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Introduction

The volume of numerical data generated per year in the world has grown from 1.2 x 102!
bytes in 2010 to 2.8 x 102! bytes in 2012, and is expected to reach around 40 x 102! bytes in 2020.
This exponential increase, due to the quantitative explosion of the amount of recording sensors,
is supported by a worldwide numerical storage capacity which has roughly doubled every 40
months since the 1980s [90], placing us nowadays at the heart of the digital age. A major
consequence of this tremendous numerical sampling of the real world is the phenomenon of
multimodality. As a matter of fact, there is no longer a unique sensor devoted to the monitoring
of a given physical source, but rather a multiplicity of them thanks to the proliferation of cheap
information sensing devices with more advanced sensitivity and specificities, each picturing
a particular aspect of the source. This multimodality of recorded signals yields a wealth of
information, allowing to better represent and comprehend the sensed scene, but raises on the
other and several issues regarding its optimal exploitation.

In particular, there is a real need for adapted multimodal processing tools, as they tend to
become more and more widespread in signal and image processing and analysis. Despite their
great interest for a broad range of applications is recognized, the huge diversity of multimodal
signals makes their general representation a real challenge. While their processing techniques
have been so far mostly conditioned by the application field in which they occur, there is a
growing interest in the design of new methods to handle multimodality in a more generic
way [59, 106].

As human beings, we are continuously subject to multimodal signals through our five
senses. The human brain has the capacity to naturally filter all incoming signals and retain
out only the useful information in order to interpret the surrounding world and take the
optimal decisions to interact with it. While computers undoubtedly outperform human brains
in terms of computational capacity, machines are not yet even close to human performances
when it comes to interpretation and decision making. One of the main challenges of research
nowadays is to bridge this gap by imitating the operating process of the human brain.

In the field of image processing and analysis for instance, real efforts have been done in
the last decades to emulate the human vision. Numerical imaging sensors are now far more
powerful than human eyes in many aspects. For instance, the human eyes are sensitive only
to wavelengths in the visible domain of the electromagnetic spectrum (between 380 nm and
780 nm), while imaging sensors can be devised to collect information in other portions of this
spectrum (such as X-ray imaging sensors used in the field of medical imagery, or infrared
thermography operating in the thermal infrared domain).

Progresses have also been made to emulate the human brain cognitive processes in terms
of image interpretation and understanding, and hierarchical image representations are one of
those advances. As a matter of fact, when analyzing an image, the human brain naturally
decomposes it into a set of semantically consistent regions which can be associated with
real world objects. Taking an aerial photography of a city for example, one automatically



2 Introduction

recognizes buildings, parks, roads, and so on In natural images, such set of coherent regions
very often organizes itself in a hierarchical way: regions are ordered from fine to coarse, where
coarse regions comprises the fine ones. In the aerial picture of a city, trees are contained in
parks, buildings and roads are enclosed in neighborhoods, which are themselves comprised
in the whole city. The definition of region of interests is related to the notion of scale of
exploration, being the level of details at which the image is analyzed. As an image can be
explored at various levels of details, the choice of a proper scale of exploration is driven by the
underlying application. Coming back to the previous example, one would not operate at the
same scale of exploration if the goal was to count the number of trees or cars present in the
scene, requiring a fine level of details as each region of interest would be made of a few pixels
only, or to evaluate the total length of the road network spanning the whole city, and thus at
a coarser representations scale.

Hierarchical representations are a way to accommodate for this intrinsic multiscale nature
of images, and have become a popular tool for image analysis that can be adapted to a broad
range of applications.

Objectives and thesis organization

This thesis is concerned with the study of multimodality and hierarchical representations.
As a matter of fact, the main objective of the work developed here is to connect those two
notions. We focus in particular on multimodal images, i.e., several images of the same scene
but acquired with different characteristics, such as the type of imaging sensor, the acquisition
time, the localization around the imaged source, and so on. This thesis extends hierarchical
representations to such multimodal images, in order to exploit at best the information brought
by the multimodality and improve the classical image processing techniques when applied to
real applications.

The definition of a particular multimodality parameterizes the hierarchical representation of
the resulting multimodal image, while the application guides the subsequent processing of this
hierarchical representation. Therefore, each chapter of this manuscript is articulated around
this quadruplet multimodality/hierarchical representation/ hierarchical processing/application,
as depicted by figure 1. The overall organization is hierarchical, in the sense that chapter 1
plays the role of the root by introducing the tools on which the following leaf chapters 2, 3
and 4 rely on .

Chapter 1 The first chapter introduces the cornerstone notion of multimodality in signal

1. While chapter 1 is the root of the manuscript, the remaining chapters 2, 3 and 4 which constitute the
three leaves of the hierarchy depicted by figure 1 are globally uncorrelated in the sense that they all investigate
a particular multimodality and implement the tools presented in chapter 1. However, some notions are shared
between the three leaf chapters (the BPT representation for hyperspectral images between chapters 2 and 3
and the energetic framework between chapters 2 and 4). While chapters 3 and 4 may be switched (and were
organized as such mainly following chronological considerations), it is however strongly advised to read chapter 2
beforehand.
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Figure 1: Thesis organization

and image processing, and proposes to model it with a formal definition. A particular
focus is notably put in multimodal images frequently encountered in remote sensing.
The second keystone notion presented in chapter 1 is the hierarchical representation
of images. Theoretical foundations and definitions are first described, and tree-based
representation as well as hierarchical representation are then reviewed, the latter being
a particular case of the former. The binary partition tree (BPT), considered as the
baseline hierarchical representation in the following chapters, is presented more in details.
Finally, chapter 1 illustrates the use of hierarchical image representation and analysis in
a concrete example being the segmentation of tropical rain forest hyperspectral images.
This application also allows to motivate the design of hierarchical multimodal tools and
underline their challenges.

Chapter 2 In this second chapter, we focus on the spectral-spatial multimodality, naturally
provided by hyperspectral images. In particular, the use of spectral and spatial informa-
tion has already proved to be valuable for spectral unmixing purposes. In opposition to
the classical case which perform the unmixing over the global image, we adopt here a
local point of view, as we aim at definition a segmentation of the hyperspectral image
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that is optimal with respect to the unmixing operation. A first contribution is to propose
new strategies to build a BPT representation of hyperspectral images with novel region
models and merging criteria, adapted for spectral unmixing purposes. Then, an optimal
segmentation is extracted from the BPT structure following some energetic considerations.
In particular, attaching some energy function to all segmentations contained in the BPT
structure, we search for the one with minimal energy, and therefore maximal adequacy
with the intended application. While the energy minimization procedure has already
been studied in the literature for certain type of energies [87], a second contribution of
this chapter is to extend this procedure to new definitions of energy functions. Based on
these results, we finally formulate novel energy functions which aim at producing some
segmentation being optimal with respect to the spectral unmixing, reached by combining
both the spectral and spatial information contained by the hyperspectral image.

Chapter 3 This third chapter concentrates on the temporal multimodality, that is, when the
multimodal data features several images acquired at different dates and can be thus
assimilated to a video sequence. While the processing of traditional video sequences has
been thoroughly investigated in the computer vision literature, we propose to consider
the case of hyperspectral video sequences instead. In particular, we focus on the object
tracking application, which consists in following the motion of an object of interest
as it evolves with time along the sequence. The contribution of this chapter is to
propose a novel method for object tracking, tackled as a sequential hierarchical object
detection procedure. It first involves the construction of a BPT over each frame of the
hyperspectral video sequence and then the retrieval of the tracked object of interest
among the nodes of the BPT structure. The proposed object tracking method is tested
in a real scenario being the tracking of a chemical gas plume in thermal hyperspectral
video sequences.

Chapter 4 The last chapter of this manuscript is devoted to the sensorial multimodality,
i.e., when several images of a scene are acquired with different sensors. This multisource
multimodality is appealing in particular for image segmentation applications, as the
information brought by the various modalities of the multimodal images should lead
to the design of more accurate regions. However, handling each individual image by a
hierarchical representation raises the question on how the fusion of those hierarchies.
Based on the recently proposed concept of braids of partitions [101] (being an extension
of hierarchies of partitions), we derive a novel methodology for the fusion of hierarchical
representations. Using again an energetic framework, the contribution of this chapter is
to perform the hierarchical segmentation of multisource images using braids of parti-
tions. The validation of the proposed methodology is conducted using various sensorial
multimodal data sets.
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The major role of this first chapter is to introduce the two fundamental (and allegedly
unrelated) notions that are at the core of this manuscript, namely multimodality and hierarchical
representations. The former concept is presented in section 1.1, which reviews the different
cases of multimodality often occurring in signal and image processing (with a particular focus
for the remote sensing field). Section 1.2 defines some classical image representations, acting
as a prerequisite for section 1.3 which presents common tree-based and hierarchical image
representations. Section 1.4 features an example of hierarchical image representation and
analysis in a concrete scenario, namely the hierarchical segmentation of tropical rain forest
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hyperspectral images, and illustrates both the need for adapted multimodal tools and the
challenges their design represent.

1.1 Multimodality

What is multimodality?

The most basic, linguistics-driven answer to this question, is something which is composed
of several modalities. Then, what is a modality? According to the Cambridge dictionary !,
a modality is a particular way of doing or experiencing something. Its Oxford counterpart 2
proposes an equivalent definition, as being a particular form of sensory perception. The notion
of modality is therefore linked with the notion of signal received by a sensor, and by extension,
it can be intuited that multimodality involves several signals and/or several sensors. Using a
signal processing terminology, one can reformulate the definition of multimodality as done
in [107]: a multimodal signal is defined as the information about some physical phenomenon,
or system of interest, recorded with different types of sensors and/or at different locations
and/or at different observation times and/or using different experimental setups... Again
appears in this definition the notion of multiplicity of signals and receivers, and the intuition
that the description and categorization of multimodal signals is rather broad.

What does not appear in the previous definition however, is the interest of such multimodal
signals, not necessarily straightforward at a first sight. While the following 160 pages can be
considered as a tentative answer to this point, let us begin with an illustrative example. We,
as human being, are undergoing multimodal signals in an everyday basis. We continuously
record signals and information through our five senses: sight, hearing, smell, touch and taste.
Our brain naturally processes and summarizes all this simultaneously recorded information, to
retain only the most important part of it, the one that allows us to interact with our external
environment. As these processings are done internally and innately, we are not necessarily
aware that they actually allow us to perceive the environment at our best. Discard only one
of those five senses, and the picture of our environment becomes only partial.

Let us illustrate this assertion with the simple example of a musical concert, where the
two dominant working senses would be the sight and the hearing. Obstructing one of these
senses (by inserting earplugs or wearing a blindfold) would yield a different and only partial
perception of the concert. This perception could also be altered by the localization in the
concert room: a person located right in front of the stage would probably not sense the concert
the same way than a person located at the rear of the stands, and one could argue that each
person experience is only partial. Similarly, attending the concert in live or watching it on TV
(i.e., changing the "experimental setup") would provide only a sided information.

From the above example, it should be clear that a multimodal signal bears more information
than each of its individual modalities, also called components. A major challenge of nowadays

1. http://dictionary.cambridge.org/dictionary/english/modality
2. http://www.oxforddictionaries.com/definition/english/modality



1.1. Multimodality 7

computer-based technological era is to make computers, with powerful, well understood,
and more importantly, well mastered computational capacities, mimicking the human brain,
whose computational capacities are even more powerful in some sense, but far from being
understood and mastered. Consequently, multimodal data handling and processing is a very
active field of the signal and image processing community, and the challenges to be taken up
are numerous [107].

1.1.1 Multimodality in signal and image processing

The practical description of multimodality intuited above proposes to define it as the joint
consideration of several signals coming from the same source with different acquisition setups.
However, a more formal study multimodality of this phenomenon requires a clear framework
holding on a baseline definition, which is the purpose of the current section. Defining a signal
is the first step toward the definition of a multimodal signal.

Definition 1.1 (signal)
A signal is defined as a function

1: E —
z — ZI(x) (1.1)

In definition (1.1), the word signal is used in its broadest sense, as the acquisition of some
physical phenomenon, recorded by some sensor. E will be called the support of Z, whose
elements are x € E. V is the space where Z takes its values Z(x).

Definition (1.1) is convenient as it adapts to all kind of signals encountered in the signal
and image processing fields. If 7 is a temporal signal, recorded with a microphone for instance,
then its support is the time axis (thus £ C R), its elements = are the sampling points at which
the signal was recorded and its values Z(x) correspond to the numerical data recorded by the
microphone (the space of values V' is probably a subset of R as well). If Z is an image, then its
support E is the pixel grid E C Z? (one will talk of spatial support in this case), its elements
x are the pixel sites, and V is the space of pixel values Z(x) being R™ (or even C™ for certain
types of images) without loss of generality.

Jointly considering several of such defined signals yields the following definition of multi-
modality:

Definition 1.2 (Multimodal signal)
A multimodal signal is defined as any function

I: E1><~~-><Ep — V1><"-><Vp

(z1,...,xp) +— (Ti(z1),...,Zp(zp)) (1.2)

where each I; : E; — Vi is an individual modality composing the multimodal signal T =
{h,...,Ip}.
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Following definition (1.2), a multimodal signal Z is a set of different individual modalities
Z;, which may not have either the same supports F; or spaces of values V;, but who do
correspond to the same recorded phenomenon. This very general definition, considered as
standard for the rest of this manuscript, encompasses the majority of multimodal phenomena
occurring in signal and image processing. Some examples of such possible multimodalities
non-exhaustively include:

— Different sensors simultaneously recording some signals. In such case, each modality Z;
corresponds to the acquisition of a given sensor. Those sensors may be identical but
physically placed at different locations around the emitting source, they may record
signals of different physical natures from the same spot, or may be a combination of the
previous two options.

— One source recorded with a single sensor at different acquisition times or with various
acquisition setups. For the former, each Z; corresponds to a given time t while it is
linked with a given setup for the latter.

Any other combination of the previously enumerated examples obviously leads to a signal
complying with definition (1.2), which can thus be termed as multimodal. Therefore, due to
the high diversity of possible multimodalities, expecting to handle them with some universal
processing appears as highly unrealistic. Additionally, their respective application domains
may also be varied and not related, making the design of generic multimodal processing tools
a very challenging task.

Among the various applications within the signal and image processing fields where
multimodality can be encountered, we can notably, and non-exhaustively, list:

Audiovisual processing: Coming back to the concert example given at the beginning of
section 1.1, it is evident that one would not fully experience a musical concert if wearing
either a blindfold or earplugs. As a matter of fact, vision and audition are going along when
one listen to somebody talk [67], and several studies have shown the potential of combining
both audio and video signals to achieve better speech recognition [50]. Among the major
challenges that must be faced, the frame rate of the video source may differ from the rate at
which the audio samples are obtained. In addition, the video source can be viewed in itself
as a multimodal data. A short review of existing methods for audiovisual processing can
be found in [81]. Note that audiovisual data is a precise case where the multimodalies (i.e.,
the audio and visual signals) of the multimodal signal do not share the same support E; of
definition (1.2).

Sensor networking: A sensor network corresponds to the dissemination of several connected
sensors around the source that has to be monitored. Sensor networking is more and more
widespread in several application fields of signal processing, such as underwater acoustics [4],
seismology [226], glaciology [152] or smart grid designing [88]. The configuration of a sensor
network allows to simultaneously record several signals from the monitored source. This
profusion of information induces some redundancy between all recorded signals, allowing in
particular to reduce errors in the measurements. On the other hand, the complementarity



1.1. Multimodality 9

Figure 1.1: Illustrations of multimodalities occuring in (a) seismology (image borrowed
from [226]), (b) underwater acoustics (image from [180]) and (c) medical imaging >.

between each signal should ensure to capture every possible interesting information related to
the emitting source. However, one of the main challenges that has to be faced is the huge load
of generated data, which is problematic to operate the collaboration between all sensors of the
network and the information fusion.

Medical imaging: Medical imaging sensors collect information about organ and tissue
anatomy (structural imagery) or their functioning (functional imagery) in order to help
practitioners in their diagnoses and assist them during interventions. Due to the highly diverse
information that can be acquired, the medical imaging field has seen blossoming a huge
quantity of imaging acquisition techniques. Among them, radiography and fluoroscopy are
based on X-rays, magnetic resonance imaging and functional magnetic resonance imaging rely
on the orientation of the molecules when subject to a strong magnetic field, positron emission
tomography detects gamma rays emitted by a chemical tracer introduced in the patient body,
and ultrasonography images the echoes made by tissues reflecting pulses of ultrasounds. This
wealth of possible multimodalities has led to various studies [37,187]. One major challenge
of medical multimodal images is their co-registration [128] since the various images must be
perfectly aligned in order to be fully exploitable by the practitioner.

Illustrations of multimodalities occurring in seismology, underwater acoustics and medical
imaging are displayed in figure 1.1.

1.1.2 Multimodality in remote sensing

In its broadest sense, remote sensing consists of the acquisition of information about an
object or phenomenon without making physical contact between the sensor and the object of
interest. The integration in the past decades of imaging sensors on airborne or spaceborne
platforms has made remote sensing a very convenient and well developed technology for Earth
observation or, more generally, geoscience applications.

3. http://www.loni.usc.edu/research/projects/OIS /images/multi modal.jpg



10 Chapter 1. Multimodality and hierarchical representations

Figure 1.2: Example of (a) a panchromatic image (QuickBird sensor) and (b) a multispectral
image (IKONOS sensor) %.

1.1.2.1 Imaging sensors in remote sensing

As for the medical imaging field, a important diversity of imaging sensors has been
developed for remote sensing applications. While each particular type of sensor is concerned
with the measurement of a specific physical quantity emanating from the image scene, sensors
used in remote sensing can be categorized in two classes: passive sensors, and active sensors.
The former capture the signal that is emitted by the scene itself (typically, the reflected
light) while the latter scan the scene by emitting their own signal and recording the reflected
echoes [136].

Panchromatic sensors: Panchromatic images are one-band images, capturing the radio-
metric information (i.e., the amount of light) that is emitted by the imaged scene in a broad
wavelength range (between 450 nm and 900 nm for the IKONOS satellite for instance). Due
to their low spectral resolution, they usually produce images at very high spatial resolution
(typically less than 1 m per pixel). An example of panchromatic image is displayed in fig-
ure 1.2a, featuring the urban area of downtown Madrid (Spain). This image was acquired
with the QuickBird satellite, and features a ground resolution of 61 cm. The spectral range
covers from 405 nm to 1053 nm.

Multi-spectral sensors: Multi-spectral sensors produce images which are composed of
several channels, where the spectral response of each channel is narrower than in the panchro-
matic case, but remain rather wide (the width being typically around 100 nm). Along with its
spatial resolution (which is lower than the one of a panchromatic sensor), a multi-spectral

4. both figures 1.2a and 1.2b are from http://gdsc.nlr.nl/gdsc/en



1.1. Multimodality 11

Atmosphere

Reflectance
oooo
oONBH» O ®

400 800 1200 1600 2000 2400
Wavelength (nm)
Soil

|

400 800 1200 1600 2000 2400
Wavelength (nm)

Vegetation
400 800 1200 1600 2000 2400
Wavelength (nm)

Reflectance
o o oo
N B O

400 800 1200 1600 2000 2400
Wavelength (nm)

Figure 1.3: Illustration of a hyperspectral image (image borrowed from [23]).

sensor is characterized by its number of spectral channels, their respective width and their
location in the electromagnetic spectrum. Multi-spectral sensors mounted on satellites usually
contain no more than 10 spectral bands located in the visible domain, typically centered
around the blue, green and red domains, and sometimes in the infrared domain, for instance in
the near infrared (NIR) and short wave infrared (SWIR) domains. The multi-spectral image
displayed in figure 1.2b, acquired over Beijing (China) by the IKONOS satellite, is composed
for instance of four spectral bands: blue (450 nm - 520 nm), green (520 nm - 600 nm), red
(630 nm - 690 nm) and NIR (760 nm - 900 nm), each of these having a spatial resolution
of 4 m. Note that only the red, green and blue bands were used to compose the image of
figure 1.2b.

Hyperspectral sensors: Hyperspectral images can be seen as an extension of multi-spectral
images as they no longer contain a few spectral channels, but rather up to several hundreds
(even thousands in some fields) of them. The spectral channels are in this case centered on a
narrow bandwidth, contiguously spaced in the electromagnetic spectrum. Thus, the recorded
signal corresponds to a fine sampling of the electromagnetic response of the scene. When
this sampling occurs in the visible and NIR domains, this signal can be interpreted as a
reflectance function, i.e. the function that depicts how the light interacted and was reflected
by the imaged scene. When the spectral bands are on the other hand located in the long
wave infrared (LWIR) domain, the recorded signal correspond to the emissivity of the scene,
i.e. the way it has emitted some energy as thermal radiations. Either way, the signal that is
recorded for each pixel of the image can be seen as a function of the wavelength, also called
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(a)

Figure 1.4: Example of (a) a LiDAR image (color proportional to height) and (b) a SAR
X-band intensity image.

spectrum. Moreover, this spectrum, be it reflectance or emissivity, is related to the materials
that are physically present in the pixel site. As a matter of fact, two different materials, such
as soil and vegetation, do not interact with the light or emit thermal radiations the same
way, as depicted by figure 1.3. Hyperspectral images, by their ability to discriminate between
materials in the scene, find an always increasing number of applications in the remote sensing
field [82,157]. In order to be able to finely sense the spectral domain and keep a relatively
high signal to noise ratio, the spatial resolution of a hyperspectral image needs to be lowered
with respect to multi-spectral or panchromatic images: the AVIRIS sensor [85] for instance,
produces images composed of 224 spectral bands, of approximately 10 nm width, evenly spaced
between 450 nm and 2450 nm, and with a 20 m spatial resolution. The acquisition time could
alternatively be extended, but the gain in spatial and spectral resolution would be paid in this
case by the presence of a significant motion blur.

LiDAR sensors: As opposed to the panchromatic, multispectral and hyperspectral sensors
previously described, which were passive sensors, the light detection and ranging (LiDAR)
sensor belongs to the active class. The LiDAR sensor illuminate the scene with a beam of
laser and records the time needed for the beam to bounce back from the scene to the sensor.
This time lapse is then transformed into a measure of height, called the digital surface model
(DSM), as it can be seen in figure 1.4a® where hotter colors correspond to higher heights. More
advanced LiDAR sensors also record the intensity of the returns, which gives some information
about the materials present on the ground, depending on how they reflected the laser pulse
(in the same fashion as spectral sensors). Another key characteristic of LIDAR sensors is the
wavelength of their emitted pulse. Airborne topographic mapping LiDAR generally use a
1064 nm wavelength laser while bathymetric systems frequently utilize a lower wavelength
(such as 532 nm) as it penetrates water with much less attenuation [136]. LiDAR sensors have

5. http://toni88x.bplaced.net/sparse_imgs/lidar2.jpg



1.1. Multimodality 13

found numerous applications in remote sensing, notably in the field of forestry [117] and urban
mapping [159].

SAR sensors: Synthetic aperture radar (SAR) is another active sensor commonly used for
remote sensing applications. Similar to the LiDAR principle, the SAR sensor illuminates the
scene with radio waves and records the echoes reflected by the scene. Depending on how these
echoes are processed, one can obtain several information from the radar waves:

Polarimetry: In the case of polarimetric synthetic aperture radar (PolSAR), radio waves are
emitted by the sensor with a known polarization (the description of how the electrical
component of the emitted electromagnetic wave vibrates in the space). Different materials
reflect radar waves with different intensities, but some anisotropic materials also reflect
different polarizations with different intensities. By emitting and receiving selective
polarizations (for instance, emitting a horizontally polarized wave and receiving it with
a vertical polarization), it is then possible to draw a picture of the materials composing
the scene.

Interferometry: While PolSAR uses information about wave polarization, the interferometric
synthetic aperture radar (InSAR) uses the information contained in the phase of the
echoed waves. More precisely, it uses the differential phase of the echoed waves, either
from multiple passes along the same trajectory and/or from multiple displaced antennas
on a single pass. The processing of this differential phase allows to generate maps of
surface deformation or digital elevation models.

The frequency of the emitted radio waves is also of importance when operating a SAR sensor,
as different frequencies do not behave the same way when interacting with the ground. For
instance, low frequency waves (typically around 0.4 GHz, known as the P-band) are preferred
for biomass monitoring and hydrological mapping applications, while higher frequencies
(9.6 GHz, corresponding to the X-band) provides the best spatial resolution, thus best suited
for surveillance. SAR images find several applications in the remote sensing domain such as
land use and land cover classification [161] or change detection [17] for instance. An example
of SAR image can be seen in figure 1.4b°.

1.1.2.2 Multimodality in remote sensing

The multiplicity of sensors used in remote sensing gives rise to numerous occurrences of
multimodality, which have found to be useful for many practical application scenarios. Among
them, we can notably (and non-exhaustively) list:

The spectral-spatial multimodality: It is one of the most studied multimodality related
to hyperspectral imagery. A hyperspectral image is a stack of single-band images acquired at
different position of the electromagnetic spectrum. Compared to the classical panchromatic
images, hyperspectral images not only contain the spatial information encoded by the pixel

6. http://www.geoville.com/images/TerraSAR-X.jpg
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intensities, but also the spectral information through the multiple intensity values of each
pixel.

One major improvement brought by the spectral-spatial multimodality concerns the
classification of hyperspectral images, which is traditionally conducted in a pixel-wise manner
(i.e., each pixel is associated with a class given only its spectral properties). Assuming that
spatially close pixels are likely to belong to the same class, spectral-spatial classification
methods, such as morphological profiles [72] or watershed segmentation [188] have shown to
greatly improve the pixel-wise classification results. The reader is referred to section 2.1.2.1
for a short review of spectral-spatial hyperspectral classification techniques.

Another classical hyperspectral application that benefits from the spectral-spatial multi-
modality is spectral unmixing. This processing assumes that the spectrum of each pixel of the
image can be written as a linear combination of the spectra of some reference pixels (called
the endmembers) weighted by some coefficients (called the fractional abundances) that reflect
the contribution of each endmember in the pixel, and aims at estimating the endmembers
and associated abundances given a hyperspectral image. Assuming that neighboring pixels
should be made of similar materials and in similar proportions, the introduction of some
spatial information (regularizing the abundance maps with a Markov random field in [68] and
with total variation in [94], or in [135] with some spectral clustering prior to the endmember
induction step) within the unmixing process has led to better unmixing results than the
classical case where no spatial correlations are taken into account. Similarly, the reader
is referred to section 2.1.2.2 for a brief review on spectral-spatial hyperspectral unmixing
methods.

The temporal multimodality: In the case of multi-temporal data, the scene is imaged
(with the same sensor or not) at different time instances. The comparative analysis of the
resulting images allows to detect what has changed in the scene during the lapse of time
between two consecutive acquisitions. The most common method to conduct such analysis is
to compute and process the image difference, either by direct thresholding or by performing
some statistical test [17,31]. Change detection methods applied to multi-temporal data find
several applications in remote sensing, such as the monitoring of vegetation changes [167], or
the assessment of natural disasters of environment hazards such as floods [123], tsunamis [26]
or wildfires [105].

The multi-angle multimodality Multi-angular images are created when the imaging
sensor acquires several images of the scene at different positions (and thus different viewing
angles) with respect to the scene. For a sensor mounted on a satellite for instance, images
are commonly acquired in the nadir direction (the direction normal to the Earth surface).
For multi-angular images, the satellite images a scene at different positions during its pass,
resulting in different viewing angles as illustrated by figure 1.5.

Multi-angular images find various applications in remote sensing: in [116,203] for instance,
their are used to estimate the height of buildings in urban environments. As a matter of fact,
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Figure 1.5: Hlustration of a multi-angular sensor onboard the Terra satellite [63].

multi-angular images can be viewed and processed as stereoscoptic images, creating a notion
of depth for the objects present in the scene. In [49] on the other hand, multi-angular images
are used to assess the canopy structure of a boreal forest as the reflectance of various tree
species varies differently according to the reflected (scattering) angle. Those variations are
therefore captured by the multi-angular images, allowing to discriminate between the tree
species composing the forest canopy.

The multisource multimodality Finally, the majority of multimodalities encountered
in remote sensing could be classified as multisensor (or multisource) images, which occur
when several images of the same scene are acquired with different sensors. One application
of the multisensor multimodality is pansharpening, which aims at fusing a high spatial low
spectral resolution panchromatic image with a low spatial high spectral resolution multispectral
or hyperspectral image in order to create a high spatial high spectral pansharpened image.
Several methods, such as component-substitution or multiresolution analysis. Reviews on
pansharpening fusion methods and their respective performances can be found in [7,191]. Of
course, the processing of multisensor remote sensing data can pair every type of sources, such
as hyperspectral /LIDAR [11,60] as well as hyperspectral/SAR [48].

1.1.2.3 The Data Fusion Contest

The increasing interest of the remote sensing community toward the processing of multi-
modal images has led the IEEE Geoscience and Remote Sensing Society to launch in 2006
a data fusion contest (DFC)7, whose goal is to evaluate existing methodologies at the re-

7. http://www.grss-ieee.org/community/technical-committees/data-fusion/
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Figure 1.6: Composition of optical (left part), SAR (central part) and LiDAR (right part)
images over urban environment [21].

search or operational level to solve remote sensing problems using data from a variety of
sensors. This DFC, annually held since 2006, has seen the contenders working on the following
multimodalities:

2006: The fusion of multispectral and panchromatic images, also called pansharpening [8].
2007: The fusion of SAR and optical data in an urban mapping framework [151].
2008: The classification of very high spatial resolution hyperspectral data [115].

2009-2010: The analysis of multi-temporal SAR and optical data to perform change detec-
tion [123].

2011: The processing of multi-angular panchromatic and multispectral images [150].

2012: The fusion of multi-temporal and multimodal optical, SAR and LiDAR data over

some urban environment [21]. A composition of these three modalities is displayed by
figure 1.6.

2013: The fusion of hyperspectral and LiDAR data in the framework of hyperspectral
classification [61].

2014: The combination of low spatial resolution hyperspectral data acquired in the long wave
infrared (LWIR) domain with high resolution optical images [114].

2015: The ongoing DFC 2015 features the processing of very high resolution optical images
along with LiDAR data.

The different multimodal data sets and their respective applications proposed in the scope of
the DFC illustrates well the numerous instances of multimodalities that can be encountered in
the remote sensing field, as well as the need of adapted multimodal tools to process them.

1.1.3 General fusion techniques

The processing of multimodal data necessarily involves, at some time, the pooling of the
various features proper to each modality in order to derive some fused features characterizing
the multimodal data as a whole. This pooling is classically called the data fusion step. Of
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course, it depends on the nature of the multimodality being handled, but also on the underlying
goal, and there exists no generic method that can be applied regardless of the context. In
fact, it would not be exaggerated to say that there exists a specific data fusion step per
multimodality per application. Under this consideration, Wald [223] defined data fusion as
a multilevel, multifaceted process handling the automatic detection, association, correlation,
estimation, and combination of data and information from several sources. A classical data
processing chain is composed of three main steps: raw data handling, feature extraction and
decision operation. Data fusion can thus take place at three levels of the processing chain [106]:

— Fusion at the raw data level. It is the combination of the raw data from multiple sources
into a single "fused" source, which is expected to be more informative than the input
sources on their own. A typical example of raw data level fusion is pansharpening, which
aims to produce a high spatial high spectral image from a high spatial low spectral and
a low spatial high spectral ones.

— Fusion at the feature level. In that case, features of interest (for instance regions,
textures, edge maps, and so on) are extracted independently on each source, and are
combined to produce some unified feature map that is further used as an input for a
single decision step.

— Fusion at the decision level. In such event, features have been extracted and processed
on each modality to yield several decision outputs. These decisions are then combined,
through majority voting, statistical or fuzzy methods for instance, to produce a final
fused decision.

The strategy to adopt, which can be a combination of the previous three fusion techniques,
depends of course in practice on the application goal and the type of multimodality to handle.

1.1.4 Conclusion and challenges related to multimodality

As a summary of this first section devoted to multimodality, a multimodal signal has been
defined as the joint composition of multiple acquisitions of a physical source of interest. Each
acquisition procedure, resulting in a given modality, differs from one way or another from the
other acquisitions, where this difference may be related to the nature of the used sensor, to
the position or configuration setup of the sensor, to the date of the acquisition, and so on.

The information carried by each modality is therefore bound to the nature of its acquisition.
Several modalities may contain some redundant information: two hyperspectral images acquired
at different dates both feature the spectral properties of the materials composing the scene for
instance. On the other hand, some other types of information may be explicitly expressed by
a single modality of the multimodal data. Therefore, compared to their classical "unimodal"
counterparts, multimodal signals are more accurate and more complete representations of the
acquired source since they depict multiple facets of it.

While they allow to better describe the recorded source, the processing of multimodal
signals is a major issue to their utilization. As a matter of fact, the multimodality phenomenon
occurs in various fields of signal and image processing under different natures, thus making
the design of generic and portable processing algorithms, even if desirable, highly challenging.
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Figure 1.7: Illustration of the pixel grid.

1.2 Image representations and general notations

In the first section of this chapter, the word signal has been used at its broadest sense, as
defined by the IEEE Signal Processing Society ®: signal refers to any abstract, symbolic, or phys-
ical manifestation of information with examples that include: audio, music, speech, language,
text, image, graphics, video, multimedia, sensor, communication, geophysical, sonar, radar,
biological, chemical, molecular, genomic, medical, data, or sequences of symbols, attributes, or
numerical quantities.

In the following, we focus in particular on images. Multimodal images remain of course
concerned by all properties and specificities of multimodal signals defined and discussed in
section 1.1. Like any signal, images accept several representations, and each one of them can
be processed according to specific mathematical tools. Images are composed of pixels, their
smallest structuring element (pixel being a contraction of picture element). When an image is
digitally stored in a computer, it is represented as a grid map (the pizel grid) where one or
several values is associated to each cell of the grid, the pizel values, as illustrated by figure 1.7.
Most of the image representations rely on this grid pattern.

1.2.1 Image as a graph

In the graph-based representation, an image Z is depicted as a graph G = (V,U) where V
is a set of vertices and U is a set of edges. In such case, each vertex corresponds to a pixel of
the pixel grid, as displayed by figure 1.8. The edges, on the other hand, allows to define some
neighboring relationships between pixels: two pixels x; and z; are neighbors if and only if there
is an edge u;; connecting their respective vertices v; and v; in the graph G. In particular, the
two most common neighboring systems used in image processing are the so-called 4-neighbors
and 8-neighbors systems, as represented by figure 1.9. Traditionally, the graph is defined as
undirected, meaning that the edges connecting vertices have no directions (if v; is connected
to vj, then the converse is also true). Pixel values are also stored as attributes for the vertices.
One then refers to the graph G as an undirected vertex-valued graph. Using graph-based

8. http://www.signalprocessingsociety.org/about /scope-mission/
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Figure 1.8: Graph-based image representation.
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Figure 1.9: Illustration of (a) 4-neighbors and (b) 8-neighbors systems, where the red central
pixel is connected.

image representation notably allows to use tools provided by the graph theory framework,
whose most famous examples are probably graph cuts [27] and spectral clustering [222].

1.2.2 Image as a functional

Another possible representation to define an image is as a functional. In such case, we
get back to the definition (1.1) of a signal, except that the support spaces can now be more
precisely defined. Therefore, in the functional-based representation, an image 7 is defined as
a function

I: EC7> —» V

x = Z(x) (13)

where F, the spatial support of Z, is defined as a subset of Z x Z to represent the pixel grid,
and the space of values V' depends on the used sensor. For a grayscale image (such as a LIDAR
image for instance), each pixel value Z(z) is a scalar, thus V' C R. For multi-band images
(such as traditional color images, multi-spectral or hyperspectral images), to each pixel is
associated a N—dimensional vector, where N is the number of channels, and V C RY. Note
that, in the case of multi-channel images, the pixel vector Z(x) € RY will be denoted by a
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bold symbol x if there is no ambiguity (as it will be the case in chapter 3 notably). In the
general case (i.e., for natural images), there is no analytical expression for Z as a function,
but properties such as smoothness (at least piece-wise derivability) are commonly assumed.
Famous examples of image related quantities relying on the functional-based representation of
an image notably include the total variation (TV) [170]

TV(T) = /E IVI(2)|dz | (1.4)

as well as the Mumford-Shah energy functional [142] defined by the further equation (2.8).

1.2.3 Image as a matrix

Another possible image representation is the matriz-based formulation. In this case, each
pixel value x € RY of pixel z is considered as a N-dimensional vector, and the whole image X
is viewed as a collection of Npix = |E| vectors

X = [Xl, . 7XNpiX] S RNV > Npix (15)

yielding a matrix constituted of N rows (the dimensionality of the data) and Npix columns
(the number of pixels/samples). While the spatial organization of pixels is lost in this matrix-
based representation, it makes possible to use classical linear algebra operations such as
eigen-decomposition (where a classical example is the principal component analysis, which
is applied to the matrix XX” € RV*¥) or matrix factorization (an example of such matrix
factorization, within the framework of hyperspectral unmixing, will be given in section 2.2).

1.2.4 Image as a random vector field

Finally, the statistical-based representation considers that each pixel value x € RV is
no longer deterministic, but a particular realization of a more general random variable X
with probability distribution function px instead. While simple notions like the mean or the
histogram of an image are directly related to this statistical representation, this framework
allows for the use of more sophisticated tools. Classical image processing operation, such
as classification (with support vector machines [54] for instance), clustering (such as mean
shift clustering [52]), object detection and anomaly/target detection (classically involving
hypothesis testing [131]) notably exploit the nature and the properties of the probability
distribution px of the pixel values.

1.3 Hierarchical representations of images

This section is devoted to hierarchical representation of images. Motivated by the intrinsic
multi-scale nature of images (section 1.3.1), such representations, also termed tree-based
representations, have received much attention in image analysis and especially in the field
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of mathematical morphology. Sections 1.3.2 and 1.3.3 introduces tree-based representations
through this prism of mathematical morphology, while section 1.3.4 focuses deeper into a
particular instance of hierarchical representation being the binary partition tree.

The functional-based representation of images is considered in the following, as previously
described in section 1.2.2: an image is represented as a function Z : E C Z? — V.

1.3.1 On the necessity of hierarchical representations

Hierarchical representations are an important and widely used tool in the field of image
processing and analysis. Their usefulness come from the intrinsic property of nearly all images
to lend themselves well to this type of representations. To understand the reason, we shall
take a quick look at the cognitive processes happening in the human brain when examining an
image.

As said in the previous section 1.2, an image is digitally stored as a pixel grid, where to
each box in the grid is associated a set of values, corresponding to the pixel values. For the
computer, there is no relation or connection whatsoever between the values of nearby pixels
in the grid. On the other hand, when staring at an image, the human brain does a little bit
more than the low-level processing which consists of receipting the electrical signal sent by the
optic nerves. It analyzes the image and naturally decomposes it into groups of neighboring
pixels such that their shape, color or textural attributes have some semantic meaning. Each
group can then be linked with a word, and it becomes possible to identify the scene based on
the objects from the real world that have been recognized [92].

As an example, consider the image displayed by figure 1.10. For every one who has ever
come to Grenoble, it is clear that this picture depicts a nice landscape of this city. The
underlying process operated by the brain to recognize the scene is first to divide up the image
into regions that are coherent enough to be assigned some semantic meaning (such as "bridge",
"river", "building", "mountain”, and so on), and then to identify those regions (for instance,
the river is recognized as the Isére, the mountains as the Belledonne massif, and so on).

While the process of recognition and identification of regions of interest within an image
is natural for the human brain, it is on the other hand one of the most challenging task to
mimic in the field of computer vision. Indeed, regions of interest can be defined of various
sizes, which is related to the notion of scale of analysis (often referred to as level of details).
In the image processing field, images are not just manipulated for fun?, but because of some
underlying application. It is this particular application that dictates the scale at which the
image, and thus its regions of interest, should be analyzed. As a simple illustrative example,
let us take a second look to the image displayed by figure 1.10. Counting the number of
windows or chimneys that appear in this image requires a fine analysis of the scene, and thus a
high level of details, since the regions of interest (in other words, the windows or the chimneys)
are small, close to the pixel level. On the other hand, enumerating the buildings or separating

9. Although there is some part of fun in it :-)
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Figure 1.10: Difference between computer and brain image analyses. For the former, this
color image is a pixel grid in which each cell contains three values, the red, green and blue
components. For the latter, this is unmistakably a picture of the beautiful city of Grenoble.
The brain adds a high-level interpretation process to give some semantic meaning to regions
of pixels.

the mountain from the rest of the scene are applications that require a coarser level of analysis
because the regions to analyze are significantly larger.

This intrinsic multiscale nature has for consequences that regions of interest are organized
in a nested way from fine to coarse scales. Taking back the example of figure 1.10, windows
and chimneys are all included in buildings, and all buildings together define the city. Similarly,
looking back to figure 1.2 (the panchromatic and multispectral views of a city), one can be
interested in extracting buildings individually or neighborhoods, the latter containing the
former and thus being of coarser scale, depending on the objective. As the scale of analysis
of a single image is bound to the underlying application, it could be useful to decompose an
image into all its potential scales of interest regardless of the application, and then browse this
collection of scales to choose a proper one, rather than guessing a priori for each application
what would be the best scale of analysis to operate on. Thus, hierarchical representations
appear as a well-suited tool to account for this multi-scale image decomposition. An example
of such hierarchical representation is depicted bu figure 1.11.

1.3.2 The lattice of partitions

Working with hierarchical decomposition, and hierarchies of partitions in particular,
requires the introduction of mathematical background notions. More specifically and as their
name suggests, hierarchies of partitions are composed of partitions. Manipulating partitions is
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Figure 1.11: Example of decomposition of an image into several scales of interest, represented
in a hierarchical structure.
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Figure 1.12: Tllustration of a partition 7 = {R;} of a set E.

slightly more complicated than manipulating numbers, and it can be valuable to be familiar
with the lattice structure of the space of all partitions.

Definition 1.3 (Partition)
Let E be some set. A partition of E, denoted m, is a family {R; C E} of subsets of E such
that R; N Rj#i =0 and Ul Ri=F.

Each subset R; is called a region (or class) of E. A partition 7 of E is therefore a division
of F into non-overlapping regions which entirely cover F, as illustrates the figure 1.12. The
set of all partitions of F is denoted Ilg.

One question that quickly arises when working with partitions is how to compare them.
When manipulating numbers, it is natural to use the classical "less than or equal" relation
<. But how does this relation transpose to partitions? Let us first recall the definition of a
partial order:

Definition 1.4 (Partial order)
A (non strict) partial order relation on E is a binary operation, denoted < which satisfies for
any x,y and z in E:

- reflexivity: ¢ < x;

- transitivity: t <y andy < z=x < z;

— antisymmetry: t <y andy <z =z =1y.
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Figure 1.13: Illustration of the refinement ordering: 7 < o, but m £ 3.

T2

Figure 1.14: Tllustration of the refinement infimum (left) and supremum (right) of two partions.

Based on this definition, it is possible to define a partial order on Il that reflects the
refinement of two partitions:

Definition 1.5 (Refinement ordering)
For any two m;, m; € g, one says that m; refines (or is a refinement of) 7, and one writes
m; < 7j, whenever for each R; € m;, there exists R; € mj such that R; C R;.

In other words, 7; is a refinement of ; if every individual region R; € 7; can be fragmented
into one or several regions R; € m;, as illustrated by figure 1.13. Informally, 7; is a refinement
of mj if m; "contains" all the boundaries of m;. It is for instance the case of m; and w2 in
figure 1.13. However, the refinement ordering < is only a partial order and not every two
partitions are comparable. This is the case in particular for m and 73 displayed by figure 1.13.

Nevertheless, IIg equipped with the refinement ordering < has a lattice structure, meaning
that, even though they are not comparable by refinement, any two partitions m; and 7; of
IIg always admit a greatest lower bound (called the refinement infimum) 7; A 7; and a least
upper bound (called the refinement supremum) m; V 7;. The former is the largest partition of
Iz that refines both m; and 7; at the same time, and it is obtained by taking the intersection
of all the regions of m; and 7;. The latter is the smallest partition of Iz which is refined by
both 7; and 7;, and is obtained by retaining only the closed boundaries that are in common
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between 7; and 7;. An example of the refinement supremum and infimum of two partitions
can be seen in figure 1.14. Notice that the refinement supremum of any two partitions that do
not share any closed boundary is the whole support space E. That is the case for instance for
partitions mp and 73 of figure 1.13. Conversely, if m; < 7, then m; V m; = 7;.

Finally, we introduce the notion of sub-lattice, as it will later be useful (in chapter 4
notably):

Definition 1.6 (Sub-lattice)
Let (E, <) be a lattice and E' C E. (E',<) is a sub-lattice of E if for every two elements x’
and y' of E', then 2’ Ny and 2’ V vy are also in E'.

Put differently, a sub-lattice of F is a subset E’ of E such that the supremum and infimum
of any two elements of E’ are also elements of E’.

1.3.3 Hierarchical representations
1.3.3.1 Tree-based image representation

As it was developed in the previous section 1.3.1, images accommodate well with hierarchical
representations since regions of interest within an image are very often either disjoint or nested
within each other. To support this observation, tree-based representation have been proposed.

Definition 1.7 (Tree-based representation)
A tree-based representation T of E is a collection of regions T = {R C E} such that:

- 0&T
- FEeT (1.6)
— VRi,R; € T,RiNR; € {0, R, R;}

In other words, a tree-based representation of F is a decomposition of F into regions that
are either disjoint, or nested. A tree-based representation 7 can be represented as a graph
Gr = (N7, U7) where each vertex (also called node) Ng € N is associated with a region
R € T and each edge u;; € U7 means that either R; C R; or R; C R;. Put differently, the
graph representation of 7 is the Haase diagram of {R € T} ordered by inclusion. In order to
simplify the notations, we will denote by R both the regions of the tree-based representation
and the vertices of the associated graph. Based on these tree/graph considerations, we can
introduce the following terminology, illustrated by figure 1.15.

Definition 1.8 (Tree terminology)
Let R € T. Are defined:
— The children of R correpond to all regions R' € T that are directly connected to R in
the graph representation of T and such that R' C R. The set of children of R is denoted
C(R).
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root(7) = E

Figure 1.15: Tree-based representation terminology.

— If R has no children, i.e., |C(R)| =0, then R is called a leaf of T. leaves(R) is the set
of leaves of T that are included in R.

— The father of R is, on the other way around, the node F(R) to which R is connected
and such that R C F(R). In a tree-based representation, each region has exactly one
father, except for the root of T, root(T ), which has none.

— The sibling of R is the set of regions Sib(R) that have the same father as R, i.e.,
R’ € Sib(R) & F(R') =F(R).

— The branch of R, denoted br(R) is the set of regions {R,F(R),F(F(R)),...,root(T)}.
Elements of br(R)\{R} are called ancestors of R.

— The height of R, h(R), is number of elements in br(R) minus 1, i.e. h(R) = |br(R)|—1.
It corresponds to the length of the path linking R to the root node. The height of the
root node s set by convention to 0.

— The subtree rooted at R, T(R), corresponds to all the elements of T that are included
in R. In other words, it contains all the elements of T for which R is an ancestor.

1.3.3.2 Examples of tree-based image representation

Classical tree-based representation include the min-tree and max-tree, also known as
component trees. Initially proposed in [173], these tree-based representations are based on
threshold decomposition of a gray-scale image: they encodes the inclusion relationship between
the connected components of the upper and lower level sets of the image. More specifically,
let Z: E — V CR be a gray-scale image. Its upper and lower level sets, for a threshold value
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Min-tree Max-tree Tree of shapes

Figure 1.16: Examples of tree-based threshold decompositions of the gray-scale image on the
left: min-tree, max-tree and tree of shapes.

h, are defined by:

T ={z € E|Z(z) > h}
I ={z € E|Z(z) < h}

7" and 7, are binary images, composed of connected components, where each connected
component C" (respectively, C}) corresponds to a set of connected pixels whose value is
above (respectively, below) the threshold h. By varying the threshold h, one then obtain a
hierarchical decomposition of the image into a set a connected components. The min-tree
represents this hierarchical decomposition by encoding the inclusion relationship between the
connected components of the lower level sets of the image. The leaves of the min-tree are
the regional minima of the image. Conversely, the max-tree encodes the inclusion between
the connected components of the upper level set decomposition, and has the local maxima as
leaves. Examples of min-tree and max-tree are displayed by figure 1.16. Component trees have
found numerous applications derived from mathematical morphology, such as filtering [97,174]
or segmentation [96] and several efficient implementations have been proposed (see [42] for a
comparative review).

Despite their usefulness, components trees have several drawbacks. As a matter of fact,
they handle bright and dark components separately. This can be an issue for instance when
some object of interest appears brighter than the background in some parts of the image, and
darker in some other parts. Moreover, real objects of interest may even not correspond to
extrema of the image. Finally, the structure of components trees is bound to the pixel values
since they must be comparable. While this works well for gray-scale (hence, scalar) images,
it does not straightforwardly extend to multi-valued images where no natural order exists
between vectors.

To handle bright and dark components in a self-dual way, several authors have introduced
the notion of shapes which have led to the definition of the tree of shapes (ToS) (also called
topographic map [45], or inclusion tree [140]). Instead of considering the connected components
of the upper and lower level set decompositions, the ToS encodes the inclusion relationship
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between the level lines (i.e., the topological boundaries of the connected components). More
particularly, a shape is defined as a connected component with holes filled, and the ToS
of an image can be viewed as a merging between the min-tree and max-tree of this image.
All leaves of the ToS correspond to some regional minima and maxima of the image, as
shown by figure 1.16. In the same way as component trees, inclusion trees find applications
in image filtering [229], segmentation [41], simplification [14] and object recognition [154].
However, similarly to component trees, an ordering on the pixel values is also required to
built the ToS (since it is based on the notion of shape, itself deriving from the notion of
connected component), hence making the extension from gray-scale to multi-valued image
challenging. Several extensions have been proposed (see for instance [43,44]), mainly based on
the computation of marginal ToS (i.e., one ToS per image channel) that are further merged.

1.3.3.3 Hierarchies of partitions

Component and inclusion trees are extrema-oriented image representations. They describe
an image as a set of disjoint or nested connected components. However, they rely on the
absolute pixel scalar values of the image and on the presence of a total ordering holding
on this set of scalar values. Moreover, there is no guarantee that objects of interest can be
appropriately described only by their own pixel values. As a matter of fact, an object seems
to be of interest if it is sufficiently different from its surrounding. This leads to work on
dissimilarities between pixels (or regions) rather than on their absolute values, in particular
through the introduction of a dissimilarity function, which is notably the purpose of hierarchies
of partitions.

As previously said, hierarchies of partitions are a special case of tree-based image represen-
tation. As a matter of fact, the definition 1.7 can be complemented to define a hierarchy of
partitions, hereafter denoted H:

Definition 1.9 (Hierarchy of partitions - region-wise definition)
A hierarchy of partitions H of E is a collection of regions H = {R C E} such that:

—0#H

— FeH

— VR, Rj € HRiNR; € {,Ri, R;} (1.9)
— VR € H\leaves(H),R= ] R

R:EC(R)

In addition to being composed of regions that are pairwise disjoint or nested, the additional
requirement for a tree-based representation to be a hierarchy of partitions is that each non-leaf
node in the hierarchy can be exactly recomposed from its children. In particular, it means
that the whole space F can be retrieved by taking the union of all leaves of the hierarchy,
which was clearly not the case for the component and inclusion trees (see figure 1.16). These
leaf regions form a partition of E, denoted my and that will be called the leaf partition of H.
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Figure 1.17: Example of hierarchy of partitions, viewed as (a) a stack, and (b) a sequence of
partitions ordered by refinement, along with (c) the corresponding tree graph.

Alternatively, but equivalently to the definition 1.9, a hierarchy of partitions can be defined
from a partitioning point of view:

Definition 1.10 (Hierarchy of partitions - partition-wise definition)
A hierarchy of partitions H of E is a finite sequence of partitions m; € Il ordered by refinement:

H = {m;}j—y such that i < j = m; < ;. (1.10)

The partitions are ranging from the leaf partition 7y to the root of the hierarchy m,, = {E}.
In definition 1.10, the word hierarchy takes its meaning since the partitions of the sequence
are ordered from fine to coarse. An example of hierarchy of partitions and its associated tree
graph is displayed by figure 1.17.

Thanks to these two equivalent definitions, it is possible to obtain a hierarchy either
by working on the regions (for instance, using some region merging or splitting techniques)
or on the partitions directly. Of course, the whole terminology 1.8 defined for tree-based
representations remains valid for hierarchies of partitions.

Processing that are commonly applied to hierarchies of partitions can be categorized in
two classes:
— Region-based processings. They aim at exploring the regions of the hierarchy in order
to identify the regions of interest that fulfill some predefined criteria (for instance a
given shape, homogeneity or distance with respect to the neighbors). These strategies
are particularly useful to perform object detection and recognition, as it will be further
investigated in chapter 3.
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Figure 1.18: Example of (a) a cut of a hierarchy and its associated partition, and (b) a partial
partition.

— Partition-based processings. Their goal is to extract from the hierarchy some specific
partitions that conform a given application. One particular way to proceed is through a
pruning operation, namely cutting of some branches of the hierarchy such that the new
leaves of the pruned tree achieve the desired partition. Some pruning strategies will be
investigated in chapter 2 and chapter 4.

Following is the related terminology:

Definition 1.11 (Cuts of a hierarchy)
A cut of a hierarchy H is a partition © of E whose regions belong to H. The set of all cuts of a
hierarchy H of E is denoted g(H), and it is a sub-lattice of Iy for the refinement ordering.

Definition 1.12 (Partial partition)

A partial partition m(R) of R € H is a cut of the sub-hierarchy H(R). The support of this
partition is only partial with respect to E, hence the name. As for the cuts, the set of all
partial partitions of R € H is denoted Ilg(H(R)).
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Graphically, a cut can be seen as a path that intersects each branch of the hierarchy at
most once, as displayed by figure 1.18a. The regions constituting the corresponding partition
are those whose associated node in the tree graph is located directly above the cut. Notice
that, for some authors, the partition is made of the regions located below the cut. IIg(H)
being a sub-lattice of IIp means in particular that the supremum and infimum of two cuts of
a hierarchy are also cuts of this hierarchy.

1.3.3.4 Examples of hierarchies of partitions

As for tree-based representations, hierarchies of partitions have been widely studied in the
literature. A well-known hierarchy of partitions is the quad-tree, proposed by [75]. Starting
from the whole image (i.e., the root of the hierarchy), the quad-tree is created by successive
region splitting. More particularly, each region, also called quadrant, can be either divided into
four sub-quadrant or left as it is, each quadrant being either square or rectangular. The decision
of splitting a region into four sub-quadrant is often based on some homogeneity considerations:
if the region is not homogeneous enough, it is split until it fulfills the desired criterion. Quad-
trees have found applications in image segmentation [184] and compression [182], notably.
However, as each region is rectangular, quad-tree cannot account for irregular contours and
therefore objects of interest are often split into several nodes.

Another type of hierarchy is the so-called a-tree [148], also known as the hierarchy of
quasi flat zones [139], based on the notion of constrained connectivity [183]. More specifically,
let p and ¢ be two neighboring pixels, and d(Z(z),Z(y)) be the dissimilarity between their
respective values for the image Z. Two pixels p and ¢ are said to be a-connected if there
is a path from p to g, namely a sequence of (p = z1,...,z, = ¢) such that x; and x;4; are
adjacent (in the sense of the 4-neighbors or 8-neighbors systems) and d(Z(x;),Z(zi+1)) < a.
Following, one can define the a-connected component of a pixel p (abbreviated a—CC(p)) as

a—CC(p) = {p} U{g s.t p and ¢ are a — connected} (1.11)

It was shown in [183] that for a given « value, the set of a—CC forms a partition 7,
of E and that, for two values a1 < g, T, < Tq,. Therefore, by using several values
ag < ay < --- < ap, one induces several partitions ordered by refinement that creates the
a— tree hierarchy Hy = {7, < -+ < mq, . An example of such hierarchy is displayed by
figure 1.19.

It is known that such defined a—trees may suffer from the so-called chaining effect. For
instance, a ramp image where all pixels of a given column have the same value, and such that
the dissimilarity between two pixels of adjacent columns is equal to 1 would have a 1-CC
being the whole image. To tackle this issue, the (a,w)—connected component of a pixel p
was introduced [183] as the largest a—CC containing p such that the maximum dissimilarity
between two pixels of the connected component is less that w:

(a,w) — CC(p) = \/{ai — CC(p) s.t a; <« and z,yegf—ié()(p) d(Z(x),Z(y)) <w} (1.12)
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Figure 1.19: Example a—tree hierarchy: (a) 0—,1—,2— and 3—connected components of a
toy image (with adjacency defined by 4-connectivity) and (b) the corresponding a—tree. In
that example, the dissimilarity measure between pixels p and ¢ is d(p, q) = |Z(p) — Z(q)|.

Following this definition, (a1, w;)—CC(p) C (ag,w2)—CC(p) for a1 < as and w; < wy, and
this also allows for the generation of fine to coarse partitions of £ (and thus of a hierarchy) by
progressively increasing the values of the range parameters o and w. Some efficient algorithm
to compute such hierarchies can be found in [143,148].

Last but not least, a popular hierarchical representation is the binary partition tree (BPT),
as proposed by [172]. Starting from an initial partition my that defines the leaves of the
hierarchy, the BPT is obtained by a bottom-up region merging procedure: pairs of neighboring
regions are merged based on their similarity until there is only one region remaining, which is
the whole space E. The creation of a BPT is bound to the definition of the initial partition
as well as the similarity function to assess how close are two neighboring regions. In the last
decade, BPTs have proved to be a valuable tool for hierarchical image representation thanks to
the great flexibility of their construction and analysis processes. Consequently, they have found
numerous applications in image and video processing such as image segmentation [172,207],
filtering [5], compression [172] as well as object detection [120,218] and object tracking [153,196].
The next section is devoted to a more detailed insight of BPTs, as they are going to play a
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Figure 1.20: Example of region merging sequence along with its corresponding binary partition

tree.

key role in the following chapters.

1.3.4 A focus on the binary partition tree

The binary partition tree encodes the hierarchical decomposition of an image in a tree

structure. As said in the previous section 1.3.3.4, the BPT representation relies on the iterative
merging procedure of a set of initial regions, which are the leaves of the BPT. The tree is
built by keeping track of the merging orders. Each region can be merged with only one of its

neighbors, resulting in a hierarchy where each region has either two children, or none (in the
case of a leaf node). An example of region merging sequence and its corresponding BPT is
displayed in figure 1.20. BPT representations enjoy several desirable properties:

— They allow to decompose an image into a set of regions that are hierarchically organized.

This decomposition provides a description of the image at different scales ranging from
fine to coarse. This is particularly valuable since the analysis of an image can be
performed at different levels of details, according to the desired objectives. Therefore,
the hierarchical decomposition can serve as an initial support, computed regardless of
the application, and its analysis can be tuned afterward to meet the intended goal.
The construction of the BPT is based on the merging of similar neighboring regions,
and is therefore bound to the definition of this similarity measure. While this setting
is left to the user and may appear at a first sight as a disadvantage with respect to
strategies exploiting the absolute pixel values (such as the component and inclusion
trees for example, which totally rely on the notion of regional extrema), it can actually
be seen as a strength as it introduces some flexibility in the construction of the BPT.
Even though their construction is rendered flexible by the various possible settings to
parametrize the merging procedure, BPTs were intended to be built independently of the
underlying application, as a common support basis for all subsequent processing [172].
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The analysis of the BPT, which is driven by the application, can adapt well to a broad
range of processing. For this reason, BPTs have been used in an extensive variety of
applications in the image and video processing fields [6,153,207,218].

1.3.4.1 Construction of the BPT

There are two parameters that are of prime importance when building a binary partition
tree, namely the definition of the merging procedure, and the initial partition on which this
procedure is applied. While there are various options available for those two parameters, some
of them have proved to perform consistently well in the literature.

The merging procedure The merging procedure determines in which order the regions
should be merged. The BPT is then built following a bottom-up procedure (i.e., starting from
the smallest regions) by keeping track of this order. The specification of a merging procedure
itself relies on the definition of two inner parameters:
— The region model My, which specifies how to mathematically model the regions and
their union.
— The merging criterion O(R;, R;), which assesses the similarity between neighboring
regions R; and R; by measuring the distance between their region models d(Mg,, Mx;).
Relevant definitions for the region model and its associated merging criterion with respect to
the processed image should guarantee the consistency of its BPT representation.

BPT were initially developed in the scope of gray-scale and color image processing [172],
that is, for images whose space of pixel values V is either R or R3. In that case, the first
proposed region model was the mean color within the each region:

1

= > I(x) (1.13)

TER

with Z(x) being a scalar (respectively, a triplet) in the case of gray-scale (respectively, color)
images. This model, assuming color homogeneity within the region, allows the use of simple
merging criteria and can be easily computed for a node given the regions models of its children,
thus leading to fast and efficient implementations. While some authors use it directly on
the common RGB color space [20], it is more often applied on other spaces, such as the
LUV [172] or the CIE L*a*b* [120,127] color spaces, which are known to better match the
human visual perception in terms of distance between colors. All the previously cited works
used the following merging criterion, introduced in [78], to measure the similarity between
neighboring regions R1 and R

O(R1,R2) = |R1| X [[MR, = MR ur,ll2 + [Ra| X MR, — MR, ur,|l2 (1.14)

with || - |2 being the Eucliden Ly norm. Other norms, such as the L; and the Lo norms
can also be used (recall that the L, norm of a vector x for p > 1 is defined as |x||, =

(2P + - + [z(n)[?)7).
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BPT representations were extended to hyperspectral images in the work of Valero [204,205,
207,210]. In such case, the space of pixel values V is RV, with N typically equal to several
hundreds. The extension of the mean region model defined by equation (1.13) to a larger
dimensionality N is straightforward, and is termed mean spectrum or first order region model,
following [205]. However, the design of suitable merging criteria for this region model is needed,
since it is known that L, norms suffer from the curse of dimensionality. To alleviate this issue,
Valero proposed two merging merging criteria, adapted to the inherent large dimensionality of
hyperspectral images:

— The spectral angle (often abbreviated SAM) between two regions R; and R; is defined

as the angle between their mean spectrum p; and p;:

i b
Osam(Ri, Rj) = arccos — ) (1.15)
<HN1’H2HN’]‘H2)

This merging criterion is motivated in hyperspectral imagery by the fact that two
spectrum describing the same material should have similar shapes, and thus a small
angle between them in the feature space. Note also that the SAM is relatively insensitive
to scaling effect since multiplying a vector by a constant only changes its magnitude,
but not its angle.

— The spectral information divergence (SID) measure the distance between p; and M when
interpreted as probability density functions. As a matter of fact, if a mean spectrum g
is normalized to sum up to one (u* = p/(17 ), with 1 being a column vector of ones),
it can then be viewed as a probability density function. A common measure of similarity
between such probability density functions is the so-called Kullback-Leibler divergence

KL(“iij)—];Mi( ) log k) ) (1.16)

drr(pf, u;) > 0, and the equality is reached if and only if the two probability density
functions coincide. However, as this measure is not symmetric (as it is a divergence and
not a distance), the SID merging criterion is defined as the symmetric Kullback-Leibler
divergence between p7 and p}:

Osip(Ri, Rj) = dr (], 1) + din(pf, 1) - (1.17)

As for traditional images, the first order region model is simple and assumes spectral
homogeneity within the region. However, this may become a limitation for some applications
where the spectral variability has to be taken into account. To that purpose, the non-parametric
statistical region model, also called histogram-based region model, was introduced [205]. This
model is defined as a set of NV histograms:

Mz = {Hk, ..., 1N} (1.18)

where each 7—[%z is the empirical spatial distribution of the pixel values within region R for the
i band. More particularly, each histogram 7-[32 is composed of Ny;ps bins ap,p = 1,.. ., Nyips:

Hi = {Hi(a1), ..., Hr(an,,.)} (1.19)
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and each histogram, if normalized to sum to one, can also be viewed as an approximation of the
probability density function. Note that this region model can also be recursively computed for
each region R as the weighted sum of the regions models of its children. This histogram-based
region model allows to define for merging criteria some metrics that measure the similarity
between histograms. In particular, Valero [205,207] introduced three histogram-based merging
criteria:
— The Battacharyya distance, which is based on the Battacharyya coefficient (BC) between
two normalized histograms H%h and /H%Zz of two adjacent regions R1 and Ro, for the
same band ¢:

BCO(H,, Hy,) = —log ( > JHe, (ap)\/%;%(ap)) (1.20)

If the two histograms perfectly overlap, the argument within the logarithm sums to one,
hence a Battacharyya coefficient being 0. Consequently, the merging criterion based on
the Battacharyya distance can be obtained by summing the Battacharyya coefficients
for all the N bands of the image:

N
Opc(Ri, Rj) = ZBC(H%I,H@) (1.21)
=1

The main limitation of this merging criterion is its assumption that the histograms are
perfectly aligned, hence its name of bin-to-bin distance. This can be a disadvantage in a
situation where two histograms have a similar profile but are not aligned, and one may
want to consider those two histograms as close to each other.

— The diffusion distance, proposed in [119] and which solves the previously raised issue
concerning two histograms that do not overlap. For that reason, the diffusion distance
is called a cross-bin distance. It is based on the idea that the difference between two
histograms

d%)(ap) = H'le (ap) - szz (ap)7 b= 17 R Nbin (122)

can be viewed as a temperature field, and the corresponding distance between those
two histograms is the time needed by this field to reach stability via a heat diffusion
process, or equivalently, on the state of the temperature field after a given time. More
precisely, starting from dg, the diffusion process is simulated by convolving the current
temperature distribution with a Gaussian kernel

i (ap) = [dm-1(ap) * go(ap)] 2,m =1,..., M (1.23)

with g, standing for the Gaussian kernel with variance o, |2 denotes a downsampling
by a factor of 2, and M is the number of convolution layers. The final merging criterion
between R and R follows by summing over all N bands the Ly norm of the M + 1
layers of temperature fields

M
Oprr(R1,R2) = Z Z |d2, |1 (1.24)

i=1m=0
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Similarly to the Battacharyya distance, the diffusion distance processes all bands of
the image in the same way. On the other hand, hyperspectral data feature strong
correlations between bands, and this correlation could be used to remove the redundant
information contained in each region model.

— The similarity via multidimensional scaling aims exactly at exploiting the redundancy
between all bands of the hyperspectral image. First, a multidimensional scaling [55]
is performed on the N histograms of M in order to reduce the dimensionality and
extract only the principal components of the region containing the most relevant
information. Then, for any two neighboring regions R; and Rg, the similarity measure
between those two regions is obtained by analyzing the joint correlation between the
principal components of each region. More specifically, a statistical test, based on a
multivariate analysis of variance (MANOVA) [9] is performed in order to determine
whether the principal axes are correlated or not. In the first case, a dependency is
claimed between regions R and Rg, which are thus given a low distance. Details about
the implementation of this merging criterion can be found in [204,207].

While it is appealing to be able to define several region models and their non-exhaustive
list of merging criteria, it also raises the question on which couple (Mg, O(R;, R;)) would
lead to the most consistent hierarchical representation given an image. Although there is no
clear answer to this question, we can formulate this heuristic rule, supported by the similar
conclusions drawn in the PhD work of Valero [204]:

— If one is interested by relatively simple and spectrally homogeneous regions, then the
mean spectrum region model is a good candidate. Provided this region model, the SAM
and SID merging criteria perform equally well.

— Alternatively, if one is giving importance to the intra-region spectral variability, then
one should choose the histogram-based region model, which is however computationally
heavier than its mean spectrum counterpart. Related to the merging criteria, the
diffusion distance performs better than the Battacharyya since it is a cross-bin
distance. The similarity via multidimensional scaling in turn gives more consistent
results than the diffusion distance since it takes into account the correlation be-
tween bands of the hyperspectral image, but at the cost of a higher computational burden.

In both cases, the region size does not intervene in the previously defined merging criteria,
and this could lead to small and insignificant regions remaining in the last merging iterations
of the construction. To overcome this issue, it was proposed in [36] to use a priority rule: all
regions whose size is less than a given threshold (typically set to 15%) of the mean size of the
regions standing in the current merging iteration are given the merging priority, regardless of
their distance with respect to their neighbors.

The initial partition The second parameter needed for the BPT construction is the initial
partition 7, on which is initialized the region merging procedure. If a pertinent initial
partition does not guarantee a pertinent BPT representation (since it also depends on the
definition of the region model and merging criterion), a poor initial partition does lead to
a poor hierarchical decomposition, as all the regions subsequently obtained follow from the
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Figure 1.21: Examples of initial partitions with (a) the multidimensional watershed, (b) the
mean shift clustering and (c¢) SLIC superpixels.

initial ones. The safest option that could be considered is to initialize the BPT construction
at the pixel level (i.e., where the initial partition is composed of regions made of single pixels
only). Since a BPT built on an initial partition made of |mg| leaves is composed of 2|my| — 1
regions, the pixel level as an initial partition may lead to a huge BPT structure and this could
be problematic from a computational point of view for very large images. Moreover, such
BPT would be composed of a lot of small and meaningless regions and this could also slow
down the analysis processes further applied on it.

Then, an appropriate initial partition should enjoy the following two properties:

— Tts regions should be fine enough (in other words, the image should be enough over-
segmented) to ensure that the smallest regions of interest within the image are not
already merged together in some initial regions. Otherwise, those regions of interest
would be irremediably lost.

— The boundaries of the initial regions should well adhere to the real boundaries of objects
of interest, in order to be able to reconstruct (up to a correct definition of a region model
and merging criterion) these objects of interest accurately.

If those two conditions are fulfilled, it was shown (in a context of image segmentation) that
starting from an initial partition does not worsen the segmentation results [199].

Among efficient segmentation algorithms to design the initial partition, one can cite
the watershed algorithm [220] (or the multidimensional watershed for multi-valued images,
see [188]), the mean shift clustering [52] or the SLIC superpixels [1]. All those fulfill the two
conditions of over-segmentation and boundary adherence, as it can be seen in figure 1.21.

1.3.4.2 Processing of the BPT

Once its construction is completed, the BPT encodes in its structure a decomposition of
the image in regions at various scales, from the finest ones (i.e., the leaves) to the coarsest
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Figure 1.22: General scheme of a the BPT processing step

(the root of the hierarchy being the whole image). Contrarily to the construction, which can
be done regardless of this application, the strategy to further process this set of hierarchically
organized regions is strongly driven by the underlying application. As a matter of fact, one is
not going to operate the same way whether one wants to extract a particular cut from the
hierarchy (for segmentation purpose for instance) or one seeks a particular object of interest
in the image (for example in a context of object detection).

Nevertheless, a typical BPT processing can be decomposed in two steps: the population
of the tree in a first stage and a following decision stage, which are both defined to achieve
the intended goal. During the former, some features or attributes are evaluated for each
region R and stored in a set Qr: the tree is "populated’. Then, the decision step evaluates,
given a decision rule, if each node should be retained or discarded according to its previously
computed set of features. This decision step involves a decision function F that is applied
on each region to take the decision whether to keep this node or not. This whole scheme is
illustrated in figure 1.22.

As a simple example to illustrate this processing chain, consider an application where one
wants to smooth an image by removing small and inhomogeneous regions. A possible strategy
to achieve such goal would be to filter out from the BPT representation all regions whose size
|R| is below a predefined threshold d. As a consequence, the attribute that should be retrieved
for each region is its area, defining a feature set Qr = {|R|}. The decision rule being remove

?

a node if its size is below the threshold, the decision function then becomes F (%) > §, and
all nodes which do not satisfy this decision are removed from the BPT, producing a pruned
tree where all new leaves have a size greater than or equal to the size threshold 9.

This decision function, applied on the region area, is a particular case of increasing decision:
a decision is said to be increasing if R1 C Ra = F(Qgr,) < F(Qg,). In such case, if a node
has to be retained, then so have to be all its ancestors. Conversely, if it is decided that a
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node should be discarded, it is also the case for all its descendants. When the decision is not
increasing, then some more sophisticated strategies have to be used, such as the minimum,
maximum, or Viterbi decision rules. The minimum decision rule states that a region is
preserved if and only if all its ancestors also have to be preserved. The mazimum decision
is the opposite, namely a node is removed if and only if all its descendant also have to be
removed. The Viterbi decision strategy, on the other hand, associates to each node a cost
reflecting how much impact it would have to change the decision for this node (for instance,
how much would it cost to remove a node that was decided to be retained). It then tries to
minimize this cost function in order to make the decision function increasing. As an example,
if it has been decided that all nodes in a whole branch should be retained except for one, it is
less costly to take the decision to retain all nodes of the branch (so inverting the decision for
only one node) rather than removing all nodes (see [172,204] for more details).

1.3.5 Conclusion on hierarchical representations

In this section we have presented the concept of hierarchical representations of images, which
are a particular case of tree-based image decompositions. Tree-based image decompositions
naturally arise in image processing because natural images can often be decomposed in a
set of regions of interest (which our brain can interpret with a semantic meaning) which are
organized in a hierarchical manner, from fine to coarse. In addition, an image can be analyzed
at various levels of details, which is driven by the application and the information one expects
to extract from it. Tree-based image decompositions allow to compile in their tree structure all
the potential scales of interest. The decomposition can then be computed once for an image,
and its further analysis is tuned in accordance with the goal to achieve. Tree-based image
representations find numerous applications in image processing, such as image segmentation,
filtering or object detection.

Several tree-based image decompositions have been proposed in the literature, the most
popular being the component and inclusion trees. However, their constructions rely on the
ordering by inclusion of regional minima and maxima, which is rendered possible when handling
gray-scale images because pixel values are scalar and can be easily compared. When dealing
with multi-valued images, one achieves the comparison of pixel values by introducing some
dissimilarity measure, which is at the core of the definition of a hierarchy of partition. Notable
hierarchies include the quad-tree, the a—tree and the binary partition tree.

In particular, we focused more in details on the binary partition tree. Given an initial
partition of the image and a bottom-up region merging algorithm, one obtains a BPT
representation by merging iteratively neighboring regions based on their similarity, until only
one region remains (which is the whole image support). The description of a proper region
merging algorithm requires the definition of a region model, i.e., a mathematical formulation to
model a region, and a merging criterion, which measures the similarity between two neighboring
regions by computing the distance between their respective region models. BPTs have received
much attention lately, by their capacity to handle images with very high dimensionality, such
as hyperspectral images (which contain up to several hundreds of spectral channels), and they
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are now considered as a standard image processing tool.

1.4 Example of a BPT-based application

We have developed so far the key aspects to properly operate the BPT representation in
order to achieve a given goal, namely how to construct the BPT in order to obtain a consistent
hierarchical decomposition of the image, and how to process it properly in order to achieve a
given application.

The goal of this section is to demonstrate with a practical example all the questions
that one has to answer to make the most of a BPT representation (and more generally, a
hierarchical representation), namely how to properly design the construction and subsequent
processing steps. BPT were initially proposed as a support basis for hierarchical analysis of
images, and should therefore not be built to suit one particular application rather than another.
Nevertheless, the definition of the initial partition, the region model and the associated merging
criterion should be done in accordance with the specificities of the image as they directly
impact the consistence of the hierarchical decomposition. The desired goal will then be taken
into account when designing the analysis process of the resulting BPT.

More particularly, we focus on the segmentation of a tropical rain forest hyperspectral image.
This application has been discussed in our previous work [199], from which we summarize the
main points here.

1.4.1 The data set

The hyperspectral image analyzed here was captured over the Nanawale Forest Reserve,
Hawaii (USA). The Nanawale forest is classified as lowland humid tropical forest, with an
average elevation of 150 m above sea level. Mean annual precipitation and temperature are 3200

I and 23°C, respectively. The forest canopy is comprised of about 17 species, mostly

mm.yr

invasive non-native trees, with a few native species remaining. The data were acquired with
the Carnegie Airborne Observatory (CAQO) Alpha sensor package in September 2007 [11]. The
CAO-Alpha is equipped with a spectroscopic imager measuring up to 72 bands in the visible
and near infrared domains. The collected hyperspectral image is composed of 1980 x 1420
pixels with 0.56 m ground sampling distance, covering an area of about 70 hectares on the
ground. The spectral resolution used for this campaign resulted in the acquisition of 24
spectral bands of 28 nm in width and evenly spaced between 390 nm and 1044 nm. The whole
1980 x 1420 image contains several outlier pixels, as well as different flight lines. Therefore,
for the purpose of this example only, we simply consider a 850 x 950 sub-image of the full

data, displayed by figure 1.23.
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Figure 1.23: Color composition of the Nanawale tropical rainforest hyperspectral image. Red,
green and blue bands are centered on 646 nm, 561 nm and 447 nm respectively.

1.4.2 Construction of the BPT

In order to obtain the most consistent hierarchical representation, the various parameters
such the the initial partition as well as the region model and merging criterion should be defined
to make the most of the specificities of the image. In the present case, we aim at analyzing a
hyperspectral image which was acquired over a forested cover. It means in particular that
the overall spectral variability within the whole image is expected to be low, since all spectra
depict the typical response of a tree. It is known that the global response of a tree to the
incident light features a hump between 500 nm and 550 nm, whose height is due to the amount
of chlorophyll contained in the leaves of the tree, a sharp rise at the edge of the near-infrared
region (circa 700 nm) and then a drop around 1000 nm, due to the leaves water content. Even
if two different tree species have their own particular signatures and proper features, their
response should have the similar overall shape. This effect can be observed in figure 1.24. In
addition, one can also expect some variability within the spectra corresponding to the same
tree species, as this signal is also influenced by factors related to the foliage structure (such as
the leaf angle distribution). One can see in particular in figure 1.24 the difference between two
spectra belonging to the same species (see [74] for more details). In particular, this implies
that the mean spectrum as region model for the construction of the BPT should be avoided,
as it does not take into account the possible spectral variability within each region it models.
It is then suggested to use the histogram-based region model instead.

Defining a proper region model is the first step toward a relevant BPT representation.
The further point to analyze is the definition of an appropriate merging criterion. Considering
that a tree crown can be partially shaded suggests that a cross-bin distance should be used
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Figure 1.24: Example of tree spectra, where color corresponds to a particular tree species.
The within-species variability can be appreciated, particularly for the bue spectra.

instead of a bin-to-bin one, thus excluding the Bhattacharyya distance. It is known that
forested hyperspectral images feature strongly correlated bands, and this information should
be also taken into consideration in order to choose the most adapted merging criterion. In
particular, constructing the BPT over the principal components (PCs) of the image rather
than over the raw hyperspectral bands can be considered as a potential solution. As a matter
of fact, a principal component analysis (PCA) allows to uncorrelate the hyperspectral channels,
such that each PC features the projection of the hyperspectral bands onto a particular factor
influencing the spectra. For instance, the impact of brightness is particularly strong on
radiometric signals measured from vegetation, and this influence is going to be expressed
by the first PC (which resembles a gray-scale version of the hyperspectral image, see [199]
for an example). The following PCs express features related to leaf chemistry (for instance,
photosynthetic pigments or water content) and vegetation structure (foliage density), and
those should help discriminating between various tree species.

As a matter of fact, if one can select the relevant PCs that contain discriminant information
prior to the construction of the BPT, one should improve the ability of this BPT to differentiate
trees belonging to different species. By conducting a visual analysis over the first few
PCs, we came to the conclusion in [199] that only PC#2 to PC#8 contained some useful
discriminant information and should be retained. Therefore, instead of selecting the similarity
via multidimensional scaling merging criterion, which would have performed a similar analysis
for each pair of regions during the construction of the BPT, the PCA transformation is
performed once prior to the construction and the diffusion distance is chosen. It allows in
addition to relieve the computation burden.

The final input parameter to define in order to built the BPT is the initial partition.
In [199], we compared the multidimensional watershed and the mean shift clustering, and
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showed that the latter was leading to better results. Therefore, we choose again in this example
to derived the initial partition with the mean shift clustering algorithm [52]. Spectral and
spatial bandwidths are both set to 5, producing an initial segmentation composed of 21 770
regions (to contrast with the potential 850 x 950 = 807 500 initial regions if the BPT was
built over the pixel level).

1.4.3 Analysis of the BPT

The construction of the BPT has been defined to make the most of the image characteristics,
in order to produce the most consistent hierarchical decomposition of the image. Its further
analysis is however totally driven by the application. In our example, we aim at separating
the various tree crowns in the image. Thus, we place ourselves in a segmentation context,
which translates in terms of BPT processing as a pruning operation. We seek the best pruning
cut m among all possible cuts IIg(H), with H being the BPT representation, and E being the
image support.

Image segmentation is in itself an ill-posed problem, as a given image possesses as many
acceptable segmentations as the number of possible applications for this image. In terms of
BPT pruning strategy for the tree crown segmentation application, it suggests that a pruning
strategy specifically dedicated to this goal would probably perform better than a more generic
one. In [199], we proposed a pruning strategy based on the evolution of the region size along a
branch. As remarked in [126], the evolution behavior of certain quantities along a full branch
of the BPT provides some important information about the features contained in the image.
In our case in particular, assuming that the initial partition is over-segmenting enough the
image, it is possible to detect which regions in the BPT representation correspond to real tree
crowns. In fact, each tree crown is over-segmented at first, and thus splits into several leaves.
During the first iterations of the merging process, all leaves that are sufficiently close are going
to be merged, and those leaves are assumed to belong to the same tree crown. At some point,
all the leaves corresponding to a given tree crown will have merged into a bigger region, which
will come to a steady state as it should lie farther apart from its neighbors. In the late steps
of the merging process, this region will be forced to merge again, but its sibling at this time
should also be a grown-up region. Therefore, when looking at the evolution of the region size
along a branch, from a leaf to the root of the BPT, one should see a clear discontinuity at
this stage where the region was forced to merge with a grown-up region in its surrounding.
In [199], we remarked that the region prior to this discontinuity in the branch was the most
likely to correspond to a tree crown.

Therefore, we designed a pruning strategy based on this observation, and following the
same voting process scheme as presented in [206]. More particularly, each leaf of the BPT
has its size evolution curve analyzed along its cooresponding branch. Given a size threshold
4, each leaf then votes for the region located prior to the first discontinuity in the branch,
namely when the gap between the size of a node and its father along the branch exceeds §.
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(a)

Figure 1.25: (a) Result of the proposed BPT-based segmentation, where each region is filled
with the mean color of the original image (b).

Each node R has then its ratio
[vote(R)|

|leaves(R)| (125)

evaluated, where the numerator and the denominator are the received number of votes and
number of leaves of R, respectively. The decision rule which is then undertaken is to keep
a node if it has a ratio vote/leaves of at least 1/2, namely if at least half of his leaves have
decided to be represented by it. A maximum decision is finally conducted: a node is removed
from the BPT if and only if all its descendant can be removed as well, leading to a pruned
tree whose leaves define the desired segmentation. Figure 1.25 shows the result of this pruning
strategy, applied to the tropical rain forest hyperspectral image, with a size threshold ¢ set to
2000. As can be seen, most of the tree crowns have been properly segmented.

In [199], we conducted a quantitative analysis based on some partial ground-truth data,
where some reference tree crowns had been delineated by a trained operator. In particular, we
compared the results of the proposed strategy against the results obtained by the pruning
strategy proposed in [204,206], which is based on a recursive spectral graph partitioning
method and which can be considered as generic since it relies only on dissimilarities among
nodes of the BPT and does not assume any particular knowledge about the currently processed
image. We obtained up to 54.4% of properly segmented tree crowns for this data set with
the proposed method, outperforming the recursive graph cut partitioning which correctly
delineated 42.5% of the reference tree crowns. While those segmentation number may seem
low, we recall that tropical rain forests are among the richest and most complex ecosystems
in the world. Given the density of the canopy in terms of individuals and species, as well of
the complexity of its structure, achieving a perfect delineation of each tree crown is highly
unrealistic. However, even partial information allowing a better delimitation, identification
and enumeration of certain species of interest (such that dominant, rare or invasive species
that are key indicators for environmental processes) can help ecologists to better understand
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Figure 1.26: (a) Hyperspectral and (b) LiDAR modalities of the Nanawale tropical rain forest.
The LiDAR image has the same 0.56 m ground sampling resolution as the hyperspectral image.

these complex ecosystems. Our proposed method is, to the best of our knowledge, the first
reference study for the segmentation of tropical rain forest tree crowns. A segmentation
method for hyperspectral images was developed in [35], and applied on Compact Airborne
Spectrographic Imager (CASI) data acquired over mixed Australian forests. They reported
over 70% of success for the segmentation of trees or clusters of trees belonging to the same
species, for relatively sparse vegetation covers. However, they noted a significant drop in this
segmentation accuracy for dense and complex canopies, which is consistent with our reported
results.

1.4.4 The benefits and challenges of multimodality

The tree crown segmentation is also a way to illustrate how the use of multimodal
information could be beneficial in a concrete. As a matter of fact, one can see when analyzing
figure 1.25 that neighboring trees are often aggregated together in the final segmentation
map when they belong to the same species. This pattern is due to the fact that the BPT
representation of the image is solely relying on the spectral characteristics of the scene.
Therefore, adjacent trees of the same species are likely to be represented by a single region
in the final segmentation map. A possible solution to overcome this issue would be the joint
use of hyperspectral and LiDAR data. Indeed, the integration of the height and the physical
shape of the tree crowns, carried by the LiDAR modality, could help discriminating the case
where several trees sharing the same spectral properties stand next to each other.

The use of LiDAR data for the tree crown delineation has already been thoroughly
investigated in the literature, and several techniques were developed to make the most of its
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specificities when acquired over forested covers. In particular, methods such as region growing,
valley following, template matching or stochastic point processes have been proposed (see [199]
and references therein). They proved to perform well on images of temperate forested areas
(such as coniferous or deciduous forests) thanks to the regular and elongated shape of the tree
stands and the rather sparse canopy limiting the overlap between neighboring individuals.
Their performances significantly drop however when applied to tropical forest ecosystems
where tree size and shapes are highly variable and trees usually overlap due to the dense
canopy structure. Looking at figure 1.26, one can indeed see that the height and shape features
are less discriminative, as it seems more challenging to accurately recognize tree crowns in the
LiDAR modality (figure 1.26b) with respect to the hyperspectral modality (figure 1.26a).

Fusing somehow the information extracted from both the LiDAR and hyperspectral
modalities is a promising direction of research, but it also raises several questions on the way
this integration should be done. For instance, at which stage of the hierarchical analysis should
this integration be done? Which relative weight should be given to the information provided by
the LiDAR when it conflicts the hyperspectral modality (in the case of two neighboring trees
of different species but of same height for instance)? This illustrates, if necessary, the kind of
issues that have to be taken up to integrate and make the most of multimodal information in
order to boost the performances of classical image processing and analysis tools.

1.5 Conclusion

In this first chapter, we have presented the two notions that are the cornerstones of
this manuscript, namely multimodality and hierarchical representations. The concept of
multimodal data reveals a huge potential when it comes to increasing the performances of
the typical algorithms within the signal and image processing fields thanks to the wealth of
information it provides. However, there is no generic strategy to exploit this multimodality, as
it greatly depends on the nature of the recorded signals as well as the objective to reach. In
the remote sensing field in particular, multimodal data are a common phenomenon due to
the multiplicity of imaging sensors. Again, the lack of generic method to make the most of
this multimodality lead to the design of multimodal algorithms which are very specific with
respect to the task and/or the nature of the handled multimodality. A unified framework
able to handle equally all types of multimodalities would surely benefit the remote sensing
community a lot.

On the other hand, hierarchical representations have proved to be a valuable tool when
it comes to hierarchically decompose images. Such tools have shown to be of use for several
typical image processing applications such as denoising, segmentation, filtering, and so on.
The strength of hierarchical representations is that they act as an image decomposition
tool regardless of the further application. The design of methods to make hierarchical
representations handling multimodality could provide some suitable tools for many applications
involving multimodal images. Therefore, the following of this manuscript investigates how
multimodal information can be integrated into the construction and processing of hierarchical
representations, to improve typical image processing applications.
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In chapter 2, we investigate the use of spectral-spatial multimodality for segmentation
purposes. More precisely, we focus on hyperspectral images, which can be seen as a set
of gray-scale images depicting different spectral characteristics of the scene. The pursued
objective in chapter 2 is the fusion of a typical spatial information based application, namely
image segmentation, with a spectral information based application being spectral unmixing.
Contrarily to most state-of-the-art methods that first perform the spectral unmixing and then
integrate the spatial information as a regularization step, we proceed the other way around,
seeking a partition of the space that is optimal in order to further perform spectral unmixing.
We propose in particular a method based on the minimization of a suited energy function over
the set of all cuts of a hierarchy of partitions in order to obtain this optimal partition.

In chapter 3, we handle sequences of hyperspectral images, thus introducing the temporal
multimodality. As it notably brings some information related to motion, i.e., what and how is
changing from a frame to the other, a typical application linked to this temporal multimodality
is the tracking of some object along the various frames of the sequence. In particular, we
design a methodology to perform object tracking, based on the hierarchical decomposition of
the sequence. While this has already been studied in the context of traditional color video
sequences, the scarceness of available hyperspectral sequences (added to all other difficulties
related to hyperspectral imaging) makes it extra-challenging to design efficient and generic
tools. We study the scenario of chemical gas plume tracking, which is a particular application
where all spectral, spatial and temporal information are crucial.

In chapter 4, we focus on the sensorial multimodality, namely when several images of a
same scene are acquired with different imaging sensors. In that case, each modality features
some particular information about the scene, and the combination of these should benefit
image segmentation by helping the design of more accurate regions. However, processing such
multimodal images raises the question on the fusion of several hierarchical decompositions. This
question is answered by the introduction of braids of partitions, which generalize hierarchies
of partitions. Relying on an energy minimization procedure, we propose a full methodological
framework based on this notion of braid of partitions to perform the segmentation of such
multimodal images.
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In this chapter, we turn our attention to the spectral-spatial multimodality. In particular,
working with hyperspectral images (HSI'), we aim at fusing both the spectral and spatial
information contained in such images in order to output a partition that is optimal with
respect to the spectral unmixing operation. The generation of this optimal partition is done
through the construction of a BPT representation of the HSI and an appropriate pruning of it
by means of the minimization of a suited energy function. The organization of this chapter is

as follows: in section 2.1, we introduce hyperspectral images as particular instances of spectral-
spatial multimodality and the associated applications that benefit from this multimodality.

1. We shall emphasize here that the acronym HSI will stand for hyperspectral imagery, and not for the Hue,
Saturation, Intensity color space, as it could be encountered in computer vision.

49
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In section 2.2 and section 2.3 we recall the basics of spectral unmixing and some notions
related to segmentation by minimization of an energy function (in particular the work of
Guigues [87] which focuses on the minimization of such energy function over hierarchies
of partitions), respectively. Section 2.4 presents the proposed methodology, which aims at
combining the notions of hierarchical energy minimization and spectral unmixing in order
to produce from the BPT representation of the HSI an optimal partition with respect to
spectral unmixing. In particular, we propose a new way to construct the BPT representation
through the introduction of novel region models and associated merging criteria, as well as
new energy functions related to spectral unmixing. Conducted experiments are presented in
section 2.5, where we apply the proposed methodology on two state-of-the-art hyperspectral
data sets and perform comparison against classical strategies to build and to prune the BPT
representation. Results are displayed in section 2.6, while section 2.7 draws some conclusions
and future research avenues.

We would also like to mention that materials presented in this chapter were presented in
our article [217], which is the fruit of a collaboration between several researchers2. Therefore,
we will emphasis in particular the contributions of [217] which were made by the author of the
present manuscript. However, for the sake of clarity and readability, we will also present the
other contributions.

2.1 Hyperspectral spectral-spatial multimodality

2.1.1 Introduction

As mentioned in section 1.1.2; a hyperspectral image (HSI) is a collection of single band,
gray-scale images, acquired simultaneously over narrow and contiguous wavelengths of the
electromagnetic spectrum. From this acquisition procedure results a data cube where to
each pixel location is associated a discrete spectrum related to the way the incident light has
interacted with the region of the scene at this location. This interaction can be interpreted
either in terms of the amount of light reflected by the scene (which is the dominant phenomenon
when working with wavelengths in the visible and near infrared domains), one then talks of
reflectance spectrum, or the amount of energy irradiated by the scene (when working in the
middle and long wave infrared domains), and one talks of emissivity in that case.

Each physical material is characterized by its proper way to interact with light. Due to
this, it is possible to establish from the spectrum depicted by each pixel in a HSI which are
the materials constituting this spectrum, and thus to identify in a more general way the
constituents of the scene. Given this capacity of recognizing the physical components present
in the image, hyperspectral imagery has found numerous applications in several fields such
as medical imaging [38,125] (where it can be used for tumor extraction and identification,

2. This work was done in collaboration with Dr. Veganzones, Dr. Dalla Mura and Dr. Chanussot from the
GIPSA-lab, Grenoble Institute of Technology, France, and with Dr. Plaza from the University of Extremadura,
Céceres, Spain.
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Figure 2.1: Tllustration of a hyperspectral image (image extracted from [23]).

assessing tissue perfusion and its pathological conditions, helping for accurate surgical decisions
or evaluating the health of dental structures for example), food quality inspection [69,124] (with
applications in meat tenderness prediction as well as the detection of microbial spoilage for
instance), geological [212] and hydrological [83] sciences and Earth and planetary observation
by remote sensing [24,82]. An illustration of a remotely sensed hyperspectral image of the
Earth surface is depicted by figure 2.1. It can be seen how the three spectra corresponding
to soil, water and vegetation differ from each other, thus acting as a signature for their
corresponding material.

Typical hyperspectral sensors have a spectral resolution often comprised between 10 nm
and 20 nm, meaning that each spectral channel of the image is concerned with the measurement
of light in a very restrained portion of the spectral channel, whose bandwidth is at most 20 nm.
However, the price to pay for a fine spectral resolution is a coarser spatial resolution. In spite
of the technological advances made in the design of hyperspectral sensor, the typical spatial
resolution is still at best in the order of a few meters (around 5 m for the AVIRIS and HyMap
sensors for instance), while panchromatic and multi-spectral images now enjoy centimetric
resolutions.

A first approach to enhance the spatial resolution of a low spatial /high spectral resolution
hyperspectral image is the use of a complementary high spatial/low spectral resolution
panchromatic or multi-spectral image of the same scene. This spectral-spatial multimodality,
known as super-resolution or hyperspectral pansharpening, aims at generating from the two
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Figure 2.2: Illustration of a super-resolution algorithm (image borrowed from [232])

complementary images a high spectral/high spatial resolution image. The literature features
plenty of algorithms devoted to the pansharpening of multispectral images, which can often
be classified among component substitution, multiresolution analysis, Bayesian-based and
variational-based methods (reviews of such methods can be found in [8,191]). However, the
extension of these methods to hyperspectral images is still more complex as phenomena such
as the difference between the spectral ranges of the low and high spectral resolution images
have to be taken into account. The line of conduct that is most of the time followed is to
consider that the hyperspectral image Y}, and the high spatial resolution (be it multi-spectral
or panchromatic) image Y, are obtained from the super-resolution image X by some unknown
transformations ¥j, and V,,:

Y, = ¥(X)

The goal of the super-resolution algorithm is then to estimate and invert those transformations
in order to retrieve back the super-resolution image, as illustrated by figure 2.2. An extensive
review of hyperspectral super-resolution methods is presented in [122].

However, the complementary high spatial/low spectral resolution image is often not always
available, and one has to cope only with the spatial information contained within the HSI.
However, considering a hyperspectral image as a source of multimodality does not contradict
the definition of multimodal data given by definition 1.2. As a matter of fact, a HSI, being a
collection of gray-scale images depicting the same scene at different wavelength positions, can
be viewed as a source of both spectral and spatial information, compared to the case of a single
band image (such as a panchromatic image, for instance). In any case, the joint consideration
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of spectral and spatial information has shown to improve typical hyperspectral applications
that initially relied either on spectral or spatial information only 2. That is notably the case for
hyperspectral classification, spectral unmixing and segmentation, which are reviewed below.

2.1.2 Examples of spectral-spatial multimodality for hyperspectral appli-
cations

2.1.2.1 Hyperspectral classification

The classification task aims, given an image, at assigning a label to each pixel, such that
pixels sharing the same label (which define a class) have some common properties. Note
that the resulting classification map forms a particular partition of the image, where the
regions may however not all be connected. The classification procedure can be unsupervised,
semi-supervised or supervised. In the first case, the number and identity of classes are unknown
a priori and have to be found within the algorithm itself or manually estimated. Well-known
examples of unsupervised classification methods include clustering-based techniques such as
k-means [121] or mean shift clustering [52]. When applied to hyperspectral images, these
methods suffer from the very high dimensionality of the data. Supervised classification
methods are known to outperform the typical results of unsupervised classification, but at
the expense of the need of a priori known labeled samples. Those are divided into training
samples, on which is first performed a learning step, and validation samples, which are used
to assess the accuracy of the classification. Among supervised classification methods, one can
notably cite artificial neural networks [65] as well as (kernel-based) support vector machines
(SVMs) [54,179]. Semi-supervised methods stand in-between supervised and unsupervised
methods, as they rely both on some labeled and unlabeled samples (see [236] for a review).

Overall, when applied on hyperspectral images, classification methods suffer from the so-
called "salt and pepper" effect. Each pixel is classified based only on its spectral characteristics,
and the resulting classification map may show some spatial inconsistencies, such as pixels
belonging to a given class isolated within another class. To overcome this issue, spatial
information can be considered as a means to regularize the output of a pixel-wise classification
map. Such spectral-spatial classification algorithms rely on the intuition that neighboring
pixels are more likely to belong to the same class. Then, given a pixel-wise classification map,
there are several strategies to make the most of the spatial information [73].

— The contextual information is embedded within a probabilistic framework, such as the
one presented in [189] using a Markov Random Field (MRF) regularization. The final
classification map, which is interpreted as the maximum a posteriori (MAP) estimate of
the "true" (unknown) classification map is obtained by iteratively relabeling some pixels
of the pixel-wise classification map by considering class dependencies between adjacent
pixels.

— The contextual information is considered as a classification feature, where a common

3. Although the joint use of spectral and spatial information rather appears as a data fusion problem, we
will term this as spectral-spatial multimodality for the sake of convenience.
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Figure 2.3: Example of spectral-spatial hyperspectral classification: (a) RGB composition of
the Pavia university hyperspectral data set, (b) labeled data (where each color defines a class),
(c) example of pixel-wise SVM classification and (d) example of spectral-spatial classification
(MAP-MRF method presented in [189]).

approach is to add spatial features in the classification process. The spatial features aim
at embedding the spatial relations (contextual relations, geometrical features, etc.) of
the objects in the scene. As an example, the use of morphological filters in a multi-scale
setting leads to the definition of morphological profiles [19], which act as an adaptive
neighborhood for each pixel. Then, two pixels are more likely to belong to the same
class if their morphological profiles are similar. Therefore, the classification is performed
using both spectral and spatial features.

The contextual information is represented through a segmentation map. If two pixels
belong to the same regions, then they likely belong to the same class. While this strategy
is bound to the derivation of a good segmentation map, it was shown in [188] that
the hyperspectral watershed performs consistently. First, a multidimensional gradient
of the hyperspectral image is computed, and a watershed transformation is applied
onto the gradient map. Provided a pixel-wise classification, all pixels of a region of
the segmentation map are finally assigned to the most frequent class within the region
(known as majority voting).

Spectral-spatial classification strategies finally output a classification map of the image, where
each class looks more spatially homogeneous than in its pixel-wise counterpart. An example
of such spectral-spatial classification improvement is displayed in figure 2.3. One can notably

see in figure 2.3c the main drawback of pixel-wise classification where the spatial distribution

of classes suffers from "salt and pepper" inconsistencies. This effect is strongly mitigated when
incorporating spatial information, as it can be seen in figure 2.3d which displays the result of
the spectral-spatial MAP-MRF-SVM approach of [189].
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Figure 2.4: (a) Illustration of a pure and a mixed pixel in a hyperspectral image (image
borrowed from [219]), along with (b) the observed spectra in both cases.

2.1.2.2 Spectral unmixing

Another classical hyperspectral application that benefits from the spectral-spatial multi-
modality is spectral unmixing. The goal of spectral unmixing is to retrieve, for each pixel
spectrum, which are the pure constituents, called endmembers (which correspond to macro-
scopic elements such as soil, vegetation, grass, concrete and so on) present in the spectrum
and in which proportion (the fractional abundances). Given a HSI, the output of the spectral
unmixing operation is the set of endmembers and their resulting abundance maps. The low
spatial resolution of hyperspectral images is actually one of the motivations to perform spectral
unmixing, as it is likely that several pure constituents are "mixed" within each pixel site and
thus add their contribution to the resulting pixel spectrum, as illustrated by figure 2.4. By
giving access to sub-pixelar information, spectral unmixing can also be viewed as a sort of
super-resolution method.

The unmixing is commonly done over the whole set of pixels without any prior information
related to the spatial distribution of the endmembers across the image. However, it can be
assumed in a similar fashion as hyperspectral classification that neighboring pixels are likely to
be made of the same endmembers in comparable proportions. Thus, introducing some spatial
information within the unmixing process should lead to more consistent results. This idea has
already been exploited in the literature in several works, with three main strategies standing
out:

— The spatial information is integrated as a pre-processing step and combined with the
derivation of pixel purity indices, in order to guide the search for endmembers in regions
which are spatially homogeneous and spectrally pure. This is the case for instance
in [134,135].

— The spatial information is incorporated within the endmember selection process, as
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in [158] which uses mathematical morphology operators to finds the purest pixels
(most likely to be endmembers) in a given neighborhood, or in [168] where spatial
characteristics are used to increase the spectral contrast between spectrally similar,
but spatially independent endmembers, thus improving the potential of finding these
endmembers.

— The spatial information is taken into account to smooth the abundance maps, by using
some total variation regularization [94] or some MRF formulation [68] to model spatial
correlations between neighboring pixels.

2.1.2.3 Hyperspectral hierarchical segmentation

Image segmentation process aims at dividing an image into regions fulfilling some given
criterion. Often when working with hyperspectral images, one is interested in spectrally
homogeneous regions, as it is commonly assumed that all pixels constituting a semantic object
of interest should feature similar spectral properties. Most segmentation algorithms that have
been proposed in the scope of hyperspectral image segmentation are by nature hierarchical as
they rely on some region merging procedure, based on the evaluation of spectral similarities
between regions. Thus, the hierarchical segmentation of a hyperspectral image is in essence
a spectral-spatial processing, as it aims at decomposing the hyperspectral image in a set of
nested regions (the spatial side of the spectral-spatial processing) which are spectrally coherent
(the spectral part). We list below some notable hierarchical segmentation algorithms that
have been proposed in the literature for hyperspectral image segmentation:

— The first proposed hierarchical segmentation method adapted to hyperspectral imagery
was the Extraction and Classification of Homogeneous Objects (ECHO) algorithm [99].
ECHO implements a region merging procedure, where the decision whether to merge
two regions or not is taken according to a likelihood test evaluating if two regions are
homogeneous or not. It suffers from the common downside of every statistical test being
the setting of a (false alarm) threshold which impacts the performances of the produced
sequence of partitions. Moreover, it relies also on the computation of the inverse of
covariance matrices, which can be problematic because these matrices are often badly
conditioned when dealing with hyperspectral data.

— The Fractal Net Evolution Approach (abbreviated FNEA) proposed by [12] also carries
out region merging. The fusion procedure in the FNEA algorithm minimizes at every
step the growth in heterogeneity in a heuristic process. Provided a spectral homogeneity
measure between two regions (such as the Euclidean distance between the mean spectra
of two regions in the original paper [12]), a virtual merge between those two regions is
first evaluated in order to measure and compare the homogeneity of the virtual region
against the ones of its constituents. The final merging occurring at the current step is
the one which minimizes this loss in homogeneity.

— The Hierachical SEGmentation (HSEG) method, proposed in [192,193] and based on
the well-known Hierarchical Set-Wise Optimization (HSWO) procedure [18]. In the
latter, each iteration involves the search for the two adjacent regions that have the lowest
pairwise distance. All pairs of regions achieving this distance are then merged. The
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HSEG algorithm is founded on the same idea, expect that the adjacency constraint for
regions is partially relaxed. Indeed, a user-chosen proportion of non-adjacent regions
can also be merged at each iteration, provided that their distance is less than the
minimal distance among all pairs of adjacent regions. For that reason, the HSEG
algorithm can be viewed as sequentially alternating between a region growing step and a
spectral clustering step. Due to its huge computational load, induced by the important
number of pairwise distances that must be evaluated the HSEG algorithm was further
extended to the Recursive HSEG (RHSEG) algorithm [194]. This latter, based on a
divide-and-conquer approximation of the HSEG, allows for parallel implementation and
computational acceleration.

— The adaptation of the BPT representation to hyperspectral images, as presented in [207],
introduced in chapter 1. The construction of the BPT strongly resembles the HSWO
procedure, the only difference being that each merging iteration feature the merging
of only two regions in the case of the BPT even if several pairs of regions have the
same minimum pairwise lowest distance. The major difference between the work of
Valero [204,207] and all previously cited hierarchical segmentation methods is in the
further processing. In the latter case, it is assumed that the "optimal" segmentation
can be found directly in the stack of partitions created during the region merging
process [190]. However, this is rarely true, especially when objects of interest can be
found at different levels of the hierarchy. To that extend, new tree-based processing
techniques were introduced in the work of Valero to make the most of the hierarchical
decomposition of the HSI induced by its BPT representation.

2.1.3 Objective of this chapter

The goal of this chapter is to propose a new way to incorporate spectral-spatial information
in a BPT-based representation of a hyperspectral image. While all hierarchical segmentation
works cited above handle the spectral information through the pixel spectra, we propose to go
one step beyond by performing spectral unmixing over each region and to handle this region
through its proper endmembers and associated fractional abundances. This is in itself a depart
from the conventional spectral unmixing, performed over the whole image.

The pursued objective, by means of the BPT representation, is to obtain at the end of the
day a segmentation map of the hyperspectral image which can be called optimal with respect
to the spectral unmixing operation. This optimality, developed in the sequel, is reached by the
definition of an energy function linked with spectral unmixing, which is subsequently minimized
over the hierarchy. Therefore, spectral and spatial information are used in a synergistic way
at different stages of the proposed methodology:

1. During the construction of the BPT, spectral and spatial information are used for the
definition of suitable region models and merging criteria.

2. During the processing of the BPT, where an energy function integrating spectral and
spatial considerations is minimized over the previously constructed BPT representation.

3. The output of the proposed method: a segmentation map (encoding spatial information
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Figure 2.5: Different interaction models between the incident light and the surface. The
interactions can be modelled as linear (a) when each ray of light bounces only one, or non-linear
(b)-(c) because of multiple or intimate rebounds.

by nature) which is optimal with respect to the unmixing operation (which is by essence
a spectral processing).

2.2 Spectral unmixing

When a hyperspectral sensor, be it airborne or spaceborne, collects an image of the Earth,
it actually records the amount of light which bounced off the surface and reached the sensor.
Each ray of light interacted with the elements present on the ground during its rebound. The
goal of spectral unmixing is, given what has reached the sensor, to identify which were the
elements on the surface and how the light interacted with them.

These interactions can be modeled from the physics as non-linear for several reasons, such
as the topography of the ground which can lead to multiple rebounds (illustrated by figure 2.5b)
or the consistency of the material which may generate some intimate mixing phenomena
(depicted by figure 2.5¢). However, due to the complexity of these models, non-linear effects
are often neglected and approximated by a linear mixing model (LMM) instead. This latter
assumes that each ray of light bounces only on one element on the ground so the optical
signal that is received by the sensor for each pixel site is the mean of all the interaction
that happened within this site [98] (see figure 2.5a). Despite its relative simplicity, most
of the unmixing methods in the literature are based on the LMM [23] as it allows simple
geometric interpretations. Given a HSI, a classical spectral unmixing algorithm outputs the
set of spectral signatures of the main constituents of the scene, called endmembers, and their
corresponding fractional abundances that depicts the spatial distribution of these endmembers
within the scene.

2.2.1 Linear Mixing Model (LMM)

The LMM states that a hyperspectral sample is formed by a linear combination of the
spectral signatures of pure materials present in the sample (endmembers), plus some additive
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Figure 2.6: Geometrical interpretation of the LMM combined with the ANC and ASC. The
simplex (in gray) is formed by the three endmembers (in red) e;, ez and es, and all image
pixels (in green) lie within it.

noise. Let E = [ey,...,e,] be the pure endmember signatures (normally corresponding to
macroscopic objects in the scene, such as water, soil, vegetation,...) where each e; € RY is
a N-dimensional vector. Then, the hyperspectral signature x at each pixel in the image is
defined by the expression:

m
Xx=s+m=>Y ¢iei+n, (2.2)
i=1
where x is given by the sum of the pixel signal s and an independent additive noise component
n. ¢ = [¢1,...,¢n] is the m-dimensional vector of fractional per-pixel abundances related
to x, which models the contribution in percentage of each endmember e; in the signature x.
For physical reasons, it is subject to the Abundance Non-negative Constraint (ANC) and the
Abundance Sum-to-one Constraint (ASC):

¢ >0Vi=1,...,m (ANC), (2.3)
f: $i=1 (ASC). (2.4)
=1

The LMM combined with the ANC and ASC can be interpreted from a geometrical point
of view: the m endmembers of the image form a (m — 1)—simplex whose vertices are the
endmembers. All pixels of the image, which can be written as a linear combination of the
endmembers weighted by the fractional abundances, then lie inside the simplex, as illustrated
by figure 2.6. This interpretation notably paves the way to several geometrical methods for
the endmembers identification, which are reviewed in [23].

Representing the HSI as a matrix X € RY*Neix it is possible to extend equation (2.2) to
the whole image as

X=E®+n, (2.5)
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where E € RNX™ is the matrix whose columns correspond to the m endmember signatures,
& c R™*Moix is the matrix of fractional abundances and 7 is an independent additive noise.
This formulation allows the use of matrix factorization methods to infer matrices E and ® by
solving the following problem:

min | X — E®|? such that ® = 0 (ANC), 1}, ® = 1y, (ASC) , (2.6)

where || - ||; is often formulated as the Euclidean or Frobenius norms [95, 162].

2.2.2 Endmember induction and abundance estimation

Most of the times, the spectral signatures of the materials are unknown, and the set of
endmembers must be built by either selecting spectral signatures from a spectral library, or by
automatically inducing them from the image itself. Both can be performed manually or in an
automatic way. In order to automatically induce the set of endmembers from the image, the
use of some endmember induction algorithm (EIA) is required. The hyperspectral literature
features plenty of such algorithms. Some reviews on the topic can be found in [23,98,214].

Once the set of endmembers, ﬁ), has been induced, their corresponding per-pixel abundances,
<i>, can be estimated by approximating a solution to an over-determined linear system by
the Least Squares method [110]. The Fully-Constrained Least Squares Unmixing (FCSLU)
method [89] solves the over-determined linear system subject to ANC and ASC constraints.

The quality of the unmixing, E and <i>, at a given pixel x can be measured by the Root
Mean Squared Error (RMSE) of the original hyperspectral signature with respect to the
reconstructed one, X = Y"1 ¢;é;:

1 N
e(x,R) = J v S (a (k) — 2 (k)% (2.7)

Computing the RMSE of each pixel x yields a reconstruction map where low values signify
that the corresponding pixels have been well reconstructed by the set of induced endmembers.
Contrarily, a high error value for a pixel means that its spectral signature is not well explained
by a linear combination of the endmember spectra.

2.3 Energy minimization over hierarchies of partitions

Image segmentation is one of the most investigated applications in image processing?.
The main reason of this popularity is actually due to the complexity of such operation. As a
matter of fact, image segmentation is an ill-posed problem: a given image can be segmented
in a variety of partitions, and the intended segmentation result depends on the pursued

4. Typing "image segmentation" in Google scholar and restricting to the 2010-2015 period yields around
214 000 results.
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application. Roughly speaking, image segmentation algorithms can be classified into four
different categories:

— Region-based methods. Those aims at producing the segmentation by focusing on regions,
i.e., sets of pixels, such that they all fulfill some predefined criteria (such as shape,
homogeneity, texture, and so on). Hierarchical segmentation methods notably belong to
this class, as the construction of a hierarchy is conducted through the aggregation (or
splitting) of a set of regions of the image.

— Edge-based methods, which can be seen as the dual of region-based methods. Rather
than focusing on the pixels composing the region, they are based on the properties of
the transitions between regions. The final segmentation map is defined by its region
boundaries instead of the regions themselves. All methods based on the detection of
edges belong to this category.

— Statistical-based methods. This group of algorithms produces a segmentation by exploit-
ing the inherent statistics of the image. For instance, a simple thresholding can be seen
as a statistical-based segmentation as the threshold is often set according to statistical
distribution of the pixel values in the image. Clustering algorithms, such as the mean
shift clustering, are also particular instances of statistical-based methods.

— The remaining methods that do not fit within a previous category, mostly because they
exploit several of the previous aspects. For instance, segmentation methods relying on a
graph setting often assign to each edge a value reflecting the dissimilarity between the
vertices connected by this edge. The segmentation is then derived by producing sets of
connected vertices such that their dissimilarity is low (which is a region-based approach)
and such that the dissimilarity between each vertex in the set and a connected vertex
outside the set is high (which can be viewed as an edge-based idea).

2.3.1 Segmentation by energy minimization

As image segmentation is application-dependent, one often tries to find the "best" segmen-
tation of an image for a given task. This notion of optimality often relies on the definition
of an energy function (also called objective function, or cost function, given the domain of
application), which embeds in its expression the properties that should be featured by the
optimal segmentation. By reflecting how good or bad is a given segmentation with respect to
the application, it is then possible to define the optimal one as the minimizer of the energy
function.

The main advantage of this segmentation by energy minimization framework is that it
shifts the problem of identifying an optimal segmentation among the set of all possible ones,
which is subjective, to the problem of properly defining an energy function whose minimizer
is the sought segmentation, which is objective and can be formulated mathematically. This
energy minimization framework has been extensively used in the literature, and one can
notably cite:

Mumford-Shah functional: Representing an image as a function Zy : £ — V, Mumford
and Shah proposed in their famous paper [142] to define the optimal segmentation of Zy
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as the minimizer of the following energy function:
ML) = [ 1Z@) - To(@)Pdo+ A [ IVI@)Pdz 4T (238)
E E\D

where Z is a piece-wise smooth approximation of Zy, I' is a set of boundaries whose total
length is |I'|. The previously defined energy function is composed of three terms: the
first one penalizes the misfit between the original image Zy and its approximation Z,
the second one enforces smoothness for Z and the last term promotes simplicity in the
segmentation by regularizing the total length of boundaries. Minimizing equation (2.8)
has been the concern of several studies ([47] uses a levet set approach for instance, while
an approximation by finite differences is implemented in [46]), but it is known to be
a non-convex NP hard problem. It has therefore been subsequently relaxed into the
so-called piece-wise constant Mumford-Shah functional:

5m = 3 ([ 12o(e) - cilPae + lomi) (2.9)

R;e™ i

where the space E is now partitioned into a set of connected components 7 = {R;} and
the approximation Z of Zg is set to the constant value ¢; over R;. For a given partition 7,
the values of ¢; that actually minimize equation (2.9) are the mean values of Z over R,
denoted pz,(R;). The finally obtained piece-wise constant Mumford-Shah expression

eM5(m) = X ([ 15ole) — gy (R + G jomi ) (210)

Ri;e™ Ri

however remains difficult to minimize in practice as it is still non-convex when minimized
without any further constraints with respect to 7. However, we will see in the following
that, when 7 is defined as a cut of a hierarchy, the minimizer of equation (2.10) can be
found easily by a dynamic program.

Graph cut: In their well-known paper [27], Boykov, Veksler and Zahib propose to view the
image segmentation as a labeling problem, i.e., as a function £ that assigns to each pixel
x € E a label I, in some given set of labels. Attaching a given energy to the labeling
function, the optimal image segmentation is defined as the labeling with minimal energy.
In particular, they consider a broad range of energy functions which can be written as

5(£) = gsmooth(ﬁ) + gdata(ﬁ)
= 3 V() + Y D() (2.11)

(z.y)EN 2€E

where N is the set of interacting pairs of pixels (not necessarily restricted to neighboring
pixels) where V' is some penalty function over the labels I, and [, of two interacting
pixels z and y, and D is some data fitting term which measures how well the label [,
fits pixel x given the observed data. The proposed minimization is conducted with a
graph-cut approach. Two operations, namely swap and expansion moves, are introduced.
Both operations allow to reach some local minima, and it is shown that expansion moves
can bring the local minima to an energy which can be at least twice the energy of the
global minimum.
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MRF: Markov Random Fields have also been widely studied to achieve image segmenta-
tion [113]. The underlying idea is similar to that of the previously presented graph
cut approaches, namely to tackle the image segmentation as an labeling problem. A
probability measure is associated with each possible labeling £ € £, and the optimal
one L* is the one maximizing the probability of a labeling given the observed image Z,
p(L|T):

L* = argmax p(L|T)
Leg

= argmax p(Z|L)p(L)
Leg

(2.12)

which is the maximum a posteriori (MAP) estimate of £. Imposing £ to be a MRF allows
to formulate p(L£) as a Gibbs distribution, and to transform the MAP estimation (2.12)
to the minimization of some energy function U(L,Z) which is often split in two terms,
one accounting for region homogeneity and the other being a regularizer. The final
minimization is often conducted by a simulated annealing approach [108], where the
theoretical convergence to the global optimal is ensured in certain cases, but at a really
slow rate.

To summarize, energy minimization is a convenient and widely used framework to achieve
image segmentation as the specificities which must be achieved by the segmentation can be
embedded in the energy definition. However, finding the minimizer of the energy function is not
straightforward, either because the minimization problem is non-convex and the convergence
to a global optimum is not guaranteed, or because this global optimum cannot be reached in
an acceptable computational time. These limitations find their source in the structure of the
space of all possible partitions IIg of the set E:

— Tts cardinality is gigantic: the number of partitions of a set E constituted of |F/| elements

is given by the Bell number B|g|. For instance, a 5 x 5 image possesses Bas = 4.6 X 10'8
different partitions. This number drops if regions are constrained to be connected, but
it remains in practice highly unrealistic to investigate all possible combinations.

— It is "unstructured": even if IIg is known to be a lattice when equipped with the
refinement ordering, most pairs of partitions w1, 79 € Ilg are not comparable, thus
making an "intelligent" browsing of the partitions challenging.

In the following, we are going to see that the use of hierarchies of partitions can be a solution
to both previously raised limitations.

2.3.2 Hierarchical segmentation by energy minimization

As we saw, the main reason why conducting segmentation by energy minimization is
challenging is due to the structure and size of the space of partitions IIg. A possible solution
to alleviate this issue is no longer to conduct the search for an optimal partition on IIg, but
rather on the space of cuts IIg(H) of a hierarchy of partitions H. Indeed, the latter idea
features two main advantages with respect to the classical framework:

— The set of possible cuts is strongly constrained by the structure of the hierarchy. Its

cardinality is drastically reduced with the respect to the one of I1g, even if it is impossible



64 Chapter 2. Spectral-Spatial multimodality

in practice to evaluate as it depends on the architecture of H (such as the number of
levels in the hierarchy, the average number of children per node, and so on).

— There is some underlying relationship (which will be called h-equivalence in chapter 4)
between all partitions of IIg(H): given two cuts w1 and mg of IIg(H), each region of m
is either disjoint or nested with all regions of ms. This inclusion relationship, holding
between all regions of the cuts composing Iz (H), should be exploited in order to find
the optimal cut, if it exists, in a smart way.

Given some hierarchy of partitions H, the conditions which must be satisfied by the energy
function £ to ensure the existence of an optimal partition were first studied formally in the
work of Guigues [86,87], and later generalized in the work of Kiran [101,103]. In the following
of this section, we summarize the main results of the former, on which we will base ourselves

to propose some new energy definitions®.

2.3.2.1 Definitions and recalls

We shall start by recalling some definitions related to hierarchies. A hierarchy of partitions,
H, constructed over a set E can be defined in two equivalent ways:
— As a sequence of partitions {m; € IIg,i = 0,...,n} which are ordered by refinement:
i < j = m < m. 7 is termed the leaf partitions, its regions are the leaves of H.
Conversely, 7, = {E'} is the root of H.
— As a collection of regions {R C E} which includes {E'} but not ), and such that any two
regions R; and R; are either disjoint (R; N R; = () or nested (R; C R;j or R; C R;).
In addition, if C(R) is the set of children of a region R € H, then R = J{R. € C(R)}.
From each non-leaf region R € H, we can define a sub-hierarchy H(R) rooted at R.

A cut of H is a partition 7 of E whose all regions belong to H. From a graphical point of
view, a cut can be seen as a path that intersects each branch of the tree-based representation
of H at most once. The set of all cuts of a hierarchy H of a space F is denoted IIg(H). It is
a sub-lattice of IIg for the refinement ordering, meaning that the refinement supremum and
refinement infimum of two cuts of H are also cuts of H. A cut of a sub-hierarchy H(R) is
called a partial partition of R, and is denoted m(R). As for the set of cuts of a hierarchy, the
set of partial partitions of R € H is denoted IIg(H (R)).

In the previous section 2.3.1, we introduced energy functions as a description of how good
or bad a partition fits a given goal, postulating that the optimal partition is the one of minimal
energy. As a matter of fact, energy functions are often considered to be real non-negative, with
the intuition that the lower the energy, the better (or the "more stable") the corresponding
partition commonly borrowed from physics. Therefore, a first mathematical definition of an
energy function could be a mapping £ : IIgz — RT from the set of partitions of E to real
non-negative numbers. However, in many cases, the energy function is evaluated over the
regions composing the partition, which are then somehow assembled into the energy of the
partition. This is for instance the case with the piece-wise constant Mumford-Shah energy

5. The novel energy functions we propose in this chapter are actually a particular case of those proposed in
the work of Kiran [101], which were developed in parallel of our proposed work.
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formulated by equations (2.9) and (2.10) where the energy of the partition is expressed as
the sum of the energies of the regions composing the partition. Therefore, we consider the
following general definition of energy functions:

Definition 2.1 (Energy function)
The definition of an energy function is based on two inner concepts:

1. The definition of a regional energy, i.e., a function £: P(E) — RT that maps any region
R C E to R, where P(E) is the set of all subsets (i.e., possible regions) of E.

2. The definition of some rule © to explicit the energy of a partition as some composition
of the energies of its regions.

The final energy of a partition w € Illg can be expressed as

gn) = D &(Ry). (2.13)

Ri€e™

In this formalism, the composition rule ® can be arbitrary. The most common case
is to express the energy of a partition as the sum of the energies of its regions (as in the
Mumford-Shah energy for instance). However, we will see some other composition rules in the
following section 2.4 and in chapter 4.

2.3.2.2 Optimal cut

The first question that was investigated by Guigues is the condition on £ under which it is
possible to guarantee the existence of an optimal cut

7 = argmin &(m) (2.14)
WGHE(H)

and how to retrieve it in IIg(H). For that purpose, Guigues placed himself in the context of
separable energies:

Definition 2.2 (Separable energy)
An energy &€ is said to be separable if the energy of the partition w can be expressed as the sum
of the energies of its regions:

€ is separable < E(m) = Z E(R) . (2.15)
Rem

Note that the definition of a separable energy reduces to definition 2.1 with © = }_.
Denoting 7*(R) = argming e, #(r)) € (T(R)) the partial partition of R whose energy is
minimal, and £*(R) = £(7*(R)) standing for this optimal energy, Guigues showed [86, pp.
141-142] that, for any separable energy &£, the following Bellman’s dynamic program was
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Figure 2.7: Illustration of a Bellman’s dynamic program step to retrieve the optimal cut of a
hierarchy.

holding for all region R € H:

E*(R) = min {S(R), > 5*(r)} (2.16)

reC(R)
(®) reR) < Y £
*(R) = I 2.17
™ (R) |_| 7*(r) otherwise (2.17)
reS(R)

with U denoting disjoint union between regions (concatenation). Equations (2.16) and (2.17)
means that the optimal energy of any region R € H is given by comparing the proper energy
E(R) of the region against the sum of the optimal energies of its children, and by picking the
smallest of the two. The optimal cut of R is then given either by itself {R} or by the disjoint
union of the optimal cuts of its children. This dynamic program procedure is illustrated by
figure 2.7: looking for the optimal cut of R (in red), one has to compare its own energy £(R)
against the energy of the union of the optimal cuts of its two children r; (in green) and 79
(in blue), 7*(r1) U m*(r2). The energy being separable in the present case, this latter term
is equal to £*(ry) + £*(r2). Following, 7*(R) is either given by {R} or by 7*(S1) U 7*(S2),
depending on which has the lowest energy.

In practice, it is possible to obtain the optimal cut of the H by applying equations (2.16)
and (2.17) over each region of the hierarchy, scanned in an ascending pass. The optimal
cut 7 of H is given by the one of the root note. It is interesting to notice that the global
optimal cut 7* is obtained by solving and concatenating a set of partial cuts which are locally
optimal. As a matter of fact, each region R* € n* has a lower energy than any of its partial
partitions, and any of the partial partitions it is included in. This can be considered as a
strong result knowing that the only condition required for the energy function £ is separability.
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The dynamic program procedure also illustrates that the optimal cut is obtained by taking
advantage of the inclusion relationship holding on the regions of a hierarchy, thus emphasizing
the benefit of conducting the energy minimization operation over such hierarchical structures
instead of the unconstrained set of partitions I1g.

The dynamic program methodology was actually used first for classification [28] purposes
and wavelet bases constructions [51, 64] over quad-tree hierarchies, although it was not
formulated as a dynamic program, in these works. It was also implemented both in [172] to
solve the image rate/distortion problem and in [204] for hyperspectral segmentation, formulated
as a Lagrangian minimization procedure.

2.3.2.3 Affine separable energies

The dynamic program procedure previously presented allows to find the optimal cut 7* of
a hierarchy of partitions H given a separable energy function £. Guigues then investigated
the particular case of affine separable energies:

Definition 2.3 (Affine separable energy (ASE))
An energy &€ is said to be affine separable if it is separable and can be written as the sum of
two terms weighted by some positive coefficient A

Ex(m) = > E4(R) + AEH(R) (2.18)
ReT

In an affine separable energy, written in short £y = (£4,&,), the two terms £, and £, are
competing to impose their own effect to the optimal partition, with a weight controlled by
the parameter \. An affine separable energy can be seen as a family of energies {E)}\cr+
parametrized by the coefficient A\. Therefore, it no longer generates a unique optimal cut 7,
but rather a family of them {7} cgr+ in turn indexed by the parameter X\. The behavior of
7y with respect to A is bound to the notion of sub-additivity, which then allows to formulate
the multiscale minimal cuts theorem [86, pp. 161-162]:

Definition 2.4 (Sub-additive energy)

A separable energy £ is sub-additive if for any two partitions w1 and wo such that m < mo,
then E(m) > E(ma). FEquivalenty, for any two disjoint regions R1 and Ra, E(R1 U R2) <
E(R1) + E(R2).

Theorem 2.1 (Multiscale minimal cuts)
Let H be a hierarchy on a set E, and let £\ = (E4,E,) be an affine separable energy. If €, is
sub-additive, then the family of optimal cuts {73} er+ can be ordered by refinement, i.e.:

V)\l, )\2,0 < )\1 < )\2 = 71';1 < 7T§2 (2.19)

The main consequence of this theorem is that, under some mild assumptions on the
formulation of the energy (namely being affine separable, with a sub-additive term), it is
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Figure 2.8: Transformation of some hierarchy H into its persistent hierarchy H* = {7y} \cgr+
with respect to some energy &, parametrized by A.

possible to extract for a hierarchy H a sequence of optimal cuts {7} } which are ordered by
refinement. More specifically, the larger the A, the coarser the optimal cut. Contrarily, the
smaller the A, the finer the optimal cut. The value of A is now associated with the notion of
scale of exploration of the image. As a matter of fact, it is termed the scale parameter in [87].

Several classical energy functions of the literature can be written as affine separable energies.
It is notably the case for the piece-wise constant Mumford Shah energy as well as typical
energies appearing in the MRF formulation. Often, the two competing terms are called the
goodness-of-fit (GOF) (for £,) and the regularization (for £,). The former favors partitions
fitting the data, thus encouraging over-segmentation in general, while the latter promotes
simplicity, hence under-partition. In that context, A\ acts as a trade-off between simplicity and
fidelity. Using such energies, one can now analyze an image at different levels of simplicity
by appropriately tuning the value of A and conducting the energy minimization. In the case
of the piece-wise constant Mumford-Shah energy, one can also remark that performing the
minimization over the hierarchy allows to shift from a non-convex problem, hard to minimize,
to a well-defined framework, where the global optimum can be reached easily.

2.3.2.4 Persistent hierarchy

Another consequence of the multiscale minimal cut theorem is that is it possible to assign
to each element R of the hierarchy H two values, denoted AT(R) and A~ (R) and called scale
of appearance and scale of disappearance, respectively. They correspond intuitively to the
range of values in which the region R is optimal (i.e., when it belongs to the optimal cut):

AM(R)<A<A (R)=R e} (2.20)

with the relation A~ (R) = AT (F(R)). A region stops being optimal when its father becomes
optimal. However, nothing imposes that AT(R) < A7 (R), meaning that a region can stop
being optimal before actually starting to be optimal. Such region, which does not belong to
any optimal cut of {m}} is said to be non-persistent. Conversely, a region R is persistent if
AT(R) < A7 (R). The interval [AT(R); A\~ (R)] is called the interval of persistence of R.
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(¢) m} with A € [0.459;0.471] (d) 73 with A € [0.263;0.275] (e) 7} with A € [0.153;0.154]
yields 41 regions yields 200 regions yields 500 regions

Figure 2.9: Illustration of the hierarchical energy minimization framework.

The hierarchy H*, made of all persistent regions of H, is called the persistent hierarchy,
and is composed of all the optimal cuts 7} of H when A spans R*. An example of such
persistent hierarchy is displayed by figure 2.8. To obtain H* in practice, the energy &£, is seen
as a function of A, and the dynamic program is conducted over the space of such functions.
The output of the dynamic program is no longer some optimal cut for a given value of A, but
some partition of R into intervals [0, A\1[U[A1, A2[U- - U [\, +00[ where all X values within a
given interval [A;, Ai+1[ are leading to the same optimal cut 73 . The reader is referred to [87]
for more practical implementation details.

Figure 2.9 illustrates this hierarchical energy minimization framework. A BPT is built
over image displayed by figure 2.9a with standard parameters, namely the mean color and
the Euclidean distance as region model and merging criterion, and an initial partition mg
obtained by mean shift clustering and composed of 2156 regions (figure 2.9b). A piece-wise
constant Mumford-Shah energy defined by equation (2.10) is minimized over the resulting
hierarchy. The piece-wise constant Mumford-Shah energy being affine separable with sub-
additive regularization term, the minimization yields a persistent hierarchy H* composed of all
the optimal cuts of H when )\ spans R™. Some of those cuts are displayed by figures 2.9¢c, 2.9d
and 2.9e for various values of A\. One can see that, indeed, the smaller the A, the finer the
optimal partition. In addition, all obtained partitions can be ordered by refinement (for
instance, figure 2.9c¢ is refined by figure 2.9d, in turn refined by 2.9e).
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2.4 Spectral-Spatial BPT processing by means of hyperspec-
tral unmixing

In this section, we introduce the adaptation of the BPT algorithm for hyperspectral
unmixing purposes by defining a region model and merging criterion based on the induced
endmembers and/or fractional abundances, and four pruning strategies based on the optimiza-
tion of the spectral reconstruction error regularized by the segmentation complexity. Finally,
we detail the novel methodology depicted by figure 2.11 to find an optimal segmentation of
hyperspectral images from their BPT representation based on the information provided by
the spectral unmixing.

2.4.1 Spectral-spatial construction of the BPT

We propose two novel region models and corresponding merging criteria based on spectral
unmixing information extracted from the regions. The first one is defined by means of the
spectral information provided by the endmembers induced from the regions. Thus we refer to
this model as the spectral region model and merging criterion. In the second one, we propose
to make use of the spatial information provided by the fractional abundances in addition
to the corresponding endmembers. Therefore, we refer to this model as the spectral-spatial
region model and merging criterion.

2.4.1.1 Spectral region model and merging criterion

For each region R; a set of m; endmembers Eg, = [e1,...,epy,] is induced by an EIA,
defining the spectral region model:

Mz, LEg, = le1,-..en]. (2.21)

In particular, this spectral region model is illustrated in figure 2.10 for the region labeled as
Re¢ when considering only the set of endmembers Ex, locally induced over this region.

Given two neighboring regions R; and R; and Er, = [e1,...,en,], Er, = {el, .. ,em]}
being their respective region models, let

k
Aij = ldu] = Osam(er. @), (2.22)

being the m; x m; endmember distance matrix whose each entry dy; is the spectral angle
defined by equation (1.15) between endmember e, € Er, and €; € Eg,. The spectral merging
criterion between the two regions R; and R; modeled by equation (2.21) is given by the
spectral dissimilarity between the set of endmembers of the two regions following [84]:

d
O (M, M) £ d (Er, Er, ) = [ml, + e, (2.23)
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Figure 2.10: Illustration of the proposed spectral Mz, = Eg, and spectral-spatial

Mp. = (ER” q_bR) region models for the construction of the BPT.

7

where |/m, |, and ||m.||, are the minimum Euclidean norms among all row and column vectors,
respectively, of the endmembers distance matrix A; ;. Once two regions merge into a new
one, the set of endmembers for the new (larger) region is induced again by the given EIA.
The rationale and originality of this spectral region model and merging criterion is to favor
the grouping of neighboring regions that are made of similar materials (endmembers). The
proposed spectral merging criterion, as it is defined, strongly penalizes regions that do not
contain the same materials, therefore it is fully adapted to the underlying motivation.

2.4.1.2 Spectral-spatial region model and merging criterion

For each region R; a set of m; endmembers Eg, = [e1,...,e,,] is induced by some
EIA, and their corresponding abundances, ®z, = [¢1,. .. 7¢mi]7 are estimated. Then, the
spectral-spatial region model is defined as:

d -
Mg, = (ERi7 ¢Rz) : (2.24)
In the previous equation (2.24), the tuple (ERN ‘;5731) is composed by the set of endmembers
Er, and their corresponding average fractional abundances, $Rz = [q@l, ceey g{;ml}, with
- 1
v TER;

where |R;| denotes the number of pixels in the region R;, and ¢; , is the fractional abundance
of the ith endmember for pixel € R;. An illustration of this spectral-spatial region model
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Algorithm 1 Significance credits assignment algorithm.

1. £+ {}
2 M—{(k)): k=1,...,my; I =1,...,m;}
3. Choose the minimum dy; for (k,1) € M — L
Label the corresponding (k,1) as (k',1')
4. wprp +— min {g{)};,, q@f,
if ¢, < ég/ then

5. w0, VI 75 U

6. ¢fy 0

7. {, — d){, — O
else

8. (o +— 0, Vk 75 K

9. ¢}, <0 '

10. @i, < ¢4 — &),
end if

11. L+ L+ {(K., 1)}

if 7, 6% > 0 and ;% ¢7 > 0 then
12. go to step 3

else

13. return
end if

is proposed by figure 2.10, where the region model Mz, of region R¢ is composed of both
the endmembers Eg, induced locally over Rg and their corresponding weighted fractional
abundances ¢g,

The spectral-spatial merging criterion between two neighboring regions R; and R; modeled
by equation (2.24) is given by the spectral-spatial dissimilarity between the set of endmembers
and the corresponding average abundances of the two regions as it was proposed in [215]:

m; MMy

@) (MR“MRJ-) 2y ((ERZ; $Rz) ; (ER]-; &R])) => ) wid, (2.26)

k=11=1

where dj; is the spectral angle distance between two endmembers, e; € Eg, and € € Eg,
as it was defined by equation (2.22) above, and wy; is a weighting coefficient measuring the
significance associated to dj;. The matrix of weighting coefficients, W; ; = [wy], k = 1,...,m,,
l=1,...,m;, is calculated using the significance credit assignment algorithm (see Algorithm 1)
introduced in [215] which is a version of the most similar highest priority principle [112], where
the average fractional abundances, &RZ and (_ﬁRj play the role of "significant credits" assigned
to the spectral distances, di;. The use of the proposed spectral-spatial merging criterion
promotes the merging of regions containing similar materials and in similar proportions.
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2.4.2 Spectral-spatial pruning of the BPT

We present now four novel energy functions based on the spectral unmixing of the regions
in the BPT representation H of an hyperspectral image. Their goal is to provide a partition,
extracted from the set of all cuts IIg(H), which is optimal in the sense of spectral unmixing.
Of course, this notion of optimality is bound to the definition of the energy term. In the
following, we shall restrict to affine energies £x(R) = (£4,&,) = E4(R) + AEH(R). In a first
instance, we define the composition law ® for the energy of a cut 7 as the sum over all its
regions, therefore remaining in the scope of affine separable energies as they were introduced
by Guigues [86,87] and for which the theoretical results, reminded in section 2.3.2, are proved
and sound. Under this framework, we propose two new energy definitions. In a second stage,
we propose to use a new composition rule to express the energy of a partition, namely as
the maximum of its regional energies. We first check that all theoretical results holding for
separable energies export well to these new max-composed energies. Then, we propose two
instances of unmixing-based max-composed energy functions.

2.4.2.1 Unmixing-based affine separable energies

The first proposed unmixing-based affine separable energy is based on the overall average
RMSE, regularized by the number of regions in the partition:

£ () — II{TI Y er(x, %) + Al (2.27)

RemzeR

where |F| and |7| are the number of pixels in the image and the number of regions in the
partition 7, respectively. eg(x,%) stands for the RMSE defined by equation (2.7), for the
pixel signature x with respect to the estimated pixel & = >~ qgiéi, reconstructed using the
set of endmembers ER and the fractional abundances ‘i’R induced over the region R. Defined

following equation (2.27), the energy 5)\2 *& can indeed be written as an affine separable
energy:

EXZ"5(R) = b Toen r(x,%)

g/\Z:avg(W) _ Z |:€¢z:avg(,R) —i—)\&;avg(R) with g;an(R> _,

ReT

(2.28)

In (2.28), the term 5¢Z *"® penalizes regions whose pixels have a high reconstruction error,
and can thus be seen as a goodness-of-fit (GOF) term with respect to the unmixing process.

The regularization term 5,)2 ave being set to 1 acts as a regularizer on the total number of
regions in the partition (such regularizer was introduced in [204]). One straightforwardly check

that such regularization term is sub-additive. Energy 5/\2 ave (2.27) being an affine serapable
energy with sub-additive regularization term, it can therefore be minimized using the dynamic
program (2.16) and (2.17) and the multiscale minimal cut theorem is guaranteed to be holding,
meaning that it is possible to transform the BPT hierarchy H into its persistent version
H i: avg = {7y} where each optimal cut 7} achieves a trade-off between spectral unmixing
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fitting, expressed as the average RSME over the whole image, and simplicity (in terms of
number of regions) controlled by the value of \.

Similarly, we define a second unmixing-based energy, expressed as the weighted average
of the maximum RMSE of the regions in the partition, regularized again by the number of
regions in the partition:

max 1 A
5)\2 (m) = 3] Z IR max er(x,X) + Al7| (2.29)
Re

Energy 5)\2 e (2.29) can be derived from energy 5)\2 e (2.27) by replacing er(x,%) by
max;cR €r(X,X) in the GOF term. Therefore, all conclusions drawn for energy 5)\2 & also

hold for S)\Z " namely the capacity to minimize it by dynamic programming, the validity of
the multiscale minimal cut theorem and the transformation of the hierarchy into its persistent
version.

2.4.2.2 Max-composed energies

We now depart from the scope of affine separable energies, as they were introduced in the
work of Guigues [86,87], to focus on energies which are composed by a maximum rule ©® =/,
that is

Em =\ ER). (2.30)
Rem
With such defined energy, the first question arising concerns the validity of the dynamic
program procedure: is it possible to adapt it to handle max-composed energies? As a matter
of fact, the answer is yes:

Proposition 2.1 (Minimization of a max-composed energy)

Let H be some hierarchy of partitions built over the space E. Let £ be a max-composed energy,
that is, for any m € Ilg, £(1) = Vrex E(R). Then, for every region R € H, the following
Bellman’s dynamic program is holding:

£(R) = min {E(R), \/ g*(m} (2.31)

reC(R)
{R} ifER)< \/ &(r)
* . reC(R)
™ (R) = |_| 7 (r) otherwise (2:32)
reS(R)

Proof. The proof is adapted from the one provided by Guigues [86, pp. 141-142] for separable
energies. Let R € H and let H(R) be the sub-hierarchy of H rooted at R. Define

T™(R)= [] ()

reC(R)
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as the disjoint union of the optimal cuts of all the children r € C(R) of R. Similarly, let 7/(R)
be another partition partition of R. 7’ can be written as the disjoint union of some cuts 7'(r)
of the children r of R,

reC(R)
& being max-composed, one has £(1*(R)) = V,ecr) €(7*(r)) and E(7'(R)) = V,ecr) (7' (1))
and since 7*(r) is the optimal cut in H(r), we have
E(m*(r)) =&*(r) <&(R'(r)) VreC(R)
V &< Vo)

reC(R) reC(R)
EX(R) < E(7'(R))

In conclusion,

if ER) < E(m*(R)), then 7*(R) ={R} and E*(R)=E&(R)
otherwise m™(R) = 7 (r) and E&*(R)= \/ EX(r)
reC(R) reC(R)

Still following the approach of Guigues, we now focus on affine max-composed energies,
namely energies which can be written as

Exm) =\ [E5(R) + AR - (2.33)
ReT

The next question arising concerns the validity of the multiscale minimal cut theorem. When
working with affine separable energies, Guigues used in his proof [86, pp. 161-162] the linearity
of the sum operator (i.e., the fact that > pc E4(R)+AENR) = Y rer E6(R)+A D rer Ep(R))
combined with the sub-additivity condition on £, (namely, £,(R) < Xr/er(r) Ep(R') for some
partition partition 7(R) of R). Using the maximum operator \/ in our case, which is not
linear, we cannot directly adapt the proof of Guigues as it was done for the dynamic program.
In his work, Kiran [101, p. 53] introduced the notion of inf-modularity as a generalization of
sub-additivity, and proved that the multiscale minimal cut theorem was holding for any family
of the type E\(7) = Ey(m) + AE,y(m) when the term &, is inf-modular, which is still not the
present case. However, as suggested in [101], it is nevertheless possible to prove the validity of
the multiscale minimal cut theorem for energies with other composition rules, based on the
monotonicity of the mapping A — &, (7). Using this argument, we can formulate again the
multiscale minimal cut theorem for max-composed energies:

Theorem 2.2 (Multiscale minimal cut for max-composed energies)

Let H be a hierarchy on a set E, and let Ex(7) = Vrer €4(R) + AEH(R) be an affine maz-
composed energy such that E,(R) > 0 VR € H. Then the family of optimal cuts {7y} \er+ can
be ordered by refinement, i.e.:

V)\l, )\2,0 < )\1 < )\2 = 71';1 < 7T§2 (2.34)
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Proof. The proof is given in appendix A. O

Therefore, max-composed affine energies can be processed in the same way as separable
affine energies in terms of minimization by dynamic program and transformation of a hierarchy
H into its persistent version H*.

2.4.2.3 Unmixing-based max-composed energies

Following the previous theoretical results, we now propose to define unmixing-based
energies composed by the maximum law as defined by (2.33):

Ex(m) =\ [Es(R) + A&, (R)]
ReT
where &£y and £, play the role of bounds on data fitting and complexity, respectively. The
optimal partition 7} with respect to such energy is the one that minimize the regularized
combination of both bounds.

The first proposed max-composed unmixing-based energy function is defined as
1 A

eV ™5 () = \/ R 2 RO %)+ (2.35)
Rem TER

where the GOF term £4(R) is expressed in terms of average RMSE within the region R, and

the regularization £,(R) is defined as the inverse of the region size. The optimal cut of this

energy minimizes the upper bound on the average reconstruction error of the regions and at

the same time maximizes the lower bound on the size of the regions in the partition, with A

acting as a trade-off parameter and thus giving more weight to one bound or the other.

Finally, we define a last unmixing-based energy function by replacing the average RMSE
of region R in 5;/ ™% (2.35) by the maximum RMSE:

\/max B |: N i
&, () = R\E/W max er(x,%) + R

(2.36)
\/max o e . o e o . . .
Energy &, has for minimizer a partition that minimizes the upper bound on the maximal
reconstruction errors and at the same time maximizes the lower bound of the size of the
regions in the partition, and can be seen as more restrictive version than &, E as regions

having an overall low RMSE with a single badly reconstructed pixel will be more penalized in
gy maX.

2.4.2.4 Use of a size constraint

It is sometimes interesting to constrain the set of valid partitions, II5(H ), to those whose all
regions size is above a given minimum size. For instance, the segmentation of the image could
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O(R,R)) E:\R) = (E(R),£,(R))
= e

Step 1: BPT construction Step 2: BPT pruning

Figure 2.11: Flowchart of the proposed novel methodology.

be later used for applications that require a minimum number of pixels to work (to estimate
some statistical parameters for instance). In these cases, the set IIg(H) of valid partitions
in the formulation of the optimization problems is replaced by the subset of size-constrained
valid partitions, I1%(H):

IG(H) = {rm € lg(H), s.t. VR € m,|R| > ¢}, (2.37)

where |R| denotes the number of pixels in region R and ¢ > 0 is a threshold on the region
size. If ¢ = 0, the term (2.37) has no effect and the pruning criterion is considered to be
unconstrained.

2.4.3 Proposed methodology

Fig. 2.11 shows the flow diagram of the proposed general methodology to obtain an optimal
segmentation from a hyperspectral image, by pruning the BPT representation of the image
using the information provided by the spectral unmixing process. The procedure, decomposed
in two steps, is as follows:

Step one. First, a BPT representation H of the input hyperspectral image Z is obtained. In
order to build the BPT, one must provide three input parameters, namely the initial partition
of the image 7o, a region model Mz and an associated merging criterion O(R;, R;). For the
initial partition, the only constraint is that it provides an under-segmentation of the image,
with initial regions small enough not to encompass "actual" regions, and accurate enough
to be able to reconstruct those regions with a good accuracy. For the region model and
associated merging criterion, we propose to use either, the spectral region model (2.21) and
merging criterion (2.23) or the spectral-spatial region model (2.24) and merging criterion (2.26)
previously defined. In order to do that, a spectral unmixing process is run independently
for each region R (see figure 2.12). First, the virtual dimensionality dg of the region R is
computed using the Hyperspectral Signal Subspace Estimation (Hysime) algorithm [22]. The
value of 4z works as an estimation of the number m of endmembers present in the region. If
the region is too small to correctly estimate the number of endmembers (due to the presence
of close to singular covariance matrices during the application of the Hysime algorithm), that
is, if 0g = 0 or 0g > |R|, being |R| the number of pixels in the region, then its region model
Mp is set to the mean spectrum of the region Mgz = pp. This happens in very small and
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Figure 2.12: Workflow of the spectral unmixing process to obtain the region model.

homogeneous regions, so the mean spectrum g acts as a single endmember. Otherwise, an
EIA is run over the |R| pixels of the region to induce the corresponding set of endmembers.
To overcome the stochastic part of most of the EIAs, the induction algorithm is run a number
of times k for each region, and the set of endmembers yielding the larger simplex volume [227],
Vi (E), among the k trials is retained. If the spectral region model is selected to build the
BPT representation, the region model is defined by these endmembers as it is described
in (2.21). If the spectral-spatial region model is selected, the FCLSU is conducted and the
fractional abundances of the induced endmembers are estimated for each pixel in the region.
The region model is then defined by the endmembers and their average fractional abundances
as it is described in (2.24). Computing the unmixing information for each region R during
the construction of the BPT can be computationally expensive, but once the BPT has been
populated for this information, it can be stored and any posterior processing of the BPT
representation becomes very fast. This trade-off is common in the analysis of images by means
of tree-based representations.
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Step two. The second step features the pruning of the BPT H to transform it into its
persistent version H*. This, as any pruning operation, is done in two steps:

1. The population step involves the computation of the energy of each region R. Here, we
propose to work with affine energies, namely energies being the sum of a GOF term £4(R)
and a regularization term &£,(R) weighted by a coefficient . Following the novel energy
definitions introduced in subsection 2.4.2, the regularization term requires, at most,
the region size |R|. On the other hand, the GOF term is based on the reconstruction
error of each region, calculated by the RMSE (2.7), given the set of endmembers and
corresponding abundances. Note that, if any of the two proposed unmixing-based region
models are used to build the BPT representation, this information is already stored
during the construction and can be used as is. If not, for instance, when using a mean
spectrum region model, the spectral unmixing process defined above should be run for
each region in order to induce the endmembers and estimate the fractional abundances.

2. Then, given a composing law for the energy being either ® = 3 or ©® =/, one can
then define the energy £(m) of a cut 7 € IIg(H) and seek for the optimal one given
a value of A\. Even better, if the definition of the enegy allows it, one can directly
compute all optimal cuts by viewing the energy as a function of A and conducting the
dynamic program (2.17) and (2.16) over the space of such function (as advocated in [87]),
producing the persistent hierarchy H*.

2.5 Experimental methodology

2.5.1 Hyperspectral datasets

We propose to use in the experiments two real hyperspectral data sets. Their selection
is supported by the fact that these scenes have been widely used to validate hyperspectral
segmentation and spectral unmixing applications, and currently constitute benchmarks used
to validate new algorithms thanks to the availability of reliable reference information. The
considered scenes can be summarized as follows:

The Pavia University hyperspectral image. It was collected by the ROSIS-03 sensor
over the facilities of the University of Pavia in Italy. After discarding pixels with no information
and noisy spectral bands, the image has a spatial size of 610 x 340 pixels with a spatial resolution
of 1.3 m per pixel, and 93 spectral bands comprised in the range of 430-860 nm. Figure 2.13a
features a false color representation of the Pavia University scene. The scene shows an urban
area comprised of different buildings, parking lots, roads and other typical human-made
constructions, together with trees, green areas and bare soil.

The Cuprite hyperspectral scene. It was acquired by the NASA’s AVIRIS sensor [85]
and covers the Cuprite mining district in western Nevada, USA. This sensor collects data in
224 contiguous spectral bands with a bandwidth of 0.10 gm in the range of 0.4 — 2.5um. 200
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(a) (b)

Figure 2.13: False color representation of (a) the Pavia University scene and (b) the Cuprite

scene.

bands remain after removing noisy bands due to atmospheric water absorption. Each pixel
represents a 20m? square cell. The data used in the experiments is a 250 x 190 subset of the
original scene covering the mineralogical region of interest. Figure 2.13b shows a false color
representation of the subset of the Cuprite scene used to conduct the experiments. The scene
is well-known and widely used in hyperspectral community thanks to the extensive reference
information available for this scene from the United States Geological Survey (USGS) ©.

2.5.2 Experimental methodology

This section describes the procedure adopted to conduct the analysis of the two afore-
mentioned hyperspectral scenes. Specifically, we describe the steps followed in order to build
the BPT representations and extract some optimal cuts, as well as the quantitative measures
employed to assess the quality of these optimal cuts.

For each dataset, we build three independent BPT representations, each using a specific
region model and merging criterion:

6. http://speclab.cr.usgs.gov/cuprite.html
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— one BPT using the mean spectrum region model (1.13) and associated spectral an-
gle (1.15), hereafter denoted H,,.

— one BPT using the proposed spectral distance model (2.21), based on the endmembers
induced over each region, and the associated proposed spectral distance (2.23), H,
standing for this configuration.

— one BPT using the proposed spectral-spatial distance model (2.24), based on the
endmembers induced over each region and their corresponding average abundances, and
the associated proposed spectral-spatial distance (2.26). This BPT will be denoted H, 5

In all cases, the BPT is built over an initial partition my of the image, obtained by the
hyperspectal watershed [188] method using a multidimensional morphological gradient [146].
This method produces severely over-segmented partitions maps and has already shown to be
relevant for the hierarchical representation of hyperspectral images [200,216]. In addition, the
priority term [36] enforcing small regions to merge with priority during the merging process is
set to 15%. Each BPT representation is then populated with the endmembers and fractional
abundances from an unmixing process run in each node, as explained in section 2.4.3 (note
that this information is already available for H, and H,_ (;_S)' The Vertex Component Analysis
(VCA) algorithm [144] is chosen to induce the endmembers. Due to the stochasticity of
such algorithm, several runs are made for each region of the BPT (20 independent runs in
the present case), and the set of endmembers yielding the simplex with maximal volume is
retained.

Then, each BPT representation H,,, H, and H, 518 pruned by minimizing the four proposed
unmixing-based energy function 6')\2 e S/\Z e Sy & and S/y e
a set of optimal cuts whose number of regions matches some predefined numbers. In particular:

— For the Pavia University scene, we extract 8 optimal cuts having 5, 10, 40, 75, 100, 225, 350

and 850 regions (or the cuts having a number of regions as close as possible from the

X .
to generate, in each case,

desired numbers).
— The same procedure is conducted for the Cuprite scene, with expected numbers of
regions being set to 5,10, 20, 35, 50, 75, 150 and 500.

In both cases, the desired numbers of regions were arbitrarily chosen. Finding the correct
value of A yielding the optimal cut with the appropriate number of regions may seem to be
a tedious task. In practice however, there is a nice workaround to this issue: each energy
function allows to easily compute at once all the optimal cuts of H,,x = {u,e, qu} when
A spans RT, producing the persistent hierarchy H} by stacking all cuts. Each optimal cut
my € IIg(H,) corresponds to a horizontal cut of H}. Therefore, instead of looking for the
correct value of A producing the optimal cut of H, with an appropriate number of regions,
one can simply browse the horizontal cuts of H} and stop when one with the desired number
of regions is found.

In addition to the four proposed energy functions, each BPT is also pruned by two
additional strategies:
— The horizontal cut producing the partition with the desired (or as close as possible)
number of regions.
— The optimal cut with respect to the energy function proposed by Valero in [204] and
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defined as an affine separable energy

e () = 3 E4(R) + Al (2.38)
TER

where the GOF term & is defined as

0if |[Ry| and |R,| <7

Es(R) = O X, 4 _
o) zze;z s1o(x. ir) Z Osip(x, pg,) + Z OSID(X,uRl)othermse

TER, TER,
(2.39)

where Ogrp denotes the spectral information divergence measure, as defined by (1.17),
MR, MR, and pg are the mean spectra of regions R, R; and R, the latter two being
the left and right children of R. The first term of (2.39) measures the error committed
when replacing all pixel spectra in region R by their mean value p, thus penalizing
spectrally inhomogeneous regions. The second term evaluates the error of replacing
each pixel spectrum of the child region R; by the mean spectrum of its sibling R,- and
vice versa, in order to regularize the case where the region R has a child which is much
larger than the other one (the contribution of the small child being negligible in the first
error term, even if spectrally different from pg). In practice, the second term is added
to £4(R) if the two children have a size greater than a predefined threshold 7 (set to 3
pixels in [204]) in order to make this estimation reliable.

The energy (2.38) being affine separable with a sub-additive regularization term (as
E,(R) = 1), the optimal cuts with the desired number of regions are extracted from
the three BPTs H,,, H. and H, g I the exact same fashion as for the four proposed
unmixing-based energies.

In order to quantitatively compare the segmentations obtained by the different pruning
strategies, we compare the original hyperspectral image X to the one obtained by the unmixing
reconstruction, X = ]:J‘in calculated from the partitions obtained by the different BPT
representation models, pruning criteria and expected partition sizes. The reconstruction X is
made piece-wise, where the endmembers and fractional abundances obtained in each region
R of a given segmentation 7 are used to reconstruct only the pixels within this region. We
propose to use of four different image reconstruction quality measures:

— The average RMSE measure the average Euclidean error between X and X

= LY ex,%) (2.40)

aveRMSE (X X) -5
el

by averaging the RMSE e(x, %) (2.7) of each reconstructed spectrum X with respect to
the true one x over the number of pixels |E| in the image. If X is perfectly reconstructed,
then avgRMSE(X, X) =0
— The average spectral angle error (SAE) is similar to the average RSME, but measures
instead the average angular error between X and X
1

B > SAD (x,%) (2.41)

zel

avgSAE (X, X) =
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where SAD (x,X) is the spectral angle (1.15) distance between x and %. Similarly, a
perfectly reconstructed image yields avgSAE (X, X) =0.

— The average Q index measures the correlation between the the original X and the
reconstructed X images

. ° 20t g 2 "

: (2.42)
oxogx x|+ llegl3 ok +o%

where px and pg are the mean N-dimensional vectors of the original and recon-
structed images respectively, ox and oy denote the variances, and oy ¢ the covariance.

avgQ (X, X) = 1 for an ideal image reconstruction.

— The ERGAS (Erreur Relative Globale Adimensionelle de Syntheése) quality measure,
which evaluates both spectral and spatial divergences:

x, %)\ 2
ERGAS (X, X) = 100\] |E1’ 3 (6(%’( )> , (2.43)

zel

where pyx denotes the mean (scalar) value of pixel spectrum x. The lower the ERGAS
value, the better reconstructed the image.

With the previously defined four quality measures, one can then assess how well recon-
structed (from a spectral point of view for measures (2.40) and (2.41), and from a spectral-
spatial point of view for the two others (2.42) and (2.43) measures) are the images, based
on the obtained segmentations. The proposed four unmixing-based energy functions were
intended to produce a segmentation of the image being optimal with respect to the unmixing
reconstruction error, and should therefore lead to average RMSE, average SAD and ERGAS
values as low as possible, and an average Q index close to 1.

2.6 Results

2.6.1 Pavia University data set
2.6.1.1 Reconstruction errors

Figures 2.14, 2.15 and 2.16 show the quantitative reconstruction quality measures of the
different pruning strategies applied over the BPT representations H,, (mean spectrum region
model), H, (proposed spectral region model) and H, 3 (proposed spectral-spatial region model)
of the Pavia University scene, respectively. Each point in the plots represents a partition
obtained by each of the pruning strategies over the corresponding BPT. In order to compare
them, we plot the quality measure with respect to the number of regions contained in each
partition.

Several observations arise when analyzing the curves. First of all, the four proposed
unmixing-based energies EAZ avgngZ max,é’)\\/ M and E)Y *"& lead to optimal cuts that out-
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Figure 2.14: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation H, (mean spectrum region model) of Pavia University
image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q and
(bottom-right) ERGAS.

. SID . . . .
perform height-based and Valero 5/\2 optimal partitions in all cases. This phenomenon
can be easily interpreted: the latter two strategies are not designed to produce partitions
with low reconstruction errors, as the height-based pruning only depends on the merging

order of the regions during the construction of the BPT while 5/\2 51D produces partition with
spectrally homogeneous regions. It is more delicate to evaluate the relative performances of
the proposed unmixing-based energy functions, as the differences are rather small. However,
the two affine separable energies seem to perform slightly better than their max-composed

counterparts. A possible explanation is that EAZ *& and 5/\2 " aims at finding partitions
with a low overall average RMSE for the former, and a low weighted average of maximum
RMSE for the latter, with both tend to produce an overall low RSME over the whole image.
The two max-composed energies &y *& and Ey " operate differently, as they minimize the
bound on the mean and maximum RMSE of all regions of the partition, but may lead to more
averagely reconstructed pixels in the whole image, hence higher mean reconstruction errors
for the whole image. The quality measures being computed over the whole image (and not
region-wise) may also favor separable energies over max-composed ones. One can also remark
that, for all cases but one, the quality measures have an overall decreasing behavior (expect
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Figure 2.15: Comparison of the different pruning strategies in terms of unmixing reconstruction

quality for the BPT representation H. (proposed spectral-based region model) of Pavia
University image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average
Q and (bottom-right) ERGAS.

for the average Q which is globally increasing since the closer to 1, the better in this case)
with respect to the number of regions in the partition. The only exception concerns the BPT
H,, (whose construction is based on the mean spectrum region model) when pruned with the
height-based approach. In this special combination, both the construction and pruning of
the BPT are unrelated to the desired goal being a segmentation optimal in terms of spectral

unmixing. Going farther, one can see that the height-based approach as well as energy 5/\2 51D
perform better on He and H,z, where the unmixing information has been taken into account
during the construction of the hierarchy, than on H,. It confirms that building the BPT
in a appropriate way with respect to the task is absolutely relevant and necessary in order
to achieve the intended application, even if the pruning strategy is not fully adapted to the

desired goal.

2.6.1.2 Segmentation results

Figure 2.17 shows the optimal cuts with respect to all five energies, namely (from left to

right) EAZ e EAZ max, 8)\\/ maX, S/y *& and EAZ SID, for the spectral-spatial BPT representation



86 Chapter 2. Spectral-Spatial multimodality

10 -
=% Proposed SAZ e =% Proposed EAZ e
Proposed SAZ e Proposed EAZ e
0.04 |- 8 ax
=% Proposed 5;/ e =¥ Proposed Ey e
. =% Proposed 5;/ e =% Proposed 5}/ e
Z 003 =% Valero SAZ S 5::1 =*= Valero SAE sb
= Height-based « Height-based
g 0.02 ‘l §
= <
0.01 —%
—x
0 1 . . 1 0 . . 1 I
0 200 400 600 800 1,000 0 200 400 600 800 1,000
Number of regions Number of regions
1 60
————X ~
=% Proposed £
« roposed £
0-98 50 |- Proposed SAE e
=¥%= Proposed E;/ e
0.96 Vavg
0] =¥ Proposed &)
< 094l ” - Va!ero EAZ SID
& = Height-based
£ o2 T30
é; B =% Proposed SAZ e S
0.9 1 Proposed EAL e
== Proposed Ey max
0.88 == Proposed Ey e
=% Valero EAZ sto —x
0.86 |- Height-based
| | | I . I . .
0 200 400 600 800 1,000 Oﬂ 200 400 600 800 1,000
Number of regions Number of regions

Figure 2.16: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation H e (proposed spectral-spatial based region model) of
Pavia University image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left)
Average Q and (bottom-right) ERGAS.

H, 3 of the Pavia University scene. The top row shows the optimal partitions with (or close to)
50 regions, while the bottom row shows the optimal partitions with (or close to) 100 regions.
The first comment that can be made is that, in both cases, the resulting partition are strongly
under-segmented. As a matter of fact, when looking at figure 2.13a, one can see that the scene
is composed of a multitude of regions of interest (in the sense that they bear some semantic
meaning), such as the various buildings, the parking lots, the roads, the grassy areas and so on.
However, in order to analyze the influence of the used spectral unmixing information on the
resulting partitions, one must examine large enough regions (as it is recalled that, during the
construction of a BPT, the estimated intrinsic dimensionality of each region is used to define
the region model. If the region is too small, notably, then the region model is set to the mean
spectrum, assumed to be the single endmember). Therefore, the evident under-segmentation
is not considered to be an issue in the present case.

Among all five energy functions, 5/\2 S s the one that seem to correctly segment the
most visually salient regions. This is explained by the formulation of the energy: as pointed
out in [204], it aims at producing segmentations with spectrally homogeneous regions, and is
thus more adapted to the design of partitions that match the visual perception. It is a little
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(f) (8) (h) (i) 8)
Figure 2.17: Optimal cuts extracted from the BPT representation H_; of Pavia University

scene by minimizing: (a)(f) 5/\Zavg, (b)(g) £~ (o)(h) &Y™, (A)() &, “& and (e)(j)
g}\z SID

around 100 regions.

. Top row segmentations have around 50 regions, bottom row segmentations have

bit harder to interpret the optimal partitions of the proposed unmixing-based energies. The
obtained regions are in fact supposed to be optimal with respect to the reconstruction error,
which cannot be interpreted visually as it is related to the endmembers and abundances of
each region. Nevertheless, one can still see some correctly delineated structures (some grass,
roads, parking lots or building), especially for the segmentation displayed by the second row
of figure 2.17. In addition, there are not many visual differences among the four proposed

approaches, the only noticeable one being that the optimal cuts of 6')\2 & and E)Y & do
not change much when the spatial regularization term is diminished, compared to the other
approaches which produce segmentations with smaller regions. This can be better understood
looking at the reconstruction quality measures featured by figure 2.16, where these two pruning
criteria stabilize around segmentations with approximately 50 regions. It means that the A
value should be severely decreased to obtain more over-segmented partitions.
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2.6.2 Cuprite data set
2.6.2.1 Reconstruction errors

Figures 2.18, 2.19 and 2.20 show the quantitative reconstruction quality measures of the
different pruning strategies applied over the BPT representations H,, (mean spectrum region
model), H, (proposed spectral-based region model) and H, 3 (proposed spectral-spatial region
model) of the Cuprite scene, respectively. The obtained quantitative results present similar
trends to the ones obtained for the Pavia University scene. The main difference is that the

energy function £ /y ave (2.35) pruning criterion is doing worse than the other proposed pruning
criteria. A possible explanation can be formulated when looking at the corresponding optimal
partitions (figures 2.21d and 2.21i). In both cases, the partition is composed of a large and
under-segmented region (comprising approximately two thirds of the image) and lots of small
regions at the center of the image. The over-segmented area corresponds to the mining district,
where spectral variability due to minerals is known to happen. The energy Ey & admits an
optimal partition by minimizing the upper bound on the average RMSE of the regions while
maximizing the lower bound on the region size. Having a lot of small regions (thus a large
penalty term for each of them) means that this is the configuration which yields the smallest
region-wise average RMSE, or alternatively, that it is more costly (in terms of energy) to

segment this area with larger regions, thus higher average RMSE values due to the spectral

variability. However, using E)Y "% which binds the region-wise maximum RMSE instead of

the average one, does not lead to the same conclusion as the obtained quantitative values
SID

outperform €y avg,g)\z

arguable explanation comes again from the analysis of figure 2.21. As a matter of fact, one

as well as the conventional height-based pruning approach. An

can see that the region which was strongly under-segmented using S/y *"® is now split into
several regions. In such case, it means that the very large region of figures 2.21d and 2.21i
has a relatively low average RMSE (which is the reason why it belongs to the optimal cut of
€y 3ng) but a high maximum RMSE and is then more strongly penalized using S/y T and s
thus forced to split up. This conclusion is supported by the fact that this area of the Cuprite

image is more or less segmented the same way by £5 " which is also based on the maximal
RMSE value of each region.

2.6.2.2 Segmentation results

Figure 2.21 shows the optimal cuts with respect to all five energies, namely (from left to

right) 5/\2 avg, 5)\2 max, Ey max, Ey & and 5)\2 SID, for the spectral-spatial BPT representation

H.; of the Cuprite scene. As with Pavia University scene, top row shows the optimal partitions
with (or close to) 50 regions, while the bottom row shows the optimal partitions with (or
close to) 100 regions. Being a scene of a natural landscape, it is difficult to appreciate if the
regions are spatially meaningful or not. As already discussed in the case of Pavia, the energy

g)\z SID

is the one producing the optimal cuts which seem to better segment all visually salient
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Figure 2.18: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation H, (mean spectrum region model) of Cuprite image: (top-
left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q and (bottom-right)
ERGAS.
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regions. Energies yields similar partitions. Onely Ey & leads to
significantly different results, for the reasons discussed above.

2.7 Conclusion

This chapter has been devoted to the study of the inherent spectral-spatial multimodality
of hyperspectral images, and how it can be integrated within hierarchical representations of
such images. In particular, the pursued goal was to propose a final segmentation, optimal
with respect to the spectral unmixing reconstruction error.

To that purpose, we interest ourselves to the notion of optimality in segmentation. We saw
that this framework requires the definition of some energy function which rates how "good" is a
given segmentation with respect to the underlying application. Provided this energy function,
we observed through several examples (such as the Mumford-Shah functional as well as Markov
Random Fields) that finding the partition minimizing the energy is not straightforward, the
major challenge being the cardinality and the unstructured nature of the space of partitions
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Figure 2.19: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation H. (proposed spectral-based region model) of Cuprite
image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q and
(bottom-right) ERGAS.

IIg. Therefore, conducting the minimization over some constrained space of partitions being
the set of all cuts of a hierarchy, came as a natural solution. We therefore reviewed some
aspects of hierarchical energy minimization which were first strictly formalized in the work of
Guigues [86,87].

Armed with the fundamental theoretical results being that, under some mild conditions on
the definition of the energy function, the optimal cut of the hierarchy can be found by solving
Bellman’s dynamic program and, when the energy involve some trade-off parameter X, the
optimal cut for different trade-off values can be ordered by refinement, we have developed
a new strategy for the representation of hyperspectral images using binary partition trees
and concepts from spectral unmixing, in order to finally obtain an optimal segmentation in
terms of spectral unmixing reconstruction error. This led us to use the spectral and spatial
information bore by hyperspectral images in a synergistic fashion at both steps of the proposed
methodology:

— Spectral-spatial information has been incorporated during the construction of the BPT.

To that purpose, we proposed two new region models based on the unmixing information.
The first one was defined as the set of endmembers induced over each region of the BPT,
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Figure 2.20: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation H e (proposed spectral-spatial based region model) of
Cuprite image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q
and (bottom-right) ERGAS.

the second one also integrating their corresponding abundances. Associated merging
criteria were also proposed. To the best of our knowledge, this is the first time in the
literature that unmixing information is incorporated in the construction of a BPT.

— We proposed four novel unmixing-based energy functions, defined so their optimal
cuts achieve a trade-off between a good spectral reconstruction error, with respect
to the unmixing operation, and spatial simplicity. The first two proposed energy
functions were formulated as particular instances of a wider class of energy functions,
namely affine separable energies. Studied by Guigues, there are clear guidelines on the
requirements that must be met by such energies to ensure an easy minimization over
hierarchies of partitions, and we based the definition of our novel energy functions on
those guidelines. For the other two proposed energy functions however, we departed
from the framework of affine separable energy functions and investigated what we
termed maz-composed energies. Adapting the work developed by Guigues, and also
relying on some more general properties, as drawn by Kiran [101] (exposed in chapter 4),
we proved that, under some similar assumptions, all results holding for separable
energies were still valid for max-composed energies. These results allowed us to proceed
to the minimization of all four proposed unmixing-based energy function in the same way.
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(d) (e)
(i) ()
Figure 2.21: Optimal cuts extracted from the BPT representation H, 3 of Cuprite scene by

minimizing: (2)(£) £ "%, (b)(g) £, (¢)(b) &Y ™™, (d)(i) EY ™, and (¢)(j) £ Top
row segmentations have around 50 regions, bottom row segmentations have around 100 regions.

(h)

The presented strategy has then been evaluated using reference hyperspectral scenes
representing two contexts, urban areas and natural landscapes, at different spatial and spectral
resolutions. We compared the segmentation obtained by our proposed energy functions against
a classical BPT pruning technique being the height-based cut and against a state-of-the-art
energy formulation, proposed by Valero in [204] to achieve hyperspectral image segmentation.
The four proposed unmixing-based pruning criteria yielded to segmentations that outperformed
the latter two approaches in terms of reconstruction quality. In general, the use of information
coming from the unmixing process either in the construction of the BPT representation, by
means of the spectral and spectral-spatial region models and merging criteria, or in the pruning
of the BPT, by means of the four proposed unmixing-based pruning criteria, showed to have a
clear positive impact in the quality of the obtained segmentations.

Although the proposed method has been shown to be a relevant new framework for
hyperspectral data interpretation, there are some aspects that may present challenges over
time and which deserve a more extensive evaluation. Among them, we list the possibility to
use other unmixing-based fitting functions in the definition of the pruning criterion or the
evaluation using additional hyperspectral scenes. The proposed approach was found to be
useful not only to perform segmentation by taking into account the sub-pixel nature of mixed
pixels, but also to perform spectral unmixing using a local-to-global approach in which the
optimization criteria is based on the minimization of reconstruction errors at a local scale,
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which results in an overall minimization of reconstruction errors that is highly appealing for
spectral unmixing applications. As a matter of fact, the natural extension of our approach,
proposing an optimal segmentation with respect to the unmixing application, is the processing
of the induced endmembers and corresponding abundances over the regions of the optimal
partition, in order to provide at the end of the day a similar result to the one furnished by
more traditional unmixing approaches being some "global" endmembers and abundance maps
for the whole image. A first attempt to such processing has been recently published in [66],
where the endmembers induced over all regions of the optimal partition have been stacked
together in some sort of library. Following, the abundance maps of the whole image have been
obtained by using those endmembers when sparsity is imposed. This preliminary strategy
has nevertheless outperformed the traditional global spectral unmixing approach, and has
encouraged us to pursue our efforts in this line of research.
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In this chapter, we now focus on the temporal multimodality, i.e., when several images of
a given scene are acquired at different dates. In the most general case, those images may not

be acquired with the same sensor, therefore increasing even more the diversity of the resulting

multimodal data. However, we only consider the most common case in this chapter, being a
single sensor producing images at different acquisition times. In particular, we focus in the
following on hyperspectral video sequences. Thanks to the progress made in sensor designing,
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it is now possible to acquired sequences of hyperspectral images at near real-time frame rates.
However, the extension of traditional video processing techniques from the mature field of
computer vision to hyperspectral imagery still faces several challenges due to the very high
dimensionality of the resulting data as well as the induced computational burden. In addition,
the lack of benchmark hyperspectral video data also make the experimental validation of any
new algorithm an issue. On the other hand, the spectral, spatial and temporal information
contained in such hyperspectral sequences should lead to the design of robust algorithms,
provided that this wealth of information is fully exploited. In this chapter, we propose a
novel method to perform object tracking in hyperspectral videos sequences. The tracking is
tackled as a sequential object detection process, this latter being performed on a hierarchical
decomposition of each frame of the sequence in order to restrain the set of potential candidates
for the tracked object. The proposed method is validated in the scenario of chemical gas plume
detection and tracking. The present chapter is organized as follows: section 3.1 introduces
the temporal multimodality, both for traditional video and hyperspectral images. Section 3.2
reviews the state of the art related to object detection supported by hierarchical decompositions.
Then, section 3.3 describes the proposed two-steps method to perform hyperspectral object
tracking. Sections 3.4 and 3.5 feature an introduction to hyperspectral chemical gas plume
tracking, and the application of the proposed methodology to this problematic, respectively.
Results are presented and discussed in section 3.6, and the conclusion is finally drawn in
section 3.7.

Materials presented in this chapter have been developed in collaboration with the De-
partment of Mathematics of the University of California, Los Angeles (USA), supported by
the National Science Foundation under grant no. DMS-1118971 and no. DMS-0914856. A
preliminary version has been published in [196]. The present work has been submitted in a
journal version and is currently under review [195].

3.1 Temporal multimodality

3.1.1 Introduction

Temporal multimodality arises when several images of a scene are acquired at different
time spots. According to the definition 1.2 of multimodal signals provided in chapter 1, such
temporal multimodal data can be formulated as

7= {Itl,zta...,zti,...} (3.1)

where each modality Z% : E; — V; is a particular instance of the scene acquired at time
t;. While nothing forces all the images Z' to be produced by the same imaging sensor,
this is however the most classical case, to which we will restrict the scope of this chapter.
In that situation, one can talk of multitemporal data, or simply video sequence for Z, and
each individual modality Z% can be referred as a frame. All frames share the same spatial
support and space of values, £ = E;,V = V; Vi, and the gap of time between two consecutive
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acquisitions ¢; — t;_1 is called the frame rate (which is assumed to be constant for the sake of
simplicity).

The comparison between several instances of the same image reveals its changes over time.
The varying information is due to the complementarity of the multitemporal data, while the
remaining, unchanged part, constitutes its redundancy. The interest of such multimodality
is rather clear: using the complementarity between consecutive frames is useful to analyze
which part of the image are changing, and in which fashion. On the other way around, the
redundant part of the information can be used to enhance the robustness of algorithms. As a
matter of fact, both sides have been thoroughly investigated in the field of computer vision
for traditional gray-scale and color image sequences. The analysis of motion within video
sequences has found several applications, such as object tracking [230] or motion estimation
and compensation for video compression [111,235]. Conversely, using the redundancy inherent
to video images has been used for instance for patch-based denoising applications, where the
similarity between a patch in a given frame and those of a spatial and temporal neighborhood
is computed in order to restore the information corrupted by noise [34,57].

Most commercially available video cameras produce between 25 and 50 images per second.
In other words, they have an acquisition frame rate between 25 Hz and 50 Hz (although it
is possible to find higher rates of acquisition). Working with hyperspectral sensors however,
multitemporal data suffer from a huge decrease in frame rate, as such data is very often
provided by airborne or spaceborne sensors. Due to operative constraints, such as the high
cost of airborne acquisition campaigns or the revolution time needed to a satellite to stand
twice at nadir of the exact same spot of the Earth surface, the average time lapse between
two consecutive acquisitions as often been expressed in days. Multitemporal hyperspectral
data has therefore been investigated historically in remote sensing mainly for the monitoring
of changes occurring over long time periods, due to natural phenomena (such as forestry
and environment monitoring [160]) or due to natural disasters, such as floods or volcanic
eruptions [201] for instance. To that purpose, a large number of studies have been devoted
to hyperspectral change detection, such as statistically-based [32,33] or kernel-based [39,40]
methods to cite a few.

Thanks to the fast development of imaging sensors, it is now possible to acquire sequences
of hyperspectral images at near real-time rates with sensor devices easily operable on the
ground by human operators. The combination of the high spectral resolution proper to
hyperspectral images with the ability of video sequences to record phenomena evolving with
time is appealing for the time monitoring of transient phenomena based on their spatial and
spectral properties. However, some additional efforts are required to extend traditional video
processing techniques to the high dimensional space structured by hyperspectral data, or
to adapt classical hyperspectral processings to multitemporal data whose acquisition frame
rate is now in the order of the second. In addition, available benchmark hyperspectral video
data-sets are scarce and the lack of ground truth data makes the quantitative evaluation of
any novel method very challenging.
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3.1.2 Objectives of this chapter

In this chapter, we focus on object tracking in hyperspectral video sequences. Object
tracking can be defined as the process of following the motion of points or regions of interest
as they evolve with time within a video sequence. Object tracking finds numerous applications
in everyday life, such as automated surveillance, motion-based recognition, visual servoing or
traffic monitoring, and has been widely studied in the area of computer vision [202,230] within
the framework of traditional video sequences. However, most existing algorithms poorly adapt
to the high dimensionality inherent to hyperspectral data. To the best of our knowledge, the
only existing tracking method specifically designed and evaluated on real-time hyperspectral
video sequences is the one introduced in [15,213]. It makes use of the mean shift tracker
algorithm [53], and the tracked object is represented as a fixed primitive geometric shape and
does not adapt well to applications where either the tracked object is non-rigid or where the
precise shape of the object is required. The development of new algorithms able to face these
challenges is necessary for many real life applications.

Chemical gas plume tracking is a typical application that would surely benefit from the
design of such new hyperspectral object tracking methods. As a matter of fact, such application
is of great interest for several domains. In the environmental protection field for example,
gas plume tracking could be exploited to monitor pollutant gas clouds emitted by industrial
sources [233], in order to minimize their impact on the environment and the potential harm
they could cause on human population living nearby. In the defense and security area, a
possible usage of such tracking method could be to detect the use of chemical gas weapons [71].
Most gases do not respond in the visible spectrum range, but only in a restrained portion of the
long-wave infrared (LWIR) domain, hence the need of a fine sampling of the electromagnetic
spectrum and the incapacity of classical video techniques to detect (and, a fortiori, to track)
them. Additionally, a gas plume is a non-rigid object whose shape evolves unpredictably with
time. The necessity of a fine spectral description of the scene over time makes hyperspectral
video sequences the most suited tool for such detection and tracking application.

In the following, we propose a novel algorithm for hyperspectral object tracking. The
method, based on a hierarchical analysis of the frames of the hyperspectral sequence, is able
to track a region of interest whose shape may evolve with time, without any prior knowledge
about the materials constituting the region. The proposed work, sketched in [196], is based
on the sole general assumption that only the object of interest is in motion over a fixed
background in the hyperspectral video sequence. It then uses spectral, spatial and temporal
information derived from the sequence to perform a sequential object detection process over
the hierarchical decomposition of each frame, finally producing the shape and extent of the
tracked object. The method is investigated on the scenario of hyperspectral chemical gas
plume tracking, and its performances are compared against two state-of-the-art methods for
two different data sets.
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Figure 3.1: Example of object detection where (a) only the position and approximate shape
and (b) the precise shape of the object (i.e., the bridge) is output.

3.2 Hierarchical object detection

3.2.1 Classical object detection

Object detection is a computer vision application which aims at recognizing and extracting
some object of interest from a given image. In other word, the goal of an object detection
process is to answer the question: Is the object of interest present in this given image? As
for most computer vision applications, mimicking the recognition process our brain naturally
does turns out to be a real challenge, and several object detection methods have stemmed in
the literature. They can be classified in three categories according to the level of details of the
detection they produce:

1. The binary output, being the coarsest level, only states whether the object of interest is
present in the image or not.

2. The position output, where the location of the object of interest is marked by a simple
primitive shape (such as a dot, or a fitting rectangle), as illustrated by figure 3.1a.

3. The position and shape output, which detects the location of the object as well as its
precise shape in the image, as in figure 3.1b.

The majority of object detection processes are based on the assumptions that the object
of interest is only local with respect to the whole image and can be discriminated for the
background using a set characteristic features (such as shape, color homogeneity or texture
for instance). Then, due to the locality of the object of interest, the image can be divided into
patches, which are subsequently examined to determine whether they contain the object or not
by evaluating the presence or absence of the reference features. Regarding the definition of the
patches, sliding window approaches have shown to be effective for face [221] or pedestrians [58]
detection, as well as recognition of front/side views of cars [178]. The main explanation for
this efficiency is that all the sought objects can be roughly approximated by rectangles and
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therefore well fit within rectangular windows. Contrarily, sliding windows are not robust to the
detection of non rectangular objects. In addition, these approaches suffer from the necessity
of fixing the window size (although it can be relaxed by investigating several sizes, but at the
cost of a greater computational burden).

A possible solution to alleviate the issues related to sliding windows approaches is the use of
a segmentation map, where the spatial support for the sought object would be provided by the
various regions constituting the segmentation. In order to further improve this idea, [129,171]
proposed to use several segmentations of the image at various description scales in order to
increase the robustness of the resulting so-called soup of segments to the detection of objects
with various sizes and shapes. This approach is for instance investigated in [3] for the detection
of buildings in urban hyperspectral images: a first set of regions are defined as the connected
components generated using the morphological profiles of all bands of the image. Meaningful
regions are further defined as those with a high spectral homogeneity and large enough size,
leading to a batch of potential candidates (this so-called soup of segments) for the buildings to
retrieve. Finally, the object detection process is conducted by comparing for each candidate
region its feature distribution against the feature distribution of the given object of interest,
in terms of Kullback-Leibler divergence. Are declared objects all regions whose distance is less
than a predefined threshold.

More generally, the object detection process can be formalized as follows: given a set of
reference features corresponding to the object of interest Q'f = {wi*f}, where each w!®f is an
individual feature, and given a soup of segments SS = {R C E'}, the object detection process
retrieves for each region R € SS its set of features QF = {wF} in the image. Following,
It evaluates the similarity between Q"f and QR for some user chosen distance function
d <Qref, QR), defined according to the application. The selected region from the soup of
segments is the one minimizing this distance function. Alternatively, all regions below some
threshold can be retained.

3.2.2 Hierarchical object detection

Hierarchical image representations are suitable candidates to provide the soup of segments.
As a matter of fact, such representations aim at decomposing the image into a set of relevant
regions across the image support and at various scales. In addition to naturally providing a
finite number of candidate regions (supported by the node of the tree structure), the candidates
they propose already bear some meaning (at least with respect to the criterion which was
adopted to perform the decomposition). Figure 3.2 shows an example of object detection
process conducted over the hierarchical image decomposition pr