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Résumé

Aujourd’hui, les systèmes logiciels sont omniprésents. Ils se trouvent dans des environne-
ments allant des contrôleurs pour appareils ménagers à des outils complexes pour traiter
les processus industriels. Les attentes de l’utilisateur final ont grandi avec le développe-
ment de l’industrie, du matériel et des logiciels. Cependant, l’industrie doit faire face à
plusieurs défis pour contenter ces attentes. Parmi eux, nous trouvons des problèmes liés
à la question générale de traiter efficacement les ressources informatiques pour satisfaire
aux exigences non fonctionnelles. En effet, parfois, les applications doivent fonctionner
sur des dispositifs à ressources limitées ou des environnements d’exécution ouverts où la
gestion efficace des ressources est d’une importance primordiale pour garantir la bonne
exécution des demandes. Par exemple, les appareils mobiles et les passerelles domes-
tiques intelligentes sont des dispositifs à ressources limitées où les utilisateurs peuvent
installer des applications provenant de sources différentes. Dans le cas des passerelles
domestiques intelligentes, Éviter toute mauvaise conduite dans les applications est im-
portant parce que ces dispositifs contrôlent souvent un environnement physique occupé
par des personnes.

Pour satisfaire à ces exigences, l’objectif est de rendre les applications et les en-
vironnements d’exécution conscient et capable de faire face à des ressources limitées.
Ceci est important parce que souvent ces exigences émergent ensemble (par exemple,
les smartphones sont des appareils à ressources limitées fournissant un environnement
d’exécution ouvert). Quand une application inclut des fonctionnalités pour réagir et
modifier son comportement suite à l’apparition d’événements liés aux ressources, on
dit que l’application est «consciente des ressources». Un système logiciel nécessite un
environnement d’exécution approprié pour fournir de telles caractéristiques. Aujour-
d’hui, les applications s’exécutant sur des environnements d’exécution gérés (MRTEs),
tel que Java, font partis des systèmes qui peuvent bénéficier de cette «conscience des
ressources». En effet, les MRTEs sont régulièrement utilisés pour mettre en œuvre les
intergiciels, par exemple en utilisant OSGi, en raison de leur sécurité, flexibilité, et de la
maturité de l’environnement de développement. Ces intergicield fournissent souvent des
fonctionnalités de monde ouvert, telles que la possibilité d’ajouter de nouvelles fonction-
nalités après le déploiement initial du système. Pour soutenir la capacité d’adaptation et
de gestion demandée par une exécution dans un monde ouvert, il est possible d’utiliser
des techniques de génie logiciel à base de composants (CBSE). Hélas, certains MRTEs,
tels que Java, ont été conçus pour exécuter une seule application à la fois, de sorte qu’ils
manquent d’outils pour la gestion des ressources à grain fin.

Cette thèse aborde le problème de la programmation pour créer des sys-
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iv Résumé en français

tèmes «conscient des ressources» supporté par des environnements d’exécu-
tion adaptés. En particulier, cette thèse vise à offrir un soutien efficace pour recueillir
des données sur la consommation de ressources de calcul (par exemple, CPU, mémoire),
ainsi que des mécanismes efficaces pour réserver des ressources pour des applications
spécifiques. Malheureusement, les mécanismes actuels nécessaires pour permettre la pro-
grammation de ressources dépendent fortement de la technologie cible. Par exemple, ré-
server de la mémoire pour un processus natif Unix est différent de réserver de la mémoire
pour un bundle OSGi (le premier problème consiste à créer un espace d’adressage vir-
tuel tandis que le deuxième requiert l’utilisation conjointe d’un allocateur de mémoire
et un ramasse-miettes spécifiques). En conséquence, les solutions que nous discutons
dans nos recherches sont principalement ciblées sur la gestion des ressources dans le
cadre des MRTEs. En particulier, nous nous concentrons sur ce genre d’environnement
d’exécution lorsque nous présentons les contributions de cette thèse.

Défis

Dans les solutions existantes qui permettent de surveiller la consommation des ressources
et de réserver des ressources dans les MRTEs, nous trouvons deux inconvénients im-
portants. La lutte contre ces inconvénients, qui sont décrits ci-dessous, est l’objectif de
cette thèse.

Les solutions pour la surveillance de la consommation des ressources et leur réserva-
tion imposent un impact important sur les performances à l’exécution des applications.
En particulier, les mécanismes basés sur l’instrumentation, qui offrent une bonne préci-
sion, réduisent de manière significative la performance des applications. Bien que cette
restriction n’impacte pas les mesures des ressources consommées, il empêche leur utilisa-
tion dans un environnement de production. En conséquence, les ingénieurs sont obligés
de choisir entre deux solutions non satisfaisantes - soit des performances réduites avec
une bonne précision ou des performances acceptable avec une faible précision - lorsque
les applications nécessitent d’être conscientes de la consommation et de la réservation
des ressources. Malgré l’utilisation répandue des MRTEs pour exécuter des applica-
tions basées sur les composants et autres abstractions, la création d’outils permettant
de gérer finement les ressources pour ces abstractions est encore une tâche complexe.
En effet, la création d’abstractions, comme des modèles de composants, est de plus
en plus commune. Beaucoup d’outillage existe pour le faire, en particulier pour défi-
nir de nouveaux langages dédiés. En outre, bien souvent, ces abstractions ciblent les
MRTEs comme technologies permettant l’exécution en raison de leur sécurité et de la
maturité des environnements de développement. Cependant, ces nouvelles abstractions
posent un défi aux développeurs quand ils s’intéressent à la surveillance des ressources
parce que ces nouvelles abstractions ne sont pas toujours offertes avec des mécanismes
de surveillance des ressources ainsi que des débogueurs personnalisés. En conséquence,
les développeurs utilisent des outils traditionnels qui peuvent seulement faire face aux
concepts classiques tels que des objets, des méthodes et des emplacements de mémoire,
au lieu des concepts plus spécifiques. La raison pour cela est que la définition d’un ou-
tillage pour une abstraction spécifique est une tâche ardue qui doit être mise en balance
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avec le public limité d’une telle abstraction.
Les défis de cette recherche peuvent être résumés dans les questions de recherche

suivantes. Ces questions se posent à partir de l’analyse des inconvénients des outils
actuels dans les paragraphes précédents. Il est utile de rappeler que ces questions se
rapportent aux MRTEs.

QR1. Comment pouvons-nous fournir un soutien portable et efficace pour la surveillance
de la consommation de ressources ?

QR2. Comment pouvons-nous choisir les mécanismes a utilisés pour garantir la réserva-
tion de ressources tout en maintenant un surcout d’exécution faible pour chaque
composant logiciel ?

QR3. Comment pouvons-nous tirer profit de la connaissance de l’architecture des appli-
cations pour aider un mécanisme de gestion des ressources ?

QR4. Comment pouvons-nous faciliter la définition et la mise en place d’outils de sur-
veillance pour de nouvelles abstractions de logiciels ?

Contributions

Les résultats de cette thèse forment trois contributions qui visent à réduire (1) le coût
de calcul pour effectuer la gestion des ressources, et (2) la complexité de la création
d’outils de contrôle des ressources. Deux d’entre elles ciblent exclusivement le problème
de la réduction du coût de calcul pour effectuer la gestion des ressources tandis que
la troisième vise également le problème de faciliter la construction d’outils de suivi de
l’utilisation des ressources. Ces contributions sont brièvement décrites ci-dessous.

Contribution : un cadre de surveillance des ressources optimiste qui ré-
duit le coût de la collecte des données de consommation de ressources. Le
suivi de la consommation des ressources est le fondement de la programmation pour
les systèmes conscients de leurs ressources. Dans cette recherche, une nouvelle approche
construite sur l’idée d’un contrôle adaptatif est présenté. L’approche, à savoir Scapegoat,
est fondée sur quatre principes : i) souvent des applications sont construites en utilisant
des abstractions telles que les composants que nous pouvons utiliser pour identifier et
isoler la consommation des ressources, ii) lorsque l’environnement d’exécution est en
cours d’exécution sur la ressource, nous pouvons utiliser la surveillance légère optimiste
et toujours être sûr que nous serons en mesure de détecter les défaillances potentielles
dans le temps, iii) il est possible d’identifier rapidement le composant défectueux une
fois qu’un échec potentiel est repéré, et iv) il existe des mécanismes de contrôle que
nous pouvons réutiliser parce qu’ils sont échangeables à l’exécution et offrent différents
compromis entre le surcoût d’exécution et la précision. Scapegoat a été mis en œuvre
et évalué dans ce travail et les résultats montrent la faisabilité et l’efficacité. Cette
contribution répond aux questions de recherche QR1 et QR3 .

Contribution : une méthodologie pour sélectionner les le support d’exé-
cution des composants au moment du déploiement afin d’effectuer la réser-
vation de ressources. La réservation ressources pour des applications spécifiques est
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une autre préoccupation dans la programmation des systèmes conscients de leurs res-
sources. Dans cette recherche, nous avançons que la mise à disposition des capacités de
réservation de ressources dans le cadre de l’utilisation de composants logiciels ne devrait
pas seulement être considérée lors de la conception et la mise en œuvre du modèle de
composant. Au lieu de cela, nous soutenons qu’il est intéressant d’utiliser un mécanisme
retardé pour choisir la technique de réservation de ressources pour chaque composant,
et ce choix peut être fait en regardant les besoins en ressources de chaque composant
au moment du déploiement. En bref, nous suggérons que - si un modèle de composant
vise à soutenir le déploiement de composants avec des contrats de garantie ressources
- les besoins en ressources et les technologies disponibles devrait être des variables de
décision pour déterminer comment lier des composants à des abstractions de niveau
système au moment du déploiement. Dans ce travail, nous démontrons cette hypothèse
à travers la mise en place d’un prototype nommé Squirrel pour montrer les bénéfices
potentiels de cette méthodologie. Cette contribution est une réponse aux questions de
recherche QR2 et QR3 .

Dans cette thèse, une approche générative pour créer des profileurs de
mémoire personnalisées pour des abstractions spécifiques à un domaine, tels
que les DSLs et modèles de composants, est proposée. L’approche consiste
essentiellement dans un langage pour définir des profileurs et un générateur de profileur
qui cible les mécanismes d’exploration de la mémoire en utilisant la technologie JVMTI.
Le langage a été conçu avec des contraintes qui, même si elles réduisent son expressivité,
permettent d’offrir des garanties sur le comportement et la performance des profileurs
générés. Pour évaluer l’approche, nous avons comparé les profileurs générés avec cette
approche, les profileurs écrits manuellement et des outils traditionnels. Les résultats
montrent que les profileurs générés ont un comportement similaire à celui des solutions
écrites manuellement et spécifiquement pour une abstraction donnée. Les questions de
recherche QR1 et QR4 sont adressés par cette contribution.
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Chapter 1

Introduction

1.1 Context

Software systems are more pervasive than ever nowadays. They are found in environ-
ments ranging from home appliances’ controllers to complex tools for dealing with indus-
trial processes. As a side effect, end-user’s expectations have grown along the develop-
ment of the software/hardware industry. However, the industry faces several challenges
while coping with these expectations. Among them, we find problems related to the
general issue of efficiently handling computational resources to satisfy non-functional re-
quirements. Indeed, sometimes applications must run atop resource-constrained devices
or unsafe open runtime environments [BDNG06] where efficient resource management
is of paramount importance to guarantee applications’ proper execution. For instance,
mobile devices and smart home gateways are resource constrained devices where users
can install applications from different sources. In the case of smart home gateways,
avoiding any misbehavior in applications is important because these devices often con-
trol a physical environment occupied by people.

To satisfy these requirements, the goal is to make applications and execution environ-
ments aware and capable of coping with resource limitations. This is important because
often such requirements emerge together (e.g., smartphones are resource-constrained de-
vices providing an open executing environment). When an application includes features
to react and modify its behavior after resource-related events occur, it is said to be
resource-aware [BCP08, PEBN07, ALG10, PCC+11, BBH+12, ADBI13]. A software
system requires the appropriate runtime support to provide such features. Nowadays,
applications executing atop managed runtime environments (MRTEs), such as Java,
are among the systems that can benefit from this kind of support. Indeed, MRTEs are
regularly used to implement middleware [BCL+06, FND+14, Gro13, Bec10, CHP06],
for example using OSGi, because of their safety, flexibility, and mature development
environment. These middleware often provide open world features such as the possi-
bility of adding new functionalities after the initial system deployment. To support
the adaptability and manageability demanded by an open world runtime, it is possible
to use Component-Based Software Engineering (CBSE) [GMS02, DEM02, BCL+06].
Alas, some MRTEs, such as Java, were designed to execute only a single application at
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2 Introduction

a time, so they lack full support for fine-grained resource management.
This thesis addresses the problem of supporting resource-aware programming in ex-

ecution environments. In particular, it aims at offering efficient support for collecting
data about the consumption of computational resources (e.g., CPU, memory), as well
as efficient mechanisms to reserve resources for specific applications. Unfortunately,
the mechanisms needed to support resource-aware programming highly depend on the
target technology. For instance, reserving memory for a native Unix process is different
from reserving memory for an OSGi bundle (i.e., the former problem involves creating a
virtual address space [Sta14] while the latter demands the usage of a memory allocator
and a garbage collector [OSG14, AAB+00, RHM12, GTL+10]). As a consequence, the
solutions we discuss in our research are mostly useful to support resource-awareness in
the context of MRTEs. In particular, we focus on this kind of execution environment
when we present the contributions of this thesis.

1.2 Challenges

In existing solutions that perform resource consumption monitoring and resource reser-
vation in MRTEs, we find two important drawbacks. Tackling these drawbacks, which
are described below, is the objective of the present work.

• Solutions for resource consumption monitoring and reservation impose perfor-
mance overhead on the execution of applications [BH06b, MZA+12a, Rei08,
MBKA12]. In particular, instrumentation-based mechanisms, which offer good
precision, significantly reduce applications’ performance [Dmi04, CvE98, BHMV09].
While this limitation does not affect the utilization of such mechanisms to, for
instance, profile an application during the development phase [CvE98, BH05b,
BHV01, MBEDB06, MBT11, HB08], it does prevent their use in a production en-
vironment [Dmi04]. As a consequence, engineers are forced to choose between two
poor solutions – either high overhead with good precision or low overhead with
low precision – when applications require being aware of resource consumption
and reservation.

• Despite of the widespread utilization of MRTEs to execute applications based on
components and other abstractions, creating resource management tools for
these abstractions is still a complex task. Indeed, creating abstractions, such
as components models, is increasingly common [VDKV00, HWRK11, WHR14].
Plenty of tooling support exists for doing so, especially to define new domain-
specific languages (DSLs) [VDKV00, Fow10, EvdSV+13, Mer10, EB10]. In addi-
tion, quite often these abstractions target MRTEs as backend technologies due to
their safety and mature development environments. However, new abstractions
pose a challenge for developers when it comes to profiling, debugging and moni-
toring applications that are built using them because such new abstractions are
not always shipped along customized profilers and debuggers [KVH12, WGM08,
MV11, LKV11, WG05, Fai98]. As a consequence, developers find themselves us-
ing mainstream tools that are only able to cope with “classical” concepts such as
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objects, methods and memory locations, instead of more specific concepts. The
reason for this is that defining tooling support for a specific abstraction is a time
consuming task that must be balanced against the limited audience of such an
abstraction.

The challenges this research tackle can be summarized in the following research
questions. These questions arise from the analysis of the drawbacks in the previous
paragraphs. It is worthwhile remembering that these questions refer to MRTEs.

RQ1. How can we provide portable and efficient support for resource consumption mon-
itoring?

RQ2. How can we choose what mechanisms must be used to guarantee resource reser-
vation with low overhead for each software component?

RQ3. How can we leverage the knowledge about the architecture of applications to drive
a mechanism for resource management?

RQ4. How can we ease the definition and implementation of monitoring tools for new
software abstractions?

1.3 Contributions

The outcomes of this thesis are three contributions that aim at reducing the computa-
tional cost of performing resource management, and the complexity of building resource
monitoring tools. Two of them target exclusively the problem of reducing the compu-
tational cost of performing resource management while the third one also targets the
problem of easing the construction of resource monitoring tools. These contributions
are briefly described in the rest of this section.

Contribution: an optimistic resource monitoring framework that reduces
the cost of collecting resource consumption data. Resource consumption mon-
itoring is the foundation for resource-aware programming. In this research, a new ap-
proach built upon the idea of adaptive monitoring is presented. The approach, namely
Scapegoat, is based on four principles: i) often applications are built using abstractions
such as components that we can use to identify and isolate the resource consumption,
ii) since consumption matters when the runtime environment is running out of resource,
we can use optimistic lightweight monitoring and still be sure we will be able to detect
potential failures on time, iii) it is possible to quickly identify the faulty component
once a potential failure is spotted, and iv) there are previous monitoring mechanisms
that we can leverage because they are exchangeable at runtime and offer different trade-
offs between overhead and accuracy. Scapegoat was implemented and evaluated along
this work and the results show its feasibility and efficiency. This contribution answers
research questions RQ1 and RQ3 .

Contribution: a methodology to select components’ bindings at deploy-
ment time in order to perform resource reservation. Reserving resource for spe-
cific applications is another concern in resource-aware programming. In this research,
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we claim that providing resource reservation capabilities in a component framework
should not only be considered during the design and implementation of the component
model. Instead, we argue that it is worth using a lazy mechanism to choose the resource
reservation technique for each component, and this choice can be made by looking at
the resource requirements of each component at deployment time. In short, we suggest
that – if a component model aims at supporting resource-aware component deployment
– resource requirements and available technologies should be decision variables in deter-
mining how to bind components to system-level abstractions. Along the present work,
evidence for such claims are provided and a prototype named Squirrel is implemented
to show the potential benefices of this methodology. This contribution is a response to
research questions RQ2 and RQ3 .

Contribution: a language to build customized memory profilers that can
be used both during applications’ development, and also in a production
environment. Memory consumption monitoring and profiling are important concerns
in applications that target MRTEs because even automatic memory management is not
capable of guaranteeing error-free memory management. Along this thesis, a genera-
tive approach to create customized memory profilers for domain-specific abstractions,
such as DSLs and component models, is proposed. The approach consists primarily
in a language to define profilers and a profiler generator which targets heap memory
exploration mechanisms such as the Java Virtual Machine Tool Interface (JVMTI). The
language has been devised with constraints that, although reduce its expressive power,
offer guaranties about the performance behavior of the generated profilers. To evaluate
the approach, comparisons between profilers generated with this approach, handwrit-
ten profilers and mainstream tools are presented. The results show that the generated
profilers have a behavior similar to that of handwritten solutions. Research questions
RQ1 and RQ4 are addressed with this contribution.

1.4 Plan

The remainder of this thesis is organized as follows:

Chapter 2 first contextualizes this research, situating it in the domain of systems
engineering. We show how software systems may benefit from some degree of control
over computational resource consumption (resource-aware programming). Afterwards,
we present the state of the art of resource consumption monitoring and reservation,
putting special interest on the performance overhead of existing solutions.

Chapter 3 discusses another concern commonly found when resource-aware support
is required to deal with new software abstractions. In particular, we present state of
the art approaches to ease the definition of profilers and monitors of resource consump-
tion. The discussion revolves around two kinds of abstractions that are widely used in
developing software systems.
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Introduction to the contributions is a short section that quickly summarizes the
challenges found in reviewing the state of the art. This section them proceeds to brief
the contributions of this thesis by making clear the link among the remaining chapters.

Chapter 4 presents an approach to reduce the performance overhead of monitoring
resource consumption in component-based applications running on top of MRTEs; the
proposed mechanism guarantees full portability. We evaluate the approach through
several experiments, and discuss under which conditions it can be applied.

Chapter 5 describes a methodology to choose what mechanism must be used to
guarantee resource reservations for each component instance in a particular system. A
prototype that implements such a methodology is discussed. Additionally, the merits
and weaknesses of our methodology are assessed by performing a set of experiment in
the prototype implementation.

Chapter 6 presents the last contribution of this research. An approach for building
customized memory profilers is described in this chapter. The approach is based on
the definition of a domain-specific language that can be compiled into efficient platform
dependent profilers. Experiments to validate the proposal are presented and discussed.

Chapter 7 concludes the thesis by summarizing the advances that it brings to sup-
porting resource-aware programming in managed runtime environments. It also dis-
cusses the perspectives of future research related to the thesis.
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Chapter 2

Supporting resource awareness

(A corpse in a car, minus a head, in the garage)
The Wolf - That’s thirty minutes away. I’ll be there in ten. [. . . ]

(He takes a sip, then, pacing as he thinks, lays out for the three men the
plan of action)

The Wolf - [. . . ] this looks to be a pretty domesticated house. That would lead
me to believe that [. . . ] you got a bunch of cleansers and cleaners [. . . ]

Jimmie - Yeah. Exactly. Under the sink.
The Wolf - [. . . ] what I need you two fellas (meaning Jules and Vincent) to

do is take those cleaning products and clean the inside of the car [. . . ]
Jimmie, [. . . ] I need blankets, need comforters, need quilts [. . . ] need
bedspreads. The thicker the better. [. . . ]

The Wolf - If I’m curt with you, it’s because time is a factor [. . . ]

(Pulp Fiction)

In this chapter, the context of this thesis, the general problem it faces, and the
limitations of existing approaches, are introduced. The ideas behind resource-aware
programming are discussed in Section 2.1, where the mechanisms required to support
resource awareness in a runtime environment are also presented. Since our work focuses
on managed runtime environments, Section 2.2 briefly presents the features of this kind
of systems that hinder resource-aware programming. Afterwards, Section 2.3 discusses
the advantages and limitations of existing solutions to deal with resource consumption
monitoring and reservation (two subproblems to tackle to support resource-aware pro-
gramming). Finally, this chapter concludes by highlighting the lack of proper support
to develop applications that can take advantage of resource awareness, and by stating
what is needed to improve such support.

9
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2.1 Resource-Aware Programming

Efficient use of computational resources is an essential concern in software systems
because it can reduce the costs of the infrastructure needed to execute applications.
Resource management is always a complex task; nevertheless, it is particularly chal-
lenging when many stakeholders share a platform. As a consequence of this complexity,
applications access resources by using generic APIs of the runtime environment, which
is then in charge of coping with resource management concerns (e.g., managing re-
sources is traditionally a main concern of operating systems). Although there are many
advantages associated to this approach, it is known that applications built upon such
generic interfaces often show relative poor performance [EK+95]. The problem arises
because the implementation of a general purpose mechanism for resource management
must cover many use-cases; this results in complex execution paths where nothing can
be assumed regarding how client applications will consume resources. It has been shown
that the performance of many resource intensive systems can be improved by carefully
specializing resource management at the application level [EK+95, BPK+14, MWH14].

The principle of bypassing a generic implementation in favor of a specialized one
has been widely applied in computer science and software engineering [EK+95, MR96,
DO09, MWH14]. Since resource usage is a key concern for any software system, spe-
cializing resource management is potentially beneficial for many applications. In this
thesis, we use the term resource-aware to refer to those applications/systems that ob-
serve, carefully manage, and are aware of computational resources in order to improve
their performance. At first, this definition might look too broad, but in reality most
applications limit themselves to carefully use the resource allocations facilities offered
by runtime environments. Take for example a web server that uses a pool of threads
to process remote requests. By using this pool the server is in fact carefully managing
resource, but with this feature alone it is not able to observe whether the pool’s size
should be decreased/increased. The key issue in the definition used in this thesis is
that three elements must be present in an application/system in order to be classified
as resource-aware: observation, management, and behavior modification.

Finally, our understanding of the idea of resource-aware applications/systems is in
fact closely related, but not limited, to that of Autonomic Computing [Hor01, KC03,
BMSG+09]. Figure 2.1 depicts an example of how the MAPE-K loop can be instan-
tiated to build an autonomic manager that is aware of resource consumption. During
monitoring, two variables are considered: CPU usage and memory availability. In this
abstract example, the analysis phase determines whether some components are misbe-
having. Next, a plan to replace the faulty components is built. The last step in the loop
involves reconfiguring the system to effectively replace the faulty components. Some
knowledge is needed to guide the process; in this case, information on the architecture
of the system, its components, and how they are coupled, are of benefit.

Applying resource-aware techniques to develop a software system can be motivated
by the need to satisfy both functional and non-functional requirements. Among the
non-functional requirements we find the following:



Resource-Aware Programming 11

Figure 2.1 – A MAPE-K loop to support system reconfiguration based on resource
consumption

• Improve performance. Many works show the advantages of specializing re-
source management to enhance system performance. Some interesting use-cases
are, for instance, reducing the execution time [PCC+11], and increasing the num-
ber of requests a web server is able to handle [EK+95, BPK+14].

• Guarantee a given Quality of Service (QoS). Often, when the quality of
a service is evaluated, we consider properties that are related either to the re-
sources allocated to execute the service or to the mechanisms used to manage
resources. For instance, misbehaviors in a property such as response time can be
associated to low resource availability [ADBI09, ADBI13]. Likewise, poor QoS in
multimedia systems is associated to complex resource management mechanisms
in the operating system kernel [BBDS97]. Finally, resource-aware networking can
be used to improve QoS properties such as data availability [BCP08] and P2P
video streaming [PP07, ALG10].

• Support per-customer resource quotas. In Software as a Service (SaaS), it
is necessary to guarantee per-tenant quotas. Although using a new application
instance for each tenant is a solution, this approach leads to excessive resource
consumption. On the contrary, one other solution is to design multi-tenant appli-
cations - which share most applications’ code - by scheduling incoming requests
in order to guarantee per-tenant quotas [KSAK14, KWK13].

• Ensure resource isolation for critical applications. Strong isolation among
applications is often required when critical applications [Kni02] share a platform
with untrusted software systems. In this context, resource usage isolation is an
important concern because one application can make a second application crash
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by simply monopolizing the computational resources. In this scenario, applica-
tion containment [hKW00, SPF+07, MLS+15] is a useful mechanism to support
resource-aware isolation. Providing specialized application containment requires
extensive runtime environment support, based on approaches such as unikernels
[MMR+13, KLC+14, MLS+15], that has been under heavy development after the
widespread adoption of distributed and cloud services.

To satisfy these requirements, applications often rely on specific features offered by
the runtime environment or platform (e.g., operating systems, virtual machines). In
this thesis, three features that proved themselves useful to support the resource-aware
programming paradigm are identified:

• Resource consumption monitoring. Having information regarding how an
application is consuming resources is mandatory to support any form of decision
making that involves the modification of applications due to resource-related is-
sues. In this regard, it is useful to collect data about global application consump-
tion as well as collecting such data for each application’s module with clearly
defined boundaries (e.g., components).

• Resource reservation. Ensuring resource availability for specific applications or
subsystems is a way to support critical applications or other systems which exhibit,
for instance, timing constraints. Reserving resources does not always imply that
resources must be exclusively assigned to a process. Instead, for certain resources
such as CPU time it is possible to allocate the requested resource when it is
needed.

• Observing resource availability (overcommitment). Applications that are
aware of extra resource availability are able to temporarily use such resources to
improve the QoS they provide. In addition, applications can nicely modify their
behavior to collaborate with other systems that share a platform if they are aware
of their consumption, the resource availability and also of what other applications
demand.

In this research, we focus on two of these features: resource consumption monitoring
and resource reservation. In particular, this thesis devotes a significant amount of
space discussing how to deal with the problem of efficiently monitoring the quantity of
resources consumed by different parts of an application.

Providing support for the aforementioned features highly depends on the target
abstractions provided by the runtime environment. In operating systems, resource
consumption monitoring is often provided at per-process basis while virtual machine
monitors (VMMs) tend to offer per virtual machine resource management. In this the-
sis, we focus on offering support for resource-aware programming in managed runtime
environments. Hence, the next section presents a brief overview of the main properties
of these systems.
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2.2 Managed Runtime Environments

Applications written using a given programming language often execute in a runtime
environment that implements every single built-in feature of the language and supports
a specific instruction set. For a language such as C++ the runtime environment is
in charge, among others, of supporting the throw/exception mechanisms and the type
casting mechanism. It is common to ship the runtime environment along the application
when applications are deployed as native code because external dependencies are avoided
in such a way. However, developers that use mature languages such as C++ or Object
Pascal lack useful built-in features that both can ease the development process, and
improve applications’ quality.

In 1995 the first mainstream managed runtime environment (MRTE), Java, was
created. 1 It became a success even if it was not the first language providing built-in
features such as automatic memory management, dynamic loading of portable code,
or support for the object-oriented paradigm. This was possible due to three main
reasons: the level of maturity of many technical solutions on topics such as just-in-time
(JIT) compilation, the growing speed-up of hardware, and the advantages offered by the
concept of managed languages. Since then, it has become clearer that modern languages
demand features that require considerable runtime support. These features include the
following [CEG+05]:

• Portability : In an ideal scenario, applications should be distributed to customers
in a platform independent format that is “interpreted” in the same way regardless
the characteristics of concrete execution platforms. This helps to reduce the time
to market of applications. To provide this feature, the application must be written
in such a way that allows its execution on top of an abstract machine which has
its own instruction set instead of on top of a native platform. An application can
then be executed on a platform if there exists an implementation of this abstract
machine that is able to run on such a platform. Having a different instruction
set offers additional advantage. For instance, final applications’ code can be more
compact than code written using native instructions because it can represent
only the high level concepts that matter to the abstract machine. To support
this feature, a runtime must provide either application’s interpretation, ahead-
of-time compilation [MMBC97, PTB+97, WPC+11, OYM15] or JIT compilation
[IHWN12, PVC01, GKS+04].

• Dynamic code loading : It is also desirable to support loading new code from
different sources (e.g., a network stream, a local file, internally generated code)
while the application is running. Together with the reflection mechanism, this
feature is useful in many scenarios such as implementing on-the-fly generation of
proxy classes, implementing component frameworks, and supporting the Aspect-
Oriented paradigm. Providing this feature for a MRTE is only possible using an
interpreter or a JIT compiler; hence in comparison with the portability feature,

1The expression “first mainstream” should be interpreted here in a strictly commercial sense.
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it rules out using an ahead-of-time compiler. In addition, a new requirement
emerges: since code can be dynamically loaded from untrusted source, it is now
mandatory to verify the correctness of such code in order to guarantee that it is
safe to execute it.

• Automatic Memory Management : Memory management has proven a major
source of applications’ crashes [NBZ08, AEPQn09]. As a consequence, automatic
memory management is often a feature of modern programming languages. It
is usually implemented using a garbage collector, a general technique that can
be implemented following different approaches and often requires some compiler’s
assistance (e.g., mark-swept, copying, reference-counting). Memory allocation and
garbage collection, which is the memory reclamation mechanism, are commonly
implemented as part of the runtime environment. The memory manager is in
charge, for instance, of allocating the space required by objects, and by closures.

• Improved error handling : Modern programming languages tend to offer sup-
port to detect, early during the development phase and to avoid at runtime,
common mistakes such as dereferencing a null pointer or accessing arrays using a
wrong index. This kind of features requires extensive support for handling internal
and unexpected errors as well as developer-specified faulty conditions. Implement-
ing such features is only possible with some collaboration of the interpreter or JIT
compiler.

The runtime environment support needed to execute applications written in many
modern programming languages is referred as managed because the code used to execute
the applications includes not only the business logic but also code to manage the
memory, the possible errors, and the process of loading, verifying and compiling the
code on demand.

Garbage collection, a feature present in MRTEs is relevant for this thesis. In the
rest of this section we briefly describe the mentioned feature.

2.2.1 Memory Management using Garbage Collection

Automatic memory management is usually implemented using garbage collection. In
this approach three entities are involved: i) the application, which is also known as the
mutator in memory management jargon because it is the one modifying the memory
content, ii) the allocator, which is in charge of reserving space in the heap, and iii)
the garbage collector (GC), which reclaims memory that is no longer referenced by the
mutator. Memory allocation follows a simple “script”: a thread belonging to the mutator
requests memory, in response the allocator searches for an unused block in the heap, if
an unused block cannot be found then the garbage collector is invoked to reclaim blocks
of memory, the allocator tries to find an unused block once again.

To understand what the garbage collector does, it is worth looking at how the
memory heap is organized. The heap contains a set of used and free blocks of diverse
size. A memory block can represent an object as in object-oriented programming or
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an array, but in this description we use the generic term object as a synonymous of
used memory block. Objects contain primitive values that represent the internal state
of applications, but they also contain references to other objects. Due to the way in
which applications allocate memory, after some time the heap contains a large set of
objects that are connected by references, forming a directed-graph. In this graph, edges
are references and most nodes are just objects. There is however a different class of
node that are known as roots. Roots exist because references are not only stored within
objects. Instead, references may be stored in locations such as local and global variables.
If a reference is stored in a local or global variable, it is say that the referenced object
O is still useful and the memory it consumes cannot be reclaimed: O is a live object.
As a consequence, any object referenced by a value within O is also live. In summary,
an object O is live or reachable if and only if there exists a directed path from a root
node R to O. The mission of a garbage collector is to discover the set of dead objects
(no longer useful) in the directed-graph and reclaim their memory.

The challenge of writing a garbage collector is reaching a good performance. A
comprehensive description of different garbage collection approaches can be found in
[RHM12]. In the remainder of this section, we present a brief overview of some basic
techniques.

• Mark-Sweep collectors: In this approach, objects are allocated from a list of
free blocks. Once the system decides that some memory must be reclaimed, the
GC performs an initial traversal of the object graph, starting by the root nodes,
following the references and marking all the visited nodes. Afterwards, the heap
is traversed during a second step and every object without the mark is removed
from memory.

• Copying collectors: In this approach, the heap is split in two spaces of equal
size. Allocations are performed in one of the two spaces by simply increasing a
base pointer. Once the allocation space is full, the GC is invoked to reclaim some
memory. The GC proceeds by traversing the directed graph from the roots and
copying every visited object to the second space. When the traversal is done, the
role of both spaces is exchanged and the objects that were not copied are thus
automatically reclaimed.

• Generational collectors: This approach tries to reduce the part of the graph
that must be traversed on every GC cycle. The approach is based on the obser-
vation that most objects have a short life. As a consequence, it is often enough
to traverse only a subgraph of objects that were recently allocated in order to
find dead objects to dispose in a faster way. Following this idea, objects are allo-
cated in a special space and copied to a different heap space once they “get” old
enough. Generational collectors are usually combined with sophisticated variants
of mark-swept and copying collectors.

There are many areas to consider in a discussion regarding garbage collection. For
instance, how different approaches deal with concurrent mutators or how is the response
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time improved by using parallel collectors. These topics are not mentioned here because
such information is not relevant to the purposes of this work. In fact, the information
to take away is that state-of-the-art GCs tend to split the heap in different spaces each
of them implementing a different allocation and garbage collection mechanism. Also,
GCs see the allocated objects as a directed graph where nodes that cannot be reached
from the “roots” can be safely disposed.

2.2.2 MRTEs hinder resource-aware programming

MRTEs tend to offer fewer instructions and less “freedom” than native platforms. The
supported concepts have a higher level of abstraction that usually favor some program-
ming paradigms (e.g., the invokevirtual instruction of the JVM is used to allow method
invocation as in object-oriented programming). It is common to simplify tasks such as
memory management, concurrent programming, as well as resource and error handling.
This greatly reduces the complexity of developing applications. On the negative side,
applications may suffer some performance penalties and also lack of control. As men-
tioned in Section 2.1, the loss of control makes the language inappropriate in scenarios
that require further assistance to deal with resources.

Among the features present in MRTEs that impact the implementation of resource-
aware applications we identify:

1. Automatic memory management.

2. Dynamic code loading.

3. Support for concurrent programming.

4. The use of high-level abstractions, such as managed threads and classloaders, that
do not always correspond to the concepts (process, thread) traditionally used to
handle resources.

In addition, there are implementation-specific limitations that obstruct the development
of resource-aware solutions. For instance, the lack of modularization in the Java HotSpot
implementation of the JVM has been largely discussed [DA02, Fon04, IN05]. This lack
of modularization complicates the addition of new features to the JVM. Likewise, there
are many dependency relationships among different sections of code within the Java
standard library that hinder resource management related tasks [BSD+08, KABM12].

2.3 Resource awareness in MRTEs

Many solutions to deal with the problems of resource consumption monitoring, control
and management have been proposed. In reviewing the body of knowledge related to
this topic, we are interested in solutions with specific properties. In particular, we
only consider those solutions that can be applied to MRTEs. This section presents a
summarized review of different approaches that we can leverage to support resource-
aware programming in MRTEs. The objective is to determine how well suited are
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existing approaches for supporting resource awareness in MRTEs. By focusing on a
common set of properties, we are able to compare different solutions. In the rest of this
section, the following properties are briefly discussed for each approach:

• Type of resource that the approach is able to handle: There are different
types of computational resources. The mechanisms for monitoring and managing
them differ considerably due to two reasons. First, the hardware/platform support
for resource management varies depending on the type of resource. Second, this
is also the result of intrinsic differences on the way resources are consumed. As
a consequence, solutions to face resource related issues are often limited to a few
types of resource. In this thesis, we are interested in the following resource types:
CPU time, mainmemory, network bandwidth, and IO throughput. It is noteworthy
that some approaches are able to deal with many resource types and others with
just one type.

Manageable type of resource - summary
Since there is no natural order of importance among the types of resource a,
and an approach may be capable of handling many types of resource, this
property is nominal and multivalued.

aIt may exist for specific scenarios.

• Portability: This property is desired on any software system. In the case of
approaches that support resource awareness in MRTEs, we consider two aspects
related to portability.

The first aspect refers to whether a solution can be seamless used on a given exe-
cution environment without further modifications. For instance, some approaches
rely on operating system (OS) features. Other techniques require a modified
MRTEs to deliver the desired services. Finally, there are solutions that do not
require features from the OS nor modifications to the MRTE. In short, we identify
three values for this property: OS Specific, MRTE Specific and Portable. For the
purpose of this thesis, we establish a partial order among these values, which is
based on the superiority of the solution in terms of portability. It is clear that a
solution that is both OS and MRTE independent is the most portable one. How-
ever, it can be argued whether it is better to use an OS specific solution instead
of a MRTE specific approach. On the one hand, we can see it as a matter of
how likely is that a solution will be adopted. Hence, it is possible that a solu-
tion based on existing OS features would be preferred over a solution based on
a MRTE extended with additional features. On the other hand, MRTE specific
approaches can be considered more portable due to the fact that MRTEs are
themselves already ported to many OSes. In this thesis, we rely on this second
criteria.

There is a second portability aspect to consider: ease of writing a contract on
resource consumption. For instance, it is hard to define a contract regarding
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resource consumption if we want to execute a workload in a target platform while
at the same time we control the consumed resources (e.g., 10% of CPU is probably
enough to complete a workload in a development platform, but how much is the
equivalent value in another platform?). The problem arises because there is a
potential hardware/software mismatch between the development platform and
the target platform. Hence, writing the contract using architecture dependent
metrics is insufficient when dealing with heterogeneous environments [DHPW01,
DDHV03]. On the contrary, using values with the same meaning in both the
development and target platforms for writing the contract is a solution that eases
the specification of resource consumption contracts. In this thesis, we call fully
portable to those approaches that are OS independent, MRTE independent and
support the definition of a contract using a common metric in the development
and target environment. Additional advantages of using platform-independent
metrics to analysis the dynamic behavior of applications are discussed thereafter
in Section 3.2.2. However, it is worth mentioning that the problem of defining
contracts related to resource consumption for specific platforms has been discussed
elsewhere using other approaches [LP08, PHZ12].

Portability - summary
The portability is an ordinal property, which can take the following values:
OS Specific, MRTE Specific, Portable and Fully portable.

• Granularity: Traditionally, operating systems have treated processes and threads
as units accountable for resource consumption. More recently, virtual machines
and application containers have served the same purpose. As a consequence,
mature solutions exist for managing resource at process and thread levels. Un-
fortunately, these are coarse-grained levels that are not useful in some scenarios.
In MRTEs, it is usually necessary to control and monitor resource consumption
using fine-grained approaches. Four values are used while comparing different
approaches in this section: process, thread, method and arbitrary. A solution pro-
vides resource awareness at the process if the control, monitoring and managing
of resources is only possible for the whole MRTE. The granularity levels thread
and method are self-explanatory. It is only necessary to highlight that if a solution
is, for instance, able to handle a single managed thread then it is also capable of
handling several managed threads by simply aggregating, probably with an addi-
tional performance overhead, the results of many threads. In this thesis, arbitrary
granularity level refers to the possibility of collecting data and managing resource
for any specific part of the application running on top of a MRTE. For instance,
monitoring the CPU consumption of several threads plus the consumption of a
few methods executed by another thread.



Resource awareness in MRTEs 19

Granularity - summary
This is also an ordinal property where the values are sorted from coarser to
finer granularity level.

• Performance Overhead: In dealing with resource awareness, a major concern
is the performance overhead required to support the paradigm. The overhead
is usually produced by the need of carefully monitoring and controlling how re-
sources are used. In general, there exist trade-offs between the performance and
other properties such as granularity and portability. For instance, the finer the
granularity the higher the overhead.

Despite of the importance of this property, comparing approaches based on it
is nonetheless challenging due to three factors. In the first place, most ap-
proaches have been evaluated using different hardware, operating system, MRTE
and benchmark. Hence, the results are not directly comparable. Second, some
approaches can be applied in the context of MRTEs, but they have been evalu-
ated in other contexts. Finally, conducting further experiments to evaluate how
each approach behaves under similar conditions is not only extremely time con-
suming but also impractical because some approaches rely too heavily on specific
platforms or they are no longer available for experimentation. Fortunately, most
results have been presented as the percent of overhead produced by the addition
of resource management capabilities to an already existing system. Thus, we can
use these values as measurements for the comparison.

In this section, we use the ordinal labels low, medium, and high to denote the
performance overhead. These labels are used to associate a measure of quality to
individual approaches. The definition of these labels is as follows: low overhead
indicates values under 10%, medium overhead denotes values under 100 %, and
any other value is considered high overhead. A reader might disagree with these
definitions because, for instance, it might be argued that these definitions should
be relative to the context of use (5% may be too much overhead in some domains).
However, we are only using these labels to compare methods to one another. In
any case, we also present the numerical value of overhead when it is available;
if no numerical value is published, we discuss the reasons that led us to label a
method with a given value.

Performance Overhead - summary
The level of measurement of this property is scalar. However, the scalar
values should not be compared directly in this case because we are using
values that were computed in different experiments. Instead, we prefer the
ordinal values low, medium, and high.

In the rest of this section, different approaches related to resource management are
presented. To do so, the aforementioned properties are discussed for each individual
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mechanism. Section 2.3.1 covers some techniques for the monitoring of resource usage
in MRTEs. A summary of approaches to reserve resource in MRTEs is presented in
Section 2.3.2. Finally, Section 2.3.3 summarizes the strengths and weaknesses of each
approach. This last section also highlights what are the limitations of state-of-the-art
approaches.

2.3.1 Resource Consumption Monitoring

The problem of resource consumption monitoring in MRTEs is similar to that of pro-
filing applications. After all, they both pursue the same goal - identifying parts of a
system that are accountable for resource consumption. It is then unsurprising that tech-
niques traditionally used for profiling applications had found their way as solutions for
monitoring resource consumption at runtime. Likewise, approaches to collect resource
usage information in OS abstractions, such as processes and threads, have been applied
in the context of MRTEs. This is possible because many MRTEs rely on OS concepts
for implementing concurrent programming. Among the techniques partially reused are
the following:

Sampling is a technique where a separate agent is periodically executed to collect data
about what an application is doing. In a common scenario, the sampler captures
the value of the program counter (PC) for each thread executing within the ap-
plication. Afterwards, these data and symbol table are used to identify which
routines were executing most of the time. Additional information, such as the
calling context, can be collected in order to build a calling-context tree. Sampling
has an indisputable advantage: a low performance overhead that depends on the
data collected and the sampling rate. Moreover, the data collected can exhibit a
good accuracy when the sampling rate is properly chosen. Nevertheless, it is not
able to collect data regarding the consumption of resources such as memory.

Instrumentation techniques are based on the idea of adding instructions to the ap-
plication to collect data regarding its behavior. The instructions added, which
are known as probes, are able to collect information about many events, such
as method entry, memory allocation, execution time, system calls, and others
[ASM+05, SMB+11, ABVM10]. In summary, a fundamental advantage of using
instrumentation to collect resource consumption information is that the possibil-
ities are almost countless because one has access to everything the application is
doing. Alas, there is a trade-off between the number/complexity of the added
probes and the resultant performance overhead: more probes implies higher over-
head. As a consequence, reducing the number of probes and the complexity of
each probe is of special interest for any instrumentation-based approach. In ad-
dition, it is worth mentioning that approaches exist to reduce the performance
impact by temporally disabling at runtime those probes that are not necessary
[Dmi04, AR01, GM11].

Reusing thread and process monitoring approaches is another common strat-
egy. This is possible because MRTEs’ implementations are usually built upon
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OS abstractions. For instance, managed threads in the JVM are often imple-
mented on top of native threads. Thus, reusing OS support for resource-aware
programming in the context of MRTEs is relatively simple. Unfortunately, the
abstractions used in modern operating systems are coarser than those abstractions
that are present in MRTEs. As a summary, in some cases it is possible to reuse
OS facilities for measuring the resource usage of a managed thread, but relying
on the OS is not feasible if we are trying to monitor the resource consumption at
a different granularity level.

Usually, these techniques are modified to leverage and adapt to MRTEs’ features.
For instance, dynamic code loading in Java greatly reduces the effort needed for instru-
menting applications because the bytecode can be modified at load time without using
complex patching mechanisms that are necessary elsewhere [GM11]. Another example
is how sampling-based approaches can leverage the built-in mechanism for stack un-
winding which is present in the JVM. MRTE specific methods have also been proposed.
Since these methods require heavy modifications to existing execution environments,
they are not portable. However, the performance overhead of these techniques tend to
be low. Finally, there exist approaches where a mixing of different techniques is used.

Another class of approach related to measuring how applications consume resources
is worth mentioning. Static analysis methods are useful to find properties of a system by
just looking at its static description (i.e., source code) without dynamically monitoring
its behavior. Some approaches are able to determine the worst case execution time
of a Java application [SPPH10], and to calculate the worst case memory consumption
of C applications [PHS10] (this is not applicable to MRTEs because of the garbage
collector). The problem with these solutions is that developers must annotate the
source code. Unfortunately, it is unlikely that such a practice will be widely adopted.

In the rest of this section, several concrete approaches are described.

Existing solutions

A solution for CPU, memory and network accounting capabilities built on top of the
JVM is presented in [CvE98]. The authors propose using a mixing of sampling, OS
features and instrumentation based on bytecode rewriting. A sampling thread simply
relies on OS system calls to get the amount of CPU time used by a thread. On the con-
trary, a portable mechanism for memory accounting is proposed. Bytecode instructions
to notify about memory consumption are inserted at each object allocation site. These
instructions notify about the thread responsible for the allocation. To detect when the
garbage collector deallocates an object, finalizers are added to non-arrays objects and a
vector of weak references to arrays is maintained in each thread. An advantage of using
bytecode rewriting for instrumentation is that no access to the application’s source code
is required. Network resources accounting is achieved by manually modifying the few
Java classes involved on networking. Listing 2.2 shows how a method is rewritten to
notify about memory allocations. A careful reader may notice two problems in the code:
it is unclear how the identity of the thread allocating memory is reported, and calling
newObject before the actual allocation may be problematic if the constructor triggers an
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exception. The first problem is easy to solve: inside methods newObject and newArray
there is an invocation to Thread.currentThread. The second issue is actually a problem
of our presentation; to enhance its readability, we use Java code instead of JVM in-
structions to describe the transformation. However, the actual bytecode transformation
is done by inserting the call to newObject between instructions new and invokespecial.
In this way, no issue occurs when the object cannot be allocated nor when an exception
is triggered by the constructor.

Sample createSample ( int n)
{

Sample s = new Sample (n ) ;
int [ ] a = new int [ n ] ;

s . setA ( a ) ;
return s ;

}

Sample createSample ( int n)
{

Account . newObj ( Sample . SIZE ) ;
Sample s = new Sample (n ) ;
int [ ] a = new int [ n ] ;
Account . newArray (INT , n ) ;
Account . wrapInWeakRef ( a ) ;
s . setA ( a ) ;
return s ;

}

Figure 2.2 – A method is rewritten to collect data about memory consumption.

Several approaches have been proposed to instrument applications by rewriting their
bytecode; there are three reasons for the popularity of this scheme: portability, ease of
use, and the capacity of monitoring arbitrary parts of an application. As a consequence,
research on using bytecode rewriting for resource accounting and profiling has focus on
the issues of reducing performance overhead and simplifying the development of anal-
ysis tools. On the first issue, as described in the previous paragraph, an overhead of
15% is reported by Czajkowski et al. [CvE98] when memory accounting is performed.
Binder et al. [BHV01] discuss a fully portable approach for CPU accounting with over-
head of 25%. In additional experiments conducted by Hulaas et al. [HB04, HB08],
executing the SPEC JVM98 benchmark, using a framework named JRAF2 for CPU
accounting, produces an overhead of 40%. Similarly, an overhead of 30% for CPU ac-
counting is reported in [BH06c, HB08] where several optimizations are evaluated and
extensive experiments are performed. Related mechanisms for writing portable profilers
are presented in [BHMV09, BH06a]. In this case, the slowdown factor varies from 3.2
to 5.3 because other data about the execution context is collected in addition to CPU
usage. Regarding the issue of simplifying the development of analysis tools (thoroughly
discussed in Chapter 3), aspect-oriented based approaches to build profilers have been
proposed and applied in different use cases [PWBK07, ABVM10]. Likewise, extensi-
ble frameworks based on bytecode rewriting have been successfully used to address the
problem of code analysis [BH06b, MBEDB06, MZA+12a].

Another approach for memory accounting, presented by Price et al. [PRW03], is
based on modifying the GC. In such a solution the memory heap is shared among all
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tasks (i.e., thread/classloader), and a task is accountable for an object if it contributes
to keep such an object alive. The marking phase of the GC is slightly modified to
perform the accounting. Instead of using a unique set of roots, an additional loop over
the tasks is performed. Each task contains a subset of the roots that are used to mark
objects and compute the memory consumed by the task. The approach is not accurate
in the sense that shared objects are not properly accounted for. The performance
overhead reported by Price et al. [PRW03] is under 3%. However, in [GTM+09] an
overhead up to 18% is reported using the same approach. The differences are likely
the effect of using different JVMs and GC implementations. Although the overhead is
low/medium, it is noteworthy that a MRTE using this approach suffers this overhead on
every collection cycle. Moreover, the technique cannot be applied if reference counting
is used and it remains unclear whether it is possible to integrate the approach in a
concurrent collector. Similarly, an approach to trace objects in Java is proposed in
[LBM15], where a modified JVM is presented. This approach is able to capture events
related to the allocation and movement of objects. Relevant data, such as the thread
and method responsible for the allocation, is collected after each event. Although the
mechanism requires an additional phase, which is not evaluated in terms of performance,
to determine when an object was deallocated, it is interesting because the performance
overhead reported ranges from 2-16%.

Modifications to existing MRTEs to support lightweight instrumentation-based pro-
filers have been proposed. In [Dmi04], an approach to instrument and (de)instrument
methods on demand is proposed. The idea is to generate an additional version of
each method, which includes instrumentation code. Afterwards, the runtime executes
a version based on user interests. This dynamic instrumentation approach shows lower
overhead than static instrumentation. Likewise, Arnold et al. [AR01] propose an ap-
proach to reduce the cost of performing instrumentation-based profiling. The insight of
this approach is creating an additional version of each method where no instrumentation
code is present but it is used to figure out if switching to the instrumented version is
necessary. Since the switching condition can change at runtime, this approach is in fact
dynamically adjusting the cost and accuracy of profiling. The results show an overhead
of 6% during the profiling of CPU usage. Finally, heavy modifications to MRTEs can
reduce the effort needed to perform resource accounting. For instance, due to the ar-
chitecture of MRTEs such as MVM [CD01] and KaffeOS [BHL00], memory accounting
in these systems shows a negligible overhead.

Operating system and hardware specific solutions have also been proposed. For in-
stance, pooling the system to get information about how managed threads are using the
CPU is proposed in [CvE98]. Performing the same task in other operating systems such
as Linux and FreeBSD is also possible [SPF+07, hKW00]. Hardware performance coun-
ters is another option for CPU accounting. As shown in Overseer [PBBP11], this can
be used to obtain the number of instructions executed on behalf of a managed thread.
Although the overhead produces by these approaches is low, they have important draw-
backs such as lack of portability and a coarse granularity level. Similarly, Banga et al.
[BDM99] propose a new operating system abstraction for resource management. The
authors argue that operating systems wrongly used a process (thread) as abstraction for
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both, protection domain and resource management. In contrast, they propose resource
containers, an abstraction for controlling at a finer level how resources are consumed by
different parts of an application. These containers allow fine-grained control over the
definition of independent tasks and the resources they consume. This idea is evaluated
in server systems, such as web servers, showing low overhead. Although, it is not con-
ceived for dealing with resource management in MRTEs, a middleware written atop a
MRTE can benefit from such a proposal.

Resource accounting for other abstractions such as OSGi bundles have also been
proposed. In [MBKA12], an adaptive approach for CPU accounting is presented. This
solution aims at properly identifying the amount of CPU consumed by each bundle;
the overhead is in 20-60% range. Pursuing a similar goal, a modified JVM is presented
in [ATBM14] to compute the amount of memory consumed. A slowdown of 46% is
produced by the proposed modifications to the GC.

2.3.2 Resource reservation

Supporting resource reservation in MRTEs has been mostly done using non-portable
solutions. As a matter of fact, most approaches are based on heavy modifications to
already existing MRTEs in order to add resource reservation capabilities on top of more
common features. Moreover, as presented in the following paragraphs, MRTE specific
solutions are only able to reserve a few types of resources. On the contrary, OS specific
solutions, that are able to deal with many types of resource, are available in modern
OSes. In the same way, some work have been done in devising fully portable resource
reservation upon existing MRTEs.

KaffeOS is a modified JVM that supports the concept of isolated process at the
virtual machine level [BHL00, BH05a]. It offers common operations such as process
forking and inter-process communication. KaffeOS isolates the data of each process
by providing a per-process memory heap where references to objects in another heap
are forbidden. Since the memory is partitioned by design, reserving certain amount
of memory for a particular task is a simple operation built in the execution environ-
ment. In the same way, controlling the amount of memory used by some applications
is straightforward. Applications with resource requirements can be easily developed if
shared memory regions are avoided. Experiments performed to evaluate KaffeOS show
that it has an overhead of 11%. In a related approach, the Multitasking Virtual Ma-
chine (MVM), the authors aim at isolating many JVMs on top of a single OS process
[CD01]. This approach offers advantages such as reduced memory footprint and faster
initialization time for new applications. As was mentioned in the previous section, per
isolate memory accounting is available in MVM; this can be used to provide memory
reservation with a low overhead. Unfortunately, in the context of a middleware, there
is a slowdown if communication between tasks running atop isolates is needed because
–in such a case– an inter-process communication (IPC) mechanism must be used.

Deterministic response time is required to build real-time (RT) applications. Often,
this requires appropriate support for CPU time reservation. However, features such as
automatic memory management produce non-deterministic CPU usage that affects the
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response time. The Real-Time Specification for Java (RTSJ) addresses Java limitations
that prevent its use as RT environment. In particular, modifications to the memory
management subsystem have been implemented because it is the biggest source of non-
deterministic behavior in Java. To support systems with hard-RT constraints, RTSJ
provides additional memory regions where deallocations are managed by developers.
Unfortunately, the rules that define how objects in different regions interact, break the
Java programming model. Support for soft-RT constraints on the other hand is pro-
vided by mean of a new GC approach, Metronome GC, that guarantees a minimum
percentage of CPU time to the mutator over any interval of time [BCR03]. For in-
stance, if a RTSJ environment is configured to ensure 80% to the mutator then of 60
seconds at least 48 seconds will be devoted to the mutator. When possible, using this
mechanism is encouraged because no assumption in the programming model is broken.
The features for CPU and memory reservation in the RTSJ are limited, but they show
how modifications to the GC can be used to reserve computational resources.

Modern operating systems support per thread resource reservation. In Linux, control
groups (CGroup) [SPF+07] is an abstraction used to specify limits on the amount of
resources that threads are allowed to consume. To enforce limits on a thread, it must
be attached to a cgroup. Since virtually all threads in the system can be attached
to cgroups, it is possible to use the mechanism to provide resource reservation. The
Linux kernel includes cgroups subsystems for resources such as CPU, memory, network
bandwidth and IO throughput. Each subsystem has, however, constraints regarding
how they can be used. For instance, the memory subsystem measures the consumption
at per page level (i.e., 4K pages) which is of course not useful if a memory page contains
objects that belong to different managed threads in a JVM. Similarly, FreeBSD offers
Jails [hKW00] and resource limits that can also be used to control resource usage and
per thread resource reservation.

The Java Accommodation of Mobile Untrusted Software (JAMUS) is a framework
that supports the deployment of “untrusted” software components [SG02]. In particu-
lar, JAMUS provides QoS guarantees related to resources consumption. The approach
follows a contractual-based paradigm for dealing with resource control. At deployment
time, a component specifies what resources it requires at runtime. By signing this con-
tract, the component is forced to use only those resources explicitly mentioned while
the framework promises to deliver all the resources the component requests. JAMUS
implements a resource broker which role is to guarantee the availability of resources for
each component. Using an initial description of available resources, the broker builds
and maintains a structure which represents its perception of resource availability. Before
deployment, a control-admission process checks if there are enough free resources avail-
able to deploy the component. Resource reservation is done by updating the broker’s
perception about resources availability. Once a component is accepted on the platform,
its execution is monitored to verify if its behavior is correct.

A related approach to resource control and isolation in multi-tenant applications
is described in [KSAK14]. It is limited to control the CPU utilization of tenants that
requests services from a remote provider. The approach applies resource demand es-
timation techniques in combination with a request based admission control. Resource
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demand estimation is used to determine resource consumption data for individual re-
quests. Such knowledge is used by the admission control mechanism to schedule the
order in which requests are processed, which is simply done by delaying requests origi-
nating from tenants that have exceeded their CPU quota. The experiments presented
show how the mechanism is able to properly isolate tenants, but little experiments
related to the performance overhead is presented. The evaluation presented show an
overhead in response time of 5%.

2.3.3 Remarks on existing mechanisms

Many approaches for resource accounting and reservation have been proposed; Table
2.1 summarizes the properties of those techniques presented in Sections 2.3.1 and 2.3.2.
The table is split in three sections: first, a set of approaches that target solely resource
accounting; second, approaches that aim at solving both resource accounting and re-
source reservation; and finally, techniques that only face the problem of reservation.
The data provided in column Overhead are taken from the research papers covered by
the two previous sections. This table shows a clear picture of existing trade-offs in the
design of solutions to support resource aware programming. In the remainder of this
section, these trade-offs and practices are discussed. Additionally, the weaknesses of
different techniques (Some values in the table are marked with the symbols ↓ and ↓↓,
denoting weak and very weak points respectively.) are highlighted. The rest of the
section also gives an insight of some good practices that help to create better solutions.

On the issue of overhead. This is a property clearly affected by both granular-
ity and portability. For instance, low overhead is usually associated to the usage
of OS specific approaches [BDM99, PBBP11, SPF+07, hKW00], which at the same
time are restricted to coarse-grained abstractions such as threads and processes. It
is also worth noting that MRTE specific approaches tend to show a relatively low
overhead [PRW03, GTM+09, Dmi04, AR01, ATBM14, BHL00, CD01], and how these
techniques often have limitations on both the type of resource and granularity level
they can handle. It is in particular interesting how solutions that show low overhead
have carefully crafted either their internal organization [BHL00, CD01] or operation
mechanism [Dmi04, AR01] to reduce the computational footprint. On the contrary,
approaches that use instrumentation based on bytecode rewriting show in general a
higher overhead than other solutions. This is especially true for fully portable ap-
proaches where memory and CPU accounting are done using bytecode instrumentation
[CvE98, HB04, HB08, BHV01, BH06c, HB08]. Actually, the problem with instrumen-
tation based on bytecode rewriting is the lack of access to low-level details that can
be used to reduce the overhead. As mentioned, the granularity and nature of the
collected data have a profound impact on overhead. Representative cases of this is-
sue are the techniques for monitoring of CPU and memory consumed by OSGi bundles
[MBKA12, ATBM14], where despite of the proposed optimization the overhead remains
at a medium level. The frameworks for portable profiling presented by Binder et al.
[BH06a, BHMV09] are others scenarios where the overhead is high because of the data
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Table 2.1 – Summary of discussed approaches; for each approach its properties are
shown. Some values are marked with ↓ and ↓↓, denoting a weak point and a very weak
point respectively.

Approach Resources Portability Granularity Overhead
Approaches for resource accounting

Resource Containers
[BDM99]

CPU

OS Specific↓↓ Thread↓ lowMemory↓↓
Network
IO Throughput

Overseer (HPC)
[PBBP11] CPU↓↓ OS Specific↓↓ Thread↓ low

Modified GC
[PRW03, GTM+09] Memory MRTE Specific↓↓ Thread↓ medium (3-18%)Classloader↓
Tracing Objects
[LBM15] Memory↓↓ MRTE Specific↓↓ Thread medium (2-16%)Method

Dynamic Profiling
[Dmi04, AR01]

CPU
MRTE Specific↓↓ Arbitrary* low (6-10%)Memory

Others*

JRes [CvE98]
CPU OS Specific↓↓

Thread↓ medium* (18%)Memory Fully portable
Network Fully portable

J-RAF2 [HB04, HB08] CPU Fully Portable Thread↓ medium (37%)
Portable CPU Ac-
counting [BHV01,
BH06c, HB08]

CPU Fully Portable Thread↓ medium (25-30%)

Portable profilers
[BH06a, BHMV09]

CPU Fully portable Arbitrary* high (300-500%)↓↓Memory
OSGi CPU profiling
[MBKA12] CPU Portable OSGi Bundle↓ medium (20-60%)
OSGi Memory profil-
ing [ATBM14] Memory MRTE Specific↓↓ OSGi Bundle↓ medium (46%)

Approaches for resource accounting and reservation

CGroups (Linux)
[SPF+07]

CPU

OS Specific↓↓ Thread↓ lowMemory↓↓
Network
IO Throughput

Jails (FreeBSD)
[hKW00]

CPU

OS Specific↓↓ Process↓↓ lowMemory↓↓
Network
IO Throughput

KaffeOS [BHL00] Memory MRTE Specific↓↓ Process*↓↓ medium (11%)
MVM [CD01] Memory MRTE Specific↓↓ Process*↓↓ low (0.5 %)

Approaches for resource reservation

JAMUS [SG02]

CPU

OS Specific↓↓ Thread↓ mediumMemory
Network
IO Throughput

Multi-tenant CPU
isolation [KSAK14] CPU↓ Portable Tenant↓↓ low (5%)
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being collected (calling-context tree). Finally, using adaptive monitoring and profiling
techniques is a design decision that greatly reduces the overhead. In particular, using
a dynamic condition to change the profiling level may have a significant impact on the
running system [Dmi04, AR01]. Likewise, as shown in [MBKA12], adjusting the moni-
toring level using simple heuristics to reduce overhead may be decisive in a production
environment.

Some limitations on the data shown in table 2.1 are worth mentioning. First, the
overhead for MVM and KaffeOS do not take into account additional slowdown that
may occur if these platforms are used to isolate components that are tightly coupled.
In scenarios like this, the overall performance would suffer because a form of IPC would
be necessary. A second limitation is the lack of good data about the performance
overhead of OS specific approaches. In particular, as far as we know, there is no detailed
experiments on such overhead. There are however partial experimental results. For
instance, using per thread hardware performance counter can produce a 20% overhead
in context-switch [Wea13]; and they can also produce considerable overhead when used
in time based sampling [Wea15].

On the issue of portability. As expected, portable solutions produce higher over-
head than OS and MRTE specific approaches. They are nevertheless capable of monitor-
ing the usage of any resource type at any granularity level. Conversely, modifications to
MRTEs tend to target a resource type - modified GCs are useful for memory accounting,
but there is no related work applicable to CPU accounting. Non-portable approaches
are also hard to apply when it is necessary to collect data at arbitrary granularity level
because it is complex to anticipate how the abstractions provided by a runtime will be
used by applications/systems. An example that illustrates this problem is related to
how MRTEs manage memory in comparison to OSes: an OS often delivers pages of
4K while a MRTE allocates objects that are smaller than a page. As a result, mem-
ory accounting facilities as provided by OSes (cgroups) are not useful in MRTEs. In
general, a solution based on a specific OS is only able to deal with a granularity level
with low overhead if there are simple mappings between the concepts in the OS and the
granularity level (e.g., managed threads are mapped to OS threads, which are easily
monitored using OS facilities).

On the capacity to handle different resource types. CPU accounting is ad-
dressed in almost all approaches presented in Sections 2.3.1 and 2.3.2. This problem is
particularly well understood; thus, solutions at all levels (OS, MRTE, application) have
been proposed. However, there is limited support for CPU reservation using portable
solutions, and generating low overhead. Memory accounting and reservation are avail-
able for different granularity levels, but it is still complex to craft efficient solutions.
Actually, all existing mechanisms with low-overhead are MRTE specific. Network and
IO throughput accounting are far less addressed problems. Even if there are portable
approaches, they are limited to perform per thread accounting. Although this may
seems enough, it remains an open problem.
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As for the capacity of OS specific approaches [BDM99, hKW00, SPF+07], it is note-
worthy again how they have limited use for dealing with memory is MRTEs. Likewise,
an MRTE specific approach such as [LBM15] is not able to fully monitor memory con-
sumption because it lacks support to quickly detect object deallocations.

Available solutions for resource reservation. In reviewing the state of the art, we
realized that resource consumption monitoring in MRTEs is a problem that has been
addressed far more often than resource reservation in MRTEs. Likely, this is product of
a single fact: resource accounting can easily be used to implement other non-functional
requirements such as dependability, QoS, and deployment of untrusted code. On the
contrary, resource reservation seems a less common need because most execution envi-
ronments already offer good (although less restrictive) mechanisms to handle resource.
In cases where there exist strong resource requirements (such as embedded devices),
engineers tend to handcraft specific solutions.

2.4 Summary

Resource-aware programming is a useful paradigm that requires extensive runtime sup-
port. We state that the scope of this thesis is limited to provide resource consumption
monitoring and reservation in managed runtime environments. In our vision, resource-
aware programming support must be as reusable, generic, and lightweight as possible.

In reviewing the state of the art of resource consumption monitoring and resource
reservation, we realized that despite of the existence of several solutions, none of them
are able to properly support resource-aware programming in MRTEs. In particular:

1. There are no portable approaches for resource monitoring that can deliver compet-
itive performance overhead. As a consequence, customized MRTEs that support
resource awareness are used when these features are needed in production envi-
ronments. Due to the additional dependency, the development and deployment
of applications are harmed.

2. Most resource monitoring approaches are limited to determine the resource usage
at relatively coarse-grained levels such as threads, processes, and classloaders. In
those techniques that are applicable in fine-grained levels, the performance of the
monitored system quickly degrades.

3. Resource reservation support in MRTEs is mostly limited to using application
containers. Although this approach guarantees resource usage isolation and per
container reservation, applications running inside containers suffer additional per-
formance overhead due to communication when these applications are coupled. It
is our belief that in cases where strong isolation is not required, software systems
would profit from lightweight resource reservation mechanisms.

Additionally, we learned important lessons that are worth considering during the
design and implementation of frameworks/tools to support resource awareness:
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1. Adjusting dynamically the monitoring granularity based on actual needs of the
system can have a positive impact on performance overhead.

2. Reorganizing the internal architecture of execution environments to make resource
awareness a first-class feature has proven a successful mean to reduce the overhead.
This principle can be understood by observing, for instance, that mapping the
concept of OSGi bundle to a low-level entity such as a heap region can greatly
simplify memory management.

Nowadays, MRTEs are used to execute complex systems. To implement them,
several engineering techniques are used – different programming paradigms, languages,
and software deployment methods. This diversity hinders the development process,
in particular its maintenance and evolution. To ease the development process, it is
common to define and use software abstractions that address specific software concerns
(e.g., components for deployment, aspects for cross-cutting concerns). However, heavily
using new abstractions to develop applications, when support for resource awareness
is needed, has its own disadvantages. In the next chapter, we discuss the challenges
related to these disadvantages, and how they have been addressed in the literature.



Chapter 3

Abstraction-oriented resource
awareness

Where is the ‘any’ key?

(Homer Simpson, in response to the message, “Press any key”)

Defining and using software abstractions (such as classes, components and lan-
guages) are common operations when building applications. Sometimes, it is useful
to consider the problem of how instances of an abstraction consume computational re-
sources. For instance, computing the CPU consumed by all threads running on a system
is quite helpful for system administration purposes. Another example is the necessity
of knowing the number of instances of a given class when we are profiling applications.

As shown in the previous chapter, supporting resource management is a complex
task that highly depends on the technology a system is running atop of. In this chapter,
we show that specific features of the software abstraction, which is being targeted, also
influence the way resource management support is implemented. Due to all these specific
features there is considerable variability to consider when writing resource management
tools; dealing with this variability is complex.

This chapter mainly discusses how the usage of software abstractions poses new
challenges when we are implementing support for resource consumption monitoring
and reservation. In particular, this chapter describes an abstraction – components
(Section 3.2.2), which is frequently used on top of MRTEs. A comprehensive discussion
on how this abstraction consumes resources is presented. Moreover, state-of-the-art
approaches, for handling features specific of components and other abstractions, are
presented and their limitations discussed (Section 3.2). We then present the state of
the art on simplifying the construction of tooling support for resource consumption
accounting and reservation (Section 3.3).

31
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3.1 Developer’s View versus Tooling’s View

Building abstractions is at the core of software development. They are meant to tackle
numerous problems in software engineering, ranging from providing better representa-
tion of the business logic to supporting applications’ extensibility. Interestingly, abstrac-
tions are not built from scratch; instead, they are implemented upon other abstractions
provided by the runtime environment. This leads to the well-known layered architecture
where complex features are created using more simple concepts. In the field of operating
systems, processes are built relying on low-level concepts such as hardware interrupts,
context-switch, and MMU hardware. In the area of programming languages, recursive
routines are implemented upon basic hardware stack manipulation.

Once a new abstraction is implemented and its invariants defined, you can use
it without a complete understanding of the implementation details. This has profound
implications in the software development process; it now requires special tooling support
because developers immediately start thinking in terms of such an abstraction. For
instance, showing plain assembler instructions while debugging applications is no longer
good choice once you start coding your applications in a language that includes high-
level concepts such as routines, loops, and conditional-statements. In the same way,
when a profiler is used to check the memory consumption of Java-based applications,
the data produced is expected to reflect terms such as object and class. Ideally, tools
such as editors, debuggers, and profilers must be modified to make them aware of
each new abstraction introduced in the development cycle. Likewise, mechanisms to
monitor resource consumption at runtime should also be modified. Unfortunately, this
is not always the case. For instance, often developers lack the proper tools when they
implement applications that execute in MRTEs. A couple of illustrative examples are
given below; the first is associated to the usage of DSLs, the second is related to OSGi
bundles.

The case of providing tools for new DSLs Many of the newly designed DSLs are
built on top of existing object-oriented languages runtime such as the JVM. Therefore,
people in charge of optimizing, debugging and maintaining software applications can
use the existing debuggers and profilers of these platforms. However, there is a clear
mismatch between classical profilers used in object-oriented systems and the newly
designed languages. Indeed, the concepts introduced in these new DSLs may not exhibit
a straightforward mapping to the underlying object-oriented system. As a consequence,
it may be time consuming and complex to use a classical profiler to check applications
that are based on these new languages.

For instance, active annotations allow developers to participate in the translation
process of Xtend source code to Java code via library. Such mechanism is often used
directly by developers to introduce abstractions, and to define internal DSLs. In the K3-
AL1 project, active annotations are used to create an open-class mechanism on top of
Java [CLCM00]. As a result, the annotation processor changes the program structure

1Available at https://github.com/diverse-project/k3/wiki

https://github.com/diverse-project/k3/wiki
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to implement this feature. It adds an indirection layer to invoke some methods (to
AASpect), creates a new set of objects to represent part of the state of one conceptual
object (AASpectProperty), and uses the Xtend extension method feature. Figure 3.1
shows the result of this translation process. The code written by the developer is shown
in Figure 3.1a; to its right, Figure 3.1b shows the user view (the code that can be written
to use the open-class mechanism); and the runtime view is depicted in Figure 3.1c. In
this example, an instance of an open-class is not represented by a single JVM object;
instead, it is represented by many objects.

(a) Viewpoint of library developer (b) Viewpoint of library user

(c) Tooling’s view

Figure 3.1 – Open-class mechanism in K3-AL, three views are shown: how the developer
of the library see it (Fig 3.1a), how the user of the library see it (Fig 3.1b), and how it
is perceived by the tools (Fig 3.1c).
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The case of monitoring components CBSE is an interesting example because it
is widely used. Curiously, although developers are encouraged to think in terms of
high-level abstractions when software is written using components, little tooling sup-
port exists for resource awareness. Indeed, in OSGi, a component framework, many
bundles 2 are deployed on top of a single JVM instance. Due to the communication
mechanism used in OSGi, where objects are routinely shared, it is complex to decide
which bundle should be accounted for the consumption of a particular object. A pos-
sible approach is deciding that an object O is being consumed by a bundle if O’s class
was loaded using the classloader C associated with such a bundle. Then, we can use
this mechanism to monitor per-bundle memory consumption. However, a profiler must
perform considerable – and costly – amount of processing to collect such kind of data
because it is not straightforwardly available in the JVM. Given the widespread usage
of OSGi, memory profilers often support collecting data regarding per-bundle memory
usage. Unfortunately, similar abstractions (components models), equally implemented
atop of Java, are often not properly supported by such tools because they are not
as popular as OSGi. Hence, data must be manually aggregated when an application
uses abstractions that are not supported by profilers; this is a considerable burden for
developers.

The example of OSGi is also useful to highlight how some abstractions have specific
requirements regarding resource consumption monitoring and reservation. In the par-
ticular case of determining how many resources are being consumed by a bundle, it is
noteworthy that there exist two ways of doing so when a bundle requests a service from
another bundle. Both approaches have pros and cons [MPH08, MBKA12]. In a first
option, all resources used to satisfy a request are charged to the bundle that originally
issued the request, no matter whether part of the computation is performed in other
bundles. In a second option, a bundle only consumes resources when it is executing its
own code. The important point is that, above the concern we present in the previous
chapter regarding the mechanisms to support resource-aware programming, engineers
also have to focus on features specific to each abstraction.

The problem at hand In this thesis, we argue that a mismatch, between the devel-
oper’s view and the tooling’s view, exists when the concepts managed by the developers
are not clearly reflected in the tools. This mismatch may complicate the development of
applications, as well as prevent the correctness of software systems. We identify in this
thesis, two ways in which such a mismatch may affect software development when new
software abstractions are heavily used and, at the same time, support for resource-aware
programming is also required:

• The creation of new software abstractions poses challenges for software developers
because abstractions may have requirements that are not addressed by generic
developing tools. In particular, tools, such as profilers, and runtime monitors,
may require modifications in order to reduce the gap between the user’s view and

2A bundle is a unit of deployment in OSGi.
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the tools’ view. The problem is how to efficiently reuse the generic mechanisms
of existing approaches to handle the specific requirements of new abstractions.

• Since new software abstractions are constantly being defined, there is an increasing
pressure to ease the creation of abstraction-specific tooling support. Simplifying
the definition of tools in order to support new abstractions is the issue in this
case.

In the rest of this chapter, we extensively discuss both concerns.

3.2 Dealing with abstraction-specific requirements

As claimed in the previous section, when a new abstraction is defined, there is a gap
between the capabilities of existing tools and users’ expectations. Therefore, it is nec-
essary to reduce this gap by modifying generic tools to make them capable of dealing
with specific features of new abstractions.

In this section, we present the challenges that emerge when tooling support for
resource management is being built. To do so, we discuss the topic in two ways:

1. We present how the mismatch between existing tools and users’ expectation con-
tinuously emerges due to the increasing usage of DSLs to build applications. This
serves both to further motivate the research, and to present in details the technical
complexity an engineer may face when new abstractions are used.

2. We describe the specific features of a concrete kind of abstraction – software
components. We do so because, despite of the fact that CBSE is widely used in the
industry, existing approaches to support resource awareness still have limitations.

The presentation aims at highlighting the type of modifications that might be re-
quired in order to make an existing resource management tool capable of dealing with
concepts defined in a new abstraction. To guide the discussion, the following elements
are given for both, programs written using DSLs and component-based systems:

• A brief description of the main elements of the abstraction, focusing on those
features that impact resource management.

• Illustrative cases of implementations of these abstractions on top of MRTEs.
For instance, it briefly mentions components models that support Java.

• An analysis of how resources are consumed by each type of abstraction.

• Special characteristics of these abstractions to take into account when sup-
port for resource-aware programming is implemented.

Afterwards, the state of the art on providing support for resource awareness for new
abstractions and, in particular, for component models is presented. This is done in the
form of a summarized discussion of existing approaches. The section ends by analyzing
the limitations in these approaches.
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Figure 3.2 – Organizing abstractions as DSLs. This resembles the idea of “language”
embraced by Czarnecki and Eisenecker [CE00].

3.2.1 DSLs: land of hungry abstractions

In their seminal work [CE00], Czarnecki and Eisenecker embrace a broad notion of “lan-
guage” that encompasses what are now known as internal and external DSLs [Fow10],
but it also includes libraries of routines or classes that extend a programming language
because they introduce new concepts and vocabulary. A DSL describes a specific do-
main (e.g., state machines, interface definition language); thus, its utility is restricted
to the domain it represents. This widely used notion of “language” is what we have
in mind when we discuss the problems associated to resource consumption in DSLs.
Figure 3.2 shows a possible organization of these abstractions.

The mechanisms used to represent concrete abstractions vary. For instance, an
internal DSL is embedded into a general-purpose language (GPL). This is often done by
relying on meta-programming facilities of a host language. Likewise, design patterns and
reflection are used to implement some forms of internal DSLs, such as fluent APIs, and
annotation-based languages. On the contrary, a “program” written using an external
DSL requires a separated translation process (i.e., compilation) in order to produce
an artifact that can be integrated as part of an application. It is then interesting
that languages, regardless their representation, are always translated to concepts in a
lower layer of the software stack. Developers then find the gap between their view
and the tooling’s view. The problem is to find out how software abstractions consume
computational resources.

Support in MRTEs As mentioned, concrete “programs” written in a DSL are typ-
ically translated to some host GPL. This means that the DSL concepts are layered on
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top of concepts, such as classes, objects, and threads. Plenty of approaches exist for
writing DSL-based applications that are transformed to be executed on top of MRTEs;
in particular, many solutions target the Java language and the JVM. For instance,
the Xtext language workbench [EB10], the Eclipse Modeling Framework [EMF13], the
meta-programming capabilities of languages such as Scala [HO10] and Clojure [Kel13]
where internal DSLs can be defined and executed, the combination of annotations and
annotation processor [HZS08], and intentional programming frameworks such as Meta-
Programming System (MPS) [JetPS, VSBK14]. Likewise, F# applications, which exe-
cute in CLR, can use meta-programming support to write DSLs [CLW13]; and the Boo
language provides constructors that are easy to use for crafting DSLs [Rah10].

Abstractions and their resources consumption Naturally, the resource consump-
tion of a “program” written in a DSL depends on the DSL itself. If a language is only
used to describe data (without any executable semantics), then a program in such a
language will consume memory. On the contrary, if a language only describes behavior,
a program written using such a language would use CPU to perform the computation.

An example is useful to illustrate how a DSL consumes resources. Figure 3.1 shows a
program written in a state machine language that resembles a DSL described in [Voe10].
In this DSL, states, events and transitions are concepts defined by the DSL, but the
guard conditions and the actions have a behavior that, as can be seen in the example,
is plain imperative code. To evaluate such sections of a state machine, CPU time is
required. In this case, it is necessary to know the translational semantic of the language
in order to properly measure the CPU consumption.

Listing 3.1 – State machine to control the door of a bus.

StateMachine BusDoorManager
events open_door ( ) stop_requested ( ) bus_stops ( ) time_elapsed ( )
state s ( i n i t i a l = DoorClosed ) {

state DoorClosed :
on stop_requested ( ) => ReachingStop

state BusStopped :
on open_door ( ) => DoorOpen { l i g h t .on ; door . open ; t imer . wait }

state ReachingStop :
on open_door ( ) => OpeningDoor {}
on bus_stops ( ) => BusStopped {}

state OpeningDoor :
on bus_stops ( ) => DoorOpen { l i g h t .on ; door . open ; t imer . wait }

state DoorOpen :
on open_door_requested ( ) => DoorOpen {}
on t ime_elapsed ( ) => DoorClosed { door . c l o s e ; l i g h t . o f f }

}

In other cases, the translation process of a DSL may only generate a structure for
each “program”, without any associated behavior. Hence, only memory is consumed by
the execution environment to represent a concrete model at run time. For example,
suppose we define a language to represent plants using the L-System formalism [PL90].
A plant created by Prusinkiewicz et al. [PL90] using L-Systems, is depicted in Figure 3.3.
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The structures generated by this language may be simple strings of symbols (see 3.3c).
The memory consumed by a L-System depends on the number of iterations, the rules
defined, and the concrete data structure used to store the symbols (it can be a string
of characters, a tree, a list, or an array). The important point is that users of this
language should see this kind of structures as black-boxes. Hence, in this example, the
object used to store the plant must be seen as structure of type OL-System instead of
as a simple Java string.

plant P0
contants : + − [ ]
variables : X F
i n i t i a l : X
rules :

X −> F[+X]F[−X]+X
F −> FF

iterations : 7
angle : 20 degrees

(a) DSL Code (b) Graphical representation

St r ing P0 = "FF[+F[+X]F[−X]+X]FF[−F[+X]F[−X]+X]+F[+X]F[−X]+X" ;

(c) Java code generated after translation (two iterations instead of seven)

Figure 3.3 – Simple OL-System to generate a plant in two dimensions. On the left,
the OL-System is represented using a DSL, on the right we show the tree that can be
generated using such OL-System, below is the representation in Java.

An important feature to consider by engineers who implement support for re-
source awareness, is that languages do not always provide well-defined boundaries.
For instance, an internal DSL may be transformed into a list of statements of the host
language without defining a new routine or thread. In a case like this, instrumenta-
tion is the only mechanism that can be used to achieve CPU consumption monitoring.
Interestingly, interaction between parts of an application written using DSLs can also
impact the way resource accounting is done. In the state machine example previously
discussed, a state machine might trigger events in another state machine by simple
executing some actions in one of its transitions. In a situation like that, a resource
accounting framework should properly determine the change of execution context; un-
fortunately, implementing this can be computationally expensive.

3.2.2 On how software components consume resources

CBSE is a particularly interesting – and concrete – example of how tools that provide
support for resource accounting and reservation must take into consideration features
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specific of each kind of abstraction. In this section, we thoroughly discuss the concerns
to address when dealing with component-based systems.

CBSE aims at developing applications by reusing independent units of software
[GMML12, CSVC11]. Through the utilization of components, connectors and configu-
rations, CBSE reduces the complexity in the development and maintenance of systems
[DvdHT02, MT00, vOvdLKM00]. One of its technical advantages is that it facilitates
the management of dynamic architectures [NGM+08, JBD15] because it simplifies
the implementation of features, such as, self-organizing the structure of a system, and
self-adapting its behavior [PLM12, JBD15, ZGC09]. Likewise, many works [GMML12]
have shown the benefits of using component-based approaches in open-world environ-
ments [BDNG06, CFG10, PPMB10].

In a general sense, the concept that embodies the idea behind software components
can be defined as follows [CSVC11]:

Definition 1: A Software Component is a software building block that conforms to a
component model.

Definition 2: A Component Model defines standards for (i) properties that individual
components must satisfy; and (ii) methods, and possibly mechanisms, for com-
posing components.

Plenty of diversity exists in current component models and frameworks [HC01,
SGM02, CSVC11]. They tend to target different technologies, aim at different use cases,
provide support for different concerns, and use different design principles. Crnkovic et
al. [CSVC11] propose properties that can be used to classify component models; we are
interested in those models that have the following properties:

Modeling capabilities: it is common to provide a mechanism for modeling the system
architecture during the development phase; this results useful to reason about the
system. In addition, it is possible to support some form of reflection for querying
the architecture of a system at runtime. Component models that include both
features are the target of our research.

Deployment of components at runtime: since, we are dealing with the problem
of supporting resource awareness in open environments, we focus on component
models that allow component deployment at runtime. Many component models
are able to cope with the necessity of adaptation through, for example, the de-
ployment of new modules, the instantiation of new services, and the creation of
new bindings between components [Por14, ZWK14, IFMW08, GMPLMT10].

Other properties worth mentioning in this thesis are those that describe how compo-
nents communicate. For instance, whether the concept of port is implemented; if there
exists distinction between required and provided interfaces; characteristics of the inter-
face language; and what is the communication type (synchronous, unicast, and others).
Our interest in these properties is limited to understanding what mechanisms are used
to support interaction between components, how are these mechanisms implemented,
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and how this interaction affects the way in which we deal with resource consumption
monitoring and reservation.

Support for component-based engineering in MRTEs An important property
of component models is its implementation support. The discussion in this research
is limited to those that have been implemented for MRTEs. Several component mod-
els that provide support for MRTEs have been proposed in both the industry and the
academy. Among others, we can mention Enterprise Java Beans (EJB) [Gro13], the
Open Services Gateway Initiative (OSGi) [The12], Fractal [BCL+06], SOFA 2.0 (Soft-
ware Appliances) [BHP06], Palladio [Bec10], and Kevoree [MBNJ09b, LLC10]. It is
interesting how these component models have different properties when it comes to
modeling capabilities, architecture of the system supported, and constructs for interac-
tion among components. However, they also differ in how components are represented
on top of MRTE concepts; in other words, they follow different approaches to implement
the component framework itself.

How components consume resources Interestingly, components provide bound-
aries between different software entities, which are forced to communicate through well
defined interfaces; it is then possible to write Quality-Of-Service (QoS) contracts asso-
ciated to these interfaces [BJPW99].

It is important to remember the difference between component type and component
instance when we discuss the resource usage of these systems. Indeed, instances may
have a state while component types are stateless. The distinction is important because
all instances of a single component type share the same implementation. As a conse-
quence, it is not simple to define how a component consumes resources. For example,
the memory consumed by an instance includes those objects used for the component
framework to represent the instance itself, its ports, and bindings; it also includes the
state of the component. However, it cannot include the memory used to store the com-
ponent’s code since it is shared among many instances. Monitoring CPU and network
consumption is even harder, because the code responsible for the consumption is shared.
To solve this problem, a context is associated with each component in order to deter-
mine at runtime the instance responsible for the execution of a given operation that is
using resources. Interestingly, the exact representation of this context depends on the
component model, and it may impact the performance of component-based systems. A
common way to define this context, is associating a set of threads to a component.

To summarize, the resources consumed by a component comprise (but are not limited
to): its state, the time-shared resources it uses (CPU, network), the space required to
store data and code shared among all instances of a component type, and the temporary
space needed to execute the component.

Contracts on resource consumption QoS contracts serve, among others, to de-
scribe how components consume resources. They simply express what resources will be
consumed by a component to perform some action. In writing such contracts, it is better
for developers to use platform-independent metrics. Indeed, doing otherwise hinders the
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interpretation of a contract when components are deployed in different platforms. For
instance, if n CPU cycles are required to handle a request, this n may, in fact, represent
different amount of CPU time depending on the architecture. This is the reason why,
the number of bytecode instructions to be executed, which is platform-independent,
offers the following advantages:

• It is easy to control the admission of components because each platform knows
how many bytecode instructions it is able to execute in an interval of time.

• A portable framework for resource consumption monitoring is easier to implement.

• Different measurements are easy to compare, even across platforms, because they
use the same metric.

Besides the metrics used, the exact interpretation of a contract is also a fundamental
concern. Contracts may express properties for just one component and a single type
of resources, but they can also express how should be the usage of resources in more
complex scenarios where different components and types of resources are involved.

Specific features to consider A first issue to take into consideration is how to ac-
count for resource consumption in the presence of interaction between components. Usu-
ally, components are organized as clients and providers, where a component (provider)
performs operations on behalf of other components (clients). It is then possible to
account for resource consumption in two ways [MPH08, MBKA12]:

Indirect accounting: all the resources consumed to serve a request that was origi-
nated in a component A are accounted to A (See Figure 3.4a). In other words,
there is no resource consumption accounted to service providers.

Direct accounting: the resources consumed during interaction are accounted to the
provider (See Figure 3.4b). For instance, the CPU used by a code that belongs to
component A is accounted to A, no matter if the code is executed on behalf of a
client.

Both ways have advantages and disadvantages. In the case of direct accounting,
if a provider is called in an endless loop, the resource usage will be accounted to the
provider instead of to the client that executes such a loop. On the contrary, if a service
is poorly implemented, in indirect accounting the user of the service is identified as the
responsible.

Similarly, there is another problem to determine the memory consumption of com-
ponents. Often, objects are created by a component (allocator) and used in other
components (clients). This happens during interaction among components, when they
exchange data in the form of objects (e.g., a service component creates new objects in
response to clients’ requests). For instance, a component may allocate space for an ob-
ject, then send it to a client, and finally forget about it. In that case, it is not clear what
component should be accounted for the memory consumed by that particular object; it
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(a) Indirect Accounting (b) Direct Accounting

Figure 3.4 – The two mechanisms to account for resource consumption when components
interact.

can be either the client or the original allocator. Both approaches have pros and cons.
The intuition dictates that if a component is preventing an object of being collected it
should be accounted for that particular block of memory. However, such an approach
may be dangerous if a buggy (or malicious) provider creates objects unnecessarily big,
sends them to clients, and forgets about them; in that case, it would be hard to identify
the provider as the source of excessive consumption. Most existing solutions for memory
consumption follow a fixed criterion, either account always for the allocator or for the
component preventing the object’s collection.

A second aspect is to decide where should be implemented the mechanism for resource
consumption monitoring and reservation. Essentially, this consists in, selecting which
actors implement the mechanism and policies to manage resources, and deciding if the
actors collaborate to achieve their goal [CSVC11]. Indeed, many component models
provide no facilities for managing extra-functional properties (EFPs). In these cases,
the mechanism used to handle a property is left to the designers of each application.
This facilitates the creation of EFP management policies that are specifically tuned
towards a system, and also allows the use of multiple policies in a system. On the
contrary, other approaches favor the separation of concerns between functional and non-
functional aspects. Hence, components are only allowed to address functional aspects,
while containers are in charge of wrapping components to guarantee EFPs.

Finally, some differences among component models impact the implementation of
mechanisms for resource consumption monitoring. For instance. Kevoree and OSGi
provide different methods for interaction between components. In Kevoree, components
communicate with each other through ports. It is straightforward to identify in the code
when a component is requesting a service because a single interface (port) is used to do
so, no matter if a component is using different ports. As a consequence, an automated
tool can easily instrument the code to detect when components are communicating.
On the contrary, OSGi uses plain Java interfaces and objects to connect bundles. In
that cases it is more complex to detect when components are communicating because
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a bundle can communicate with several services using different interfaces.

3.2.3 State of the art on dealing with abstraction-specific features

This section presents a several approaches that tackle the problem of providing tooling
support for developing applications using new software abstractions. In particular, it
discusses some solutions for debugging domain-oriented abstractions. Furthermore, this
section describes several mechanisms to monitor how components consume resources and
to isolate such consumption.

Providing resource awareness support for DSLs Among the development tools
that help to software maintenance, debuggers and profilers generally support main-
stream concepts such as classes, objects, methods, and call stack. Using them, it is
possible to determine, at some extent, how applications are consuming resources. How-
ever, we have found that limited support exists for extending the usage of these tools
in order to make them understand more specific concepts (e.g., classes representing the
business logic of an application, or a design pattern). In other words, they are not
fully capable of dealing with resources at per DSL level. Yet, some related works do
exist; they aim at reducing the gap between the developer’s view and the tools’ view.
In particular, the problem of offering debugging support for DSL constructs have been
discussed. In Xtext [EB10], languages that produce code in the base language (i.e.,
Java) may profit from mostly automatic debugger support. When the newly define
DSL is transformed into the base language, the system keeps traces between the two
models (source and destination). Using these traces, a debugging infrastructure is able
to identify what constructor is being executed in the original DSL. Meanwhile, Voelter
[Voe10] discusses how to add debugging capabilities to a DSL when the MPS language
workbench is used. In this case, no trace model is required; instead, every concept of a
language that requires debugging support must implement a set of interfaces to guide a
generic debugging framework. Similar works have been conducted [vdBCOV05] for the
ASF+SDF Meta-Environment [vdBvDH+01], defining a generic debugging framework
that can be customized for DSLs. Finally, mechanisms to build various tools for new
languages are described in [HPM+05]. Based on attribute grammars, and implemented
using the LISA system [MLAZ02]; the tools proposed include editors, inspectors, de-
buggers and visualizers.

Component-based systems Many works address the issue of supporting resource
consumption monitoring in component-based systems. In addition, some existing ap-
proaches present solutions for the isolation of resource consumption among components
running on top of a single MRTE instance. Unfortunately, most approaches are limited
to a specific component model; in particular, works exist to solve the problem for both
EJB and OSGi.

EJBMemProf, a framework for profiling the memory consumption in EJB is pre-
sented in [MV05]. The main idea of this framework is instrumenting applications’ code
to trigger an event each time an object is allocated; in response to such an event the
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framework identifies the component responsible for the allocation. A set of rules that
guide this identification process is discussed by the authors, and their accuracy evalu-
ated. Unfortunately, the overhead of the system is too high because, as part of these
rules, the class name of each allocated object is compared against the package name
of each component (this impacts the performance even if hashes are used to compare
strings). As a consequence, using the framework in a production environment is not
possible. Instead, this tool aims at supporting the development of component-based
software. Similarly, an approach to measure the execution time of EJB components is
proposed in [ML05]. In this solution, engineers manually select those parts of a com-
ponent that may be responsible for most CPU consumption at runtime. These parts
are then profiled in a development environment; the resulting data is combined with a
description of the deployment platform to estimate what would be the execution time
in the deployment platform. Finally, a mechanism for measuring the response time of
components, as well as the invocation tree, is discussed by Meyerhoefer et al. [Mey07].
This approach uses interceptors to collect data about how components calls each other.
It is intended to be use as a development tool.

Monitoring the resource consumption of OSGi bundles has also been addressed.
For instance, Miettinen et al. [MPH08] present a framework to measure CPU and
memory usage of OSGi bundles. This framework relies on some modifications to an
existing OSGi platform in order to identify which bundle is consuming a given resource.
Such a modification creates a unique ThreadGroup for each bundle; since each object
allocation and method execution is performed by a thread, it is possible to figure out
the bundle responsible by simple looking at the ThreadGroup of the thread. Alas,
this approach suffers of considerable performance overhead because it extensively uses
JVMTI and bytecode rewriting to detect resource usage (See previous Chapter). In
[MBKA12], the authors propose an approach to reduce the overhead induced when
CPU consumption is monitored; this is an adaptive monitoring system that is able
to dynamically tune the accuracy of monitoring mechanisms depending on detected
performance issues. This solution is built on the idea of creating proxies that are
responsible for detecting invocations, and also on the usage of localized CPU sampling.
The experiments show an overhead of 2% when idle (the lightweights monitoring mode)
and 20% when completely active. Memory consumption monitoring in OSGi execution
environments has also been discussed in [ATBM14], where the authors argue that some
information regarding the business logic is required to properly estimate the resource
consumption of interacting bundles that belong to different stakeholders. To encode
that information, they propose a DSL that describes what component must be charged
for a given consumption when two components interact; this effectively increases the
accuracy of the monitoring framework. Unfortunately, the approach requires a modified
JVM, and a persistent overhead is induced (up to 46%) because the framework cannot
be deactivated.

Other approaches address the issue of providing resource isolation between OSGi
bundles. In [KYK+14], the authors propose a memory isolation method for OSGi-based
home gateways. The method isolates the memory consumption of bundles without the
need to modify bundles or the OSGi framework and has minimal overhead costs. It does
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so by modifying the JVM (object layout, allocator, and the garbage collector) in order
to evaluate, after each allocation, whether the bundle responsible for the allocation is vi-
olating some developers-defined limits on resource usage. Meanwhile, I-JVM [GTM+09]
is a JVM that provides isolation between OSGi bundles. In addition to avoiding un-
intended object sharing, the approach also tackles the issue of resource consumption
monitoring for components; this is meant to, for instance, be used by administrator
to avoid denial-of-service attacks. The experimental results show an overhead of 16%
on inter-bundle calls. Likewise, the problem of isolating CPU consumption in OSGi
execution environments in order to support real-time component software development
is discussed by Richardson et al. [RWDD09]. The idea is to use the RTSJ to support
CPU isolation; this also requires modifications to the OSGi framework. The authors
claim that just using RTSJ is not enough to ensure real-time properties of applications
when the OSGi framework is used to build them. Besides the arguments to justify such
a claim, a solution to achieve CPU isolation is presented.

Profilers such as Eclipse MAT and VisualVM offer support, although limited, to
perform memory consumption monitoring for mainstream component models (OSGi and
EJB). They do so by providing built-in subsystems that are able to process Java memory
dumps to calculate the per-component consumption. Due to the need of processing the
complete memory dump, the performance overhead is considerable.

3.2.4 Discussing the state of the art

In reviewing the state of the art, we have found some limitations on how existing
solutions deal with specific features of abstractions. In this section we discuss such
limitations:

Limited support for resource accounting in component-based systems There
are several approaches for monitoring how individual components use resources.
However, they are limited and inefficient. First, most of them only target main-
stream component models such as OSGi and EJB; this is a fact noteworthy because
it is not clear whether the ideas behind existing approaches can be applied to other
component models. The second and more important problem is the considerable
overhead induced by these solutions. In the case of memory consumption account-
ing, the best results we found show a persistent overhead of 46% (medium). By
comparison, experiments of CPU consumption accounting show a lower overhead
of 20% when sampling is used. In many scenarios, these overheads are unaccept-
able.

Sub-utilization of information about the architecture of systems . Existing ap-
proaches only use rudimentary information about the architecture of the system
that is running on top of the component framework. In other words, they are
able to determine how each component consumes resources (regardless of the
accuracy). However, as shown in [MBKA12], it is possible to use additional in-
formation on how components are connected (their dependencies) to improve the
monitoring accuracy. Similarly, Attouchi et al. [ATBM14] show how to use the
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knowledge about the business logic (in particular how components interact) to
properly determine what component should be accounted for the consumption of
an object. Nevertheless, we have not found results showing how to reduce perfor-
mance overhead by using information about the architecture of component-based
systems.

Non-portable solution for resource isolation Existent approaches to provide per-
component resource consumption isolation require a modified MRTE. In practice,
this prevents the adoption of these approaches in production environments; due
to the cost of maintaining a customized MRTE, and the complexity of keeping it
up to date, some managers with limited budget may decide that these solutions
are not acceptable.

Wrongly assume that resource consumption is homogeneous Usually, compo-
nents consume resources in different ways; some of them require CPU while other
are memory or IO consumers. However, many approaches to resource consump-
tion and reservation are built without taking this into consideration; in short,
they manage resources in the same way for all components. This may have neg-
ative consequences in some cases. For instance, some monitoring frameworks to
calculate CPU consumption induce a persistent overhead in all components, even
if only one of them is consuming too much CPU. In the same way, solutions tend
to use fixed mechanisms for monitoring and reserving resources, but we show in
the previous chapter that some mechanisms are better for handling some kind of
resources even if they are not able to manage all resources. It is our belief that
adaptive mechanisms are preferable because, by analyzing the requirements and
observing the status of a system, they are theoretically capable of reducing the
overhead.

Limited capabilities for building tooling support Debuggers, simulators and in-
terpreters have been proposed as tools to support the maintenance of software
written using DSLs; however, as far as we know, no profiler that specifically aims
at reducing the gap between DSLs and base language have been presented. It
is worth mentioning that some general profiling frameworks can be used to ease
the construction of profilers, even if they do not specifically address DSLs; these
mechanisms as well as their limitations are discussed hereafter.

As shown in this section, reusing existing solutions for resource consumption mon-
itoring and reservation, and adapting them to specific features of new abstractions is
important to ease their adoption. We have seen in this section several approaches that
target specific abstractions such as, component models. However, since defining ab-
straction is so common, it is impractical to manually build tools with specific features
for all of them. Hence, further reducing the engineering effort required to build resource
management tools is highly desirable. The next section presents several approaches that
address this issue.
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3.3 Easing the construction of resource management tools

As we already mentioned, the definition of new abstractions is common in software
development (for example, using DSLs). Sometimes, it is useful having tools to check
how instances of these abstractions consume computational resources. Unfortunately,
building such tools is not a simple tasks. It is then necessary to provide a “simpler”
mechanism to build tooling support for abstractions.

Resource consumption monitoring is a form of dynamic analysis, and there are many
approaches that tackle the issue of simplifying the definition of dynamic analysis tools.
Unfortunately, we have found fewer mechanisms to ease the construction of resource
reservation tools. Due to this fact, we mostly discuss in this section the problem of
supporting resource accounting.

In this section, we first present some approaches that aim at easing the construction
of dynamic analysis tools. We do so by describing the following dimensions for each
approach:

Generality Indicates the expressive power of the approach. We only consider two
values: arbitrary and limited.

Ease of use We argue that the possible values are already known language, new lan-
guage, require specific knowledge of the MRTE.

Performance Overhead As in the previous chapter, we use the values low, medium,
and high. Likewise, these values are taken from the literature review.

In Section 3.3.2, we briefly discuss the limitations of such approaches.

3.3.1 Flexible implementation of dynamic analysis tools

One of the most tedious and error-prone tasks, when building tooling support for dy-
namic analysis, is dealing with low-level details such as, bytecode instrumentation. If
dynamic analysis tools are built from scratch, developers are forced to focus on master-
ing details of the execution platform, when in fact, they are interested in implementing
high-level ideas. To address this issue, various approaches have been proposed; they
can be clustered into three categories: instrumentation frameworks, high-level APIs for
bytecode manipulation, and aspect-oriented tools.

Instrumentation frameworks Several instrumentation frameworks for MRTEs have
been proposed. In [LV99], the authors propose the JVM Profiling Interface (JVMPI);
a set of low-level facilities built-in the JVM to trigger notifications when certain events
occur during application execution. Although the events reported only provide primitive
information, such as method invoked and thread created, this basic data can be used
along other infrastructure to build more powerful tools. Severe limitations prevented
the success of JVMPI (deprecated in favor of JVMTI): performance impact on the
JVM, the relatively low-level interface provided, and the limited capabilities to detect
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fine-grained events. These limitations are partially addressed in [MBEDB06] where a
framework called Javana is proposed. In specific, Javana proposes further modifications
to the JVM to detect more events. Additionally, it aims at easing the construction of
efficient user-defined profilers by providing a generic instrumentation framework that
can be adapted to specific needs. To do so, users define a profile using an aspect-inspired
DSL where pointcuts represent the events of interest for a profiler, and advices, which
are written in C/C++, are in charge of collecting data on the dynamic behavior of a
program. Besides the problem of requiring a modified JVM, this approach also has
other disadvantages such as demanding a deep understanding of the JVM.

A profiling framework that instruments Java programs at the bytecode level to build
context-sensitive execution profiles at runtime is proposed in [Bin05]. The framework
includes an exact profiler as well as a sampling profiler. Users can define their own
profilers using a provided infrastructure for program transformation. The most inter-
esting point is that profilers are written in pure Java; this lowers the barrier for Java
developers who devise customized profiling strategies. Finally, Reiss proposes a frame-
work [Rei08], DYPER, to organize and schedule the execution of monitoring agents.
Each agent (so-called proflet) is able to obtain data, regarding some properties, using
two approaches. Through sampling the data collected have poor quality, while data col-
lected using instrumentation are very detailed. The framework schedules the execution
of proflets to guarantee a bound in the overhead of monitoring resource consumption.
To perform the scheduling, each proflet provides an estimate of both the expected appli-
cation overhead and the time needed to set up the detailed monitoring; this information
is used to dispatch the execution of a detailed collection of data. In practice, this is a
form of adaptive monitoring where mechanisms with high overhead are executed only
when possible. Proflets are built using either Java or C, and they can be composed in
order to collect more complex data. The main limitation of this approach lies on the
difficulty of properly estimating the overhead of proflets.

High-level APIs for bytecode manipulation The use of bytecode rewriting tech-
niques to build dynamic analysis tools have leaded to the development of high-level
APIs for bytecode rewriting. For instance, ASM [BLC02, Kul07] is a Java bytecode
manipulation and analysis framework written itself in Java. It is useful to transform
classes directly in binary form. To do so, it provides methods to traverse the binary code
of Java classfile that allows users to create custom transformations. Alas, it requires
considerable knowledge regarding the JVM specification. In particular, it is mandatory
to understand the Java instruction set, how are they executed, and the basic structure
of a classfile in Java. By comparison, Javassist [Jav99] simplifies Java bytecode ma-
nipulation. It is a class library for editing bytecodes in Java; however, unlike ASM, it
provides a source level API: to transform a classfile without knowledge of the specifi-
cations of the Java bytecode. For example, you can specify what bytecode to insert in
an existing class by using plain Java source code – Javassist compiles it on the fly and
inserts it on the class being transformed.
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Aspect-oriented tool construction The collection of data for a given dynamic
analysis can be easily understood as a crosscutting concern. Because of this, researchers
have been attracted by aspect-oriented solutions. Indeed, aspect-oriented frameworks
already provide the mechanisms to i) specify multiple points of interest in the binary
code of an application, and ii) execute handlers when the program counter reaches
these locations. In other words, by simply defining aspects (pointcuts and advices),
developers can focus on the high-level ideas of dynamic analysis. Nonetheless, aspect-
oriented solutions are not flawless; some limitations have prevented its adoption in this
field. An interesting evaluation of the positive and negatives points of using aspect-
oriented dynamic analysis is presented in [PWBK07]. In addition to four dynamic
analysis presented and evaluated (showing medium or high overhead), the authors also
discuss how the pointcuts of AspectJ are not sufficient to achieve better performance
nor to create any type of analysis. The issue of improving the performance is tackled
by Binder et al. [BH06b]. In their work, the MAJOR [VBMA11] framework, an aspect
weaver that enhances AspectJ with support for comprehensive weaving, is extended to
guarantee fast sharing of values between aspects. This simple addition is enough to
reduce the performance overhead of some dynamic analysis.

DISL [MZA+12a, MZA+12b] is a domain-specific aspect language for bytecode in-
strumentation; it uses annotations and plain Java to describe what a dynamic analysis
tool must do. The novelty of this approach is that new joinpoints and guard conditions
can be defined using the Java language along some annotations. It is then possible to
collect data that is not accessible using a standard framework such as AspectJ. Unfortu-
nately, to define new jointpoints, some knowledge of JVM internals is required. Finally,
in an effort to overcome the limitations of specific aspect weavers, which prevent using
them to implement arbitrary dynamic analysis tools, Achenbach et al. [AO10] propose
an approach to customize aspect weavers. When a new concrete weaver is built, the
developer can choose arbitrary locations in the program as joinpoints. In the same way,
different strategies to weave advices can be implemented. Implemented in Ruby, the
approach is evaluated through the definition of a debugger and a testing tool.

Memory profilers Other approaches focus on profiling the memory usage of appli-
cations. Memory profilers that are widely used in the industry provide languages to
perform mostly arbitrary queries on the set of objects loaded in the heap. For instance,
in Eclipse MAT [BEK+06] and Visual VM [OQL14], users can write queries in OQL (a
SQL-like language) to retrieve information. Despite of the fact that few constructors
of OQL are really implemented in Eclipse MAT, this approach would allow, in theory,
collecting practically any information contained in the heap. Similarly, YourKit [you03]
provides a language based on set theory to filter objects with specific properties; this
language is used when no built-in memory analysis can provide the desired data. Be-
sides providing query languages, mainstream profilers also support the development of
extensions (e.g., plugins written in Java); these extensions essentially traverse the graph
of objects in a heap dump to collect information. Alas, both queries and extensions re-
quire costly operations – a complete dump of the heap, and a step to preprocess the
dump; only after these operations, the frameworks are capable of executing queries.
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DSLs for resource monitoring and reservation In DeAl [RIS+10], the authors
propose a language to compute heap assertions at garbage collection time. The design of
this approach aims at guarantee a low performance overhead. To ensure such a property,
the language is only able to compute boolean outputs; while resource consumption
monitoring, for instance, needs to compute values of integer type. DeAl is a purely
declarative language; in exchange for the declarative style and the focus on assertions,
some properties about the performance of queries written in DeAl can be formally
proved.

Bossa, a language that aims at easing the definition of new scheduling policies is
proposed by Muller at el. [MLD05]. The language defines a set of concepts related to the
domain of scheduling; they can be used to facilitate both the specification of scheduling
policies and the verification of safety properties. A scheduling policy is transformed
into a corresponding C code that can be plugged to the target OS kernel. In practical
scenarios, new scheduling policies induce low performance overhead on application. The
most important drawback nevertheless is that implementing a compiler for the language
requires a deep understanding of low-level details of the target kernel; and it might even
require modifications to a kernel. If available in a platform, this mechanism can be used
by an application running on top of a MRTE to defining CPU reservation policies.

3.3.2 Discussing the limitations

Although there exist many approaches that aim at reducing the complexity of writ-
ing tools to support resource-aware programming, in reviewing the literature we have
found some limitations that prevent using such solutions in production environments.
In particular, the identified limitations are related to the three aforementioned dimen-
sions, generality, ease of use, and performance overhead. Unsurprisingly, these three
dimensions are often in contradictions. For instance, most approaches that offer low
performance overhead require considerable knowledge about the target technology (not
easy to use). The question is whether the trade-offs followed by different approaches
are good enough. In this section, we discuss in details the limitations we find in these
approaches.

Tools have high overhead Many times, the tools that we can build, using the ap-
proaches presented in the previous section, induce high overhead. This is particu-
larly true for solutions based on bytecode rewriting, but also for other event-based
approaches, such as JVMPI. This is not surprising because, as we discuss in the
previous chapter, bytecode rewriting and other techniques tend to produce high
overhead. The mechanisms that are able to keep a low overhead, do so by lim-
iting the expressive power of the tools (as in DeAl [RIS+10]), and by reducing
the accuracy of the tools in certain cases (as in DYPER [Rei08]). We have found
that, when a solution is expressive and produce efficient tools, it generally requires
extensive knowledge of low-level details. It is not clear whether this trade-off is
unavoidable. Some results suggest that writing efficient tools without sacrificing
generality is possible at some extent [Rei08]. Unfortunately, most approaches that
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aim at simplifying the development of dynamic analysis tools, do not address the
problem of efficiency with similar strength.

Often, knowledge of low-level details is required The usability of a mechanism
is complex to evaluate; the approaches we have presented have not been assessed
in this dimension. Instead, these approaches follow empirical evidence that sug-
gests the benefits of some techniques. One of these evidences indicates that using
already known languages may ease the development of dynamic analysis tools.
Hence, some solutions encourage the use of Java to build profilers and others the
utilization of a SQL-like language. Likewise, the empirical evidence suggests that
paradigms, such as aspect-oriented programming, and functional programming,
should be favored. The problem is that using known-languages and programming
paradigms do not automatically reduce the complexity of writing tools. Actually,
often the complexity is the result of having to deal with low-level details about the
platform, and many techniques still require considerable knowledge of the target
platform. In the same way, using aspect-oriented programming can also create ad-
ditional problems. Indeed, since well-known frameworks, such as AspectJ, cannot
be used to develop arbitrary profiler, new frameworks for aspect-oriented pro-
gramming must be used to implement tools such as profilers; the time required to
learn these frameworks hinders the development of dynamic analysis tools.

Although many techniques with low overhead can be implemented using low-level
technologies (such as JVMTI), or through modifications to legacy MRTEs; we
think that approaches that use low-level APIs may also complicate the develop-
ments of tools.

Figure 3.5 depicts the characteristics of each approach, and how close they are to
an “ideal” solution. The area is split in four regions that represent in which conditions
an approach. The usability axes represents how “easy” to use is an approach while the
overhead axes shows whether the tools built with a solution are efficient. Meanwhile,
the size of a circumference shows how generic is an approach. The “values” to locate
each approach are obtained by carefully analyzing the respective description in the
previous section. Although these are fuzzy values based on our judgment, they are
useful to express a fact: every single solution has some limitations that prevent its use
as mechanism to create dynamic analysis tools.

3.4 Summary

Defining and using software abstractions is at the core of systems development. Once
a new abstraction is defined, the tools used in the development process and to support
resource awareness should be modified to make them reflect the new concepts. When
these modifications are not done, we argue that a mismatch exists between developer’s
view and the tooling’s view. Alas, implementing this tooling support is tedious and
error-prone. In this chapter, we have identified two challenges related to this complexity:
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Figure 3.5 – Assessing the relevance of the aforementioned approaches. The location in
terms of overhead and usability is given for each approach. Furthermore, the area of
each circumference indicates how general the approach is (the larger the better).

• A concrete abstraction may have specific features to consider when implementing
tooling support. By adding new requirements to the tools, these features hinder
their implementation. At the same time, some features can be useful to drive the
behavior of systems that require support for resource awareness.

• Since new software abstractions are defined all the time (for example, using DSLs),
it is necessary to ease the task of building their tooling support. For instance,
building a resource consumption monitor for a new DSL should be simple enough
as to make it affordable for DSL developers.

In reviewing the state of the art of resource management for software abstractions,
we realized that severe shortcomings in existing approaches prevent their usage in pro-
duction environments. With regard to the matter of dealing with abstraction-specific
features, the following issues exist:

• Existing solutions offer limited support for resource accounting in component-
based systems. Besides targeting only mainstream component models; they in-
duce, in general, high performance overhead.

• Most approaches that target component-based systems use little information about
the architecture of the systems. In those cases where such knowledge is used, the
goal is solely to improve the accuracy of resource consumption monitoring.
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• Mechanisms exist to ease the construction of debuggers for new DSLs. As far as
we know, no similar mechanism for profilers have been proposed.

In addition, it is our opinion that current approaches, to build tooling support, lack
the required simplicity and maturity. In particular:

• A deep understanding of low-level details of the target MRTE is often required to
build tools for resource awareness.

• Memory profilers offer extension capabilities. Unfortunately, such extensions suf-
fer from high overhead because they depend on methods to collect data that offer
poor performance.

• Although several approaches are able to produce complex dynamic analysis tools,
most of them are not capable of delivering such functionality with low overhead.
Interestingly, the mechanisms that do offer a low overhead either require extensive
knowledge of the platform or are limited in the kind of analysis they can perform.
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To the Reader

In the first two chapters, we discuss the relevance of resource-aware programming
in the development of software systems. It is also highlighted that resource awareness
requires extensive support from the runtime environment. Severe limitations in existing
approaches for resource accounting and reservation prevent the use of resource-aware
programming. In particular, we show how the granularity level at which a resource
accounting method can be applied is of utmost importance. This is further discussed
in Chapter 3, where we highlight the fact that every time a new software abstraction
is created, it can be seen as a new granularity level. Since creating abstraction is
common in software development, mechanisms to easily develop support for resource-
aware programming are needed.

In the rest of this thesis, we present three approaches that contribute to achieve our
goal – supporting resource-aware software development. Figure 3.6 depicts a subway
map to establish how the new mechanisms we propose are connected to each other,
how they contribute to the common goal, and their relationship with other approaches.
Although this metaphor is by no means complete, it helps to quickly summarize what
is required to achieve resource awareness.
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Figure 3.6 – This subway map shows how this research contributes to the state-of-the-art
on supporting resource-awareness.
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This thesis makes three stops.

Resource accounting for components The first stop is to propose an approach for
resource consumption monitoring in component-based systems that run on top of
MRTEs (see Chapter 4). Before it, our journey takes us through a way where we
collect the basic methods needed to perform resource accounting. Afterwards, at
the first stop, we reuse such methods to provide efficient accounting for compo-
nents.

Resource reservation for components Resource accounting is the foundation for a
second stop – providing resource reservation for components. It is then when we
discuss a methodology to choose at runtime a “good ” representation of components
in the execution platform. This is done by delaying, until the deployment phase,
the selection of the low-level method used to guarantee resource reservation; the
idea is that only at that point in time we have information that can be useful
to reduce the overhead. This serves to guarantee both low performance overhead
and per component resource reservation (see Chapter 5).

Ease the constructions of tools The journey continues, and we learn how the mech-
anisms to define software abstractions lack support for building resource account-
ing tools. We also realize that this issue makes us remember our first stop because
components are just a concrete abstraction; and it also brings memories of the
second one because new methods to calculate resource consumption may influence
the mechanism we choose to represent components at runtime. Then we stop for
the third time; we propose an approach to ease the construction of efficient and
customized memory profilers for MRTEs (see Chapter 6).

The validation of each contribution is presented in the corresponding chapter. Dif-
ferent experiments are used to illustrate the characteristics of each solution we present.
In addition to the use of the same macro-benchmark across the evaluation of the three
contributions, we also assess our work using real-world applications. The results we
show in each contribution chapter are relevant to the global goal of the thesis, but also
to motivate the subsequent chapters.







Chapter 4

Scapegoat: Spotting the Faulty
Component in Reconfigurable
Software Systems

(Snot’s dead body lay down on the ground)
Witness - And like every time, Snot, he would fade a few shooters,

you know. Play it out until the pot’s deep. Then he
would snatch and run, you see what I’m saying?

McNulty - Every time?
Witness - Couldn’t help himself.
McNulty - [. . . ] You let him do this?
Witness - Naw man. We catch him and kick his [. . . ]
McNulty - I got to ask you [. . . ] – if he did that every time – why

did you even let him into the games?
Witness - Huh?
McNulty - If Snot always stole the money, why did you let him

play?
(Witness looks at McNulty like he’s an idiot)

Witness - Got to (pause) this America, man.

(The Wire, Season 1, Episode 1)

State of the art monitoring systems [FS04, KHW03, BH06a] collect data about the
internal state of applications at runtime, such as the time spent executing a component,
the amount of I/O and memory used, and the number of calls to a component. The
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overhead that these monitoring systems introduce into applications is high, which makes
it unlikely for them to be used in production systems. Results presented in [BHMV09]
show that overhead due to fine-grain monitoring systems can be up to a factor of 4.3.
The experiments presented in this chapter show that overhead grows with the size of
the monitored software. Thus, overhead greatly limits the scalability and usage of
monitoring systems.

In this chapter, we address excessive overhead in monitoring approaches by intro-
ducing an optimistic adaptive monitoring system - Scapegoat - that provides lightweight
global monitoring under normal conditions, and precise and localized monitoring when
problems are detected. Although our approach reduces the accumulated amount of
overhead in the system, it also introduces a delay in finding the source of a faulty be-
haviour. Our objective is to provide an acceptable trade-off between the overhead and
the delay to identify the source of faulty behaviour in the system.

Our optimistic adaptive monitoring system is based on the following principles:

• Contract-based resource usage. The monitoring system follows component-based
software engineering principles. Each component is augmented with a contract that
specifies their expected or previously calculated resource usage [BJPW99]. The con-
tracts specify how a component uses memory, I/O and CPU resources.

• Localized just-in-time injection and activation of monitoring probes. Under
normal conditions our monitoring system performs a lightweight global monitoring of
the system. When a problem is detected at the global level, our system activates local
monitoring probes on specific components in order to identify the source of the faulty
behaviour. The probes are specifically synthesized according to the component’s
contract to limit their overhead. Thus, only the required data are monitored (e.g.,
only memory usage is monitored when a memory problem is detected), and only
when needed.

• Heuristic-guided search of the problem source. We use a heuristic to reduce
the delay of locating a faulty component while maintaining an acceptable overhead.
This heuristic is used to inject and activate monitoring probes on the suspected
components. However, overhead and latency in finding the faulty component are
greatly impacted by the precision of the heuristic. A heuristic that quickly locates
faulty components will reduce both delays and the accumulated overhead of the
monitoring system. We propose using Models@run.time techniques in order to build
an efficient heuristic.

The evaluation of our optimistic adaptive monitoring system shows that, in com-
parison to other state-of-the-art approaches, the overhead of the monitoring system is
reduced by up to 92.98%. Regarding latency, our heuristic reduces the delay to identify
the faulty component when changing from global, lightweight monitoring to localized,
just-in-time monitoring. We also present a use case to highlight the possibility of using
Scapegoat on a real application, that shows how to automatically find buggy compo-
nents on a scalable modular web application.
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The remainder of this chapter is organized as follows. Section 4.1 motivates our
work through a case study which is used to validate the approach. A brief description
of Kevoree, a platform for distributed component-based software development, is pre-
sented in Section 4.2. Section 4.3 provides an overview of the Scapegoat framework.
It highlights how the component contracts are specified, how monitoring probes are
injected and activated on-demand, how the Scapegoat framework enables the definition
of heuristics to detect faulty components without activating all the probes, and how
we benefit from Models@run.time to build efficient heuristics. Section 4.4 evaluates
the approach through a comparison of detection precision and detection speed with
other approaches. Section 4.5 presents a use case based on an online web application1

that leverages software diversity for safety and security purposes. Finally, Section 4.7
discusses the approach and presents the conclusions of this chapter.

4.1 Motivating example: open-world scenario

During a dangerous event, many firefighters are present and need to collaborate to
achieve common goals. Firefighters have to coordinate among themselves and com-
manding officers need to have an accurate real-time view of the system.

The Daum project2 provides a software application that supports firefighters in these
situations. The application runs on devices with limited computational resources be-
cause it must be mobile and taken on-site. It provides numerous services for firefighters
depending on their role in the crisis. In this chapter, we focus on the two following
roles:

• A collaborative functionality that allows commanding officers to follow and edit tac-
tical operations. The firefighters’ equipment include communicating sensors that
report on their current conditions.

• A drone control system which automatically launches a drone equipped with sensors
and a camera to provide a different point-of-view on the current situation.

As is common in many software applications, the firefighter application may have
a potentially infinite number of configurations. These configurations depend on the
number of firefighters involved, the type of crisis, the available devices and equipment,
among other parameters. Thus, it is generally not possible to test all configurations
to guarantee that the software will always function properly. Consequently, instead of
testing all configurations, there is a need to monitor the software’s execution to detect
faulty behaviours and prevent system crashes. However, fine-grained monitoring of the
application can have excessive overhead that makes it unsuitable with the application
and the devices used in our example. Thus, there is a need for an accurate monitoring
system that can find faulty components while reducing overhead.

1http://cloud.diversify-project.eu/
2https://github.com/daumproject

http://cloud.diversify-project.eu/
https://github.com/daumproject
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The Daum project has implemented the firefighter application using a Component
Based Software Architecture. The application makes extensive use of the Kevoree3

component model and runtime presented in chapter 3.

4.2 Kevoree Component Model

Kevoree 4 is an example of framework for building distributed and reconfigurable appli-
cations. It is built around a component model, and it leverages the Models@run.time
approach to ease the construction of reconfigurable systems.

Built on top of dynamic component frameworks, Models@run.time denote model-
driven approaches that aim at taming the complexity of dynamic adaptation. It ba-
sically pushes the idea of reflection [MBNJ09b] one step further by considering the
reflection-layer as a real model: “something simpler, safer or cheaper than reality to
avoid the complexity, danger and irreversibility of reality”. In practice, component-
based and service-based platforms offer reflection APIs that allow instrospecting the
application (e.g., which components and bindings are currently in place in the system)
and dynamic adaptation (e.g., changing the current components and bindings). While
some of these platforms offer rollback mechanisms to recover after an erroneous adap-
tation [LLC10], the purpose of Models@run.time is to prevent the system from actually
enacting an erroneous adaptation. In other words, the “model at runtime” is a reflec-
tion model that can be decoupled from the application (for reasoning, validation, and
simulation purposes) and then automatically resynchronized. This model can not only
manage the application’s structural information (i.e., the architecture), but can also be
populated with behavioral information from the specification or the runtime monitoring
data.

Kevoree provides multiple concepts that are used to create a distributed application
that allows dynamic adaptation. The Node concept is used to model the infrastructure
topology and the Group concept is used to model the semantics of inter-node commu-
nication, particularly when synchronizing the reflection model among nodes. Kevoree
includes a Channel concept to allow for different communication semantics between re-
mote Components deployed on heterogeneous nodes. All Kevoree concepts (Component,
Channel, Node, Group) obey the object type design pattern [JW97] in order to separate
deployment artifacts from running artifacts.

Kevoree supports multiple execution platforms (e.g., Java, Android, MiniCloud,
FreeBSD, Arduino). For each target platform it provides a specific runtime container.
Moreover, Kevoree comes with a set of tools for building dynamic applications (a graph-
ical editor to visualize and edit configurations, a textual language to express reconfigu-
rations, several checkers to valid configurations).

As a result, Kevoree provides a promising environment by facilitating the imple-
mentation of dynamically reconfigurable applications in the context of an open-world
environment. Because our goal is to design and implement an adaptive monitoring

3http://www.kevoree.org
4http://kevoree.org/

http://www.kevoree.org
http://kevoree.org/
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system, the introspection and the dynamic reconfiguration facilities offered by Kevoree
suit the needs of the ScapeGoat framework.

4.3 The Scapegoat framework

Our optimistic adaptive monitoring system extends the Kevoree platform with the fol-
lowing principles: i) component contracts that define per-component resource usage, ii)
localized and just-in-time injection and activation of monitoring probes, iii) heuristic-
guided faulty component detection. The following subsections present an overview of
these three principles in action.

4.3.1 Specifying component contracts

In Scapegoat, we follow the contract-aware component classification [BJPW99], which
applies B. Meyer’s Design-by-Contract principles [Mey92] to components. In fact,
Scapegoat provides Kevoree with Quality of Service contract extensions that specify
the worst-case values of the resources the component uses. The resources specified are
memory, CPU, I/O and the time to service a request. The exact semantic of a contract
in Scapegoat is: the component will consume at most X resource if it receives at most
N requests on its provided ports.

For example, for a simple Web server component we can define a contract on the
number of instructions per second it may execute [BH06a] and the maximum amount
of memory it can consume. The number of messages can be specified per component
or per component-port. In this way, the information can be used to tune the usage
of the component roughly or detailedly. An example is shown in Listing 4.1.5 This
contract extension follows the component interface principle [AH01], and allows us to
detect if the problem comes from the component implementation or from a component
interaction. That is, we can distinguish between a component that is using excessive
resources because it is faulty, or because other components are calling it excessively.

4.3.2 An adaptive monitoring framework within the container

Scapegoat provides a monitoring framework that adapts its overhead to current exe-
cution conditions and leverages the architectural information provided by Kevoree to
guide the search for faulty components. The monitoring mechanism is mainly injected
within the component container.

Each Kevoree node/container is in charge of managing the component’s execution
and adaptation. Following the Models@run.time approach, each node can be sent a new
architecture model that corresponds to a system evolution. In this case, the node com-
pares its current configuration with the configuration required by the new architectural
model and computes the list of individual adaptations it must perform. Among these
adaptations, the node is in charge of downloading all the component packages and their

5Examples of contract for the architecture presented in section 4.1 can be found at http://goo.gl/
uCZ2Mv.

http://goo.gl/uCZ2Mv
http://goo.gl/uCZ2Mv
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add node0.WsServer650 : WsServer

//Specify that this component can use 2580323 CPU
//instructions per second
set WsServer650.cpu_wall_time = 2580323 intr/sec

//Specify that this component can consume a maximum of 15000
//bytes of memory
set WsServer650.memory_max_size = 15000 bytes

//Specify that the contract is guaranteed under the assumption that
//we do not receive more than 10k messages on the component and
//10k messages on the port named service
//(this component has only one port)
set WsServer650.throughput_all_ports = 10000 msg/sec
set WsServer650.throughput_ports.service = 10000 msg/sec

Listing 4.1 – Component contract specification example

dependencies, and loading them into memory. During this process, Scapegoat provides
the existing container with (i) checks to verify that the system has enough resources to
manage the new component, (ii) instrumentation for the component’s classes in order
to add bytecode for the monitoring probes, and iii) communication with a native agent
that provide information about heap utilization. Scapegoat uses the components’ con-
tracts to check if the new configuration will not exceed the amount of resources available
on the device. It also instruments the components’ bytecode to monitor object creation
(to compute memory usage), to compute each statement (for calculating CPU usage),
and to monitor calls to classes that wrap I/O access such as the network or file-system.
In addition, Scapegoat provides a mechanism to explore the Java heap and to account
for memory consumption with an alternative mechanism.

We provide several instrumentation levels that vary in the information they obtain
and in the degree they impact the application’s performance:

• Global monitoring does not instrument any components, it simply uses information
provided directly by the JVM.

• Memory instrumentation or memory accounting, which monitors the components’
memory usage.

• Instruction instrumentation or instruction accounting, which monitors the num-
ber of instructions executed by the components.

• Memory and instruction instrumentation, which monitors both memory usage
and the number of instructions executed.

Probes are synthesized according to the components’ contracts. For example, a
component whose contract does not specify I/O usage will not be instrumented for I/O
resource monitoring. All probes can be dynamically activated or deactivated. Note
that due to a technical limitation, one of the two probes implemented to check memory
consumption must be always activated. This memory consumption probes, based on
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bytecode instrumentation must, remain activated to guarantee that all memory usage is
properly accounted for, from the component’s creation to the component’s destruction.
Indeed, deactivating this memory probes would cause object allocations to remain un-
accounted for. However, probes for CPU, I/O usage and the second probe for memory
can be activated on-demand to check for component contract compliance.

We propose two different mechanisms to deal with memory consumption. The first
mechanism is based on bytecode instrumentation and accounts for each object created.
As mentioned previously, this mechanism cannot be disabled. The second mechanism
is a just-in-time exploration of the JVM heap, performed on demand. These two mech-
anisms differ in i) when the computation to account for consumption is done, ii) how
intensive it is, and iii) in the way the objects are accounted for. Computations in
the first mechanism are spread throughout the execution of the application, short and
lightweight operations are executed every time a new object instance is created or
destroyed. Objects are always accounted to the component that creates them. Com-
putations in the second mechanism occur only on demand but are intensive because
they involve traversing the graph of living objects in the heap. The accounting policy
follows the paradigm of assigning objects to the component that is holding them and,
if an object is reachable from more than one component, it is accounted to either one
randomly, as suggested in [PRW03, GTM+09]; we call this second mechanism Heap
Exploration.

We minimize the overhead of the monitoring system by activating selected probes
only when a problem is detected at the global level. We estimate the most likely faulty
components and then activate the relevant monitoring probes. Following this technique,
we only activate fine-grain monitoring on components suspected of misbehavior. After
monitoring the subset of suspected components, if any of them are found to be the source
of the problem, the monitoring system terminates. However, if the subset of components
is determined to be healthy, the system starts monitoring the next most likely faulty
subset. This occurs until the faulty component is found. If no components are found to
be faulty, we fallback to global monitoring. If the problem still exists the entire process
is restarted. This can occur in cases where, for example, the faulty behavior is transient
or inconsistent. The monitoring mechanism implemented in Scapegoat is summarized
in Listing 4.2.

As a result, we consider that applications are executing under the conditions of one
of the following monitoring modes:

• No monitoring. The software is executed without any monitoring probes or mod-
ifications.

• Global monitoring. Only global resource usage is being monitored, such as the
CPU and memory usage at the Java Virtual Machine (JVM) level.

• Full monitoring. All components are being monitored for all types of resource
usage. This is equivalent to current state-of-the-art approaches.

• Localized monitoring. Only a subset of the components are monitored.
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1 monitor(C: Set<Component>, heuristic : Set<Component>→Set<Component>)
2 init memory probes (c | c ∈ C ∧ c.memory_contract 6= ∅)
3 while container is running
4 wait violation in global monitoring
5 checked = ∅
6 faulty = ∅
7 while checked 6= C ∧ faulty = ∅
8 subsetToCheck = heuristic ( C \ checked )
9 instrument for adding probes ( subsetToCheck )

10 faulty = fine−grain monitoring( subsetToCheck )
11 instrument for removing probes ( subsetToCheck )
12 checked = checked ∪ subsetToCheck
13 if faulty 6= ∅
14 adapt the system (faulty, C)
15
16 fine−grain monitoring( C : Set<Component> )
17 wait few milliseconds // to obtain good information
18 faulty = {c | c ∈ C ∧ c.consumption > c.contract}
19 return faulty

Listing 4.2 – The main monitoring loop implemented in Scapegoat

• Adaptive monitoring. The monitoring system changes from Global monitoring to
Full or Localized monitoring if a faulty behaviour is detected.

For the rest of this chapter we use the term all components for the adaptive monitor-
ing policy that indicates that the system changes from global monitoring mode to full
monitoring mode if and when a faulty behaviour is detected.

4.3.2.1 Scapegoat’s architecture

The Scapegoat framework is built using the Kevoree component framework. Scapegoat
extends Kevoree by providing a new Node Type and three new Component Types:

• Monitored Node. Handles the admission of new components by storing informa-
tion about resource availability. Before admission, it checks the security policies and
registers components with a contract in the monitoring framework. Moreover, it in-
tercepts and wraps class loading mechanisms to record a component type’s loaded
classes. Such information is used later to (de)activate the probes.

• Monitoring Component. This component type is in charge of checking component
contracts. Basically, it implements a complex variant of the algorithm in Listing 4.2.
It communicates with other components to identify suspected components.

• Ranking Component. This is an abstract Component Type; therefore it is user
customizable. It is in charge of implementing the heuristic that ranks the components
from the most likely to be faulty to the least likely.

• Adaptation component. This component type is in charge of dealing with the
adaptation of the application when a contract violation is detected. It is also a
customizable component. The adaptation strategy whenever a faulty component is
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discovered is out os scope of this thesis. Nevertheless, several strategies may be
implemented in Scapegoat, such as removing faulty components or slowing down
communication between components when the failure is due to a violation in the
way one component is using another.

4.3.2.2 Extensibility of the Scapegoat Framework

The Scapegoat framework has been built with the idea of being as generic as possible,
thus supporting various extensions and specializations. In this section we discuss the
extension points provided by the Scapegoat framework.

Heuristics used to rank suspected faulty components can be highly specialized and,
as we show in section 4.4, have a remarkable impact on the behavior of Scapegoat.
A new heuristic is created by defining a component that implements an interface to
provide a ranking of the suspected components. To do so, a context is sent with each
ranking request on this component. This context is composed of three elements, i)
a model that describes the components and links of the deployed application, ii) a
history that contains all the models that have been deployed on the platform, and
iii) a history of failures composed of metadata regarding what components have failed
as well as why and when it happened. In this thesis, we present three heuristics.
The first heuristic is proposed in section 4.3.3 and shows how we can leverage the
Models@Run.time paradigm to guide the framework in finding the component that is
behaving abnormally. Due to their simplicity, the other two heuristics are presented in
section 4.4 where we use them to evaluate the behavior of Scapegoat.

The mechanism for creating new heuristics is based on the strategy design pattern.
Figures 4.1 and 4.2 illustrates this extension point.

Figure 4.1 – Heuristic extension point in Scapegoat. This illustrates the class diagram.

A second extensible aspect of the framework is the admission control system. The
framework provides an API to hook user-defined actions when new components are
submitted for deployment. Basic data describing the execution platform in terms of
resource availability, information about the already deployed components and the new
component’s contract are sent to the user-defined admission control system. On each
request, the admission control system has to accept or refuse the new component. We
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Figure 4.2 – A sequence diagram showing how the extension point to define heuristics
in Scapegoat is used.

are using an approach that checks the theoretical availability of resources whenever
a component is deployed, and accepts the new component if the contract can fit in
the remaining available resources. Scapegoat is meant to support other policies as, for
instance, overcommitment.

A last element that can be specialized to user needs is the contracts semantic.
In section 4.3.1 we describe how we interpret the contract in this work. However, it
is possible to define other contract semantics, for instance, accepting values that are
closed to the limit defined in the contract, or using fuzzy values instead of sharp values.
It is worth noting that modifying the semantic of the contract would likely involved
redefining the domain-specific language to describe contract and also modifying the
admission control system.

4.3.2.3 Implementation strategy

Scapegoat aims at minimizing monitoring overhead when the framework is monitoring
the global behavior of the JVM. To achieve this, Scapegoat uses as few probes as possible
when executing in global monitoring mode. Only when it is necessary, the framework
activates the required probes. This features are implemented in the framework in three
modules that are in charge of different concerns: a module to activate/deactivate the
probes, a module to collect the resource usage, and a module to compute what com-
ponents should be carefully monitored. In this section we focus on the modules for
activating/deactivating probes and for collecting information of resource usage because
they required considerable engineering effort. Notice, however, that this module is exe-
cuted on demand when the framework already decides the monitoring mode to use and
what components to monitor.

Module to activate/deactivate probes In Scapegoat we use bytecode instrumen-
tation to perform localized monitoring. However, instead of doing as previous ap-
proaches that manipulate the bytecode that defines components just when the compo-
nent’s code is executed for the first time, we modify the bytecode many times during
components’ life. Every time the monitoring mode is changed we either activate or
deactivate the probes by simply inserting them in the bytecode or by removing them.
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Implementing this mechanism at per-component basis requires knowing all the classes
that have been loaded for a component. This information is kept using a dictionary
in which we treat a component’s id as a key and a set of class names as a value. The
dictionary is filled using the traditional classloader mechanism of Java. In short, when
a class is loaded on behalf of a component, we detect the class name and the thread
that is loading the class. Using the thread’s id we are able to identify the component
because we use special naming conventions for each thread executing the initial code of
a component. When probes are activated/deactivated on a component, iterating over
the set of class names allows the re-instrumentation of each involved class.

The probes perform two actions: collecting data about the local usage of resources
(e.g., objects recently allocated, instructions executed in the current basic block, bytes
sent through the network), and notifying to the resource consumption monitor about
the collected data. Some data we collect is computed statically when the bytecode is
loaded. This includes the size of each basic block and the size of each object allocated
when the size of each instance of the class is already known. Other data, such as
bytes sent through the network or the size of allocated arrays, can only by collected
dynamically when the code is running. To notify about the collected data we use simple
method calls to a proxy class in charge of forwarding the data to the monitoring module.
Probes to detect CPU consumption are inserted at the end of each basic block. These
probes collect the size in number of instructions of its container basic block. Probes for
IO throughput and network bandwidth are added in a few selected method defined in
classes of the Java Development Kit (JDK). These probes take the needed information
from local variables (e.g., number of bytes) and call the proxy class.

Our implementation, which is built using the ASM library 6 for bytecode manipula-
tion and a Java agent to get access to and transform the classes, is based on previous ap-
proaches to deal with resource accounting and profiling in Java [Bin06, BH06a, CvE98].
As in previous approaches, we compute the length of each basic block to count the
number of executed instructions and we try to keep a cache of known methods with a
single basic block. Moreover, we compute the size of each object once it is allocated
and we use weak references instead of finalizers to deal with deallocation.

Module to collect information regarding resource usage In Scapegoat, there
are two mechanisms to collect information about how components consume resources.

The first mechanism is able to capture the usage of CPU, IO throughput, network
bandwidth and memory. Every time a probe that was inserted in the code of a com-
ponent is executed, the proxy class forwards the local resource usage to the module in
charge of collecting the resource usage. Along with the local resource usage, probes also
notify the id of the components consuming resource. Such data is then used to aggre-
gate the global consumption of each component. It is worth noting that, when this first
mechanism is used to collect memory consumption, on object is always accounted as
consumed for the component responsible for its initial allocation. In short, no matter
whether the initial component C that allocates the object no longer held a reference

6asm.ow2.org
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to an object O, as long as O remains in memory, C is accounted for its consumption.
Moreover, as was already mentioned, using this mechanism is not possible to deactivate
the probes related to memory consumption.

On the contrary, the second mechanism is only useful to collect information about
memory consumption. The advantages of this method are: we can leverage the proposed
optimistic monitoring because it executes only on demand, and it has no impact on the
number of objects allocated in memory because no weak references are used. However,
in this method an object O is consumed not for the component that allocates it but
for those components that held references to it. As a consequence, in certain occasions
the framework states that an object is being consumed for many components at the
same time. We built this solution on top of JVMTI by implementing the algorithm
proposed in [PRW03, GTM+09], with the main difference being that our solution works
without modifying the garbage collector. In summary, this algorithm simply try to find
those objects that are reachable from the references of each component. It does so by
traversing the graph of live object using as the component instance and its threads as
roots of the traversal. Since our approach does not require a modification to the garbage
collector, it is portable and works with different garbage collector implementations.

4.3.3 Leveraging Models@run.time to build an efficient monitoring
framework

As presented in section 4.3.2, our approach offers a dynamic way to activate and deacti-
vate fine-grain localized monitoring. We use a heuristic to determine which components
are more likely to be faulty. Suspected components are the first to be monitored.

Our framework supports the definition of different heuristics, which can be applica-
tion or domain-specific. In this chapter we propose a heuristic that leverages the use of
the Models@run.time approach to infer the faulty components. The heuristic is based
on the assumption that the cause of newly detected misbehavior in an application is
likely to come from the most recent changes in the application. This can be better
understood as follows:

• recently added or updated components are more likely to be the source of a faulty
behaviour;

• components that directly interact with recently added or updated components are
also suspected.

We argue that when a problem is detected it is probable that recent changes have
led to this problem, or else, it would have likely occurred earlier. If recently changed
components are monitored and determined to be healthy, it is probable that the problem
comes from direct interactions with those components. Indeed, changes to interactions
can reveal dormant issues with the components. The algorithm used for ranking the
components is presented in more detail in Listing 4.3. In practice, we leverage the
architectural-based history of evolutions of the application, which is provided by the
Models@run.time approach.
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1 ranker() : list <Component>
2 // used to avoid adding duplicated elements to the list
3 visited = ∅
4 // this list will contain the result of calling the routine
5 ranking = {}
6 for each model M ∈ History
7 // adding components that were added in this model
8 N = {c | c was added in M}
9 ranking.add N\visited

10 visited = visited ∪ N
11 // finding neighbors
12 Neighbors =

⋃
c∈N c.neighbors

13 SortedNeighbors = sort (Neighbors \ visited, History)
14 // adding neighbors
15 ranking.add SortedNeighbors
16 visited = visited ∪ Neighbors
17 // return the built ranking
18 return ranking
19
20 // this routine recursively sort a set of components using the following criteria :
21 // components are sorted by the timestamp that indicates when they were installed
22 private sort (S : Set<Component>, H : History) : list<Component>
23 r = {}
24 if S 6= ∅
25 choose b | b ∈ S ∧ b is newer with respect to H than any other element in S
26 r .add b, sort (S\{b}, H)
27 return r

Listing 4.3 – The ranking algorithm (uses the model history for ranking).

Listing 4.3 shows two routines, but only routine ranker is public. It can be called
by the monitoring system when it is necessary to figure out in what order components
must be carefully monitored. After initializing an empty list which will hold the rank,
the algorithm starts to iterate in line 6 over the history of models that have been
installed in the system. As mentioned, this history contains a sorted set of models that
describe what components have been installed in the system. Within each iteration,
the algorithm first computes in line 8 the set of components that were installed at such
a point in time. Afterwards, these components are added to the result. The next step,
executed at lines 12 and 13, is finding those components that are directly connected
to components that were added to the application at this point in time. Finally, these
neighbors are added to the rank after being sorted. Routine sort simply sorts a set
of components using as criteria the time at which components where installed in the
system.

4.4 Scapegoat Performance Evaluation

In this section we present a first series of experiments and discuss the usability of our
approach. We formulate the following questions to assess the quality and the efficiency
of Scapegoat:

• What is the impact of the various levels of instrumentation on the
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application? Our approach assumes high overhead for full monitoring and low
overhead for a lightweight global monitoring system. The experiments presented
in section 4.4.2 show the overhead for each instrumentation level.

• What is the performance cost of using instrumentation-based and heap-
exploration-based memory monitoring? Since both mechanisms have by
design different features, the experiments in section 4.4.2 show the overhead each
mechanism produces.

• Does our adaptive monitoring approach have better performance than
state-of-the-art monitoring solutions? The experiment presented in section
4.4.3 highlights the performances benefits of our approach considering a real-world
scenario.

• What is the impact of using a heuristic in our adaptive monitoring
approach? The experiment presented in section 4.4.4 highlights the impact of
the application and component sizes, and the need of a good heuristic to quickly
identify faulty components.

The efficiency of our monitoring solution is evaluated on two dimensions: the over-
head on the system and the delay to detect failures. We show there is a trade-off between
the two dimensions and that Scapegoat provides a valuable solution that increases the
delay to detect a faulty component but reduces accumulated overhead. This evaluation
has been conducted on a Cyber Physical System case study. It corresponds to a concrete
application that leverage the Kevoree framework for dyamic adaptation purpose.

We have built several use cases based on a template application from our motivating
example in section 4.1. We reused an open-source crisis-management application for
firefighters that has been built with Kevoree components. We use two functionalities
of the crisis-management application. The first one is for managing firefighters. The
equipment given to each firefighter contains a set of sensors that provides data for
the firefighter’s current location, his heartbeat, his body temperature, his acceleration
movements, the environmental temperature, and the concentration of toxic gases. These
data are collected and displayed in the crisis-management application, which provides a
global-view of the situation. The second functionality uses drones to capture real-time
video from an advantageous point-of-view.

Figure 4.3 shows the set of components that are involved in our use-case, includ-
ing components for firefighters, drones and the crisis-management application7. The
components in the crisis-management application are used in our experiments, but the
physical devices (drones and sensors) are simulated through the use of mock compo-
nents. The application presents two components: the first one is a web browser that
shows information about each firefighter in the terrain, and the second one allows to
watch the video being recorded by any drone in the field. A Redis database is used to
store the data that is consumed for the application’s GUI.

7More information about these components is given in http://goo.gl/x64wHG

http://goo.gl/x64wHG
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Figure 4.3 – The component configuration for our crisis-management use-case.

Every use case we present extends the crisis-management base application by any
one of the following possibilities: adding new or redundant components, adding exter-
nal Java applications with wrapper components (e.g., Weka, DaCapo), or modifying
existing components (e.g., to introduce a fault into them). Using this template in the
experiments allow us to measure the behavior of our proposal in a more realistic envi-
ronment where many components with different features co-exist.

4.4.1 Measurement Methodology

To obtain comparable and reproducible results, we used the same hardware across all
experiments: a laptop with a 2.90GHz Intel(R) i7-3520M processor, running Fedora 19
with a 64 bit kernel and 8GiB of system memory. We used the HotSpot Java Virtual
Machine version 1.7.0_67, and Kevoree framework version 5.0.1. Each measurement
presented in the experiment is the average of ten different runs under the same condi-
tions.

The evaluation of our approach is tightly coupled with the quality of the resource
consumption contracts attached to each component. We built the contracts following
classic profiling techniques. The contracts were built by performing several runs of
our use cases, without inserting any faulty components into the execution. Firstly,
we executed the use cases in an environment with global monitoring activated to get
information for the global contract. Secondly, per-component contracts were created by
running the use cases in an environment with full monitoring.
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4.4.2 Overhead of the instrumentation solution

Our first experiment compares the various instrumentation levels to show the over-
head of each one. In this section, Memory instrumentation refers to the technique
for accounting memory which leverage bytecode instrumentation, while Heap Explo-
ration refers to the memory accouting technique which leverage on-demand heap ex-
ploration. In this experiment, we compare the following instrumentation levels: No
monitoring, Global monitoring, Memory instrumentation, Instructions instrumentation,
Memory and instructions instrumentation (i.e., Full monitoring). We also evaluate the
impact on performance of the two fine-grain memory monitoring approaches we pro-
posed: instrumentation-based and heap-dump-based.

In this set of experiments we used the DaCapo 2006 benchmark suite [Bea06]. We
developed a Kevoree component to execute this benchmark 8. The container was con-
figured to use full monitoring and the parameters in the contract are upper bounds of
the real consumption9.
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Figure 4.4 – Execution time for tests using the DaCapo Benchmark

Figure 4.4 shows the execution time of several DaCapo tests under different scenarios
when only instrumentation is used to provide fine-grain monitoring. First, we wish
to highlight that Global monitoring introduces no overhead compared with the No
monitoring mode. Second, the overhead due to memory accounting is lower than the
overhead due to instruction accounting. This is very important because, as we described
in section 4.3.2, memory probes cannot be deactivated dynamically.

To perform the comparison, we evaluate the overhead produced for each monitoring
mode. We calculated the overhead as:

overhead =
WithInstrumentation

GlobalMonitoring

The average overhead due to instruction accounting is 5.62, while the value for
memory accounting depends on the monitoring mechanism. If bytecode instrumentation

8http://goo.gl/V5T6De
9Scripts are generated from those available at http://goo.gl/FR8LC7.

http://goo.gl/V5T6De
http://goo.gl/FR8LC7
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is used, the average overhead is 3.29 which is close to the values reported in [BHMV09].
In the case of instruction accounting, these values are not as good as the values reported
in [BHMV09]; because they obtain a better value between 3.2 and 4.3 for instructions
accounting. The performance difference comes from a specific optimization that we
chose not to apply. The optimization provides fast access to the execution context by
adding a new parameter to each method. Nevertheless, this solution needs to keep
a version of the method without the new parameter because native calls cannot be
instrumented like that. We decided to avoid such an optimization because duplication
of methods increases the size of the applications, and with it, the memory used by
the heap. In short, our solution can reach similar values if we include the mentioned
optimization, but at the cost of using more memory. On the other hand, the values
we report are far lower than the values reported in [BHMV09] for hprof. Hence, we
consider that our solution is comparable to state of the art approaches in the literature.

In Figure 4.5 we compare the execution time of the same benchmarks but using
different memory monitoring approaches. This comparison is important because, as
explained in section 4.3.2, the two approaches have different CPU footprint. These are
controlled experiments where, in order to stress the technique, we demand the execution
of a heap exploration step every two seconds, which is not the expected usage pattern.
On the contrary, the memory instrumentation technique is executed with the expected
usage pattern. In comparison to using memory instrumentation where the average
execution time is 3.29, the average overhead in execution time decreases to 1.79 if the
Heap Exploration monitoring mechanism is used. This value is better than the value
reported in [BHMV09]. These results suggest that this technique has less impact on the
behavior of applications being monitored.
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Figure 4.5 – Comparison of execution time for tests using two different memory moni-
toring techniques

The results of our experiment shown in Figures 4.4 and 4.5 demonstrate the extensive
impact of the Full monitoring mode, which uses eitherMemory instrumentation or CPU
instrumentation, has on the application. Thus, our Adaptive monitoring mode, which
uses Global monitoring and switches to Full monitoring or localized monitoring, has the
potential to reduce this accumulated overhead due to the fact that Global monitoring
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has no appreciable overhead.

4.4.3 Overhead of Adaptive Monitoring vs Full Monitoring

The previous experiment highlights the potential of using Adaptive monitoring. How-
ever, switching from Global monitoring to either Full or Localized monitoring introduces
an additional overhead due to having to instrument components and activate monitor-
ing probes. Our second experiment compares the overhead introduced by the adaptive
monitoring with the overhead of Full monitoring as used in state-of-the-art monitoring
approaches.

Table 4.1 shows the tests we built for the experiment. We developed the tests by
extending the template application. Faults were introduced by modifying an existing
component to break compliance with its resource consumption contract. We reproduce
each execution repetitively; thus, the faulty behaviour is triggered many times during
the execution of the application. The application is not restarted.

Table 4.1 – Features of use cases.

Test Name Monitored
Resource

Faulty
Resource

Heuristic External Task

UC1 CPU, Mem-
ory

CPU number
of failures

Weka, training
neural network

UC2 CPU, Mem-
ory

CPU number
of failures

dacapo, antlr

UC3 CPU, Mem-
ory

CPU number
of failures

dacapo, chart

UC4 CPU CPU number
of failures

dacapo, xalan

UC5 CPU, Mem-
ory

CPU less number
of failures
first

dacapo, chart

UC6 Memory CPU number
of failures

Weka, training
neural network

Figure 4.6 shows the execution time of running the use cases with different scenarios.
Each scenario uses a specific monitoring policy (Full monitoring, Adaptive monitoring
with All Components, Adaptive monitoring with Localized monitoring, Global monitor-
ing). All these scenarios were executed with the heap explorer memory monitoring
policy. This Figure shows that the overhead differences between Full monitoring and
Adaptive monitoring with All Components is clearly impacted by scenarios that cause
the system to transition too frequently between a lightweight Global and a fine-grain
Adaptive monitoring. Such is the case for use cases UC3 and UC4 because the faulty
component is inserted and never removed. Using Adaptive monitoring is beneficial if
the overhead of Global monitoring plus the overhead of switching back and forth to All
Components monitoring is less than the overhead of the Full monitoring for the same
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Figure 4.6 – Execution time for some use cases under different monitoring policies.

execution period. If the application switches between monitoring modes too often then
the benefits of adaptive monitoring are lost.

The overhead of switching from Global monitoring to full components or Localized
monitoring comes from the fact that the framework must reload and instrument classes
to activate the monitoring probes. Therefore, using Localized monitoring reduces the
number of classes that must be reloaded. This is shown in the third use-case of Fig-
ure 4.6, which uses a heuristic based on the number of failures. Because we execute
the faulty component many times, the heuristic is able to select, monitor and identify
the faulty component quickly. This reduces overhead by 93%. We use the following
equation to calculate overhead:

Gain = 100− OurApproach−GlobalMonitoring

FullMonitoring −GlobalMonitoring
∗ 100

We also evaluate the execution time for each use case using the instrumentation-
based memory monitoring mode. The average gain in that case is 81.49% and, as shown
in previous section, in average it behaves worse than the Heap Exploration mechanism.
However, it is worth noting that the difference between using memory monitoring based
on instrumentation and heap exploration is less remarkable than in the previous exper-
iment. Observe how in test UC4, using a combination of heap exploration and adaptive
monitoring with all components behaves worse than using plain instrumentation-based
memory monitoring. In this particular test, activating and deactivating the monitoring
probes dominate the execution time. Alas, adding a heap exploration step right after
the probes are activated, just add some extra overhead. On the contrary, there is no
additional step executed when we use instrumentation to measure the memory usage.
Apparently, what matter when the all components strategy is guiding the adaptive
monitoring is the ratio among the amount of allocations performed by components and
the size of those components.
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4.4.4 Overhead from switching monitoring modes, and the need of a
good heuristic

As we explain in the previous experiments, even if using Localized monitoring is able to
reduce the overhead of the monitoring system, the switch between Global and Localized
monitoring introduces additional overhead. If this overhead is too high, the benefits of
adaptive monitoring are lost.

In this experiment we show the impact of the application’s size, in terms of number
of components, and the impact of the component’s size, in terms of number of classes, on
adaptive monitoring. We also show that the choice of the heuristic to select suspected
components for monitoring is important to minimize the overhead caused from repeated
instrumentation and probe activation processes.

For the use case, we created two components and we introduced them into the
template application separately. Both components perform the same task, which is
performing a primality test on a random number and sending the number to another
component. However, one of the components causes 115 classes to be loaded, while the
other only loads 4 classes.

We used the same basic scenario with a varying number of primality testing’s com-
ponents and component sizes. In this way, we were able to simulate the two dimensions
of application size. The exact settings, leading to 12 experiments, are defined by the
composition of the following constraints:

• Ncomp = {4, 8, 16, 32, 64, 128} which defines the number of components for the
application

• Sizecomp = {4, 115} which defines the number of classes for a component

With these use cases, we measured the delay to find the faulty component and the
execution-time overhead caused by monitoring. Figures 4.7 and 4.8 show the delay to
detect the faulty component with regards to the size of the application. In the first
Figure, the component size is 115 classes, and in the second Figure, the component size
is four classes.

4.4.4.1 Impact of the application size

Figures 4.8 and 4.10 show the size of the application has an impact on the delay to
detect faulty components, and also on the monitoring overhead. We also calculated
the time needed to find the faulty component with the All components mode after its
initialization (the time needed to switch from Global monitoring). This time is around
2 seconds no matter the size of the application. That is the reason the switch from
Global monitoring to All components has such a large effect on overhead.

These figures also show that using Localized monitoring instead of All components
when switching from Global monitoring helps reduce the impact of the application’s
size by reducing the number of components to monitor and the number of classes to
instrument. However, we also see that using a sub-optimal heuristic may have negatively
impacted the delay to detect faulty components. This can be explained by the multiple
switches that the Random heuristic may often require to locate the faulty component.
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Figure 4.7 – Delay time to detect fault
with a component size of 115 classes.
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Figure 4.8 – Delay time to detect fault
with a component size of four classes.
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Figure 4.9 – Execution time of main
task with a component size
of 115 classes.
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Figure 4.10 – Execution time of main
task with a component size
of four classes.
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4.4.4.2 Impact of the component size

In Figures 4.7 and 4.8 we can observe that the component size greatly impact the
performance and the delay for ScapeGoat to find the faulty component. Similar to the
explanation for the application’s size, component size impacts the switch from Global
monitoring to Localized monitoring, because of the class reloading and instrumentation.
A good heuristic drastically reduces the number of transitions; thus, it has a huge impact
on the delay. When the components size increase, the choice of a good heuristics becomes
even more important, because the cost of dynamic monitoring probes injection increase
with the size of the components.

4.5 Scapegoat to spot faulty components in a scalable di-
verse web application

In this section, we present another application that benefits from the Scapegoat ap-
proach. Although the general goal of spotting components that behave abnormally
regarding resource consumption remains the same, with this use case we highlight the
possibility of using Scapegoat to automatically find buggy components on a scalable
modular web application. The section 4.5.1 presents an introduction to the application
use case, while the remainder of the section deals with the experimental setup and the
results.

4.5.1 Use case presentation

We are applying the Scapegoat approach to check resource consumption contracts on
a web application called MdMS.10 This application offers a web Content Management
System based on the Markdown language for editing posts. MdMS uses a typical ar-
chitecture (as shown in Figure 4.11) for scalable web applications: a load-balancer
connected to a set of workers (called MdMS Sosie in Figure 4.11), which are themselves
connected to a distributed database to retrieve the application specific content. The
worker layer of this application can be duplicated across various machines to support a
growing number of clients. The web application is currently online11.

The main characteristic of MdMS is that workers are not pure clones but diverse
implementations of the MdMS server stack [ABB+14]. This proactive diversification
of MdMS targets safety [Avi85] and security [FSA97] purposes. In particular, we have
used a recent technique for the automatic synthesis of sosie programs [BAM14] in order
to automatically diversify the workers. A sosie is a variant of a program that exhibits
the same functionality (passes the same test suite) and a diverse computation (different
control or data flow). Sosie synthesis is based on the transformation of the original
program through statement deletion, addition or replacement.

While the construction of sosies focuses on preserving functional correctness, it
ignores all the non-functional aspects of the program. Consequently, a sosie offers no

10https://github.com/maxleiko/mdms-ringojs
11http://cloud.diversify-project.eu/

https://github.com/maxleiko/mdms-ringojs
http://cloud.diversify-project.eu/
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Figure 4.11 – Architecture of MdMS along with Scapegoat and additional components
to adapt the system.

guarantee regarding its resource consumption and may contain memory leaks or other
overhead on resource consumption that can significantly impact the performance of
MdMS.

In this experiment, we use Scapegoat to monitor the resource consumption of the
various sosies of the MdMS workers. This technique enables us to identify sosies in
a production environment that do not behave according to the resource consumption
contracts, allowing the system to remove these workers and use other sosies. Our goal
in this experiment is to answer the following question:

• Does Scapegoat correctly identify the faulty components in a system which in-
cludes many variants of the same component?

4.5.2 Experimental setup

We devised this experiment as a scenario where many clients interact with the web
application at the same time by adding and removing articles. The stress produced by
these requests increases the resource consumption on the server side which is running
on top of Kevoree components. Figure 4.11 depicts the server side’s configuration.
Since MdMS is a web application developed on top of RingoJS 12, a JavaScript runtime
written in Java, our sosies include the RingoJS framework and the application that has
been wrapped into Kevoree components.

In this experiment, we deploy many of these components as back-end servers of the
web application and we use Scapegoat to monitor the consumption of each server. Their
contracts regarding resource consumption were built using the mechanism described
in section 4.4.1 but with the original MdMS worker as a reference component. The

12https://github.com/ringo/ringojs

https://github.com/ringo/ringojs
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application also contains a component acting as a front-end that evenly distributes the
requests among back-end servers. This load balancer implements a plain round robin
policy.

To produce a realistic load on the web server we have recorded a set of standard
activities on the MdMS web site using Selenium 13. We then use the Selenium facilities
to replay these activities many times in parallel to provide the required work load on
the server. Our experimental settings feature 120 clients which are scheduled by a pool
of 7 concurrent Selenium workers. Each client adds 10 articles to the database through
the Website GUI, which represents 16 requests per article, for a total of 19200 requests
to the MdMS workers sent through the load balancer. In this experiment, the Selenium
workers are executed on the same physical device as the web server, with the same
testing platform described in section 4.4.1.

The experiment is configured as follows. Using the diversification technique de-
scribed in [BAM14], we synthesized 20 sosies of the MdMS workers. These sosies are
used to execute the application with a varying number of back-ends (from 4 to 10). One
particular sosie has been modified by hand to ensure that it violates the original com-
ponent’s contract. We execute all the described components as well as the Scapegoat
components on a single instance of Kevoree.

4.5.3 Experimentation results

Figure 4.12 shows the time required on the server side to reply to all the requests sent
by Selenium. Although the values might look surprisingly high at first, they are in fact
the result of a heavily loaded system. Selenium is actually rendering a couple of web
pages for each added article; hence at least 2400 pages are rendered. Moreover, both
clients and servers are sharing resources because they run on the same physical device.
This leads to very stable execution times when monitoring is not activated because the
number of requests does not change between experiments, the load balancer distributes
these requests evenly, and we are using the same physical device to execute all back-
end servers. In the local monitoring series, the global time to execute decreases until
reaching 9 sosies. Although counterintuitive, it is caused by the effect of having localized
monitoring and load balancing at the same time. For instance, when four sosies are
used, the monitoring probes are periodically injected into one component out of four,
hence roughly a quarter of the requests are handled by a slower sosie. However, with
eight components the slow execution path is only taken by around 12.5% of the requests.
The overhead of Localized monitoring when ten sosies are deployed increases because
the physical machine reaches its limit and begins thrashing. As a consequence, low-
level interactions with the hardware (e.g. cache misses), the operating system and the
JVM slow down the execution. On average, the overhead due to monitoring with both
instruction instrumentation and memory instrumentation is 1.59, which is lower than the
values shown in section 4.4.2 for full monitoring despite only one of the instrumentation
mechanisms being enabled in those experiments. The values in this section are better
even if we are monitoring both resources because we are using the adaptive approach.

13http://www.seleniumhq.org/

http://www.seleniumhq.org/
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Figure 4.12 – Time to obtain the reply
to all requests.
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Figure 4.13 – Average delay time to
detect a faulty sosie.

In these experiments, we evaluate the accuracy of the output and its quality in
terms of the time needed to find the faulty component. Scapegoat always spots the
correct sosie. It does so because it is an iterative process that continues until finding
the faulty component. In addition, Scapegoat does not output false positives during
these experiments. The delay to detect faulty components is shown in Figure 4.13. In
this case, the values remain close to 2 seconds no matter the number of sosies used
nor the execution time. This behavior is consistent with the experiments in section 4.4
because we are also using a good heuristic for the use case. It shows that Scapegoat
can spot faulty components with an acceptable delay in a real application.

4.5.4 Discussion of the use case

This use case shows that Scapegoat is able to provide useful information in real applica-
tions. It also highlights how the framework can help select software variants at runtime
in the context of software diversity. Or, more generally, in the field of software oriented
architectures where many stakeholders may provide the same services, Scapegoat can
help to choose services. Moreover, this use case leads to a distributed usage of Scape-
goat, where the policies for admission control and resource consumption monitoring can
be coordinated among distributed devices.

Finally, in systems where there are many variants of the same component or ser-
vice, Scapegoat provides essential information to drive application reconfiguration. For
example, the adaptation component in Figure 4.11 may use Scapegoat’s faulty compo-
nent selection to replace a faulty sosie or to modify the scheduling policy in the load
balancer.
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4.6 Threats to validity

Our experiments show the benefits of using adaptive monitoring instead of state-of-the-
art monitoring approaches. As in every experimental protocol, our evaluation has some
bias which we have tried to mitigate. The experiments are based on a few cases of
study. We have tried to mitigate this issue by using available real cases study; we have
also used different settings across our experiments. Thus, our experiments limit the
validity of the approach to applications with the same characteristics of the presented
case study. New experiments with other use cases are needed to broaden the validation
scope of our approach.

The evaluation of the heuristic mainly shows the potential impact of using an ideal
heuristic. More cases of study and experiments are needed to fully validate the value
of our Models@run.time based heuristic.

4.7 Conclusions

In this chapter we presented Scapegoat, an adaptive monitoring framework to perform
lightweight yet efficient monitoring of Component-Based Systems. In Scapegoat, each
component is augmented with a contract that specifies its resource usage, such as peak
CPU and memory consumption. Scapegoat uses a global monitoring mode that has
low overhead on the system, and an on-demand fine-grained localized monitoring mode
that performs extensive checking of the components’ contracts. The system switches
from the global monitoring mode to the localized monitoring mode whenever a problem
is detected at the global level in order to identify the faulty component. Furthermore,
we proposed a heuristic that leverages information produced by the Models@run.time
approach to quickly predict the faulty components.

Scapegoat has been implemented on top of the Kevoree component framework which
uses the Models@run.time approach to tame the complexity of distributed dynamic
adaptations. The evaluation of Scapegoat shows that the monitoring system’s overhead
is reduced by up to 93% in comparison with state-of-the-art full monitoring systems.
The evaluation also presents the benefits of using a heuristic to predict the faulty com-
ponent. In the second part of the evaluation, we highlighted the benefit of Scapegoat on
a classical web server architecture to dynamically determine faulty components. This
second example also exposes the capacity of Scapegoat to be applied to different applica-
tion domains and confirms its relatively low overhead on the running system. Scapegoat
contributes to the state of the art by providing a monitoring framework which adapts
its overhead depending on current execution conditions and leverages the architectural
information provided by Models@run.time to drive the search for the faulty component.

The approach proposed in this chapter contributes to answer two research questions
that were presented in the introduction of this thesis (see Section 1.2). In particu-
lar, it answers RQ1 (How can we provide portable and efficient support for resource
consumption monitoring? ) by describing a monitoring framework that produces low
performance overhead and is fully portable. Likewise, our proposal partially answers
RQ3 (How can we leverage the knowledge about the architecture of applications to drive
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a mechanism for resource management? ) by using knowledge about the structure of
applications to drive the behavior of the framework.





Chapter 5

Squirrel: Architecture Driven
Resource Management

Resource management is critical for domains where software components share an exe-
cution environment but belong to different stakeholders. For instance, in multi-tenant
systems resource management is used to guarantee safety, reliability and per-stakeholder
Quality of Service (QoS). These applications essentially require the isolation of tenants
in terms of resource consumption [KWK13]. This enables, for example, Software-as-a-
Service layers for cloud systems, allowing innovative pricing policies based on user re-
quirements. Since these services are often implemented on paradigms such as component
models (in the form of micro-services), the design of resource management techniques
dedicated to component models is an important issue.

Component model implementations represent high level concepts, such as compo-
nent instances, by means of mapping them to system-level abstractions like objects,
threads, processes or virtual machines. Each mapping has unique features in terms
of performance, memory footprint, etc. However, these mappings are often done in a
once-size-fits-all manner, allowing some choices to optimize for memory use while oth-
ers might, for example, improve inter-component communication. Interestingly, system
abstractions offer varying resource management capabilities that differ in how they im-
pact the application. Although we can hard-code the resource management concern
during the design of the component model, we argue that this leads to sub-optimal sys-
tems with high overhead [Bin06, CvE98, MBKA12] because components have different
resource requirements.

To address this issue, we propose Squirrel, an approach to resource management
for component models that aims at reducing overhead. In Squirrel, the application is
deployed with a model containing resource usage contracts for each component and a
detailed view of the system. These metadata are used to choose at deployment-time
the best way of representing each component in terms of system abstractions. This
contrasts with the traditional approach of binding the representation during the design
of the component model and results in the final runtime representation of the system
only being known after deployment.

In this chapter we discuss an approach to resource management applicable to any
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component model. To validate the feasibility of our proposal, we present a reference
implementation for a Java-based component model. A set of experiments validate its
feasibility and show various aspects of its overhead. The results demonstrate that
choosing the right component-to-system mappings at deployment-time can reduce per-
formance overhead and/or memory footprint. The contributions of this chapter are as
follow:

• An approach for architecture driven resource management that leverages struc-
tural information to guide the mapping of component model concepts onto system-
level abstractions.

• A reference implementation of the Squirrel framework for a Java-Based component
platform.

• A performance comparison showing how different mappings can impact the over-
head of the system and how the approach behaves in comparison to state-of-
practice approaches for resource management.

The remainder of this chapter is organized as follows. Section 5.1 describes the
Squirrel approach and presents how we leverage metadata to drive resource manage-
ment. In section 5.2 we propose a reference implementation of Squirrel for a Java-based
component platform. A validation of the implementation through a set of experiments
is presented in section 5.3.

5.1 Approach

The main concept in Squirrel is the resource-aware container. Such containers are
logical entities that take care of the resource management concern. By logical we mean
that it is not important, from a functional point of view, how a container achieves
resource management. Instead, a resource-aware container is an entity that wraps a set
of components and offers the following properties:

• Resource consumption monitoring refers to the ability to assess the quantity
of resources used by a component.

• Resource reservation is the capacity to ensure a given amount of resources will
be available whenever a component demands it.

• Resource isolation guarantees that a component’s behavior in terms of resource
usage does not interfere with the behavior of another component.

Wrapping a set of components can be considered a soft definition because the mem-
brane of a resource-aware container limits the behavior of the contained components
only when it is relevant to the resource management concern. For instance, components
within different containers can still communicate directly with each other through their
interfaces without intervention of their containers as long as such communication does
not affect the resource under management.
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In Squirrel we propose to automatically select, deploy and configure resource con-
tainers to manage resource usage. The novelty is that we delay the selection of the
container’s implementation till deployment-time in order to have knowledge about the
exact conditions of the system and thus minimize the overhead of the resource man-
agement system. This idea is supported by the claim that components often require
disjoint sets of resource types. Our framework is composed of three essential elements: i)
a mechanism to describe the management requirements of an application, ii) an admis-
sion control scheme in the middleware to handle the global view of resource availability,
and iii) mechanisms to map component model concepts to system-level abstractions. In
the following subsections we describe our framework and its elements.

5.1.1 Managing resources through architecture adaptations

Modern application development models, such as component-based systems, promote
the usage of Architecture Description Languages (ADL) or configuration models to
check properties on the system’s structure and to drive system deployment. In Squirrel,
we propose to enhance this layer with metadata regarding resource reservation and to
use these metadata to efficiently drive resource reservation offered at the system level.
The idea is to follow a gray-box approach where we automatically adapt a component-
based application by applying an architecture pattern to isolate a component within a
resource-aware container.

Figure 5.1 – Squirrel approach for resources reservation
As illustrated in figure 5.1, Squirrel follows an automatic process to manage re-

sources. Squirrel receives an application’s model, enhanced with contracts on resource
reservation. Squirrel performs admission control to check the validity of the contracts
on resource usage with respect to the available resources in the execution environment.
If the contracts are consistent with available resources, the process continues, if not, the
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application’s model is refused. Then, as depicted by arrow 2, Squirrel automatically
transforms components or the configuration/architecture model by isolating components
in resource-aware containers that can be finely configured to decrease the resource man-
agement overhead. Finally, as depicted by arrow 3, Squirrel reconfigures the running
system. When the application evolves (arrow 4), Squirrel attempts to preserve resource
reservation properties while processing the new model (arrow 5, 6 and 7).

5.1.2 Describing resource management requirements

Beugnard et al. discuss the extending Meyer’s Design-By-Contract idea to software
components [BJPW99]. They classify component contracts into four categories: syn-
tactic (level 1), semantic (level 2), synchronization (level 3), and Quality of Service (level
4). There is no de-facto standard to describe component contracts, but many domain
specific interface description languages contain such metadata. This chapter assumes
that components have contracts to deal with resource reservation (level 4). A contract
in Squirrel defines component resource requirements written in terms of resource types,
quotas and expected component usage.

• Definition 1 A resource type indicates any class of computational resource that
is useful to a component. Its consumption must be susceptible to monitoring and
reservation. In this chapter, we consider CPU, Memory, Network Bandwidth and
IO Throughput.

• Definition 2 Expected component usage describes the expected number of ex-
ternal invocations of each method of the component interface. In short, let C be
a component instance, then ∀I ∈ CInterfaces, ∀M ∈ Imethods

EU IM is the number of expected invocations of method M , per second.

A contract in Squirrel is a set of tuples with the form 〈RT,N,MU〉 where RT
is a resource type, N the maximum amount of resources to reserve, and MU is the
measuring unit used for this resource type. Optionally, Squirrel supports the definition
of a set of tuples with the form 〈I,M,EU IM 〉 where I is a component interface, M
is a method of the interface, and EU IM the expected usage. Implementations of the
Squirrel approach must provide a way to define contracts with these concepts. We use
a domain-specific language to describe contracts.

5.1.3 Admission control

Providing resource reservation in a component based framework requires checking if
components’ resource-aware contracts are compatible with the resources available in the
execution environment. By checking the availability of resources, the platform controls
component admissions.

To support resource management at runtime, Squirrel takes into account two events:
i) component deployment, and ii) component removal. Whenever the application is
modified, the system automatically recalculates the aggregated resources required by
the application and compares it to the available resources in the execution environment.
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If the available resources are greater than those required by the application, the recon-
figuration is accepted, else, the application model is refused and the reconfigurations
are discarded.

5.1.4 Mapping component-model concepts to system-level abstrac-
tions

Squirrel defines steps to map component-model concepts to system-level abstractions
that allow for resource management. Mappings can be applied during the design and
implementation of the framework, or at deployment-time. During framework design/im-
plementation, developers identify system abstractions that are suitable to represent each
concept and implement the respective mappings. As a second step, resource manage-
ment methods for each abstraction are implemented and evaluated. This evaluation is
used to determine the management methods with lowest overhead for each pair of sys-
tem abstraction and resource type. Later on, at deployment-time, the platform selects
a component-to-system mapping using optimization techniques and the data obtained
at design-time. In this section, we briefly explain each step.

As we have mentioned, components can be represented through different system ab-
stractions. This requires identifying possible mappings from components to system-level
abstractions. Mappings must respect the semantics of the component model, and must
provide resource management capabilities. A key problem is that different mappings
have different non-functional properties, and optimizations are often needed to make
the mappings attractive. Additionally, an extensible design of the component platform,
where it is easy to accommodate new mappings, greatly facilitates the co-existence of
different mappings to represent a component. The set SA of system abstractions that
are available to represent a concept, along with the recommended optimizations for each
abstraction, are defined in this step.

During the design/implementation of the platform it is necessary to define methods
to manage resources for each pair of system abstraction and resource type. Develop-
ers must devise resource management methods for each mapping and identify the least
costly. If we consider different abstractions and resource types, we can define the matri-
ces M and C where ∀sa ∈ SA, rt ∈ RT the values Msa,rt and Csa,rt indicate the method
that minimizes the cost of managing the resource rt when the abstraction sa is used
to represent a component. We make two assumptions about the resource management
mechanisms: i) mechanisms are always composable if they manage different resource
types, and ii) the costs of any pair of management mechanisms are independent.

At deployment-time, the platform selects the mapping to use for each component
in the application. To do so, the platform uses the information contained in the ma-
trices M and C, the set of possible optimizations for each mapping, and the resource
requirements of the application. At this stage, the only data needed regarding resource
requirements is the type of resource. Using this data allows selecting the best mapping
candidate. Although we only use a single cost matrix that contains the overhead of
each management mechanism, we think it is easy to generalize the approach to handle
multi-objective optimizations with more than one cost matrix. Others refinement to
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evaluate the cost of a mapping are possible. For instance, we can consider the cost of
using a specific binding to connect two components that use a given mapping. Finally,
there are many optimization methods that can compute the mappings, we do not pro-
pose any particular method in the approach. However, the results shown in section 4.4
suggest that very simple heuristics can lead to good performance.

5.2 Reference Implementation

Squirrel’s reference implementation exploits the modesl@run.time approach and pro-
vides resource-awareness capabilities to the Kevoree component framework [FMF+12].
Models@run.time denotes model-driven approaches to tame the complexity of dynamic
adaptation [MBNJ09a]. The “model at runtime” is a reflection model that can be decou-
pled from the application (for reasoning, validation, and simulation purposes) and then
automatically resynchronized. Models can manage not only the application’s structural
information (i.e., the architecture), but can also be populated with other information,
such as runtime monitoring data.

Kevoree is a component framework for distributed systems that builds and maintains
a structural model of the system, following the models@run.time paradigm. Kevoree
is mainly used because: (i) it presents a snapshot of the distributed system, and (ii)
it provides a language to drive the reconfigurations. Component and Channel are two
of the concepts used in Kevoree models. The former represents software units that
provide the business value. The latter, with the same role as connectors, are in charge
of inter-component communication. Channels encapsulate communication semantics
(e.g., synchronous, unicast).

5.2.1 A resource-aware container for CPU and I/O reservation

Our implementation leverages resource-reservation mechanisms at the system-level to
provide containers for CPU and I/O reservation. More specifically, it maps the concept
of container onto a cgroup. Both containers and Kevoree components are hierarchical
structures that are easy to map onto cgroups’ hierarchy. Indeed, a container deploys
components and a component runs threads. To configure the container we setup a
hierarchy of cgroups using the following rules:

1. The Kevoree framework is started under a cgroup, using a fixed amount of re-
sources that will be divided among the system’s components.

2. Each component gets a new resource-aware container, also represented by a cgroup.
The component’s contract is translated into a slice Sc of the initial resource allot-
ment, and the result is passed to the cgroup as configuration parameters. A slice
represents the resources the component has available.

3. Since the scheduling unit for cgroups is a thread, we assign the component’s
threads to the cgroup to enforce resource reservation.
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Figure 5.2 – Reserving CPU by mapping components to cgroups

This scheme is used for CPU, I/O throughput and network bandwidth. Each type of
resource requires a different container type. Figure 5.2 shows an example using cgroups
to reserve CPU for a system with two components. In the tree, every edge is labeled with
the cgroup’s CPU slice. A slice is set for Kevoree, while unmanaged apps are maintained
in separate containers. Applying rule 2, CPU slices are assigned to Component 1 and
Component 2 according to their resource contracts. Following rule 3, every thread in
Component1 receives 33% of the component’s slice.

5.2.2 Containers for Memory reservation

Memory reservation poses a unique challenge. Although there is a cgroup-hierarchy
for memory, it is not well suited for shared memory because the subsystem cannot
precisely account for the consumption of each thread. As a result, if we use cgroups to
deal with memory, accounting would depend on the behavior of the garbage collector,
which is hard to predict. That makes cgroups inadequate to check or enforce component
contracts in a single JVM process. We have devised two mechanisms to serve as memory
containers. In the first mechanism, all containers exist in a single process and resource
limits are enforced by leveraging previous approaches that use bytecode instrumentation
to account for consumption. The second mechanism isolates components into new
processes and then uses cgroups. The rest of the section describes both solutions.

5.2.2.1 Memory management based on monitoring.

A memory reservation container ensures that its components have access to the mem-
ory they require. Memory requests should only fail if a component violates its con-
tract. Implementing such a container is simple if memory monitoring is available at the
application-level and memory requests are intercepted. We use Scapegoat [GHBD+14]
for memory consumption monitoring by defining multiple memory-aware containers
within a single JVM. In short, each container registers its component in ScapeGoat and
receives a notification if a component violates its contract. This introduces CPU and
memory overhead for each component because of the instrumentation code. The main
advantages are portability and simplicity.
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5.2.2.2 Isolation of components in separate processes.

The second approach maps each container onto a separate process. Reservation is
achieved using cgroups as described in section 5.2.1.1 To do so, we start from an
extended deployment model as shown in figure 5.1. The model is then transformed
using the following rules:

1. Component isolation: each set of components with a shared memory contract is
isolated in a separate JVM node within the same physical device.

2. Channel adjustment: channels that connect isolated components are updated to
reflect the semantics of the source model. This includes changing the channel type
and modifying some of its properties.

The resulting model can be deployed.

Runtime initialization through cloning. The approach to memory reservation
based on isolation deploys each set of components into separate processes. This involves
two steps: creating new instances of the runtime, and deploying a set of components on
each instance. To reduce deployment time, instead of starting processes from scratch,
new instances are cloned from a base runtime. The base runtime is created offline.
Both steps, base runtime creation and cloning, are based on CRIU.2 This tool allows
snapshoting a process and starting any number of clones from the snapshot. In essence
this forks the process.

Channel for intra-node communication. Channels are meant to send arbitrary
POJO structures from one component to another. When components are isolated into
separate processes, a channel must marshal and unmarshal the POJO using a represen-
tation suitable for inter-process communication. In practice, a channel must copy data
at least twice, no matter what IPC mechanism is used.

In this chapter we propose a new channel for intra-node communication. Commu-
nication is performed through a message queue built on top of shared memory using an
alternative high-performance framework to serialize objects. Each channel is mapped to
a shared-memory region that hosts a synchronized queue of messages. This region con-
tains three sections: an array of blocks to store message chunks, a set of free blocks, and
a circular queue in which an element points to a list of chunks. We use the procedure
described in [UK98] to synchronize senders and receivers, but we also support broadcast
semantics without unnecessary additional copies. Our approach copies the POJO from
the sender’s heap to shared-memory during data marshaling, then every receiver makes
a copy from shared-memory. The implementation uses a high-performance serialization
framework3 instead of Java’s built-in serialization mechanism and is able to serialize
arbitrary objects with better performance.

1In practice, we use cgroups to reserve memory, but we also bound the Java Heap to limit the
consumption in Java code.

2criu.org
3https://github.com/RuedigerMoeller/fast-serialization

criu.org
https://github.com/RuedigerMoeller/fast-serialization


Evaluation 93

5.3 Evaluation

This section presents experiments that determine the performance of our reference im-
plementation. We evaluate performance and overhead using systematic, full isolation
of components using resource containers. We also compare different design decisions
presented in the previous section. The experiments include:

• Measuring the CPU and memory overhead introduced by Scapegoat and compo-
nent isolation.

• Determining how isolation affects deployment time and to what extent process
cloning and our high-performance IPC alleviate it.

• Evaluating the extent to which known high-performance IPC techniques reduce
communication overhead due to component isolation.

We used the same hardware across all experiments: a laptop with a 2.90GHz Intel(R)
i7-3520M processor, running Linux with a 64 bit kernel 3.13.5 and 8GiB of RAM. We
used the HotSpot JVM v1.7.0-55, and Kevoree framework v5.0.1.

5.3.1 Evaluating performance overhead

In section 5.2.2, we describe two approaches for memory reservation: 1) Scapegoat
[GHBD+14], an instrumentation-based resource management container, and 2) using
isolated processes with cgroups. To compare the overhead produced by these ap-
proaches, we devised use cases that contain two components that execute a test from
the Dacapo Benchmark Suite [Bea06]. These components run in parallel to simulate
realistic conditions where components demand resources simultaneously. The use cases
are executed with different settings, as follows:

1. Using cgroups to assign 50% of the CPU time to each component (no mem-
ory monitoring). Both components run on a single Kevoree instance with 2GiB
maximum heap size. This is the baseline because there is no CPU nor memory
overhead. Nevertheless, execution time is affected due to the CPU allotment. We
call this setting Memory unaware.

2. Using Scapegoat to monitor per-component memory consumption and bounding
CPU consumption to 50%. Again, both components run on the same Kevoree
instance with 2GiB maximum heap size.

3. Isolating each component in a new process, allotting 256MiB of memory to each
process, and bounding its CPU consumption to 50%.

To measure CPU overhead, we use the result reported by each Dacapo test and we
keep the maximum value. Measuring memory overhead is more complex because the
garbage collector hides the real consumption. We address this by approximating the
consumption with the usage after each major garbage collection. As there are many
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collection cycles during the use case’s execution, and because we may have more than
one runtime involved, we define a scheme to aggregate the values: the consumption
MCi of every Kevoree instance is the maximum among all the usages reported after
each collection, while the final consumption is defined as

∑
i∈Isolates MCi.

Figure 5.3 depicts the CPU overhead for Scapegoat and Isolating components. The
overhead of Scapegoat was expected because of the instrumentation. On average, it
performs 2.27 times worse than Memory Unaware, which is consistent with [GHBD+14].
In contrast, isolating components produces no appreciable CPU overhead for these
use cases (small differences are likely due to environment fluctuations) because the
components do not interact.

Both ScapeGoat and Isolating components cause memory overhead. As shown in
Figure 5.4, ScapeGoat’s is higher than when using component isolation. Isolating com-
ponents’s overhead is the result of JVM duplication and is, on average, 99% over base-
line. Meanwhile, ScapeGoat’s overhead is due to tagging objects with the identifier of
the component that owns it. Tagging adds either a field and a finalization method to
an object, or wraps the object with a weak reference held by the framework, resulting
in overhead in the Permanent Space. As seen in the experiments, memory overhead due
to tagging is more important than CPU.

In synthesis, Isolating components produces no CPU overhead, and low memory
overhead in comparison to the performance of the same component model without
resource management features.

5.3.2 Evaluating starting time

We compare the performance of three methods to deploy components: 1) in a single
JVM (the baseline), 2) in isolated JVMs, starting processes from scratch, and 3) in
isolated JVMs using CRIU to clone processes. We study the scalability of each method
by deploying many components. To do so, we created a template architectural model
with two component types: Component A runs in the management runtime and deploys
a new architectural model with resource-aware contracts; and Components B records
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the timestamp after initialization is completed. The experiment is as follows:

1. Component A is deployed in the management runtime. Afterwards, it forces the
deployment of a new model with components of type B.

2. After deployment, each component c ∈ ListB sends A the timestamp Tc.

3. Component A collects Tc − T0, ∀c ∈ ListB, where T0 is the timestamp before de-
ployment.

Figure 5.5 shows the results for a varying number of components. As expected, using
plain Kevoree is faster than deploying with other methods. Leveraging isolation with
CRIU’s process cloning is, on average, 19.75 times worse than plain Kevoree, and this
overhead grows with the number of components. This is because CRIU-based deploy-
ment still spawns new threads in order to clone and create new instances. Nevertheless,
using process cloning instead of starting processes from scratch reduces the isolation
overhead by a factor of 41.79.

5.3.3 Evaluating communication

We present two experiments that highlight how we mitigate the impact of isolation on
communication performance. First, we use a micro-benchmark to compare the per-
formance of a shared-memory based IPC queue and a socket-based IPC queue. Then
we benchmark the performance gain of using a specialized serialization framework that
uses POJO structures, which is a common way to encode the business logic in real-life
applications.

We evaluate our channel by comparing its performance against built-in TCP com-
munication, which is a widely used IPC mechanism in Java. To measure latency and
bandwidth, the metrics we use for comparison, we developed a Netpipe clone [SMG96]
for Java4. The clone is delivered with three protocols: 1) socket-based, 2) our channel,
and 3) a protocol for named pipes. The first uses simple TCP sockets with synchronous
operation in its implementation. The second requires two channels, configured to use
a queue with 128 chunks of 512Kb, because our channel is unidirectional. Figure 5.6
shows the latency for messages shorter than 128 bytes. Memory-based communication
outperforms NIO-sockets for all the values in the range. Likewise, Figure 5.7 shows the
throughput of both mechanisms. In general, memory-based communication behaves

4Source code at: http://goo.gl/h7OVm5

http://goo.gl/h7OVm5
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better than TCP sockets. Our approach outperforms sockets by an average of 652.36%
for messages shorter than 512 bytes. Meanwhile, it behaves on average 46.26% better
for messages between 1 Mb and 64 Mb, which is the range where the benefits of large
copies surpass the disadvantages of having a synchronized queue.

Latency between Java isolates is also affected by the time spent marshaling and
unmarshaling messages. To evaluate the benefits of fast Serialization, we designed a
micro-benchmark that sends a POJO structure, 16 bytes long, back and forth a million
times. 5 We then measure the effect of marshaling for different numbers of consumers.
Figure 5.8 shows the results of using built-in serialization against fast Serialization for up
to 8 components. We chose this value because in component-based systems it is unlikely
to find more interconnections within a single node. The figure depicts the results in
messages per second because different serialization methods flatten the same POJO
structure into buffers with varying sizes. The comparison includes two serialization and
two IPC mechanisms. However, the effect of the IPC mechanism is low due to the fact
that serialization dominates the execution times. As a result, curves with the same
serialization mechanism are close no matter what IPC mechanism we use.

5.3.4 Synthesis and Threats to validity

We evaluated our implementation of Squirrel regarding three aspects: overall perfor-
mance overhead, starting time and communication performance. We believe that the
performance of our reference implementation is good enough to enable resource manage-

5Source code at: http://goo.gl/FXuUxc

http://goo.gl/FXuUxc
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ment, while not excessively affecting the application’s behavior. Although some metrics
exhibit high overhead, we think that the trade-off given the new features offered in
Squirrel is worth considering. Memory overhead is the biggest concern. Nevertheless,
isolating components within separate processes greatly reduces the memory overhead
and eliminates CPU overhead in comparison to the instrumentation-based solution from
Scapegoat.

A threat to validity of our experimental protocol is that we evaluate different features
as orthogonal concerns. Our experiments do not study the impact of all of Squirrel’s
features together in a real scenario, although the assumption of orthogonality of each
concern is reasonable, particularly because Squirrel mainly relies on the well tested
cgroups to enable CPU and I/O reservation.

5.4 Conclusion

In this chapter, we advocate for a methodology to provide resource management capa-
bilities to dynamic component-based frameworks. This methodology and its implemen-
tation, Squirrel, propose choosing component-to-system mappings at deployment time
for better resource management. This strategy is performed automatically by checking
the resource availability and transforming the application’s structure to run the appli-
cation on resource-aware containers. Containers describe how to map components to
system abstractions allowing for different trade-offs in resource management.

The implementation we present is able to manage CPU, I/O and memory, and
provide performance analyses and a comparison of different design decisions. The ex-
periments show that choosing the right component-to-system mappings at deployment-
time reduces CPU overhead and/or memory use. They also highlight that optimizing
mappings is essential to reducing isolation and communication overhead to acceptable
levels.

The approach proposed in this chapter contributes to answer two research ques-
tions RQ2 (How can we choose what mechanisms must be used to guarantee resource
reservation with low overhead for each component? ) and RQ3 (How can we leverage
the knowledge about the architecture of applications to drive a mechanism for resource
management? ). Instead of selecting a fixed resource reservation mechanism for all com-
ponents, we delays this selection until deployment time when we know exactly what
resources a component require, and how components interact. At this point, we can
specialize the approach used to reserve resources in such a way that performance over-
head is kept at a low level.





Chapter 6

Building Efficient Domain-Specific
Memory Profilers

Jack (V.O.) – Babies don’t sleep this well.
(Jack’s bedroom – night – Jack lies sound asleep)

Jack (V.O.) – I became addicted [. . . ]
Jack (V.O.) – If I didn’t say anything, people assumed the worst. They

cried harder. I cried harder [. . . ]
Jack (V.O.) – [. . . ] the guys with cancer [. . . ] “Free and Clear”,

my blood parasites group Thursdays [. . . ]
“Seize The Day”, my tuberculosis Friday night.

(Fight Club)

The Software Language Engineering (SLE) community aims at reducing the effort
required in engineering new languages and their corresponding development tools, thus
improving the efficiency of both people in charge of designing new languages and their
users [Spr14]. However, as far as we know, they do not take into account profiling tools,
which are essentials for software maintenance and optimization. Indeed, although spe-
cific tools are needed to monitor running systems in order to detect defects or abnormal
behaviors [DB00, JAH11], little support exists to ease their creation.

In this chapter, we focus on the problem of easing the creation of efficient memory
profilers for domain-specific software abstractions that are designed to be executed on
top of MRTEs. We first propose a metalanguage to specific what data about the memory
use is of interest in a domain (see Section 6.2). A profiler is then generated to collect
the data and present it in terms of concepts of that language. In addition, we present a
tooled DSL based on such a metalanguage, which generates profilers for the JVM (see
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Section 6.3). An important point of our approach is the low overhead induced by these
profilers; this makes them usable in production environments (see Sections 6.4 and 6.5).

The contributions of this chapter are as follows:

• A metalanguage to describe the information that a profiler must collect. In ad-
dition, programs written using this metalanguage also define how to collect the
information. Although knowledge of the underline execution model is required,
the procedure to obtain data is mostly defined without using low-level details.

• A concrete implementation of this metalanguage that targets the JVM. In partic-
ular, by using the JVMTI, we can generate memory profilers with low overhead.
Concrete profilers already generated are portable to any implementation of the
JVM that supports JVMTI.

• A discussion of the metalanguage’s expressiveness, and an evaluation of the per-
formance overhead induced by three profilers in real-world use cases.

6.1 Understanding the domain

The purpose of memory profilers is to collect information regarding how applications
use memory. To write profilers, a clear understanding about their nature is required.
Informally, the term memory profiling refers to any kind of process to collect some
data about memory usage. In an object-oriented runtime environment, such data
may be as simple as the number of objects of a specific class, but it may also be as com-
plex as the list of possible memory leak’s sources. Other examples include computing
the number of objects reachable from a specific class object; finding out if there is an
instance of class A which is referencing an object of class B; and computing, for each
String, its length and the number of objects that make direct reference to the string.
The data collected by a profiler may have an arbitrary complexity; it may be a simple
natural number, a boolean value, a list of values, or a composed value. For instance, an
integer value is required to describe one of the aforementioned examples, the number
of objects reachable from a specific class object. In the same way, a pair 〈l, r〉, where
both l and r are integers, is required to store the result of determining for a string, its
length and the number of objects referencing it.

Formally, we use a set of concepts to properly define our understanding of the term
profiler, and how we address their construction in this chapter. The following concepts
are used in the rest of the chapter:

An object is an atomic entity that consumes memory to store the value of its at-
tributes. Although we mean object as in object-oriented programming (OOP),
the operations that we can perform on these objects are restricted to accessing
attributes, obtaining the amount of memory used to represent an object, and ac-
cessing meta-data such as the class name. Reusing the concept is “natural” since
we are targeting MRTEs, which often support the object-oriented paradigm.
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Memory Heap As mentioned, this is the region of memory used to store dynamically
allocated objects that are connected through references – forming a directed graph.
It is also the universe U of objects.

Structure is a subset of objects in the memory heap. The objects in a structure
don’t need to be directly related by references; instead, they can be arbitrarily
composed. For instance, the smallest non-empty structure we can consider, is a
structure containing a single object. Only one property is required in properly
formed structures; S1

⋂
S2 = ∅ for any pair of structures S1 and S2, which means

that they are disjoint sets.

Memory Profile is a value that can be computed using information from the objects
(and their references) included in a structure. An example of useful value is
the total size of a structure, which can be easily calculated using the function
total_size (S) =

∑
o∈S sizeof(o). A common pattern of use is to identify many

structures in the heap, and then to compute a value – not necessarily the same –
for each structure.

Memory Profiling consists in identifying structures, and computing some values as-
sociated to these structures.

Structure types provide a mean to identify several structures using a single descrip-
tion. In other words, since the heap can be partitioned in many structures, it
is hard to manually enumerate them. We need a procedural way to describe
what are the structures we are considering (i.e., their membership functions), and
what data we want to compute on each one of them; structure types provide such
facilities.

In particular, they provide (i) functions to evaluate whether an object is member
of a structure, (ii) ways to define the values corresponding to the memory profile
of a structure, and (iii) factories to identify all structures in the heap.

As mentioned, the objects in the heap form a directed graph; a profiler
must iterate over such objects to identify whether they belong to a structure.
Our approach is a mechanism to specify what to do while the graph is being traversed.
The following examples show what kind of operations must be executed during graph
exploration.

Objects reachable from a specific class object Figure 6.1 depicts a diagram
of objects. Suppose we want a profiler to compute the number of objects that can
be reached from the object of class java.lang.Class whose classname is “Client” (see
Figure 6.1). Informally, this profiler must execute three steps to obtain the desired
data. First, it iterates over the objects to find all the instances of class java.lang.Class.
These objects are then explored to get the value of attribute classname, and see if it is
equal to “Client”; in this way we can locate the instance of interest. Finally, the profiler
traverses the graph (as in Depth First Search) using the node found in the previous
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step as root, and counting the number of traversed nodes. In Figure 6.1 the objects to
count are highlighted.

Figure 6.1 – Objects reachable from the Client class. Observe that only one object is
not reachable.

The aforementioned informal steps show that a profiler should be capable of:

• Collecting meta-data of objects such as the class of an object (java.lang.Class),
and the size of an object.

• Reading the value of attributes is also helpful to filter out elements of the
heap.

• Traversing references is necessary because often some objects belong to a struc-
ture only because they are referenced by an object that is already a member.

To summarize, a function to determine whether an object is member of a structure
may use: properties of the object itself, and properties about its relationships.

Nodes in each singly linked list In the second example, we want to compute how
many nodes has each singly linked list in the heap. Figure 6.2 shows a heap with two
singly linked list and one double linked list. The first list has three nodes while the
second one has four; these are the values we want to obtain.

Informally, to compute such data a profiler must traverse the heap, checks whether
an object’s class is NodeEntry (membership function), and increases a counter every
time an instance is found (function to compute memory profile). Unfortunately, these
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Figure 6.2 – Memory snapshot with three linked lists

two steps are insufficient to correctly compute the fact that there exist two lists. Indeed,
instead of the two values 3 and 4, a single value – seven – is obtained when this proce-
dure is used. The problem is that we have two structures instead of one. However, using
the aforementioned membership function, it is not possible to know whether a NodeEn-
try belongs to a given structure. In other words, we need additional information to
distinguish the two structures.

A method to solve this particular problem is to use the following recursive member-
ship function: an object is member of a structure S if it is an instance of NodeEntry and
it is being referenced by a member of S. For the non-recursive case, we can see how each
singly linked list starts with an instance of SinglyLinkedList. This is easily represented
with a parametrized and recursive membership function fhead : Objects 7→ bool:

fhead (O) =


head = O O is SinglyLinkedList

∃x ∈ Objects, x references o ∧ fhead (x) O is NodeEntry

false otherwise

(6.1)
The parameter head represents the structure of interest, and it is an instance of

SinglyLinkedList. In this example, we have two functions, in which only the parameter
varies, because there are two instances of class SinglyLinkedList. Similarly, we need two
counters to store the number of nodes while we are traversing the graph of objects; once
again, they (and the function to compute their values) are parametrized by the head
of the list. Figure 6.2 depicts a snapshot in time of the heap while it is being explored;
the shaded nodes are those that were already explored.

This example shows that in defining memory profilers, we often need:

• To use the same functions for many structures, varying only some parameters.
This is necessary for both membership functions and to compute the memory
profile.
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• To identify structures in the heap by using a parameter. For instance, in this
example, we know that there are two structures because there are two instances
of class SinglyLinkedList.

To summarize, we are frequently interested in calculating values for many structures
that have the same “characteristics”; this is what we call structure type. To identify such
structures we use a parameter ; the process of associating a particular parameter value
to a structure type is done by a factory of structures.

6.2 Language to define customized memory profilers

A global view of our approach is shown in Figure 6.3. Since our goal is to support
resource-aware programming, in this architecture an application can collect data on its
own memory consumption. To provide this feature, we add a layer (data collection
layer) to MRTEs to take care of:

• Providing a set of interfaces for collecting meta-data of objects in the heap, iter-
ating over such objects, and reading the value of their fields. These interfaces are
used by memory profilers.

• Providing a set of interface for accessing memory profilers from applications. In
other words, an application may trigger the execution of a memory profiler, and
it should be able to analyze the values computed by the profiler.

• Supporting dynamic loading of memory profilers. This is helpful in production
environments for loading new dynamic analysis tools without having to stop the
MRTE.

Figure 6.3 – Global view of the system. In this case, three memory profilers are defined.

In Figure 6.3, three memory profilers are plugged to the data collection layer. The
exact mechanism to collect raw data from the MRTE, as well as the mechanisms to
dynamically load profilers, are platform specific.
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Figure 6.4 – Meta-model for representing customized memory profilers

A memory profiler can be handcrafted and plugged in this architecture; this is,
nevertheless, error-prone. Instead, we favor a generative approach where profilers are
written using a metalanguage that hides low-level details. A compiler is then used
to transform such definitions into a binary form that can be executed in the runtime
environment. This compiler is also in charge of providing interoperability between the
data format provided by low-level facilities of the MRTE, and the high-level data format
expected by applications running on top of such execution environments.

In the rest of this section, we describe the elements of this architecture. First, the
abstract syntax of this metalanguage is discussed; we present it using a meta-model with
its main concepts as well as some snips of code, written in a concrete syntax, to ease
the presentation (see Subsection 6.2.1). The full concrete syntax is then introduced in
Subsection 6.2.2, followed by the translational semantic of the language (see Subsection
6.2.3). Finally, in 6.2.4 we present some examples to illustrate the use of the language.

6.2.1 Abstract Syntax

The meta-model shown in Figure 6.4 describes the abstract syntax of our language. The
main concept of this meta-model is a CustomProfiler which is composed of UserDefined
types and StructureFactories. This means that a developer must focus on declaring the
types to store information about memory usage, and defining what are the structures
of interest by mean of factories.

The concepts related to UserDefined types are depicted on the left part of the
metamodel, while the right part describes the StructureFactory which represents both
the set of structures to identify and the value to compute on these structures.
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User-defined types

The language support three basic types – Integer, String and Boolean. They are not
shown in the meta-model for the sake of clarity, and because these types behave mostly
as in any other language. It is however noteworthy that the language intentionally lacks
support for implicit casts, and explicit casts exist in the form of built-in functions.

In addition, the language supports the declaration of both Records and Lists. A
record is a compound type that contains fields to hold values of previously defined
types. On the contrary, all the members of a list must be of the same type; hence, a list
refers to a base type. In a profiler, UserDefined types can be composed in any desired
way as long as a single property is respected – no recursive types are allowed. We can
formalize such a constraint using the Object Constraint Language (OCL) 1):

context List inv:
not self.baseType−>closure(t:Type|

if t .oclIsKindOf(List) then
t .oclAsType(List).baseType

else
if t .oclIsTypeOf(BasicType) then

t
else

t .oclAsType(Record).fields.type
endif

endif
)−>exists(t | t = self)

context Record inv:
not self. fields .type−>closure(t:Type|

if t .oclIsKindOf(List) then
t .oclAsType(List).baseType

else
if t .oclIsTypeOf(BasicType) then

t
else

t .oclAsType(Record).fields.type
endif

endif
)−>exists(t | t = self);

In this OCL code (written in Xtext OCL), the closure function computes the set of
types that can be reached from a given type definition when the relationships among
types are followed. We enforce this constraint for two reasons. First, it simplifies the
type system, and second because it is a way to know that no data structure other
than the built-in will be used to represent, for instance, a list. In this way, we can
guarantee the performance of operations on lists. The List type provides operations
to manipulate list values. In general, these operations correspond to a subset of stan-
dard operations one can find in any implementation of the list data type in functional
languages. Table 6.1 shows the name of these operations as well as their signature.

filter (’a → boolean) → ’a list → ’a list
forall (’a → boolean) → ’a list → boolean
exists (’a → boolean) → ’a list → boolean
map (’a → ’b) → ’a list → ’b list
add ’a → ’a list → ’a list
first ’a list → ’a

Table 6.1 – Operations on lists

1http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/
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In Listing 6.1, a data structure to store information about a heap structure is de-
clared. First, a list (tableOf) of string is declared, it may be used to store the class
name of objects. Afterwards, a record with two integer fields and a list field is declared
in line 2. This record may be used to hold values during profiling.

1 names: tableOf string
2 data: struct {
3 total_size : int
4 nr_objects: int
5 classnames : names
6 }

Listing 6.1 – Declaring types to store the number of object in a structure, its
total size, and the class name of each object.

Defining structures to profile

Defining StructureFactories is at the core of writing a customized profiler. A Struc-
tureFactory contains an Expression through the instances relationship, which indicates
a pattern to identify structures in the memory heap. Notice that a single instance of
StructureFactory identifies many structures in memory; thus, the Expression is a list –
a new structure must be instantiated for each element of the list.

Listing 6.2 shows a snip of code that defines a structure for each SinglyLinkedList
in the heap. This is useful to solve one of the example we mention in Section 6.1.
Notice that ‘e’ is the value used to parametrize the structures. In this case, ‘e’ will
take the values in the list defined after ‘:’; such a list is composed by instances of
class SinglyLinkedList. In this example, we use the operation filter on a built-in list –
objects. The actual parameter for filter is a lambda expression that only return true if
its parameter is an instance of the expected class.

1 create structure foreach e: objects.filter ([
2 o |
3 ret o is SinglyLinkedList
4 ]) using

Listing 6.2 – Defining a factory that instantiates a structure for each instance of
the class SinglyLinkedList that it can find in the heap.

Defining a new StructureFactory implies defining a StructureType. This concept
describes the mechanism used to identify a structure and compute some values. A
StructureType is composed of Assignments that are used as initialValues for each Vari-
able holding a value of the structure – similar to a constructor in OOP. In addition,
a StructureType contains a boolean expression which is the membership function used
to decide whether an object is member of the structure. Finally, it also contains as-
signments to update the value of each variable every time an object is added to the
structure. The major constraint regarding these updates is that they must refer to al-
ready initialized variables, and the new assigned values must match the previous types.
We formalize such a constraint using OCL:
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context StructureType inv: updates−>forAll(a: Assignament |
self . initialValues−>exists(aa : Assignament |

aa. lvalue = a.lvalue and aa.rvalue.type = a.rvalue.type
))

In Listing 6.3, we show how to compute the length of each SinglyLinkedList in the
memory snapshot depicted in Figure 6.2. We use the fact that each NodeEntry points
to the next element in the list. Since we only want to count the number of nodes in
each list, we simply define an integer variable in the structure type – ‘n’; in line 7, this
variable is updated every time an object is added to the structure. The variable ‘e’
is used to parametrize the structure; observe how, in line 3, a list of members of the
structure is initialized (‘e’ is its only member). This line corresponds to defining the
non-recursive case of the membership function. Line 1 was already discussed, it is just
worth highlighting that only two structures will be built because there are two singly
linked lists in the memory snapshot. The first member of these structures are in one
case list0, and list1 in the other case.

1 create structure foreach e:objects.filter ([o| ret o is SinglyLinkedList]) using
2 constructor
3 initialObjects = #[e] // a list literal with one element: e
4 n = 0
5 membership (this is NodeEntry) and (referrer in this_structure)
6 updates
7 n = n + 1

Listing 6.3 – Calculating the length of each singly linked list.

The recursive case of the membership function is in line 5. It looks like the definition
in function 6.1; there are however differences that are due to the evaluation semantic
of our language. Although the semantic is discussed hereafter, we can understand the
definition by simply knowing that this boolean expression is evaluated for every edge of
the directed graph. Before the evaluation, three variables are created: this, referrer,
and this_structure; they are, respectively, the target of the edge, the source, and a
structure. When we evaluated the membership function we are checking whether this
is a member of this_structure, and we are passing additional information to support
the definition of recursive functions.

Finally, there is a built-in variable in each StructureType (line 3) that is only accessi-
ble during initialization. Its type is predetermined as part of the language specification.
We force the use of the proper type using OCL:

context StructureType inv: initialValues−>exists(a: Assignment |
a. lvalue .name = ’initialObjects’ and a.rvalue.type.oclIsTypeOf(List)

)

Expressions and Types

For the sake of readability, Figure 6.4 only shows a few concepts related to expressions.
In addition to arithmetic, boolean and literals for basic types, the language includes
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lambda expressions, literal for records and lists.
Observe that variables do not refer to a Type; indeed, the language is strongly typed,

and the type of each user-defined variable is inferred from its initial value. To support
type-inference, the type of each expression is clearly defined.

Built-in rvalues, which are nothing but expressions initialized by the runtime within
a specific scope, and their types are also defined. There are two types of built-in
rvalues – platform independent and dependent. Among the firsts, we have the list of
objects, the list of loaded classes (classes), a reference to the current data structure
(this_structure), and a reference to the current object (this). Target dependent rval-
ues include the list of threads (threads) and the type of reference (reference_kind).

Built-in rvalues are only valid in specific contexts. For instance, this, referrer,
this_structure, and reference_kind, exist either during the evaluation of the mem-
bership function or when the variables are being updated. On the contrary, the values
objects, classes, and threads, are valid only during the creation of structures and
their initialization. Since building rvalues of type list is costly in terms of performance
overhead, we decide avoiding their use in membership functions and updates.

6.2.2 Concrete Syntax

A textual concrete syntax has been defined for our language. It can be utilized by a do-
main expert to define a customized memory profiler using a text editor. A grammar for
this textual representation is depicted in Figure 6.5. Notice how the rules for expressions
make such a grammar ambiguous; we decide to use this form to ease the presentation.
However, a complete LL(*) grammar [PF11] can be found in Appendix A. One interest-
ing aspect of this concrete language is its relative verbosity. For instance, it uses very
explicit keywords such as “create structure foreach”, “constructor”, and “membership”.

An interesting aspect of this grammar is how list and struct values are defined.
In particular, they can be created from non-constant values in the right hand of the
evaluation. For instance, in Listing 6.4, three values are created; line 1 instantiates a
list of integers with two elements, line 2 defines a value of type Point, and line 3 creates
an empty list of strings that is immediately populated with one element. Notice that
line three requires writing the type of the list because it is not possible, in general, to
infer the list type when it is empty.

1 l = #[ 4, n + 12]
2 s = struct Point { x , 14 }
3 m = #String[].add("first element")

Listing 6.4 – Creating list and struct values.

6.2.3 Translational Semantics

A profiler written in this language is compiled to produce a customized memory pro-
filer for a specific target platform. For instance, in our reference implementation, the
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〈program〉 ::= ‘name’ 〈string-literal〉 〈types〉 〈structures〉 (1)

〈types〉 ::= 〈type〉 〈types〉 | 〈empty〉 (2, 3)

〈type〉 ::= 〈id〉 ‘:’ ‘tableOf’ 〈id〉 | 〈id〉 ‘:’ ‘struct’ ‘{’ 〈fields〉 ‘}’ (4, 5)

〈fields〉 ::= 〈id〉 ‘:’ 〈id〉 〈fields〉 | 〈id〉 ‘:’ 〈id〉 (6, 7)

〈structures〉 ::= 〈factory〉 〈structures〉 | 〈factory〉 (8, 9)

〈factory〉 ::= ‘create structure foreach’ 〈id〉‘:’〈e〉 ‘using’ 〈body〉 (10)

〈body〉 ::= ‘constructor’ 〈s〉 ‘membership’ 〈expr〉 ‘updates’ 〈s〉 (11)

〈s〉 ::= 〈a〉 〈s〉 | 〈empty〉 (12)

〈a〉 ::= 〈id〉 ‘=’ 〈e〉 (13)

〈e〉 ::= 〈e〉 〈op〉 〈e〉 | 〈u-op〉 〈e〉 | 〈e〉 ‘in’ 〈id〉 | 〈e〉 ‘is’ 〈id〉 (14, 15, 16, 17)

| 〈e〉 ‘.’ 〈id〉 ‘(’ 〈expr-list〉 ‘)’ | 〈e〉 ‘.’ 〈id〉 (18, 20)

| ‘#’ 〈l-type〉 ‘[’ 〈expr-list〉 ‘]’ | ‘struct’ 〈id〉 ‘{’ 〈expr-list〉 ‘}’ (21, 22)

| 〈int-literal〉 | 〈string-literal〉 | 〈bool-literal〉 (23, 24, 25)

| 〈id〉 | ‘(’ 〈e〉 ‘)’ | ‘[’ 〈id〉 ‘|’ 〈s〉 ‘ret’ 〈e〉 ‘]’ (26, 27)

| 〈e〉 ‘?’ 〈e〉 ‘:’ 〈e〉

〈expr-list〉 ::= 〈e〉 ‘,’ 〈expr-list〉 | 〈empty〉 (28)

〈l-type〉 ::= 〈id〉 | 〈empty〉

〈op〉 ::= ‘+’ | ‘*’ | ‘-’ | ‘/’ | ‘and’ | ‘or’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘==’ | ‘!=’

〈u-op〉 ::= ‘-’ | ‘not’

Figure 6.5 – Concrete grammar of the language. For the sake of clarity, we are using
an ambiguous grammar to describe the expression language.

compiler produces a library written in C++, which is in charge of collecting the de-
sired information from the runtime environment. The generated source code is a set
of classes. In particular, for each StructureType in the model, the compiler generates a
subclass of AbstractStructure, which is shown below. Every subclass contains attributes
to store the variables used in the associated StructureType. In the listing below, the
class Context holds built-in rvalues such as objects, this, and referrer.

1 class AbstractStructure {
2 public:
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3 virtual void initialize (const Context& ctx) = 0; // correspond to constructor
4 virtual bool membership(const Context& ctx) = 0; // membership function
5 virtual void update(const Context& ctx) = 0; // update variables
6 }

Listing 6.5 shows the code generated by the compiler for the singly linked lists ex-
ample (see Listing 6.3). Notice the use of three functions provided by the runtime,
markAsMembers, isInstance, and isMember. Lines 6-8 correspond to the creation and
assignment of the built-in value initialObjects. Meanwhile, line 9 is simply the ini-
tialization of the value n associated to each structure. In lines 12 and 13, the mem-
bership function is evaluated. The translation process does not optimize the code for
expressions; instead, it produces triples and relies on the C++ compiler to optimize
expressions. The method to update is a simple translation from the concrete syntax.

1 class SinglyLinkedListStructure1 : public AbstractStructure {
2 private:
3 int n;
4 public:
5 void initialize (const Context& ctx) {
6 vector<DSL_Object> l;
7 l .push_back(ctx.e);
8 markAsMembers(l, ctx.this_structure); // part of the language runtime support
9 n = 0;

10 }
11 bool membership(const Context& ctx) {
12 bool b0 = isInstance(ctx.this, "NodeEntry"); // part of the language runtime support
13 bool b1 &= isMember(ctx.referrer, ctx.this_structure); // part of the runtime support
14 return b1;
15 }
16 void update(const Context& ctx) {
17 int i0 = n + 1;
18 n = i0;
19 }
20 static void createStructures(const Context& ctx, vector<DSL_Object>& instances) {
21 vector<DSL_Object> r;
22 auto f = [](DSL_Object o) { return isInstance(o, "SinglyLinkedList")};
23 ctx.objects . filter (f , r) ; // add valid elements to r
24 instances . insert (instances .end(),r .begin(), r .end());
25 }
26 }

Listing 6.5 – To represent a structure type, we declare a subclass of
AbstractStructure.

The last function, createStructures, is used to identify structures of this type. In
other words, it implements the factory. Such a function is invoked by a template
initialization routine that expects as generic parameter a subclass of AbstractStructure
(T in Listing 6.6). Formally, the signature and behavior of this routine are as follows:

1 template <typename T> void
2 initializationRoutine (Context& ctx, std::vector<AbstractStructure∗>& s){
3
4 vector<DSL_Object> instances;
5 T::createStructures(ctx, instances) ;
6
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7 for (DSL_Object obj : instances) {
8 AbstractStructure∗ ns = new T();
9

10 ctx.e = obj;
11 ctx.this_structure = defineStructure(ns); // part of the runtime support
12
13 ns−>initialize(ctx) ;
14 s .push_back(ns);
15 }
16 }

Listing 6.6 – Routine to initialize structures in the heap.

In line 5 the factory is invoked to identify the set of structures in the heap. This
simply add an element to the list for each structure. Afterwards, the internal format
used to represent such structures are created and the structures initialized.

Assembling a profiler The final profiler is built using both the generated code and
a template algorithm. This algorithm is target dependent, but in general we use the
underline target facilities to collect meta-data, access fields in certain steps, traverse
the objects in memory and also to populate the built-in rvalues. Informally, the idea
is traversing a graph in which nodes and edges have properties, and executing callbacks
to collect data about the graph. A simplified version of this algorithm is shown in List-
ing 6.7. The model of execution of profilers written using our approach is summarized
in such an algorithm.

1 values:
2 structures : vector<AbstractStructureType∗>
3 routine:
4 foreach (StructureType ST)
5 create context
6 call initializationRoutine <ST>(context, structures)
7

8 foreach (r: references among objects)
9 if (r . target has no membership)

10 create context // context. this = r.target
11 S = structures. findfirst (s | s .membership(context))
12 make context.this a member of S
13 S.update(context)
14 return structures

Listing 6.7 – Template algorithm to collect data with in a memory profiler. This
summarizes the model of execution of profilers written using our approach

There are two loops in the algorithm. The first loop is in charge of creating the
set of structures the program is intended to collect information about. The creation of
a context in line 5 depends on the target platform. It basically creates values such as
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the list of objects in memory or the list of loaded classes. The second loop traverses all
the references among objects in memory. During each iteration, the algorithm finds the
“first” structure for which the membership function is true (the if in line 9). Thereafter,
the information for such a structure is updated. Notice that we only select one because
this is a simple way to guarantee that structures are disjoints sets of objects. For
instance, suppose the graph of object is G = ({A,B,C}, {〈A,C〉, 〈B,C〉}), and we want
to identify the members of two structures SA and SB using the following membership
functions (parameter T is either A or B):

fT (O) =


T = O O is Class0

∃x ∈ Objects, x references o ∧ fT (x) O is Class1

false otherwise

In this case, C is member of both structures, SA and SB. Since we want to guarantee
that structures are disjoint set, we need an additional mechanism to achieve this. In our
implementation, we simply consider that an object O is member of the “first” structure
fo which evaluating the membership function produces true. In general, a structure S0

is evaluated first than S1 if its StructureFactory is defined earlier in the source code of
the program; this is deterministic. Also, a structure is evaluated first if the parameter
to identify the structure appears earlier in the list of instances produced by the factory;
this case is non-deterministic.

To summarize, we need to enforce additional execution rules to guarantee that struc-
tures are disjoint sets. As a consequence, every membership function f(o) one defines
is actually evaluated as f(o) ∧ @ST ∈ Structures, fT (o).

6.2.4 Language Usage

There are several possibilities for using our DSL in the various stage of an application
lifecycle. For instance, checking invariants of data structures, computing memory con-
sumption of different software abstractions, and checking reachability properties. Some
of these uses may help to support resource-aware programming, others may be useful
to support additional tasks in software development. In this section, we discuss some
examples to highlight possible uses of our language.

Example 1: Evaluating an assertion The first example shows how to assess the
existence of a value satisfying a property, independently of which object contains it.
Specifically, we want to check whether exists an object with an attribute named “data”
whose value is between 3 and 5. Since the answer we expect is a simple boolean value,
this example can be seen as a kind of assertion regarding the memory content.

We can write a memory profiler to compute this value. A complete code to imple-
ment it is depicted in Listing 6.8. Since we want to compute a single boolean value that
depends on all the objects in the heap, this profiler only needs to create one structure.
In the code, this is shown in line 1, where the list of instances has one element. Notice
that we use the string value “whole-jvm”, this has been arbitrarily chosen, any value
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is acceptable in this case as long as the list’s length is one. The initialization section
simply states that, before the graph of object is traversed, we assume that no object
meets the property. The non-recursive membership function accepts every object is
member of the structure. Finally, to update the variable, we assess the property for the
current object (this), and aggregate the result to the previous value.

1 create structure foreach e:#["whole−jvm"] using
2 constructor
3 initialObjects = #Object[]
4 existValue = false
5 membership true
6 updates
7 existValue = existValue or (this.data >= 3 and this.data <= 5)

Listing 6.8 – Assessing the existence of an object with a given property.

Example 2: Counting instances of specific classes A common requirement in
memory profilers is calculating the number of instances of a class. We can easily express
this in our language; Listing 6.9 illustrates this usage scenario. In particular, it counts
how many Strings and Integers exist. Since we are interested in two different classes,
we declare two factories with their respective membership function.

1 create structure foreach e:#["instances of Integer"] using
2 constructor
3 initialObjects = #Object[]
4 n = 0
5 membership (this is java.lang.Integer)
6 updates
7 n = n + 1
8
9 create structure foreach e:#["instances of String"] using

10 constructor
11 initialObjects = #Object[]
12 n = 0
13 membership (this is java.lang.String)
14 updates
15 n = n + 1

Listing 6.9 – Calculating number of instances of two classes.

Example 3: Data about large objects Memory profilers also provide mechanisms
to collect data on many objects at the same. In this example (see Listing 6.10), we
show how to collect the class name and the size of very large objects. Only a structure
is needed to define this profiler; both the membership function and the initialization of
the structure are simple. To store the information, an empty list is declared in line 9.
Every time a new object is identified as large, its class and size are added to the list as
a new entry.

1 SingleObject: struct {
2 classname : string
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3 size : int
4 }
5 listObjects : tableOf SingleObject
6 create structure foreach e:#["big objects"] using
7 constructor
8 initialObjects = #Object[]
9 data = #SingleObject[] // empty list of SingleObjects

10 membership (this.size > 1024)
11 updates
12 data = data.add( struct SingleObject { this.classname, this.size } )

Listing 6.10 – Collecting class and size of large objects (size > 1024 bytes).

Example 4: Consumption of threads The example in Listing 6.11 calculates the
number of objects that are reachable from the threads. It also computes how much
memory these objects consume.

The membership function used in this structure type is as follows:

f (o) =

{
true o is Thread

∃r ∈ Objects, (r reference o) ∧ f(r) otherwise

In this case, a recursive membership function is used to discard those objects that
are not referenced by an existing member of the structure. A variable, defined as a
record, holds the calculated values; it is however possible to achieve the same goal using
two separated integer values.

1 Info : struct {
2 nbObjects : int
3 size : int
4 }
5 create structure foreach e:#["whole−jvm"] using
6 constructor
7 initialObjects = threads
8 data = struct Info { 0, 0 }
9 membership ( referrer in this_structure )

10 updates
11 data = struct Info { data.nbObjects + 1 , data.size + this.size }

Listing 6.11 – Calculating objects reachable from threads.

A different result is obtained if we slightly modified this listing. Figure 6.12 shows a
snip of code of a profiler that calculates the number of objects reachable for each thread
instead of for the whole MRTE.

1 ...
2 create structure foreach t:threads using
3 constructor
4 initialObjects = #[t]
5 data = struct Info { 0, 0 }
6 membership ( referrer in this_structure )
7 updates
8 data = struct Info { data.nbObjects + 1 , data.size + this.size }

Listing 6.12 – Counting the memory consumed for each thread.
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In comparison to the previous listing, only two lines are modified. However, these
lines modify the non-recursive case of the membership function, as well as the number
of structures identified in the heap. As a consequence, the result computed has type
tableOf Info, where each element of the list corresponds to a thread.

Example 5: Memory consumption of K3Objects We can also identify other
complex structures. For instance, to find the consumption of each K3-Al object namely
K3Object as described in Section 3.1, we must find instances of HashMap.Entry that
have a K3Object as key. These entries should be added to the consumption of the object
K3Object as well as all the objects reachable from the HashMap.Entry.value. Figure 6.6
depicts a memory snapshot with a K3Object and two HashMap.Entries pointing to it.

Figure 6.6 – Snapshot of memory with one K3 Object. The idea is to compute the
memory used by the shaded objects.

To define this profiler, a good understanding of the implementation of K3-Objects,
and their aspects, is needed. We define a factory where a list of K3Objects is used to
identify the structures (see line 1 in Listing 6.13). Hence, there will be as many struc-
tures as instances of class K3Objects. In line 3, the initial members of each structure are
defined; notice that the membership function is parametrized by a K3Object instance,
namely ‘e’. The recursive case is then similar to previous examples, the difference is
that we don’t count instances of Class; this is shown in Figure 6.6).

1 create structure foreach e:objects.filter([it|it is K3Object]) using
2 constructor
3 initialObjects = objects. filter ([
4 o| ret (o is HashMap.Entry) and (o.key == e)
5 ]) .add(e)
6 size = 0
7 // the second part can be more precisely written as reference_kind != class_ref
8 membership (referrer in this_structure) and not (this is java.lang.Class);
9 updates



Tooling 117

10 size = size + this.size

Listing 6.13 – Computing the consumption of each K3-Al Object along with its
aspects.

6.3 Tooling

To validate our approach, we have implemented a tool chain to ease the definition of
customized memory profilers for Java-based systems. 2 These profilers can be executed
in any JVM as long as it provides support for the JVMTI.

In this section, we present tools built to support the definition of memory profilers
using our language; this is done by taking into account how engineers in different roles
may interact with these tools and with the resultant profilers. Indeed, in dealing with
memory profilers, we have to take into consideration the two usual roles – developers of
profilers and their users; after all, profilers built using our language are themselves soft-
ware abstractions. A developer must know how the target domain-specific abstractions
are represented on top of the JVM, and she/he must also have a clear understanding of
how our language is executed. On the contrary, users only need to be aware of the in-
terface provided by our framework, and the structure of the data collected by a profiler.
In the rest of this section, we discuss details that are important to these roles.

In this section, we also present low-level details regarding how the language is im-
plemented on top of the JMVTI. The decision of implementing our approach by relying
on JVMTI has advantages and disadvantages. On the one hand, the obvious advantage
lies on the portability of this solution, which makes it more valuable from a practical
point of view. On the other hand, building profilers on top of the JVMTI; instead of
directly modifying the JVM, impacts the performance of the generated profilers and,
unfortunately, hinders (in extreme case it even prevents) the implementation of some
language constructs. Nonetheless, it is our belief that guaranteeing profilers’ portability
should be of maximum priority. Moreover, in writing this implementation, we have
found that the limitations in the JVMTI preventing the construction of better profilers
can be overcome with, at most, a few additions to the API.

6.3.1 Developers of domain-specific abstractions

In our vision, developers of software libraries and component frameworks, as well as
software language engineers may use our approach to define customized memory profilers
for the abstractions they create. This is, in addition to delivering artifacts such as
libraries, source code, simulators, text editors for DSLs, and compilers for these DSLs;
engineers would also ship profilers to simplify the use of these abstractions. For instance,
the developers of the Spring framework 3 may create a set of specific profilers to reduce
the cost of maintaining applications written using the framework. These profilers can

2Available at: https://github.com/intigonzalez/heapexplorer_language
3https://spring.io/

https://github.com/intigonzalez/heapexplorer_language
https://spring.io/
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Figure 6.7 – Developer viewpoint. Memory profilers are built from the description of
software abstractions.

serve as both internal tools to help in the development of abstractions, and mechanisms
allowing users to better use abstractions.

Figure 6.7 summarizes the viewpoint of developers of domain-specific abstractions.
To write a profiler, they use knowledge about the abstraction and the tool chain to
generate the executable profiler. Our implementation of the language is built using
Xtext [EB10]; it provides a textual editor that is able to handle the proposed concrete
syntax. This editor provides syntax highlighting, error detection during editing, auto-
completion, and compilation to native Java agents written in C++.

To perform low-level tasks related to memory profiling, we use JVMTI 4 and JNI.
These APIs are used by both profilers and the core memory profiling library, so-called
Native Agent in Figure 6.7. In this native agent, a plugins system, which allows users to
load/unload profiles without shutting down the JVM, is implemented. Given a profiler
definition, the compiler output is a package that contains the native binary code for the
profiler, and a Java library you can use to access the collected data using plain Java
objects.

To reduce the overhead of profilers, developers must be aware of the details of the
abstraction for which the profiler is being built, the semantic of our language, and the
details of its implementation. In particular, it is advisable reducing the usage of lists
and the evaluation of nested lambda expressions. Likewise, heavily using the built-in
rvalue objects is especially discouraged because it can easily contain many elements.
It is also discouraged because, in order to reduce memory consumption, we rely on an
iterator built on top of JVMTI operations that can be costly to use in terms of CPU
time.

Finally, we added some built-in rvalues in this implementation because they are
both useful in the context of Java and easy to obtain using the JVMTI. These values
are classes, classloaders, threads and objects; they are lists of anonymous built-in record
types. The relation among these types and their operations are depicted in Figure 6.8.

4http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
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Figure 6.8 – Viewpoint of developers. Memory profilers are built from the description
of software abstractions.

6.3.2 Users of domain-specific abstractions

We envision that a set of memory profilers can be shipped in addition to other “classic”
deployment artifacts that users of a software abstraction receive. These profilers would
support the use of the corresponding software abstraction. For instance, a user who is
relying on a new extension of the Xtend language to build a system, may use specific
profilers written in our language to understand the memory consumption, and in general,
the behavior of the system.

The generated profilers can be used in two different ways, either as development
tools or as mechanisms to support resource awareness at runtime. Due to the scope
of this thesis, the reference implementation we provide is biased towards the second
scenario, but it should be relatively simple to adapt it to support the software devel-
opment process. To access memory profilers, a JVM must be launched with a native
Java agent loaded, and a library to collect profiling data in its classpath. Once the
application is running, it can trigger profiling by simply issuing a few method calls us-
ing the profiling API. Figure 6.9 illustrates the process of collecting memory profiles,
the software components involved, and the APIs that must be used. Observe how the
profiling framework issues a call to a handler once it is done, a parameter contains the
data computed. These data are encoded in a list, in which elements correspond to the
data computed for each identified structure in the heap.

The output of a profiler is a list of Java objects containing the collected information;
and the type of these objects depend on the profiler definition. Indeed, as part of our
implementation, the profiler generator creates a set of Java classes to represent the data
collected in a form that is easy to digest at runtime by a Java application. Once a
profiler collects the information in an internal format, it populates a representation in
Java using the Java Native Interface (JNI); the code to do so is also generated by the
compiler of our language. In Figure 6.10, the classes generated for a profiler are shown.
Notice that a class is created for each record declared, and also for each StructureType. It
can be seen how ‘lists’ are directly represented in Java by mean of generic Java lists. The
id field in both MemoryProfile1 and MemoryProfile2 is the value used to parametrize
each structure. In this particular example, where two structures are identified, the value
of MemoryProfile1.id is “lists” and the value of MemoryProfile2.id is “otherObjects”.
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Figure 6.9 – Viewpoint of users. Memory profilers are black-boxes accessed through
Java interfaces. Data collected is in the form of plain Java objects.

Given the fact that the data computed by a profiler is returned as a list of objects,
and their layout is unclear, the remaining problem is how to process such data; there
are two options. First, users can make the application code depends on the Java code
created by the profiler generator. In this way, your application has a new dependency,
but you can profit from knowing at development time the types used in the code. A
second approach is using the reflection capabilities of Java to explore the data. In the
evaluation, we use such an approach to log the result of an arbitrary profiler, printing
all the information it has computed. Using reflection, it is also possible to build a user
interface to explore the results in a customized way.

6.3.3 Implementation Details

Using JVMTI and JNI to create the built-in values threads, threadgroups, classes, and
classloaders is simple. These APIs provide routines that one can use to obtain the
information from the JVM. Since the number of threads (and classes) is relatively small,
we simply store the data in a vector (included in the C++ Standard Template Library
(STL)) to reuse it every time we need it. On the contrary, creating the built-in value
objects is challenging. Indeed, keeping a vector with references to all objects is not
acceptable in terms of memory consumption because of the large number of objects in
the heap. Fortunately, we can overcome this problem by noticing that iterating over the
objects is usually enough to implement the language. For instance, in Listing 6.3 we need
to iterate over the objects, and filter an object out if its type is not SinglyLinkedList.
When this listing is executed in the memory snapshot shown in Figure 6.2, the result
is a vector with only two elements.

To iterate over objects, we use the routine “FollowReferences”. This function ba-
sically traverses the reference graph invoking a set of callback functions every time a
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1 name "basic info"
2 T : struct {
3 name : String
4 size : int
5 }
6 create structeres for e:#[" lists "]
7 using
8 constructor
9 initialObjects = #Object[]

10 data1 = #T[];
11 membership (this is String) or (this is Array)
12 updates
13 data1 = data.add(struct T { this.name, this.size})
14
15 create structeres for e:#["otherObjects"]
16 using
17 constructor
18 initialObjects = #Object[]
19 data2 = #T[];
20 membership true
21 updates
22 data2 = data.add(struct T { this.name, this.size})

1 class T {
2 final String name;
3 final int size ;
4 }
5
6 class MemoryProfile1 {
7 final Object id;
8 final List<T> data1;
9 }

10
11 class MemoryProfile2 {
12 final Object id;
13 final List<T> data2;
14 }

Figure 6.10 – Representation of profiling data in Java, as users of profilers see it. Ac-
cessing these structures is useful to support resource awareness.

new reference is found. In these callbacks, we generate the code to filter objects. For
examples, Listing 6.14 illustrates how is the code generated for the expression:

1 objects . filter ([o | ret o is SinglyLinkedList])

Notice that accessing an object from within the callback is not possible. Instead,
one can only access a tag associated to the object. This is the major limitation we
find in implementing our language using the JVMTI. 5 Likewise, these callbacks offer
metadata, such as the class and reference info, that we can leverage.

1
2 jint references (jvmtiHeapReferenceKind ref_kind, const jvmtiHeapReferenceInfo∗ ref_info,
3 jlong class_tag, jlong referrer_class_tag,
4 jlong size , jlong∗ tag_ptr, jlong∗ referrer_tag_ptr,
5 jint length, void∗ user_data) {
6 ...
7 vector<DSL_TAG>∗ tags = (vector<DSL_TAG>∗)(user_data);
8 DSL_Class cl = getFromTag(class_tag);
9 if (cl .name == "SinglyLinkedList")

10 tags−>push_back((DSL_TAG)∗tag_ptr);
11 ...
12 }
13
14 vector<DSL_OBJECT> v;

5This constraint is imposed in the implementation of the JVMTI function “FollowReferences” be-
cause no mutator code can be executed when the reference graph is being traversed. By using tags
instead of objects, the JVM guarantees that no JNI function is invoked.
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15 vector<DSL_TAG> tags;
16 callbacks .heap_reference_callback = references;
17 jvmtiEnv−>FollowReferences(NO_FILTER, NULL, NULL, callbacks,&tags);
18 for (auto f : tags) {
19 jlong∗ a_tags = {f};
20 jint count_ptr;
21 jobject∗ object_result_ptr;
22 jlong∗ tag_result_ptr;
23 jvmtiEnv−>GetObjectsWithTags(1, a_tags, &count_ptr, &object_result_ptr, &tag_result_ptr);
24 v.push_back(jobject2DSLObject(object_result_ptr[0]));
25 }

Listing 6.14 – Code generated for the expression objects.filter. This is a simplified
version in C++14

An additional mechanism is required when a lambda expression for filtering objects
is accessing attributes of an object. For instance, in Listing 6.8 a primitive attribute,
“data”, is accessed, while a reference attribute “key” is read in Listing 6.13. Reading
primitive attributes is supported by the JVMTI function FollowReferences; by simply
supplying the appropriates callbacks, you can get the value of every primitive field.
However, this is not enough. The problem is that – to completely evaluate a lambda
expression – the values involved in the expression must be collected in different execution
contexts.

The solution we propose is based on using the functional library of C++11 to
implement continuations. In other words, we build functions that contain parts of the

1 [ o | o.data > 3 and
2 (referrer is String) and
3 (o.key is HashMap.Entry)]

1 references_callback() {
2 obj_tag = (DSL_TAG)∗tag_ptr;
3 t0 = referrer_class .name == "String";
4 if (! t0) return;
5 obj_tag−>fun = [=](String a, jvalue v) {
6 if (a == "data")
7 return t0 && v > 3;
8 return false;
9 };

10 vector<DSL_TAG>∗ tags =
(vector<DSL_TAG>∗)(user_data);

11 tags−>push_back(obj_tag);
12 }
13
14 primitive_callback() {
15 obj_tag = (DSL_TAG)∗tag_ptr;
16 t2 = obj_tag−>fun(field_name, field_value);
17 obj_tag−>fun = [=]() {
18 jobject obj = getFromTag(obj_tag);
19 jobject key = obj.key; // JNI
20 t3 = isInstance(key, "HashMap.Entry");
21 return t3;
22 };
23 }

Figure 6.11 – Evaluating an expression through partial evaluation.
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evaluation of a lambda expression, the values already computed are stored in the closure
associated to the function. Figure 6.11 shows the transformation of an expression.
Observe how it requires collecting data in two different places, and partially evaluating
the expression in three places.

Unfortunately, our solution has limitations. For instance, it cannot handle nested
uses of the built-in value objects nor access primitive attributes of the referrer object.
Indeed, so far we have discussed how to evaluate expressions that involve the list of
objects, but evaluating the membership and update functions are problem with a similar
solution. In other words, we also use the function FollowReferences to identify the
structures in the heap.

We perform some optimizations related to the construction of the built-in values
threads, threadgroups, classes, etc. Since not all memory profilers depends on such
values, we selectively skip the construction of them. We also extend this to other cases.
For instance, we do not find the class of each object when it is not required, and we
avoid processing classes to obtain field names when they are not used in an expression.
To implement these optimizations, we used a parametrized code template; therefore,
the generated code depends on the values of generic parameters. We can tune them to
satisfy our needs. Another optimization is reducing the number of nodes that must be
traversed. As an illustration, we only produce code to explore primitive fields of each
object, which are represented as leaf nodes in the graph, if there exists an expression
accessing a field.

6.4 Discussion On Language Expressiveness

In our language, the mechanism used to collect data is explicit to the user – traversing
a graph of objects. Hence, it is possible to estimate the overhead of a specific profiler.
In other words, this language follows an imperative paradigm to obtain derived values.
On the contrary, most query languages provide a declarative style because it simplifies
the process of writing new queries.

We acknowledge that our approach limits the kind of memory analysis that users
can express. First, it is not possible to recover all the information contained in the
graph of live objects in linear time on the number of objects. Second, an imperative
style forces the users to understand the underlying execution model, which is not re-
quired with declarative query languages. Nonetheless, we claim that getting rid of some
expressiveness is a trade-off worth considering in order to guarantee efficient memory
analysis. The empirical and theoretical evidence suggest that, in our language, reducing
the capabilities to collect data has a bigger impact on performance gain than generating
efficient native code to collect data.

At this point, it is worth noting why declarative approaches fail to deliver the ad-
equate performance in production. Listings 6.15 and 6.16 show possible solutions, in
OQL and Cypher/Neo4j, to the K3-Al example presented in Section 3.1. A naive com-
parison to the solution written in our language (see Listing 6.13) shows that the number
of Source lines of code (SLOC) is similar in the three cases.
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1 SELECT id, sum(size) as s
2 FROM (
3 SELECT
4 e.key.@objectId AS id,
5 e.@usedHeapSize + e.value.@retainedHeapSize AS size
6 FROM java.util.HashMap$Entry e
7 WHERE (classof(e.key).@name = "K3Object")
8 UNION ALL
9 SELECT

10 k3.@objectId AS id, k3.@retainedHeapSize AS size
11 FROM K3Object k3
12 )
13 GROUP BY id

Listing 6.15 – Using OQL to compute the consumption of each K3-Al object.
Actually, this query cannot be executed in Eclipse Mat nor in VisualVM since they
do not provide a full OQL implementation.

There are two aspects that affects the performance of this kind of queries: the
“natural” complexity of many queries, and the impossibility of applying optimizations
due to the type of data. In the first place, many queries are intrinsically complex to
answer. For instance, it is known that answering SPARQL queries - which was used
as inspiration for Cypher/Neo4j, is PSPACE-complete [SML10, PAG09]. Second, the
performance of declarative queries for dynamic memory analysis is also affected by the
nature of data to process. In particular, even if some queries can be executed efficiently,
the optimization steps required are in most cases impossible to execute for the type of
data we are considering – a graph of objects that constantly changes. Indeed, these
optimizations often require access to indexes, additional storage and multiples passes
on the data [EGLGJ07, DZ02] that are not accessible on the graph of objects, and
computing them may be costly by itself. On the contrary, our language makes explicit
both the time and space complexities of analysis.

1 MATCH
2 (key:K3Object)<−[:key]−(entry:HashMap$Entry)−[:value]−>value
3 WITH entry, key, value
4 MATCH
5 key−[:1..1]−>fieldK
6 WITH entry, key, value, fieldK
7 MATCH
8 value−[:1..1]−>fieldV
9 RETURN key, entry.size + key.size + fieldK.size + sum(value.size) + sum(fieldV.size);

Listing 6.16 – Using Cypher to compute the consumption of each K3-A1 object.

A threat to validity of our approach is that we do not evaluate the usability of
the language. Approaches based on existing languages, such as OQL, and CYPHER,
suffer this problem far less because they are widely used in other areas. Nonetheless,
our language (and its concrete syntax) is not entirely new. It resembles the “think as
a vertex” paradigm of Pregel, which has proven to be successful [MAB+10]. In this
paradigm, an algorithm on graph is described from the point of view of each vertex.
In our case the membership function and the update section are also executed using a
limited context, which only includes a few built-in rvalues. Likewise, the language is
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largely inspired by the API of graph libraries; in particular, the idea of providing hooks,
which are executed while a graph is traversed, has been borrowed from the Boost Graph
Library and its API for visitors 6.

6.5 Evaluating performance of profilers

In this section, we evaluate the implementation of our approach. We present experi-
ments that measure the performance overhead induced by memory profilers built using
the proposed approach. This section aims at assessing whether our approach induces
low overhead across different applications and types of analysis. Indeed, using mem-
ory profilers that have different levels of complexity, makes our evaluation closer to the
expected use in real-world scenarios.

The goal of this section is answering the following research questions:

1. RQ1. Does our approach produce profilers with lower overhead than
state-of-the-art tools when used to perform many iterations of memory
analysis at runtime? To answer this question, we assess the overhead on total
execution time produced by the periodic computation of a specific analysis. In
this experiment, we measure and compare the overhead of our approach against
the overhead produced by other solutions.

2. RQ2. Is significant the difference between the time needed to execute a
single analysis with our approach in comparison to previous solutions?
In a second experiment, we measure the execution time needed to perform a single
memory analysis step instead of focusing on the total application execution time.

3. RQ3. Does the advantage of our approach remain for real applications?
Finally, we perform memory analysis on actual applications, including Eclipse,
NetBean, and others, to assess the overhead of profiling in “real-life” scenarios.

In general, these experiments show that our language produces specific profilers with
lower overhead for applications running in production environments than well-known
memory profilers.

6.5.1 Methodology and Setup

Our system is implemented on top of the JVMTI; thus, we compute our results using
the HotSpot JVM version 1.7.0_76, with a heap size of 2GiB for all the experiments.
Across this section, we use Eclipse Memory Analyzer 1.4.0 (Eclipse MAT), a production
ready memory profiler, to perform several experiments. We use this tool in Command-
Line Interface (CLI) mode; this executes the desired analysis in a separate process. In
other words, in performing a memory analysis on a JVM instance A, we dump its heap
and invoke Eclipse MAT in a separate JVM instance to collect profiling data.

6http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/
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We use DaCapo benchmarks version 2006-10-MR2 [Bea06] in the first two exper-
iments, large input size in the first experiment, and default input sizes in the second
one. In the third experiment, we use a set of actual applications based on OSGi, these
applications are listed in the relevant section 7. Although the details are specific to
each experiment, in general, each measurement presented is the average of several runs
under the same conditions.

To obtain comparable and reproducible results, we used the same hardware across
all experiments: a 2.90GHz Intel(R) i7-3520M processor, running Linux with a 64 bit
kernel version 3.17.3 and 8GiB of system memory.

6.5.2 Impact of Analysis on the Total Execution Time

In this experiment, we assess how much our approach affects the execution time of
applications. To do so, we compare the time reported by the execution of DaCapo
benchmarks without any kind of memory analysis against the execution time when our
language is used to perform the analysis in Listing 6.11. In addition, we check how our
approach behaves in comparison to other approaches for memory analysis. In this case,
the profiler finds the number of objects, and their total size, when threads are used as
only roots to traverse the graph of live objects.

The experiment was configured as follows: within a JVM instance, we wrap the
execution of the DaCapo Benchmark. Each DaCapo test is configured to execute 20
warm-up iterations before the final test execution. This number of warm-ups is used
to guarantee a long enough execution time. A separate thread periodically performs a
memory consumption monitoring step every 2 seconds by using one of the methods we
want to compare:

No analysis In this case, we simply execute the DaCapo Benchmarks without any
additional task affecting its performance. This is the baseline for the comparison.

Handwritten JVMTI In this solution, we traverse all references in the graph of live
objects starting on the threads, during this process the JVM is fully halted, im-
pacting the total application’s execution time.

Our approach We use our language to define the profiler in Listing 6.11. It is compiled
and used at runtime.

Heap Dump + Eclipse MAT This method uses the approach described in Section
6.5.1; when an analysis is required, the JVM dumps the heap and executes Eclipse
MAT in a separate process in CLI mode.

In this experiment, we measure the total time needed to complete the 20 warm-up
iterations plus the time required to execute the final test. The idea is to check how
much the performance is affected by each method. We repeat this process 10 times for
each test in the DaCapo Benchmark suite, and take the average as final measurement.

7Links are available at https://en.wikipedia.org/wiki/OSGi

https://en.wikipedia.org/wiki/OSGi
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Figure 6.12 – Overhead on execution time compared to the execution without memory
analysis for different tests in the DaCapo Benchmark

It is useful to discuss how varies the number of times the analysis is performed. As
we mentioned, profilers run periodically in this set of experiments; thus, the number
of invocations to a profiler depends on the benchmark, and the overhead produced by
the profiler itself. For instance, using our approach, the memory analysis is executed a
minimum of 10 times in the fop benchmark, and a maximum of 366 times in the eclipse
benchmark.

Figure 6.12 depicts the overhead in total execution time for different profiling strate-
gies and Dacapo tests. The values are shown as the percentage with respect to the
baseline, which in this case is obtained when no analysis is executed. It is noteworthy
that our approach performs close to the handwritten solution. Moreover, our solution
outperforms the Heap Dump + Eclipse MAT approach even when the latter is executing
mostly on a separate process without halting the JVM during profiling. The overhead
in our approach remains between 4-33%, and it is 11.93% in average.

6.5.3 Comparing Analysis Time for an Assertion

In the previous section, we show the performance overhead on total execution time
for different profiling mechanisms. However, these mechanisms are not executed under
the same conditions. For instance, as we mention in Section 6.3, our implementation
suspends the execution of the application while it performs the analysis. On the con-
trary, the Heap Dump + Eclipse MAT approach only suspends the application while
dumping the heap, but the analysis is done in a separate process; hence, it likely runs
in parallel. Therefore, in this experiment, we measure only the analysis time, which is
the amount of elapsed time from the beginning of analysis to its end. To perform these
experiments, we use again the Dacapo benchmarks. Since the analysis time depends
on the number of objects visited during the computation, in this experiment, we assess
the behavior of our approach using a memory profiler that must iterate over all objects
to complete. For the same reason, we repeat the analysis using different input size for
each benchmark; this implies that a different number of objects is found in memory.

The assertion used in this experiment checks whether an instance of a specific
class exists in the heap. The following listing shows how to implement such an
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assertion using our language. By defining the membership function as the true constant,
we guarantee that all objects are visited.

1 create structure foreach e:#["jvm"], using
2 constructor
3 initialObjects = #Object[]
4 exists = false
5 membership true
6 updates
7 exists = exists or (this is UnusedClass)

Listing 6.17 – Detecting if there exists an instance of a specific class.

The setting of the experiment is as follows. The DaCapo benchmark suite is used
with two different input sizes, default and large. Before the final test, twenty warm-
ups are executed in order to ensure long enough execution time. A separate thread
periodically checks the assertion and records the analysis time. The average analysis
time along the complete execution of a benchmark (i.e., xalan, fop, . . . ) is used as data
point. Ten of these data points are obtained through repetition of the previous step
and used as final measurement for a pair of benchmark and analysis approach. As in
the previous experiment, we use a handwritten JVMTI agents and an Eclipse MAT
extension to check the assertion with those tools.
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Figure 6.13 – Analysis time with default
input size
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Figure 6.14 – Analysis time with large
input size

Figures 6.13 and 6.14 present the results of the experiments. In both cases, default
and large input size, our approach is in between the handwritten JVMTI agent and
the Eclipse MAT approach. In comparison to Eclipse MAT, our approach reduces the
analysis time by 25% and 39% for default and large input size respectively. As expected,
the analysis time increases with the number of objects, the slowdown shown between
default and large input size is of 8.42%.

6.5.4 Profiling Time in Real Scenarios

To evaluate the overhead of our approach in actual applications, we compute the mem-
ory consumption of bundles in real OSGi-based systems. Since OSGi is a widely used
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framework, we chose applications built on top of OSGi or supporting it. The custom
profiler definition is based on the idea that bundle consumption is the consumption of a
Java classloader. Such a strategy is common when measuring memory consumption for
Java-based component frameworks because modules are often isolated and represented
through classloaders. The complete profiler’s definition is shown below:

1 create structure foreach e:classloaders using
2 constructor
3 initialObjects = #[e]
4 size = 0
5 membership ((ref_kind == root and this.class.classloader in this_structure) or
6 (ref_kind != root and referrer in this_structure))
7 updates
8 size = size + this.size

Listing 6.18 – Calculating the consumption of top components.

This experiment aims at evaluating the profiling time for each application using
our approach and Heap Dump + Eclipse MAT. In this experiment, each application is
executed, once it is initialized, the memory profiler is invoked, and its execution time
measured. This process is repeated ten times for each application and analysis approach
in order to use the average as final measurement. We use Heap Dump + Eclipse MAT
to compute the memory retained for top level classloaders using a standard analysis
named top components reports.

To execute the memory analysis from within the applications, we implemented ex-
tensions for each application (e.g., an Eclipse plugin, a NetBean module). 8.

These extensions are in charge of triggering the analysis. It was necessary because in
our approach the analysis must be executed by the JVM that is being profiled. In this
experiment, we perform the analysis on the following systems: Eclipse Luna [lun14],
NetBeans 8.0[net15], dotCMS 3.1 [dot15], Cytoscape 3.2.1 [cyt01], Glassfish 4.1 [gla14],
Liferay 6.2.2 [lif15], and WildFly 8.2 [wil13].

Figure 6.15 presents the analysis time for several applications and two analysis
approaches. Our approach outperforms Eclipse MAT in all applications; the gain is 3x-
19x with an average of 8x. Two factors influence the measurements. First , Eclipse MAT
invests some time parsing the dump file, and creating the internal indexes to accelerate
queries’ response time. Second, the top components report in Eclipse MAT can only
be implemented, using its query language, in terms of the function retainedHeapSize,
which calculates the amount of memory retained for a given object. Since this function
is costly to compute, Eclipse MAT spends a considerable amount of time on it while
building the top components report.

8 The evaluation code is available online: https://github.com/intigonzalez/heapexplorer_
language

https://github.com/intigonzalez/heapexplorer_language
https://github.com/intigonzalez/heapexplorer_language


130 Building Efficient Domain-Specific Memory Profilers

Ec
lip
se
Lu
na

Ne
tB
ea
n 8
.0

do
tC
M
S 3
.1

Cy
tos
ca
pe
3.2
.1

Gl
as
sfi
sh
4.1

Li
fer
ay
6.2
.2

W
ild
Fl
y 8
.2

0

20

40

A
na

ly
si
s
T
im

e
(s
ec
)

Our Approach

Heap Dump + Eclipse MAT

Figure 6.15 – Analysis time for real applications. It shows the time needed to compute an
analysis just once. The analysis aims at finding the consumption of the top components

6.6 Conclusions

In this chapter, we propose a Domain Specific Language for expressing the mapping be-
tween abstractions and runtime data structure to collect information about the memory
heap in production. This language provides an abstraction that is useful to reason about
the heap and is, at the same time, easy to translate into a set of low-level routines to ef-
ficiently collect the desired information. In our opinion, this approach is a step forward
in the creation of resource-aware software systems for two reasons. First, it reduces the
complexity of defining customized queries; hence, developers and operators are able to
use this feature to solve new problems without the need of high expertise on runtime
internals. Second, such customized queries can be used in a production environment
since they have a limited impact on the system’s performance.

The approach proposed in this chapter contributes to answer two research questions
presented in the introduction of this thesis (see Section 1.2). In particular, it answers
RQ1 (How can we provide portable and efficient support for resource consumption mon-
itoring? ) and RQ4 (How can we ease the definition and implementation of monitoring
tools for new software abstractions? ) by defining a metalanguage to describe the behav-
ior of customized memory profilers. These profilers are useful to efficiently calculate at
runtime how components and other domain-specific abstractions consume resources.
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

Resource-aware programming encompasses a set of techniques where applications mod-
ify their behavior based on resource availability; this is useful, for instance, if applica-
tions run under open-world conditions. Throughout this thesis, we have highlighted that
a considerable runtime support is required for a software system to implement resource-
aware methods. Specifically, facilities for resource accounting and reservation can be
used to observe and change the consumption. Unfortunately, providing such a support
is challenging in MRTEs because they often favor automatic resource management in
order to ease software development.

In reviewing the state of the art, we have found shortcomings that prevent the use of
existing techniques in production environments. Relatively high performance overhead
in portable solutions and limited capacity to deal with arbitrary granularity levels are
the most overwhelming constraints of existing approaches. The issue of handling differ-
ent granularity levels is important because managed runtime environments are used to
represent a wide variety of software abstractions, ranging from component models, to
domain-specific languages and simple class libraries . Finally, some existing approaches
show how resource accounting solutions may benefit from specializing their behavior to
the monitored application.

Component-based software engineering is a good candidate to implement systems
capable of coping with open-world conditions; however, the ability to handle non-
functional properties is often limited because runtime environments lack support for
monitoring resource consumption per components. Our first contribution is a frame-
work, named Scapegoat, to efficiently compute per component resource utilization. In
Scapegoat, we make two assumptions: there are previous monitoring mechanisms with
different trade-off between overhead and accuracy, and it is possible to activate/deac-
tivate such mechanisms at runtime. The framework follows an adaptive monitoring
approach based on two principles: i) since consumption matters when the runtime en-
vironment is running out of resource, we can use optimistic lightweight monitoring and
still be sure to detect potential failures on time by switching to a more precise mon-
itoring technique; and ii) it is possible to quickly identify faulty components once a
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potential failure is spotted. Scapegoat is capable of calculating resource usage with a
lower overhead than other portable state-of-the-art approaches (overhead reduced by
92%). Moreover, since by construction Scapegoat leverages other techniques, it may
benefit from new mechanisms introduced to perform monitoring as long as they can be
switched on/off at runtime.

Reserving resource for specific applications is another concern in resource-aware pro-
gramming. Our second contribution is a methodology to select a representation of each
component in the runtime environment in such a way that resource reservations can
be guaranteed with low performance overhead. We claim that the technique used to
provide reservation capabilities should not be selected during the design of the compo-
nent model. Instead, the resource reservation technique for each component must be
chosen at deployment time, when the requirements of an application are known. In
other words, we propose a methodology where both resource requirements and avail-
able technologies are decision variables to consider when we are binding components to
runtime abstractions. Through this thesis, evidences for such claim are provided and a
prototype, Squirrel, is implemented to show the potential benefit of this methodology.

Easing the construction of dynamic analysis tools such as resource monitoring frame-
works is of utmost importance because it supports the adoption of new software ab-
stractions. In particular, developers using component models, DSLs, and class libraries
may take advantage of customized profilers. The third contribution of this thesis is a
language to define customized memory profilers that can be used both during the de-
velopment of applications and also in production environments. The language has been
devised with constraints that, although reduce its expressive power, offer guaranties
about the performance behavior of the generated profilers. To evaluate this approach,
we have implemented a profiler generator that targets the JVM and uses the JVMTI
to explore the content of the memory heap. Using such an implementation, we have
compared generated profilers, handwritten profilers and mainstream tools. The results
show that the generated profilers exhibit similar performance to the one of handwritten
solutions.

7.2 Perspectives

The work presented in this thesis represents a step towards proving support for resource
aware programming. This work presents many perspectives which are presented below.

Reducing overhead of instruction accounting Instrumentation by bytecode rewrit-
ing induces high performance overhead, especially when used for instruction accounting.
Despite the use of adaptive monitoring which reduces the performance overhead, there
are occasions when the overhead imposed is still high: while doing localized monitoring,
and while probes are being activated. A way to reduce both overheads is by identifying
sections of code that do not need to be instrumented.

We can learn at runtime how many instructions a method executes for a given
input. This way, we only need to instrument some methods a few times until we find a
predictive model (as in machine learning) that is able to predict the number of executed
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instructions [TJDB06]. Afterwards, no instrumentation code is added to such methods
and their consumption is measured by evaluating a prediction model when they are
called.

Response to misbehavior Resource accounting only provides a single step to sup-
port the reconfiguration of a system when events about resource consumption are trig-
gered. Handling such events in the proper way, eliminating the source of misbehavior
and guaranteeing consistency of the system, is of utmost importance. There are ap-
proaches to face similar issues, for instance, replacing a service for an alternative im-
plementation when the response time of the former is high. Since many responses are
possible, it is worth considering a systematic approach to select them using a heuristic
instead of a hard coded policy. This heuristic may choose among a set of reconfigura-
tion policies that include limiting the resources available to a component, replacement
of components, slowing down a component by simply delaying the access to its interface,
and moving components across the distributed infrastructure

Applying the Squirrel methodology to domains with strong safety and se-
curity concerns Choosing the mapping from high-level concepts to low-level system
abstractions is one of the step in providing a concrete implementation of a component
model. As this mapping may affect the performance overhead of a system and its capac-
ity to provide resource reservation, it can also affect other properties, such as security.
In [GD10], the authors proposed an approach to execute components in a sandbox when
it is not possible to trust in their origin; using these sandboxes also has an impact on the
overall performance of the system. As a consequence, we can consider that the appro-
priate mechanism to put a component in a sandbox should be selected at deployment
time.

A language to manipulate the graph of objects Exploring the graph of objects
may be useful to reveal bugs in a system. In particular, to detect memory leaks and
excessive memory consumption. It has also been discussed how to evaluate assertions on
some data structures in memory by simply traversing the objects in the heap [RIS+10].
The idea is that exploring the heap may be considered a cross-cutting concern. In this
context, it is interesting to study whether modifying the graph of objects may help to
solve problems that can be identified by looking at objects and how they are connected.

One interesting example is eliminating memory leaks; in [ATM+15], the authors
proposed a mechanism to remove stale references in dynamic OSGi applications, the
approach is largely based on eliminating references between objects once the JVM de-
tects the stale references. Since this is simply a modification to the object graph, it is
worth considering the use of a language to express this kind of automatic bug fixing
without having to hard code them using a low-level language nor modifying the JVM.
The question is to what extent the same goals can be achieved without modifying the
JVM by simply using profilers API such as JVMTI.
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Generate the specification of memory profilers from models that describe
a domain-specific abstraction Automating the construction of memory profilers
for new software abstractions may ease software maintenance. Using our approach,
engineers have to implement both the software abstraction and the memory profilers.
A way to further reduce the development effort is by using high-level descriptions of the
abstraction to generate the definition of a profiler in our language. This way, engineers
could focus on the definition of the abstraction.

For instance, this is the approach followed by Xtext [EB10] to automatically generate
debuggers for languages that inherit from the base language (Java). The idea is using
models, as in Model-Driven Software Development (MDSD) [SVC06, Fow10], to describe
the software abstraction and also the way a concrete instance is mapped to a low-level
technology. In particular, this can be done using the metamodel of the abstraction (as
in a DSL) and a traceability model to see how a concrete model is transformed to, for
instance, Java.

Use declarative languages to define profilers Declarative languages are often
preferred for solving tasks such as querying a data structure. In the case of querying
a graph, there are languages able to express complex requests in concise ways, for
instance, CYPHER. As we already discuss, the problem is how to efficiently schedule
the execution of queries written in such languages.

One interesting path to explore is reusing a subset of these languages that can be
efficiently implemented despite the MRTEs’ constraints. The main challenges in imple-
menting an alternative like this will be to create a scheduler to optimize the execution of
such queries. This is important because the graph of objects is not explicitly represented
in a MRTE.



Appendix A

Concrete grammar of the language

Program:

types: statements:

type:

fields: structures:

structure:

constructor: membership:

updates: a:

137



138 Concrete grammar of the language

prefixed: e:

q:

addition: term:

factor:
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Résumé

Aujourd’hui, les systèmes logiciels sont omniprésents. Parfois, les applications doivent
fonctionner sur des dispositifs à ressources limitées. Toutefois, les applications néces-
sitent un support d’exécution de faire face à de telles limitations. Cette thèse aborde
le problème de la programmation pour créer des systèmes «conscient des ressources»
supporté par des environnements d’exécution adaptés (MRTEs). En particulier, cette
thèse vise à offrir un soutien efficace pour recueillir des données sur la consommation
de ressources de calcul (par exemple, CPU, mémoire), ainsi que des mécanismes effi-
caces pour réserver des ressources pour des applications spécifiques. Dans les solutions
existantes, nous trouvons deux inconvénients importants. Les solutions imposent un im-
pact important sur les performances à l’exécution des applications. La création d’outils
permettant de gérer finement les ressources pour ces abstractions est encore une tâche
complexe. Les résultats de cette thèse forment trois contributions:

• Un cadre de surveillance des ressources optimiste qui réduit le coût de la collecte
des données de consommation de ressources.

• Une méthodologie pour sélectionner les le support d’exécution des composants au
moment du déploiement afin d’effectuer la réservation de ressources.

• Un langage pour construire des profileurs de mémoire personnalisées qui peuvent
être utilisés à la fois au cours du développement des applications, ainsi que dans
un environnement de production.

Abstract

Software systems are more pervasive than ever nowadays. Occasionally, applications run
on top of resource-constrained devices where efficient resource management is required;
hence, they must be capable of coping with such limitations. However, applications
require support from the runtime environment to properly deal with resource limita-
tions. This thesis addresses the problem of supporting resource-aware programming in
execution environments. In particular, it aims at offering efficient support for collect-
ing data about the consumption of computational resources (e.g., CPU, memory), as
well as efficient mechanisms to reserve resources for specific applications. In existing
solutions we find two important drawbacks. First, they impose performance overhead
on the execution of applications. Second, creating resource management tools for these
abstractions is still a daunting task. The outcomes of this thesis are three contributions:

• An optimistic resource monitoring framework that reduces the cost of collecting
resource consumption data.

• A methodology to select components’ bindings at deployment time in order to
perform resource reservation.

• A language to build customized memory profilers that can be used both during
applications’ development, and also in a production environment.
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