, the standard Douglas-Rachford (DR)
algorithm [134, 64] relying on the proximal operators of the two functions can be con-
sidered.

Theorem 7 (Douglas-Rachford Algorithm). Let J = f + g be the sum of two convex,
l.s.c, proper and coercive functions. Let µ ∈ [0, 2], τ > 0, x0 ∈ E and (xn)n∈N, (yn)n∈N
and (zn)n∈N the sequences defined as

xn = Proxτg(yn),
zn = Proxτf (2xn − yn),
yn+1 = yn + µ(zn − xn),

(A.6)

then there exists x∗ ∈ E minimizer of J such that the sequence (xn) converges to x∗.

The Alternating Direction Method of Multipliers (ADMM) is another classical opti-
mization method for that purpose. This approach consists in introducing an auxiliary
variable y ∈ E and dealing with the constraint y = x with a Lagrange multiplier z ∈ E.
An augmented Lagrangian is then defined for τ > 0 and ∀(x, y, z) ∈ E × E × E as

Lτ (x, y, z) = f(y) + g(x) + 〈z, x− y〉+
τ

2
‖x− y‖2 . (A.7)

One can show that problem (A.4) is equivalent to

min
(x,y)

max
z
Lτ (x, y, z). (A.8)

Theorem 8 (ADMM Algorithm). Let J = f +g be the sum of two convex, l.s.c, proper
and coercive functions. Let τ > 0, (y0, z0) ∈ E × E and (xn)n∈N, (yn)n∈N et (zn)n∈N the
sequences defined as 

xn+1 = argmin
x
Lτ (x, yn, zn),

yn+1 = argmin
y
Lτ (xn+1, y, zn),

zn+1 = zn + τ(xn+1 − yn+1),

(A.9)

then there exists z∗ ∈ E minimizer of J such that the sequence (zn) converges to z∗.

More details can be found in the reference papers [104, 108]. The ADMM algorithm
can be reformulated in term of proximal operators of f and g, which makes it equivalent
to the DR algorithm [90]. More precisely, the sequence of iterates of DR with µ = 1
for the primal probleml f + g are identical to the sequence of iterates of ADMM for the
problem f ∗ + g∗ [160].

A.2.2 Primal-Dual Proximal Algorithms

We now consider the minimization of two convex functions, one of them being composed
with a linear operator K:

min
x∈E

J(x) = f(Kx) + g(x), (A.10)
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where K is defined on E with values in F , f defined from F to R̄ and g defined from
E to R̄. We now assume that the proximal operator of f ◦ K can not be computed
explicitly, whereas f and g are simple (i.e. their proximal operators can be computed
explicitly). In order to define a simple algorithm for minimizing J in this case, one can
consider DR or ADMM algorithms by introducing an auxiliary variable y ∈ F and solve
the following problem:

min
x∈E

f(Kx) + g(x) = min
x∈E,y∈F

f(y) + g(x) + ιK(x, y), (A.11)

where h is the characteristic function of the linear constraint Kx = y:

ιK(x, y) =

{
0 if Kx = y
+∞ otherwise.

By denoting f̃ = f + g and g̃ = ιK , the Douglas-Rachford Algorithm can indeed be
directly applied to the function f̃ + g̃ with the variable z = (x, y). The proximal
operator of f̃(z) can be computed separately for the two variables x and y through
the proximal operators of f and g. The proximal operator of g̃(z) can be computed
explicitly as the orthogonal projection onto the linear constraint Kx = y.

The Primal-Dual formulation is another way to deal with such problem. The convex
conjugate (A.3) can indeed be used to separate the function f from the operator K:

∀x ∈ E, f(Kx) = sup
y∈F

(〈y,Kx〉 − f ∗(y)) = sup
y∈F

(〈K∗y, x〉 − f ∗(y)) (A.12)

where K∗ denotes the adjoint operator of K defined from F to E. Injecting this ex-
pression in the problem (A.10), ones gets a new problem where the function f has been
dualized. As soon as the subdifferential of f ∗ is no empty for all point of its domain,
the above supremum is a maximum. This will be the case for all the functionals we will
consider, so that we can turn into the general saddle-point problem (x∗, y∗) ∈ E × F :

min
x∈E

max
y∈F
〈K∗y, x〉 − f ∗(y) + g(x). (A.13)

Notice that problems (A.10) and (A.13) are equivalent in the sense that if x is a solution
of (A.10) then there exists y such that the pair (x, y) is solution of (A.13). Conversely,
if (x, y) is a solution of (A.13) then x is a solution of (A.10).

In [56], a variant of the Arrow-Hurwicz Algorithm [7] has been proposed to deal with
this problem. Such algorithm is equivalent to the DR one, if K = Id. We now recall
a more general expression of this algorithm [114, 212, 66, 37, 57, 137, 88], able to deal
with an additional differentiable convex function h:

min
x∈E

max
y∈F
〈K∗y, x〉 − f ∗(y) + g(x) + h(x). (A.14)

Theorem 9 (Primal-Dual Algorithm). Let f , g and h be three convex, l.s.c and proper
functions, f defined from F to [−∞,+∞], g defined from E tp [−∞,+∞], h differen-
tiable defined from E to [−∞,+∞] with a L-Lipschitz gradient and K a linear operator
defined from F to E. Let LK = ‖K‖, τ > 0 and σ > 0 such that (1/τ + L)/σ > L2

K.
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Let (x0, y0) ∈ E×F and x̄0 = x0 and the sequences (xn)n∈N, (x̄n)n∈N, et (yn)n∈N defined
as 

xn+1 = Proxτg(xn − τ(K∗yn +∇h(xn)),
x̄n+1 = 2xn+1 − xn,
yn+1 = Proxσf∗(yn + σKx̄n+1),

(A.15)

then the sequence (xn, yn) converges to a solution (x∗, y∗) of (A.14).

The time steps of this algorithm can be defined automatically with respect to the
operator K by considering diagonal preconditioning matrices T and Σ instead of scalar
values τ and σ [169, 137]. The algorithm can also deal with several functions includ-
ing different linear operators

∑
i fi(Kix). Notice that better “worst case convergence

rates” can be obtained by using adequate strategies involving extragradient steps [88],
overrelaxation parameters [57] or inertial terms [137].

A final important point to underline is that the definition of the proximal operator is
not limited to the L2 norm (A.2) and any strongly convex function ψ can be considered:

Proxψf (x) = argmin
y

f(y) + ψ(x, y).

Hence, depending of the function f , a good choice of the metric ψ can lead to an explicit
expression of the proximal operator [57].

A.3 Non-convex functionals

We now return to the problem (A.4):

min
x∈E

J(x) = f(x) + g(x). (A.16)

When f and or g are non-convex and one of the two functions is non-smooth, we would
like to estimate a local minima of J .

A.3.1 Back to the Forward-Backward

In the non-convex setting, local minima can not be characterized by the subdifferential
that it is only defined for convex functions. The set of critical points of J , that include its
local minima, can nevertheless be characterized by some local properties derived from
the Fréchet subdifferential. When J satisfies the so-called Kurdika-Lojasiewicz (KL)
property, the authors of [8] have shown that the Forward-Backward Algorithm (A.5)
converges to a critical point of J . We refer to [8, 87] for more details on this technical
assumption. Since the KL property is checked by all semi algebraic function, it it will
be verified by all the considered image processing functionals introduced in the present
document.

An acceleration of the Forward-Backward Algorithm has been proposed for this non-
convex setting [156]. This approach relies on an inertial force, derived from the Nesterov
acceleration dor the gradient descent [150]:
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Theorem 10 (Inertial Forward-Backward Algorithm). Let f and g be two l.s.c and
proper functions. Let f be differentiable with a L-Lipschitz gradient, g be proximable
and J = f + g verifying the KL property. Let β ∈ [0; 1[, τ < 2(1 − β)/L and x0 ∈ E,
then the sequence (xn)n∈N defined as

xn+1 = Proxτg(xn − τ∇f(xn)) + β(xn − xn−1) (A.17)

converges to a critical point x? of J .

The Forward-Backward can also be extended to deal with several proximable terms∑
i g(x) [62]. Finally notice that if f is non-convex but c-semi convex (such that f(x) +

c||x||2 is convex), other proximal algorithms in the primal [129] or primal-dual [148]
formulations also ensure the convergence to a critical point of J .

A.3.2 Non-convex coupling

For some particular applications, we finally consider the following problem:

min
x∈E,y∈E′

J(x, y) = f(x) + g(y) + h(x, y), (A.18)

where f and g are two convex functions and h is non-convex but differentiable. We
make the additional assumption that J is separately convex in x and y but not in (x, y).
As the function h may not be semiconvex, the abovementioned approaches can not be
applied. The estimation of a critical point of such functional is ensured by an alternate
minimization by blocks [210]:

Theorem 11 (Block Coordinates Descent Algorithm). Let J(x, y) = f(x) + g(y) +
h(x, y) such that for all fixed (x̃, ỹ) ∈ E × E ′, J(., ỹ) et J(x̃, .) are convex, l.s.c and
proper functions. Let (x0, y0) ∈ E × E ′, then the sequence (xn, yn)n∈N defined by xn+1 = argmin

x
f(x) + h(x, yn),

yn+1 = argmin
y

g(y) + h(xn+1, y),
(A.19)

converge to a critical point (x∗, y∗) of J .

This approach nevertheless requires to solve sub-optimization problems at each iter-
ation of the algorithm. For some very specific functionals (A.18), these intern loops can
be avoided and primal-dual approaches can be considered [167].

In fact, as soon as f and g are proximable functions (even if they are not convex), h
is a C2 function and the gradient ∇xh(., y) for y fixed is Ly-Lipschitz (resp. ∇yh(x, .) is
Lx-Lipschitz), a proximal alternating algorithm can be applied [31]. This last approach
is related to the application of the Forward-Backward algorithm on the problem f̃(z) =
f(x) + g(y) and g̃(z) = h(z) with the variable z = (x, y).
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