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Introduction

The volume of numerical data generated per year in the world has grown from 1.2× 1021

bytes in 2010 to 2.8×1021 bytes in 2012, and is expected to reach around 40×1021 bytes in 2020.
This exponential increase, due to the quantitative explosion of the amount of recording sensors,
is supported by a worldwide numerical storage capacity which has roughly doubled every 40
months since the 1980s [90], placing us nowadays at the heart of the digital age. A major
consequence of this tremendous numerical sampling of the real world is the phenomenon of
multimodality. As a matter of fact, there is no longer a unique sensor devoted to the monitoring
of a given physical source, but rather a multiplicity of them thanks to the proliferation of cheap
information sensing devices with more advanced sensitivity and specificities, each picturing
a particular aspect of the source. This multimodality of recorded signals yields a wealth of
information, allowing to better represent and comprehend the sensed scene, but raises on the
other and several issues regarding its optimal exploitation.

In particular, there is a real need for adapted multimodal processing tools, as they tend to
become more and more widespread in signal and image processing and analysis. Despite their
great interest for a broad range of applications is recognized, the huge diversity of multimodal
signals makes their general representation a real challenge. While their processing techniques
have been so far mostly conditioned by the application field in which they occur, there is a
growing interest in the design of new methods to handle multimodality in a more generic
way [59,106].

As human beings, we are continuously subject to multimodal signals through our five
senses. The human brain has the capacity to naturally filter all incoming signals and retain
out only the useful information in order to interpret the surrounding world and take the
optimal decisions to interact with it. While computers undoubtedly outperform human brains
in terms of computational capacity, machines are not yet even close to human performances
when it comes to interpretation and decision making. One of the main challenges of research
nowadays is to bridge this gap by imitating the operating process of the human brain.

In the field of image processing and analysis for instance, real efforts have been done in
the last decades to emulate the human vision. Numerical imaging sensors are now far more
powerful than human eyes in many aspects. For instance, the human eyes are sensitive only
to wavelengths in the visible domain of the electromagnetic spectrum (between 380 nm and
780 nm), while imaging sensors can be devised to collect information in other portions of this
spectrum (such as X-ray imaging sensors used in the field of medical imagery, or infrared
thermography operating in the thermal infrared domain).

Progresses have also been made to emulate the human brain cognitive processes in terms
of image interpretation and understanding, and hierarchical image representations are one of
those advances. As a matter of fact, when analyzing an image, the human brain naturally
decomposes it into a set of semantically consistent regions which can be associated with
real world objects. Taking an aerial photography of a city for example, one automatically
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2 Introduction

recognizes buildings, parks, roads, and so on In natural images, such set of coherent regions
very often organizes itself in a hierarchical way: regions are ordered from fine to coarse, where
coarse regions comprises the fine ones. In the aerial picture of a city, trees are contained in
parks, buildings and roads are enclosed in neighborhoods, which are themselves comprised
in the whole city. The definition of region of interests is related to the notion of scale of
exploration, being the level of details at which the image is analyzed. As an image can be
explored at various levels of details, the choice of a proper scale of exploration is driven by the
underlying application. Coming back to the previous example, one would not operate at the
same scale of exploration if the goal was to count the number of trees or cars present in the
scene, requiring a fine level of details as each region of interest would be made of a few pixels
only, or to evaluate the total length of the road network spanning the whole city, and thus at
a coarser representations scale.

Hierarchical representations are a way to accommodate for this intrinsic multiscale nature
of images, and have become a popular tool for image analysis that can be adapted to a broad
range of applications.

Objectives and thesis organization

This thesis is concerned with the study of multimodality and hierarchical representations.
As a matter of fact, the main objective of the work developed here is to connect those two
notions. We focus in particular on multimodal images, i.e., several images of the same scene
but acquired with different characteristics, such as the type of imaging sensor, the acquisition
time, the localization around the imaged source, and so on. This thesis extends hierarchical
representations to such multimodal images, in order to exploit at best the information brought
by the multimodality and improve the classical image processing techniques when applied to
real applications.

The definition of a particular multimodality parameterizes the hierarchical representation of
the resulting multimodal image, while the application guides the subsequent processing of this
hierarchical representation. Therefore, each chapter of this manuscript is articulated around
this quadruplet multimodality/hierarchical representation/ hierarchical processing/application,
as depicted by figure 1. The overall organization is hierarchical, in the sense that chapter 1
plays the role of the root by introducing the tools on which the following leaf chapters 2, 3
and 4 rely on 1.

Chapter 1 The first chapter introduces the cornerstone notion of multimodality in signal

1. While chapter 1 is the root of the manuscript, the remaining chapters 2, 3 and 4 which constitute the
three leaves of the hierarchy depicted by figure 1 are globally uncorrelated in the sense that they all investigate
a particular multimodality and implement the tools presented in chapter 1. However, some notions are shared
between the three leaf chapters (the BPT representation for hyperspectral images between chapters 2 and 3
and the energetic framework between chapters 2 and 4). While chapters 3 and 4 may be switched (and were
organized as such mainly following chronological considerations), it is however strongly advised to read chapter 2
beforehand.
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Figure 1: Thesis organization

and image processing, and proposes to model it with a formal definition. A particular
focus is notably put in multimodal images frequently encountered in remote sensing.
The second keystone notion presented in chapter 1 is the hierarchical representation
of images. Theoretical foundations and definitions are first described, and tree-based
representation as well as hierarchical representation are then reviewed, the latter being
a particular case of the former. The binary partition tree (BPT), considered as the
baseline hierarchical representation in the following chapters, is presented more in details.
Finally, chapter 1 illustrates the use of hierarchical image representation and analysis in
a concrete example being the segmentation of tropical rain forest hyperspectral images.
This application also allows to motivate the design of hierarchical multimodal tools and
underline their challenges.

Chapter 2 In this second chapter, we focus on the spectral-spatial multimodality, naturally
provided by hyperspectral images. In particular, the use of spectral and spatial informa-
tion has already proved to be valuable for spectral unmixing purposes. In opposition to
the classical case which perform the unmixing over the global image, we adopt here a
local point of view, as we aim at definition a segmentation of the hyperspectral image
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that is optimal with respect to the unmixing operation. A first contribution is to propose
new strategies to build a BPT representation of hyperspectral images with novel region
models and merging criteria, adapted for spectral unmixing purposes. Then, an optimal
segmentation is extracted from the BPT structure following some energetic considerations.
In particular, attaching some energy function to all segmentations contained in the BPT
structure, we search for the one with minimal energy, and therefore maximal adequacy
with the intended application. While the energy minimization procedure has already
been studied in the literature for certain type of energies [87], a second contribution of
this chapter is to extend this procedure to new definitions of energy functions. Based on
these results, we finally formulate novel energy functions which aim at producing some
segmentation being optimal with respect to the spectral unmixing, reached by combining
both the spectral and spatial information contained by the hyperspectral image.

Chapter 3 This third chapter concentrates on the temporal multimodality, that is, when the
multimodal data features several images acquired at different dates and can be thus
assimilated to a video sequence. While the processing of traditional video sequences has
been thoroughly investigated in the computer vision literature, we propose to consider
the case of hyperspectral video sequences instead. In particular, we focus on the object
tracking application, which consists in following the motion of an object of interest
as it evolves with time along the sequence. The contribution of this chapter is to
propose a novel method for object tracking, tackled as a sequential hierarchical object
detection procedure. It first involves the construction of a BPT over each frame of the
hyperspectral video sequence and then the retrieval of the tracked object of interest
among the nodes of the BPT structure. The proposed object tracking method is tested
in a real scenario being the tracking of a chemical gas plume in thermal hyperspectral
video sequences.

Chapter 4 The last chapter of this manuscript is devoted to the sensorial multimodality,
i.e., when several images of a scene are acquired with different sensors. This multisource
multimodality is appealing in particular for image segmentation applications, as the
information brought by the various modalities of the multimodal images should lead
to the design of more accurate regions. However, handling each individual image by a
hierarchical representation raises the question on how the fusion of those hierarchies.
Based on the recently proposed concept of braids of partitions [101] (being an extension
of hierarchies of partitions), we derive a novel methodology for the fusion of hierarchical
representations. Using again an energetic framework, the contribution of this chapter is
to perform the hierarchical segmentation of multisource images using braids of parti-
tions. The validation of the proposed methodology is conducted using various sensorial
multimodal data sets.
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The major role of this first chapter is to introduce the two fundamental (and allegedly
unrelated) notions that are at the core of this manuscript, namelymultimodality and hierarchical
representations. The former concept is presented in section 1.1, which reviews the different
cases of multimodality often occurring in signal and image processing (with a particular focus
for the remote sensing field). Section 1.2 defines some classical image representations, acting
as a prerequisite for section 1.3 which presents common tree-based and hierarchical image
representations. Section 1.4 features an example of hierarchical image representation and
analysis in a concrete scenario, namely the hierarchical segmentation of tropical rain forest
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hyperspectral images, and illustrates both the need for adapted multimodal tools and the
challenges their design represent.

1.1 Multimodality

What is multimodality?

The most basic, linguistics-driven answer to this question, is something which is composed
of several modalities. Then, what is a modality? According to the Cambridge dictionary 1,
a modality is a particular way of doing or experiencing something. Its Oxford counterpart 2

proposes an equivalent definition, as being a particular form of sensory perception. The notion
of modality is therefore linked with the notion of signal received by a sensor, and by extension,
it can be intuited that multimodality involves several signals and/or several sensors. Using a
signal processing terminology, one can reformulate the definition of multimodality as done
in [107]: a multimodal signal is defined as the information about some physical phenomenon,
or system of interest, recorded with different types of sensors and/or at different locations
and/or at different observation times and/or using different experimental setups... Again
appears in this definition the notion of multiplicity of signals and receivers, and the intuition
that the description and categorization of multimodal signals is rather broad.

What does not appear in the previous definition however, is the interest of such multimodal
signals, not necessarily straightforward at a first sight. While the following 160 pages can be
considered as a tentative answer to this point, let us begin with an illustrative example. We,
as human being, are undergoing multimodal signals in an everyday basis. We continuously
record signals and information through our five senses: sight, hearing, smell, touch and taste.
Our brain naturally processes and summarizes all this simultaneously recorded information, to
retain only the most important part of it, the one that allows us to interact with our external
environment. As these processings are done internally and innately, we are not necessarily
aware that they actually allow us to perceive the environment at our best. Discard only one
of those five senses, and the picture of our environment becomes only partial.

Let us illustrate this assertion with the simple example of a musical concert, where the
two dominant working senses would be the sight and the hearing. Obstructing one of these
senses (by inserting earplugs or wearing a blindfold) would yield a different and only partial
perception of the concert. This perception could also be altered by the localization in the
concert room: a person located right in front of the stage would probably not sense the concert
the same way than a person located at the rear of the stands, and one could argue that each
person experience is only partial. Similarly, attending the concert in live or watching it on TV
(i.e., changing the "experimental setup") would provide only a sided information.

From the above example, it should be clear that a multimodal signal bears more information
than each of its individual modalities, also called components. A major challenge of nowadays

1. http://dictionary.cambridge.org/dictionary/english/modality
2. http://www.oxforddictionaries.com/definition/english/modality
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computer-based technological era is to make computers, with powerful, well understood,
and more importantly, well mastered computational capacities, mimicking the human brain,
whose computational capacities are even more powerful in some sense, but far from being
understood and mastered. Consequently, multimodal data handling and processing is a very
active field of the signal and image processing community, and the challenges to be taken up
are numerous [107].

1.1.1 Multimodality in signal and image processing

The practical description of multimodality intuited above proposes to define it as the joint
consideration of several signals coming from the same source with different acquisition setups.
However, a more formal study multimodality of this phenomenon requires a clear framework
holding on a baseline definition, which is the purpose of the current section. Defining a signal
is the first step toward the definition of a multimodal signal.

Definition 1.1 (signal)
A signal is defined as a function

I: E −→ V

x 7−→ I(x) (1.1)

In definition (1.1), the word signal is used in its broadest sense, as the acquisition of some
physical phenomenon, recorded by some sensor. E will be called the support of I, whose
elements are x ∈ E. V is the space where I takes its values I(x).

Definition (1.1) is convenient as it adapts to all kind of signals encountered in the signal
and image processing fields. If I is a temporal signal, recorded with a microphone for instance,
then its support is the time axis (thus E ⊆ R), its elements x are the sampling points at which
the signal was recorded and its values I(x) correspond to the numerical data recorded by the
microphone (the space of values V is probably a subset of R as well). If I is an image, then its
support E is the pixel grid E ⊆ Z2 (one will talk of spatial support in this case), its elements
x are the pixel sites, and V is the space of pixel values I(x) being Rn (or even Cn for certain
types of images) without loss of generality.

Jointly considering several of such defined signals yields the following definition of multi-
modality:

Definition 1.2 (Multimodal signal)
A multimodal signal is defined as any function

I: E1 × · · · × EP −→ V1 × · · · × VP
(x1, . . . , xP ) 7−→ (I1(x1), . . . , IP (xP )) (1.2)

where each Ii : Ei → Vi is an individual modality composing the multimodal signal I =
{I1, . . . , IP }.
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Following definition (1.2), a multimodal signal I is a set of different individual modalities
Ii, which may not have either the same supports Ei or spaces of values Vi, but who do
correspond to the same recorded phenomenon. This very general definition, considered as
standard for the rest of this manuscript, encompasses the majority of multimodal phenomena
occurring in signal and image processing. Some examples of such possible multimodalities
non-exhaustively include:

– Different sensors simultaneously recording some signals. In such case, each modality Ii
corresponds to the acquisition of a given sensor. Those sensors may be identical but
physically placed at different locations around the emitting source, they may record
signals of different physical natures from the same spot, or may be a combination of the
previous two options.

– One source recorded with a single sensor at different acquisition times or with various
acquisition setups. For the former, each Ii corresponds to a given time t while it is
linked with a given setup for the latter.

Any other combination of the previously enumerated examples obviously leads to a signal
complying with definition (1.2), which can thus be termed as multimodal. Therefore, due to
the high diversity of possible multimodalities, expecting to handle them with some universal
processing appears as highly unrealistic. Additionally, their respective application domains
may also be varied and not related, making the design of generic multimodal processing tools
a very challenging task.

Among the various applications within the signal and image processing fields where
multimodality can be encountered, we can notably, and non-exhaustively, list:

Audiovisual processing: Coming back to the concert example given at the beginning of
section 1.1, it is evident that one would not fully experience a musical concert if wearing
either a blindfold or earplugs. As a matter of fact, vision and audition are going along when
one listen to somebody talk [67], and several studies have shown the potential of combining
both audio and video signals to achieve better speech recognition [50]. Among the major
challenges that must be faced, the frame rate of the video source may differ from the rate at
which the audio samples are obtained. In addition, the video source can be viewed in itself
as a multimodal data. A short review of existing methods for audiovisual processing can
be found in [81]. Note that audiovisual data is a precise case where the multimodalies (i.e.,
the audio and visual signals) of the multimodal signal do not share the same support Ei of
definition (1.2).

Sensor networking: A sensor network corresponds to the dissemination of several connected
sensors around the source that has to be monitored. Sensor networking is more and more
widespread in several application fields of signal processing, such as underwater acoustics [4],
seismology [226], glaciology [152] or smart grid designing [88]. The configuration of a sensor
network allows to simultaneously record several signals from the monitored source. This
profusion of information induces some redundancy between all recorded signals, allowing in
particular to reduce errors in the measurements. On the other hand, the complementarity
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(a) (b) (c)

Figure 1.1: Illustrations of multimodalities occuring in (a) seismology (image borrowed
from [226]), (b) underwater acoustics (image from [180]) and (c) medical imaging 3.

between each signal should ensure to capture every possible interesting information related to
the emitting source. However, one of the main challenges that has to be faced is the huge load
of generated data, which is problematic to operate the collaboration between all sensors of the
network and the information fusion.

Medical imaging: Medical imaging sensors collect information about organ and tissue
anatomy (structural imagery) or their functioning (functional imagery) in order to help
practitioners in their diagnoses and assist them during interventions. Due to the highly diverse
information that can be acquired, the medical imaging field has seen blossoming a huge
quantity of imaging acquisition techniques. Among them, radiography and fluoroscopy are
based on X-rays, magnetic resonance imaging and functional magnetic resonance imaging rely
on the orientation of the molecules when subject to a strong magnetic field, positron emission
tomography detects gamma rays emitted by a chemical tracer introduced in the patient body,
and ultrasonography images the echoes made by tissues reflecting pulses of ultrasounds. This
wealth of possible multimodalities has led to various studies [37,187]. One major challenge
of medical multimodal images is their co-registration [128] since the various images must be
perfectly aligned in order to be fully exploitable by the practitioner.

Illustrations of multimodalities occurring in seismology, underwater acoustics and medical
imaging are displayed in figure 1.1.

1.1.2 Multimodality in remote sensing

In its broadest sense, remote sensing consists of the acquisition of information about an
object or phenomenon without making physical contact between the sensor and the object of
interest. The integration in the past decades of imaging sensors on airborne or spaceborne
platforms has made remote sensing a very convenient and well developed technology for Earth
observation or, more generally, geoscience applications.

3. http://www.loni.usc.edu/research/projects/OIS/images/multi_modal.jpg



10 Chapter 1. Multimodality and hierarchical representations

(a) (b)

Figure 1.2: Example of (a) a panchromatic image (QuickBird sensor) and (b) a multispectral
image (IKONOS sensor) 4.

1.1.2.1 Imaging sensors in remote sensing

As for the medical imaging field, a important diversity of imaging sensors has been
developed for remote sensing applications. While each particular type of sensor is concerned
with the measurement of a specific physical quantity emanating from the image scene, sensors
used in remote sensing can be categorized in two classes: passive sensors, and active sensors.
The former capture the signal that is emitted by the scene itself (typically, the reflected
light) while the latter scan the scene by emitting their own signal and recording the reflected
echoes [136].

Panchromatic sensors: Panchromatic images are one-band images, capturing the radio-
metric information (i.e., the amount of light) that is emitted by the imaged scene in a broad
wavelength range (between 450 nm and 900 nm for the IKONOS satellite for instance). Due
to their low spectral resolution, they usually produce images at very high spatial resolution
(typically less than 1 m per pixel). An example of panchromatic image is displayed in fig-
ure 1.2a, featuring the urban area of downtown Madrid (Spain). This image was acquired
with the QuickBird satellite, and features a ground resolution of 61 cm. The spectral range
covers from 405 nm to 1053 nm.

Multi-spectral sensors: Multi-spectral sensors produce images which are composed of
several channels, where the spectral response of each channel is narrower than in the panchro-
matic case, but remain rather wide (the width being typically around 100 nm). Along with its
spatial resolution (which is lower than the one of a panchromatic sensor), a multi-spectral

4. both figures 1.2a and 1.2b are from http://gdsc.nlr.nl/gdsc/en
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Figure 1.3: Illustration of a hyperspectral image (image borrowed from [23]).

sensor is characterized by its number of spectral channels, their respective width and their
location in the electromagnetic spectrum. Multi-spectral sensors mounted on satellites usually
contain no more than 10 spectral bands located in the visible domain, typically centered
around the blue, green and red domains, and sometimes in the infrared domain, for instance in
the near infrared (NIR) and short wave infrared (SWIR) domains. The multi-spectral image
displayed in figure 1.2b, acquired over Beijing (China) by the IKONOS satellite, is composed
for instance of four spectral bands: blue (450 nm - 520 nm), green (520 nm - 600 nm), red
(630 nm - 690 nm) and NIR (760 nm - 900 nm), each of these having a spatial resolution
of 4 m. Note that only the red, green and blue bands were used to compose the image of
figure 1.2b.

Hyperspectral sensors: Hyperspectral images can be seen as an extension of multi-spectral
images as they no longer contain a few spectral channels, but rather up to several hundreds
(even thousands in some fields) of them. The spectral channels are in this case centered on a
narrow bandwidth, contiguously spaced in the electromagnetic spectrum. Thus, the recorded
signal corresponds to a fine sampling of the electromagnetic response of the scene. When
this sampling occurs in the visible and NIR domains, this signal can be interpreted as a
reflectance function, i.e. the function that depicts how the light interacted and was reflected
by the imaged scene. When the spectral bands are on the other hand located in the long
wave infrared (LWIR) domain, the recorded signal correspond to the emissivity of the scene,
i.e. the way it has emitted some energy as thermal radiations. Either way, the signal that is
recorded for each pixel of the image can be seen as a function of the wavelength, also called
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(a) (b)

Figure 1.4: Example of (a) a LiDAR image (color proportional to height) and (b) a SAR
X-band intensity image.

spectrum. Moreover, this spectrum, be it reflectance or emissivity, is related to the materials
that are physically present in the pixel site. As a matter of fact, two different materials, such
as soil and vegetation, do not interact with the light or emit thermal radiations the same
way, as depicted by figure 1.3. Hyperspectral images, by their ability to discriminate between
materials in the scene, find an always increasing number of applications in the remote sensing
field [82, 157]. In order to be able to finely sense the spectral domain and keep a relatively
high signal to noise ratio, the spatial resolution of a hyperspectral image needs to be lowered
with respect to multi-spectral or panchromatic images: the AVIRIS sensor [85] for instance,
produces images composed of 224 spectral bands, of approximately 10 nm width, evenly spaced
between 450 nm and 2450 nm, and with a 20 m spatial resolution. The acquisition time could
alternatively be extended, but the gain in spatial and spectral resolution would be paid in this
case by the presence of a significant motion blur.

LiDAR sensors: As opposed to the panchromatic, multispectral and hyperspectral sensors
previously described, which were passive sensors, the light detection and ranging (LiDAR)
sensor belongs to the active class. The LiDAR sensor illuminate the scene with a beam of
laser and records the time needed for the beam to bounce back from the scene to the sensor.
This time lapse is then transformed into a measure of height, called the digital surface model
(DSM), as it can be seen in figure 1.4a 5 where hotter colors correspond to higher heights. More
advanced LiDAR sensors also record the intensity of the returns, which gives some information
about the materials present on the ground, depending on how they reflected the laser pulse
(in the same fashion as spectral sensors). Another key characteristic of LiDAR sensors is the
wavelength of their emitted pulse. Airborne topographic mapping LiDAR generally use a
1064 nm wavelength laser while bathymetric systems frequently utilize a lower wavelength
(such as 532 nm) as it penetrates water with much less attenuation [136]. LiDAR sensors have

5. http://toni88x.bplaced.net/sparse_imgs/lidar2.jpg
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found numerous applications in remote sensing, notably in the field of forestry [117] and urban
mapping [159].

SAR sensors: Synthetic aperture radar (SAR) is another active sensor commonly used for
remote sensing applications. Similar to the LiDAR principle, the SAR sensor illuminates the
scene with radio waves and records the echoes reflected by the scene. Depending on how these
echoes are processed, one can obtain several information from the radar waves:
Polarimetry: In the case of polarimetric synthetic aperture radar (PolSAR), radio waves are

emitted by the sensor with a known polarization (the description of how the electrical
component of the emitted electromagnetic wave vibrates in the space). Different materials
reflect radar waves with different intensities, but some anisotropic materials also reflect
different polarizations with different intensities. By emitting and receiving selective
polarizations (for instance, emitting a horizontally polarized wave and receiving it with
a vertical polarization), it is then possible to draw a picture of the materials composing
the scene.

Interferometry: While PolSAR uses information about wave polarization, the interferometric
synthetic aperture radar (InSAR) uses the information contained in the phase of the
echoed waves. More precisely, it uses the differential phase of the echoed waves, either
from multiple passes along the same trajectory and/or from multiple displaced antennas
on a single pass. The processing of this differential phase allows to generate maps of
surface deformation or digital elevation models.

The frequency of the emitted radio waves is also of importance when operating a SAR sensor,
as different frequencies do not behave the same way when interacting with the ground. For
instance, low frequency waves (typically around 0.4 GHz, known as the P-band) are preferred
for biomass monitoring and hydrological mapping applications, while higher frequencies
(9.6 GHz, corresponding to the X-band) provides the best spatial resolution, thus best suited
for surveillance. SAR images find several applications in the remote sensing domain such as
land use and land cover classification [161] or change detection [17] for instance. An example
of SAR image can be seen in figure 1.4b 6.

1.1.2.2 Multimodality in remote sensing

The multiplicity of sensors used in remote sensing gives rise to numerous occurrences of
multimodality, which have found to be useful for many practical application scenarios. Among
them, we can notably (and non-exhaustively) list:

The spectral-spatial multimodality: It is one of the most studied multimodality related
to hyperspectral imagery. A hyperspectral image is a stack of single-band images acquired at
different position of the electromagnetic spectrum. Compared to the classical panchromatic
images, hyperspectral images not only contain the spatial information encoded by the pixel

6. http://www.geoville.com/images/TerraSAR-X.jpg
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intensities, but also the spectral information through the multiple intensity values of each
pixel.

One major improvement brought by the spectral-spatial multimodality concerns the
classification of hyperspectral images, which is traditionally conducted in a pixel-wise manner
(i.e., each pixel is associated with a class given only its spectral properties). Assuming that
spatially close pixels are likely to belong to the same class, spectral-spatial classification
methods, such as morphological profiles [72] or watershed segmentation [188] have shown to
greatly improve the pixel-wise classification results. The reader is referred to section 2.1.2.1
for a short review of spectral-spatial hyperspectral classification techniques.

Another classical hyperspectral application that benefits from the spectral-spatial multi-
modality is spectral unmixing. This processing assumes that the spectrum of each pixel of the
image can be written as a linear combination of the spectra of some reference pixels (called
the endmembers) weighted by some coefficients (called the fractional abundances) that reflect
the contribution of each endmember in the pixel, and aims at estimating the endmembers
and associated abundances given a hyperspectral image. Assuming that neighboring pixels
should be made of similar materials and in similar proportions, the introduction of some
spatial information (regularizing the abundance maps with a Markov random field in [68] and
with total variation in [94], or in [135] with some spectral clustering prior to the endmember
induction step) within the unmixing process has led to better unmixing results than the
classical case where no spatial correlations are taken into account. Similarly, the reader
is referred to section 2.1.2.2 for a brief review on spectral-spatial hyperspectral unmixing
methods.

The temporal multimodality: In the case of multi-temporal data, the scene is imaged
(with the same sensor or not) at different time instances. The comparative analysis of the
resulting images allows to detect what has changed in the scene during the lapse of time
between two consecutive acquisitions. The most common method to conduct such analysis is
to compute and process the image difference, either by direct thresholding or by performing
some statistical test [17,31]. Change detection methods applied to multi-temporal data find
several applications in remote sensing, such as the monitoring of vegetation changes [167], or
the assessment of natural disasters of environment hazards such as floods [123], tsunamis [26]
or wildfires [105].

The multi-angle multimodality Multi-angular images are created when the imaging
sensor acquires several images of the scene at different positions (and thus different viewing
angles) with respect to the scene. For a sensor mounted on a satellite for instance, images
are commonly acquired in the nadir direction (the direction normal to the Earth surface).
For multi-angular images, the satellite images a scene at different positions during its pass,
resulting in different viewing angles as illustrated by figure 1.5.

Multi-angular images find various applications in remote sensing: in [116,203] for instance,
their are used to estimate the height of buildings in urban environments. As a matter of fact,
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Figure 1.5: Illustration of a multi-angular sensor onboard the Terra satellite [63].

multi-angular images can be viewed and processed as stereoscoptic images, creating a notion
of depth for the objects present in the scene. In [49] on the other hand, multi-angular images
are used to assess the canopy structure of a boreal forest as the reflectance of various tree
species varies differently according to the reflected (scattering) angle. Those variations are
therefore captured by the multi-angular images, allowing to discriminate between the tree
species composing the forest canopy.

The multisource multimodality Finally, the majority of multimodalities encountered
in remote sensing could be classified as multisensor (or multisource) images, which occur
when several images of the same scene are acquired with different sensors. One application
of the multisensor multimodality is pansharpening, which aims at fusing a high spatial low
spectral resolution panchromatic image with a low spatial high spectral resolution multispectral
or hyperspectral image in order to create a high spatial high spectral pansharpened image.
Several methods, such as component-substitution or multiresolution analysis. Reviews on
pansharpening fusion methods and their respective performances can be found in [7, 191]. Of
course, the processing of multisensor remote sensing data can pair every type of sources, such
as hyperspectral/LiDAR [11,60] as well as hyperspectral/SAR [48].

1.1.2.3 The Data Fusion Contest

The increasing interest of the remote sensing community toward the processing of multi-
modal images has led the IEEE Geoscience and Remote Sensing Society to launch in 2006
a data fusion contest (DFC) 7, whose goal is to evaluate existing methodologies at the re-

7. http://www.grss-ieee.org/community/technical-committees/data-fusion/

http://www.grss-ieee.org/community/technical-committees/data-fusion/
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Figure 1.6: Composition of optical (left part), SAR (central part) and LiDAR (right part)
images over urban environment [21].

search or operational level to solve remote sensing problems using data from a variety of
sensors. This DFC, annually held since 2006, has seen the contenders working on the following
multimodalities:
2006: The fusion of multispectral and panchromatic images, also called pansharpening [8].
2007: The fusion of SAR and optical data in an urban mapping framework [151].
2008: The classification of very high spatial resolution hyperspectral data [115].
2009-2010: The analysis of multi-temporal SAR and optical data to perform change detec-

tion [123].
2011: The processing of multi-angular panchromatic and multispectral images [150].
2012: The fusion of multi-temporal and multimodal optical, SAR and LiDAR data over

some urban environment [21]. A composition of these three modalities is displayed by
figure 1.6.

2013: The fusion of hyperspectral and LiDAR data in the framework of hyperspectral
classification [61].

2014: The combination of low spatial resolution hyperspectral data acquired in the long wave
infrared (LWIR) domain with high resolution optical images [114].

2015: The ongoing DFC 2015 features the processing of very high resolution optical images
along with LiDAR data.

The different multimodal data sets and their respective applications proposed in the scope of
the DFC illustrates well the numerous instances of multimodalities that can be encountered in
the remote sensing field, as well as the need of adapted multimodal tools to process them.

1.1.3 General fusion techniques

The processing of multimodal data necessarily involves, at some time, the pooling of the
various features proper to each modality in order to derive some fused features characterizing
the multimodal data as a whole. This pooling is classically called the data fusion step. Of
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course, it depends on the nature of the multimodality being handled, but also on the underlying
goal, and there exists no generic method that can be applied regardless of the context. In
fact, it would not be exaggerated to say that there exists a specific data fusion step per
multimodality per application. Under this consideration, Wald [223] defined data fusion as
a multilevel, multifaceted process handling the automatic detection, association, correlation,
estimation, and combination of data and information from several sources. A classical data
processing chain is composed of three main steps: raw data handling, feature extraction and
decision operation. Data fusion can thus take place at three levels of the processing chain [106]:

– Fusion at the raw data level. It is the combination of the raw data from multiple sources
into a single "fused" source, which is expected to be more informative than the input
sources on their own. A typical example of raw data level fusion is pansharpening, which
aims to produce a high spatial high spectral image from a high spatial low spectral and
a low spatial high spectral ones.

– Fusion at the feature level. In that case, features of interest (for instance regions,
textures, edge maps, and so on) are extracted independently on each source, and are
combined to produce some unified feature map that is further used as an input for a
single decision step.

– Fusion at the decision level. In such event, features have been extracted and processed
on each modality to yield several decision outputs. These decisions are then combined,
through majority voting, statistical or fuzzy methods for instance, to produce a final
fused decision.

The strategy to adopt, which can be a combination of the previous three fusion techniques,
depends of course in practice on the application goal and the type of multimodality to handle.

1.1.4 Conclusion and challenges related to multimodality

As a summary of this first section devoted to multimodality, a multimodal signal has been
defined as the joint composition of multiple acquisitions of a physical source of interest. Each
acquisition procedure, resulting in a given modality, differs from one way or another from the
other acquisitions, where this difference may be related to the nature of the used sensor, to
the position or configuration setup of the sensor, to the date of the acquisition, and so on.

The information carried by each modality is therefore bound to the nature of its acquisition.
Several modalities may contain some redundant information: two hyperspectral images acquired
at different dates both feature the spectral properties of the materials composing the scene for
instance. On the other hand, some other types of information may be explicitly expressed by
a single modality of the multimodal data. Therefore, compared to their classical "unimodal"
counterparts, multimodal signals are more accurate and more complete representations of the
acquired source since they depict multiple facets of it.

While they allow to better describe the recorded source, the processing of multimodal
signals is a major issue to their utilization. As a matter of fact, the multimodality phenomenon
occurs in various fields of signal and image processing under different natures, thus making
the design of generic and portable processing algorithms, even if desirable, highly challenging.
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Figure 1.7: Illustration of the pixel grid.

1.2 Image representations and general notations

In the first section of this chapter, the word signal has been used at its broadest sense, as
defined by the IEEE Signal Processing Society 8: signal refers to any abstract, symbolic, or phys-
ical manifestation of information with examples that include: audio, music, speech, language,
text, image, graphics, video, multimedia, sensor, communication, geophysical, sonar, radar,
biological, chemical, molecular, genomic, medical, data, or sequences of symbols, attributes, or
numerical quantities.

In the following, we focus in particular on images. Multimodal images remain of course
concerned by all properties and specificities of multimodal signals defined and discussed in
section 1.1. Like any signal, images accept several representations, and each one of them can
be processed according to specific mathematical tools. Images are composed of pixels, their
smallest structuring element (pixel being a contraction of picture element). When an image is
digitally stored in a computer, it is represented as a grid map (the pixel grid) where one or
several values is associated to each cell of the grid, the pixel values, as illustrated by figure 1.7.
Most of the image representations rely on this grid pattern.

1.2.1 Image as a graph

In the graph-based representation, an image I is depicted as a graph G = (V,U) where V
is a set of vertices and U is a set of edges. In such case, each vertex corresponds to a pixel of
the pixel grid, as displayed by figure 1.8. The edges, on the other hand, allows to define some
neighboring relationships between pixels: two pixels xi and xj are neighbors if and only if there
is an edge uij connecting their respective vertices vi and vj in the graph G. In particular, the
two most common neighboring systems used in image processing are the so-called 4-neighbors
and 8-neighbors systems, as represented by figure 1.9. Traditionally, the graph is defined as
undirected, meaning that the edges connecting vertices have no directions (if vi is connected
to vj , then the converse is also true). Pixel values are also stored as attributes for the vertices.
One then refers to the graph G as an undirected vertex-valued graph. Using graph-based

8. http://www.signalprocessingsociety.org/about/scope-mission/
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G = (V ,U)

Figure 1.8: Graph-based image representation.

(a) (b)

Figure 1.9: Illustration of (a) 4-neighbors and (b) 8-neighbors systems, where the red central
pixel is connected.

image representation notably allows to use tools provided by the graph theory framework,
whose most famous examples are probably graph cuts [27] and spectral clustering [222].

1.2.2 Image as a functional

Another possible representation to define an image is as a functional. In such case, we
get back to the definition (1.1) of a signal, except that the support spaces can now be more
precisely defined. Therefore, in the functional-based representation, an image I is defined as
a function

I : E ⊆ Z2 → V

x 7→ I(x) (1.3)

where E, the spatial support of I, is defined as a subset of Z× Z to represent the pixel grid,
and the space of values V depends on the used sensor. For a grayscale image (such as a LiDAR
image for instance), each pixel value I(x) is a scalar, thus V ⊆ R. For multi-band images
(such as traditional color images, multi-spectral or hyperspectral images), to each pixel is
associated a N−dimensional vector, where N is the number of channels, and V ⊆ RN . Note
that, in the case of multi-channel images, the pixel vector I(x) ∈ RN will be denoted by a
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bold symbol x if there is no ambiguity (as it will be the case in chapter 3 notably). In the
general case (i.e., for natural images), there is no analytical expression for I as a function,
but properties such as smoothness (at least piece-wise derivability) are commonly assumed.
Famous examples of image related quantities relying on the functional-based representation of
an image notably include the total variation (TV) [170]

TV (I) =
∫
E
‖∇I(x)‖dx , (1.4)

as well as the Mumford-Shah energy functional [142] defined by the further equation (2.8).

1.2.3 Image as a matrix

Another possible image representation is the matrix-based formulation. In this case, each
pixel value x ∈ RN of pixel x is considered as a N -dimensional vector, and the whole image X
is viewed as a collection of Npix = |E| vectors

X =
[
x1, . . . ,xNpix

]
∈ RN×Npix (1.5)

yielding a matrix constituted of N rows (the dimensionality of the data) and Npix columns
(the number of pixels/samples). While the spatial organization of pixels is lost in this matrix-
based representation, it makes possible to use classical linear algebra operations such as
eigen-decomposition (where a classical example is the principal component analysis, which
is applied to the matrix XXT ∈ RN×N ) or matrix factorization (an example of such matrix
factorization, within the framework of hyperspectral unmixing, will be given in section 2.2).

1.2.4 Image as a random vector field

Finally, the statistical-based representation considers that each pixel value x ∈ RN is
no longer deterministic, but a particular realization of a more general random variable X
with probability distribution function pX instead. While simple notions like the mean or the
histogram of an image are directly related to this statistical representation, this framework
allows for the use of more sophisticated tools. Classical image processing operation, such
as classification (with support vector machines [54] for instance), clustering (such as mean
shift clustering [52]), object detection and anomaly/target detection (classically involving
hypothesis testing [131]) notably exploit the nature and the properties of the probability
distribution pX of the pixel values.

1.3 Hierarchical representations of images

This section is devoted to hierarchical representation of images. Motivated by the intrinsic
multi-scale nature of images (section 1.3.1), such representations, also termed tree-based
representations, have received much attention in image analysis and especially in the field
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of mathematical morphology. Sections 1.3.2 and 1.3.3 introduces tree-based representations
through this prism of mathematical morphology, while section 1.3.4 focuses deeper into a
particular instance of hierarchical representation being the binary partition tree.

The functional-based representation of images is considered in the following, as previously
described in section 1.2.2: an image is represented as a function I : E ⊆ Z2 → V .

1.3.1 On the necessity of hierarchical representations

Hierarchical representations are an important and widely used tool in the field of image
processing and analysis. Their usefulness come from the intrinsic property of nearly all images
to lend themselves well to this type of representations. To understand the reason, we shall
take a quick look at the cognitive processes happening in the human brain when examining an
image.

As said in the previous section 1.2, an image is digitally stored as a pixel grid, where to
each box in the grid is associated a set of values, corresponding to the pixel values. For the
computer, there is no relation or connection whatsoever between the values of nearby pixels
in the grid. On the other hand, when staring at an image, the human brain does a little bit
more than the low-level processing which consists of receipting the electrical signal sent by the
optic nerves. It analyzes the image and naturally decomposes it into groups of neighboring
pixels such that their shape, color or textural attributes have some semantic meaning. Each
group can then be linked with a word, and it becomes possible to identify the scene based on
the objects from the real world that have been recognized [92].

As an example, consider the image displayed by figure 1.10. For every one who has ever
come to Grenoble, it is clear that this picture depicts a nice landscape of this city. The
underlying process operated by the brain to recognize the scene is first to divide up the image
into regions that are coherent enough to be assigned some semantic meaning (such as "bridge",
"river", "building", "mountain", and so on), and then to identify those regions (for instance,
the river is recognized as the Isère, the mountains as the Belledonne massif, and so on).

While the process of recognition and identification of regions of interest within an image
is natural for the human brain, it is on the other hand one of the most challenging task to
mimic in the field of computer vision. Indeed, regions of interest can be defined of various
sizes, which is related to the notion of scale of analysis (often referred to as level of details).
In the image processing field, images are not just manipulated for fun 9, but because of some
underlying application. It is this particular application that dictates the scale at which the
image, and thus its regions of interest, should be analyzed. As a simple illustrative example,
let us take a second look to the image displayed by figure 1.10. Counting the number of
windows or chimneys that appear in this image requires a fine analysis of the scene, and thus a
high level of details, since the regions of interest (in other words, the windows or the chimneys)
are small, close to the pixel level. On the other hand, enumerating the buildings or separating

9. Although there is some part of fun in it :-)
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Figure 1.10: Difference between computer and brain image analyses. For the former, this
color image is a pixel grid in which each cell contains three values, the red, green and blue
components. For the latter, this is unmistakably a picture of the beautiful city of Grenoble.
The brain adds a high-level interpretation process to give some semantic meaning to regions
of pixels.

the mountain from the rest of the scene are applications that require a coarser level of analysis
because the regions to analyze are significantly larger.

This intrinsic multiscale nature has for consequences that regions of interest are organized
in a nested way from fine to coarse scales. Taking back the example of figure 1.10, windows
and chimneys are all included in buildings, and all buildings together define the city. Similarly,
looking back to figure 1.2 (the panchromatic and multispectral views of a city), one can be
interested in extracting buildings individually or neighborhoods, the latter containing the
former and thus being of coarser scale, depending on the objective. As the scale of analysis
of a single image is bound to the underlying application, it could be useful to decompose an
image into all its potential scales of interest regardless of the application, and then browse this
collection of scales to choose a proper one, rather than guessing a priori for each application
what would be the best scale of analysis to operate on. Thus, hierarchical representations
appear as a well-suited tool to account for this multi-scale image decomposition. An example
of such hierarchical representation is depicted bu figure 1.11.

1.3.2 The lattice of partitions

Working with hierarchical decomposition, and hierarchies of partitions in particular,
requires the introduction of mathematical background notions. More specifically and as their
name suggests, hierarchies of partitions are composed of partitions. Manipulating partitions is
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hierarchical
=⇒

representation

Figure 1.11: Example of decomposition of an image into several scales of interest, represented
in a hierarchical structure.

R1

R2 R3

R4

Ri ∩Rj = ∅
E =

⋃
i Ri

Figure 1.12: Illustration of a partition π = {Ri} of a set E.

slightly more complicated than manipulating numbers, and it can be valuable to be familiar
with the lattice structure of the space of all partitions.

Definition 1.3 (Partition)
Let E be some set. A partition of E, denoted π, is a family {Ri ⊆ E} of subsets of E such
that Ri ∩Rj 6=i = ∅ and

⋃
iRi = E.

Each subset Ri is called a region (or class) of E. A partition π of E is therefore a division
of E into non-overlapping regions which entirely cover E, as illustrates the figure 1.12. The
set of all partitions of E is denoted ΠE .

One question that quickly arises when working with partitions is how to compare them.
When manipulating numbers, it is natural to use the classical "less than or equal" relation
≤. But how does this relation transpose to partitions? Let us first recall the definition of a
partial order:

Definition 1.4 (Partial order)
A (non strict) partial order relation on E is a binary operation, denoted ≤ which satisfies for
any x, y and z in E:

– reflexivity: x ≤ x;
– transitivity: x ≤ y and y ≤ z ⇒ x ≤ z;
– antisymmetry: x ≤ y and y ≤ x⇒ x = y.
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π1 π2 π3

≤ 6≤

Figure 1.13: Illustration of the refinement ordering: π1 ≤ π2, but π1 6≤ π3.

π1

π2

π1 ∧ π2 π1 ∨ π2

Figure 1.14: Illustration of the refinement infimum (left) and supremum (right) of two partions.

Based on this definition, it is possible to define a partial order on ΠE that reflects the
refinement of two partitions:

Definition 1.5 (Refinement ordering)
For any two πi, πj ∈ ΠE, one says that πi refines (or is a refinement of) πj, and one writes
πi ≤ πj, whenever for each Ri ∈ πi, there exists Rj ∈ πj such that Ri ⊆ Rj.

In other words, πi is a refinement of πj if every individual region Rj ∈ πj can be fragmented
into one or several regions Ri ∈ πi, as illustrated by figure 1.13. Informally, πi is a refinement
of πj if πi "contains" all the boundaries of πj . It is for instance the case of π1 and π2 in
figure 1.13. However, the refinement ordering ≤ is only a partial order and not every two
partitions are comparable. This is the case in particular for π1 and π3 displayed by figure 1.13.

Nevertheless, ΠE equipped with the refinement ordering ≤ has a lattice structure, meaning
that, even though they are not comparable by refinement, any two partitions πi and πj of
ΠE always admit a greatest lower bound (called the refinement infimum) πi ∧ πj and a least
upper bound (called the refinement supremum) πi ∨ πj . The former is the largest partition of
ΠE that refines both πi and πj at the same time, and it is obtained by taking the intersection
of all the regions of πi and πj . The latter is the smallest partition of ΠE which is refined by
both πi and πj , and is obtained by retaining only the closed boundaries that are in common
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between πi and πj . An example of the refinement supremum and infimum of two partitions
can be seen in figure 1.14. Notice that the refinement supremum of any two partitions that do
not share any closed boundary is the whole support space E. That is the case for instance for
partitions π2 and π3 of figure 1.13. Conversely, if πi ≤ πj , then πi ∨ πj = πj .

Finally, we introduce the notion of sub-lattice, as it will later be useful (in chapter 4
notably):

Definition 1.6 (Sub-lattice)
Let (E,≤) be a lattice and E′ ⊆ E. (E′,≤) is a sub-lattice of E if for every two elements x′
and y′ of E′, then x′ ∧ y′ and x′ ∨ y′ are also in E′.

Put differently, a sub-lattice of E is a subset E′ of E such that the supremum and infimum
of any two elements of E′ are also elements of E′.

1.3.3 Hierarchical representations

1.3.3.1 Tree-based image representation

As it was developed in the previous section 1.3.1, images accommodate well with hierarchical
representations since regions of interest within an image are very often either disjoint or nested
within each other. To support this observation, tree-based representation have been proposed.

Definition 1.7 (Tree-based representation)
A tree-based representation T of E is a collection of regions T = {R ⊆ E} such that:

− ∅ 6∈ T
− E ∈ T
− ∀Ri,Rj ∈ T ,Ri ∩Rj ∈ {∅,Ri,Rj}

(1.6)

In other words, a tree-based representation of E is a decomposition of E into regions that
are either disjoint, or nested. A tree-based representation T can be represented as a graph
GT = (NT ,UT ) where each vertex (also called node) NR ∈ NT is associated with a region
R ∈ T and each edge ui,j ∈ UT means that either Ri ⊆ Rj or Rj ⊆ Ri. Put differently, the
graph representation of T is the Haase diagram of {R ∈ T } ordered by inclusion. In order to
simplify the notations, we will denote by R both the regions of the tree-based representation
and the vertices of the associated graph. Based on these tree/graph considerations, we can
introduce the following terminology, illustrated by figure 1.15.

Definition 1.8 (Tree terminology)
Let R ∈ T . Are defined:

– The children of R correpond to all regions R′ ∈ T that are directly connected to R in
the graph representation of T and such that R′ ⊆ R. The set of children of R is denoted
C(R).
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sib(R)

root(T ) = E

F(R)

R

br(R)

leaves(R)

C(R)

T (R)

Figure 1.15: Tree-based representation terminology.

– If R has no children, i.e., |C(R)| = 0, then R is called a leaf of T . leaves(R) is the set
of leaves of T that are included in R.

– The father of R is, on the other way around, the node F(R) to which R is connected
and such that R ⊆ F(R). In a tree-based representation, each region has exactly one
father, except for the root of T , root(T ), which has none.

– The sibling of R is the set of regions Sib(R) that have the same father as R, i.e.,
R′ ∈ Sib(R)⇔ F(R′) = F(R).

– The branch of R, denoted br(R) is the set of regions {R,F(R),F(F(R)), . . . , root(T )}.
Elements of br(R)\{R} are called ancestors of R.

– The height of R, h(R), is number of elements in br(R) minus 1, i.e. h(R) = |br(R)|−1.
It corresponds to the length of the path linking R to the root node. The height of the
root node is set by convention to 0.

– The subtree rooted at R, T (R), corresponds to all the elements of T that are included
in R. In other words, it contains all the elements of T for which R is an ancestor.

1.3.3.2 Examples of tree-based image representation

Classical tree-based representation include the min-tree and max-tree, also known as
component trees. Initially proposed in [173], these tree-based representations are based on
threshold decomposition of a gray-scale image: they encodes the inclusion relationship between
the connected components of the upper and lower level sets of the image. More specifically,
let I : E → V ⊆ R be a gray-scale image. Its upper and lower level sets, for a threshold value
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Figure 1.16: Examples of tree-based threshold decompositions of the gray-scale image on the
left: min-tree, max-tree and tree of shapes.

h, are defined by:

Ih ={x ∈ E|I(x) ≥ h} (1.7)
Ih ={x ∈ E|I(x) ≤ h} (1.8)

Ih and Ih are binary images, composed of connected components, where each connected
component Ch (respectively, Ch) corresponds to a set of connected pixels whose value is
above (respectively, below) the threshold h. By varying the threshold h, one then obtain a
hierarchical decomposition of the image into a set a connected components. The min-tree
represents this hierarchical decomposition by encoding the inclusion relationship between the
connected components of the lower level sets of the image. The leaves of the min-tree are
the regional minima of the image. Conversely, the max-tree encodes the inclusion between
the connected components of the upper level set decomposition, and has the local maxima as
leaves. Examples of min-tree and max-tree are displayed by figure 1.16. Component trees have
found numerous applications derived from mathematical morphology, such as filtering [97,174]
or segmentation [96] and several efficient implementations have been proposed (see [42] for a
comparative review).

Despite their usefulness, components trees have several drawbacks. As a matter of fact,
they handle bright and dark components separately. This can be an issue for instance when
some object of interest appears brighter than the background in some parts of the image, and
darker in some other parts. Moreover, real objects of interest may even not correspond to
extrema of the image. Finally, the structure of components trees is bound to the pixel values
since they must be comparable. While this works well for gray-scale (hence, scalar) images,
it does not straightforwardly extend to multi-valued images where no natural order exists
between vectors.

To handle bright and dark components in a self-dual way, several authors have introduced
the notion of shapes which have led to the definition of the tree of shapes (ToS) (also called
topographic map [45], or inclusion tree [140]). Instead of considering the connected components
of the upper and lower level set decompositions, the ToS encodes the inclusion relationship
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between the level lines (i.e., the topological boundaries of the connected components). More
particularly, a shape is defined as a connected component with holes filled, and the ToS
of an image can be viewed as a merging between the min-tree and max-tree of this image.
All leaves of the ToS correspond to some regional minima and maxima of the image, as
shown by figure 1.16. In the same way as component trees, inclusion trees find applications
in image filtering [229], segmentation [41], simplification [14] and object recognition [154].
However, similarly to component trees, an ordering on the pixel values is also required to
built the ToS (since it is based on the notion of shape, itself deriving from the notion of
connected component), hence making the extension from gray-scale to multi-valued image
challenging. Several extensions have been proposed (see for instance [43,44]), mainly based on
the computation of marginal ToS (i.e., one ToS per image channel) that are further merged.

1.3.3.3 Hierarchies of partitions

Component and inclusion trees are extrema-oriented image representations. They describe
an image as a set of disjoint or nested connected components. However, they rely on the
absolute pixel scalar values of the image and on the presence of a total ordering holding
on this set of scalar values. Moreover, there is no guarantee that objects of interest can be
appropriately described only by their own pixel values. As a matter of fact, an object seems
to be of interest if it is sufficiently different from its surrounding. This leads to work on
dissimilarities between pixels (or regions) rather than on their absolute values, in particular
through the introduction of a dissimilarity function, which is notably the purpose of hierarchies
of partitions.

As previously said, hierarchies of partitions are a special case of tree-based image represen-
tation. As a matter of fact, the definition 1.7 can be complemented to define a hierarchy of
partitions, hereafter denoted H:

Definition 1.9 (Hierarchy of partitions - region-wise definition)
A hierarchy of partitions H of E is a collection of regions H = {R ⊆ E} such that:

− ∅ 6= H

− E ∈ H
− ∀Ri,Rj ∈ H,Ri ∩Rj ∈ {∅,Ri,Rj}

− ∀R ∈ H\leaves(H),R =
⋃

Rc∈C(R)
Rc

(1.9)

In addition to being composed of regions that are pairwise disjoint or nested, the additional
requirement for a tree-based representation to be a hierarchy of partitions is that each non-leaf
node in the hierarchy can be exactly recomposed from its children. In particular, it means
that the whole space E can be retrieved by taking the union of all leaves of the hierarchy,
which was clearly not the case for the component and inclusion trees (see figure 1.16). These
leaf regions form a partition of E, denoted π0 and that will be called the leaf partition of H.
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Figure 1.17: Example of hierarchy of partitions, viewed as (a) a stack, and (b) a sequence of
partitions ordered by refinement, along with (c) the corresponding tree graph.

Alternatively, but equivalently to the definition 1.9, a hierarchy of partitions can be defined
from a partitioning point of view:

Definition 1.10 (Hierarchy of partitions - partition-wise definition)
A hierarchy of partitions H of E is a finite sequence of partitions πi ∈ ΠE ordered by refinement:

H = {πi}ni=0 such that i ≤ j ⇒ πi ≤ πj . (1.10)

The partitions are ranging from the leaf partition π0 to the root of the hierarchy πn = {E}.
In definition 1.10, the word hierarchy takes its meaning since the partitions of the sequence
are ordered from fine to coarse. An example of hierarchy of partitions and its associated tree
graph is displayed by figure 1.17.

Thanks to these two equivalent definitions, it is possible to obtain a hierarchy either
by working on the regions (for instance, using some region merging or splitting techniques)
or on the partitions directly. Of course, the whole terminology 1.8 defined for tree-based
representations remains valid for hierarchies of partitions.

Processing that are commonly applied to hierarchies of partitions can be categorized in
two classes:

– Region-based processings. They aim at exploring the regions of the hierarchy in order
to identify the regions of interest that fulfill some predefined criteria (for instance a
given shape, homogeneity or distance with respect to the neighbors). These strategies
are particularly useful to perform object detection and recognition, as it will be further
investigated in chapter 3.
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Figure 1.18: Example of (a) a cut of a hierarchy and its associated partition, and (b) a partial
partition.

– Partition-based processings. Their goal is to extract from the hierarchy some specific
partitions that conform a given application. One particular way to proceed is through a
pruning operation, namely cutting of some branches of the hierarchy such that the new
leaves of the pruned tree achieve the desired partition. Some pruning strategies will be
investigated in chapter 2 and chapter 4.

Following is the related terminology:

Definition 1.11 (Cuts of a hierarchy)
A cut of a hierarchy H is a partition π of E whose regions belong to H. The set of all cuts of a
hierarchy H of E is denoted ΠE(H), and it is a sub-lattice of ΠE for the refinement ordering.

Definition 1.12 (Partial partition)
A partial partition π(R) of R ∈ H is a cut of the sub-hierarchy H(R). The support of this
partition is only partial with respect to E, hence the name. As for the cuts, the set of all
partial partitions of R ∈ H is denoted ΠE(H(R)).
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Graphically, a cut can be seen as a path that intersects each branch of the hierarchy at
most once, as displayed by figure 1.18a. The regions constituting the corresponding partition
are those whose associated node in the tree graph is located directly above the cut. Notice
that, for some authors, the partition is made of the regions located below the cut. ΠE(H)
being a sub-lattice of ΠE means in particular that the supremum and infimum of two cuts of
a hierarchy are also cuts of this hierarchy.

1.3.3.4 Examples of hierarchies of partitions

As for tree-based representations, hierarchies of partitions have been widely studied in the
literature. A well-known hierarchy of partitions is the quad-tree, proposed by [75]. Starting
from the whole image (i.e., the root of the hierarchy), the quad-tree is created by successive
region splitting. More particularly, each region, also called quadrant, can be either divided into
four sub-quadrant or left as it is, each quadrant being either square or rectangular. The decision
of splitting a region into four sub-quadrant is often based on some homogeneity considerations:
if the region is not homogeneous enough, it is split until it fulfills the desired criterion. Quad-
trees have found applications in image segmentation [184] and compression [182], notably.
However, as each region is rectangular, quad-tree cannot account for irregular contours and
therefore objects of interest are often split into several nodes.

Another type of hierarchy is the so-called α-tree [148], also known as the hierarchy of
quasi flat zones [139], based on the notion of constrained connectivity [183]. More specifically,
let p and q be two neighboring pixels, and d(I(x), I(y)) be the dissimilarity between their
respective values for the image I. Two pixels p and q are said to be α-connected if there
is a path from p to q, namely a sequence of (p = x1, . . . , xn = q) such that xi and xi+1 are
adjacent (in the sense of the 4-neighbors or 8-neighbors systems) and d(I(xi), I(xi+1)) ≤ α.
Following, one can define the α-connected component of a pixel p (abbreviated α−CC(p)) as

α− CC(p) = {p} ∪ {q s.t p and q are α− connected} (1.11)

It was shown in [183] that for a given α value, the set of α−CC forms a partition πα
of E and that, for two values α1 ≤ α2, πα1 ≤ πα2 . Therefore, by using several values
α0 ≤ α1 ≤ · · · ≤ αn, one induces several partitions ordered by refinement that creates the
α− tree hierarchy Hα = {πα0 ≤ · · · ≤ παn}. An example of such hierarchy is displayed by
figure 1.19.

It is known that such defined α−trees may suffer from the so-called chaining effect. For
instance, a ramp image where all pixels of a given column have the same value, and such that
the dissimilarity between two pixels of adjacent columns is equal to 1 would have a 1−CC
being the whole image. To tackle this issue, the (α, ω)−connected component of a pixel p
was introduced [183] as the largest α−CC containing p such that the maximum dissimilarity
between two pixels of the connected component is less that ω:

(α, ω)− CC(p) =
∨
{αi − CC(p) s.t αi ≤ α and max

x,y∈αi−CC(p)
d(I(x), I(y)) ≤ ω} (1.12)
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Figure 1.19: Example α−tree hierarchy: (a) 0−, 1−, 2− and 3−connected components of a
toy image (with adjacency defined by 4-connectivity) and (b) the corresponding α−tree. In
that example, the dissimilarity measure between pixels p and q is d(p, q) = |I(p)− I(q)|.

Following this definition, (α1, ω1)−CC(p) ⊆ (α2, ω2)−CC(p) for α1 ≤ α2 and ω1 ≤ ω2, and
this also allows for the generation of fine to coarse partitions of E (and thus of a hierarchy) by
progressively increasing the values of the range parameters α and ω. Some efficient algorithm
to compute such hierarchies can be found in [143,148].

Last but not least, a popular hierarchical representation is the binary partition tree (BPT),
as proposed by [172]. Starting from an initial partition π0 that defines the leaves of the
hierarchy, the BPT is obtained by a bottom-up region merging procedure: pairs of neighboring
regions are merged based on their similarity until there is only one region remaining, which is
the whole space E. The creation of a BPT is bound to the definition of the initial partition
as well as the similarity function to assess how close are two neighboring regions. In the last
decade, BPTs have proved to be a valuable tool for hierarchical image representation thanks to
the great flexibility of their construction and analysis processes. Consequently, they have found
numerous applications in image and video processing such as image segmentation [172,207],
filtering [5], compression [172] as well as object detection [120,218] and object tracking [153,196].
The next section is devoted to a more detailed insight of BPTs, as they are going to play a
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Figure 1.20: Example of region merging sequence along with its corresponding binary partition
tree.

key role in the following chapters.

1.3.4 A focus on the binary partition tree

The binary partition tree encodes the hierarchical decomposition of an image in a tree
structure. As said in the previous section 1.3.3.4, the BPT representation relies on the iterative
merging procedure of a set of initial regions, which are the leaves of the BPT. The tree is
built by keeping track of the merging orders. Each region can be merged with only one of its
neighbors, resulting in a hierarchy where each region has either two children, or none (in the
case of a leaf node). An example of region merging sequence and its corresponding BPT is
displayed in figure 1.20. BPT representations enjoy several desirable properties:

– They allow to decompose an image into a set of regions that are hierarchically organized.
This decomposition provides a description of the image at different scales ranging from
fine to coarse. This is particularly valuable since the analysis of an image can be
performed at different levels of details, according to the desired objectives. Therefore,
the hierarchical decomposition can serve as an initial support, computed regardless of
the application, and its analysis can be tuned afterward to meet the intended goal.

– The construction of the BPT is based on the merging of similar neighboring regions,
and is therefore bound to the definition of this similarity measure. While this setting
is left to the user and may appear at a first sight as a disadvantage with respect to
strategies exploiting the absolute pixel values (such as the component and inclusion
trees for example, which totally rely on the notion of regional extrema), it can actually
be seen as a strength as it introduces some flexibility in the construction of the BPT.

– Even though their construction is rendered flexible by the various possible settings to
parametrize the merging procedure, BPTs were intended to be built independently of the
underlying application, as a common support basis for all subsequent processing [172].
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The analysis of the BPT, which is driven by the application, can adapt well to a broad
range of processing. For this reason, BPTs have been used in an extensive variety of
applications in the image and video processing fields [6, 153,207,218].

1.3.4.1 Construction of the BPT

There are two parameters that are of prime importance when building a binary partition
tree, namely the definition of the merging procedure, and the initial partition on which this
procedure is applied. While there are various options available for those two parameters, some
of them have proved to perform consistently well in the literature.

The merging procedure The merging procedure determines in which order the regions
should be merged. The BPT is then built following a bottom-up procedure (i.e., starting from
the smallest regions) by keeping track of this order. The specification of a merging procedure
itself relies on the definition of two inner parameters:

– The region model MR, which specifies how to mathematically model the regions and
their union.

– The merging criterion O(Ri,Rj), which assesses the similarity between neighboring
regions Ri and Rj by measuring the distance between their region models d(MRi ,MRj ).

Relevant definitions for the region model and its associated merging criterion with respect to
the processed image should guarantee the consistency of its BPT representation.

BPT were initially developed in the scope of gray-scale and color image processing [172],
that is, for images whose space of pixel values V is either R or R3. In that case, the first
proposed region model was the mean color within the each region:

MR = µR = 1
|R|

∑
x∈R
I(x) (1.13)

with I(x) being a scalar (respectively, a triplet) in the case of gray-scale (respectively, color)
images. This model, assuming color homogeneity within the region, allows the use of simple
merging criteria and can be easily computed for a node given the regions models of its children,
thus leading to fast and efficient implementations. While some authors use it directly on
the common RGB color space [20], it is more often applied on other spaces, such as the
LUV [172] or the CIE L∗a∗b∗ [120, 127] color spaces, which are known to better match the
human visual perception in terms of distance between colors. All the previously cited works
used the following merging criterion, introduced in [78], to measure the similarity between
neighboring regions R1 and R2

O(R1,R2) = |R1| × ‖MR1 −MR1∪R2‖2 + |R2| × ‖MR2 −MR1∪R2‖2 (1.14)

with ‖ · ‖2 being the Eucliden L2 norm. Other norms, such as the L1 and the L∞ norms
can also be used (recall that the Lp norm of a vector x for p ≥ 1 is defined as ‖x‖p =
(|x(1)|p + · · ·+ |x(n)|p)

1
p ).
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BPT representations were extended to hyperspectral images in the work of Valero [204,205,
207,210]. In such case, the space of pixel values V is RN , with N typically equal to several
hundreds. The extension of the mean region model defined by equation (1.13) to a larger
dimensionality N is straightforward, and is termed mean spectrum or first order region model,
following [205]. However, the design of suitable merging criteria for this region model is needed,
since it is known that Lp norms suffer from the curse of dimensionality. To alleviate this issue,
Valero proposed two merging merging criteria, adapted to the inherent large dimensionality of
hyperspectral images:

– The spectral angle (often abbreviated SAM) between two regions Ri and Rj is defined
as the angle between their mean spectrum µi and µj :

OSAM (Ri,Rj) = arccos
(

µT
i µj

‖µi‖2‖µj‖2

)
(1.15)

This merging criterion is motivated in hyperspectral imagery by the fact that two
spectrum describing the same material should have similar shapes, and thus a small
angle between them in the feature space. Note also that the SAM is relatively insensitive
to scaling effect since multiplying a vector by a constant only changes its magnitude,
but not its angle.

– The spectral information divergence (SID) measure the distance between µi and µj when
interpreted as probability density functions. As a matter of fact, if a mean spectrum µ

is normalized to sum up to one (µ? = µ/(1Tµ), with 1 being a column vector of ones),
it can then be viewed as a probability density function. A common measure of similarity
between such probability density functions is the so-called Kullback-Leibler divergence

dKL(µ?
i ,µ

?
j ) =

N∑
k=1

µ?i (k) log
(
µ?i (k)
µ?j (k)

)
. (1.16)

dKL(µ?
i ,µ

?
j ) ≥ 0, and the equality is reached if and only if the two probability density

functions coincide. However, as this measure is not symmetric (as it is a divergence and
not a distance), the SID merging criterion is defined as the symmetric Kullback-Leibler
divergence between µ?

i and µ?
j :

OSID(Ri,Rj) = dKL(µ?
i ,µ

?
j ) + dKL(µ?

j ,µ
?
i ) . (1.17)

As for traditional images, the first order region model is simple and assumes spectral
homogeneity within the region. However, this may become a limitation for some applications
where the spectral variability has to be taken into account. To that purpose, the non-parametric
statistical region model, also called histogram-based region model, was introduced [205]. This
model is defined as a set of N histograms:

MR = {H1
R, . . . ,HNR} (1.18)

where each HiR is the empirical spatial distribution of the pixel values within region R for the
ith band. More particularly, each histogram HiR is composed of Nbins bins ap, p = 1, . . . , Nbins:

HiR = {HiR(a1), . . . ,HiR(aNbins)} (1.19)
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and each histogram, if normalized to sum to one, can also be viewed as an approximation of the
probability density function. Note that this region model can also be recursively computed for
each region R as the weighted sum of the regions models of its children. This histogram-based
region model allows to define for merging criteria some metrics that measure the similarity
between histograms. In particular, Valero [205,207] introduced three histogram-based merging
criteria:

– The Battacharyya distance, which is based on the Battacharyya coefficient (BC) between
two normalized histograms HiR1

and HiR2
of two adjacent regions R1 and R2, for the

same band i:

BC(HiR1 ,H
i
R2) = − log

Nbins∑
p=1

√
HiR1

(ap)
√
HiR2

(ap)

 (1.20)

If the two histograms perfectly overlap, the argument within the logarithm sums to one,
hence a Battacharyya coefficient being 0. Consequently, the merging criterion based on
the Battacharyya distance can be obtained by summing the Battacharyya coefficients
for all the N bands of the image:

OBC(Ri,Rj) =
N∑
i=1

BC(HiR1 ,H
i
R2) (1.21)

The main limitation of this merging criterion is its assumption that the histograms are
perfectly aligned, hence its name of bin-to-bin distance. This can be a disadvantage in a
situation where two histograms have a similar profile but are not aligned, and one may
want to consider those two histograms as close to each other.

– The diffusion distance, proposed in [119] and which solves the previously raised issue
concerning two histograms that do not overlap. For that reason, the diffusion distance
is called a cross-bin distance. It is based on the idea that the difference between two
histograms

di0(ap) = HiR1(ap)−HiR2(ap), p = 1, . . . , Nbin (1.22)

can be viewed as a temperature field, and the corresponding distance between those
two histograms is the time needed by this field to reach stability via a heat diffusion
process, or equivalently, on the state of the temperature field after a given time. More
precisely, starting from d0, the diffusion process is simulated by convolving the current
temperature distribution with a Gaussian kernel

dim(ap) = [dm−1(ap) ∗ gσ(ap)] ↓2,m = 1, . . . ,M (1.23)

with gσ standing for the Gaussian kernel with variance σ, ↓2 denotes a downsampling
by a factor of 2, and M is the number of convolution layers. The final merging criterion
between R1 and R2 follows by summing over all N bands the L1 norm of the M + 1
layers of temperature fields

ODIF (R1,R2) =
N∑
i=1

M∑
m=0
‖dim‖1 (1.24)
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Similarly to the Battacharyya distance, the diffusion distance processes all bands of
the image in the same way. On the other hand, hyperspectral data feature strong
correlations between bands, and this correlation could be used to remove the redundant
information contained in each region model.

– The similarity via multidimensional scaling aims exactly at exploiting the redundancy
between all bands of the hyperspectral image. First, a multidimensional scaling [55]
is performed on the N histograms of MR in order to reduce the dimensionality and
extract only the principal components of the region containing the most relevant
information. Then, for any two neighboring regions R1 and R2, the similarity measure
between those two regions is obtained by analyzing the joint correlation between the
principal components of each region. More specifically, a statistical test, based on a
multivariate analysis of variance (MANOVA) [9] is performed in order to determine
whether the principal axes are correlated or not. In the first case, a dependency is
claimed between regions R1 and R2, which are thus given a low distance. Details about
the implementation of this merging criterion can be found in [204,207].

While it is appealing to be able to define several region models and their non-exhaustive
list of merging criteria, it also raises the question on which couple (MR,O(Ri,Rj)) would
lead to the most consistent hierarchical representation given an image. Although there is no
clear answer to this question, we can formulate this heuristic rule, supported by the similar
conclusions drawn in the PhD work of Valero [204]:

– If one is interested by relatively simple and spectrally homogeneous regions, then the
mean spectrum region model is a good candidate. Provided this region model, the SAM
and SID merging criteria perform equally well.

– Alternatively, if one is giving importance to the intra-region spectral variability, then
one should choose the histogram-based region model, which is however computationally
heavier than its mean spectrum counterpart. Related to the merging criteria, the
diffusion distance performs better than the Battacharyya since it is a cross-bin
distance. The similarity via multidimensional scaling in turn gives more consistent
results than the diffusion distance since it takes into account the correlation be-
tween bands of the hyperspectral image, but at the cost of a higher computational burden.

In both cases, the region size does not intervene in the previously defined merging criteria,
and this could lead to small and insignificant regions remaining in the last merging iterations
of the construction. To overcome this issue, it was proposed in [36] to use a priority rule: all
regions whose size is less than a given threshold (typically set to 15%) of the mean size of the
regions standing in the current merging iteration are given the merging priority, regardless of
their distance with respect to their neighbors.

The initial partition The second parameter needed for the BPT construction is the initial
partition π0, on which is initialized the region merging procedure. If a pertinent initial
partition does not guarantee a pertinent BPT representation (since it also depends on the
definition of the region model and merging criterion), a poor initial partition does lead to
a poor hierarchical decomposition, as all the regions subsequently obtained follow from the
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(a) (b) (c)

Figure 1.21: Examples of initial partitions with (a) the multidimensional watershed, (b) the
mean shift clustering and (c) SLIC superpixels.

initial ones. The safest option that could be considered is to initialize the BPT construction
at the pixel level (i.e., where the initial partition is composed of regions made of single pixels
only). Since a BPT built on an initial partition made of |π0| leaves is composed of 2|π0| − 1
regions, the pixel level as an initial partition may lead to a huge BPT structure and this could
be problematic from a computational point of view for very large images. Moreover, such
BPT would be composed of a lot of small and meaningless regions and this could also slow
down the analysis processes further applied on it.

Then, an appropriate initial partition should enjoy the following two properties:
– Its regions should be fine enough (in other words, the image should be enough over-
segmented) to ensure that the smallest regions of interest within the image are not
already merged together in some initial regions. Otherwise, those regions of interest
would be irremediably lost.

– The boundaries of the initial regions should well adhere to the real boundaries of objects
of interest, in order to be able to reconstruct (up to a correct definition of a region model
and merging criterion) these objects of interest accurately.

If those two conditions are fulfilled, it was shown (in a context of image segmentation) that
starting from an initial partition does not worsen the segmentation results [199].

Among efficient segmentation algorithms to design the initial partition, one can cite
the watershed algorithm [220] (or the multidimensional watershed for multi-valued images,
see [188]), the mean shift clustering [52] or the SLIC superpixels [1]. All those fulfill the two
conditions of over-segmentation and boundary adherence, as it can be seen in figure 1.21.

1.3.4.2 Processing of the BPT

Once its construction is completed, the BPT encodes in its structure a decomposition of
the image in regions at various scales, from the finest ones (i.e., the leaves) to the coarsest
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Figure 1.22: General scheme of a the BPT processing step

(the root of the hierarchy being the whole image). Contrarily to the construction, which can
be done regardless of this application, the strategy to further process this set of hierarchically
organized regions is strongly driven by the underlying application. As a matter of fact, one is
not going to operate the same way whether one wants to extract a particular cut from the
hierarchy (for segmentation purpose for instance) or one seeks a particular object of interest
in the image (for example in a context of object detection).

Nevertheless, a typical BPT processing can be decomposed in two steps: the population
of the tree in a first stage and a following decision stage, which are both defined to achieve
the intended goal. During the former, some features or attributes are evaluated for each
region R and stored in a set ΩR: the tree is "populated". Then, the decision step evaluates,
given a decision rule, if each node should be retained or discarded according to its previously
computed set of features. This decision step involves a decision function F that is applied
on each region to take the decision whether to keep this node or not. This whole scheme is
illustrated in figure 1.22.

As a simple example to illustrate this processing chain, consider an application where one
wants to smooth an image by removing small and inhomogeneous regions. A possible strategy
to achieve such goal would be to filter out from the BPT representation all regions whose size
|R| is below a predefined threshold δ. As a consequence, the attribute that should be retrieved
for each region is its area, defining a feature set ΩR = {|R|}. The decision rule being remove

a node if its size is below the threshold, the decision function then becomes F(ΩR)
?
≥ δ, and

all nodes which do not satisfy this decision are removed from the BPT, producing a pruned
tree where all new leaves have a size greater than or equal to the size threshold δ.

This decision function, applied on the region area, is a particular case of increasing decision:
a decision is said to be increasing if R1 ⊆ R2 ⇒ F(ΩR1) ≤ F(ΩR2). In such case, if a node
has to be retained, then so have to be all its ancestors. Conversely, if it is decided that a
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node should be discarded, it is also the case for all its descendants. When the decision is not
increasing, then some more sophisticated strategies have to be used, such as the minimum,
maximum, or Viterbi decision rules. The minimum decision rule states that a region is
preserved if and only if all its ancestors also have to be preserved. The maximum decision
is the opposite, namely a node is removed if and only if all its descendant also have to be
removed. The Viterbi decision strategy, on the other hand, associates to each node a cost
reflecting how much impact it would have to change the decision for this node (for instance,
how much would it cost to remove a node that was decided to be retained). It then tries to
minimize this cost function in order to make the decision function increasing. As an example,
if it has been decided that all nodes in a whole branch should be retained except for one, it is
less costly to take the decision to retain all nodes of the branch (so inverting the decision for
only one node) rather than removing all nodes (see [172,204] for more details).

1.3.5 Conclusion on hierarchical representations

In this section we have presented the concept of hierarchical representations of images, which
are a particular case of tree-based image decompositions. Tree-based image decompositions
naturally arise in image processing because natural images can often be decomposed in a
set of regions of interest (which our brain can interpret with a semantic meaning) which are
organized in a hierarchical manner, from fine to coarse. In addition, an image can be analyzed
at various levels of details, which is driven by the application and the information one expects
to extract from it. Tree-based image decompositions allow to compile in their tree structure all
the potential scales of interest. The decomposition can then be computed once for an image,
and its further analysis is tuned in accordance with the goal to achieve. Tree-based image
representations find numerous applications in image processing, such as image segmentation,
filtering or object detection.

Several tree-based image decompositions have been proposed in the literature, the most
popular being the component and inclusion trees. However, their constructions rely on the
ordering by inclusion of regional minima and maxima, which is rendered possible when handling
gray-scale images because pixel values are scalar and can be easily compared. When dealing
with multi-valued images, one achieves the comparison of pixel values by introducing some
dissimilarity measure, which is at the core of the definition of a hierarchy of partition. Notable
hierarchies include the quad-tree, the α−tree and the binary partition tree.

In particular, we focused more in details on the binary partition tree. Given an initial
partition of the image and a bottom-up region merging algorithm, one obtains a BPT
representation by merging iteratively neighboring regions based on their similarity, until only
one region remains (which is the whole image support). The description of a proper region
merging algorithm requires the definition of a region model, i.e., a mathematical formulation to
model a region, and a merging criterion, which measures the similarity between two neighboring
regions by computing the distance between their respective region models. BPTs have received
much attention lately, by their capacity to handle images with very high dimensionality, such
as hyperspectral images (which contain up to several hundreds of spectral channels), and they
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are now considered as a standard image processing tool.

1.4 Example of a BPT-based application

We have developed so far the key aspects to properly operate the BPT representation in
order to achieve a given goal, namely how to construct the BPT in order to obtain a consistent
hierarchical decomposition of the image, and how to process it properly in order to achieve a
given application.

The goal of this section is to demonstrate with a practical example all the questions
that one has to answer to make the most of a BPT representation (and more generally, a
hierarchical representation), namely how to properly design the construction and subsequent
processing steps. BPT were initially proposed as a support basis for hierarchical analysis of
images, and should therefore not be built to suit one particular application rather than another.
Nevertheless, the definition of the initial partition, the region model and the associated merging
criterion should be done in accordance with the specificities of the image as they directly
impact the consistence of the hierarchical decomposition. The desired goal will then be taken
into account when designing the analysis process of the resulting BPT.

More particularly, we focus on the segmentation of a tropical rain forest hyperspectral image.
This application has been discussed in our previous work [199], from which we summarize the
main points here.

1.4.1 The data set

The hyperspectral image analyzed here was captured over the Nanawale Forest Reserve,
Hawaii (USA). The Nanawale forest is classified as lowland humid tropical forest, with an
average elevation of 150 m above sea level. Mean annual precipitation and temperature are 3200
mm.yr−1 and 23◦C, respectively. The forest canopy is comprised of about 17 species, mostly
invasive non-native trees, with a few native species remaining. The data were acquired with
the Carnegie Airborne Observatory (CAO) Alpha sensor package in September 2007 [11]. The
CAO-Alpha is equipped with a spectroscopic imager measuring up to 72 bands in the visible
and near infrared domains. The collected hyperspectral image is composed of 1980 × 1420
pixels with 0.56 m ground sampling distance, covering an area of about 70 hectares on the
ground. The spectral resolution used for this campaign resulted in the acquisition of 24
spectral bands of 28 nm in width and evenly spaced between 390 nm and 1044 nm. The whole
1980× 1420 image contains several outlier pixels, as well as different flight lines. Therefore,
for the purpose of this example only, we simply consider a 850 × 950 sub-image of the full
data, displayed by figure 1.23.
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Figure 1.23: Color composition of the Nanawale tropical rainforest hyperspectral image. Red,
green and blue bands are centered on 646 nm, 561 nm and 447 nm respectively.

1.4.2 Construction of the BPT

In order to obtain the most consistent hierarchical representation, the various parameters
such the the initial partition as well as the region model and merging criterion should be defined
to make the most of the specificities of the image. In the present case, we aim at analyzing a
hyperspectral image which was acquired over a forested cover. It means in particular that
the overall spectral variability within the whole image is expected to be low, since all spectra
depict the typical response of a tree. It is known that the global response of a tree to the
incident light features a hump between 500 nm and 550 nm, whose height is due to the amount
of chlorophyll contained in the leaves of the tree, a sharp rise at the edge of the near-infrared
region (circa 700 nm) and then a drop around 1000 nm, due to the leaves water content. Even
if two different tree species have their own particular signatures and proper features, their
response should have the similar overall shape. This effect can be observed in figure 1.24. In
addition, one can also expect some variability within the spectra corresponding to the same
tree species, as this signal is also influenced by factors related to the foliage structure (such as
the leaf angle distribution). One can see in particular in figure 1.24 the difference between two
spectra belonging to the same species (see [74] for more details). In particular, this implies
that the mean spectrum as region model for the construction of the BPT should be avoided,
as it does not take into account the possible spectral variability within each region it models.
It is then suggested to use the histogram-based region model instead.

Defining a proper region model is the first step toward a relevant BPT representation.
The further point to analyze is the definition of an appropriate merging criterion. Considering
that a tree crown can be partially shaded suggests that a cross-bin distance should be used
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Figure 1.24: Example of tree spectra, where color corresponds to a particular tree species.
The within-species variability can be appreciated, particularly for the bue spectra.

instead of a bin-to-bin one, thus excluding the Bhattacharyya distance. It is known that
forested hyperspectral images feature strongly correlated bands, and this information should
be also taken into consideration in order to choose the most adapted merging criterion. In
particular, constructing the BPT over the principal components (PCs) of the image rather
than over the raw hyperspectral bands can be considered as a potential solution. As a matter
of fact, a principal component analysis (PCA) allows to uncorrelate the hyperspectral channels,
such that each PC features the projection of the hyperspectral bands onto a particular factor
influencing the spectra. For instance, the impact of brightness is particularly strong on
radiometric signals measured from vegetation, and this influence is going to be expressed
by the first PC (which resembles a gray-scale version of the hyperspectral image, see [199]
for an example). The following PCs express features related to leaf chemistry (for instance,
photosynthetic pigments or water content) and vegetation structure (foliage density), and
those should help discriminating between various tree species.

As a matter of fact, if one can select the relevant PCs that contain discriminant information
prior to the construction of the BPT, one should improve the ability of this BPT to differentiate
trees belonging to different species. By conducting a visual analysis over the first few
PCs, we came to the conclusion in [199] that only PC#2 to PC#8 contained some useful
discriminant information and should be retained. Therefore, instead of selecting the similarity
via multidimensional scaling merging criterion, which would have performed a similar analysis
for each pair of regions during the construction of the BPT, the PCA transformation is
performed once prior to the construction and the diffusion distance is chosen. It allows in
addition to relieve the computation burden.

The final input parameter to define in order to built the BPT is the initial partition.
In [199], we compared the multidimensional watershed and the mean shift clustering, and
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showed that the latter was leading to better results. Therefore, we choose again in this example
to derived the initial partition with the mean shift clustering algorithm [52]. Spectral and
spatial bandwidths are both set to 5, producing an initial segmentation composed of 21 770
regions (to contrast with the potential 850 × 950 = 807 500 initial regions if the BPT was
built over the pixel level).

1.4.3 Analysis of the BPT

The construction of the BPT has been defined to make the most of the image characteristics,
in order to produce the most consistent hierarchical decomposition of the image. Its further
analysis is however totally driven by the application. In our example, we aim at separating
the various tree crowns in the image. Thus, we place ourselves in a segmentation context,
which translates in terms of BPT processing as a pruning operation. We seek the best pruning
cut π among all possible cuts ΠE(H), with H being the BPT representation, and E being the
image support.

Image segmentation is in itself an ill-posed problem, as a given image possesses as many
acceptable segmentations as the number of possible applications for this image. In terms of
BPT pruning strategy for the tree crown segmentation application, it suggests that a pruning
strategy specifically dedicated to this goal would probably perform better than a more generic
one. In [199], we proposed a pruning strategy based on the evolution of the region size along a
branch. As remarked in [126], the evolution behavior of certain quantities along a full branch
of the BPT provides some important information about the features contained in the image.
In our case in particular, assuming that the initial partition is over-segmenting enough the
image, it is possible to detect which regions in the BPT representation correspond to real tree
crowns. In fact, each tree crown is over-segmented at first, and thus splits into several leaves.
During the first iterations of the merging process, all leaves that are sufficiently close are going
to be merged, and those leaves are assumed to belong to the same tree crown. At some point,
all the leaves corresponding to a given tree crown will have merged into a bigger region, which
will come to a steady state as it should lie farther apart from its neighbors. In the late steps
of the merging process, this region will be forced to merge again, but its sibling at this time
should also be a grown-up region. Therefore, when looking at the evolution of the region size
along a branch, from a leaf to the root of the BPT, one should see a clear discontinuity at
this stage where the region was forced to merge with a grown-up region in its surrounding.
In [199], we remarked that the region prior to this discontinuity in the branch was the most
likely to correspond to a tree crown.

Therefore, we designed a pruning strategy based on this observation, and following the
same voting process scheme as presented in [206]. More particularly, each leaf of the BPT
has its size evolution curve analyzed along its cooresponding branch. Given a size threshold
δ, each leaf then votes for the region located prior to the first discontinuity in the branch,
namely when the gap between the size of a node and its father along the branch exceeds δ.
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(a) (b)

Figure 1.25: (a) Result of the proposed BPT-based segmentation, where each region is filled
with the mean color of the original image (b).

Each node R has then its ratio
|vote(R)|
|leaves(R)| (1.25)

evaluated, where the numerator and the denominator are the received number of votes and
number of leaves of R, respectively. The decision rule which is then undertaken is to keep
a node if it has a ratio vote/leaves of at least 1/2, namely if at least half of his leaves have
decided to be represented by it. A maximum decision is finally conducted: a node is removed
from the BPT if and only if all its descendant can be removed as well, leading to a pruned
tree whose leaves define the desired segmentation. Figure 1.25 shows the result of this pruning
strategy, applied to the tropical rain forest hyperspectral image, with a size threshold δ set to
2000. As can be seen, most of the tree crowns have been properly segmented.

In [199], we conducted a quantitative analysis based on some partial ground-truth data,
where some reference tree crowns had been delineated by a trained operator. In particular, we
compared the results of the proposed strategy against the results obtained by the pruning
strategy proposed in [204, 206], which is based on a recursive spectral graph partitioning
method and which can be considered as generic since it relies only on dissimilarities among
nodes of the BPT and does not assume any particular knowledge about the currently processed
image. We obtained up to 54.4% of properly segmented tree crowns for this data set with
the proposed method, outperforming the recursive graph cut partitioning which correctly
delineated 42.5% of the reference tree crowns. While those segmentation number may seem
low, we recall that tropical rain forests are among the richest and most complex ecosystems
in the world. Given the density of the canopy in terms of individuals and species, as well of
the complexity of its structure, achieving a perfect delineation of each tree crown is highly
unrealistic. However, even partial information allowing a better delimitation, identification
and enumeration of certain species of interest (such that dominant, rare or invasive species
that are key indicators for environmental processes) can help ecologists to better understand
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(a) (b)

Figure 1.26: (a) Hyperspectral and (b) LiDAR modalities of the Nanawale tropical rain forest.
The LiDAR image has the same 0.56 m ground sampling resolution as the hyperspectral image.

these complex ecosystems. Our proposed method is, to the best of our knowledge, the first
reference study for the segmentation of tropical rain forest tree crowns. A segmentation
method for hyperspectral images was developed in [35], and applied on Compact Airborne
Spectrographic Imager (CASI) data acquired over mixed Australian forests. They reported
over 70% of success for the segmentation of trees or clusters of trees belonging to the same
species, for relatively sparse vegetation covers. However, they noted a significant drop in this
segmentation accuracy for dense and complex canopies, which is consistent with our reported
results.

1.4.4 The benefits and challenges of multimodality

The tree crown segmentation is also a way to illustrate how the use of multimodal
information could be beneficial in a concrete. As a matter of fact, one can see when analyzing
figure 1.25 that neighboring trees are often aggregated together in the final segmentation
map when they belong to the same species. This pattern is due to the fact that the BPT
representation of the image is solely relying on the spectral characteristics of the scene.
Therefore, adjacent trees of the same species are likely to be represented by a single region
in the final segmentation map. A possible solution to overcome this issue would be the joint
use of hyperspectral and LiDAR data. Indeed, the integration of the height and the physical
shape of the tree crowns, carried by the LiDAR modality, could help discriminating the case
where several trees sharing the same spectral properties stand next to each other.

The use of LiDAR data for the tree crown delineation has already been thoroughly
investigated in the literature, and several techniques were developed to make the most of its
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specificities when acquired over forested covers. In particular, methods such as region growing,
valley following, template matching or stochastic point processes have been proposed (see [199]
and references therein). They proved to perform well on images of temperate forested areas
(such as coniferous or deciduous forests) thanks to the regular and elongated shape of the tree
stands and the rather sparse canopy limiting the overlap between neighboring individuals.
Their performances significantly drop however when applied to tropical forest ecosystems
where tree size and shapes are highly variable and trees usually overlap due to the dense
canopy structure. Looking at figure 1.26, one can indeed see that the height and shape features
are less discriminative, as it seems more challenging to accurately recognize tree crowns in the
LiDAR modality (figure 1.26b) with respect to the hyperspectral modality (figure 1.26a).

Fusing somehow the information extracted from both the LiDAR and hyperspectral
modalities is a promising direction of research, but it also raises several questions on the way
this integration should be done. For instance, at which stage of the hierarchical analysis should
this integration be done? Which relative weight should be given to the information provided by
the LiDAR when it conflicts the hyperspectral modality (in the case of two neighboring trees
of different species but of same height for instance)? This illustrates, if necessary, the kind of
issues that have to be taken up to integrate and make the most of multimodal information in
order to boost the performances of classical image processing and analysis tools.

1.5 Conclusion

In this first chapter, we have presented the two notions that are the cornerstones of
this manuscript, namely multimodality and hierarchical representations. The concept of
multimodal data reveals a huge potential when it comes to increasing the performances of
the typical algorithms within the signal and image processing fields thanks to the wealth of
information it provides. However, there is no generic strategy to exploit this multimodality, as
it greatly depends on the nature of the recorded signals as well as the objective to reach. In
the remote sensing field in particular, multimodal data are a common phenomenon due to
the multiplicity of imaging sensors. Again, the lack of generic method to make the most of
this multimodality lead to the design of multimodal algorithms which are very specific with
respect to the task and/or the nature of the handled multimodality. A unified framework
able to handle equally all types of multimodalities would surely benefit the remote sensing
community a lot.

On the other hand, hierarchical representations have proved to be a valuable tool when
it comes to hierarchically decompose images. Such tools have shown to be of use for several
typical image processing applications such as denoising, segmentation, filtering, and so on.
The strength of hierarchical representations is that they act as an image decomposition
tool regardless of the further application. The design of methods to make hierarchical
representations handling multimodality could provide some suitable tools for many applications
involving multimodal images. Therefore, the following of this manuscript investigates how
multimodal information can be integrated into the construction and processing of hierarchical
representations, to improve typical image processing applications.
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In chapter 2, we investigate the use of spectral-spatial multimodality for segmentation
purposes. More precisely, we focus on hyperspectral images, which can be seen as a set
of gray-scale images depicting different spectral characteristics of the scene. The pursued
objective in chapter 2 is the fusion of a typical spatial information based application, namely
image segmentation, with a spectral information based application being spectral unmixing.
Contrarily to most state-of-the-art methods that first perform the spectral unmixing and then
integrate the spatial information as a regularization step, we proceed the other way around,
seeking a partition of the space that is optimal in order to further perform spectral unmixing.
We propose in particular a method based on the minimization of a suited energy function over
the set of all cuts of a hierarchy of partitions in order to obtain this optimal partition.

In chapter 3, we handle sequences of hyperspectral images, thus introducing the temporal
multimodality. As it notably brings some information related to motion, i.e., what and how is
changing from a frame to the other, a typical application linked to this temporal multimodality
is the tracking of some object along the various frames of the sequence. In particular, we
design a methodology to perform object tracking, based on the hierarchical decomposition of
the sequence. While this has already been studied in the context of traditional color video
sequences, the scarceness of available hyperspectral sequences (added to all other difficulties
related to hyperspectral imaging) makes it extra-challenging to design efficient and generic
tools. We study the scenario of chemical gas plume tracking, which is a particular application
where all spectral, spatial and temporal information are crucial.

In chapter 4, we focus on the sensorial multimodality, namely when several images of a
same scene are acquired with different imaging sensors. In that case, each modality features
some particular information about the scene, and the combination of these should benefit
image segmentation by helping the design of more accurate regions. However, processing such
multimodal images raises the question on the fusion of several hierarchical decompositions. This
question is answered by the introduction of braids of partitions, which generalize hierarchies
of partitions. Relying on an energy minimization procedure, we propose a full methodological
framework based on this notion of braid of partitions to perform the segmentation of such
multimodal images.
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In this chapter, we turn our attention to the spectral-spatial multimodality. In particular,
working with hyperspectral images (HSI 1), we aim at fusing both the spectral and spatial
information contained in such images in order to output a partition that is optimal with
respect to the spectral unmixing operation. The generation of this optimal partition is done
through the construction of a BPT representation of the HSI and an appropriate pruning of it
by means of the minimization of a suited energy function. The organization of this chapter is
as follows: in section 2.1, we introduce hyperspectral images as particular instances of spectral-
spatial multimodality and the associated applications that benefit from this multimodality.

1. We shall emphasize here that the acronym HSI will stand for hyperspectral imagery, and not for the Hue,
Saturation, Intensity color space, as it could be encountered in computer vision.
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In section 2.2 and section 2.3 we recall the basics of spectral unmixing and some notions
related to segmentation by minimization of an energy function (in particular the work of
Guigues [87] which focuses on the minimization of such energy function over hierarchies
of partitions), respectively. Section 2.4 presents the proposed methodology, which aims at
combining the notions of hierarchical energy minimization and spectral unmixing in order
to produce from the BPT representation of the HSI an optimal partition with respect to
spectral unmixing. In particular, we propose a new way to construct the BPT representation
through the introduction of novel region models and associated merging criteria, as well as
new energy functions related to spectral unmixing. Conducted experiments are presented in
section 2.5, where we apply the proposed methodology on two state-of-the-art hyperspectral
data sets and perform comparison against classical strategies to build and to prune the BPT
representation. Results are displayed in section 2.6, while section 2.7 draws some conclusions
and future research avenues.

We would also like to mention that materials presented in this chapter were presented in
our article [217], which is the fruit of a collaboration between several researchers 2. Therefore,
we will emphasis in particular the contributions of [217] which were made by the author of the
present manuscript. However, for the sake of clarity and readability, we will also present the
other contributions.

2.1 Hyperspectral spectral-spatial multimodality

2.1.1 Introduction

As mentioned in section 1.1.2, a hyperspectral image (HSI) is a collection of single band,
gray-scale images, acquired simultaneously over narrow and contiguous wavelengths of the
electromagnetic spectrum. From this acquisition procedure results a data cube where to
each pixel location is associated a discrete spectrum related to the way the incident light has
interacted with the region of the scene at this location. This interaction can be interpreted
either in terms of the amount of light reflected by the scene (which is the dominant phenomenon
when working with wavelengths in the visible and near infrared domains), one then talks of
reflectance spectrum, or the amount of energy irradiated by the scene (when working in the
middle and long wave infrared domains), and one talks of emissivity in that case.

Each physical material is characterized by its proper way to interact with light. Due to
this, it is possible to establish from the spectrum depicted by each pixel in a HSI which are
the materials constituting this spectrum, and thus to identify in a more general way the
constituents of the scene. Given this capacity of recognizing the physical components present
in the image, hyperspectral imagery has found numerous applications in several fields such
as medical imaging [38, 125] (where it can be used for tumor extraction and identification,

2. This work was done in collaboration with Dr. Veganzones, Dr. Dalla Mura and Dr. Chanussot from the
GIPSA-lab, Grenoble Institute of Technology, France, and with Dr. Plaza from the University of Extremadura,
Cáceres, Spain.
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Figure 2.1: Illustration of a hyperspectral image (image extracted from [23]).

assessing tissue perfusion and its pathological conditions, helping for accurate surgical decisions
or evaluating the health of dental structures for example), food quality inspection [69,124] (with
applications in meat tenderness prediction as well as the detection of microbial spoilage for
instance), geological [212] and hydrological [83] sciences and Earth and planetary observation
by remote sensing [24, 82]. An illustration of a remotely sensed hyperspectral image of the
Earth surface is depicted by figure 2.1. It can be seen how the three spectra corresponding
to soil, water and vegetation differ from each other, thus acting as a signature for their
corresponding material.

Typical hyperspectral sensors have a spectral resolution often comprised between 10 nm
and 20 nm, meaning that each spectral channel of the image is concerned with the measurement
of light in a very restrained portion of the spectral channel, whose bandwidth is at most 20 nm.
However, the price to pay for a fine spectral resolution is a coarser spatial resolution. In spite
of the technological advances made in the design of hyperspectral sensor, the typical spatial
resolution is still at best in the order of a few meters (around 5 m for the AVIRIS and HyMap
sensors for instance), while panchromatic and multi-spectral images now enjoy centimetric
resolutions.

A first approach to enhance the spatial resolution of a low spatial/high spectral resolution
hyperspectral image is the use of a complementary high spatial/low spectral resolution
panchromatic or multi-spectral image of the same scene. This spectral-spatial multimodality,
known as super-resolution or hyperspectral pansharpening, aims at generating from the two
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Figure 2.2: Illustration of a super-resolution algorithm (image borrowed from [232])

complementary images a high spectral/high spatial resolution image. The literature features
plenty of algorithms devoted to the pansharpening of multispectral images, which can often
be classified among component substitution, multiresolution analysis, Bayesian-based and
variational-based methods (reviews of such methods can be found in [8, 191]). However, the
extension of these methods to hyperspectral images is still more complex as phenomena such
as the difference between the spectral ranges of the low and high spectral resolution images
have to be taken into account. The line of conduct that is most of the time followed is to
consider that the hyperspectral image Yh and the high spatial resolution (be it multi-spectral
or panchromatic) image Ym are obtained from the super-resolution image X by some unknown
transformations Ψh and Ψm:

Yh = Ψh(X)
Ym = Ψm(X)

(2.1)

The goal of the super-resolution algorithm is then to estimate and invert those transformations
in order to retrieve back the super-resolution image, as illustrated by figure 2.2. An extensive
review of hyperspectral super-resolution methods is presented in [122].

However, the complementary high spatial/low spectral resolution image is often not always
available, and one has to cope only with the spatial information contained within the HSI.
However, considering a hyperspectral image as a source of multimodality does not contradict
the definition of multimodal data given by definition 1.2. As a matter of fact, a HSI, being a
collection of gray-scale images depicting the same scene at different wavelength positions, can
be viewed as a source of both spectral and spatial information, compared to the case of a single
band image (such as a panchromatic image, for instance). In any case, the joint consideration
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of spectral and spatial information has shown to improve typical hyperspectral applications
that initially relied either on spectral or spatial information only 3. That is notably the case for
hyperspectral classification, spectral unmixing and segmentation, which are reviewed below.

2.1.2 Examples of spectral-spatial multimodality for hyperspectral appli-
cations

2.1.2.1 Hyperspectral classification

The classification task aims, given an image, at assigning a label to each pixel, such that
pixels sharing the same label (which define a class) have some common properties. Note
that the resulting classification map forms a particular partition of the image, where the
regions may however not all be connected. The classification procedure can be unsupervised,
semi-supervised or supervised. In the first case, the number and identity of classes are unknown
a priori and have to be found within the algorithm itself or manually estimated. Well-known
examples of unsupervised classification methods include clustering-based techniques such as
k-means [121] or mean shift clustering [52]. When applied to hyperspectral images, these
methods suffer from the very high dimensionality of the data. Supervised classification
methods are known to outperform the typical results of unsupervised classification, but at
the expense of the need of a priori known labeled samples. Those are divided into training
samples, on which is first performed a learning step, and validation samples, which are used
to assess the accuracy of the classification. Among supervised classification methods, one can
notably cite artificial neural networks [65] as well as (kernel-based) support vector machines
(SVMs) [54, 179]. Semi-supervised methods stand in-between supervised and unsupervised
methods, as they rely both on some labeled and unlabeled samples (see [236] for a review).

Overall, when applied on hyperspectral images, classification methods suffer from the so-
called "salt and pepper" effect. Each pixel is classified based only on its spectral characteristics,
and the resulting classification map may show some spatial inconsistencies, such as pixels
belonging to a given class isolated within another class. To overcome this issue, spatial
information can be considered as a means to regularize the output of a pixel-wise classification
map. Such spectral-spatial classification algorithms rely on the intuition that neighboring
pixels are more likely to belong to the same class. Then, given a pixel-wise classification map,
there are several strategies to make the most of the spatial information [73].

– The contextual information is embedded within a probabilistic framework, such as the
one presented in [189] using a Markov Random Field (MRF) regularization. The final
classification map, which is interpreted as the maximum a posteriori (MAP) estimate of
the "true" (unknown) classification map is obtained by iteratively relabeling some pixels
of the pixel-wise classification map by considering class dependencies between adjacent
pixels.

– The contextual information is considered as a classification feature, where a common

3. Although the joint use of spectral and spatial information rather appears as a data fusion problem, we
will term this as spectral-spatial multimodality for the sake of convenience.
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(a) (b) (c) (d)

Figure 2.3: Example of spectral-spatial hyperspectral classification: (a) RGB composition of
the Pavia university hyperspectral data set, (b) labeled data (where each color defines a class),
(c) example of pixel-wise SVM classification and (d) example of spectral-spatial classification
(MAP-MRF method presented in [189]).

approach is to add spatial features in the classification process. The spatial features aim
at embedding the spatial relations (contextual relations, geometrical features, etc.) of
the objects in the scene. As an example, the use of morphological filters in a multi-scale
setting leads to the definition of morphological profiles [19], which act as an adaptive
neighborhood for each pixel. Then, two pixels are more likely to belong to the same
class if their morphological profiles are similar. Therefore, the classification is performed
using both spectral and spatial features.

– The contextual information is represented through a segmentation map. If two pixels
belong to the same regions, then they likely belong to the same class. While this strategy
is bound to the derivation of a good segmentation map, it was shown in [188] that
the hyperspectral watershed performs consistently. First, a multidimensional gradient
of the hyperspectral image is computed, and a watershed transformation is applied
onto the gradient map. Provided a pixel-wise classification, all pixels of a region of
the segmentation map are finally assigned to the most frequent class within the region
(known as majority voting).

Spectral-spatial classification strategies finally output a classification map of the image, where
each class looks more spatially homogeneous than in its pixel-wise counterpart. An example
of such spectral-spatial classification improvement is displayed in figure 2.3. One can notably
see in figure 2.3c the main drawback of pixel-wise classification where the spatial distribution
of classes suffers from "salt and pepper" inconsistencies. This effect is strongly mitigated when
incorporating spatial information, as it can be seen in figure 2.3d which displays the result of
the spectral-spatial MAP-MRF-SVM approach of [189].
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Fig. 1. Illustration of the problem of mixed pixels: When the spatial
resolution is not fine enough, several land cover classes lie in the same pixel.
In this case, a hard classification process cannot give an accurate information
about the pixel coverage, leading inevitably to a loss of information

be seen as complementary methods, since the former are
more suitable for the classification of pixels dominated by
a single land cover class, while the latter are devoted to the
mixed pixels analysis. Since a hyperspectral image usually
contains many areas with pure pixels and some others with
mixed, the combination of these two techniques can be seen
as an interesting approach for the analysis of hyperspectral
data. In spite of the fact that full pixel techniques and spectral
unmixing methods could be combined in order to obtain
improved classification maps in terms of accuracy, only few
attempts have been made so far in order to jointly use these
techniques, especially in [10], [11]. Plaza et al. [11] proposed
an unsupervised approach for the classification of mixed
pixels in hyperspectral imagery, based on the generalization
of the concept of extended morphological profiles to case
of multi bands images. The comparison of the method with
commonly used techniques when applied to images with a
low number of land cover classes or in case of high classes
spectral separability showed interesting results. However,
due to its unsupervised nature, the algorithm is expected to
encounter difficulties when applied to more challenging data
sets. An extension of the SVM classification technique to
address the problem of mixed pixels was recently proposed in
[10]. This extension provides interesting results when applied
to synthetic data.

In this paper, a new supervised technique, which takes
advantage of both probabilistic classification and spectral
unmixing mapping techniques, is proposed in order to handle
the issue of mixed pixels. The concept of sub-pixel mixing
is also considered, in the attempt of obtaining land cover
maps with an improved spatial resolution. The idea of subpixel
mapping was first presented by Atkinson in [12]. He proposed
to use the output of a soft classification technique in order
to obtain a super-resolution mapping, trying to maximize the
spatial correlation of the land cover classes to determine sub-
pixels spatial locations. Since then, a number of techniques
focused on better estimating sub-pixel fractional abundances
determination and obtaining land cover maps with higher
spatial resolution have been proposed [13]. In this paper, we

propose the use of Simulated Annealing (SA) for this purpose,
due to its simplicity and ease of use. This method has shown
good results in a number of optimization and real problems,
and its wide range of parameters grants a high flexibility with
respect to the analysed problem. In multi-hyperspectral remote
sensing, it has successfully been used for classification [14],
[15], and abundances estimation [16].

The method proposed in this paper is in three steps. In a
first step, a coarse classification is performed, based on the
probabilistic output of an SVM. Every pixel can be assigned
to a class, if the probability value obtained in the classification
process is greater than a chosen threshold, or be unclassified.
Pixels with a low probabilistic output are either mixed pixels
or pixels hard to classify due to spectral variability, and their
classification is addressed in a second step. In the second step,
spectral unmixing is performed on the unclassified pixels by
considering the preliminary results of the coarse classification
step and by applying a Fully Constrained Least Squares
(FCLS) method to every unlabeled pixel, in order to obtain
the abundances fractions of each land cover type. Finally,
in a third step, spatial regularization by SA is performed to
obtain the resolution improvement. Experiments are carried
out on synthetic and real hyperspectral data sets. The results
are excellent both numerically and visually and show that
the proposed method clearly outperforms traditional hard
classification methods when the data contain mixed pixels.

The remainder of the paper is organized as follows. Section
II presents in greater details the proposed approach. Section III
shows the experiment on a synthetic data set, while Section IV
illustrates the experimental results on real hyperspectral data.
Section V finally draws the conclusions.

II. METHODOLOGY

The flow chart scheme of the proposed approach is pre-
sented in Fig. 2. The hyperspectral data are used as input for
the hard classification method, in order to obtain a preliminary
classification of all the pixels considered as ”pure”. The results
of this step are the input (along with the original hyperspectral
image) for the spectral unmixing, so that an appropriate set of
endmembers can be found and the negative impact of spectral
variabiality on the classification map minimized. In the last
step, the results obtained are processed with a Simulated
Annealing algorithm. Based on the assumption of spatial
correlation of the land cover classes, SA is used to optimize
a function where spatial proximity of pixels belonging to the
same land cover class are preferred to the opposite case.

A. Pixel-wise classification

The first step of the proposed method consists in performing
a pixelwise classification of the hyperspectral image, in order
to obtain, for every pixel, a probability value for it to belong
to one of the land cover classes. The pixels with a probability
higher than a chosen treshold are considered as pixels where a
single class is represented, and thus assigned to the considered
class. These pixels are going to provide a preliminary classi-
fication map, where only the pixels containing a predominant
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Figure 2.4: (a) Illustration of a pure and a mixed pixel in a hyperspectral image (image
borrowed from [219]), along with (b) the observed spectra in both cases.

2.1.2.2 Spectral unmixing

Another classical hyperspectral application that benefits from the spectral-spatial multi-
modality is spectral unmixing. The goal of spectral unmixing is to retrieve, for each pixel
spectrum, which are the pure constituents, called endmembers (which correspond to macro-
scopic elements such as soil, vegetation, grass, concrete and so on) present in the spectrum
and in which proportion (the fractional abundances). Given a HSI, the output of the spectral
unmixing operation is the set of endmembers and their resulting abundance maps. The low
spatial resolution of hyperspectral images is actually one of the motivations to perform spectral
unmixing, as it is likely that several pure constituents are "mixed" within each pixel site and
thus add their contribution to the resulting pixel spectrum, as illustrated by figure 2.4. By
giving access to sub-pixelar information, spectral unmixing can also be viewed as a sort of
super-resolution method.

The unmixing is commonly done over the whole set of pixels without any prior information
related to the spatial distribution of the endmembers across the image. However, it can be
assumed in a similar fashion as hyperspectral classification that neighboring pixels are likely to
be made of the same endmembers in comparable proportions. Thus, introducing some spatial
information within the unmixing process should lead to more consistent results. This idea has
already been exploited in the literature in several works, with three main strategies standing
out:

– The spatial information is integrated as a pre-processing step and combined with the
derivation of pixel purity indices, in order to guide the search for endmembers in regions
which are spatially homogeneous and spectrally pure. This is the case for instance
in [134,135].

– The spatial information is incorporated within the endmember selection process, as
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in [158] which uses mathematical morphology operators to finds the purest pixels
(most likely to be endmembers) in a given neighborhood, or in [168] where spatial
characteristics are used to increase the spectral contrast between spectrally similar,
but spatially independent endmembers, thus improving the potential of finding these
endmembers.

– The spatial information is taken into account to smooth the abundance maps, by using
some total variation regularization [94] or some MRF formulation [68] to model spatial
correlations between neighboring pixels.

2.1.2.3 Hyperspectral hierarchical segmentation

Image segmentation process aims at dividing an image into regions fulfilling some given
criterion. Often when working with hyperspectral images, one is interested in spectrally
homogeneous regions, as it is commonly assumed that all pixels constituting a semantic object
of interest should feature similar spectral properties. Most segmentation algorithms that have
been proposed in the scope of hyperspectral image segmentation are by nature hierarchical as
they rely on some region merging procedure, based on the evaluation of spectral similarities
between regions. Thus, the hierarchical segmentation of a hyperspectral image is in essence
a spectral-spatial processing, as it aims at decomposing the hyperspectral image in a set of
nested regions (the spatial side of the spectral-spatial processing) which are spectrally coherent
(the spectral part). We list below some notable hierarchical segmentation algorithms that
have been proposed in the literature for hyperspectral image segmentation:

– The first proposed hierarchical segmentation method adapted to hyperspectral imagery
was the Extraction and Classification of Homogeneous Objects (ECHO) algorithm [99].
ECHO implements a region merging procedure, where the decision whether to merge
two regions or not is taken according to a likelihood test evaluating if two regions are
homogeneous or not. It suffers from the common downside of every statistical test being
the setting of a (false alarm) threshold which impacts the performances of the produced
sequence of partitions. Moreover, it relies also on the computation of the inverse of
covariance matrices, which can be problematic because these matrices are often badly
conditioned when dealing with hyperspectral data.

– The Fractal Net Evolution Approach (abbreviated FNEA) proposed by [12] also carries
out region merging. The fusion procedure in the FNEA algorithm minimizes at every
step the growth in heterogeneity in a heuristic process. Provided a spectral homogeneity
measure between two regions (such as the Euclidean distance between the mean spectra
of two regions in the original paper [12]), a virtual merge between those two regions is
first evaluated in order to measure and compare the homogeneity of the virtual region
against the ones of its constituents. The final merging occurring at the current step is
the one which minimizes this loss in homogeneity.

– The Hierachical SEGmentation (HSEG) method, proposed in [192,193] and based on
the well-known Hierarchical Set-Wise Optimization (HSWO) procedure [18]. In the
latter, each iteration involves the search for the two adjacent regions that have the lowest
pairwise distance. All pairs of regions achieving this distance are then merged. The
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HSEG algorithm is founded on the same idea, expect that the adjacency constraint for
regions is partially relaxed. Indeed, a user-chosen proportion of non-adjacent regions
can also be merged at each iteration, provided that their distance is less than the
minimal distance among all pairs of adjacent regions. For that reason, the HSEG
algorithm can be viewed as sequentially alternating between a region growing step and a
spectral clustering step. Due to its huge computational load, induced by the important
number of pairwise distances that must be evaluated the HSEG algorithm was further
extended to the Recursive HSEG (RHSEG) algorithm [194]. This latter, based on a
divide-and-conquer approximation of the HSEG, allows for parallel implementation and
computational acceleration.

– The adaptation of the BPT representation to hyperspectral images, as presented in [207],
introduced in chapter 1. The construction of the BPT strongly resembles the HSWO
procedure, the only difference being that each merging iteration feature the merging
of only two regions in the case of the BPT even if several pairs of regions have the
same minimum pairwise lowest distance. The major difference between the work of
Valero [204, 207] and all previously cited hierarchical segmentation methods is in the
further processing. In the latter case, it is assumed that the "optimal" segmentation
can be found directly in the stack of partitions created during the region merging
process [190]. However, this is rarely true, especially when objects of interest can be
found at different levels of the hierarchy. To that extend, new tree-based processing
techniques were introduced in the work of Valero to make the most of the hierarchical
decomposition of the HSI induced by its BPT representation.

2.1.3 Objective of this chapter

The goal of this chapter is to propose a new way to incorporate spectral-spatial information
in a BPT-based representation of a hyperspectral image. While all hierarchical segmentation
works cited above handle the spectral information through the pixel spectra, we propose to go
one step beyond by performing spectral unmixing over each region and to handle this region
through its proper endmembers and associated fractional abundances. This is in itself a depart
from the conventional spectral unmixing, performed over the whole image.

The pursued objective, by means of the BPT representation, is to obtain at the end of the
day a segmentation map of the hyperspectral image which can be called optimal with respect
to the spectral unmixing operation. This optimality, developed in the sequel, is reached by the
definition of an energy function linked with spectral unmixing, which is subsequently minimized
over the hierarchy. Therefore, spectral and spatial information are used in a synergistic way
at different stages of the proposed methodology:

1. During the construction of the BPT, spectral and spatial information are used for the
definition of suitable region models and merging criteria.

2. During the processing of the BPT, where an energy function integrating spectral and
spatial considerations is minimized over the previously constructed BPT representation.

3. The output of the proposed method: a segmentation map (encoding spatial information
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Figure 2.5: Different interaction models between the incident light and the surface. The
interactions can be modelled as linear (a) when each ray of light bounces only one, or non-linear
(b)-(c) because of multiple or intimate rebounds.

by nature) which is optimal with respect to the unmixing operation (which is by essence
a spectral processing).

2.2 Spectral unmixing

When a hyperspectral sensor, be it airborne or spaceborne, collects an image of the Earth,
it actually records the amount of light which bounced off the surface and reached the sensor.
Each ray of light interacted with the elements present on the ground during its rebound. The
goal of spectral unmixing is, given what has reached the sensor, to identify which were the
elements on the surface and how the light interacted with them.

These interactions can be modeled from the physics as non-linear for several reasons, such
as the topography of the ground which can lead to multiple rebounds (illustrated by figure 2.5b)
or the consistency of the material which may generate some intimate mixing phenomena
(depicted by figure 2.5c). However, due to the complexity of these models, non-linear effects
are often neglected and approximated by a linear mixing model (LMM) instead. This latter
assumes that each ray of light bounces only on one element on the ground so the optical
signal that is received by the sensor for each pixel site is the mean of all the interaction
that happened within this site [98] (see figure 2.5a). Despite its relative simplicity, most
of the unmixing methods in the literature are based on the LMM [23] as it allows simple
geometric interpretations. Given a HSI, a classical spectral unmixing algorithm outputs the
set of spectral signatures of the main constituents of the scene, called endmembers, and their
corresponding fractional abundances that depicts the spatial distribution of these endmembers
within the scene.

2.2.1 Linear Mixing Model (LMM)

The LMM states that a hyperspectral sample is formed by a linear combination of the
spectral signatures of pure materials present in the sample (endmembers), plus some additive
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e1

e2

e3

Figure 2.6: Geometrical interpretation of the LMM combined with the ANC and ASC. The
simplex (in gray) is formed by the three endmembers (in red) e1, e2 and e3, and all image
pixels (in green) lie within it.

noise. Let E = [e1, . . . , em] be the pure endmember signatures (normally corresponding to
macroscopic objects in the scene, such as water, soil, vegetation,. . . ) where each ei ∈ RN is
a N -dimensional vector. Then, the hyperspectral signature x at each pixel in the image is
defined by the expression:

x = s + η =
m∑
i=1

φiei + η, (2.2)

where x is given by the sum of the pixel signal s and an independent additive noise component
η. φ = [φ1, . . . , φm] is the m-dimensional vector of fractional per-pixel abundances related
to x, which models the contribution in percentage of each endmember ei in the signature x.
For physical reasons, it is subject to the Abundance Non-negative Constraint (ANC) and the
Abundance Sum-to-one Constraint (ASC):

φi ≥ 0 ∀i = 1, . . . ,m (ANC) , (2.3)
m∑
i=1

φi = 1 (ASC) . (2.4)

The LMM combined with the ANC and ASC can be interpreted from a geometrical point
of view: the m endmembers of the image form a (m − 1)−simplex whose vertices are the
endmembers. All pixels of the image, which can be written as a linear combination of the
endmembers weighted by the fractional abundances, then lie inside the simplex, as illustrated
by figure 2.6. This interpretation notably paves the way to several geometrical methods for
the endmembers identification, which are reviewed in [23].

Representing the HSI as a matrix X ∈ RN×Npix , it is possible to extend equation (2.2) to
the whole image as

X = EΦ + η , (2.5)
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where E ∈ RN×m is the matrix whose columns correspond to the m endmember signatures,
Φ ∈ Rm×Npix is the matrix of fractional abundances and η is an independent additive noise.
This formulation allows the use of matrix factorization methods to infer matrices E and Φ by
solving the following problem:

min
E,Φ
‖X−EΦ‖2† such that Φ � 0 (ANC),1TmΦ = 1Npix (ASC) , (2.6)

where ‖ · ‖† is often formulated as the Euclidean or Frobenius norms [95,162].

2.2.2 Endmember induction and abundance estimation

Most of the times, the spectral signatures of the materials are unknown, and the set of
endmembers must be built by either selecting spectral signatures from a spectral library, or by
automatically inducing them from the image itself. Both can be performed manually or in an
automatic way. In order to automatically induce the set of endmembers from the image, the
use of some endmember induction algorithm (EIA) is required. The hyperspectral literature
features plenty of such algorithms. Some reviews on the topic can be found in [23,98,214].

Once the set of endmembers, Ê, has been induced, their corresponding per-pixel abundances,
Φ̂, can be estimated by approximating a solution to an over-determined linear system by
the Least Squares method [110]. The Fully-Constrained Least Squares Unmixing (FCSLU)
method [89] solves the over-determined linear system subject to ANC and ASC constraints.

The quality of the unmixing, Ê and Φ̂, at a given pixel x can be measured by the Root
Mean Squared Error (RMSE) of the original hyperspectral signature with respect to the
reconstructed one, x̂ =

∑m
i=1 φ̂iêi:

ε(x, x̂) =

√√√√ 1
N

N∑
k=1

(x (k)− x̂ (k))2. (2.7)

Computing the RMSE of each pixel x yields a reconstruction map where low values signify
that the corresponding pixels have been well reconstructed by the set of induced endmembers.
Contrarily, a high error value for a pixel means that its spectral signature is not well explained
by a linear combination of the endmember spectra.

2.3 Energy minimization over hierarchies of partitions

Image segmentation is one of the most investigated applications in image processing 4.
The main reason of this popularity is actually due to the complexity of such operation. As a
matter of fact, image segmentation is an ill-posed problem: a given image can be segmented
in a variety of partitions, and the intended segmentation result depends on the pursued

4. Typing "image segmentation" in Google scholar and restricting to the 2010-2015 period yields around
214 000 results.
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application. Roughly speaking, image segmentation algorithms can be classified into four
different categories:

– Region-based methods. Those aims at producing the segmentation by focusing on regions,
i.e., sets of pixels, such that they all fulfill some predefined criteria (such as shape,
homogeneity, texture, and so on). Hierarchical segmentation methods notably belong to
this class, as the construction of a hierarchy is conducted through the aggregation (or
splitting) of a set of regions of the image.

– Edge-based methods, which can be seen as the dual of region-based methods. Rather
than focusing on the pixels composing the region, they are based on the properties of
the transitions between regions. The final segmentation map is defined by its region
boundaries instead of the regions themselves. All methods based on the detection of
edges belong to this category.

– Statistical-based methods. This group of algorithms produces a segmentation by exploit-
ing the inherent statistics of the image. For instance, a simple thresholding can be seen
as a statistical-based segmentation as the threshold is often set according to statistical
distribution of the pixel values in the image. Clustering algorithms, such as the mean
shift clustering, are also particular instances of statistical-based methods.

– The remaining methods that do not fit within a previous category, mostly because they
exploit several of the previous aspects. For instance, segmentation methods relying on a
graph setting often assign to each edge a value reflecting the dissimilarity between the
vertices connected by this edge. The segmentation is then derived by producing sets of
connected vertices such that their dissimilarity is low (which is a region-based approach)
and such that the dissimilarity between each vertex in the set and a connected vertex
outside the set is high (which can be viewed as an edge-based idea).

2.3.1 Segmentation by energy minimization

As image segmentation is application-dependent, one often tries to find the "best" segmen-
tation of an image for a given task. This notion of optimality often relies on the definition
of an energy function (also called objective function, or cost function, given the domain of
application), which embeds in its expression the properties that should be featured by the
optimal segmentation. By reflecting how good or bad is a given segmentation with respect to
the application, it is then possible to define the optimal one as the minimizer of the energy
function.

The main advantage of this segmentation by energy minimization framework is that it
shifts the problem of identifying an optimal segmentation among the set of all possible ones,
which is subjective, to the problem of properly defining an energy function whose minimizer
is the sought segmentation, which is objective and can be formulated mathematically. This
energy minimization framework has been extensively used in the literature, and one can
notably cite:

Mumford-Shah functional: Representing an image as a function I0 : E → V , Mumford
and Shah proposed in their famous paper [142] to define the optimal segmentation of I0
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as the minimizer of the following energy function:

EMS(I,Γ) =
∫
E
‖I(x)− I0(x)‖2dx+ λ

∫
E\Γ
‖∇I(x)‖2dx+ ν|Γ| (2.8)

where I is a piece-wise smooth approximation of I0, Γ is a set of boundaries whose total
length is |Γ|. The previously defined energy function is composed of three terms: the
first one penalizes the misfit between the original image I0 and its approximation I,
the second one enforces smoothness for I and the last term promotes simplicity in the
segmentation by regularizing the total length of boundaries. Minimizing equation (2.8)
has been the concern of several studies ([47] uses a levet set approach for instance, while
an approximation by finite differences is implemented in [46]), but it is known to be
a non-convex NP hard problem. It has therefore been subsequently relaxed into the
so-called piece-wise constant Mumford-Shah functional:

EMS(π) =
∑
Ri∈π

(∫
Ri
‖I0(x)− ci‖2dx+ ν

2 |∂Ri|
)

(2.9)

where the space E is now partitioned into a set of connected components π = {Ri} and
the approximation I of I0 is set to the constant value ci over Ri. For a given partition π,
the values of ci that actually minimize equation (2.9) are the mean values of I over Ri,
denoted µI0(Ri). The finally obtained piece-wise constant Mumford-Shah expression

EMS(π) =
∑
Ri∈π

(∫
Ri
‖I0(x)− µI0(Ri)‖2dx+ ν

2 |∂Ri|
)

(2.10)

however remains difficult to minimize in practice as it is still non-convex when minimized
without any further constraints with respect to π. However, we will see in the following
that, when π is defined as a cut of a hierarchy, the minimizer of equation (2.10) can be
found easily by a dynamic program.

Graph cut: In their well-known paper [27], Boykov, Veksler and Zahib propose to view the
image segmentation as a labeling problem, i.e., as a function L that assigns to each pixel
x ∈ E a label lx in some given set of labels. Attaching a given energy to the labeling
function, the optimal image segmentation is defined as the labeling with minimal energy.
In particular, they consider a broad range of energy functions which can be written as

E(L) = Esmooth(L) + Edata(L)

=
∑

(x,y)∈N
V (lx, ly) +

∑
x∈E

D(lx) (2.11)

where N is the set of interacting pairs of pixels (not necessarily restricted to neighboring
pixels) where V is some penalty function over the labels lx and ly of two interacting
pixels x and y, and D is some data fitting term which measures how well the label lx
fits pixel x given the observed data. The proposed minimization is conducted with a
graph-cut approach. Two operations, namely swap and expansion moves, are introduced.
Both operations allow to reach some local minima, and it is shown that expansion moves
can bring the local minima to an energy which can be at least twice the energy of the
global minimum.
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MRF: Markov Random Fields have also been widely studied to achieve image segmenta-
tion [113]. The underlying idea is similar to that of the previously presented graph
cut approaches, namely to tackle the image segmentation as an labeling problem. A
probability measure is associated with each possible labeling L ∈ L, and the optimal
one L? is the one maximizing the probability of a labeling given the observed image I,
p(L|I):

L? = argmax
L∈L

p(L|I)

= argmax
L∈L

p(I|L)p(L)
(2.12)

which is the maximum a posteriori (MAP) estimate of L. Imposing L to be a MRF allows
to formulate p(L) as a Gibbs distribution, and to transform the MAP estimation (2.12)
to the minimization of some energy function U(L, I) which is often split in two terms,
one accounting for region homogeneity and the other being a regularizer. The final
minimization is often conducted by a simulated annealing approach [108], where the
theoretical convergence to the global optimal is ensured in certain cases, but at a really
slow rate.

To summarize, energy minimization is a convenient and widely used framework to achieve
image segmentation as the specificities which must be achieved by the segmentation can be
embedded in the energy definition. However, finding the minimizer of the energy function is not
straightforward, either because the minimization problem is non-convex and the convergence
to a global optimum is not guaranteed, or because this global optimum cannot be reached in
an acceptable computational time. These limitations find their source in the structure of the
space of all possible partitions ΠE of the set E:

– Its cardinality is gigantic: the number of partitions of a set E constituted of |E| elements
is given by the Bell number B|E|. For instance, a 5× 5 image possesses B25 = 4.6× 1018

different partitions. This number drops if regions are constrained to be connected, but
it remains in practice highly unrealistic to investigate all possible combinations.

– It is "unstructured": even if ΠE is known to be a lattice when equipped with the
refinement ordering, most pairs of partitions π1, π2 ∈ ΠE are not comparable, thus
making an "intelligent" browsing of the partitions challenging.

In the following, we are going to see that the use of hierarchies of partitions can be a solution
to both previously raised limitations.

2.3.2 Hierarchical segmentation by energy minimization

As we saw, the main reason why conducting segmentation by energy minimization is
challenging is due to the structure and size of the space of partitions ΠE . A possible solution
to alleviate this issue is no longer to conduct the search for an optimal partition on ΠE , but
rather on the space of cuts ΠE(H) of a hierarchy of partitions H. Indeed, the latter idea
features two main advantages with respect to the classical framework:

– The set of possible cuts is strongly constrained by the structure of the hierarchy. Its
cardinality is drastically reduced with the respect to the one of ΠE , even if it is impossible
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in practice to evaluate as it depends on the architecture of H (such as the number of
levels in the hierarchy, the average number of children per node, and so on).

– There is some underlying relationship (which will be called h-equivalence in chapter 4)
between all partitions of ΠE(H): given two cuts π1 and π2 of ΠE(H), each region of π1
is either disjoint or nested with all regions of π2. This inclusion relationship, holding
between all regions of the cuts composing ΠE(H), should be exploited in order to find
the optimal cut, if it exists, in a smart way.

Given some hierarchy of partitions H, the conditions which must be satisfied by the energy
function E to ensure the existence of an optimal partition were first studied formally in the
work of Guigues [86,87], and later generalized in the work of Kiran [101,103]. In the following
of this section, we summarize the main results of the former, on which we will base ourselves
to propose some new energy definitions 5.

2.3.2.1 Definitions and recalls

We shall start by recalling some definitions related to hierarchies. A hierarchy of partitions,
H, constructed over a set E can be defined in two equivalent ways:

– As a sequence of partitions {πi ∈ ΠE , i = 0, . . . , n} which are ordered by refinement:
i ≤ j ⇒ πi ≤ πj . π0 is termed the leaf partitions, its regions are the leaves of H.
Conversely, πn = {E} is the root of H.

– As a collection of regions {R ⊆ E} which includes {E} but not ∅, and such that any two
regions Ri and Rj are either disjoint (Ri ∩ Ri = ∅) or nested (Ri ⊆ Rj or Rj ⊆ Ri).
In addition, if C(R) is the set of children of a region R ∈ H, then R =

⋃
{Rc ∈ C(R)}.

From each non-leaf region R ∈ H, we can define a sub-hierarchy H(R) rooted at R.

A cut of H is a partition π of E whose all regions belong to H. From a graphical point of
view, a cut can be seen as a path that intersects each branch of the tree-based representation
of H at most once. The set of all cuts of a hierarchy H of a space E is denoted ΠE(H). It is
a sub-lattice of ΠE for the refinement ordering, meaning that the refinement supremum and
refinement infimum of two cuts of H are also cuts of H. A cut of a sub-hierarchy H(R) is
called a partial partition of R, and is denoted π(R). As for the set of cuts of a hierarchy, the
set of partial partitions of R ∈ H is denoted ΠE(H(R)).

In the previous section 2.3.1, we introduced energy functions as a description of how good
or bad a partition fits a given goal, postulating that the optimal partition is the one of minimal
energy. As a matter of fact, energy functions are often considered to be real non-negative, with
the intuition that the lower the energy, the better (or the "more stable") the corresponding
partition commonly borrowed from physics. Therefore, a first mathematical definition of an
energy function could be a mapping E : ΠE → R+ from the set of partitions of E to real
non-negative numbers. However, in many cases, the energy function is evaluated over the
regions composing the partition, which are then somehow assembled into the energy of the
partition. This is for instance the case with the piece-wise constant Mumford-Shah energy

5. The novel energy functions we propose in this chapter are actually a particular case of those proposed in
the work of Kiran [101], which were developed in parallel of our proposed work.
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formulated by equations (2.9) and (2.10) where the energy of the partition is expressed as
the sum of the energies of the regions composing the partition. Therefore, we consider the
following general definition of energy functions:

Definition 2.1 (Energy function)
The definition of an energy function is based on two inner concepts:

1. The definition of a regional energy, i.e., a function E: P(E)→ R+ that maps any region
R ⊆ E to R+, where P(E) is the set of all subsets (i.e., possible regions) of E.

2. The definition of some rule D to explicit the energy of a partition as some composition
of the energies of its regions.

The final energy of a partition π ∈ ΠE can be expressed as

E(π) = D
Ri∈π

E(Ri). (2.13)

In this formalism, the composition rule D can be arbitrary. The most common case
is to express the energy of a partition as the sum of the energies of its regions (as in the
Mumford-Shah energy for instance). However, we will see some other composition rules in the
following section 2.4 and in chapter 4.

2.3.2.2 Optimal cut

The first question that was investigated by Guigues is the condition on E under which it is
possible to guarantee the existence of an optimal cut

π? = argmin
π∈ΠE(H)

E(π) (2.14)

and how to retrieve it in ΠE(H). For that purpose, Guigues placed himself in the context of
separable energies:

Definition 2.2 (Separable energy)
An energy E is said to be separable if the energy of the partition π can be expressed as the sum
of the energies of its regions:

E is separable⇔ E(π) =
∑
R∈π
E(R) . (2.15)

Note that the definition of a separable energy reduces to definition 2.1 with D ≡
∑
.

Denoting π?(R) = argminπ(R)∈ΠE(H(R)) E(π(R)) the partial partition of R whose energy is
minimal, and E?(R) = E(π?(R)) standing for this optimal energy, Guigues showed [86, pp.
141-142] that, for any separable energy E , the following Bellman’s dynamic program was
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R

r1 r2π?(r2)π?(r1)
⊔

E(R)
?

≷ E (π?(r1)
⊔
π?(r2))

Figure 2.7: Illustration of a Bellman’s dynamic program step to retrieve the optimal cut of a
hierarchy.

holding for all region R ∈ H:

E?(R) = min

E(R),
∑

r∈C(R)
E?(r)

 (2.16)

π?(R) =


{R} if E(R) ≤

∑
r∈C(R)

E?(r)⊔
r∈S(R)

π?(r) otherwise
(2.17)

with t denoting disjoint union between regions (concatenation). Equations (2.16) and (2.17)
means that the optimal energy of any region R ∈ H is given by comparing the proper energy
E(R) of the region against the sum of the optimal energies of its children, and by picking the
smallest of the two. The optimal cut of R is then given either by itself {R} or by the disjoint
union of the optimal cuts of its children. This dynamic program procedure is illustrated by
figure 2.7: looking for the optimal cut of R (in red), one has to compare its own energy E(R)
against the energy of the union of the optimal cuts of its two children r1 (in green) and r2
(in blue), π?(r1) t π?(r2). The energy being separable in the present case, this latter term
is equal to E?(r1) + E?(r2). Following, π?(R) is either given by {R} or by π?(S1) t π?(S2),
depending on which has the lowest energy.

In practice, it is possible to obtain the optimal cut of the H by applying equations (2.16)
and (2.17) over each region of the hierarchy, scanned in an ascending pass. The optimal
cut π? of H is given by the one of the root note. It is interesting to notice that the global
optimal cut π? is obtained by solving and concatenating a set of partial cuts which are locally
optimal. As a matter of fact, each region R? ∈ π? has a lower energy than any of its partial
partitions, and any of the partial partitions it is included in. This can be considered as a
strong result knowing that the only condition required for the energy function E is separability.
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The dynamic program procedure also illustrates that the optimal cut is obtained by taking
advantage of the inclusion relationship holding on the regions of a hierarchy, thus emphasizing
the benefit of conducting the energy minimization operation over such hierarchical structures
instead of the unconstrained set of partitions ΠE .

The dynamic program methodology was actually used first for classification [28] purposes
and wavelet bases constructions [51, 64] over quad-tree hierarchies, although it was not
formulated as a dynamic program, in these works. It was also implemented both in [172] to
solve the image rate/distortion problem and in [204] for hyperspectral segmentation, formulated
as a Lagrangian minimization procedure.

2.3.2.3 Affine separable energies

The dynamic program procedure previously presented allows to find the optimal cut π? of
a hierarchy of partitions H given a separable energy function E . Guigues then investigated
the particular case of affine separable energies:

Definition 2.3 (Affine separable energy (ASE))
An energy E is said to be affine separable if it is separable and can be written as the sum of
two terms weighted by some positive coefficient λ

Eλ(π) =
∑
R∈π
Eφ(R) + λEρ(R) (2.18)

In an affine separable energy, written in short Eλ = (Eφ, Eρ), the two terms Eφ and Eρ are
competing to impose their own effect to the optimal partition, with a weight controlled by
the parameter λ. An affine separable energy can be seen as a family of energies {Eλ}λ∈R+

parametrized by the coefficient λ. Therefore, it no longer generates a unique optimal cut π?,
but rather a family of them {π?λ}λ∈R+ in turn indexed by the parameter λ. The behavior of
π?λ with respect to λ is bound to the notion of sub-additivity, which then allows to formulate
the multiscale minimal cuts theorem [86, pp. 161-162]:

Definition 2.4 (Sub-additive energy)
A separable energy E is sub-additive if for any two partitions π1 and π2 such that π1 ≤ π2,
then E(π1) ≥ E(π2). Equivalenty, for any two disjoint regions R1 and R2, E(R1 ∪ R2) ≤
E(R1) + E(R2).

Theorem 2.1 (Multiscale minimal cuts)
Let H be a hierarchy on a set E, and let Eλ = (Eφ, Eρ) be an affine separable energy. If Eρ is
sub-additive, then the family of optimal cuts {π?λ}λ∈R+ can be ordered by refinement, i.e.:

∀λ1, λ2, 0 ≤ λ1 ≤ λ2 ⇒ π?λ1 ≤ π
?
λ2 (2.19)

The main consequence of this theorem is that, under some mild assumptions on the
formulation of the energy (namely being affine separable, with a sub-additive term), it is
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H =⇒ H?
Eλ

Figure 2.8: Transformation of some hierarchy H into its persistent hierarchy H? = {π?λ}λ∈R+

with respect to some energy Eλ parametrized by λ.

possible to extract for a hierarchy H a sequence of optimal cuts {π?λ} which are ordered by
refinement. More specifically, the larger the λ, the coarser the optimal cut. Contrarily, the
smaller the λ, the finer the optimal cut. The value of λ is now associated with the notion of
scale of exploration of the image. As a matter of fact, it is termed the scale parameter in [87].

Several classical energy functions of the literature can be written as affine separable energies.
It is notably the case for the piece-wise constant Mumford Shah energy as well as typical
energies appearing in the MRF formulation. Often, the two competing terms are called the
goodness-of-fit (GOF) (for Eφ) and the regularization (for Eρ). The former favors partitions
fitting the data, thus encouraging over-segmentation in general, while the latter promotes
simplicity, hence under-partition. In that context, λ acts as a trade-off between simplicity and
fidelity. Using such energies, one can now analyze an image at different levels of simplicity
by appropriately tuning the value of λ and conducting the energy minimization. In the case
of the piece-wise constant Mumford-Shah energy, one can also remark that performing the
minimization over the hierarchy allows to shift from a non-convex problem, hard to minimize,
to a well-defined framework, where the global optimum can be reached easily.

2.3.2.4 Persistent hierarchy

Another consequence of the multiscale minimal cut theorem is that is it possible to assign
to each element R of the hierarchy H two values, denoted λ+(R) and λ−(R) and called scale
of appearance and scale of disappearance, respectively. They correspond intuitively to the
range of values in which the region R is optimal (i.e., when it belongs to the optimal cut):

λ+(R) ≤ λ < λ−(R)⇒ R ∈ π?λ (2.20)

with the relation λ−(R) = λ+(F(R)). A region stops being optimal when its father becomes
optimal. However, nothing imposes that λ+(R) ≤ λ−(R), meaning that a region can stop
being optimal before actually starting to be optimal. Such region, which does not belong to
any optimal cut of {π?λ} is said to be non-persistent. Conversely, a region R is persistent if
λ+(R) ≤ λ−(R). The interval

[
λ+(R);λ−(R)

]
is called the interval of persistence of R.
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(a) Original image (b) Initial segmentation π0

(c) π?λ with λ ∈ [0.459; 0.471]
yields 41 regions

(d) π?λ with λ ∈ [0.263; 0.275]
yields 200 regions

(e) π?λ with λ ∈ [0.153; 0.154]
yields 500 regions

Figure 2.9: Illustration of the hierarchical energy minimization framework.

The hierarchy H?, made of all persistent regions of H, is called the persistent hierarchy,
and is composed of all the optimal cuts π?λ of H when λ spans R+. An example of such
persistent hierarchy is displayed by figure 2.8. To obtain H? in practice, the energy Eλ is seen
as a function of λ, and the dynamic program is conducted over the space of such functions.
The output of the dynamic program is no longer some optimal cut for a given value of λ, but
some partition of R+ into intervals [0, λ1[∪ [λ1, λ2[∪ · · · ∪ [λp,+∞[ where all λ values within a
given interval [λi, λi+1[ are leading to the same optimal cut π?λi . The reader is referred to [87]
for more practical implementation details.

Figure 2.9 illustrates this hierarchical energy minimization framework. A BPT is built
over image displayed by figure 2.9a with standard parameters, namely the mean color and
the Euclidean distance as region model and merging criterion, and an initial partition π0
obtained by mean shift clustering and composed of 2156 regions (figure 2.9b). A piece-wise
constant Mumford-Shah energy defined by equation (2.10) is minimized over the resulting
hierarchy. The piece-wise constant Mumford-Shah energy being affine separable with sub-
additive regularization term, the minimization yields a persistent hierarchy H? composed of all
the optimal cuts of H when λ spans R+. Some of those cuts are displayed by figures 2.9c, 2.9d
and 2.9e for various values of λ. One can see that, indeed, the smaller the λ, the finer the
optimal partition. In addition, all obtained partitions can be ordered by refinement (for
instance, figure 2.9c is refined by figure 2.9d, in turn refined by 2.9e).
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2.4 Spectral-Spatial BPT processing by means of hyperspec-
tral unmixing

In this section, we introduce the adaptation of the BPT algorithm for hyperspectral
unmixing purposes by defining a region model and merging criterion based on the induced
endmembers and/or fractional abundances, and four pruning strategies based on the optimiza-
tion of the spectral reconstruction error regularized by the segmentation complexity. Finally,
we detail the novel methodology depicted by figure 2.11 to find an optimal segmentation of
hyperspectral images from their BPT representation based on the information provided by
the spectral unmixing.

2.4.1 Spectral-spatial construction of the BPT

We propose two novel region models and corresponding merging criteria based on spectral
unmixing information extracted from the regions. The first one is defined by means of the
spectral information provided by the endmembers induced from the regions. Thus we refer to
this model as the spectral region model and merging criterion. In the second one, we propose
to make use of the spatial information provided by the fractional abundances in addition
to the corresponding endmembers. Therefore, we refer to this model as the spectral-spatial
region model and merging criterion.

2.4.1.1 Spectral region model and merging criterion

For each region Ri a set of mi endmembers ERi = [e1, . . . , emi ] is induced by an EIA,
defining the spectral region model:

MRi
d= ERi = [e1, . . . , emi ] . (2.21)

In particular, this spectral region model is illustrated in figure 2.10 for the region labeled as
R6 when considering only the set of endmembers ER6 locally induced over this region.

Given two neighboring regions Ri and Rj and ERi = [e1, . . . , emi ], ERj =
[
e1, . . . , emj

]
being their respective region models, let

∆i,j = [dkl] = OSAM (ek, el),
k = 1, . . . ,mi

l = 1, . . . ,mj
(2.22)

being the mi ×mj endmember distance matrix whose each entry dkl is the spectral angle
defined by equation (1.15) between endmember ek ∈ ERi and el ∈ ERj . The spectral merging
criterion between the two regions Ri and Rj modeled by equation (2.21) is given by the
spectral dissimilarity between the set of endmembers of the two regions following [84]:

O (Mi,Mj)
d= d

(
ERi ,ERj

)
= ‖mr‖2 + ‖mc‖2 , (2.23)
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Figure 2.10: Illustration of the proposed spectral MRi = ERi and spectral-spatial
MRi =

(
ERi , φ̄Ri

)
region models for the construction of the BPT.

where ‖mr‖2 and ‖mc‖2 are the minimum Euclidean norms among all row and column vectors,
respectively, of the endmembers distance matrix ∆i,j . Once two regions merge into a new
one, the set of endmembers for the new (larger) region is induced again by the given EIA.
The rationale and originality of this spectral region model and merging criterion is to favor
the grouping of neighboring regions that are made of similar materials (endmembers). The
proposed spectral merging criterion, as it is defined, strongly penalizes regions that do not
contain the same materials, therefore it is fully adapted to the underlying motivation.

2.4.1.2 Spectral-spatial region model and merging criterion

For each region Ri a set of mi endmembers ERi = [e1, . . . , emi ] is induced by some
EIA, and their corresponding abundances, ΦRi =

[
φ1, . . . ,φmi

]
, are estimated. Then, the

spectral-spatial region model is defined as:

MRi
d=
(
ERi , φ̄Ri

)
. (2.24)

In the previous equation (2.24), the tuple
(
ERi , φ̄Ri

)
is composed by the set of endmembers

ERi and their corresponding average fractional abundances, φ̄Ri =
[
φ̄1, . . . , φ̄mi

]
, with

φ̄i = 1
|Ri|

∑
x∈Ri

φi,x, (2.25)

where |Ri| denotes the number of pixels in the region Ri, and φi,x is the fractional abundance
of the ith endmember for pixel x ∈ Ri. An illustration of this spectral-spatial region model
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Algorithm 1 Significance credits assignment algorithm.
1. L ← {}
2. M← {(k, l) : k = 1, . . . ,mi; l = 1, . . . ,mj}
3. Choose the minimum dkl for (k, l) ∈M−L
Label the corresponding (k, l) as (k′, l′)
4. wk′l′ ← min

{
φ̄ik′ , φ̄

j
l′

}
if φ̄ik′ < φ̄jl′ then

5. wk′l ← 0, ∀l 6= l′

6. φ̄ik′ ← 0
7. φ̄jl′ ← φ̄jl′ − φ̄ik′

else
8. wkl′ ← 0, ∀k 6= k′

9. φ̄jl′ ← 0
10. φ̄ik′ ← φ̄ik′ − φ̄

j
l′

end if
11. L ← L+ {(k′, l′)}
if
∑mi
k=1 φ̄

i
k > 0 and

∑mj
l=1 φ̄

j
l > 0 then

12. go to step 3
else

13. return
end if

is proposed by figure 2.10, where the region modelMR6 of region R6 is composed of both
the endmembers ER6 induced locally over R6 and their corresponding weighted fractional
abundances φ̄R6 .

The spectral-spatial merging criterion between two neighboring regions Ri and Rj modeled
by equation (2.24) is given by the spectral-spatial dissimilarity between the set of endmembers
and the corresponding average abundances of the two regions as it was proposed in [215]:

O
(
MRi ,MRj

)
d= d

((
ERi , φ̄Ri

)
,
(
ERj , φ̄Rj

))
=

mi∑
k=1

mj∑
l=1

wkldkl, (2.26)

where dkl is the spectral angle distance between two endmembers, ek ∈ ERi and el ∈ ERj ,
as it was defined by equation (2.22) above, and wkl is a weighting coefficient measuring the
significance associated to dkl. The matrix of weighting coefficients, Wi,j = [wkl], k = 1, . . . ,mi,
l = 1, . . . ,mj , is calculated using the significance credit assignment algorithm (see Algorithm 1)
introduced in [215] which is a version of the most similar highest priority principle [112], where
the average fractional abundances, φ̄Ri and φ̄Rj play the role of "significant credits" assigned
to the spectral distances, dkl. The use of the proposed spectral-spatial merging criterion
promotes the merging of regions containing similar materials and in similar proportions.
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2.4.2 Spectral-spatial pruning of the BPT

We present now four novel energy functions based on the spectral unmixing of the regions
in the BPT representation H of an hyperspectral image. Their goal is to provide a partition,
extracted from the set of all cuts ΠE(H), which is optimal in the sense of spectral unmixing.
Of course, this notion of optimality is bound to the definition of the energy term. In the
following, we shall restrict to affine energies Eλ(R) = (Eφ, Eρ) = Eφ(R) + λEρ(R). In a first
instance, we define the composition law D for the energy of a cut π as the sum over all its
regions, therefore remaining in the scope of affine separable energies as they were introduced
by Guigues [86, 87] and for which the theoretical results, reminded in section 2.3.2, are proved
and sound. Under this framework, we propose two new energy definitions. In a second stage,
we propose to use a new composition rule to express the energy of a partition, namely as
the maximum of its regional energies. We first check that all theoretical results holding for
separable energies export well to these new max-composed energies. Then, we propose two
instances of unmixing-based max-composed energy functions.

2.4.2.1 Unmixing-based affine separable energies

The first proposed unmixing-based affine separable energy is based on the overall average
RMSE, regularized by the number of regions in the partition:

E
∑

avg
λ (π) = 1

|E|
∑
R∈π

∑
x∈R

εR(x, x̂) + λ|π| (2.27)

where |E| and |π| are the number of pixels in the image and the number of regions in the
partition π, respectively. εR(x, x̂) stands for the RMSE defined by equation (2.7), for the
pixel signature x with respect to the estimated pixel x̂ =

∑m
i=1 φ̂iêi, reconstructed using the

set of endmembers ÊR and the fractional abundances Φ̂R induced over the region R. Defined
following equation (2.27), the energy E

∑
avg

λ can indeed be written as an affine separable
energy:

E
∑

avg
λ (π) =

∑
R∈π

[
E
∑

avg
φ (R) + λE

∑
avg

ρ (R)
]
with

 E
∑

avg
φ (R) = 1

|E|
∑
x∈R εR(x, x̂)

E
∑

avg
ρ (R) = 1

(2.28)
In (2.28), the term E

∑
avg

φ penalizes regions whose pixels have a high reconstruction error,
and can thus be seen as a goodness-of-fit (GOF) term with respect to the unmixing process.
The regularization term E

∑
avg

ρ being set to 1 acts as a regularizer on the total number of
regions in the partition (such regularizer was introduced in [204]). One straightforwardly check
that such regularization term is sub-additive. Energy E

∑
avg

λ (2.27) being an affine serapable
energy with sub-additive regularization term, it can therefore be minimized using the dynamic
program (2.16) and (2.17) and the multiscale minimal cut theorem is guaranteed to be holding,
meaning that it is possible to transform the BPT hierarchy H into its persistent version
H?∑

avg = {π?λ} where each optimal cut π?λ achieves a trade-off between spectral unmixing
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fitting, expressed as the average RSME over the whole image, and simplicity (in terms of
number of regions) controlled by the value of λ.

Similarly, we define a second unmixing-based energy, expressed as the weighted average
of the maximum RMSE of the regions in the partition, regularized again by the number of
regions in the partition:

E
∑

max
λ (π) = 1

|E|
∑
R∈π
|R|max

x∈R
εR(x, x̂) + λ|π| (2.29)

Energy E
∑

max
λ (2.29) can be derived from energy E

∑
avg

λ (2.27) by replacing εR(x, x̂) by
maxx∈R εR(x, x̂) in the GOF term. Therefore, all conclusions drawn for energy E

∑
avg

λ also
hold for E

∑
max

λ , namely the capacity to minimize it by dynamic programming, the validity of
the multiscale minimal cut theorem and the transformation of the hierarchy into its persistent
version.

2.4.2.2 Max-composed energies

We now depart from the scope of affine separable energies, as they were introduced in the
work of Guigues [86, 87], to focus on energies which are composed by a maximum rule D ≡

∨
,

that is
E(π) =

∨
R∈π
E(R) . (2.30)

With such defined energy, the first question arising concerns the validity of the dynamic
program procedure: is it possible to adapt it to handle max-composed energies? As a matter
of fact, the answer is yes:

Proposition 2.1 (Minimization of a max-composed energy)
Let H be some hierarchy of partitions built over the space E. Let E be a max-composed energy,
that is, for any π ∈ ΠE, E(π) =

∨
R∈π E(R). Then, for every region R ∈ H, the following

Bellman’s dynamic program is holding:

E?(R) = min

E(R),
∨

r∈C(R)
E?(r)

 (2.31)

π?(R) =


{R} if E(R) ≤

∨
r∈C(R)

E?(r)⊔
r∈S(R)

π?(r) otherwise
(2.32)

Proof. The proof is adapted from the one provided by Guigues [86, pp. 141-142] for separable
energies. Let R ∈ H and let H(R) be the sub-hierarchy of H rooted at R. Define

π?(R) =
⊔

r∈C(R)
π?(r)
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as the disjoint union of the optimal cuts of all the children r ∈ C(R) of R. Similarly, let π′(R)
be another partition partition of R. π′ can be written as the disjoint union of some cuts π′(r)
of the children r of R,

π′(R) =
⊔

r∈C(R)
π′(r).

E being max-composed, one has E(π?(R)) =
∨
r∈C(R) E(π?(r)) and E(π′(R)) =

∨
r∈C(R) E(π′(r))

and since π?(r) is the optimal cut in H(r), we have

E(π?(r)) = E?(r) ≤ E(π′(r)) ∀r ∈ C(R)∨
r∈C(R)

E?(r) ≤
∨

r∈C(R)
E(π′(r))

E?(R) ≤ E(π′(R))

In conclusion,

if E(R) ≤ E(π?(R)), then π?(R) = {R} and E?(R) = E(R)
otherwise π?(R) =

⊔
r∈C(R)

π?(r) and E?(R) =
∨

r∈C(R)
E?(r)

Still following the approach of Guigues, we now focus on affine max-composed energies,
namely energies which can be written as

Eλ(π) =
∨
R∈π

[Eφ(R) + λEρ(R)] . (2.33)

The next question arising concerns the validity of the multiscale minimal cut theorem. When
working with affine separable energies, Guigues used in his proof [86, pp. 161-162] the linearity
of the sum operator (i.e., the fact that

∑
R∈π Eφ(R)+λEρ(R) =

∑
R∈π Eφ(R)+λ

∑
R∈π Eρ(R))

combined with the sub-additivity condition on Eρ (namely, Eρ(R) ≤
∑
R′∈π(R) Eρ(R′) for some

partition partition π(R) of R). Using the maximum operator
∨

in our case, which is not
linear, we cannot directly adapt the proof of Guigues as it was done for the dynamic program.
In his work, Kiran [101, p. 53] introduced the notion of inf-modularity as a generalization of
sub-additivity, and proved that the multiscale minimal cut theorem was holding for any family
of the type Eλ(π) = Eφ(π) + λEρ(π) when the term Eρ is inf-modular, which is still not the
present case. However, as suggested in [101], it is nevertheless possible to prove the validity of
the multiscale minimal cut theorem for energies with other composition rules, based on the
monotonicity of the mapping λ 7→ Eλ(π). Using this argument, we can formulate again the
multiscale minimal cut theorem for max-composed energies:

Theorem 2.2 (Multiscale minimal cut for max-composed energies)
Let H be a hierarchy on a set E, and let Eλ(π) =

∨
R∈π Eφ(R) + λEρ(R) be an affine max-

composed energy such that Eρ(R) ≥ 0 ∀R ∈ H. Then the family of optimal cuts {π?λ}λ∈R+ can
be ordered by refinement, i.e.:

∀λ1, λ2, 0 ≤ λ1 ≤ λ2 ⇒ π?λ1 ≤ π
?
λ2 (2.34)
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Proof. The proof is given in appendix A.

Therefore, max-composed affine energies can be processed in the same way as separable
affine energies in terms of minimization by dynamic program and transformation of a hierarchy
H into its persistent version H?.

2.4.2.3 Unmixing-based max-composed energies

Following the previous theoretical results, we now propose to define unmixing-based
energies composed by the maximum law as defined by (2.33):

Eλ(π) =
∨
R∈π

[Eφ(R) + λEρ(R)]

where Eφ and Eρ play the role of bounds on data fitting and complexity, respectively. The
optimal partition π?λ with respect to such energy is the one that minimize the regularized
combination of both bounds.

The first proposed max-composed unmixing-based energy function is defined as

E
∨

avg
λ (π) =

∨
R∈π

[
1
|R|

∑
x∈R

εR(x, x̂) + λ

|R|

]
(2.35)

where the GOF term Eφ(R) is expressed in terms of average RMSE within the region R, and
the regularization Eρ(R) is defined as the inverse of the region size. The optimal cut of this
energy minimizes the upper bound on the average reconstruction error of the regions and at
the same time maximizes the lower bound on the size of the regions in the partition, with λ
acting as a trade-off parameter and thus giving more weight to one bound or the other.

Finally, we define a last unmixing-based energy function by replacing the average RMSE
of region R in E

∨
avg

λ (2.35) by the maximum RMSE:

E
∨

max
λ (π) =

∨
R∈π

[
max
x∈R

εR(x, x̂) + λ

|R|

]
(2.36)

Energy E
∨

max
λ has for minimizer a partition that minimizes the upper bound on the maximal

reconstruction errors and at the same time maximizes the lower bound of the size of the
regions in the partition, and can be seen as more restrictive version than E

∨
avg

λ as regions
having an overall low RMSE with a single badly reconstructed pixel will be more penalized in
E
∨

max
λ .

2.4.2.4 Use of a size constraint

It is sometimes interesting to constrain the set of valid partitions, ΠE(H), to those whose all
regions size is above a given minimum size. For instance, the segmentation of the image could
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BPT construction

Step 1: BPT construction

H Population step Decision step

Eλ(R) = (Eφ(R), Eρ(R)) π?λ = argmin
π∈ΠE(H)

Eλ(π)

Step 2: BPT pruning

H? = {π?λ}

Figure 2.11: Flowchart of the proposed novel methodology.

be later used for applications that require a minimum number of pixels to work (to estimate
some statistical parameters for instance). In these cases, the set ΠE(H) of valid partitions
in the formulation of the optimization problems is replaced by the subset of size-constrained
valid partitions, Πc

E(H):

Πc
E(H) = {π ∈ ΠE(H), s.t. ∀R ∈ π, |R| ≥ c} , (2.37)

where |R| denotes the number of pixels in region R and c ≥ 0 is a threshold on the region
size. If c = 0, the term (2.37) has no effect and the pruning criterion is considered to be
unconstrained.

2.4.3 Proposed methodology

Fig. 2.11 shows the flow diagram of the proposed general methodology to obtain an optimal
segmentation from a hyperspectral image, by pruning the BPT representation of the image
using the information provided by the spectral unmixing process. The procedure, decomposed
in two steps, is as follows:

Step one. First, a BPT representation H of the input hyperspectral image I is obtained. In
order to build the BPT, one must provide three input parameters, namely the initial partition
of the image π0, a region modelMR and an associated merging criterion O(Ri,Rj). For the
initial partition, the only constraint is that it provides an under-segmentation of the image,
with initial regions small enough not to encompass "actual" regions, and accurate enough
to be able to reconstruct those regions with a good accuracy. For the region model and
associated merging criterion, we propose to use either, the spectral region model (2.21) and
merging criterion (2.23) or the spectral-spatial region model (2.24) and merging criterion (2.26)
previously defined. In order to do that, a spectral unmixing process is run independently
for each region R (see figure 2.12). First, the virtual dimensionality δR of the region R is
computed using the Hyperspectral Signal Subspace Estimation (Hysime) algorithm [22]. The
value of δR works as an estimation of the number m of endmembers present in the region. If
the region is too small to correctly estimate the number of endmembers (due to the presence
of close to singular covariance matrices during the application of the Hysime algorithm), that
is, if δR = 0 or δR > |R|, being |R| the number of pixels in the region, then its region model
MR is set to the mean spectrum of the regionMR = µR. This happens in very small and
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Spectral-spatial
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yes

no

Figure 2.12: Workflow of the spectral unmixing process to obtain the region model.

homogeneous regions, so the mean spectrum µR acts as a single endmember. Otherwise, an
EIA is run over the |R| pixels of the region to induce the corresponding set of endmembers.
To overcome the stochastic part of most of the EIAs, the induction algorithm is run a number
of times k for each region, and the set of endmembers yielding the larger simplex volume [227],
Vk (E), among the k trials is retained. If the spectral region model is selected to build the
BPT representation, the region model is defined by these endmembers as it is described
in (2.21). If the spectral-spatial region model is selected, the FCLSU is conducted and the
fractional abundances of the induced endmembers are estimated for each pixel in the region.
The region model is then defined by the endmembers and their average fractional abundances
as it is described in (2.24). Computing the unmixing information for each region R during
the construction of the BPT can be computationally expensive, but once the BPT has been
populated for this information, it can be stored and any posterior processing of the BPT
representation becomes very fast. This trade-off is common in the analysis of images by means
of tree-based representations.
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Step two. The second step features the pruning of the BPT H to transform it into its
persistent version H?. This, as any pruning operation, is done in two steps:

1. The population step involves the computation of the energy of each region R. Here, we
propose to work with affine energies, namely energies being the sum of a GOF term Eφ(R)
and a regularization term Eρ(R) weighted by a coefficient λ. Following the novel energy
definitions introduced in subsection 2.4.2, the regularization term requires, at most,
the region size |R|. On the other hand, the GOF term is based on the reconstruction
error of each region, calculated by the RMSE (2.7), given the set of endmembers and
corresponding abundances. Note that, if any of the two proposed unmixing-based region
models are used to build the BPT representation, this information is already stored
during the construction and can be used as is. If not, for instance, when using a mean
spectrum region model, the spectral unmixing process defined above should be run for
each region in order to induce the endmembers and estimate the fractional abundances.

2. Then, given a composing law for the energy being either D =
∑

or D =
∨
, one can

then define the energy E(π) of a cut π ∈ ΠE(H) and seek for the optimal one given
a value of λ. Even better, if the definition of the enegy allows it, one can directly
compute all optimal cuts by viewing the energy as a function of λ and conducting the
dynamic program (2.17) and (2.16) over the space of such function (as advocated in [87]),
producing the persistent hierarchy H?.

2.5 Experimental methodology

2.5.1 Hyperspectral datasets

We propose to use in the experiments two real hyperspectral data sets. Their selection
is supported by the fact that these scenes have been widely used to validate hyperspectral
segmentation and spectral unmixing applications, and currently constitute benchmarks used
to validate new algorithms thanks to the availability of reliable reference information. The
considered scenes can be summarized as follows:

The Pavia University hyperspectral image. It was collected by the ROSIS-03 sensor
over the facilities of the University of Pavia in Italy. After discarding pixels with no information
and noisy spectral bands, the image has a spatial size of 610×340 pixels with a spatial resolution
of 1.3 m per pixel, and 93 spectral bands comprised in the range of 430-860 nm. Figure 2.13a
features a false color representation of the Pavia University scene. The scene shows an urban
area comprised of different buildings, parking lots, roads and other typical human-made
constructions, together with trees, green areas and bare soil.

The Cuprite hyperspectral scene. It was acquired by the NASA’s AVIRIS sensor [85]
and covers the Cuprite mining district in western Nevada, USA. This sensor collects data in
224 contiguous spectral bands with a bandwidth of 0.10 µm in the range of 0.4− 2.5µm. 200
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(a) (b)

Figure 2.13: False color representation of (a) the Pavia University scene and (b) the Cuprite
scene.

bands remain after removing noisy bands due to atmospheric water absorption. Each pixel
represents a 20m2 square cell. The data used in the experiments is a 250× 190 subset of the
original scene covering the mineralogical region of interest. Figure 2.13b shows a false color
representation of the subset of the Cuprite scene used to conduct the experiments. The scene
is well-known and widely used in hyperspectral community thanks to the extensive reference
information available for this scene from the United States Geological Survey (USGS) 6.

2.5.2 Experimental methodology

This section describes the procedure adopted to conduct the analysis of the two afore-
mentioned hyperspectral scenes. Specifically, we describe the steps followed in order to build
the BPT representations and extract some optimal cuts, as well as the quantitative measures
employed to assess the quality of these optimal cuts.

For each dataset, we build three independent BPT representations, each using a specific
region model and merging criterion:

6. http://speclab.cr.usgs.gov/cuprite.html
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– one BPT using the mean spectrum region model (1.13) and associated spectral an-
gle (1.15), hereafter denoted Hµ.

– one BPT using the proposed spectral distance model (2.21), based on the endmembers
induced over each region, and the associated proposed spectral distance (2.23), He

standing for this configuration.
– one BPT using the proposed spectral-spatial distance model (2.24), based on the

endmembers induced over each region and their corresponding average abundances, and
the associated proposed spectral-spatial distance (2.26). This BPT will be denoted Heφ̄.

In all cases, the BPT is built over an initial partition π0 of the image, obtained by the
hyperspectal watershed [188] method using a multidimensional morphological gradient [146].
This method produces severely over-segmented partitions maps and has already shown to be
relevant for the hierarchical representation of hyperspectral images [200,216]. In addition, the
priority term [36] enforcing small regions to merge with priority during the merging process is
set to 15%. Each BPT representation is then populated with the endmembers and fractional
abundances from an unmixing process run in each node, as explained in section 2.4.3 (note
that this information is already available for He and Heφ̄). The Vertex Component Analysis
(VCA) algorithm [144] is chosen to induce the endmembers. Due to the stochasticity of
such algorithm, several runs are made for each region of the BPT (20 independent runs in
the present case), and the set of endmembers yielding the simplex with maximal volume is
retained.

Then, each BPT representation Hµ, He and Heφ̄ is pruned by minimizing the four proposed

unmixing-based energy function E
∑

avg
λ , E

∑
max

λ , E
∨

avg
λ and E

∨
max

λ to generate, in each case,
a set of optimal cuts whose number of regions matches some predefined numbers. In particular:

– For the Pavia University scene, we extract 8 optimal cuts having 5, 10, 40, 75, 100, 225, 350
and 850 regions (or the cuts having a number of regions as close as possible from the
desired numbers).

– The same procedure is conducted for the Cuprite scene, with expected numbers of
regions being set to 5, 10, 20, 35, 50, 75, 150 and 500.

In both cases, the desired numbers of regions were arbitrarily chosen. Finding the correct
value of λ yielding the optimal cut with the appropriate number of regions may seem to be
a tedious task. In practice however, there is a nice workaround to this issue: each energy
function allows to easily compute at once all the optimal cuts of H∗, ∗ = {µ, e, eφ̄} when
λ spans R+, producing the persistent hierarchy H?

∗ by stacking all cuts. Each optimal cut
π?λ ∈ ΠE(H∗) corresponds to a horizontal cut of H?

∗ . Therefore, instead of looking for the
correct value of λ producing the optimal cut of H∗ with an appropriate number of regions,
one can simply browse the horizontal cuts of H?

∗ and stop when one with the desired number
of regions is found.

In addition to the four proposed energy functions, each BPT is also pruned by two
additional strategies:

– The horizontal cut producing the partition with the desired (or as close as possible)
number of regions.

– The optimal cut with respect to the energy function proposed by Valero in [204] and
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defined as an affine separable energy

E
∑

SID
λ (π) =

∑
π∈R
Eφ(R) + λ|π| (2.38)

where the GOF term Eφ is defined as

Eφ(R) =
∑
x∈R
OSID(x,µR) +


0 if |Rl| and |Rr| ≤ τ∑
x∈Rl

OSID(x,µRr) +
∑
x∈Rr

OSID(x,µRl) otherwise

(2.39)
where OSID denotes the spectral information divergence measure, as defined by (1.17),
µR,µRl and µRr are the mean spectra of regions R, Rl and Rr, the latter two being
the left and right children of R. The first term of (2.39) measures the error committed
when replacing all pixel spectra in region R by their mean value µR, thus penalizing
spectrally inhomogeneous regions. The second term evaluates the error of replacing
each pixel spectrum of the child region Rl by the mean spectrum of its sibling Rr and
vice versa, in order to regularize the case where the region R has a child which is much
larger than the other one (the contribution of the small child being negligible in the first
error term, even if spectrally different from µR). In practice, the second term is added
to Eφ(R) if the two children have a size greater than a predefined threshold τ (set to 3
pixels in [204]) in order to make this estimation reliable.
The energy (2.38) being affine separable with a sub-additive regularization term (as
Eρ(R) = 1), the optimal cuts with the desired number of regions are extracted from
the three BPTs Hµ, He and Heφ̄ in the exact same fashion as for the four proposed
unmixing-based energies.

In order to quantitatively compare the segmentations obtained by the different pruning
strategies, we compare the original hyperspectral image X to the one obtained by the unmixing
reconstruction, X̂ = ÊΦ̂, calculated from the partitions obtained by the different BPT
representation models, pruning criteria and expected partition sizes. The reconstruction X̂ is
made piece-wise, where the endmembers and fractional abundances obtained in each region
R of a given segmentation π are used to reconstruct only the pixels within this region. We
propose to use of four different image reconstruction quality measures:

– The average RMSE measure the average Euclidean error between X and X̂

avgRMSE
(
X, X̂

)
= 1
|E|

∑
x∈E

ε (x, x̂) (2.40)

by averaging the RMSE ε(x, x̂) (2.7) of each reconstructed spectrum x̂ with respect to
the true one x over the number of pixels |E| in the image. If X is perfectly reconstructed,
then avgRMSE(X, X̄) = 0

– The average spectral angle error (SAE) is similar to the average RSME, but measures
instead the average angular error between X and X̂

avgSAE
(
X, X̂

)
= 1
|E|

∑
x∈E

SAD (x, x̄) (2.41)
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where SAD (x, x̄) is the spectral angle (1.15) distance between x and x̂. Similarly, a
perfectly reconstructed image yields avgSAE

(
X, X̂

)
= 0.

– The average Q index measures the correlation between the the original X and the
reconstructed X̂ images

avgQ
(
X, X̂

)
=

σXX̂
σXσX̂

×
2µT

XµX̂
‖µX‖22 + ‖µX̂‖

2
2
×

2σXσX̂
σ2

X + σ2
X̂
, (2.42)

where µX and µX̂ are the mean N -dimensional vectors of the original and recon-
structed images respectively, σX and σX̂ denote the variances, and σXX̂ the covariance.
avgQ

(
X, X̂

)
= 1 for an ideal image reconstruction.

– The ERGAS (Erreur Relative Globale Adimensionelle de Synthèse) quality measure,
which evaluates both spectral and spatial divergences:

ERGAS
(
X, X̂

)
= 100

√√√√ 1
|E|

∑
x∈E

(
ε (x, x̂)
µx

)2
, (2.43)

where µx denotes the mean (scalar) value of pixel spectrum x. The lower the ERGAS
value, the better reconstructed the image.

With the previously defined four quality measures, one can then assess how well recon-
structed (from a spectral point of view for measures (2.40) and (2.41), and from a spectral-
spatial point of view for the two others (2.42) and (2.43) measures) are the images, based
on the obtained segmentations. The proposed four unmixing-based energy functions were
intended to produce a segmentation of the image being optimal with respect to the unmixing
reconstruction error, and should therefore lead to average RMSE, average SAD and ERGAS
values as low as possible, and an average Q index close to 1.

2.6 Results

2.6.1 Pavia University data set

2.6.1.1 Reconstruction errors

Figures 2.14, 2.15 and 2.16 show the quantitative reconstruction quality measures of the
different pruning strategies applied over the BPT representations Hµ (mean spectrum region
model), He (proposed spectral region model) and Heφ̄ (proposed spectral-spatial region model)
of the Pavia University scene, respectively. Each point in the plots represents a partition
obtained by each of the pruning strategies over the corresponding BPT. In order to compare
them, we plot the quality measure with respect to the number of regions contained in each
partition.

Several observations arise when analyzing the curves. First of all, the four proposed
unmixing-based energies E

∑
avg

λ , E
∑

max
λ , E

∨
max

λ and E
∨

avg
λ lead to optimal cuts that out-
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Figure 2.14: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation Hµ (mean spectrum region model) of Pavia University
image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q and
(bottom-right) ERGAS.

perform height-based and Valero E
∑

SID
λ optimal partitions in all cases. This phenomenon

can be easily interpreted: the latter two strategies are not designed to produce partitions
with low reconstruction errors, as the height-based pruning only depends on the merging
order of the regions during the construction of the BPT while E

∑
SID

λ produces partition with
spectrally homogeneous regions. It is more delicate to evaluate the relative performances of
the proposed unmixing-based energy functions, as the differences are rather small. However,
the two affine separable energies seem to perform slightly better than their max-composed
counterparts. A possible explanation is that E

∑
avg

λ and E
∑

max
λ aims at finding partitions

with a low overall average RMSE for the former, and a low weighted average of maximum
RMSE for the latter, with both tend to produce an overall low RSME over the whole image.
The two max-composed energies E

∨
avg

λ and E
∨

max
λ operate differently, as they minimize the

bound on the mean and maximum RMSE of all regions of the partition, but may lead to more
averagely reconstructed pixels in the whole image, hence higher mean reconstruction errors
for the whole image. The quality measures being computed over the whole image (and not
region-wise) may also favor separable energies over max-composed ones. One can also remark
that, for all cases but one, the quality measures have an overall decreasing behavior (expect
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Figure 2.15: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation He (proposed spectral-based region model) of Pavia
University image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average
Q and (bottom-right) ERGAS.

for the average Q which is globally increasing since the closer to 1, the better in this case)
with respect to the number of regions in the partition. The only exception concerns the BPT
Hµ (whose construction is based on the mean spectrum region model) when pruned with the
height-based approach. In this special combination, both the construction and pruning of
the BPT are unrelated to the desired goal being a segmentation optimal in terms of spectral
unmixing. Going farther, one can see that the height-based approach as well as energy E

∑
SID

λ

perform better on He and Heφ̄, where the unmixing information has been taken into account
during the construction of the hierarchy, than on Hµ. It confirms that building the BPT
in a appropriate way with respect to the task is absolutely relevant and necessary in order
to achieve the intended application, even if the pruning strategy is not fully adapted to the
desired goal.

2.6.1.2 Segmentation results

Figure 2.17 shows the optimal cuts with respect to all five energies, namely (from left to
right) E

∑
avg

λ , E
∑

max
λ , E

∨
max

λ , E
∨

avg
λ and E

∑
SID

λ , for the spectral-spatial BPT representation
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Figure 2.16: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation Heφ̄ (proposed spectral-spatial based region model) of
Pavia University image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left)
Average Q and (bottom-right) ERGAS.

Heφ̄ of the Pavia University scene. The top row shows the optimal partitions with (or close to)
50 regions, while the bottom row shows the optimal partitions with (or close to) 100 regions.
The first comment that can be made is that, in both cases, the resulting partition are strongly
under-segmented. As a matter of fact, when looking at figure 2.13a, one can see that the scene
is composed of a multitude of regions of interest (in the sense that they bear some semantic
meaning), such as the various buildings, the parking lots, the roads, the grassy areas and so on.
However, in order to analyze the influence of the used spectral unmixing information on the
resulting partitions, one must examine large enough regions (as it is recalled that, during the
construction of a BPT, the estimated intrinsic dimensionality of each region is used to define
the region model. If the region is too small, notably, then the region model is set to the mean
spectrum, assumed to be the single endmember). Therefore, the evident under-segmentation
is not considered to be an issue in the present case.

Among all five energy functions, E
∑

SID
λ is the one that seem to correctly segment the

most visually salient regions. This is explained by the formulation of the energy: as pointed
out in [204], it aims at producing segmentations with spectrally homogeneous regions, and is
thus more adapted to the design of partitions that match the visual perception. It is a little
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.17: Optimal cuts extracted from the BPT representation Heφ̄ of Pavia University

scene by minimizing: (a)(f) E
∑

avg
λ , (b)(g) E

∑
max

λ , (c)(h) E
∨

max
λ , (d)(i) E

∨
avg

λ , and (e)(j)
E
∑

SID
λ . Top row segmentations have around 50 regions, bottom row segmentations have

around 100 regions.

bit harder to interpret the optimal partitions of the proposed unmixing-based energies. The
obtained regions are in fact supposed to be optimal with respect to the reconstruction error,
which cannot be interpreted visually as it is related to the endmembers and abundances of
each region. Nevertheless, one can still see some correctly delineated structures (some grass,
roads, parking lots or building), especially for the segmentation displayed by the second row
of figure 2.17. In addition, there are not many visual differences among the four proposed
approaches, the only noticeable one being that the optimal cuts of E

∑
avg

λ and E
∨

avg
λ do

not change much when the spatial regularization term is diminished, compared to the other
approaches which produce segmentations with smaller regions. This can be better understood
looking at the reconstruction quality measures featured by figure 2.16, where these two pruning
criteria stabilize around segmentations with approximately 50 regions. It means that the λ
value should be severely decreased to obtain more over-segmented partitions.



88 Chapter 2. Spectral-Spatial multimodality

2.6.2 Cuprite data set

2.6.2.1 Reconstruction errors

Figures 2.18, 2.19 and 2.20 show the quantitative reconstruction quality measures of the
different pruning strategies applied over the BPT representations Hµ (mean spectrum region
model), He (proposed spectral-based region model) and Heφ̄ (proposed spectral-spatial region
model) of the Cuprite scene, respectively. The obtained quantitative results present similar
trends to the ones obtained for the Pavia University scene. The main difference is that the
energy function E

∨
avg

λ (2.35) pruning criterion is doing worse than the other proposed pruning
criteria. A possible explanation can be formulated when looking at the corresponding optimal
partitions (figures 2.21d and 2.21i). In both cases, the partition is composed of a large and
under-segmented region (comprising approximately two thirds of the image) and lots of small
regions at the center of the image. The over-segmented area corresponds to the mining district,
where spectral variability due to minerals is known to happen. The energy E

∨
avg

λ admits an
optimal partition by minimizing the upper bound on the average RMSE of the regions while
maximizing the lower bound on the region size. Having a lot of small regions (thus a large
penalty term for each of them) means that this is the configuration which yields the smallest
region-wise average RMSE, or alternatively, that it is more costly (in terms of energy) to
segment this area with larger regions, thus higher average RMSE values due to the spectral
variability. However, using E

∨
max

λ , which binds the region-wise maximum RMSE instead of
the average one, does not lead to the same conclusion as the obtained quantitative values
outperform E

∨
avg

λ ,E
∑

SID
λ as well as the conventional height-based pruning approach. An

arguable explanation comes again from the analysis of figure 2.21. As a matter of fact, one
can see that the region which was strongly under-segmented using E

∨
avg

λ is now split into
several regions. In such case, it means that the very large region of figures 2.21d and 2.21i
has a relatively low average RMSE (which is the reason why it belongs to the optimal cut of
E
∨

avg
λ ) but a high maximum RMSE and is then more strongly penalized using E

∨
max

λ and is
thus forced to split up. This conclusion is supported by the fact that this area of the Cuprite
image is more or less segmented the same way by E

∑
max

λ which is also based on the maximal
RMSE value of each region.

2.6.2.2 Segmentation results

Figure 2.21 shows the optimal cuts with respect to all five energies, namely (from left to
right) E

∑
avg

λ , E
∑

max
λ , E

∨
max

λ , E
∨

avg
λ and E

∑
SID

λ , for the spectral-spatial BPT representation
Heφ̄ of the Cuprite scene. As with Pavia University scene, top row shows the optimal partitions
with (or close to) 50 regions, while the bottom row shows the optimal partitions with (or
close to) 100 regions. Being a scene of a natural landscape, it is difficult to appreciate if the
regions are spatially meaningful or not. As already discussed in the case of Pavia, the energy
E
∑

SID
λ is the one producing the optimal cuts which seem to better segment all visually salient
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Figure 2.18: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation Hµ (mean spectrum region model) of Cuprite image: (top-
left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q and (bottom-right)
ERGAS.

regions. Energies E
∑

avg
λ , E

∑
max

λ and E
∨

max
λ yields similar partitions. Onely E

∨
avg

λ leads to
significantly different results, for the reasons discussed above.

2.7 Conclusion

This chapter has been devoted to the study of the inherent spectral-spatial multimodality
of hyperspectral images, and how it can be integrated within hierarchical representations of
such images. In particular, the pursued goal was to propose a final segmentation, optimal
with respect to the spectral unmixing reconstruction error.

To that purpose, we interest ourselves to the notion of optimality in segmentation. We saw
that this framework requires the definition of some energy function which rates how "good" is a
given segmentation with respect to the underlying application. Provided this energy function,
we observed through several examples (such as the Mumford-Shah functional as well as Markov
Random Fields) that finding the partition minimizing the energy is not straightforward, the
major challenge being the cardinality and the unstructured nature of the space of partitions
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Figure 2.19: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation He (proposed spectral-based region model) of Cuprite
image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q and
(bottom-right) ERGAS.

ΠE . Therefore, conducting the minimization over some constrained space of partitions being
the set of all cuts of a hierarchy, came as a natural solution. We therefore reviewed some
aspects of hierarchical energy minimization which were first strictly formalized in the work of
Guigues [86,87].

Armed with the fundamental theoretical results being that, under some mild conditions on
the definition of the energy function, the optimal cut of the hierarchy can be found by solving
Bellman’s dynamic program and, when the energy involve some trade-off parameter λ, the
optimal cut for different trade-off values can be ordered by refinement, we have developed
a new strategy for the representation of hyperspectral images using binary partition trees
and concepts from spectral unmixing, in order to finally obtain an optimal segmentation in
terms of spectral unmixing reconstruction error. This led us to use the spectral and spatial
information bore by hyperspectral images in a synergistic fashion at both steps of the proposed
methodology:

– Spectral-spatial information has been incorporated during the construction of the BPT.
To that purpose, we proposed two new region models based on the unmixing information.
The first one was defined as the set of endmembers induced over each region of the BPT,
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Figure 2.20: Comparison of the different pruning strategies in terms of unmixing reconstruction
quality for the BPT representation Heφ̄ (proposed spectral-spatial based region model) of
Cuprite image: (top-left) Average RMSE, (top-right) Average SAE, (bottom-left) Average Q
and (bottom-right) ERGAS.

the second one also integrating their corresponding abundances. Associated merging
criteria were also proposed. To the best of our knowledge, this is the first time in the
literature that unmixing information is incorporated in the construction of a BPT.

– We proposed four novel unmixing-based energy functions, defined so their optimal
cuts achieve a trade-off between a good spectral reconstruction error, with respect
to the unmixing operation, and spatial simplicity. The first two proposed energy
functions were formulated as particular instances of a wider class of energy functions,
namely affine separable energies. Studied by Guigues, there are clear guidelines on the
requirements that must be met by such energies to ensure an easy minimization over
hierarchies of partitions, and we based the definition of our novel energy functions on
those guidelines. For the other two proposed energy functions however, we departed
from the framework of affine separable energy functions and investigated what we
termed max-composed energies. Adapting the work developed by Guigues, and also
relying on some more general properties, as drawn by Kiran [101] (exposed in chapter 4),
we proved that, under some similar assumptions, all results holding for separable
energies were still valid for max-composed energies. These results allowed us to proceed
to the minimization of all four proposed unmixing-based energy function in the same way.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.21: Optimal cuts extracted from the BPT representation Heφ̄ of Cuprite scene by

minimizing: (a)(f) E
∑

avg
λ , (b)(g) E

∑
max

λ , (c)(h) E
∨

max
λ , (d)(i) E

∨
avg

λ , and (e)(j) E
∑

SID
λ . Top

row segmentations have around 50 regions, bottom row segmentations have around 100 regions.

The presented strategy has then been evaluated using reference hyperspectral scenes
representing two contexts, urban areas and natural landscapes, at different spatial and spectral
resolutions. We compared the segmentation obtained by our proposed energy functions against
a classical BPT pruning technique being the height-based cut and against a state-of-the-art
energy formulation, proposed by Valero in [204] to achieve hyperspectral image segmentation.
The four proposed unmixing-based pruning criteria yielded to segmentations that outperformed
the latter two approaches in terms of reconstruction quality. In general, the use of information
coming from the unmixing process either in the construction of the BPT representation, by
means of the spectral and spectral-spatial region models and merging criteria, or in the pruning
of the BPT, by means of the four proposed unmixing-based pruning criteria, showed to have a
clear positive impact in the quality of the obtained segmentations.

Although the proposed method has been shown to be a relevant new framework for
hyperspectral data interpretation, there are some aspects that may present challenges over
time and which deserve a more extensive evaluation. Among them, we list the possibility to
use other unmixing-based fitting functions in the definition of the pruning criterion or the
evaluation using additional hyperspectral scenes. The proposed approach was found to be
useful not only to perform segmentation by taking into account the sub-pixel nature of mixed
pixels, but also to perform spectral unmixing using a local-to-global approach in which the
optimization criteria is based on the minimization of reconstruction errors at a local scale,
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which results in an overall minimization of reconstruction errors that is highly appealing for
spectral unmixing applications. As a matter of fact, the natural extension of our approach,
proposing an optimal segmentation with respect to the unmixing application, is the processing
of the induced endmembers and corresponding abundances over the regions of the optimal
partition, in order to provide at the end of the day a similar result to the one furnished by
more traditional unmixing approaches being some "global" endmembers and abundance maps
for the whole image. A first attempt to such processing has been recently published in [66],
where the endmembers induced over all regions of the optimal partition have been stacked
together in some sort of library. Following, the abundance maps of the whole image have been
obtained by using those endmembers when sparsity is imposed. This preliminary strategy
has nevertheless outperformed the traditional global spectral unmixing approach, and has
encouraged us to pursue our efforts in this line of research.
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In this chapter, we now focus on the temporal multimodality, i.e., when several images of
a given scene are acquired at different dates. In the most general case, those images may not
be acquired with the same sensor, therefore increasing even more the diversity of the resulting
multimodal data. However, we only consider the most common case in this chapter, being a
single sensor producing images at different acquisition times. In particular, we focus in the
following on hyperspectral video sequences. Thanks to the progress made in sensor designing,
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it is now possible to acquired sequences of hyperspectral images at near real-time frame rates.
However, the extension of traditional video processing techniques from the mature field of
computer vision to hyperspectral imagery still faces several challenges due to the very high
dimensionality of the resulting data as well as the induced computational burden. In addition,
the lack of benchmark hyperspectral video data also make the experimental validation of any
new algorithm an issue. On the other hand, the spectral, spatial and temporal information
contained in such hyperspectral sequences should lead to the design of robust algorithms,
provided that this wealth of information is fully exploited. In this chapter, we propose a
novel method to perform object tracking in hyperspectral videos sequences. The tracking is
tackled as a sequential object detection process, this latter being performed on a hierarchical
decomposition of each frame of the sequence in order to restrain the set of potential candidates
for the tracked object. The proposed method is validated in the scenario of chemical gas plume
detection and tracking. The present chapter is organized as follows: section 3.1 introduces
the temporal multimodality, both for traditional video and hyperspectral images. Section 3.2
reviews the state of the art related to object detection supported by hierarchical decompositions.
Then, section 3.3 describes the proposed two-steps method to perform hyperspectral object
tracking. Sections 3.4 and 3.5 feature an introduction to hyperspectral chemical gas plume
tracking, and the application of the proposed methodology to this problematic, respectively.
Results are presented and discussed in section 3.6, and the conclusion is finally drawn in
section 3.7.

Materials presented in this chapter have been developed in collaboration with the De-
partment of Mathematics of the University of California, Los Angeles (USA), supported by
the National Science Foundation under grant no. DMS-1118971 and no. DMS-0914856. A
preliminary version has been published in [196]. The present work has been submitted in a
journal version and is currently under review [195].

3.1 Temporal multimodality

3.1.1 Introduction

Temporal multimodality arises when several images of a scene are acquired at different
time spots. According to the definition 1.2 of multimodal signals provided in chapter 1, such
temporal multimodal data can be formulated as

I =
{
It1 , It2 , . . . , Iti , . . .

}
(3.1)

where each modality Iti : Ei → Vi is a particular instance of the scene acquired at time
ti. While nothing forces all the images Iti to be produced by the same imaging sensor,
this is however the most classical case, to which we will restrict the scope of this chapter.
In that situation, one can talk of multitemporal data, or simply video sequence for I, and
each individual modality Iti can be referred as a frame. All frames share the same spatial
support and space of values, E ≡ Ei, V ≡ Vi ∀i, and the gap of time between two consecutive
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acquisitions ti − ti−1 is called the frame rate (which is assumed to be constant for the sake of
simplicity).

The comparison between several instances of the same image reveals its changes over time.
The varying information is due to the complementarity of the multitemporal data, while the
remaining, unchanged part, constitutes its redundancy. The interest of such multimodality
is rather clear: using the complementarity between consecutive frames is useful to analyze
which part of the image are changing, and in which fashion. On the other way around, the
redundant part of the information can be used to enhance the robustness of algorithms. As a
matter of fact, both sides have been thoroughly investigated in the field of computer vision
for traditional gray-scale and color image sequences. The analysis of motion within video
sequences has found several applications, such as object tracking [230] or motion estimation
and compensation for video compression [111,235]. Conversely, using the redundancy inherent
to video images has been used for instance for patch-based denoising applications, where the
similarity between a patch in a given frame and those of a spatial and temporal neighborhood
is computed in order to restore the information corrupted by noise [34,57].

Most commercially available video cameras produce between 25 and 50 images per second.
In other words, they have an acquisition frame rate between 25 Hz and 50 Hz (although it
is possible to find higher rates of acquisition). Working with hyperspectral sensors however,
multitemporal data suffer from a huge decrease in frame rate, as such data is very often
provided by airborne or spaceborne sensors. Due to operative constraints, such as the high
cost of airborne acquisition campaigns or the revolution time needed to a satellite to stand
twice at nadir of the exact same spot of the Earth surface, the average time lapse between
two consecutive acquisitions as often been expressed in days. Multitemporal hyperspectral
data has therefore been investigated historically in remote sensing mainly for the monitoring
of changes occurring over long time periods, due to natural phenomena (such as forestry
and environment monitoring [160]) or due to natural disasters, such as floods or volcanic
eruptions [201] for instance. To that purpose, a large number of studies have been devoted
to hyperspectral change detection, such as statistically-based [32,33] or kernel-based [39,40]
methods to cite a few.

Thanks to the fast development of imaging sensors, it is now possible to acquire sequences
of hyperspectral images at near real-time rates with sensor devices easily operable on the
ground by human operators. The combination of the high spectral resolution proper to
hyperspectral images with the ability of video sequences to record phenomena evolving with
time is appealing for the time monitoring of transient phenomena based on their spatial and
spectral properties. However, some additional efforts are required to extend traditional video
processing techniques to the high dimensional space structured by hyperspectral data, or
to adapt classical hyperspectral processings to multitemporal data whose acquisition frame
rate is now in the order of the second. In addition, available benchmark hyperspectral video
data-sets are scarce and the lack of ground truth data makes the quantitative evaluation of
any novel method very challenging.
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3.1.2 Objectives of this chapter

In this chapter, we focus on object tracking in hyperspectral video sequences. Object
tracking can be defined as the process of following the motion of points or regions of interest
as they evolve with time within a video sequence. Object tracking finds numerous applications
in everyday life, such as automated surveillance, motion-based recognition, visual servoing or
traffic monitoring, and has been widely studied in the area of computer vision [202,230] within
the framework of traditional video sequences. However, most existing algorithms poorly adapt
to the high dimensionality inherent to hyperspectral data. To the best of our knowledge, the
only existing tracking method specifically designed and evaluated on real-time hyperspectral
video sequences is the one introduced in [15, 213]. It makes use of the mean shift tracker
algorithm [53], and the tracked object is represented as a fixed primitive geometric shape and
does not adapt well to applications where either the tracked object is non-rigid or where the
precise shape of the object is required. The development of new algorithms able to face these
challenges is necessary for many real life applications.

Chemical gas plume tracking is a typical application that would surely benefit from the
design of such new hyperspectral object tracking methods. As a matter of fact, such application
is of great interest for several domains. In the environmental protection field for example,
gas plume tracking could be exploited to monitor pollutant gas clouds emitted by industrial
sources [233], in order to minimize their impact on the environment and the potential harm
they could cause on human population living nearby. In the defense and security area, a
possible usage of such tracking method could be to detect the use of chemical gas weapons [71].
Most gases do not respond in the visible spectrum range, but only in a restrained portion of the
long-wave infrared (LWIR) domain, hence the need of a fine sampling of the electromagnetic
spectrum and the incapacity of classical video techniques to detect (and, a fortiori, to track)
them. Additionally, a gas plume is a non-rigid object whose shape evolves unpredictably with
time. The necessity of a fine spectral description of the scene over time makes hyperspectral
video sequences the most suited tool for such detection and tracking application.

In the following, we propose a novel algorithm for hyperspectral object tracking. The
method, based on a hierarchical analysis of the frames of the hyperspectral sequence, is able
to track a region of interest whose shape may evolve with time, without any prior knowledge
about the materials constituting the region. The proposed work, sketched in [196], is based
on the sole general assumption that only the object of interest is in motion over a fixed
background in the hyperspectral video sequence. It then uses spectral, spatial and temporal
information derived from the sequence to perform a sequential object detection process over
the hierarchical decomposition of each frame, finally producing the shape and extent of the
tracked object. The method is investigated on the scenario of hyperspectral chemical gas
plume tracking, and its performances are compared against two state-of-the-art methods for
two different data sets.
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(a) (b)

Figure 3.1: Example of object detection where (a) only the position and approximate shape
and (b) the precise shape of the object (i.e., the bridge) is output.

3.2 Hierarchical object detection

3.2.1 Classical object detection

Object detection is a computer vision application which aims at recognizing and extracting
some object of interest from a given image. In other word, the goal of an object detection
process is to answer the question: Is the object of interest present in this given image? As
for most computer vision applications, mimicking the recognition process our brain naturally
does turns out to be a real challenge, and several object detection methods have stemmed in
the literature. They can be classified in three categories according to the level of details of the
detection they produce:

1. The binary output, being the coarsest level, only states whether the object of interest is
present in the image or not.

2. The position output, where the location of the object of interest is marked by a simple
primitive shape (such as a dot, or a fitting rectangle), as illustrated by figure 3.1a.

3. The position and shape output, which detects the location of the object as well as its
precise shape in the image, as in figure 3.1b.

The majority of object detection processes are based on the assumptions that the object
of interest is only local with respect to the whole image and can be discriminated for the
background using a set characteristic features (such as shape, color homogeneity or texture
for instance). Then, due to the locality of the object of interest, the image can be divided into
patches, which are subsequently examined to determine whether they contain the object or not
by evaluating the presence or absence of the reference features. Regarding the definition of the
patches, sliding window approaches have shown to be effective for face [221] or pedestrians [58]
detection, as well as recognition of front/side views of cars [178]. The main explanation for
this efficiency is that all the sought objects can be roughly approximated by rectangles and
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therefore well fit within rectangular windows. Contrarily, sliding windows are not robust to the
detection of non rectangular objects. In addition, these approaches suffer from the necessity
of fixing the window size (although it can be relaxed by investigating several sizes, but at the
cost of a greater computational burden).

A possible solution to alleviate the issues related to sliding windows approaches is the use of
a segmentation map, where the spatial support for the sought object would be provided by the
various regions constituting the segmentation. In order to further improve this idea, [129, 171]
proposed to use several segmentations of the image at various description scales in order to
increase the robustness of the resulting so-called soup of segments to the detection of objects
with various sizes and shapes. This approach is for instance investigated in [3] for the detection
of buildings in urban hyperspectral images: a first set of regions are defined as the connected
components generated using the morphological profiles of all bands of the image. Meaningful
regions are further defined as those with a high spectral homogeneity and large enough size,
leading to a batch of potential candidates (this so-called soup of segments) for the buildings to
retrieve. Finally, the object detection process is conducted by comparing for each candidate
region its feature distribution against the feature distribution of the given object of interest,
in terms of Kullback-Leibler divergence. Are declared objects all regions whose distance is less
than a predefined threshold.

More generally, the object detection process can be formalized as follows: given a set of
reference features corresponding to the object of interest Ωref = {ωref

i }, where each ωref
i is an

individual feature, and given a soup of segments SS = {R ⊆ E}, the object detection process
retrieves for each region R ∈ SS its set of features ΩR = {ωRi } in the image. Following,
It evaluates the similarity between Ωref and ΩR for some user chosen distance function
d
(
Ωref,ΩR

)
, defined according to the application. The selected region from the soup of

segments is the one minimizing this distance function. Alternatively, all regions below some
threshold can be retained.

3.2.2 Hierarchical object detection

Hierarchical image representations are suitable candidates to provide the soup of segments.
As a matter of fact, such representations aim at decomposing the image into a set of relevant
regions across the image support and at various scales. In addition to naturally providing a
finite number of candidate regions (supported by the node of the tree structure), the candidates
they propose already bear some meaning (at least with respect to the criterion which was
adopted to perform the decomposition). Figure 3.2 shows an example of object detection
process conducted over the hierarchical image decomposition presented by figure 1.20. The
object to detect is displayed by the leftmost image, the soup of segment is constituted by all
9 regions defining the hierarchy (represented by the tree in the middle), and the retrieved
object, extracted from the hierarchy, is depicted by the image on the right. Relevant features
to detect the object of interest for this particular example could be the size and orientation of
the smallest bounding box enclosing the region as well as its mean color.
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Figure 3.2: Example of hierarchical object detection using the BPT structure of figure 1.20
(page 33).

There are several instances of object detection methods supported by hierarchical decom-
positions in the literature. The tree of shapes (ToS), also called inclusion tree, has been
used by some authors under the assumption that the sought objects of interest can be ac-
curately defined by their level lines. In [155] for instance, the ToS representation is used to
extract objects based on their compactness and contrast. Alternatively, [228] proposes to find
meaningful objects by identifying the significant local minima of some context-based defined
energy along the branches of the ToS. However, as the ToS can be viewed as the merging of
a min-tree and a max-tree, its construction remains fully determined by the local extrema
of the image. Therefore, its nodes may not always coincide with the objects of interest. In
figure 3.1 for instance, the bridge has a sunlit and a shaded part, and the latter one is likely
to be confounded with the adjacent buildings having a similar low brightness.

Due to their great flexibility when it comes to their construction, binary partition tree
representations have also been investigated as hierarchical supports for object detection.
In [175,218] for instance, BPT representation are used to extract objects with relatively simple
shapes (such as faces or road signs) from images by comparing the shape of each region in
the BPT against some reference shape models. Still based on BPT representations, [208–210]
perform road and building detection in hyperspectral images acquired over urban environments,
by making use of spatial features such as the area of the region and of the smallest oriented
bounding box containing it, and spectral features such as the correlation between the region
mean spectrum and a reference spectrum (asphalt for roads for instance) and some class
membership homogeneity. In the following, we will be using the BPT representation to perform
the hierarchical analysis of each frame of the hyperspectral video sequence.

3.3 Proposed hyperspectral object tracking method

3.3.1 Generalities on object tracking

Object tracking is the process of following the motion of an object of interest, as it evolves
with time in a video sequence. The combination of the always growing computing capacity of
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computers and increasing availability of high quality and inexpensive video cameras, along with
the need for automated video analysis techniques, have made object tracking a widely studied
field of computer vision. Motion-based recognition, automated security and surveillance, video
compression and indexing, human-computer interaction, traffic control and monitoring or
augmented reality are among the potential applications of object tracking.

Object tracking algorithms are generally organized in two steps that are sequentially
addressed:

- The motion prediction step, whose goal is to estimate the position of the object in the
next frame. This is usually conducted through an interpolation from the current position
with the estimations of the motion direction and velocity (plus some margin of error).
Motion prediction allows to reduce the search space by defining an area where the object
can be found with a high probability.

- The matching step, which searches the object in the area predicted by the motion
estimation step. It typically involves the definition of reference features for the sought
object and their comparison with features derived from candidate objects located in the
search space. The tracked object is declared to be the candidate whose features are the
closest from the reference ones.

The formulations of the motion prediction and matching steps greatly depend on the rep-
resentation of the tracked object (punctual objects, primitive shapes such as rectangles or
ellipses, exact contours or whole regions for instance) as well as the chosen features to identify
the object (histograms, edges or other key points, textures and so on). These choices are in
addition motivated by the application scenario and the assumptions which can be made on
the object to track. For instance, the point representation is suitable to track an object that
appears as almost punctual in the sequence (such as the tracking of a table-tennis ball) but
would not be appropriate for complex and non rigid object tracking. The reader is referred
to [202,230] for complete and extensive reviews about classical object tracking algorithms.

Hyperspectral object tracking, on the other hand, remains challenging as the combination
of the increased resolution (hence a high dimensionality) of the data and the scarceness of
benchmark hyperspectral sequences acquired at real-time rates make the adaptation of classical
object tracking algorithms and their validation an issue. To the best of our knowledge, the
only tracking method validated on real-time hyperspectral sequences is the one introduced
in [15,213] as an adaptation of the mean shift tracker [53]. The target object, represented as a
primitive rectangular shape, has its spectral probability density function computed as a set
of N histograms (N being the number of spectral bands for each frame of the hyperspectral
sequence). Then, starting from the interpolated position of the object in the new frame (based
on the previous positions and velocities), the mean shift tracker iteratively searches for the
most probable position of the object by measuring the similarity between the reference spectral
probability density function with the one of each candidate object. It is worth noting that, to
cope with the high dimensionality of the hyperspectral sequence, a dimensionality reduction
step is firstly performed on each frame using random projections [2]. The method is validated
for pedestrian and face tracking. However, as for all methods involving a primitive shape
representation, it is only able to track the object position and does not retrieve its full shape.
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Consequently, we propose in the following a method to perform hyperspectral object track-
ing which captures both the position and full shape of the object. The tracking is formulated as
a sequential object detection procedure and tackled with a hierarchical decomposition of each
frame of the hyperspectral sequence, using spectral, spatial and temporal features, by means
of a BPT representation. Like classical object tracking algorithms, the proposed methodology
is decomposed in a motion prediction step and a matching step, whose descriptions are the
matter of the following sections 3.3.2 and 3.3.3. The only basic assumption holding on the
video sequence is that only the object of interest is in motion over a fixed background. While
it may seem somewhat restrictive, most spectrometer sensors providing hyperspectral video
sequences are, for now, still sensors mounted on a tripod, therefore producing sequences of
still images with a fixed background.

3.3.2 Motion prediction step

In the following, a region R is equally handled either as a set (R ⊆ E) or through its
indicator function 1R : E → {0, 1} with 1R(xi) = 1 if xi ∈ R and 0 otherwise, which leads to
a binary visualization of R.

The purpose of the motion prediction step within an object tracking process is to restrict,
for each frame It, the search space only to a neighborhood where the object is assumed to
be found with a high probability. Here we propose to go even one step further: the object
Ot ⊆ E being a region of E, the motion prediction step outputs an estimate region Ôt, such
that the shape and position of Ot and Ôt globally coincide. This estimation is then used to
steer the matching step to locate a candidate region that is similar to the estimate region both
in terms of position and shape.

The method we propose to perform the motion prediction is decomposed in two inner steps
as illustrated by figure 3.3. First, the change mask Ct−1,t between two consecutive frames It−1
and It is estimated. This change mask features areas where significant change occurs between
t− 1 and t due to the motion of the object. In a second step, the change mask is combined
with the position of the object estimated at t− 1, denoted Ot−1 to produce an estimation of
position at t, named Ôt.

3.3.2.1 Derivation of the change mask

The first step of the proposed motion prediction step is to derive a change mask Ct−1,t
between two consecutive frames It−1 and It, in order to highlight the areas which are
significantly changing from one frame to the other. Quantifying the significance of a change
between two images (being hyperspectral or not) is often carried out with a statistical test [164],
which is the idea developed below.

Recall that we position ourselves in the context of a hyperspectral video sequence where
the depicted scene is composed of a still background and a moving object, whose (possibly
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It−1 Ot−1
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Figure 3.3: Workflow of the proposed motion prediction step, involving first the derivation of a
change mask Ct−1,t between two consecutive frames It−1 and It and a binary XOR operation
to produce the estimate region Ôt.

unknown) spectral signature, denoted o is assumed not to vary with time. Following these
assumptions, each pixel spectrum xti belonging to frame It can be expressed as a linear
combination of the object signature o and the background response bi at location i (which
does not vary with time as the background is supposed to be still), plus some additive noise:

xti = αtio + (1− αti)bi + ηt (3.2)

with αti ∈ [0, 1] being the contribution of the object signature in xti, and ηt denotes the noise
term. In the framework of the linear mixing model [23], equation (3.2) corresponds to the
particular case where each background pixel bi and the object signature o are considered
as endmembers. Within this scope, αti can be interpreted as a classical spectral abundance.
Similarly, αti can be understood as a model of opacity: αti = 1 leads to the case where the
object is fully opaque and solely contributes to the spectral signature xti, αti = 0 yields the
converse interpretation being the absence of object signature in xti and any other value between
0 and 1 amounts to a measure of opacity.

Following, each pixel signature of the frame difference I∆t = It−It−1 can then be written

x∆t
i = xti − xt−1

i

= αtio + (1− αti)bi + ηt −
(
αt−1
i o + (1− αt−1

i )bi + ηt−1
)

= α∆t
i (o− bi) + η∆t (3.3)

where α∆t
i = αti−α

t−1
i is the temporal variation of the fractional proportion of object signature

in the considered difference pixel x∆t
i , and η∆t = ηt − ηt−1. Consequently, a variation in the

proportion of the object signature at pixel position i between time instances t− 1 and t yields
α∆t
i 6= 0, while α∆t

i = 0 when no change occurs. This observation naturally leads to formulate
the following two-hypotheses test:

H0 : α∆t
i = 0, the proportion of object signature o in xi does not change between t− 1 and t,

H1 : α∆t
i 6= 0, the proportion of object signature o in xi changes between t− 1 and t.

Therefore, deriving the change mask Ct−1,t between It−1 and It amounts to testing whether
each pixel signature of the frame difference I∆t is more likely to follow hypothesis H0 or H1.
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Provided that the probability distribution functions of x∆t
i under both hypotheses are known,

the Neyman-Pearson lemma states that the Likelihood Ratio Test is the most powerful test
given a significance level [176].

In hyperspectral imagery, it is classically assumed that the additive noise follows a Gaussian
distribution with zero mean and covariance Σ (see for instance [131,186]). Therefore, provided
that η∆t ∼ N (0,Σ), it is possible to formulate the probability distribution function f of x∆t

i

under both hypotheses H0 and H1:

H0 : f(x∆t
i |α∆t

i = 0) ∼ N (0,Σ)

H1 : f(x∆t
i |α∆t

i 6= 0) ∼ N
(
µ∆t
i ,Σ

) (3.4)

with µ∆t
i = α∆t

i (o− bi).

Therefore, detecting a change in the time difference frame reduces to testing whether each
pixel difference is drawn from a zero-mean Gaussian distribution (with covariance matrix
Σ) or not. However as the object spectral signature o is a priori unknown, solving the
two-hypotheses test (3.4) involves instead a Generalized Likelihood Ratio Test (GLRT) whose
expression Λ(x∆t

i ) for the pixel x∆t
i is the following:

Λ(x∆t
i ) =

max
µ∆t
i 6=0

f(x∆t
i |H1)

f(x∆t
i |H0)

H1
≷
H0

γGLRT (3.5)

The unknown mean µ∆t
i that maximizes f(x∆t

i |H1) is known to be the maximum likelihood
estimator (MLE) µ̂∆t

i of µ∆t
i . Testing the pixel x∆t

i alone would yields µ̂∆t
i = x∆t

i and a test
statistic being

Λ(x∆t
i ) =

(
x∆t
i

)T
Σ−1x∆t

i (3.6)

However, for the reasons further explained in section 3.3.4, we rather make use also of
neighboring pixels of x∆t

i , selected in a S = Swidth × Sheight window (hereafter set to 3× 3)
centered on x∆t

i . The GLRT expression (3.5) can the be rewritten as

Λ(x∆t
i ) =

max
µ∆t
i 6=0

∏
x∆t
i ∈S

[
f(x∆t

i |H1)
]

∏
x∆t
i ∈S

[
f(x∆t

i |H0)
] H1

≷
H0

γGLRT (3.7)

Plugging the following MLE of µ̂∆t
i ,

µ̂∆t
i = 1

S

∑
x∆t
i ∈S

x∆t
i (3.8)

into equation (3.7), and solving for x∆t
i (the computational details are presented in appendix B)

finally yields to

Λ(x∆t
i ) = S(µ̂∆t

i )TΣ−1µ̂∆t
i

H1
≷
H0

γGLRT (3.9)
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Algorithm 2 Proposed change detection procedure.
Require: It, It−1,Σ, γGLRT
1. I∆t = It − It−1 . Frame difference.
for all xi ∈ E do . Test each pixel site xi.

2. µ̂∆t
i ← MLE

(
µ∆t
i

)
3. Λ(x∆t

i )← S(µ̂∆t
i )TΣ−1µ̂∆t

i . S = number of pixels to estimate the MLE µ̂∆t
i

if Λ(x∆t
i ) ≥ γGLRT then . Λ(x∆t

i ) ∼ H1
4. Ct−1,t(xi)← true . There is significant change in xi between t− 1 and t.

else . Λ(x∆t
i ) ∼ H0

5. Ct−1,t(xi)← false . There is no significant change in xi between t− 1 and t.
end if

end for

(a) Ot−1 (b) Ot (c) Ct−1,t

Figure 3.4: The object Ot (b) can be retrieve from Ot−1 (a) and the change mask Ct−1,t (c)
by Ot = Ot−1

⊕
Ct−1,t.

The probability distribution of Λ(x∆t
i ) under H0 and H1 are given in terms of χ2

N with N
degrees of freedom (being the number of spectral channels in the hyperspectral frame) and
non-central χ2

N,φ with N degrees of freedom and non-centrality parameter φ = Λ(x∆t
i ) [186],

respectively.

Knowing the distribution of the GLRT under both hypotheses allows one to set γGLRT to
achieve either a predefined probability of false alarm or a probability of detection (discussed
in section 3.3.4), and to further state whether some change is occurring in xi between frames
t− 1 and t by thresholding accordingly. The binary change mask Ct−1,t is finally obtained
by performing this threshold operation for all pixels of the frame difference. The proposed
change detection process is summarized by algorithm 2.

3.3.2.2 Estimation of the position

Under the assumption of a single moving object overlaying a fixed background, the change
mask Ct−1,t is composed of two categories of regions:

- Regions being left by the object. Those are made of all pixels xi which were occupied
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by the object in frame It−1 (αt−1
i > 0) but no longer in It (αti = 0). They correspond

to the white region on the bottom right of figure 3.4c.
- Regions invaded by the object. Contrarily, those regions are composed of all pixels which
are reached by the object in frame It (thus, αt−1

i = 0 and αti ≥ 0), and are depicted by
the top left white region in figure 3.4c.

Intuitively, the new position of the object, Ot is composed of the previous position of the
object, Ot−1, minus the regions that have been left by the object plus the regions that have
been reached by it, as depicted by figure 3.4. Mathematically, this can be formulated by:

Ôt = Ot−1
⊕

Ct−1,t (3.10)

where
⊕

denotes the binary XOR operation. However, as both the previously known position
of the object Ot−1 and change mask Ct−1,t may not be fully accurate, equation (3.10) is better
to be used as a simple estimate of the new position and shape of the object. This estimate,
output of the motion prediction step as shown by figure 3.3 1, is going to be used as target
and further refined during the object detection process of the following matching step.

3.3.3 Matching step

The proposed matching step, illustrated by the work-flow figure 3.5 involves a hierarchical
decomposition Ht of the current frame It and a subsequent object detection processed with
this decomposition as support. Using a hierarchical decomposition bears several advantages:

– It drastically reduces the search space by representing the frame as a set of hierarchically
nested regions. The set of candidate objects is only composed of regions that are
supported by a node in the decomposition.

– It ensures to represent the frame at various scales, which is valuable as the size of the
tracked object may evolve along the sequence.

– It allows to enjoy from all the efficient tree-based processing techniques already available
in the literature.

Here we propose to use the BPT representation to handle the hierarchical decomposition
of the frame. This choice is motivated by the great flexibility of the BPT construction due to
all possible combinations of region models and associated merging criteria. The selection of
these parameters has to be done in accordance with the pursued goal. If appropriately done,
it is however very likely to yield a meaningful hierarchical decomposition, in the sense that
the tracked object can be identified as a region of this decomposition.

Therefore, the matching process aims at retrieving in the BPT structure the region that
represents the tracked object. In order to do so, a set of reference features for the tracked
object is defined, and each candidate region has its own set of similarly defined features
evaluated against the reference set. The region whose features match the reference the best is
declared to correspond to the tracked object.

1. The object is displayed as a cloud in figure 3.4 not to anticipate on the following gas plume tracking
application, but rather to symbolize the fact that the tracked object can be non rigid and of irregular shape.
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Figure 3.5: Workflow of the proposed matching step, involving first a hierarchical decomposition
of the current frame It by means of a BPT representation, and a further object detection
procedure to identify the tracked object based on its reference features ΩOt .

More specifically, let ΩOt = {ωOti } be the set of chosen reference features for the tracked
object Ot, where ωOti denotes an individual feature. Using hyperspectral video sequences
allows to make the most of spectral, spatial and temporal features to describe the tracked
object. For each frame, the object detection procedure is done in three stages:

1. First, each region R of the BPT Ht has its similarly defined features collected in a set
ΩR = {ωRi }.

2. Then, each region R has its set of features ΩR evaluated against the reference ΩOt . This
implies the definition of a similarity measure di for each pair of individual features ωRi
and ωOti so the overall matching distance d (R, Ot) can be formulated as follows:

d (R, Ot) =
∑
ωi∈Ω

ρidi
(
ωRi , ω

Ot
i

)
(3.11)

where the ρi’s are optional weights that can be set to stress the importance of some
individual features against others.

3. Finally, the region R? whose features are the closest from the reference ones is retrieved,

R? = argmin
R∈Ht

d (R, Ot) . (3.12)

This region R? becomes the representation of the object in the current frame It, Ot ≡ R?,
and is going to be used for the motion prediction step in the next frame It+1.

3.3.4 Initialization of the object tracking procedure

The motion prediction and matching steps developed above in sections 3.3.2 and 3.3.3
are sequentially addressed in order to track the object of interest. In order to trigger the
tracking process however, an initial detection needs to be performed to identify the object
to track. This is the matter of the initialization phase. In the following, we assume that the
frame in which the object starts moving (and thus where the object tracking process must be
launched) is unknown. However, we presume that a few (at least two) still frames It1 , . . . , ItNs
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are available prior to the object being in motion. This assumption seems however reasonable
in a context of surveillance, where nothing is moving in most of the frames of the sequence.

To determine the point at which some motion appears in the sequence, the change detection
procedure described in section 3.3.2.1 is applied for each new incoming frame It, and a change
mask Ct−1,t is generated. If this change mask remains empty (all pixels of the frame difference
It − It−1 have been found not to feature any change), then it is stated that no motion is
occurring in the sequence yet. Conversely, if at least one pixel was found to be changing
between t− 1 and t (appearing as a 1 in the change mask Ct−1,t), then it is assumed that the
object has started moving, and the object tracking process is triggered. Deriving the change
mask requires the knowledge of the covariance matrix Σ of the noise η∆t, which is unknown
in practice. However, due to the assumptions that several (say Ns) still frames are available,
one can compute Ns − 1 frame differences featuring only instances of η∆t, which can be used
to derive the sample covariance matrix Σ̂ of Σ. In addition, due to the (ideally) large number
of samples on which Σ̂ is computed, it seems fair to state that the sample covariance Σ̂ is a
very good approximation of Σ, which is the reason why this latter was used in the derivation
of the change mask instead of Σ̂.

The tracking process being triggered once at least one pixel has been stated to change
between t− 1 and t, the change detection test needs not to suffer from any false alarm at all,
as the tracking would be engaged too early otherwise. Therefore, instead of testing each pixel
of the frame difference x∆t

i individually in the change detection process, it is tested along with
its 3× 3 neighbors. Therefore, the pixel will be marked as changing if and only if some change
is also happening in its direct neighborhood, decreasing the risk of false alarms with respect
to the individual testing case (or conversely, guaranteeing that all pixels marked as change are
really changing). In the derivation of the GLRT, this translates as the MLE µ̂∆t

i being equal
to 1

S

∑
x∆t
i ∈S

x∆t
i instead of simply x∆t

i .

The other main consequence of this no false alarm policy is related to the setting of the
γGLRT threshold. Usually, this threshold is derived using the distribution of the GLRT under
hypothesis H0 in order to achieve a given probability of false alarm pFA. In particular, it
requires to invert the cumulative distribution function of the GLRT under H0. In our case
however, we wish to have pFA = 0 and thus needs to invert the distribution of the GLRT
under H1 to achieve a given probability of detection pD. It is known from [186] that the
GLRT Λ(x∆t

i ) follows a non-central χ2
N,φ distribution under H1, with N degrees of freedom

being the number of spectral bands in the frame, and φ = Λ(x∆t
i ) being the non-centrality

parameter. The threshold γGLRT and the probability of detection pD are linked with the
following relationship:

pD =
∫ +∞

γGLRT
χ2
N,φ(t)dt (3.13)

= 1−X2
N,φ(γGLRT) (3.14)
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with X2
N,φ being the cumulative distribution function of χ2

N,φ defined as

X2
N,φ(t) =

∫ t

−∞
χ2
N,φ(z)dz (3.15)

Therefore, using (3.14), one can set the value of γGLRT to achieve a given pD as

γGLRT = (X2
N,φ)−1(1− pD) (3.16)

In practice however, the cumulative distribution function X2
N,φ has no close form expression

and is computationally slow to invert. However, it was shown [141, pp.22-24] that if the
random variable Y follows a non-central χ2

N,φ distribution with N degrees of freedom and
non-centrality parameter φ, then

Y− (N + φ)√
2(N + 2φ)

p−→ N (0, 1) when N → +∞ or φ→ +∞ (3.17)

where p−→ denotes the convergence in probability. Here, the number of degrees of freedom N is
equal to the number of spectral channel in the hyperspectral frame, which is typically several
hundreds and can be considered high enough for the approximation (3.17) to hold. Therefore,
the value of γGLRT can be derived by inverting the cumulative distribution function of a
standard normal distribution (provided that the proper shift and scaling described by (3.17) is
applied) instead of this of the non-central χ2 distribution (as prescribed by (3.16)) to achieve
a given probability of detection pD. Note finally that γGLRT varies from one pixel to the other,
as it is linked to the value of φ = Λ(x∆t

i ).

3.3.5 Summary

Eventually, the proposed hyperspectral object tracking by means of hierarchical decompo-
sition is summarized by algorithm 3.

3.4 Chemical gas plume tracking

From hereon, we specifically focus on the chemical gas plume tracking application. The
current section first describes the underlying physical nature of hyperspectral gas plume data
set (section 3.4.1) prior to reviewing the related state-of-the-art for the detection and tracking
of such plumes (in section 3.4.2) and finally introduces the data sets on which the previously
proposed method is investigated (section 3.4.3).

3.4.1 Radiative transfert theory

Hyperspectral sensors measure the radiance, that is, the amount of electromagnetic energy
emitted by the scene. The physical nature of this energy depends on the scanned spectral
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Algorithm 3 Proposed hyperspectral object tracking algorithm.
Require: a hyperspectral sequence I = {It1 , . . . , It, . . .}

Init. Ct−1,t ← False(Nx, Ny)
Init. Ot−1 ← False(Nx, Ny)
. Nx and Ny are the number of rows and columns of each hyperspectral frame, respectively.

for It ∈ I do . Process each new frame of the sequence.
1. I∆t ← It − It−1 . Frame difference.
2. Ct−1,t ← ChangeDetection

(
I∆t, pD

)
. Change detection on I∆t.

if IsFalse(Ct−1,t) then . No change between It−1 and It.
3. t← t+ 1
Go to step 1. . Repeat until some change (motion) is detected.

else
4. Ôt = Ot−1

⊕
Ct−1,t . Motion prediction.

5. Ht ← BuildBPT
(
It
)

. Hierarchical decomposition of It.
6. Ot ← ObjectDetection

(
Ht,ΩOt

)
. Object detection.

7. t← t+ 1 . Go to next frame.
end if

end for
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Figure 2.2: Pictorial representation of the on-plume radiative transfer radiance signal model
for standoff chemical agent detection.

radiation at the bands where the plume has strong features. The at-sensor radiance model,

and in turn, detection and quantification algorithms studied throughout this thesis assume

that the plume has not transitioned into this “optically thick” regime.

The plume is part of the optical path, so just as in the plume-free case, it also emits

its own radiation,Lp(λ) (which is subsequently attenuated by the atmosphere between the

plume and the sensor), so our new, “on-plume,” radiance model is given by

Lon(λ) = τa(λ)τp(λ)Lb(λ) + τa(λ)Lp(λ) + La(λ) (2.4)

We can further expand our model with the aid of Planck’s Law, which describes the

spectral radiance of a blackbody at a given temperature, T, and wavelength,λ.

B(λ, T ) =
C1

λ5[eC2/(λT )−1]
(2.5)

whereT is the blackbody’s temperature in Kelvin (◦K), C1 = 3.74151 × 108 W
m2·µm, and

C2 = 1.43879× 104µm · K. A blackbody is a perfect absorber and emitter of electromag-

netic radiation; however, all real-world materials retainsome of this incident radiation (the

fraction of radiation reflected is considered to be negligible in the LWIR regime [8]), thus

Planck’s law must be scaled by the material’s emissivity in order to model its emitted radi-

ation. A material’s emissivity,ǫ(λ), is the ratio at which electromagnetic energy is radiated
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Figure 3.6: Illustration of the two layers (a) and three layers (b) models for the at-sensor
radiance, respectively.

range. In the LWIR range, this emitted energy is governed by the radiative transfer theory.
Therefore, in order to understand the physical nature of the used data sets, it is worth briefly
describing the radiative transfer theory.

The radiance of a material is defined as the amount of electromagnetic radiation which
passes through or is emitted from a particular unit area per solid angle, and is expressed in
Wsr-1m-2. Consequently, the radiance of a material is expressed over the whole electromagnetic
spectrum. However, the sensor cannot capture the radiance over the whole spectrum, but
rather at some particular wavelengths. Thus, the spectral radiance is defined as the radiance
of a material at a given wavelength, and is expressed in terms of Wsr-1m-3. When no plume
is present in the scene, the spectral radiance L(λ) (which is a function of the wavelength λ)
reaching the sensor can be expressed according to the two layers model:

L(λ) = Latm(λ) + τatm(λ)Lb(λ) (3.18)
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as depicted by figure 3.6a. In such case, the radiance received by the sensor is expressed as the
sum of the atmosphere spectral radiance Latm(λ) and the background spectral radiance Lb(λ)
modulated by the atmosphere transmittance τatm(λ). This latter quantity is defined as the
ratio of the amount of light leaving a medium (the atmosphere in this case) with respect to the
amount of light entering this medium. The presence of a plume in the scene has two effects: it
absorbs part of the radiance emitted by the background due to its own transmittance τp(λ)
and it emits its own radiations Lp(λ). Therefore, equation (3.18) transforms into the so-called
three layers model, depicted by figure 3.6b and expressed as

L(λ) = Latm(λ) + τatm(λ)Lp(λ) + τatm(λ)τp(λ)Lb(λ) (3.19)

It is often assumed that the contribution of the atmospheric radiance with respect to the
plume and background radiances can be neglected. Also, the atmospheric transmittance can
be approximated to 1 when the distance between the release point and the sensor is short
(typically no more than a few kilometers), meaning that the atmosphere allows all the signal
to pass through unaffected [29]. Under those assumptions, the at-sensor spectral radiance can
be written

L(λ) = Lp(λ) + τp(λ)Lb(λ) (3.20)

Up to some constant coefficient, equation (3.20) resembles equation (3.2), which also modeled
each pixel signature as a linear combination of the plume and background signatures.

Usually, spectral radiance is converted into spectral emissivity prior to any further pro-
cessing, as the latter plays in the LWIR domain the same role as the reflectance does in the
visible domain. As a matter of fact, to each material is associated a unique spectral emissivity
in the LWIR domain, which acts as a signature proper to the material [13]. The emissivity
of a material, ε(λ), is defined as the ratio of the energy radiated by this particular material
to the energy radiated by a black body at the same temperature. While the former is the
quantity acquired by the sensor, the latter is described using Planck’s black body law:

B(λ, T ) = 2hc2

λ5
1

exp
(
hc
kTλ

)
− 1

(3.21)

where T is the temperature of the surface in Kelvin, h is the Planck’s constant, c is the speed
of light and k is the Boltzmann’s constant. The spectral emissivity of each pixel is retrieved
from the spectral radiance through the use of some Temperature Emissivity Separation (TES)
algorithm [80], which operates in two steps: first, the apparent temperature of each pixel
is estimated by inverting Planck’s law. Each pixel spectral radiance is then divided by its
estimated black body curve, evaluated at the proper wavelengths, to finally obtain the spectral
emissivity.

3.4.2 State of the art

The detection of gas plumes has been already addressed in the literature [130], where
most techniques can be categorized either as anomaly/target detectors or as clustering-based
methods.
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3.4.2.1 Anomaly/target detectors

The most popular and natural approach is to consider the gas plume as anomalous with
respect to the background, and thus make use of conventional anomaly or target detectors.
More specifically, such methods decide whether some signal of interest (being the anomaly or
the target signature) is present or not in each pixel signature x. This involves the solving of
the two-hypotheses test:

H0 : x ∼ f0 (target absent)
H1 : x ∼ f1 (target present)

(3.22)

where f0 and f1 are the assumed distributions of the pixels signatures with and without the
presence of the target, respectively.

According to the further hypotheses made on the general statement of (3.22) (the target
being either expressed as a full or a mixed pixel, with a fixed or probabilistic signature, the
background distribution being either structured or unstructured), solving (3.22) leads to
different detectors. Considering for instance a full pixel target yields the Adaptive Matched
Filter (AMF), operated in [185]. However, a full pixel assumption implies that the plume
is opaque so its signal is not influenced by the background behind it, which is erroneous in
practice and rather suggests the use of anomaly/target detectors for mixed pixels. Depending
on the variability and structure assumed for the background (a structured background is
described by a subspace model, while an unstructed one is characterized by a statistical
distribution), one can finally implement the Adaptive Matched Subspace Detector (AMSD),
investigated in [29,30,147] and described in the following section 3.5.4, the Clutter Matched
Filter (CMF) used in [71, 211], the Adaptive Cosine/Coherence Estimator (ACE) or the
Orthogonal Subspace Projection (OSP) considered in [132]. Performance comparison of AMF
and AMSD for gas plume detection can be found in [109]. For futher details about previous
anomaly and target detectors, the reader is referred to [131,133,186].

The major drawback of anomaly and target detector methods for gas plume detection
is that they cannot be operated without a reference target spectrum, often estimated using
spectral libraries [149, 181]. Moreover, they do not use any temporal information since the
target detection process is applied on each frame independently.

3.4.2.2 Clustering-based methods

A second popular approach that recently emerged is to address the plume detection as a
clustering problem. In that case, it is assumed that properties of the spectral signature of the
plume are sufficiently different from those of the background so it is possible to compose a
cluster solely containing the plume. Hierarchical clustering is for instance investigated in [91]
(note that it also requires a reference target spectrum). Alternately, graph Laplacian-based
spectral clustering is notably considered in [79], as well as in [93,138] and [163] where it is used
as an initialization for more powerful clustering methods, such as semi-supervised diffused
interface clustering [137] for the former, and robust non-negative matrix factorization [234] for
the latter.
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Figure 3.7: Location of the three FIRST sensors recording the chemical plume release (image
from [29]).

As clustering methods aims at dividing each frame of the sequence into clusters, they do
not take temporal information into account innately. To tackle this issue, several consecutive
frames are stacked together prior to the clustering operation in [93, 138, 163] in order to
introduce some temporal coherency. The drawback of such approaches is to be however
incompatible with real-time processing since several frames (7 consecutive frames in [93, 138],
the whole 20 frames long sequence in [163]) must be acquired before running the algorithm.

3.4.3 Data sets

The data sets used to validate the proposed methodology introduced in section 3.3 were
provided by John Hopkins Applied Physics Laboratory (JHAPL). They were acquired in 2006 at
the Dugway Proving Ground in Utah (USA). The recording sensor was a Field-portable Imaging
Radiometric Spectrometer Technology (FIRST) [70] long-wave infrared sensor, producing
video sequences at a frame-rate of 0.2 Hz, where each frame is a hyperspectral image composed
of 128× 320 pixels in the spatial domain and 129 spectral channels, spanning 7.81 µm to 11.97
µm in wavelength. Each gas release was recorded by three identical FIRST sensors placed at
different locations around the release point, denoted Romeo, Victory and Tango and located
2.15, 2.75 and 2.82 kms away from the release point, respectively, as illustrated by figure 3.7.

The following experiments are conducted on two sequences featuring the explosive re-
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(a) (b)

(c) (d)

Figure 3.8: False color RGB composition of (a) the 20th frame of aa12_Victory and (c) the
22th frame of aa13_Victory sequences. Corresponding ground truth data (b) and (d), where
strongly and weakly concentrated parts are depicted in red and green, respectively.

lease of an acetic acid canister, denoted aa12_Victory and aa13_Victory, respectively.
Despite each sequence initially contained hundreds of hyperspectral frames, only the small
portion of the sequence featuring the plume release and diffusion was retained. The resulting
aa12_Victory and aa13_Victory sequences are composed of 30 frames each, where only the
last 20 frames features the diffusion of the plume (the release therefore occurring at the 11th

frame). Eventually, the radiance for each frame is converted into emissivity using the TES
algorithm [29] provided by JHAPL along with the video sequences. Not that, for the following
experiments, it is assumed that only the first two frames are known no to contain the gas
plume, while the time of release remains unknown.

Ground truth data was created for the two data sets 2 to further evaluate the performance
of the proposed tracking algorithm and compare it with two state-of-the-art methods, namely
an anomaly detection AMSD method [29] and the robust nonnegative matrix factorization
(RNMF) clustering method described in [163]. To generate the ground truth map for a
given frame, a principal component analysis (PCA) was performed and the three principal
components (PCs) showing the highest contrast between the plume and the background were
selected, creating a false color RGB composition of the scene. The PC selection was conducted
by visually analyzing the twenty PCs (being most likely to feature some contrast between the
gas plume and the background). The identity of the selected PCs varied between the two
data sets, and even between two consecutive frames of a single data set, making this selection
automated impossible. Two classes were carefully delineated from the RGB composition, the
first corresponding to the strongly concentrated section of the plume (typically the central part),

2. Half of this ground truth data was delineated by Delphine Pauwels in the framework of her Master’s
internship between February and July 2015.
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and the second to more diffused components. Figure 3.8 displays examples of ground truth
data for both aa12_Victory and aa13_Victory sequences. Due to the inherent subjectivity of
the ground truth manual delineation task, it is advocated not to consider the created ground
truth as a perfect gold standard, but rather as a support for the quantitative comparison of
the performance of several methods.

3.5 Experimental methodology

Gas plume tracking is a challenging task since the gas plume is a non-rigid object with
no real boundary and whose shape is evolving quickly and unpredictably. Moreover, the gas
plume is an optically thin object whose concentration changes with position and time, as
a natural consequence of the diffusion phenomenon, making it more and more difficult to
detect. Therefore, an appropriate tuning of the proposed methodology is required in order to
efficiently track the diffusing gas plume.

3.5.1 Detection of the release point

As explained in section 3.3.4, the proposed object tracking methodology is triggered once
some motion has been detected in the sequence. In the present gas plume tracking application,
it means that the moment at which the gas is released in the sequence must be first detected.
As it is assumed that the first two frames of the sequences are known not to feature the release
of the plume, the change detection procedure described in section 3.3.2.1 is applied from frame
#3 on: the difference I∆t = It − It−1 between the current frame and the previous one is first
computed. Each pixel of the frame difference has then its GLRT expression (3.9) computed and
thresholded to achieve a probability of detection pD set to 99%, finally producing the change
mask Ct−1,t. If at least one pixel of the change mask has been detected as changing between
It−1 and It, then the tracking procedure is launched, as the size of the plume immediately
after the release is unknown and can be considered as arbitrarily small.

To be operable in practice however, this strategy must not produce any false alarm at all,
as it would engage the tracking procedure too early otherwise. We noted that the performances
of the change detection were slightly enhanced when first transforming the frame difference
with a PCA and performing the statistical test (3.9) on the PCs instead of the raw difference.
This can be explained by the ability of the PCA transformation to decorrelate the data and
hence improve its separability with respect to the highly correlated raw hyperspectral data.
Applying a PCA transformation prior to the change detection leads to two modifications in
the formulation of the statistical test (3.4). First, the covariance matrix Σ, estimated from
the difference of the first two frames of the sequence, is replaced by the diagonal matrix
ΣPCA = W−1ΣW, where W is the eigenvector matrix of Σ. Second, the unknown mean
µ∆t
i in the alternate hypothesis H1 is replaced by W−1µ∆t

i . Up to those modifications, the
derivation of the GLRT and the further conclusions drawn in sections 3.3.2.1 and 3.3.4 remain
identical.
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3.5.2 Motion prediction step

The motion prediction step is conducted as presented in section 3.3.2. First the change
mask Ct−1,t is computed by thresholding the result of the change detection statistical test
between It−1 and It so it achieves a probability of detection pD of 95%. Then, the estimate
position of the plume Ôt is obtained from Ct−1,t and the previous position of the plume Ot−1
using equation (3.10). Note that, similarly to what is done for the detection of the release
point, the change detection statistical test is performed on the PCA of the frame difference.

3.5.3 Matching step

As described in subsection 3.3.3, the matching step first involves a hierarchical decomposi-
tion of the current frame by means of a BPT representation, and then the object detection
process using this BPT. As presented in section 1.3.4, the construction of the BPT requires
the definition the initial segmentation map, the region model and the merging criterion:

- The initial segmentation map is obtained using the hyperspectral watershed algorithm
proposed by [188], as its ability to properly delineate the boundaries, even diffused,
between the gas plume and the background was demonstrated in [196]. Even if this
method is known to produce severe over-segmentation, each hyperspectral frame is
initially segmented in around 2000 regions (as compared to the 128 × 320 = 40960
potential initial regions if starting the construction of the BPT from the pixel level).

- The region model of a region R is set to the mean spectrum region model (1.13) µR,
which already proved to perform well to separate the plume from the background [196].

- The merging criterion between neighboring regions Ri and Rj is defined as the spectral
information divergence (1.17) between their region models µRi and µRj .

The object identification succeeds to the construction of the BPT in order to complete
the matching step. It requires the definition of a set of reference features ΩOt for the tracked
object, and the computation of the similarity between the set of features ΩR of every region
in the BPT and the set of reference features ΩOt to identify the region that most matches the
sought object. The used features and the corresponding distances to compare them are the
following:

3.5.3.1 Spectral feature

The proposed spectral feature ωOtspect is the mean spectrum µOt−1 of the plume in the previous
frame, being the region model of the region R ∈ Ht−1 that was selected from Ht−1 to be the
object representation Ot−1. Between two consecutive frames, the gas plume concentration is
expected to limitedly vary. Additionally, the plume general motion is assumed to be slow,
meaning that the region contaminated by the plume should overlay similar backgrounds in
two consecutive frames and hence having similar mean spectra.

The proposed spectral feature distance is derived from the two-sample Hotelling’s T-square
statistic, which arises when testing the equality of the mean vectors of two populations [166].
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More specifically, let Σ̂R and Σ̂Ot−1 be the respective sample covariance matrices of R and
Ot−1. The Hotelling’s T-square statistic between R and Ot−1 has the following expression:

T 2(R, Ot−1) = |R||Ot−1|
|R|+ |Ot−1|

(
µR − µOt−1

)T
Σ−1

pool

(
µR − µOt−1

)
(3.23)

with Σpool being the pooled covariance matrix

Σpool =
(|R| − 1)Σ̂R + (|Ot−1| − 1)Σ̂Ot−1

|R|+ |Ot−1| − 2 . (3.24)

The normalized T 2 statistic

F (R, Ot−1) = |R|+ |Ot−1| −N − 1
N(|R|+ |Ot−1| − 2) T

2(R, Ot−1) (3.25)

follows a F-distribution with N numerator degrees of freedom and |R| + |Ot−1| − N − 1
denominator degrees of freedom. The final spectral feature distance dspect is finally obtained
by normalizing the F-statistic between R and Ot−1 with the F-statistic between Ôt and Ot−1

dspect
(
ωRspect, ω

Ot
spect

)
= F (R, Ot−1)
F (Ôt, Ot−1)

(3.26)

as it is desirable for a good candidate region to be closer from the reference spectrum µOt−1

than the estimate region Ôt. Distance values for those good candidate regions thus range
between 0 and 1. Note that the feature distance can be computed only for regions R whose
size |R| is greater than the number of spectral bands N to correctly estimate the sample
covariance matrix Σ̂R.

3.5.3.2 Spatial feature

The proposed spatial feature ωOtspat is the binary position and shape of Ôt. It is indeed
assumed that, even if perfectible, the output Ôt of the motion prediction is a good initial
guess for the spatial position and shape of the plume in It.

Consequently, the proposed spatial feature distance evaluates how similar from Ôt is any
candidate region R:

dspat
(
ωRspat, ω

Ot
spat

)
= |R∆Ôt|

|R|
(3.27)

where |R∆Ôt| is the number of pixels in the symmetric difference between R and Ôt, i.e.,
pixels either in R or in Ôt, but not in both. Therefore, the spatial distance (3.27) corresponds
to the percentage of pixels of R that mismatch Ôt. Thus, the closer from Ôt in terms of
position and shape is R, the smaller this percentage of error.



3.5. Experimental methodology 119

3.5.3.3 Temporal feature

The proposed temporal feature ωOttemp is defined as a confidence area where the tracked
plume is expected to be found with certainty. This confidence area is derived from the estimate
position Ôt by a morphological dilation with a structuring element SE, δSE(Ôt), and the
percentage of inclusion of every candidate region R in the confidence area is evaluated:

R%Ôt = |R ∩ δSE(Ôt)|
|R|

(3.28)

The proposed temporal feature distance is a hard thresholding of this percentage of
inclusion:

dtemp
(
ωRtemp, ω

Ot
temp

)
=

0 if R%Ôt ≥ τ
+∞ otherwise

(3.29)

This distance allows to consider only regions in the BPT that have at least τ% of their pixels
in the confidence area as possible candidates, dismissing all other regions. It is possible to be
more or less selective by varying the structuring element SE and the threshold τ . In practice,
we used a 9× 9 square structuring element, and τ was set to 80%.

3.5.3.4 Final matching distance

For each region R of the BPT Ht, the global distance to the set of reference features ΩOt

is finally obtained by adding the three feature distances:

d (R, Ot) = dspect
(
ωRspect, ω

Ot
spect

)
+ dspat

(
ωRspat, ω

Ot
spat

)
+ dtemp

(
ωRtemp, ω

Ot
temp

)
(3.30)

where dspect, dspat and dtemp are defined following equations (3.26), (3.27) and (3.29), re-
spectively. Note that this is equivalent to only considering the spectral and spatial feature
distances for regions whose temporal feature distance is equal to 0. The optional weights of
equation (3.11), which trade off the influence of a distance with respect to the other, are all
set to 1 because the spectral and spatial feature distances have a similar range of values for
good candidate regions. The optimal region R? of the BPT Ht is finally the one achieving
the smallest global distance to the set of reference features, R? = argminR∈Ht d (R, Ot) and is
retrieved with an exhaustive search.

3.5.4 The adaptive matched subspace detector

In order to validate the proposed methodology, we compare it with the state-of-the-art
AMSD algorithm that was notably investigated in [29,30,147] for the detection of chemical gas
plume in hyperspectral video sequences. Each frame of the sequence is processed independently
of the others. The AMSD involves a two-hypotheses testing, performed on the raw hyperspectral
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frame, considering target pixels as anomalies with respect to a structured background model.
More specifically, the two competing hypotheses are

H0 : xti = Btβti +N (0, σ2I) (target absent)
H1 : xti = tαti + Btβti +N (0, σ2I) (target present)

(3.31)

where Bt is a (possibly varying with time) N ×Q matrix composed of Q background emissivity
signatures, βti is a Q× 1 vector containing the respective weights of the background emissivity
signatures for pixel xti, t is the N × 1 a priori known target vector, αti is the relative weight of
the target emissivity contained in the current pixel, and the additive noise is assumed to be
Gaussian with zero mean and σ2I covariance. The use of the GLRT approach leads to the
following statistical test:

ΛAMSD(xti) =
(xti)T

(
P⊥Bt −P⊥Z

)
xti

(xti)TP⊥Zxti

H1
≷
H0

γAMSD (3.32)

with Z = [Bt t] being the concatenation of the background emissivity and target emissivity
matrices and P⊥A is the projection matrix of A defined by P⊥A = I −A(ATA)−1AT , with
A = Bt and A = Z, respectively. It is known [131] that

(N − 1−Q)ΛAMSD(xti) ∼ F1,N−1−Q(SINRo) (3.33)

where F1,Nλ−1−Q(SINRo) is the non-central F distribution with 1 numerator degree of freedom,
N − 1−Q denominator degrees of freedom, and non-centrality parameter SINRo defined as

SINRo =

∥∥∥P⊥Bttαti∥∥∥2

σ2 (3.34)

Under H0, SINRo = 0 and the AMSD statistic depends only on the known parameters N and
Q and enjoys a constant false alarm rate property. The Q background emissivity signatures,
needed to operate the AMSD, are estimated as the first Q principal components of a set of
reference background pixels [29,233]. This set of reference is firstly defined as the first frame of
the sequence, on which a PCA is performed and the first Q PCs are extracted. For each new
incoming frame, the AMSD statistic is run on each pixel, and all pixels whose test statistic is
below a predefined threshold δ (the most likely to follow H0) are added to the set of reference
background pixels. This updated set is used to generate the Q background emissivities for the
next frame. We used the AMSD implementation and the reference target emissivity spectrum
t provided by the JHAPL along with the data sets. Q = 4, δ = 0.25 and a probability of false
alarm pFA = 5% to compute γAMSD under H0 were used in the implementation, as advocated
in [29].

3.5.5 The robust nonnegative matrix factorization clustering

The second state-of-the-art method we compare the proposed methodology with is the
robust non-negative matrix factorization (RNMF) clustering method proposed in [163]. Rep-
resenting the hyperspectral frame It by a NxNy ×N matrix X, the RNMF clustering method
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aims at decomposing X as
X = L + S (3.35)

where L is a low rank matrix accounting for the data, and S is a sparse matrix representing
the noise corrupting the data. Further, the matrix L, corresponding to the data points, is
decomposed as

L = YZ, Y,Z ≥ 0 (3.36)

where Z is the collection of all cluster centroids, and Z is the cluster indicator matrix. The final
RNMF clustering method can finally be written as the solution of the following optimization
problem:

min
Y,Z≥0,X=L+S

‖L‖∗ + λ‖S‖1 + ρ

2‖L−YZ‖F (3.37)

with ‖L‖∗ being the nuclear norm of L (i.e., the sum of all singular values of L, enforcing L to
be low-rank), ‖S‖1 being the L1 norm of the noise matrix S (therefore favoring sparsity), and
‖L−YZ‖F being the Frobenius norm of the error between the low-rank data matrix L and its
approximation YZ, where both Y and Z are expected to have non-negative entry values. The
optimization problem (3.37) is solved by the alternating direction method of multipliers [118].

The RNMF results presented in the following section 3.6 are reproduced from [163],
where the clustering method (3.35) was applied both on aa12_Victory and aa13_Victory
sequences. To account for the temporal evolution of the gas plume along the sequence, 20
frames (2 frames prior to the release of the plume and the following 18 frames featuring the
diffusion for aa12_Victory, 1 frame prior to the release and the following 19 frames with the
plume for aa13_Victory) were first stacked together prior to the solving of the optimization
problem (3.37), which does not allow for this strategy to be operated in practice in real-time
scenarios. Note also that this method requires the number of final clusters as an input. This
number was set to 4 (being the sky, the foreground, the mountain and the plume).

3.6 Results

3.6.1 Assessing the tracking quality

Assessing the performances of a tracking algorithm is a well-known challenge in computer
vision. Several studies have addressed the problem when ground truth data is available.
In [145], a metric is introduced to compare the trajectory of the tracked object with a reference
trajectory accounting for ground truth. In [25,231], frame-based surveillance metrics relying
on the number of true and false positives are developed. These metrics are notably used to
evaluate the consistency of the tracker across the whole sequence (where a true positive is
claimed when the object of interest is present in a given frame and correctly detected by the
tracker). Object-based performance metrics, such as spatial overlap between ground truth
object and tracked object and Euclidean distance between their respective centroids, are
considered in [16]. In particular, we propose to use this notion of overlapping between ground
truth and corresponding object in order to derive three metrics reflecting the performance and
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accuracy of the tracking. As can be seen in figure 3.8, the ground truth map for each frame is
composed of three different regions:

- Regions where the plume is strongly concentrated (in red in figures 3.8b and 3.8d),
denoted GTstrong in the following.

- Regions where the plume is weakly concentrated (in green in figures 3.8b and 3.8d),
denoted GTweak.

- All remaining regions of the image, displayed in blue in figures 3.8b and 3.8d, not
containing any gas and denoted GT∅.

We define the percentage of strong detections Nsd and of weak detections Nwd as the percentage
of strongly and weakly concentrated ground truth plume areas included in Ot, respectively:

Nsd = |Ot ∩GTstrong|
|GTstrong|

(3.38)

and
Nwd = |Ot ∩GTweak|

|GTweak|
. (3.39)

Similarly, the percentage of false alarms Nfa is defined as the percentage of GT∅ area that is
wrongly comprised in Ot,

Nfa = |Ot ∩GT∅|
|GT∅|

. (3.40)

High values of Nsd and Nwd (theoretically, 1) along with a low value of Nfa (theoretically, 0)
indicate a good detection of the plume for a given frame. The temporal performance of the
tracking can be assessed by evaluating the consistency of Nsd and Nwd to remain high and of
Nfa to stay low across the whole sequence.

3.6.2 Results

Quantitative results for aa12_Victory and aa13_Victory sequences are presented by
figures 3.9 and 3.11, respectively. Each figure is composed of three plots representing the
evolution of the percentages of strong detections, weak detections and false alarms across the
sequence, where the x-axis correspond to the frame number and the y-axis is the percentage.
Each plot is composed of a red solid line and two dashed black and blue line curves, where
the former corresponds to the proposed object tracking and the latter are the result of
state-of-the-art AMSD and RNMF methods, respectively. In addition to the quantitative
results, qualitative results for the aa12_Victory and aa13_Victory sequences are displayed
by figures 3.10 and 3.12, respectively. Each figure is composed of ten rows and four columns.
Each row presents, from left to right, the RGB representation of a hyperspectral frame of
the sequence and the binary mask of the detected plume for the proposed BPT-based and
state-of-the-art AMSD and RNMF methods, respectively. Each column corresponds to a
particular frame of the sequence. While it is impossible to show all frames by lack of room,
only frames #11, #12, #14, #16, #18, #20, #22, #24, #26 and #28 are represented.

We recall that the release of the plume occurs in frame #11 in both sequences. For the
RNMF method, only 20 frames among the 30 that constitute the sequence are available.
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3.6.2.1 The aa12_Victory sequence

About the strong detection plot The behavior of the evolution of the Nsd values the
aa12_Victory sequence is show by figure 3.9a, and several observations arise from its analysis.

First, all AMSD, BPT and RNMF methods are able to correctly detect the frame where
the gas is released, as they all score a Nsd value greater than 0 for the 11th frame. Nevertheless,
the percentage of strong detections for the RNMF method is under 10%, and one can see in
figure 3.10 that only a small portion of the released plume is detected.

Then, the evolution of the Nsd curves for the AMSD and proposed BPT-based methods
feature a similar trend: remaining over 90% of strong detections until frame #19, they both
suffer a drop from frame #20 on, before rising again at the end of the sequence. This decrease
can be explained by the fact that at this point of the sequence, the plume equally overlays
the foreground and the sky, as shown by figures 3.8a and 3.10, and both methods suffer from
this split. For the proposed BPT-based method in particular, both halves of the plume (the
one overlaying the foreground and the other covering the sky) are supported by nodes in
different branches in the hierarchical decomposition of the frames. As the object detection
process was implemented to extract only one node from the hierarchical decomposition to
represent the tracked object during the matching step, half of the plume is lost. This notably
explains why the percentage of strong detection Nsd-BPT is divided by 2 between frames #19
and #22. When evaluating the spectral feature during the object identification process, the
reference spectrum before the split corresponds to the plume mainly overlaying the foreground.
Therefore, the mean spectrum of the half of the plume overlaying the foreground directly
after the split is closer to the reference spectrum than the one of the half overlaying the sky.
The bottom half of the plume is subsequently correctly tracked by the proposed method,
as it can be observed on figure 3.10. The percentage of strongly concentrated plume Nsd is
increasing again for the proposed BPT-based method from frame #25 on because the top half
of the plume is gradually disappearing from the frame of view, leaving only residuals that are
classified as weakly concentrated in the ground truth map.

The behavior of Nsd-RNMF is slight different from the other two methods. While it
remains consistently over 90% between frame #15 and frame #28 (the last available one for
this method), it gradually increases for the first 4 frames of the sequence, as if the clustering
method was unable to efficiently differentiate between the plume signature and the background
for these initial frames of the sequence. A possible, yet rather surprising, explanation for this
observation is that the plume is "too much" concentrated in those frames. As the RNMF
clustering method is operating on the 20 frames stacked together, it may consider that those
highly concentrated plume pixels do not belong to the same cluster as the more diffused plume
pixels, and mis-classifies them as foreground.

About the weak detection plot The evolution of the weak detection percentages Nwd

for the aa12_Victory sequence is displayed by figure 3.9b. The ground truth data labeled
as weakly concentrated corresponds to areas where the plume is diffused and thin, and is
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Figure 3.9: Percentage of (a) strong detection, (b) weak detection and (c) false alarms for the
aa12_Victory data set. Dashed black and blue lines correspond to state-of-the-art AMSD and
RNMF, respectively, while plain red line corresponds to the proposed BPT-based method. For
the false alarm plots (c), the y-axis has been broken for an easier visualization and comparison
of the two method performances.



3.6. Results 125

#11

#12

#14

#16

#18

#20

#22

#24

#26

#28

(a) RGB (b) BPT (c) AMSD (d) RNMF

Figure 3.10: Visual results of the tracking for 10 frames of aa12_Victory sequence. Column
(a) shows the RGB representation of the hyperspectral frame, and columns (b), (c) and (d)
show the binary mask of the detected plume for the proposed BPT-based, the AMSD and the
RNMF methods, respectively.
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very likely to be mistaken with the background. It is the reason why the weak detection
percentages are lower than the strong detection percentages for all three methods and the
majority of the frames.

However, there are some common patterns with the strong detection plot. For the proposed
BPT-based method, the Nwd value remains relatively high for the first half of the frames
(except for frame #15) and significantly drops for the second half. This is in accordance with
the explanation that the plume is splitting over the sky and the foreground, and only the
bottom half is tracked. The top part, overlaying the sky, quickly diffuses and is labeled as
weakly concentrated in the ground truth, therefore missed by the tracker. As for the strong
detections, the weak detection values Nwd for the state-of-the-art RNMF clustering remains
low for the first 4 frames featuring the release, confirming that the method does not assign
those pixels (even if moderately concentrated) to the plume cluster.

About the false alarm plot The percentage of false alarms Nfa for the aa12_Victory
data set is presented by figure 3.9c. The y-axis has been cut for a better visualization. The
false alarms plots shall be analyzed in two time intervals: prior to and after the release of the
plume.

For the first case, one can see by observing the Nfa-BPT plot, that the percentage of false
alarms remain equal to 0 prior to the release. This implies that the the proposed method does
not generate any false alarm before the appearance of the plume, meaning that the tracking
algorithm is triggered at the right time. It demonstrates the robustness of the change detection
hypothesis testing, performed on the PCA transformation of the frame difference, even with
a high probability of detection threshold (being set to pD = 99% prior to the detection of
the release). In comparison, the AMSD method consistently produces false alarms before
the release of the plume. While the Nfa remains low for most frames prior to the release, it
achieves a peak over 80% for frame #2. This could be problematic in a scenario where further
processings relying on a precise detection of the plume release are needed.

The RNMF and proposed BPT-based method only generate a tiny amount of false alarms
(no more than 2% of all background pixels) for all frames. While not necessarily implying that
all plume pixels are correctly detected, this observation signifies that background pixels are
however not confused with the plume. For the proposed method in particular, it indicates that
the BPT is able to properly separate the plume from the background during the construction
of the tree, suggesting that the mean spectrum, even if relatively standard, is an appropriate
choice for the region model. For the AMSD however, the amount of false alarms is globally
increasing, up to over 20% for the last frames of the sequence, meaning that the method
is over-estimating the plume when this latter becomes diffused. Looking in particular at
figure 3.10, one can see that the AMSD detect as plume both the small cloud of dust which
has been triggered by the explosive release (appearing as bright green on the left hand side of
the red plume) and part of the mountain in the background.
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3.6.2.2 The aa13_Victory sequence

About the strong detection plots The percentage of strong detections Nsd over the
aa13_Victory sequence for the three investigated methods is displayed by figure 3.11a.

The first observation that can be made is that the two state-of-the-art AMSD and RNMF
methods miss the release of the plume occurring at the 11th frame, while the proposed BPT-
based method scores almost 90% of strong detections for this frame. This demonstrates
again the robustness of the implemented change detection approach to perform the tracking
initialization, and the subsequent object detection procedure, as the proposed method is able
to lock on the plume directly as it appears in the sequence.

Contrarily to the aa12_Victory sequence, the behavior of Nsd-BPT plot this time resembles
this of Nsd-RNMF. As a matter of fact, they both remain over 70% of strong detections until
frame #25 before significantly dropping for the last frames of the sequence. More particularly,
the percentage of strong detections for the proposed BPT-based method even drops to 0% for
the last two frames #29 and #30, meaning that the track has been completely lost. The main
reason is that the gas has become so diffused as this point of the sequence that the change
detection test no longer detects change between two consecutive frames, resulting in an empty
change mask Ct−1,t. Consequently, the output Ôt of equation (3.10) when Ct−1,t is empty is
equal to the previous object position Ot−1. In that case, the motion prediction step becomes
trapped in one part of the image and the track is lost. Figure 3.12 shows in particular that
the tracker is being locked on the background mountain. A possible solution to overcome this
issue would be to regularly reset the motion predictor by estimating the change between the
current frame and a frame prior tot the release instead of using two consecutive frames and a
more limited motion.

The evolution of the Nsd-AMSD plot is opposite to the two other curves, dropping at
the middle of the sequence before increasing again, outperforming the RNMF and BPT-
based methods for the last 5 frames of the sequence, scoring consistently over 95% of strong
detections.

About the weak detection plots The evolution of the weak detection percentages Nwd

for the aa13_Victory data set is shown by figure 3.11b. For the 11th frame, the percentage of
weak detection for the RNMF method is also equal to 0%, confirming that the method misses
the release of the plume. It is however slightly above 0% for the AMSD, but nevertheless below
its number of false alarms Nfa for this frame, suggesting that the method is not able either to
properly detect the release of the plume. This is confirmed by the analysis of figure 3.12.

For all three methods, the evolution of the weak detection percentages is more chaotic
than the strong detections, as the curves oscillates a lot and do not show much consistency
from one frame to the other. One can however remark a peak centered around the 25th and
26the frames for the proposed BPT-based methods. As a matter of fact, the method has just
lost the track of the object and is settling in a particular region of the image instead. In
frame #26, this region coincide with the wake of the plume, explaining the spike in the curve.
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Figure 3.11: Percentage of (a) strong detection, (b) weak detection and (c) false alarms for the
aa13_Victory data set. Dashed black and blue lines correspond to state-of-the-art AMSD and
RNMF, respectively, while plain red line corresponds to the proposed BPT-based method. For
the false alarm plots (c), the y-axis has been broken for an easier visualization and comparison
of the two method performances.
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Figure 3.12: Visual results of the tracking for 10 frames of aa13_Victory sequence. Column
(a) shows the RGB representation of the hyperspectral frame, and columns (b), (c) and (d)
show the binary mask of the detected plume for the proposed BPT-based, the AMSD and the
RNMF methods, respectively.
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About the false alarm plots Figure 3.11c exhibits the percentage of false alarms of the
AMSD, RNMF and BPT-based methods for the aa13_Victory sequence. The y-axis has been
cut for a better visualization. Similarly to the aa12_Victory data set, the percentage of false
alarms should be analyzed in two parts, being prior to and after the release of the plume in
the sequence.

For the first 10 frames, the observations are similar to those made for the aa12_Victory
sequence. While the AMSD generates false alarms for all frames prior to the release (with a
maximum over 90% for the 6th frame, meaning that almost all pixels of this frame are detected
as anomalous by the AMSD), the proposed BPT-based method remains at 0%, validating the
fact that the tracking algorithm is not triggered prior to the release.

For all remaining 20 frames, the RNMF and the proposed method do not generate a lot
of false alarm, confirming that both methods are able not to confuse the background pixel
with the plume. The loss of track for the BPT-based method is illustrated by the increase
in percentage of false alarms from frame #25 on, remaning nevertheless moderate (no more
than 5%). However, the AMSD produces again a high number of false alarms, consistently
over-estimating the plume. Looking at figure 3.12 reveals that, similarly to the aa12_Victory
data set, the AMSD tends to label as plume the bright green cloud of dust as well as part of
the background moutain. A possible solution to this issue would be to decrease the probability
of false alarm pFA (here set to 5%) under which the AMSD statistic is operated, at the expense
of the probability of detection, hence lower Nsd and Nwd values.

3.7 Conclusion

In this chapter, we have investigated the temporal multimodality, in the form of sequences
of images collected at close acquisition times. Such sequence of gray-scale and color images,
more traditionally termed video sequences, have been the concern of extensive consideration in
the field of computer vision. Alternately, hyperspectral video sequences acquired at near real
time frame rates have received much less attention. However, such sequences are of interest
for several practical real life scenarios, and the need for efficient processing algorithms is
growing. In particular, we focused in this chapter on the object tracking application, which is
the process of following the motion of objects of interest as they evolve with time along the
sequence. While the literature features plenty of object tracking algorithms for traditional
video sequences, those methods poorly adapt to the high dimensionality of hyperspectral data,
hence the need for adapted algorithms.

Therefore, we proposed a novel methodology to perform hyperspectral object tracking,
based on the hierarchical analysis of hyperspectral video sequences, the only prerequisite
for the sequence being that only the object of interest is in motion over a fixed background.
Like classical object tracking algorithms for color video sequences, the proposed method was
decomposed in a motion prediction step and a matching step, performed sequentially. The
motion prediction, made of two inner stages, first involved the derivation of the change mask
Ct−1,t between consecutive hyperspectral frames It−1 and It. Writing each pixel signature
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as the linear combination of the moving object and the fixed background, this led us to
formulate the change detection process as a two-hypotheses statistical test whose solving was
conducted with the derivation of a Generalized Likelihood Ratio Test. The resulting change
mask was then combined with the known position of the object in the previous frame to derive
an estimate of its new position in the current frame. The matching step was defined as an
object detection process. The use of a hierarchical decomposition to that purpose allowed to
drastically reduce the object search space by representing a hyperspectral frame as a limited
set of hierarchically organized candidate regions. The matching involved the definition of a
set of reference features for the sought object and the evaluation of every candidate region
features against those reference ones, in order to retrieve among the hierarchy, defined as a
BPT representation in this chapter, the candidate region matching the tracked object the
best, this region subsequently being defined as the object instance in the current frame.

The proposed method was applied to the tracking of chemical gas plumes in two different
LWIR hyperspectral video sequences. This challenging application is up to now addressed in
the literature either through the use of anomaly detectors or with clustering-based methods.
In order to compare the performances of our proposed methodology with two state-of-the-art
methods being the Adaptive Matched Subspace Detector (belonging to the class of anomaly
detector approaches) and the Robust Non-negative Matrix Factorization-based clustering
(therefore falling in the scope of clustering-based techniques), ground truth data was manually
delineated for all frames of the two sequences featuring the diffusion of the plume, and
corresponding performance metrics were introduced. The conducted performance evaluation
showed that the proposed BPT-method was outperforming the AMSD in terms of accurate
detection of the gas plume and in the ability not to produce any false alarm detections prior
to the release, and was performing equally with the RNMF clustering method for the whole
aa13_Victory and the first half of the aa12_Victory sequences (then suffering in the latter
case from the assumption that the tracked object shall be represented by a single region in the
hierarchical decomposition). Moreover, it is noteworthy that the AMSD method requires the
knowledge of the target gas spectrum in order to be operated, and this information may not
be available in practical surveillance applications. Similarly, it is worth recalling that, even if
producing the best results, the RNMF clustering method needs to stack several consecutive
frames at once in order to take into account some temporal information. More particularly, 20
frames were all stacked together for both sequences prior to the clustering, this strategy being
incompatible with a real time operation.

Several aspects of the proposed methodology deserve some additional attention in the
future in order to improve its robustness with respect to practical hyperspectral object tracking
scenarios. From a methodological point of view, the assumption that only the object to track
is in motion in the sequence should be relaxed in order to extend the proposed approach to
the simultaneous tracking of several objects. In addition, those object should also be allowed
to split in several nodes in the BPT representation without impeding the tracking. Related
to the gas plume tracking application, all state-of-the-art methods only provide information
related to the position and shape of the gas plume, i.e., all results can be visualized as a
binary detection map where "true" pixel corresponds to the plume. A further step could
be to also include some knowledge related to the concentration of those plume pixels. A
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(a) (b)

Figure 3.13: Examples of abundance information in addition to the plume detection for (a)
the 20th frame of aa12_Victory sequence and (b) the 22th frame of aa13_Victory sequence. A
red value signifies a high concentration of the plume.

first attempt to incorporate a spectral unmixing step within the tracking procedure has been
recently conducted 3. The preliminary obtained results, very promising as it can be seen on
figure 3.13, are currently being prepared for submission, and encourage us to engage additional
efforts in this way.

3. This has been investigated by Delphine Pauwels during her Master’s internship conducted within the
GIPSA-lab between February and July 2015.
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In this chapter, we investigate the sensorial multimodality, that is, when several images
of the same scene are acquired with different sensor types. Hence, each individual modality
features some particular aspects of the imaged scene resulting from the intrinsic specificities
of its associated sensor. The broad variety of imaging sensors induces a large number of
possible sensorial multimodal images, and makes the design of generic algorithms to process
them very challenging. On the other hand, numerous typical image processing applications
would surely benefit from the conception of such sensorial multimodal processing, and image
segmentation is one of them As a matter of fact, image segmentation, as it aims as dividing
up the image into regions that "make sense", could make the most of both the inherent
redundancy and complementarity information that is contained in the multimodal image
in order to produce more accurate segmentation maps. However, the generic integration of
this multimodal information for segmentation purposes appears as a real challenge in terms
of practical information fusion as well as on the adaptability with respect to all possible
multimodal configurations. Embedding the use of this multimodal information within a
hierarchical analysis framework raises on the other hand the question on the combination of
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several hierachies. Recently however, the concept of braids of partitions has been proposed
as a theoretical tool and possible solution to this fusion of hierarchies issue, but has not
been implemented in practice yet. In this chapter, we develop a fully novel methodology to
achieve the segmentation of multimodal images, based on this notion of braids of partitions
and formulated in an energetic framework. The remainder of this chapter is organized as
follows: section 4.1 introduces the sensorial multimodality and the challenges that have to
be faced by multimodal segmentation processings. In section 4.2, we extend the properties
related to hierarchical energy minimization introduced in chapter 2 and reformulate them with
a lattice terminology, following the seminal work of Kiran [101,103]. Section 4.3 defines braids
of partitions and their subsequent energy minimization prcedure. Section 4.4 features the
proposed methodology, namely guidelines to construct a braid from multiple hierarchies, and
how to derive an appropriate multimodal segmentation from it. The proposed procedure is
tested and validated in section 4.5 on two multimodal data sets with different characteristics.
Section 4.6 concludes the present chapter.

A draft of the materials presented in this chapter have been published at the International
Conference on Mathematical Morphology (ISMM) 2015 [197], and an extended version, on
which this chapter is based on, is currently under review in an international journal [198]. This
work has been partially funded through the ERC CHESS project, ERC-12-AdG-320684-CHESS.

4.1 Sensorial multimodality

4.1.1 Introduction

Thanks to the advances in the design of imaging sensors as well as their proliferation,
multi-sensors images are now frequently encountered in most fields of image processing. Each
resulting multimodal image can be considered as a collection of images of the same scene:

I = {I1, . . . , IP }, P ≥ 2 (4.1)

where each Ii : Ei → Vi is produced by a different sensor, hence capturing a particular facet
of the imaged scene. Although the nature and structure of each image domain Ei could vary
from one modality to the other, we restrict in the following to the case where all the modalities
share the same domain E1 = · · · = EP ≡ E. It implies in particular that all modalities are
co-registered. On the other hand, all pixel value sets Vi are not restricted to be the same, and
can therefore be of different dimensionality.

Considering all individual modalities at the same time provides a wealth of information
and allows a better and more complete description of the scene. This information contained
in a multi-source image can be decomposed in two parts: the redundant information, i.e.,
the one that is common to several modalities, and the complementary information, which on
the contrary is brought by a single modality only. Of course, the definition of each type of
information is related to the nature of the sensors composing the multi-source image. For
example, consider a multimodal image composed of airborne hyperspectral and LiDAR sensors.
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Figure 4.1: Multimodal image segmentation flowcharts, where the fusion operation (represented
by the symbol ?) occurs at (a) the feature level and (b) the decision level

While the former captures the information related to the spectral response of the materials
composing the scene, the latter describes their elevation with respect to some reference height.
Considering a scene composed of a concrete building (or any structure above the ground)
surrounded by a flat grassy area. In both cases, the properties expressed by each sensor are
sufficient to differentiate the structure from the rest of the image (as it is different both in
terms of spectral response and height): the information is redundant. On the other hand,
suppose now that the structure is a parking lot, such that its height and this of the surrounding
area are the same. In such case, it is not be possible to discriminate between the two using
the LiDAR information only, and the information brought by the hyperspectral sensor now
appears as complementary with respect to the LiDAR modality.

However, the design of adapted tools to process sensorial multimodal images remains a
challenge, notably due to the diverse physical meanings and contents of images produced by
all possible imaging sensors. Image segmentation is a particular application that would surely
benefit from the development of such multimodal tools. The segmentation of a multimodal
image should be enhanced thanks to both the complementarity and redundancy of its modalities
that should ensure a more robust and accurate delineation of its regions, in particular when
those regions share similar features in one mode but not in the other ones. The use of this
information can be integrated at two different stages of the processing chain when performing
multimodal image segmentation:

– At the feature level. In such case, some features are extracted independently from each
modality Ii, i = 1, . . . , P . These are further combined in order to produce some unified
feature map and a fused image If from which the final multimodal segmentation is
derived, as illustrated by figure 4.1a. In [156] for instance, a general framework for
multimodal image fusion is described based on multiresolution (MR) decompositions.
Each modality is decomposed using some MR transformation (such as pyramid or wavelet
transforms), which are further all merged to created a single combined MR. This latter is
finally inverted to retrieved the fused image, on which classical segmentation algorithms
can be applied. A similar idea is considered in [56], where the fusion is performed with
independent component analysis (ICA). Using some preliminary segmentation of each
modality, ICA coefficients are estimated within each region and later fused and inverted
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Figure 4.2: Multimodal hierarchical image segmentation flowcharts, where the information
fusion (represented by the symbol ?) occurs at (a) the feature level and (b) the decision level

to obtain the fused image. Segmentation as input feature is also investigated in [224],
where a partition for each modality is first obtained by using its dual tree complex
wavelet transform [100]. Features are then modeled for each region by a bi-variate alpha
stable distribution and the KL divergence is used to evaluate the similarity between
corresponding regions of the modalities. Finally, the fused image is created by merging
all regions in the complex wavelet domain prior to inverting it. Note that, for the two
latter cases, the segmentation step is only used to provide some regions, considered as
features for the fusion process.

– At the decision level. In this scenario, each modality Ii, i = 1, . . . , P is processed
individually and a segmentation map πf is output independently from the other
modalities. These various segmentation are then further combined in order to produce
the final multimodal segmentation map πf , as depicted by figure 4.1b. As for the
feature level, several solutions have been proposed to perform the merging of several
segmentation maps, ranging from [169] where it is tackled as a geometrical interpolation
problem, using distance transforms for each input segmentation in order to find their
optimal geometrical average to [225] that makes use of a random walker approach
to segment a graph generated based on the homogeneity degree between the input
segmentations and [76] where a consensus is reached by ensemble clustering.

Hierarchical structures offer several advantages for various image processing tasks with
respect to pixel-based and region-based representations, since they are naturally able to
accommodate for the intrinsic multi-scale nature of images, as developed in section 1.3. Image
segmentation is one of those tasks, as it reduces to performing a pruning graph cut of the tree
representation of the hierarchy. Among all the efficient existing pruning strategies, energy
minimization has been widely investigated for hierarchical image segmentation (see chapter 2),
as it is highly tunable through an appropriate definition of the energy and thus can be adapted
to a wide range of applications.

The representation of multisource images with hierarchical structures seems however to
be one step further in terms of difficulty with respect to the multimodal segmentation task.
Similarly to the latter, the fusion process to derive a hierarchical representation of a multimodal
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image can occur either at the feature level or the decision level, as shown by figure 4.2. The
former strategy (figure 4.2a) aims at building a unique hierarchy Hf , that directly encompasses
all the specificities of the scene, on a "fused" image If [165]. If the final goal is to derive a
multimodal segmentation of the scene, the decision level in that case is eased since classical
tools to extract a segmentation from a hierarchy can be applied. However, it may not be
easy to make all the modalities cooperate during the construction of the hierarchy, and some
features may be "averaged out" by the consensus strategies that have to be adopted during
the construction. On the other side, performing the fusion at the decision level implies that
several hierarchies Hi, i = 1, . . . , P have to be somehow combined. In that approach, each
hierarchy can capture all the specificities of the modality it is built on, but the fusion decision
may become complicated due to the increased number of disagreements that could occurs
between the hierarchies.

4.1.2 Objectives of this chapter

Recently, the concept of braids of partitions has been introduced [101,104] as a potential
tool to tackle the fusion of several hierarchies of partitions, and we sketched in [197] how this
notion could be adapted in practice to achieve the segmentation of remotely sensed multimodal
images. Those preliminary results are extended in this present chapter to define a complete
methodology for the hierarchical segmentation of multimodal images based on this concept of
braids of partitions.

More specifically, we propose guidelines to derive a braid structure from various cuts of
independent hierarchies. Following, we introduce a novel energy function designed to operate
on multimodal images in order to extract from the braid an optimal segmentation following
the hierarchical energy minimization procedure. The methodology is subsequently tested and
validated on two unrelated multisource images featuring different characteristics.

4.2 Energetic optimization on lattices

In chapter 2, we presented the hierarchical energy minimization framework as it was
introduced in the work of Guigues [86,87]. In particular, it was restricted to separable energies
only, i.e., when the energy of the partition π = {R ⊆ E} is expressed as the sum of the
energies of its regions:

E(π) =
∑
R∈π
E(R) . (4.2)

While this formalism encompasses most of the classical energies encountered in the literature,
some other composition laws than the sum can be investigated. In particular, we proposed
in chapter 2 to define the energy of a partition π as the supremum of the energies of the
regions composing it, i.e, when

∑
is replaced by

∨
in equation (4.2), and we checked that

all theoretical results (such as the minimization procedure and ordering of the optimal cuts
for a parametrized energy) were still holding. This therefore raises the question: which are
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the most general conditions on the definition of the energy function to preserve the theoretical
results holding for separable and max-composed energies? This question has been recently
answered by Kiran (see for instance [101] and [103]), whose major results are summarized
in the following (the reader is referred to Kiran’s PhD manuscript [101] for the proofs of all
following results).

4.2.1 Energetic ordering and optimization

The starting point of Kiran’s approach actually resides in the gigantic cardinality of ΠE ,
the set of all partitions of the space E, given as the Bell’s number B|E| where |E| is the number
of elements contained in E. Recall that a 5× 5 image can be divided into B25 = 4.6× 1018

different partitions. Assuming that the energy function E associated with the partition ranges
between 0 and 106, it means that each energy value is mapped to 4.6×1012 different partitions.
Finding an "optimal" partition in this setup rather looks like an ill-posed problem.

To alleviate this issue, two solutions stand out:

1. Constraining the space of valid partitions. As discussed in chapter 2, this can be
achieved by working on the set of cuts ΠE(H) of a hierarchy of partitions H of E.
While its cardinality remains impossible to evaluate in practice (Guigues empirically
estimated [86, p.157] that a binary hierarchy, i.e., when each node has either two children
or none, built over a natural image contains between 1.3|π0| and 1.4|π0| different cuts,
where |π0| is the number of leaves the hierarchy is built on), it is strongly reduced with
respect to ΠE

2. Shifting the minimization procedure from the space of the energy values (as the way
to evaluate the optimality of a partition is through the value of its energy function) to
another space where finding the minimum would be simplified.

While the first solution, working with hierarchies of partitions, is already known, Kiran proposes
to investigate the second point. In particular, his base idea is to make the minimization hold
on a lattice built on the partitions rather than on the lattice of integer (the space of the energy
values). While it is known that ΠE and ΠE(H) are two lattices with respect to the refinement
ordering ≤ (the latter being a sub-lattice of the former), they do not help a lot in this task
since the refinement ordering ≤ for partitions is not related with any energetic considerations
whatsoever. Therefore, a new ordering, defined with respect to the energy function E must be
defined.

4.2.1.1 The energetic ordering �E

In the following, let H be some hierarchy of partitions built over the space E.

Definition 4.1 (Singularity)
Let E be an energy function as defined by definition (2.1). E is said to be singular when for
every R ⊆ E, E(R) is either strictly smaller, or strictly greater, than the energy of all the
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possible partial partitions π(R) of R:

E is singular⇔ ∀R ⊆ E, E(R)
{
>
∨
{E(π(R))}

<
∧
{E(π(R))}

}
∀π(R) ∈ ΠR (4.3)

Note that, in definition (4.1), the partial partition π(R) of R is considered at its broadest
sense and not necessarily with respect to the hierarchy H.

Definition 4.2 (Energetic relation �E)
Let Π = {π ∈ ΠE} be some family of partitions and let πi, πj ∈ Π. πi is said to be less energetic
than πj, and one write πi �E πj, when in each region R of πi ∨ πj, the partial partition πi(R)
of R in πi has a lower energy than the partial partition πj(R) of R in πj:

πi �E πj ⇔ ∀R ∈ πi ∨ πj , E(πi(R)) ≤ E(πj(R)) (4.4)

Theorem 4.1
The relation �E of definition (4.2) is an ordering for all singular energies E, called the energetic
ordering, if and only if the family Π is the set of cuts ΠE(H) of a hierarchy of partitions H.

Proof. One can check in [101, pp.30-32] that the relation �E satisfies the transitivity, reflexivity
and anti-symmetry if and only if the compared partitions are cuts of a hierarchy.

Following the definition of the energetic ordering �E related to the energy E , one can
finally construct a new lattice holding on ΠE(H) with the next theorem:

Theorem 4.2
Let ΠE(H) be the set of cuts of a hierarchy of partitions H. ΠE(H) forms a complete lattice
for the ordering �E . In particular, given a family of cuts πi ∈ ΠE(H), the infimum

c
E πi

(respectively, supremum
b
E πi) is obtained by taking the partial partition of lowest (respectively,

highest) energy in each region of the refinement supremum
∨
πi.

Proof. The proof is given in [101, p.33].

The global infimum of this lattice (ΠE(H),�E) is denoted π� =
c
E{π, π ∈ ΠE(H)}. It

is the unique cut of H that is smaller than all the other cuts with respect to the energetic
ordering �E .

4.2.1.2 h-increasingness and optimal cuts

Three different lattices are handled at this stage of the approach developed by Kiran:
– The classical numerical lattice (R,≤) for the values of the energy E .
– The refinement lattice (ΠE(H),≤) for the cuts of the hierarchy H.
– The energetic lattice (ΠE(H),�E), also holding for the cuts of H.
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E(π1(R)) ≤ E(π2(R)) =⇒ E(π1(R) t π(R0)) ≤ E(π2(R) t π(R0))

π1(R) π2(R)
π1(R) t π(R0) π2(R) t π(R0)

Figure 4.3: Example of a h-increasing energy.

As it was defined by equation (2.14) in chapter 2, the optimal cut π? of H with respect to
the energy E is defined as the element of ΠE(H) whose energy is minimal (i.e., operating on
the first of the three lattices mentioned above):

π? = argmin
π∈ΠE(H)

E(π) (4.5)

On the other hand, π�, the global infimum of the third lattice (ΠE(H),�E), is the minimal cut
of H with respect to the energetic ordering �E . But two cuts being ordered for this energetic
ordering does not necessarily implies that their energies are also ordered in the same way,
i.e. π �E π′ 6⇒ E(π) ≤ E(π′). Under which additional condition on E can we ensure that
π? ≡ π�? To answer this question, Kiran introduces the notion of h-increasingness (h standing
for hierarchical):

Definition 4.3 (h-increasingness)
An energy E is said to be h-increasing when given any two disjoint regions R,R0 ∈ H, given
partial partitions π1(R), π2(R) and π(R0), then

E(π1(R)) ≤ E(π2(R))⇒ E(π1(R) t π(R0)) ≤ E(π2(R) t π(R0)), (4.6)

with t denoting disjoint union (concatenation). If the inequalities are strict in equation (4.6),
the energy is said to be strictly h-increasing.

An example of h-increasing energy is depicted by figure 4.3.

Definition 4.4 (climbing energy)
An energy E which is both singular and h-increasing is said to be climbing.

The h-increasingness property bridges the gap between the energetic lattice (ΠE(H),�E)
of the cuts of a hierarchy and the numerical lattice (R+,≤) of their energy values. Kiran then
formulates the following theorem:

Theorem 4.3
Let H be a hierarchy of partitions of E, ΠE(H) be the set of its cuts and E be an energy acting
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on it. Let πi, πj ∈ ΠE(H) be two such cuts. Then

πi �E πj ⇒ E(πi) ≤ E(πj) (4.7)

if E is h-increasing. In particular:

π� =
k
E
{π, π ∈ ΠE(H)} ⇒ E(π�) =

∧
{E(π), π ∈ ΠE(H)} (4.8)

⇒ E(π�) = E(π?) (4.9)

While the converse is false in general (since several cuts can share the same energy), the
implication of equation (4.9) becomes an equivalence when the energy E is strictly h-increasing,
which finally allows to conclude on the equality between the two cuts π� and π?:

Theorem 4.4
Let E be a strict h-increasing energy. Then, for a hierarchy of partitions H, the optimal cut
π? with respect to E and the global infimum of the energetic lattice π� coincide:

argmin
π∈ΠE(H)

E(π) = π? ≡ π� =
k
E
{π, π ∈ ΠE(H)} (4.10)

Moreover, this optimal cut is unique.

Proof. The proof is given in [101, p.36]

The property of h-increasingness for the energy E allows to extend the dynamic program
procedure formulated by equations (2.16) and (2.17) for separable energies, and by equa-
tions (2.31) and (2.32) for max-composed energies to the wider family of climbing energies:

Proposition 4.1 (Hierarchical energy minimization)
Let H be a hierarchy of partitions over some space E, and let E be some climbing energy.
Then, for each region R whose set of children is C(R), the optimal cut of R is given either by
{R} itself, or by the concatenation of the optimal cuts π?(r) of all children r ∈ C(R) of R:

E?(R) = min

E(R), E

 ⊔
r∈C(R)

π?(r)

 (4.11)

π?(R) =


{R} if E(R) ≤ E

(⊔
r∈C(R) π

?(r)
)⊔

r∈C(R)
π?(r) otherwise (4.12)

Moreover, this optimal cut is unique.

The optimal cut of R is given by comparing the energy of R and the energy of the disjoint
union of the optimal partial cuts of its children, and by picking the one whose energy is the
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smallest. The optimal cut of the whole hierarchy is the one of the root node, and is reached
by scanning all nodes in the hierarchy in one ascending pass.

Proposition (4.1) gives the theoretical guarantee that, given a climbing energy function E
and a hierarchy of partitions H, it is possible to find the optimal cut of H with respect to E
by solving a dynamic program for each region of the hierarchy, scanned from the leaves to the
root. But how to check that an energy is climbing, i.e. both singular and h-increasing at the
same time?

The h-increasingness is actually rather easy to find out, as most energy functions whose
definition is not too fancy are h-increasing. Let us verify it for separable energies: assume
that we have two partial partitions π1(R) and π2(R) of a region R ∈ H such that E(π1(R)) ≤
E(π2(R)). Then, considering R0 ∈ H disjoint of R, and π(R0) a partial partition of R0, one
can write:

E(π1(R) t π(R0)) = E(π1(R)) + E(π(R0)) by separability
≤ E(π2(R)) + E(π(R0)) by assumption
≤ E(π2(R) t π(R0))

and hence a separable energy is h-increasing. The exact same reasoning proves that max-
composed energies are also h-increasing. As a matter of fact, Kiran showed [101, pp.40-42]
that all energies which can be expressed as a Minkowski expression:

E(π) =
(∑
R∈π
E(R)α

) 1
α

(4.13)

are h-increasing for every α ∈ [−∞,+∞]. This property generalizes at one go the results which
where known beforehand for energies composed by the sum (α = 1) [87,172], the supremum
(α = +∞) [3, 217] and the infimum (α = −∞) [102], notably. It is worth noting that the
property of h-increasingness for an energy function only depends on the definition of the
composition rule, and not on the expression of the regional energy.

Checking for the singularity property (4.3) of an energy is a little bit more complicated,
and one can wonder how the previous results are affected when the singularity assumption is
dropped. The singularity property allows to construct the energetic ordering �E and subsequent
lattice structure on ΠE(H) with π� as unique global infimum. If this singularity property is
discarded, one can no longer build the energetic lattice. However, the dynamic program (4.11)
and (4.12) holds thanks to the h-increasingness property. By dropping the singularity property
of E , one can no longer guarantee the uniqueness of the optimal cut, as {R} and

⊔
r∈C(R) π

?(r)
should be equally propagated as solutions in the dynamic program procedure when their
energies are equal (which case can never happen with the singularity holding). At the end
of the day, one can obtain several different cuts with minimal energy. However, by always
selecting either {R} or

⊔
r∈C(R) π

?(r) in case of equality, one can reintroduce the unicity of
the solution, except that the answered question is "find the largest (or smallest) cut that
minimizes the energy" and no longer "find the cut that minimizes the energy".
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4.2.2 Climbing families of energies

In chapter 2, we saw that energies are often parameterized by a numerical coefficient
λ, generally acting as a trade-off between a goodness-of-fit (GOF) term Eφ that pushes the
optimal cut toward over-segmentation, and a regularization term Eρ which favors under-
segmentation. While those two competing terms are often added at the regional level
(i.e., Eλ(R) = Eφ(R) + λEρ(R), as it is the case for instance for the Mumford-Shah func-
tional [142], classical MRF formulation [113] as well as the proposed max-composed ener-
gies (2.28), (2.29), (2.35) and (2.36)), Kiran considered the most general case {Eλ}λ∈R+ , where
no presupposition is made on the way the energy depends on λ and to the family of optimal
cuts {π?λ}λ∈R+ it generates.

We noted in chapter 2 that, under some assumptions (namely the regularization term being
sub-additive when the energy is separable, or being greater than 0 for max-composed energies),
it was possible to order by refinement those optimal cuts, i.e., λ1 ≤ λ2 ⇒ π?λ1

≤ π?λ2
. How does

this property transpose to the general case Eλ is the question investigated by Kiran [101, 103].
To that purpose, he introduced the property of scale-increasingness:

Definition 4.5 (Scale-increasingness)
An energy Eλ indexed by λ is scale-increasing if for any R ∈ H, any π(R) ∈ ΠE(H(R)), and
any 0 ≤ λ1 ≤ λ2,

Eλ1(R) ≤ Eλ1(π(R))⇒ Eλ2(R) ≤ Eλ2(π(R)). (4.14)

With respect to the h-increasing property which compares the same energy E at two
different levels π(R) and π(R) t π(R0), the scale-increasing property compares two different
energies Eλ1 and Eλ2 at the same level π(R). A scale-increasing energy preserves the ordering
of the energies between the regions of the hierarchy H and their partial partitions when the
parameter λ varies. Combining the scale-increasing and climbing properties leads to climbing
families of energies:

Definition 4.6 (Climbing families of energies)
A climbing family of energies {Eλ}λ∈R+ is a family of energies which is:

– scale-increasing with respect to λ;
– climbing for any λ.

Climbing families of energies allow to extend the multiscale minimal cut theorem (2.1) as
it was formulated by Guigues [87]:

Theorem 4.5
Let H be a hierarchy of partitions and {Eλ} be a climbing family of energies acting on the
set of cuts ΠE(H) of H. Then, the family {π?λ} of optimal cuts generates a hierarchy H? of
optimal partitions, i.e.

0 ≤ λ1 ≤ λ2 ⇒ π?λ1 ≤ π
?
λ2 (4.15)
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The previous theorem (4.5) is powerful as it allows to transform some hierarchy H into its
persistent version H? as long as the energy Eλ can be verified to be a climbing family. But
similarly to the climbing property, how can the property of scale-increasingness be checked
given some family of energies? The following (and last) proposition demonstrates how to easily
construct families of energies that naturally satisfy the scale-increasing property.

Proposition 4.2
If the family {Eλ}λ∈R+ is viewed as a mapping λ 7→ Eλ, and if this mapping is increasing, then
the family {Eλ}λ∈R+ is scale-increasing.

Proof. The proof, given in [101, p.50], is also reproduced in Appendix A.

4.3 Braids of partitions

When dealing with multimodal images, one has to make the most of the complementarity
between the different modalities while preserving the information that is shared by those
modalities. In particular, if a region is salient in two modalities, it will very likely lead to two
nodes in their respective hierarchical representations that have the same spatial support. But
identifying the nodes that have the same spatial support in several (possibly huge) hierarchies
is a greedy task. Moreover, the opposite phenomenon, namely when a region is salient in one
mode and not in the other one, also has to be handled.

4.3.1 Definition of a braid

Braids of partitions have been recently introduced in [104] as a potential tool to combine
multiple hierarchies and thus answer the two questions previously raised to tackle segmentation
of multimodal images. In our previous work [197], we sketched that the braid structure could
in fact be of help when facing multimodal data fusion.
Braids of partitions are defined as follows:

Definition 4.7 (Braid of partitions)
A family of partitions B = {πi ∈ ΠE} is called a braid of partitions whenever there exists
some hierarchy Hm, called monitor hierarchy, such that:

∀πi, πj ∈ B, πi ∨ πj 6=i ∈ ΠE(Hm)\{E} (4.16)

In other words, a braid is a family of partitions such that the refinement suprema of
any pair of different partitions of the family are hierarchically organized (in the sense that
they define cuts of a hierarchy of partitions Hm), even though the partitions composing the
braid might not be. For this reason, braids of partitions are more general than hierarchies
of partitions: while hierarchies are braids, the converse is not necessarily true. As a matter
of fact, a braid B = {πi ∈ ΠE} is the most general family of partitions such that its set of
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π1 π2 π3

π1 ∨ π2 π1 ∨ π3 π2 ∨ π3

Figure 4.4: Example of braid of partitions B = {π1, π2, π3}. The hierarchy on the right is a
monitor hierarchy of B since all the pairwise refinement suprema πi ∨ πj , i, j ∈ {1, 2, 3}, i 6= j

define cuts of this hierarchy different from the whole space E.

cuts ΠE(B) (still defined as the set of all partitions whose regions belong to B) can replace
ΠE(H) in the statements of all theorems presented in section 4.2 without invalidating their
conclusions. Therefore, all results on the energetic lattice and its global infimum coinciding
with the optimal cut with respect to the energy E remains valid when this energy is operated
on a braid B rather than on a hierarchy of partitions H.

It is also worth noting that the refinement supremum of any two partitions must differ
from the whole image {E} in (4.16). Otherwise, any family of arbitrary partitions would
form a braid with {E} as a supremum, thus loosing any interesting structure. An example of
braid of partitions is displayed by figure 4.4: B = {π1, π2, π3} is composed of three partitions
which are not comparable by refinement. However, their pairwise refinement suprema are
hierarchically related since they are all cuts of the hierarchy on the right, which is by definition
a monitor hierarchy of B. Note however that this monitor hierarchy is not unique: one would
have the same result by inserting an additional level composed of two regions right below the
root of the hierarchy.

The structure of a braid of partitions B, along with its monitor hierarchy Hm, appears
to be well suited for the hierarchical representation of multimodal images. As it can be
observed in figure 4.4, the monitor hierarchy Hm encodes all regions that are common to
at least two different partitions contained in B. Assuming that these partitions originate
from different modalities, the monitor hierarchy therefore expresses regions that are salient
across the modalities, at various scales. In other word, the monitor hierarchy can be seen as
a representation of the redundant information contained in the multimodal image. On the
other hand, the family B exhibits the complementary information: all regions contained in
B but not in Hm belong to a single modality, and can thus be considered as complementary
information. Therefore, the couple B/Hm can be viewed as a hierarchical representation of
the multimodal image that relies both on the complementary and redundant information
contained in the data.
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R

R1 R2 R3

R1

R2
R3

π1(R) π2(R)

π3(R) π4(R)
B ={ }

E?(R) = min



E(R), E


 ⊔

r∈C(R)

π?(r)


 ,

∧

πi(R)∈B
E(πi(R))





Figure 4.5: Illustration of a step of the dynamic program (4.17) applied to a braid structure:
one has to choose between {R},

⊔
π?(Ri) or any other πi(R) ∈ B. Note however that R 6= E,

otherwise B would not be a braid since π3(R) ∨ π4(R) = R.

4.3.2 Minimizing an energy function over a braid

Braids of partitions generalize hierarchies of partitions in the sense that the refinement
ordering relation between the partitions composing the braid no longer needs to exist. However,
as it was shown by [101], braids of partitions are the most general class of families of partitions
on which it is possible to construct the energetic ordering �E (4.4) on its set of cuts ΠE(B),
from which derives a lattice structure (ΠE(B),�E).

Therefore, under the same condition of a climbing energy E , the optimal cut of a braid
π?B = argmin

π∈ΠE(B)
E(π) can be found by solving the dynamic program (4.11) and (4.12) for every

region R of the monitor hierarchy Hm, with however a slight modification due to the fact
that, in a braid, any two regions are not necessarily disjoint nor nested:

E?(R) = min

E(R), E

 ⊔
r∈C(R)

π?(r)

 , ∧
πi(R)∈B

E(πi(R))

 (4.17)

π?(R) =



{R} if E?(R) = E(R)⊔
r∈C(R)

π?(r) if E?(R) = E
(⊔

r∈C(R) π
?(r)

)
argmin
πi(R)∈B

E(πi(R)) otherwise.

(4.18)

In addition to comparing the energy of R ∈ Hm with respect to the energy of the disjoint
union of the optimal cuts of its children, one has also to consider all the other partial partitions
πi(R) of R that can be contained in the braid B, since R represents the refinement supremum
of some regions in the braid, and not those regions themselves. The optimal cut of R is then
given by {R}, the disjoint union of the optimal cuts of its children or some other partial
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partition of R contained in the braid, depending on which has the lowest energy. A step of
this dynamic program is illustrated by figure 4.5: investigating which is the optimal cut of
region R ∈ Hm, one has to compare:

– The energy E(R) of R itself.
– The energy of the disjoint union of the optimal cuts of the children R1,R2 and R3 of R.
Note that π?(R2) is necessarily equal to {R2} as there is no further partial partition
π(R2) of R2 in the braid B. R1 and R3 admit however some partial partitions in the
braid B (R1 has a partial partition in π2(R) while R3 has one in π1(R). Their optimal
cut can therefore be composed of several regions although R1 and R3 are both leaves of
the monitor hierarchy Hm.

– The energy of all the other partial partitions which are contained in the braid and
not supported by regions of the monitor hierarchy. That is the case for instance for
π3(R) and π4(R), which are both partial partitions of R ∈ Hm but whose regions do
not appear in Hm.

Note that the dynamic program to obtain the optimal cut of the braid π?B is conducted on its
monitor hierarchy Hm. However, this optimal cut may be composed of regions that do not
correspond to any node in the monitor hierarchy. It would be the case in the example depicted
by figure 4.5 if π4(R) were for instance chosen to be the optimal cut of R. It is also worth
adding that the partial partitions πi(R) of R ∈ Hm contained in the braid but not expressed
by regions of Hm can be considered as “latent" partial partitions of R. Therefore, the braid
optimal cut is obtained by solving the dynamic program (4.17) and (4.18) in a bottom-up
manner as well.

4.4 Proposed braid-based hierarchical analysis of multisource
images

4.4.1 Generating a braid from multiple hierarchies

As pointed out in [104], the two issues that arise when working with braids of partitions
are:

1. Validating that a given family of partitions has a braid structure, that is, condition (4.16)

is fulfilled. A possible solution is to explicitly compute all the
(
|B|
2

)
= |B|(|B| − 1)

2
partitions πi ∨ πj 6=i, πi, πj ∈ B with |B| being the number of partitions contained in
B, and check that they all define cuts of some hierarchy (in other word, they are all
pairwise h-equivalent, as defined directly below).

2. Generating general braids of partitions, that is, finding a set of explicit constraints
that must be holding on the space of partitions ΠE to ensure that, given a family
B = {πi ∈ ΠE}, any πi ∈ B satisfying the imposed constraints is equivalent to B being
a braid.

When working with a single hierarchy, it is straightforward to compose a braid since the
supremum of two cuts of a hierarchy remains a cut of this hierarchy (as the set of cuts of
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πa πb

h'

Figure 4.6: Illustration of the h-equivalence relation: πa, in red, and πb, in blue, are h-equivalent
(left). They define two cuts of the same hierarchy (right).

a hierarchy forms a lattice for the refinement ordering). For this reason, any set of cuts
B = {πi, πi ∈ ΠE(H)} coming from a single hierarchy H is a braid. It also implies in that
case that the regions composing the corresponding monitor hierarchy Hm are a subset of the
regions composing the initial hierarchy: one does not enrich the hierarchical structure H by
composing a braid out of its cuts.

However, this guarantee is lost when one wants to compose a braid from cuts coming
from multiple hierarchies Hi, and one has to be careful in that case: all those cuts must be
sufficiently related to ensure that all their pairwise refinement suprema are hierarchically
organized. Prior to analyzing which constraints must hold on the cuts of various hierarchies
to form a braid, we introduce the property of h-equivalence (h standing here for hierarchical):

Definition 4.8 (h-equivalence)
Two partitions πa and πb are said to be h-equivalent, and one notes πa

h' πb if and only if

∀Ra ∈ πa, ∀Rb ∈ πb,Ra ∩Rb ∈ {∅,Ra,Rb}. (4.19)

In other words, πa and πb may not be globally comparable, but they are locally comparable
in the sense that some regions of πa are refined by some regions of πb, and other regions of
πa are refinements of regions of πb. For instance, partitions πa and πb displayed by figure 4.6
are not globally comparable, but they locally are. Evidently, if two partitions are globally
comparable, they are locally comparable as well: πa ≤ πb ⇒ πa

h' πb. Moreover, given a
hierarchy H, ∀π1, π2 ∈ ΠE(H), π1

h' π2: all cuts of a hierarchy are h-equivalent, as any
two regions of a hierarchy are either disjoint or nested. Conversely, if two partitions are
h-equivalent, they define two different cuts of the same hierarchy. h' is a tolerance relation: it
is reflexive and symmetric, but not transitive. To illustrate the lack of transitivity, consider
the partitions π1, π3 and π1 ∨ π3 of figure 4.4: π1 ∨ π3 is h-equivalent with both π1 and π3,
but π1 and π3 are not h-equivalent to each other. Given some hierarchy H and a partition
π∗ ∈ ΠE , we denote by H h' π∗ the set of cuts of H that are h-equivalent to π∗. Obviously,
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H1 H2

π1
1 π1
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h'
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h' h'
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(b)

Figure 4.7: (a) Iterative composition of a braid B with cuts from two hierarchies H1 and H2
and (b) organization of the cuts of the corresponding monitor hierarchy Hm. For both figures
and when cuts are ordered by refinement, the arrow is pointing toward the cut which is the
finest of the two.

H
h' π∗ ⊆ ΠE(H) with equality if and only if π∗ ∈ ΠE(H). Similarly, we denote by H ≤ π∗

the set of cuts of H that are a refinement of π∗.

Now equipped with this h-equivalence relation, let B = {πi ∈ ΠE} be a braid, and Hm be
a monitor hierarchy of it.

Proposition 4.3
If there exists πi, πj ∈ B such that πi ≤ πj, then πj ∈ ΠE(Hm).

Proof. As πi ≤ πj , it follows that πi ∨ πj = πj . And from the definition (4.16) of a braid,
πi ∨ πj ∈ ΠE(Hm), so πj ∈ ΠE(Hm).

Proposition 4.4
If there exists πi, πj , πk, πl ∈ B such that πi ≤ πj and πk ≤ πl, then πj

h' πl.

Proof. Using the previous proposition (4.3) for both πi ≤ πj and πk ≤ πl, it follows that
πj , πl ∈ ΠE(Hm). Using the property of h-equivalence, one concludes thatπj

h' πl.

The last proposition has an important consequence in practice: if one wants to compose a
braid using two ordered cuts π1

i , π
2
i ∈ ΠE(Hi), π1

i ≥ π2
i coming from two different hierarchies
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Hi, i ∈ {1, 2}, then it is necessary for B = {πji }, (i, j) ∈ {1, 2} × {1, 2} to be a braid that
π1

1
h' π1

2. Following this, we propose to build a braid using the following iterative procedure:
1. First extract some cut π1

1 ∈ ΠE(H1). This first cut can be selected arbitrarily.

2. Then choose a cut π1
2 in the constrained set H2

h' π1
1\{E}, that is, a cut from H2 which

is h-equivalent to π1
1 and different from the whole space {E}.

3. Finally complete by taking a cut in each hierarchy that is a refinement of the cut
previously extracted from the other hierarchy, that is π2

i ∈ ΠE(Hi), i ∈ {1, 2} such that
π2

1 ≤ π1
2 and π2

2 ≤ π1
1.

This procedure is summarized by figure 4.7a (note that, when two cuts are ordered by
refinement, the arrow in figure 4.7a is pointing toward the finest cut of the two).

Proposition 4.5
Under this configuration, B = {πji }, (i, j) ∈ {1, 2} × {1, 2} has a braid structure with monitor
hierarchy Hm whose cuts πk,li,j = πki ∨ πlj are organized as displayed by figure 4.7b.

Proof. The proof is given in appendix C.

While other configurations for the composition of B may also work, it is the first time that,
to the best of our knowledge, guidelines to create a non trivial braid by composing cuts from
two independent hierarchies are explicitly provided. We are, up to now, only able to provide
those guidelines and to guarantee the braid structure when at most two cuts are extracted
from those two independent hierarchies.

4.4.2 Braid-based multimodal image segmentation

From a conceptual point of view, the braid structure and the subsequent energy mini-
mization procedure conducted on its monitor hierarchy are appealing to perform multimodal
segmentation. As a matter of fact, if the braid is composed of partitions extracted from the
set of cuts ΠE(Hi) of hierarchies Hi constructed on the various modalities Ii, i = 1, . . . , P ,
then the monitor hierarchy Hm can be seen as a hierarchical representation containing the
salient regions that are common to the various modalities, at all scales. Then, during the
energy minimization procedure, the dynamic program has to decide whether a common salient
region R ∈ Hm should be retained (that is, if π?(R) = {R}), or replaced either by common
regions at a smaller scale (π?(R) =

⊔
r∈S(R) π

?(r) with r ∈ Hm as well) or by a set of regions
at a smaller scale, coming from one modality and that fit all the modalities at the same time
(π?(R) = argmin

πi(R)∈B
E(πi(R))).

Therefore, we now propose a methodology to perform multimodal image segmentation
based on the concept of braids of partition to fuse the output of several hierarchies. The
proposed method is illustrated by the workflow in figure 4.8, detailed step by step in the
following. Let I = {I1, I2} be a multimodal image, assumed to be composed of two modalities
I1 and I2 having the same spatial support E.



4.4. Proposed braid-based hierarchical analysis of multisource images 151

B π?B

I1

I2

H1/E1
λ

H2/E2
λ

H?
1

H?
2

Hm/EBλ

Figure 4.8: Workflow of the proposed braid-based multimodal segmentation methodology.

First, two hierarchies H1 and H2 are built on I1 and I2, respectively. Two energy functions
E1
λ and E2

λ are defined on their respective hierarchies. The only constraint in practice is
that those energy functions must be h-increasing and scale-increasing, in order to be able to
transform the hierarchies H1 and H2 into their persistent versions H?

1 and H?
2 with respect

to E1
λ and E2

λ. As mentioned at the end of section 4.2.1, the singularity property is required
to ensure that the optimal cuts coincide with the global infimum of the energetic lattice, for
each value of λ. However, if the condition of singularity is dropped, but one consistently
chooses either the father or the union of the optimal cuts of the children when their energies
are equal during the dynamic program procedure, one can simulate singularity and ensure the
uniqueness of the optimal cuts. For segmentation purposes, we propose to define the energy
functions as piece-wise constant Mumford-Shah energies [142]:

E iλ(π) =
∑
R∈π

(
Ξi(R) + λ

2 |∂R|
)

(4.20)

where
Ξi(R) =

∫
R
‖Ii(x)− µi(R)‖22dx (4.21)

is the GOF term Eφ of E iλ, with µi(R) being the mean value/vector in modality Ii of the
pixel values belonging to region R, and penalizes inhomogeneous regions, thus leading to
fine partitions and favoring over-segmentation. The regularization term Eρ of E iλ is defined
as half the length of the region perimeter |∂R|/2 (note that the coefficient 1/2 prevent each
boundary to account for both the two regions it delimits) and promotes partitions with few
region boundaries, therefore favoring under-segmentation on the other hand. The λ coefficient
achieves a trade-off to balance the effects of the GOF and regularization terms. The piece-wise
constant Mumford-Shah energy function, in addition to being h-increasing (as it is expressed
as a separable energy, hence a Minkowski composition (4.13) with α = 1) and scale-increasing
(following the proposition (4.2) as the functional λ 7→ λEρ + Eφ is necessary increasing since
Eρ > 0), is a popular choice when it comes to minimizing some energy function because of its
ability to produce consistent segmentations [14,77]. However, other types of energies could
be investigated as well, depending on the underlying application.
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Following, the braid B is composed as described previously in subsection 4.4.1 and by
figure 4.7a: a first partition π1?

1 is extracted arbitrarily from H?
1 , and is used to extract two

partitions π1?
2 and π2?

2 from H?
2 , the first one being h-equivalent and the second one being

a refinement of π1?
1 . A second partition π2?

1 is finally extracted from H?
1 to be a refinement

of π1?
2 . In practice, the sets H?

2
h' π1?

1 , H?
2 ≤ π1?

1 and H?
1 ≤ π1?

2 may contain several cuts.
We propose to define π1?

2 , π
2?
1 and π2?

2 as the largest cut of their respective sets, namely
π1?

2 =
∨
{H?

2
h' π1?

1 \{E}}, π2?
1 =

∨
{H?

1 ≤ π1?
2 } and π2?

2 =
∨
{H?

2 ≤ π1?
1 }. Note that these sets

may however be empty, but a workaround to this issue is to built the two hierarchies H1 and
H2 over the same leaf partition π0, as it is optimal with respect to E iλ, for (at least) λ = 0
(and thus π0 ∈ ΠE(H?

i )) and is therefore a refinement of all the cuts of ΠE(H?
i ), i = {1, 2}.

Eventually, B is composed of 4 partitions {π1?
1 , π

2?
1 , π

1?
2 , π

2?
2 } extracted from the two hierarchies

H?
1 and H?

2 , and the braid structure is guaranteed, allowing to construct the monitor hierarchy
Hm.

A last energy term EBλ is defined as a multimodal piece-wise constant Mumford-Shah
energy, relying on both modalities of the multimodal image I:

EBλ (π) =
∑
R∈π

(
max

(Ξ1(R)
Ξ1(I1) ,

Ξ2(R)
Ξ2(I2)

)
+ λ

2 |∂R|
)

(4.22)

The GOF term of each region R is now defined as the maximum with respect to both
normalized unimodal GOFs. Here, the maximum is chosen following the idea that a region is
optimal if it fits both modalities at the same time. Therefore, a region having a low GOF
value with respect to a modality but a high GOF with respect to the other one should be
penalized by a high multimodal GOF value. The normalization allows both GOF terms to
be in the same dynamical range. EBλ is also a h-increasing and scale-increasing energy. Its
minimization over Hm and B following the dynamic program (4.17) and (4.18) yields an
optimal segmentation π?B of I, which should contain salient regions shared by both modalities
as well as regions exclusively expressed by I1 and I2.

4.4.3 Results assessment

Assessing the consistency of the hierarchical representation of an image in a generic manner
is a challenging task, as it greatly depends upon the further application. A common approach
is therefore to process the hierarchy accordingly, and appraise the obtained results with
respect to the application. The hierarchical model is then declared to be relevant if it leads to
proper results. For segmentation purposes, it is widely accepted to compare the output of
segmentation algorithms against ground truth segmentation maps, often manually delineated
by experts. While this method has been utilized to evaluate hierarchical segmentation results
in the case of standard images [10], it is however much more difficult to do so for multimodal
images. As a matter of fact, the creation of ground truth data for multimodal images raises
several questions since ground truth segmentation maps could either be delineated for each
modality and then combined by some means, or directly drawn taking somehow into account
all specificities of the multimodal image. In addition, available benchmark multimodal images
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are scarce and the manual ground truth delineation is an arduous task. For those reasons, the
assessment of hierarchical segmentations for multimodal images is often conducted by visually
comparing the multimodal segmentation result against the marginal segmentation outputs
(that is, when each modality is processed individually) [165].

To that extend, we propose here to evaluate the efficiency of the braid structure to represent
multimodal images by comparing the braid optimal cut π?B against the two optimal cuts π?1
and π?2 extracted from H?

1 and H?
2 and containing the same (or a close) number of regions.

This allows a fair visual comparison since all three partitions π?B, π?1 and π?2 should feature
regions of similar scales. In addition, the comparison of partitions with the same (or similar)
complexity can be done by evaluating their closeness with respect to the data. For this reason,
we compute the average GOF of π?B, π?1 and π?2 with respect to both modalities I1 and I2 as
follows:

ε(π|Ii) = 1
|E|

∑
R∈π
|R| × Ξi(R) (4.23)

with |R| denoting the number of pixels in region R, and Ξi(R) is the Mumford-Shah GOF
term defined in equation (4.21). Therefore, a consistent braid-based hierarchical representation
of the multimodal image should lead to segmentation results competing, for each modality,
with its optimal marginal segmentation.

4.5 Experimental validation

In the following, we apply the proposed methodology on two multimodal data sets,
each being composed of two co-registered modalities. The first data set is hereafter named
Hyperspectral/LiDAR while the second is denoted RGB/depth. For each data set, we
first describe its specificities, then we present the experimental set-up used to conduct the
multimodal segmentation and we finally display the obtained results.

4.5.1 Hyperspectral/LiDAR data set

4.5.1.1 Description of the data set

The first multimodal data set, described in [61], is composed of a hyperspectral image (HSI)
of 144 spectral bands evenly spaced between 380 nm and 1050 nm, and the corresponding
LiDAR-derived digital surface model (DSM), with the same ground-sampling distance of
2.5 m. The HSI depicts the spectral reflectance of the scene, i.e., the way the ground has
interacted with the incident light. Since each material has an intrinsic reflectance spectrum,
HSIs are widely used to identify the different materials composing the scene [157]. The
LiDAR image, on the other hand, portrays the height above ground and therefore gives
information about the structure or physical shape of the objects composing the scene. The
complementarity between the two modalities lies in the fact that two neighboring objects of
interest can either be constituted of the same materials but with different heights, or on the
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(a) (b) (c)

Figure 4.9: (a) RGB composition of the hyperspectral image, (b) corresponding LiDAR-derived
DSM, (c) very-high resolution RGB image of the same site.

other way around, they can share the same height while not being made of the same materials.
The hyperspectral/LiDAR multimodality is expected to help discriminate those cases. Each
modality has a 120× 185 pixels spatial dimension. Data were acquired over the University of
Houston campus. The study site features an urban area with several houses and buildings of
various heights and roofs made of different materials, an athletics stadium with a running track
and two stands, some parking lots, walkways, roads and some portions of grass and trees. A
RGB composition of the HSI is displayed in figure 4.9a, and the corresponding LiDAR-derived
DSM is shown in figure 4.9b. It is also shown for visualization purpose a very-high resolution
RGB image of the scene in figure 4.9c 1. Note that the very-high resolution image was acquired
in 2014, while the HSI and its DSM were acquired in 2012, hence the few changes between the
two images (the tennis courts in the center of Fig. 4.9c, notably).

4.5.1.2 Experimental Set-up

The first step of the braid-based multimodal image representation and segmentation
methodology is to build the hierarchical representations of the various modalities, as shown
by the workflow of figure 4.8. In practice, we use the binary partition tree representation as
it already proved to be very efficient for hierarchical image representation and segmentation
purposes (see for instance [172,207,217] and chapter 2 of the present manuscript). A critical
point here is however to build the hierarchical representation appropriately, as an erroneous
BPT representation would certainly leads to incorrect cuts and a poorly constructed braid (in
terms of multimodal descriptive accuracy). For the Hyperspectral/LiDAR data set, we define
the region model and merging criterion as the mean spectrum and spectral angle for the HS
modality, and mean value and Euclidean distance for the DSM image, respectively. Those
parameters can be considered as standard when working with those types of remotely sensed
images. Moreover, the two BPTs H1 and H2 are built on the same leaf partition π0, which is
obtained as the refinement infimum of two mean shift clustering procedures [52] conducted on
each modality independently (note that the mean shift is run on the RGB composition of the
HSI rather than on the HSI directly). This initial partition π0 features 545 regions.

1. https://goo.gl/maps/Oy5py
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Table 4.1: Number of regions |π| and average GOF ε(π|Ii) of optimal partitions π?1, π?2, π?B for
the Hyperspectral/LiDAR data set, with respect to both modalities I1 (LiDAR image) and I2
(hyperspectral image). Lowest values are in bold.

π?1 π?2 π?B

|π| 325 325 325
ε(π|I1) 1224.8 3884.8 994.9
ε(π|I2) 145.4 52.5 48.6

Constructing the braid B by following the procedure exposed in figure 4.7a raises the
question of which hierarchy the first cut should be extracted from. While this is still an open
question, we can provide the following rule of thumb, empirically observed during all conducted
experiments: the first cut should be extracted from the hierarchy built on the modality whose
main regions of interest are the coarsest. Consequently, the first cut is extracted from the BPT
built on the LiDAR modality, since it contains less fine details than the HS modality. This
first cut, π1?

1 contains 150 regions. This number, obtained empirically, roughly corresponds to
the number of expected large salient regions in the DSM. It is used to extract π1?

2 and π2?
2

from H?
2 , which comprise 406 and 414 regions, respectively. Finally, π2?

1 is extracted from H?
1

using π1?
2 and contains 495 regions. The four partitions composing B generate

(4
2
)

= 6 cuts of
the monitor hierarchy Hm, which is built by re-organizing those cuts in a hierarchical manner.
The leaf partition of Hm, denoted πB0 , is obtained as

∧
{πi ∨ πj 6=i, πi, πj ∈ B}. Finally, the

minimization of EBλ over Hm, following (4.17)), is conducted with λ being empirically set to
5.10−5, and produces an optimal segmentation π?B of the braid composed of 325 regions.

4.5.1.3 Results

Table 4.1 presents the number of regions as well as the average GOF of optimal partitions
π?1, π

?
2 and π?B with respect to both modalities I1 and I2. Let us recall that I1 is the LiDAR-

derived DSM modality, and I2 is the HS modality for this data set. Let us also add that
the average GOFs ε(π|Ii) are not absolute values, in the sense that should only be compared
values related to the same modality: it is pointless to evaluate the value of ε(π|I1) against
ε(π|I2) since they are bound to the range of pixel values within I1 and I2.

The analysis of table 4.1 demonstrates the effectiveness of the braid structure to make the
most of the complementary and redundant information contained within the multimodal data
set. As expected, π?1 and π?2 score a low average GOF value with respect to their corresponding
modality, but a greater average GOF with respect to the complementary modality. On the
other hand, π?B outperforms both π?1 and π?2 with respect to I1 and I2. Thus, π?B, which
contains the same number of regions as π?1 and π?2, is able to better fit both modalities of the
multimodal image at the same time. Remarkably, the average GOF value of π?B with respect to
Ii is even lower than the one of π?i , meaning that the braid structure is able to better delineate
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(a) LiDAR modality I1 (b) HS modality I2 (RGB composition)

(c) π?1 over I1 (d) π?1 over I2

(e) π?2 over I1 (f) π?2 over I2

(g) π?B over I1 (h) π?B over I2

Figure 4.10: Display of optimal partitions π?1, π?2 and π?B represented with their mean height
value (over I1) and mean RGB color (over I2). All partitions π?1, π?2 and π?B are composed of
325 regions.
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(a) LiDAR modality I1 (b) HS modality I2 (RGB composition)

(c) ε(π?1 |I1) (d) ε(π?1 |I2)

(e) ε(π?2 |I1) (f) ε(π?2 |I2)

(g) ε(π?B |I1) (h) ε(π?B |I2)

Figure 4.11: Display of the GOF maps associated to partitions π?1, π?2 and π?B with respect to
modalities I1 and I2. GOF values range from 0 (in blue) to the region-wise maximum over
π?1, π?2 and π?B (in red) with respect to the corresponding modality.
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the salient regions of Ii with more accuracy. While this result may seem counterintuitive,
it is a perfect illustration of the principle that the whole is better than the sum of its parts:
the descriptive accuracy and robustness of a multimodal image are increased thanks to the
complementarity (for the former) and redundancy (for the latter) of the information contained
by each single modality, which are both well exploited by the proposed braid-based framework.

Figure 4.10 shows the two modalities I1 (figure 4.10a) and I2 (figure 4.10b), as well as
the optimal partitions π?1, π?2 and π?B, represented by their mean LiDAR height (first column,
figures 4.10c, 4.10e and 4.10g) and represented by the mean RGB value of the color composition
of the HSI (second column, figures 4.10d, 4.10f and 4.10h). Some close-up views for the three
optimal partitions π?1, π?2 and π?B are displayed by figure 4.12, with the region boundaries
superimposed over the DSM and the RGB composition of the HSI.

The qualitative analysis of figure 4.10 leads to similar conclusions:
- While π?1 correctly fits I1 by accurately segmenting all notable regions of the LiDAR
modality, such as the various buildings, the trees as well as the houses located on the
bottom left corner of the image, it non surprisingly fails at segmenting the regions made
of different spectral materials but whose height is similar, such as the running track
and the football pitch, or the lawns and roads, as it can be seen in figure 4.10d and
figure 4.12b. The reason is straightforward: this cut was extracted from the hierarchy
built on height considerations only and thus cannot account for spectrally different
regions, provided that they have the same height.

- Contrarily, π?2 conforms I2 in the sense that all spectrally salient regions are well
preserved. As the explanation is similar to the one provided for π?1, it can be seen in
figures 4.10e and 4.10f that regions which have close spectral signatures but not the
same height are generally mis-segmented in π?2. In particular, several batches of trees are
either grouped together, or fused with the neighboring grass (whose spectral response
is rather close). Note that for the latter case, despite grass and trees having a close
spectral signature, they belong to different semantic classes. This is clearly depicted by
figure 4.12c and figure 4.12d, where the group of trees is totally mis-segmented by π?2.

- When investigating the braid optimal cut π?B (see figure 4.10g, figure 4.10h and the
two close-up views displayed by figure 4.12e and figure 4.12f), one can see that most
erroneous regions of π?1 and π?2 are this time correctly delineated. That is notably the
case for the running track, the lawns and the roads (with respect to π?1) or the batches
of trees (with respect to π?2). While this may seem a little bit paradoxical since all
π?1, π

?
2 and π?B all have the same number of regions, a possible explanation is that since

those three cuts have a large number of regions (i.e., 325 in that case), π?1 and π?2
tend to over-fit their respective modality while π?B, due to the formulation of the mul-
timodal energy (4.22), is able to better account for "important" details in both modalities.

Finally, figure 4.11 displays the GOF map of each optimal partition π?1, π?2 and π?B
(second, third and fourth row, respectively) with respect to I1 and I2 (first and second
column, respectively). Each map is obtained by assigning to each region R ∈ π?1, π?2, π?B its
GOF value defined according to the the Mumford-Shah GOF formulation (4.21), so that
the values in table 4.1 correspond to the region-wise mean of the corresponding GOF maps.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Particular of figure 4.10 for π?1 (top row), π?2 (middle row) and π?B (bottom row)
superimposed over I1 and I2.

Therefore, each GOF value can be interpreted as the error committed by approximating all
pixel values/signatures in R by their mean (the lower the GOF value, the better). Note that,
for visualization purposes, the values have been normalized between 0 (appearing in blue) and
the maximum GOF over the regions of π?1, π?2 and π?B with respect to each modality (displayed
in red). For that reason, the values associated to the red color for the GOF maps with respect
to I1 and I2 are not the same (for the LiDAR modality I2, the maximum GOF is equal to
2.24× 104 while it is equal to 956 for the hyperspectral modality I2).

The analysis of figure 4.11 conforms the conclusions drawn from both table 4.1 and
figure 4.10. In particular, one can see in figure 4.11c and 4.11d that π?1 commits globally
smaller errors with respect to I1 than I2: figure 4.11c is "more blue" than figure 4.11d. As a
matter of fact, looking at figure 4.11d, one can see that the highest GOF values correspond to
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the athletics stadium and its running track, the large grassy area and roads on the bottom
right corner of the image as well as the white building in the middle of the scene. In the first
two cases, this is in line with the explanation developed above: while π?1 is able to properly
segment the regions based on their height, it cannot discriminate those which are spectrally
different but appear to have the same height. For the last case, the building being red (thus
with a maximal GOF value) in all π?1, π?2 and π?B, it suggests that this region was already
badly segmented in the initial segmentation map π0 since it was picked as optimal despite its
high GOF value. On the other way around, π?2 better fits I2 than I1 since each region has a
lower GOF value with respect to I2 than to I1 (except for the building in the center). The
largest error in figure 4.11e is associated to the grassy portion on the left of the scene, right
below the athletics stadium, and corresponds to the mis-segmentation in π?2 of the trees and
the grass, which have similar spectral responses and thus a relatively low GOF value with
respect to I2, but not with respect to I1 as their difference in height is important. Finally, the
GOF maps associated to π?B (figure 4.11g and figure 4.11h), when compared to those of π?1
and π?2, validate the potential of the proposed braid-based multimodal segmentation, as the
resulting optimal partition π?B appears to better fit both modalities at the same time. While
this conclusion had already been drawn after the analysis of the global figures in table 4.1,
one can also see that given a region R ∈ π?B, its GOF value is smaller than this of the region
located at the same place in π?1 and π?2 (although the regions may not be the same), both with
respect to I1 and I2. This confirms that the braid-based methodology is able to delineate
more accurate regions than the marginal approaches with respect to both modalities at the
same time.

4.5.2 RGB/depth data set

4.5.2.1 Description of the data set

The second considered multimodal image originates from the Middlebury Stereo
Dataset [177]. The common usage of this database is the evaluation of two-frame stereo
correspondence algorithms (by providing both the stereo images and the ground-truth dis-
parity maps). However, instead of using the left and right frames, which do not seem to be
the most suited configuration for segmentation purposes, we rather consider one frame and
the associated ground truth depth map, which are displayed by figure 4.13a and figure 4.13b,
respectively. In a similar fashion as the Hyperspectral/LiDAR multimodality, the complemen-
tarity between the optical and the depth map is expected to benefit the accurate delineation
of regions sharing the same properties in one modality but not in the other (for instance,
regions appearing with a similar optical color but with different depths with respect to the
stereo camera). To reduce the computational burden, each original 2016 × 2960 image is
down-sampled by a factor of 8. Note that the small blurry areas around the umbrellas in
figure 4.13b are the result of a basic in-painting method applied on the raw depth map to fill
in the missing values [62].
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(a) (b)

Figure 4.13: (a) Right view and (b) depth map of the considered stereo data set.

Table 4.2: Number of regions and average GOF of optimal partitions π?1, π?2, π?B for the
RGB/depth data set with respect to both modalities I1 (depth map) and I2 (RGB image).
Lowest values are in bold.

π?1 π?2 π?B

|π| 163 158 162
ε(π|I1) 4.2 30.8 3.9
ε(π|I2) 51.8 13.4 13.9

4.5.2.2 Experimental Set-up

The procedure followed for the RGB/depth data set is identical to the one described
above for the hyperspectral/LiDAR data set: the two BPTs are built using region models and
merging criteria defined as the mean value and Euclidean distance for each modality. The leaf
partition is also identical for both hierarchies, again obtained as the refinement infimum of
two mean shift procedures (one per modality), and is made of 506 regions.

The braid B is constructed by first picking a cut from the hierarchy H?
1 built on the depth

map (which is again the modality showing less fine details). This cut, composed of 50 regions,
steers the extraction of two cuts from H?

2 , containing 271 and 279 regions, respectively. The
final cut is selected from H?

1 and comprises 417 regions. The construction of the monitor
hierarchy Hm is done in the exact same fashion as the previous data set. The multimodal
energy EBλ is this time minimized with λ = 2.5.10−5 and leads to the braid-based segmentation
π?B composed of 162 optimal regions.
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(a) depth map I1 (b) RGB modality I2

(c) π?1 over I1 (d) π?1 over I2

(e) π?2 over I1 (f) π?2 over I2

(g) π?B over I1 (h) π?B over I2

Figure 4.14: Display of optimal partitions π?1, π?2 and π?B represented with their mean depth
value (over I1) and mean RGB color (over I2). Partitions π?1, π?2 and π?B are composed of 163,
158 and 162 regions, respectively.
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(a) depth map I1 (b) RGB modality I2

(c) ε(π?1 |I1) (d) ε(π?1 |I2)

(e) ε(π?2 |I1) (f) ε(π?2 |I2)

(g) ε(π?B |I1) (h) ε(π?B |I2)

Figure 4.15: Display of the GOF maps associated to partitions π?1, π?2 and π?B with respect to
modalities I1 and I2. GOF values range from 0 (in blue) to the region-wise maximum over
π?1, π?2 and π?B (in red) with respect to the corresponding modality.
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4.5.2.3 Results

Table 4.2 presents the number of regions as well as the average GOF of optimal partitions
π?1, π

?
2 and π?B with respect to both modalities I1 and I2. For the RGB/depth data set, we

recall that I1 corresponds to the depth map while I2 is one frame of the stereo image.

The observations that arise when analyzing table 4.2 are similar to those of table 4.1: each
optimal partition π?1 and π?2 scores a low average GOF value with respect to its own modality
and an increased error with respect to the other one. On the other hand, the braid optimal
cut π?B outperforms the depth optimal cut π?1 with respect to I1 and achieves a comparable
value on I2 with respect to π?2 (13.9 for π?B against 13.4 for π?2). Let us add that again, the
number of regions is similar for π?1 (163 regions), π?2 (158 regions) and π?B (162 regions), which
confirms that the result of the braid-based segmentation is able to better fit both modalities
at the same time.

In a same fashion than the Hyperspectral/LiDAR data set, figure 4.14 displays the obtained
segmentation maps. The depth map I1 and RGB image I2 are shown by figure 4.14a and
figure 4.14b, respectively. The optimal partitions π?1, π?2 and π?B are presented by their mean
depth value on the first column (figures 4.14c, 4.14e and 4.14g) and by their mean RGB value
on the second column (figures 4.14d, 4.14f and 4.14h).

When looking at the specificities of I1 and I2, and provided that the conclusions for the
RGB/depth data set are in line with those of the Hyperspectral/LiDAR data set, one would
expect π?1 to mis-segment the regions of the background which have the same depth but not
the same color and foresee that π?2 would struggle to properly distinguish the two umbrellas
between them and against the background wall, which all have a similar whitish value. As a
matter of fact, it can be seen in figure 4.14d that the bottom right corner of the image, which
features an half-shaded drawer, is inaccurately segmented, as well as the various objects on
top of the desk located on the bottom left corner of the image. Likewise, it can be observed
on figures 4.14e and 4.14f that in π?2, the most forward umbrella has parts which are either
confused with the wall behind or with the second umbrella. On the other way around, as
shown by figures 4.14g and 4.14h, those regions are well segmented on the braid optimal cut
π?B, confirming again that both modalities have collaborated within the braid framework to
design a more accurate segmentation map with respect to the multimodal image.

Eventually, following the results presented for the Hyperspectral/LiDAR data set, fig-
ure 4.15 displays the GOF map of each optimal partition π?1, π?2 and π?B (second, third and
fourth row, respectively) with respect to I1 and I2 (first and second column, respectively).
Again, the GOF values have been normalized have been normalized between 0 (in blue) and
the maximum GOF over the regions of π?1, π?2 and π?B with respect to each modality (in red).
For the RGB/depth data set, the maximum GOF value with respect to the depth map I1 is
271, while it is equal to 512 for the RGB modality I2.

In a similar manner than for the previous Hyperspectral/LiDAR data set, all the obser-
vations that arose through the analysis of table 4.2 and figure 4.14 for the RGB/depth data
set reverberate on figure 4.15. In particular, one can see in figures 4.15c and 4.15d that π?1 is
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able to represent I1 with a very low error as the corresponding GOF map appears as almost
entirely deep blue, while committing much more errors with respect to I2, as the background
wall, the shaded drawer on the right side as well as parts of the umbrellas have a large GOF
value. All those areas indeed have the same depth with respect to the imaging sensor, but
not the same color values. Contrarily, π?2 properly segments I2 based on color considerations
(figure 4.15f), but is unable to accurately distinguish regions which do not have the same depth
while having close colors, such as the two umbrellas as well as the background wall. Those
regions thus appear with a higher GOF value in figure 4.15e. The optimal braid segmentation
π?B on the other hand, has low GOF values for all regions, with respect to both I1 and I2. It
once more corroborates the conclusion that the proposed braid-based methodology is able to
make the most both of the redundant and complementary information which are contained in
the two modalities, in order to derived a more accurate segmentation of the multimodal image.

4.6 Conclusion

In this final chapter, we focused on the sensorial multimodality, that is, when several
images of the same scene are acquired with different sensors. Each sensor featuring its own
characteristics, the resulting multisource image gains in descriptive capacities and accuracy.
While several typical image processing operations should benefit from this increased amount
of information, handling and processing a multisource image in a generic fashion is a real
challenge due to the large number of potential multimodalities which can be encountered,
engendered by the huge diversity of imaging sensors.

Among all image processing tasks, we investigated the segmentation process, which aims
at finding a partition of the image such that each region of the partition is meaningful with
respect to the application. Often, this meaning is expressed in terms of semantic, as one
expects from the regions of the partition to correspond to real, visually interpretable, regions
of the scene. The major downside of the segmentation task is that it is an ill-posed problem:
a single image does not admit a single acceptable segmentation, as it can be partitioned at
different levels of details. In order to tackle this intrinsic multiscale natures, hierarchies of
partitions have been propsed as a successful solution for image representation. Based on
the hierarchy, which is built once and regardless of the application, the image segmentation
problem amounts at finding a suitable cut (i.e., a partition of the image such that all regions
belong to the hierarchy) with respect to the underlying application. This search for a relevant
cut can be in practice efficiently carried out by an energy minimization procedure over the
space of cuts of the hierarchy.

While the fusion of multiple hierarchies could be a potential solution to the multisource
image segmentation issue, it remains a challenge in practice. Recently, braids of partitions
have been proposed as a generalization of hierarchies of partitions, since regions belonging
to a braid no longer need to be either disjoint or nested. Braids of partitions come along
with an associated hierarchy, called the monitor hierarchy. Searching for the optimal cut of a
braid reduces to finding the optimal cut of its monitor hierarchy following a slightly different
procedure than the common one.
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It was conjectured in the seminal work of Kiran [101,104] that the energy minimization
framework over the braid structure could be of use for multivariate optimization. Based on
those tools, we derived in this chapter a novel methodology to perform the segmentation of
multimodal images. We identified two critical points in this methodology, namely the practical
construction of the braid and the definition of the subsequent energy function to be minimized
on it. Therefore, we presented guidelines to ensure the composition of several cuts, extracted
from hierarchies independently built over each modality, to demonstrate a braid structure. In
addition, we proposed a multimodal energy as an adaption of the so-called piece-wise constant
Mumford-Shah energy, in order to generate partitions whose regions achieve a trade-off between
goodness-of-fit (a high descriptive accuracy) and simplicity.

The proposed methodology was successfully investigated on two different and unrelated
multisource data sets. The first one, arising in the remote sensing field, was composed of a
hyperspectral image and its corresponding co-registered LiDAR-derived digital surface model.
The second, related to stereo vision, comprised a color image, namely the right view of a
stereo image, and the associated depth map. In both cases, the obtained results demonstrated,
quantitatively and qualitatively, the ability of the proposed approach to produce a segmentation
that not only retains salient regions shared by both modalities, but also regions appearing in
only one modality of the multimodal image, outperforming the typical marginal segmentation
results (considering only one modality independently of the other). We also stress again
that the proposed methodology goes even beyond segmentation: building a full multimodal
hierarchy, it could be further used in a variety of image processing applications.

From a theoretical aspect, future work will focus on the construction of the braid. As a
matter of fact, the proposed method as it currently stands, only allows to extract two different
cuts from two independent hierarchies, constraining the set of possible multisource images
which can be investigated. Incorporating a higher number of cuts from more hierarchies
while maintaining the braid structure appears as a clear line of research. From a practical
point of view, the definition of new types of multimodal energies to achieve other applications
than segmentation, and their application on different types of multimodalities will also be
investigated.



Conclusion

This thesis has been devoted to the study of multimodality and hierarchical representations.
The multimodality phenomenon occurs more and more frequently in image processing, and
while its benefits for many practical applications is not questioned, its generic handling and
exploitation however raises several challenges. Hierarchical representations on the other hand
are known to be a powerful tool, as allow to capture the intrinsic multiscale nature of images.
Hierarchical representations, and their subsequent processing, have shown to be a valuable
tool for several image processing tasks such as image segmentation, image filtering, object
detection, and so on.

The objective of this thesis has been the extension of hierarchical representations to
multimodal images, in order to better exploit the information brought by the multimodality
and design more efficient image processing techniques. The integration of the multimodal
information within the hierarchical representation being subject to the nature of the multi-
modality, and the further design of adapted hierarchical processing techniques being driven
by the underlying application, this extension had to be articulated around the quadruplet
multimodality/hierarchical representation/hierarchical processing/application.

Therefore, we presented in a first instance each element of this quadruplet separately. In
particular, we proposed a formal definition to characterize multimodal images. We introduced
hierarchical representations from a conceptual point of view, and presented some common
instances, focusing more especially on the binary partition tree representation. Finally, we
showed in a practical scenario how to properly operate the hierarchical representation of a
classical image and its processing in order to achieve a given application. Equipped with
those tools, we then turned our attention to multimodal images, focusing in particular on
multimodalities frequently occurring in the remote sensing.

Spectral-spatial multimodality

The first multimodality studied in this thesis was the spectral-spatial multimodality.
More particularly, we turned our attention to hyperspectral images, as they feature both
the information related to the spatial structures and the spectral constituents of the scene.
The joint use of the spectral and spatial information has already been widely studied for
several typical hyperspectral processing such as hyperspectral classification as well as spectral
unmixing. For the latter, the use of spatial information to improve the unmixing performances
has been already investigated, but the unmixing procedure has always been conducted over
the whole image.

Here, we proposed to investigate the opposite direction, namely to perform the spectral
unmixing on local regions in the image. More specifically, we proposed to derive a segmentation
(a spatial processing in essence) of the hyperspectral image being adapted for this local spectral
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unmixing approach (being a spectral processing). Using a hierarchical representation of the
hyperspectral image appeared as the natural solution to the possible varying scale under which
the image should be unmixed. Working with the binary partition tree representation, we
therefore proposed two novel region models and their associated merging criteria, relying on
the results of the local unmixing over the region (namely the local endmembers and their
corresponding abundances). The final goal being the derivation of a segmentation (that is, a
cut of the hierarchical representation) being optimal with respect to the spectral unmixing,
we formulated the optimality criterion as an energy minimization procedure, and proposed
some suited energy functions, finally leading to extract from the hierarchical representation a
segmentation with minimal reconstruction error.

Among the major perspectives of this work on the use of spectral-spatial multimodality to
derive some optimal segmentation with respect to the spectral unmixing is the subsequent
analysis and processing of all the generated endmembers, each being locally optimal. We
believe in particular that the whole set of endmembers should actually reduce to several slight
different instances of a limited number of spectral materials. The proposed method could
therefore be a way to reveal the spectral variability of the endmembers. The question on
how to finally use these endmembers to finish the unmixing of the hyperspectral image also
remains an open question so far.

Temporal multimodality

The temporal multimodality was then investigated, occurring when several images of
the scene are obtained at different acquisition dates. The comparison between consecutive
images of the multi-temporal sequence reveals which parts of the scene are changing with time.
This multimodality is notably of use to perform object tracking. While object tracking is a
mature application of computer vision for traditional video sequences, the case of hyperspectral
sequences remains largely untreated, as the extension of classical object tracking methods to
high dimensional hyperspectral images is challenging, and benchmark hyperspectral video
sequences to validated new methods are scarce.

Therefore, we developed a new methodology to perform object tracking for hyperspectral
video sequence. Handling the high dimensionality of the hyperspectral frames was embedded
in their hierarchical representation, and the object tracking was handled as a sequential object
detection process with the hierarchical representation as support. Designed to be a generic
methodology, we subsequently tuned it appropriately to perform the tracking of chemical
gas plumes in long-wave infrared hyperspectral video sequences, and compared it with two
state-of-the-art methods.

Up to now, the proposed method is only able to handle a single moving object. The main
perspective of the methodological contribution is the relaxation of this assumption, in order
to extend the tracking to multiple moving objects. Related to the chemical plume tracking
application on the other hand, the proposed method, as well as the two state-of-the-art
methods it was compared with, only provide information related to the position of the plume
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in the sequence. The information related to the concentration of the plume (which could be
provided by a spectral unmixing operation) could be included in a future step.

Sensorial multimodality

The sensorial multimodality was finally considered in this manuscript. By acquiring images
with multiple different sensors, each capturing a particular aspect of the scene, one enhances
the descriptive capacity and accuracy of the resulting multisource image. This wealth of
information should be beneficial for several image processing tasks, and we decided to focus in
particular on the image segmentation application.

Hierarchical representations are a convenient tool to achieve image segmentation, as they
can naturally provide various level of details in the resulting segmentation map. Building one
hierarchical representation per modality raises however the question on their further fusion.
Recently, braids of partitions were proposed as a generalization of hierarchical representations,
as the regions contained in the braid no longer need to be either disjoint or nested. They were
also conjectured to be a potential solution to the issue on the fusion of multiple hierarchies
of partitions. Therefore, we proposed a way to implement braids of partition in the scenario
being the segmentation of multisource images. The practical construction of a braid being
bounded by its theoretical properties, we derived some guidelines to extract cuts from two
independent hierarchies and guarantee the braid structure. Using an energetic framework,
the final segmentation of the multisource image was finally obtained as the optimal cut, for
a proposed multimodal energy, of the braid structure and its associated monitor hierarchy.
The proposed methodology was investigated on two multisource images featuring different
characteristics, and the resulting braid optimal cut was found to outperform in terms of
average goodness-of-fit the marginal segmentations in both cases.

As it currently stands, the proposed method only allows to extract two different cuts from
two independent hierarchies for the construction of the braid, constraining the set of possible
multisource images which can be investigated. Incorporating a higher number of cuts from
more hierarchies while maintaining the braid structure appears as a clear line of research.
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Appendix

A Multiscale minimal cut theorem for max-composed energies

Theorem (Multiscale minimal cut for max-composed energies)
Let H be a hierarchy on a set E, and let Eλ(π) =

∨
R∈π Eφ(R) + λEρ(R) be an affine max-

composed energy such that Eρ(R) ≥ 0 ∀R ∈ H. Then the family of optimal cuts {π?λ}λ∈R+ can
be ordered by refinement, i.e.:

∀λ1, λ2, 0 ≤ λ1 ≤ λ2 ⇒ π?λ1 ≤ π
?
λ2 (A.1)

Proof. The proof is adapted from [101,103] and is organized in three steps: first we prove that
the mapping λ 7→ Eλ is increasing. Then, we demonstrate that this monotonicity behavior
implies the scale-increasingness of energy Eλ. We finally show that the optimal cuts {π?λ}
being ordered by refinement derives from the scale-increasingness of the energy function.

1. Monotonicity of the mapping λ 7→ Eλ. Let π = {R ⊆ E} be some partition, and
consider the mapping

λ 7→ Eλ(π) =
∨
R∈π
Eφ(R) + λEρ(R) (A.2)

which is the maximum of several affine functions λ 7→ Eλ(R) = Eφ(R) + λEρ(R). By
assumption, Eρ(R) ≥ 0 so the affine function λ 7→ Eλ(R) is increasing for any R with
respect to λ, and so is the maximum

∨
R∈π Eλ(R).

2. Scale-increasingness of Eλ. Now consider a region R ∈ H and π(R) being a partial
partition of R, and let 0 ≤ λ1 ≤ λ2. By increasing monotonicity of Eλ, one has
Eλ1(R) ≤ Eλ2(R) and Eλ1(π(R)) ≤ Eλ2(π(R)). Subtracting on each side, it comes

Eλ1(π(R))− Eλ1(R) ≤ Eλ2(π(R))− Eλ2(R) . (A.3)

Finally, Eλ1(π(R))− Eλ1(R) ≥ 0 implies Eλ2(π(R))− Eλ2(R) ≥ 0, or, put differently,

Eλ1(π(R)) ≥ Eλ1(R)⇒ Eλ2(π(R)) ≥ Eλ2(R) (A.4)

which is the definition of scale-increasingness [101,103] for the energy function Eλ.
3. Ordering of the optimal cuts {π?λ}. Consider finally 0 ≤ λ1 ≤ λ2. There exist

two optimal cuts π?λ1
and π?λ2

which can be obtained by conducting Bellman’s dynamic
program over the hierarchy H. Take R ∈ π?λ1

, R has a lower energy than any of its partial
partitions π(R) ∈ ΠE(H(R)), thus Eλ1(R) ≤ Eλ1(π(R)). Therefore, Eλ2(R) ≤ Eλ2(π(R))
by scale-increasingness of Eλ, meaning that R is temporary optimal for Eλ2 , and thus
either R ∈ π?λ2

or R ⊂ R′ ∈ π?λ2
. As this holds for any R ∈ π?λ1

, one finally has
π?λ1
≤ π?λ2

, which achieves the proof.
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B Derivation of the Generalized Likelihood Ratio Test for hy-
perspectral change detection

Let x ∈ RN be some N−dimensional vector (corresponding to the difference of two
hyperpsectral frames in the context of chapter 3), such that the two competing hypotheses
for the distribution of x are a multivariate Gaussian distribution with covariance matrix Σ,
either with a zero mean 0 (being the null hypothesis H0) or an unknown mean µ 6= 0 (the
alternative hypothesis H1:

H0 : f(x|H0) ∼ N (0,Σ)

H1 : f(x|H1) ∼ N
(
µ,Σ

)
, with µ 6= 0 unknown.

(B.5)

Testing whether x is more likely to follow H0 or H1 classically involves a Likelihood Ratio
Test, known according to the Neyman-Pearson lemma, to be the most powerful test for a
given probability of false alarm. As µ is unknown in the alternative hypothesis H1 however,
the test (B.5) is solved using the Generalized Likelihood Ratio Test (GLRT). Assuming that
we have S samples xi, i = 1, . . . , S (being the neighbors of x), the GLRT write:

Λ(x) =
max
µ6=0

S∏
i=1

[f(xi|H1)]

S∏
i=1

[f(xi|H0)]

H1
≷
H0

γGLRT . (B.6)

It is known that the numerator of (B.6) is maximized when the unknown µ is taken to be the
maximum likelihood estimate (MLE) µ̂ of the actual mean value, given by:

µ̂ = 1
S

S∑
i=1

xi . (B.7)

Replacing f(x|H0) and f(x|H1) in (B.6) by their analytical expression gives:

Λ(x) =

S∏
i=1

 1√
(2π)N |Σ|

exp
(
−1

2 (xi − µ)T Σ−1 (xi − µ)
)

S∏
i=1

 1√
(2π)N |Σ|

exp
(
−1

2xTi Σ−1xi
)

H1
≷
H0

γGLRT (B.8)

where |Σ| is the determinant of the covariance matrix Σ. After some simplifications, one gets

Λ(x) =
exp

[
−1

2

S∑
i=1

(xi − µ)T Σ−1 (xi − µ)
]

exp
[
−1

2

S∑
i=1

xTi Σ−1xi

] H1
≷
H0

γGLRT (B.9)
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which rewrites as

Λ(x) = exp
[
−1

2

S∑
i=1

[
(xi − µ)T Σ−1 (xi − µ)− xTi Σ−1xi

]] H1
≷
H0

γGLRT . (B.10)

Developing the inner bracket gives

Λ(x) = exp
[
−1

2

S∑
i=1

[
µTΣ−1µ− 2µTΣ−1xi

]] H1
≷
H0

γGLRT . (B.11)

Taking the log on both sides yields

Λ(x) =
S∑
i=1

µTΣ−1xi −
S

2 µTΣ−1µ
H1
≷
H0

γGLRT
2. (B.12)

As the actual value of µ does not matter, it is possible here to move the term S

2 µTΣ−1µ to
the right side of the equation to get

Λ(x) = µTΣ−1
(

S∑
i=1

xi

)
H1
≷
H0

γGLRT . (B.13)

At this point however, the test is not computable in practice as µ is unknown. Replacing µ

by its MLE µ̂ = 1
S

S∑
i=1

xi according to equation (B.7), or alternatively, replacing
S∑
i=1

xi by Sµ̂

in (B.13) eventually yields to the final expression of the GLRT

Λ(x) = Sµ̂TΣ−1µ̂
H1
≷
H0

γGLRT . (B.14)

2. With a slight abuse of notation, the threshold is still denoted γGLRT.
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C Composing a braid using cuts of independent hierarchies

Let B = {π1
1, π

2
1, π

1
2, π

2
2} be a family of partitions composed following the procedure

described in section 4.4.1. πk,li,j = πki ∨ πlj denotes the pairwise refinement suprema of B.
In particular, the 4 partitions composing B generates

(4
2
)

= 6 different pairwise refinement
suprema π1,2

1,1, π
1,1
1,2, π

1,2
1,2, π

2,1
1,2, π

2,2
1,2, π

1,2
2,2. Checking that B is a braid amounts to verify whether

the πk,li,j all defines cuts of the same monitor hierarchy Hm, which is equivalent to showing
that they are (at least) all h-equivalent to each other. In order to show the braid structure of
B, we first demonstrate the following result:

Lemma 1
Let π1, π2, π3 ∈ ΠE be some partitions of E such that π1

h' π3 and π2 ≤ π3. Then π1∨π2
h' π3.

Proof. In the most general case where π1 and π3 are h-equivalent but can nonetheless not be
ordered, it means that π1 is a refinement of π3 in some parts of E, and is refined by π3 in the
other parts. In the former case, let R3 be a region of π3 and π1(R3), π2(R3) be the refinements
(partial partitions) of R3 in π1 and π2. Then, π1(R3) ∨ π2(R3) is also a refinement of R3,
implying that π1 ∨ π2 refines π3 in the part of E covered by R3. In the case where π3 is locally
a refinement of π1, then given R1 ∈ π1, there exists a refinement π3(R1) of R1 in π3, and
therefore a refinement π2(R1) of R1 in π2 since π2 ≤ π3. Therefore, {R1} ∨ π2(R1) = {R1}
and thus π3 refines π1 ∨ π2 in the part of E covered by R1. Finally, π1 ∨ π2 either refines or is
refined by π3 in all parts of E, hence π1 ∨ π2

h' π3.

Following, we prove that the pairwise refinement suprema of B are organized as displayed
by figure 4.7b, which, combined with the above lemma 1, demonstrates the braid structure of
B.

- π1,2
1,2 = π1

1 ∨ π2
2 = π1

1 by construction of B. Similarly, π2,1
1,2 = π1

2. By definition of the
refinement suprema, they are both refinements of π1,1

1,2 = π1
1 ∨ π1

2.

- π1,2
1,2 = π1

1
h' π1

2 = π2,1
1,2 by construction of B.

- π1
1
h' π2

1 as they are both cuts of the same hierarchy H1, so is their supremum π1,2
1,1. This

implies that π1,2
1,1

h' π1,2
1,2. With the same argument, one has π1,2

2,2
h' π2,1

1,2.

- π2,2
1,2 = π2

1 ∨ π2
2, with π2

1
h' π1

1 and π2
2 ≤ π1

1. Using the lemma 1, it follows that

π2,2
1,2

h' π1
1 = π1,2

1,2. With the same argument, one proves that π2,2
1,2

h' π2,1
1,2.

- Again, π2,2
1,2 = π2

1 ∨π2
2 and π2

2 ≤ π1
1 by construction of B. Therefore π2,2

1,2 ≤ π1
1 ∨π2

1 = π1,2
1,1.

With the same argument, one shows that π2,2
1,2 ≤ π

1,2
2,2.

- Finally, π1
1
h' π1

2 and π1
1 ≥ π2

2 by construction of B. Using the lemma 1, it follows that
π1

1
h' π1,2

2,2. In addition, π2
1 ≤ π1

2, thus π2
1 ≤ π1

2 ∨ π2
2 = π1,2

2,2. Using the lemma 1 again for

π1
1, π2

1 and π1,2
2,2, it follows that π

1,2
1,1

h' π1,2
2,2.
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Abstract — There is a growing interest in the development of adapted processing tools for
multimodal images (several images acquired over the same scene with different characteristics).
Allowing a more complete description of the scene, multimodal images are of interest in various
image processing fields, but their optimal handling and exploitation raise several issues. This
thesis extends hierarchical representations, a powerful tool for classical image analysis and
processing, to multimodal images in order to better exploit the additional information brought
by the multimodality and improve classical image processing techniques. This thesis focuses
on three different multimodalities frequently encountered in the remote sensing field. We first
investigate the spectral-spatial information of hyperspectral images. Based on an adapted
construction and processing of the hierarchical representation, we derive a segmentation which
is optimal with respect to the spectral unmixing operation. We then focus on the temporal
multimodality and sequences of hyperspectral images. Using the hierarchical representation of
the frames in the sequence, we propose a new method to achieve object tracking and apply it
to chemical gas plume tracking in thermal infrared hyperspectral video sequences. Finally, we
study the sensorial multimodality, in which images are acquired with different sensors. Relying
on the concept of braids of partitions, we propose a novel methodology of image segmentation,
based on an energetic minimization framework.

Keywords: Multimodality, hierarchical representation, image segmentation, energy mini-
mization, remote sensing.

Résumé — Il y a un intérêt grandissant pour le développement d’outils de traitements
adaptés aux images multimodales (plusieurs images de la même scène acquises avec différentes
caractéristiques). Permettant une représentation plus complète de la scène, ces images
multimodales ont de l’intérêt dans plusieurs domaines du traitement d’images, mais les
exploiter et les manipuler de manière optimale soulève plusieurs questions. Cette thèse étend les
représentations hiérarchiques, outil puissant pour le traitement et l’analyse d’images classiques,
aux images multimodales afin de mieux exploiter l’information additionnelle apportée par la
multimodalité et améliorer les techniques classiques de traitement d’images. Cette thèse se
concentre sur trois différentes multimodalités fréquemment rencontrées dans le domaine de
la télédétection. Nous examinons premièrement l’information spectrale-spatiale des images
hyperspectrales. Une construction et un traitement adaptés de la représentation hiérarchique
nous permettent de produire une carte de segmentation de l’image optimale vis-à-vis de
l’opération de démélange spectrale. Nous nous concentrons ensuite sur la multimodalité
temporelle, traitant des séquences d’images hyperspectrales. En utilisant les représentations
hiérarchiques des différentes images de la séquence, nous proposons une nouvelle méthode pour
effectuer du suivi d’objet et l’appliquons au suivi de nuages de gaz chimique dans des séquences
d’images hyperspectrales dans le domaine thermique infrarouge. Finalement, nous étudions
la multimodalité sensorielle, c’est-à-dire les images acquises par différents capteurs. Nous
appuyant sur le concept des tresses de partitions, nous proposons une nouvelle méthodologie
de segmentation se basant sur un cadre de minimisation d’énergie.

Mots clés : Multimodalité, représentation hiérarchique, segmentation d’image, minimisation
d’énergie, télédétection.
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