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Résumé

L’empreinte digitale est l’une des modalités les plus fiables en biométrie et

donc a été largement étudié et déployés dans des applications réelles. La précision

d’un système d’identification automatique d’empreintes digitales (AFIS) dépend

largement de la qualité des échantillons d’empreintes digitales. La dégradation de la

qualité d’empreinte digitales impacte le taux d’erreur lors de l’étape de vérification

biométrique. Cette thèse se concentre principalement sur l’évaluation des mesures de

qualité biométriques et plus précisément l’évaluation de la qualité des empreintes

digitales (FQA), à partir d’une image en niveaux de gris et ou à partir de l’ensemble

de minuties associées.

En faisant un examen à la fois raffinée des systèmes biométriques et des méthodes

d’évaluation en préliminaire, cette thèse contribue tout d’abord par la proposition

d’un nouveau cadre d’évaluation / de validation pour estimer la performance de

métriques de qualité biométriques. Le cadre d’évaluation / validation est défini dans

la phase d’enrôlement en utilisant des essais hors ligne. La validité d’une mesure de

qualité biométrique peut être statistiquement mesurée par la dégradation du d’égale

erreur (EER) et les intervalles de confiance (IC) associés.

Ensuite, cette thèse porte principalement sur l’évaluation de l’empreinte digitale

de plusieurs façons, qui comprend trois parties dans le contexte de la FQA, où chacune

d’entre elles est positionnée à partir d’une revue systématique de la littérature des

études existantes. Tout d’abord, une approche d’évaluation de la qualité basée sur de

multiples fonctionnalités et un avant-connaissance du rendement correspondant est

proposé dans cette thèse, image d’empreinte digitale de qualification qui réalise avec

des schémas de fusion et d’apprentissage et observe certains problèmes potentiels

de ce type de solution. Deuxièmement, un nouvel algorithme FQA est proposé en

utilisant uniquement modèle minuties image d’empreinte digitale de. Cette approche

démontre la possibilité pour estimer la qualité d’image d’empreinte digitale avec le

modèle de minuties seul. Troisièmement, un autre cadre FQA est réalisée via une

approche d’élagage pixel de l’image d’empreinte digitale, ce qui donne une nouvelle

solution de cette question de la. Pendant ce temps, toutes les approches FQA proposé

dans cette thèse offrent une étude comparative de cette question, pour les algorithmes

FQA proposées sont en mesure de représenter chaque solution représentant parmi les

études existantes.





Summary

Digital fingerprint is one of the most reliable modality in modern biometrics and

hence has been widely studied and deployed in real applications. The accuracy of

one Automatic Fingerprint Identification System (AFIS) largely depends on the

quality of fingerprint samples, as it has an important impact on the degradation of

the matching (comparison) error rates. This thesis mainly focuses on the evaluation

of biometric quality metrics and fingerprint quality assessment (FQA), particularly

in estimating the quality of gray-level fingerprint images or represented by a minutiae

set.

By making a refined review of both biometric systems and relevant evalua-

tion techiniques, this thesis firstly contributes by the definition of a new evalua-

tion/validation framework for estimating the performance of biometric quality metrics.

The evaluation/validation framework is defined in the enrollment phase by using

offline trials. The validity of a biometric quality metric can be statistically mea-

sured by the degradation of the global Equal Error Rates (EER) and the associated

Confidence Intervals (CIs).

Next, this thesis makes effort mainly in assessing fingerprint image quality in

several different ways which include three parts in the context of the FQA, where each

of them is proposed in terms of a systematic literature review of the existing studies

of this issue. First, a quality assessment approach based on multiple features and a

prior-knowledge of matching performance is proposed in this thesis, which achieves

qualifying fingerprint image with fusion and learning schemes and observes some

potential problems of this kind of solution. Second, a new FQA approach is carried

out via a pixel-pruning scheme of fingerprint image, which gives a new solution

of this problem. Third, another FQA algorithm using the Delaunay triangulation

is proposed to estimate the quality of a digital fingerprint via only its minutiae

template. This approach demonstrates the possibility for estimating the quality of

digital fingerprint with the minutiae template alone. Meanwhile, all the proposed

FQA approaches in this thesis provide a comparative study of this issue, for the

proposed FQA algorithms are able to represent each representative solution among

the existing studies.
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Introduction

Problem statement

Digital fingerprint, as one of the biometric modalities, has been the most widely

studied object over the development of biometric technologies during the last few

decades. Human society has long history in using fingerprint character, which denotes

much experience that are considerable in biometric studies. Likewise, in contrast

with the role that fingerprint played in later 1890s, its applications in biometrics

nowadays is a modernization of what it used to be.

In the earlier years of the last century, the idea of using fingerprint was limited

by scientific and technological status. Because of this, in that time, the application

of fingerprint was mainly operated by manual approaches. Two cases can illustrate

this problem, one is fingerprint for personal card files and another is collected by

forensic experts: the former is generally obtained by rolling an inked fingertip surface

across a contrasting background such as white card, and the latter is captured by

several different means according to its situation such as chemical processing. The

fingerprint on card file can be used for establishing a database of criminals, and those

of forensic impressions can be used as an evidence to convict a criminal. However,

while fingerprint experts processing the collected fingerprints, they have to face

the difficulties raised by status of fingerprint impression, such as leftover pattern

(fragmentary) and distorted impression [1]. This problem is referred to as fingerprint

quality which can be described more simplistically as the clarity and visible region of

the fingertip surface. More specifically, fingerprint quality involves several concrete

situations, such as dry or wet cases which might be more easily happened for rolled

impression, but it can be controlled by fingerprint experts while it is being captured.

Correspondingly, the quality problem exists as well in modern biometrics, and

fingerprints either. The development of science and technology enables biometric

characteristics to act somehow as traditional passwords, and to be used in a more

widely range rather than the traditional forensic or official applications only. This

variation could be represented by some civilian applications such as e-payment,

smartphone, office building access, and so on. Without considering skin problems of

individual subject, digital fingerprint is an image captured by specially made sensors.

The associated quality problems are caused by the capture mode of the sensor in

general. For instance, sensors of touching type capture fingerprints by putting a

fingertip on the sensor (typically, a surface). This might results in wet fingerprint

1



2 INTRODUCTION

or distorted impressions if the fingertip or sensor surface is a little humidity or the

individual presses fingertip too much. These disadvantages would impact on the

recognition operation of a biometric system. In this case, fingerprint quality has

been introduced as an independent research topic just as the quality problem of

other biometric modalities. The general purpose of fingerprint quality assessment is

therefore to measure the captured fingerprint data and to achieve the goal of quality

control. The quality control can be involved in several stages of a biometric system,

which is presented in detail in this thesis. By considering this problem, the objective

of fingerprint quality assessment is simply introduced next.

Objectives

As it is presented in the previous paragraph, fingerprint quality assessment is to

obtain a measurement of sample quality. By doing so, it is able to reject the captured

fingerprint data of poor quality and read the data one more time to ensure a good

quality sample can be used for the biometric system (it is referred to as a fingerprint

recognition system, in this thesis). This is the most direct purpose and the description

of fingerprint quality assessment task. However, before diving into the details, a

question can be asked that whether the system qualifies fingerprint quality with the

same standard as human perception? Hence, several examples of some ink-rolled

fingerprint and latent fingerprints are given to have a first look at the quality, depicted

in Figure 0.1.

As it is shown in Figure 0.1, image 0.1(a) is a rolled fingerprint, and images 0.1(b)

and 0.1(c) are latent impressions which need to be further processed by forensic

experts. By having a glance at the image, it is easier to differentiate the visual

information of these fingerprint impressions by human eyes and can give an estimation

of their quality by brain. Image 0.1(a) is relatively clear among them undoubtedly,

but how a fingerprint image quality can be measured by a biometric system. The

objective of the thesis is to answer this question which involves in several aspects

and is given in the following chapters in detail.

Organization of the Thesis

The content of this thesis is organized as:

Chapter 1 presents a simple introduction of biometrics which gives a general

view of the research about biometrics and the essentials related to biometric sample

quality assessment and its evaluation.
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(a) Rolled finger-
print

(b) Latent image (c) Latent image

Figure 0.1 – Fingerprint examples. 0.1(a) Rolled fingerprint, 0.1(b) and 0.1(c) Latent
fingerprint impressions (collected from internet).

Chapter 2 presents an overview of the fingerprint modality with an introduction

to digital fingerprint and a state-of-the-art of related studies for fingerprint quality

assessment.

Chapter 3 mainly focuses on quality metric evaluation based on improving the

overall performance. This chapter includes a review of most of the existing evaluation

approaches, and a new validation framework is proposed.

Chapter 4 details a preliminary study of fingerprint quality assessment which is

implemented by using a linear combination of multiple features. With a reference

quality metric, this chapter also makes a comparative study of fingerprint metrics

based on multiple features and learning approaches.

Chapter 5 defines a new quality framework of fingerprint with multiple segmenta-

tion approaches. This framework could be regarded as a fusion of multi-feature in

segmentation phase which avoids of dealing with coefficients problem.

Chapter 6 proposes another new quality metric of fingerprint image by using

minutiae template only. The proposed quality metric could also be viewed as an

effective feature and reveals the possibility in estimating quality with no image

information.





Chapter 1

Overview of Biometrics

This chapter presents a quick overview of biometrics in several aspects: a short

introduction of the development of biometrics, a general view of biometric

system including its modules, operation mode and performance evaluation.

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Biometric systems . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Evaluation of biometric systems . . . . . . . . . . . . . . . . . . 15

1.5 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Introduction

Biometrics is a scheme to perform user authentication by using one or several

human characteristics for personal recognition instead of PIN codes [1]. The use

of this kind of characteristics in human society can be tracked back to ancient time

as early as in 6,000 BC, such as Qin and Han dynasties in China, Babylonia and

Assyria time [2, 3]. The historical record also shows that people in ancient time have

used handprints as evidence during burglary investigations. In a non-sophisticated

way, comparing with the forensic applications of biometric data in 19th century

and the early 20th century, human experts in this field are gradually replaced by

biometric systems in most cases. The deployment of biometrics is still increasing,

which conforms to today’s complex and universally used information technologies.

For example, the Automated Fingerprint Identification System (AFIS) built in a

smart phone has been adopted in the last few years. Many similar innovations could

be found during the last few decades as the study of biometrics is strongly promoted

by the development of information technology. Meanwhile, some problems created

as well several branches in biometrics, such as the encryption [4] of the biometric

5



6 CHAPTER 1. OVERVIEW OF BIOMETRICS

sample. This thesis chiefly pays attention to fingerprint modality, especially its

quality assessment problem.

This chapter is organized as several items: In Section 1.2, a summary of biometrics

introduces an outline of this issue such as the modality, and its development is

provided. Second, Section 1.3 addresses a general framework of the biometric systems

illustrating the mechanism of this kind of system. Next, issues related to biometric

system evaluation are given in Section 1.4. Section 1.5 presents the objective of this

thesis. Finally, a summary of this chapter is given in Section 1.6.

1.2 Biometrics

The definition ”Biometrics” or ”Biometry” has been used in the early 20th century

for issues of data analysis in biological sciences. Currently, biometrics or biometric

authentication is a computer science-based technique which is mainly used for

human identification, access control and other similar applications. By comparison

with traditional recognition methods, this kind of application is implemented by

using physiological or behavioral information of human being, such as their face

characteristics, signature dynamics, traits and so on. However, not every biological

characteristic can be utilized as a biometric data. The selection of a biometric

data depends on specifications of its application. Some researchers has classified

rules for choosing a biometric data [5], in which several necessary conditions were

presented to determine if a biological characteristic can be used as a biometric sample.

In biometrics area, those human characteristics that can be regarded as biometric

samples are known as biometric modalities.

1.2.1 Modalities

In general, biometric samples can be divided into several categories in terms of

their physical properties [6], including biological analysis, behavioral analysis and

morphological analysis. The human characteristics used mainly for biological anal-

ysis include odor, blood, DNA and so on. This kind of biometric data might be

sensitive to a person, for it might involves in privacy and susceptible issues. Data

forms used for behavioral analysis can be keystroke dynamics, human voice, gait,

signature dynamics, etc. However, this kind of biometric data might vary along with

body conditions, and sometimes might be not very distinctive. On the other hand,

morphological analysis includes modalities such as fingerprint, iris, palm-print, finger

veins, face and so on. This kind of biometric data is more acceptable to people and
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more convenient for collection.

Each biometric data has its own strength or weakness; some are convenient,

effective, invariant and invulnerable, while some others are not. The choosing of

biometric sample(s) for a system hence depends on application requirement which

can be a system with only one kind of biometric sample (unimodal) or a system

using multiple biometric data (multi-modal). In addition, system complexity might

also be a factor that should be considered for choosing biometric modality. Some

commonly used biometric characteristics are shown in Figure 1.1.

Figure 1.1 – Some representative biometric data forms: (a) DNA series, (b) ear, (c)
face, (d) facial thermogram, (e) hand theomogram, (f) hand vein, (g) fingerprint, (h)
gait, (i) hand geometry, (j) iris, (k) palmprint, (l) retina, (m) signature and (n) voice
wave. (Image source: the internet.)

However, there is no ideal biometric modal that is able to satisfy all requirements

as it has just been previously mentioned. According to existing studies in biometrics

[7], fingerprint and face are commonly known as the most widely studied modalities

[8] and iris comes second. Among these three biological characteristics, fingerprint

is in a dominant position due to its advantages that are more in accordance with

the standard of being a biometric modality. Generally, as it is mentioned before, a

biometric sample should satisfy several requirements [8]:
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• Universality: the biometric sample is available for all individuals.

• Distinctiveness: samples belong to two persons must be sufficiently different.

• Invariability: characteristics should be invariant or must be stable for a period

of time.

• Acceptability: characteristics for which people should not show their reluctance,

i.e. people would like to accept the use of characteristics.

In addition to those criteria for choosing biometric modalities, a characteristic

should also be beneficial to system processing such as computation cost, storage

consumption, etc. Furthermore, the impact of a biometric sample on recognition

accuracy and the security consideration of the potential characteristics are also

taken into account. These factors can be considered as the requirement related to a

practical system.

1.2.2 Development and present situation

Biometric technologies have been developed over the last few decades. In early 90s,

the use of biometrics can be found as a mystery high technology as they were planted

in science-fiction movies or novels. However, currently, the application of biometrics

has been widely deployed for commercial or civilian use rather than the traditionally

official implementations only [5]. Deployments can be easily spotted in daily life, such

as office building access control, electronic product authentication, E-payment which

is being popular recently and so on. The official use, in addition to those forensic

applications, has already been adopted for electronic identification recognition such

as biometric passport and ID card. Up to now, most of countries around the world

have began issuing the biometric passports 1 (Cf. Figure 1.2).

1. http://en.wikipedia.org/wiki/Biometric_passport

http://en.wikipedia.org/wiki/Biometric_passport
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Figure 1.2 – Countries with biometric passport.

In Figure 1.2, highlight green is the area where has announced future availability

of biometric passports, gray indicates area that biometric passport is not adopted

and deep green represents the area where biometric passport is in use.

Currently, a typical symbol of biometric application is the biometric identification

certificate which is usually planted with an electronic chip that contains one type of

biometric data. This kind of documents are typically marked with the international

symbol, as illustrated in Figure 1.3.

Figure 1.3 – Biometric symbol on one identification card.

Meanwhile, biometric sample or template protection [9] is a consequential problem

which becomes one research branch of biometrics due to the potential risk raised

by biometric attacks or fraudulent operations. In particular, face template and

fingerprint template protection are widely studied among all the biometric modalities

[10, 11].

On the other hand, in research field, multimodal biometrics and 3D biometric

modalities [12] have already become a trend of biometrics study. Unimodal (also
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known as monomodal in some publications) biometric system is the typical application

and had been developed at first, but existing studies have found that biometric systems

using a single biometric data is sometimes not sufficient to solve the problem due to

its limitations [5]. In this case, researchers choose to study multi-modal biometric

systems for improving system performance in multiple aspects [13]. Multimodal

biometrics generally involves in 3 levels of fusion, including feature level, matching

score level and decision level [14]. Fusion of feature level can be carried out either by

the biometric data or by the features extracted from the sample. Matching score level

fusion is a combination of matching scores obtained by different matching algorithms

or those of different modalities. Decision level fusion is a scheme combining the

outputs of different classifiers in terms of specified criteria, such as classifier selection

[15]. The fusion at an early stage is generally considered to be more effective, for

biometric data are more informative than those processed by later stages.

The recognition rate of biometric samples in 3D are believed to be more accurate

than 2D and are not sensitive to the variation of illumination and viewpoint [16].

Studies in 3D biometric modalities mainly focus on face, ear [17] and finger surface,

among which face is the most investigated object thanks to the advantage of capturing

features. In addition, contact-less and behavioral biometric modalities might be

numerously explored in future researches, and cloud biometrics has also been presented

by researchers as the next generation applications for large-scale biometric data and

mobile devices [18, 19] .

1.3 Biometric systems

In comparison with traditional PIN-based authentication schemes, a biometric system

is generally described as an authentication system in which one kind of the physio-

logical or behavioral characteristics of an individual is used for recognition [20, 5].

A password could involves several problems such as remembering, potential risk of

brute force attack or the use from non-actual user [21] when considering the security

elements and disadvantages of traditional authentication system. Biometric samples

or their templates, however, are not easy to be duplicated and cracked without

sophisticated method. Intuitively, a biometric system achieves user authentication

via a comparison between a captured biometric sample of one user and a previously

stored template (or a cryptographic template) of one user which might be the same

one or a different. In this case, a biometric system is basically composed of several

processing sessions and involves two operation modes. The processing procedure or

modules are generally divided into several parts, including data acquisition, data
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processing (feature extraction), data matching and decision [3].

1.3.1 Common system structure

According to the description of a biometric system, the structure of one system can

be composed by several modules [22]:

- Capture module is to read raw data of human characteristics with a sensing

device.

- Processing module performs pre-processing to the acquired raw data and

feature extraction for coming operations. In this session, the system should

evaluate the quality of an acquired data, and therefore determine whether the

captured biometric sample would be rejected or accepted. The accepted data

might be used as either an enrollment or an authentication sample matching

with an existing template. The extracted features for an enrollment sample

can be saved into a central or local database, which would depend on the

application. In this case, enrollment might involves in two sessions, one is

quality assessment and another is feature extraction. For example, a qualified

fingerprint image of one person would be enrolled into the system as a reference

when the user first time accesses the system.

In fact, the processing of biometric characteristic depends on signal type

applied in the system. In most cases of fingerprint, biometric data or human

characteristics are recorded as images, but it will be different as the signal

type changed. For instance, human voice is recorded as a waveform, while

the characteristic of a signature recognition system is recorded as time series

data. Therefore, while applying them into the system, extracted features

of the recorded data will be finally stored in the database rather than the

original recorded characteristics. This transformation facilitates data storage

and matching operation.

Enrolled as reference

As mentioned above, enrollment is one of the followed operations which

occurs when the user’s biometric data is captured for the first time

or a better sample of one registered individual is obtained. The first

accessing to the biometric system leads to an once-again capture of user’s

characteristic until a qualified sample could be registered as an enrollment.

For the second case, a user provides the system with a biometric sample

for authentication, during which the enrollment of this user could be
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replaced by a newly captured sample when its quality is better than the

existed enrollment. An enrollment operation can be demonstrated via a

diagram, see Figure 1.4.

Figure 1.4 – Diagram of enrollment. This is a 4-step operation including reading

(capture), quality control, feature extraction and saving.

- Matching module is to perform one-to-one or one-to-multiple comparison

between authentication sample and enrollment sample. This processing depends

on the operation mode of biometric system which includes verification and

identification. This module is responsible for producing a matching result,

based on which the decision module can determine to accept the authentication

sample or not.

Figure 1.5 – System structure of a generic biometric system.

- Decision module makes a final decision to an authentication sample indi-

cating whether it is a genuine sample or an impostor. This decision is usually

performed by applying a threshold policy onto the matching result. For instance,

matching results of some authentication samples are equal to or higher than a
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threshold are considered to be matched samples. Figure 1.5 demonstrates a

generic structure of a biometric system.

1.3.2 System mode

As mentioned above, a biometric system involves in different operation modes: 1)

verification and 2) identification.

� Verification

In this mode, a one-to-one matching is performed between an enrollment and

an authentication sample corresponding to an identity claimed by a user. This

one-to-one comparison determines the claim of the user is true or not [5], i.e.

the user is who he (she) claims to be or not. It is also classified as an operation

using for positive recognition which is to prohibit multiple users from using the

same identity. Mathematically, the verification operation can be described as:

(I,XQ) ∈

w1 if S(XQ, XI)≥t,

w2 otherwise,

where XQ is an input feature vector extracted from the biometric data, I is

the identity claimed by the user, S is the function for evaluating the similarity

between feature vector XQ and XI , XI is then the template corresponding to

identity I, w1 and w2 indicate that the user’s claim is true or not, respectively.

Without losing generality, Figure 1.6 illustrates a diagram of verification mode.

Figure 1.6 – Verification mode demonstration.

� Identification

In identification mode, the user is recognized without the claim of identity.

The system searches reference database to determine whether the captured
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biometric characteristic matches one in the database. This leads to a one-to-

many comparison which can figure out whether a user had already registered

in the system or not. This mode is said to be critical to negative recognition

applications. The aim of this mode is to prevent a user form using multiple

identities. Similarly, identification mode can be formulated as:

XQ ∈

Ik if max
k
{S(XQ, XIk)}≥ t, k= 1, 2, . . ., N,

IN+1 otherwise,

where Ik indicates kth identity of totally N identities in the database, XIk is

the template associated with Ik, and IN+1 is the reject case like an array bound.

The identification mode is depicted by a diagram in Figure 1.7.

Figure 1.7 – Identification mode demonstration.

In this thesis, these two modes are not strictly emphasized due to the study mainly

concentrates on biometric sample quality assessment. However, the matching mode

involved in quality metric validation task can be considered as a verification mode

because the users are known for the comparisons, for which the details are given in

later chapters.

1.3.3 Advantages and Disadvantages

The features of biometric systems in both advantages and disadvantages have been

analyzed via a comparison between traditional recognition or authentication tech-

niques and two groups of biometric applications [5, 21]. Literally, these features can

be stated as:

Security is the most important consideration for such a system. In this case,

biometric system is more secure than traditional recognition technologies because

duplicating biometric characteristics is not as easy as cracking traditional encryption
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approaches based on alphanumeric and other characters. Nevertheless, the uniqueness

of biometric samples reduces the possibility of unrestricted use of one identity by

multiple users.

Usability or convenience in using biomeric modalities indicates that biometric

systems are more convenient than traditional methods, for it is not necessary to

remember a specific password and change it frequently, or keeping a card in the

pocket.

Economical concern is an initial drawback for every new technology, on which

biometric systems is not as good as traditional system but it is already not a problem

for the cost of devices nowadays. Another shortage of biometric systems is technical

problems, i.e. computation cost, especially storage requirement which is more

considerable than traditional technologies. This kind of problem is still a limitation

to those embedded applications such as the match-on-card (MOC) [23] systems of

fingerprint.

1.4 Evaluation of biometric systems

The evaluation of a biometric system is important or necessary because the reliability

of the system is crucial in real deployment. To measure the performance of a biometric

system including its strength and weakness, some essential elements that affect or

determine the behavior of the system should be figured out. Mohamad et al. [22]

categorized factors of biometric system performance into 3 main aspects including

usability, security and data quality.

First, usability is an aspect defined by ISO [24] which directly examines the

performance of a human-machine interaction system including users’ acceptance and

satisfaction to a biometric system [25], efficiency and effectiveness of human-machine

interactive operations. Second, security concern indicates the vulnerability of a

biometric system when it is being used for specified applications, which could be

threatened by potential attacks or deceiving operations [26]. Nevertheless, biometric

data quality clearly impacts on the performance of a biometric system. A recorded

biometric data with lower quality more probably leads to matching errors, especially

false reject due to matching failure. Grother et al. [27] proposed biometric data

quality is a predictor of biometric system performance. This property is known as

the utility of biometric sample quality defined by ISO standard [28]. Studies about

biometric sample quality assessment have proved that quality control approaches can

greatly improve system performance [29].

In addition to these elements considered for evaluating the performance of a
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biometric system, a well-designed evaluation approach is necessary to estimate system

performance. Phillips et al. [30] categorized evaluation approaches to several cases

including technology evaluation tests, scenario evaluations and operational evaluation.

The protocol and database used for these types are different from each other. In this

case, protocol and database became important for an evaluation approach. Cappelli

et al. [31] presented that evaluation approaches based on self-collected databases are

not comparable leading to meaningless results. In addition, both the evaluation type

and protocol jointly determine how a biometric technology is quantified and how

evaluation metric is defined.

1.4.1 Test scenario

In previous sections, elements relating to the performance of biometric systems are

presented. In this section, the evaluation of a biometric system is discussed in two

aspects which indicate how it is evaluated. The first one is the testing type of the

biometric system which is introduced simply.

Among the three classes [30, 3, 32] of biometric evaluation tests, the technology

test is viewed as the most general type in evaluating system performance, which

could be done with either a sensing device or a large dataset (known as simulation).

Mostly, to examine a completed software system or the prototype of an algorithm

(which could be a component of a system), offline technology test is performed via

simulation. In this case, given a specified protocol, the evaluation result is repeatable

and comparable.

Scenario test is to determine the overall performance of the prototype of a system

in a target environment, modeling a given application in the real world. Therefore,

live operations are required when performing such a test. Generally, this is close to a

real deployment of the tested system, and as a result, the purpose for verifying the

maturation of a system is achieved.

The objective of an operational test is to measure the performance of a specified

algorithm for a specific application, which is similar to the scenario evaluation. The

main difference between them is the test scene, scenario test modeling the real world

while operational test is performed at the real site and involved in the actual end

users.

The study of this thesis pays attention to quality metric evaluation which is

mostly done by using technology evaluation approaches. As a consequence, another

requirement of this kind of evaluation is the statistic significance which quantitatively

demonstrates the performance of the tested system [33]. Some commonly used

metrics involved in estimating system performance are given in the following.
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1.4.2 Evaluation metrics

The statistic measurements for indicating the performance are system errors and

metrics presented by analyzing error types. As presented in Section 1.3, a biometric

system makes the decision based on the generated matching score which indicates

the similarity between the input biometric data and the template retrieved from

system database. In addition, this decision is regulated by a specified threshold, t.

The generated scores which are higher than or equal to t are decided as matched

pairs, while scores lower than t are inferred as non-matched pairs.

Correspondingly, there are two distributions of each type of matching scores,

one is genuine distribution generated from pairs of samples of the same person,

and another is impostor distribution generated from pairs of samples of different

users. As a result, there are two types of matching errors. One of them is known

as false match indicating that two biometric samples from two different individuals

are regarded as the samples from the same person, and another is false non-match

meaning that biometric samples from one person are measured as two different

samples from different users. The impostor matching error and genuine matching

error are quantified by False Match Rate (FMR) and False Non-Match Rate (FNMR),

respectively. As it is mentioned in the last paragraph, the threshold is one factor

determining system decision. Obviously, both FMR and FNMR are also determined

by this threshold, and they are functions of the threshold. In [5], these types

of errors were concretely analyzed by considering both of verification mode and

identification mode. The performance of a biometric system at all the operating

points (thresholds) can be illustrated by a plot of FMR versus 1-FNMR which is

called Receiver Operation Characteristic (ROC) curve. Figure 1.8 demonstrates

these three metrics and the relationship between them.

Figure 1.8 – (a) FMR and FNMR, (b) ROC curve. (Image source: the internet).
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Mathematically, FMR and FNMR conform to the types of errors in hypothesis

testing. These two metrics, by choosing verification task as an example, can be

described as:

� Null hypothesis, H0: input XQ and its corresponding template XI do not come

from the same person;

� Alternative hypothesis, H1: input XQ and its corresponding template XI belong

to the same person.

And the corresponding decisions:

� D0: person is not whom the user claimed;

� D1: person is the one the user claimed.

Then, FMR belongs to type I error which means that H0 is true but was rejected,

and FNMR conforms to the type II error which represents that H0 is not true but

was accepted.

In addition to ROC curve, there is another error rate called Equal Error Rate or

Crossover Error Rate (EER or CER), at which FMR and FNMR is equal to each

other, as illustrated in Figure 1.9.

Figure 1.9 – The demonstration of the EER, FMR (sometimes known as FAR), and

FNMR which is also denoted by FRR in some cases. (Image source: the internet.)

Another global measure is the Area Under Curve (AUC) value. The AUC is a

quantitative index derived from ROC curve [34], which is defined in terms of the
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Wilcoxon statistic when matching scores distributional assumption is involved, i.e.

W =
1

nG � nI

nG∑
1

nI∑
1

S (xG, xI) (1.1)

where S (�, �) is a comparison rule

S (xG, xI) =


1, xG > xI
1
2
, xG = xI (discrete value only)

0, xG < xI

. (1.2)

In this definition, xG indicates the distribution of a set of genuine matching scores

(GMS) of size nG, and xI denotes one of nI impostor matching scores (IMS). The

actual meaning of the AUC value is a probability of a correct ranking of a genuine

and impostor pair. Consequently, the AUC value should to be much closer to 0 as

the overall performance of the system getting much better.

Nevertheless, there are some other error rates, such as Failure to Enroll Rate

(FER or FTE) and Failure to Capture (FTC).

� Failure to Acquire (FTA): Failure happened to sample capture session due to

failures in detecting, identifying or acquiring a biometric sample of an adequate

quality, failures related to user presentation, feature processing or quality

control.

� Failure to Enroll (FTE): FTE occurs at enrollment phase caused by quality

control or algorithm crash such as overtime or failure of feature extraction.

It indicates the probability of failed enrollment attempts for either overall

enrollment test or for a specific biometric instance.

� False Non-match Rate (FNMR): Sometimes this term is also defined as False

Reject Rate (FRR) [35] which results in misleading. Generally, a FRR is a

concept at system level which involves in FTAR and FTER. The FNMR is

a probability indicating two samples of the same individual are incorrectly

determined as samples of different individuals. In this study, it is defined as

FNMR (t) =
card{gmsi,j,k | gmsi,j,k < t}
card{gmsi,j,k | gmsi,j,k <∞}

(1.3)

� False Match Rate (FMR): This is an error corresponding to FNMR which is

a proportion that an impostor sample was incorrectly matched to a genuine
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sample. Likewise, it is often referred to as the False Accept Rate (FAR) in

many cases. The FMR in this paper is defined as

FMR (t) =
card{imsi,j,l,k | imsi,j,l,k ≥ t}

card{imsi,j,l,k | imsi,j,l,k > −∞}
(1.4)

In both equation 1.3 and 1.4, i and l are indices of the individual (user), while

j and k represent indices of samples.

� False Accept Rate (FAR): A system level FAR is generally defined as

FAR = (1− FTAR) � FMR. (1.5)

� False Reject Rate (FRR): A system level FRR is often defined as

FRR = FTAR + (1− FTAR) � FNMR. (1.6)

In this study, there is no ambiguous definition about FNMR, FMR, FRR, and

FAR, for no FTAR is involved.

� Receiver Operation Characteristic (ROC) Curve: A plot of 1-FNMR against

FMR.

With these evaluation metrics, one can deduce a numerical observation of the

performance of a biometric system within a ruled circumstance simply as it has just

been mentioned in Section 1.4.1.

1.5 Thesis Objective

As presented above, this thesis aims at considering the fingerprint modality, chiefly

concentrating on its quality assessment and the evaluation of quality assessing

approaches. The motivation is attributed to the widespread deployment of this

modality. Although existing studies have found some solutions for this issues,

challenges still exist in this field. For instance, the diversity of sensor settings makes

difficulty in generating a commonly fitted feature or quality index and limited as well

the performance of fusion-based approaches. On the other hand, some evaluation

approaches focus only on the genuine error rates. In addition, the accuracy of some

technology evaluation that relied on a global error rate are affected by impostor

matchings, for the dimension of impostor matching are greatly larger than genuine

matchings in general. In this case, this thesis makes effort in proposing new solutions

for such a purpose.
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1.6 Conclusion

This chapter makes a quick overview of biometrics in both the historical and technical

manners. The general description of the biometric system is to illustrate how it is

working and what the difference is between biometrics and traditional authentication

techniques. The evaluation task estimates the performance of a biometric system, for

none of biometric systems are perfect due to the specificity of biometric modalities.

The evaluation is generally indicated by some statistical error rates proposed in

the existing studies, which gives means for comparing the performance of different

authentication systems. In addition to approaches based on error rates, there is also

evaluation method relies on a statistic model [36] for predicting the authentication

performance. Comparing with those error rates, the model requires some parameters

and hence not adopted very often, especially in multi-vendor use. To this end, this

chapter mainly provides a pre-requisite for our study in biometrics and the evaluation

of quality metric.

In the next chapter, fingerprint and the existing studies for estimating the quality

of a digital fingerprint are investigated.





Chapter 2

Fingerprint Modality

This chapter presents a brief overview of fingerprint modality including most

of the relevant issues, and mainly focuses on fingerprint quality assessment

(FQA). A literature review of quality assessment approaches is also explored in

this chapter.
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2.1 Introduction

As discussed in previous sections, fingerprint is one of the physiological biometric

data which visually a pattern formed by parallel stretched lines and the slots

between each pair of them. The lines are known as ridge lines and the slots are

termed as valley. The ridge flow runs in parallel but smoothly changes its orientation

and abruptly bifurcates or terminates somewhere hence forms some distinctive shapes

or points which are known as features, such as core point and delta of the fingerprint,

see Figure 2.1.

Figure 2.1 – Illustration of fingerprint pattern and minutiae features.

23
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According to the record of archeology, the use of fingerprint in human society

has been found on ceramics about six thousands years ago for marking the identity

of the potter [37]. Fingerprint has also been used as a means of identity recognition

during thousands years evolution of the human society. Computer aided fingerprint

processing had occurred in the 1960s. Rudei et al. [38] had proposed to use the

location of delta, core point and minutiae points in 2D coordinate system performing

fingerprint classification. In the following decades, fingerprint has become a typical

characteristic of modern biometrics and is known as the most popular modality for

biometric systems. The reason that why fingerprint is widely adopted in biometrics

could be attributed to several aspects, as addressed below:

1. Fingerprint characteristic is unique to each individual even for identical twins [39]

and it is time invariant [40]. Studies shown that fingerprint of human has been

formed with the first seven months during fetal development [5].

2. Fingerprint has obvious advantages in acceptability, which is known as a legal

and mature biometric technique [41].

3. Most studies proved that fingerprint-based biometric systems perform well in

accuracy. In FVC2006, the best accuracy was an Equal Error Rate (EER) of

2.15% in the open category, and 1.92% for a respectively light category [42]. In

addition, it costs less than most of the biometric modalities in both external

device development and storage requirement. The study of fingerprint occupied

a large amount in biometrics field, which is beneficial for further research and

development.

4. The physiological characteristic of human body provides more options for using

fingerprint. Multiple fingerprint system, for instance, is also a means for ensuring

the recognition accuracy and reliability [14].

This chapter mainly focuses on the use of fingerprint modality, especially the state-

of-the-art in fingerprint image quality assessment studies. This chapter is organized

as the follows. Section 2.2 gives a detailed description of the fingerprint modality and

several short summaries with respect to fingerprint image processing and matching

operations which provide a comprehensive view of fingerprint processing. Section 2.3

addresses a literature review of most of the existing studies in FQA, which details

what the quality of fingerprint is and how it is estimated. At last, a summarization

is presented to introduce the potential issue and existing difficulties.
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2.2 Fingerprint processing

According to the literature mentioned above, the widespread deployment of fingerprint

biometric systems could be attributed to the advantages of this modality. However,

fingerprint recognition still cannot be considered as completely full-fledged solution

because of some limitations of this characteristic such as intra-class variability and

inter-class similarity [43]. The accuracy, computational cost and quality assessment

of fingerprint system are still open issues. A fingerprint recognition system is

generally viewed as a pattern recognition system which greatly depends on salient

features extracted from fingerprint image and the correspondingly designed matching

algorithm. Without considering the decision module, this section presents issues

related to fingerprint processing.

2.2.1 Acquisition

The acquisition of a fingerprint pattern is achieved by means of capture techniques,

which could be divided into two categories: the first one is based on traditional inked

fingerprint image known as off-line collection, and the other is on-line scanned image

(also known as live-scan) digitized by special sensors [44].

An off-line image can be viewed as a digitization of existed inked image or latent

fingerprint observed at crime scenes. An inked image (Cf. 2.2(a)) 1 is typically an

obtained impression by rolling a fingertip surface with dipped ink on a well contrast

paper or card. This kind of impression is quality controllable but over-inked (wet)

and dry patterns are easily created. The off-line collection of inked image could be

either carried out by scanning the impression paper or taking high quality photo

of the impression. The latent fingerprint (Cf. 2.2(b)) 2 is an impression left by

an individual touching a surface with fingertip surface. The latent impression is

impressed on the surface due to the human skin’s oily property. This ’touch’ mode

leads to distortion of fingerprint impression and incomplete pattern of the print. In

addition, the processing for obtaining the residual pattern needs to employ special

means such as chemical techniques. Because of this, the digitized image is generally

a bad quality sample due to small finger area and distorted ridge-valley pattern [45].

On-line scanned fingerprint images are captured by putting the fingertip surface

onto live-scan device. The sensing device directly generates a digital image instead

of performing a digitization process of inked fingerprint pattern. Correspondingly,

sensor type determines image specification such as image size, resolution, contrast

1. http://en.wikipedia.org/wiki/Fingerprint

2. http://www.fbi.gov/news/stories/2011/october/print_101411

http://en.wikipedia.org/wiki/Fingerprint
http://www.fbi.gov/news/stories/2011/october/print_101411
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(a) Inked image

(b) Latent impression

Figure 2.2 – Examples of inked fingerprint image 2.2(a) and latent impression 2.2(b).

Figure 2.3 – Example of fingerprint images from the FVC databases (from the left to
right): optical, capacitive and thermal sweeping. Resolutions are over 500-dpi.

and so on. A comprehensive introduction of fingerprint scanner in terms of sensing

mechanism can be found in [43], among which three types are mainly used in current

applications of fingerprint, e.g. optical, capacitive and thermal, where optical sensor

is the most and commonly used type and the others are solid state sensors. Several

examples formed by these sensors are shown in Figure 2.3.

In Figure 2.3, one can observe some differences among the 3 images, such as

resolution and foreground area which indicates the valid area of fingerprint and is

hence greatly related to fingerprint quality. However, one can not conclude that

a specific type of sensor more probably generates bad quality images because the
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factors that constrain fingerprint quality are manifold. According to the literature

[46], in addition to the sensor types introduced above, ultrasonic sensor is as well

a well-known device, but it is relatively expensive in comparison with the others

and hence rarely adopted. Nevertheless, mutli-resolution acquisition devices [47]

and the built-in camera of smartphones are also studied to collect more informative

fingerprint images [48].

2.2.2 Fingerprint pre-processing

For a fingerprint biometric system, the raw data captured by the input sensor is a

fingerprint image in general. But the captured signal is generally a gray scale image

which is sometimes considered as an unstable means for fingerprint recognition [43].

In most cases, fingerprint recognition is carried out by using features extracted from

the original image due to the consideration of accuracy, computation consumption

and so on. In order to obtain effective and to achieve a good performance, the validity

and reliability of features are crucial for a recognition system or matching algorithm.

Because of this, several pre-processing operations are commonly performed for feature

extraction to improve the usability of the features. The pre-processing of a fingerprint

data generally involves in noise removing, enhancement, segmentation, binarization

and so on. This part presents a brief introduction of some important pre-processing

steps.

1. Enhancement of a fingerprint image is helpful to remove spurious characteristics

of fingerprint and improve the clarity of ridge-valley pattern. An enhancement

algorithm is generally carried out by applying several intermediate operations

onto the captured fingerprint image [49]. The enhancement of fingerprint image

could be performed on either a binary image (Figure 2.4(b)) or the original

gray-scale image (Figure 2.4(a)).

Binary image is obtained by using ridge extraction approach to the original

gray level image. This representation of fingerprint is beneficial to eliminate

spurious ridge configurations, but the effect depends on the performance of

the extraction algorithm. Some algorithms also perform a noise removal step

before going any further, such as Wiener filtering [50]. The algorithm proposed

in [49] generates an enhanced image from the original fingerprint image by

estimating the orientation (Figure 2.4(c)) and the frequency of ridge-valley

pattern of fingerprint. Chikkerur et al. [51] proposed an enhancement approach

based on Short Time Fourier Transform (STFT) analysis. Their approach
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(a) Original image (b) Binary image (c) Orientation im-
age

(d) Enhanced image (e) Skeleton image

Figure 2.4 – Examples of gray-scale fingerprint image 2.4(a) and its binary image
2.4(b), orientation field 2.4(c), enhanced image 2.4(d) and a skeleton image 2.4(e).

estimates block orientation via a marginal density function carried out by using

the spectrum of Fourier Transform.

2. Segmentation (Figure 2.5) is generally an operation that separates the fore-

ground area (ridge-valley pattern) from the background. This processing is

able to reduce noise effect caused by fingerprint background, especially those

on the border of ridge-valley pattern. As it is presented in the literature

[52, 43], segmentation of fingerprint is also carried out by using features which

differentiate foreground area from the background region. Because of this, some

features are also used for assessing fingerprint quality, such as Gabor response

[53] and statistic measures of image pixels [54].

Both two phase operations mentioned above are useful for feature extraction no

matter what kind of matching mechanism adopted by the recognition system is. This

advantage leads to the improvement of fingerprint image quality and hence indicates

a difference between subjective measurement [55] of quality and the biometrical

definition of the fingerprint quality.
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(a) Segmented im-
age

(b) Area contour

Figure 2.5 – Examples of fingerprint segmentation segmented image 2.5(a), and a
contour illustration 2.5(b).

2.2.3 Feature Extraction

In section 2.1, a general view of several fingerprint features is given by Figure

2.1, in which the core point can be further classified as whorl and loop pattern of

fingerprint, but it is generally described as ”the top most point of the innermost

ridge line” [56]. This kind of feature is known as level-1 feature and is widely used

for matching operation due to its distinguishing property, e.g. correlation-based

matching algorithm uses core point as the registration point [57], and some minutiae

template alignment algorithms also rely on singularity points [58].

In addition, bifurcation and ending are known as minutiae points of fingerprint

and are categorized as level-2 features, see Figure 2.6(b).

(a) Level 1 (b) Level 2

Figure 2.6 – Example of fingerprint features.

According to the literature [59], level-2 features are viewed as local features which

involve over 150 different types of characteristics of local ridges. For instance, in

addition to the marked points in Figure 2.6, some special characteristics are also

categorized as minutiae, such as island or dot which are generally looked as a small

short ridge.
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However, in most cases, fingerprint recognition system based on minutiae template

mainly use ridge ending and ridge bifurcation. These two kinds of ridge characteristics

are said to be sufficient to determine the uniqueness of a fingerprint, and hence are

useful for matching operations. Moreover, these features are easy to be captured and

relatively stable. They also occupy the largest amount of fingerprint characteristics.

Therefore, minutiae extraction algorithm mainly focuses on detecting these two

kinds of points. A detected minutia point is generally represented by at least two

components, location (x, y) and orientation θ. Nevertheless, a specific minutiae

extractor also provides some additional information of minutiae, such as type and

quality score. This is basically dependent on the requirements of the application,

such as the ISO compact card format which records location, orientation and type of

the minutiae [60]. Figure 2.7 illustrates a representation of minutia point.

(a) Ending (b) Bifurcation

Figure 2.7 – Example of minutia’s representation. Figure 2.7(a) is the angle of ending

and Figure 2.7(b) corresponds to bifurcation. (Image source: the internet.)

2.2.4 Matching

Matching (or comparison [61]) module compares a template acquired from a processed

raw data with the reference template picked up from the system database. In most

cases, data for matching operation are two templates acquired by feature extraction.

Thus, the system determines whether two fingerprints are matched in terms of the

similarity between their templates.

In general, fingerprint matching approaches are broadly divided into several

categories, including minutiae-based approach, correlation-based methods and image-

based solutions or other feature-relied matching schemes.

Minutiae-based approach is the mostly used scheme [62] due to low computation

cost and good performance as it has been introduced in section 2.1. This kind of

approach is to find alignment [63] of minutiae points between two pairs of fingerprint,

and figure out the number of matched or correctly aligned minutiae points. A general
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scheme is firstly to find a reference minutia point that generates the highest matching

scores among all the combinations of two minutiae picked up from one template

and another, and then two templates are aligned with this reference point. Such a

transformation could be formulated as X ′1
Y ′1
θ′1

 =

 cos(4θ) sin(4θ) 0

−sin(4θ) cos(4θ) 0

0 0 1

×
 X1

Y1

θ1

+

 4X4Y
0

 (2.1)

where (X1, Y1, θ1) and (X ′1, Y
′
1 , θ1)

′ respectively represent the coordinates of a point of

one template and its transformed coordinate, (4X,4Y, 0) is the offset of translation

and 4θ is the offset of rotation. Figure 2.8 gives examples of matched minutiae

points and the transformed alignment.

(a) Matched points. (b) Plots of transformed minutiae.

Figure 2.8 – Illustration of minutiae-based matching. Figure 2.8(a) shows matched

points of two templates. Figure 2.8(b) shows plot of transformed templates.

Correlation-based approach computes the correlation for the corresponding

pixels of the aligned fingerprint. Thus, this requires the alignment of two fingerprints

in the same orientation. In order to do this, the correlation for all possible alignments

is necessary, and singularity might have to be used. These constraints increase the

complexity and other disadvantages of the approach, especially for global correlation

method. In this case, mostly, local correlation [64] is applied for dealing with matching

problem, which is to compute the correlation of local regions mainly.

Image-based matching schemes generally extract a set of features from the

grey-level image [65] and generate matching result with the comparison of two sets

of extracted features in terms of a specific measurement such as distance.

In the light of the literature presented above, minutiae-based matching has

distinctive advantages and is the primary choice in fingerprint recognition systems,
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while the other two schemes are generally used as auxiliary approaches in some

particularly difficult cases. In this manuscript, hereinafter, the matching tools

adopted are all dependent on minutiae-based algorithm unless otherwise stated.

2.3 Fingerprint Quality Assessment (FQA)

Previous sections explored the general framework and procedures for processing a

digital fingerprint with a refined overview of this modality. In this case, one can note

the most important factor is matching accuracy for a biometric recognition system.

What affect the matching result most is the robustness of the matching algorithm.

However, in addition, reliable features or minutiae points are the origin of matching

performance, which fully rely on the quality of the fingerprint image. In this section,

fingerprint data quality is introduced in detail which is also the primary topic of this

study.

2.3.1 Introduction

The FQA has been studied since the end of the last century due to its effect to the

overall matching performance. According to the literature [66, 29, 67], existing studies

in qualifying fingerprint image could be classified into three categories, including

latent image, digitized patterns and camera photographs. In another word, this is

involved in the use at both indoor environment and outdoor situation [62]. In this

case, for example, luminance and temperature can be potential factors that affect the

fingerprint quality while reading a sample with a camera or thermal sweeping sensor.

However, this is mostly determined by the sensor type adopted by the biometric

system. In addition to these external effects, sample quality is primarily determined

by internal factor comes from individual condition, i.e. individual fingerprint surface

determined how well the quality is. Without any sophisticated statement, this study

mainly focuses on gray-level fingerprint pattern that had been mostly studied so

far. This kind of fingerprint image is generally captured via acquisition devices

introduced in section 2.2.1. The qualification of gray-level image is initially inspired

by some subjective criteria [55], such as ridge-valley contrast, clarity, foreground

area, etc. Researchers have also classified unexpected fingerprint images into several

cases, including some commonly poor quality patterns, such as dry, creased or

wrinkled, abraded and so on. Figure 2.9 demonstrates several examples of the

common conditions.

As it is shown in Figure 2.9, obviously, recognition result would not be guaranteed

in some cases such as the wrinkled one. These problems could be regarded as
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(a) Normal (b) Dry (c) Wet (d) Creased (e) Wrinkled

Figure 2.9 – Example of fingerprint samples: Figure 2.9(a): normal fingerprint, 2.9(b):
dry fingerprint, 2.9(c): wet fingerprint, 2.9(d): creased fingerprint, 2.9(e): wrinkled
fingerprint. (Image source: the internet.)

subjective factors which the perception tells us. However, in many cases, the

intuitively judgment is different from the requirement of the matching system. For

instance, the genuine examples depicted in Figure 2.10 illustrate such a dissent

between subjective perception and matching accuracy. Visually, samples in Figure

2.10(a) and 2.10(b) are relatively better than the other two samples in terms of

clarity and available area. They should generate relatively high matching scores.

However, the matching scores between the sample in Figure 2.10(a) and other three

samples are 187, 241 and 81 respectively (computed via Bozorth3 [68]). Details of

Bozorth3 can be found in Chapter 3, and a further discussion is given in section

2.3.3. Sample in Figure 2.10(c) seems less clear than sample in 2.10(b), yet generate

a higher score. This might be due to the performance of the matching program,

for the employed features in one of the sample is less than the other, which leads

to low genuine match. This kind of situation demonstrates the difference between

objective requirement and subjective qualification. Therefore, evaluating the quality

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 2.10 – Example of several genuine fingerprint samples. (Image source:
FVC2002DB2A.)
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of fingerprint sample is essential before proceeding to the next phase. Similarly, this

problem exists as well for objective assessment algorithms since no one of them is

perfect, which will be discussed later in this study.

To achieve such a goal, a good quality fingerprint sample should be not only a

clear image that satisfies subjective assessment criteria, but also an image that is

suitable for extracting sufficient and reliable features. According to this principle,

a state-of-the-art literature defined their quality metric of a biometric sample as a

predictor of matching performance [69]. However, this kind of mechanism largely

depends on the employed matching scores which impacts on the efficiency of the

quality metric. As a result, the standards [70] in biometrics propose to measure the

quality of a biometric data considering three aspects, known as:

1. Character, which indicates the quality of sample’s physical attribution;

2. Fidelity, which is the degree of similarity between a biometric sample and its

source, and is attributed to each of sample processing stages;

3. Utility, which refers to the impact of a biometric sample on the overall perfor-

mance of a biometric system.

Among the three properties, utility is a function of both the character and fidelity

of a sample and is generally presented as the contribution of a biometric sample to

the performance in terms of recognition error rates. This property tells a truth that

a good quality sample should be beneficial to matching operations.

In the following, this chapter concretely discusses schemes about fingerprint data

quality in terms of assessment approaches. In this study, the assessment approaches

are divided into several categories by exploring most of the representative solutions

in the existing studies, as given below.

2.3.2 Literature Review of FQA

Fernandez et al. [71] proposed a comparative study of the FQA prior to 2006, in which

they categorized FQA algorithms into several classes known as local feature-based

approaches, global feature-based methods and solutions with classifiers [71]. The

assessing approaches reviewed in [71] can be simply summarized in several points:

quality metrics based on the orientation of fingerprint pattern; algorithms depending

on the variation of Gabor responses; approaches in frequency domain; measurements

that are based on pixel information and quality indexes rely on classification with

multi-features. In addition, that study also analyzed quality metrics in terms of linear
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(a) Original (b) Orienta-
tion

(c) Fourier-
Spectrum

(d) Gabor (e) PHCWT (f) OCL

Figure 2.11 – Feature examples of fingerprint image: 2.11(a) is an original image;
2.11(b) is the orientation field; 2.11(c) is the Fourier spectrum; 2.11(d) is a Gabor
response; 2.11(e) is the Pet Hat’s wavelet and 2.11(f) is the quality image of OCL.

correlation between the metrics. Figure 2.11 shows several examples of commonly

used features.

In this manuscript, we classify the existing studies into several frameworks in

terms of their implementation to show their difference and some potential problems

that need to consider. As it is mentioned above, the existing fingerprint quality

metrics are all dependent on one or several features. According to how they are carried

out, we propose the following categorization: 1) segmentation-based approaches; 2)

a single feature-based quality index; 3) solutions rely on a combination of multi-

features or indexes, which is further divided into methods based on linear fusion and

classification. Table 2.1 shows a categorization of some of the representative studies

in FQA.

In fact, FQA had been involved in other relevant studies of fingerprint, such as

the contrast of image block [88] and region mask of ridge-valley pattern [49]. In table

2.1, work on the quality assessment of fingerprint image had been followed by an

approach based on the segmentation of directional block and non-directional block
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Table 2.1: Categories of existing fingerprint quality metrics.

Framework Solution Quality index or feature.

Segmentation
Image-based

Directional blocks area of foreground [72].
Count up poor foreground blocks [53] determined via
Gabor features in 8 directions.
Sum of directional contrast of local block [73].

Template-based
Area of reasonable informative region [74] measured
by Delaunay Triangulation of minutiae.

Single feature Feature regularity

Cumulative total energy (CTE) in the initial few
subbands of the wavelet transform of fingerprint [75].
Sum of pixels standard deviation (STD) of local
block[73].
Sub-band energy of fingerprint Fourier spectrum [73].
Weight of block symmetry [76] generated by 2-order
orientation tensor.
Square root of the absolute value of the Pet’s hat
wavelet (PHCWT) coefficients [77].
Relative contrast index (CI) [78], a logrithmic ratio
of the reflective intensity of the valleys to the one of
the ridges.
The shape of the probability distribution functions
(PDFs) of ridge orientation and ridge-to-valley orien-
tation [79].

Multi-feature

Linear fusion/regression

Orientation certainty level (OCL); Ridge frequency,
ridge-to-valley thickness ratio and ridge thickness;
Continuity and uniformity [80].
Global clarity score (GCS) and global orientation
quality score (GOQS) [81].
Gabor feature in [53]; Ratio of foreground blocks to
fingerprint image blocks; Central position [82].
Residual variances and manifold topology structure
of the PCA of a block feature vector and block Harris-
corner strength [83].
BLIINDS; SIFT; Root means square (RMS) of image
block [84].

Classification

Local SNR of the DFT of a signature (sine wave),
unimformity and curvature [85].
11-dimensional feature vector includes most of the
existing features [69].
Auto-correlation and DCT-based features of image
block [86].
A histogram of the unit activations of Self-organizing
maps (SOM) obtained by training a SOM (Neural
Network) with image block [87].
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[72]. The quality index is represented via a ratio of the area of qualified blocks to

image area. However, the determination of block prominent direction depends on

the threshold which is a thorny problem for a common application. In practical,

the segmentation-based measures for FQA are generally used in two ways, one is to

represent quality via the qualified foreground area and another segments foreground

from the image at first. For instance, Shen et al. [53] use the regularity of 8-direction

Gabor features of image block to generate quality index. Their Gabor feature is

initially used for segmenting foreground from the image, which is also involved in a

threshold. In addition, some statistic measures such as standard deviation proposed

for fingerprint segmentation [54] were also used for image quality assessment [73].

The use of segmentation criteria mentioned above are all associated with finger-

print image. In this thesis, we proposed an segmentation-like approach with minutiae

template only, which is detailed in Chapter 6. According to these literature, one can

note that foreground area is indeed a good factor for qualifying fingerprint image. In

this case, multiple segmentation could be a potential solution to generate area-based

quality metrics.

The second category discussed in this section are quality metrics that rely on a

single feature which could be applied locally or globally to the image. For example,

Nalini et al. [75] proposed to use cumulative energy of several subbands of the com-

pressed image in the wavelet domain. Lee et al. [73] reviewed three approaches based

on the fingerprint image, including local standard deviation [54], directional contrast

of local block [89] and Gabor features [53]. They proposed a feature via observing the

Fourier spectrum of the fingerprint image. Their quality metric depends on the pixels

information of the Fourier spectrum image which is of course not always the same

for different kinds of fingerprint images. Other quality metrics denoted by a single

feature could also be found in [76, 78, 79], where the symmetry features decomposed

via 2-order orientation tensor [76] depending on scale parameter and threshold, the

contrast index (CI) relies on a mean spectrum of ridge-valley measurements and

the difference of kurtosis value of the probability density functions (PDFs) [79] is

not distinctive between some convex and concave shapes that are relatively smooth.

Trial results in these literature show relatively good performance in comparison to

baseline algorithm(s). However, threshold values and parameters are unavoidable for

most of them and lead to difficulties when facing a difference scenario, for they are

easily affected by image specification.

Many of the existing studies made effort in qualifying fingerprint image with
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multiple features. This is generally carried out in two aspects: linear fusion with

weighted coefficients and classification. Both could be associated with knowledge-

based schemes [69, 84]. For instance, Lim et al. [80] proposed a quality metric

through weighted combination of local and global quality scores that are estimated in

terms of several features such as orientation certainty level (OCL) and so on. Their

quality metric also involves in several thresholds to classify the local blocks into

variant levels. Similarly, Chen et al. [81] proposed a metric by linearly combine the

orientation flow (OF) and ridge-valley clarity features. Apparently, the weighted

coefficients also have to be adjusted if a different image specification is involved.

In addition, this kind of approach can also be found in [82, 29, 83], where Chen

et al. [29] estimates the power spectrum ring with Butterworth functions instead of

observing directly the pixel information of the spectrum image, and Tao et al. [83]

observed two regularities from the circle manifold topology of an order set of pixels

from the image blocks and their principle component analysis (PCA). However, in

addition to the coefficient problem, there are also constraints of the employed fea-

tures. For example, the ridge frequency [29] depends on the resolution and image size.

Another solution with linear combination of multiple features could be illustrated

by a regression-based approach [84] which adopts genetic algorithms (GA) optimizing

the linear relationship between the quality value and genuine matching scores of

training set samples. According to the literature [90], maximizing the correlation

between the two measures is a solution for qualifying biometric sample. However,

this is fully dependent on the genuine matching results. Likewise, it is also possible to

question other quality metrics that are associated with a prior-knowledge of matching

performance, for matching algorithms might be quite different. Similarly, to assess

quality for a specific scenario, such a regression can also be implemented via other

algorithms such as gradient descent [91] and Dempster-Shafer (DS) theory [92].

Quality assessment approaches with multi-feature carried out in another form

is classification. Lim et al. [85] extended their work in [80] by classifying a certain

amount of fingerprint samples with 3 different classifiers rather than calculating

the quality metric. Later, the state-of-the art quality metric, NFIQ, employs 11-

dimension feature to estimate a matching score and classify to five levels through

a trained model of a neural network [69]. Further, in NFIQ 2.0, Olsen et al. [87]

trained a two-layer self-organizing map (SOM neural network) to obtain a histogram

of SOM unit activation with an intensity vector of image block. The histogram
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is the frequency of the occurrence of the best-matching unit (with respect to the

competitive layer) assigned to each block. The trained feature is then threw to a

Random Forest (RF) to estimate the binned genuine matching scores (GMS). This is

the first study of FQA to generate a learning-based feature by using unsupervised

approach and quite large dataset. However, the quality feature is also a regularity

of the proposed histogram, and the RF is to classify samples in terms of a prior-

knowledge of matching score. So far, there is no studies that are able to conduct a

perfect matching algorithm because the matching scores between two bad quality

genuine or impostor samples are somehow unforeseeable [27].

According to such a statement, one can note that approaches with a single feature

is limited to a specified image type and knowledge-based solutions are not absolutely

appropriate to cross-use. Besides, it is also possible to consider whether a quality

metric based-on multi-feature really makes a robust criterion or takes the advantages

of them.

2.3.3 Discussion

In the previous sections, we investigate most of the literature of FQA to illustrate the

solutions that had been proposed so far. A common fact is that biometric quality of

fingerprint sample is not completely the same as it is estimated by subjective criteria

[55, 27]. The biometric definition should be related to the matching performance

which is expected to be benefited from the qualified fingerprint samples. This problem

could be simply illustrated by some examples, as given in Figure 2.12. Figure 2.12

Figure 2.12 – Example of fingerprint samples that are visually different. From left
(S1) to right (S4): 73 2, 7, 5, 8 of FVC2002DB2A.

shows several genuine fingerprint samples that are visually different, among which

we can simply determine the leftmost one is relatively clear and complete, followed

by an image with a little bit translation, a fragment print and a scattered-looking

image. According to some subjective assessment criteria [55], we believe the quality



40 CHAPTER 2. FINGERPRINT MODALITY

of them are different as well. There is no ground-truth of them so that we chose

several metrics to generate quality values of them, as shown in table 2.2.

Table 2.2: Quality values of the samples in Figure 2.12. Metrics are from Section

2.3.2.

QM

Sample
S1 S2 S3 S4

STD 72 74 33 31

OCL 0.66 0.63 0.41 0.40

NFIQ 1 2 2 2

The smaller value of NFIQ represents good quality, while other two metrics give

an inverse representation. Apparently, sample S3 is only a partial image and sample

S4 is not a clear image with relatively small foreground area. In this case, these

two samples should have relatively bad quality values. However, NFIQ gives both a

quality value of level 2, indicating their qualities are better than average level. As

one cannot assert that this result is not reasonable without the ground-truth of them,

we simply calculate the GMS by assigning every of them as the enrollment, results

are given in table 2.3.

Table 2.3: Genuine matching scores calculate by using Bozorth3.

Enroll

Sample
S1 S2 S3 S4

S1 enroll 266 72 230

S2 enroll 263 95 231

S3 enroll 72 95 43

S4 enroll 228 230 43

According to the matching scores, one can note that S3 leads to relatively lower

values when it is used as the enrollment. Although the matching is fully dependent

on minutiae including minutiae number but good quality sample should be suitable

for matching [27], particularly genuine matching.

2.4 Conclusion

According to the discussions given in previous sections, a preliminary body of knowl-

edge about fingerprint modality and its qualification could be acquired. Meanwhile,
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one can note that FQA is still an open issue due to several problems:

1. Some assessment approaches based on multi-feature and a prior-knowledge of

matching performance is not absolutely appropriate for multi-vendor applications,

for the intra variability and inter similarity could be quite different when an

external matcher is employed. Furthermore, multi-feature fusion does not always

generate a more robust quality index than some metrics that rely on a single

feature. A comparative study could demonstrate such an observation and is given

in later chapters.

2. Recent studies began focusing on the fingerprint modality for mobile devices which

make high resolution image and camera photograph available, and hence requires

qualifying image via different solutions.

3. Quality score normalization is also a challenge due to the variety of diversely

collected samples, which limited the effect of normalization techniques [93, 94].

To this end, this chapter gives a longitudinal study of fingerprint modality including

quality assessment. This manuscript hereinafter presents the study of the FQA and

metric evaluation in details, which mainly includes a new evaluation framework and

several quality metrics implemented in different ways.

One important question concerns the validation of such a fingerprint quality

metric. We discuss this aspect in the next chapter.





Chapter 3

Validation of Biometric Quality

Assessment

This chapter addresses the validation/evaluation approaches related to the quality

metric of biometric modalities. The main contribution of this chapter is a new

framework for validating quality metrics, which is defined in terms of the utility

property of biometric sample and is carried out by considering the impact of

the enrollment sample(s) on the overall performance.

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Validation based on Enrollment Selection (ES) . . . . . . . . . . 46

3.4 Experimental demonstration . . . . . . . . . . . . . . . . . . . . 53

3.5 Case study: No-Image Minutiae Selection (NIMS) . . . . . . . . 61

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Introduction

Quality control works as a toll-gate to guarantee the matching performance

of a biometric system by forbidding bad quality samples. In this case, the

validity of a quality metric should be verified via its contribution to the overall

performance. This study firstly pays attention to the evaluation approaches with

respect to fingerprint quality metrics. To evaluate quality metrics, existing studies

have conducted evaluation with many different criteria, including subjective mea-

surements and objective solutions. In this chapter, first of all, a quick review of some

evaluation algorithms related to fingerprint quality metric is presented, and then a

generic validation framework proposed in this study is given in detail.

43
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3.2 Related Works

As it has been discussed in Chapter 1, Phillips et al. [30] pointed out the significance

of protocols for system level evaluation. However, some earlier studies in evaluating

fingerprint quality metrics do not provide totally open protocols such as the employed

dataset [27]. In addition, some other studies directly relate the evaluation of quality

metric to the elements of subjective assessment [81], and some approaches proposed

later choose to evaluate their metrics with the existing ones [75].

Similarly, Shen et al. [53] divided fingerprint images into several classes according

to samples’ quality type and compared their approach with another via computing

the proportion of correctly classified samples. Some others propose to compute a

quality benchmark through the observation of automatically detected minutiae of

fingerprint [80, 81]. These approaches failed to explicitly reflect the relation between

quality metric and matching performance. In addition, these attempts are more or

less related to subjective observations when validating quality metric, such as the

manual classification of fingerprint quality type, differentiating spurious minutiae or

missed minutiae from the template. However, this kind of operation can be easily

achieved by employing a synthetic fingerprint generator such as SFinGe [95].

Figure 3.1 – Plots of 5 isometric bins’ EER values, where blue points are obtained

by NFIQ and red points correspond to QMF.

Tabassi et al. [69] defined biometric sample quality as a predictor of matching

performance, for they observed that biometric samples of good quality should pro-

duce relatively high genuine matching scores (GMS) which are well separated from

impostor matching scores (IMS). However, the prediction is totally dependent on the

performance of the employed matching algorithm. Chen et al. [29] proposed that

the EER should be monotonically decreased after a certain part of samples of bad

qualities had been pruned. In addition, they also considered that the detected minu-
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tiae of good quality samples should not greatly varied after enhancement. Another

consideration of their study is that the detected minutiae of good quality samples

should have relatively good consistency with manual groundtruth of minutiae. This is

somehow a coherent principle when dealing with minutiae-based matching algorithms.

Obviously, matching performance could be guaranteed if minutiae are precisely de-

tected. This assumption is restricted by the underlying matching techniques, i.e.

minutiae-based matching approaches. Figure 3.1 illustrates an example of Chen’s

approach obtained by using NFIQ and QMF [96] on one FVC database.

As it is illustrated in 3.1, this evaluation criterion requires an equivalency of

sample number in each bin, otherwise the EER values of the bins could be affected.

A valid quality metric should generate monotonically decreasing (or increasing) EER

values of the bins. In addition, it is necessary to consider whether this approach is

also appropriate to a quality metric that represents biometric sample qualities with

several labels, because the difference between samples of the same label is unknown,

and hence it is inappropriate to get samples of variant labels divided into the same

bin, i.e. the EER values could be seriously contaminated by the outliers of each

other. For example, the result of NFIQ in Figure 3.1 shows a disordered plot of the

EER values of the bins. The details about ’isometric bins’ could be found in the

reference article.

Figure 3.2 – An illustration of the error versus reject curve. Database is

FVC2002DB2A, and selected metrics had been presented in Chapter 2.

Grother et al. [27] discussed that the quality measure of a biometric sample is

generally employed within 3 different cases, including enrollment phase, verification

task and identification. They proposed several evaluation approaches associated

to matching threshold and quality levels, including rank-ordered DET curve, error

versus reject curve and the approach based on the Kolmogorov Smirnov (KS) test.

As they are closely related to the quality level, some of them may not be completely

suitable for quality metrics with a larger range values, such as KS test-based approach.
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The Figure 3.2 shows another form of the error versus reject curve which is

independent to the quality level. For example, one database with M individuals

and N samples per individual, the verification operation could be simulated via

assigning a specified sample (for example, the first one) of each individual as the

enrollment, while other N − 1 samples act as authentication samples. Each time, one

authentication sample with the lowest quality is eliminated for each individual, i.e. a

fixed percentage of low quality genuine samples are removed each time. The FNMR

then can be calculated with a threshold which is similar to the definition in [27].

3.3 Validation based on Enrollment Selection (ES)

According to the statement addressed in Chapter 2 and Section 3.2, one can observe

that a quality metric acts like a black box producing a measure of one biometric

sample. No matter how a quality metric is defined, a valid metric is expected to

define good quality in terms of the positive contribution to the matching performance,

which is known as a prediction of matching performance [27]. However, this is not

an absolute assertion due to the limitation of matching algorithms. In this case, the

evaluation of a quality metric might not be always similar when different comparison

tools are involved. Therefore, the validity of quality metric proposed in this study

does not emphasize what kind of criteria are used for making a definition of ’good’

or ’bad’ quality, such as clear ridge-valley pattern, good local orientation uniformity

and so on. The ’good’ quality in this study is simply considered as the capability

of a biometric sample contributing to the degradation of matching error. Hence,

the validation of quality metric in this study is totally indicated by the overall

performance obtained by considering samples’ quality.

According to Philips et al. [30], generally, a system level quality control is

performed after the capture session. This process would be executed as a loop to

acquire a qualified sample which determines the quality of the final enrollment sample

of an individual. The re-capture at the same session might result in Failure to Enroll

(FTE) and the Failure to Acquire (FTA) caused either by algorithm crash or sensor

overtime.

However, to validate a quality metric, it is avoidable to consider this problem

involved in the capture and enrollment sessions as it had just been mentioned. The

contribution of this study, therefore, made an effort to provide a general validation

approach of biometric sample quality metric by considering the impact of enrollment

variations on matching performance. No matter under what framework (system
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level or technology) the evaluation test is performed, enrollment can be a supervised

process. In this case, without emphasizing the test type, the validation framework

proposed in this paper is an algorithm level approach in the enrollment phase which

ensures that there is no need to consider effects on FNMR and FMR raised by

authentication mode, i.e. verification or identification. The proposed framework is

denoted as the Enrollment Selection which relies on both the quality value and the

EER (or AUC) value of a biometric sample, and the later is an objective measure

representing the utility value of the sample, details are given in the following.

3.3.1 Algorithm description

The validation framework is consisted of an employed matcher R(·, ·), a quality

metric QI(x) that need to be evaluated and a trial dataset DM×N . The validation is

totally dependent on the matching scores and quality values generated from DM×N .

3.3.1.1 Enrollment sample and matching score

In this validation framework, the trial dataset is supposed to have M individuals

and N samples per individual. The enrollment sample is hence defined for each

individual, as illustrated by Figure 3.3.

Figure 3.3 – Illustration of enrollment sample and authentication samples.

Figure 3.3 represents five samples of one individual of a database, where the

sample marked by a rectangle in red dash lines represents the enrollment sample.

Therefore, other four samples are used for authentications once the enrollment is

determined.

In this validation framework, the intra-class and inter-class matching scores

associated to an enrollment (Si,j) is given by N − 1 genuine matching scores (GMS)

[97]

gmsi,j,k = R (Si,j, Si,k) j 6=k (3.1)

and N − 1×M − 1 impostor matching scores (IMS)

imsi,j,l,k = R (Si,j, Sl,k) i 6=l and j 6=k, (3.2)

where i and l represent the subscript of individuals, j and k are sample subscripts,

respectively.
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3.3.1.2 Sample utility and quality

The proposed validation framework depends on several indexes for enrollment selec-

tion. The first one is an objective index represented by sample EER value. According

to the definition in Section 3.3.1.1, one can calculate a FMR and a FNMR for each

sample of each individual when it is specified as the enrollment. The FMR and

FNMR of one sample are computed from a given set of threshold t:

FNMRi,j(t) =
card{gmsi,j,k|gmsi,j,k < t}

N − 1
,

FMRi,j(t) =
card{imsi,j,l,k|imsi,j,l,k≥t}

(N − 1)×(M − 1)

(3.3)

where ’card’ denote the cardinality of a given set of matching scores. The sample

EER of Si,j, SEERi,j, is simply computed as the point (of error rates) where

FNMRi,j(t) = FMRi,j(t).

Therefore, with a SEERi,j of one sample, one can have a measure that how

much the contribution of a sample is within the experimental framework consisted

of employed datasets and matching algorithms. In this case, the sample EER is

regarded as a substitute of the ground-truth of a sample within the involved matching

framework, which is also denoted as sample utility in this thesis.

Another measurement of each sample is simply the quality value generated by an

involved QI(x), which gives

qi,j = QI(Si,j) (3.4)

for each sample.

3.3.1.3 Selection indexes

According to the description above, such a calculation results in a total of M-by-N

sample EER values and sample qualities (in the same size) for one database, by

which one can perform enrollment selection (ES) in three cases: The first case of

ES is carried out by choosing the best sample of each individual as the enrollment.

The ’best’ here means that the SEER of the selected sample is the smallest (best)

among all the samples of one individual. This is defined by the consideration that

one matcher cannot obtain better performance than this case from a given dataset.

Likewise, one can achieve another ES in the opposite way which indicates the worst

case. In this paper, the two cases are denoted as the best utility and the worst

utility, respectively.

Figure 3.4 demonstrates the enrollment selection in terms of the best utility, in

which the light color represents relative smaller sample EER value.
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Figure 3.4 – Illustration of enrollment selection framework. S2,N is selected as
enrollment in case SEER2,N = min (SEER2,1, · · · , SEER2,N).

The third case is simply the enrollment selection in terms of the best quality

for each individual. The enrollment sample of each individual is determined by

doing so. In each case, according to equation 3.1 and 3.2 one can calculate again

the intra-class and inter-class matching scores for the whole dataset by using the

assigned enrollments. Finally, several global measurements can be figured out via

the intra-class and inter-class matching scores of the trial dataset. The details are

given in the following.

3.3.1.4 Global measures and AUC ratio

The intra-class and inter-class matching scores of one trial database DM,N are

respectively consisted of (N − 1)×M genuine matching scores

GMS = {gmsi,j,k | i∈(1, · · · ,M), (j, k)∈(1, · · · , N) and j 6=k}, (3.5)

and (N − 1)×(M2 −M) impostor matching scores

IMS = {imsi,j,l,k | (i, l)∈(1, · · · ,M) and i6=l, (j, k)∈(1, · · · , N) and j 6=k}. (3.6)

Both expression 3.5 and 3.6 indicate that the comparison is only performed between

the specified enrollment sample and other non-enrollment samples.

Further, by given a set a threshold t, one can calculate the FMR and FNMR of

the trial dataset, respectively formulated as

FNMR(t) =
card{gmsi,j,k|gmsi,j,k < t}

(N − 1)×M
,

FMR(t) =
card{imsi,j,l,k|imsi,j,l,k≥t}

(N − 1)×(M2 −M)

(3.7)
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where ’card’ represents as well the cardinality as presented in expression 3.3.

In return, one can generate a global ROC curve via a plot of the FMR against

the FNMR (in eq. 3.7). Meanwhile, one can calculate a global AUC value and a

global EER at a point where FMR(t) = FNMR(t).

By such a computation, one can have a graphical illustration and two quantitative

measures for each of the three selection cases discussed in Section 3.3.1.3. According

to the definitions above, for a relatively good metric, one can consider that the overall

performance indicated by the ROC curve should be much close to the best case

when choosing samples of good quality as the enrollment (the global EER and AUC

either). A valid quality metric would satisfy this condition as much as possible.

In this case, we also define a global index namely AUC ratio by using three

global AUC values obtained via the best utility, worst utility and the best quality,

respectively. The definition is formulated as

rauc =
Qauc − Wauc

Bauc − Wauc

, (3.8)

where Qauc is the global AUC value of the ROC curve computed in terms of the best

quality samples as it had just been mentioned, Bauc and Wauc are the global AUC

values correspond to the ROC curves of the best and worst utilities. Obviously, the

larger the value of rauc , the better the performance of quality metric is.

Figure 3.5 demonstrates a result of these calculations.

Figure 3.5 – Graphical illustration of the enrollment selection result.

The result in Figure 3.5 are obtained by using NBIS matching software Bozorth3

[68], and the sample utility is also calculated by using the matching scores of the

Bozorth3. Note that the sample utility values must be calculated via the same
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matching algorithm when using the proposed validation framework to estimate the

performance of a quality metric.

In Figure 3.5, one can note that the NFIQ obtains a better result in comparison

to the PHCWT (given in Chapter 2). The ROC curves are able to clearly show the

difference between the performance of them, where the ROC curve of the NFIQ is

closer to the best case than the one of the PHCWT. Both the global EER and AUC

values of each case are given in the figure. Meanwhile, the AUC ratio of the NFIQ

and PHCWT are 0.7805 and 0.6782, respectively.

Apparently, the proposed validation framework is fully able to estimate the

performance of a biometric quality metric. However, as the dimension of the GMS

and IMS are quite different from each other, i.e. the IMS could be much longer

than the GMS when the size of the trial dataset is getting larger. Because of this,

we also define the global measures with a bootstrapping method, which is detailed in

the following section.

3.3.2 Global measures with the Confidence Interval (CI)

As it has just been discussed above, a Confidence Interval (CI) of each global measure

is defined via the bootstrapping method [35]. The bootstrapping method enables us

having a set of bootstrap samples of a global measure, and hence one can calculate

the CI of the associated global measure. The bootstrap of the enrollment selection is

dependent on random sampling of both the IMS and GMS with replacement, for the

global measures are derived from the two sets of matching scores. In this case, the

bootstrap is performed by

1 A set of L samples are randomly chosen from the M×(N − 1) intra-class

matching scores which are calculated after enrollment selection.

2 Similarly, another set of L samples are randomly chosen from the (N−1)×(M2−
M) inter-class matching scores.

3 The global measure given in Section 3.3.1.4 could be calculated from the two

sets of randomly selected matching scores. For instance, a global EER can be

figured out in a similar way to equation 3.7 (by using L instead of (N − 1)×M
for FNMR and FMR either).

4 Step 1 to 3 are performed for 1000 iterations, which achieves having 1000

bootstrap samples of a global measure and an average of the 1000 samples of

the global measure are preserved at last.
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Note that the size L of the matching score samples could be changed according

to the dataset dimension. The changing is to ensure the diversity of the matching

samples, especially for impostor matching scores.

According to the definition above, we can quantify the performance of a quality

metric with an average value associated to a global measure. However, a further

validation needs to be acquired for making a significant comparison between variant

quality metrics, especially for comparing them in a statistical manner. To do so,

the confidence interval (CI) [98, 99] at 95% level is defined for a global measure

with those bootstrapping samples. In biometrics, the confidence intervals of two

measurements are able to indicate the statistical difference between them, if their

confidence intervals do not overlap each other [100]. By doing so, the difference

between quality metrics could be determined statistically.

To define the CI of the global measure, the global EER is used hereinafter in

this thesis, and the CI of other global measures can be calculated in the same way.

The CI is formulated as the follows:

∀ bootstrap samples of the global EER Xr.

∃ a population X = {Xr|r = 1, · · · , 1000}, and its CI at the confidence level of

95% is given by

CI = [X − σ√
1000

µα/2, X +
σ√
1000

µα/2], (3.9)

where α = 100%− 95%, X is the average of X, σ is the standard deviation of X

and µα/2 is the α/2 quantile. Details about CI and bootstrap could be found in any

statistic book.

Note that the global EER value hereinafter is represented by the average value

defined in this section unless otherwise stated. A full demonstration of the global

EER and its CI is presented in the experimental section.

3.3.3 Monotonical global EERs

The description above is denoted as a simple enrollment selection. A more strict

usage could be conducted with monotonically global EERs, i.e. the enrollment

selection could be done by orderly choosing every of the samples that had been sorted

in terms of quality as the enrollment. Correspondingly, one can obtain N global

EER values and they should be in a monotonically increasing (or decreasing) order

in an ideal case. However, it fully relies on the matching algorithm and the quality

metric, and hence cannot be easily achieved.
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3.4 Experimental demonstration

In this section, several experiments are performed to demonstrate how the proposed

validation approach is used for estimating a quality metric and making comparison

between variant metrics.

3.4.1 Protocol and database

Five datasets of the Fingerprint Verification Competition (FVC) are used in the

experiment: FVC2000 DB2A, FVC2002DB2A and the first three databases of

FVC2004 [101]. They are created by using different sensors, and the details are given

in Table 3.1.

Table 3.1: Dataset specification.

DB Sensor Dim. Resolution

00DB2A Low-cost Capacitive 256×364 500dpi

02DB2A Optical 296×560 569dpi

04DB1A Optical 640×480 500dpi

04DB2A Optical 328×364 500dpi

04DB3A Thermal 300×480 512dpi

Each database contains 100 individuals and each of them has a total of 8 gray

level samples, i.e. M=100, N=8 in the experiment. Note that these datasets are

employed throughout all this thesis unless otherwise stated. A glance of the datasets

are given by several samples in Figure 3.6.

The software used in the experiment includes minutiae detection and matching

tools, and quality metrics. Grother et al. proposed that a quality algorithm is possible

to show a generality or interoperability to multiple matchers [27]. They believed

that the generality would not be certainly predicted as the behavior of matching

algorithms is different. In order to test such a purpose, this study conducts validation

experiments on two different matching algorithms, one is NIST matching approach

namely Bozorth3 which involves in a minutiae detection application MINDTCT [68],

and another set is implemented via a commercial fingerprint SDK. The MINDTCT

is an extractor generating INCITS 378-2004 standard minutiae template, while the

commercial SDK has 6 options of the existing minutiae template standards [60]. In

the experiment, the minutiae templates of the ISO/IEC 19794-2:2005 standard have

been extracted. Both two matching approaches produce an integral score for each

comparison of two fingerprint minutiae templates. Correspondingly, the experiments
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Figure 3.6 – Illustration of dataset samples.

involve 7 genuine matching operations and 693 impostor matchings for each sample

of one individual. Totally, 5600 GMS and 554400 IMS need to compute for each

database.

To demonstrate the validation approach of this study, two fingerprint quality

metrics are adopted. The first quality metric is denoted anonymously as Q1 which

represents sample quality via discrete labels from 1 to 5, where low value denotes

good quality. Another one is a trial metric denoted as Q2 which generates continuous

quality values and they are normalized into [0, 100] representing quality in an

ascending order. Note that Q1 relies on multi-feature fusion and a prior-knowledge

of matching performance, while Q2 depends on a single feature. This is able to

conduct a comparative study as we had concluded in Chapter 2.

3.4.2 Results

In this section, both the sample utility and quality measurements of fingerprint

samples are used for demonstrating the proposed enrollment selection (ES) approach

via an interoperate study.

First of all, according to Section 3.3.1.2, two sets of sample utility values are

calculated by using the matching score of the Bozorth3 and the matching scores of

the SDK, respectively. The ROC curves are not given anymore since this section.

In this case, the enrollment selection based on the sample utility is performed
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in terms of the ’best’ criterion defined in Section 3.3.1.3. Global EER values are

computed in terms of the definition in Section 3.3.2.

3.4.2.1 Global EER

First, the ES is performed with two quality metrics. Results are given by several

plots of the global EER values, see Figure 3.7.

(a) Result based on MS Boz

(b) Result based on MS SDK

Figure 3.7 – Plots of global EERs obtained by using quality-based ES. Figure 3.7(a)
is the result based on MS Boz and Figure 3.7(b) corresponds to MS SDK.

Figure 3.7(a) and Figure 3.7(b) illustrate the results obtained with MS Boz and

MS SDK, respectively. In each figure, the global EERs based on the associated

sample utility (best case for ES) are plotted as a reference. Note that the sample

utility values calculated from the matching scores of the Bozorth3 (MS Boz) and

the matching scores of the SDK (MS SDK) are (hereinafter) denoted as ’UtilityBoz’

and ’UtilitySDK’, respectively.

Apparently, by observing the global EER values in Figure 3.7(a), Q2 performs

relatively bad on 04DB1 and 04DB2 when MS Boz is involved. The global EER

obtained by Q2 for these two datasets are 17.53% and 14.16%, while the counterparts
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of Q1 are 15.37% and 13.32%, respectively. However, in Figure 3.7(b), one can

found that Q2 generates better results than Q2 for each database when a vendor-free

matcher (Q1 is related to MS Boz) is used in the experiment.

Table 3.2: The 95% confidence interval of EER of each quality metric.

DB
QM

Q1 Q2

00DB2A (NBIS) [0.0492 0.0502] [0.0488 0.0499]

02DB2A (NBIS) [0.1326 0.1340] [0.1103 0.1119]

04DB1A (NBIS) [0.1529 0.1545] [0.1744 0.1762]

04DB2A (NBIS) [0.1321 0.1344] [0.1407 0.1425]

04DB3A (NBIS) [0.0741 0.0752] [0.0694 0.0706]

00DB2A (SDK) [0.0021 0.0023] [0.0008 0.0009]

02DB2A (SDK) [0.0011 0.0013] [0.0010 0.0011]

04DB1A (SDK) [0.0268 0.0276] [0.0188 0.0194]

04DB2A (SDK) [0.0390 0.0402] [0.0327 0.0338]

04DB3A (SDK) [0.0190 0.0195] [0.0159 0.0164]

By doing so, from the figures, one can note that the shape of the curves are

basically consistent with the plots of the sample utility, especially in Figure 3.7(b)

meaning that a good matching algorithm may blurs a quality metric, i.e. it is easier

to approach to a relatively better matching result if the matcher is relatively robust

such as the result of Q2 on 00DB2 in Figure 3.7(b). In addition, in Figure 3.7(b),

the difference between the two metrics on 02DB2 is not distinctive which could be

observed by the CI, see Table 3.2.

3.4.2.2 AUC Ratio

Second, a demonstration of the AUC ratio addressed in Section 3.3.1.4 is presented

as well. By using the AUC values (average values as well), the AUC ratio of each

quality metric is calculated in terms of equation 3.8, see results obtained from two of

the trial datasets in Table 3.3.

Table 3.3: AUC ratio of each quality metric based on two sets of matching scores.

DB

AUC R.
Q1 Q2

02DB2 Boz 0.8280 0.9020

02DB2 SDK 0.9910 0.9980

04DB1 Boz 0.7699 0.6676

04DB1 SDK 0.8431 0.8471
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In Table 3.3, it shows the AUC ratios of the two quality metrics obtained from

02DB2A and 04DB1A, where ’Boz’ and ’SDK’ represent two groups of matching

scores, respectively. The results are completely in line with the ones given in Figure

3.7.

3.4.2.3 Monotonic Global EER

As it is presented in Section 3.3.3, a more sophisticate case for validating a quality

metric with the proposed approach is a set of monotonically varied global EER values.

However, it is not easy to achieve this kind of result. We simply use one of the trial

datasets to illustrate this scheme, see Figure 3.8. In the figure, the plots indicated

Figure 3.8 – N -level (N is 8 here) global EER values based on enrollment selection.
The graph given here is only the result obtained from matching scores of Bozorth3.

by ’UtilityBoz’ are global EERs (best case) obtained by using the sample utility

values computed with MS Boz, while other two groups of plots are results of the

quality metrics. The result based on sample utility is simply given as a reference.

The first level (1thQ) of each plot represents the case that the worst quality sample

of each individual is used as enrollment, followed by the second and so on. In this

case, loosely speaking, it should generate monotonically increasing global EER series

if the quality metric is effective enough.

In Figure 3.8, one can note that sample utility satisfies the validation criterion,

where other two metrics failed to generate monotonic global EER values. This result

can demonstrate that it is quite difficult to observe similarity between sample quality

and its utility unless the quality metric is fully relevant to the matching algorithm,

i.e. quality metric is not an absolutely linear predictor of the matching performance,

at least for the overall performance. The GMS in some cases can be predicted as the
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genuine matchings mostly produce reasonable results. However, when bad quality

samples are involved in a comparison, both GMS and IMS are unforeseen [27]. In

this case, some studies estimate quality metrics with only genuine matchings [102].

In this study, we believe a good quality metric is helpful to the degradation of the

global error rates.

Likewise, the result obtained by using MS SDK is also given, see Figure 3.9.

Figure 3.9 – N -level (N is 8 here) global EER values based on enrollment selection.

The graph given here is only the result obtained from matching scores of the SDK.

Apparently, according to the plots in Figure 3.9, one can note that matching

algorithm significantly impacts on the evaluation results. Besides, each point is

actually a global EER value computed in the way presented in Section 3.3.2. Thus,

there is a very small error which becomes more distinctive as the overall matching

performance approach to 0. In the experiment, this error is within 5 increment of

the precision of the global EER value, which is calculated via observing the variation

of this measure with 1000 sample. At this point, the FNMR given in Section 3.2

could be an auxiliary option for evaluating quality metric, for the impostor matching

is not involved.

3.4.2.4 Pearson Correlation

In Section 3.2, we reviewed an evaluation approach based on isometric bins [29]. The

monotonically varied EER value of each bin demonstrates the similarity between

sample GMS and its quality, which could be measured by the Pearson correlation

coefficient [103] between the maximum GMS of the sample and the quality value

simply as we mentioned in Section 3.2. In this part, we use 02DB2 and 04DB3 to

show this property. First of all, the maximum value among the N−1 GMS of each
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(a) 5 isometric bins for 02DB2A. MS Boz (b) 5 isometric bins for 04DB3A. MS Boz

(c) 5 isometric bins for 02DB2A. MS SDK (d) 5 isometric bins for 02DB2A. MS SDK

Figure 3.10 – Plots of bins EER values. 3.10(a) and 3.10(b) are results of 02DB2
and 04DB3 obtained by using MS Boz; 3.10(c) and 3.10(d) are counterparts based
on MS SDK.

sample is figure out, which results in a M×N matrix of maximum value. Next, we

calculate the Pearson correlation between the maximum GMS and quality values. A

graphical illustration is given in Figure 3.10.

In Figure 3.10, one can note that two metrics satisfied the evaluation criterion

for 04DB3 when the matching score of SDK is involved, and partially weird on this

database when using MS Boz. However, Q2 shows a monotonically decreasing error

rate on 02DB2 when MS Boz is used, but it is not a distinctive variation and hence

means a low linearity. To show this problem, the Pearson correlation coefficients of

the four cases are given in Table 3.4.

Table 3.4: AUC ratio of each quality metric based on two set of matching scores.

Metric Corr

DB et MS
02DB2 Boz 04DB3 Boz 02DB2 SDK 04DB3 SDK

corr Q1 -0.2728 -0.3357 -0.2505 -0.4521

corr Q2 0.2179 0.4851 0.2485 0.6188



60 CHAPTER 3. VALIDATION OF BIOMETRIC QUALITY ASSESSMENT

Apparently, according to the correlation coefficients, quality metrics that obtained

clearly decreasing EER values demonstrate higher similarity with the maximum

GMS. The variation of the similarity (absolute coefficient higher than 0.3) also shows

the effect of the matching algorithm.

3.4.2.5 Discussion with sample utility

In this section, the two sets of the sample utility values are independently used as

two groups of quality values, and substituted to the enrollment selection algorithm.

The enrollment selection is also performed in terms of the ’best’ criterion defined in

Section 3.3.1.3. This is to demonstrate a limitation that some quality metrics based

on learning a prior-knowledge of matching scores may not be an appropriate solution

for a general application, for the results of the interoperate evaluations could be

quite different even the prior-knowledge is only genuine matching scores.

The validation results by using sample utility are given in Figure 3.11.

(a) Matcher of NBIS

(b) Matcher of SDK

Figure 3.11 – Plots of global EERs obtained by using utility-based ES. Figure 3.11(a)

is the result based on MS Boz and Figure 3.11(b) corresponds to MS SDK.
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Figure 3.11 gives the global EERs obtained from the five trial datasets by

using these two sets of sample utility values. According to Figure 3.11, both

the UtilityBoz and UtilitySDK are all the approximations of the ground-truth of

the samples but only valid to the matching algorithm of their own. Similarly, one

can consider whether the evaluation result is robust or not when using different

matchers to estimate the performance of a quality metric based on a prior-knowledge

of matching scores. This limitation has already been demonstrated in Section 3.4.2.1,

where the result of Q1 varies greatly when it is being evaluated with different

matching algorithms. Similarly, next section gives a further investigation of this

problem. Note that we don’t assert reults of interoperate evaluations should be the

same because the matching algorithms are different from each other. However, such

a experimental result is able to show this problem clearly.

3.5 Case study: No-Image Minutiae Selection (NIMS)

The statement in previous section gives a complete definition of the enrollment

selection. In this section, an auxiliary method is presented for validating the quality

metric, by which enrollment selection is extended as dual-step operation. This part

is carried out via No-image Minutiae Selection (NIMS) [104] for reducing the size of

original minutiae templates.

3.5.1 Background

Due to the advantages in privacy and efficiency requirements, minutiae template-

based matching is the dominant technique among the authentication approaches of

fingerprint image [77]. The application of minutiae-based matching mainly involves

two categories: resource-free systems and embedded employments such as smart-

card [105]. The former has almost no limitation of the computing cost and the

storage requirement. However, these factors are the prerequisites for the embedded

applications, especially for those match-on-card (MOC) systems [106]. In this case,

to satisfy such requirements, some on-card applications support only a minutiae

template that contains a certain amount of minutiae such as 60 points. Generally,

the amount of minutia points of one template could be less than 130 and it is fully

dependent on the extractor and the image quality. Therefore, it is necessary to

perform a removal or selection of minutiae from the original template before the

templates can be used by those resource-limited applications. Meanwhile, such an

operation should be able to guarantee the overall performance after a set of minutiae

points had been pruned from the original template.
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Existing studies of minutiae selection is generally implemented with an image-

based quality value for each minutiae, and low quality points are pruned at first. The

quality-based selection is followed by distance-based approach with respect to the

image center if the remaining points still exceed the maximum minutiae number [107].

Vibert et al. [108] proposed several NIMS approaches to perform blind selection with

non-compact templates. The kmeans and truncation proposed in [108] are used as

the reference. The former is implemented with the Fuzzy c-means [109] algorithm

clustering the minutiae of one template into several groups and the points are pruned

in terms of their membership grade with regard to the associated cluster(s). However,

this method is easy to undulate due to the c-means algorithm.

This study simply presents one of the NIMS criteria for validating quality metric,

which is based on the vertices of the minutiae template [104], details are given in the

following.

3.5.2 Vertex criterion

The selection criterion presented in this part is simply the distance between each

vertex (Vert) minutia and the centroid of the convex hull (polygon) of the minutiae

template. The minutiae template is of the international standard for the compact

card application (ISO/IEC 19794-2:2005) [60]. First, the distance is simply calculated

between each vertex and the centroid (pink star) of the polygon. We use the centroid

of the polygon simply because the quality of an image is unknown and it is not

appropriate to use the image center for some samples with only light translation of

the foreground (even if the quality is not bad) (Cf. Figure 3.12).

Figure 3.12 – Illustration of the disadvantage of using image center.

In Figure 3.12, one can observe that some minutiae are relatively far from the

image center (marked by cross ring) and removing these minutiae can lead to low

genuine matching if the translation of another template is tiny or relatively smaller.



3.5. CASE STUDY: NO-IMAGE MINUTIAE SELECTION (NIMS) 63

For this measurement, with iteration operations, the vertices are pruned according

to the largest value of the distances one by one. The desired number of selected

minutiae ranges from 30 to 60 increased by 2.

3.5.3 Erollment selection for reduced template

The enrollment selection (ES) is to measure the performance of a quality metric

in terms of the decrease of the error rate by choosing samples of relatively good

quality. On the other hand, it is more probably to keep more reliable minutiae points

for the enrollment sample if the quality of the original sample is better, and hence

is beneficial to the matching accuracy of the reduced templates. In this case, the

enrollment selection with the quality of the original sample could also be performed

for the reduced template.

In this part, concretely, we firstly use the quality metrics calculating the quality

value of each original sample, and then perform minutiae selection obtaining the

reduced template and their matching scores. This operation generates 11 new datasets,

where the template size of each dataset is fixed. After that, the ES operation is

performed to each of the reduced dataset, detailed as:

1. The first sample of each individual is chosen as the enrollment to calculate a

global EER for the original dataset. This global EER is denoted as ’NoSel’.

2. The ES operation is performed to each reduced dataset by using quality values

of the original dataset. This operation hence computed another group of 11

global EER values for each reduced dataset. These values are able to measure

the effect of quality to the NIMS. The effect is hence indicated by the difference

between ’NoSel’ and these 11 global EERs.

3. The ES is also performed to each reduced dataset by using the utility of the

original database. This is to obtain a set of reference global EERs, for outlier

is an unavoidable problem for the quality metrics.

Finally, a quality metric is validated via a comparison between ’NoSel’ and global

EERs obtained by step 2.

3.5.4 Experimental demonstration

In this section, the ES is performed with NIMS as it has been mentioned in Section

3.5.3. This kind of operation needs to perform on each reduced dataset. Therefore,

we simply choose one original database as an example, for which the 04DB1 is used
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(a) Result based on MS Boz

(b) Result based on MS SDK

Figure 3.13 – Plots of global EERs obtained by applying the ES to reduced templates.
Figure 3.13(a) is the result based on MS Boz and Figure 3.13(b) corresponds to MS
SDK.

since there is a dissent between two matchers. In addition, the reduced datasets

and their matching scores of 04DB1 are already available in [108]. The matching

performance with the original template (NoSel) of this database is far from the

utility-based EER (VertUtility), which makes a clear illustration, see plots of the

global EERs given in Figure 3.13.

In Figure 3.13(a) and 3.13(b), ’UtilityBoz’ and ’UtitlitySDK’ respectively indicate

the plots of the global EERs obtained via the utility of the ’MS Boz’ and ’MS SDK’

for each reduced template set. Obviously, by comparing the plots of the global

EER values based on two metrics, Q1 (blue) and Q2 (red), the result is basically

consistent with the one of the original ES operation (Cf. Figure 3.7). A little bit

variation appears at over 30 of the desired number (x-axis) when calculating the

global EER with ’MS SDK’. This is reasonable according to the study of NIMS [104].

In this case, with the reference quality metric and the objective measure (utility),

one can found the difference between two quality metrics and the effect of matching

algorithms on qualifying the metrics. The CI resutls of the EER values are not given

for this case since most of them are clearly different from each other.
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3.6 Conclusion

In order to validate a quality metric of biometric sample, this chapter makes a short

review of evaluation approaches for performance assessment of fingerprint quality

metric. The reviewed approaches are mostly common frameworks for various biometic

modalities. By doing so, this study proposed an technology level validation approach

by considering the sample utility within an employed matching algorithm. The

proposed approach is defined as a criterion in term of the degradation of the global

equal error rate (EER) by improving sample quality during the enrollment phase.

This is due to the consideration that a valid quality metric is able to choose good

quality sample for improving the matching accuracy.

The validation framework defines several global measurements to estimate the

validity of a quality metric, including global EER, AUC and AUC ratio. The enroll-

ment selection also provides a 95% confidence interval of each global measurement, by

which a comparison between different quality metrics becomes statistically observable.

In addition, this offline framework enables the experiment repeatable, and achieves

the purpose for a general application to multiple biometric modalities. Finally, with

several experimental results, the effectiveness of the validation scheme is proved in

measuring the effect of sample quality to the matching performance.

At last, Section 3.4 gives a quick comparative study between quality metrics

carried out in different ways, and what’s more, some observations are conducted by

asking a few questions:

1) Are those fingerprint quality metrics based-on multi-feature really able to

makes the fused metric complementary? and 2) To achieve a common solution, it is

necessary to consider whether learning a prior-knowledge of matching performance

such as GMS is reasonable or not? For instance, according to the literature [27], it is

agnostic that whether two samples produce low impostor score when they are of low

quality. Similarly, in Section 2.3.3, it is dubious as well for the genuine matching

score between two genuine samples if one of them has an unexpected quality.

The experiment results do somehow answer such questions.





Chapter 4

FQA Combining Blind Image Quality,

Texture and Minutiae Features

This chapter presents our first study of FQA by considering several comple-

mentary aspects: 1) Image quality assessment without any reference which

estimates visual distortions of an image, 2) Textural features related to the

fingerprint image and 3) minutiae features which correspond to the most used

information for matching. The proposed quality metric is involved in both fusion

and prior-knowledge of matching scores. Experiments performed on several trial

databases illustrate the benefits of the proposed metric.
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4.1 Introduction

Abiometric system essentially tends to process samples of good quality, for they

are beneficial for matching operations and can improve system performance. As

one can note in Chapter 3, features are very important to make a reliable judgment

of the quality of a fingerprint. For instance, many of existing studies tried to combine

multiple features to generate a more reliable metric, such as NFIQ. The general

purpose of this chapter is to quantify the quality of digital fingerprint samples and to

analyze whether it is possible to take advantages of multiple features for designing a

quality metric. In this case, this chapter focuses on a fusion-based quality metric

67
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by using a regression-based approach [84]. The solution in [84] evaluated altered

fingerprint image quality with several kinds of quality features, one is a universal

no-reference image quality assessment (NR-IQA) algorithm which is an objective

measure for inspecting visual distortions of an image [110], and others are related to

textural patterns and fingerprint minutiae template. The results presented in [84]

demonstrated the effectiveness of this approach for altered fingerprint images. We

extended this framework for estimating the quality of original gray-level fingerprints.

The metric given in this chapter is carried out by considering several different

aspects: 1) the fingerprint image itself and 2) the associated minutiae template

which is rarely taken into account in existing studies. The quality metric is hence

implemented via a linear combination of these quality features. The validation of

the proposed quality metric is performed by using the evaluation approach defined

in Chapter 3. By doing so, an experimental study can be figured out to answer the

questions addressed in Section 3.6. The remaining of this chapter is organized as

follows: Section 4.2, 4.3 and 4.4 present the details of features used in the computation

of the proposed quality metric. Section 4.5 addresses the proposed quality metric.

Experimental results are given in 4.6. Section 4.7 concludes this chapter.

4.2 Features for alterated images

The quality metric in [84] assesses the altered fingerprint image which involves in

several kinds of alterations: Gaussian noise, contrast, luminance, median blurring,

rotation, scratches and occlusion. There are 11 features have been used for assessing

the quality of altered fingerprint image, including one No-Reference Image Quality

Assessment (NR-IQA) algorithm for estimating image distortions and some other

image-based features. A general description of features in [84] is given in Table 4.1.

4.2.1 No reference image quality assessment

In image (or video) quality assessment (IQA), the ”quality” is subject to a wide

range of distortions caused by acquisition, processing, compression and any of which

may lead to a degradation of visual quality [111]. The IQA can be categorized as

subjective evaluation by human expert and objective assessment via an algorithm.

Existing studies in this field mainly focus on objective assessing approaches, for

subjective evaluation relies on sophisticated tests given by human subjects [112].
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Table 4.1: List of quality features in [84]

Feature Description NO.

NR-IQA
An image quality assessment approach

called BLIINDS [113]
1-N1

SIFT point number Number of SIFT keypoints 2-S1

SIFT DC coefficient DC coefficient of SIFT features 3-S2

SIFT Mean
Mean of the scales related to SIFT key-

points
4-S3

SIFT STD
Standard deviation of the scales related to

SIFT keypoints
5-S4

Block number Number of blocks (17×17) 6-P1

Patch RMS Mean Mean of blocks RMS1 values. 7-P2

Patch RMS STD Standard deviation of RMSs 8-P3

Patch RMS Median Median of blocks RMSs. 9-P4

Patch RMS skewness Skewness of blocks RMSs. 10-P5

Patch RMS kurtosis Kurtosis of blocks RMSs. 11-P6

1. ’RMS’ is the abbreviation of Root Mean Square.

The objective approaches are generally performed in 3 ways: 1) full-reference

(FR) approaches rely on a complete reference image; 2) no-reference (NR) or ”blind”

assessment meaning no reference image is available and 3) reduced-reference (RR)

assessing approaches which means reference image is partially available [114]. The

full-reference quality assessment requires a comparison between the distorted image

and an original image with no distortions. Among the existing approaches of 2D

image, the Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE) and the

Feature Similarity (FSIM) are known as the state-of-the-art approaches which show

relatively good performance in taking advantages of human visual system (HVS)

characteristics [115]. Also, a lot of work have been done in assessing image or video

quality with RR-IQA approaches [116, 117]. However, in most cases, NR-IQA is

required as the original image is not available, and so does biometric image quality.

In this case, a NR-IQA algorithms is employed in the proposed quality framework,

with which we generate a feature for distortions of fingerprint image.

The employed NR-IQA is known as BLIINDS [113] which is classified into non-

distortion specific approaches, and it uses no distortion model and a different set of

sample DCT statistics. This blind IQA method generally involves 3 kinds of DCT-

based features: 1) DCT-based contrast feature v1, 2) DCT-based structure feature v2,
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and 3) DCT-based anisotropy orientation features v3 and v4; v1 is an average value

of the contrast of kth DCT path of an image, v2 is a global image kurtosis based on

the kurtosis value of each DCT patch, v3 and v4 are variance and max value of the

mean value of each DCT patch’s Renyi entropy in different orientations. A global

quality score called BLIINDS is calculated by using a multi-scale approach as:

BLIINDS =
L∏
i

v
αi
1

1 v
αi
2

2 v
αi
3

3 v
αi
4

4 , (4.1)

where αij are calculated by using the correlation of vi with the subjective notes given

by human observers.

4.2.2 Salient feature and patch-based features

Salient features in Table 4.1 are extracted by using Scale Invariant Feature Transform

(SIFT) [118, 119] operator. The SIFT algorithm generates keypoints from an image

for object or scene matching. The most significant property of the SIFT is invariant

to image scale in addition to rotation-invariant and other advantages such as the

robustness to local geometric distortions. The scale invariant is achieved by generating

a scale space via

L(x, y, σ) = G(x, y, σ)∗I(x, y), (4.2)

where G is the Gaussian kernel, σ is the scale parameter of the Gaussian kernel and

I is the image involved in this convolution (∗) operation. The scale space enables the

SIFT to extract reliable features from images of different scales and even distorted

images, and hence ensures the efficiency of matching.

In [84], the SIFT is used for generating a 128-descriptor of the detected keypoints

of a fingerprint image. The number of detected keypoints (NB), DC coefficient of

each descriptor matrix, mean values and standard deviation of scales associated to

the keypoints are used as features.

For patched features, it firstly divides images into blocks of 17×17, and then the

root mean square (RMS) value of each block is computed to obtain the statistic

measures (see Table 4.1) of the patch.

4.3 Texture features

This section presents a set of image-based features which are classified into 4 classes

in this study, including local binary pattern (LBP) based features [120, 121], Haralick

features [122], Gabor wavelet features [123] and local relational string (LRS) feature
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[124]. LBP-based features include the original LBP and its five transformations;

Haralick features employed in this study involves eight default statistic measures;

Gabor wavelet features are generated by four sets of Gabor filters in different scales

and orientations which were derived form a filter bank of 16 scales and 16 orientations.

Table 4.2 shows a preliminary description of the selected 11 image features.

Table 4.2: Texture features.

Feature Format NO.

LBP 256-level LBP histogram vector 1-C1

Four-patch LBP Descriptor code vector 2-C1

Completed LBP 512-bit 3D joint histogram vector 3-C1

GLCM measurements 8-bit GLCM vector 4-C2

LBP histogram FT LBP histogram Fourier transform vector 5-C1

2-scale 16-orientation Gabor 64-bit Gabor response vector 6-C3

4-scale 16-orientation Gabor 128-bit Gabor response vector 7-C3

8-scale 16-orientation Gabor 256-bit Gabor response vector 8-C3

16-scale 16-orientation Gabor 512-bit Gabor response vector 9-C3

Local relational string (LRS) 81-bit LRS motif histogram vector 10-C4

Median LBP 256-level MBP histogram 11-C1

These features are widely used for texture classification and image retrieval

applications [125, 121] due to good performance in texture representation. This

study aims to use them for fingerprint image quality assessment. To generate a

combined quality metric, a single measure of each kind of feature is calculated. A

brief review of each feature is presented as follows.

4.3.1 LBP-based features (C1)

The local binary pattern feature is proposed by Ojala et al [120] for texture analysis.

This feature is simple yet efficient so that it is widely used for relevant issues [126].

The LBP operator is based on the idea that the two-dimensional surface textures

can be described by two complementary measures: local spatial pattern and gray

scale contrast [127]. The original LBP is a light-weight operator, which generates a

binary string by thresholding each 3-by-3 neighborhood of every pixel of the image,

and the threshold is the central value itself. The basic operator also extended by

many improvements such as uniformed LBP. Few of existing studies have made some
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observations in using this feature for fingerprint applications, such as segmentation

and matching [128, 129, 130]. The first class of features for generating a new quality

metric is hence the basic form of LBP and several of its transformations.

4.3.1.1 LBP histogram (1-C1)

The LBP is a kind of local texture descriptor of an image [131], which reflects the

relationship between pixels within a local window. The description of LBP is shown

by Figure 4.1.

Figure 4.1 – Illustration of local binary pattern (LBP).

The basic form of the LBP calculates the relationship between the central value

and its 8 neighborhood pixels along the ring of radius, R (R is 1 for basic LBP), for

each pixel in the image. It follows the ring in counter-clockwise and hence g0 (in

Figure 4.1) is the first neighborhood pixel. Assume there is one pixel, gc = 54, and

its 8 neighbor pixels in the image, gp = [54 57 12 13 86 21 99 85]. In a general form,

the relationship between the central pixel and one neighbor pixel is represented by a

binary bit,

ai =

1, gc − gp < 0,

0, gc − gp ≥ 0,

where p = 0, · · · , P − 1 and P is the binary pattern number defined as the Equation

below.

The LBP8,1 of gc can be obtained by

LBP P,R =
P−1∑
i=0

ai2
i = 1×20+1×21+1×23+1×26+1×27 = 203, where P = 8, R = 1.

(4.3)

In this study, the LBP operator is applied to the fingerprint image in a global level,

illustrated by Figure 4.2.
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Figure 4.2 – Procedure of calculating LBP feature.

As it is shown in Figure 4.2, the LBP value of each pixel of the original image

was calculated first, and then the LBP histogram can be obtained via a statistic of

each LBP value. The LBP image in Figure 4.2 is constructed by the LBP value of

each pixel.

4.3.1.2 Four-patch LBP (2-C1)

Four-patch LBP is one of the extensions of the LBP [132] operator. The calculation

of this transform involves in several parameters, including radius of two different

rings around a central pixel, the size of patch centered at a pixel on the ring, patch

number and patch interval (unit in patch). An example for calculating FLBP of a

pixel is illustrated by the description in Figure 4.3.

Figure 4.3 – Illustration of four-patch LBP (FPLBP).

Figure 4.3 demonstrates that the FPLBP operator follows patches evenly lied

on two rings with the origin at one pixel. It chooses one patch on the outer ring

and another patch which is one interval away on the inner ring as a patch pair, and
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then another pair that is center symmetric to the selected one can be obtained to

calculate the FPLBP code of the central pixel. In this example, α indicates patch

distance, S represents patch number, ω determines patch size, and two radius are

represented by r1 and r2, respectively.

Figure 4.4 – Procedure of calculating FPLBP feature.

In this study, the FPLBP feature is represented by a code image histogram which

is computed in terms of the procedure given in Figure 4.4. Each pixel of the code

image (Cf. Figure 4.4) is the FPLBP value of the corresponding pixel in original

image. The FPLBP value is calculated by:

FPLBPr1,r2,S,ω,α(p) =

s/2∑
i

f( d(C1i, C2,i+α mod S)−d(C1,i+S/2, C2,i+S/2+α mod S) )2i,

(4.4)

where Ci,j indicates a patch, d(·, ·) is any distance function between two patches and

f is given by:

f(x) =

1, if x ≥ τ

0, if x < τ
. (4.5)

4.3.1.3 Completed LBP (3-C1)

The completed LBP operator is also generated from the LBP for texture classification

[133]. This operator defines 3 texture components: local difference sign component

(S), magnitude of local difference (M) and center gray level (C). The sign component

(S) is equivalent to the LBP operator which has been proved that it preserves

more information of local difference than the magnitude component. These three

components are illustrated in Figure 4.5.
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I Description

Figure 4.5 – Illustration of completed LBP (CLBP).

As it is depicted by Figure 4.5, dp here is the difference between the central pixel

gc and one of its neighbor pixels gp, sp is the sign component where -1 is coded as

0, and mp is the magnitude component. Besides, the CLBP M code is determined

by a threshold c which is the mean value of mp in default. The central gray level

component is also determined by the threshold function t (·, ·), and cI is the threshold

which is set as the average gray level of the image.

Figure 4.6 – Procedure of calculating CLBP feature.

The CLBP operator has several forms of fusions of the 3 components, such as joint

2-D histogram and concatenated histogram. Figure 4.6 illustrates the calculation

of an example for generating a 2D joint histogram or a concatenated histogram of

CLBP S and CLBP M, and a central gray level component. In this study, we use

the 2D joint histogram for calculating the feature.
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4.3.1.4 LBP Histogram Fourier Transform (LBPHF, 5-C1)

The LBP-HF [134] is a rotation invariant image descriptor based on the Fourier

transform of the ULBP histogram of the original image. This operator considers

complex conjugate of the ULBP histogram Fourier transform to deal with the cyclic

shift in ULBP histogram caused by image rotation. An illustration concerning its

computation is given in Figure 4.7.

Figure 4.7 – Illustration of LBP Fourier transform (LBPFT). (Image source: [134])

In Figure 4.7, because of the image rotation, the uniform pattern of pixel (x, y)

also rotated an angle of α = a360
P

to a new location (x′, y′). In [134], the Discrete

Fourier Transform (DFT) of the uniform LBP histogram hI(UP (n, r)) of a P sampling

points pattern is defined by

H (n, u) =
P−1∑
r=0

hI (UP (n, r)) e−2πur/P , (4.6)

where n is the number of bit ’1’ in each ULBP pattern, and r is the rotation number.

Figure 4.8 – Procedure of calculating LBPFT feature.
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In [134], one feature can be represented by the magnitude spectrum of the

H (n, u), as

|H (n, u)| =

√
H (n, u)H (n, u), (4.7)

where H (n, u) denotes the complex conjugate of H. The processing of this feature

is illustrated by Figure 4.8, in which a LBP image is firstly derived from the original

image. Then, a histogram with the ’u2’ constraint is obtained, and the feature can

be calculated by using Equation 4.6.

4.3.1.5 Median LBP (11-C1)

Median LBP (MLBP) [135] is a transformation of LBP operator and invariant to

monotonic change of gray-scale. Instead of using the central pixel, this operator

generates the LBP code by thresholding each pixel in the 3×3 local region with the

median value of the local pixels, as shown by Figure 4.9.

Figure 4.9 – Illustration of median LBP (MLBP).

After the binary patterns had been obtained, the MLBP code can be figured out

via a similar way as the Equation 4.3.

Figure 4.10 – Procedure of calculating MLBP feature.
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Figure 4.10 illustrates the calculation of the MLBP feature, in which the MLBP

image is firstly obtained by the operator, and then the histogram can be computed.

Likewise, the parameter of the operator can be manually specified as well as other

extensions of the LBP.

4.3.2 Haralick features (4-C2)

The second class of features in this study is the Haralick feature which is also known

as co-occurrence matrix [122]. The co-occurrence matrix of an image reflects the

distribution of pixel intensity for either the same intensities or closed intensities. In

addition, GLCM also describes the magnitude of the variation of pixel intensities in

one or several directions. This kind of texture is not rotation invariant so that the

GLCM is calculated in the range of 0 to 180 degrees in general, and directions at 0,

45, 90, 135 degrees are used most. The relationship between pixels of the GLCM

matrix is illustrated in Figure 4.11.

Figure 4.11 – Illustration of Haralick feature.

The element of the gray level co-occurrence matrix in Figure 4.11 is calculated by

p (i, j) =
Vi,j∑N−1
i,j=0 Vi,j

, (4.8)

where Vi,j is the number of occurrence of a pair of pixels, and pi,j is the probability

of occurrence of the pixel pair.

Figure 4.12 presents the calculation of several statistic measures generated from

the GLCM matrix, which involves in combinations of neighbor pixels in 4 directions

that have just been mentioned. In the experiment, we only the default statistic

measures given in the reference article.
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Figure 4.12 – Procedure of calculating Haralick features.

4.3.3 Gabor features (6 ∼ 9-C3)

Likewise, as it has been presented in Chapter 2, Gabor features are also employed in

this study. The Gabor filter has distinctive localization properties in both spatial

and frequency domain, and is said to be similar to the characteristics of certain

cells in the visual cortex of mammals. Because of this, it has been widely used

for image processing and analysis such as classification, enhancement and so on.

Multi-orientation and multi-scale capability enables Gabor filters to process image

information in both local and global level. In this case, 2D Gabor [136] filters

perform relatively well in dealing with fingerprint pattern. The 2D Gabor function is

a sinusoidal function modulated by a Gaussian window. In the wavelet domain, the

basis of Gabor function is hence complete but not orthogonal. A decomposition of a

2D Gabor filter is given in Figure 4.13.

Figure 4.13 – Illustration of Gabor response.

Figure 4.13 contains an example of both imaginary part and real part of the

Gabor response of an image generated by one of the Gabor filter bank. A general
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form of 2D Gabor function is formulated as

h (x, y, θk, f, σx, σy) = exp

[
−1

2

(
xθk

2

σx2
+
yθk

2

σy2

)]
× exp (j2πfxθk) , (4.9)

where [
xθk
yθk

]
=

[
cosθk sinθk

−sinθk cosθk

][
x

y

]
, (4.10)

f is the frequency of the sinusoidal plane wave along orientation θk, n is the number

of orientations, k = 1 · · · n, σx and σy are the standard deviations of the Gaussian

envelope along the x and y axes, respectively.

To generate Gabor features for the proposed metric, we calculate a set of Gabor

filters with a Gabor wavelet [136], illustrated by Figure 4.14.

Figure 4.14 – Procedure of calculating Gabor features.

In Figure 4.14, the Gabor filter bank is generated by using the Gabor wavelet in

N scales and M orientations. Each Gabor response is obtained by one of the filters

in frequency domain multiplying the Fourier transform (FT) of the input image, and

then two statistic measures (mean and standard deviation) of the inverse FT of the

product are used as the features.

4.3.4 Local Relational String (11-C4)

Another feature applied to the proposed metric is the local relational string (LRS)

[124] which is an illumination invariant operator focusing on local variation of the

gray level of an image. This operator is based on the local pixels relation in a specified

scale, see the left-most graph in Figure 4.15.
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Figure 4.15 – Illustration of local relational string (LRS) feature.

In Figure 4.15, to represent the relational feature, it uses 3 relations to generate

local relation string histogram for measuring the local spatial variations. Instead of

calculating gray level difference, the LRS operator considers the relation between

central pixel and its neighbor pixels, which is represented by an ordered symbolic

string (LRS) derived from a linguistic symbol set,

LRS : r1 r2 r3 r4. (4.11)

In the string given by expression 4.11, each ri represents the relation between a

central pixel (g0) and its ith neighbor (gi). The relation, Z, is defined by

S = {(g0, gi) ∈ I | ∃ri ∈ R, ri = Z (g0, gi)}; gi ∈ Ω, (4.12)

where ω = {g1, g2, g3, g4} and R = {<,>,=}.
The calculation of the motif histogram is demonstrated in Figure 4.16.

Figure 4.16 – Procedure of calculating LRS feature.

In Figure 4.16, the LRS motif image is composed by the motif value of each pixel

of the original image. The feature is represented via a histogram in 1 dimension or

multiple dimension which is determined by the spatial scale.
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The texture features given above are all extracted from fingerprint image at a

global level. Each kind of extracted feature vector was analyzed by using principal

component analysis (PCA) [137]. The length of the selected features are different

from each other and the redundancy either. However, to combine all the selected

features, it is necessary to get a single index from each feature vector. In this

case, we choose a statistic measure for each feature vector and the redundancies of

them are ignored. The statistic measurement for the features given in Table 4.2 are

interquartile range (iqr), standard deviation, the sum of the two maximum values,

skewness, entropy, skewness, entropy, iqr, mad, mad, mad and entropy.

Note that we do not assert that these statistic indexes are quality features in this

study. In practical, we calculate several statistic measures for each of the employed

features (vectors). Next, we calculate the Pearson correlation between each statistic

measure and the genuine matching score. At last, these single index are simply

determined in terms of their Pearson correlation obtained from different datasets,

i.e. statistic measure whose Pearson correlation seems commonly stable are selected

to represent the feature. The analysis of Pearson correlation for the defined single

indexes is given in other sections of this chapter.

4.4 Minutiae-based features

In addition to image-based features, we also make effort in quality assessment with

fingerprint minutiae template, for we mainly use minutiae-based matching approach.

Hence, the minutiae information somehow reflects the utility [29] of fingerprint.

The minutiae is categorized as the level-2 feature of fingerprint pattern, which are

represented as a set of spatial points with an orientation property. Basically, a

minutia point is denoted as a triplet representation, mi = {xi, yi, oi}, where (xi, yi)

is the spatial position and oi is the orientation. An illustration of a fingerprint

Figure 4.17 – Illustration of detected minutiae of a fingerprint image.
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and its minutiae is given in Figure 4.17. In addition to location and orientation of

minutiae point, the triplet representation does not carry any other information about

fingerprint image. This is sufficient to perform matching task for a recognition system,

and several studies have already proved that it is possible to estimate orientation map

and reconstruct a fingerprint image [138, 139] by using the triplet representation and

it succeeded in performing type-I and type-II attacks against a recognition system.

Table 4.3: Minutiae number-based measures related to fingerprint quality.

Measure Description NO.

Minutiae

number

Ni Ni, minuitiae number of the ith fin-

gerprint.

1−M

Mean based

on FT of

minutiae

mean(MFTi) MFTi, the magnitude of the

Fourier transform of minutia

point’s 3 components

2−M

Standard

deviation

of minutiae

std(MFTi) Standard deviation of minutiae

magnitude

3−M

Minutiae

number in

ROI1 1

NRi NRi, minutiae number in a rectan-

gle region.

4−M

Minutiae

number in

ROI 2

NCi NCi, minutiae number in a circle

region.

5−M

Region-

based

RMS

rms =
√

1
n

∑n
i=1mi

2 Root mean square (RMS) value

of minutiae number based on two

blocks of the template along its ver-

tical direction.

6−M

Region-

based

median

med = 1
2

th
sort(m) Median value of minutiae number

obtained by dividing the template

into 4 blocks.

7−M

Block-

based

measure

A block-based quality score is calculated based on the minu-

tiae number in each divided block of the template, the block

size is score 64-by-64 here.

14−M

1. region of interest.

In this case, to generate the quality metric, one need to find out some features

from the minutiae template that are able to reflect quality in one or more aspects.

According to the literature [140, 141], fingerprint minutiae cannot be accurately
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described by a simple statistical model, which makes difficulty in finding regularities

of this kind of feature. However, some studies [142, 143] choose to use minutiae

features in a local region, for it is invariant to both the translation and rotation in a

small region. In this case, minutiae in a local area or a region of interest (ROI) may

have different impacts on matching performance and hence affects quality. Tabassi

et al. have proposed to use minutiae number in their FQA algorithm. In addition,

few of existing studies have considered minutiae information for quality assessment.

In this study, we simply define some features of minutiae template for the proposed

quality metric. The proposed features are based on minutiae number and the Discrete

Fourier Transform (DFT) of the three components of minutiae points. An overall

description of these features is given in Table 4.3.

Minutiae-based features given in Table 4.3 are calculated from the template

extracted by using NBIS software [68]. This type of template contains a quadruple

representation of minutia point which is consisted of the location of detected minutiae,

(x, y), the orientation of detected minutiae, θ, and a quality score of detected minutiae.

In the experiment, the minutiae positions and orientations are used only for calculating

these features. In the following, the definition of these features are presented in

detail. In this study, features 2 and 3 are derived from the DFT magnitude of the

linear combination of the three minutia components after eliminating DC component,

as formulated in Equation 4.13 and 4.14.

Fi (x, y, θ) =
N−1∑
n=0

xn·µkn + yn·νkn + θ·ωkn, (4.13)

where µ, ν, and ω are frequency samples.

F2−M = |Fi (x, y, θ) |, (4.14a)

F3−M =

√√√√ 1

N

N∑
i=1

(|Fi| − F2−M). (4.14b)

DC component was eliminated when calculating these two measures because there is

no valuable information in this element.

The size of rectangle region of feature 4 is determined by the maximum value of

both x and y coordinates of the involved minutiae, for there is no useful information

outside the foreground of the fingerprint in this case. This choice also ensures that

the region of interest will not go over the effective area of minutiae. An example of

rectangle region is shown by Figure 4.18(a).
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(a) Rectangle (b) Circular (c) Blocks

Figure 4.18 – Example of region of interest (ROI). Figure 4.18(a) is rectangle region,

4.18(b) is circular region and 4.18(c) is grid division.

The radius of the circle region for feature 5 is also determined by the maximum

and minimum location value along the horizontal direction of the fingerprint, for

the minutiae located around fingerprint center are said to be more significant to

fingerprint matching, i.e. they are more informative. As the quadruple representation

does not provide information of fingerprint core point, an estimated point was used

as the center location of the fingerprint. In the experiments, a comparison is made

between the estimated center point and a core point detected by another approach,

and it is found that the result does not vary too much. The estimated center position

is determined by considering the maximum and minimum minutiae location as well.

An example of the circular region is shown by Figure 4.18(b).

For feature 6 and 7, the whole fingerprint region is respectively divided into 2

and 4 blocks, and minutiae number in each block is considered to generate a measure.

Another block-based measure is calculated by dividing the whole fingerprint region

into 64×64 pixel blocks. An estimated index is assigned to each block in terms

of the minutiae number in the block, which involves in a threshold. The block is

classified into 3 classes, reasonable block, vague block and unreasonable block. Then,

a measure is calculated based on the number of these 3 kinds of blocks. An example

of block partition is shown by Figure 4.18(c).

In addition, some rotation and translation invariant features proposed in [139]

are calculated in terms of minutiae distribution and orientations. This study adopts

the first six features of them to generate the quality metric.

4.5 Proposed quality metric

As it is discussed in previous chapters, the quality of biometric sample is referred to

as 3 components [144, 145, 22]: character, fidelity, and utility. In this study, quality
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metric is calculated based on the approach proposed in [84] defined in the GREYC

research lab. The approach was inspired by the utility of biometric sample quality, i.e.

biometric sample quality predicts system matching performance [71, 29, 27]. Note

that quality predicting matching performance is not an absolute concept throughout

of this thesis.

The quality metric in this study is generated by a linear combination of the

features that had been presented in Section 4.2, 4.3 and 4.4, as formulated by

Equation 4.15.

Q =
N∑
i=1

αifi (4.15)

where N is the number of quality features denoted by fi (i = 1, · · · , N), and αi

is the weighted coefficient. In our framework, the weighted coefficients are learnt

by optimizing a fitness function with a genetic algorithm (GA), which is defined as

the Pearson correlation (Equation 4.16) between combined quality results and the

corresponding GMS of the training samples. With this definition, the coefficients

could be obtained in terms of maximizing the correlation between the genuine

matching scores and the quality measures as much as possible [90, 71], and therefore

satisfy the utility property. In the experiment, a randomly selected data set of 25%

of each database are given to the optimization algorithm calculating the weighted

coefficients. By substituting the coefficients of the features into Equation 4.15, the

proposed method achieves a continuous quality metric adaptively. The quality scores

are normalized on each database.

The fitness function here is defined as a Pearson correlation coefficient between

the genuine matching score (GMS) and the quality scores, as in Equation 4.16.

ρQ,MS =
cov (Q,MS)

σQσMS

. (4.16)

In the experiment, the N − 1 GMS of the first sample of each individual is used for

this fitness function.

4.6 Experimental results

In this section, the analysis result of each set of features is given by the Pearson

correlation coefficients at first, and followed by a validation of the proposed metric

with the enrollment selection (ES) approach. Details of both approaches have been

mentioned in Chapter 3.
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4.6.1 Feature analysis

In Chapter 3, we introduced Pearson correlation between the sample quality and its

GMS to observe the validity of a quality metric. In addition, Fernandez et al. [71]

and Olsen [102] respectively calculated Pearson and Spearman correlation coefficients

between different quality metrics to observe their behavior. In this case, as it has

been addressed in Chapter 3, this study analyzes the proposed features by computing

the Pearson correlation between each of them and several existing quality metrics.

Such an analysis is able to observe whether there is a similarity between the proposed

features and reference metrics. Quality metrics used for this analysis include OCL

[80], orientation flow (OF) [81], standard deviation (STD) [73], Pet Hat’s wavelet

(PHCWT) [77] and NFIQ. Table 4.4, 4.5, 4.6 presents the correlation results obtained

from three of the trial databases where the proposed indexes obtained results as

expected. Note that we simply give the results of a part of the features due to space

limitation.

Table 4.4: Inter-class Pearson correlation for textural features. 02DB2A (top),
04DB1A (middle) and 04DB3A (bottom).

Feature. LBP FLBP CLBP LBPFT Gabor128 Gabor256 Gabor512 LRS MLBP

OCL -0.6826 0.3002 -0.7037 -0.4462 0.3806 0.5864 0.6832 0.8699 -0.7593
OF -0.1938 0.1783 0.0098 -0.0452 0.1685 0.2016 0.1590 -0.0012 0.0593

PHC -0.6926 0.2864 -0.6665 -0.3391 0.3552 0.6329 0.7507 0.8476 -0.7807
STD -0.6230 0.3958 -0.5590 -0.3016 0.5620 0.8066 0.8940 0.7668 -0.7438
NFIQ 0.3919 0.1240 0.3483 0.1617 0.0401 -0.0676 -0.1307 -0.4569 0.2731

OCL -0.6899 -0.7979 -0.7798 0.7151 0.4071 0.6708 0.7223 -0.7416 0.7125
OF -0.2642 -0.3263 -0.3057 0.2073 0.3968 0.4206 0.4539 -0.2281 0.2057

PHC -0.7060 -0.8206 -0.8416 0.7535 0.4722 0.7548 0.7964 -0.7701 0.7426
STD -0.5920 -0.7066 -0.7286 0.6471 0.4669 0.6930 0.7264 -0.6646 0.6297
NFIQ 0.1634 0.1607 0.1775 -0.2101 0.0897 -0.0254 -0.0157 0.2295 -0.2143

OCL -0.5001 -0.6394 -0.7460 0.5144 0.5301 0.6505 0.6948 -0.3814 0.5536
OF -0.2510 -0.1842 -0.1539 0.0814 -0.1348 -0.1148 -0.0539 -0.1537 0.1566

PHC -0.1648 -0.2758 -0.4495 0.1439 0.6947 0.7992 0.7450 -0.1928 0.1726
STD -0.2401 -0.3447 -0.5029 0.2221 0.6398 0.7359 0.7037 -0.2161 0.2550
NFIQ -0.0532 -0.0886 0.0316 0.0518 -0.3640 -0.4005 -0.2608 -0.0805 0.0907

In Table 4.4, highlighted columns (in yellow) demonstrate a relatively stable

correlation for all the three databases, and some others marked with green illustrated

their feasibility for certain data sets. According to these observations, one can note

that some of the proposed features demonstrate similarity to the reference metrics,

and we could make an attempt to reduce some redundant features in next study.

Table 4.6 presents only 10 of the minutiae-based features, for the correlation of this

type of feature is not very distinctive. Some of them demonstrate good correlated

behavior with the reference quality metrics, but greatly vary among the data sets

and even not correlated with any of the quality metrics. Likewise, the correlation
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Table 4.5: Inter-class Pearson correlation for image-based features. 02DB2A (top),
04DB1A (middle) and 04DB3A (bottom).

Feature NR-IQA S.1 Num S. DC S. STD Block Num R.1 Mean R. Skewness R. Kurtosis

OCL 0.4816 0.2370 0.2931 0.3659 -0.9137 0.6643 -0.5538 -0.8443
OF 0.0386 -0.0438 0.1038 0.2487 0.0391 0.0875 -0.1092 0.0452

PHCWT 0.4720 0.3650 0.3149 0.4921 -0.7480 0.5860 -0.5316 -0.8469
STD 0.3169 0.2133 0.4788 0.5805 -0.7170 0.6608 -0.5252 -0.8023
NFIQ 0.4434 0.4445 0.1735 0.1164 0.4017 0.2510 0.2598 0.3907

OCL 0.4689 0.0418 0.3839 0.5980 -0.9129 0.8823 -0.3423 0.8753
OF 0.1908 0.0065 0.1216 0.1347 -0.1971 0.1586 0.2351 0.3396

PHC 0.5126 0.2468 0.4225 0.7118 -0.7046 0.6858 -0.2800 0.8687
STD 0.4070 0.2177 0.4946 0.8112 -0.6632 0.6887 -0.2416 0.7591
NFIQ -0.1890 -0.3808 0.1444 -0.3420 0.0132 -0.0121 0.0069 -0.0719

OCL 0.3414 0.2499 0.2271 0.6927 -0.2067 0.6544 -0.0068 0.7988
OF -0.0558 -0.0645 -0.1039 0.0883 -0.0079 -0.1368 -0.0017 0.0122

PHC 0.3580 0.4141 0.5300 0.5679 0.2351 0.8933 0.0515 0.6215
STD 0.4175 0.4266 0.4661 0.6575 0.1858 0.9157 0.0575 0.6319
NFIQ -0.2256 -0.3925 -0.1761 -0.2670 -0.2824 -0.4156 0.0112 -0.1193

1. S. is the abbr. of ’SIFT’, R. is the abbr. of ’RMS’.

results of the image-based features are given in Table 4.5. We use all these features

to calculate the quality metric, which enables qualifying fingerprint samples with

various information and reaches the purpose to answer the questions that had been

proposed in Chapter 3.

Table 4.6: Inter-class Pearson correlation for minutiae-based features. 02DB2A (top),
04DB1A (middle) and 04DB3A (bottom).

OCL 0.4077 0.3768 0.4040 0.2780 0.0826 0.3166 0.4214 -0.3196 -0.2799 -0.2568
OF 0.0327 0.0391 0.0442 -0.0096 0.0019 -0.0035 0.0491 -0.0040 -0.0987 -0.0521

PHC 0.3717 0.3445 0.3735 0.2306 0.0298 0.2787 0.3829 -0.3230 -0.2704 -0.2791
STD 0.2391 0.2267 0.2376 0.1247 -0.0615 0.1630 0.2490 -0.2389 -0.2027 -0.1832
NFIQ -0.6052 -0.5393 -0.5949 -0.4783 -0.4639 -0.5807 -0.5554 0.4461 0.3544 0.3198

OCL 0.5576 0.5290 0.5570 0.4649 0.5088 0.4505 0.5536 -0.3599 -0.3677 -0.3986
OF 0.0835 0.0946 0.0859 0.1661 0.0721 0.1334 0.0128 0.0159 0.1975 -0.0372

PHC 0.4036 0.4153 0.4150 0.3462 0.3731 0.3124 0.4184 -0.2908 -0.3245 -0.3121
STD 0.3876 0.4017 0.4003 0.3275 0.3446 0.3149 0.3865 -0.2992 -0.3093 -0.3095
NFIQ -0.1532 -0.1840 -0.1796 -0.1175 -0.1457 -0.1058 -0.1603 0.1778 0.1040 0.1825

OCL 0.2447 0.2362 0.2521 0.1304 -0.0361 0.2280 0.2630 -0.2231 -0.1557 -0.2140
OF 0.2929 0.2577 0.2724 0.2786 0.3218 0.3043 0.2854 -0.0661 0.1458 -0.1077

PHC -0.1438 -0.1170 -0.1215 -0.1919 -0.3633 -0.1563 -0.1144 -0.1132 0.0373 0.0406
STD -0.0421 -0.0243 -0.0220 -0.1007 -0.2618 -0.0561 -0.0130 -0.1491 -0.0271 -0.0281
NFIQ 0.3195 0.2497 0.2741 0.3971 0.4406 0.3391 0.2953 -0.0524 -0.0716 -0.0885

4.6.2 Validation with ES

In this part, the ES is simply performed with NFIQ and the proposed quality metric

(denoted as QMF hereinafter) on five datasets. The utility value defined in Chapter
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3 is not involved in the experiments. The plots of the global EER values obtained by

the ES are given in Figure 4.19.

(a) Result based on MS Boz (b) Result based on MS SDK

Figure 4.19 – Plots of global EERs obtained by using quality-based ES. Figure 4.19(a)

is the result based on MS Boz and Figure 4.19(b) corresponds to MS SDK.

In Figure 4.19(a), ’MS Boz’ and ’MS SDK’ also represent two sets of matching

scores as it has been mentioned in Chapter 3. With the graphical result based on

’MS Boz’, one can find that QMF performs better than NFIQ in reducing error rate

on three databases: 02DB2, 04DB1 and 04DB3. Such results demonstrate that the

fusion-based approach achieves a better regression or linearity between the quality

and GMS on these 3 datasets, but failed for another two. This is fully dependent on

the coefficients obtained by the optimization algorithm. Meanwhile, it relies on the

GMS values of the first samples, indicating that coefficients are greatly affected by

matching performance, so is the regression result.

This problem happens when the ES is conducted with the MS SDK (Cf. Figure

4.19(b)). The QMF obtained a clearly good result from 04DB1 and a result that is

nearly equal to NFIQ from 04DB2. The NFIQ is clearly better than QMF on 02DB2,

which is opposite to the result based on ’MS Boz’. One should note that both

metrics are matching scored-based approaches. Though, the matching algorithm is

one point that affects the evaluation result of metric performance, but there would be

more uncertainties for such metrics implemented by learning a matching performance.

Besides, it also reveals that two metrics do not take the advantages of the employed

features for all the datasets, such as 00DB2 for QMF and 04DB1 for NFIQ. These

problems could be further revealed via comparisons with metrics rely on a single

feature, see later chapters.

The 95% confidence interval (CI) of the global EER values are given in table

4.7.
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Table 4.7: The 95% confidence interval of the EERs.

DB

QM et MS
QMF Boz NFIQ Boz QMF SDK NFIQ SDK

00DB2A (CI) [0.0651 0.0663] [0.0492 0.0502] [0.0040 0.0043] [0.0021 0.0023]

02DB2A (CI) [0.1104 0.1118] [0.1326 0.1340] [0.0029 0.0032] [0.0011 0.0013]

04DB1A (CI) [0.1464 0.1480] [0.1529 0.1545] [0.0172 0.0178] [0.0268 0.0276]

04DB2A (CI) [0.1651 0.1676] [0.1321 0.1344] [0.0378 0.0389] [0.0390 0.0402]

04DB3A (CI) [0.0730 0.0742] [0.0741 0.0752] [0.0162 0.0167] [0.0190 0.0195]

Furthermore, the AUC ratio are given in table 4.8.

Table 4.8: AUC ratio of each quality metric based on two sets of matching scores.

Metric

DB
00DB2 02DB2 04DB1 04DB2 04DB3

QMF (BOZ) 0.5482 0.8929 0.8096 0.6975 0.7766

NFIQ (BOZ) 0.7506 0.8280 0.7699 0.8242 0.7447

QMF (SDK) 0.8190 0.8152 0.8745 0.7837 0.6490

NFIQ (SDK) 0.9879 0.9910 0.8431 0.7482 0.8218

The AUC ratio given in table 4.8 is basically consistent with the global EER

values. However, the AUC and EER are two different global measures, which may

sometimes lead to inconsistency between them. This problem happens to 04DB3

when the ’MS SDK’ is involved. The AUC (calculated in terms of Section 3.3.2)

values of the QMF and NFIQ are 0.0078 and 0.0041, respectively. This result leads

to the inconsistency between the AUC ratio and the global EER value. In this case,

one can calculate the evaluation result with some auxiliary approaches, such as the

’fraction rejected versus FNMR’ defined in Chapter 3.

Figure 4.20 demonstrates the result of the fraction rejected versus FNMR.

Figure 4.20 – Result of the fraction rejected versus FNMR of the NFIQ and QMF.

Database: FVC2004DB3A; Matching score: MS SDK.
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This evaluation result is fully dependent on the genuine matchings, while the

impostor matching errors are not involved. In this case, this approach is simply used

as a complementary evaluation.

4.6.3 Pearson correlation

According to the analysis given in Section 3.4.2.4, in this part we calculate the

Pearson correlation between the maximum GMS and the quality scores. This is

simply performed on the datasets where QMF obtain a better result to reveal the

linearity between quality metric and genuine matching performance. The Pearson

correlation coefficients between each metric and each set of GMS are given in Table

4.9.

Table 4.9: Pearson correlation coefficients between quality score and Max-GMS.

Metric

DB
00DB2 02DBs 04DB1 04DB2 04DB3

QMF (MS Boz) -0.0014 0.5217 0.2601 -0.0177 0.5922

NFIQ (MS Boz) -0.4541 -0.3308 -0.1579 -0.3937 -0.3063

QMF (MS SDK) -0.0021 0.3254 0.3734 0.0615 0.4142

NFIQ (MS SDK) -0.4379 -0.2596 -0.1970 -0.5843 -0.4131

The result given in Table 4.9 is basically consistent with the global EERs plotted

in Figure 4.19. Both metrics don’t show correlation on 04DB1, and we calculate

the bin’s EER values with the evaluation approach presented in Section 3.4.2.3, see

the graphical result in Figure 4.21. In Figure 4.21(a), the square points are results

(a) Result based on MS Boz (b) Result based on MS SDK

Figure 4.21 – Plots of EER values of 5 isometrics obtained from 04DB1 by using
Chen’s Evaluation with two sets of GMS.

of NFIQ and the cross points are results of QMF. Therefore, one can note in the
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figure that bins’ EER values are tending to decrease but singularities are found in

the first bin for NFIQ and in the second and third bins of QMF, which lead to a

very low similarity between the GMS and quality values. Some researchers assert it

is not deterministic that the correlation between GMS and quality values does exist.

However, in the light of the experiments of this study, one can make an auxiliary

validation of the quality metric in terms of this measure.

4.7 Conclusion

This study first proposes a fingerprint quality metric by considering image-based

quality features and those derived from minutiae template. Second, the quality

metric has been validated by using different validation approaches. In the study, the

proposed quality metric was evaluated on different FVC databases, FVC2000 DB2 A,

FVC2002 DB2 A and the first 3 datasets of FVC2004 Set A. Among the validation

result, it can be observed that the performance of quality metric shows a great

variation between different databases, indicating that image specification largely

affects the validity of a quality metric which makes difficulties to achieve a commonly

effective metric. In addition, the variation of metric performance evaluation also

reveals that matching algorithm determines the contribution of quality metric to the

overall performance, especially when a more robust matcher is involved. Furthermore,

both the trial metric (QMF) and NFIQ are all associated with a prior-knowledge of

matching scores which more probably lead to the variation of the evaluation result.

Second, by considering the performance of both the QMF and NFIQ, this study

also gives observation that it is not easy to obtain a more robust or more complemental

quality metric by fusing a variety of features. For instance, NFIQ performs worse

than QMF on some databases even if the NFIQ fuses a group of quality features,

yet the features of QMF are not strictly validated (i.e. features are not claimed

to be quality features). In this case, one can note that quality metric is really

not an absolute or a linear predictor of the matching performance, particularly in

multi-vendor applications. However, one can also realize that the QMF is more

suitable to deal with a specific scenario of FQA. To the end, we believe that it is

possible to reach a common good quality metric with a prior-knowledge of matching

performance in case the latter is commonly robust.

In the coming chapters, we focus on qualifying fingerprint with pixel-pruning and

minutiae template only.



Chapter 5

FQA from Image Segmentation Maps

In this chapter, a general framework for estimating fingerprint image quality is

proposed by fusing features after fingerprint segmentation. The quality index

is indicated by a ratio of the pixel number of the integrated foreground area to

the size (pixel number) of the fingerprint image or simply the pixel number of

the remaining foreground area. Experimental results obtained from several trial

datasets by using a dual evaluation approach demonstrate the validity of the

proposed method in improving the overall performance.
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5.1 Introduction

In previous chapters, two kinds of approaches for generating fingerprint quality

metrics have been proposed. These two approaches demonstrate the possibility in

assessing fingerprint image from different ways: regression and no-image quality

assessment. However, both of them seem more significant in a trial manner than

in a practical manner. In addition, according to the literature in Chapter 2, one

can note that approaches based on categorizing fingerprint image areas or a single

feature are easily affected by the change of image specification. On the other hand,

assessing fingerprint quality with weighted or linear fusion is limited by employed

coefficients, while the performance of quality metrics based on regression or classifi-

cation are largely dependent on the involved regression approaches or classifiers, and

the accuracy of the employed prior-knowledge. Therefore, it is still a challenge to

achieve a common good quality metric for images captured by multi-sensor, even the

resolutions of them are quite close to each other. Because of this, one can neither

claim that metrics based on multi-feature fusion is able to make the assessment more
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robust nor deduce that it is not easy to apply a single feature to images collected

with various sensors.

This study proposes a new quality assessment framework based upon trimming

foreground pixels of bad quality image as much as possible. Therefore, instead of

using solutions presented above, this study generates a quality metric with multiple

coarse segmentation. This framework is almost a two-step (or more) work which

firstly performs one coarse segmentation to the fingerprint image and followed by

another segmentation-like operation for a further pixel-removing. Finally, each of

the segmentation results is simply used as a feature, which makes fusing features in

segmentation phase possible. The potential advantage of this framework is that it

could be improved by integrating other segmentation-based approaches or quality

features rather than fusing them in a more complicated manner.

The following of this chapter is organized as follows: Section 5.2 presents the

proposed framework in detail. Section 5.3 details the experimental results figured

out via the evaluation approach given in Chapter 3, including simple ES and an

auxiliary evaluation with NIMS. Section 5.4 concludes the proposed approach.

5.2 Proposed method

As the specialty of the biometric application, fingerprint quality is not only image

distortion determination. The purpose of FQA is to guarantee the reliability of the

extracted features from the image and hence benefits the matching performance. In

this case, segmentation is initially a choice to determine the useful and reliable area

of the ridge-valley pattern, which somehow indicates fingerprint’s availability in a

quantitative manner [74]. Existing studies of fingerprint segmentation also involve in

pure feature-based approaches and solutions with learning algorithms [54, 146, 147].

The feature-based approaches are affected by image specification and some learning-

based approaches rely on large size training set and may not be appropriate to

quality assessment applications. Note that segmentation is not equivalent to quality

assessment in this case. In addition, prior studies in segmentation-based quality

assessment mostly focus on determining foreground block number in terms of one

(or more) specific feature(s) or assigning a goodness value to a block [49, 72]. In this

case, the quality assessment framework proposed in this study considers to perform

segmentation-based operations in multi-task. This is able to ignore the coefficients

problem required by fusion-based methods and takes the advantage of the feature(s)
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used for segmentation-based approaches. Furthermore, this is not relevant to any

prior-knowledge such as training samples. The selected segmentation criteria are

common schemes and each of them acts as a module which is possibly to be replaced

and improved.

5.2.1 Features given by Morphology Segmentation

The first step of the proposed framework is to obtain a measure of fingerprint

foreground area as we have just mentioned before. To do this, a coarse segmentation

is adopted in this study, which is achieved via morphological processing of images.

Such a processing mainly consists of two tasks: dilation and erosion. Fingerprint

image is composed by parallel run ridge-valley pattern with relatively stable frequency.

With this property, it is able to connect the edges formed by the ridge-valley pattern

(Cf. Figure 5.1).

Figure 5.1 – Example of segmentation with morphology operation.

Four images in Figure 5.1 illustrate a morphology processing of a fingerprint

image with several iterations, where image 5.1(a) is the original fingerprint pattern,

5.1(b) is the image after erosion processing(s), 5.1(c) is the enhanced version of image

5.1(b), and 5.1(d) is the segmented mask. In this study, we use the approach in [51]

to perform the first coarse segmentation. The first feature for indicating fingerprint

quality is hence a pixel ratio of the foreground area to the entire image.
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5.2.2 Pixel-pruning based on Coherence

In this task, we propose a pixel-pruning approach by using an existing segmentation

criterion namely coherence [148]. The coherence is initially applied onto directional

field estimation of fingerprint images and has been used as one of the features

[148] for classification-based fingerprint segmentation approaches. The feature is to

indicate the uniformity of the foreground gradients. In our experiments, we found

that this feature is sensitive to the variation of the ridge-valley direction in a local

area. Because of this, we customize an approach by using this feature to extensively

remove foreground pixels in a local region where the directional information of the

ridge-valley pattern changes abruptly. The definition of the coherence is given by

gradient measures of pixel intensity. In a local window W , it is defined by

Coh =
|
∑

W (Gs,x, Gs,y) |∑
W | (Gs,x, Gs,y) |

=

√
(Gxx −Gyy)

2 + 4G2
xy

Gxx +Gyy
(5.1)

where (Gs,x, Gs,y) is the squared gradient, Gxx =
∑

W G2
x, Gyy =

∑
W G2

y, Gxy =∑
W GxGy and (Gx, Gy) represent the local gradient.

Figure 5.2 illustrates an example of the pixel-pruning result of a fingerprint image.

(a) Original (b) Coherence (c) Mask

Figure 5.2 – Example of segmentation with Coherence.

In Figure 5.2, image 5.2(b) is the coherence image calculated from the original

fingerprint illustrated by 5.2(a), while image 5.2(c) is the segmentation mask obtained

by using pixel-pruning method which is carried out via a thresholding operation to

the coherence image.

In our study, the coherence image is first normalized into [0,1], and then divided

into non-overlapped blocks which is followed by thresholding operations with a

baseline value of 0.5. The block size is 16 in this study, and both the block size and

the threshold are all empirical values in our study. Finally, the quality feature is also

a ratio of the light pixels number to the pixel number of the entire image.



5.2. PROPOSED METHOD 97

5.2.3 Metric Generation

The proposed framework of fingerprint quality assessment is essentially implemented

by fusing two (or more) features in the segmentation phase, i.e. the binary images of

mask obtained in the segmentation stage and pixel-pruning session would be combined

together. Considering score-based fusion in biometrics [93], one can observe that

there are several ways to achieve fusion task such as ’min’ and ’max’ rules. In the

proposed framework, we simply use the logical ’and’ rule to fuse two binary mask

images, which is actually equivalent to fusing two features (obtained by two steps)

in terms of the ’add’ rule. An example of such a fusion is given in Figure 5.3.

(a) Original (b) Morphol-

ogy

(c) Coherence (d) Fused

Figure 5.3 – Example of segmentation with Coherence

In Figure 5.3, one can note that the morphology approach coarsely generates

a entire foreground area, where coherence is used for removing pixels in terms of

the mean value of coherence in block-wise. In our study, the coherence image is

normalized into [0,1] and a threshold of 0.5 is involved in pruning pixels as much

as possible. The block size is 16 in this study. All of them are empirical values,

and there is no experiment data support the block size and the threshold. It could

be possible to modify the threshold value in terms of the variation of the global

error rate. However, in this study, 0.5 is simply chosen as the coherence image is

normalized into [0,1], and this value works for variant datasets in the experiment.

The block size is 16 simply because it is a moderate value for a fingerprint. Finally,

the quality measure is a ratio of the light pixels number to the pixel number of the

image.

In Figure 5.3, one can note that the morphology approach is to coarsely generate

an entire foreground area, where the pixel-pruning approach is used for removing

pixels in terms of the mean value of coherence in block-wise. The pruning task is

particularly effective for bad quality images that contain some abrupt changes of the
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direction of the ridge-valley flow. The validation of the proposed approach is given

by evaluation experiments, see Section 5.3.

5.3 Experiment results

The experiment given in this section includes two parts based on the Enrollment

Selection (ES) given in Chapter 3. At first, the simple ES associated to the proposed

quality metric (denoted as MSEG hereinafter) and a reference metric (NFIQ) is

performed with the original dataset. Second, the ES with the quality metrics is

carried out via the auxiliary NIMS approach. The experiments employ fingerprint

databases given in Chapter 3 and two re-organized databases. The experiment

is carried out via two different matching algorithms in this study. Details about

employed datasets are given below.

5.3.1 Protocol

In experiments, we generate two re-organized datasets from the CASIA FP-Test

V1 1 database. The CASIA database contains fingerprint images of 4 fingers of each

hand of 500 subjects, where each finger has 5 samples. In this study, we create the

two re-organized databases by using samples of the second finger of each hand, and

they are respectively denoted as CASL2 and CASR2. Therefore, each sub-database

has 2500 images of 500 individual (5 samples per individual). The samples of the

CASIA dataset is captured by an optical sensor, which creates gray-level image of

328×356 and the image resolution is 512-dpi. A glance of the two datasets are given

by samples in Figure 5.4.

(a) CASL2 (b) CASR2

Figure 5.4 – Sample illustration of CASIA database. Left and right hand: 5.4(a),
5.4(b).

1. http://biometrics.idealtest.org/detailsDatabase.do?id=3
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In this case, the intra-class matching scores consisted of 500×4 genuine matching

scores (GMS) and the inter-class matching scores contains 500×499×4 impostor

matching scores have been computed for these two datasets via two matching

algorithms, respectively.

5.3.2 Results

Experiment results are also indicated by a set of global EER values and their 95%

confidence interval (CI) obtained from each dataset by substituting the associated

utility and quality values to the ES, respectively. Results obtained from FVC and

CASIA datasets are given separately, for the quality of them are quite different.

Figure 5.5 plots the global EERs of the FVC datasets, where Figure 5.5 (a) is

the result calculated from the NBIS matching scores and Figure 5.5 (b) shows the

result obtained by using the matching scores of the SDK.

(a) Results based on MS Boz

(b) Result based on MS SDK

Figure 5.5 – Global EER plots. UtilityBoz and UtilitySDK in Figure 5.5(a) and

5.5(b) are plots of the global EER obtained with two sets of sample utilities.
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In Figure 5.5 (a), when NBIS matcher is involved, MSEG (red plot) respectively

generates 16.54% and 14.05% on 04DB1 and 04DB2 which are relatively bad results

in comparing with the reference metric (blue plot), while MSEG shows better results

on the other 3 datasets. On the other hand, MSEG (Figure 5.5 (b)) performs

relative bad on 02DB2 only and better on the other 4 datasets when a vendor-free

matcher (SDK) is used. This is due to the difference of the matching performance

between the two algorithms. In addition, the NFIQ is involved in a prior-knowledge

of matching performance, which could more probably result in a different evaluation

result. The global EERs of MSEG and NFIQ obtained from 02DB2 are 0.2% and

0.12%, respectively. The global EERs obtained by samples utility are plotted via

green points in each figure. The sample utility is simply an approximation of the

groundtruth (with respect to the employed matcher) of the original sample as it

has been discussed in Chapter 3. The utility-based global EERs are illustrated as a

reference, indicating how much the quality metric is close to the best case that one

matching algorithm can obtain from a trial dataset.

Table 5.1 gives the CIs of the quality-based global EERs, which has already

included the CIs obtained from the two CASIA datasets.

Table 5.1: The 95% CI of the global EER of each metric.

DB

QM
NFIQ MSEG

00DB2A (NBIS) [0.0490 0.0500] [0.0450 0.0461]

02DB2A (NBIS) [0.1326 0.1340] [0.1068 0.1084]

04DB1A (NBIS) [0.1540 0.1557] [0.1645 0.1662]

04DB2A (NBIS) [0.1312 0.1334] [0.1396 0.1413]

04DB3A (NBIS) [0.0745 0.0756] [0.0712 0.0723]

00DB2A (SDK) [0.0022 0.0024] [0.0009 0.0011]

02DB2A (SDK) [0.0011 0.0013] [0.0019 0.0021]

04DB1A (SDK) [0.0266 0.0275] [0.0189 0.0196]

04DB2A (SDK) [0.0384 0.0397] [0.0319 0.0328]

04DB3A (SDK) [0.0189 0.0195] [0.0148 0.0153]

CASL2 (SDK) [0.4087 0.4097] [0.3856 0.3866]

CASR2 (SDK) [0.3815 0.3825] [0.3592 0.3603]

The global EER values obtained by each quality metrics from the CASIA datasets

are presented in Table 5.2.
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Table 5.2: The global EERs obtained from CASIA datasets.

QM

DB
CASL2 (NBIS) CASR2 (NBIS) CASL2 (SDK) CASR2 (SDK)

NFIQ 43.09% 43.51% 40.92% 38.20%

MSEG 42.30% 43.20% 38.61% 35.97%

According to the results given in Table 5.2, one can note that the proposed MSEG

shows its validity in comparing with the reference quality metric. By using the

matching scores of NBIS software, the global EERs obtained by MSEG are 42.30%

(CASL2) and 43.20% (CASR2), while NFIQ generates 43.09% (CASL2) and 43.51%

(CASR2), respectively. Likewise, the global EERs calculated with the matching

scores of the SDK are 38.60% (CASL2), 35.97% (CASR2), 40.92%(CASL2) and

38.20% (CASR2), where the first two values correspond to the MSEG and the last

two values belong to the NFIQ. The CIs given in Table 5.1 are also consistent with

these global EERs, indicating the validity of the proposed MSEG. Meanwhile, the

experimental result also shows that the MSEG is commonly available for multiple

image specifications, at least the employed image types.

(a) Results based on MS Boz

(b) Result based on MS SDK

Figure 5.6 – Global EER plot obtained by ES of reduced templates. NoSel means

the global EER obtained from the reduced dataset without ES.
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Second, we perform validation of the MSEG by using the auxiliary NIMS men-

tioned in Chapter 3. This kind of operation needs to perform on one dataset for

each desired number. Therefore, we simply choose one database as an example to

illustrate this auxiliary method. In the experiment, the 04DB1 is used since there is a

dissent between two matchers. In addition, the reduced datasets and their matching

scores of 04DB1 are already available in [108]. Also, the matching performance with

the original template (NoSel) of this database is far from the global EERs obtained

by utility-based ES (step 3), which makes a clear illustration. The plots of the global

EERs of the reduced datasets are given in Figure 5.6.

In Figure 5.6 (a) and (b), ’UtilityBoz’ and ’UtitlitySDK’ respectively indicate

global EERs’ plots obtained via NBIS-based utility and SDK-based utility for each

reduced template set. Obviously, by comparing the plots of the global EER values

associated to the metrics, NFIQ (blue) and MSEG (red), the result is basically

consistent with the ones given in Figure 5.5. A little bit variation appears as the

desired number increased to 48 or so when calculating the global EER with NBIS

matching scores. This is reasonable according to the study of NIMS [108]. In this

case, with the reference quality metric and the objective measure (utility), one can

found that the proposed framework is a valid solution for assessing fingerprint quality.

Figure 5.7 – Illustration of the effect of pixel-pruning. The 1st row shows original

images and the 2nd row shows the fused images of the originals and the final mask.

At last, several examples are given to illustrate the effect of the proposed pixel-

pruning to the performance of the MSEG, see figure 5.7. In Figure 5.7, the first

example and the last one are relatively good looking images in FVC2000DB2 and

the CASIA dataset, respectively. Others are those relatively bad looking samples

randomly picked up from the associated dataset. Apparently, the pixel-pruning
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operation achieves the purpose in removing pixels extensively from bad quality

images. On the other hand, the singularity areas are mostly removed from the good

quality images because the pixel-pruning is dependent on the variation of direction

of a local pattern. In this case, it does not affect so much good quality images, and

hence gives a valid assessment result.

An implementation of the proposed framework is available online 2.

5.4 Conclusion

In this chapter, a new framework for qualifying fingerprint images is proposed. The

proposed solution achieves fusing multi-feature in the segmentation phase, which

avoids coefficient problem of the weight-based combination approaches. In addition,

the proposed framework shows some generalities to variant fingerprint images. Finally,

this approach is not related to any prior-knowledge, which makes the evaluation

more independent.

The validity of the proposed framework is proved via a comparison with the

reference metric. The proposed quality assessment framework also has a potential

advantage in improving itself via any available feature of fingerprint segmentation

tasks. Nevertheless, it could be integrated into the other quality assessment framework

with multiple features as well.

2. https://www.greyc.fr/users/zyao





Chapter 6

FQA from Minutiae Template

A new quality assessment method of fingerprint derived from only its minutiae

points is presented in this chapter. The proposed quality metric is modeled

with the convex-hull and Delaunay triangulation of the minutiae points. The

validity of this quality metric is verified on several trial datasets by referring to

an image-based metric from the state of the art.
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6.1 Introduction

In previous sections, prior studies in estimating fingerprint quality had been intro-

duced, by which one can note that some of the existing methods are carried out by

using an unique feature, while others combine multiple features together. To this

point, one can found that no matter how many aspects are considered by a fingerprint

quality assessment approach, it is all about features employed for generating the

quality metric. A valid feature or metric should be able conduct positive contribution

to matching performance [27]. This kind of contribution of sample quality has been

standardized as a utility property [149], i.e. sample quality reflects its impact on

the performance of the system. However, system performance fully relies on the

matching approach such as minutiae-based system which is employed most in actual

deployments. In this case, it is reasonable to consider qualifying fingerprint with

minutiae information, particularly when considering quality assessment without its

image information.

There are very few quality assessment approaches that take into account minutiae

information, such as NFIQ. Moreover, none of the state-of-the-art approaches qualifies

a fingerprint from only the minutiae template. The main contribution of the proposed

105
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study is an original algorithm that computes a quality score from a minutiae template

associated to the fingerprint. In another word, it could be viewed as a quality metric

for assessing the quality of a minutiae template. The benefit of having this type

of metric could be related to embedded biometric systems in smart cards or smart

objects where only the minutiae template is available due to computational and

storage constraints.

This chapter is organized as follows. Section 6.2 presents the proposed quality

metric. Details of the experimental results and a discussion are given in Section 6.3.

Section 6.4 concludes this chapter and discusses the perspectives.

6.2 Metric definition

Fingerprint matching approaches, according to the literature [43], are broadly clas-

sified as minutiae-based, correlation-based or image-based, among which minutiae-

based is the most widely studied solution. Minutiae mainly include two types of

points known as ridge bifurcation and ridge ending which are the minor details of a

fingerprint image, particularly being used for fingerprint alignment and matching

[139]. A minutiae template generally provides three kinds of information: 1) minutia

location, 2) the orientation and 3) the type of minutia point, see Figure 6.1.

Figure 6.1 – A fingerprint and its minutiae template.

These features are sufficient to reconstruct a synthetic fingerprint from a given

template [138] as the orientation field can be estimated. Another kind of information

is the amount of detected minutiae points, which has been used as one factor [69]

for quality assessment of fingerprint samples. In addition, Prabhakar et al. [150]

proposed that the matching accuracy can be greatly improved when using minutiae

type information as a complementary factor for matching. However, this information

is far from being enough for generating an effective quality metric.
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In order to do so, the minutiae template is related with the foreground of

fingerprint because the area of minutiae indicates an available and useful region

for the so-called ’extractability’ [29] of features. According to previous chapters,

foreground area is known as one index of fingerprint image quality, i.e. a good

quality fingerprint should have at least enough area for matching. Therefore, when

dealing with fusion-based metric in Chapter 3, minutiae account in different regions

was considered. However, this kind of measurements failed to reflect any of image

characteristics. Because of this, this study pays more attention to the area of minutiae

region which is the only element related minutiae template to a fingerprint image.

Rectangle and circle regions are able to approximately estimate the foreground

area but they have difficulties to measure local characteristics when using minutiae

template only. In this case, this chapter proposes to estimate fingerprint quality

by modeling the associated minutiae template with the convex-hull and Delaunay

triangulation (Cf. Figure 6.2).

Figure 6.2 – A convex hull (left) and Delaunay Triangulation.

The 2D convex hull [151] Ci = {(xj , yj)|j = 1, · · · , Ni} (where Ni is the minutiae

number of the ith fingerprint) is defined as the smallest convex set that contains all

the points of a given set of minutiae Fi in this case (Cf. Figure 6.2). The Delaunay

Triangulation of a set of points P in 2D plane is defined as a triangulation DT(P)

[152] that none of the points of the given set are inside the circumcircle of any triangle

of DT(P), as illustrated in Figure 6.2.

With the respective properties of these two geometric structures, an area of the

smallest informative region of one fingerprint and a set of areas and perimeters

of triangles composed by each 3 of its minutiae points are obtained. By doing so,

one unavoidable problem is observed that almost all the templates of bad quality

fingerprints contain both correctly detected minutiae point and spurious points. As

presented in Chapter 2, most of matching algorithms are based on minutiae points,



108 CHAPTER 6. FQA FROM MINUTIAE TEMPLATE

and geometric structures are also adopted in many studies [153, 154]. Based on these

observations, we proposed a quality metric as described below.

Let a minutiae template Fi of a fingerprint containing a set of detected minutiae

points represented by mj = (xj, yj, θj), where (xj, yj) is the location and θj is the

orientation of the jth minutia point. There is a convex hull denoted by Ci and

a set of triangles (Tk) formed by Delaunay triangulation which is formulated as

DT (Fi) = {Tk|k = 1, 2, · · · , Li}, where Li (< 2Ni, is the number of) triangles can be

constructed from Fi. Correspondingly, the convex hull encloses all the minutiae of Fi

with the smallest area represented by Ai, and a set of areas Sk and perimeters Pk of

DT (Fi) are respectively obtained.

In our experiments, we observed that bad quality samples generate tiny and

extremely narrow triangles (considered as unreasonable) due to spurious minutiae

points. The quantitative values of their area and perimeter are (visually) not

proportional to each other, as observed in Figure 6.3.

Figure 6.3 – Example of minutiae Delaunay triangulations of 3 different FVC images.

NFIQ values are 2, 2 and 1, respectively.

In Figure 6.3, triangles drew by pink color indicate unreasonable minutiae struc-

tures. Based on these observations, the quality metric (abbreviated as MQF af-

terwards) is calculated with several steps, as described by algorithm 1. In the

computation of the proposed quality metric, three thresholds are set for triangle

perimeter, triangle area and the ratio between the perimeter and area of the triangle,

which are represented by Yp, Ya and Yr, respectively. The details for choosing the

most appropriate parameters are discussed in Section 6.3. The quality value q is

dependent on the area of the geometrical structure of the minutiae region, which

could be normalized into the range of [0, 100] on each database.
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Algorithm 1 Computation of the quality score.
Input:

Minutiae Template Fi.

Output:

Quality index, q;

1: Calculate the area of the convex hull Ci, denoted as Ai;

2: Calculate perimeter and area for each triangle Tk, denoted as Pk and Sk;

3: AYp = area (Search (Pk < Yp));

4: AYa = area (Search (Sk < Ya));

5: AYpa = area (Search (Pk < Yp & Sk < Ya));

6: AYr = area (Search (Pk�Sk) > Yr);

7: Sarea =
(
Ai − AYp − AYa − AYr − AYpa

)
; // No duplicated triangles.

8: return q = Sarea;

Obviously, this algorithm relates the minutiae template with the area of a region

for matching operations as it has just been mentioned before. However, this factor is

not commonly sufficient so that we consider to remove a part of potentially useless

area from the informative region due to the lack of image information. Delaunay

triangulation gives a relatively ideal solution to this problem thanks to the spurious

minutiae of bad quality images. For example, as it is depicted in Figure 6.3, some

unreasonable triangles formed by spurious minutiae on the border of the foreground

enable us to remove the corresponding area. Another case is the tiny triangle which

is mostly happened to the area where the quality of ridge-valley pattern is relatively

bad. The study also noted that some fingerprint images have several genuine minutiae

clustering in a very small area. This case is not specially considered in the proposed

algorithm just because of the limitation of the template. The area of each triangle is

obtained by using Heron’s formula [155].

6.3 Experimental results

In order to validate the MQF, we adopt several approaches to illustrate the per-

formance of the quality metric: 1) the Pearson correlation coefficients between the

MQF and several others (from the state-of-the-art) are calculated and 2) the MQF is

evaluated by using the proposed enrollment selection (ES) given in Chapter 3. The

experiments are performed with a laptop driving by an Intel Celeron dual-core CPU

of 1.73GHz. The experimental protocol is presented first.
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6.3.1 Protocol and databases

In this study, experiments are conducted with the five trial databases given in Section

3.4. The minutiae template of MQF is generated by using the OpenSource software

MINDTCT addressed in Section 3.4 as well. This extractor generates a quadruple

representation of minutia point, mi = {x, y, o, q}, where (x, y) is the location of

minutia point, o indicates orientation and q is a quality score of minutia point. In

the experiment, the location has been used only for calculating the proposed quality

metric. In the evaluation stage, we also use the Bozorth3 and SDK to calculate

matching scores.

6.3.2 Parameter settings

Fernandez et al. [71] and Olsen [102] respectively calculated Pearson and Spearman

correlation coefficients between different quality metrics to observe their behavior

or similarity. Similarly, we investigate the behavior of the proposed quality metric

through the Pearson correlation coefficients, by which the parameters are appropri-

ately selected as well.

Figure 6.4 – The variation of the Pearson correlation between the proposed metric

and OCL as the parameter changes. X-axis: parameter; Y-axis: Pearson correlation.

The three thresholds (Yp, Ya and Yr) are all empirical values observed in the

experiments, and they are all dependent on the resolution of the image which is

supposed to be over 500 dpi in this study. With the experiments, we noted that the
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smallest area of the triangles of each template is generally less than 70 (considering a

histogram of 100 bins). This value is only a scalar value without considering the unit

of the measurement. In this case, we firstly preferred to choose a value of the area

over 70. In addition, it is easy to observe that a threshold larger than 80 may loose

the significance of this parameter. The variation of the correlation values (larger

than 0.3) demonstrates this problem, see Figure 6.4.

Likewise, the smallest perimeter value of the triangles of each template is mostly

within the interval [10, 80], and generally lies around 35 (according to the histogram).

In this case, we further consider the relation between the area and the perimeter

of those triangles that seemed abnormal. Without considering the unit of the two

measurements (one is 1-D and another is 2-D), we observed that the value of the

perimeter is generally smaller than the area. In this case, inspiring by the Heron’s

formula, we choose a threshold to represent the ratio between these two measurements.

We observed that the triangle is extremely narrow if the ratio between a perimeter

and an area is close to 1. Besides, similarly, it is also not necessary to consider

larger values for the perimeter. We first choose a reference quality metric among

all the others. The correlation of OCL does not vary so much on variant databases.

Therefore, we simply choose the OCL in the experiment. Figure 6.4 provides only

the graphical result of the variation of the correlation value between OCL and the

proposed metric obtained via a series values of two parameters. In the experiments,

the thresholds of the area and perimeter vary in the range of [40, 100] and [30, 80]

with an interval of 1, respectively.

According to Figure 6.4, we also observed that the variation of Yp leads to more

impacts on the correlation coefficient than Ya when other parameters had been

set approximately. In order to achieve a generality of the proposed quality metric,

the values of Yp, Ya and Yr in this study are 75, 70 and 0.8, respectively. At last,

the behavior of these parameters were estimated by using performance validation

approach, and the variation of the performance measurement (EER) obtained in a

small interval of each of them tends to be stagnant. With this empirical analysis,

the parameters are set as what had just been mentioned.

6.3.3 Feature analysis

To validate the MQF, we calculate the correlation coefficients between several quality

metrics and reference ones. In addition to the two orientation-based indexes, OCL

and the orientation flow (OF) [80], we also employ a wavelet domain feature carried

out via the Pet Hat’s continuous wavelet (PHCWT) [77]. In the literature, it is

said that the Pet Hat wavelet is sensitive to the sharp variations of features such as
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fingerprint ridges. Nevertheless, we also use a pixel-based quality metric which is

the standard deviation (STD) of fingerprint local block indicating pixel information

of the image [73]. The NFIQ is also involved in this section. Table 6.1 presents the

Pearson correlation results of the trial quality metrics.

Table 6.1: Inter-class Pearson correlation coefficients. FVC2002DB2A

OCL OF PHCWT STD MQF NFIQ

1 0.013 0.932 0.892 0.781 -0.503

0.013 1 0.092 0.122 0.070 0.061

0.932 0.092 1 0.954 0.788 -0.474

0.892 0.122 0.954 1 0.678 -0.374

0.781 0.070 0.788 0.678 1 -0.422

-0.503 0.061 -0.474 -0.374 -0.422 1

Table 6.1 provides only an inter-class Pearson correlation result of the employed

quality metrics obtained from FVC2002DB2A. According to the coefficient values

indicated with the highlighted cells, one can observe that MQF demonstrates the

correlated behavior with the others except the OF. The correlation coefficients

between the proposed metric and others calculated from the remaining databases

are given in Table 6.2

Table 6.2: Pearson correlation coefficients between MQF and others.

MQF of OCL OF PHCWT STD NFIQ

00DB2 0.409 -0.131 0.291 0.301 -0.081

04DB1 0.899 0.253 0.905 0.817 -0.201

04DB2 -0.050 -0.489 0.722 0.650 -0.378

04DB3 0.863 0.021 0.818 0.811 -0.363

According to the results, in addition to FVC2000DB2A, one can note that MQF

shows a relatively stable correlation (similarity) with other metrics, i.e. it exhibits an

usability to variant databases. The correlation value between the proposed metric and

OCL for FVC2004DB2A shows an odd value because a lot of over-inked samples are

contained in this database. This problem results in some difficulties for calculating

the OCL and leads to a lot of singular values. Note that the proposed metric uses only

the set of minutiae location, and the fingerprint image is considered as unavailable.
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6.3.4 Evaluation result

In this section, the ES with a reference quality metric (NFIQ), the QMF proposed

in Chapter 4, MQF and sample utility (best case) are performed for validating the

MQF. The evaluation results obtained from five trial databases are given by the

global EER values and their confidence interval. Two graphical plots of the global

EER values generated by the ES are illustrated in Figure 6.5.

(a) Result based on MS Boz

(b) Result based on MS SDK

Figure 6.5 – Plots of global EERs obtained by using ES. Figure 6.5(a) is the result

based on MS Boz and Figure 6.5(b) corresponds to MS SDK.

In Figure 6.5, the UtilityBoz and UtilitySDK correspond to the global EERs

obtained by using ES based on two sets of utility values, respectively. The other three

plots are results generated by ES with each quality metric. When the matching score

of the Bozorth3 (MS Boz) is used, the proposed MQF shows clearly worse results than

NFIQ on 00DB2A and 04DB2A, for which the global EER values obtained by MQF

are 5.03% and 15.02%, while the counterparts of the NFIQ are 4.97% and 13.32%,

respectively. However, MQF performs worse only on 00DB2A when matching scores

of the SDK (MS SDK) are involved in the experiment. The global EERs obtained

by two metrics from this dataset are 0.76% (MQF) and 0.22% (NFIQ), respectively.
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Apparently, as it has been discussed in Chapter 3, interoperate study shows

different evaluation results due to the dissent between matching algorithms. According

to this result and the correlation coefficients given in Table 6.2, one can note several

problems that are negotiable. For instance, classification with multiple features by

learning a prior knowledge of matching score might not be able to take advantages

of the employed features. Besides, the Pearson correlation between one measurement

and the others could be a solution to estimate the availability of the measurement

for being used as a potential feature of a quality metric. However, we do not assert

it is sufficient to evaluate the performance of a quality metric.

The statistical index, 95% CI , presented as well in Chapter 3 of the global EER

values are listed in Table 6.3.

Table 6.3: The 95% confidence interval of the EERs.

DB

QM et MS
MQF Boz NFIQ Boz MQF SDK NFIQ SDK

00DB2A (CI) [0.0497 0.0509] [0.0492 0.0502] [0.0074 0.0078] [0.0021 0.0023]

02DB2A (CI) [0.1109 0.1128] [0.1326 0.1340] [0.0011 0.0013] [0.0011 0.0013]

04DB1A (CI) [0.1491 0.1506] [0.1529 0.1545] [0.0171 0.0177] [0.0268 0.0276]

04DB2A (CI) [0.1489 0.1515] [0.1321 0.1344] [0.0338 0.0349] [0.0390 0.0402]

04DB3A (CI) [0.0681 0.0693] [0.0741 0.0752] [0.0148 0.0154] [0.0190 0.0195]

In Table 6.3, the CI results of the global EER values statistically illustrate the

validity of the proposed quality metric. The overlap happened to 02DB2A when

the matching score of SDK is employed, for the global EER values obtained from

this database is nearly the same. In experiments, the error range of the global EER

values has already been discussed in Chapter 3. This result listed in Table 6.3 is

fully able to demonstrate the reliability of the global EER in a statistic manner.

Figure 6.6 – Illustration of the different between MQF and NFIQ.

Moreover, we simply choose several images to illustrate the differences between

the two quality metrics and their drawbacks. For instance, the MQF values of the
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samples given in Figure 6.6 are (2.94, 38.61, 38.46, 64.11, 61.2), and their NFIQ

values are all level 2. According to sample (a), one can find that it contains only

a partial of the fingerprint image which is not suitable for matching. In addition,

the samples with MQF values under 40 are not as good as a level 2 sample in this

example. The samples (b) and (c) would result in spurious minutiae. On the other

hand, an obvious shortage of MQF is the area measurement which would generate

outliers in many cases, such as the samples illustrated by Figure 6.6 (d) and (e).

At last, by using the CASIA database, a comparison between the state-of-the art

quality metric and three proposed solutions is given by the results derived from the

vendor-free matching scores (MS SDK), see table 6.4.

Table 6.4: Comparison results of 4 quality metrics.

DB

Metric
CASL2 (MSSDK) CASR2 (MS SDK)

NFIQ 40.92% 38.20%

QMF 42.72% 41.26%

MSEG 38.61% 35.97%

MQF 42.19% 40.94%

These two databases are used in the experiment because they are relatively

difficult and hence more suitable to show the ability of a target quality metric. The

approach based on pixel-pruning (MSEG) obtains the best result, while NFIQ comes

the second, the MQF given in this chapter obtains better result than the one defined

in chapter 4. However, one should note that the MQF uses only minutiae template.

In this case, the proposed solutions are validated by using the validation framework

defined in 3, especially when relatively normal databases (FVC) are used in the

experiment.

The experiments are implemented via Matlab 7.12. The computation takes

approximately 0.423 second per sample according to a calculation of 1600 samples

when the input is an image, and 0.122 second for template inputs.

6.4 Conclusion

This study mainly focuses on estimating fingerprint quality simply with a minutiae

template. By investigating the relation between image-based quality criteria and the

structure of minutiae template, we calculate the area of minutiae region via a convex

hull and the Delaunay triangulation. The uniqueness of Delaunay triangulation

provides a possibility that some unreasonable minutiae could be further eliminated
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from template, and the particular rules for calculating convex hull enables estimating

a relatively minimum area of the detected minutiae. Accordingly, we define a simple

yet efficient quality metric for fingerprint and minutiae template. In another aspect,

the quality metric could be affected by some bad samples with large minutiae region.

The lack of image information makes this problem inevitable. Correspondingly, we

analyzed the proposed quality metric via Pearson correlation coefficients and evalu-

ated its performance with an enrollment phase approach. Therefore, it is reasonable

to conclude that the proposed quality metric is an effective measurement for assessing

the quality of a various of fingerprint samples when their associated templates are

available only. In this thesis, this approach is classified as a segmentation-based

solution.

As some of fingerprint quality metrics are generally defined with multiple features,

this quality metric therefore could be a candidate for those composite metrics. The

future work of this study tends to concentrate on combining this quality metric with

some others extracted from minutiae template to obtain better performance.



Conclusions et perspectives

Biometric techniques have been widely deployed in recent years and will be an

essential part of the constitution of information security and other social service in

the near future. Fingerprint, as it has been detailed in this thesis, has been one

of the most important means of biometric applications and will still be a leading

role in this domain. Existing studies have noted that biometric sample quality is

a significant factor in improving or guarantee the overall performance of biometric

systems. Likewise, many attempts in qualifying fingerprint samples have been made

so far. This thesis mainly focuses on fingerprint quality assessment (FQA) and the

evaluation of quality metrics. During the study of this thesis, we have been making

effort in quality assessment with different and new solutions which enable us in

observing some potential problems and give us some motivations for the future work,

as presented in the following.

Contributions

In Chapter 1 of the thesis, a quick review of biometrics has been given in terms of

the general structure of a biometric system and its performance evaluation. Such

a technical review gives the prerequisite and a comprehensive understanding for a

further study of fingerprint modality.

Chapter 2 introduced the fingerprint modality in detail, including most of the

processing operations for this modality. This chapter presents a literature review to

most of the existing studies of FQA, which detailed quality assessment approaches

in terms of each of the representative solutions that had been proposed so far.

Meanwhile, difference between those types of solutions and some potential problems

have been discussed. For instance, according to experimental results given in some of

the reviewed articles, some metrics that rely on a single feature are better than the

benchmark metrics implemented via multiple features. Does this mean that metrics

based multi-feature do not really take the advantages of the employed features? This

needs to be answered with the support of experiments.

Chapter 3 firstly addresses a quick review of performance evaluation approaches

of quality assessment algorithms. Next, a new validation framework for estimating

biometric quality metrics has been proposed, which is able to statistically estimate a

117
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quality metric via several global measurements, such as global EER and AUC values.

This chapter shows that quality is not absolutely a linear predictor of matching

performance.

Chapter 4 proposes the first solution in this thesis for assessing fingerprint quality.

The proposed approach is carried out by combining several different types of feature of

both fingerprint image and its minutiae template. Meanwhile, this solution relies on

a prior-knowledge of matching performance, specifically the genuine matching scores

(GMS). Together with the observation of Chapter 3, one can note that the efficacy

of quality metrics based on multi-feature fusion really depend on the associated

fusion algorithms, and they are constrained by sample types. Furthermore, metrics

implemented via a prior-knowledge are easily affected by matching algorithms, i.e.

the performance of this kind of metrics largely depend on the accuracy of the

prior-knowledge.

In Chapter 5, a new solution has been proposed by using multiple image seg-

mentation maps. This approach estimates the fingerprint quality by fusing several

features in segmentation phase. One should note that segmentation is not exactly the

same as quality assessment. This kind of qualification framework provides possibility

to use any kind of segmentation techniques for FQA.

Chapter 6 proposed another new solution of FQA by using only the minutiae

template of a fingerprint, which enables qualifying fingerprint when minutiae template

is known alone. This is also one of our trials, which none of existing studies has

considered to assess quality in such a case, showing the possibility for quality

assessment without using full image information.

With all summaries above, this thesis achieves assessing fingerprint quality in dif-

ferent ways: 1) multi-feature fusion with a prior-knowledge of matching performance,

2) geometric structure of minutiae template and 3) fusion in segmentation phase. All

these proposed solutions can represent each of the typical solutions of FQA in the

existing studies, and able to give us a comparative study to demonstrate whether

fusion-based approach really achieves a common good and robust quality index. The

assessment approach given in Chapter 5 shows its generality for several different

types of fingerprint images. However, according to the experimental results of this

thesis, one can notice that it is still a challenge to get a quality metric for every kind

of fingerprint images, even the resolution of target gray-level image is limited at about

500-dpi. In addition, some new forms of fingerprint applications have appeared quite

recently, such as smart phone. Therefore, quality assessment of fingerprint requires as

well appropriate solutions. Nevertheless, several problems still need to be considered

in the future studies of the classical fingerprint applications, which are given below.
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To this end, FQA is recommended to be independent from the prior-knowledge of

matching performance because none of existing matching algorithm is ideal. Similarly,

the validation or evaluation of biometric quality assessment approach should consider

both the genuine and impostor errors because it is essentially a biometric test.

Perspectives

According to our studies, we believe the FQA is still an open issue for several reasons:

1. Once image specification is fixed, a good quality metric or associated feature

should be available for various samples captured via different sensors, while

most of the existing studies are not able to satisfy this criterion.

2. Multi-feature fusion for FQA is still challenging, for most of the existing studies

do not really make multiple features more robust than a single feature. Typical

solution of this kind of scheme concretely includes linear fusion [80], regression

[84] and classification. To achieve the fusion adaptively, large scale dataset or

a set of specific target sensing devices could be considered.

3. Mobile applications such as camera shot of fingerprint requires qualifying

fingerprint image in different aspects such as distortions for image quality

assessment (IQA) [110].

4. According to Chapter 3, some quality-related topics could also be improved

such as minutiae selection which could combine both image-based selection

and NIMS [108] approaches.

5. Meanwhile, it is also possible to consider whether the type of fingerprint pattern

impact on assessing fingerprint quality, for existing studies have observed that

the type would impact on the matching performance [15].

6. Nevertheless, the quality of fingerprint sample could also be considered as a

feature for detecting spoofing fingerprint image.
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[cité p. 5, 11, 16]

[4] Ann Cavoukian and Alex Stoianov. Biometric encryption. In Encyclopedia of

Cryptography and Security, pages 90–98. Springer, 2011. [cité p. 5]
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[10] YC Feng, Pong C Yuen, and Anil K Jain. A hybrid approach for face template protec-

tion. In SPIE Defense and Security Symposium, pages 694408–694408. International

Society for Optics and Photonics, 2008. [cité p. 9]
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BIBLIOGRAPHY 127

[51] Sharat Chikkerur, Alexander N. Cartwright, and Venu Govindaraju. Fingerprint

enhancement using stft analysis. Pattern Recogn., 40(1):198–211, January 2007.
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[57] HB Kekre and VA Bharadi. Fingerprint core point detection algorithm using orienta-

tion field based multiple features. International Journal of Computer Applications

(0975-8887), 1(15):106–112, 2010. [cité p. 29]

[58] Xudong Jiang, Manhua Liu, and Alex Chichung Kot. Reference point detection for

fingerprint recognition. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the

17th International Conference on, volume 1, pages 540–543. IEEE, 2004. [cité p. 29]
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[71] F. Alonso-Fernandez, J. Fierrez, J. Ortega-Garcia, J. Gonzalez-Rodriguez, H. Fron-

thaler, K. Kollreider, and J. Bigun. A comparative study of fingerprint image-quality

estimation methods. Information Forensics and Security, IEEE Transactions on,

2(4):734–743, 2007. [cité p. 34, 86, 87, 110]
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[92] Mayank Vatsa, Richa Singh, Afzel Noore, and Max M Houck. Quality-augmented

fusion of level-2 and level-3 fingerprint information using dsm theory. International

Journal of Approximate Reasoning, 50(1):51–61, 2009. [cité p. 38]
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La qualité d’image est un facteur important de systèmes d’identification automatique par

empreintes digitales (AFIS) parce que la performance d’appariement pourrait être affectée de manière

significative par des échantillons de mauvaise qualité. La qualité des échantillons d’empreintes

digitales, par exemple, pourrait être grandement affectée par un grand nombre de problèmes,

tels que les défauts physiques et la performance de l’appareil de détection (facteurs externes).

En outre, la différence entre les données capturées telles que la spécification de l’image permet

également certaines difficultés pour obtenir une solution commune. Les études existantes ont fait

des efforts pour connâıtre l’approche la plus appropriée pour représenter la qualité de l’empreinte

digitale. Cette thèse propose plusieurs méthodes d’évaluation de la qualité, tendant à obtenir

des observations de cette question par plusieurs aspects: 1) La mesure de qualité permet-elle de

prédire la performance de l’appariement? 2) Dans quelle mesure la fusion multi-attributs permet de

réaliser une bonne évaluation de la qualité d’empreintes digitales? 3) Est-il possible de se qualifier

les empreintes digitales avec seulement son modèle de minuties? et 4) Est-il possible d’évaluer la

qualité de l’empreinte digitale via la fusion de plusieurs éléments dans la phase de segmentation?

Les approches proposées dans cette thèse sont des réponses à ces questions.

Digital Fingerprint Quality Assessment

Image quality is an important factor to Automated Fingerprint Identification Systems (AFIS)

because the matching performance could be significantly affected by poor quality samples. The

quality of fingerprint samples, for instance, could be greatly affected by a wide range of problems,

such as physical defect and the performance of sensing device (external factors). In addition, the

difference between captured data such as image specification also makes some difficulties to achieve

a common solution. Existing studies have made efforts to find out more appropriate approach

for representing fingerprint quality. This thesis proposes several quality assessment approaches,

tending to get observations of this issue in several aspects: 1) Is quality metric really predictive to

the matching performance? 2) Whether multi-feature fusion is able to make quality assessment

more complemental? 3) Is it possible to qualify fingerprint with its minutiae template alone? and

4) Is it able to assess fingerprint quality via fusing multiple features in segmentation phase? The

proposed approaches in this thesis somhow work out answers to these questions.

Indexation Rameau : mots clés à voir avec la BU

Indexation libre : Fingerprint, Quality, Assessment, Evaluation, Performance, Biometrics, Minutiae,

AFIS, Empreinte Digitale, Qualité, Biométrie, Minutie
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Laboratoire GREYC - UMR CNRS 6072 - Université de Caen Basse-Normandie - Ensicaen
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