
HAL Id: tel-01245370
https://hal.science/tel-01245370v1

Submitted on 17 Dec 2015 (v1), last revised 4 Mar 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Semantics and Automatic Verification of
Hierarchical Multimedia Scenarios with Interactive

Choices
Jaime Arias

To cite this version:
Jaime Arias. Formal Semantics and Automatic Verification of Hierarchical Multimedia Scenarios
with Interactive Choices. Computer Science [cs]. Université de Bordeaux, 2015. English. �NNT : �.
�tel-01245370v1�

https://hal.science/tel-01245370v1
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D’INFORMATIQUE

SPÉCIALITÉ : INFORMATIQUE

Par Jaime ARIAS

Sémantique Formelle et Vérification Automatique de Scénarios
Hiérarchiques Multimédia avec des Choix Interactifs

Sous la direction de : Myriam DESAINTE-CATHERINE
Co-directeur : Camilo RUEDA

Soutenue le 27 novembre 2015

Membres du jury :

M. AGÓN, Carlos Professeur, UPMC Rapporteur
M. GIAVITTO, Jean-Louis Directeur de Recherche, CNRS Rapporteur
M. JANIN, David Maître de Conférences, Bordeaux INP Président
M. ROLLET, Antoine Maître de Conférences, Bordeaux INP Examinateur
M. VALENCIA, Frank Chargé de Recherche, CNRS-LIX École Polytechnique

de Paris & Pontificia Universidad Javeriana de Cali
Examinateur

Résumé

Sémantique Formelle et Vérification Automatique de Scénarios Hiérarchiques
Multimédia avec des Choix Interactifs

Notre propos est la conception assistée par ordinateur des scénarios comprenant des contenus multi-
média qui interagissent avec les actions extérieures, notamment celles de l’interprète (e.g., spectacles
vivants, installations muséales interactives et jeux vidéo). Le contenu multimédia est structuré dans
un ordre spatial et temporel selon les exigences de l’auteur. Par conséquent, la complexité potentiel-
lement élevée de ces scénarios nécessite des langages de spécification adéquats pour leur complète
description et vérification.

Partitions Interactives est un formalisme qui a été proposé comme un modèle pour la composition
et l’exécution des scénarios multimédias interactifs. En outre, un séquenceur inter-médias, appelé I-
SCORE, a été élaboré à partir de la sémantique Petri net proposée par ce formalisme. Au cours des
dernières années, I-SCORE a été utilisé avec succès pour la composition et l’exécution des spectacles
et des expositions interactives. Néanmoins, ces applications et les applications émergentes telles que
les jeux vidéo et les installations muséales interactives, de plus en plus exigent deux caractéristiques
que la version stable actuelle de I-SCORE ainsi que son modèle sous-jacent ne supportent pas : (1)
des structures de contrôle flexibles comme des conditionnelles et des boucles ; et (2) des mécanismes
pour la vérification automatique de scénarios.

Dans cette thèse, nous présentons deux modèles formels pour la composition et la vérification
automatique de scénarios interactifs multimédia avec des choix interactifs, i.e., des scénarios où
l’interprète ou le système peut prendre des décisions au sujet de leur état d’exécution avec un certain
degré de liberté définie par le compositeur.

Dans notre première approche, nous définissons un nouveau langage de programmation appelé
REACTIVEIS dont les programmes sont définis comme des arbres représentant l’aspect hiérarchique
des scénarios interactifs et dont les nœuds contiennent les conditions nécessaires pour démarrer et
arrêter les objets temporels (TOS). En outre, nous définissons une sémantique opérationnelle basé
sur des arbres marqués, contenant dans leurs nœuds, les informations sur le début et la fin de chaque
TO. Nous définissons également une interprétation déclarative de REACTIVEIS comme formules de la
logique linéaire intuitionniste avec sousexponentiels (SELL). Nous montrons que cette interprétation
est adéquate : les dérivations dans la logique correspondent à des traces du programme et vice-versa.

Dans notre deuxième approche, nous présentons un système basé sur des Automates Temporisés.
Dans le système proposé, nous modélisons des scénarios interactifs comme un réseau d’automates
temporisés et les étendons avec des points interactifs gardés par des conditions, permettant ainsi la
spécification de comportements avec branchements. Par ailleurs, nous profitons des outils matures
et efficaces pour simuler et vérifier automatiquement des scénarios modélisés comme des automates
temporisés. Dans notre système, les scénarios peuvent être synthétisés dans un matériel reconfigu-
rable afin de fournir une faible latence et l’exécution en temps réel.

Dans cette thèse, nous explorons également une nouvelle façon de définir et mettre en œuvre des
scénarios interactifs, visant à un modèle plus dynamique en utilisant le langage réactif REACTIVEML.
Enfin, nous présentons une extension des scénarios interactifs utilisant des réseaux de Petri colorés
(CPN) qui vise à traiter des données complexes, en particulier, les données statiques et dynamiques
de flux audio.

Mots clés : Réseaux de Petri Colorés, Scénarios Multimédia Interactifs, Sémantique Opération-
nelle, Logique Linéaire, Model Checking, Automates Temporisés.

iii

iv Résumé

Abstract

Formal Semantics and Automatic Verification of Hierarchical Multimedia
Scenarios with Interactive Choices

Interactive multimedia deals with the computer-based design of scenarios consisting of mul-
timedia content that interacts with external actions and those of the performer (e.g., multimedia
live-performance arts, interactive museum installations, and video games). The multimedia content
is structured in a spatial and temporal order according to the author’s requirements. Therefore, the
potentially high complexity of these scenarios requires adequate specification languages for their
complete description and verification.

Interactive scores is a formalism which has been proposed as a model for composing and per-
forming interactive multimedia scenarios. In addition, an inter-media sequencer, called I-SCORE, has
been developed following the Petri Net semantics proposed by this formalism. During the last years,
I-SCORE has been used successfully for the composition and performance of live performances and
interactive exhibitions. Nevertheless, these applications and emergent applications such as video
games and interactive museum installations, increasingly demand two features that the current sta-
ble version of I-SCORE as well as its underlying model do not support: (1) flexible control structures
such as conditionals and loops; and (2) mechanisms for the automatic verification of scenarios.

In this dissertation we present two formal models for composition and automatic verification of
multimedia interactive scenarios with interactive choices, i.e., scenarios where the performer or the
system can take decisions about their execution state with a certain degree of freedom defined by
the composer.

In our first approach, we define a novel programming language called REACTIVEIS. This language
extends the full capacity of temporal organization of interactive scenarios by allowing the composer
to use a defined logical system for the specification of the starting and stopping conditions of temporal
objects (TOs). REACTIVEIS programs are formally defined as tree-like structures representing the
hierarchical aspect of interactive scenarios and whose nodes contain the conditions needed to start
and stop the TOs. Moreover, we define an operational semantics based on labeled trees, containing in
their nodes, the information about the start and stop times of each TO. We show that this operational
semantics offers an intuitive yet precise description of the behavior of interactive scenarios.

We also endowed REACTIVEIS with a declarative interpretation as formulas in Intuitionistic Linear
Logic with Subexponentials (SELL). We shall show that such interpretation is adequate: derivations in
the logic correspond to traces of the program and vice-versa. Hence, we can use all the meta-theory
of Intuitionistic Linear Logic (ILL) to reason about interactive scenarios and develop tools for the
verification and analysis of interactive scenarios.

In our second approach, we present a Timed Automata (TA) based framework. In the proposed
framework, we model interactive scenarios as a network of timed automata and extend them with
interactive points (IPs) guarded by conditions, thus allowing for the specification of branching behav-
iors. Moreover, we take advantage of the mature and efficient tools for TA to simulate and automati-
cally verify scenarios. In our framework, scenarios can be synthesized into a reconfigurable hardware
in order to provide a low-latency and real-time execution by taking advantage of the physical par-
allelism, low-latency, and high-reliability of these devices. Furthermore, we implemented a tool to
systematically construct bottom-up TA models from the composition environment of I-SCORE. Doing
that, we provide a friendly and specialized environment for composing and automatic verification of
interactive scenarios.

v

vi Abstract

In this dissertation we also explore a novel way to define and implement interactive scenarios,
aiming at a more dynamic model. For this purpose, we use REACTIVEML, a programming language
for implementing interactive systems (e.g., video games and graphical user interfaces). Our imple-
mentation allows to easily prototype new features for interactive scenarios and execute living code
using the toplevel of REACTIVEML. Moreover, we use the environment INSCORE to develop a graphical
interface that provides a real-time visualization of the execution of the scenario. Thus, we improve
the current graphical interface of I-SCORE which does not reflect the dynamic changes caused by the
interaction with the environment.

Finally, we present an extension of interactive scenarios using Colored Petri Nets (CPNs) that
aims to handle complex data, in particular, dynamic and static data audio streams. This extension
adds the possibility of building stream processing structures by functional composition of processes
through input/output data slots. We take advantage of this functional composition and the hierarchy
supported by CPN to build a modular model that we extend with modules for the basic processing
of audio files such as reading, appending, and reversing. This extension then opens the possibility of
verifying properties about the resource consumption of scenarios by using verification tools for CPNs
such as CPN TOOLS.

Keywords: Colored Petri Nets, Interactive Multimedia Scenarios, Operational Semantics, Linear
Logic, Model Checking, Timed Automata.

Acknowledgments

“Remember George, no man is a failure who has friends.”

— It’s a Wonderful Life

First of all, I warmly thank to my wife Sandra Forero who supported me all these three years. Her
love and invaluable support made possible for me to produce this thesis. Also, I would like to thank
from the bottom of my heart my mother Maria Almeida and my brother Diego Arias. They always
encouraged me and showed me their affection.

I want also to express my deepest gratitude to my advisers Myriam Desainte-Catherine and
Camilo Rueda. Their dedication and enthusiasm for Computer Science and Art have inspired me
during these three years. They always guided me in the right direction and provided a warm envi-
ronment to grow as a researcher and as person.

I owe much to Carlos Olarte for giving me his unconditional friendship and constant advice
during my Ph.D thesis, my Undergraduate thesis and my life. His outstanding work motivated me
to pursue an academic career. From Myriam, Camilo and Carlos, I deeply admire their work, their
modesty, their dedication to research, and their capability to motivate people.

I would like to show my affection for my friends Andrés Oviedo, Leidy Siachoque, Daniel Almeida,
Laura Pérez, Alejandro López, Jairo Alegría, Jesús González, and Anthony Illera. My gratitude also
goes to Jéssica Ávila, Nicolás Ávila, and Louis Batsalle for welcoming me and supported me from the
moment I arrived in France. Special thanks to my adoptive Colombian-Chilean family: Victor Villar,
Jazmín Vesga, Luna Rojas, and Victor Villar Jr. Thank you so much for your support during these
three years.

I also want to express my gratitude to my friends around the world for helping me out in so many
occasions. Thanks to Elaine Pimentel, Jean-Michaël Celerier, Christian Glacet, Cathy Roubineau, Joël
Zanouy, Hedi Ben Taleb, Sandra Costalunga, Rosalba Medina, Alejandro Rean, Matias Russitto, Juan
Camilo Noreña, Julián Camargo, Andrés Quintero, Claudia Oviedo, Jehison Vargas, Mariano Street,
Johan Duarte, Nazaret López, Diego Herrera, Edon Kelmendi, Romain Jougla, Laurent Juanico, Delil
En Mer, and Farhad Babaee.

Furthermore, I would like to thank the members of the AVISPA research group, specially to
Michell Guzmán, Salim Perchy, Alejandro Arbeláez, Andrés Barco, Mauricio Toro, Mauricio Cano,
Julián Gutiérrez, and Gerardo Sarria. Many thanks to my colleagues at LaBRI, OSSIA and SCRIME:
Simon Archipoff, Nicolas Vuaille, Annick Mersier, Jaime Chao, Clément Bossut, Théo de la Hogue,
Pascal Baltazar, György Kurtag Jr., Pierre Cochard, and Ung Pascal.

A special thanks to Carlos Agón and Jean-Louis Giavitto for having accepted to evaluated this
dissertation. I am also grateful to Frank Valencia, David Janin and Antoine Rollet for accepting to be
part of my jury. Having them is certainly a great honor for me.

Finally, many thanks to the administrative staff at the LaBRI for their help and their excellent job.
Thanks to Maïté Labrousse, Sylvie Le Laurain, Philippe Biais, Luce Chiodelli, Isabelle Garcia, Magali
Hinnenberger, and Christine Parison.

Jaime Arias
Bordeaux, 27 novembre 2015.

vii

viii Acknowledgments

Table of Contents

1 Introduction 1
1.1 Contributions and Organization . 4
1.2 Publications from this Dissertation . 5

2 Preliminaries 7
2.1 What are Reactive Systems? . 7
2.2 Synchronous Programming . 8
2.3 Petri Nets . 10

2.3.1 Petri Nets for Hypermedia Systems . 11
2.3.2 Colored Petri Nets . 13

2.4 Timed Automata . 17
2.4.1 UPPAAL Timed Automata . 18

2.5 Model Checking . 19
2.5.1 Computation Tree Logic . 20
2.5.2 Timed Computation Tree Logic . 21

2.6 Intuitionistic Linear Logic . 23
2.6.1 Intuitionistic Linear Logic with Subexponentials 25
2.6.2 Focusing . 26

2.7 Field Programmable Gate Arrays . 27

3 Multimedia Interactive Scenarios 31
3.1 Intuitive Semantics . 31
3.2 The Interactive Sequencer I-SCORE . 33
3.3 Related Models and Implementations . 35

4 A Declarative Language for Multimedia Interactive Scenarios 37
4.1 Syntax . 37

4.1.1 Tree-Based Representation of Programs . 39
4.2 Operational Semantics . 40

4.2.1 Tree-Based Representation of Execution States 40
4.2.2 Structural Operational Semantics . 42
4.2.3 Properties of the Operational Semantics . 44

4.3 Logical Characterization . 45
4.3.1 Correctness of the Encoding . 50

5 A Framework for Multimedia Interactive Scenarios 51
5.1 Modeling Interactive Scenarios in Timed Automata . 52

5.1.1 Temporal Relations . 53
5.1.2 Interaction Points . 55
5.1.3 Temporal Objects . 58
5.1.4 Hierarchical Interactive Multimedia Scenarios . 60

5.2 Automatic Verification of Interactive Scenarios . 60
5.3 True Parallel Execution of Interactive Scenarios . 61

ix

x Table of Contents

5.4 Synchronous Interpreter of Interactive Scenarios . 65
5.4.1 Intuitive Presentation of the REACTIVEML Language 65
5.4.2 Implementation of Interactive Scenarios in REACTIVEML 67
5.4.3 Real-Time Visualization of Interactive Scenarios 72

6 Streams in Multimedia Interactive Scenarios 75
6.1 Formal Semantics . 75

6.1.1 Temporal Relations and Interaction Points . 76
6.1.2 Temporal Objects . 77
6.1.3 Synchronization of Temporal Relations . 79

6.2 Interactive Scenarios with Data Streams . 80
6.2.1 Reading Audio Files . 80
6.2.2 Appending Audio Files . 81
6.2.3 Reversing Audio Files . 82

7 Concluding Remarks 85
7.1 Overview . 85
7.2 Future Directions . 86

References 89

CHAPTER1
Introduction

“Never send a human to do a machine’s job.”
— Agent Smith, Matrix

Interactive multimedia deals with the computer-based design of scenarios consisting of multime-
dia content that interacts with external actions and those of the performer. For instance, multimedia
live-performance arts, interactive museum installations, and video games. The multimedia content
is structured in a spatial and temporal order according to the author’s requirements. Therefore, the
potentially high complexity of these scenarios requires adequate specification languages for their
complete description and verification.

As an answer to this challenge, Interactive Scores (IS) [Allombert 2009] has been proposed as
a formalism for composing and performing interactive multimedia scenarios. This model has been
the outcome of several years of research that started at the beginning of the 21th century and still
continues. In the IS model, the performer has the possibility to influence the execution of scenarios
by triggering interactive points (IPs). Hence, the performer enjoys a certain freedom in choosing
the time of interaction (or whether it takes place) leaving the system the task of maintaining the
temporal constraints defined by the composer. Scenarios are composed of textures and structures.
Textures represent the execution in time of multimedia processes (e.g., the brightness of a lamp) while
structures allow to design modular scenarios and define a hierarchical organization on them. The
temporal organization of the above temporal objects (TOs) is defined by asserting temporal relations
(TRs) those objects must obey. Most precisely, TRs define precedence relations between TOs and
also temporal constraints by giving a range of possible durations from zero to infinite.

The first tool for interactive scenarios is BOXES [Beurivé 2001], but it was conceived only for
the composition of Electroacustic music (i.e., musical work that makes use of modern electronic tech-
nology to incorporate electronic sound production into compositional practice [Canazza 2001]). In
BOXES, the notion of temporal relations between processes, which is essential in IS, was introduced,
however, user interaction was not provided. Ten years after, the first version (version 0.1) of the
software I-SCORE [Marczak 2011] was developed in the frame of the ANR project VIRAGE1. This
software is based on the Petri Net model introduced by Allombert in [Allombert 2009], which unlike
BOXES, provides user interaction. I-SCORE offers two different stages: composition and performance.
In the former, composers place TOs on a horizontal time-line. Then, they add IPs and connect TRs
between the TOs in order to define the temporal properties of the scenario. During the performance
stage, the performer can dynamically trigger the IPs while the system maintains the temporal proper-
ties defined by the composer (i.e., the TRs). In the first version of I-SCORE, the scenarios are executed
by an abstract machine, called ECO machine, that relies on a Hierarchical Time Stream Petri Net (HT-
SPN) [Sénac 1995] to represent and execute the partially ordered set of events [Marczak 2011].
Thus, each time a scenario is written or modified, it must be translated into a HTSPN to be executed.

During the last years, I-SCORE has been used successfully for the composition and performance
of live performances and interactive exhibitions [Allombert 2010]. Nevertheless, these applications

1ANR site of the project VIRAGE: http://www.agence-nationale-recherche.fr/?Projet=ANR-07-RIAM-0011.

1

http://www.agence-nationale-recherche.fr/?Projet=ANR-07-RIAM-0011

2 Chapter 1. Introduction

and emergent applications such as video games and interactive museum installations, increasingly
demand two features that the first version of I-SCORE as well as its underlying model do not support:
(1) flexible control structures such as conditionals and loops [de la Hogue 2014]; and (2) mechanisms
for the automatic verification of scenarios. The former would permit to describe branching behaviors
in interactive scenarios and the latter would avoid that raise conditions (abnormal behaviors) happen
during a spectacle. In 2013, a new stable version of I-SCORE (version 0.2) was released in the frame
of the project OSSIA2. Although this new version enhances I-SCORE with conditional and loops, it
still lacks a formalization of these notions in its underlying model. Several researchers have made
many efforts to extend interactive scenarios with control structures (e.g., Petri nets [Allombert 2009],
process calculi [Olarte 2009b; Toro 2014]), but there is no practical solutions for their automatic
verification and real-time performance. Moreover, the proposed models cannot be straightforwardly
implemented or extended with new features that composers will eventually need to write more
complex scenarios.

This thesis then strives for finding formal models for composition and automatic verification of
multimedia interactive scenarios with interactive choices, i.e., scenarios where the performer or the
system can take decisions about their execution state with a certain degree of freedom defined by
the composer. Doing that, we bring new reasoning techniques for the modeling and verification of
complex interactive scenarios found in emergent applications such as video games and interactive
museum installations. Next, we describe the different approaches developed in this dissertation.

In our first approach, we define a novel programming language called REACTIVEIS. This language
extends the full capacity of temporal organization of interactive scenarios by allowing the composer
to use a defined logical system for the specification of the starting and stopping conditions of TOs.
REACTIVEIS programs are formally defined as tree-like structures representing the hierarchical aspect
of interactive scenarios and whose nodes contain the conditions needed to start and stop the TOs. We
define an operational semantics based on labeled trees, containing in their nodes, the information
about the start and stop times of each TO. We shall show that this operational semantics offers an
intuitive yet precise description of the behavior of interactive scenarios. Moreover, as we shall see,
tree structures give a concrete guidance to users with no technical background on how a scenario
should be executed, without dealing with the underlying theories in which are based the existing
models for interactive scenarios (e.g., Petri nets, process calculi, event structures).

We also endowed REACTIVEIS with a declarative interpretation as formulas in SELL [Danos 1993].
We shall show that such interpretation is adequate: derivations in the logic correspond to traces of
the program and vice-versa. Hence, we can use all the meta-theory of ILL to reason about interac-
tive scenarios and develop tools for the verification and analysis of interactive scenarios. Moreover,
we can rely on the recent developments on the specification of temporal and spatial modalities in
ILL [Nigam 2013] to declaratively enrich REACTIVEIS with new constructs. For instance, it would be
possible to define interactive scenarios whose hierarchy may change dynamically by allowing TOs to
move into another TO according to the stimulus from the environment.

In our second approach, we present a Timed Automata (TA) [Alur 1994] based framework. In the
proposed framework, we model interactive scenarios as a network of timed automata and extend
them with IPs guarded by conditions, thus allowing for the specification of branching behaviors.
Moreover, we take advantage of the mature and efficient tools for TA to simulate and automatically
verify scenarios. Furthermore, we implemented a tool to systematically construct bottom-up TA mod-
els from the composition environment of I-SCORE. Doing that, we provide a friendly and specialized
environment for composing and automatic verification of interactive scenarios.

I-SCORE is currently implemented using threads which make the implementation very non-de-
terministic and unreliable [Lee 2006]. Moreover, it is not designed for real-time operating systems
or parallel computer architectures. Thus, the low-latency and real-time performance of interac-
tive scenarios may not be guaranteed. Nowadays composers increasingly create scenarios achieving

2ANR site of the project: http://www.agence-nationale-recherche.fr/?Project=ANR-12-CORD-0024

http://www.agence-nationale-recherche.fr/?Project=ANR-12-CORD-0024

3

compute-intensive, data-intensive or real-time tasks which might not be performed properly by the
standard computers. Additionally, the use of supercomputers is often unfeasible due to their very
high cost. Therefore, it is necessary the use of reasonable price alternatives to achieve the perfor-
mance level needed for the execution of these complex interactive multimedia scenarios. We take as
example the work of Georges Gagneré3 called ParOral. In this work, the performer reads a text in or-
der to dynamically reconstruct the scenario by using sound and visual effects which are interactively
controlled by the expressiveness with which each sentence of the text is read. To achieve this, the au-
thor uses I-SCORE to orchestrate the operation of several applications such as a text following system,
an intonation recognition system, and an audio and a video processing system. Nevertheless, most of
these applications must be executed on different machines in order to have a low latency and ensure
real-time. As a solution to these performance issues, our framework offers the possibility that once
the scenario satisfies the author’s requirements, it can be synthesized into a reconfigurable hardware
(i.e., FPGAs [Trimberger 2015]) for the sake of providing a low-latency and real-time execution by
taking advantage of the physical parallelism, low-latency, and high-reliability of these devices.

In this dissertation we also explore a novel way to define and implement interactive scenar-
ios, aiming at a more dynamic model. For this purpose, we use REACTIVEML [Mandel 2015], a
programming language for implementing interactive systems (e.g., video games and graphical user
interfaces). This language is based on the synchronous reactive model of Bussinot [Boussinot 1996],
thus it provides a global discrete model of time, clear semantics, synchronous and deterministic
parallel composition, and features such as dynamic creation of processes. REACTIVEML has been
previously used in music applications showing to be very expressive, efficient, capable of interacting
with the environment during the performance of complex scores, and well suited for building proto-
types easily [Baudart 2013a; Baudart 2013b]. Therefore, we can easily prototype new features for
interactive scenarios and execute living code using the toplevel of REACTIVEML [Mandel 2009]. More-
over, we use the environment INSCORE [Fober 2013] to develop a graphical interface that provides
a real-time visualization of the execution of the scenario. Thus, it improves the current graphical
interface of I-SCORE which does not reflect the dynamic changes caused by the interaction with the
environment.

We shall also present an extension of interactive scenarios using CPNs [Jensen 2015] that aims to
handle complex data, in particular, dynamic and static data audio streams. This extension adds the
possibility of building stream processing structures by functional composition of processes through
input/output data slots. Since multimedia streams are often cut into temporal frames to be car-
ried from one process to another, we model frames as colored tokens that are handle by textures.
We provide the notion of asynchronous functional composition that corresponds to the case where
the defined processes are not executed at the same time, thus requiring to buffer the output data
stream of processes in order to hold data until another process read them. We take advantage of this
functional composition and the hierarchy supported by CPN to build a modular model that we shall
extend with modules for the basic processing of audio files such as reading, appending, and revers-
ing. This extension then opens the possibility of verifying properties about the resource consumption
of scenarios by using verification tools for CPNs such as CPN TOOLS.

This work has been supported by the ANR project OSSIA which aims to formalize the logical and
temporal constraints inherent in multimedia scenarios in order to develop tools for their specification
and verification. Furthermore, the issues addressed in this dissertation have been of great interest
and relevance to several researchers. For instance, the work presented in Chapter 4 is the result of
a collaboration with researchers in the frame of the projects MUSICAL4 and POSET5. The former is
funded by CNPQ (the Brazilian National Council for Scientific and Technological Development) and

3Georges Gagneré works on real-time tools for performing arts. He presented his work ParOral in the workshop “Melting
Code - 2014” at the University of Bordeaux. The reader may found more details in http://www.meltingcode.net.

4Website of the MUSICAL project: http://cic.javerianacali.edu.co/~caolarte/musical.
5Website of the POSET project: http://www.inria.fr/equipes/poset.

http://www.meltingcode.net
http://cic.javerianacali.edu.co/~caolarte/musical
http://www.inria.fr/equipes/poset

4 Chapter 1. Introduction

aims to develop and integrate tools from logic and concurrency theory for the design and analysis
of reactive systems and their application to musical processes and multimedia systems. The latter
is funded by INRIA (the French Institute for Research in Computer Science and Automation) and
aims to provide a consistent and robust mathematical framework for the modeling of sequential and
parallel aspects of temporal media in order to develop simpler, safer and more powerful tools for
the creation of hierarchical, multi-scale and multi-modal pieces of interactive art. Moreover, the
work presented in Chapter 5 was a starting point for a master stage [Vuaille 2014] in the project
INEDIT6 which is financed by the French National Research Agency (ANR) and its goal is to leverage
the scientific foundations of music and sound design tools with explicit directives, to open up new
creative dimensions coupling authoring of time and interaction.

1.1 Contributions and Organization

In what follows we describe the structure of this dissertation and its contributions.

Chapter 2 [Background]. In this chapter we introduce the basic concepts and terminology used
throughout this dissertation. We briefly describe several formalisms such as synchronous languages,
Petri nets, timed automata, linear logic and model checking, on which are based the models for
interactive scenarios presented in this dissertation.

Chapter 3 [Interactive Scenarios]. We discuss the previous models and existing implementations
of interactive scenarios in this chapter. Moreover, we give an intuitive semantics and operational
semantics of interactive scenarios. We encourage the reader to read in detail this chapter for the sake
of understanding the formalization of the operational semantics of interactive scenarios presented
in this dissertation.

Chapter 4 [Declarative Language]. A novel programming language that fully captures the temporal
structure of interactive scenarios is presented in this chapter. This programming language called
REACTIVEIS has a simple syntax and a formal representation of programs as tree-like structures. We
present a structural operational semantics (SOS) [Plotkin 2004] whose execution states are also
represented as trees claiming to be simpler, more intuitive and flexible than the current execution
models for interactive scenarios. In this chapter, we also propose a logical semantics for REACTIVEIS
based on Intuitionistic Linear Logic with Subexponentials (SELL) [Nigam 2011], thus increasing the
reasoning techniques available for the verification of interactive scenarios.

The work presented in this chapter is a collaborative work with researchers from the projects
MUSICAL and POSET. To our knowledge, REACTIVEIS is the first programming language designed
for writing, verification and execution of interactive scenarios.

Chapter 5 [Timed Automata Based Framework]. In this chapter, we present a Timed Automata [Alur
1994] based framework to address the automatic verification and real-time performance of interac-
tive scenarios with branching behavior. For that, we model interactive scenarios as a network of
timed automata and we extend them with IPs guarded by conditions, allowing to express branching
behavior. Moreover, we shall show the automatic verification of some properties in the efficient and
mature verification tool UPPAAL [Behrmann 2004], and we present a tool to systematically create a
bottom-up TA model (i.e., the input for UPPAAL) from any scenario written in I-SCORE.

Additionally, we shall introduce a hardware specification of our model that allows the verified
scenarios to be synthesized into a reconfigurable hardware [Trimberger 2015] in order to guarantee
its real-time and low-latency execution. Moreover, we shall present a synchronous interpreter for
interactive scenarios implemented in the REACTIVEML [Mandel 2015] programming language. As
we shall see, REACTIVEML allows for the dynamic creation of processes, thus opening the possibility
of enhancing interactive scenarios with live coding. Finally, we shall introduce a novel graphical

6INEDIT Website: http://inedit.ircam.fr.

http://inedit.ircam.fr

1.2. Publications from this Dissertation 5

interface using the environment INSCORE [Fober 2012] that allows to show, in real-time, the true
state of execution of interactive scenarios.

To our knowledge, this is the first framework for interactive scenarios allowing an automatic
verification and a true parallel execution of them. Moreover, the graphical interface capturing in
real-time the dynamic execution of scenarios has not been proposed before. In fact, it was a starting
point for a master stage [Vuaille 2014] in the project INEDIT looking for its integration to the software
I-SCORE.

Chapter 6 [Data Streams]. Nowadays, the design of interactive multimedia systems based on a
written scenario is a challenge that requires to handle dynamic and static events (i.e., events triggered
by the performer or the system) as well as dynamic and static data. In this chapter, we shall present an
extension of interactive scenarios that aims to handle complex data, in particular, audio streams. For
that, we shall use Colored Petri Nets (CPNs) [Jensen 2015] to model complex data and the dynamic
aspect of the functional composition of processes.

Our approach is based on the idea that multimedia streams are often cut into temporal frames
to be carried from one process to another. Therefore, we model frames as colored tokens that are
handled by processes. We first start by formalizing the operational semantics of interactive scenarios
in CPN. Then, we take advantage of the modularity of our model and we extend it with CPNs modules
for reading, appending and reversing audio files. A formal modeling of data streams in interactive
scenarios opens the possibility of reasoning about the resource consumption of a given scenario.

Chapter 7 [Concluding Remarks]. This chapter presents an overview of this dissertation and gives
some directions for future work.

1.2 Publications from this Dissertation

Most of the material of this dissertation has been previously reported in the following works.

Proceedings of international conferences.

• Jaime Arias, Michell Gúzman, and Carlos Olarte. “A Symbolic Model for Timed Concur-
rent Constraint Programming”. Electronic Notes in Theoretical Computer Science 312 (2015),
pp. 161–177. DOI: 10.1016/j.entcs.2015.04.010 [Arias 2015d].

Some of the main contributions of this paper are discussed in Chapter 3.

• Jaime Arias, Myriam Desainte-Catherine, Carlos Olarte, and Camilo Rueda. “Foundations for
Reliable and Flexible Interactive Multimedia Scores”. 5th International Conference on Math-
ematics and Computation in Music, MCM 2015, London, UK, June 22-25, 2015. Ed. by Tom
Collins, David Meredith, and Anja Volk. Vol. 9110. Lecture Notes in Computer Science.
Springer, 2015, pp. 29–41. DOI: 10.1007/978-3-319-20603-5_3 [Arias 2015e].

The main contributions of this paper are discussed in Chapter 4.

• Jaime Arias, Myriam Desainte-Catherine, and Camilo Rueda. “A Framework for Composition,
Verification and Real-Time Performance of Multimedia Interactive Scenarios”. 15th Interna-
tional Conference on Application of Concurrency to System Design, ACSD 2015, Brussels, Belgium,
June 21-26, 2015. IEEE, 2015, pp. 140–151 [Arias 2015b].

The main contributions of this paper are included in Chapter 5.

• Jaime Arias, Myriam Desainte-Catherine, and Camilo Rueda. “Modelling Data Processing for
Interactive Scores Using Coloured Petri Nets”. 14th International Conference on Application of
Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia, June 23-27, 2014. IEEE,
2014, pp. 186–195. DOI: 10.1109/ACSD.2014.23 [Arias 2014a].

The main contributions of this paper are given in Chapter 6.

http://dx.doi.org/10.1016/j.entcs.2015.04.010
http://dx.doi.org/10.1007/978-3-319-20603-5_3
http://dx.doi.org/10.1109/ACSD.2014.23

6 Chapter 1. Introduction

Proceedings of national conferences.

• Jaime Arias and Jean-Michaël Celerier. “Le Séquenceur Interactif Multimédia i-score”. Journées
Développement Logiciel de l’Enseignement Supérieur et de la Recherche, JDEV 2015, Bordeaux,
France, June 30 - July 3, 2015. Poster. 2015. URL: http://devlog.cnrs.fr/_media/

jdev2015/poster_jdev2015_iscore_jaime_arias.pdf [Arias 2015a].

This poster describes the current state of the software I-SCORE which is presented in Chapter 3.

• Jaime Arias, Myriam Desainte-Catherine, and Camilo Rueda. “Exploiting Parallelism in FPGAs
for the Real-Time Interpretation of Interactive Multimedia Scores”. Journées d’Informatique
Musicale, JIM 2015, Montréal, Canada, May 7-9, 2015. 2015. URL: http://jim2015.oicrm.

org/actes/JIM15_Arias_J_et_al.pdf [Arias 2015c].

The main contributions of this paper are included in Chapter 5.

• Jaime Arias, Myriam Desainte-Catherine, Sylvain Salvati, and Camilo Rueda. “Executing Hier-
archical Interactive Scores in ReactiveML”. Journées d’Informatique Musicale, JIM 2014, Bourges,
France, May 21-23, 2014. 2014, pp. 25–34. URL: http://jim.afim-asso.org/jim2014/

attachments/article/92/JIM2014_Actes_maquette_006.pdf [Arias 2014b].

The main contributions of this paper are discussed in Chapter 5.

http://devlog.cnrs.fr/_media/jdev2015/poster_jdev2015_iscore_jaime_arias.pdf
http://devlog.cnrs.fr/_media/jdev2015/poster_jdev2015_iscore_jaime_arias.pdf
http://jim2015.oicrm.org/actes/JIM15_Arias_J_et_al.pdf
http://jim2015.oicrm.org/actes/JIM15_Arias_J_et_al.pdf
http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_Actes_maquette_006.pdf
http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_Actes_maquette_006.pdf

CHAPTER2
Preliminaries

Contents
2.1 What are Reactive Systems? . 7

2.2 Synchronous Programming . 8

2.3 Petri Nets . 10

2.3.1 Petri Nets for Hypermedia Systems . 11

2.3.2 Colored Petri Nets . 13

2.4 Timed Automata . 17

2.4.1 UPPAAL Timed Automata . 18

2.5 Model Checking . 19

2.5.1 Computation Tree Logic . 20

2.5.2 Timed Computation Tree Logic . 21

2.6 Intuitionistic Linear Logic . 23

2.6.1 Intuitionistic Linear Logic with Subexponentials 25

2.6.2 Focusing . 26

2.7 Field Programmable Gate Arrays . 27

In this chapter we introduce the basic concepts and terminology used throughout this disser-
tation. We briefly describe several formalisms such as synchronous languages, Petri nets, timed
automata, linear logic and model checking, on which are based the models for interactives scenarios
presented in this dissertation. We do not intend to give an in-depth review of these concepts but
rather to contextualize the underlying theory on which is built the models presented in this disserta-
tion. We encourage the reader to follow the references to have a complete description of each topic
addressed in this chapter.

2.1 What are Reactive Systems?

Many computer applications involve programs that permanently interact with their environment, at a
speed imposed by the latter (e.g., real-time controllers). Harel and Pnueli in [Harel 1985] introduced
the term reactive system (see Figure 2.1a) to denote this class of systems that contrasts, on one hand,
with transformational systems (see Figure 2.1b) whose role is to terminate with a result computed
from an initial input available at the beginning of their execution (e.g., a compiler), and on the other
hand, with interactive systems which permanently react with their environment, but at their own
speed (e.g., operating systems) [Halbwachs 1998].

Reactive systems present the following main features:

• Parallelism: They run in parallel with their environment. Moreover, most of the time, they
are designed as sets of parallel components that cooperate to achieve the intended behavior.

7

8 Chapter 2. Preliminaries

A Reactive
System

Environment

(a) A reactive system.

Input
A Transformational

System
Output

(b) A transformational system.

FIGURE 2.1: Classification of computer systems [Halbwachs 1998].

• Determinism: They generally react the same way to the same inputs. This property makes
their design and analysis easier.

• Temporal requirements: They are submitted to requirements concern both input rate and the
input/output response that are imposed by the environment.

In Example 2.1 we present a classical example of a reactive system: a coffee vending machine.
This machine reacts continuously to its environment (i.e., the user) by receiving coins and commands
(i.e., the input), and returning beverages (i.e., the output). Several tools are currently used to specify
and analyze reactive systems. In the rest of this chapter, we briefly introduce those we shall use in
this dissertation.

Example 2.1 (Coffee Vending Machine)

Our coffee vending machine only accepts coins of 50 cents (50 ¢) and 1 euro
(1 €). The machine may serve either coffee (price: 1 €) or tea (price: 50 ¢) for
a user (e.g., a Ph.D student). Additionally, the machine does not return change
or refund money, and the maximum capacity of its purse is 1 €. Therefore, the
user should insert the necessary money if he/she does not want lose money. The
expected behavior of the machine is: (1) it expects the user first drops the coins;
(2) the user presses a button to select coffee or tea; and (3) the machine provides
the beverage.

50¢ 1€

Coffee

Tea

COLO
M

BIA
N

COFFEE

2.2 Synchronous Programming

Synchronous Languages are a simple and clean approach to design reactive systems. They provide
simple and precise formal semantics, and allow specially elegant programming style. Moreover, in-
spired by Milner’s synchronous product [Milner 1983; Milner 1989], they conciliate concurrency
(at least at the description level) with determinism. Additionally, programs can be compiled into
a very efficient sequential code, by means of specific compiling techniques. These languages can
be classified into two families according to their programming style: imperative languages such as
ESTEREL [Berry 1992], SYNCCHARTS [André 2004], and ARGOS [Maraninchi 2001] use control struc-
tures and explicit sequencing of statements, whereas declarative languages such as LUSTRE [Halb-
wachs 1992], LUCID SYNCHRONE [Colaço 2004] and SIGNAL [Benveniste 1991] use equations that
express either functional or relational dependencies.

The synchronous languages are based on the hypothesis of perfect synchrony: reactive programs
respond in no time and produce their outputs synchronously with their input. This hypothesis allows

2.2. Synchronous Programming 9

to unambiguously address the design issues by avoiding the temporal non-determinism inherent in
the usual asynchronous approach [Zurawski 2005, chapter 8]. Hence, a synchronous program is sup-
posed to deterministically react to events coming from the environment. Essentially, a synchronous
program: (1) evolves through an infinite sequence of successive reactions indexed by a global logical
clock; (2) during a reaction each component of the system computes new output values based on its
internal state and on the values of its input values; and (3) the communication of all events between
components occurs synchronously during each reaction. Thus, real physical time is not involved.
All that is required is that reactions converge and computations are entirely performed before the
current execution instant ends and a new one begins.

The synchronous model allows to deal with the ordering (at least partially) of observed events in
the system as well as the synchronizability of them. Hence, some event can be said to occur later than
another event [Benveniste 2003; Gamatié 2010; Potop-Butucaru 2006]. For instance, Figure 2.2a
shows the actual execution trace of a system (i.e., asynchronous vision) which has two inputs i1 and
i2 and one output o, and Figure 2.2b shows the corresponding synchronous execution trace. In the
former, the events are temporally non-deterministic and computations require δ time-units whereas
in the latter the events are temporally deterministic, computations are instantaneous, and the data
dependencies between the observed events are expressed.

time

i1

i2

o

0

0

0

1

1

1

δ0 δ1

. . .

. . .

. . .

(a) Physical time.

time-units

0

0

0

1

1

1

. . .

. . .

. . .

(b) Logical time.

FIGURE 2.2: Interpretation of time in the synchronous model [Gamatié 2010].

Nevertheless, the synchronous hypothesis is not completely realistic with respect to nonfunc-
tional properties since it does not take into account the actual execution duration of the system.
Therefore, the implementation of the designed system must be validated on an execution platform
on which the execution time of reactions is satisfied [Gamatié 2010]. The most commonly used im-
plementations models for synchronous languages are: event-driven and clock-driven executions. The
former (see Figure 2.3a) expresses the fact that each reaction is initiated on the occurrence of some
input event. The latter (see Figure 2.3b) differs from the former in that reactions are only initiated by
abstract clock ticks. Both implementation models assume that all actions considered take bounded
memory and time capacities.

initialize memory;

for each input event do

compute reaction;

update memory;

end;

(a) Event-driven execution.

initialize memory;

for each clock tick do

read inputs;

compute reaction;

update memory;

end;

(b) Clock-driven execution.

FIGURE 2.3: Execution schemes for reactive systems. [Benveniste 2003; Gamatié 2010].

Nowadays, the asynchronous vision has become a complementary approach of the synchronous
vision since it enables to ensure that nonfunctional properties such as execution durations are sat-

10 Chapter 2. Preliminaries

isfied. Gathering advantages of both the synchronous and asynchronous approaches, the Globally
Asynchronous Locally Synchronous (GALS) [Chapiro 1985; Teehan 2007] architectures are emerging
as the architecture choice for implementing complex specifications in both hardware and software.
In a GALS system, locally-clocked synchronous components are connected through asynchronous
communication lines. Thus, unlike for a purely asynchronous design, the existing synchronous tools
can be used for most of the development process, while the implementation can exploit the more
efficient, unconstrained, and required asynchronous communication schemes.

2.3 Petri Nets

A PN [Petri 1966] is a graphical formalism for the description and analysis of concurrent and dis-
tributed systems. In the literature exists several extensions of the PN model. In the following we
present an intuitive definition of PNs and we shall discuss two extensions that are explored in this
dissertation: HTSPNs and CPNs.

Intuitively, a PN (see Figure 2.4) is a directed, weighted, bipartite graph consisting of two types
of nodes: places (represented by circles) and transitions (represented by rectangles). Directed arcs
(represented by arrows) connect either places to transitions or transitions to places. Each place may
potentially hold either none or a positive number of tokens (represented by small solid dots). A state
(marking) in PN is then represented by the number of tokens assigned to each place. In order to
simulate the dynamic behavior of a system, a state in a PN is changed according to a firing rule. For
instance, in a simple PN (i.e., a PN whose arcs have no weight) a transition t is said to be enabled if
each input place of t contains at least one token. An enabled transition fires depending on whether
or not a specific event takes place. The firing of an enabled transition t removes a token from each
input place of t, and adds a token to each output place of t. For better understand, in Example 2.2
we describe the PN model of a coffee vending machine.

t1

t2

t3

t4

t5

t6

p1
(0 €)

p2
(50 ¢)

p3
(1 €)

In. 50 ¢

Get Tea

Get Coffee

In. 50 ¢

In. 1 €

Get Tea

FIGURE 2.4: Petri net representing a finite-state machine of a coffee machine.

Example 2.2 (Coffee Machine in PN)

Assume that Figure 2.4 is a PN model of the coffee vending machine presented in Example 2.1. The
PN starts with a token in the place p1 denoting that the machine starts with 0 €in its purse (state
s0). Transitions t1 and t2 represent that the user has inserted a coin of 50 ¢ or 1 €, respectively. If
transition t1 is fired, then a token is produced in the place p2 indicating that the machine has 50 ¢
in its purse (state s1). On the other case, if transition t2 is fired, then a token is produced in place
p3 denoting that the machine has 1 €in its purse (state s2). In the state s1 of the machine, the user
can either insert another coin of 50 ¢ (i.e., transition t5 is fired) or select a tea (i.e., transition t3 is
fired). The former generates that the machine has 1 €in its purse (i.e., state s2) whereas the latter
returns the beverage and restarts the machine (i.e., state s0). Finally, in the state s2 of the machine,

2.3. Petri Nets 11

the user can either select a cup of coffee (i.e., transition t4 is fired) or tea (i.e., transition t6 is fired).
The above events restart the machine.

PNs present interesting characteristics [Murata 1989]. For instance, they provide useful visual
tools to easily model, interpret and analyze systems with parallelism, concurrency, synchronization
and resource sharing. They provide a compact representation of systems with a very large state space
allowing to represent systems with an infinite number of states using a finite state. Finally, they
permit a modular representation, thus a large system can be decomposed in several subsystems that
interact among them. Two types of properties can be studied with a PN model: those which depend
on the initial marking, and those which are independent of the initial marking. The former type
of properties is referred to as behavioral properties, whereas the latter type of properties is called
structural properties. PN can be used to represent not only the flow of control but also the flow of
data. In Table 2.1 we show some typical interpretations of transitions and places in PN models.

TABLE 2.1: Some typical interpretations of transitions and places in PNs [Murata 1989].

Input Places Transition Output Places
Preconditions Event Post-conditions
Input data Computation Step Output data
Input signals Signal processor Output signals
Resources needed Task or job Resources released
Conditions Clause in logic Conclusion(s)
Buffer Processor Buffers

To conclude, we present the formal definition of the standard notion of PNs [Wang 2012].

Definition 2.1 (Petri Net)

A Petri net is a 5-tuple P = 〈P, T, I , O, m0〉 where

• P = {p1, . . . , pn} is a finite non-empty set of places,

• T = {t1, . . . , tm} is a finite non-empty set of transitions, where P ∩ T = ;,

• I : P × T → N is an input function that defines directed arcs from places to transitions,

• O : P × T → N is an output function that defines directed arcs from transitions to places, and

• m0 : P → N is the initial marking of P

such that

• ∀pi ∈ P : ∃t j ∈ T such that (pi , t j) ∈ I or (pi , t j) ∈ O and,

• ∀ts ∈ T : ∃pr ∈ P such that (pr , ts) ∈ I or (pr , ts) ∈ O.

2.3.1 Petri Nets for Hypermedia Systems

Time Stream Petri Nets (TSPNs) [Diaz 1994; Sénac 1994] allow to formally model temporal non-
deterministic systems. It extends PNs with arcs associated with temporal intervals that enable to
express the temporal characteristics of processes. These intervals, called Temporal Validity Interval
(TVI), are 3-tuples [x , n, y], where x , n, and y are, respectively, the minimum, nominal and max-
imum admissible duration of the related process. TSPN provides three synchronization strategies
(described below) for the case of an impossibility to satisfy the temporal constraints of the whole
processes involved in a synchronization scheme.

12 Chapter 2. Preliminaries

• strong-or (dynamic): driven by the earliest process (i.e., the first arc getting the maximum
bound of its absolute TVI);

• weak-and (dynamic): driven by the latest process (i.e., the last arc getting the maximum
bound of its absolute TVI);

• master (static): driven by a selected process (i.e., only the absolute TVI of the selected process
is taken into account).

These three fundamental synchronization strategies entail nine firing rules obtained from a con-
sistent and complete combination of the absolute TVI of arcs associated with an enabled transition.

t

[x1 , n
1 , y1]

[x2, n2, y2]

[x 3,
n3,

y3]

P1

P2

P3

τmin
3 (p3,t) τmax

3

τmin
2 (p2,t) τmax

2

τmin
1 (p1,t) τmax

1

and

weak-and

or

strong-or

master(p2,t)

or-master(p2,t)

and-master(p2,t)

strong-master(p2,t)

weak-master(p2,t)

FIGURE 2.5: The TSPN firing rules [Diaz 1994].

The expressive modeling power of the TSPN model has been used for the modeling of multimedia
systems. Its expressive power allows both the temporal non-determinism of distributed multimedia
systems and the temporal variability of multimedia object. Moreover, its modeling power allows
intra-media and inter-media synchronizations constraints to be easily expressed. Power analysis tech-
niques allows the state graph of bounded TSPNs to be finitely computed, and verification methods
have been developed for checking the temporal consistency of structured TSPNs [Courtiat 1996].
For instance, a library of reusable UPPAAL (explained in Section 2.4) template processes was devel-
oped [Cicirelli 2012]. It enables a structural translation of a general TSPN model into UPPAAL for
exhaustive property analysis through model checking (explained in Section 2.5).

Next, we present the formal definition of a TSPN.

Definition 2.2 (Time Stream Petri Net)

A Time Stream Petri Net is a 8-tuple 〈P, T, I , O, m0, I M , SY M , MA〉 where:

• 〈P, T, I , O, m0〉 defines a Petri Net as in Definition 2.1,

• I M : A→ (Q+ ∪∞)× (Q+ ∪∞)× (Q+ ∪∞) where

– A= {a = (p, t) ∈ P × T | I(p, t) 6= 0} is the set of arcs outgoing from places, and

– I M(ai)→ (x i , ni , yi) is such that 0≤ x i ≤ ni ≤ yi .

• SY N : T → {or, strong-or, and, weak-and, master, or-master, and-master, weak-master,
strong-master} is a function which associates each transition with a firing rule.

• MA : Tm → A is a function that associates a master arc to each transition in Tm = {t ∈ T |
SY N(t) ∈ {master, and-master, or-master, weak-master, strong-master}}.

2.3. Petri Nets 13

Nevertheless, TSPN is not able to express temporal composition in general multilevel architec-
tures. In order to solve this problem, Sénac, Saqui-Sannes, and Willrich introduced in [Sénac 1995]
an extension of TSPN called Hierarchical Time Stream Petri Net (HTSPN) that allows an easy and for-
mal specification, simulation, and analysis of logical and temporal properties of hypermedia systems.
The HTSPN model also takes into account temporal non-determinism in distributed hypermedia sys-
tems and makes possible to express how asynchronous events interrupt a multimedia scenario.

HTSPN uses substitution of places for hierarchical modeling. An atomic place is associated with
a mono-media resource and it is modeled using an arc with a TVI (e.g., place V1 in Figure 2.6). A
composite place is an abstract place that specifies an underlying TSPN. The outgoing arc of a com-
posite place specifies the TVI of the composite component (e.g., place C1 in Figure 2.6). Therefore,
the concept of composite place in HTSPN encapsulates the notion of hierarchy and abstracts both
the dynamic and temporal behavior of its associated TSPN. A link allows to specify n-ary directed
relations between several components and introduces the timed link concept: links that are auto-
matically triggered in function of both logical and temporal conditions. Timed links are modeled
by a timed arc (L, t) where L is the link place (e.g., place L in Figure 2.6). Then, TSPN firing rules
combined with composite and link places allow asynchronous events and high level interrupt to be
easily modeled. Since the normal duration of an asynchronous event cannot be known in advance,
the nominal duration of a link is replaced by the character ∗.

t0

[8,10,12]

t1

[x,*,y]
continue

[10,15,20]

V1

L C1

null1

and

master(L, t1)

t11

[8,10,12]

t12

[1,5,10] [2,5,8]

V11

T11 A11

null2

and

and

FIGURE 2.6: HTSPN components modeling [Sénac 1995].

The TSPN firing rules are extended to HTSPN considering that the different nets in a HTSPN
progress like a single one. In particular, the nets in a HTSPN share the same global clock, for simu-
lation purposes, and the conditions for firing a transition in a HTSPN are the same that the one for a
transition in a TSPN. Additionally, when a token enters to a composite place, the input place of the
underlying TSPN (e.g., place V11 in Figure 2.6) is also marked , and when a token leaves a composite
place, all tokens of the related subnets are recursively removed. For instance, the transition t1 of the
HTSPN in Figure 2.6 has a master firing rule. Thus, following the semantics of the firing rule, the
related transition must be fired inside the TVI of the master arc. Hence, if the master arc (L, t1) with
TVI [x ,∗, y] is enabled at time τ, then the transition t1 must be fired inside the temporal interval
[τ+ x ,τ+ y]. If the logical triggering condition has not been satisfied before time τ+ y , then the
transition t1 is automatically fired at that time.

2.3.2 Colored Petri Nets

So far, we have presented PNs whose tokens are indistinguishable. The above has as disadvantage
the creation of very large and unstructured specifications of systems. Therefore, high-level PNs were
developed in order to allow a compact representation of the modeled systems. In the following we

14 Chapter 2. Preliminaries

shall present Colored Petri Nets (CPNs) which are one of the most popular high-level PNs and which
we shall use in Chapter 6.

CPN [Jensen 2009] is a graphical discrete-event modeling language that combines PN with the
functional programming language CPN ML in order to obtain a scalable model for concurrent sys-
tems. Thus, it provides a language with formal foundations and primitives for modeling data ma-
nipulation, allowing to create compact and parameterizable models. CPN models can be structured
into a set of modules to handle large specifications. The modules interact with each other through
a set of well-defined interfaces. The module concept of CPN is based on a hierarchical structuring
mechanism, allowing a module to have sub-modules and allowing a set of modules to be composed
to form a new module. Moreover, CPNs include a time concept that makes it possible to capture
the time taken to execute activities in the system. Therefore, it can be applied for simulation-based
performance analysis, investigation performance measures, and for modeling and validation of real-
time systems. For example, in this dissertation we shall use the tool CPN TOOLS [Jensen 2007] for
editing, simulation, state space analysis, and performance analysis of CPN models.

In CPNs, each place can be marked with one or more tokens which have attached a color. Colors
indicate the identity of the token and they often represent a complex data-value. Moreover, each
place has an inscription which determines the set of colors that tokens on the place are allowed to
have. This set of possible colors is specified by means of a type that is called the color set of the place.
Additionally, each place has an inscription which determines its initial marking. For instance, the
place purse in Figure 2.7 has the color set COIN which is defined in CPN TOOLS as1

colset COIN = real

That means that the place only can be marked with tokens that carry real numbers like 0.0. The
infix operator ` allows to specify the number of appearances of a token. The number of tokens on
the place in the current marking is shown in the small circle. The detailed tokens are indicated in
the box positioned next to the small circle.

purse

COIN

1`0.0coins

USER_COIN

beverage

USER_DRINK

output

DRINK

t1

t2t3

if insert_OK(m,p)
then 1`(m+p)
else 1`(p)

m

p

p

dif choice_OK(d,p)
then 1`d
else empty

if choice_OK(d,p)
then 0.0
else p

d

1 1`0.04

1`0.5@6+++
1`0.5@1+++
1`1.0@5+++
1`2.0@4

3
1`coffee@7+++
1`coffee@3+++
1`tea@2

FIGURE 2.7: CPN model of a coffee vending machine.

For every transition in CPN there is a relation between the colors of consumed and produced
tokens. This relation can be described by means of pre-conditions and post conditions. If the tran-
sition fires, it consumes tokens that satisfy the pre-condition and it produces tokens that satisfy the
post-condition. These conditions are defined by means of arc expressions which are inscriptions over
the individual arcs. Expressions are written in the CPN ML programming language and are built
from typed variables, constants, operators, and functions. When all variables in an arc expression
are bound to values of the correct type, the expression can be evaluated. This means for example
that in Figure 2.7 the variable p, which is defined in CPN TOOLS as2

var p : COIN

1The CPN ML keyword colset allows to define color sets.
2The CPN ML keyword var allows to define variables.

2.3. Petri Nets 15

must be bounded to a value of type COIN (i.e., a real number). If an arc expression evaluates to
exactly one token, then the 1` can be omitted from the expression.

Tokens can carry a second value, called a time-stamp, that allows to specify timing information
in CPN models. The time-stamps are non-negative integers and they specify the time at which the
token is ready to be used (i.e., the time at which it can be removed by occurring a transition). The
time-stamps of tokens are written after the symbol @ in the inscription defining its color. Tokens
without time-stamps are always ready. Time delay inscriptions attached to the transitions and/or
to the individual output arcs assign a time-stamp to the produced tokens. In CPN TOOLS a place
containing tokens with time-stamps (i.e., a timed color set) is defined using the keyword timed.
For example, the place beverage in Figure 2.7 specifies that the initial marking of this place is
1`coffee@7+++1`coffee@3+++1`tea@2, denoting that a token with color coffee will be available
at time 3 and 7, and a token with color tea will be available at time 2. The operator +++ takes two
timed multi-sets (i.e., a set whose values can appear more than once) as arguments and returns their
union. In Program 2.1 we show the definition of the color sets, variables and functions of the CPN
model in Figure 2.7.

1 colset DRINK = with coffee | tea;

2 colset USER_DRINK = DRINK timed;
3 colset COIN = real;

4 colset USER_COIN = real timed;
5

6 var m,p : COIN;

7 var d : DRINK;

8

9 fun insert_OK(m,p) =

10 (m = 0.5 orelse m = 1.0) andalso (p+m <= 1.0);

11

12 fun choice_OK(d,p) =

13 (d = coffee andalso p = 1.0) orelse (d = tea andalso p >= 0.5);

PROGRAM 2.1: Definition of the color sets, variables and functions of the CPN model in Figure 2.7.

The CPN model has a global clock representing model time. In a hierarchical timed CPN model
there is a single global clock, shared among all of the modules. Therefore, the execution of a timed
CPN model is controlled by the global clock. The model remains at a given model time as long as
there are enabled transitions. For a transition to be enabled it must be possible to find a binding of
the variables that appear in the arc expression of each input arc. The binding requires that tokens
present on the input places have the same color of the variables and that their time-stamps are old
enough (i.e., less than or equal to the current value of the global clock). Transitions are also allowed
to have a guard, which is a Boolean expression. When a guard is present it must evaluate to true for
the binding to be enabled, otherwise the binding is disabled and cannot occur. When the transition
occurs with a given binding, it removes from each input place the multi-set of token to which the
corresponding input arc expression evaluates. Analogously, it adds to each output place the multi-set
of tokens to which the expression on the corresponding output arc evaluates. The occurrence of a
transition is instantaneous (i.e., it takes no time). When there are no longer such enabled transitions
to be executed, the simulator advances the clock to the next earliest model time at which enabled
transitions can be executed. For better understanding, in Example 2.3 we describe a CPN model for
a coffee vending machine.

Example 2.3 (Coffee Vending Machine in CPN)

Assume that Figure 2.7 is a CPN model for the coffee vending machine described in Example 2.1 and
Program 2.1 shows the definition of the color sets, variables and functions used in the CPN model.
The model has four places and three transitions that are described below. The place purse represents
the money that the user has inserted in the machine. Therefore, the tokens in this place have attached

16 Chapter 2. Preliminaries

real numbers (colset COIN) and the initial marking of the place is 0.0 (i.e., 0€). For example, a token
in this place with the value 0.5 denotes that the user has inserted 50 ¢ in the machine so far. The place
output represents the beverage delivered by the machine. It contains tokens with colors coffee or
tea (colset DRINK) denoting the corresponding drink. The place beverage denotes the drink chosen
by the user. For example, the current initial marking of the place indicates that the user presses the
button coffee at time 3 and 7, and the button tea at time 2. Finally, the place coins represents the
coins inserted by the user. For instance, the initial marking expresses that the user inserts a coin of
50 ¢ at time 1 and 6, a coin of 1€ at time 5, and a coin of 2€ at time 4. The output arc of transition
t1 uses the function insert_OK to validate that the coin m inserted by the user is recognized by the
machine (i.e., the coin is either 50 ¢ or 1 €) and the maximum capacity of the machine will not be
exceeded (i.e., the money p in the purse plus the inserted coin m will not be greater than 1€). If these
two conditions are satisfied, then the machine will accept the coin and it will increment the money
in its pursue, otherwise the coin will be rejected. The transition t2 uses the function choice_OK in
its output arcs to verify that the money p inserted by the user (i.e., the value of the token in the place
pursue) satisfies the price of the beverage d chose by the user (i.e., the value of the token in the
place beverage). If the user has the necessary money to buy the selected drink, then the transition
will put a token in the place output with the value corresponding to the bought drink and also it
will restart the money in the purse of the machine (i.e., the transition will add a token with value
0.0 in the place purse), otherwise the marking of the CPN network remains the same. Finally, the
transition t3 is responsible to consume the token in the place output to ensure that the maximum
number of tokens available in the place is one. The inhibitor arc (i.e., the arrow with a circle at the
end) from the place output to transition t1 avoids the machine to accept coins from the user when
it is delivering a beverage.

To conclude we present the formal definition of Timed CPNs [Jensen 2009].

Definition 2.3 (Timed Colored Petri Net)

A timed Colored Petri Net is a 9-tuple 〈P, T, A,Σ, V, C , G, E, I〉 where:

• P is a finite set of places,

• T is a finite set of transitions such that P ∪ T 6= ; and P ∩ T = ;,

• A⊆ P × T ∪ T × P is a set of directed arcs,

• Σ is a finite set of non-empty color sets. Each color is either untimed or timed,

• V is a finite set of typed variables such that T ype[v] ∈ Σ for all variables v ∈ V ,

• C : P → Σ is a color set function that assigns a color set to each place. A place p is timed if
C(p) is timed, otherwise p is untimed,

• G : T → EX PRv is a guard function that assigns a guard to each transition t such that T ype[G(t)] =
Bool,

• E : A→ EX PRv is an arc expression function that assigns an arc expression to each arc a such
that

– T ype[E(a)] = C(p)MS if p is untimed;
– T ype[E(a)] = C(p)T MS if p is timed.

Here, p is the place connected to the arc a.

• I : P → EX PR is an initialization function that assigns an initialization expression to each place
p such that

– T ype[I(p)] = C(p)MS if p is untimed;
– T ype[I(p)] = C(p)T MS if p is timed.

2.4. Timed Automata 17

2.4 Timed Automata

TA [Alur 1994] is a formalism for modeling and verification of time-critical systems. A timed automa-
ton is a finite automaton equipped with a finite set of real-valued variables modeling logical clocks.
These clocks are initialized with zero when the system is started, and then increase synchronously
with the same rate. A transition in a timed automaton, represented by an edge, is labeled with a
guard (i.e., when is it allowed to take an edge?), an action (i.e., what is performed when taking the
edge?), and a set of clocks (i.e., which clocks are to be reset?). A node in a timed automaton is called
location and it is equipped with a local invariant that constrains the amount of time that may be spent
in that location. Local invariants are used to ensure the progress of the model while guards are used
to restrict the behavior of the automaton. Both, local invariants and guards are clocks constraints
that are formally defined in Definition 2.4 [Bengtsson 2003].

Definition 2.4 (Clock Constraint)

A clock constraint δ over a set C of clocks is formed according to the grammar

δ ::= x ≤ n | x < n | x = n | x > n | x ≥ n | δ1 ∧δ2 | true

where n ∈ N0 and x ∈ C. Let Φ(C) denote the set of clock constraints over C, and Φl(C) the set of
downward closed constraints of the form x ≤ n and x < n.

Clock constraints that do not contain any conjunction are atomic. Clock difference constraints
such as x− y < n, where x , y ∈ C and n ∈ N0, can be added at the expense of a slightly more involved
theory [Waez 2013], then they are omitted here. The formal definition of a timed automaton is as
follows [Bengtsson 2003].

Definition 2.5 (Timed Automaton)

A timed automaton is a 6-tuple A= 〈L, l0,Σ,C, E, I〉 where

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• Σ is a finite alphabet denoting actions,

• C is a finite set of clocks,

• E ⊆ L×Φ(C)×Σ× 2C ×L is a labeled transition relation between locations,

• I : L 7→ Φl(C) assigns invariants to locations.

Hence, a timed automaton is a finite state machine with a finite set C of clocks. Edges are labeled
with tuples (g,α,D)where g is a clock constraint on the clocks of the timed automaton, α is an action,

and D ⊆ C is a set of clocks. For simplicity, we write `
g,α,D
−−−→ `′ to denote that (`, g,α,D,`′) ∈ E . The

intuitive interpretation of `
g,α,D
−−−→ `′ is that the timed automaton can move from location ` to `′ when

clock constraint g holds. Besides, when moving from location ` to `′, any clock in D will be reset to
zero and action α is performed. Function I assigns to each location a location invariant that specifies
how long the timed automaton may stay there. For location `, I(`) constrains the amount of time
that may be spent in `. That is to say, the location ` should be left before the invariant I(`) becomes
invalid. If this is not possible – as there is no outgoing transition enabled – no further progress is
possible. As a time progress is no longer possible, this situation is also known as timelock.

18 Chapter 2. Preliminaries

2.4.1 UPPAAL Timed Automata

Modeling practical systems often requires modeling features (e.g., parallel composition, urgency,
atomicity) to capture a variety of system features. In the last decade, there have been a number of
extensions of original TA [Waez 2013]. In the following we shall give a brief introduction to the UP-
PAAL [Larsen 1997] tool and its modeling language, which has been used to model and analyze many
real-time systems [Hessel 2008], e.g., audio and video protocols [Bengtsson 1996; Bengtsson 2002;
Havelund 1997], automotive systems [Kim 2015; Lindahl 2001], and orchestration systems [Dong
2006]. UPPAAL language is syntactically very rich and it offers additional features such as parallel
composition, bounded integer variables, structured data types, user defined functions, urgency, and
atomicity. Moreover, UPPAAL allows for the verification of networks of timed automata using the
method of model checking for properties specified in a subset of TCTL [Alur 1990].

In UPPAAL, a system is modeled as a network of timed automata which is the parallel composition
A1 | . . . | An of a set of timed automata A1, . . . , An, called processes, combined into a single system by
the CCS parallel composition operator [Milner 1989] with all external actions hidden. Synchronous
communication between the processes is done by hand-shake synchronization using input and out-
put actions while asynchronous communication is done by shared variables. To model hand-shake
synchronization, the action alphabet Σ in Definition 2.5 is assumed to consist of symbols for input
actions (denoted a?), output actions (denoted a!), and internal actions represented by the distinct
symbol τ. For example, Figure 2.8 shows the TA model for the coffee vending machine described
in Example 2.1. The model is composed of two timed automata: the coffee vending machine (Fig-
ure 2.8a) and its user (Figure 2.8b). These timed automata communicate using the labels get_tea,
get_coffee and insert, and the shared variable coin.

idle

prepare_tea prepare_coffee

t ≤ 2 t ≤ 2

true, insert?, {m= getMoney(m, coin)}

m≥ 50, get_tea?, {t= 0}

t= 2, tea!, {m= 0}

m≥ 100, get_coffee?, {t= 0}

t= 2, coffee!, {m= 0}

(a) Timed automaton modeling a coffee vending machine.

idle t ≤ 1

true, insert!, {coin= 100, t= 0}

true, insert!, {coin= 50, t= 0}

t= 1, get_tea!, {t= 0}

t= 1, get_coffee!, {t= 0}

(b) Timed automaton modeling a user.

FIGURE 2.8: TA model for a coffee vending machine.

The UPPAAL model supports bounded discrete variables. They can be used as guards on the edges
and also updated using resets. For a synchronization transition, the resets on the edge with an output
label is performed before the resets on the edge with an input label. This destroys the symmetry
of input and output actions. To model atomic sequences of actions, UPPAAL supports a notion of
committed locations (location with a “C”) in which no delay is allowed. That is, if any process is in
a committed location, then only transitions starting from them are allowed. Additionally, no clock
constraints but predicates over variables are allowed to appear in a guard on an outgoing edge
from a committed location. The notion of urgent locations (location with a “U”) are semantically
equivalent to adding an extra clock x , that is reset on all incoming edges, and having an invariant
x ≤ 0 on the location. Hence, time is not allowed to pass when the system is in an urgent location.
Briefly, a committed location must be left immediately by the next transition taken in the system

2.5. Model Checking 19

while an urgent location must be left without letting time pass, but allows interleaving by other
automata. Broadcast channels allow to synchronize a process with an arbitrary number of processes.
Any receiver that can synchronize in the current state must do so. If there are no receivers, then
the sender can still execute the action. That means that the broadcast sending is never blocking.
Finally, arrays, structures, custom types and user functions are allowed to be defined in UPPAAL
either globally or locally to templates. Templates are defined with a set of parameters that are
substituted for a given argument in the process declaration.

Example 2.4 (Coffee Vending Machine in TA)

Assume that Figure 2.8a is a TA model for the coffee vending machine described in Example 2.1
and Figure 2.8b models a possible user interaction. Unlike the other models presented so far, the
timed automaton presented here allows for the specification of timing constraints such as the delay
needed for the preparation of the beverage. Both timed automata start in the state idle. In the
case of the machine, it waits for three possible interactions. In the first possible interaction, the
user inserts a coin (i.e., input action insert). The purse of the machine is represented by the local
variable m that is updated with the inserted coin. The coin is communicated from the user to the
machine by means of the shared variable coin. The function getMoney(m,c) simply checks that the
inserted coin c is valid (i.e., it is a coin of 50 ¢ or 1€) and that the money in the purse’s machine m will
not exceed one euro. If the above requirements are satisfied, then the purse is updated, otherwise
it remains unchanged. The remaining interactions are that the user requests either a cup of coffee
(i.e., input action get_coffee) or a cup of tea (i.e., input action get_tea). The former only can
be delivered (i.e., the transition can be taken) if the money in the purse’s machine is greater than
50 ¢ (i.e., m≥ 50) while in the latter it must be greater than 1 € (i.e., m≥ 100). Once the order is
accepted (i.e., the transition is taken), the timed automaton waits for 2 time-units (e.g., 2 seconds)
in order to finish the preparation of the beverage (i.e., the guard t= 2 on the edges and the location
invariant t≤ 2 in the states). Here the local variable t represents the clock of the machine that is
reset (i.e., t= 0) each time the machine starts to prepare a new beverage allowing to calculate the
delay described above. Once the preparation of the beverage has finished, the purse’s machine is
cleaned (i.e., m= 0), the selected beverage is delivered (i.e., either the output action tea or coffee)
and the machine is reset (i.e., it moves to the initial state idle).

In the other timed automaton, the user starts by non-deterministically inserting either a coin of
50 ¢ (i.e., coin= 50) or 1 € (i.e., coin= 100). The non-determinism is generated because there
are two edges with the same guard from the same state. Finally, once the user has inserted the coin
(i.e., output action insert), he or she waits for one time-unit (i.e., the guard t= 1 on the edges
and the location invariant t≤ 1 in the state) in order to request non-deterministically either a cup
of coffee (i.e., output action get_coffee) or a cup of tea (get_tea). The local variable t has the
same purpose described above.

2.5 Model Checking

One of the most successful techniques for automatic verification has been model checking [Clarke
2008]. Essentially, in this method verifying that a system satisfies a specification is reduced to check-
ing whether or not a temporal formula is valid on a model representing all the possible computations
of the system. As illustrated in Figure 2.9, the user inputs a description of a finite model of the system
(the possible behavior) and a description of the requirements specification (the desirable behavior)
and leaves the machine do the verification. If an error is recognized, the tool provides a counterex-
ample showing under which circumstances the error can be generated. This allows the user to locate
the error and to repair the model specification before continuing. If no errors are found, the user
can refine its model description and can restart the verification process.

20 Chapter 2. Preliminaries

Requirements

Formalizing

Property
Specification

System

Modeling

System Model

Model
Checking

Satisfied
Violated +

Counterexample Simulation Location Error

FIGURE 2.9: Schematic view of the model checking approach [Baier 2008].

Model checking has a number of advantages compared to other verification techniques such as
automated theorem proving or proof checking [Baier 2008]. For example, the user does not need
to construct a correctness proof by hand and the properties to be verified are easily specified us-
ing temporal logic. Moreover, the model checker is fast compared to the interactive mode of proof
checkers and it can produce a counterexample when the specification is not satisfied allowing to
show why it does not hold. However, the major problem of the model checking technique is the
state explosion: the number of global system states of a concurrent system can be enormous. This
problem has been mitigated using symbolic representations of the state transition graphs (i.e., sym-
bolic model checking) [Henzinger 1994] or constructing abstract models of the system which is small
enough to be effectively analyzed and yet rich enough to yield conclusive results (i.e., abstract model
checking) [Cousot 1999].

Temporal logic is used in the model checking technique to specify the properties that the model
should satisfy. Temporal logics were introduced into computer science by Pnueli [Pnueli 1979] and
they extend propositional logic by modalities that allow to reason about the behavior of a reactive
systems at a rather high level of abstraction. Although the term temporal suggests a relationship with
the real-time behavior of a reactive system, it only refers to the relative order of events. For instance,
we can express that “the coffee cup is delivered once the user pushes the corresponding button”, but we
cannot refer to the precise timing of events like that “the minimal delay of at least 3 s between pressing
the button and the finalization of the preparation of the desired product”.

The underlying nature of time in temporal logic can be either linear or branching. In the linear
view, at each moment in time where is a single successor moment, whereas in the branching view it
has a branching, tree-like structure, where time may split into alternatives courses. In this section,
we shall focus our attention on two branching temporal logics: Computation Tree Logic (CTL) and
Timed Computation Tree Logic (TCTL). The former is used in the tool CPN TOOLS and the latter in
tool UPPAAL for the specification of properties.

2.5.1 Computation Tree Logic

Computation Tree Logic (CTL) is a class of branching temporal logic in which at each moment of
time, it may split into several possible futures. The semantics of CTL is defined in terms of an infinite
directed tree of states. Each traversal of the tree starting in its root represents a single path. The
tree itself thus represents all possible paths, and it is directly obtained from a transition system by
“unfolding” at the state of interest. It was originally used by Emerson and Clarke [Emerson 1982]
and by Queille and Sifakis [Queille 1982] for model checking. Most importantly, it is a logic for
which efficient and rather simple model-checking algorithm does exist, i.e., time polynomial in the

2.5. Model Checking 21

formula and the structure sizes [Clarke 1986].
The temporal operators in CTL allow the expression of properties of some or all computations that

start in a state. For that, it supports an existential path quantifier (denoted ∃) and a universal path
quantifier (denoted∀). For instance, the property ∃♦φ denotes that there exists a computation along
which♦φ holds. Observe that, this does not exclude the fact that there can also be computations for
which this property does not hold, for instance, computations for which ♦φ is always refuted. The
property ∀♦φ, in contrast, states that all computations satisfies the property♦φ. More complicated
properties can be expressed by nesting universal and existential path quantifiers.

Formulas in CTL are classified into state and path formulas. The former are assertions about the
atomic propositions in the states and their branching structures, while the latter express temporal
properties of paths. Next, we present the syntax of CTL [Baier 2008].

Definition 2.6 (Syntax of CTL)

CTL state formulas over the set AP of atomic propositions are formed according to the following
grammar:

φ ::= true | a | φ1 ∧φ2 | ¬φ | ∃α | ∀α

where a ∈ AP and α is a path formula. CTL path formulas are formed according to the following
grammar:

α ::= ◦φ | φUψ

where φ and ψ are state formulas.

Intuitively, the formula ◦φ (i.e., next operator) holds for a path if φ holds at the next state in the
path, and φUψ (i.e., until operator) holds for a path if there is some state along the path for which
ψ holds, and φ holds in all states prior to that state. Path formulas can be turned into state formulas
by prefixing them with either the existential path quantifier ∃ or the universal path quantifier ∀.
Formula ∃α holds in a state if there exists some path satisfying α that starts in that state. Dually,
∀α holds in a state if all paths that starts in that state satisfy α. The until operator allows to derive
the temporal modalities ♦ (“eventually”, sometime in the future) and � (“always”, from now on
forever) as follows:

♦φ def
= trueUφ �φ def

= ¬♦¬φ

the modality ♦φ ensures that φ will be true eventually in the future, whereas �φ is satisfied if and
only if it is not the case that eventually φ does not hold. The latter is equivalent to the fact that φ
holds from now on forever.

Properties are divided into reachability, safety and liveness [Lamport 1977]. Reachability proper-
ties ask whether a given state formula φ possibly can be satisfied by any reachable state. We express
that some state satisfying φ should be reachability using the path formula ∃♦φ. Safety properties
stipulates that “something bad will never happen”. We express that φ should be true in all reachable
states with the path formula ∀�φ whereas ∃�φ says that there should exist a maximal path such
thatφ is always true. Liveness properties are of the form: “something good will eventually happen”. In
its simple form, liveness is expressed with the path formula ∀♦φ meaning φ is eventually satisfied.
We illustrate some CTL formulas in Figure 2.10.

2.5.2 Timed Computation Tree Logic

The logic we have presented so far is only able to describe how a reactive system may evolve from
one state to another regardless of timing aspects. Therefore, reasoning about time-critical systems
which are subject to timing constraints (e.g., communication protocols, multimedia systems) is not
possible. Timed Computation Tree Logic (TCTL) [Alur 1990] is a real-time variant of CTL aimed to
express timing requirements and whose model checking algorithm is PSPACE-complete [Alur 1993].

22 Chapter 2. Preliminaries

∃♦black ∃�black

∀♦black ∀�black

∃(gray U black) ∀(gray U black)

FIGURE 2.10: Visualization of semantics of some basic CTL formulas [Baier 2008].

In TCTL, the until operator is equipped with a time interval such that φU<cψ asserts that a ψ-state
is reached before c time units while only visiting φ-states before reaching the ψ-state. The fact that
a deadlock may be reached within thirty time units can be expressed as true U≤30 deadlock. Next,
we present the syntax of TCTL [Henzinger 1994].

Definition 2.7 (Syntax of TCTL)

Formulas in TCTL are either state or path formulas. TCTL state formulas over the set AP of atomic
propositions and set C of clocks are formed according to the following grammar:

φ ::= true | a | φ1 ∧φ2 | ¬φ | ∃α | ∀α

where a ∈ AP and α is a path formula defined by:

α ::= φ1 U∼c φ2

where c ∈ N and ∼∈ {<,≤,>,≥}.

Timed variants of the modal operators ♦ and � are obtained as follows:

♦∼cφ = true U∼c φ ∃�∼cφ = ¬∀♦∼c¬φ ∀�∼cφ = ¬∃♦∼c¬φ

For instance, the formula ∃�<cφ asserts that there exists a path for which before c time units, φ
holds; ∀�<cφ requires this to hold for all paths. As the time domain is continuous there is no unique
next time instant which makes impossible to provide a suitable meaning to the next operator in TCTL
(i.e., operator ◦). We can express properties with time intervals like "φ holds at least once during the
time interval (a, b) along some computation path" as φ∃♦=a∃♦<b−aφ (i.e., ∃♦(a,b)). In Example 2.5
we show the specification in CTL and TCTL of some properties of a coffee vending machine.

2.6. Intuitionistic Linear Logic 23

Example 2.5 (Some Properties of the Coffee Vending Machine)

Consider the TA model of the coffee vending machine in Figure 2.8. The fact that “the machine needs
at least 2 minutes to prepare the drink before delivery” is expressed by:

∀� ((prepare_tea∨ prepare_coffee) −→ ∀�≤2¬idle)

The property that the “machine needs at least 50 ¢ in order to prepare a tea” can be formulated by

∀� (prepare_tea −→ ∀� (m≥ 50))

Finally, the mutual exclusion property that says that “the machine can prepare either coffee or tea at
the same time” can be described by the formula

∀� (¬prepare_tea∨¬prepare_coffee)

We check these properties in UPPAAL and all properties hold ©.

2.6 Intuitionistic Linear Logic

Intuitionistic Linear Logic (ILL) [Girard 1987] is a substructural logic proposed by Jean-Yves Girard as
a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the
constructive properties of the latter. ILL differs from classical and intuitionistic logic specially in that
hypotheses in the latter two can be used as many times as necessary or even not be used at all. For
instance, to express the fact that one can buy a cup of coffee with 1€, we might write the implication
euro −→ coffee. However, classical and intuitionistic logics lead us to believe that we can buy the
cup of coffee and keep our euro, because from A, (A−→ B) one can conclude A∧B. Therefore, these
two logics treat the truth of a proposition as a persistent resource whereas ILL treats propositions as
an ephemeral resource; the use of an ephemeral resource consumes it, at which point it is unavailable
for further use [Vidal-Rosset 2012]. ILL is sometimes described as being resource sensitive because it
provides an intrinsic and natural accounting of process states, events, and resources [Scedrov 1993].

The syntax for linear logic formulas is given below and its rules are depicted in Figure 2.11 [Girard
1987].

Definition 2.8 (Syntax of ILL)

Let P be a countable set of propositions. A linear logic formula φ can be of the form defined by the
following grammar:

φ ::= p | 0 | 1 | ⊥ | > | !φ | ?φ | p⊥ | φ1 ⊗φ2 | φ1 &φ2 | φ1 ⊕φ2 | φ1 `φ2 | φ1 −◦φ2

where p ∈ P.

ILL has two conjunction operators (⊗ and &) and two disjunction operators (⊕ and `). We con-
sider any proposition in two ways: as an action or as a resource. Intuitively, multiplicative conjunction
φ1 ⊗φ2, whose neutral element is 1 (i.e., φ ⊗ 1 ≡ φ), expresses that both actions φ1 and φ2 will
be performed simultaneously or that we have both resources at once. On the contrary, additive con-
junction φ1 &φ2, whose neutral element is > (i.e., φ &> ≡ φ), states that only one of the actions
φ1 and φ2 will be performed or only one of these resources is available, but we can anticipate which
of them will be performed or available. Additive disjunction φ1 ⊕ φ2, whose neutral element is 0,
expresses that only one of the actions will be performed or only one of these resources is available,
but we cannot anticipate which one. Multiplicative disjunction φ1 `φ2, whose neutral element is ⊥,

24 Chapter 2. Preliminaries

expresses that if an action φ1 is not performed, then an action φ2 is done or vice versa; if an action
φ2 is not performed, then an action φ1 is done. Linear negation φ⊥ is involutive (i.e., φ⊥⊥ ≡ φ)
and it denotes a reaction of an action φ or a consumption of a resource φ. Finally, linear implication
φ1−◦φ2 expresses that an action described by φ1 is a cause of the (re)action described by φ2 (i.e., it
is causal) or that a resource φ1 is consumed after linear implication. We illustrate some of the above
operators in Example 2.6.

Example 2.6 (Coffee Machine in ILL)

Assume the following predicates:

• fifty_c: to spend a coin of 50 ¢ • euro: to spend a coin of 1 €
• coffee: to get a cup of coffee • tea: to get a cup of tea

An action of type fifty_c−◦tea can be read as “by consuming a coin of 50 ¢, a tea is produced”, and
an action of type euro−◦ tea& coffee can be read as “by consuming 1 €, either a tea or a coffee
is produced depending on the choice of the user”. Thus, by means of the rules of linear logic we can
infer that we get a tea from the hypothesis of spending fifty cents: fifty_c,fifty_c−◦tea ` tea.
However, from the above assumption we cannot infer that we get one tea and one coin of fifty cents:
fifty_c,fifty_c −◦ tea 0 fifty_c ⊗ tea. Intuitively, this is because the coin of 50 ¢ used to
produce the tea is “consumed” in the deduction.

ILL also includes two unary operators called exponentials: ! (called bang), and its dual, ? (called
question-mark). Intuitively, from a point of view of resources, the operator ! expresses potential
resources inexhaustibility while the operator ? expresses the actuality of potential resource inex-
haustibility. For instance, the formula !euro expresses that we have an unlimited supply of coins of
one euro while ?coffee allows the unlimited consumption of cups of coffee.

IDENTITY RULES

[I]
` P, P⊥

[CUT]
` Γ , P⊥ `∆, P

` Γ ,∆

LOGICAL RULES

[1]
` 1

[⊗]
` Γ , P1 `∆, P2

` Γ ,∆, P1 ⊗ P2
[⊥]

` Γ
` Γ ,⊥

[`] Γ , P1, P2

` Γ , P1 ` P2

[>]
` Γ ,>

[&]
` Γ , P1 ` Γ , P2

` Γ , P1 & P2
[⊕1]

` Γ , P1

` Γ , P1 ⊕ P2
[⊕2]

` Γ , P2

` Γ , P1 ⊕ P2

[∃]
` Γ , P[t/x]

` Γ ,∃x .P
[∀]

` Γ , P[c/x]

` Γ ,∀x .P
[D]

` Γ , P

` Γ , ?P
[!]
` ?Γ , P

` ?Γ , !P

STRUCTURAL RULES

[W]
` Γ
` Γ , ?P

[C]
` Γ , ?P, ?P

` Γ , ?P

FIGURE 2.11: One-side inference rules of ILL [Girard 1998]. Capitals P, P1, P2 denote formulas and Γ ,∆ finite
multisets of formulas. The empty multiset is indicated by a blank. The notation ?Γ is used to denote a multiset
of formulas which all begin with ?.

The inference rules depicted Figure 2.11 allow us to establish the truth of statements in the
logic. We recall that a sequent is an expression Γ `∆ where the antecedent Γ and the succedent∆ are

2.6. Intuitionistic Linear Logic 25

multisets of formulas, and the symbol ` is the entailment relation. The semantic reading of a sequent
is “the conjunction of the formulas in Γ implies the disjunction of the formulas in ∆”. Usually, the rules
can be divided into three major groups: identity, logical and structural rules. Identity rules are the
rules that require to check if two formulas are the same. Logical rules are rules that decompose
logical connectives. Structural rules are rules that do not operate on any logical connective, but on
sequents directly: Weakening (W) allows to introduce additional assumptions; and Contraction (C)
allows to “cancel” redundant occurrences of a formula in the assumptions. In ILL, the role of ! and ?
is to introduce weakening and contraction in a controlled way for individual formulas.

2.6.1 Intuitionistic Linear Logic with Subexponentials

The exponentials in ILL are not canonical, that is, if we consider a pair of blue exponentials, ?b and
!b, and a pair of red exponentials, ?r and !r , then ?r P and ?bP (and !r P and !bP) are not provably
equivalent. Danos, Joinet, and Schellinx proposed in [Danos 1993] a linear logic, called Intuition-
istic Linear Logic with Subexponentials (SELL), that instead of having a single pair of exponentials !
and ?, it may contain as many labeled exponentials (!l and ?l) as needed. We refer such labels as
subexponentials. SELL is not a new logic but a simply linear logic in which the non-canonical nature
of ILL’s exponentials are exploited. For instance, they can be used to represent contexts of proof
systems [Nigam 2011], to mark the epistemic state of agents [Nigam 2012], or to specify locations
in sequential computations [Nigam 2009]. Moreover, SELL allows for the specification of concur-
rent systems where epistemic, spatial, and temporal modalities are involved [Chiarugi 2015; Nigam
2013].

Formally, a SELL system is specified by a subexponential signature Σ = 〈I,�,U〉, where I is a
set of indices, � is a pre-order3 among the elements of I, and U ⊆ I is a set specifying which
subexponentials in I allow for weakening and contraction. We will assume that� is upwardly closed
with respect to U , i.e., if a ∈ U and a � b, then b ∈ U . For a given such subexponential signature,
SELLΣ is the system obtained by adding the following inference rules to the ILL rules in Figure 2.11:

• for each a ∈ I, we add the dereliction rule (i.e., a left rule for !a) and the promotion rule (i.e., a
right rule for !a):

[!a
L]

Γ , F −→ G

Γ , !aF −→ G
[!a

R]
!a1 F1, . . . , !an Fn −→ F

!a1 F1, . . . , !an Fn −→ !aF
, provided a � ai for 1≤ i ≤ n.

That is, one can only introduce a !a on the right if all other formulas in the sequent are marked
with indices that are greater or equal than a.

• For each b ∈ U , we add the following structural rules:

[W]
Γ −→ G

Γ , !bF −→ G
[C]

Γ , !bF, !bF −→ G

Γ , !bF −→ G

That is, we are also free to specify which indices are unbound (those appearing in the set
U), and which indices are linear or bound. In our developments we shall not consider the
subexponential ? and then, we omit its proof rules.

Nevertheless, SELL has a serious limitation: it does not have any sort of quantification over
subexponentials. Therefore, any sequent in any derivation in SELL has the same subexponential
signature Σ. The proof system SELLå [Nigam 2013; Olarte 2015] extends SELL with universal (å)
and existential (ä) quantifiers over subexponentials. Formally, a SELLå system is specified by a

3A pre-order relation is a binary relation that is reflexive (a � a) and transitive (if a � b and b � c then a � c).

26 Chapter 2. Preliminaries

subexponential signature Σ= 〈I,�,F ,U〉, where I is a set of subexponential indices and � is a pre-
order among these indices. The new component F = {f1, . . . , fn} specifies families of subexponentials
indices. In particular, family f ∈ F takes an element of a ∈ I and returns a subexponential index
f(a). These families allow to specify disjoint pre-orders based on 〈I,�〉. Finally, the set U ⊆ {f(a) |
a ∈ I, f ∈ F} is a set of subexponentials generated from families that is upwardly with respect to �.
The set of typed subexponential indices is defined as AΣ = {s : a | s, a ∈ I, s � a}.

2.6.2 Focusing

Proofs are usually constructed in a small step fashion: one applies any applicable rule until no open
leaves remain. However, this method has a great deal of non-determinism in proof search because
one can choose any formula in the sequent that a rule can be applied to. Andreoli introduced in [An-
dreoli 1992] a focused proof systems for linear logic. The focusing discipline provides canonical proofs
that are constructed in a big step fashion. SELLå has good proof-theoretic properties: it admits cut-
elimination and also has a complete focusing discipline. Next, we introduce the focused proof system
for SELLå, called SELLFå [Nigam 2013].

The first step in describing the focused system is to classify connectives into two categories ac-
cording to their deterministic or non-deterministic behavior in proof construction. Formulas whose
main connective is −◦, ∀, and ⊥, are called negative formulas because their right rules can always be
applied eagerly, without backtracking, during bottom-up proof search (i.e., invertible formulas). The
remaining formulas are called positive formulas because their right rules cannot be applied eagerly.
The polarity of non-atomic formulas is inherited from its outermost connective. Focusing involves
applying inference rules in strictly alternating phases. In the negative phase, positive propositions on
the left and negative propositions on the right are eagerly and exhaustively decomposed using invert-
ible rules. Roughly, a rule is invertible if the conclusion of the rule implies the premises. In the positive
phase, a single proposition is selected (the proposition in focus, which is either a positive proposition
in right focus or a negative proposition in left focus). This proposition is then decomposed repeatedly
and exhaustively using rules that are mostly non-invertible up to negative subformulas.

The proof rules of SELLFå are depicted in Figure 2.13. There is a pair of contexts written here
as K : Γ where Γ collects the formulas whose main connective is not ! and K is a mapping from
each index in the set I to a finite multiset of formulas (e.g., if l is a subexponential index, then K[l]
is a multiset of formulas, where intuitively they are all marked with !l). We also make use of the
operations on contexts depicted in Figure 2.12.

•(K1 ⊗K2)[i] =

¨

K1[i]∪K2[i] if i /∈ U
K1[i] if i ∈ U

•K[S] =
⋃

{K[i] | i ∈ S}

•(K+l F)[i] =

¨

K[i]∪ {F} if i = l

K[i] otherwise
•K ≤i [l] =

¨

K[l] if i �A l

; if i �A l

•(K1 ?K2)|S is true if and only if (K1[j] ?K2[j]) for all j ∈ S.

FIGURE 2.12: Specification of operations on contexts. Here, i ∈ I,S ⊆ I, and the binary connective ? ∈ {=,⊂
,⊆}. We also assume that F is a formula and the set A is given from the context.

Moreover, SELLFå considers four types of sequents:

1. [K : Γ],∆ −→R is an unfocused sequent.

2. [K : Γ] −→ [F] is a sequent representing the end of the negative phase.

3. [K : Γ]
F
−→ G is a sequent focused on the left.

2.7. Field Programmable Gate Arrays 27

4. [K : Γ] −→
F

is a sequent focused on the right.

NEGATIVE PHASE

[>R] [K : Γ],∆ −→>
[&R]

[K : Γ],∆ −→ F [K : Γ],∆ −→ G

[K : Γ],∆ −→ F & G
[⊗L]

[K : Γ],∆, F, G −→R
[K : Γ],∆, F ⊗ G −→R

[1L]
[K : Γ],∆ −→R
[K : Γ],∆,1 −→R

[0L] [K : Γ],∆,0 −→R
[⊕L]

[K : Γ],∆, F −→R [K : Γ],∆, H −→R
[K : Γ],∆, F ⊕H −→R

[−◦R]
[K : Γ],∆, F −→ G

[K : Γ],∆ −→ F −◦ G
[∀R]

[K : Γ],∆ −→ G[xe/x]

[K : Γ],∆ −→ ∀x .G
[∃L]

[K : Γ],∆, G[xe/x] −→R
[K : Γ],∆,∃x .G −→R

[!s
L]
[K+s F : Γ],∆ −→R
[K : Γ],∆, !sF −→R

[åR]
[Kle : Γ],∆ −→ G[le/lx]

[K : Γ],∆ −→ ålx : a.G
[äL]

[Kle : Γ],∆, G[le/lx] −→R

[K : Γ],∆,älx : a.G −→R

POSITIVE PHASE

[&Li
]
[K : Γ]

Fi−→ [G]

[K : Γ]
F1&F2−→ [G]

[1R] [K : Γ] −→
1

[⊗R]

[K1 : Γ1] −→F [K2 : Γ2] −→G
[K1 ⊗K2 : Γ1, Γ2] −→F⊗G

where (K1 = K2)|U

[⊕Ri
]

[K : Γ] −→
Gi

[K : Γ] −→
G1⊕G2

[!s
R?]

[K ≤s: ·] −→ F

[K : ·] −→
!s F

[−◦L]

[K1 : Γ1] −→F [K2 : Γ2]
H
−→ [G]

[K1 ⊗K2 : Γ1, Γ2]
F−◦H
−→ [G]

where (K1 = K2)|U

[∀L]
[K : Γ]

F[t/x]
−→ [G]

[K : Γ]
∀x .F
−→ [G]

[∃R]

[K : Γ] −→
G[t/x]

[K : Γ] −→
∃x .G

[åL]
[K : Γ]

F[l/lx]−→ [G]

[K : Γ]
ålx :a.F
−→ [G]

[äR]

[K : Γ] −→
G[l/lx]

[K : Γ] −→
älx :a.G

[?s
L?]

[K ≤s: ·], F −→ [·]

[K : ·]
?s F
−→ [?kG]

where k ∈ U ∧ s � k [?s
L?]

[K ≤s: ·], F −→ [?kG]

[K : ·]
?s F
−→ [?kG]

where s � k

[IR] [K : Γ] −→
A

where A∈ (Γ]K[I]) and (Γ]K[I \ U]) ⊆ {A}

STRUCTURAL RULES

[[]L]
[K : Γ , Na],∆ −→R
[K : Γ],∆, Na −→R

[[]R]
[K : Γ],∆ −→ [Pa]

[K : Γ],∆ −→ Pa
[RL]

[K : Γ], Pa −→ [F]

[K : Γ]
Pa−→ [F]

[RR]
[K : Γ] −→ N

[K : Γ] −→
N

[DL]
[K : Γ]

NA
−→ [G]

[K+s NA : Γ] −→ [G]
, if s /∈ U [DL]

[K+s NA : Γ]
NA
−→ [G]

[K+s NA : Γ] −→ [G]
, if s ∈ U

[DL]
[K : Γ]

NA
−→ [G]

[K : Γ , F] −→ [G]
[DR]

[K : Γ] −→
G

[K : Γ] −→ [G]
[DR?s]

[K : Γ] −→
G

[K : Γ] −→ [?sG]
[?s

R]
[K : Γ],∆ −→ [?sF]

[K : Γ],∆ −→ ?sF

FIGURE 2.13: The focused proof system for SELLåΣ [Nigam 2009]. Here, R stands for either a bracketed
context, [F], or an unbracketed context. A is an atomic formula; Pa is a positive or atomic formula; N is a
negative formula; NA is a non-atomic formula; and Na is a negative or atomic formula. In the ?s

L and !s
R rules,

? stands for “given K[{x | s � x ∧ x /∈ U}] =”. Finally Kle
is obtained by extending the domain of K with

{f(le : a) | f ∈ F} and mapping these to the empty set.

2.7 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) [Brown 1992] are semiconductor devices that contain logic
components connected by a regular, hierarchical programmable interconnect system. The distin-

28 Chapter 2. Preliminaries

guishing characteristic of FPGAs is their on-filed programmability which allows the logic functionality
of FPGAs to be re-programmed even after the manufacturing process. This feature distinguishes them
from the Application Specific Integrated Circuits (ASICs) which are manufactured for specific tasks.
FPGAs can simultaneously compute millions of operations in resources distributed on the device
(i.e., spatial computing). Then, such systems could be hundred of time faster than microprocessors-
based systems. FPGAs have already been used with success in many different industrial applications
such as aerospace, automotive, medical, networking, encryption, robotics, video and audio process-
ing applications [Garcia 2006; Hauck 2007; Monmasson 2011; Rodríguez-Andina 2007; Rodríguez-
Andina 2015; Sadrozinski 2010; Trimberger 2015; Wilson 2011]. Since the introduction of FPGAs
in 1984, they have grown in capacity by more than factor of 10000 and in performance by a factor of
100 [Trimberger 2015]. Cost and energy consumption per operation have both decreased by more
than a factor of 1000.

As illustrated in Figure 2.15, the general architecture of FPGAs consists of an array of Configurable
Logic Blocks (CLBs) that are connected by a grid of routing metal channels. Each CLB (see Fig-
ure 2.14) consists of a small amount of digital logic to form a Look-Up-Table (LUT) that implements
22n Boolean logic functions with n inputs and a single output. The output of the LUT is also con-
nected to a register (e.g., a D flip-flop) whose output can be chosen instead of the direct LUT’s output.
Therefore, a CLB can be programmed by a small amount of memory to implement sequential logic
as well as combinational logic. Roughly speaking, the outputs of logic circuits built with combina-
tional elements are functions of its inputs only (e.g., multiplying function), whereas the output of a
sequential circuit depends not only on its current inputs, but also on its previous inputs (e.g., state
machines).

inputs

clock

Look-Up
Table

D
Flip-Flop

output

LOGIC BLOCK

FIGURE 2.14: Single Output 4-LUT Logic Block, with a D flip-flop.

The mesh-based channels connecting these CLBs together contains Switch Boxes (SBs) at the grid-
points, which can connect the intersecting channels to each other using programmable switches. The
programmable memory in the CLBs as well as the memory controlling switches in the SBs, together
form the configuration memory of FPGAs. Thus, any given logic circuits can be mapped into the FPGA
by programming functionality and connectivity of logic blocks based on the specific characteristics
of the application. Moreover, the matrix is surrounded by a ring of configurable Input/Output Blocks
(IOBs) providing an interface for external connections. Some FPGAs provide dedicated blocks such
as DSP accelerators and embedded hard processors cores (e.g., ARM CORTEX A9).

FPGAs have risen over the last years and become economically viable for use in several applica-
tions. Moreover, they offer the following benefits [Dubey 2009]:

• Reconfigurability: FPGAs can be reconfigured at any time.

• High-Level Design: The hardware is defined by using high-level hardware description lan-
guages (e.g., VHDL, SYSTEMVERILOG). Moreover, the designed systems can be simulated and
verified before their execution on the FPGA.

• Physical Parallelism: FPGAs allow to design completely parallel systems without computation
loading.

2.7. Field Programmable Gate Arrays 29

Configurable
Logic Block

I/O
Block

Routing
Channel

Switch

FIGURE 2.15: Generic FPGA architecture [Trimberger 2015].

• High-Speed: Parallelism and fast clock rates of FPGAs allow systems to achieve very high
speed that sometimes outperforms processor-based systems.

• Reliability: FPGAs provide true hardware reliability because there is no operating system or
driver layer that can affect system update.

• IP protection and Re-Use: It is difficult to reverse engineering a synthesized system. More-
over, a tested hardware design can be re-used multiples times by instantiating it.

30 Chapter 2. Preliminaries

CHAPTER3
Multimedia Interactive Scenarios

“Begin at the beginning,” the King said, very gravely, “and
go on till you come to the end; then stop.”

— Lewis Carroll, Alice in Wonderland

Contents
3.1 Intuitive Semantics . 31

3.2 The Interactive Sequencer I-SCORE . 33

3.3 Related Models and Implementations . 35

Interactive Scores (IS) [Allombert 2009] has been proposed as a formalism for composing and
performing interactive multimedia scenarios. In this chapter we give an intuitive semantics and
operational semantics of this model. Moreover, we present existing models and implementations of
interactive multimedia scenarios. We encourage the reader to read in detail this chapter for the sake
of having a better contextualization of the contributions presented in this dissertation.

3.1 Intuitive Semantics

Interactive scenarios are composed of textures and structures. Textures represent the execution in
time of multimedia processes (e.g., controlling the brightness of a lamp). Structures allow to de-
sign modular scenarios and define a hierarchical organization on them. The temporal organiza-
tion of these temporal objects (TOs) (i.e., the specification of their start and stop times) is partially
defined by asserting temporal relations (TRs) those objects must obey. Most precisely, TRs define
relations of precedence between TOs, enhanced with quantitative constraints by giving a range of
possible durations in [0,∞]. It is possible thus to express that the start of a some TO must be
separated from the end of some other by a given duration. For the sake of presentation, we shall
denote the duration of a TR as the interval [∆min,∆max] where ∆min is the minimum duration of
the TR and ∆max is its maximum duration. Depending on these values, TRs can be classified as:
(1) rigid, if ∆min = ∆max > 0; (2) semi-flexible, if 0 ≤ ∆min < ∆max and ∆max 6=∞; (3) flexible,
if 0 ≤ ∆min 6= ∆max and ∆max =∞; and (4) synchronization, if ∆min = ∆max = 0. Let us explain
these notions through the following example.

Example 3.1 (Cinema Advertising)

Assume a scenario controlling the advertising time on a cinema. That is, the sequence in which the
lights are turned off progressively, and then some trailers and announces are shown. For that, we
propose a scenario composed of a texture LightOut controlling the brightness of the light. Moreover,
we know that 10 seconds are enough to completely turn off the light (i.e., the duration of the texture
LightOut). As we assume that the light starts to fade at the beginning of the scenario, then we assert

31

32 Chapter 3. Multimedia Interactive Scenarios

a synchronization TR between the starting of the texture LightOut and the starting of the scenario.
In order to design a clean scenario, we add two structures called Trailers and Announces. In the
former (resp. latter) we put the textures controlling the playing of each trailer (resp. advertising)
with their corresponding duration, and then we define TRs between them in order to define the
desired logical sequence. Assume that each trailer and advertising starts 1 second after the previous,
then the duration of each TR is 1 second. Furthermore, we assert a TR with duration of 5 seconds
between the starting of the structure Trailers and the stopping of the texture LightOut. Doing that,
we express that the trailers start 5 seconds after the light has completely gone out. Finally, we define
a synchronization TR between the starting of the structure Announces and the stopping of Trailers
in order to express that the announces immediately start once the trailers are finished.

During the performance of a scenario, the performer has the possibility to influence its execution
by triggering interactive points (IPs). IPs are defined by the composer during the composition and
allow for agogic modifications [Haury 1987], i.e., the possibility to change the start and stop times
of TOs during execution. Hence, the performer enjoys a certain freedom in choosing the time of
interaction (or whether it takes place) leaving the system the task of maintaining the temporal con-
straints of the scenario. In this sense, a performance constitutes an instance of a finite set of possible
scenarios that share the same temporal properties. For instance, if the starting time of the texture
LightOut in Example 3.1 is defined by the triggering of an IP between 0 and 10 seconds after the
starting of the scenario, then one of the possible executions of the scenario is those in which the
texture LightOut starts at 2 seconds due to the triggering of the IP at this time.

As depicted in Figure 3.1, an IP can be triggered by the performer once the TR has reached
its minimum duration and before the elapsing of its maximum duration. However, if the IP is not
triggered before the elapsing of the maximum duration, it will be automatically triggered at this time
by the system in order to maintain the temporal organization of the scenario.

time

duration

minimum duration
maximum duration

Rigid Temporal Relation

(Semi) Flexible Temporal Relation

Interaction Point Enabled

FIGURE 3.1: Semantics of TRs.

A more complex case is when the composer uses several TRs to define the starting time of a TO.
In that case, the IP can be triggered by the performer after the elapsing of the minimum duration of
all TRs and before one of them reaches its maximum duration. As expected, if the IP is not triggered
within this interval, then it will be automatically triggered by the system. We illustrate this scenario
in Figure 3.2. From now on, we shall call interactive interval the interval of time in which an IP can
be triggered by the performer.

As we explained before, IPs also allow to modify the duration of TOs during execution. If we
consider the duration of a TO as a TR with duration greater than zero between its starting and its
ending, then the TO must stop when the IP is triggered by the performer or the system. Neverthe-
less, the stopping of a structure has a special semantics that is illustrated below. A structure whose
duration is not affected by an IP stops once its duration has elapsed and all its children (i.e., the
TOs contained in the structure) have stopped. On the other hand, if the composer defines an IP
for stopping the TO during execution, then the structure and its children must stop when the IP is
triggered, regardless of whether they are still running.

Let us illustrate all notions introduced so far with the scenario described in Example 3.2.

3.2. The Interactive Sequencer I-SCORE 33

time

Temporal Relation 1

Temporal Relation 2

Equivalent Temporal Relation

Interaction Point Enabled

min

min

min

max

max

max

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 3.2: Interactive interval defined by two TRs.

Example 3.2 (The Dark Forest Scenario)

Assume a fragment of a theatrical installation that aims to reproduce the atmosphere of a cloudy and
dark forest. Imagine that a texture White Smoke (WS) controls a machine that produces white smoke
in order to create the cloudy atmosphere. Once the amount of smoke is enough, the performer
can stop the machine by triggering the IP at the end of the texture. As temporal constraints, the
texture must start at 3160 ms and its duration is defined by the performer during performance.
Since the white smoke must be spread over the scene, a texture Fans (F) is responsible of doing it
by controlling a set of fans. The performer can start the texture by triggering the IP at its start from
the beginning of the act (i.e., the IP can be triggered after 0 ms). The composer knows that 3014 ms
are necessary to obtain the desired atmosphere using the fans (i.e., the duration of the texture F).
Once the cloudy atmosphere is recreated, the howl of a wolf, controlled by a texture Wolf Howl (WH),
sounds for 2832 ms (i.e., the duration of the texture WH), and while this happens, a beam of a yellow
light (a texture Light Beam (LB)) pierces the cloudy forest during 1184 ms giving the impression
that a car is approaching. The composer knows that the effect created by the smoke and the fans
lasts a time before it disappears. Therefore, the textures WH and LB are “encapsulated” in a structure
Group (G) and two TRs are added to ensure that the content of the structure is executed after the
atmosphere is well created and before it disappears. The first TR is between WS and G and its duration
is [1200;2560] ms. The second TR is between F and G and its duration is [1136;2784] ms. Hence,
the performer can only start the structure G within the interval of time in which these two TRs are
satisfied.

3.2 The Interactive Sequencer I-SCORE

Several multimedia systems have been developed for writing and interpretation of interactive sce-
narios. However, these systems do not provide the easiness and flexibility required in the artistic
process [Baltazar 2009]. Time-scripting of interactive multimedia is typically managed with cues, as
points of synchronization throughout a scenario, with very few possibilities for designing the evo-
lution of expressive parameters in time, compared to what fixed-time media software provides with
automation. The Ableton Live1 or Qlab2 applications offer cue management with some capabilities
for automation edition. More experimental sequencers such as Reason3 and Vezér4 allow even more
complex automation capabilities. Nevertheless, cues and automation are managed in these software
as a linear list of events to be successively triggered, without further temporal organization.

1Ableton website: https://www.ableton.com/.
2Qlab website: http://figure53.com/qlab/.
3Reason website: https://www.propellerheads.se/reason
4Vezér website: http://www.vezerapp.hu/

https://www.ableton.com/
http://figure53.com/qlab/
https://www.propellerheads.se/reason
http://www.vezerapp.hu/

34 Chapter 3. Multimedia Interactive Scenarios

I-SCORE5 is an interactive sequencer aiming to overcome these problems by offering an organized
way to structure events in time, while keeping degrees of freedom for interactivity. The underlying
execution model of I-SCORE is the IS model [Allombert 2009] presented above, which has been
the result of several years of research that started at the beginning of the 21th century and still
continues. The first steps started with the implementation of the tool BOXES [Beurivé 2001], but
it was conceived only for the composition of Electroacustic music (i.e., musical work that makes
use of modern electronic technology to incorporate electronic sound production into compositional
practice [Canazza 2001]). In BOXES, the notion of temporal relations between processes, which is
essential in IS, was introduced, however, user interaction was not provided. Ten years after, the first
version (version 0.1) of I-SCORE [Marczak 2011] was developed in the frame of the ANR project
VIRAGE, which unlike BOXES, provides user interaction.

In 2013, a new stable version of I-SCORE (version 0.2) was released in the frame of the project
OSSIA. The version 0.2 provides flexible control structures such as conditionals and loops, then the
composition and execution of interactive scenarios with a branching behavior is possible. Never-
theless, its formal underlying model does not support these new notions, being one of the issues
addressed in this dissertation. In parallel to the development of this work, a new version of I-SCORE

has been being developed. The version 0.3 aims to offer a redesigned and improved user graphi-
cal interface, and a formal definition of the notions of conditionals and loops in interactive scenar-
ios [Celerier 2015]. Moreover, the new architecture of I-SCORE provides an Application Programming
Interface (API) that allows for the integration of the formal execution models proposed in this work
with its improved graphical interface.

I-SCORE offers two different stages: composition and performance. In the former, composers place
TOs, represented as boxes, on a horizontal time-line. Then, they add IPs either at the start or at the
end of each TO, and connect TRs between the TOs in order to define the temporal properties of the
scenario. As an example, take the I-SCORE scenario presented in Figure 3.3, specifying the interactive
scenario described in Example 3.2. Here, the horizontal axis represents time and the vertical axis
has no meaning. As we can see, the structure Group contains the textures Wolf Howl and Light Beam
(i.e., its children). Moreover, TRs are represented as arrows with a dotted interval denoting their
minimum and maximum duration. Finally, IPs are represented as “flags” in the upper corners of the
TOs. In I-SCORE 0.2, TRs between the starting of a TO and its parent are not drawn. Furthermore,
if the TO has an IP controlling its start time, then the duration of this TR is [0;∞]. As we shall
show in Chapter 5, this assumption of I-SCORE involves some temporal inconsistencies which can be
checked by using automatic verification tools as we propose later.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WHITE SMOKE

FANS

GROUP

WOLF HOWL

LIGHT BEAM

FIGURE 3.3: Fragment of a theatrical installation that recreates the atmosphere of a dark forest.

5 I-SCORE website: http://i-score.org/.

http://i-score.org/

3.3. Related Models and Implementations 35

Since during composition stage the computation time is not critic, the scenario is viewed as a
Constraint Satisfaction Problem (CSP). Thus, when the composer changes the temporal characteris-
tics of a TO (i.e., its start and stop times), a constraint solver (e.g., GECODE6) propagates the new
constraints, which leads the TOs of the scenario to automatically move or stretch in order to main-
tain the temporal properties imposed by the composer. During the performance stage, the performer
can dynamically trigger the IPs while the system maintains the temporal properties defined by the
composer (i.e., the TRs). In I-SCORE, multimedia processes (i.e., textures) are executed by external
applications such as PURE DATA7 and MAX/MSP8. Therefore, multimedia protocols like Open Sound
Control (OSC) are used to send to these applications the values/parameters defined by the composer.
Moreover, they are also used to receive discrete events sent asynchronously during performance by
the environment (e.g., the performer) in order to trigger the IPs defined by the composer.

In the second version of I-SCORE, scenarios are executed by an abstract machine, called ECO
machine, that relies on a Hierarchical Time Stream Petri Net (HTSPN) [Sénac 1995] to represent and
execute the partially ordered set of events [Marczak 2011]. Thus, each time a scenario is written or
modified, it must be translated into a HTSPN to be executed. Although the execution model of I-
SCORE in [Allombert 2009] uses HTSPNs, the synchronization and hierarchical mechanisms provided
by HTSPNs are not taken into account. Therefore, the hierarchical semantics of interactive scores
explained before is not well defined, being one of the issues addressed in this dissertation. We refer
the reader to [Marczak 2011] for further detail on translating interactive scenarios into HTSPNs.

In closing, an important characteristic of I-SCORE is that it mixes two temporal paradigms used
in the current multimedia tools [Desainte-Catherine 2013]: time-line and time-flow. The time-line
paradigm is represented by the composition stage where the composer places multimedia processes
with their start and stop times, as well as temporal relations between them. On the other hand, the
time-flow paradigm is represented by the execution stage at which the processes are executed while
the temporal relations are preserved by the system.

3.3 Related Models and Implementations

During the last years, I-SCORE has been used successfully for the composition and performance of
live performances and interactive exhibitions [Allombert 2010]. Nevertheless, these applications
and emergent applications such as video games and interactive museum installations, increasingly
demand two features that its underlying model does not support: (1) flexible control structures
such as conditionals and loops [de la Hogue 2014]; and (2) mechanisms for the automatic verifica-
tion of scenarios. The former would permit to describe branching behaviors in interactive scenarios
and the latter would avoid that raise conditions (abnormal behaviors) happen during a spectacle.
Several researchers have made many efforts to extend interactive scenarios with control structures
(e.g., Petri nets [Allombert 2009], process calculi [Olarte 2009b], event structures [Toro 2014]), but
there is no practical solutions for their automatic verification and real-time performance. Moreover,
the proposed models cannot be straightforwardly implemented or extended with new features that
composers will eventually need to write more complex scenarios. Next we briefly describe some
related works of interactive scenarios.

Distributed execution of interactive scenarios. In [Celerier 2014], the author analyses a possible
extension of the HTSPN model of I-SCORE, aiming at allowing for the execution of a multimedia
scenario from multiple networked computers. For that, three approaches were implemented and
tested looking for a reasonable latency of execution.

Augmented execution interface for interactive scenarios. The current execution interface of I-

6GECODE website: http://www.gecode.org/
7PURE DATA website: https://puredata.info/
8MAX/MSP website: https://cycling74.com/

http://www.gecode.org/
https://puredata.info/
https://cycling74.com/

36 Chapter 3. Multimedia Interactive Scenarios

SCORE is static. That means that the start and stop times of the TOs are not properly reflected on the
graphical interface during execution. Therefore, if the start or stop times of a TO are modified dur-
ing execution, the graphical interface does not move or stretch the boxes in order to show the new
possible start and stop times of the TOs. In [Vuaille 2014], the author proposes a dynamic execution
interface for I-SCORE based on the approach presented in Chapter 5. For that, an augmented inter-
face of I-SCORE was developed in the environment INSCORE [Fober 2014], providing mechanisms
to dynamic change the temporal organization of the scenario depending on the interaction with the
environment.

CSP optimization for I-SCORE. As we explained before, during the composition stage the scenario
is viewed as a CSP. However, during the latest years several improvements and notions have been
added to I-SCORE, producing the initial CSP specification no longer suitable for verifying the consis-
tency of the written temporal relations. In [Jamain 2015], the author proposes a new CSP specifica-
tion that formalizes the new notions of the current version of I-SCORE. Moreover, he shows how to
integrate his approach with the graphical interface of I-SCORE by using the corresponding API of the
latter.

Dynamic interactive scenarios. In [Olarte 2009b], the authors propose a model for dynamic in-
teractive scenarios where IPs can be defined to adapt the hierarchical structure of the scenario de-
pending on the information inferred from the environment. For that, the authors use a declara-
tive model for concurrency tied to logic called Universal Timed Concurrent Constraint Programming
(UTCC) [Olarte 2009a]. Therefore, they can verify some non-trivial temporal properties of scenar-
ios. Nevertheless, UTCC does not guarantee reliable responses in time and it does not provide tools
for automatic verification.

Conditional branching. In [Toro 2012; Toro 2014], the authors propose an abstract semantics for
interactive scenarios based on a simplified version of Timed Event Structures (TESs) [Katoen 2001].
Thus, it is possible to specify and verify properties about execution traces. However, there is no
difference between interactive objects and TOs. In order to overcome this limitation, the authors
propose an operational semantics based on the Non-Deterministic Temporal Concurrent Constraint
Programming (NTCC) [Nielsen 2002] formalism. However, many treatments should be made to
obtain a normal form of scenarios which drastically increase the size of the model and make it
unsuitable for real-time execution.

Conditional branching was introduced in the proposed NTCC model, however such extension
lacks of an abstract semantics and drastically increases the complexity of the system. Although there
are some works [Arias 2012; Arias 2015d] aiming at equipping NTCC with automatic verification
tools, there is no mature and reliable tools so far. Another disadvantage of the proposed NTCC model
is that time units in NTCC may have different (unpredictable) durations. Moreover, it is not possible
to specify real-time requirements of scenarios.

CHAPTER4
A Declarative Language for Multimedia

Interactive Scenarios

Contents
4.1 Syntax . 37

4.1.1 Tree-Based Representation of Programs . 39
4.2 Operational Semantics . 40

4.2.1 Tree-Based Representation of Execution States 40
4.2.2 Structural Operational Semantics . 42
4.2.3 Properties of the Operational Semantics . 44

4.3 Logical Characterization . 45
4.3.1 Correctness of the Encoding . 50

This chapter introduces REACTIVEIS, a programming language that fully captures the temporal
structure of interactive scenarios during both composition and execution. For that, we first introduce
the syntax of the language and a tree representation of programs. Then, we shall present the op-
erational semantics of the language and we show the representation of execution states as tree-like
structures that claim to be simpler, intuitive and more flexible than the current execution models for
interactive scenarios. Next, we propose a logical semantics for REACTIVEIS based on Intuitionistic
Linear Logic with Subexponentials (SELL), thus increasing the reasoning techniques available for the
verification of interactive scenarios. Finally, we shall show that traces of programs correspond to
derivations in the logic and vice-versa. The work presented in this chapter is a collaborative work
with Carlos Olarte1 in the project MUSICAL2 and Sylvain Salvati3 in the project POSET4.

To our knowledge, REACTIVEIS is the first programming language designed for writing, verifica-
tion and execution of interactive scenarios.

4.1 Syntax

In this section we introduce the syntax of REACTIVEIS and its tree-based representation. We recall
that a structure is a temporal object (TO) used to define the hierarchical organization of the scenario

1Carlos Olarte is an associated professor at Universidade Federal do Rio Grande do Norte (UFRN) in Natal, Brazil.
2The project MUSICAL (Music and Spatial Interaction with Constraints, Algebra and Logic) is funded by CNP-Q (the

Brazilian National Council for Scientific and Technological Development) that aims to develop and integrate tools from
logic and concurrency theory for the design and analysis of reactive systems and their application to musical processes and
multimedia systems. The reader may find further details at http://cic.javerianacali.edu.co/~caolarte/musical.

3Sylvain Salvati is a researcher at INRIA in Bordeaux, France.
4The project POSET is funded by INRIA (the French Institute for Research in Computer Science and Automation) that

aims to provide a consistent and robust mathematical framework for the modeling of sequential and parallel aspects of
temporal media in order to develop simpler, safer and more powerful tools for the creation of hierarchical, multi-scale and
multi-modal pieces of interactive art. The reader may find further details athttp://www.inria.fr/equipes/poset.

37

http://cic.javerianacali.edu.co/~caolarte/musical
http://www.inria.fr/equipes/poset

38 Chapter 4. A Declarative Language for Multimedia Interactive Scenarios

and that a texture, which is also a TO, represents the execution in time of a given multimedia process
by an external application such as MAX/MSP and PURE DATA. Moreover, a scenario is a structure
that represents the temporal organization of the TOs defined by the user. We show in Figure 4.1 the
syntax of REACTIVEIS.

〈scenario〉 ::= 〈structure〉
〈texture〉 ::= texture

�

〈params〉 〈msg〉 〈msg〉
�

〈structure〉 ::= structure
�

〈params〉 〈TO-list〉
�

〈params〉 ::= 〈name〉 〈condition〉 〈condition〉
〈TO-event〉 ::= start 〈name〉 | end 〈name〉
〈condition〉 ::= wait

�

〈TO-event〉 〈min〉 〈max〉
�

| event 〈msg〉
|

�

〈condition〉 ∧ 〈condition〉
�

|
�

〈condition〉 ∨ 〈condition〉
�

FIGURE 4.1: Syntax of REACTIVEIS.

In REACTIVEIS, a structure is comprised of a set of parameters (explained below) and a (possibly
empty) list of TOs (i.e., TO-list). A texture requires, besides the parameters, two messages used
to start and stop a multimedia process executed by an external application. These messages are
the output of the system and so they have to be sent to the corresponding application by means of
multimedia protocols such as OSC. The syntactic unit params (i.e., the parameters mentioned above)
specifies a name (i.e., an identifier) for the TO and also its starting and stopping conditions. Such
conditions represent the TRs between TOs and define their temporal organization. Conditions in
REACTIVEIS are as follows:

• Wait Conditions: they define a delay from the start or from the end of a TO (i.e., TO-event).
Delays are defined as a range between 0 and∞, allowing flexibility in temporal specifications.

• Event Conditions: they represent the triggering of a specific event by the environment (i.e., IPs).
Such events are messages (msg), for instance “/mouse 1”, sent by the environment (e.g., the
performer) during execution. Such messages represent the inputs of the system.

• Complex Conditions: they can be written by using conjunctions and disjunctions.

As an example, consider the REACTIVEIS in Program 4.1 of the texture WH in Figure 3.3. Attributes
start.cond and _stop.cond_ represent, respectively, the start and stop conditions of the TO. The
Wait condition receives three arguments: an event representing the Start/End of a TO, its minimum
duration and its maximum duration (that can be infinite, denoted by INF). Condition Event receives
a particular OSC message that will be sent by the environment (e.g., "/mouse 1"). For instance, the
start condition of the texture WH in Program 4.1 says that it will start either at the moment in which
the message "/mouse 1" is sent and (&) this occurs between 2 and 5 time-units after the starting
of the structure G, or (|) 5 time-unit after starting G and such message has not arrived yet. As can
be noted in the above example, conjunctions and disjunctions allow us to express complex temporal
conditions. Finally, attributes _start.msg_ and _stop.msg_ specify the messages that must be sent
to external multimedia processes.

4.1. Syntax 39

1 // ... the specification of the other TOs is hidden ...

2

3 // Structure Group

4 Structure Group = {

5 // ... Conditions for the structure Group are hidden ...

6

7 // Texture WolfHowl

8 Texture WolfHowl = {

9 _start.cond_ = ((Wait (Start (Group), 2, 5) & Event ("/mouse 1")) |

10 Wait (Start (Group), 5, 5));

11 _stop.cond_ = Wait (Start (WolfHowl), 1, 1);

12 _start.msg_ = "/sound /1 on";

13 _stop.msg_ = "/sound /1 off";

14 };

15

16 // ... the specification of the texture LightBeam is hidden ...

17 };

PROGRAM 4.1: REACTIVEIS program specifying the texture WH of the scenario in Figure 3.3.

4.1.1 Tree-Based Representation of Programs

Now, we present a tree-based representation of REACTIVEIS programs and we formalize the idea of
conditions.

Conditions are built from a Condition System (CS) which is a first-order signature Σ that contains
the distinguished predicates WaitFromStart, WaitFromEnd, EndScenario and WaitEvent that
will be explained later. We also assume a (decidable) first-order theory ∆ over Σ for dealing with
deductions such as x > 40 ` x > 0. In this chapter we shall use C to denote the set of conditions
(formulas) built from Σ and the grammar:

F, G ::= true | A | F ∧ G | F ∨ G

where A is an atomic formula (e.g., a predicate).
A program in REACTIVEIS is defined as a labeled tree, called program tree, whose nodes represent

the TOs of the scenario. We will sometimes abuse notation and refer to TOs simply as nodes. Each
node is associated with the conditions for starting and stopping the TO, and its corresponding mes-
sages if the node represents a texture. The root node represents the scenario and edges define the
hierarchical relation between TOs. Next, we present the formal definition of a program tree.

Definition 4.1 (Program Tree)

Let V be a countable set of nodes, B the set of labels representing the names of TOs, and M the set
of messages. A program tree is a labeled tree P = 〈N ,E , C , M , r〉 where:

• N ⊆ V is the set of nodes,

• E ⊆N ×B×N is the set of edges,

• C : N → C × C is a total function representing the start/end conditions of TOs,

• M : N * M ×M is a partial function representing the messages for starting/stopping an
external multimedia process, and

• r ∈N is the root of the tree.

Given n ∈N , we shall use cs(n) and ce(n) to denote the starting/stopping conditions for n. Also, we
shall use ms(n) and me(n) to denote the starting and stopping messages for n.

40 Chapter 4. A Declarative Language for Multimedia Interactive Scenarios

For a given tree T , the nodes, the edges, and the root node of T are denoted by N(T), E(T),
and R(T), respectively. We write s

a
−→ t to represent an a-labeled edge from s (the source) to t (the

target). As usual, sequences of labels α = a0.a1 . . . an represent a path from the root r to a given
node u in T . We use the empty sequence ε to represent the root of T . For a path p in T , targetT (p)
is the ending node of the path.

In Figure 4.2 we show the program tree for the scenario in Figure 3.3 and the information
of the node representing the texture WH. Intuitively, the predicates WaitFromStart(p, t1, t2) and
WaitFromEnd(p, t1, t2) hold when the time elapsed since the start and the end, respectively, of the
target node of the path p is within the interval [t1; t2]. WaitEvent(e)waits for the external message
e. Observe that the root node has no wait condition for starting (i.e., true) and it finishes when all
its children have finished (i.e., EndScenario).

F
WS

WH LB

G
cs(ε) = true

ce(ε) = EndScenario

cs(G.W H) = (WaitFromStart(G, 2, 5)∧ WaitEvent(mouse1))∨ WaitFromStart(G, 5, 5)
ce(G.W H) = WaitFromStart(G.W H, 1, 1)
ms(G.W H) = sound1_on
me(G.W H) = sound1_off

FIGURE 4.2: Program tree of the scenario in Figure 3.3. Each node represents a TO in the scenario and the
functions cs and ce return, respectively, its start and stop conditions. In the case of a texture, functions ms and
me return, respectively, the starting and stopping messages sent to the external application.

4.2 Operational Semantics

This section is devoted to defining an operational semantics for the language REACTIVEIS. We start by
defining a representation of the states of execution as trees, and then we introduce the operational
semantics rules for the language. Finally, we shall prove some important properties of the operational
semantics such as determinism.

4.2.1 Tree-Based Representation of Execution States

In REACTIVEIS, the execution state of a program is represented as a labeled tree, called state tree, that
identifies both the TOs currently being executed and the ones that have already stopped. Each node
in the state tree has associated the times at which the TO started and stopped. If a TO has not been
stopped yet, we use as stop time the special symbol ⊥ /∈ N0. We shall use N⊥ to denote N0 ∪ {⊥}.
Next, we formally define a state tree.

Definition 4.2 (State Tree)

A state tree is a labeled tree S = 〈N ,E ,`, r〉 where N , E and r are defined as in Definition 4.1, and
` : N → N0 ×N⊥ is a total function giving, for each node, its starting and stopping times. Functions
ts : N → N0 and te : N → N⊥ give the starting and stopping times of a node, respectively.

As an example, we show in Figure 4.3 an execution state of the scenario in Figure 3.3. As can
be seen from the state tree, the scenario (i.e., the root node) started at time 0 (i.e., ts(ε) = 0) but it
has not finished yet (i.e., te(ε) = ⊥). Moreover, the texture F started at time 1 and stopped at time
3 while the texture WS started at time 3 but it is currently running.

4.2. Operational Semantics 41

F WS
ts(ε) = 0 te(ε) =⊥
ts(F) = 1 te(F) = 3
ts(WS) = 3 te(WS) =⊥

FIGURE 4.3: A state tree of the scenario in Figure 3.3. Each node represents a TO and the functions ts and te
return, respectively, the times at which the node started and stopped. The symbol ⊥ denotes that the TO has
not stopped yet.

Given a state tree S, we say that S is a valid state for a program tree P if S is homomorphic to P.
The notion of homomorphism is illustrated in Figure 4.4 and formally defined as follows.

Definition 4.3 (Tree Homomorphism)

Let T1 and T2 be labeled trees. A tree homomorphism of T1 to T2 is a function f : N(T1)→ N(T2)
such that

• f (R(T1)) = R(T2),

• s
a
−→ t ∈ E(T1) iff f (s)

a
−→ f (t) ∈ E(T2)

F WS

State Tree S

F
WS

WH LB

G

Program Tree P
f

f f

FIGURE 4.4: Valid state trees are homomorphic to program trees.

The execution of REACTIVEIS programs involves a change in the execution state by starting and
stopping TOs. As outlined below, we can represent the starting and stopping of a TO by applying
two basic operations on the state tree. Before stating formally the above operations, we require the
following notion of relational override.

Definition 4.4 (Relational Override)

The relational override operator, RÃ− U , allows to create an updated version of a relation. The
pairs in U override any pairs in R whose first element is in the domain of U . That is,

RÃ− U
def
= U ∪ {x 7→ y | x 7→ y ∈ R∧ x /∈ dom(U)}

Starting a TO. In REACTIVEIS, starting a TO is represented as adding a new node to the current state
tree whose start time is the current time and its stop time is undefined. Additionally, a new a-labeled
edge pointing to the new node is added to the current state tree. More precisely, for a non-empty
path p, let up(p) be the sequence of labels of p without the last label, and last(p) be the last label of
the sequence of p. For a state tree S, a path p in S, and a time t ∈ N0, starting a TO is defined as

start(S, p, t)
def
= 〈N ∪ {n1},E ∪ {n

b
−→ n1},`∪ {n1 7→ (t,⊥)}, r〉

42 Chapter 4. A Declarative Language for Multimedia Interactive Scenarios

where n1 /∈N , n= targetS(up(p)), and b = last(p).
As an example, in Figure 4.5 we illustrate the starting of the structure G. Observe that the opera-

tion start(S, G, 8) updates the state tree S by adding a new node G whose start time and stop time
are, respectively, 8 and ⊥ (i.e., undefined).

F WS

S

F WS G

S′start(S, G, 8)

ts(G) = 8
te(G) =⊥

FIGURE 4.5: Operation start(S, G, 8) over the state tree S. It adds a new node to S whose start time is 8.

Stopping a TO. Intuitively, when a TO stops its stop time is updated with the current time of execu-
tion. Moreover, if the TO is a structure, its children also must stop at the same time. For a state tree
S, a path p in S, and a time t ∈ N0, stopping a TO is defined as

stop(S, p, t)
def
= 〈N ,E ,`Ã− {n 7→ (ts(n), t) | n ∈ des(targetS(p))∧ te(n) =⊥}, r〉

where des(v) denotes the set containing v and its descendants in the state tree S.
We illustrate in Figure 4.6 the stopping of the structure G. As can be seen, in the state tree

S the structure G started at time 8 and it is currently running. Then, by applying the operation
stop(S, G, 15), the stop time of the node G in the state tree S is updated to 15. Thus, the new state
tree S′ denotes that the structure G stopped at time 15.

F WS G

S

F WS G

S′stop(S, G, 15)

ts(G) = 8
te(G) =⊥

ts(G) = 8
te(G) = 15

FIGURE 4.6: Operation stop(S, G, 15) over the state tree S. It updates the stop time of the node G to 15.

4.2.2 Structural Operational Semantics

The structural operational semantics (SOS) [Plotkin 2004] of REACTIVEIS considers two kind of re-
duction relations, −→ and =⇒, parametric on the program tree P. Recall that the input of the
program is a set of messages produced by the environment and the output is the set of messages the

program must produce during a time-unit. Hence, the observable transition 〈S, t〉
I ,O
=⇒P 〈S′, t + 1〉

means that at time t, the state tree S on input I reduces in one time unit to S′ and output O. The
observable transitions are obtained from finite sequences of internal transitions. Since our opera-
tional semantics is based on the synchronous hypothesis [Halbwachs 1998], such internal transition
takes no time and represents how the state S is gradually updated by starting/stopping TOs. It is
important to notice that the changes in the state of the scenario are only visible at the end of the
time-unit, i.e., it is assumed that internal transitions cannot be directly observed.

The internal transition 〈Si , O〉I ,tS −→P 〈S′i , O′〉I ,tS means that, given that the input in the current
time-unit is I and the initial state is S, the state Si moves to S′i possibly adding new messages to the

4.2. Operational Semantics 43

set O leading to O′. Before formally defining the operational semantics of REACTIVEIS, we require
to introduce some notations and definitions. First, we use L(T) to denote the set of all paths in the
tree T including ε, and we define the set of TOs that are currently running (i.e., nodes in the state
tree whose stop time is undefined) as

palive(S)
def
= {p | p ∈ L(S)∧ te(targetS(p)) =⊥}

where S is a state tree.
Moreover, let children(T, p) be the set of paths of a tree T from the root node to the children

of the ending node of p (i.e., targetT (p)). Since a TO can only start if its parent is running and it
has not stopped yet, we define the function canStart in order to compute the TOs that possibly can
start. That is, paths in the program tree targeting to nodes which are not in the state tree and whose
parents are currently running. Such function is defined as

canStart(P, S)
def
= {p | pparent ∈ palive(S)∧ p ∈ children(P, pparent)} \ L(S)

where P is a program tree and S is a state tree.
Finally, we define when a constraint F (i.e., a formula built from the CS) specifying the starting

or the stopping of a TO is satisfied by a configuration of the form 〈P, S, I , t〉 where P is a program
tree, S is a state tree, I is a set of inputs, and t is the time of execution. For this purpose, we define
in Figure 4.7 the semantics for 〈P, S, I , t〉 ` F .

〈P, S, I , t〉 ` true

〈P, S, I , t〉 ` WaitFromStart(p, t1, t2) iff ∃n · n ∈ N(S)∧ n= targetS(p)∧ t1 ≤ t − ts(n)≤ t2

〈P, S, I , t〉 ` WaitFromEnd(p, t1, t2) iff ∃n · n ∈ N(S)∧ n= targetS(p)∧ te(n) 6=⊥∧ t1 ≤ t − te(n)≤ t2

〈P, S, I , t〉 ` EndScenario iff ∀p · p ∈ children(P,ε)⇒ te(targetS(p)) 6=⊥

〈P, S, I , t〉 ` WaitEvent(e) iff e ∈ I

〈P, S, I , t〉 ` F ∧ G iff 〈P, S, I , t〉 ` F and 〈P, S, I , t〉 ` G

〈P, S, I , t〉 ` F ∨ G iff 〈P, S, I , t〉 ` F or 〈P, S, I , t〉 ` G

FIGURE 4.7: Semantics of `.

Now we are ready to introduce the operational semantics of REACTIVEIS that is depicted in Fig-
ure 4.8.

• The rule RSTART says that a TO is executed only if: (1) it has not yet been executed; and (2) its
start condition is satisfied. Premise (1) is ensured with the aid of the set canStart(S, P) ex-
plained before. Premise (2) is asserted by means of the relation 〈P, S, I , t〉 ` F defined in Fig-
ure 4.7.

• The rule RSTOP dictates that a TO is stopped only if: (1) it is currently being executed; and
(2) its stop condition is satisfied. Premise (2) is similar as in the rule RSTART. Premise (1) is
ensured with the aid of the set

canStop(S)
def
= palive(S)

that contains the nodes in the state tree S whose stop time is not defined (i.e., it is currently
running).

• The rule ROBS says that an observable transition labeled with (I , O) from the state tree S,
program tree P, and time t is obtained from a terminating sequence of internal transitions from

44 Chapter 4. A Declarative Language for Multimedia Interactive Scenarios

〈S,;〉I ,tS to 〈S′, O〉I ,tS where the set of outputs is empty at the beginning. S′ is the initial state
of the next time unit and the current time of execution t is incremented by one. Additionally,
the program tree remains the same.

RSTART

p ∈ canStart(S, P) 〈P, S, I , t〉 ` cs(n)

〈St, O〉I ,tS −→P 〈start(St, p, t), O ∪ {ms(n)}〉
I ,t
S

where n= targetP(p)

RSTOP

p ∈ canStop(S) 〈P, S, I , t〉 ` ce(n)

〈St, O〉I ,tS −→P 〈stop(St, p, t), O ∪ {me(n)}〉
I ,t
S

where n= targetP(p)

ROBS

〈S,;〉I ,tS −→
∗
P 〈S

′, O〉I ,tS 6−→P

〈S, t〉
I ,O
=⇒P 〈S′, t + 1〉

FIGURE 4.8: Rules for the internal reduction −→ and the observable reduction =⇒. The semantics of ` is
given in Figure 4.7.

Notice, REACTIVEIS provides a clear and simple operational semantics based on tree-like struc-
tures. This representation of execution states and the operational semantic rules give a faster and
more concrete guidance to the implementer on how a scenario should be executed without deal-
ing with other more abstract models like Petri Nets. Moreover, these features allowed us to eas-
ily give a precise description of the behavior of interactive scenarios to engineers and artists. For
instance, we implemented in the OCAML5 programing language an interpreter that follows the op-
erational semantics rules in Figure 4.8 and shows the state tree corresponding to each state of ex-
ecution. The reader can found the full implementation and documentation of the interpreter at
https://gitlab.com/himito/ReactiveIS.

4.2.3 Properties of the Operational Semantics

In the following we state some properties of the operational semantics described above. Among
them, we shall prove that for all states and input, every sequence of internal transitions is monotone.
Furthermore, the only non-determinism of REACTIVEIS programs is due to the messages provided
by the environment. Then, we shall prove that the observable relation is indeed a function. In the
following, we shall use γ,γ′ to range over configurations of the form 〈Si , O〉I ,tS .

We start by showing that the internal transitions are monotone. That means that if a rule can be
applied in a configuration γ, then the same rule can be applied in any extension of this configuration
(that contains additional information).

Proposition 4.1 〈Monotonicity〉
For any REACTIVEIS program P and valid state S, if 〈Si , O〉I ,tS −→P 〈S′i , O′〉I ,tS then:

• O ⊆ O′, and

• Si is homomorphic to S′i . Moreover, S′i is a valid state of P (i.e., S′i is homomorphic to P).

PROOF: The proof proceeds by induction on the derivation −→P with case analysis on the last rule
applied. By simple inspection, we know that the rules RSTART and RSTOP only add elements to O.
Then (1) holds. As for (2), if S is a valid state of P, then there exists a homomorphism f relating S

5Ocaml website: http://ocaml.org

https://gitlab.com/himito/ReactiveIS
http://ocaml.org

4.3. Logical Characterization 45

and P. Let us analyze the rules RSTART. Assume that p is the path of a TO to be started. By definition
of canStart(S, P), we know that the parent of the ending node of p is currently being executed.
Moreover, by definition of start(S, p, t), the node denoted by p is located right below its parent
(since p is a path in the tree). Hence, there exists a homomorphism f ′ between S′i and Si . In rule
RSTOP, the set of nodes and edges is not modified (only the stop information of the ending node of
p). Then, trivially Si is homomorphic to S′i .

We shall say that a TO p is enabled in a configuration γ if p triggers a STOP/START reduction. The
next Lemma shows that firing an event during a time-unit does not disable other events. This fact
will be later used to prove that REACTIVEIS is deterministic.

Lemma 4.1 〈TO-Potentiality〉
Consider a configuration γ where two different TOs p, p′ are enabled. Assume also that γ −→P γ

′ using
the TO p. Then:

• p is not enabled at γ′, and

• p′ is enabled at γ iff p′ is enabled at γ′.

PROOF: To prove (1), note that operations canStart(S, P) and canStop(S) guarantee that p can-
not be started/stopped again. As for (2), note that the enabled conditions depend only on the initial
state S. Hence, p′ is enabled at γ iff it is enabled at γ′.

Finally, we show that the internal transitions are confluent, which guarantees that no matter in
what order the rules are applied, the result is always the same.

Lemma 4.2 〈Confluence〉
For any REACTIVEIS program P and valid state Si , if 〈Si , O〉I ,tS −→P γ1, 〈Si , O〉I ,tS −→P γ2 and γ1 6= γ2,
then there exists γ3 such that γ1 −→P γ3 and γ2 −→P γ3.

PROOF: Assume that 〈Si , O〉I ,tS −→P γ1, 〈Si , O〉I ,tS −→P γ2. If γ1 6= γ2 we have to consider 4 cases:
both reductions are STOP-reductions; both reductions are START-reductions; one reduction corre-
sponds to the START rule and the other to the STOP rule; and vice versa. In the first two cases, since
γ1 6= γ2, it must be the case that the selected TO p in the reductions is different. By using Lemma 4.1,
we can show that there exists γ3 such that γ1 −→P γ3 and γ2 −→P γ3.

From the previous lemma we straightforwardly deduce the following corollary.

Corollary 4.1 〈Determinism〉

For all state S and input I, if 〈S, t〉
I ,O1
=⇒P 〈S′1, t ′〉 and 〈S, t〉

I ,O2
=⇒P 〈S′2, t ′〉 then O1 = O2 and S′1 = S′2.

PROOF: Directly from Lemma 4.2.

4.3 Logical Characterization

In this section we present a logic characterization of REACTIVEIS programs as formulas in Intuitionistic
Linear Logic with Subexponentials (SELL) [Nigam 2013].

The formula !a F in SELL means that F is marked with a given modality a. The index a is taken
from a poset 〈I ,�〉 (i.e., the subexponential signature) and it can be interpreted as a spatial location
or a time-unit [Nigam 2013]. Here, we shall mark the formulas with subexponentials of the form
t.x where t represents the current time-unit and x can represent either the environment (i.e., the
inputs), an observable action (i.e., the outputs) or information about the state of the system. We
describe the above marks in Table 4.1.

46 Chapter 4. A Declarative Language for Multimedia Interactive Scenarios

TABLE 4.1: Subexponentials used in the logical characterization of REACTIVEIS programs.

Syntax Meaning Example

!t.i F F is an input from the environment !t.i evt(mouse1) means that the message
mouse1 was sent by the environment

!t.o F F is an observable action !t.o msg(m) means that the
starting/stopping message m was added

!t.s.p F F represents information about the state
of the temporal object p

!t.s.Astate(−,−) means that A has not
been started yet

Following [Nigam 2013], the structure of the subexponentials to deal with temporal modalities
must consider subexponentials of the shape t and t+. The former represents a given time-unit t
while the latter is used to store formulas valid from the time-unit t on. The structure is despicted
in Figure 4.9. Note that the subexponentials of the shape t.i and t.o are unrelated. The subexpo-
nentials of the shape t.s preserve the hierarchical structure of the scenario. The subexponential T I
(which is greater than any t.i) will be used to define the encoding of the environment. Finally, the
subexponential T P (which is greater than any t.p) will be used to store the encoding of the TOs.

0+

0 1+

1 2+

2 3+

3

t

t.i t.s.S

t.s.A t.s.B t.s.C

t.s.D t.s.E

t.o t.p

where is defined ast

TI TP

FIGURE 4.9: Subexponential structure 〈I ,�〉 defined for the encoding of REACTIVEIS programs.

The advantage of using subexponentials is that we neatly split the logical context in a sequent. In
our particular case, the context is split into different time-units and each time-unit stores information
about the inputs from the environment (t.i), observable actions (t.o), and information about the state
of the system (t.s). To better understand this idea, consider the following derivation:

!R

!4.i evt(e2), !4.i evt(e3) −→ !4.i evt(e3)

!3.i evt(e1), !4.i evt(e2), !4.i evt(e3), !4.s.Astate(5, 7) −→ !4.i evt(e3)

Intuitively, we are trying to prove that the event e3 ocurred in the time-unit 4. The introduction
rule for ! (i.e., the promotion rule !R) forces to delete (weaken) from the context all the formulas
with subexponentials not related to 4.i. Then, we cannot use the information available on time-unit
3 (i.e., !3.i evt(e1)) nor the information about the state of the system (i.e., !4.s.Astate(5, 7)).

Next, we describe the enconding of REACTIVEIS programs in SELL.

Encoding Inputs and Outputs. Let us start encoding the inputs and outputs of REACTIVEIS, i.e., the
set of messages the program can receive and send. For any message mi , we define a constant symbol

4.3. Logical Characterization 47

m_i (e.g., mouse1). We also consider the unary predicates evt(·) and msg(·) to represent, respec-
tively, the fact that an input and an output have been added. Hence, a set of input (resp. output)
messages I = {m1, m2, . . . , mn} (resp. O = {m′1, m′2, . . . , m′m}) is encoded in SELL as:

¹Iºt = !t.i evt(m1)⊗ !t.i evt(m2)⊗ . . .⊗ !t.i evt(mn)

¹Oºt = !t.o msg(m′1)⊗ !t.o msg(m′2)⊗ . . .⊗ !t.o msg(m′m)

Intuitively, the messages from the set I (resp. O) are available in the logical context t.i (resp. t.o).

Encoding Textures. The encoding of a texture defines three kind of formulas: ctr to control when
it starts and stops; str to handle the action of starting the texture; and stp to handle the action of
stopping the texture. Such formulas modify the state of the texture in the current time-unit and define
its state for the next time-unit. The interpretation of textures and structures is similar. However, in
the case of a structure S, we need to control also the execution of its children.

We start defining the aforementioned formulas for a given texture A. Recall that functions ms and
me are defined in Definition 4.1, and they denote, respectively, the starting and stopping messages
of a texture.

ctr(A, t)
def
= !t.s.AP_STOP−◦ stop_imm(A, t) &

!t.s.AP_RUN−◦ decide(A, t) &

!t.s.AP_IDLE−◦∀n, m.(!t.s.Astate(n, m)−◦ set_state(A, n, m))

where:

set_state(A, n, m)
def
= !t.s.Astate(n, m)⊗ !(t+1).s.Astate(n, m)

stop_imm(A, t)
def
=∀n, m.(!t.s.Astate(n, m) −◦

n= −−◦ set_state(A,−,−) &

(n 6= −⊗m= −)−◦ (set_state(A, n, t)⊗ !t.o msg(me(A))) &

(n 6= −⊗m 6= −)−◦ set_state(A, n, m))

decide(A, t)
def
=∀n, m.(!t.s.Astate(n, m) −◦

n= −−◦ str(A, t) &

(n 6= −⊗m= −)−◦ stp(A, t) &

(n 6= −⊗m 6= −)−◦ set_state(A, n, m))

The predicate P_STOP is added by the parent of A to signal that A must stop immediately. As
we shall see, this happens when the parent of A stops at time-unit t. P_RUN says that the parent
of A is currently running and P_IDLE signals that the parent of A has already stopped or it has not
started yet. Hence, the formula ctr verifies first what was the decision of A’s parent and proceeds
accordingly: it stops immediately, it decides whether to start, to stop or it simply copies the state to
the next time-unit.

The formula controlling the start of the texture A is:

str(A, t)
def
=condition_s−◦ start(A, t) &

default_s−◦ set_state(A,−,−)

start(A, t)
def
=set_state(A, t,−)⊗ !t.o msg(ms(A))

The formula condition_s corresponds to the interpretation in SELL of the starting condition
of A, ¹cs(A)ºt , where ¹·ºt is given in Figure 4.10. We recall that functions cs and ce are defined
in Definition 4.1, and they denote, respectively, the starting and stopping conditons of a TO.

48 Chapter 4. A Declarative Language for Multimedia Interactive Scenarios

¹trueºt =1

¹F ∧ Gºt =¹Fºt ⊗ ¹Gºt

¹F ∨ Gºt =¹Fºt ⊕ ¹Gºt

¹WaitFromStart(A, k, l)ºt =∃n, m.(!t.s.Astate(n, m)⊗ n+ k ≤ t ⊗ n+ l ≥ t)

¹WaitFromEnd(A, k, l)ºt =∃n, m.(!t.s.Astate(n, m)⊗m+ k ≤ t ⊗m+ l ≥ t)

¹EndScenarioºt =
⊗

p ∈ chil(R(P))

∃n, m.(!t.s.p state(n, m)⊗m 6= −)

¹WaitEvent(e)ºt = !t.i evt(e)

FIGURE 4.10: Interpretation in SELL of conditions in REACTIVEIS programs.

The formula default_s corresponds to the condition when none of the starting conditions can
be satisfied. Such formula corresponds to ¹cs(A)º⊥t where ¹·º⊥t is depicted in Figure 4.11.

¹trueº⊥t =0

¹F ∧ Gº⊥t =¹Fº⊥t ⊕ ¹Gº⊥t
¹F ∨ Gº⊥t =¹Fº⊥t ⊗ ¹Gº⊥t

¹WaitFromStart(A, k, l)º⊥t = !t.s.Astate(−,−) ⊕

∃n, m.(!t.s.Astate(n, m)⊗ (n+ k > t ⊕ n+ l < t))

¹WaitFromEnd(A, k, l)º⊥t =∃n.(!t.s.Astate(n,−)⊗ n 6= −) ⊕

∃n, m.(!t.s.Astate(n, m)⊗ (m+ k > t ⊕m+ l < t))

¹EndScenarioº⊥t =
⊕

p ∈ chil(R(P))

∃n.(!t.s.p state(n,−))

¹WaitEvent(e)º⊥t = !t.i evt⊥(e)

FIGURE 4.11: Interpretation in SELL of non-fullfillment of conditions in REACTIVEIS programs.

We note that the definition of default_s requires that the environment (defined below) pro-
vides either that an event happened (e.g., !t.i evt(e)) or it did not happen (e.g., !t.i evt⊥(e)).

The formulas defining how textures have to be stopped are defined similarly:

stp(A, t)
def
=condition_e−◦ stop(A, t) &

default_e−◦∀n.(!t.s.Astate(n,−)−◦ set_state(A, n,−))

stop(A, t)
def
=∀n.(!t.s.Astate(n,−) −◦
set_state(A, n, t)⊗ !t.o msg(me(A)))

where condition_e corresponds to ¹ce(A)ºt , and default_e corresponds to ¹ce(A)º⊥t .

Encoding Structures. The encoding of a structure is similar to that of textures but it requires to take
control of the execution of its children. For that, we modify the above definitions of start(·) and

4.3. Logical Characterization 49

stop(·) as follows:

start(A, t)
def
=set_state(A, t,−)⊗

⊗

p∈ suc(A)

!t.s.p P_RUN

stop(A, t)
def
=∀n.(!t.s.Astate(n,−) −◦

set_state(A, n, t)⊗
⊗

p∈ suc(A)

!t.s.p P_STOP)

Observe that we add the predicates P_RUN and P_STOP to all the successors of the structure A.
Moreover, it can be the case that A cannot start in the current time-unit because its starting conditions
do not hold. In this case, the successors of A must be notified that A is in an idle state:

str(A, t)
def
=condition_s−◦ start(A, t) &

default_s−◦ (set_state(A,−,−)⊗
⊗

p∈ suc(A)

!t.s.p P_IDLE)

Similarly, if the structure A cannot stop in the current time-unit, the successors must be notified
that A is currently running:

stp(A, t)
def
=condition_e−◦ stop(A, t) &

default_e−◦ (∀n.(!t.s.Astate(n,−)−◦ set_state(A, n,−))⊗
⊗

p∈ suc(A)

!t.s.p P_RUN)

Finally, if the parent of the structure A is idle, A cannot perform any action and so its successors:

ctr(A, t)
def
= !t.s.AP_STOP−◦ stop_imm(A, t) &

!t.s.AP_RUN−◦ decide(A, t) &

!t.s.AP_IDLE−◦ (∀n, m.(!t.s.Astate(n, m)−◦ set_state(A, n, m))⊗
⊗

p∈ suc(A)

!t.s.p P_IDLE)

Encoding the System’s States. As we have shown, the state of the system is represented in SELL by
the predicate state(·). Then, a state tree S of a program tree P is encoded as:

¹Sºt =
⊗

p∈N(S)

!t.s.p state(ts(p), te(p))⊗
⊗

p∈N(P)\N(S)
!t.s.p state(−,−)

We recall that functions ts and te are defined in Definition 4.2, and they denote, respectively, the
starting and stopping times of a TO. Note that any p ∈ N(P) \ N(S) corresponds to a TO that has
not already started.

Encoding the Environment. The encoding requires that, at any time, it is possible to detect whether
a given (external) event happened or not. Hence, the most general environment can be defined as:

env
def
= ål : T I .(

⊗

m∈M
!l (m⊕m⊥))

Recall that t.i � T I (see Figure 4.9). The universal quantification on subexponentials “ål : T I”
says that the formula !l (m⊕m⊥) is available in any time-unit, more precisely, in any subexponential
of the form t.i. Here, m⊕m⊥ means that either m was detected or not.

Encoding a REACTIVEIS Program. A REACTIVEIS program is encoded as the formula

¹Pº= !0+ å l : T P.(
⊗

p∈N(P)

!l ctr(p, l))

Intuitively, the subexponential “0+” (along with the universal quantification “ål : T P”) allows
us to copy, as many times as needed, the definition of the TOs in each time-unit.

50 Chapter 4. A Declarative Language for Multimedia Interactive Scenarios

4.3.1 Correctness of the Encoding

Now, by relying on the focused proof system for SELL [Nigam 2013], we can show that observable
steps of the operational semantics correspond to derivations in SELL and vice-versa.

Before we present the proof, let us classify the formulas produced by our encoding as guards (G)
and programs (P):

G ::= !sA | G ⊗ G | G ⊕ G | ∃x .G (4.1)

P ::= !sA | P ⊗ P | P & P | G −◦ P | ∀x .P (4.2)

Guards will appear on the right hand side of the sequent while programs will appear on the
left hand side. This separation of formulas is important to prove the adequacy result. The idea is
that once we are focused on a formula representing a TO (i.e., a P-formula), we have to completely
decompose it in a positive phase of the proof. In the end of this phase, what we observe is that the
state changed exactly as the operational rules dictate.

Theorem 4.1 〈Adequacy〉

Let P be a REACTIVEIS program. Then, 〈S, t〉
I ,O
=⇒P 〈S′, t + 1〉 iff the sequent ¹Pº,¹Sºt ,¹Iºt −→

¹S′ºt+1 ⊗ ¹Oºt is provable in SELL.

PROOF: We show that the introduction of any formula, following the focused discipline, corresponds
exactly to applying one of the operational rules. Consider that we focus on a ctr(A, t) formula
obtaining the derivation below:

&L

−◦L

Π

Γ ′′
G
−→

Ψ

Γ ′′′ −→
P

Γ ′
G−◦P
−−−→

Γ
ctr(A,t)
−−−−→ H

The main connective in ctr is & and the focusing persists in one of the choices. In this case, G =
!t.s.A G′, where G′ can be one of the predicates P_STOP, P_RUN or P_IDLE. Since the subexponential
t.s.A is unrelated to the others, the derivation Π must finish by proving G′ from the context Γ ′′ that
only contains facts about A (due to the promotion rule !s

R).
Derivation Ψ on the right hand side proceeds similarly. Here P can be a P-formula (see Equa-

tion 4.2) of the shape P & P, G −◦ P or ∀x .P. In all these cases, we have negative connectives (on
the left) that have to be introduced in a positive phase. Hence, the focusing persists on P and we do
not have other choice that continuining decomposing this formula.

Consider the case where P is the formula str(A, t). We then observe the following derivation:

&L

−◦L

Π1

Γ ′′ −→
G1

Ψ1

Γ ′′′
P1−→

Γ ′
G1−◦P1−−−−→

Γ
str(A,t)
−−−−→

Here G1 can be the formula condition_s or default_s. In any case, this formula is a G-
formula (see Equation 4.1). Therefore, the focusing persists and we end up a situation similar to Π
above.

The formula P1 on the right hand side takes the form !s A1 ⊗ . . .⊗ !s An where Ai is a predicate.
Since ⊗ and !s on the left has to be introduced in the negative phase, what we observe is that we
lost focusing and, in a negative phase, all the formulas of the shape msg(·) and state(·) are added
into the context. Thus, in a flip of the polarity, we observe that the state is modified exactly as the
operational rules dictate.

CHAPTER5
A Framework for Multimedia Interactive

Scenarios

Contents
5.1 Modeling Interactive Scenarios in Timed Automata 52

5.1.1 Temporal Relations . 53

5.1.2 Interaction Points . 55

5.1.3 Temporal Objects . 58

5.1.4 Hierarchical Interactive Multimedia Scenarios 60

5.2 Automatic Verification of Interactive Scenarios . 60

5.3 True Parallel Execution of Interactive Scenarios . 61

5.4 Synchronous Interpreter of Interactive Scenarios 65

5.4.1 Intuitive Presentation of the REACTIVEML Language 65

5.4.2 Implementation of Interactive Scenarios in REACTIVEML 67

5.4.3 Real-Time Visualization of Interactive Scenarios 72

Several researchers have made many efforts to extend interactive scenarios with branching be-
havior (e.g., process calculi [Olarte 2009b; Toro 2014], Petri nets [Allombert 2009]), but there is no
practical solution for the automatic verification and real-time execution of scenarios. In this chapter,
we present a TA [Alur 1994] based framework to address these challenges. As depicted in Figure 5.1,
our framework is divided into three phases that will be described below: composition, verification
and interpretation.

We model interactive scenarios as a network of timed automata. Our model extends the current
model of interactive scenarios with IPs guarded by conditions, allowing to express branching behav-
ior. Moreover, we take advantage of the mature and efficient tools for the verification of TA models
such as UPPAAL1 to simulate and automatically verify the written scenarios. We shall present a tool
to systematically create a bottom-up TA model from any scenario written in the sofware I-SCORE,
and we shall show some examples of properties verified in UPPAAL. Once the scenario satisfies the
composer’s requirements, the scenario can be synthesized into a reconfigurable hardware (i.e., an
FPGA) in order to guarantee its real-time and low-latency execution. In this dissertation, we shall
not deal with the implementation of the TA model in code C/C++ because there are specialized
tools to automatically translate TA models into executable code, e.g., the tool TIMES2 [Amnell 2002;
Amnell 2003].

Finally, we shall present a synchronous interpreter for interactive scenarios implemented in the
REACTIVEML3 programming language. As we shall see, REACTIVEML allows for the dynamic creation

1UPPAAL website: http://uppaal.org/.
2TIMES website: http://www.timestool.com/
3REACTIVEML website: http://rml.lri.fr/

51

http://uppaal.org/
http://www.timestool.com/
http://rml.lri.fr/

52 Chapter 5. A Framework for Multimedia Interactive Scenarios

i-score
scenario

IS2UPPAAL

UPPAAL model
Property
Checking

UPP2C UPP2HDL

C/C++ Code VHDL/System
Verilog Code

Composition

Verification

Interpretation

FIGURE 5.1: Proposed framework: from I-SCORE for composition to UPPAAL for verification to generation
code for execution. A similar flow is proposed for the development of medical devices in [Pajic 2014].

of processes, opening the possibility of enhancing interactive scenarios with live coding (i.e., the
creation of TOs and TRs during execution). Moreover, we shall introduce a novel graphical interface
using the tool INSCORE that will allow to show, in real-time, the true state of execution of interactive
scenarios.

To our knowledge, this is the first framework for interactive scenarios allowing an automatic
verification and a true parallel execution of them. Moreover, the graphical interface capturing in
real-time the dynamic execution of scenarios has not been proposed before. In fact, it was a starting
point for a master stage [Vuaille 2014] in the project INEDIT4 looking for its integration to the
software I-SCORE.

5.1 Modeling Interactive Scenarios in Timed Automata

In this section we introduce a formal specification of interactive scenarios using Timed Automata
(TA) [Alur 1994]. Most importantly, we shall enhance interactive scenarios with the notion of condi-
tionals (i.e., branching behavior) and we open the possibility of using matured and efficient tools for
their automatic verification. Our approach is based on the work in [Echeveste 2013] and follows the
modeling patterns described in [Behrmann 2004] for the sake of designing a clear and structured
model.

Intuitively, a scenario is comprised of several temporal objects (TOs) and temporal relations (TRs)
which can be seen as several processes running in parallel and whose start and stop times depend on
the behavior and synchronization among them. For instance, a process controlling the brightness of
a lamp (texture L) starts five seconds after (temporal relation TR) the stopping of a process playing a
song (texture S). Thus, we can model a scenario as a network of TA in which TOs and TRs are modelled
as TA processes. The starting and stopping of each timed automaton (i.e., the temporal organization
of the scenario) is defined by its synchronization with the environment and the other timed automata.
Notice that a process may synchronize with other processes at the same time (e.g., the stopping of
a TO could define the starting of one or more TRs simultaneously), then we shall use broadcast

4The project INEDIT (Interactivity in the Authoring of Time and Interaction) was financed by the French National Re-
search Agency (ANR). The goal of this project was to leverage the scientific foundations of music and sound design tools
with explicit directives, to open up new creative dimensions coupling authoring of time and interaction. The reader may
find further details at http://inedit.ircam.fr.

http://inedit.ircam.fr

5.1. Modeling Interactive Scenarios in Timed Automata 53

channels to enable this kind of synchronization.
Next, we shall describe in more detail the TA model for interactive scenarios. First, we shall intro-

duce the timed automaton modeling temporal relations. Then, we present the model for interaction
points and its extension for handling conditions. Finally, we present the timed automata modeling
TOs and interactive scenarios.

5.1.1 Temporal Relations

We recall that TRs can be classified depending on their duration. Intuitively, a rigid TR can be seen
as a simple delay between two TOs, and a semi-flexible or flexible TR can be seen as a delay whose
duration is partially defined by an interval of possible values bounded by a minimum and a maximum
duration. Next, we shall introduce the TA model for the specification of TRs. It is important to note
that it is not necessary to define a model for a TR whose duration is zero (i.e., synchronization)
because we can synchronize the starting/stopping of two or more TOs by means of complementary
actions and broadcast channels.

Rigid Temporal Relations. We show in Figure 5.2 the timed automaton modeling a rigid TR. It
starts in the state idle and remains on it until the action event_s is triggered. This action starts
the execution of the TR. Once this occurs, the timed automaton stays in the state wait until the
duration γ0 elapses (i.e., t= γ0). Notice that the above behavior represents the delay generated by
the TR. Once the delay finishes, the timed automaton moves to the state finished and triggers the
action event_e1 and at the same time-unit the action event_e2 denoting, respectively, the elapsing
of the minimum duration and the stopping of the TR. These events may define the starting or the
stopping of other timed automata (e.g., other TOs). We show a summary of the intuitive meaning of
each element of the model in Table 5.1.

t ≤ γ0

idle wait

skipped finished

killed

t≥ 0, event_s?, {t= 0}

true, kill_p?, ; tr
ue

, kill_
p?, ;

t
r
u
e,

sk
ip_p?,;

t
=
γ

0 ,
even

t_e
1 !,;

true, skip!, {t= 0} true, event_e2!, {t= 0}

true, kill!, {t= 0}

FIGURE 5.2: Timed automaton modeling a rigid temporal interval where γ0 is a parameter denoting its dura-
tion and t is its local clock.

Let us explain the remaining states of the model through an example. Imagine the TR that defines
the start time of the texture Light Beam (LB) in Figure 3.3, and its parent (i.e., the structure Group

(G)). Moreover, recall that when a structure stops all its children must immediately stop. Then, the
TR is “killed”5 by the action kill_p that is triggered by its parent (i.e., structure G) at any state of
execution6. Furthermore, the timed automaton triggers, at the same time, the action kill in order
to suddenly stop other timed automata. As we shall see, the above is important when we use the
model for TRs to specify TOs. For example, the action kill is used for the structure G in order to
stop its children. Later, we shall introduce the actions skip_p and skip.

5We use the term kill to denote the sudden stop of the process as a result of the stopping of its parent.
6We omitted to add a transition labeled with an action kill_p from committed or urgent states to a final state because

these kind of states do not take time and the transition leads to the end of the timed automaton.

54 Chapter 5. A Framework for Multimedia Interactive Scenarios

TABLE 5.1: Summary of the elements of the timed automaton in Figure 5.2.

Type Name Meaning
parameter γi duration of the TR
variable t elapsed time from the start of the TR
input action event_s action to start the TR
input action kill_p action to suddenly stop the TR by its parent
input action skip_p action to omit the execution of the TR
output action kill action to suddenly stop other TRs and TOs
output action skip action to omit the execution of other TRs and TOs
output action event_e1 action to notify the elapsing of the minimum duration of the TR
output action event_e2 action to notify the stopping of the TR

Flexible and Semi-Flexible Temporal Relations. We next introduce in Figure 5.3 the timed au-
tomaton modeling both a flexible and a semi-flexible TR. Recall that the difference between these
two types of TRs is that the maximum duration of the former is not bounded (i.e., infinity). Similar
to the above model, the timed automaton starts in the state idle and moves to the state wait_min
when the action event_s is triggered. It stays in that state until the minimum duration γ0 elapses
(i.e., t= γ0). Once this occurs, the timed automaton triggers the action event_e1 and goes either
(case 1) to the state flexible if the maximum duration γ1 is infinity (i.e., γ1 < 0), or (case 2) to
the state semi_flexible (i.e., γ1 ≥ 0) if the maximum duration is bounded. The action event_e1
may synchronize with other timed automata waiting for the elapsing of the minimum duration of
the TR.

t ≤ γ0

t ≤ γ1

idle wait_min

skipped finished

killed

flexible semi flexible

t≥ 0, event_s?, {t= 0}

t
r
u
e,

sk
ip_p?,;

true, skip!, {t= 0} true, event_e2!, {t= 0}

true, kill!, {t= 0}

true, kill_p?, ;

true, kill_p?, ;

true, event_i?, ;

true, kill_p?, ;

tr
ue

, ev
en

t_
i?,
;

t=
γ 1

, τ
, ;

tr
ue

, k
ill

_p
?,
;

t
=
γ

0
∧
γ

1
<

0
, e

ve
n

t_
e 1

!,
; t=

γ
0 ∧
γ

1 ≥
0, event_e

1 , ;

FIGURE 5.3: Timed automaton modeling a flexible temporal interval where t is its clock, and γ0 and γ1 are
parameters denoting, respectively, its minimum and maximum duration.

In the case of a semi-flexible TR (case 2), the timed automaton waits for either the elapsing of
the maximum duration γ1 (i.e., t= γ1), or the triggering of the action event_i which stops the TR.
In the case of a flexible TR (case 1), it only waits for the triggering of the action event_i to stop.
As we shall see later, the action event_i can represent the triggering of an IP or the stopping of

5.1. Modeling Interactive Scenarios in Timed Automata 55

other TR. Once the TR finishes, the action event_e2 is immediately triggered in order to notify the
stopping of the TR. The remaining actions and states of the timed automaton denote the same as in
the model of a rigid TR.

Handling Temporal Relations. Composers usually define the start time of TOs by means of one or
more TRs. For instance, in Figure 3.3 the start time of structure G is defined by two semi-flexible
TRs. As we explained in Chapter 3, having several TRs defining the starting of a TO is the same as
having a TR whose minimum duration is defined by the elapsing of the minimum duration of all TRs
and whose maximum duration is defined by the stopping of one of them. Therefore, it is important
to have a mechanism to ensure the temporal constraints imposed by several TRs.

We define in Figure 5.4 a timed automaton responsible for maintaining these complex temporal
constraints that are imposed by n > 1 number of TRs. Therefore, the model is parametric to an n
number of TRs. The timed automaton starts in the state idle and waits for either the elapsing of the
minimum duration (i.e., action event_s1) or the stopping (i.e., action event_s2) of a TR. It incre-
ments the variable counter by one (i.e., counter++) each time a TR reaches its minimum duration.
This behavior is repeated until all TRs have reached their minimum duration (i.e., counter= n).
Once this happens, it moves to the final state and immediately triggers the action event_e allowing
for the synchronization with other timed automata (e.g., for starting of listening an IP or for starting
a TO).

idle

error

finished

t
r
u
e
, e

ve
n

t_
s 2

, ; t
r
u
e,

k
ill_p?,;

true, skip_p?, {counter++}
true, event_s1 ?, {counter++, skip_v = false}

counter < n, τ, ;

counter = n∧ skip_v = false, event_e!, ;

counter = n∧ skip_v = true, skip!, ;

FIGURE 5.4: Timed automaton for handling n > 1 temporal relations. The state error is reached when the
temporal constraint defined by the TRs cannot be satisfied by a possible execution of the scenario.

It is important to note that the timed automaton reaches the error state error if a TR stops before
all TRs have reached their minimum duration. That is, the temporal property defined by the TRs
cannot be satisfied by a possible execution of the scenario. The local variables counter and skip_v

are initialized with values 0 and true, respectively. The action kill_p denotes the same behavior
as we have already explained and skip_p will be described later.

5.1.2 Interaction Points

Intuitively, interactive points waits for events asynchronously triggered by the environment (e.g., the
performer) during the execution of the scenario. We recall that the system should maintain the
temporal constraints defined by the TRs each time an IP is triggered. In the model presented below,
we take advantage of the shared variables supported by UPPAAL in order to model the asynchronous
communication between the environment and the scenario. Additionally, we shall use these shared
variables to enhance interactive scenarios with conditionals (i.e., branching behavior).

Roughly speaking, we extend IPs with guards (i.e., conditions). Additionally, the events sent by
the environment now carry values which are evaluated with the guards imposed by the composer in

56 Chapter 5. A Framework for Multimedia Interactive Scenarios

order to enable or not the triggering of the IP. Henceforth, we shall call this kind of IPs as guarded
IPs. Let us explain this notion through the following example. Assume that the IP for starting the
texture F of the scenario in Figure 3.3 can be triggered only if the temperature of the environment is
greater than 20◦C. Therefore, the IP only can be triggered if both (1) the event is sent between the
minimum and the maximum duration of the TR defining its start time, and (2) the value carried by
the event (i.e., the temperature) satisfies the guard (i.e., temperature> 20). Moreover, following the
semantics of IPs with no guards, if the IP is not triggered before its maximum duration, it must be
triggered automatically at this time (i.e., urgent behavior). Nevertheless, the composer sometimes
wants to skip the triggering of the IP if it is not triggered before its maximum duration (i.e., non-
urgent behavior). In the case of guarded IPs, they can follow an urgent or non-urgent behavior
according to the decision of the composer. Observe that the skipping of the triggering of an IP will
cause the omission of the execution of the branch. For instance, imagine that the guarded IP of the
texture F described above is not triggered during the valid interval, then the texture F and the TR
with the structure G will not be executed. Thus, the starting of the structure will be defined only by
the TR with the texture WS.

Once the intuitive notions were introduced, we are ready to present the timed automaton to
model a guarded IP. As we can see in Figure 5.5, the timed automaton begins in the state idle and
waits for the action event_s in order to move to the state enabled and start listening the events
sent by the environment (e.g., the performer). As we have mentioned above, IPs start to listening
the external event when all the preceding TRs have reached their minimum duration. Hence, the
action event_s is synchronized with the event event_e from the timed automaton in Figure 5.4.
Then, the timed automaton remains “listening” for the event until either (1) the action event_e is
triggered or (2) the value carried by the event satisfies the condition. Case (1) represents the case
in which the IP is not triggered or the value does not satisfy the condition within the interval of time
defined by the TRs. The action event_e is synchronized with the action event_e2 triggered by the
timed automaton denoting a TR and representing its stopping (see Figure 5.2 and Figure 5.3). Thus,
depending on the behavior defined by the composer (i.e., urgent or non-urgent), the execution of
the branch will be omitted (i.e., action skip) or the IP will be triggered automatically (i.e., action
event_t). Finally, the timed automaton moves to its final state.

idle

finished

skipped enabled

timeout

cond = true

true, skip_p?, ; en= false, event_e?, ;

true, event_s?, {en= true}

en
=
tr
ue

, e
ve

nt
_e

?,
;t

r
u
e,

k
ill_p?,;

tr
ue

, s
ki

p!
, ;

tru
e, kill_p?, ;

urg = true, event_t!, ;

urg = false, skip!, ;

t
r
u
e,

even
t?,{co

n
d
=

co
n

d
itio

n()}

true, event_t!, {en= false}

true, event_e!, ;

FIGURE 5.5: Timed automaton modeling an interactive point.

On the other side, case (2) represents the case in which the IP is triggered because the event is
sent within the interval of time defined by the TRs and the guard is satisfied. For that, we defined
the function condition (explained below) in order to verify whether the value carried by the event

5.1. Modeling Interactive Scenarios in Timed Automata 57

(i.e., action event) satisfies or not the condition. The evaluation of the condition is stored in the
local variable cond and used in the location invariant of the following state. If the guard is satisfied
(i.e., the location invariant cond= true holds), then the IP is triggered (i.e., action event_t), and
at the same time, the action event_e is triggered in order to stop the TRs controlling the temporal
interval in which the IP can be triggered. Therefore, action event_e synchronizes with the action
event_i in the model for flexible and semi-flexible TRs (see Figure 5.3).

We next show in Program 5.1 the implementation of the function condition. Here, msg is a
shared variable storing the value carried by the event sent (i.e., action event) while op_id and
value are parameters of the timed automaton defining guards “msg op_id value”. For instance, to
specify a guard saying that the value of the event (e.g., the temperature) must be less than 20, we
set op_id = 2 and value = 20, i.e., msg < 20.

1 bool condition (){

2 if (op_id == 0) {return true;} // trigger

3 if (op_id == 1) {return msg == value;} // message = value

4 if (op_id == 2) {return msg < value;} // message < value

5 if (op_id == 3) {return msg <= value;} // message <= value

6 if (op_id == 4) {return msg > value;} // message > value

7 if (op_id == 5) {return msg >= value;} // message >= value

8 return false;
9 }

PROGRAM 5.1: Definition of the function condition. op_id and value are parameters of the timed
automaton defining the guard while msg is a shared variable storing the value of the event sent.

The action kill_p denotes the same behavior as we have already explained. The remaining
states are introduced through the following example. Assume that two new textures videoA and
videoB control the playing of two different videos whose starting depends on the lightning of a
room (i.e., an event that sends either light or dark). Thus, each texture has a guarded IP listening
for the same event during the same interval of time. However, the defined conditions are mutually
exclusive and only one IP will be triggered while the other one will be omitted. In this regard, we
use the shared variable en as a global flag for a set of IPs listening for the same event. The value of
en is changed to false when one of these IPs is triggered. Thus, the IPs in the set whose conditions
was not satisfied are skipped (i.e., the transition from the state enable to the state skipped with
the guard en= false and action event_e).

We recall that the skipping of the execution of a branch causes that all TRs and TOs of the branch
will be skipped. For this reason, each timed automaton presented so far models the above behavior
by leaving out its execution when the action skip_p is triggered. Furthermore, the timed automaton
propagates the skipping of the branch by triggering the action skip that is synchronized with the
action skip_p of other timed automata.

Interaction with the Environment. Composers allow the environment (e.g., the performer) to
interact with the scenario during performance by adding IPs. This interaction is carried out by
sending messages to the system asynchronously. We model this non-deterministic environment using
the timed automaton in Figure 5.6. Intuitively, it triggers the action event (i.e., it sends the event)
with an attached value (i.e., the parameter val) that is globally communicate by means of the shared
variable msg. The action is triggered at a non-deterministic time (i.e., the transition is not guarded
by clock constraints or synchronized with input actions) and it is synchronized with time automata
representing IPs waiting for this event. Many copies of this timed automaton may be instantiate in
order to represent different interactions with the environment.

58 Chapter 5. A Framework for Multimedia Interactive Scenarios

idle finished

true, event!, {msg = val}

FIGURE 5.6: Timed automaton modeling the non-deterministic interaction of the environment. The shared
variable msg allows the asynchronous communication between the environment and the scenario. The param-
eter val represents the value attached to the event.

5.1.3 Temporal Objects

Now, we shall introduce the timed automata modeling textures and structures. As we shall see, TOs
can be represented as TRs allowing us to create a simple, yet powerful, modular model for interactive
scenarios.

Textures and Multimedia Processes. As we explained in Chapter 3, a texture is the same as a TR,
but the former has an attached multimedia process that is executed in time by an external application.
In this regard, a texture with an IP defining its duration (i.e., an IP at the end) can be then modeled
using the timed automaton for a flexible or semi-flexible TR (see Figure 5.3). Otherwise, it is modeled
using the timed automaton for a rigid TR (see Figure 5.2).

Unlike the HTSPN model for interactive scenarios [Allombert 2009], we open the possibility of
controlling one or more multimedia processes with the same texture, thereby decreasing the number
of textures executed concurrently (i.e., a reduction in the size of the scenario). Intuitively, a mul-
timedia process is modeled as a list of values (parameters) associated with a synchronization time
at which they should be sent. Let us explain the above with the multimedia process shown in Fig-
ure 5.7. Imagine that the multimedia process controls the brightness of a lamp and it consists of
seven parameters that will be sent to an external device. Moreover, each parameter pi is sent at ∆
time after the point pi−1 when i ≥ 1 or after the starting of the texture when i = 0 (i.e., intra-stream
synchronization [Blakowski 1996]).

Brightness

100%

50%

30%

0%
p0

p1

p2

p3

p4

p5

p6

∆1 ∆2 ∆3 ∆4 ∆5 ∆6

FIGURE 5.7: Example of a multimedia process controlling the brightness of a lamp.

Before introducing the corresponding timed automaton, we show how to represent the param-
eters of a multimedia process. For that, we take advantage of the user defined data structures sup-
ported by UPPAAL. Roughly speaking, we defined the structure parameter_t which represents a
tuple containing the value of the parameter and its synchronization time. Therefore, a multimedia
process is a list of ordered parameter_t elements. For instance, the Program 5.2 defines the list
process_brightness that represents the multimedia process in Figure 5.7.

5.1. Modeling Interactive Scenarios in Timed Automata 59

1 typedef struct {

2 int value;

3 int offset;

4 } parameter_t;

5

6 parameter_t process_brightness[7] = {

7 {0,0}, {30,5}, {50,1}, {30,2}, {50, 2}, {30,2}, {0,5}};

PROGRAM 5.2: The data structure parameter_t represents the parameters of a multimedia process.
The list process_brightness defines the multimedia process in Figure 5.7.

Now we are ready to present the timed automaton for the specification of a multimedia process.
As it is presented in Figure 5.8, the timed automaton starts in the state idle and the beginning of
the multimedia process is synchronized with the starting of a specific texture by means of the action
start. Once this occurs, the timed automaton goes to the state sending in which the parameters of
the multimedia process mp (i.e., mp[i].value) begin to be sent respecting their time of synchroniza-
tion (i.e., t= mp[i].offset). The action send denotes the sending of the corresponding parameter
to the external application by means of the shared variable data. Recall that the variable mp repre-
sents the multimedia process and is defined as the structure in Program 5.2. The list of parameters
is traversed using the local variable i which is initialized in 0 and incremented by one (i.e., i++)
each time a value is sent. The multimedia process stops (i.e., it goes to the final state finished)
either if the action stop is synchronized with the stopping of a texture or all parameters have already
been sent (i.e., i= limit). The actions kill_p and skip_p denote the same behavior as we have
already explained.

idle

finished

sending

t≤mp[i].offset
t≥ 0, start?, {t= 0, i= 0}

t
r
u
e,

k
ill_p?,{t

=
0}

t
r
u
e,

sk
ip_p?,{t

=
0}

tr
ue

, k
ill

_p
?,
{t
=

0}

tr
ue

, s
to

p?
, {

t=
0}

t=
m

p[
i].

off
se

t∧
i=

lim
it,

se
nd

!,

{d
at

a
=

m
p[

i].
va

lu
e,

t=
0}

t=mp[i].offset∧ i< limit, send!,
{t= 0, data=mp[i].value, i++}

FIGURE 5.8: Timed automaton modeling a multimedia process. The list mp represents the multimedia process
and it is defined as in Program 5.2.

Structures. Intuitively, a structure defines the temporal organization of a set of TOs. For instance,
the structure G of the scenario in Figure 3.3 defines the starting of textures WH and LB. In addition,
the stopping of the structure produces the stopping of its children regardless of whether they are
running. It is important to note that TRs can only be defined between TOs in the same hierarchy
level (i.e., scope).

In a similar fashion in which textures were defined, we can specify structures as flexible or
semi-flexible TRs with an attached set of TOs (i.e., their children) instead of multimedia processes.
Roughly, in the case of a structure with an IP defining its duration (i.e., an IP at the end), the structure

60 Chapter 5. A Framework for Multimedia Interactive Scenarios

can be modeled as a flexible or semi-flexible TR depending on its maximum duration (i.e., bounded
or infinity) and an IP with urgent behavior. Since the stopping of a structure also must stop its chil-
dren, we use an auxiliary timed automaton (see Figure 5.9) to synchronize the action kill_p of its
children (described above) with the stopping of the structure (i.e., action event_e2). Notice that
the kill behavior is propagated down the hierarchy stopping all descendants of the structure. This is
possible because the timed automata defined so far are killed when their action kill_p is triggered,
and at the same time, they trigger the action kill in order to stop its own children.

idle

finished

t
r
u
e, kill_p, ;

t
r
u
e, skip_p, ;

true, eventin, ;

t
r
u
e
, e

ve
nt

ou
t
, ;

FIGURE 5.9: Auxiliary timed automaton to stop the children of a structure.

On the other case, a structure with a rigid duration (i.e., with no IP at the end) is modeled as a
flexible TR whose minimum duration represents the duration of the structure and whose maximum
duration is infinity. These considerations are necessary because the structure must wait for both
its duration and the stopping of all its children. Therefore, we use the timed automaton defined
in Figure 5.4 in order to stop the structure by triggering its action event_e when both all its children
have stopped and the structure has reached its minimum duration.

5.1.4 Hierarchical Interactive Multimedia Scenarios

To conclude, a hierarchical interactive multimedia scenario is a network of Timed Automata represent-
ing the execution in parallel of the TOs and TRs define by the composer in the scenario, and whose
start and stop times are defined during execution by the synchronization among them. Hence, as
we saw before, the whole scenario is modeled as a structure containing TOs and TRs. Additionally,
it has an IP at the start that is triggered by the environment, e.g., the performer pressing down the
play button.

5.2 Automatic Verification of Interactive Scenarios

In this section, we present the automatic translation of interactive scenarios written in I-SCORE to
UPPAAL. Moreover, we shall present the verification of some important properties of interactive
scenarios using the latter.

Roughly speaking, we implemented UPPAAL templates for each timed automaton presented
in Section 5.1 that can be instantiated following the rules explained in the same section. For instance,
to create an empty scenario, we need instantiate the timed automaton in Figure 5.3 with the corre-
sponding values for its parameters (e.g., the minimum duration is 0). In addition, we need to instanti-
ate the timed automaton for the IP in order to start the scenario and we also need to define the neces-
sary channels and shared variables for their synchronization. In order to achieve this process system-
atically, we implemented a parser, called IS2UPPAAL, that reads the XML file generated by I-SCORE

with the written scenario and creates, using a bottom-up approach, another XML file accepted by UP-
PAAL and containing the corresponding TA model. The reader can find the implementation and doc-
umentation of the tools of the framework at https://gitlab.com/himito/TA-Framework-IS.git.

https://gitlab.com/himito/TA-Framework-IS.git

5.3. True Parallel Execution of Interactive Scenarios 61

Once the TA model is built, we can use the tool UPPAAL to automatically verify properties of the
written scenarios. Let us now show the verification of some important properties using as running
example the scenario in Figure 3.3. It is important to emphasize that we can prove more properties
by exploiting the expressiveness power of TCTL, the requirement specification language of UPPAAL.

Terminating Scenarios. Composers usually define TRs with no bounded durations that causes some-
times that some TOs are never started or stopped. Thus, the scenario may not finish. We can verify
this property with the following formula TCTL:

A<> Scenario.finished

where Scenario is the timed automaton denoting the whole scenario. For instance, the scenario in
our running example has several TRs and TOs whose maximum duration is not bounded. Therefore,
some TOs may never start or stop, as is the case of the textures F and WS, since it may occur a possible
execution of the scenario in which the IPs of these textures are never triggered. We confirm this
possible execution trace with the counterexample generated by UPPAAL when proving this property.

Playability. This property is very important because a scenario could be over-constrained by TRs and
therefore not playable. For instance, we can prove that the TRs defining the starting of the structure
G of our running example are always satisfied in any execution of the scenario by proving

A[] !Control_Start_Group.error

where Control_Start_Group is the timed automaton controlling the satisfaction of the TRs defin-
ing the start time of the structure G. Recall that the state error is a state which is reached when a
TR stops before the elapsing of the minimum duration of all the preceding TRs of the structure G. As
an example, imagine a possible execution of the scenario in which the starting of texture F and stop-
ping of texture WS are very delayed. The above causes that the TRs are not potentially maintained.
Again, we prove this assumption with the counterexample generated by UPPAAL when checking this
property.

Desired Temporal Properties. As we have seen, composers use TRs to define temporal constraints
on the starting and stopping times of TOs. However, sometimes it can be complicated to know the
result obtained by adding several TRs because the composing tool (e.g., I-SCORE) does not provide a
feedback of the resulting temporal constraint. For instance, if the composer wants that the structure
G of our running example always starts 4468 ms after the starting of the scenario, we can prove that
this temporal constraint is always satisfied by verifying that

A[] (Structure_Group.wait_min imply clk>= 4468)

where Structure_Group is the timed automaton representing the structure G and clk is the clock
of the system.

Shared Resources. We recall that textures use external applications or devices (i.e., resources) to
execute in time the multimedia processes. Therefore, sometimes a resource cannot be used by two or
more textures simultaneously. For instance, assume that textures WH and LB of our running example
are controlled by a device that can handle only one process at a time. Thus, we must guarantee
that these two textures are executed in mutually exclusive manner. We can prove this property by
checking

A[] (!Texture_WH.wait || !Texture_LB.wait)

5.3 True Parallel Execution of Interactive Scenarios

In our framework, we propose that interactive scenarios can be synthesized into a reconfigurable
hardware platform after their verification in UPPAAL. Doing that, we provide a real-time and low-

62 Chapter 5. A Framework for Multimedia Interactive Scenarios

latency performance of interactive scenarios. In this section, we shall introduce the hardware de-
scription of the TA model presented in Section 5.1. As we shall see, these modules will allow us to
synthesize any interactive scenario into a FPGA.

We recall that a timed automaton is a finite-state machine (FSM) extended with non-negative
variables that model the clocks of the system. Since the verification of TA in UPPAAL is an integer
based formalism, then the use of integer variables in our implementation does not affect the behavior
of the modeled scenario in this tool [Waez 2013]. We chose to implement a Mealy FSM because it
adequately expresses the behavior of synchronous systems [Zaffalon 2005]: (1) the outputs depend
on the current state and the inputs; and (2) the outputs react instantaneously to the inputs.

Let us start by introducing a mechanism to generate the global clock of the system. As we ex-
plained before, our main objective is to execute the scenario on an FPGA. However, the stable clock
provided by the FPGA, which is on the order of nanoseconds (ns), can change depending on the
device. Therefore, it is appropriated to generate our own clock for the system in order to define a
generic way of handling time, for example, milliseconds. We next define an equation that will allow
us to know the number of clock cycles needed to obtain an intended clock signal from the FPGA’s
clock.

#cycles=
period_clock_system
period_clock_FPGA

(5.1)

Let us explain the above equation in the Example 5.1.

Example 5.1 (Frequency Divider)

Assume that we need to generate a clock signal of 2.5 MHz (i.e., a clock with a period of 400 ns)
from a clock signal of 50 MHz (i.e., a clock with a period of 10 ns). By applying Equation 5.1, we
obtain that a clock cycle of 2.5 MHz is equivalent to 20 clock cycles of 50 MHz. We illustrate this
result in Figure 5.10.

FIGURE 5.10: Obtaining a clock of 2.5 MHz from a clock of 50 MHz.

We create a hardware module in order to generate the clock signal of the scenario from the FPGA’s
clock. As we illustrate in Figure 5.11, the module takes a clock signal (FPGA Clock) and generates
a new clock signal (System Clock) by diving the original signal by a specific number of cycles (#
Cycles). On the other hand, the FPGA’s clock is used for the FSM defining the behavior of the timed
automata. This consideration is very important because we need to guarantee that the sampling
period of the scenario is greater than the time needed to update the state of the FSM. We use the
SYSTEMVERILOG (SV) language [Sutherland 2006] to describe the hardware implementation of our
TA model. Roughly speaking, SV allows for a natural specification of hardware since it combines the
features of other hardware description languages (HDLs) such as VERILOG and VHDL with features
from specialized hardware verification languages (HVLs), together with features from C and C++.

The TA implementation presented below is based on the work of Altisen and Tripakis [Altisen
2005]. Roughly, the global time of the system is captured in the global variable now_clk, the only
running clock. Even though the clock is a real value in TA, it may be represented by an integer
value when assuming periodic sampling [Krakora 2008]. For each clock of the timed automaton
there is one local variable clk. Such variable is set to the variable now_clk whenever the clock is

5.3. True Parallel Execution of Interactive Scenarios 63

Frequency
Divider

FPGA Clock

Cycles

Reset System Clock

FIGURE 5.11: Block diagram of the clock generator.

reset. The difference between now_clk and clk represents the clock value. Each channel, used for
synchronizing timed automata, is replaced by one logic variable which is triggered synchronously
with all the other channels in the model. Following the above, we propose the architecture depicted
in Figure 5.12.

inputs

clock FPGA

Next State
State

Register
Output Logic outputs

Local
Variables

Clocks
Variables

MEALY FSM

TIMED AUTOMATON

FIGURE 5.12: Block diagram of the proposed hardware implementation of a timed automaton.

Intuitively, each time that a timed automaton resets its local clocks, it updates the register Clock
Variables with the global time of the system. Thus, to know the elapsed time of each local clock,
the FSM calculates the difference between the stored value and the global clock. In this way, the
system is synchronized with the same clock rate. Local variables of the timed automaton are stored
in the register LOCAL VARIABLES. As we shall see, some timed automata may not have clocks or vari-
ables. Channels are implemented as wires connected between each module (i.e., timed automaton)
with a logic to handle multiple connections (i.e., broadcast synchronization). Notice then that our
model does not need special architecture for its implementation. Moreover, stochastic algorithms are
not necessary since the transitions of our timed automata are taken by triggering input actions or
satisfying guards and location invariants that do not require to choose a value from a time interval.

As an example, we shall illustrate the implementation of the module describing the timed automa-
ton presented in Figure 5.2. Intuitively, the keywords input and output define the inputs and outputs
of the module. Moreover, each element defined in the module have a type and a size, e.g., a wire
of 32 bits (logic [31:0]). In our approach (see Figure 5.12), all timed automata have an interface
allowing synchronize with the environment and other timed automata. As we show in Program 5.3,
the module receives a clock signal from the FPGA for controlling the FSM (input fpga_clk). Also, a
reset signal (input reset) in order to reset the FSM during the initialization of the system. Finally, as
we explained before, each timed automaton is synchronized with the global clock of the system (in-
put now_clk) which is generated by the module in Figure 5.11. Depending on the timed automaton,
the interface may have other parameters and input/output actions. Moreover, each timed automaton
has a specific number of local clocks and variables. For example, the hardware module of the timed
automaton in Figure 5.2 has the parameter duration (i.e., γ0), the input actions event_s, skip_p,

64 Chapter 5. A Framework for Multimedia Interactive Scenarios

kill_p, and the output actions event_e1, event_e2, skip, and kill. Additionally, it has only one
clock (clk) and no local variables.

1 module rigid_ta(

2 input logic fpga_clk , // clock FPGA

3 input logic reset , // reset

4 input logic [31:0] now_clk , // current_time

5 input logic [31:0] duration , // duration

6 input logic event_s , skip_p , kill_p , // input actions

7 output logic event_e1, event_e2, kill , skip // output actions

8);

9

10 // local clock;

11 logic [31:0] clk;

12

13 // Definition of the Mealy Finite State Machine.

14

15 endmodule

PROGRAM 5.3: Module interface for the timed automaton in Figure 5.2.

Each hardware module describes a different timed automaton. Therefore, the definition of the
FSM in each module is completely different. As an example, we show in Program 5.4 the FSM of
the module presented above. First, we specify that the FSM has only six states (i.e., locations in
the TA formalism): IDLE, WAIT, FINISHED, URGENT, SKIPPED and KILLED. Then, we define the Mealy
FSM using the constructor always_ff which allows to define a synchronous system. Therefore, all
statements inside the constructor are executed in parallel each time a new cycle of the FPGA’s clock
starts (fpga_clk) or the reset signal (reset) is triggered. When the reset signal is present, the FSM
is reset, then it goes to the initial state IDLE and synchronizes the local clock (i.e., register clk)
with the system’s clock (i.e., input now_clk). Otherwise, when a clock signal is triggered it moves to
another state or remains in the same, depending on the current state and the inputs of the module.
For instance, if the FSM is in the state IDLE, then when a clock signal is triggered it moves either:
(1) to the state KILLED if the input action kill_p is triggered; (2) to the state SKIPPED if the input
action skip_p is triggered; or (3) to the state WAIT if the input action event_s is triggered. Notice
that in (3), the clock variable of the FSM is reset as in the timed automaton model (line 18). The
outputs of the FSM corresponds to the output actions of the timed automaton, and as we shown
in Figure 5.12, it depends on both the current state and the inputs. The SV constructor always_comb
permits to describe combinational logic (i.e., circuit whose output is a function of the input only).
For instance, the output event_e1 is only triggered when there is a transition from the state WAIT

and the the time defined by the parameter duration is equal to the time elapsed from the reset of
the clock variable clk (see line 36).

As the reader can see, our hardware modules have the same parameters and behavior as the tem-
plates of our timed automata model. Therefore, we can translate the model verified in UPPAAL into
SV code by instantiating the corresponding hardware module of each instantiated UPPAAL template.
For instance, if we have an empty scenario in UPPAAL, then the system will be composed of a time
automaton for a flexible TR and a timed automaton for the IP. Therefore, in order to translate this
specification in hardware, it is only necessary to instantiate the hardware module for the flexible TR
and for the IP with the same parameters as the UPPAAL specification. Once the scenario is translated
into SV code, it can directly be synthesized into an FPGA for its execution. It is important to note
that the only limitation of our approach is the number of Configurable Logic Block provided by the
FPGA platform. With the help of tools such as XILINX VIVADO DESIGN SUITE7 or QUARTUS II8, we can

7VIVADO website: http://www.xilinx.com/products/design-tools/vivado.html
8QUARTUS II website: https://www.altera.com/products/design-software/fpga-design/quartus-ii/overview.

html

http://www.xilinx.com/products/design-tools/vivado.html
https://www.altera.com/products/design-software/fpga-design/quartus-ii/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-ii/overview.html

5.4. Synchronous Interpreter of Interactive Scenarios 65

simulate the generated SV code. For instance, in Figure 5.13 we show a fragment of the simulation
of the scenario in Figure 3.3. Observe that the structure G and its children (i.e., textures WH and LB)
are stopped synchronously with the triggering of the corresponding IP.

1 // state declaration

2 enum logic [5:0] {IDLE = 6b000001, WAIT = 6b000010,
3 URGENT = 6b000100, FINISHED = 6b001000,
4 SKIPPED = 6b010000, KILLED = 6b100000} state;

5

6 // state + next state logic

7 always_ff @(posedge fpga_clk , posedge reset)

8 begin: fsm_states

9 if (reset) begin
10 clk < = now_clk;

11 state < = IDLE;

12 end
13 else begin: fsm_transitions

14 unique case (state)

15 IDLE: begin: idle_state

16 if (kill_p) state <= KILLED;

17 else if (event_s) begin
18 clk <= now_clk;

19 state <= WAIT;

20 end
21 else if (skip_p) state <= SKIPPED;

22 end: idle_state

23

24 WAIT: begin: wait_state

25 if (kill_p) state <= KILLED;

26 else if ((now_clk - clk) == duration) state <= URGENT;

27 end: wait_state

28

29 // the other cases are hidden

30 endcase
31 end: fsm_transition

32 end: fsm_states

33

34 // Output logic

35 always_comb begin: fsm_output

36 event_e1 = ((state == WAIT) && ((now_clk - clk) == duration));

37 event_e2 = (state == URGENT);

38 kill = (state == KILLED);

39 skip = (state == SKIPPED);

40 end: fsm_output

PROGRAM 5.4: FSM definition of the timed automaton in Figure 5.2.

5.4 Synchronous Interpreter of Interactive Scenarios

In this section, we shall briefly introduce the REACTIVEML programming language and a novel imple-
mentation of a synchronous interpreter of interactive scenarios that follows the operational semantics
described before. Moreover, we shall present a graphical interface in INSCORE that shows the real
state of execution of scenarios through the development of a synchronous observer.

5.4.1 Intuitive Presentation of the REACTIVEML Language

REACTIVEML [Mandel 2005] is a synchronous reactive programming language designed to imple-
ment interactive systems such as graphical user interfaces and video games. It is based on the re-

66 Chapter 5. A Framework for Multimedia Interactive Scenarios

clock scenario

current time 20 21 22 23 24 25 26 27 28 29 30 31 32 33

IP start

start Group

start Wolf Howl

start Light Beam

stop IP

stop Group

killed Wolf Howl

killed Light Beam

FIGURE 5.13: Simulation of the hardware implementation of the scenario in Figure 3.3.

active model of Boussinot [Boussinot 1996] that allows for a precise and deterministic semantics of
concurrency and some expressive control structures. REACTIVEML is embedded in OCAML, then it
combines the power of functional programming with the expressiveness of synchronous paradigm.

As we explained in Section 2.2, the reactive synchronous model provides the notion of global
logical time. Then, time is viewed as a sequence of logical instants. Moreover, parallel processes are
executed synchronously (lock step) and communicate with each other in zero time. This commu-
nication is made by broadcasting signals that are characterized by a status defined at every logical
instance: present or absent. In contrast to ESTEREL [Berry 1992], the reaction to absence of signals
is delayed, then the programs are causal by construction (i.e., a signal cannot be present and absent
during the same instant).

REACTIVEML provides a deterministic model of concurrency with rich control structures. There-
fore, programs can await and react simultaneously to several events, compose processes in parallel
and modularly suspend or preempt parts of a system. Moreover, the reactive model presents dynamic
features such as dynamic creation of processes. Indeed, REACTIVEML provides a toplevel [Mandel
2009] to dynamically write, load and execute programs. All these features open the possibility of
enhancing interactive scenarios with live coding (i.e., the creation of TOs and TRs during execution).
Furthermore, it provides a mechanism to define the hierarchical behavior of interactive scenarios
presented before (i.e., preemption).

In REACTIVEML, data types and algorithmic functions are defined as in OCAML and are considered
instantaneous (i.e., the output is returned in the same instant), whereas functions that are executed
over several instants are called processes. For instance, a TO can be viewed as a reactive application
that is implemented as a process. Roughly speaking, REACTIVEML is defined as a call-by-value lambda
calculus extended with process creation (process) and execution (run), waiting for the next instant
(pause), parallel definitions (let/and), declaration of signals (signal), signal emissions (emit),
awaiting signal emission (await immediate), awaiting a signal value (await) and tests for signal
presence (present). Let us explain these constructors with the Program 5.5. The reader can find a
more complete interactive tutorial at http://rml.lri.fr/tryrml.

Intuitively, in REACTIVEML two expressions can be evaluated in sequence (e1;e2) or in parallel
(e1||e2). In addition, it is possible to write higher processes such as the process killable_p that
takes two arguments: a process p and a signal s. This process executes p until s is present. The
constructor run executes a process. There are two important control structures in REACTIVEML: the
construction “do e until s” to interrupt the execution of e when the signal s is present, and the
construction “do e when s” that suspends the execution of e when the signal s is absent.

Signals can be emitted (emit s) and awaited (await s). For instance, the process wait takes
two arguments: a signal tic and an integer dur. The purpose of this process is similar to a timer;

http://rml.lri.fr/tryrml

5.4. Synchronous Interpreter of Interactive Scenarios 67

it waits for the signal tic to be emitted a number dur of times. The expression “await s” waits
for s to be emitted and it finishes in the next instant whereas the expression “await immediate s”
terminates instantaneously when the signal s is emitted. The expression “present s then e1 else
e2” executes e1 instantaneously if the signal s is present or executes e2 at the next instant if the

signal is absent. The idea of introducing a delay in the else case allows to prevent two processes
from seeing different status for a signal at an instant.

1 let process killable_p p s =

2 do
3 run p

4 until s done
5 (* val killable_p : unit process -> ('a , 'b) event -> unit process *)

6

7 let process wait tic dur =

8 for i=1 to dur

9 do
10 await tic

11 done
12 (* val wait : ('a , 'b) event -> int -> unit process *)

13

14 let process emit_tic period tic =

15 let start = Unix.gettimeofday () in
16 let next = ref (start +. period) in
17 loop
18 let current = Unix.gettimeofday () in
19 if (current >= !next) then begin
20 emit tic ();

21 next := !next +. period

22 end;
23 pause
24 end
25 (* val emit_tic : float -> (unit , 'a) event -> unit process *)

PROGRAM 5.5: Example of the REACTIVEML synchronous programming language.

An important characteristic of the REACTIVEML implementation is the absence of busy waiting:
nothing is computed when no signal is present. For instance, the process emit_tic takes two argu-
ments: a float period and a signal tic. It works like a clock; it gets the current time by using the
function Unix.gettimeofday from the Unixmodule, and emit the signal tic whenever the period of
time expires. The keyword pause awaits for the next instant. The constructor “loop e end” iterates
infinitely e.

REACTIVEML also provides valued signals. They can be emitted (emit s v) and awaited to get
the associated value (await s p in e). Different values can be emitted during an instant (multi-
emission). In that case, it is necessary to define how the emitted values will be combined during
the same instant (signal s default v gather f in e). The value obtained is available at the
following instant in order to avoid causality problems. For instance, the process add in Program 5.6
declares the local signal num with an initial value 0 and a function that adds two integers. In addition,
it defines two processes that are executed in parallel: the process gen that generates a set of values
emitted through the signal num at the same instant; and the process print that awaits for the signal
num in order to print its value through the variable n. Notice that n will contain the sum of all values
generated by the process gen.

5.4.2 Implementation of Interactive Scenarios in REACTIVEML

Now, we are ready to present the implementation of an interpreter for interactive scenarios in REAC-
TIVEML. The application is divided into two main modules: Time and Motor. Intuitively, the module

68 Chapter 5. A Framework for Multimedia Interactive Scenarios

Time interfaces the abstract time relative to the tempo (in beats) and the physical time (in ms). We
rely on the work in [Baudart 2013a; Baudart 2013b] to implement this module. On the other hand,
the module Motor executes the scenario and interacts with the environment by listening external
events and sending values to external multimedia processes. In the following we shall describe in
more detail these modules. The reader can found the implementation and documentation of the
interpreter at https://gitlab.com/himito/ReactiveML_Interpreter.

1 let process add max =

2 signal num default 0 gather fun x y -> x+y in
3 let process gen =

4 (for i=1 to max do emit num i done)
5 in
6 let process print =

7 await num (n) in
8 print_endline (string_of_int n)

9 in
10 run gen || run print

11 (* val add : int -> unit process *)

PROGRAM 5.6: Example of multi-emission of signals. The signal num is defined with a function that
adds the multiple values emitted in the same instant. Its initial value is 0.

Representation of Time. We recall that REACTIVEML, like other synchronous languages, provides
the notion of a global logical time. Therefore, time is viewed as a sequence of logical instants. In
order to create an interface between the physical time and the logical time, we implemented the
process emit_tic (see Program 5.5) which, intuitively, generates the clock of the system by emitting
a signal in a periodic time. Taking this clock signal, we can now define processes to express delays
by waiting a specific number of ticks e.g., the process wait defined in Program 5.5.

Temporal Relations. As we have seen, TRs represent delays which are used to specify the start
and the duration of TOs. In a rigid TR, the duration of the delay is constant whereas in a flexible
TR, the duration of the delay is partially defined by an interval of time whose maximum duration
may be infinity. Recall that the environment (e.g., the performer) can interact with the system by
triggering IPs. In our implementation, we represent the events triggering IPs as OSC messages that
are sent from the environment and transmitted through a signal. An OSC message is represented
in REACTIVEML as a tuple (addr,args) where addr is the address and args is the list of arguments
with the corresponding type, e.g., ('/light/1',[String 'luminosity'; Int32 90]). We show
in Program 5.7 the definition of the OSC message.

1 (* OSC data *)

2 type osc_data =

3 | String of string

4 | Int32 of int

5 | Float of float

6 | Int64 of int

7 | Double of float

8 | Char of char

9

10 (* OSC message *)

11 type osc_message = string * osc_data list (* path , arguments *)

PROGRAM 5.7: Definition of an OSC message in REACTIVEIS.

Our approach represents a rigid TR as a tuple (d,s) where the signal s is emitted when the dura-
tion d has elapsed. On the other hand, a flexible or semi-flexible TR is defined as a tuple (min,max,ip)
where min and max are, respectively, the minimum and maximum duration of the TR, and ip is the IP
that can be triggered during the valid interval. Additionally, the maximum duration can be infinite.

https://gitlab.com/himito/ReactiveML_Interpreter

5.4. Synchronous Interpreter of Interactive Scenarios 69

We represent a temporal relation between two TOs as a tuple (from, to, tr) where from and to are
the identifiers of the TOs involved in the relation, and tr is the temporal relation defining the delay
between them. Program 5.8 presents the definition of TRs in REACTIVEML.

1 (* ReactiveML signal *)

2 type rml_signal = (unit , unit list) event

3

4 (* rigid temporal relation *)

5 type rigid_interval = int * rml_signal (* duration , signal *)

6

7 (* duration with infinity *)

8 type flexible_duration = Finite of rigid_interval| Infinite of rml_signal

9

10 (* (semi -) flexible temporal relation -> minimum , maximum , interaction point *)

11 type flexible_interval = rigid_interval * flexible_duration * osc_message

12

13 (* type of temporal relations *)

14 type interval =

15 | Rigid of rigid_interval

16 | Flexible of flexible_interval

17

18 (* temporal relation between two temporal objects *)

19 type temporal_relation = int * int * interval (* from , to , duration *)

PROGRAM 5.8: Definition of temporal relations in REACTIVEIS.

Temporal Objects. As we explained before, TOs can be either textures or structures. A texture
represents a multimedia process that is executed in time by an external application. For this reason,
in our interpreter, OSC messages are sent to external applications in order to start and stop the
execution of the corresponding multimedia process. On the other side, a structure executes a set of
temporal objects (i.e., textures and structures) with their own temporal organization. We recall also
that the whole scenario is itself a structure and that the duration of a TO can be represented as a TR
between its start and its stop.

In our approach, a texture is defined as a tuple (id,tr,msg_s,msg_e) where: id is the identifier
of the texture; tr is the TR defining its duration; msg_s and msg_e are, respectively, the OSC mes-
sages to start and stop the external multimedia process. Similarly, we define a structure as a tuple
(id,to_list,tr_list,tr) where: id is the identifier of the structure; to_list is the list of its chil-
dren; tr_list is the list of the TRs defining the temporal organization of its children; and tr is the
TR defining its duration. The definition of TOs in REACTIVEML is depicted in Program 5.9.

1 (* type of temporal objects *)

2 type temporal_object =

3 | Texture of texture

4 | Structure of structure

5

6 (* structure -> id , children , temporal relations , duration *)

7 and structure = int * temporal_object list * temporal_relation list * interval

8

9 (* texture -> id , duration , start message , stop message *)

10 and texture = int * interval * osc_message * osc_message

11

12 (* scenario *)

13 type scenario = structure

PROGRAM 5.9: Definition of temporal objects in REACTIVEIS.

The execution of a TO is performed by the REACTIVEML process run_generic_to in Program 5.10.
It takes as inputs the TO (tobject), the list of TRs defining its start (w_rels), the list of TRs started

70 Chapter 5. A Framework for Multimedia Interactive Scenarios

after the stopping of the TO (s_rels), the signal of its parent preemption (stop_s) and the identifier
of the TO (id_tobject). Intuitively, the process first waits for the satisfaction of the TRs defining
the start of the TO (process wait_trelations). Then, it executes the TO (process run_tobject

). Once the TO has finished, the process executes the TRs that depend on its stopping (process
run_trelations). Notice that we use the higher-order process killable_p in order to kill the pro-
cesses described above when the parent of the TO stops.

1 let rec process run_generic_to tobject w_rels s_rels stop_s id_tobject =

2 (* auxiliary processes are hidden *)

3

4 (* wait preceding temporal relations *)

5 run (killable_p (wait_trelations w_rels id_tobject) stop_s);

6

7 (* execute temporal object *)

8 run (run_tobject tobject);

9

10 (* start precendet temporal relations *)

11 run (killable_p (run_trelations s_rels) stop_s)

PROGRAM 5.10: REACTIVEIS process that executes a temporal object.

Depending on whether the TO is a texture or a structure, the process run_tobject executes a
specific process. In the case of a texture, the process run_texture in Program 5.11 is responsible
of its execution. Intuitively, it first gets the identifier of the texture (id_texture), the interval that
defines its duration (duration), and the OSC messages to start (start_m) and stop (end_m) the
external process. Then, it starts the external process by sending the corresponding OSC message.
Next, it executes the TR of its duration (process run_trelations) and waits for its ending (process
wait_trelations). Finally, once the texture stops, the process sends the corresponding OSC message
to stop the external process. Observe that the execution of the texture suddenly finishes if its parent
stops, but not without also stopping the external process (construction do/until). We recall that
the signal stop_s is “present” when the parent of the TO stops.

1 let process run_texture texture =

2 let (id_texture , duration , star_m , end_m) = texture in
3 do
4 emit output (star_m); (* send start OSC message *)

5 (run (run_trelations [duration]) ||

6 run (wait_trelations [duration] id_texture));

7 emit output (end_m); (* send stop OSC message *)

8 until stop_s -> emit output (end_m) done;

PROGRAM 5.11: REACTIVEIS process that executes a texture.

On the other hand, a structure is executed by the process run_structure in Program 5.12. In-
tuitively, it first gets the parameters of the structure: the identifier (id_structure); its children
(tobjects); the TRs defining the temporal organization of its children (trs_children); and the in-
terval defining its duration (duration). Then, it executes in parallel: (1) the TR defining its duration
(process run_trelations); (2) a monitor waiting for the stop of the structure due to the triggering
of an IP or for the elapsing of its duration (process wait_trelations); (3) the TRs that define the
temporal organization of its children (process run_trelations); (4) a monitor waiting for the end
of the internal TRs defining its stop (process wait_trelations); and (5) its children with their cor-
responding TRs (process run_tobjects_par). Notice that both the structure and its children will
stop abruptly when either the parent of the structure stops (i.e., signal stop_s) or an IP defining the
duration of the structure is triggered (i.e., signal stop_structure). Otherwise, the structure will
finish when both its duration and all its internal relations have finished.

5.4. Synchronous Interpreter of Interactive Scenarios 71

1 let process run_structure structure =

2 signal stop_structure in
3 let (id_structure , tobjects , trs_children , duration) = structure in
4 (do
5 (* 1- run duration *)

6 run (run_trelations [duration]) ||

7

8 (* 2- wait for the stop of the structure due to its duration or an IP *)

9 (run (wait_trelations [duration] id_structure);

10 begin
11 match duration with
12 | Rigid _ -> ()

13 | Flexible _ -> emit stop_structure

14 end
15) ||

16

17 (* 3- run the relations of its children *)

18 run (run_trelations (get_trelations id_structure trs_children From)) ||

19

20 (* 4- wait for the end of the internal relations *)

21 run (wait_trelations (get_trelations id_structure trs_children To)

22 id_structure)

23

24 until (stop_structure \/ stop_s) done; emit stop_structure) ||

25

26 (* 5- run children *)

27 run (run_tobjects_par tobjects trs_children stop_structure)

PROGRAM 5.12: REACTIVEIS process that executes a structure.

Handling Several Temporal Relations. Recall that one or more TRs can be used to define the
start of a TO. Therefore, as we saw before, we need a mechanism in order to interpret the temporal
constraint imposed by them. Let us start by presenting the REACTIVEML process run_trelations

that runs in parallel a list of TRs (trelations_l). As we can see in Program 5.13, the process
Rml_list.par_iter of the REACTIVEIS standard library is used to execute in parallel a specific pro-
cess depending on the type of each TR of the list (i.e., rigid, semi-flexible or flexible TR). In the case
of a rigid TR, the process run_rigid is executed, so it emits a specific signal when the TR reaches
its minimum duration. Otherwise, the process waits for the minimum duration of the TR (process
run_rigid), and then it executes the process run_flexible in order to wait for the stopping of the
TR. Therefore, depending on the maximum duration of the TR, the process run_flexible waits for
the elapsing of a bounded maximum duration (process run_rigid) and then emits a specific signal,
or it enters a loop in which it does nothing. In both cases, the TR can be stopped by triggering an
IP after the elapsing of the minimum duration, i.e., the process run_flexible may be killed by the
signal s.

Now, we are ready to introduce the process wait_trelations which is responsible for interpret-
ing the meaning of one or more TRs. That is, it waits for the elapsing of the minimum duration of all
TRs defining the start or the stop of a TO, and also waits for the stopping of one of them. Recall that
a flexible TR stops when either its maximum durations elapses or the IP is triggered. In Program 5.14
we show the definition of the process wait_trelations. Roughly speaking, the process first executes
the process sync_minimum in order to synchronize the elapsing of the minimum duration of a list of
TRs (trelations_l) defining the starting or stopping of a TO (id_tobject). Next, it gets the OSC
messages sent by the environment (line 18) and checks if there is a message that corresponds to the
one that triggers the IP. The process remains doing this until the IP is triggered or one of the TRs
stops (i.e., the signal max_s is emitted). Observe that the emission of the signal max_s also will stop
the other TRs that are still executing.

72 Chapter 5. A Framework for Multimedia Interactive Scenarios

1 let process run_trelations trelations_l =

2 let process run_rigid (d,s) =

3 run (wait tic d); emit s

4 in
5 let process run_flexible dur =

6 match dur with
7 | Finite (d,s) -> run (killable_p (run_rigid (d,s)) s)

8 | Infinite s -> run (killable_p (process pause) s)

9 in
10 run (Rml_list.par_iter
11 (proc i ->

12 match i with
13 | Rigid r -> run (run_rigid r)

14 | Flexible (min ,max ,_) ->

15 begin
16 run (run_rigid min);

17 run (run_flexible max);

18 end)
19 trelations_l)

PROGRAM 5.13: REACTIVEIS process that executes a list of temporal relations.

1 let process wait_trelations trelations_l id_tobject=

2 (* Auxiliary functions are hidden *)

3

4 (* if the box is not the scenario *)

5 if (List.length trelations_l > 0) then
6 begin
7 run (sync_minimum trelations_l); (* synchronization of minimum duration *)

8 match (List.hd trelations_l) with
9 | Rigid _ -> () (* There is no maximum duration *)

10 | Flexible (_,max ,ip) -> (* Handling Interaction Point *)

11 begin
12 let max_s = begin match max with
13 | Finite (_,s) -> s

14 | Infinite s -> s

15 end in
16 do
17 loop
18 await input (ip_e) in (* only one event each time unit *)

19 (if (checkIP ip ip_e) then emit max_s);

20 pause
21 end
22 until max_s done;
23 end
24 end

PROGRAM 5.14: REACTIVEIS process that interprets the temporal relations.

Hence, as we shown in Program 5.10, the TO will start once the process wait_trelations has
finished i.e., all TRs have been satisfied.

5.4.3 Real-Time Visualization of Interactive Scenarios

Currently, the graphical interface of the software I-SCORE does not support a good feedback of the
real-time execution of scenarios. For instance, TOs always keep in the same position on the time-
line. Therefore, the anticipation of the starting time of a TO due to the triggering of an IP cannot be
visually represented in the tool. In order to alleviate this problem, we propose below a visualization

5.4. Synchronous Interpreter of Interactive Scenarios 73

system using the software INSCORE9 for following the real-time execution of scenarios.
Roughly speaking, INSCORE [Fober 2012; Fober 2013] is a software for designing augmented

interactive scores. Here, the scores are composed of heterogeneous graphic objects (e.g., symbolic
music notation, text, images, videos, files) with both a graphic and temporal dimension. INSCORE

also integrates a message driven system that uses the OSC protocol to interact with any OSC ap-
plication or device (e.g., PURE DATA, MAX/MSP). Therefore, the score can dynamically transform
depending on the messages received. Intuitively, our approach is then to implement a synchronous
observer [Halbwachs 1993] (i.e., a process that listens the inputs and outputs of other processes
without altering its behavior) in REACTIVEML which listens the signals emitted by the interpreter,
and according to them, the process estimates and sends to INSCORE the new start and stop times of
the TOs in the scenario. For instance, a TO is moved to the right on the time-line if the interpreter
has not emitted its start event and the current time is greater than its current start position on the
time-line.

We take advantage of the interaction capabilities of INSCORE for the sake of interacting with the
interpreter directly from the graphical interface. Therefore, we can define interactive actions to send
OSC messages that will trigger the IPs of the scenario. In Figure 5.14 we present a blocks overview of
our approach. Roughly, the interpreter, the observer and the OSC client are synchronous processes
whereas the OSC server is asynchronous (i.e., the environment sends messages asynchronously).
All these processes are REACTIVEIS processes that run in parallel and communicate between them
through signals. Since INSCORE, PURE DATA and MAX/MSP are applications that support the OSC
protocol, they can interact with the interpreter by means of OSC messages.

Interpreter IS

OSC Client

Synchronous
Observer

OSC Server

REACTIVEML

PURE DATA/
MAX/MSP

INSCORE

FIGURE 5.14: Block diagram of the implementation.

Some features of the proposed graphical interface are illustrated in Figure 5.15 and explained
below. The performer can trigger the IPs of TOs by clicking on them; a single-click refers to IPs at
the start whereas double-click triggers the IPs at the end. Moreover, as shown in Figure 5.15b, the
performer knows that an IP at the start (resp. at the end) is enabled to be triggered when the border
of the TO is dashed (resp. dotted). Additionally, the TOs change their color when they are currently
executing (see Figure 5.15a), and the current position of execution is indicated by a vertical line
that moves as time passes. As we explained before, the synchronous observer listens the signals
emitted by the interpreter and depending on them, it sends OSC messages to INSCORE in order to
re-organize and resize the TOs in the graphical interface. For instance, in Figure 5.15c we can see
how the structure G (and its children) moves to the left on the time-line (i.e., anticipation of the start
date) when its IP is triggered at the time shown in Figure 5.15b, reflecting the true execution state
of the scenario in real-time.

9Website of INSCORE: http://inscore.sourceforge.net

http://inscore.sourceforge.net

74 Chapter 5. A Framework for Multimedia Interactive Scenarios

(a) Colored boxes represent the
TOs that are currently executing.

(b) Dashed borders mean that
the IP is enabled to be triggered.

(c) Triggering IPs causes that a
TO moves on the time-line or re-
sizes its width (duration).

FIGURE 5.15: Interactive scenario in Figure 2.3 visualized in INSCORE. The horizontal axis represents time
and the vertical axis has no meaning.

CHAPTER6
Streams in Multimedia Interactive

Scenarios

Contents
6.1 Formal Semantics . 75

6.1.1 Temporal Relations and Interaction Points . 76

6.1.2 Temporal Objects . 77

6.1.3 Synchronization of Temporal Relations . 79

6.2 Interactive Scenarios with Data Streams . 80

6.2.1 Reading Audio Files . 80

6.2.2 Appending Audio Files . 81

6.2.3 Reversing Audio Files . 82

Nowadays, the design of interactive multimedia systems based on a written scenario is a challenge
that requires to handle dynamic and static events (i.e., events triggered by the performer or the
system) as well as dynamic and static data. In this chapter, we shall present an extension of interactive
scenarios that aims to handle complex data, in particular, audio streams. For that, we use Colored
Petri Nets (CPNs) to model complex data and the dynamic aspect of the functional composition of
processes. Multimedia streams are often cut into temporal frames to be carried from one process to
another, then we model frames as colored tokens that are handled by processes.

We first start by formalizing the operational semantics of interactive scenarios in CPN. Then, we
take advantage of the modularity of our model and we shall extend it with CPNs modules for reading,
appending and reversing audio files. A formal modeling of data streams in interactive scenarios opens
the possibility of reasoning about the resource consumption of a given scenario. The reader can find
the implementation in the tool CPN TOOLS and some examples of the modules presented below at
https://gitlab.com/himito/CPN_Model_IS.

6.1 Formal Semantics

In this section, we present a CPN model of interactive scenarios. In addition, the model described
below is modular and parameterizable, allowing to easily extend it. For instance, in the next sec-
tion we endow interactive scenarios with a formal specification of audio streams. We shall start by
introducing CPN modules to model rigid and flexible TRs. As we shall see, the specification of the
remaining elements of interactive scenarios (i.e., TOs and IPs) are built on these two simple modules.

75

https://gitlab.com/himito/CPN_Model_IS

76 Chapter 6. Streams in Multimedia Interactive Scenarios

6.1.1 Temporal Relations and Interaction Points

We recall that rigid TRs are delays with a defined duration, whereas flexible or semi-flexible TRs
are delays whose duration is partially defined by a range of values with a minimum and a maximum
duration (potentially infinite). Moreover, during the performance of the scenario, the performer may
trigger or not the IPs defined by the composer. It is important to note that the system only allows for
the triggering of an IP if this occurs within the interval of time in which the TRs are satisfied. In the
following we formalize these notions in CPN.

Rigid Temporal Relations. Intuitively, a rigid interval consists in applying a delay between two
points. For instance, between the stopping of a TO and the starting of another one. As is illustrated
in Figure 6.1, this delay can be implemented in CPN by using the delay expression @+dur in the
inscription of a transition output arc. We recall that @+dur delays the availability of the new token.
Therefore, if the transition t1 is fired at time t, then the transition t2 is triggered at time t + dur.
Next, we explain in more detail the CPN model of a rigid TR depicted in Figure 6.1.

du
r

()@+dur ()

start

duration

TIME

delay

DELAY

stop

t1 t2
Declarations

colset TIME = time;
colset UNIT = unit;
colset DELAY = UNIT timed;
var dur : TIME;

FIGURE 6.1: CPN modeling a rigid temporal relation.

The CPN model has two inputs; a place that indicates the starting of the interval (i.e., the place
start) and a place whose token is colored with an integer value (i.e., colset TIME) representing the
duration of the interval (i.e., the place duration). Once a token is put in the place start at time
t, the transition t2 is fired at time t + dur indicating that the duration of the interval has elapsed.
From now on we shall call this module as rigid_m.

Flexible Temporal Relations. Roughly, a flexible TR represents a delay between two points whose
duration is partially defined by an interval of possible durations bounded by a minimum and maxi-
mum duration. We recall that a flexible TR finishes when either it reaches its maximum duration or
an IP defined by the composer is triggered between its minimum and maximum duration. For the
sake of simplicity, we decompose a flexible TR into two modules: (1) a module to model the flexible
duration of the TR, and (2) a module to handle the triggering of the IP.

Let us present the CPN model to represent a flexible TR in Figure 6.2. The module has three
inputs; the place start to indicate the starting of the TR, and the places min dur. and max dur. to
specify, respectively, its minimum and maximum duration. Note that the place max dur. has a color
FLEX_TIME that allows to define a bounded (i.e., an integer) or an infinite duration. This is possible
through the union of color sets provided by CPN. Once a token is put in the place start at time t,
the transition t1 is fired and two modules start to be executed concurrently. The module rigid_m1

models the elapsing of the minimum duration and the module rigid_m2 models the elapsing of the
maximum duration. Thus, a token will be produced at time t+min in the place stop min and at time
t +max in the place stop max. Observe that the inscription of the input arc of the place max_dur

allows to “start” the module rigid_m2 only if the maximum duration is bounded (i.e., token with
color DUR m). From now on we shall call this module as flexible_m.

Next, we present in Figure 6.3 the CPN module to handle an IP. Intuitively, this net accepts an
event if this is sent (i.e., a token is put in the place ip) after the starting (i.e., a token in the place
start) and before the disabling (i.e., a token in the place disable) of the module, otherwise the
event will be ignored. The module stops when there is an accepted event or the module is disabled.
We recall that the starting and stopping of this module are imposed by the TRs defining the temporal
interval in which the IP can be triggered. We use the guards on transitions in order to ignore the

6.1. Formal Semantics 77

mi
n

max
ca
se
ma
x
of

DU
R
m
=>
1`
m

|
IN
F
=>
em
pt
y

min

start

min dur.

TIME

max dur.

FLEX_TIME

min_dur

TIME

start max

start min

stop min

stop max

max_dur

TIME

t1

rigid_m1

rigid_m2Declarations

colset TIME = time;
colset UNIT = unit;
colset FLEX_TIME = union DUR:TIME + INF;
var min : TIME;
var max : FLEX_TIME;

FIGURE 6.2: CPN modeling the duration of a temporal relation.

events that were not sent at the current time (i.e., ip_t < time()). Moreover, we use an inhibitor
arc from the place disable in order to remove the conflict generated when there is a token in the
places disable and ip at the same time. Therefore, the stopping of the module due to the stopping
of a TRs has higher priority than the stopping due to the triggering of the event. The reader may
have noticed that this behavior is similar to the urgent behavior defined in Chapter 5. From now on,
we shall call this module as ip_m.

()@
+1

time() ip_
t

ip_t

start

ip

stop

disable

TIME

DELAY
[ip_t < time()]

[ip_t = time()]

Declarations

colset TIME = time;
colset UNIT = unit;
colset DELAY = UNIT timed;
var ip_t : TIME;

FIGURE 6.3: CPN model for handling an interactive point.

Now, we can use the modules defined above to specify a flexible or semi-flexible TR controlling
the temporal interval in which an IP can be triggered. As we illustrate in Figure 6.4, an event that
triggers the IP ip_m is accepted only if it is sent between the minimum and the maximum duration
of the TR flexible_m. As we explained before, if the IP is not triggered before the elapsing of the
maximum duration, it will be automatically triggered (i.e., urgent behavior) at that time. We use the
place control in order to limit the number of times that the module can be stopped in the case in
which there are two or more TRs defining the temporal interval of the IP. We shall discuss in more
detail the usefulness of this place in Subsection 6.1.3. From now on we shall call this module as
flexible-ip_m.

6.1.2 Temporal Objects

Recall that the starting and the stopping of a TO are defined by means of TRs. Therefore, the com-
poser may allow the performer to anticipate and delay, during performance, these times by adding
IPs to TOs. Moreover, the system must guarantee that the temporal properties of the scenario are
maintained after the triggering of an IP. As we shall see, in our approach we model textures as
rigid or flexible TRs with an attached multimedia process depending on whether it has or not an IP
controlling its duration. Next, we present in more detail the model of TOs in CPN.

Rigid Textures. Intuitively, a rigid texture denotes a texture with no IP controlling its duration. As

78 Chapter 6. Streams in Multimedia Interactive Scenarios

1

e

if (e==1)
then 1'()
else empty0

start

min dur.

TIME

max dur.

FLEX_TIME
stop min

stop max

control

ip

stop

start ip

disable ip

BOOL

flexible_m

t1

t2

ip_mDeclarations

colset TIME = time;
colset UNIT = unit;
colset BOOL = bool;
colset FLEX_TIME = union DUR:TIME + INF;
var e : BOOL;

FIGURE 6.4: CPN modeling an interactive point controller by a temporal relation.

we show in Figure 6.5, the texture is modeled as a rigid TR (i.e., module rigid_m) with a duration
defined by a token in the place duration. Moreover, the starting and stopping of the attached process
are represented by the firing of the transitions t1 and t2, respectively. Therefore, if a texture starts at
time t and its duration is d, a token will be produced in the place start process and stop process

at time t and t + d, respectively. These places allow to represent the current execution state of the
texture.

du
r dur

start

duration

dur. intervalTIME

TIME

start process stop process

stop

t1 t2rigid_mDeclarations

colset TIME = time;
colset UNIT = unit;
var dur : TIME;

FIGURE 6.5: CPN modeling a texture with no IP at the end.

Flexible Textures. A flexible texture denotes a texture whose duration is determined during per-
formance by triggering an IP. Therefore, the texture stops if either the IP is triggered during the
minimum and maximum duration of the texture, or the maximum duration is reached. As it can
be seen in Figure 6.6, we define this type of texture as a flexible TR controlling the triggering of an
IP (flexible-ip_m). Moreover, it has an attached multimedia process whose starting and stopping
events are represented by the transitions t1 and t2, respectively. Therefore, if a texture starts at
time t and its minimum duration is dmin and its maximum duration is dmax , then a token will be
produced in the place start process at time t. In addition, a token will be produced in the place
stop process either (1) at time p if the IP is triggered at time p, which is greater than t + dmin and
less than t + dmax , or (2) at time t + dmax if the IP is not triggered before.

mi
n

max ma
x

min

start

min dur.

TIME

max dur.

ip

FLEX_TIME

TIME

FLEX_TIME

stop

stop process

start process

t1 t2flexible-ip_m

Declarations

colset TIME = time;
colset UNIT = unit;
colset FLEX_TIME = union DUR:TIME + INF;
var min : TIME;
var max : FLEX_TIME;

FIGURE 6.6: CPN modeling a texture with an interactive point at the end.

Structures. As we have explained before, hierarchy is very important for the specification of com-

6.1. Formal Semantics 79

plex scenarios because it allows to group a set of TOs and define their temporal organization in a
single temporal object, called structure. In our approach, we define structures as two transitions syn-
chronizing the start and the end of its children (i.e., the set of TOs inside the structure). Therefore,
its duration depends on the temporal organization of the sub-scenario. That is, the structure stops
when all its children have stopped.

At the time of writing this dissertation, it is still an open problem the modeling of structures whose
duration is defined by the triggering of an IP. For that, we would need to implement preemption in
CPN in order to stop the children (and the descendants) of the structure at any execution state.

6.1.3 Synchronization of Temporal Relations

As we explained before, the starting time of TOs is defined by the TRs imposed by the composer.
Therefore, a TO starts when all these TRs are satisfied. That means that the TO can start from once
all its preceding TOs have reached their minimum duration until one of them reaches its maximum
duration. If the defined IP is not triggered during the above interval of time, then the TO will start
automatically once the above interval finishes. In the following we shall introduce a mechanism to
interpret the temporal constraint defined by two or more TRs.

Roughly speaking, we first need to wait for the elapsing of the minimum duration of all TRs in
order to start the listening of the IP. Intuitively, we can see this operation as a conjunction operation.
As is depicted in Figure 6.7, we synchronize all the places representing the elapsing of the minimum
duration of each TR by using a transition (and) which is connected with the place representing the
starting of the IP. Secondly, we need that the IP remains listening the events until one of the TRs
reaches its maximum duration. Intuitively, we can see this operation as a disjunction operation. For
that, we connect the place representing the elapsing of the maximum duration of each TR with the
place that disables the IP. Therefore, the TO will start once either the IP is disabled (i.e., a token in
the place disable) or the corresponding event triggers the IP (i.e., a token in the place ip).

1

e

if (e==1) then 1'()
else empty

0

stop min
TR 1

stop max
TR 1

stop min
TR 2

stop max
TR 2

control

or

ip

stop

start ip

disable

BOOL

flexible_m1

flexible_m2

and

t1

t2
limit

ip_m

FIGURE 6.7: CPN model for the synchronization of TRs.

Notice that we limit the number of tokens in the place disable by adding the place control

which has a token colored with the value true (initial mark) and a transition limit that only puts
a token in the place disable when the token is colored with true. Once a TR reaches its minimum
duration, the transition changes the color of the token in the place control by false, causing that
tokens are no longer produced in the place disable.

80 Chapter 6. Streams in Multimedia Interactive Scenarios

6.2 Interactive Scenarios with Data Streams

In this section, we shall present an extension of the CPN model introduced above with mechanisms
to handle data streams in interactive scenarios. For that, we take advantage of the colored tokens of
the CPN formalism in order to represent audio streams.

The extension we propose provides the notion of asynchronous functional composition. This cor-
responds to the case where the composed processes are not executed at the same time. Then, it
requires to buffer the output data stream of processes in order to hold data until another process
read them. In the context of interactive scenarios, the time at which the buffers will be read is only
known dynamically during execution. Nevertheless, the duration of the buffers are all bounded by
the duration of the scenario which is finite.

As illustrated in Figure 6.8, an audio stream consists of an ordered sequence of values (i.e., frames)
which are played with a specific frequency. In our approach, each audio frame is then represented as
a colored token of the form (i, v) where i is the index of the audio frame and v is its corresponding
value. Moreover, using the notion of temporal relations of interactive scores, a rigid TR is defined
between two audio frames (i.e., intra-media synchronization [Blakowski 1996]). In the following,
we shall describe CPN modules for reading, appending, and reversing audio files which are basic
processing operations of audio files. Moreover, we shall show the simulation of an example in CPN
TOOLS.

time

va
lu

e

3.7
v1

4.3
v2

4.3
v3

3.7
v4

2.5
v5

2.5
v6

1.8
v7

1.2
v8

1.2
v9

1.8
v10

2.5
v11

2.5
v12

stream

FIGURE 6.8: Sampling of an audio stream.

6.2.1 Reading Audio Files

Intuitively, reading an audio file consists in acquiring audio frames from a file in a determinate
frequency (i.e., sampling frequency). We formalize this notion in the CPN module presented in Fig-
ure 6.9. The inputs of this module are: the number of frames of the file (place number frames),
the sampling period (place period), and the audio file (place file). The reading process starts by
putting a token in the place start) and it is stopped by putting a token in the place stop. The out-
puts of the module are: a buffer containing the audio frames (place output) read and the number
of frames that was read (place frames read). Additionally, the module indicates if the end of the
file is reached (place EOF) and it allows to synchronize the starting or stopping of other modules by
means of the place sync (explained later).

As we explained before, an audio file is defined as sequence of tokens with color (i, v) where
i (i.e., the index) and v (i.e., the value) are integers (i.e., color set TIME). The transition t is then
responsible for getting a token from the audio file (i.e., an audio frame from the place file) each
time that the duration f_dur elapses (i.e., the sampling period). It continue to read the file until
either (1) the reading reaches the end of the file or (2) the module is stopped. The condition (1) is
controlled by the guard in the transition t (i.e., n <= n_max) which is unsatisfied when the token in
the place next has a value greater than the number of frames of the file (i.e., the value of the token
defined in the input place number frames). Note that the token in the place next is initialized in

6.2. Interactive Scenarios with Data Streams 81

1

1

n_max

f_
du
r

f_dur

n_max

f_dur

(n,f)

n_max

n

f_dur@+f_dur

n_max
n
+
1

(n
,f
) (n,f)

n_max

n_max

if (n==n_max)

then 1'() else

empty

if (n==n_max)
then 1'() else
empty

(
n
,
f
)

e

0

if
(e=

=1)
the

n 1
'()

els
e e

mpt
y

e

0

2
'
(
)

n

n-1

f_dur

number
frames

period

start

get

DURATION

INT

TIME

file

FILE

INT
frame

FILE

control

next

INT

continue

stop

output

FILE

EOF

control stop

BOOL

end

frames
read

INT
sync.

[n <= n_max]t

Declarations

colset TIME = time;
colset UNIT = unit;
colset INT = int;
colset BOOL = bool;
colset DATA = INT;
colset DURATION = TIME timed;
colset FILE = product INT * DATA;
var f_dur : TIME;
var e : BOOL;
var f : DATA;
var n,n_max : INT;

FIGURE 6.9: CPN module for reading an audio file.

one and defines the index of the frame to be read. On the other hand, the condition (2) is achieved
when a token is put in the place stop.

The inhibitor arc between the place stop and the transition t allows to avoid the conflict gener-
ated when there is a token in this place and at the same time an audio frame can be read (i.e., the
transition can fire) meaning that the stopping of the module has a higher priority than reading a
new audio frame. In addition, we add the place control in order to restrict the module to read a
new frame only if the previous one was completely processed (i.e., the token is in the place output).
From now on, we shall call this module as read_m.

As we shall show, we now are able to read files and apply some basic audio processing functions
such as appending and reversing.

6.2.2 Appending Audio Files

As illustrated in Figure 6.10, appending two audio files is achieved by joining the data stream of both
audio files. In our approach, we use two instances of the module read_m as depicted in 6.11. The
CPN module reads the first audio file (module read_m1), and once it finishes, it starts the reading of
the second file (module read_m2). Observe that the place sync allows us to synchronize the starting
of read_m2 with the stopping of read_m1 and, at the same time, respect the sampling period. That
means that if the sampling period of the module read_m1 is p and the last audio frame of the first
file was read at time t, then the first frame of the second file will be read at time t + p.

3.7
v1

4.3
v2

4.3
v3

3.7
v4

2.5
v5

2.5
v6

stream1

1.8
v1

1.2
v2

1.2
v3

1.8
v4

2.5
v5

2.5
v6

stream2

3.7
v1

4.3
v2

4.3
v3

3.7
v4

2.5
v5

2.5
v6

1.8
v7

1.2
v8

1.2
v9

1.8
v10

2.5
v11

2.5
v12

append(stream1, stream2)

FIGURE 6.10: Concatenation of two audio files.

Notice that now, the number of frames read is the sum of the frames read from the first file and
the second file. Moreover, putting a token in the place stop provokes the stopping of both reading
modules. Finally, the place index is responsible for maintaining the correct index of the output. That

82 Chapter 6. Streams in Multimedia Interactive Scenarios

is, if the index of the last frame read from the first file is i, then the index of the first frame read from
the second file will be i+1. As the reader can see, the module will finish when both files are read or
a token is put in the place stop.

1

1 1

n1 n2

n
1
+
n
2

i

n

i+1

n+1
(i
,f
)

(n
,f
)

i
n

i+1

n+1 (i,f)

(n,f)

TIME

INT

period 1

number
frames 1

start

EOF 1

stop 1

end 1

sync 1

frames
read 1

INT

file 1

FILE

output 1

FILE

TIME

INT

period 2

number
frames 2

start 2

EOF 2

stop 2

end 2

sync 2

frames
read 2

INT

file 2

FILE

output 2

FILE

INT

frames
read

output

FILE

index

INT

next 1

INT

next 2

INT

stop

read_m1 read_m2

Declarations

colset TIME = time;
colset UNIT = unit;
colset INT = int;
colset DATA = INT;
colset FILE = product INT * DATA;
var f : DATA;
var i,n,n1,n2 : INT;

FIGURE 6.11: CPN module for appending two audio files.

6.2.3 Reversing Audio Files

To conclude, we present in Figure 6.13 a CPN module to reverse an audio file. As illustrated in Fig-
ure 6.12, intuitively reversing a file is achieved by reading it from the end to its beginning. Roughly
speaking, we instantiate two modules read_m; the first one (i.e., module read_m1) reverses the order
of the audio frames without sampling it (i.e., the sampling period is 0), and the second one (i.e., mod-
ule read_m2) reads the inverse file. Thus, the output of the reversing file is the place output of the
module read_m2.

3.7
v1

4.3
v2

4.3
v3

3.7
v4

2.5
v5

2.5
v6

1.8
v7

1.2
v8

1.2
v9

1.8
v10

2.5
v11

2.5
v12

stream

2.5
v1

2.5
v2

1.8
v3

1.2
v4

1.2
v5

1.8
v6

2.5
v7

2.5
v8

3.7
v9

4.3
v10

4.3
v11

3.7
v12

reverse(stream)

FIGURE 6.12: Reversing an audio files.

Note that the number of frames in both modules is the same. Moreover, the transition r and the
place next are responsible of reversing the index of each audio frame. For instance, if the number of
frames of the file is nm and the audio frame that is currently being reversed by the module read_m1

has a value f and the index n, then the transition t will produce a new token in the place file of
the module read_m2 with the same value v but with an index i = nm − n + 1. Finally, the guard
on the transition t allows to synchronize the starting of the module read_m2 when the file has been
completely reversed, i.e., the index i of the audio frame to be reversed is zero.

6.2. Interactive Scenarios with Data Streams 83

0

1

t

i

n_
ma
x

n
_
m
a
x

n_max

n
_
m
a
x

r

(n,f) (i
,f
)i

i
-
1

n

n+
1

TIME

INT

period R

number
frames 1

start

EOF R

stop R

end R

sync R

frames
read R

INT

file

FILE

output R

FILE TIME

INT

period

number
frames 2

start R

EOF

stop

end

sync

frames
read

INT

file R

FILE

output

FILE

number
frames

INT

INT

next

INT

read_m1 read_m2
[i=0]

[i>0]

Declarations

colset TIME = time;
colset UNIT = unit;
colset INT = int;
colset DATA = INT;
colset FILE = product INT * DATA;
var f : DATA;
var i,n,n_max : INT;

FIGURE 6.13: CPN module for reversing an audio file.

84 Chapter 6. Streams in Multimedia Interactive Scenarios

CHAPTER7
Concluding Remarks

We conclude this dissertation by summarizing its contributions and describing possible directions for
future research.

7.1 Overview

In this dissertation we studied several models for the specification and automatic verification of
interactive multimedia scenarios with interactive choices, i.e., scenarios where the performer or the
system can take decisions about their execution state with a certain degree of freedom defined by the
composer. To do this, we introduced a TA [Alur 1994] based framework allowing for the specification,
automatic verification, and real-time execution of interactive scenarios enhanced with interactive
points (IPs) guarded by conditions. Moreover, we presented REACTIVEIS, a declarative programming
language for the specification, verification and execution of interactive scenarios.

In the framework presented in Chapter 5, we extended IPs with guarded conditions, allowing
us to describe branching behaviors in interactive scenarios. Moreover, the formalization of interac-
tive scenarios in TA opened the possibility for the automatic verification of them using mature and
efficient tools like UPPAAL [Behrmann 2004]. We showed the verification of some important prop-
erties of scenarios such as termination and playability, and we pointed out some drawbacks of the
composition stage of the multimedia sequencer I-SCORE.

We presented a tool for automatically building the TA model from scenarios written in I-SCORE.
Thus, our framework allows composers to write their scenarios using the intuitive composition en-
vironment of I-SCORE, and automatically check the desired properties.

We also equipped our framework with the possibility of synthesizing validated scenarios into
programmable hardware. Doing that, we provide a parallel platform for the real-time and low latency
execution of interactive scenarios.

The relevance of the programming language REACTIVEIS we presented in Chapter 4 is that it
provides a declarative language for the specification of interactive scenarios. Moreover, we showed
that REACTIVEIS provides a logic representation of the temporal organization of scenarios. We also
showed that the tree-based operational semantics of REACTIVEIS gives an intuitive yet precise de-
scription of the execution of interactive scenarios, allowing users with no technical background
to understand their semantics without dealing with the underlying theories of the existing models
(e.g., events structures, process calculi).

We also endowed REACTIVEIS with a declarative interpretation as formulas in SELL [Danos 1993]
and we showed that such interpretation is adequate. Moreover, we showed some important prop-
erties of REACTIVEIS such as confluence, monotonicity and determinism. We also illustrated the
verification of scenarios using focused proof system for SELL [Nigam 2013].

Aiming at a more dynamic model for interactive scenarios, we proposed a synchronous inter-
preter using the reactive programming language REACTIVEML [Mandel 2008], which provides fea-
tures such as dynamic creation of processes. In this way, we brought the possibility for executing live
code and prototyping new features easily in interactive scenarios.

85

86 Chapter 7. Concluding Remarks

Since the execution interface of I-SCORE is very static, we presented a dynamic graphical interface
for interactive scenarios using the environment INSCORE [Fober 2013]. We showed that the proposed
execution interface interacts with the environment and provides in real-time the actual execution
state of scenarios.

Finally, we studied a CPN [Jensen 2009] model for interactive scenarios aiming at formalizing
complex data, in particular, audio streams. We also introduced the notion of asynchronous function
composition in interactive scenarios. Since the presented CPN model is modular and extensible,
we defined CPN modules for the basic processing of audio files, such as reading, appending and
reversing.

7.2 Future Directions

The following are, in the author’s opinion, some interesting directions for future work.

Loops. As we stated in this dissertation, applications such as video games and interactive museum
installation increasingly need the notion of loops in order to correctly specify these complex scenar-
ios [de la Hogue 2014]. Due to the controversial debate by the members of the project OSSIA about
the true semantics of loops in interactive scenarios and their adaptation in the time-line, we did not
have enough time to develop a coherent model for loops. Then, we plan to extend REACTIVEIS and
our TA [Alur 1994] framework with the notion of loops specified at the end of the project.

It would be interesting to use the proposed dynamic model in REACTIVEML [Mandel 2005] in
order to quickly prototype some ideas. Since loops lead to the dynamic creation of processes which
it is not supported by the verification tool UPPAAL [Larsen 1997], we shall need to limit the maxi-
mum number of iterations in order to create a finite model of the scenario. Nevertheless, the work
[Boudjadar 2013] may bring some ideas on how to deal with this limitation.

Tiled Programming. Tiled programming [Janin 2013] is a recent formalism aiming at combining
space and time of multimedia systems into a single framework based on a solid algebraic model.
Thus, it would allow us to formalize into the same framework the TRs (i.e., inter-media synchro-
nization) and the multimedia processes (i.e., intra-media synchronization) of interactive scenarios.
We have already had our first contact with this promising model and we have found some similar-
ities with our TA model. Therefore, it would be interesting to study how to encode the operational
semantics defined in TA into the tiled programming in order to have a unified framework modeling
the data flow and the control flow of interactive scenarios.

Validation of Implementations. We plan to validate in COQ [Bertot 2004] that the implemen-
tation of the interpreter of REACTIVEIS fully meets its operational semantics. Moreover, one may
be interested in validating some properties of the SV [Sutherland 2006] implementation presented
in Chapter 5 using a formal specification language like SystemVerilog Assetions (SVA) [Cerny 2014].
Also, it would be interesting to study how to apply Model-Based Testing [Utting 2007] techniques in
order to generate, using the tool COVER1, a suite of test cases from requirements for the validation
of the TA model of any scenario (see [Poncelet 2015]).

Multimedia Hardware. In this dissertation we proposed a hardware specification of interactive
scenarios in order to execute them on FPGAs [Brown 1992]. Therefore, one may be interested in
implementing custom modules for multimedia processes in order to build a closed system that does
not need to communicate with applications running on standard operating systems (e.g., PURE DATA

and MAX/MSP) whose performance may downgrade the performance of the system.
In the lines of [Trausmuth 2006], it would be interesting to develop an application for the auto-

matic translation of DSP programs written in formal languages as FAUST [Orlarey 2004] into hard-
ware. Doing this, it would be possible to execute interactive scenarios and multimedia processes on

1COVER website: http://www.hessel.nu/CoVer/

http://www.hessel.nu/CoVer/

7.2. Future Directions 87

the same chip. However, there may be no synthesizable programs. Therefore, following the ideas
in [Aviziensis 2000], it would be interesting to implement a FAST ETHERNET module in order to
provide a reliable, compact, multi-channel and low-rate communication between the reconfigurable
platform and external applications.

Data-Flow Programming. Nowadays, composers have increasingly needed to manipulate data
streams in their interactive scenarios. Therefore, one may be interested in specifying flow com-
munications between textures and real-time audio processing modules defined in languages with a
formal semantics like FAUST [Orlarey 2004].

A possible idea is to implement data-flow modules in synchronous data-flow programming lan-
guages (e.g., LUCID SYNCHRONE [Pouzet 2001], LUSTRE [Halbwachs 1992], SIGNAL [Benveniste
1991]) and connected them with the TA model proposed here. To achieve this, one may define
a parallel operator to connect timed automata with data flow modules as in [Jiang 2015].

88 Chapter 7. Concluding Remarks

References

[Allombert 2009] Antoine Allombert. “Aspects Temporels d’un Système de Partitions Musicales In-
teractives pour la Composition et l’Exécution”. PhD thesis. Université de Bordeaux, 2009. URL:
http://ori-oai.u-bordeaux1.fr/pdf/2009/ALLOMBERT_ANTOINE_2009.pdf (cited on pages 1,
2, 31, 34, 35, 51, 58).

[Allombert 2010] Antoine Allombert et al. “VIRAGE: Designing An Interactive Intermedia Sequencer
From Users Requirements And Theoretical Background”. Proceedings of International Computer
Music Conference (ICMC’10), New York, USA, June 1-5, 2010. 2010, pp. 470–473. URL: http:
//hdl.handle.net/2027/spo.bbp2372.2010.110 (cited on pages 1, 35).

[Altisen 2005] Karine Altisen and Stavros Tripakis. “Implementation of Timed Automata: An Issue
of Semantics or Modeling?” Formal Modeling and Analysis of Timed Systems, Third International
Conference, FORMATS 2005, Uppsala, Sweden, September 26-28, 2005, Proceedings. Ed. by Paul
Pettersson and Wang Yi. Vol. 3829. Lecture Notes in Computer Science. Springer, 2005, pp. 273–
288. DOI: 10.1007/11603009_21 (cited on page 62).

[Alur 1990] Rajeev Alur, Costas Courcoubetis, and David L. Dill. “Model-Checking for Real-Time
Systems”. Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90),
Philadelphia, Pennsylvania, USA, June 4-7, 1990. IEEE Computer Society, 1990, pp. 414–425.
DOI: 10.1109/LICS.1990.113766 (cited on pages 18, 21).

[Alur 1993] Rajeev Alur, Costas Courcoubetis, and David L. Dill. “Model-Checking in Dense Real-
time”. Inf. Comput. 104.1 (1993), pp. 2–34. DOI: 10.1006/inco.1993.1024 (cited on page 21).

[Alur 1994] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. Theor. Comput. Sci. 126.2
(1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8 (cited on pages 2, 4, 17, 51, 52,
85, 86).

[Amnell 2002] Tobias Amnell et al. “Code Synthesis for Timed Automata”. Nord. J. Comput. 9.4
(2002), pp. 269–300 (cited on page 51).

[Amnell 2003] Tobias Amnell et al. “TIMES: A Tool for Schedulability Analysis and Code Genera-
tion of Real-Time Systems”. Formal Modeling and Analysis of Timed Systems: First International
Workshop, FORMATS 2003, Marseille, France, September 6-7, 2003. Revised Papers. Ed. by Kim
Guldstrand Larsen and Peter Niebert. Vol. 2791. Lecture Notes in Computer Science. Springer,
2003, pp. 60–72. DOI: 10.1007/978-3-540-40903-8_6 (cited on page 51).

[André 2004] Charles André. “Computing SyncCharts Reactions”. Electr. Notes Theor. Comput. Sci.
88 (2004), pp. 3–19. DOI: 10.1016/j.entcs.2003.05.007 (cited on page 8).

[Andreoli 1992] Jean-Marc Andreoli. “Logic Programming with Focusing Proofs in Linear Logic”. J.
Log. Comput. 2.3 (1992), pp. 297–347. DOI: 10.1093/logcom/2.3.297 (cited on page 26).

[Arias 2012] Jaime Arias. “Model Checking for TCC Calculus”. Undergraduate Honors Thesis. Cali,
Colombia: Universidad Javeriana, 2012. URL: http://www.labri.fr/perso/jarias/files/
thesis_2013.pdf (cited on page 36).

[Arias 2014a] Jaime Arias, Myriam Desainte-Catherine, and Camilo Rueda. “Modelling Data Pro-
cessing for Interactive Scores Using Coloured Petri Nets”. 14th International Conference on Appli-
cation of Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia, June 23-27, 2014.
IEEE, 2014, pp. 186–195. DOI: 10.1109/ACSD.2014.23 (cited on page 5).

89

http://ori-oai.u-bordeaux1.fr/pdf/2009/ALLOMBERT_ANTOINE_2009.pdf
http://hdl.handle.net/2027/spo.bbp2372.2010.110
http://hdl.handle.net/2027/spo.bbp2372.2010.110
http://dx.doi.org/10.1007/11603009_21
http://dx.doi.org/10.1109/LICS.1990.113766
http://dx.doi.org/10.1006/inco.1993.1024
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-540-40903-8_6
http://dx.doi.org/10.1016/j.entcs.2003.05.007
http://dx.doi.org/10.1093/logcom/2.3.297
http://www.labri.fr/perso/jarias/files/thesis_2013.pdf
http://www.labri.fr/perso/jarias/files/thesis_2013.pdf
http://dx.doi.org/10.1109/ACSD.2014.23

90 References

[Arias 2014b] Jaime Arias et al. “Executing Hierarchical Interactive Scores in ReactiveML”. Journées
d’Informatique Musicale, JIM 2014, Bourges, France, May 21-23, 2014. 2014, pp. 25–34. URL:
http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_Actes_maquette_

006.pdf (cited on page 6).

[Arias 2015a] Jaime Arias and Jean-Michaël Celerier. “Le Séquenceur Interactif Multimédia i-score”.
Journées Développement Logiciel de l’Enseignement Supérieur et de la Recherche, JDEV 2015, Bor-
deaux, France, June 30 - July 3, 2015. Poster. 2015. URL: http://devlog.cnrs.fr/_media/
jdev2015/poster_jdev2015_iscore_jaime_arias.pdf (cited on page 6).

[Arias 2015b] Jaime Arias, Myriam Desainte-Catherine, and Camilo Rueda. “A Framework for Com-
position, Verification and Real-Time Performance of Multimedia Interactive Scenarios”. 15th In-
ternational Conference on Application of Concurrency to System Design, ACSD 2015, Brussels, Bel-
gium, June 21-26, 2015. IEEE, 2015, pp. 140–151 (cited on page 5).

[Arias 2015c] Jaime Arias, Myriam Desainte-Catherine, and Camilo Rueda. “Exploiting Parallelism
in FPGAs for the Real-Time Interpretation of Interactive Multimedia Scores”. Journées d’Informatique
Musicale, JIM 2015, Montréal, Canada, May 7-9, 2015. 2015. URL: http://jim2015.oicrm.org/
actes/JIM15_Arias_J_et_al.pdf (cited on page 6).

[Arias 2015d] Jaime Arias, Michell Gúzman, and Carlos Olarte. “A Symbolic Model for Timed Con-
current Constraint Programming”. Electronic Notes in Theoretical Computer Science 312 (2015),
pp. 161–177. DOI: 10.1016/j.entcs.2015.04.010 (cited on pages 5, 36).

[Arias 2015e] Jaime Arias et al. “Foundations for Reliable and Flexible Interactive Multimedia Scores”.
5th International Conference on Mathematics and Computation in Music, MCM 2015, London, UK,
June 22-25, 2015. Ed. by Tom Collins, David Meredith, and Anja Volk. Vol. 9110. Lecture Notes
in Computer Science. Springer, 2015, pp. 29–41. DOI: 10.1007/978-3-319-20603-5_3 (cited
on page 5).

[Aviziensis 2000] Rimas Aviziensis et al. “Scalable Connectivity Processor for Computer Music Per-
formance Systems”. International Computer Music Conference, ICMC 2000, Berlin, Germany, Au-
gust 27-September 1, 2000. 2000. URL: http://hdl.handle.net/2027/spo.bbp2372.2000.117
(cited on page 87).

[Baier 2008] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
ISBN: 978-0-262-02649-9 (cited on pages 20–22).

[Baltazar 2009] P. Baltazar et al. “VIRAGE: Une Réflexion Pluridisciplinaire Autour du Temps dans
la Création Numérique”. Journées d’Informatique Musicale, JIM 2009, Grenoble, France, April 1-
3, 2009. 2009, pp. 151–160. URL: http://acroe.imag.fr/jim09/downloads/actes/JIM09_
Baltazar.pdf (cited on page 33).

[Baudart 2013a] Guillaume Baudart, Louis Mandel, and Marc Pouzet. “Programming Mixed Music
in ReactiveML”. ACM SIGPLAN Workshop on Functional Art, Music, Modeling and Design (FARM’13),
Boston, Massachusetts, USA, September 28, 2013. Boston, USA: ACM, 2013, pp. 11–22. DOI: 10.
1145/2505341.2505344 (cited on pages 3, 68).

[Baudart 2013b] Guillaume Baudart et al. “A synchronous embedding of Antescofo, a domain-specific
language for interactive mixed music”. Proceedings of the International Conference on Embedded
Software, EMSOFT 2013, Montreal, QC, Canada, September 29 - Oct. 4, 2013. IEEE, 2013, 1:1–
1:12. DOI: 10.1109/EMSOFT.2013.6658579 (cited on pages 3, 68).

http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_Actes_maquette_006.pdf
http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_Actes_maquette_006.pdf
http://devlog.cnrs.fr/_media/jdev2015/poster_jdev2015_iscore_jaime_arias.pdf
http://devlog.cnrs.fr/_media/jdev2015/poster_jdev2015_iscore_jaime_arias.pdf
http://jim2015.oicrm.org/actes/JIM15_Arias_J_et_al.pdf
http://jim2015.oicrm.org/actes/JIM15_Arias_J_et_al.pdf
http://dx.doi.org/10.1016/j.entcs.2015.04.010
http://dx.doi.org/10.1007/978-3-319-20603-5_3
http://hdl.handle.net/2027/spo.bbp2372.2000.117
http://acroe.imag.fr/jim09/downloads/actes/JIM09_Baltazar.pdf
http://acroe.imag.fr/jim09/downloads/actes/JIM09_Baltazar.pdf
http://dx.doi.org/10.1145/2505341.2505344
http://dx.doi.org/10.1145/2505341.2505344
http://dx.doi.org/10.1109/EMSOFT.2013.6658579

References 91

[Behrmann 2004] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. “A Tutorial on Up-
paal”. Formal Methods for the Design of Real-Time Systems, International School on Formal Methods
for the Design of Computer, Communication and Software Systems, SFM-RT 2004, Bertinoro, Italy,
September 13-18, 2004, Revised Lectures. Ed. by Marco Bernardo and Flavio Corradini. Vol. 3185.
Lecture Notes in Computer Science. Springer, 2004, pp. 200–236. DOI: 10.1007/978-3-540-
30080-9_7 (cited on pages 4, 52, 85).

[Bengtsson 1996] Johan Bengtsson et al. “Verification of an Audio Protocol with Bus Collision Us-
ing UPPAAL”. Computer Aided Verification, 8th International Conference, CAV ’96, New Brunswick,
NJ, USA, July 31 - August 3, 1996, Proceedings. Ed. by Rajeev Alur and Thomas A. Henzinger.
Vol. 1102. Lecture Notes in Computer Science. Springer, 1996, pp. 244–256. DOI: 10.1007/3-
540-61474-5_73 (cited on page 18).

[Bengtsson 2002] Johan Bengtsson et al. “Automated verification of an audio-control protocol using
UPPAAL”. J. Log. Algebr. Program. 52-53 (2002), pp. 163–181. DOI: 10.1016/S1567-8326(02)
00036-X (cited on page 18).

[Bengtsson 2003] Johan Bengtsson and Wang Yi. “Timed Automata: Semantics, Algorithms and
Tools”. Lectures on Concurrency and Petri Nets, Advances in Petri Nets. Ed. by Jörg Desel, Wolf-
gang Reisig, and Grzegorz Rozenberg. Vol. 3098. Lecture Notes in Computer Science. Springer,
2003, pp. 87–124. DOI: 10.1007/978-3-540-27755-2_3 (cited on page 17).

[Benveniste 1991] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. “Synchronous Pro-
gramming with Events and Relations: the SIGNAL Language and Its Semantics”. Sci. Comput.
Program. 16.2 (1991), pp. 103–149. DOI: 10.1016/0167-6423(91)90001-E (cited on pages 8,
87).

[Benveniste 2003] Albert Benveniste et al. “The synchronous languages Twelve years later”. Proceed-
ings of the IEEE 91.1 (2003), pp. 64–83. DOI: 10.1109/JPROC.2002.805826 (cited on page 9).

[Berry 1992] Gérard Berry and Georges Gonthier. “The Esterel Synchronous Programming Lan-
guage: Design, Semantics, Implementation”. Sci. Comput. Program. 19.2 (1992), pp. 87–152.
DOI: 10.1016/0167-6423(92)90005-V (cited on pages 8, 66).

[Bertot 2004] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. ISBN: 978-3-642-05880-6. DOI: 10.1007/978-3-662-07964-5
(cited on page 86).

[Beurivé 2001] Anthony Beurivé and Myriam Desainte-Catherine. “Representing Musical Hierar-
chies with Constraints”. Proceedings of the 7th International Conference on Principles and Practice
of Constraint Programming, Musical Constraints Workshop. Cyprus, 2001, pp. 23–33 (cited on
pages 1, 34).

[Blakowski 1996] Gerold Blakowski and Ralf Steinmetz. “A Media Synchronization Survey: Refer-
ence Model, Specification, and Case Studies”. IEEE Journal on Selected Areas in Communications
14.1 (1996), pp. 5–35. DOI: 10.1109/49.481691 (cited on pages 58, 80).

[Boudjadar 2013] Abdeldjalil Boudjadar et al. “Extending UPPAAL for the Modeling and Verification
of Dynamic Real-Time Systems”. Fundamentals of Software Engineering - 5th International Con-
ference, FSEN 2013, Tehran, Iran, April 24-26, 2013, Revised Selected Papers. Ed. by Farhad Arbab
and Marjan Sirjani. Vol. 8161. Lecture Notes in Computer Science. Springer, 2013, pp. 111–132.
DOI: 10.1007/978-3-642-40213-5_8 (cited on page 86).

[Boussinot 1996] Frédéric Boussinot and Robert de Simone. “The SL Synchronous Language”. IEEE
Trans. Software Eng. 22.4 (1996), pp. 256–266. DOI: 10.1109/32.491649 (cited on pages 3, 66).

http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/3-540-61474-5_73
http://dx.doi.org/10.1007/3-540-61474-5_73
http://dx.doi.org/10.1016/S1567-8326(02)00036-X
http://dx.doi.org/10.1016/S1567-8326(02)00036-X
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1016/0167-6423(91)90001-E
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1109/49.481691
http://dx.doi.org/10.1007/978-3-642-40213-5_8
http://dx.doi.org/10.1109/32.491649

92 References

[Brown 1992] Stephen D. Brown et al. Field-Programmable Gate Arrays. Vol. 180. The Springer In-
ternational Series in Engineering and Computer Science. Springer US, 1992. ISBN: 978-1-4613-
6587-7. DOI: 10.1007/978-1-4615-3572-0 (cited on pages 27, 86).

[Canazza 2001] S. Canazza and A. Vidolin. “Introduction: Preserving Electroacoustic Music”. Jour-
nal of New Music Research 30.4 (2001), pp. 289–293. DOI: 10.1076/jnmr.30.4.289.7494 (cited
on pages 1, 34).

[Celerier 2014] Jean-Michaël Celerier. “Répartition des Réseaux de Petri dans le Cadre du Logiciel
I-SCORE”. Master Thesis. Bordeaux, France: Université de Bordeaux, 2014 (cited on page 35).

[Celerier 2015] Jean-Michaël Celerier et al. “OSSIA: towards a unified interface for scoring time and
interaction”. Proceedings of the First International Conference on Technologies for Music Notation
and Representation - TENOR2015. Ed. by Marc Battier et al. Paris, France: Institut de Recherche
en Musicologie, 2015, pp. 81–90. ISBN: 978-2-9552905-0-7. URL: http://tenor2015.tenor-
conference.org/papers/13-Celerier-OSSIA.pdf (cited on page 34).

[Cerny 2014] Eduard Cerny et al. SVA: The Power of Assertions in SystemVerilog. 2nd. Springer, 2014.
ISBN: 9783319071381 (cited on page 86).

[Chapiro 1985] Daniel Marcos Chapiro. “Globally-asynchronous Locally-Synchronous Systems (Per-
formance, Reliability, Digital)”. PhD thesis. Stanford, CA, USA, 1985 (cited on page 10).

[Chiarugi 2015] Davide Chiarugi et al. “Verification of Spatial and Temporal Modalities in Biochem-
ical Systems”. Electr. Notes Theor. Comput. Sci. 316 (2015), pp. 29–44. DOI: 10.1016/j.entcs.
2015.06.009 (cited on page 25).

[Cicirelli 2012] Franco Cicirelli, Angelo Furfaro, and Libero Nigro. “Model checking time-dependent
system specifications using Time Stream Petri Nets and Uppaal”. Applied Mathematics and Com-
putation 218.16 (2012), pp. 8160–8186. DOI: 10.1016/j.amc.2012.02.018 (cited on page 12).

[Clarke 1986] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. “Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifications”. ACM Trans. Program.
Lang. Syst. 8.2 (1986), pp. 244–263. DOI: 10.1145/5397.5399 (cited on page 21).

[Clarke 2008] Edmund M. Clarke. “The Birth of Model Checking”. 25 Years of Model Checking -
History, Achievements, Perspectives. Ed. by Orna Grumberg and Helmut Veith. Vol. 5000. Lecture
Notes in Computer Science. Springer, 2008, pp. 1–26. DOI: 10.1007/978-3-540-69850-0_1
(cited on page 19).

[Colaço 2004] Jean-Louis Colaço et al. “Towards a higher-order synchronous data-flow language”.
EMSOFT 2004, September 27-29, 2004, Pisa, Italy, Fourth ACM International Conference On Em-
bedded Software, Proceedings. Ed. by Giorgio C. Buttazzo. ACM, 2004, pp. 230–239. DOI: 10.
1145/1017753.1017792 (cited on page 8).

[Courtiat 1996] Jean-Pierre Courtiat et al. “Formal models for the description of timed behaviors
of multimedia and hypermedia distributed systems”. Computer Communications 19.14 (1996),
pp. 1134–1150. DOI: 10.1016/S0140-3664(96)01148-6 (cited on page 12).

[Cousot 1999] Patrick Cousot and Radhia Cousot. “Refining Model Checking by Abstract Interpre-
tation”. Autom. Softw. Eng. 6.1 (1999), pp. 69–95. DOI: 10.1023/A:1008649901864 (cited on
page 20).

[Danos 1993] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. “The Structure of Expo-
nentials: Uncovering the Dynamics of Linear Logic Proofs”. Computational Logic and Proof Theory,
Third Kurt Gödel Colloquium, KGC’93, Brno, Czech Republic, August 24-27, 1993, Proceedings. Ed.
by Georg Gottlob, Alexander Leitsch, and Daniele Mundici. Vol. 713. Lecture Notes in Computer
Science. Springer, 1993, pp. 159–171. DOI: 10.1007/BFb0022564 (cited on pages 2, 25, 85).

http://dx.doi.org/10.1007/978-1-4615-3572-0
http://dx.doi.org/10.1076/jnmr.30.4.289.7494
http://tenor2015.tenor-conference.org/papers/13-Celerier-OSSIA.pdf
http://tenor2015.tenor-conference.org/papers/13-Celerier-OSSIA.pdf
http://dx.doi.org/10.1016/j.entcs.2015.06.009
http://dx.doi.org/10.1016/j.entcs.2015.06.009
http://dx.doi.org/10.1016/j.amc.2012.02.018
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1145/1017753.1017792
http://dx.doi.org/10.1145/1017753.1017792
http://dx.doi.org/10.1016/S0140-3664(96)01148-6
http://dx.doi.org/10.1023/A:1008649901864
http://dx.doi.org/10.1007/BFb0022564

References 93

[de la Hogue 2014] Théo de la Hogue et al. “OSSIA: Open Scenario System for Interactive Appli-
cations”. Journées d’Informatique Musicale, JIM 2014, Bourges, France, May 21-23, 2014. 2014,
pp. 78–84. URL: http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_
Actes_maquette_006.pdf (cited on pages 2, 35, 86).

[Desainte-Catherine 2013] Myriam Desainte-Catherine, Antoine Allombert, and Gérard Assayag.
“Towards a Hybrid Temporal Paradigm for Musical Composition and Performance: The Case of
Musical Interpretation”. Computer Music Journal 37.2 (2013), pp. 61–72. DOI: 10.1162/COMJ_
a_00179 (cited on page 35).

[Diaz 1994] Michel Diaz and Patrick Sénac. “Time Stream Petri Nets: A Model for Timed Multimedia
Information”. Application and Theory of Petri Nets 1994, 15th International Conference, Zaragoza,
Spain, June 20-24, 1994, Proceedings. Ed. by Robert Valette. Vol. 815. Lecture Notes in Computer
Science. Springer, 1994, pp. 219–238. DOI: 10.1007/3-540-58152-9_13 (cited on pages 11,
12).

[Dong 2006] Jin Song Dong et al. “Verification of Computation Orchestration Via Timed Automata”.
Formal Methods and Software Engineering, 8th International Conference on Formal Engineering
Methods, ICFEM 2006, Macao, China, November 1-3, 2006, Proceedings. Ed. by Zhiming Liu and
Jifeng He. Vol. 4260. Lecture Notes in Computer Science. Springer, 2006, pp. 226–245. DOI:
10.1007/11901433_13 (cited on page 18).

[Dubey 2009] Rahul Dubey. Introduction to Embedded System Design Using Field Programmable Gate
Arrays. Springer London, 2009. ISBN: 978-1-84882-015-9. DOI: 10.1007/978-1-84882-016-6
(cited on page 28).

[Echeveste 2013] José Echeveste et al. “Operational semantics of a domain specific language for real
time musician-computer interaction”. Discrete Event Dynamic Systems 23.4 (2013), pp. 343–383.
DOI: 10.1007/s10626-013-0166-2 (cited on page 52).

[Emerson 1982] E. Allen Emerson and Edmund M. Clarke. “Using Branching Time Temporal Logic
to Synthesize Synchronization Skeletons”. Sci. Comput. Program. 2.3 (1982), pp. 241–266. DOI:
10.1016/0167-6423(83)90017-5 (cited on page 20).

[Fober 2012] Dominique Fober, Yann Orlarey, and Stéphane Letz. “INScore – An Environment for
the Design of Live Music Scores”. Proceedings of the Linux Audio Conference – LAC 2012. 2012,
pp. 47–54. URL: http://lac.linuxaudio.org/2012/papers/12.pdf (cited on pages 5, 73).

[Fober 2013] Dominique Fober et al. “Programming Interactive Music Scores with INScore”. Pro-
ceedings of the Sound and Music Computing conference – SMC’13. 2013, pp. 185–190. URL: http:
//smacsmc2013.smcsweden.se/ (cited on pages 3, 73, 86).

[Fober 2014] Dominique Fober, Yann Orlarey, and Stéphane Letz. “Augmented Interactive Scores
for Music Creation”. Proceedings of Korean Electro-Acoustic Music Society’s 2014 Annual Conference
KEAMSAC 2014. 2014, pp. 85–91 (cited on page 36).

[Gamatié 2010] Abdoulaye Gamatié. Designing Embedded Systems with the SIGNAL Programming
Language - Synchronous, Reactive Specification. Springer, 2010. ISBN: 978-1-4419-0940-4. DOI:
10.1007/978-1-4419-0941-1 (cited on page 9).

[Garcia 2006] Philip Garcia et al. “An Overview of Reconfigurable Hardware in Embedded Systems”.
EURASIP J. Emb. Sys. 2006 (2006). DOI: 10.1155/ES/2006/56320 (cited on page 28).

[Girard 1987] Jean-Yves Girard. “Linear Logic”. Theor. Comput. Sci. 50 (1987), pp. 1–102. DOI: 10.
1016/0304-3975(87)90045-4 (cited on page 23).

[Girard 1998] Jean-Yves Girard. “Light Linear Logic”. Inf. Comput. 143.2 (1998), pp. 175–204. DOI:
10.1006/inco.1998.2700 (cited on page 24).

http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_Actes_maquette_006.pdf
http://jim.afim-asso.org/jim2014/attachments/article/92/JIM2014_Actes_maquette_006.pdf
http://dx.doi.org/10.1162/COMJ_a_00179
http://dx.doi.org/10.1162/COMJ_a_00179
http://dx.doi.org/10.1007/3-540-58152-9_13
http://dx.doi.org/10.1007/11901433_13
http://dx.doi.org/10.1007/978-1-84882-016-6
http://dx.doi.org/10.1007/s10626-013-0166-2
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://lac.linuxaudio.org/2012/papers/12.pdf
http://smacsmc2013.smcsweden.se/
http://smacsmc2013.smcsweden.se/
http://dx.doi.org/10.1007/978-1-4419-0941-1
http://dx.doi.org/10.1155/ES/2006/56320
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1006/inco.1998.2700

94 References

[Halbwachs 1992] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. “Programming and
Verifying Real-Time Systems by Means of the Synchronous Data-Flow Language LUSTRE”. IEEE
Trans. Software Eng. 18.9 (1992), pp. 785–793. DOI: 10.1109/32.159839 (cited on pages 8, 87).

[Halbwachs 1993] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. “Synchronous Ob-
servers and the Verification of Reactive Systems”. Algebraic Methodology and Software Technology
(AMAST ’93), Proceedings of the Third International Conference on Methodology and Software Tech-
nology, University of Twente, Enschede, The Netherlands, 21-25 June, 1993. Ed. by Maurice Nivat
et al. Workshops in Computing. Springer, 1993, pp. 83–96. DOI: 10.1007/978-1-4471-3227-1_8
(cited on page 73).

[Halbwachs 1998] Nicolas Halbwachs. “Synchronous Programming of Reactive Systems”. Computer
Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July
2, 1998, Proceedings. Ed. by Alan J. Hu and Moshe Y. Vardi. Vol. 1427. Lecture Notes in Computer
Science. Springer, 1998, pp. 1–16. DOI: 10.1007/BFb0028726 (cited on pages 7, 8, 42).

[Harel 1985] D. Harel and A. Pnueli. “On the Development of Reactive Systems”. Logics and Models
of Concurrent Systems. Ed. by KrzysztofR. Apt. Vol. 13. NATO ASI Series. Springer Berlin Heidel-
berg, 1985, pp. 477–498. ISBN: 978-3-642-82455-5. DOI: 10.1007/978-3-642-82453-1_17
(cited on page 7).

[Hauck 2007] Scott Hauck and Andre DeHon. Reconfigurable Computing: The Theory and Practice
of FPGA-Based Computation. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.
ISBN: 9780080556017 (cited on page 28).

[Haury 1987] Jean Haury. “La Grammaire de l’exécution musicale au clavier et le mouvement des
touches”. L’Analyse musicale 7 (1987), pp. 20–26 (cited on page 32).

[Havelund 1997] Klaus Havelund et al. “Formal modeling and analysis of an audio/video protocol:
an industrial case study using UPPAAL”. Proceedings of the 18th IEEE Real-Time Systems Sympo-
sium (RTSS ’97), December 3-5, 1997, San Francisco, CA, USA. IEEE Computer Society, 1997,
pp. 2–13. DOI: 10.1109/REAL.1997.641264 (cited on page 18).

[Henzinger 1994] Thomas A. Henzinger et al. “Symbolic Model Checking for Real-Time Systems”.
Inf. Comput. 111.2 (1994), pp. 193–244. DOI: 10.1006/inco.1994.1045 (cited on pages 20, 22).

[Hessel 2008] Anders Hessel et al. “Testing Real-Time Systems Using UPPAAL”. Formal Methods and
Testing, An Outcome of the FORTEST Network, Revised Selected Papers. Ed. by Robert M. Hierons,
Jonathan P. Bowen, and Mark Harman. Vol. 4949. Lecture Notes in Computer Science. Springer,
2008, pp. 77–117. DOI: 10.1007/978-3-540-78917-8_3 (cited on page 18).

[Jamain 2015] Simon Jamain. “Etude de l’Optimisation de Contraintes pour l’Écriture de Scenarios
Interactifs”. Master Thesis. Bordeaux, France: Université de Bordeaux, 2015 (cited on page 36).

[Janin 2013] David Janin et al. “The T-calculus: Towards a Structured Programing of (Musical) Time
and Space”. Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling
& Design. FARM ’13. Boston, Massachusetts, USA: ACM, 2013, pp. 23–34. ISBN: 978-1-4503-
2386-4. DOI: 10.1145/2505341.2505347 (cited on page 86).

[Jensen 2007] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. “Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems”. STTT 9.3-4 (2007), pp. 213–254. DOI:
10.1007/s10009-007-0038-x (cited on page 14).

[Jensen 2009] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Modelling and Vali-
dation of Concurrent Systems. Springer, 2009. ISBN: 978-3-642-00283-0. DOI: 10.1007/b95112
(cited on pages 14, 16, 86).

[Jensen 2015] Kurt Jensen and Lars Michael Kristensen. “Colored Petri nets: a graphical language
for formal modeling and validation of concurrent systems”. Commun. ACM 58.6 (2015), pp. 61–
70. DOI: 10.1145/2663340 (cited on pages 3, 5).

http://dx.doi.org/10.1109/32.159839
http://dx.doi.org/10.1007/978-1-4471-3227-1_8
http://dx.doi.org/10.1007/BFb0028726
http://dx.doi.org/10.1007/978-3-642-82453-1_17
http://dx.doi.org/10.1109/REAL.1997.641264
http://dx.doi.org/10.1006/inco.1994.1045
http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://dx.doi.org/10.1145/2505341.2505347
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.1145/2663340

References 95

[Jiang 2015] Yu Jiang et al. “Design and Optimization of Multiclocked Embedded Systems Using
Formal Techniques”. IEEE Transactions on Industrial Electronics 62.2 (2015), pp. 1270–1278. DOI:
10.1109/TIE.2014.2316234 (cited on page 87).

[Katoen 2001] Joost-Pieter Katoen, Christel Baier, and Diego Latella. “Metric semantics for true
concurrent real time”. Theor. Comput. Sci. 254.1-2 (2001), pp. 501–542. DOI: 10.1016/S0304-
3975(99)00342-4 (cited on page 36).

[Kim 2015] Jin Hyun Kim et al. “Formal Analysis and Testing of Real-Time Automotive Systems Using
UPPAAL Tools”. Formal Methods for Industrial Critical Systems - 20th International Workshop,
FMICS 2015, Oslo, Norway, June 22-23, 2015 Proceedings. Ed. by Manuel Núñez and Matthias
Güdemann. Vol. 9128. Lecture Notes in Computer Science. Springer, 2015, pp. 47–61. DOI: 10.
1007/978-3-319-19458-5_4 (cited on page 18).

[Krakora 2008] Jan Krakora and Zdenek Hanzálek. “FPGA based tester tool for hybrid real-time
systems”. Microprocessors and Microsystems - Embedded Hardware Design 32.8 (2008), pp. 447–
459. DOI: 10.1016/j.micpro.2008.07.003 (cited on page 62).

[Lamport 1977] Leslie Lamport. “Proving the Correctness of Multiprocess Programs”. IEEE Trans.
Software Eng. 3.2 (1977), pp. 125–143. DOI: 10.1109/TSE.1977.229904 (cited on page 21).

[Larsen 1997] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a Nutshell”. STTT
1.1-2 (1997), pp. 134–152. DOI: 10.1007/s100090050010 (cited on pages 18, 86).

[Lee 2006] Edward A. Lee. “The Problem with Threads”. IEEE Computer 39.5 (2006), pp. 33–42.
DOI: 10.1109/MC.2006.180 (cited on page 2).

[Lindahl 2001] Magnus Lindahl, Paul Pettersson, and Wang Yi. “Formal design and analysis of a gear
controller”. STTT 3.3 (2001), pp. 353–368. DOI: 10.1007/s100090100048 (cited on page 18).

[Mandel 2005] Louis Mandel and Marc Pouzet. “ReactiveML: a reactive extension to ML”. Proceed-
ings of the 7th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 11-13 2005, Lisbon, Portugal. Ed. by Pedro Barahona and Amy P. Felty. ACM,
2005, pp. 82–93. DOI: 10.1145/1069774.1069782 (cited on pages 65, 86).

[Mandel 2008] Louis Mandel and Marc Pouzet. “ReactiveML, un langage fonctionnel pour la pro-
grammation réactive”. Technique et Science Informatiques 27.9-10 (2008), pp. 1097–1128. DOI:
10.3166/tsi.27.1097-1128 (cited on page 85).

[Mandel 2009] Louis Mandel and Florence Plateau. “Interactive Programming of Reactive Systems”.
Electr. Notes Theor. Comput. Sci. 238.1 (2009), pp. 21–36. DOI: 10.1016/j.entcs.2008.01.004
(cited on pages 3, 66).

[Mandel 2015] Louis Mandel, Cédric Pasteur, and Marc Pouzet. “ReactiveML, ten years later”. Pro-
ceedings of the 17th International Symposium on Principles and Practice of Declarative Program-
ming, Siena, Italy, July 14-16, 2015. Ed. by Moreno Falaschi and Elvira Albert. ACM, 2015, pp. 6–
17. DOI: 10.1145/2790449.2790509 (cited on pages 3, 4).

[Maraninchi 2001] Florence Maraninchi and Yann Rémond. “Argos: an automaton-based synchronous
language”. Comput. Lang. 27.1/3 (2001), pp. 61–92. DOI: 10.1016/S0096-0551(01)00016-9
(cited on page 8).

[Marczak 2011] Raphaël Marczak, M. Desainte-Catherine, and Antoine Allombert. “Real-Time Tem-
poral Control of Musical Processes”. 3rd International Conferences on Advances in Multimedia,
MMEDIA 2011, Budapest, Hungary, April 17-22, 2011. 2011, pp. 12–17. ISBN: 978-1-61208-129-
8. URL: http://www.thinkmind.org/download.php?articleid=mmedia_2011_1_30_40071
(cited on pages 1, 34, 35).

[Milner 1983] Robin Milner. “Calculi for Synchrony and Asynchrony”. Theor. Comput. Sci. 25 (1983),
pp. 267–310. DOI: 10.1016/0304-3975(83)90114-7 (cited on page 8).

http://dx.doi.org/10.1109/TIE.2014.2316234
http://dx.doi.org/10.1016/S0304-3975(99)00342-4
http://dx.doi.org/10.1016/S0304-3975(99)00342-4
http://dx.doi.org/10.1007/978-3-319-19458-5_4
http://dx.doi.org/10.1007/978-3-319-19458-5_4
http://dx.doi.org/10.1016/j.micpro.2008.07.003
http://dx.doi.org/10.1109/TSE.1977.229904
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1007/s100090100048
http://dx.doi.org/10.1145/1069774.1069782
http://dx.doi.org/10.3166/tsi.27.1097-1128
http://dx.doi.org/10.1016/j.entcs.2008.01.004
http://dx.doi.org/10.1145/2790449.2790509
http://dx.doi.org/10.1016/S0096-0551(01)00016-9
http://www.thinkmind.org/download.php?articleid=mmedia_2011_1_30_40071
http://dx.doi.org/10.1016/0304-3975(83)90114-7

96 References

[Milner 1989] Robin Milner. Communication and concurrency. PHI Series in computer science. Pren-
tice Hall, 1989. ISBN: 978-0-13-115007-2 (cited on pages 8, 18).

[Monmasson 2011] E. Monmasson, L. Idkhajine, and M.W. Naouar. “FPGA-based Controllers”. In-
dustrial Electronics Magazine, IEEE 5.1 (2011), pp. 14–26. ISSN: 1932-4529. DOI: 10.1109/MIE.
2011.940250 (cited on page 28).

[Murata 1989] Tadao Murata. “Petri Nets: Properties, Analysis and Applications”. Proceedings of the
IEEE 77.4 (1989), pp. 541–580. DOI: 10.1109/5.24143 (cited on page 11).

[Nielsen 2002] Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valencia. “Temporal Concur-
rent Constraint Programming: Denotation, Logic and Applications”. Nord. J. Comput. 9.1 (2002),
pp. 145–188 (cited on page 36).

[Nigam 2009] Vivek Nigam and Dale Miller. “Algorithmic specifications in linear logic with subex-
ponentials”. Proceedings of the 11th International ACM SIGPLAN Conference on Principles and Prac-
tice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal. Ed. by António Porto
and Francisco Javier López-Fraguas. ACM, 2009, pp. 129–140. DOI: 10.1145/1599410.1599427
(cited on pages 25, 27).

[Nigam 2011] Vivek Nigam, Elaine Pimentel, and Giselle Reis. “Specifying Proof Systems in Linear
Logic with Subexponentials”. Electr. Notes Theor. Comput. Sci. 269 (2011), pp. 109–123. DOI:
10.1016/j.entcs.2011.03.009 (cited on pages 4, 25).

[Nigam 2012] Vivek Nigam. “On the Complexity of Linear Authorization Logics”. Proceedings of the
27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June
25-28, 2012. IEEE Computer Society, 2012, pp. 511–520. DOI: 10.1109/LICS.2012.61 (cited on
page 25).

[Nigam 2013] Vivek Nigam, Carlos Olarte, and Elaine Pimentel. “A General Proof System for Modal-
ities in Concurrent Constraint Programming”. CONCUR 2013 - Concurrency Theory - 24th Interna-
tional Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings. Ed.
by Pedro R. D’Argenio and Hernán C. Melgratti. Vol. 8052. Lecture Notes in Computer Science.
Springer, 2013, pp. 410–424. DOI: 10.1007/978-3-642-40184-8_29 (cited on pages 2, 25, 26,
45, 46, 50, 85).

[Olarte 2009a] Carlos Olarte. “Universal Temporal Concurrent Constraint Programming”. PhD the-
sis. LIX, Ecole Polytechnique, 2009. URL: https://sites.google.com/site/carlosolarte/
home/pub/thesis-page (cited on page 36).

[Olarte 2009b] Carlos Olarte and Camilo Rueda. “A Declarative Language for Dynamic Multimedia
Interaction Systems”. 2nd International Conference on Mathematics and Computation in Music,
MCM 2009, New Haven, CT, USA, June 19-22, 2009. Ed. by Elaine Chew, Adrian Childs, and
Ching-Hua Chuan. Vol. 38. Communications in Computer and Information Science. Springer
Berlin Heidelberg, 2009, pp. 218–227. ISBN: 978-3-642-02393-4. DOI: 10.1007/978-3-642-
02394-1_20 (cited on pages 2, 35, 36, 51).

[Olarte 2015] Carlos Olarte, Elaine Pimentel, and Vivek Nigam. “Subexponential concurrent con-
straint programming”. Theoretical Computer Science (2015). DOI: http://dx.doi.org/10.1016/
j.tcs.2015.06.031 (cited on page 25).

[Orlarey 2004] Yann Orlarey, Dominique Fober, and Stephane Letz. “Syntactical and semantical
aspects of Faust”. Soft Comput. 8.9 (2004), pp. 623–632. DOI: 10.1007/s00500-004-0388-1
(cited on pages 86, 87).

[Pajic 2014] Miroslav Pajic et al. “Safety-critical medical device development using the UPP2SF
model translation tool”. ACM Trans. Embedded Comput. Syst. 13.4s (2014), 127:1–127:26. DOI:
10.1145/2584651 (cited on page 52).

http://dx.doi.org/10.1109/MIE.2011.940250
http://dx.doi.org/10.1109/MIE.2011.940250
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1145/1599410.1599427
http://dx.doi.org/10.1016/j.entcs.2011.03.009
http://dx.doi.org/10.1109/LICS.2012.61
http://dx.doi.org/10.1007/978-3-642-40184-8_29
https://sites.google.com/site/carlosolarte/home/pub/thesis-page
https://sites.google.com/site/carlosolarte/home/pub/thesis-page
http://dx.doi.org/10.1007/978-3-642-02394-1_20
http://dx.doi.org/10.1007/978-3-642-02394-1_20
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2015.06.031
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2015.06.031
http://dx.doi.org/10.1007/s00500-004-0388-1
http://dx.doi.org/10.1145/2584651

References 97

[Petri 1966] Carl Adam Petri. “Communication with automata”. PhD thesis. Universität Hamburg,
1966 (cited on page 10).

[Plotkin 2004] Gordon D. Plotkin. “A structural approach to operational semantics”. J. Log. Algebr.
Program. 60-61 (2004), pp. 17–139 (cited on pages 4, 42).

[Pnueli 1979] Amir Pnueli. “The Temporal Semantics of Concurrent Programs”. Semantics of Con-
current Computation, Proceedings of the International Symposium, Evian, France, July 2-4, 1979.
Ed. by Gilles Kahn. Vol. 70. Lecture Notes in Computer Science. Springer, 1979, pp. 1–20. DOI:
10.1007/BFb0022460 (cited on page 20).

[Poncelet 2015] Clément Poncelet and Florent Jacquemard. “Model based testing of an interactive
music system”. Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca,
Spain, April 13-17, 2015. Ed. by Roger L. Wainwright et al. ACM, 2015, pp. 1759–1764. DOI:
10.1145/2695664.2695804 (cited on page 86).

[Potop-Butucaru 2006] Dumitru Potop-Butucaru, Benoît Caillaud, and Albert Benveniste. “Concur-
rency in Synchronous Systems”. Formal Methods in System Design 28.2 (2006), pp. 111–130. DOI:
10.1007/s10703-006-7844-8 (cited on page 9).

[Pouzet 2001] Marc Pouzet. Lucid Synchrone, version 2. Tutorial and reference manual. Distribution
available at: www.lri.fr/∼pouzet/lucid-synchrone. Université Pierre et Marie Curie, LIP6.
2001 (cited on page 87).

[Queille 1982] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of concurrent
systems in CESAR”. International Symposium on Programming, 5th Colloquium, Torino, Italy, April
6-8, 1982, Proceedings. Ed. by Mariangiola Dezani-Ciancaglini and Ugo Montanari. Vol. 137.
Lecture Notes in Computer Science. Springer, 1982, pp. 337–351. DOI: 10.1007/3-540-11494-
7_22 (cited on page 20).

[Rodríguez-Andina 2007] Juan J. Rodríguez-Andina, María José Moure, and María Dolores Valdés.
“Features, Design Tools, and Application Domains of FPGAs”. IEEE Transactions on Industrial
Electronics 54.4 (2007), pp. 1810–1823. DOI: 10.1109/TIE.2007.898279 (cited on page 28).

[Rodríguez-Andina 2015] Juan J. Rodríguez-Andina, Maria D. Valdes-Pena, and María José Moure.
“Advanced Features and Industrial Applications of FPGAs - A Review”. IEEE Trans. Industrial
Informatics 11.4 (2015), pp. 853–864. DOI: 10.1109/TII.2015.2431223 (cited on page 28).

[Sadrozinski 2010] Hartmut F.-W. Sadrozinski and Jinyuan Wu. Applications of Field-Programmable
Gate Arrays in Scientific Research. 1st. Bristol, PA, USA: Taylor & Francis, Inc., 2010. ISBN: 1439841330
(cited on page 28).

[Scedrov 1993] Andre Scedrov. “A Brief Guide to Linear Logic”. Current Trends in Theoretical Com-
puter Science - Essays and Tutorials. Ed. by Grzegorz Rozenberg and Arto Salomaa. Vol. 40. World
Scientific Series in Computer Science. World Scientific, 1993, pp. 377–394. URL: http://www.
worldscientific.com/doi/abs/10.1142/9789812794499_0027 (cited on page 23).

[Sénac 1994] Patrick Sénac, Miche Diaz, and Pierrede Saqui-Sannes. “Toward a formal specifica-
tion of multimedia synchronization scenarios”. Annales Des Télécommunications 49.5-6 (1994),
pp. 297–314. ISSN: 0003-4347. DOI: 10.1007/BF02998492 (cited on page 11).

[Sénac 1995] Patrick Sénac, Pierre de Saqui-Sannes, and Roberto Willrich. “Hierarchical Time Stream
Petri Net: A Model for Hypermedia Systems”. Application and Theory of Petri Nets 1995, 16th In-
ternational Conference, Turin, Italy, June 26-30, 1995, Proceedings. Ed. by Giorgio De Michelis
and Michel Diaz. Vol. 935. Lecture Notes in Computer Science. Springer, 1995, pp. 451–470.
DOI: 10.1007/3-540-60029-9_54 (cited on pages 1, 13, 35).

[Sutherland 2006] Stuart Sutherland, Simon Davidmann, and Peter Flake. SystemVerilog for De-
sign Second Edition: A Guide to Using SystemVerilog for Hardware Design and Modeling. 2nd ed.
Springer, 2006. ISBN: 9780387364957 (cited on pages 62, 86).

http://dx.doi.org/10.1007/BFb0022460
http://dx.doi.org/10.1145/2695664.2695804
http://dx.doi.org/10.1007/s10703-006-7844-8
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1109/TIE.2007.898279
http://dx.doi.org/10.1109/TII.2015.2431223
http://www.worldscientific.com/doi/abs/10.1142/9789812794499_0027
http://www.worldscientific.com/doi/abs/10.1142/9789812794499_0027
http://dx.doi.org/10.1007/BF02998492
http://dx.doi.org/10.1007/3-540-60029-9_54

98 References

[Teehan 2007] Paul Teehan, Mark R. Greenstreet, and Guy G. Lemieux. “A Survey and Taxonomy of
GALS Design Styles”. IEEE Design & Test of Computers 24.5 (2007), pp. 418–428. DOI: 10.1109/
MDT.2007.151 (cited on page 10).

[Toro 2012] Mauricio Toro. “Structured Interactive Scores: From a Structural Description of a Mul-
timedia Scenario to a Real-Time Capable Implementation with Formal Semantics”. PhD thesis.
Université de Bordeaux, 2012. URL: http://ori- oai.u- bordeaux1.fr/pdf/2012/TORO-

BERMUDEZ_MAURICIO_2012.pdf (cited on page 36).

[Toro 2014] Mauricio Toro, Myriam Desainte-Catherine, and Camilo Rueda. “Formal semantics for
interactive music scores: a framework to design, specify properties and execute interactive sce-
narios”. Journal of Mathematics and Music 8.1 (2014), pp. 93–112. DOI: 10.1080/17459737.
2013.870610 (cited on pages 2, 35, 36, 51).

[Trausmuth 2006] Robert Trausmuth, Christian Dusek, and Yann Orlarey. “Using FAUST for FPGA
Programming”. 9th International Conference on Digital Audio Effects (DAFx-06), Montreal, Canada,
September 18-20, 2006. 2006, pp. 287–290. URL: http://www.dafx.ca/proceedings/papers/
p_287.pdf (cited on page 86).

[Trimberger 2015] Stephen Trimberger. “Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology”. Proceedings of the IEEE 103.3 (2015), pp. 318–331. DOI: 10.1109/
JPROC.2015.2392104 (cited on pages 3, 4, 28, 29).

[Utting 2007] Mark Utting and Bruno Legeard. Practical Model-Based Testing - A Tools Approach.
Morgan Kaufmann, 2007. ISBN: 978-0-12-372501-1 (cited on page 86).

[Vidal-Rosset 2012] Joseph Vidal-Rosset. “Stable Philosophical Systems and Radical Anti-realism”.
The Realism-Antirealism Debate in the Age of Alternative Logics. Ed. by Shahid Rahman, Giuseppe
Primiero, and Mathieu Marion. Vol. 23. Logic, Epistemology, and the Unity of Science. Springer,
2012, pp. 313–324. DOI: 10.1007/978-94-007-1923-1_17 (cited on page 23).

[Vuaille 2014] Nicolas Vuaille. “Interface d’exécution en INScore pour i-score”. Master Thesis. Lyon,
France: Institut National des Sciences Appliquées de Lyon, 2014 (cited on pages 4, 5, 36, 52).

[Waez 2013] Md Tawhid Bin Waez, Jürgen Dingel, and Karen Rudie. “A survey of timed automata
for the development of real-time systems”. Computer Science Review 9 (2013), pp. 1–26. DOI:
10.1016/j.cosrev.2013.05.001 (cited on pages 17, 18, 62).

[Wang 2012] Jiacun Wang, ed. Handbook of Finite State Based Models and Applications. Chapman
and Hall/CRC, 2012. ISBN: 978-1-4398-4618-6. DOI: 10.1201/b13055 (cited on page 11).

[Wilson 2011] Peter Wilson. Design Recipes for FPGAs: Using Verilog and VHDL. Elsevier Science,
2011. ISBN: 9780080548425 (cited on page 28).

[Zaffalon 2005] Luigi Zaffalon. Programmation synchrone de systèmes réactifs avec Esterel et les Sync-
Charts. Collection informatique. Lausanne: Presses polytechniques et universitaires romandes,
2005. ISBN: 2-88074-622-1 (cited on page 62).

[Zurawski 2005] Richard Zurawski, ed. The Embedded Systems Handbook. CRC Press, 2005. ISBN:
978-1-4200-3816-3 (cited on page 9).

http://dx.doi.org/10.1109/MDT.2007.151
http://dx.doi.org/10.1109/MDT.2007.151
http://ori-oai.u-bordeaux1.fr/pdf/2012/TORO-BERMUDEZ_MAURICIO_2012.pdf
http://ori-oai.u-bordeaux1.fr/pdf/2012/TORO-BERMUDEZ_MAURICIO_2012.pdf
http://dx.doi.org/10.1080/17459737.2013.870610
http://dx.doi.org/10.1080/17459737.2013.870610
http://www.dafx.ca/proceedings/papers/p_287.pdf
http://www.dafx.ca/proceedings/papers/p_287.pdf
http://dx.doi.org/10.1109/JPROC.2015.2392104
http://dx.doi.org/10.1109/JPROC.2015.2392104
http://dx.doi.org/10.1007/978-94-007-1923-1_17
http://dx.doi.org/10.1016/j.cosrev.2013.05.001
http://dx.doi.org/10.1201/b13055

	Introduction
	Contributions and Organization
	Publications from this Dissertation

	Preliminaries
	What are Reactive Systems?
	Synchronous Programming
	Petri Nets
	Petri Nets for Hypermedia Systems
	Colored Petri Nets

	Timed Automata
	UPPAAL Timed Automata

	Model Checking
	CTL
	TCTL

	Intuitionistic Linear Logic
	SELL
	Focusing

	FPGAs

	Multimedia Interactive Scenarios
	Intuitive Semantics
	The Interactive Sequencer i-score
	Related Models and Implementations

	A Declarative Language for Multimedia Interactive Scenarios
	Syntax
	Tree-Based Representation of Programs

	Operational Semantics
	Tree-Based Representation of Execution States
	Structural Operational Semantics
	Properties of the Operational Semantics

	Logical Characterization
	Correctness of the Encoding

	A Framework for Multimedia Interactive Scenarios
	Modeling Interactive Scenarios in Timed Automata
	Temporal Relations
	Interaction Points
	Temporal Objects
	Hierarchical Interactive Multimedia Scenarios

	Automatic Verification of Interactive Scenarios
	True Parallel Execution of Interactive Scenarios
	Synchronous Interpreter of Interactive Scenarios
	Intuitive Presentation of the ReactiveML Language
	Implementation of Interactive Scenarios in ReactiveML
	Real-Time Visualization of Interactive Scenarios

	Streams in Multimedia Interactive Scenarios
	Formal Semantics
	Temporal Relations and Interaction Points
	Temporal Objects
	Synchronization of Temporal Relations

	Interactive Scenarios with Data Streams
	Reading Audio Files
	Appending Audio Files
	Reversing Audio Files

	Concluding Remarks
	Overview
	Future Directions

	References

