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Introduction

The problem of developing satisfactory methodology for the analysis of spatial data

has been of a constant interest for more than half a century now. Constructing a

joint probability distribution to describe the global properties of data is somewhat

complicated but the difficulty can be bypassed by specifying the local characteristics

via conditional probability instead. This proposition has become feasible with the

introduction of Markov random fields (or Gibbs distribution) as a family of flexible

parametric models for spatial data (the Hammersley-Clifford theorem, Besag, 1974).

Markov random fields are spatial processes related to lattice structure, the conditional

probability at each nodes of the lattice being dependent only upon its neighbors,

that is useful in a wide range of applications. In particular, hiddenMarkov random

fields offer an appropriate representation for practical settings where the true state is

unknown. The general framework can be described as an observed data ywhich is a

noisy or incomplete version of an unobserved discrete latent process x.

Gibbs random fields originally come from physics (see for example, Lanford and

Ruelle, 1969) but have been useful in many other modelling areas. Indeed, they

have appeared as convenient statistical model to analyse different types of spatially

correlated data. Notable examples are the autologistic model (Besag, 1974) and its

extension the Potts model. Shaped by the development of Geman and Geman (1984)

and Besag (1986), these models have enjoyed great success in image analysis (e.g.,

Stanford and Raftery, 2002, Celeux et al., 2003, Forbes and Peyrard, 2003, Hurn et al.,

2003, Alfò et al., 2008, Moores et al., 2014) but also in other applications including

disease mapping (e.g., Green and Richardson, 2002) and genetic analysis (François

et al., 2006, Friel et al., 2009) to name a few. The exponential random graph model

or p∗model (Wasserman and Pattison, 1996) is another prominent example (Frank

and Strauss, 1986) and arguably the most popular statistical model for social network

analysis (e.g., Robins et al., 2007).

Despite its popularity, the Gibbs distribution suffers from a considerable compu-

tational curse since its normalizing constant is of combinatorial complexity and
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generally can not be evaluated with standard analytical or numerical methods. This

forms a central issue in Bayesian inference as the computation of the likelihood is

an integral part of the procedure. Many deterministic or stochastic approximations

have been proposed for circumventing this difficulty and developingmethods that are

computationally efficient and accurate is still an area of active research. Mention first

of all likelihood approximations involving a product of easily normalised distributions:

the pseudolikelihood (Besag, 1974, 1975), mean field approximations (e.g., Celeux

et al., 2003, Forbes and Peyrard, 2003), the reduced dependence approximation (Friel

et al., 2009) and composite likelihoods (e.g.,Okabayashi et al., 2011, Friel, 2012). On

the other hand Monte Carlo approaches have played a major role to estimate the

intractable likelihood such as themaximum likelihood estimator of Geyer and Thomp-

son (1992) or the path sampling approach of Gelman andMeng (1998). More recently

Møller et al. (2006) present an auxiliary variable scheme that tackles this problem

by cancelling out the estimation of the normalizing constant, a work then further

developed by Murray et al. (2006) in their exchange algorithm. Another opportunity

is the approximate Bayesian computation (Pritchard et al., 1999) which provides a

Monte Carlo approximation of the targeted distribution. These manifold techniques

are reviewed among others and compared by Everitt (2012). Their main drawback is

the computing time involved that can be considerable. Alternatively McGrory et al.

(2009) construct a variational Bayes scheme with more efficient computing time to

analyse hidden Potts model.

The present work cares about the problem of carrying out Bayesian inference for

Markov random field. When dealing with hidden random fields, the focus is solely on

hidden data represented by Ising or Potts models. Both are widely used examples and

representative of the general level of difficulty. Aims may be to infer on parameters of

the model or on the latent state x.

Adjustment of posterior parameter distribution approxi-

mations

The first part of the present dissertation proposes to adjust substitute to the intractable

posterior parameter distribution. One of the earliest approaches to overcome the trou-

blesome constant is the pseudolikelihood method (Besag, 1974, 1975) which replaces

the likelihood function by the product of tractable full-conditional distributions of

all nodes. However the pseudolikelihood is not a genuine probability distribution

and leads to unreliable estimate of parameters (e.g., Geyer, 1991, Friel and Pettitt,

2004, Cucala et al., 2009). Despite this drawback, the pseudolikelihood has been used,
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if only for its simplicity of calculation, in a wide range of applications, especially in

hidden Markov settings following the work of Besag et al. (1991) like in Heikkinen

and Hogmander (1994), Rydén and Titterington (1998). A natural generalization to

consider is the composite likelihood (Lindsay, 1988) which refines pseudolikelihood

by considering products of larger collections of variables. Composite likelihood has

been made popular in a context where marginal distributions can be computed (e.g.,

Varin et al., 2011, and references therein). Spatial lattice processes differ from that

class of models in the sense that dependence structure makes impossible the calcula-

tion of marginal probabilities and require the application of conditional composite

likelihood instead.

The purpose of this work is to use such composite likelihoodmethods for Bayesian

inference on observedMarkov random fields. Currently, there is very little literature

on that possibility, although Pauli et al. (2011) and Ribatet et al. (2012) present a

discussion on the use of marginal composite likelihoods in a Bayesian setting. As

the neighbors relationship for Potts model is too complicated, the interest is solely

on conditional composite likelihood. Friel (2012) had a similar focus and studied

how the size of the collections of variables influences the resulting approximate

posterior distribution. His work follows a study conducted by Okabayashi et al. (2011)

although from a likelihood inference perspective. As in this dissertation, both consider

composite likelihood consisting in a product of joint distributions of collections of

neighbouring variables, namely blocks (or windows) of the lattice. The peculiarity

of Friel (2012) lies in the exact computation of conditional composite likelihood for

moderately large blocks using the recursive algorithm of Reeves and Pettitt (2004) for

general factorizablemodels, like Pottsmodel, amethod generalizing a result known for

hiddenMarkov models (Zucchini and Guttorp, 1991, Scott, 2002). The latter recursion

is a tempting alternative to stochastic approximations such as the path sampling

approach (Gelman and Meng, 1998). In the same way of Friel et al. (2009), we plug

it in a procedure that leads to reliable estimates based on exact calculation on small

lattices.

The main contribution of this work is the adjustment of posterior distributions result-

ing from using a misspecified likelihood function, referred to as composite posterior

distribution. Indeed, Friel (2012) is interested in the impact of the size of the blocks,

but he does not take advantage of the possibly weighting of blocks, even though he

observes that non-calibrated composite likelihood leads to overly precise posterior

parameters due to a substantial lower variability of the surrogate distribution. The

adjustment of composite likelihoods has long-standing antecedents in the frequentist

paradigm (e.g., Geys et al., 2001, Chandler and Bate, 2007), the primary goal being

to recover a chi-squared asymptotic null distribution. Our approach differs from the
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latter in the sense we make a shift from asymptotical behaviour of the composite

likelihood to local matching conditions about the posterior distribution. A key feature

to our proposal is the closed form of the gradient and of the Hessian matrix of the

log-posterior. Consequently it is possible to implement optimization algorithms that

allows to adjust the mode and the curvature at the mode of the composite posterior

distribution. Note that similar approach has been proposed in the context of Gaussian

Markov random fields (Rue et al., 2009).

Here we focus especially on how to formulate conditional composite likelihoods for

application to the autologistic model with possible anisotropy on the lattice. We

present numerical result for lattices small enough so that the true posterior distribu-

tion can be computed using the recursion of Reeves and Pettitt (2004) and serves as

a ground truth against which to compare the adjusted and non-adjusted composite

posterior distributions. The calibration is achieved for composite likelihoods that use

exhaustively all the blocks of the image, a challenging situation since there is a multi-

ple use of the data. The good results make this procedure an option worth exploring

for more complex settings such as hidden data or exponential random graph.

Approximate Bayesian computation model choice between

hidden Markov random fields

The second part of the current work aims at addressing the problem of selecting a

dependency structure for a hidden Markov random field in the Bayesian paradigm

and explores the opportunity of approximate Bayesian computation (e.g., Tavaré

et al., 1997, Pritchard et al., 1999, Marin et al., 2012, Baragatti and Pudlo, 2014). Up to

our knowledge, this important question has not yet been addressed in the Bayesian

literature. Alternatively we could have tried to set up a reversible jumpMarkov chain

Monte Carlo, but follows an important work for the statistician to adapt the general

scheme, as shown by Caimo and Friel (2011, 2013) in the context of exponential

random graphmodels where the observed data is a graph.

The Bayesian approach to model selection is based on posterior model probabili-

ties. When dealing with models whose likelihood cannot be computed analytically,

Bayesian model choice becomes challenging since the evidence of each model writes

as the integral of the likelihood over the prior distribution of the model parameter. To

answer the question of model choice, different opportunities have been tackled in

the literature but approximate Bayesian computation (ABC) method has appeared

as one of the most satisfactory approach to deal with intractable likelihood . ABC is

a simulation based approach that compares the observed data yobs with numerous
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simulations y through summary statistics S(y) in order to supply a Monte Carlo ap-

proximation of the posterior probabilities of eachmodel. The choice of such summary

statistics presents major difficulties that have been especially highlighted for model

choice (Robert et al., 2011, Didelot et al., 2011). Beyond the seldom situations where

sufficient statistics exist and are explicitly known (Gibbs random fields are surprising

examples, see Grelaud et al., 2009), Marin et al. (2014) provide conditions which en-

sure the consistency of ABCmodel choice. The present work has thus to answer the

absence of available sufficient statistics for hidden Potts fields as well as the difficulty

(if not the impossibility) to check the above theoretical conditions in practice.

Recent articles have proposed automatic schemes to construct theses statistics (rarely

from scratch but based on a large set of candidates) for Bayesian parameter inference

and are meticulously reviewed by Blum et al. (2013) who compare their performances

in concrete examples. But very few has been accomplished in the context of ABC

model choice apart from the work of Prangle et al. (2014). The statistics S(y) re-

constructed by Prangle et al. (2014) have good theoretical properties (those are the

posterior probabilities of the models in competition) but are poorly approximated

with a pilot ABC run (Robert et al., 2011), which is also time consuming.

ABCmodel choice is here presented as a k-nearest neighbor classifier, and we define a

local error rate which is the first contribution of the current work. We also provide an

adaptive ABC algorithm based on the local error to select automatically the dimension

of the summary statistics. The second contribution is the introduction of a general and

intuitive approach to produce geometric summary statistics for hidden Potts model.

This part of the dissertation concludes with numerical results in that framework.

Especially, we show with our approach that the number of simulation required by

ABC can be significantly cut down reducing at the same time the computational cost

whilst preserving performances.

Approximate model choice criterion: the Block Likelihood

Information Criterion

The last contribution considers model choice criterion for selecting the probabilis-

tic model that best accounts for the observation. This work is motivated by a more

general issue than the choice of an underlying graph for which we explore the oppor-

tunity of the Bayesian Information Criterion (BIC) (Schwarz, 1978) to overcome the

computational burden of ABC algorithms. Model choice is a problem of probabilistic

model comparison. The standard approach to compare one model against another

is based on the Bayes factor (Kass and Raftery, 1995) that involves the ratio of the

5



Introduction

evidence of each model. As already mentioned the evidence can not be computed

with standard procedure due to a high-dimensional integral. Various approximations

have been proposed but a commonly used one, if only for its simplicity, is BIC that is

an asymptotic estimate of the evidence based on the Laplace method. The criterion

is is a simple penalized function of the maximized log-likelihood. In this last part of

the dissertation, we provide an approximation of BIC able to infer both the number of

latent states and the dependency structure of a discrete hiddenMarkov random field.

The question of inferring the number of latent states has been recently tackled by

Cucala andMarin (2013) with an Integrated Completed Likelihood criterion(Biernacki

et al., 2000) but their complex algorithm cannot be extended easily to choose the

dependency structure.

In the context of Markov random fields, the difficulty comes from the maximized

log-likelihood part in BIC. Indeed, it involves the Gibbs distribution whose exact

computation is generally not feasible. For observed random field solutions proposed

to circumvent the problem are based for example on penalized pseudolikelihood

(Ji and Seymour, 1996) and MCMC approximations of BIC (Seymour and Ji, 1996).

When the random field is hidden little has been done before the work of Stanford and

Raftery (2002) and Forbes and Peyrard (2003). Both are interested in the question

of inferring the number of latent states and propose approximations that consist in

replacing the true likelihood with a product distribution on system of independent

variables to make the computation tractable. Stanford and Raftery (2002) handle the

burdensome likelihood with the pseudolikelihood of Qian and Titterington (1991) to

yield the so called Pseudo-Likelihood Information Criterion (PLIC). The latter appears

to be encompassed in the class of mean field-like approximations of BIC proposed by

Forbes and Peyrard (2003).

The proposal of Forbes and Peyrard (2003) derives from variational method that

provides a way to approximate the distribution through the introduction of a simpler

function that minimizes the Kullback-Leibler divergence between surrogate functions

and the Gibbs distribution. The divergence is minimized over the set of probability

distributions that factorize in a product on a set of single independent variables. Our

main contribution is to show that larger collections of variables, namely blocks of the

lattice, can be considered by taking advantage of the exact recursion of Reeves and

Pettitt (2004) and leads to an efficient criterion : the Block Likelihood Information

Criterion (BLIC). In particular, we will show that a reasonable approximation of the

Gibbs distribution is a product of Gibbs distributions on each independent block. To

assess the performances of the novel criterion, it is compared to the previous ones on

simulated data sets. Overall the criterion shows good results with notable benefits for

the estimation of the number of latent states. We fill in our study with a comparison
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between BLIC and our second contribution related to ABC.

Overview

Chapter 1 is a reminder onMarkov random fields introducing the notation and the

model of interest. It is an opportunity to present a brief state of the art related to

the inference issues tackled in this dissertation. Each chapter is then dedicated to

my own contributions to the analysis of Markov random fields. Chapter 2 presents

a correction of composite likelihoods to approximate the posterior distribution of

model parameter when the Markov random field is observed. My proposal is based

on the modification of the mode and the curvature at the mode of an approximated

posterior distribution resulting from amisspecified function to recover the true poste-

rior parameter distribution. This solution is appealing since its computational cost

is much lower than the Monte Carlo approaches such as the exchange algorithm

or the approximate Bayesian computation. The performances of the correction are

illustrated through simulated realizations of isotropic and anisotropic Ising models.

Both Chapters 3 and 4 are devoted to the question of model choice between hidden

Gibbs random fields. Throughout this dissertation, we tackle two model choice is-

sues: choosing the dependency structure and/or the number of latent states. My first

contribution developed in Chapter 3 concerns the approximate Bayesian computa-

tion methodology. The major difficulties addressed in Chapter 3 is the absence of

relevant summary statistics to choose a latent neighborhood structure. Chapter 3

first introduces a local error rate. The latter aims at evaluating the quality of a set

of summary statistics in the absence of the sufficiency property. Then I introduce

intuitive geometric summary statistics that leads to an efficient ABC model choice

procedure. Some numerical results are given to show the accuracy of the algorithm.

Chapter 4 extends the scope to a more general problem: the inference of the number

of latent states and the dependency structure. The main contribution of that part is to

replace the intractable likelihood with a product distribution on independent blocks

of a regular grid of nodes. Contrary to the substitute pixel by pixel proposed in the

literature, I suggest to include more spatial information by taking advantage of the

opportunity to make exact computation on small enough lattices. This leads a novel

approximation of BIC which is compared to PLIC (Stanford and Raftery, 2002) and

BIC approximations proposed by Forbes and Peyrard (2003) through simulated data.

Conclusions and further discussions are given at the end of the dissertation.
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1 Statistical analysis issues for Markov

random fields

Markov random fields have been used in many practical settings, surged by the de-

velopment in the statistical community since the 1970’s. Interests in these models

is not so much about Markov laws that may govern data but rather the flexible and

stabilizing properties they offer in modelling. The chapter presents a synopsis on

the existence of Markov random fields with some specific examples in Section 1.1.

The difficulties inherent to the analysis of the stochastic model are especially pointed

out. As befits a first chapter, a brief state of the art concerning parameter inference

(Section 1.4 and Section 1.5) and model selection (Section 1.8) is presented.

1.1 Markov random field and Gibbs distribution

1.1.1 Gibbs-Markov equivalence

A random field X is a collection of random variables Xi indexed by a finite set S =
{1, . . . ,n}, whose elements are called sites, and taking values in a finite state space

Xi . In other words X is a random process on § taking its values in the configuration

space X =
∏n

i=1Xi . For a given subset A ⊂S , XA and xA respectively define the

random process on A, i.e., {Xi , i ∈ A}, and a realisation of XA. DenotesS \ A =−A the

complement of A inS .

Markov random fields characterized by local interactions are of special interest. One

first introduces an undirected graph G which induces a topology onS . By definition,

sites i and j are adjacent or neighbor if and only if i and j are linked by an edge in G .

Denotes i G∼ j the adjacency relationship between sites i and j . The neighborhood of

site i , denoted hereafter byN (i ), is the set of all the adjacent sites to i in G .

Definition 1. A random field X is a Markov random field with respect to G , if for all

9
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(a) (b)

(c) (d)

Figure 1.1: First and second order neighborhood graphsG with corresponding cliques. (a) The
four closest neighbors graph G4. Neighbors of the vertex in black are represented
by vertices in gray. (b) The eight closest neighbors graph G8. Neighbors of the
vertex in black are represented by vertices in gray. (c) Cliques of graph G4. (d)
Cliques of graph G8.

configuration x and for all sites i

P (Xi = xi |X−i = x−i )=P
(
Xi = xi

∣∣XN (i ) = xN (i )
)
. (1.1)

The property (1.1) is aMarkov property – the randomvariable at a site i is conditionally

independent of all other sites inS , given its neighbors values – that extends the notion

of Markov chains to spatial data. It is worth noting that any random field is a Markov

random field with respect to the trivial topology, that is the cliques of G are either the

empty set or the entire set of sitesS . Recall a clique c in an undirected graph G is any

single vertex or a subset of vertices such that every two vertices in c are connected

by an edge in G . However, only Markov random fields with small neighborhood are

interesting in practice. Thereafter, we focus on two widely used adjacency structures,

namely the graphG4, respectivelyG8, for which the neighborhood of a site is composed

of the four, respectively eight, closest sites on a two-dimensional regular lattice, except

on the boundaries of the lattice, see Figure 1.1. Wemay speak of first order lattice for

G4 and second order lattice for G8. The present work makes the analogy with images,

such that random variables Xi are shades of grey or colors and the graph G is a regular

grid of pixels.

The difficulty with the Markov formulation is that one defines a set of conditional
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distributions which does not guarantee the existence of a joint distribution. Deriving

a consistent joint distribution of a Markov random field through its conditional prob-

abilities is not at all obvious, see Besag (1974) and the references therein. The joint

probability is uniquely determined by its conditional probabilities, when it satisfies

the positivity condition

P(x)> 0, for all configuration x. (1.2)

Under this assumption, the Hammersley-Clifford theorem yields a characterization of

a Markov random field joint probability, namely the distribution of a Markov random

field with respect to a graph G that satisfies the positivity condition (1.2) is a Gibbs

distribution for the same topology, see for example Grimmett (1973), Besag (1974) and

for a historical perspective Clifford (1990).

Definition 2. A Gibbs distribution with respect to a graph G is a probability measure π

onX with the following representation

π
(
x
∣∣ψ,G

)
=

1

Z
(
ψ,G

) exp
{
−H

(
x
∣∣ψ,G

)}
, (1.3)

where ψ is a free parameter, H denotes the energy function (or Hamiltonian) that

decomposes into potential functions Vc associated to the cliques c of G

H
(
x
∣∣ψ,G

)
=
∑

c

Vc

(
xc ,ψ

)
, (1.4)

and Z
(
ψ,G

)
designates the normalizing constant, called the partition function,

Z
(
ψ,G

)
=
∫

X

exp
{
−H

(
x
∣∣ψ,G

)}
µ(dx). (1.5)

where µ is the counting measure (discrete case) or the Lebesgue measure (continuous

case).

The primary interest of Gibbs distributions comes from statistical physics to describe

equilibrium state of a physical systems which consists of a very large number of

interacting particles such as ferromagnet ideal gases (Lanford and Ruelle, 1969). Gibbs

distribution actually represents disorder system that maximizes the entropy

S(P)=−E
{
logP

}
=−

∫

X

logPdP

over the set of probability distribution P on configuration space X with the same

expected energy E
{
H
(
X
∣∣ψ,G

)}
=
∫
X

H
(
·
∣∣ψ,G

)
dP. Ever since, Gibbs random fields
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have been widely used to analyse different types of spatially correlated data with

a wide range of applications, including image analysis (e.g., Hurn et al., 2003, Alfò

et al., 2008, Moores et al., 2014), disease mapping (e.g., Green and Richardson, 2002),

genetic analysis (François et al., 2006) among others (e.g., Rue and Held, 2005).

Whilst the Gibbs-Markov equivalence provides an explicit form of the joint distribu-

tion and thus a global description of the model, this is marred by major difficulties.

Conditional probabilities can be easily computed from the likelihood (1.3), but the

joint and the marginal distribution are meanwhile unavailable due to the intractable

partition function (1.5). For instance in the discrete case, the normalizing constant is

a summation over all the possible configurations x and thus implies a combinatory

complexity. For binary variables Xi , the number of possible configurations reaches

2n .

1.1.2 Autologistic model and related distributions

The Hammersley-Clifford theorem provides valid probability distributions associated

with the random variables X1, . . . ,Xn . The formulation in terms of potential allows the

local dependency of the Markov field to be specified and leads to a class of flexible

parametric models for spatial data. In most cases, cliques of size one (singleton) and

two (doubleton) are assumed to be satisfactory to model the spatial dependency and

potential functions related to larger cliques are set to zero. Thus, the energy (1.4)

becomes

H
(
x
∣∣ψ,G

)
=

n∑

i=1
Vi (xi ,α)+

∑

i
G∼ j

Vi j

(
xi ,x j ,β

)
,

whereψ= (α,β) is the parameter of the Gibbs random field, more precisely α stands

for the parameter on sites and β stands for the parameter on edges. The above sum∑
i
G∼ j

ranges the set of edges of the graph G . When the full-conditional distribution

of each sites belongs to the exponential family, the models deriving from that energy

function are the so-called auto-models of Besag (1974). In what follows, attention is

aimed at specific discrete schemes, that is, the space configuration isX = {0, . . . ,K −
1}n .

Definition 3. A Gibbs random field is said to be

(i) homogeneous, if the potential Vc is independent of the relative position of the

clique c inS ,

(ii) isotropic, if the potential Vc is independent of the orientation of the clique c.
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Table 1.1: Interaction parametrisation for a homogeneous Gibbs random field in isotropic
and anisotropic cases. The table gives values of the parameter βi j corresponding to
the orientation of the edge (i , j ).

Orientation of
edge (i , j )

Dependency
graph

G4 G8 G4 G8 G8 G8

Isotropic Gibbs β

Anisotropic
Gibbs

β0 β1 β2 β3

The present dissertation will only focus on homogeneous Markov field with eventual

anisotropy. In the anisotropic case, βi j stands for the component of β corresponding

to the direction defined by the edge (i , j ) but does not depend on the actual position

of sites i and j , that is, given two edges (i1, j1) and (i2, j2) defining the same direction,

βi1, j1 =βi2, j2 (see Table 1.1). Mention neverthelessmodels hereafter do not necessarily

impose homogeneity and, indeed, are not tied to a regular lattice.

Autologistic model The autologisticmodel first proposed byBesag (1972) is a pairwise-

interaction Markov random field for binary (zero-one) spatial process. The joint

distribution is given by

π
(
x
∣∣ψ,G

)
=

1

Z
(
ψ,G

) exp



α

n∑

i=1
xi +

∑

i
G∼ j

βi j xi x j



 . (1.6)

The full-conditional probability thus writes

π
(
xi
∣∣ xN (i ),ψ,G

)
=
exp

{
αxi +

∑
i
G∼ j

βi j xi x j

}

1+exp
{
α+

∑
i
G∼ j

βi j x j

} ,

and is like a logistic regression where the explanatory variables are the neighbors and

themselves observations. The parameter α controls the level of 0−1 whereas the
parameters {βi j } model the dependency between two neighboring sites i and j .

One usually prefers to consider variables taking values in {−1,1} instead of {0,1} since
it offers amore parsimonious parametrisation and avoids non-invariance issues when

one switches states 0 and 1 as mentioned by Pettitt et al. (2003). Note the model stays

13
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autologistic but the full-conditional probability turns into

π
(
xi
∣∣ xN (i ),ψ,G

)
=
exp

{
2αxi +2

∑
i
G∼ j

βi j xi x j

}

1+exp
{
2α+2

∑
i
G∼ j

βi j x j

} .

A well known example is the general Ising model of ferromagnetism (Ising, 1925) that

consists of discrete variables representing spins of atoms. The Gibbs distribution

(1.6) is referred to as the Boltzmann distribution in statistical physics. The potential

on singletons describes local contributions from external fields to the total energy.

Spins most likely line up in the same direction of α, that is, in the positive, respectively

negative, direction if α > 0, respectively α < 0. When α = 0, there is no external

influence. Putting differently α adjusts non-equal abundances of the two state values.

The parameters {βi j } represent the interaction strength between neighbors i and j .

When βi j > 0 the interaction is called ferromagnetic and adjacent spins tend to be

aligned, that is neighboring sites with same sign have higher probability. When βi j < 0
the interaction is called anti-ferromagnetic and adjacent spins tend to have opposite

signs. When βi j = 0, the spins are non-interacting.

Potts model The Potts model (Potts, 1952) is a pairwise Markov random field that

extends the Isingmodel toK possibles states. Themodel sets a probability distribution

on x parametrized byψ, namely

π
(
x
∣∣ψ,G

)
=

1

Z
(
ψ,G

) exp





n∑

i=1

K−1∑

k=0
αk1{xi = k}+

∑

i
G∼ j

βi j1{xi = x j }



 , (1.7)

where 1{A} is the indicator function equal to 1 if A is true and 0 otherwise. For instance,

as regards the interaction parameter βi j , the indicator function takes the value 1 if

the two lattice points i and j take the same value, and 0 otherwise. Note that a

potential function can be defined up to an additive constant. To ensure that potential

functions on singletons are uniquely determined, one usually imposes the constraint∑K−1
k=0 αk = 0.

For K = 2, the Potts model is equivalent to the Ising model up to a constant. This is

perhaps more transparent by rewriting the Ising model. Consider x̃ a configuration of

the Ising model and assume now α=α1 =−α0,

(i) for any site i , αx̃i =α01{x̃i =−1}+α11{x̃i = 1},

(ii) for any neighboring sites i and j , x̃i x̃ j = 21{x̃i = x̃ j }−1.

14



1.1. Markov random field and Gibbs distribution

β= 0 β= 0.6 β= 0.8 β= 1

β= 0 β= 0.2 β= 0.4 β= 0.6

Figure 1.2: Realization of a 2-states Potts model for various interaction parameter β on a
100× 100 lattice with a first-order neighborhood (first row) or a second-order
neighborhood (second row).

The transformation x̃= 2x−1 allows then to conclude. One shall remark here interac-

tion parameters are slightly different between Potts and Ising model. To obtain the

same strength of interaction in both model, parameters should satisfy βPotts = 2βIsing.

In the literature, one often uses these models in their simplified versions, that is,

isotropic (β ∈R) and without any external field (α= 0). For the sake of clarity, I keep
the same convention in what follows unless otherwise specified, namely

Ising: π
(
x
∣∣β,G

)
=

1

Z
(
β,G

) exp



β

∑

i
G∼ j

xi x j



 , (1.8)

Potts: π
(
x
∣∣β,G

)
=

1

Z
(
β,G

) exp



β

∑

i
G∼ j

1{xi = x j }



 . (1.9)

1.1.3 Phase transition

Onemajor peculiarity of Markov random field is a symmetry breaking for large values

of parameter β due to a discontinuity of the partition function when the number of

sites n tends to infinity. In physics this is known as phase transition. This transition

phenomenon has been widely study in both physics and probability, see for example
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Georgii (2011) for further details. This part gives particular results for Ising and Potts

models on a rectangular lattice.

As already mentioned, the parameter β controls the strength of association between

neighboring sites (see Figure 1.2). When the parameter β is zero, the random field

is a system of independent uniform variables and all configurations are equally dis-

tributed. Increasing β favours the variable Xi to be equal to the dominant state among

its neighbors and leads to patches of like-valued variables in the graph, such that once

β tends to infinity values xi are all equal. The distribution thus becomes multi-modal.

Mention here, this phenomenon vanishes in the presence of an external field (i.e.,

α �= 0).

In dimension 2, the Ising model is known to have a phase transition at a critical value

βc . When the parameter is above the critical value, βc <β, one moves gradually to a

multi-modal distribution, that is, values xi are almost all equal for β sufficiently above

the critical value. Onsager (1944) obtained an exact value of βc for a homogeneous

Ising model on the first order square lattice, namely

βc =
1

2
log

{
1+

�
2
}
≈ 0.44.

The latter extends to a Potts model with K states on the first order lattice

βc = log
{
1+

�
K
}
,

see for instance Matveev and Shrock (1996) for specific results to Potts model on the

square lattice andWu (1982) for a broader overview.

The transition is more rapid than the number of neighbors increases. To illustrate this

point, Figure 1.3 gives the average proportion of homogeneous pairs of neighbors,

and the corresponding variance, for 2-states Potts model on the first and second order

lattices of size 100×100. Indeed, phase transition corresponds to

β→ lim
n→∞

1

n
∇ logZ

(
β,G

)
is discontinuous at βc . (1.10)

One can show that

∇ logZ (β,G )=−E {S(X)} and ∇2 logZ (β,G )=Var {S(X)} ,

where S(X)=
∑

i
G∼ j

1{Xi = X j } is the number of homogeneous pairs of a Potts random
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(b)

Figure 1.3: Phase transition for a 2-states Pottsmodel with respect to the first order and second
order 100×100 regular square lattices. (a) Average proportion of homogeneous
pairs of neighbors. (b) Variance of the number of homogeneous pairs of neighbors.

field X, see Section 1.5.1. Condition (1.10) can thus be written as

lim
β→βc

lim
n→∞

Var {S(X)}=∞.

Mention this is all theoritical asymptotic considerations and the discontinuity does

not show itself on finite lattice realizations but the variance becomes increasingly

sharper as the size grows.

1.1.4 Hidden Gibbs random field

The main purpose of this work is to deal with hiddenMarkov random field, a frame-

work that has encountered a large interest over the past decade. In hidden Markov

random fields, the latent process is observed indirectly through another field; this

permits the modelling of noise that may happen upon many concrete situations:

image analysis, (e.g., Besag, 1986, Stanford and Raftery, 2002, Celeux et al., 2003,

Forbes and Peyrard, 2003, Hurn et al., 2003, Alfò et al., 2008, Friel et al., 2009, Moores

et al., 2014), disease mapping (e.g., Green and Richardson, 2002), genetic analysis

(François et al., 2006). The aim is to infer some properties of a latent state x given an

observation y. The present part gives a description, in all generality, of the hidden

Markov model framework that encompasses the particular cases of hidden Ising or

Potts model considered throughout this dissertation.

The unobserved data is modelled as a discrete Markov random field X associated

to an energy function H , as defined in (1.3), parametrized by ψ with state space

X = {0, . . . ,K −1}n . Given the realization x of the latent, the observation y is a family
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of random variables indexed by the set of sitesS , and taking values in a setY , i.e.,

y=
(
yi ; i ∈S

)
, and are commonly assumed as independent draws that form a noisy

version of the hidden field. Consequently, we set the conditional distribution of Y

knowing X= x, also called emission distribution, as the product

π
(
y
∣∣ x,φ

)
=
∏

i∈S
π
(
yi
∣∣ xi ,φ

)
,

where π(yi | xi ,φ) is the marginal noise distribution parametrized by φ, that is given

for any site i . Those marginal distributions are for instance discrete distributions

(Everitt, 2012), Gaussian (e.g., Besag et al., 1991, Qian and Titterington, 1991, Celeux

et al., 2003, Forbes and Peyrard, 2003, Friel et al., 2009, Cucala and Marin, 2013) or

Poisson distributions (e.g., Besag et al., 1991). Model of noise that takes into account

information of the nearest neighbors have also been explored (Besag, 1986).

Assuming that all the marginal distributions π(yi | xi ,φ) are positive, one may write

π
(
y
∣∣ x,φ

)
= exp

{
∑

i∈S
logπ

(
yi
∣∣ xi ,φ

)
}
,

and thus the joint distribution of (X,Y), also called the complete likelihood, writes as

π
(
x,y

∣∣φ,ψ,G
)
=π

(
y
∣∣ x,φ

)
π
(
x
∣∣ψ,G

)

=
1

Z
(
ψ,G

) exp
{
−H

(
x
∣∣ψ,G

)
+
∑

i∈S
logπ

(
yi
∣∣ xi ,φ

)
}
.

The latter equality demonstrates the conditional fieldX givenY= y is aMarkov random

field whose energy function satisfies

H
(
x
∣∣ y,φ,ψ,G

)
=H

(
x
∣∣ψ,G

)
−
∑

i∈S
logπ

(
yi
∣∣ xi ,φ

)
. (1.11)

Then, the noise can be interpreted as a non homogeneous external potential on

singleton which is a bond to the unobserved data.

1.2 How to simulate a Markov random field

Sampling from a Gibbs distribution can be a daunting task due to the correlation

structure on a high dimensional space, and standard Monte Carlo methods are im-

practicable except for very specific cases. In the Bayesian paradigm, Markov chain

Monte Carlo (MCMC) methods have played a dominant role in dealing with such
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problems, the idea being to generate a Markov chain whose stationary distribution is

the distribution of interest. This section is a reminder of well known algorithms that I

make use of throughout numerical parts of this work.

1.2.1 Gibbs sampler

The Gibbs sampler is a highly popular MCMC algorithm in Bayesian analysis starting

with the influential development of Geman and Geman (1984). It can be seen as a

component-wise Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings,

1970) where variables are updated one at a time and for which proposal distributions

are the full conditionals themselves. It is particularly well suited to Markov random

field since the intractable joint distribution is fully determined by the conditional

distributions which are easy to compute. Algorithm 1 gives the corresponding algo-

rithmic representation for a joint distribution π(X | ψ,G ) with a known parameter

ψ.

Algorithm 1: Gibbs sampler

Input: a parameterψ, a number of iterations T
Output: a sample x from the joint distribution π(· |ψ,G )

Initialization: draw an arbitrary configuration x(0) =
{
x(0)1 , . . . ,x(0)n

}
;

for t← 1 to T do

for i ← 1 to n do

draw x(t )
i
from the full conditional π

(
X (t )
i

∣∣∣ x(t−1)
N (i )

)
;

end

end

return the configuration x(T )

Geman and Geman (1984, Theorem A) have shown the convergence to the target

distribution π(· |ψ,G ) regardless of the initial configuration x(0). The algorithm obvi-

ously maintains the target distribution. Says X has distribution π(· |ψ,G ), at the t-th

iteration components of x(t−1) are replaced by one sampled from the corresponding

full conditional distribution induced by π(· |ψ,G ) such that for each of the n steps

π(X |ψ,G ) is stationary. In other words, if x and x̃ differ at most from one component

i , that is x−i = x̃−i , then

∑

xi

π
(
x
∣∣ψ,G

)
π
(
x̃i
∣∣ x−i ,ψ,G

)
=π

(
x̃i
∣∣ x−i ,ψ,G

)
π
(
x−i

∣∣ψ,G
)
=π

(
x̃
∣∣ψ,G

)
.

Under the irreducibility assumption, the chain converges toπ(X |ψ,G ). Note the order

in which the components are updated in Algorithm 1 does not make much difference
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as long as every site is visited. Hence it can be deterministically or randomly modified,

especially to avoid possible bottlenecks when visiting the configuration space. A

synchronous version is nonetheless unavailable since updating the sites merely at the

end of cycle t would lead to incorrect limiting distribution.

We should mention here that Gibbs sampler faces some well known difficulties when

it is applied to the Ising or Potts model. The Markov chain mixes slowly, namely long

range interactions require many iterations to be taken into account, such that switch-

ing the color of a large homogeneous area is of low probability even if the distribution

of the colors is exchangeable. This peculiarity is even worse when the parameter β is

above the critical value of the phase transition, the Gibbs distribution being severely

multi-modal (each mode corresponding to a single color configuration). Liu (1996)

proposed a modification of the Gibbs sampler that overcome these drawbacks with a

faster rate of convergence. Note also that in the context of Gaussian Markov random

field some efficient algorithm have been proposed like the fast sampling procedure of

Rue (2001).

1.2.2 Auxiliary variables and Swendsen-Wang algorithm

An appealing alternative to bypass slow mixing issues of the Gibbs sampler is the

Swendsen-Wang algorithm (Swendsen andWang, 1987) originally designed to speed

up simulation of Potts model close to the phase transition. This algorithm makes

a use of auxiliary variables in order to incorporate simultaneous updates of large

homogeneous regions (e.g., Besag andGreen, 1993). This part describes the procedure

for the Potts model with homogeneous external field (1.7).

Denote x the current configuration of a Markov random field X. Auxiliary random

variables aim at decoupling the complex dependence structure between the compo-

nent of x. Hence we set binary (0-1) conditionally independent auxiliary variablesUi j

which satisfy

P
(
Ui j = 1

∣∣ x
)
=
{
1−exp

(
βi j1{xi = x j }

)
= pi j if i G∼ j ,

0 otherwise

with βi j ≥ 0 so that pi j takes value between 0 and 1. The latter then represents the
probability to keep an egde between neighboring sites in G .

The Swendsen-Wang algorithm iterates two steps : a clustering step and a swapping

step, see Algorithm 2. Given the configuration x, auxiliary variables yield a partition of

sites into single-valued clusters or connected components. Consider the subgraph
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(a) (b)

Figure 1.4: Auxiliary variables and subgraph illustrations for the Swendsen-Wang algorithm.
(a) Example of auxiliary variables Ui j for a 2-states Potts model configuration
on the first order square lattice. (b) Subgraph Γ(G4,x) of the first order lattice G4

induced by the auxiliary variablesUi j .

Γ(G ,x) of the graph G induced byUi j on x, namely the undirected graph made of

edges of G for whichUi j = 1, see Figure 1.4, two sites belong to the same cluster if and

only if there is a path between them in Γ(G ,x). Then each cluster C is assigned to a

new state k with probability

P (XC = k)∝ exp

{
∑

i∈C
αk

}
,

where αk is the component of α associated to the state k. We shall note that for the

special but important case where α= 0, new possible states are equally likely. Also for

large values of β, the algorithmmanages to switch colors of wide areas, achieving a

better cover of the configuration space.

For the original proof of convergence, refer to Swendsen and Wang (1987) and for

further discussion see for example Besag and Green (1993). Whilst the ability to

change large set of variables in one step seems to be a significant advantage, this

can be marred by a slow mixing time, namely exponential in n (Gore and Jerrum,

1999). The mixing time of the algorithm is polynomial in n for Ising or Potts models

with respect to the graphs G4 and G8 but only for small enough value of β (Cooper

and Frieze, 1999). This was proved independently by Huber (2003) who also derive

a diagnostic tool for the convergence of the algorithm to its invariant distribution,

namely using a coupling from the past procedure.

It is worth mentioning that the algorithm can be extended to other Markov random

field or models (e.g., Edwards and Sokal, 1988, Wolff, 1989, Higdon, 1998, Barbu and

Zhu, 2005) but is then not necessarily efficient. In particular, it is not well suited for
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Algorithm 2: Swendsen-Wang algorithm

Input: a parameterψ, a number of iterations T
Output: a sample x from the joint distribution π(· |ψ,G )

Initialization: draw an arbitrary configuration x(0) =
{
x(0)1 , . . . ,x(0)n

}
;

for t← 1 to T do

Clustering step: turn off edges of G with probability exp
(
βi j1{x

(t )
i
= x(t )

j
}
)
;

// yields the subgraph Γ
(
G ,x(t )

)
induced by the auxiliary variables, see

Figure 1.4

Swapping step: assign a new state k to each connected component C of

Γ
(
G ,x(t )

)
with probability P

(
X(t )

C
= k

)
∝ exp

{∑
i∈C αk

}
;

end

return the configuration x(T )

latent process. The bound to the data corresponds to a non-homogeneous external

field that slows down the computation since the clustering step does notmake a use of

the data. A solution that might be effective is the partial decoupling of Higdon (1993,

1998). More recently, Barbu and Zhu (2005) make a move from the data augmenta-

tion interpretation to a Metropolis-Hastings perspective in order to generalize the

algorithm to arbitrary probabilities on graphs. Up to my knowledge, it is not straight-

forward to bound the Markov chain of such modifications and mixing properties are

still an open question despite good results in numerical experiments.

Another alternative for lattice models to make large moves in the configuration space

is the slice sampling (e.g., Higdon, 1998) that includes auxiliary variables to sample

full conditional distributions in a Gibbs sampler. The sampler is found to have good

theoretical properties (e.g., Roberts and Rosenthal, 1999, and the references therein)

but this possibility has not been adopted in the present work. Especially I could have

used the clever sampler of Mira et al. (2001) that provides exact simulations of Potts

models.

1.3 Recursive algorithm for discrete Markov random field

To answer the difficulty of computing the normalizing constant, generalised recursions

for general factorisable models such as the autologistic models have been proposed

by Reeves and Pettitt (2004). This method applies to lattices with a small number of

rows, up to about 20 for an Ising model, and is based on an algebraic simplification

due to the reduction in dependence arising from the Markov property. It applies to

unnormalized likelihoods that can be expressed as a product of factors, each of which
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is dependent on only a subset of the lattice sites.

Denote q(x |ψ,G ) the unnormalized version of a Gibbs distribution π(x |ψ,G ) whose

state space isX = {0, . . . ,K −1}n . We can write q(x |ψ,G ) as

q
(
x
∣∣ψ,G

)
=

n−r∏

i=1
qi
(
xi :i+r

∣∣ψ,G
)
,

where each factor qi depends on a subset xi :r = {xi , . . . ,xi+r } of x, where r is defined

to be the lag of the model. As a result of this factorisation, the summation for the

normalizing constant can be represented as

Z
(
ψ,G

)
=

∑

xn−r :n

qn−r
(
xn−r :n

∣∣ψ,G
)
. . .

∑

x1:1+r

q1
(
x1:1+r

∣∣ψ,G
)
.

The latter can be computed muchmore efficiently than the straightforward summa-

tion over the K n possible lattice realisations using the following steps

Z1 (x2:1+r )=
∑

x1

q1 (x1:1+r ) ,

Zi (xi+1:i+r )=
∑

xi

qi (xi :i+r )Zi−1 (xi :i+r−1) , for all i ∈ {2, . . . ,n− r },

Z
(
ψ,G

)
=

∑

xn−r+1:n

Zn−r (xn−r+1:n) .

The complexity of the troublesome summation is significantly cut down since the

forward algorithm solely relies on K r possible configurations. Note that the algorithm

of Reeves and Pettitt (2004) was extended in Friel and Rue (2007) to also allow exact

draws fromπ(x |ψ,G ) for small enough lattices. The reader can find below an example

of implementation for the general Potts model.

Example (Pottsmodel with an external field) Consider a rectangular latticeh×w =n,

where h stands for the height and w for the width of the lattice, with a first order

neighborhood system G4 (see Figure 1.1.(a)). The model distribution is defined as

π(x |ψ,G4)=
1

Z (ψ,G4)
exp




n∑

i=1

K−1∑

k=0
αk1{xi = k}+

∑

i
G4∼ j

βi j1{xi = x j }


 .

The minimum lag representation for a Potts lattice with a first order neighborhood

occurs for r given by the smaller of the number of rows or columns in the lattice.
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Without the loss of generality, assume h ≤w and lattice points are ordered from top

to bottom in each column and columns from left to right. It is straightforward to write

the unnormalized general Potts distribution as

q
(
x
∣∣ψ,G4

)
=

n−h∏

i=1
qi
(
xi :i+h

∣∣ψ,G4
)
,

where

• for all lattice point i except the ones on the last row or last column

qi
(
xi :i+h

∣∣ψ,G4
)
= exp

(
K−1∑

k=0
αk1{xi = k}

+β01{xi = xi+1}+β11{xi = xi+h}

)
. (1.12)

• When lattice point i is on the last row xi+1 drops out ot (1.12), that is

qi
(
xi :i+h

∣∣ψ,G4
)
= exp

(
K−1∑

k=0
αk1{xi = k}+β11{xi = xi+h}

)
. (1.13)

• The last factor takes into account all potentials within the last column

qn−h
(
xn−h:n

∣∣ψ,G4
)
= exp

(
n∑

i=n−h

K−1∑

k=0
αk1{xi = k}

+β11{xn−h = xn}+β0

n∑

i=n−h+1
1{xi = xi+1}

)
.

Identifying the number of rows with the smaller dimension of the lattice, the computa-

tion time increases by a factor of K for each additional row, but linearly for additional

columns.

One shall remark that for a homogeneous random field, factors (1.12) and (1.13) only

depend on the value of the random variables Xi :i+h but not on the actual position of

the sites. Hence the number of factors to be computed is 2K h instead of h(w −1)K h .

In term of implementation that also means factors can be computed for the different

possible configurations once upstream the recursion. Furthermore with a first order

neighborhood, factor at a site merely involves its neighbor below and on its right,

thereby reducing the number of possible factor to K 3+K 2.
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Algorithm 3: Recursive algorithm

Output: The normalizing constant Z (ψ,G )

Compute all the possible factors q(·);
for j ← 0 to K h −1 do

compute Z ( j )←
∑K−1

j=0 q(υ3(k, j )); // Corresponds to the computation of

Z1(x2:1+r )

end

for i ← 2 to n−h do

save Zold←
(
Z (1), . . . ,Z (K h −1)

)
;

for j ← 0 to K h −1 do

if i is not on the last row then

compute Z ( j )←
∑K−1

k=0 q(υ3(k, j ))Zold(υ(k, j ));
else

compute Z ( j )←
∑K−1

k=0 q(υ2(k, j ))Zold(υ(k, j ));
end

end

end

compute Znorm←
∑K h−1

j=0 q( j )Z ( j );

return the normalizing constant Znorm

Algorithm 3 presents the scheme I use in my C++ code which is at the core of numeri-

cal experiments presented in Chapter 2 and Chapter 4. Each configuration xi+1:i+h
corresponds to the unique representation of an integer j belonging to {0, . . . ,K h −1}
in the base-K system, namely

j = xi+1+xi+2K + . . .+xi+hK
h−1.

As alreadymentioned, it is enough to calculate factors (1.12) and (1.13) on {0, . . . ,K−1}3

and {0, . . . ,K −1}2 respectively. Using the previous one-to-one correspondence, the
following functions determine the value of the sites involved in potentials calculation

knowing a given state k and an integer j

υ2 : {0, . . . ,K −1}× {0, . . . ,K h −1} → {0, . . . ,K −1}2

(k, j ) �→ (k,xi+h),

υ3 : {0, . . . ,K −1}× {0, . . . ,K h −1} → {0, . . . ,K −1}3

(k, j ) �→ (k,xi+1,xi+h),

Hence, the recursion steps are based on the following factors stored for all (k, j ) in
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{0, . . . ,K −1}× {0, . . . ,K h −1}

q
(
υ2(k, j )

)
= q (k,xi+h)= exp

(
αk +β11{xi+h = k}

)
,

q
(
υ3(k, j )

)
= q (k,xi+1,xi+h)= exp

(
αk +β01{xi+1 = k}+β11{xi+h = k}

)
.

To handle the last column instead of computing qn−h(·) upstream the recursion, the

following quantities are stored for all j in {0, . . . ,K h −1}

q( j )= exp
(

n∑

i=n−h+1

K−1∑

k=0
αk1{xi = k}+β0

n∑

i=n−h+1
1{xi = xi+1}

)
. (1.14)

Finally, one shall remark that the transition from Zi (xi+1:i+r ) to Zi−1(xi :i+r−1) is based

on the transformation

υ : {0, . . . ,K −1}× {0, . . . ,K h −1} → {0, . . . ,K h −1}
(k, j ) �→ k+K

(
j (mod K h)

)
,

in Algorithm 3.

It is straightforward to extend this algorithm to hidden Markov random field since

as already mention in Section 1.1.4 the noise corresponds to a non homogeneous

potential on singleton and hence themodel still writes as a general factorisable model.

Algorithm 3 remains the same except for a few details. With the exception of factors

(1.14), the potential deriving from the noise is not saved but is added at each step of

the recursion, that is the computation of Z ( j ) turns into

Z ( j )←
K−1∑

k=0
q
(
υ3(k, j )

)
π
(
yi
∣∣ xi = k,φ

)
, or

Z ( j )←
K−1∑

k=0
q(·)Zold

(
υ(k, j )

)
π
(
yi
∣∣ xi = k,φ

)
.

1.4 Parameter inference: maximum pseudolikelihood

estimator

Parameter estimation in the context of Markov random field is extremely challenging

due to the intractable normalizing constant. Much attention has been paid in the

literature to this problem arising from maximum likelihood estimation as well as

Bayesian inference. The present section presents the solution offered by the pseu-

dolikelihood of Besag (1975) from a maximum likelihood perspective. Its use in a
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1.4. Parameter inference: maximum pseudolikelihood estimator

Bayesian framework is discussed in Chapter 2.

Maximum likelihood estimator

Consider a noisy or incomplete observation, say y, of a hidden Markov random field x.

Under the statistical model π(x,y | θ,G ), a possible estimate of parameter θ = (ψ,φ) is
the maximum likelihood estimator. It corresponds to the values of model parameters

that maximize the probability of (x,y) for the given statistical model, namely

θ̂MLE = argmax
θ

π
(
x,y

∣∣ θ,G
)
.

Equivalently, one can maximize the log-likelihood function. The maximization of the

complete likelihood is achieved by maximizing independently the marginal distribu-

tion of the hidden process and the conditional distribution of the observation,

φ̂MLE = argmax
φ

logπ
(
y
∣∣ x,φ

)
, (1.15)

ψ̂MLE = argmax
ψ

logπ
(
x
∣∣ψ,G

)
, (1.16)

because π(x,y | θ,G )= π(y | x,φ)π(x |ψ,G ). The emission distribution π(· | x,φ) has
generally some simple form that can at least be evaluated point-wise and the maxi-

mization (1.15) is straightforward. On the other hand the optimization problem (1.16)

cannot be addressed directly since the gradient has no analytical form and cannot be

computed exactly.

Maximum pseudolikelihood estimator

One of the earliest approaches to overcome the intractability of (1.5) is the pseudo-

likelihood (Besag, 1975) which approximates the joint distribution of x as the product

of full-conditional distributions for each site i ,

fpseudo
(
x
∣∣ψ,G

)
=

n∏

i=1
π
(
xi
∣∣ x−i ,ψ,G

)
=

n∏

i=1

exp

{
−
∑

c|i∈c
Vc

(
xc ,ψ

)
}

∑

x̃i

exp

{
−
∑

c|i∈c
Vc

(
x̃c ,ψ

)
} , (1.17)

where the sums
∑

c|i∈c and
∑

x̃i range over the set of cliques containing i and all the

possible realization of the random variable Xi respectively. For such a given clique c

and a given realization x̃i , x̃c denotes the subgraph that differs from xc only at sites
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i , namely x̃c = {x̃i }∪
{
x j , j ∈ c \ {i }

}
. The property of Markov random fields ensures

that each term in the product only involves nearest neighbors, and so the normalising

constant of each full-conditional is straightforward to compute. It is worth noting

that pseudolikelihood methods are closely related to the coding method (Besag, 1974)

but have a lower computational cost. The maximum pseudolikelihood estimator is

computed by maximizing the log-pseudolikelihood

ψ̂MPLE = argmax
ψ

log fpseudo
(
x
∣∣ψ,G

)
.

Similarly to (1.20), one can show that a unique maximum exists which can be esti-

mated with a simple optimization algorithm.

The pseudolikelihood (1.17) is not a genuine probability distribution, except if the

random variables Xi are independent. Nevertheless it has been used in preference

to Monte Carlo methods since it requires no simulations and provides much faster

procedures. Though Geman and Graffigne (1986) demonstrate the consistency of

the maximum pseudolikelihood estimator when the lattice size tends to infinity for

discrete Markov random field, the result does not imply a good behavior at finite

lattice size. Indeed this approximation has been shown to lead to unreliable estimates

ofψ especially nearby the phase transition (e.g., Geyer, 1991, Rydén and Titterington,

1998, Friel and Pettitt, 2004, Cucala et al., 2009). Considering it behaves poorly, the

much greater expense of Monte Carlo estimators presented in Section 1.5.1 is justified

to supersede the maximum pseudolikehood estimate.

1.5 Parameter inference: computation of the maximum

likelihood

Preferably to maximum pseudolikelihood estimates, many solutions have been ex-

plored in the literature to provide approximations of the maximum likelihood esti-

mator. Notable contributions have been given by Monte Carlo techniques even if

they may have the drawback of being time consuming (e.g., Younes, 1988, Geyer and

Thompson, 1992). An alternative broadly exploited in the context of latent variables is

the variational Expectation-Maximization-like algorithms based on an approximation

of the Gibbs distribution by product distributions (Celeux et al., 2003). The present

section is the occasion to present both solutions, which are used in Chapter 2 and

Chapter 4.
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1.5. Parameter inference: computation of the maximum likelihood

1.5.1 Monte Carlo maximum likelihood estimator

The use ofMonte-Carlo techniques in preference to pseudolikelihood to computemax-

imum likelihood estimates has been especially highlighted by Geyer and Thompson

(1992). Assume Gibbs distributions are of the exponential form, i.e., the Hamiltonian

linearly depends on the vector of parametersψ= (ψ1, . . . ,ψd ),that is

H
(
x
∣∣ψ,G

)
=−ψTS(x),

where S(x) = (s1(x), . . . , sd (x)) is a vector of sufficient statistics. Such models have a

unique maximum likelihood. Indeed the score function forψwrites as

∇ logπ
(
x
∣∣ψ,G

)
= S(x)−∇ logZ

(
ψ,G

)
.

It is straightforward to show that the partial derivatives of the normalizing constant

Z (ψ,G ) satisfy

∂

∂ψ j
logZ

(
ψ,G

)
=
∑

x∈X s j (x)exp
{
ψTS(x)

}
∑

x∈X exp
{
ψTS(x)

} =Eψ

{
s j (X)

}
, (1.18)

where Eψ(s j (X)) denotes the expected value of s j (X) with respect to π(· |ψ,G ). Hence

the score function can be written as a sum of moments of s(X), namely

∇ logπ
(
x
∣∣ψ,G

)
= S(x)−Eψ {s(X)} . (1.19)

Taking the partial derivatives of the previous expression yields similar identities for

the Hessian matrix of the log-likelihood forψ,

∇2 logπ(x |ψ,G )=−Varψ {S(X)} , (1.20)

where Varψ {S(X)} denotes the covariancematrix of S(X) with respect to π(· |ψ,G ). The

log-likelihood is thus a concave function and themaximum likelihood estimator ψ̂MLE

is the unique zero of the score function ∇ logπ(x |ψ,G ), namely

ψ̂MLE = argmax
ψ

logπ
(
x
∣∣ψ,G

)
⇐⇒ S(x)−Eψ̂MLE {S(X)}= 0.

Hence a solution to solve problem (1.16) is to resort to stochastic approximations on

the basis of equation (1.19) (e.g., Younes, 1988, Descombes et al., 1999). Younes (1988)

provides a stochastic gradient algorithm converging under mild conditions. At each

iteration the algorithm takes the direction of the estimated gradient with a step size

small enough. Another approach to compute the maximum likelihood estimation is
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Chapter 1. Statistical analysis issues for Markov random fields

to use direct Monte Carlo calculation of the likelihood such as theMCMC algorithm of

Geyer and Thompson (1992). The convergence in probability of the latter toward the

maximum likelihood estimator is proven for a wide range of models including Markov

random fields. Following that work, Descombes et al. (1999) derive also a stochastic

algorithm that, as opposed to Younes (1988), takes into account the distance to the

maximum likelihood estimator using importance sampling.

1.5.2 Expectation-Maximization algorithm

Amethod well suited for estimating parameters in the context of latent variables is

the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). This iterative

procedure has encountered a great success especially in the context of independent

mixture model or hidden Markov models. When dealing with Gibbs distributions,

the method is subject to the inherent difficulties of the model but several solutions

have been proposed in the literature. This section is an opportunity to introduce the

solutions that will be particularly useful in Chapter 4.

The EM algorithm is based on complete-likelihood computation. Consider θ = (ψ,φ)
withψ the parameter of the hidden process and φ the emission parameter. For the

statistical model π(y | θ) (referred to as incomplete likelihood in what follows), the

maximum likelihood estimator is defined as

θ̂MLE = argmax
θ

π
(
y
∣∣ θ
)
. (1.21)

The EM algorithm addresses problem (1.21) by maximizing at iteration t the expected

value of the complete log-likelihood with respect to the conditional distribution of the

latent X given Y= y at the current value θ(t ). In other words

θ(t+1) = argmax
θ

E
{
logπ

(
X,y

∣∣ θ,G
) ∣∣ Y= y,θ(t )

}

= argmax
θ

∑

x∈X
π
(
x
∣∣ y,θ,G

)
logπ

(
x,y

∣∣ θ,G
)

:= argmax
θ

Q
(
θ
∣∣ θ(t )

)
. (1.22)

Proposition 1.6. The log-likelihood logπ
(
y | θ(t )

)
increases with t .

Proof. The result relies on a decomposition of the incomplete log-likelihood that

takes into account the latent variables. Given a current value θ(t ), the Bayes theorem
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1.5. Parameter inference: computation of the maximum likelihood

allows to write the log-likelihood for all θ inΘ as

logπ
(
y
∣∣ θ,G

)
= logπ

(
y
∣∣ θ
) ∑

x∈X
π
(
x
∣∣ y,θ(t ),G

)

=
∑

x∈X
log

{
π
(
x,y

∣∣ θ,G
)

π
(
x
∣∣ y,θ,G

)
}
π
(
x
∣∣ y,θ(t ),G

)

=E

[
log

{
π
(
X,y

∣∣ θ,G
)

π
(
X
∣∣ y,θ,G

)
}∣∣∣∣Y= y,θ(t )

]
.

Hence, it decomposes into

logπ
(
y
∣∣ θ
)
=Q

(
θ
∣∣ θ(t )

)
−R

(
θ
∣∣ θ(t )

)
,

where R(θ | θ(t )) = E
{
logπ(X | y,θ,G ) | Y= y,θ(t )

}
and Q(θ | θ(t )) is defined in (1.22).

Using Jensen’s inequality, one can show that R(· | θ(t )) reaches its maximum for θ(t ):

for all θ inΘ,

R
(
θ
∣∣ θ(t )

)
−R

(
θ(t )

∣∣ θ(t )
)
≤ log

(
E

{
π
(
X
∣∣ y,θ,G

)

π
(
X
∣∣ y,θ(t ),G

)
∣∣∣∣Y= y,θ(t )

})

≤ log
{
∑

x∈X
π
(
x
∣∣ y,θ,G

)
}
≤ 0.

It follows from the previous inequality and θ(t+1) = argmaxθQ(θ | θ(t )) that

logπ
(
y
∣∣ θ(t+1)

)
≥ logπ

(
y
∣∣ θ(t )

)
.

Wu (1983) demonstrated the convergence under regularity conditions of the sequence{
θ(t )

}
t≥0 of the EM algorithm toward a local maximum of π(y | θ) when t→∞. How-

ever, as often with optimization algorithms, the procedure may be very sensitive to

the initial value and may exhibit slow convergence rate especially if the log-likelihood

has saddle points or plateaus. In place of the genuine EM algorithm, some stochastic

versions have been proposed for circumventing these limitations such as the Stochas-

tic EM (SEM) algorithm (Celeux and Diebolt, 1985). The latter consists in simulating a

configuration x(t+1) from π(x | y,θ(t ),G ) after the E-step of Algorithm 4. In the M-step,

the maximization of the conditional expectation is replaced with

φ(t+1) = argmax
φ

logπ
(
y
∣∣ x(t+1),φ

)
,

ψ(t+1) = argmax
ψ

∑

i∈S
logπ

(
x(t+1)
i

∣∣∣XN (i ) = x(t+1)
N (i ),ψ,G

)
.
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Algorithm 4: Expectation-Maximization algorithm

Input: an observation y, a number of iterations T
Output: an estimate of the complete likelihood maximum θ̂MLE

Initialization: start from an initial guess θ(0) for θ ; // the maximum pseudolikelihood

estimator can be used as an initial value for the spatial component of θ

for t← 1 to T do

E-step: computeQ
(
θ
∣∣ θ(t )

)
the expected value of the complete log-likelihood

with respect to the conditional distribution of the latent X given Y= y at the
current value θ(t ) as a function of θ;

M-step: find θ(t+1) that maximizesQ
(
·
∣∣ θ(t )

)
, i.e., θ(t+1) = argmaxθQ

(
θ
∣∣ θ(t )

)
;

end

return θ(T )

The EM scheme cannot be applied directly to hidden Markov random fields due to

the difficulties inherent to the model. The algorithm yields analytically intractable

updates. The functionQ can be written as

Q
(
θ
∣∣ θ(t )

)
=E

{
logπ

(
X,y

∣∣ θ,G
) ∣∣ Y= y,θ(t )

}

=E
{
logπ

(
y
∣∣X,φ

) ∣∣ Y= y,θ(t )
}

︸ ︷︷ ︸
=Q1(φ | θ(t ))

+E
{
logπ

(
X
∣∣ψ,G

) ∣∣ Y= y,θ(t )
}

︸ ︷︷ ︸
=Q2(ψ | θ(t ))

.

The first term of the right hand side only depends on the emission parameter whereas

the second one solely involves the Gibbs parameter. Both terms can be further devel-

oped as

Q1
(
φ
∣∣ θ(t )

)
=E

{
∑

i∈S
logπ

(
yi
∣∣ Xi ,φ

)
∣∣∣∣∣ Y= y,θ(t )

}

=
∑

i∈S

∑

xi

π
(
xi
∣∣ y,θ(t ),G

)
logπ

(
yi
∣∣ xi ,φ

)
, (1.23)

Q2
(
ψ
∣∣ θ(t )

)
=E

{
− logZ

(
ψ,G

)
−
∑

c

Vc(Xc ,ψ)

∣∣∣∣ Y= y,θ(t )
}

=− logZ
(
ψ,G

)
−
∑

c

∑

xc

π
(
xc
∣∣ y,θ(t ),G

)
Vc

(
xc ,ψ

)
. (1.24)

The evaluation of Q presents two major difficulties. Neither the partition function

Z (ψ,G ) arising in Q2 nor the conditional probabilities π(xi | y,θ(t ),G ) and π(xc |
y,θ(t ),G ) in Q1 and Q2 respectively can be easily computed. Many stochastic or

deterministic schemes have been proposed and an exhaustive state of art could not

be presented here. We focus below on variational EM-like algorithms that will be used
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1.5. Parameter inference: computation of the maximum likelihood

in Chapter 4 for approximating model choice criterion. I could also have mentioned

attempts such as the Gibbsian-EM (Chalmond, 1989), the Monte-Carlo EM (Wei and

Tanner, 1990) or the Restoration-Maximization algorithm (Qian and Titterington,

1991).

Variational EM algorithm

Variational methods refer to a class of deterministic approaches. They consist in

introducing a variational function as an approximation to the likelihood in order to

solve a simplified version of the optimization problem. In practice, this relaxation

of the original issue has shown good performances for approximating the maximum

likelihood estimate (Celeux et al., 2003), as well as for Bayesian inference on hidden

Potts model (McGrory et al., 2009).

When dealing with Markov random fields, the mean-field EM is the most popular

version of variational EM (VEM) algorithms. The basis is to replace the complex Gibbs

distribution with a simple tractable model taken from a family of independent distri-

butions. The principle is to consider the E-step as a functional optimization problem

over a set D of probability distributions on the latent space (e.g., Neal and Hinton,

1998). Similarly to the previous decomposition of the incomplete log-likelihood, for

any probability distribution P inD, one can write

logπ
(
y
∣∣ θ
)
=

∑

x∈X
log

{
π
(
x,y

∣∣ θ,G
)

P(x)

}
P(x)

︸ ︷︷ ︸
=F (P,θ)

+
∑

x∈X
log

{
P(x)

π
(
x
∣∣ y,θ,G

)
}

P(x)

︸ ︷︷ ︸
=KL(P, π(·|y,θ,G ))

. (1.25)

The last KL term denotes the Kullback-Leibler divergence between a given probability

distributionP and the Gibbs distributionπ(· | y,θ,G ). The Kullback-Leibler divergence

is a measure of the information lost when one approximates π(· | y,θ,G ) with P.

Although it is not a true metric, it has the non-negative property with divergence zero

if and only if distributions are equal almost everywhere. The function F introduced in

(1.25) is then a lower bound for the log-likelihood. The aim of the variational approach

is to maximize the function F instead of the functionQ by choosing a distribution P

easy to compute and close enough to π(· | y,θ,G ). This shift in the formulation leads

to an alternating optimization procedure which can be described as follows: given a

current value (P(t ),θ(t )) inD×Θ, updates with

P(t+1) = argmax
P∈D

F
(
P,θ(t )

)
= argmin

P∈D
KL

(
P, π

(
·
∣∣ y,θ(t ),G

))
, (1.26)

θ(t+1) = argmax
θ

F
(
P(t+1),θ

)
= argmax

θ

∑

x∈X
P(t+1)(x) logπ

(
x,y

∣∣ θ,G
)
. (1.27)
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The minimization of the Kullback-Leibler divergence over the whole set of probability

distributions on X has an explicit solution which is the conditional distribution

π(· | y,θ,G ). Then the maximization over Θ corresponds to the maximization of Q

and we recover the standard EM scheme. The proposal of VEM to make the E-step

tractable is to solve (1.26) over a restricted set D̃ of probability distributions: the class

of independent probability distributions P that factorize on sites, namely for all x in

X =
∏

i∈S Xi ,

P(x)=
∏

i∈S
Pi (xi ), where Pi ∈M

+
1 (Xi ) and P ∈M

+
1 (X ).

The mean field approximation is the optimal solution in D̃, in the sense that it is

the closest distribution to the Gibbs distribution that factorizes on sites. Despite

the introduction of the relaxation, the M-step remains intractable due to the latent

Markovian structure. Indeed functionsQ1 andQ2 of equations (1.23) and (1.24) are

replaced by

QVEM
1

(
φ
∣∣P(t ))=

∑

i∈S

∑

xi

P(t )(x) logπ
(
yi
∣∣ xi ,φ

)
, (1.28)

QVEM
2

(
ψ
∣∣P(t ))=− logZ

(
ψ,G

)
−
∑

c

∑

xc

P(t )(x)Vc(xc ,ψ). (1.29)

The update of the emission parameter φ(t+1), obtained by maximizing QVEM
1 can

often be computed analytically. In contrast, the update of Gibbs parameter still

presents computational challenges since it requires either an explicit expression of the

partition function or an explicit expression of its gradient. Further algorithms have

been suggested to answer the question. Generalizing an idea originally introduced

by Zhang (1992), Celeux et al. (2003) have designed a class of VEM-like algorithm

that uses mean field-like approximations for both π(· | y,θ,G ) and π(· |ψ,G ). To put
it in simple terms mean field-like approximations refer to distributions for which

neighbors of site i are set to constants. Given a configuration x̃ in X , the Gibbs

distribution π(· |ψ,G ) is replaced by

PMF-like (x
∣∣ψ,G

)
=
∏

i∈S
π
(
xi
∣∣XN (i ) = x̃N (i ),ψ,G

)
.

The main difference with the pseudolikelihood (1.17) is that neighbors are not ran-

dom anymore and setting them to constant values leads to a system of independent

variables. From this approximation, the EM path is set up with the corresponding
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joint distribution approximation

PMF-like (x,y
∣∣ θ,G

)
=
∏

i∈S
π
(
yi
∣∣ xi ,φ

)
π
(
xi
∣∣XN (i ) = x̃N (i ),ψ,G

)
.

Note that this general procedure corresponds to the so-called point-pseudo-likelihood

EM algorithm proposed by Qian and Titterington (1991). The updates of φ and ψ

become fully tractable by replacing π(· | y,θ,G ) with its approximation that derives

from the Bayes formula

PMF-like (x
∣∣ y,θ,G

)
=

π
(
y
∣∣ x,φ

)
PMF-like

(
x
∣∣ψ,G

)

PMF-like
(
y
∣∣ θ
)

=
∏

i∈S
π
(
xi
∣∣XN (i ) = x̃N (i ), yi ,θ,G

)
.

Then functionsQVEM
1 andQVEM

2 of equations (1.28) and (1.29) are replaced with

QMF-like
1

(
φ
∣∣ θ(t )

)
=
∑

i∈S

∑

xi

π
(
xi
∣∣XN (i ) = x̃(t )

N (i ),yi ,θ
(t ),G

)
logπ

(
yi
∣∣ xi ,φ

)
,

QMF-like
2

(
ψ
∣∣ θ(t )

)
=
∑

i∈S

∑

xi

π
(
xi
∣∣XN (i ) = x̃(t )

N (i ),yi ,θ
(t ),G

)

logπ
(
xi

∣∣∣XN (i ) = x̃(t )
N (i ),ψ,G

)
.

The flexibility of the approach proposed by Celeux et al. (2003) lies in the choice of the

configuration x̃ that is not necessarily a valid configuration for the model. In this case

the Hamiltonian should be written differently in order to have a proper formulation of

the mean-field approximations. It is unnecessary to introduce this notation here and

we refer the reader to Celeux et al. (2003) for further details. When the neighbors XN (i )

are fixed to theirmean value, ormore precisely x̃ is set to themean field estimate of the

complete conditional distributionπ(x | y,θ,G ), this results in theMean Field algorithm

of Zhang (1992). In practice, Celeux et al. (2003) obtain better performances with

their so-called Simulated Field algorithm (see Algorithm 5). In this stochastic version

of the EM-like procedure, x̃ is a realization drawn from the conditional distribution

π(· | y,θ(t ),G ) for the current value of the parameter θ(t ). The latter is preferred to

other methods when dealing with maximum-likelihood estimation for hiddenMarkov

random field.

This extension of VEM algorithms suffers from a lack of theoretical support due to

the propagation of the approximation to the Gibbs distribution π(· |ψ,G ). One might

advocate in favour of the Monte-Carlo VEM algorithm of Forbes and Fort (2007) for

which convergence results are available. However the Simulated Field algorithm
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Algorithm 5: Simulated Field algorithm

Input: an observation y, a number of iterations T
Output: an estimate of the complete likelihood maximum θ̂MLE

Initialization: start from an initial guess θ(0) =
(
ψ(0),φ(0)

)
;

for t← 1 to T do

Neighborhood restoration: draw x̃(t ) from π
(
·
∣∣ y,ψ(t−1),G

)
;

E-step: compute

Q̂1(φ) :=
∑

i∈S

∑

xi

π
(
xi
∣∣XN (i ) = x̃(t )

N (i ), yi ,θ
(t−1),G

)
logπ

(
yi
∣∣ xi ,φ

)
;

Q̂2(ψ) :=
∑

i∈S

∑

xi

π
(
xi
∣∣XN (i ) = x̃(t )

N (i ), yi ,θ
(t−1),G

)

logπ
(
xi

∣∣∣XN (i ) = x̃(t )
N (i ),ψ,G

)
;

M-step: set θ(t ) =
(
ψ(t ),φ(t )

)
where

φ(t ) = argmax
φ

Q̂1(φ) andψ(t ) = argmax
ψ

Q̂2(ψ);

end

return θ(T ) =
(
ψ(T ),φ(T )

)

provides better results for the estimation of the spatial parameter, as illustrated in

Forbes and Fort (2007).

1.7 Parameter inference: computation of posterior dis-

tributions

Bayesian inference faces the same difficulties thanmaximum likelihood estimation

since the computation of the likelihood is integral to the approach. Chapter 2 ad-

dresses the problem of computing the posterior parameter distribution when the

Markov random field is directly observed. To tackle the obstacle of the intractable nor-

malising constant, recent work have proposed simulation based approaches. This part

focuses on the single auxiliary variable methodMøller et al. (2006) and the exchange

algorithmMurray et al. (2006): a Gibbs-within-Metropolis-Hastings algorithm. Both

solutions may suffer from computational difficulties, either a delicate calibration or a

high computational cost. Alternatives that are computationally efficient have been

proposed by Friel (2012). The author uses composite likelihoods, that generalize the

pseudolikelihood introduced in Section 1.4, within a Bayesian approach. However the
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1.7. Parameter inference: computation of posterior distributions

approximation produced has a variability significantly lower than the true posterior.

Chapter 2 proposes a correction of composite likelihoods that leads to an accurate

estimate without being time consuming.

The current overview is devoted to the Bayesian parameter inference when theMarkov

random field is fully observed. Recent works have tackled the issue of hiddenMarkov

random fields but it would not possible to describe these here. Nevertheless I shall

mention only a few like the exchange marginal particle MCMC of Everitt (2012) or

the estimation procedure in Cucala and Marin (2013) that are both based on the

exchange algorithm of Murray et al. (2006). Though these methods produce accurate

results they inherit the drawback of the exchange algorithm. Finally, I would add

in the toolbox solutions that are computationally more efficient like the reduced

dependence approximation of Friel et al. (2009) or the variational Bayes scheme of

McGrory et al. (2009).

Posterior parameter distribution

From a Bayesian perspective the focus is on the posterior parameter distribution. In

Chapter 2, we are solely interested in making Bayesian inference about unknown

parameters knowing an observed discrete Markov random field xobs. The hidden case

involves an additional level of intractability and is not of interest in the present work.

Assume

(i) a prior on the parameter spaceΨ, whose density is π(ψ) and

(ii) the likelihood of the data X, namely π(x |ψ,G ).

The posterior parameter distribution is

π
(
ψ
∣∣∣ xobs,G

)
∝π

(
xobs

∣∣∣ψ,G
)
π(ψ). (1.30)

Posterior parameter estimation is called a doubly-intractable problem because both

the likelihood function and the normalizing constant of the posterior distribution are

intractable.

1.7.1 The single auxiliary variable method

The single auxiliary variable method (SAVM) introduced by Møller et al. (2006) is an

ingenious MCMC algorithm targeting the posterior distribution (1.30). The original
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Chapter 1. Statistical analysis issues for Markov random fields

motivation arises from the impossibility to implement a standardMetropolis-Hastings

for doubly-intractable distributions. Indeed, to draw a sample from the posterior

distribution with a Metropolis-Hastings algorithm one needs to evaluate the ratio

r
(
ψ′

∣∣ψ
)
=

π
(
ψ′

∣∣ x,G
)

π
(
ψ
∣∣ x,G

)
ν
(
ψ
∣∣ψ′

)

ν
(
ψ′

∣∣ψ
) =

Z
(
ψ,G

)

Z
(
ψ′,G

)
π(ψ′)q

(
x
∣∣ψ′,G

)
ν
(
ψ
∣∣ψ′

)

π(ψ)q
(
x
∣∣ψ,G

)
ν
(
ψ′

∣∣ψ
) , (1.31)

where ν(θ | θ′) is the proposal density for θ and q(x |ψ,G ) is the unnormalized Gibbs

distribution. A solution, while being time consuming, is to estimate the ratio of the

partition functions using path sampling (Gelman and Meng, 1998). Starting from

equation (1.18), the path sampling identity writes as

log

{
Z
(
ψ0,G

)

Z
(
ψ1,G

)
}
=
∫ψ1

ψ0

Eψ{S(X)}dψ.

Hence the ratio of the two normalizing constants can be evaluated with numerical

integration. For practical purpose, this approach can barely be recommended within

a Metropolis-Hastings scheme since each iteration would require to compute a new

ratio.

The proposal of Møller et al. (2006) consists in including an auxiliary variableUwhich

shares the same state space thanX in order to cancel out the cumbersome normalizing

constants. Consider the posterior joint distribution for (ψ,U),

π
(
ψ,u

∣∣ x,G
)
∝π

(
u
∣∣ x,ψ

) q
(
x
∣∣ψ,G

)

Z
(
ψ,G

) π(ψ),

whereπ(· | x,ψ) is the conditional distribution for the auxiliary variable. TheMetropolis-

Hastings ratio for the posterior joint distribution can be written as

r
(
ψ′,u′

∣∣ψ,u
)
=

π
(
ψ′,u′

∣∣ x,G
)
ν
(
ψ,u

∣∣ψ′,u′,x
)

π
(
ψ,u

∣∣ x,G
)
ν
(
ψ′,u′

∣∣ψ,u,x
) ,

where ν(ψ′,u′ |ψ,u,x) denotes the proposal density for (ψ,U). Assuming the proposal

takes the form

ν
(
ψ′,u′

∣∣ψ,u,x
)
= ν

(
ψ′

∣∣ψ,x
)
ν
(
u′
∣∣ψ′

)
,

Møller et al. (2006) suggest to pick out the intractable likelihood as proposal for the

auxiliary variable, namely

ν
(
u′
∣∣ψ′

)
=

1

Z
(
ψ′,G

)q
(
u′
∣∣ψ′,G

)
.
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1.7. Parameter inference: computation of posterior distributions

Hence the Metropolis-Hastings acceptance becomes fully tractable,

r
(
ψ′,u′

∣∣ψ,u
)
= ✘

✘
✘
✘✘Z

(
ψ,G

)

✘
✘

✘
✘✘Z

(
ψ′,G

) q
(
x
∣∣ψ′,G

)
π
(
u′
∣∣ x,ψ′

)
π
(
ψ′
)

q
(
x
∣∣ψ,G

)
π
(
u
∣∣ x,ψ

)
π
(
ψ
)

ν
(
ψ
∣∣ψ′,x

)
q
(
u
∣∣ψ,G

)

ν
(
ψ′

∣∣ψ,x
)
q
(
u′
∣∣ψ′,G

)✘
✘

✘
✘✘Z

(
ψ′,G

)

✘
✘

✘
✘✘Z

(
ψ,G

) .

It follows from the above and (1.31) that the SAVM is based on single point importance

sampling approximations of the partition functions Z (ψ,G ) and Z (ψ′,G ), namely

Ẑ
(
ψ,G

)
=
q
(
u
∣∣ψ,G

)

π
(
u
∣∣ x,ψ

) and Ẑ
(
ψ′,G

)
=
q
(
u′
∣∣ψ′,G

)

π
(
u′
∣∣ x,ψ′

) .

As mentioned by Everitt (2012), any algorithm producing an unbiased estimate of

the normalizing constant can thus be used in place of the importance sampling

approximation and will lead to a valid procedure.

The idea to apply MCMCmethods to situation where the target distribution can be

estimated without bias by using an auxiliary variable construction has appeared in the

generalized importance Metropolis-Hasting of Beaumont (2003) and has then been

extented by Andrieu and Roberts (2009). This brings another justification to the SAVM

and possible improvement with the use of sequential Monte Carlo samplers (Andrieu

et al., 2010).

1.7.2 The exchange algorithm

Murray et al. (2006) develop this work further with their exchange algorithm. They

outline that SAVM can be improved by directly estimating the ratio Z (ψ,G )
Z (ψ′,G ) instead

of using previous single point estimates. The scheme is a Metropolis-within-Gibbs

algorithm (see Algorithm 6) that samples from the augmented posterior distribution

π
(
ψ,ψ′,u

∣∣ x,G
)
∝π

(
ψ
)
ν
(
ψ′

∣∣ψ
)
π
(
x
∣∣ψ,G

)
π
(
u
∣∣ψ′,G

)
.

Comparing the acceptance ratio of Algorithm 6 with the Metropolis-Hasting ratio

(1.31), we remark that the intractable ratio Z (ψ,G )
Z (ψ′,G ) is replaced by

q(u|ψ,G )
q(u|ψ′,G ) . The latter

can be viewed as a single point importance sampling estimate as pointed out by

Murray et al. (2006).

In comparison with the exchange algorithm, the SAVM faces a major drawback. In-

deed, the method of Møller et al. (2006) depends on the conditional distribution for

the auxiliary variableU, namely π(· | x,ψ), that makes it difficult to calibrate (see for
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Chapter 1. Statistical analysis issues for Markov random fields

Algorithm 6: Exchange algorithm

Input: an initial guess
(
ψ(0),ψ′(0),u(0)

)
forψ, a number of iterations T

Output: a sample drawn from the augmented distribution π
(
ψ,ψ′,u

∣∣ x,G
)

for t← 1 to T do

draw ψ′ from ν
(
·
∣∣ψ(t−1));

draw u from π
(
·
∣∣ψ′(t ),G

)
;

compute the Metropolis-Hastings acceptance ratio

r
(
ψ′

∣∣ψ(t−1),u
)
=
q
(
u
∣∣ψ(t−1),G

)

q
(
u
∣∣ψ′,G

)
π
(
ψ′
)
q
(
x
∣∣ψ′,G

)
ν
(
ψ(t−1) ∣∣ψ′

)

π
(
ψ(t−1))q

(
x
∣∣ψ(t−1),G

)
ν
(
ψ′

∣∣ψ(t−1)) ;

Exchange move: set
(
ψ(t ),ψ′(t ),u(t )

)
=
(
ψ′,ψ(t−1),u

)
with probability

min
(
1,r (ψ′ |ψ(t−1),u)

)
, else set

(
ψ(t ),ψ′(t ),u(t )

)
=
(
ψ(t−1),ψ′(t−1),u(t−1)

)
;

end

return
{(
ψ(t ),ψ′(t ),u(t )

)}T
t=1

example Cucala et al., 2009). As a suitable choice for the conditional distribution, the

authors advocate in favour of the Gibbs distribution taken at a preliminary estimate

ψ̂, such as the maximum pseudolikehood, that is

π
(
u
∣∣ x,ψ

)
=

1

Z
(
ψ̂,G

)q
(
u
∣∣ ψ̂,G

)
.

By plugging in a particular value ψ̂, the normalizing constant Z (ψ̂,G ) drops out of

the acceptance ratio r (ψ′,u′ |ψ,u). Nevertheless Cucala et al. (2009) stress out that
the choice of ψ̂ is paramount and may significantly affect the performances of the

algorithm. In this sense, the exchange algorithm is more convenient to implement

whilst outperforming the SAVM inMurray et al. (2006).

A practical difficulty remains to implement the exchange algorithm. An exact draw u

from the likelihood π(· |ψ,G ) is required. This is generally infeasible when dealing
with Markov random fields with the exception of a very few instances. The Ising

model is one of these special cases where u can be drawn exactly using coupling from

the past (Propp andWilson, 1996) but the perfect simulation may be very expensive

especially if the parameter is close to the phase transition. Alternatively, one can

run enough iterations of a suitable MCMC (such as Gibbs sampler, Swendsen-Wang

algorithm) to reach its stationnary distribution π(· |ψ,G ). This approach has shown

good performances in practice (e.g., Cucala et al., 2009, Caimo and Friel, 2011, Everitt,

2012). A theoretical justification is presented by Everitt (2012) who notably pointed

out that solely few iterations of the MCMC sampler are necessary.
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1.8. Model selection

1.8 Model selection

Selecting themodel that best fits an observation among a collection ofMarkov random

fields is a daunting task. The comparison of stochastic models is usually based on the

Bayes factor (Kass and Raftery, 1995) that is intractable due to a high-dimensional in-

tegral. The present dissertation is especially interested in selecting the neighborhood

structure and/or the number of components of hidden discrete Markov random fields

such as the hidden Potts model. Approximate Bayesian computation introduced in

Section 1.8.2 brings a solution in the Bayesian paradigm which is explored in Chapter

4. But it suffers from slow execution. The Bayesian Information Criterion (BIC), which

is a simple function of the intractable likelihood at its maximum, is introduced in

Section 1.8.3 and discussed further in Chapter 4.

1.8.1 Bayesian model choice

The peculiarity of the Bayesian approach tomodel selection is to consider themodel it-

self as an unknownparameter of interest. Assumewe are given a setM = {m : 1, . . . ,M }

of stochastic models with respective parameter spacesΘm embedded into Euclidean

spaces of various dimensions. The joint Bayesian distribution sets

(i) a prior on the model spaceM , π(1), . . . ,π(M),

(ii) for eachmodelm, a prior on its parameter spaceΘm , whose density with respect

to a reference measure (often the Lebesgue measure of the Euclidean space) is

πm(θm) and

(iii) the likelihood of the data Ywithin each model, namely πm(y | θm).

Consider the extended parameter space Θ =
⋃M
m=1{m}×θm , the Bayesian analysis

targets posterior model probabilities, that is the marginal in M of the posterior

distribution for (m,θ1, . . . ,θM ) given Y= y. By Bayes theorem, the posterior probability

of modelm is

π(m | y)=
e(y |m)π(m)

∑M
m′=1 e(y |m′)π(m′)

,

where e(y |m) is the evidence of modelm defined as

e(y |m)=
∫

Θm

πm(y | θm)πm(θm)dθm . (1.32)
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When the goal of the Bayesian analysis is the selection of the model that best fits the

observed data yobs, it is performed through the maximum a posteriori (MAP) defined

by

m̂MAP(y
obs)= argmax

m
π(m | yobs). (1.33)

One faces the usual difficulties of Markov random fields to compute the posterior

model distribution π(m | yobs). In the hidden case the problem is even more com-

plicated than parameter estimation issues and can be termed as a triply-intractable

problem. Indeed the stochastic model for Y is based on the latent process X in X ,

that is

πm(y | θm)=
∫

X

π(y | x,φm)π(x |ψm ,Gm)µ(dx), (1.34)

with µ the counting measure (discrete case) or the Lebesgue measure (continuous

case). Both the integral and the Gibbs distribution are intractable and consequently

so is the posterior distribution.

1.8.2 ABC model choice approximation

Approximate Bayesian computation (ABC) is a simulation based approach that offers a

way to circumvent the difficulties ofmodels which are intractable but can be simulated

from. Subsequently to awork of Tavaré et al. (1997) in population genetics, themethod

is introduced by Pritchard et al. (1999) as a genuine acceptance-rejection method (see

Algorithm 7). The basis is to sample from an approximation of the target distribution

(1.30), namely

πǫ

(
ψ
∣∣∣ yobs,G

)
∝
∫

Y

π(ψ)π
(
y
∣∣ψ,G

)
Kǫ

(
y
∣∣∣ yobs

)
dy,

where Kǫ(· | yobs) is a probability density on the configuration spaceY centered on

yobs with a support defined by ǫ. In its original version, assuming a metric space

(Y ,ρ), this density is set to the uniform distribution on the ballB(ǫ,yobs) of radius ǫ

centered at yobs, that is

Kǫ

(
y
∣∣∣ yobs

)
∝ 1

{
y ∈B

(
ǫ,yobs

)}
= 1

{
ρ
(
y,yobs

)
≤ ǫ

}
.

The use of a kernel function instead of the latter has been studied by Wilkinson (2013).

Concerning the calibration of ǫ, a trade-off has to be found to ensure good perfor-

mances of the procedure. If the threshold is small enough, πǫ(· | yobs,G ) provides
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1.8. Model selection

an accurate approximation that may nonetheless suffer from a high computational

cost. For the limiting case ǫ= 0, we recover the true posterior distribution. However
decreasing the threshold, while maintaining the amount of simulations accepted, can

be problematic in terms of processing time since the acceptance probability can be

too low, if not zero, i.e., P(ρ(Y,yobs)≤ ǫ)=
∫
Y
π(y |ψ,G )1

{
ρ(y,yobs)≤ ǫ

}
dy→ 0. Con-

versely, a large threshold ǫ leads to a poor approximation of the posterior distribution

since almost all simulated particles are accepted, i.e., limǫ→∞P(ρ(Y,yobs)≤ ǫ)= 1. The
standard solution is to pick out an empirical quantile of the distance (e.g., Beaumont

et al., 2002). We refer the reader to Marin et al. (2012) and the reference therein for an

overview of this calibration question. This point is also discussed further in Chapter 3.

Algorithm 7: Acceptance-rejection algorithm

Input: an observation yobs, summary statistics S, a number of iterations T , an
empirical quantile of the distance Tǫ

Output: a sample from the approximated target of πǫ

(
·
∣∣ yobs,G

)

for t← 1 to T do

draw ψ from π(·);
draw y from π

(
·
∣∣ψ,G

)
;

compute S(y);
save

{
ψ(t ),S

(
y(t )

)}
←
{
ψ,S

(
y
)}
;

end

sort the replicates according to the distance ρ
{
S
(
y(t )

)
,S
(
yobs

))
;

keep the Tǫ first replicates;
return the sample of accepted particles

In practical terms, the data usually lies in a space of high dimension and the algorithm

faces the curse of dimensionality, namely that is almost impossible to sample dataset

in the neighborhood of y. The ABC algorithm performs therefore a (non linear)

projection of the observed and simulated datasets onto some Euclidean space of

reasonable dimension d via a function s, composed of summary statistics. The use of

summary statistics in place of the data leads to the pseudo-target

πǫ

(
ψ
∣∣∣ S
(
yobs

)
,G

)
∝
∫

Y

π(ψ)π
(
y
∣∣ψ,G

)
1
{
ρ
(
S(y),S

(
yobs

))
≤ ǫ

}
dy.

Beyond the seldom situation where s is sufficient, i.e., P
(
ψ | s(yobs)

)
=P(ψ | yobs), we

cannot recover better than π
(
ψ | ρ

{
s(y), s(yobs)

}
≤ ǫ

)
. Hence the calibration of ABC

can become complicated due to the difficulty or even the impossibility to quantify

the effect of the different approximations. Recent articles have proposed automatic

schemes to construct these statistics (rarely from scratch but based on a large set of

candidates) for Bayesian parameter inference and are meticulously reviewed by Blum
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Table 1.2: Illustration of the curse of dimensionality for various dimension d and sample sizes
N .

d∞(d ,N ) N = 100 N = 1000 N = 10000 N = 100000
d∞(1,N ) 0.0025 0.00025 0.000025 0.0000025
d∞(2,N ) ≥ 0.033 ≥ 0.01 ≥ 0.0033 ≥ 0.001
d∞(10,N ) ≥ 0.28 ≥ 0.22 ≥ 0.18 ≥ 0.14
d∞(200,N ) ≥ 0.48 ≥ 0.48 ≥ 0.47 ≥ 0.46

et al. (2013) who compare their performances in concrete examples.

Example (Curse of dimensionality). Consider Y,Y(1), . . . ,Y(N ) a sequence of random

variables in R
d independent and identically distributed according to the uniform

distribution on [0,1]d . Denote d∞(d ,N ) the distance function to Y defined as

d∞(d ,N )=E

{
min

i=1,...,N
‖Y−Y(i )‖∞

}
,

where ‖ ·‖∞ stands for the supremum norm on Rd .

d∞(d ,N )=
∫∞

0
P

(
min

i=1,...,N
‖Y−Y(i )‖∞ > t

)
dt

=
∫∞

0
1−P

(
min

i=1,...,N
‖Y−Y(i )‖∞ ≤ t

)
dt .

Due to the independence assumption, the latter can be written as

P

(
min

i=1,...,N
‖Y−Y(i )‖∞ ≤ t

)
≤NP

(
‖Y−Y(1)‖∞ ≤ t

)

≤N (2t )d

Starting from 1−N (2t )d ≥ 0 for t ≤
(
2N1/d

)−1
, we get the following lower bound

d∞(d ,N )≥
∫(

2N1/d
)−1

0
1−N (2t )ddt=

d

2(d +1)
N− 1

d .

Table 1.2 yields the lower bound for various dimension space d and sample sizes N.

The latter shows how paramount the calibration of the threshold ǫ is. When dealing

with discrete Markov random field, the dimension ofY is K |S | =K n , that is for binary

random variables defined on a 10×10 lattice the dimension of the configuration space

is 2100 ≈ 1030.

Once the parameter space includes models indexM , the ABCmodel choice follows
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1.8. Model selection

the same vein than the above ABCmethodology used for Bayesian parameter inference.

To approximate m̂MAP, ABC starts by simulating numerous triplets (m,θm ,y) from the

joint Bayesian model. Afterwards, the algorithm mimics the Bayes classifier (1.33):

it approximates the posterior probabilities by the frequency of each model number

associated with simulated y’s in a neighborhood of yobs. If required, we can eventually

predict the best model with themost frequent model in the neighborhood, or, in other

words, take the final decision by plugging in (1.33) the approximations of the posterior

probabilities.

At this stage, this first, naive algorithm faces the curse of dimensionality illustrated in

Example 1.8.2. Then the algorithm compares the observed data yobs with numerous

simulations y through summary statistics S(·)=
{
s1(·), . . . , sM (·)

}
, that is the concatena-

tion of the summary statistics of each models with cancellation of possible replicates.

Algorithm 8: ABCmodel choice algorithm

Input: an observation yobs, summary statistics S, a number of iterations T , an
empirical quantile of the distance Tǫ

Output: a sample from the approximated target of πǫ

(
· | S(yobs),G

)

for t← 1 to T do

draw m from π;
draw θ from πm ;
draw y from πm(· | θ);
compute S(y);
save

{
m(t ),ψ(t ),S

(
y(t )

)}
←
{
m,ψ,S

(
y
)}
;

end

sort the replicates according to the distance ρ
(
S
(
y(t )

)
,S
(
yobs

))
;

keep the Tǫ first replicates;
return the sample of accepted particles

The accepted particles (m(t ),y(t )) at the end of Algorithm 8 are distributed according

to π(m | ρ
(
S(y),S(yobs)

)
≤ ǫ) and the estimate of the posterior model distribution is

given by

π̂ǫ

(
m
∣∣∣ yobs

)
=
∑

1
{
m(t ) =m,ρ

(
S
(
y(t )

)
,S
(
yobs

))
≤ ǫ

}
∑

1
{
ρ
(
S
(
y(t )

)
,S
(
yobs

))
≤ ǫ

} .

The choice of such summary statistics presents major difficulties that have been

especially highlighted for model choice (Robert et al., 2011, Didelot et al., 2011). When

the summary statistics are not sufficient for the model choice problem, Didelot et al.

(2011) and Robert et al. (2011) found that the above probability can greatly differ from
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the genuine π(m | yobs).

Model selection betweenMarkov random fields whose energy function is of the form

H(y | θ,G )= θT s(y), such as the Potts model, is a surprising example for which ABC is

consistent. Indeed Grelaud et al. (2009) have pointed out that the exponential family

structure ensures that the vector of summary statistics S(·)=
{
s1(·), . . . , sM (·)

}
is suffi-

cient for each model but also for the joint parameter across models (M ,θ1, . . . ,θM ).

This allows to sample exactly from the posterior model distribution when ǫ= 0. How-
ever the fact that the concatenated statistic inherits the sufficiency property from the

sufficient statistics of each model is specific to exponential families (Didelot et al.,

2011). When dealing with model choice between hiddenMarkov random fields, we

fall outside of the exponential families due to the bound to the data. Thus we face

the major difficulty outlined by Robert et al. (2011): it is almost impossible to build a

sufficient statistic of reasonable dimension, i.e., of dimension much lower than the

dimension ofX .

Beyond the seldom situations where sufficient statistics exist and are explicitly known,

Marin et al. (2014) provide conditions which ensure the consistency of ABC model

choice. The present dissertation has thus to answer the absence of available sufficient

statistics for hidden Potts fields as well as the difficulty (if not the impossibility)

to check the above theoretical conditions in practice. If much attention has been

devoted to Bayesian parameter inference (e.g., Blum et al., 2013), very few has been

accomplished in the context of ABCmodel choice apart from the work of Prangle et al.

(2014). The statistics S(y) reconstructed by Prangle et al. (2014) have good theoretical

properties (those are the posterior probabilities of the models in competition) but

are poorly approximated with a pilot ABC run (Robert et al., 2011), which is also time

consuming.

1.8.3 Bayesian Information Criterion approximations

Inmost cases, we could not design good summary statistics for ABCmodel choice. The

method thus implies a loss of statistical information and raises many questions from

the choice of summary statistics to the consistency of the algorithm. This makes the

implementation of the procedure particularly difficult, the use of the whole dataset

being impossible due to the curse of dimensionality. In place of a fully Bayesian

approach, model choice criterion can be used.

As presented in Section 1.8.1, the Bayesian approach to model selection is based on

posterior model probabilities. Under the assumption of model being equally likely a
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1.8. Model selection

priori, the posterior model distribution writes as

π(m | y)=
e(y |m)

∑M
m′=1 e(y |m′)

.

Hence, theMAP rule (1.33) is equivalent to choose themodel with the largest evidence

(1.32). The integral is usually intractable, thusmuch of the research inmodel selection

area focuses on evaluating it by numerical methods.

The Bayesian Information Criterion (BIC) is a simple but reliable solution to approxi-

mate the evidence using Laplace method (Schwarz, 1978, Kass and Raftery, 1995). It

corresponds to the maximized log-likelihood with a penalization term, namely

BIC(m)=−2logπm

(
y
∣∣ θ̂MLE

)
+dm log(n)≈−2logπ(y |m), (1.35)

where θ̂MLE is the maximum likelihood estimate for πm(y | θm), dm is the number of

free parameters of modelm (usually the dimension ofΘm) and n = |S | is the number

of sites. The model with the highest posterior probability is the one that minimizes

BIC. The criterion is closely related to the Akaike Information Criterion (AIC, Akaike,

1973) that solely differs in the penalization term:

AIC(m)=−2logπm

(
y
∣∣ θ̂MLE

)
+2dm .

AIC has been widely compared to BIC (e.g., Burnham and Anderson, 2002). Looking

at the penalization term indicates than BIC tends to favor simpler models than those

picked by AIC. We shall also mention that AIC has been shown to overestimate the

number of parameters, even asymptotically (e.g., Katz, 1981). We refer the reader to

Kass and Raftery (1995) and the references therein for a more detailed discussion on

AIC.

BIC is an asymptotic estimate of the evidence whose error is bounded as the sample

size grows to infinity regardless of the prior πm on the parameter space (Schwarz,

1978), see Chapter 4 for a more detailed presentation. The approximation may seem

somewhat crude due to this O (1) error. However as observed by Kass and Raftery

(1995) the criterion does not appear to be qualitatively misleading as long as the

sample size n is much larger than the number dm of free parameters in the model.

This dissertation tackles the issue of selecting a number of components from a col-

lection of hiddenMarkov random fields. The use of BICmight be questionable due

to the absence of results on the reliability of the evidence estimate in this context.

Though we follow an argument of Forbes and Peyrard (2003) that arises from the work

of Gassiat (2002) in hiddenMarkov chains.
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Chapter 1. Statistical analysis issues for Markov random fields

"The question of the criterion ability to asymptotically choose the correct

model can be addressed independently of the integrated likelihood approxi-

mation issue. As an illustration, Gassiat (2002) has proven that for themore

specialized but related case of hidden Markov chains, under reasonable

conditions, the maximum penalized marginal likelihood estimator of the

number of hidden states in the chain is consistent. This estimator is de-

fined for a class of penalization terms that includes the BIC correction term

and involves an approximation of the maximized log-likelihood which is

not necessarily good, namely the maximized log-marginal likelihood. In

particular, this criterion is consistent even if there is no guarantee that it

provides a good approximation of the integrated likelihood. The choice of

BIC for hidden Markov model selection appears then reasonable."

Difficulties in the context of hiddenMarkov random field are of two kinds and both

come from themaximized log-likelihood term logπm(y | θ̂MLE). Neither the maximum

likelihood estimate θ̂MLE (see Section 1.5.2 ) nor the incomplete likelihood (1.34) are

available since they would require to integrate a Gibbs distribution over the latent

space configuration. As regards the simpler case of observed Markov random field

solutions have been brought by penalized pseudolikelihood (Ji and Seymour, 1996)

or MCMC approximation of BIC (Seymour and Ji, 1996). Over the past decade, only

few works have addressed the model choice issue for hidden Markov random field

from that BIC perspective. Arguably the most relevant has been suggested by Forbes

and Peyrard (2003) who, among other things, generalize an earlier approach of Stan-

ford and Raftery (2002). Their proposal is to use mean field-like approximations

introduced in Section 1.5.2 to estimate BIC. But other attempts based on simula-

tions techniques have been investigated (Newton and Raftery, 1994). Regarding the

question of inferring the number of latent states, one might avocate in favor of the

Integrated Completed Likelihood (ICL, Biernacki et al., 2000). This opportunity has

been explored by Cucala and Marin (2013) but their complex algorithm cannot be

extended easily to choose the dependency structure.

Approximations of the Gibbs distribution

The central question is the evaluation of the incomplete likelihood (1.34), that is

πm

(
y | θm

)
=

∑

x∈X
π
(
y
∣∣ x,φm

)
π
(
x
∣∣ψm ,Gm

)
.

The most straightforward approach to circumvent the computational burden is to

replace the Gibbs distribution with some simpler distributions such as the mean-field
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1.8. Model selection

like approximations (see Section 1.5.2), namely

π
(
x
∣∣ψm ,G

)
≈PMF-like (x

∣∣ψm ,G
)
=
∏

i∈S
π
(
xi
∣∣XN (i ) = x̃N (i ),ψm ,G

)
. (1.36)

The latter corresponds to an incomplete likelihood estimate of the form

PMF-like
m

(
y
∣∣ θm

)
=
∏

i∈S

∑

xi

π
(
yi
∣∣ xi ,φm

)
π
(
xi
∣∣XN (i ) = x̃N (i ),ψm ,G

)
.

This results in the following approximation of BIC

BICMF-like(m)=−2logPMF-like
m

(
y
∣∣ θ̂MLE

)
+dm log(n). (1.37)

This approach includes the Pseudolikelihood Information Criterion (PLIC) of Stanford

and Raftery (2002) as well as the mean field-like approximations of BIC proposed

by Forbes and Peyrard (2003). For the latter, the authors suggest to use for (x̃, θ̂MLE)

the output of the VEM-like algorithm based on the mean-field like approximations

described in Section 1.5.2. As regards neighborhood restoration step, Forbes and

Peyrard (2003) advocate in favor of the simulated field algorithm (see Algorithm 5).

Stanford and Raftery (2002) suggest to approximate the Gibbs distribution in (1.34)

with the pseudolikelihood of Qian and Titterington (1991). Note the latter differs from

the pseudolikelihood of Besag (1975). Instead of integrating over X , the idea is to

consider as x̃ a configuration close to the Iterated Conditional Modes (ICM, Besag,

1986) estimate of x. ICM is an iterative procedure that aims at finding an estimate of

xMAP = argmax
x

π
(
x
∣∣ y,θ,G

)
.

In its unsupervised version it alternates between a restoration step of the latent states

and an estimation step of the parameter θ. The restoration step corresponds to a

sequential update of the sites, namely given the current configuration x̃(t ) and the

current parameter θ(t )

x̃(t+1)
i

= argmax
xi

π
(
xi

∣∣∣XN (i ) = x̃(t )
N (i ),y, θ̂

(t ),G
)
.

Afterwards the parameter is updated given the new configuration x̃(t+1), the spatial

component being updated by maximizing the pseudolihood (1.17),

φ(t+1) = argmax
φ

logπ
(
y
∣∣ x̃(t+1),φ

)
,

ψ(t+1) = argmax
ψ

log fpseudo
(
x̃(t+1) |ψ,G

)
.
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Chapter 1. Statistical analysis issues for Markov random fields

Denote
(
xICM,θICM

)
the output of the ICM algorithm, PLIC can be written as

PLIC(m)=−2log
{
∏

i∈S

∑

xi

π
(
yi
∣∣ xi ,φICM

m

)

π
(
xi

∣∣∣XN (i ) = xICM
N (i ),ψ

ICM
m ,G

)}
+dm log(n). (1.38)

Stanford and Raftery (2002) have also proposed the Marginal Mixture Information

Criterion (MMIC) but for the latter they report less satisfactory results.

Approximation of the partition function

Forbes and Peyrard (2003) have also derived another criterion considering that BIC

can express only in terms of partition functions. Let Z (ψ,G ) and Z (θ,G ) denote the

respective normalizing constants of the latent and the conditional fields (see Section

1.1.4), namely,

Z
(
ψ,G

)
=

∑

x∈X
exp

{
−H

(
x
∣∣ψ,G

)}
,

Z (θ,G )=
∑

x∈X
exp

{
−H

(
x
∣∣ y,φ,ψ,G

)}
=

∑

x∈X
π
(
y
∣∣ x,φ

)
exp

{
−H

(
x
∣∣ψ,G

)}
.

Starting from the Bayes formula, the incomplete likelihood can be written as

π
(
y
∣∣ θ
)
=

π
(
y
∣∣ x,φ

)
π
(
x
∣∣ψ,G

)

π
(
x
∣∣ y,θ,G

) =
π
(
y
∣∣ x,φ

)
exp

{
−H

(
x
∣∣ψ,G

)}

exp
{
−H

(
x
∣∣ y,φ,ψ,G

)} Z (θ,G )

Z
(
ψ,G

)

which using the definition of the Hamiltonian H(x | y,φ,ψ,G ) simplifies into

π
(
y
∣∣ θ
)
=

Z (θ,G )

Z
(
ψ,G

) .

The expression (1.35) turns into

BIC(m)=−2logZ (θ,G )+2logZ
(
ψ,G

)
+dm log(n).

Hence, the problem of estimating the Gibbs distribution becomes a problem of esti-

mating the normalizing constants. The latter issue could be addressed with Monte

Carlo estimator such as the path sampling (Gelman and Meng, 1998) while being

time consuming. Forbes and Peyrard (2003) propose to use instead a first order

approximation of the normalizing constant arising frommean field theory.
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1.8. Model selection

Consider PMF(· |ψ,G ) the mean field approximation of the Gibbs distribution π(· |
ψ,G ). The mean field approximation can be written as follows

PMF (x
∣∣ψ,G

)
=

1

ZMF
(
ψ,G

) exp
{
−HMF (x

∣∣ψ,G
)}
,

where ZMF(ψ,G ) and HMF(x |ψ,G ) are themean field expressions for the normalizing

constant and theHamiltonian. It is worth repeating that themean field approximation

is the minimizer of the Kullback-Leibler divergence over the set of probability distri-

butions that factorize and hence both quantities are easy to compute. Denote EMF the

expectation under the mean field approximation, the Kullback-Leibler divergence can

be written as

KL
(
PMF(· |ψ,G ),π(· |ψ,G )

)
=EMF

(
log

{
PMF(X |ψ,G )

π(X |ψ,G )

})
.

It follows from the positivity of the Kullback-Leibler divergence

Z
(
ψ,G

)
≥ ZMF (ψ,G

)
exp

(
−EMF {H

(
X
∣∣ψ,G

)
−HMF (X

∣∣ψ,G
)})

. (1.39)

The mean field approximation yields the optimal lower bound which is used as an

estimate of the normalizing constant. The same applies to the Gibbs distribution

π(· | y,θ,G ) and we denote ZMF(θ,G ) and HMF(· | y,θ,G ) the corresponding mean

field expressions for the normalizing constant and the Hamiltonian. It follows another

approximation of BIC, namely

BICGBF(m)=−2log
{
ZMF (θ̂MLE

m ,G
)}
+2log

{
ZMF (ψ̂MLE

m ,G
)}

+2EMF {H
(
X
∣∣ y, θ̂MLE

m ,G
)
−HMF (X

∣∣ y, θ̂MLE
m ,G

)}

−2EMF {H
(
X
∣∣ ψ̂MLE

m ,G
)
−HMF (X

∣∣ ψ̂MLE
m ,G

)}

+dm log(n). (1.40)

Forbes and Peyrard (2003) argue that the latter is more satisfactory than BICMF-like(m)

in the sense it is based on a optimal lower bound for the normalizing constants

contrary to the mean field-like approximations. However that does not ensure better

results as regards model selection.
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2 Adjustment of posterior parameter

distribution approximations

Computing the posterior distribution of model parameters (1.30) is a key objective in

Bayesian analysis. Much of the literature has been devoted toMonte Carlo approaches

that are time consuming (see Section 1.7). An alternative when dealing with complex

model asMarkov randomfields is to use composite likelihoods, a class of non-genuine

probability distributions that extend the pseudolikelihood (Besag, 1975), for Bayesian

inference. This opportunity has been explored by Friel (2012) when dealing with

the autologistic model. However the resulting approximation has a much lower

variability than the true posterior distribution. Our main contribution is to present

an approach to correct the posterior distribution resulting from using a misspecified

likelihood function. The Chapter is organised as follows. Composite likelihoods are

introduced in Section 2.1.1 before defining the composite posterior distribution in

Section 2.1.2. In this Chapter we focus especially on how to formulate conditional

composite likelihoods for application to the autologistic model. Our proposal to

answer the issue of calibrating the composite likelihood function is developed through

Section 2.2. Section 2.3 illustrates the performance of the various estimators for

simulated data.

2.1 Bayesian inference using composite likelihoods

2.1.1 Composite likelihood

Composite likelihood methods are a natural extension of pseudolikelihood (Besag,

1975, see Section 1.4) that has encountered considerable interests in the statistics

literature. The reader may refer to Varin et al. (2011) for a recent overview but we

could mention headings such as pairwise likelihoodmethods (e.g., Nott and Rydén,

1999), composite likelihood (e.g.Heagerty and Lele, 1998) and split-data likelihood
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Chapter 2. Adjustment of posterior parameter distribution approximations

(e.g. Rydén, 1994) to name a few. Composite likelihoods are originally motivated by

the fact that maximum pseudolikelihood estimator has generally larger asymptotic

variance thanmaximum likelihood estimator and does not achieve the Cramer-Rao

lower bound (Lindsay, 1988). Furthermore, empirical experiences have shown that

the pseudolikelihood leads to unreliable estimates (e.g., Geyer, 1991, Rydén and

Titterington, 1998, Friel and Pettitt, 2004, Cucala et al., 2009).

Remember that S = {1, . . . ,n} is the index set for the graph nodes. The pseudolike-

lihood is based on the finest partition of S but one could use any subsets of the

power set of S . The starting idea is to extend the product (1.17) to a product of

tractable joint probability distribution of a small number of variables, two in the

example of pairwise likelihood. Given an integerC ≤ n, we denote
{
A(i )

}C
i=1 ⊆P (S )

and
{
B(i )

}C
i=1 ⊆P (S ) sets of subset of S , that is each A(i ) or B(i ) corresponds to

an index subset for the graph nodes. Following Asuncion et al. (2010), in its simple

version a composite likelihood can be written as follows

fCL
(
x
∣∣ψ,G

)
=

C∏

i=1
π
(
xA(i )

∣∣ xB(i ),ψ,G
)
. (2.1)

It is worth mentioning some special cases.

(i) The trivial situation where the set A(i ) contains all the sites, that isC = 1, A(i )=
S , B(i )=�, , corresponds to the full likelihood.

(ii) When the product expresses only in terms of marginal distribution of the subset

A(i ), that is B(i )=�, one usually talks aboutmarginal composite likelihood.

(iii) When one takes for the subset B(i ) the absolute complement of A(i ), namely

B(i )=S \ A(i ), the function is often termed conditional composite likelihood.

The pseudolikelihood is a particular case where the product is taken over all

graph nodes, i.e., C = n. Each A(i ) is then a singleton, namely A(i ) = {i }, and

B(i ) is the set of neighboring sitesN (i ).

In this Chapter, following Lindsay (1988), we suggest that a composite likelihood

should take the general form

f calCL

(
x
∣∣ψ,G

)
=

C∏

i=1
π
(
xA(i )

∣∣ xB(i ),ψ,G
)wi , (2.2)

where wi are positive weights that are to specify in the present work.
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Composite likelihood has beenmade popular in a context where marginal distribu-

tions can be computed (e.g., Varin et al., 2011). Spatial lattice processes such as the

autologistic model differ from that class of models in the sense that dependence struc-

ture makes impossible the calculation of marginal probabilities. Indeed factors thus

involve integrals over the absolute complement of A(i ) that are of the same complexity

than the cumbersome normalizing constant. Throughout the Chapter the focus is

thus solely on conditional composite likelihood. We limit our study to models defined

on a regular rectangular lattice of size h×w , where h stands for the height and w for

the width of the lattice, and whose Hamiltonian is of the form H(x |ψ,G )=ψTS(x)

where S(x)=
{
s1(x), . . . , sd (x)

}
is a vector of sufficient statistics. We shall remark that

this vector of sufficient statistics is a function depending on G (see Example 2.1.1)

even if it is omitted in the notation for the sake of simplicity. We restrict each A(i ) to

be of the same dimension and in particular to correspond to contiguous square blocks

of lattice points of size k ×k. In terms of the value of C in case (iii), an exhaustive

set of blocks would result in C = (h−k +1)× (w −k +1). In particular, we allow the

collection of blocks
{
A(i )

}C
i=1 to overlap with one another.

The conditional composite likelihood relies on evaluating

π
(
xA(i )

∣∣ x−A(i ),ψ,G
)
=
exp

(
ψTS

(
xA(i )

∣∣ x−A(i )
))

Z
(
ψ,G ,x−A(i )

) ,

where S
(
xA(i )

∣∣ x−A(i )
)
=
{
s1
(
xA(i )

∣∣ x−A(i )
)
, . . . , sd

(
xA(i )

∣∣ x−A(i )
)}
is the restriction of S(x)

to the subgraph defined on the set A(i ) and conditioned on the realised x−A(i ), that is

conditioned by all the lattice point of x−A(i ) connected to a lattice point of xA(i ) by an

edge of G . This can be understood in terms of induced graph.

Definition 4. The graph induced byG on the set of graphnodes A(i ), denotedΓ (G ,A(i )),

is the undirected graph whose set of edges gathers the edges of G attached to at least one

nodes in A(i ), i.e.,

ℓ
Γ(G ,A(i ))∼ j ⇐⇒ ℓ

G∼ j with ℓ ∈ A(i ) or j ∈ A(i ).

Hence, S
(
·
∣∣ x−A(i )

)
is the function defined on the graph Γ (G ,A(i )) for which the value

of nodes ℓ is set to xℓ if ℓ is not in A(i ).

Besides the normalizing constant now includes the argument x−A(i ) emphasising that

it involves a summation over all possible realisations of sub-lattices defined on the set

A(i ) conditionally to the realised x−A(i ), namely

Z
(
ψ,G ,x−A(i )

)
=
∑

x̃A(i )

exp
(
ψTS

(
x̃A(i )

∣∣ x−A(i )
))
.
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Generalised recursions for computing the normalizing constant of general factorisable

models such as the autologistic models (see Section 1.3) extends easily to allow on to

compute the latter.

Example. The autologistic model (see Section 1.1.2) is defined in terms of two sufficient

statistics,

s0(x)=
n∑

i=1
xi , and s1(x)=

∑

i
G∼ j

xi x j ,

where i
G∼ j means that lattice points i and j are connected by an edge in G . Henceforth

we assume that the lattice points have been indexed from top to bottom in each column

and where columns are ordered from left to right. For example, for a first order neigh-

bourhood model an interior point xi has neighbours {xi−h ,xi−1,xi+1,xi+h}. Along the

edges of the lattice each point has either 2 or 3 neighbours. The full-conditional of an

inner lattice point xi can be written as

π
(
xi
∣∣ x−i ,ψ,G

)
∝ exp

(
αyi +β

{
xi xi−h +xi xi−1+xi xi+1+xi xi+h

})
.

When considering conditional composite likelihood with blocks, the full-conditional

distribution of A(i ) can be written as

π
(
xA(i )

∣∣ x−A(i ),ψ,G
)
=
exp

(
αs0

(
xA(i )

)
+βs1

(
xA(i )

∣∣ x−A(i )
))

Z
(
ψ,G ,x−A(i )

) ,

where

s0
(
xA(i )

)
=

∑

j∈A(i )
x j , and

s1
(
xA(i )

∣∣ x−A(i )
)
=

∑

ℓ
Γ(G ,A(i ))∼ j

xℓx j =
∑

ℓ
G∼ j

xℓx j
(
1{ℓ ∈ A(i )}+1{ j ∈ A(i )}

)
.

In the normalizing constant, we shall note that the expression of s1 is slightly different

s1
(
x̃A(i )

∣∣ x−A(i )
)
=
∑

ℓ
G∼ j

(
x̃ℓ1

{
ℓ ∈ A(i )

}
+xℓ1

{
ℓ ∉ A(i )

})

(
x̃ j1

{
j ∈ A(i )

}
+x j1

{
j ∉ A(i )

})
.

The auto-models of Besag (1974) allow variations on the level of dependencies between

edges and a potential anisotropy can be introduced on the graph. Indeed, consider a set

of graphs
{
G1, . . . ,GM

}
with a single parameter on the edges. Each graph of dependency
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2.1. Bayesian inference using composite likelihoods

Gm induces a summary statistic

sm(x)=
n∑

j=1

∑

i
Gm∼ j

xi x j .

For instance, one can consider an anisotropic configuration of a first order neighbour-

hoodmodel: that is edges of G1 are all the vertical edges of the lattice and edges of G2 are

all the horizontal ones. Then an interior point xi has neighbours {xi−1,xi+1} according

to G1 and {xi−m ,xi+m} according to G2. This allows to set an interaction strength that

differs according to the direction (see Table 1.1).

2.1.2 Conditional composite posterior distribution

Turning back to the issue of computing the posterior distribution (1.30), our proposal

is to replace the true likelihood π(· |ψ,G ) with a conditional composite likelihood,

leading us to concentrate on the approximated posterior distribution, referred to as

(calibrated) composite posterior distribution,

πcalCL

(
ψ
∣∣ x,G

)
∝ f calCL

(
x
∣∣ψ,G

)
π
(
ψ
)
. (2.3)

For the sake of clarity, in the special case of wi = 1, we refer to the above as non-

calibrated composite posterior distribution and we denote it

πCL
(
ψ
∣∣ x,G

)
∝ fCL

(
x
∣∣ψ,G

)
π
(
ψ
)
. (2.4)

Currently, there is very little literature on the use of composite likelihoods in the

Bayesian setting, although Pauli et al. (2011) and Ribatet et al. (2012) present a dis-

cussion on the use of marginal composite likelihoods in the Bayesian setting. From

the standpoint of conditional composite likelihood, mention the work of Friel (2012)

subsequent to a study conducted by Okabayashi et al. (2011) although from amaxi-

mum likelihood perspective. Friel (2012) is interested in the formulation of posterior

approximations for the autologistic model. His proposal is to work with a product of

conditional distribution of blocks of the lattice for which the normalizing constant

can be computed using the recursion of Section 1.3. A similar approach has also been

lead by Friel et al. (2009) in the context of hiddenMarkov random field.

In his related work, Friel (2012) has examined composite likelihood for various block

sizes but only for wi = 1. Whilst the approximation is easy to compute, we highlight

here the empirical observation that non-calibrated composite likelihood leads to a

composite posterior distribution with substantially lower variability than the true
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Figure 2.1: Posterior parameter distribution (plain), non-calibrated composite posterior distri-
bution (dashed) and composite posterior distribution (green) with a uniform prior
for a realization of the Ising model on a 16×16 lattice near the phase transition.
The conditional composite likelihood is computed for an exhaustive set of 4×4
blocks.

posterior distribution, leading to overly precise posterior parameters, see Figure 2.1.

The main contribution of this Chapter is to present an approach to tune the weights

wi in order to correct the posterior distribution resulting from using a misspecified

likelihood function. In our context, there exists no particular reason to weight each

block differently. Consequently we assume that each block has the same weight and

we denote it w , so that

πcalCL

(
ψ
∣∣ x,G

)
∝
{

C∏

i=1
π
(
xA(i )

∣∣ xB(i ),ψ,G
)
}w

π
(
ψ
)
.

2.1.3 Estimation algorithm of the Maximum a posteriori

Our proposal to adjust the non-calibrated composite posterior distribution relies on

matching conditions about the posterior mode so that the estimation of maximum

a posteriori is paramount to the approach. For this purpose, we propose to use a

stochastic gradient algorithm (see also Section 1.5.1) to address the issue of estimating

ψ̂MAP = argmax
ψ

π
(
ψ
∣∣ x,G

)
and ψ̂CL = argmax

ψ
πCL

(
ψ
∣∣ x,G

)
.
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2.1. Bayesian inference using composite likelihoods

Using (1.19) and (1.20) as a starting point, we canwrite the gradient of the log-posterior

forψ as

∇ logπ
(
ψ
∣∣ x,G

)
= S(x)−Eψ {S (X)}+∇ logπ(ψ), (2.5)

where Eψ {S(X)} denotes the expected value of S(X) with respect to π(· |ψ,G ), and the

Hessian matrix of the log-posterior forψ,

∇2 logπ
(
ψ
∣∣ x,G

)
=−Varψ {S(X)}+∇2 logπ(ψ), (2.6)

where Varψ {S(X)} denotes the covariance matrix of S(X) with respect to π(· | ψ,G ).
Addressing the issue of estimation of ψ̂MAP, we note generally from equation (2.6) that

logπ(· | x,G ) is not a concave function and one can ask if the assumption of a single

mode is valid. The Hessian of the log-likelihood is a semi-negative matrix for anyψ,

namely −Varψ {S(X)}, and so the log-likelihood is uni-modal. A reasonable choice of

prior, for example with ∇2 logπ(ψ) a semi-negative Hessian matrix for anyψ, will thus

lead to a uni-modal, or at least locally concave, posterior distribution.

Similar to (2.5) and (2.6), one can express the gradient and Hessian of the composite

log-posterior logπCL(· | x,G ) in terms of moments of statistics, namely

∇ logπCL
(
ψ
∣∣ x,G

)
=

C∑

i=1
S
(
xA(i )

∣∣ x−A(i )
)
−Eψ

{
S
(
XA(i )

∣∣ x−A(i )
)}
+∇ logπ(ψ),

∇2 logπCL
(
ψ
∣∣ x,G

)
=−

C∑

i=1
Varψ

{
S
(
XA(i )

∣∣ x−A(i )
)}
+∇2 logπ(ψ).

Hence conclusion towards unicity of the maximum and uni-modality of the distribu-

tion remains the same for the composite posterior distribution πCL(· | x,G ).

Equation (2.5) suggests that it is possible to estimate the gradient of the posterior for

ψ using Monte Carlo draws from π(· | ψ,G ) (see Section 1.2). On this basis, in the
frequentist paradigm, Younes (1988) sets a stochastic gradient algorithm to estimate

the maximum likelihood of Markov random fields with finite number of states. At

each step t of the algorithm the expectation Eψ(t ) {S(X)} is replaced by the value of the

statistic function for a realization of the random field x(t ). The update of parameters

at iteration t of the gradient descent can thus be written as

ψ(t+1) =ψ(t )+
δ

t +1
{
S(x)−S

(
x(t )

)
+∇ logπ

(
ψ(t ))} ,

where the step size depends on a threshold δ Younes (1988) demonstrated the conver-

gence of the algorithm for small enough δ. In practical terms the theoretical value of
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δ yields a step size too small to ensure the convergence to be achieved in reasonable

amount of time. Instead following a remark of Younes (1988), we consider a step of

the form 1
t+n0 . The integer n0 controls the probability of non-convergence and shall

be chosen large enough. Indeed care must be taken with the optimization algorithm

especially when applied to the composite posterior distribution since it is typically

very sharp around the mode, as shown in Figure 2.1. Hence for a too large step size,

algorithm oscillates a long time before converging. To avoid this phenomenon one

usually sets for example n0 to 1000. Nevertheless using solely one realization per

iteration is somewhat crude especially if the statistic S
(
X(t )

)
has a great variability. We

advocate in favour of the gradient descent based on aMonte-Carlo estimator of the

expectation, namely

ψ(t+1) =ψ(t )+
1

t +n0

{
S(x)−

1

N

N∑

j=1
S
(
x(t )
j

)
+∇ logπ

(
ψ(t ))

}
,

where x(t )
j
are drawn from π(· |ψ(t ),G ).

In our experiments we have found that using a Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm which is based on a Hessian matrix approximation using rank-

one updates calculated from approximate gradient evaluations, can provide good

performance but lack theoretical support. The scheme can be described as

ψ(t+1) =ψ(t )+δ(t )B (t )

{
S(x)−

1

N

N∑

j=1
S
(
x(t )
j

)
+∇ logπ

(
ψ(t ))

}
,

where δ(t ) is the step size and B (t ) is a matrix approximating the Hessian. Adding the

information contained in the Hessian can speed up the convergence of the algorithm

but requires a careful choice of the step size δ(t ) otherwise the algorithm might be

numerically unstable. One generally uses golden section search or line search in the

direction

B (t )

{
S(x)−

1

N

N∑

j=1
S
(
x(t )
j

)
+∇ logπ

(
ψ(t ))

}

to find an acceptable step size. This solution is obviously not suitable to our context

since it requires to evaluate several times the function and the gradient of the function

to maximize. Our strategy is to use the information contained in the prior π(ψ) to

define a convex compact set D, namely a subset of the parameter space such that

P(ψ ∈D)≥α, with α in ]0,1]. The step size is then design so that updates remain inD,
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2.1. Bayesian inference using composite likelihoods

that is given a norm ‖ ·‖ on Rd we choose δ(t ) such that
∥∥∥∥∥δ

(t )B (t )

{
S(x)−

1

N

N∑

j=1
S
(
x(t )
j

)
+∇ logπ

(
ψ(t ))

}∥∥∥∥∥≤max{‖a−b‖, (a,b) ∈D} .

The primary drawback of this stochastic gradient algorithm lies in the Monte Carlo

draws. When applying this algorithm to composite posterior distribution, it is possible

to use recursions of Section 1.3 as outlined in Friel and Rue (2007) to draw exactly from

π(xA(i ) | x−A(i ),ψ,G ) instead. Finally estimating ψ̂MAP using a random initialization

point in gradient algorithm is inefficient. Indeed, estimating Eψ {S(X)} is the most

cumbersome part of the algorithm since it involves sampler such as the Gibbs sampler

or the Swendsen-Wang algorithm and should be done as little as possible. Despite that

ψ̂CL differs from ψ̂MAP it is usually close and turns out to yield a good initialization to

the optimization algorithm.

2.1.4 On the asymptotic theory for composite likelihood inference

The calibration question of the composite likelihood has long-standing antecedents

in the frequentist paradigm (Varin et al., 2011, Section 2.3 and the references therein).

In this context, the adjustments are required to recover the asymptotic chi-squared

distribution of the likelihood ratio statistic. To precise this statement, consider r

independent and identically distributed observations x(1), . . . ,x(r ) from the statistical

modelπ(· |ψ,G ) and denote d = dim(Ψ) the dimension of the parameter space. Under

regularity conditions, it follows by a simple Taylor series expansion that

W (ψ)= 2
r∑

j=1

{
logπ

(
x( j )

∣∣ψ̂MLE,G
)
− logπ

(
x( j )

∣∣ψ,G
)}

−→
r→+∞

χ2d ,

where ψ̂MLE = argmaxψ
∑r

j=1 logπ(x
( j ) |ψ,G ) is the maximum likelihood estimator

(Wilks, 1938). This result is slightly modified for misspecified models, that is when the

likelihood is replaced with non-calibrated composite likelihoods (2.1) in the above.

Within that framework, the score function is replaced with the composite score func-

tion which is the linear combination of the scores associated to each marginal or

conditional densities of (2.1)

∇ log fCL
(
x
∣∣ψ,G

)
=

C∑

i=1
∇ logπ

(
xA(i )

∣∣ xB(i ),ψ,G
)
.

With respect to this score function, denote,

61



Chapter 2. Adjustment of posterior parameter distribution approximations

• ψ̂MCLE the maximum composite likelihood estimator, that is the solution of the

composite score function
∑r

j=1∇ log fCL(x
( j ) |ψ,G ),

• H (ψ) the sensitivitymatrix defined as theHessian of the composite log-likelihood

log f calCL (· |ψ,G ) with respect to the Gibbs distribution π(· |ψ,G ):

H(ψ)=Eψ

{
−∇2 log fCL

(
X
∣∣ψ,G

)}

=−
∫

X

∇2 log fCL
(
x
∣∣ψ,G

)
π
(
x
∣∣ψ,G

)
µ(dx),

• J(ψ) the variability matrix defined as the covariance matrix of the composite

score function with respect to the Gibbs distribution π(· |ψ,G ):

J (ψ)=Varψ
{
∇ log fCL

(
X
∣∣ψ,G

)}
.

The asymptotic distribution of the composite likelihood ratio statistic is a linear

combination of independent chi-squared variates Z1, . . . ,Zd (e.g., Varin et al., 2011),

namely

2
r∑

j=1

{
log fCL

(
x( j )

∣∣ψ̂MCLE,G
)
− log fCL

(
x( j )

∣∣ψ,G
)}

−→
r→+∞

d∑

j=1
λ j (ψ)Z j ,

where λ1(ψ), . . . ,λd (ψ) are the eigenvalues of H(ψ)
−1 J (ψ). The non-standard asymp-

totic null distribution is due to that the maximum composite likelihood estimator

is consistant but has an asymptotic variance larger than the maximum likelihood

estimator. Indeed, under regularity conditions, the maximum composite likelihood

estimator is asymptocally normally distributed,

�
r
(
ψ̂MCLE−ψ

)
−→

r→+∞
Nd

(
0,H−1(ψ)J(ψ)H(ψ)−1

)
,

whereNd (·, ·) denotes the d-dimensional normal distribution (e.g., Kent, 1982, Lind-

say, 1988). In the context of single time series or random field, it may be interesting to

have asymptotic results when the number of replicates is fixed (usually r = 1) and the
observation size n grows to infinity (e.g., Geman and Graffigne, 1986, Cox and Reid,

2004). The asymptotic properties depend on ergodicity conditions and r is replaced

by n in the above.

Pauli et al. (2011) and Ribatet et al. (2012) independently suggest to use adjusted

composite likelihood functions to define a composite posterior distribution (2.3) and

establish the asymptotic normality of the latter. The corrections used are of two

kinds. The first is a moment matching solution (Geys et al., 2001) which ensures
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2.2. Conditional composite likelihood adjustments

that the expectation of the adjusted composite likelihood ratio converges toward

the expectation of the chi-squared distribution. The second is a scaling solution

(Chandler and Bate, 2007) that recovers the right asymptotic null distribution by

modifying the curvature of the composite likelihood. Both modifications rely on

the evaluation of the sensitivity matrix H(ψ) and the variability matrix J(ψ) but do

not include any information about the true likelihood or the prior. In our context, a

calibration based on asymptotic efficiency is questionable since it is possible to get

punctual estimates of the gradient and the Hessian of the log-posterior distribution

on the basis of equations (1.19) and (1.20).

2.2 Conditional composite likelihood adjustments

Our proposal is to make a shift from asymptotical behaviour to local matching condi-

tions to calibrate the weight w . The following Sections provide modifications that aim

at correcting themode and the variance of a sample drawn from a composite posterior

distribution by adjusting the mode and the curvature at the mode of the latter. The

idea behind has appeared in other contexts such as Gaussian Markov random fields

(e.g., Rue et al., 2009).

2.2.1 Magnitude adjustment

The general approach we propose to adjust the covariance of the composite posterior

is to temper the conditional composite likelihood with some weight w in order to

modify its curvature around the mode. We remark that the curvature of a scalar field

at its maximum is directly linked to the Hessian matrix. Based on that observation,

our proposal is to choose w such that

∇2 logπ
(
ψ̂MAP

∣∣ x,G
)
=w∇2 logπCL

(
ψ̂CL

∣∣ x,G
)
, (2.7)

where both ψ̂MAP and ψ̂CL are computed with the stochastic gradient algorithm of

Section 2.1.3.

For a homogeneous and isotropic Markov random field without potential on single-

tons such as the Ising model, the model parameter is scalar (ψ≡β ∈R) which yields a
simple expression for w , namely

w =
Varψ̂MAP {S (X)}−∇

2 logπ
(
ψ̂MAP

)

∑C
i=1Varψ̂CL

{
S
(
XA(i )

∣∣ x−A(i )
)}
−∇2 logπ

(
ψ̂CL

) . (2.8)
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Chapter 2. Adjustment of posterior parameter distribution approximations

Table 2.1: Weight options for a magnitude adjustment in presence of anisotropy or potential
on singletons (ψ ∈Rd )

Weight Definition

w (1) tr{∇2 logπ(ψ̂MAP | x,G )}
tr{∇2 logπCL(ψ̂CL | x,G )}

w (2) 1
d

∑d
j=1

Varψ̂MAP

{
s j (X)

}
−{∇2 logπ(ψ̂MAP)} j j∑C

i=1Varψ̂CL

{
s j (XA(i ) | x−A(i ))

}
−{∇2 logπ(ψ̂CL)} j j

w (3) 1
d
tr
[
∇2 logπ

(
ψ̂MAP

∣∣ x,G
){
∇2 logπCL

(
ψ̂CL

∣∣ x,G
)}−1]

w (4)
[
det{∇2 logπ(ψ̂MAP | x,G )}
det{∇2 logπCL(ψ̂CL | x,G )}

] 1
d

w (5) ‖∇2 logπ(ψ̂MAP | x,G )‖F
‖∇2 logπCL(ψ̂CL | x,G )‖F , where ‖ ·‖F is the Frobenius norm

However in presence of anisotropy or potential on singletons, the system of equations

2.7 is overdetermined such that a unique solution does not exist in general. Thus,

we have explored different necessary conditions for fulfilling the scalar constraint

between the two Hessian matrices (see Table 2.1). The weights w (1) and w (2) neglect

the covariance between the summary statistics by including only the information

contained in the diagonal of each matrix whereas weights w (3), w (4) and w (5) take

advantage of these covariances.

2.2.2 Curvature adjustment

The magnitude adjustment aims at scaling the composite posterior distribution down

to the appropriate magnitude by performing a non-linear transformation of vertical

axis. The weight w similarly affects each direction of space parameters leaving the

overall geometry unchanged. The latter does not take into account a possible modi-

fication of the correlation between the variables induced by the use of a composite

likelihood. We expect this phenomenon to be particularly important when dealing

with models where there is a potential on singletons such as the autologistic model.

Indeed estimations of the abundance parameterα and interaction parameterβ do not

suffer from the same level of approximation relating to the independence assumption

between blocks. Thus we shouldmove from the general form (2.2) with a scalar weight

on blocks to one involving a matrix of weights.
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2.2. Conditional composite likelihood adjustments

We follow a suggestion of Chandler and Bate (2007) who, in the context of hypothesis

testing, modify the curvature of the composite likelihood around its global maximum

by

f calCL

(
x
∣∣ψ,G

)
= fCL

(
x
∣∣ ψ̂MCLE+W (ψ− ψ̂MCLE)

)
,

for some constant d ×d matrixW . While the substitution keeps the samemaximum,

it deforms the geometry of the parameter space through the matrixW by stretching

linearly the horizontal axis. Hereafter, the resulting composite posterior is referred to

as

πcalCL

(
ψ
∣∣ x,G ,W

)
∝ fCL

(
x
∣∣ ψ̂CL+W (ψ− ψ̂CL)

)
π
(
ψ
)
.

Chandler and Bate (2007) set up thematrixW such that the composite likelihood ratio

has an asymptotic chi-squared distribution, which leads to chooseW such that

W TH
(
ψ̂MCLE

)
W =H

(
ψ̂MCLE

)
J
(
ψ̂MCLE

)−1
H
(
ψ̂MCLE

)
.

We rather focus on the covariance matrix at the estimated maximum a posteriori.

Indeed, we follow the approach introduced in Section 2.2.1 and we chooseW such

that,

∇2 logπ
(
ψ
∣∣ x,G

)∣∣
ψ=ψ̂MAP

= ∇2 logπCL
(
ψ̂CL+W (ψ− ψ̂CL)

)∣∣
ψ=ψ̂CL

which is equivalent to

∇2 logπ
(
ψ̂MAP

∣∣ x,G
)
=W T ∇2 logπCL

(
ψ̂CL

)
W. (2.9)

The choice ofW is not unique due to the absence of uniqueness of the square root

of a matrix. This problem is also encountered by Ribatet et al. (2012) who suggest

to take any semi-definite negative matrix. In what follows, we assume that W is

a lower triangular matrix. In practice we have observe that any lower triangular

matrix solution yield almost equivalent performances. We would like to draw reader’s

attention to the fact that the choice ofW deserves to be further probed.

2.2.3 Mode adjustment

Once the composite posterior distribution adjusted, it remains the issue of what we

could call a modemisspecification. A drawback with composite posterior distribution

in most cases is the bias with the maximum a posteriori ψ̂MAP. In this Section, πcalCL
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Chapter 2. Adjustment of posterior parameter distribution approximations

stands for any of the composite posterior distribution resulting from amagnitude or

curvature adjustment unless otherwise specified. The present modification ensures

that the posterior and the composite posterior have the samemode. Under reason-

able assumptions on the prior, these distributions have a unique maximum and the

adjustment is simply the substitution

π cal
CL

(
ψ
∣∣ x,G

)
=πcalCL

(
ψ− ψ̂MAP+ ψ̂cal

∣∣ x,G
)
, (2.10)

ψ̂cal is the maximum a posteriori of the adjusted composite posterior distribution,

namely

ψ̂cal = argmax
ψ

πcalCL

(
ψ
∣∣ x,G

)
.

The value of ψ̂MAP being estimated upstream the computation of w , we solely have to

compute ψ̂cal. This is done for a low computational cost by once again applying the

stochatic gradient algorithm of Section 2.1.3 to logπcalCL (· | x,G ) with ψ̂CL as an initial

guess.

This new call to the stochastic algorithm is explained by the fact that πCL (· | x,G ) and

πcalCL

(
ψ
∣∣ x,G

)
do not share the same maximum a posteriori. Indeed the magnitude

and the curvature adjustments involve the prior on parameterψ in their construction.

Hence, once we plug the weight in πcalCL the prior induces a bias between ψ̂CL and ψ̂cal

aside from special cases where the maximum a posteriori ψ̂CL is a local extremum

for the prior. As an example, concentrate on the magnitude adjustment even though

the argument stays in essence the same for the curvature adjustment. The composite

posterior distribution can be written as

πcalCL

(
ψ
∣∣ x,G

)
∝ fCL

(
x
∣∣ψ,G

)w
π(ψ)

∝πCL
(
ψ
∣∣ x,G

)w
π(ψ)1−w .

It follows that

∇ logπcalCL

(
ψ̂CL

∣∣ x,G
)
= (1−w)∇ logπ

(
ψ̂CL

)
,

which is generally non-zero.

Note there is a difference between adjusting the composite likelihood and the com-

posite posterior difference. We chose to correct the composite posterior distribution

instead of plugging in an adjusted composite likelihood since the latter possibility

does not guarantee that the resulting composite posterior and posterior distributions

would have themaximum a posteriori. Even if the techniques are the same, in addition
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of the maximum composite likelihood estimator ψ̂MCLE and the maximum likelihood

estimator ψ̂MLE, one has to estimate ψ̂cal and ψ̂MAP which is the most cumbersome

part of the procedure.

2.3 Examples

In this numerical part of the paper, we focus onmodels defined on a 16×16 lattice and
we use exhaustively all 4×4 blocks. For the lattice of this dimension the recursions

proposed by Friel and Rue (2007) can be used to compute exactly the normalizing

constants Z (ψ,G ), Z (θ,G ,xA(i )) and to draw exactly from the distribution π(· |ψ,G )
or from the full-conditional distribution of blocks A(i ), namely π(· | x−A(i ),ψ,G ). This

exact computation of the posterior serves as a ground truth against which to compare

with the posterior estimates ofψ using the various composite likelihood estimators.

Computation was carried out on a desktop PC with six 3.47Ghz processors and with

8Gb of memory. Computing the normalizing constant of each block took 0.0004

second of CPU time. One iteration of the BFGS algorithm took 0.09 seconds to esti-

mate the MAP of the composite likelihood and 1 second to estimate the MAP of true

likelihood. The weight calibration for one dataset took approximately four minutes.

Note that for more realistic situations involving larger lattices, one requires a sampler

to draw from the full likelihood such as the Swendsen-Wang algorithm (Swendsen

andWang, 1987), however the computational cost of using this algorithm increases

dramatically with the size of the lattice. One possible alternative is the slice sampler

of Mira et al. (2001) that provides exact simulations of Ising models.

In all experiments, we simulated 100 realisations from the model and we placed

uniform priors onψ. For each realisation, we used the BFGS algorithm described in

Section 2.2.3 with an adhoc stopping condition to get the estimators ψ̂MAP and ψ̂CL.

One iteration of the algorithmwas based on aMonte Carlo estimator of eitherEψ {S(X)}

or Eψ

{
S(XA(i ) | x−A(i ),ψ,G )

}
calculated from 100 exact draws whereas theMonte Carlo

estimators of the covariance matrix Varψ̂MAP {S(X)} and Varψ̂CL

{
S(XA(i ) | x−A(i ))

}
used

to compute the different weights were based on 50000 exact draws.

When the parameter space lies in R2, system of equations can be easily solved and

the curvature adjustment was considered for all possible lower triangular matrices

solutions. For the examples below we have four possible choices forW . Denote

W =
(
w11 0

w21 w22

)

a solution of (2.9). Then possible solutions
{
W (1),W (2),W (3),W (4)

}
are set such that
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Figure 2.2: First experiment results. (a) Posterior parameter distribution (plain), non-
calibrated composite posterior parameter distribution (dashed) and composite
posterior distribution (green) of a first-order Ising model. (b) Boxplot displaying
the ratio of the variance of the composite posterior parameter by the variance of
the posterior parameter for 100 realisations of a first-order Ising model.

• det
(
W (1)

)
< 0 and w21 > 0,

• det
(
W (2)

)
> 0 and w21 > 0,

• det
(
W (3)

)
< 0 and w21 < 0,

• det
(
W (4)

)
> 0 and w21 < 0.

As a mean to assess the performance of the various adjustments, we propose to

compare the posterior covariance matrices for ψ. The latter are computed using

numerical integration methods which are detailed below. Denote VarCL
{
ψ
}
and

Var
{
ψ
}
the variance of the composite posterior parameter and the variance of the

posterior parameter respectively. In particular, we evaluate the relative mean square

error

RMSE=E
[∥∥1−VarCL(ψ)Var−1(ψ)

∥∥2
F

]
,

where ‖ · ‖F it the Frobenius norm. When it is relevant, we also report the expected

Kullback-Leibler divergence between the composite posterior and true posterior

distributions

EKLD=E
{
KL

(
πcalCL ,π(· |X,G )

)}
.

First experiment We considered a first-order Ising model with a single interaction

parameter ψ≡ β= 0.4, which is close to the critical phase transition beyond which
all realised lattices takes either value +1 or -1. This parameter setting is the most
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challenging for the Isingmodel, since realised lattices exhibit strong spatial correlation

around this parameter value. Using a fine grid of {ψk } values, the right hand side of:

π
(
ψk

∣∣ x,G
)
∝π

(
x
∣∣ψk ,G

)
π
(
ψk

)
, k = 1, . . . ,N ,

can be evaluated exactly. Summing up the right hand side – using the trapezoidal

rule – yields an estimate of the evidence, π(x), which is the normalizing constant for

the expression above and which in turn can be used to give a very precise estimate

of π(ψk | x,G ). The posterior variance of ψ and the Kullback-Leibler divergence is

estimated with trapezoidal rule on the same grid.

The plot so obtained for the posterior distribution and composite posterior distribu-

tion are given by Figure 2.2(a). On this example it should be clear that using an non-

calibrated conditional composite likelihood leads to considerably underestimated

posterior variances. But once we perform the mode adjustment and the magnitude

adjustment, this provides a very good approximation of the true posterior. In Figure

2.2(b) we display the ratio of the variance of the composite posterior parameter by

the variance of the posterior parameter based on nobs = 100 realisations of a first-

order Ising model. In view of these results there is no question that the magnitude

adjustment (2.8) provides an efficient correction of the variance. Table 2.2 fills in these

empirical results through evaluation of the relative mean square error (RMSE) and the

expected Kullback-Leibler divergence (EKLD) between the composite posterior and

true posterior distributions.

Table 2.2: Evaluation of the relative mean square error (RMSE) and the expected KL-
divergence (EKLD) between the approximated posterior and true posterior dis-
tributions for 100 simulations of a first-order Ising model in the first experiment.

Composite posterior distribution RMSE EKLD

πCL
(
ψ
∣∣ x,G

)
0.870 0.337

π cal
CL

(
ψ
∣∣ x,G

)
0.021 0.010

Second experiment We were interested in an anisotropic configuration of a first-

order Ising model. We set ψ = (β1,β2) = (0.3,0.5) (see Table 1.1). The numerical

integration is performed using an unstructured grid of triangles on the domain of the

prior. Overall, the adjustments perform very well and as for the isotropic case, the

mode and the magnitude adjustment allows us to build an accurate approximation

of the posterior. Figure 2.3(a) and Figure 2.3(b) represent a comparison between

the posterior distribution and the composite posterior distribution. In Figure 2.3(c)

we display boxplots of the ratio 1�
2
‖VarCL(ψ)Var−1(ψ)‖F, where ‖ · ‖F denotes the
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Figure 2.3: Second experiment results. (a) Posterior parameter distribution (grey) and non-
calibrated composite posterior parameter distribution (pink) for a first-order
anisotropic Isingmodel. (b) Posterior parameter distribution (grey) and composite
posterior parameter distribution (green) with mode andmagnitude adjustments
(w =w (2)). (c) Boxplots displaying 1�

2
‖VarCL(θ)Var−1(θ)‖F for 100 realisations of

an anisotropic first-order Ising model.

Frobenius norm, for 100 realisations of an anisotropic first-order Ising model. The

different weight options are almost equivalent in term of variance correction even if it

seems that the Frobenius norm (weight w (5)) leads to somewhat underestimate the

posterior variance.

These observations can be further discussed with Table 2.3 that presents the relative

mean square error and the average KL-divergence between the composite posterior

distribution and the posterior distribution for 100 realisations of themodel. As regards

the magnitude adjustment, whilst the RMSE is little lower for weights w (1) and w (2),

the performance of the composite posterior distributions are significantly the same in

term of the Kullback-Leibler divergence. By contrast, we can observe that the curva-
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Table 2.3: Evaluation of the relative mean square error (RMSE) the expected KL-divergence
(EKLD) between the composite posterior distribution and true posterior distribu-
tion for 100 simulations of an anisotropic first-order Ising model.

Composite posterior distribution RMSE EKLD

πCL
(
ψ
∣∣ x,G

)
1.28 1.68

π cal
CL

(
ψ
∣∣ x,G

)
with w =w (1) 0.269 0.044

π cal
CL

(
ψ
∣∣ x,G

)
with w =w (2) 0.265 0.042

π cal
CL

(
ψ
∣∣ x,G

)
with w =w (3) 0.272 0.042

π cal
CL

(
ψ
∣∣ x,G

)
with w =w (4) 0.285 0.043

π cal
CL

(
ψ
∣∣ x,G

)
with w =w (5) 0.283 0.047

π cal
CL

(
ψ
∣∣ x,G ,W (4)

)
0.266 0.038

ture adjusment for the same RMSE, yields better result regarding the Kullback-Leibler

divergence. The use of the curvature adjustment allows to reduce the importance of

local dissimilarities and to capture more of the distribution tails.

Third experiment Here we focused on an autologistic model with a first-order de-

pendence structure. The abundance parameter was set toα= 0.05 and the interaction
parameter to β = 0.4. The different implementations settings are exactly the same

as for the second experiment. This example illustrates how the use of composite

posterior distribution can induce a modification of the geometry of the distribution

as shown in Figure 2.4(a).

Indeed in addition to the mode and variance misspecifications the conditional com-

posite likelihood also changes the correlation between the variables. It should be

evident that a magnitude adjustment would not be fruitful here since it would not

Table 2.4: Evaluation of the relative mean square error (RMSE) for 100 simulations of a first-
order autologistic model.

Composite posterior distribution RMSE

πCL
(
ψ
∣∣ x,G

)
1.19

π cal
CL

(
ψ
∣∣ x,G ,W (1)

)
0.86

π cal
CL

(
ψ
∣∣ x,G ,W (2)

)
0.89

π cal
CL

(
ψ
∣∣ x,G ,W (3)

)
0.77

π cal
CL

(
ψ
∣∣ x,G ,W (4)

)
0.69
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Figure 2.4: Third experiment results. (a) Posterior parameter distribution (grey) and non-
calibrated composite posterior parameter distribution (pink) for a first-order autol-
ogistic model. (b) Posterior parameter distribution (grey) and composite posterior
parameter distribution (green) with mode and curvature adjustments (W =W (4)).
(c) Boxplots displaying 1�

2
‖VarCL(ψ)Var−1(ψ)‖F for 100 realisations of a first-order

autologistic model.

affect the correlation. Instead the curvature adjustment manages to do so and thus

yields a good approximation of the posterior, see Figure 2.4(b). Overall adjusted com-

posite posterior distribution perform better than the somewhat crude non-calibrated

surrogate. We observe on Figure 2.4(c) a trend to overestimate the posterior variance

of model parameter. This observation comes from we do not detect posterior tails

(Figure 2.4(b)). In addition to the latter observations Table 2.4 shows the efficiency

in terms of the RMSE and concludes that the best performances are obtained with

W =W (4).
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3 ABC model choice for hidden Gibbs

random fields

Selecting between different dependency structures of hiddenMarkov random field

can be very challenging, due to the intractable normalizing constant in the likelihood.

In this chapter, we answer this question with approximate Bayesian computation

(ABC, Tavaré et al., 1997, Pritchard et al., 1999, Marin et al., 2012, Baragatti and Pudlo,

2014) which provides a model choice method in the Bayesian paradigm. This comes

after the work of Grelaud et al. (2009) who exhibited sufficient statistics on directly

observed Gibbs random fields. As pointed in Section 1.8.2 this property is a peculiarity

of models whose potential linearly depends on parameters and the sufficiency falls in

the hidden case. This raises major difficulties that have been especially highlighted for

model choice (Robert et al., 2011, Didelot et al., 2011). Beyond the seldom situations

where sufficient statistics exist and are explicitly known, Marin et al. (2014) provide

conditions which ensure the consistency of ABCmodel choice. The present work has

thus to answer the absence of available sufficient statistics for hidden Potts fields as

well as the difficulty (if not the impossibility) to check the above theoretical conditions

in practice.

Recent articles have proposed automatic schemes to construct theses statistics (rarely

from scratch but based on a large set of candidates) for Bayesian parameter inference

and are meticulously reviewed by Blum et al. (2013) who compare their performances

in concrete examples. But very few has been accomplished in the context of ABC

model choice apart from the work of Prangle et al. (2014). The statistics S(y) re-

constructed by Prangle et al. (2014) have good theoretical properties (those are the

posterior probabilities of the models in competition) but are poorly approximated

with a pilot ABC run (Robert et al., 2011), which is also time consuming.

We propose to complement the set with geometric summary statistics. The general

approach to construct these intuitive statistics relies on a clustering analysis of the

sites based on the observed colors and plausible latent graphs.
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Chapter 3. ABC model choice for hidden Gibbs random fields

The Chapter is organized as follows: Section 3.1 presents ABC model choice as a k-

nearest neighbor classifier, and defines a local error rate which is the first contribution

of the Chapter. As a byproduct we provide an ABC algorithm based on the local error

to select automatically the dimension of the summary statistics without distorting

the model selection. The second contribution is the introduction of a general and

intuitive approach to produce geometric summary statistics for hidden Potts model

in Section 3.4. We end the Chapter with numerical results in that framework.

3.1 Local error rates and adaptive ABC model choice

Whendealingwithmodelswhose likelihood cannot be computed analytically, Bayesian

model choice becomes challenging since the evidence of each model writes as the in-

tegral of the likelihood over the prior distribution of the model parameter (see Section

1.8.1). ABC provides a method to escape from the intractability problem and relies

onmany simulated datasets from eachmodel either to learn the model that fits the

observed data yobs or to approximate the posterior probabilities. We refer the reader

to Section 1.8.2 and to reviews on ABC (Marin et al., 2012, Baragatti and Pudlo, 2014)

to get a wider presentation.

3.1.1 Background on Approximate Bayesian computation for model

choice

Recall the framework of Bayesianmodel selection introduced in Section 1.8.1. Assume

we are given a setM =
{
m : 1, . . . ,M

}
of stochastic models with respective parameter

spacesΘm embedded into Euclidean spaces of various dimensions. The joint Bayesian

distribution sets

(i) a prior on the model spaceM , π(1), . . . ,π(M),

(ii) for each modelm, a prior on its parameter spaceΘm , whose density is πm (θm)

and

(iii) the likelihood of the data Ywithin each model, namely πm

(
y
∣∣ θm

)
.

The evidence of modelm is then defined as

e
(
y
∣∣m

)
=
∫

πm

(
y
∣∣ θm

)
πm (θm)dθm .
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3.1. Local error rates and adaptive ABC model choice

and the posterior probability of modelm as

π
(
m
∣∣ y
)
=

π(m)e
(
y
∣∣m

)
∑

m′ π(m′)e
(
y
∣∣m′) . (3.1)

When the goal of the Bayesian analysis is the selection of the model that best fits the

observed data yobs, it is performed through the maximum a posteriori (MAP) defined

by

m̂MAP

(
yobs

)
= argmax

m
π
(
m
∣∣∣ yobs

)
. (3.2)

The latter can be seen as a classification problem predicting the model number given

the observation of y. From this standpoint, m̂MAP is the Bayes classifier, well known

to minimize the 0-1 loss (Devroye et al., 1996). One might argue that m̂MAP is an

estimator defined as the mode of the posterior probabilities which form the density of

the posterior with respect to the countingmeasure. But the countingmeasure, namely

δ1+·· ·+δM , is a canonical reference measure, since it is invariant to any permutation

of
{
1, . . . ,M

}
whereas no such canonical reference measure (invariant to one-to-one

transformation) exists on compact subset of the real line. Thus (3.2) does not suffer

from the drawbacks of posterior mode estimators (Druilhet andMarin, 2007).

To approximate m̂MAP, ABC starts by simulating numerous triplets (m,θm ,y) from

the joint Bayesian model. Afterwards, the algorithmmimics the Bayes classifier (3.2):

it approximates the posterior probabilities by the frequency of each model number

associated with simulated y’s in a neighborhood of yobs. If required, we can eventually

predict the best model with themost frequent model in the neighborhood, or, in other

words, take the final decision by plugging in (3.2) the approximations of the posterior

probabilities.

If directly applied, this first, naive algorithm faces the curse of dimensionality, as

simulated datasets y can be complex objects and lie in a space of high dimension

(e.g., numerical images). Indeed, finding a simulated dataset in the vicinity of yobs is

almost impossible when the ambient dimension is high. The ABC algorithm performs

therefore a (non linear) projection of the observed and simulated datasets onto some

Euclidean space of reasonable dimension via a function S, composed of summary

statistics. Moreover, due to obvious reasons regarding computer memory, instead of

keeping track of the whole simulated datasets, one commonly saves only the simu-

lated vectors of summary statistics, which leads to a table composed of iid replicates{
m,θm ,S(y)

}
, often called the reference table in the ABC literature, see Algorithm 9.
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Algorithm 9: Simulation of the ABC reference table

Output: A reference table of size nREF

for j ← 1 to nREF do

draw m from the prior π;
draw θ from the prior πm ;
draw y from the likelihood πm (· | θ);
compute S(y);

save
{
m( j ),θ( j ),S

(
y( j )

)}
←
{
m,θ,S(y)

}
;

end

return the table of
{
m( j ),θ( j ),S

(
y( j )

)}
, j = 1, . . . ,nREF

From the standpoint of machine learning, the reference table serves as a training

database composed of iid replicates drawn from the distribution of interest, namely

the joint Bayesian model. The regression problem of estimating the posterior proba-

bilities or the classification problem of predicting a model number are both solved

with non-parametric methods. The neighborhood of yobs is thus defined as simula-

tions whose distances to the observation measured in terms of summary statistics,

i.e., ρ
{
S(y),S

(
yobs

)}
, fall below a threshold ε commonly named the tolerance level.

The calibration of ε is delicate, but had been partly neglected in the papers dealing

with ABC that first focused on decreasing the total number of simulations via the

recourse to Markov chain Monte Carlo (Marjoram et al., 2003) or sequential Monte

Carlo methods (Beaumont et al., 2009, Del Moral et al., 2012) whose common target

is the joint Bayesian distribution conditioned by ρ
{
S(y),S

(
yobs

)}
≤ ε for a given ε.

By contrast, the simple setting we adopt here reveals the calibration question. In

accepting the machine learning viewpoint, we can consider the ABC algorithm as a

k-nearest neighbor (knn) method, see Biau et al. (2013); the calibration of ε is thus

transformed into the calibration of k. The Algorithm we have to calibrate is given in

Algorithm 10.

Before entering into the tuning of k, we highlight that the projection via the sum-

mary statistics generates a difference with the standard knn methods. Under mild

conditions, knn are consistent non-parametric methods. Consequently, as the size

of the reference table tends to infinity, the relative frequency of modelm returned by

Algorithm 10 converges to

π
(
m
∣∣∣ S(yobs)

)
.

Unfortunately, when the summary statistics are not sufficient for the model choice

problem, Didelot et al. (2011) and Robert et al. (2011) found that the above probability
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3.1. Local error rates and adaptive ABC model choice

Algorithm 10:Uncalibrated ABCmodel choice

Output: A sample of size k distributed according to the ABC approximation of the
posterior

simulate the reference tableT according to Algorithm 9;

sort the replicates ofT according to ρ
{
S
(
y( j )

)
,S
(
yobs

)}
;

keep the k first replicates;

return the relative frequencies of each model among the k first replicates and the
most frequent model;

can greatly differ from the genuine π(m | yobs). Afterwards Marin et al. (2014) provide

necessary and sufficient conditions on S(·) for the consistency of the MAP based on

π
(
m
∣∣ S(yobs)

)
when the information included in the dataset yobs increases, i.e. when

the dimension of yobs tends to infinity. Consequently, the problem that ABC addresses

with reliability is classification, and the mentioned theoretical results requires a shift

from the approximation of posterior probabilities. Practically the frequencies returned

by Algorithm 10 should solely be used to order the models with respect to their fits to

yobs and construct a knn classifier m̂ that predicts the model number.

It becomes therefore obvious that the calibration of k should be done by minimiz-

ing the misclassification error rate of the resulting classifier m̂. This indicator is the

expected value of the 0-1 loss function, namely 1
{
m̂(y) �=m

}
, over a random (m,y) dis-

tributed according to themarginal (integrated in θm) of the joint Bayesian distribution,

whose density in (m,y) writes

π(m)
∫

πm

(
y
∣∣ θm

)
πm (θm)dθm . (3.3)

Ingenious solutions have been already proposed and are now well established to

fulfil this minimization goal and bypass the overfitting problem, based on cross-

validation on the learning database. But, for the sake of clarity, particularly in the

following sections, we decided to take advantage of the fact that ABC aims at learning

on simulated databases, and we will use a validation reference table, simulated also

with Algorithm 9, but independently of the training reference table, to evaluate the

misclassification rate with the averaged number of differences between the truemodel

numbersm( j ) and the predicted values m̂(y( j )) by knn (i.e., by ABC) on the validation

reference table.
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3.1.2 Local error rates

Themisclassification rate τ of the knn classifier m̂ at the core of Algorithm 10 provides

consistent evidence of its global accuracy. It supplies indeed a well-known support to

calibrate k in Algorithm 10. The purpose of ABCmodel choice methods though is the

analyse of an observed dataset yobs and this first indicator is irrelevant to assess the

accuracy of the classifier at this precise point of the data space, since it is by nature a

prior gauge. We propose here to disintegrate this indicator, and to rely on conditional

expected value of the misclassification loss 1
{
m̂(y) �=m

}
knowing y as an evaluation

of the efficiency of the classifier at y. We recall the following proposition whose proof

is easy, but might help clarifying matters when applied to the joint distribution (3.3).

Proposition 3.2. Consider a classifier m̂ that aims at predicting m given y on data

drawn from the joint distribution f (m,y). Let τ be the misclassification rate of m̂,

defined by P(m̂(Y) �=M ), where (M ,Y) is a random pair with distribution f under the

probability measure P. Then, (i) the expectation of the loss function is

τ=
∑

m

∫

Y

1
{
m̂(y) �=m

}
f (m,y)dy.

Additionally, (ii), the conditional expectation knowing y, namely

τ(y)=P
(
m̂(Y) �=M

∣∣ Y= y
)
,

is

τ(y)=
∑

m

1
{
m̂(y) �=m

}
f (m | y) (3.4)

and τ=
∫
Y
f (y)τ(y)dy, where f (y) denotes the marginal distribution of f (integrated

over m) and f (m | y)= f (m,y)/ f (y) the conditional probability of m given y. Further-

more, we have

τ(y)= 1− f (m̂(y) | y). (3.5)

The last result (3.5) suggests that a conditional expected value of the misclassification

loss is a valuable indicator of the error at y since it is admitted that the posterior prob-

ability of the predicted model reveals the accuracy of the decision at y. Nevertheless,

the whole simulated datasets are not saved into the ABC reference table but solely

some numerical summaries S(y) per simulated dataset y, as explained above. Thus

the disintegration process of τ is practically limited to the conditional expectation of

the loss knowing some non one-to-one function of y. Its definition becomes therefore
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3.1. Local error rates and adaptive ABC model choice

muchmore subtle than the basic (3.4). Actually, the ABC classifier can be trained on a

subset S1(y) of the summaries S(y) saved in the training reference table, or on some

deterministic function (we still write S1(y)) of S(y) that reduces the dimension, such

as the projection on the LDA axes proposed by Estoup et al. (2012). To highlight this

fact, the ABC classifier is denoted by m̂(S1(y)) in what follows. It is worth noting here

that the above setting encompasses any dimension reduction technique presented in

the review of Blum et al. (2013), though the review in oriented on parameter inference.

Furthermore we might want to disintegrate the misclassification rate with respect to

another projection S2(y) of the simulated data that can or cannot be related to the

summaries S1(y) used to train the ABC classifier, albeit S2(y) is also limited to be a

deterministic function of S(y). This yields the following.

Definition 5. The local error rate of the m̂(S1(y)) classifier with respect to S2(y) is

τS1(S2(y)) :=P
(
m̂(S1(Y)) �=M

∣∣ S2(Y)= S2(y)
)
,

where (M ,Y) is a random variable with distribution given in (3.3).

The purpose of the local misclassification rate in the present Chapter is twofold and

requires to play with the distinction between S1 and S2, as the last part will show on

numerical examples. The first goal is the construction of a prospective tool that aims

at checking whether a new statistic S′(y) carries additional information regarding the

model choice, beyond a first set of statistics S1(y). In the latter case, it can be useful to

localize the misclassification error of m̂(S1(y)) with respect to the concatenated vector

S2(y)=
(
S1(y),S′(y)

)
. Indeed, this local error rate can reveal concentrated areas of the

data space, characterized in terms of S2(y), in which the local error rate rises above

(M −1)/M , the averaged (local) amount of errors of the random classifier amongM

models, so as to approach 1. The interpretation of the phenomenon is as follows:

errors committed by m̂(S1(y)), that are mostly spread on the S1(y)-space, might gather

in particular areas of subspaces of the support of S2(y)=
(
S1(y),S′(y)

)
. This peculiarity

is due to the dimension reduction of the summary statistics in ABC before the training

of the classifier and represents a concrete proof of the difficulty of ABCmodel choice

already raised by Didelot et al. (2011) and Robert et al. (2011).

The second goal of the local error rate given in Definition 5 is the evaluation of the

confidence we may concede in the model predicted at yobs by m̂(S1(y)), in which

case we set S2(y) = S1(y). And, when both sets of summaries agree, the results of
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Proposition 3.2 extend to

τS1(S1(y))=
∑

m

π
(
m
∣∣ S1(y)

)
1
{
m̂(S1(y))=m

}

= 1−π
(
m̂(S1(y))

∣∣ §1(y)
)
. (3.6)

Besides the local error rate we propose in Definition 5 is an upper bound of the

Bayes classifier if we admit the loss of information committed by replacing ywith the

summaries.

Proposition 3.3. Consider any classifier m̂(S1(y)). The local error rate of this classifier

satisfies

τS1(s2)=P (m̂(S1(Y)) �=M | S2(Y)= s2)

≥P (m̂MAP(Y) �=M | S2(Y)= s2) , (3.7)

where m̂MAP is the Bayes classifier defined in (3.2) and s2 any value in the support of

S2(Y). Consequently,

P (m̂(S1(Y)) �=M )≥P (m̂MAP(Y) �=M ) . (3.8)

Proof. Proposition 3.2, in particular (3.5), implies that m̂MAP(y) is the ideal classifier

that minimizes the conditional 0-1 loss knowing y. Hence, we have

P
(
m̂(S1(Y)) �=M

∣∣ Y= y
)
≥P

(
m̂MAP(Y) �=M

∣∣ Y= y
)
.

Integrating the above with respect to the distribution of Y knowing S2(Y) leads to (3.7),

and a last integral to (3.8).

Proposition 3.3 shows that the introduction of new summary statistics cannot distort

the model selection insofar as the risk of the resulting classifier cannot decrease below

the risk of the Bayes classifier m̂MAP. We give here a last flavour of the results of Marin

et al. (2014) andmention that, if S1(y)= S2(y)= S(y) and if the classifiers are perfect

(i.e., trained on infinite reference tables), we can rephrase part of their results as

providing mild conditions on S under which the local error τS(S(y)) tends to 0 when

the size of the dataset y tends to infinity.
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3.1. Local error rates and adaptive ABC model choice

3.3.1 Estimation algorithm of the local error rates

The numerical estimation of the local error rate τS1(S2(y)), as a surface depending on

S2(y), is therefore paramount to assess the difficulty of the classification problem at

any s2 = SS(y), and the local accuracy of the classifier. Naturally, when S1(y)= S2(y)

for all y, the local error can be evaluated at S2(yobs) by plugging in (3.6) the ABC

estimates of the posterior probabilities (the relative frequencies of each model among

the particles returned by Algorithm 10) as substitute for π(m | S(yobs)). This estimation

procedure is restricted to the above mentioned case where the set of statistics used

to localize the error rate agrees with the set of statistics used to train the classifier.

Moreover, the approximation of the posterior probabilities returned by Algorithm 10,

i.e., a knn method, might not be trustworthy: the calibration of k performed by

minimizing the prior error rate τ does not provide any certainty on the estimated

posterior probabilities beyond a ranking of these probabilities that yields the best

classifier in terms of misclassification. In other words, the knnmethod calibrated to

answer the classification problem of discriminating among models does not produce

a reliable answer to the regression problem of estimating posterior probabilities.

Certainly, the value of k must be increased to face this second kind of issue, at the

price of a larger bias thatmight even swap themodel ranking (otherwise, the empirical

prior error rate would not depend on k, see the numerical result section).

For all these reasons, we propose here an alternative estimate of the local error. The

core idea of our proposal is the recourse to a non-parametric method to estimate

conditional expected values based on the calls to the classifier m̂ on a validation

reference table, already simulated to estimate the global error rate τ. Nadaraya-

Watson kernel estimators of the conditional expected values

τS1(S2(y))=E
(
1
{
m̂(S1(Y)) �=M

} ∣∣ S2(Y)= S2(y)
)

(3.9)

rely explicitly on the regularity of this indicator, as a function of s2 = S2(y), which

contrasts with the ABCplug-in estimate described above. We thus hope improvements

in the accuracy of error estimate and a more reliable approximation of the whole

function τS1(S2(y)). Additionally, we are not limited anymore to the special case where

S1(y)= S2(y) for all y. It is worth stressing here that the bandwidth of the kernels must

be calibrated by minimizing the L2-loss, since the target is a conditional expected

value.

Practically, this leads to Algorithm 11 which requires a validation or test reference

table independent of the training database that constitutes the ABC reference table.

We can bypass the requirement by resorting to cross validation methods, as for the

computation of the global prior misclassification rate τ. But the ensued algorithm
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Algorithm 11: Estimation of τS1(S2(y)) given an classifier m̂(S1(y)) on a validation or
test reference table
Input: A validation or test reference table and a classifier m̂(S1(y)) fitted with a first

reference table
Output: Estimations of (3.9) at each point of the second reference table

for each
(
m( j ),y( j )

)
in the test table do

compute δ( j ) =
{
m̂(S1(y( j ))) �=m( j )

}
;

end

calibrate the bandwidth h of the Nadaraya-Watson estimator predicting δ( j ) knowing
S2(y( j )) via cross-validation on the test table;

for each
(
m( j ),y( j )

)
in the test table do

evaluate the Nadaraya-Watson estimator with bandwidth h at S2
(
y( j )

)
;

end

is complex and it induces more calls to the classifier (consider, e.g., a ten-fold cross

validation algorithm computed onmore than one random grouping of the reference

table) than the basic Algorithm 11, whereas the training database can always be

supplemented by a validation database since ABC, by its very nature, is a learning

problemon simulated databases. Moreover, to display thewhole surface τS1(S2(y)), we

can interpolate values of the local error between points S2(y) of the second reference

table with the help of a Kriging algorithm. We performed numerical experiments

(not detailed here) concluding that the resort to a Kriging algorithm provides results

comparable to the evaluation of Nadaraya-Watson estimator at any point of the

support of S2(y), and can reduce computation times.

3.3.2 Adaptive ABC

The local error rate can also represent a valuable way to adjust the summary statistics

to the data point y and to build an adaptive ABC algorithm achieving a local trade off

that increases the dimension of the summary statistics at y only when the additional

coordinates add information regarding the classification problem. Assume that we

have at our disposal a collection of ABC classifiers,m̂λ(y) := m̂λ(Sλ(y)), λ = 1, . . . ,Λ,

trained on various projections of y, namely the Sλ(y)’s, and that all these vectors, sorted

with respect to their dimension, depend only on the summary statistics registered

in the reference tables. Sometimes low dimensional statistics may suffice for the

classification (of models) at y, whereas other times we may need to examine statistics
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3.1. Local error rates and adaptive ABC model choice

of larger dimension. The local adaptation of the classifier is accomplished through

the disintegration of the misclassification rates of the initial classifiers with respect

to a common statistic S0(y). Denoting τλ(S0(y)) the local error rate of m̂λ(y) knowing

S0(y), this reasoning yields the adaptive classifier defined by

m̃(S(y)) := m̂ λ̂(y)(y), where λ̂(y) := argmin
λ=1,...,Λ

τλ(S0(y)). (3.10)

This last classifier attempts to avoid bearing the cost of the potential curse of dimen-

sionality from which all knn classifiers suffer and can help reduce the error of the

initial classifiers, although the error of the ideal classifier (3.2) remains an absolute

lower bound, see Proposition 3.3. From a different perspective, (3.10) represents a way

to tune the similarity ρ
{
S(y),§(yobs)

}
of Algorithm 10 that locally includes or excludes

components of S(y) to assess the proximity between S(y) and S(yobs). Practically, we

rely on the following algorithm to produce the adaptive classifier, that requires a

validation reference table independent of the reference table used to fit the initial

classifiers.

Algorithm 12: Adaptive ABCmodel choice

Input: A collection of classifiers m̂λ(y), λ= 1, . . . ,Λ and a validation reference table
Output: An adaptive classifier m̃(y)

for each λ ∈ {1, . . . ,Λ} do

estimate the local error of m̂λ(y) knowing S0(y) with the help of Algorithm 11;
end

return the adaptive classifier m̃ as a function computing (3.10);

The local error surface estimated within the loop of Algorithm 12must contrast the

errors of the collection of classifiers. Our advice is thus to build a projection S0(y) of

the summaries S(y) registered in the reference tables as follow. Add to the validation

reference table a qualitative trait which groups the replicates of the table according

to their differences between the predicted numbers by the initial classifiers and the

model numbersm( j ) registered in the database. For instance, when the collection is

composed of Λ= 2 classifiers, the qualitative trait takes three values: value 0 when
both classifiers m̂λ(y

( j )) agree (whatever the value of m̂( j )), value 1 when the first

classifier only returns the correct number, i.e., m̂1(y( j ))=m( j ) �= m̂2(y( j )), and value

2 when the second classifier only returns the correct number, i.e., m̂1(y( j )) �=m( j ) =
m̂2(y( j )). The axes of the linear discriminant analysis (LDA) predicting the qualitative

trait knowing S(y) provide a projection S0(y) which contrasts the errors of the initial

collection of classifiers.
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Chapter 3. ABC model choice for hidden Gibbs random fields

Finally it is important to note that the local error rates are evaluated in Algorithm 12

with the help of a validation reference table. Therefore, a reliable estimation of the

accuracy of the adaptive classifier cannot be based on the same validation database

because of the optimism bias of the training error. Evaluating the accuracy requires

the simulation of a test reference table independently of the two first databases used

to train and adapt the predictor, as is usually performed in the machine learning

community.

3.4 Hidden random fields

Our primary intent with the ABCmethodology exposed in Section 3.1 was the study

of new summary statistics to discriminate between hidden random fields models.

The following materials numerically illustrate how ABC can choose the dependency

structure of latent Potts models among two possible neighborhood systems, both

described with undirected graphs, whilst highlighting the generality of the approach.

3.4.1 Hidden Potts model

This numerical part of the Chapter focuses on hidden Potts models, that are repre-

sentative of the general level of difficulty while at the same time being widely used in

practice (see for exampleHurn et al., 2003, Alfò et al., 2008, François et al., 2006,Moores

et al., 2014). We recall that the latent random field x is a family of random variables xi
indexed by a finite setS and taking values in a finite state spaceX = {0, . . . ,K −1}.
When modelling a digital image, the sites are lying on a regular 2D-grid of pixels,

and their dependency is given by an undirected graph G which defines an adjacency

relationship on the set of sitesS : by definition, both sites i and j are adjacent if and

only if the graph G includes an edge that links directly i and j (see Chapter 1). A Potts

model sets a probability distribution on x, parametrized by a scalar β that adjusts the

level of dependency between adjacent sites and defined by

π
(
x
∣∣β,G

)
=

1

Z
(
β,G

) exp


β

∑

i
G∼ j

1
{
xi = x j

}

 .

We refer the reader to Section 1.1.2 for further details on Potss model.

In hidden Markov random fields, the latent process is observed indirectly through

another field; this permits the modelling of a noise that may be encountered in many

concrete situations. Precisely, given the realization x of the latent field, the observation

y is a family of random variables indexed by the set of sites, and taking values in a set
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3.4. Hidden random fields

Y , i.e., y=
{
yi : i ∈S

}
, and are commonly assumed as independent draws that form

a noisy version of the hidden fields. Consequently, we set the conditional distribution

of y knowing x as the product π(y | x,φ)=
∏

i∈S π(yi | xi ,φ), where π(yi | xi ,φ) is the
marginal noise distribution parametrized by some scalar φ. Hence the likelihood

of the hidden Potts model with parameter β on the graph G and noise distribution

π(· | x,φ), denoted HPM(G ,φ,β), is given by

π
(
y
∣∣φ,β,G

)
=

∑

x∈X
π
(
x
∣∣β,G

)
π(y | x,φ)

and faces a double intractable issue as neither the likelihood of the latent field, nor

the above sum can be computed directly: the cardinality of the range of the sum is of

combinatorial complexity. The following numerical experiments are based on two

classes of noises, producing either observations in {0,1, . . . ,K −1}, the set of latent
colors, or continuous observations that take values in R.

The common point of our examples is to select the hidden Gibbs model that better fits

a given yobs composed of n = 100×100 pixels within different neighborhood systems

represented as undirected graphs G . We considered the two widely used adjacency

structures in our simulations, namely the graph G4 (respectively G8) in which the

neighborhood of a site is composed of the four (respectively eight) closest sites on

the two-dimensional lattice, except on the boundaries of the lattice, see Fig. 1.1. The

prior probabilities of both models were set to 1/2 in all experiments. The Bayesian

analysis of the model choice question adds another integral beyond the two above

mentioned sums that cannot be calculated explicitly or numerically either and the

problem we illustrate are said triple intractable. Up to our knowledge the choice of

the latent neighborhood structure has never been seriously tackled in the Bayesian

literature. Wementioned here the mean field approximation of Forbes and Peyrard

(2003) whose software can estimate parameters of such models, and compare models

fitness via a BIC criterion. This is discussed further in Chapter 4. The detailed settings

of our three experiments are as follows.

First experiment. We considered Pottsmodels withK = 2 colors and a noise process
that switches each pixel independently with probability

exp(−φ)
exp(φ)+exp(−φ)

,

following the proposal of Everitt (2012). The prior on φwas uniform over (0.42;2.3),

where the bounds of the interval were determined to switch a pixel with a probability

less than 30%. Regarding the dependency parameter β, we set prior distributions
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Chapter 3. ABC model choice for hidden Gibbs random fields

below the phase transition which occurs at different levels depending on the neigh-

borhood structure. Precisely we used a uniform distribution over (0;1) when the

adjacency is given by G4 and a uniform distribution over (0;0.35) with G8.

Second experiment. We increased the number of colors in the Potts models and

set K = 16. Likewise, we set a noise that changes the color of each pixel with a given
probability parametrized by φ, and conditionally on a change at site i , we rely on the

least favourable distribution, which is a uniform draw within all colors except the

latent one. To extend the parametrization of Everitt (2012), the marginal distribution

of the noise is defined by

π
(
yi
∣∣ xi ,φ

)
=
exp

{
φ
(
21
{
xi = x j −1

})}

exp(φ)+ (K −1)exp(−φ)

and a uniform prior on φ over the interval (1.78;4.8) ensures that the probability of

changing a pixel with the noise process is at most 30%. The uniform prior on the Potts

parameter βwas also tuned to stay below the phase transition. Hence β ranges the

interval (0;2.4) with a G4 structure and the interval (0;1) with a G8 structure.

Third experiment. We introduced a homoscedastic Gaussian noise whose marginal

distribution is characterized by

yi | xi = c ∼N (c,σ2) c ∈ {0;1}

over bicolor Potts models. And both prior distributions on parameter β are similar to

the ones on the latent fields of the first experiment. The standard deviation σ= 0.39
was set so that the probability of a wrong prediction of the latent color with a marginal

MAP rule on the Gaussian model is about 10%.

3.4.2 Geometric summary statistics

Performing a Bayesian model choice via ABC algorithms requires summary statistics

that capture the relevant information from the observation yobs to discriminate among

the competing models. When the observation is noise-free, Grelaud et al. (2009)

noted that the joint distribution resulting from the Bayesian modelling falls into the

exponential family, and they obtained consecutively a small set of summary statistics,

depending on the collection of considered models, that were sufficient. In front of

noise, the situation differs substantially as the joint distribution lies now outside the

exponential family due to the bound to the data, and the above mentioned statistics
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Γ
(
G4,y

)
Γ
(
G8,y

)

Figure 3.1: The induced graph Γ
(
G4,y

)
and Γ

(
G8,y

)
on a given bicolor image y of size 5×5.

The six summary statistics on y are thus R
(
G4,y

)
= 22, T

(
G4,y

)
= 7,U

(
G4,y

)
= 12,

R
(
G8,y

)
= 39, T

(
G8,y

)
= 4 andU

(
G8,y

)
= 16

are not sufficient anymore, whence the urge to bring forward other concrete and

workable statistics. The general approach we developed reveals geometric features of

a discrete field y via the recourse to coloured graphs attached to y and their connected

components. Consider an undirected graph G whose set of vertices coincides withS ,

the set of sites of y.

Definition 6. The graph induced by G on the field y, denoted Γ
(
G ,y

)
, is the undirected

graph whose set of edges gathers the edges of G between sites of y that share the same

color, i.e.,

i
Γ(G ,y)∼ j ⇐⇒ i

G∼ j and yi = y j .

We believe that the connected components of such induced graphs capture major

parts of the geometry of y. Recall that a connected component of an undirected graph

Γ is a subgraph of Γ in which any two vertices are connected to each other by a path,

and which is connected to no other vertices of Γ. And the connected components

form a partition of the vertices. Since ABC relies on the computation of the summary

statistics on many simulated datasets, it is also worth noting that the connected

components can be computed efficiently with the help of famous graph algorithms

in linear time based on a breadth-first search or depth-first search over the graph.

The empirical distribution of the sizes of the connected components represents an

important source of geometric informations, but cannot be used as a statistic in ABC

because of the curse of dimensionality. The definition of a low dimensional summary

statistic derived from these connect components should be guided by the intuition

on the model choice we face.
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Our numerical experiments discriminate between a G4- and a G8-neighborhood struc-

ture and we considered two induced graphs on each simulated y, namely Γ
(
G4,y

)

and Γ
(
G8,y

)
. Remark that the two-dimensional statistics proposed by Grelaud et al.

(2009), which are sufficient in the noise-free context, are the total numbers of edges

in both induced graphs. After very few trials without success, we fixed ourselves on

four additional summary statistics, namely the size of the largest component of each

induced graph, as well as the total number of connect components in each graph. See

Fig. 3.1 for an example on a bicolor picture y. To fix the notations, for any induced

graph Γ
(
G ,y

)
, we define

• R
(
G ,y

)
as the total number of edges in Γ

(
G ,y

)
,

• T
(
G ,y

)
as the number of connected components in Γ

(
G ,y

)
and

• U
(
G ,y

)
as the size of the largest connected component of Γ

(
G ,y

)
.

And to sum up the above, the set of summary statistics that where registered in the

reference tables for each simulated field y is

S(y)=
{
R
(
G4,y

)
;R
(
G8,y

)
;T

(
G4,y

)
;T

(
G8,y

)
;U

(
G4,y

)
;U

(
G8,y

)}

in the first and second experiments.

In the third experiment, the observed field y takes values in R and we cannot apply

directly the approach based on induced graphes because no two pixels share the same

color. All of the above statistics are meaningless, including the statistics R
(
G ,y

)
used

by Grelaud et al. (2009) in the noise-free case. We rely on a quantization preprocessing

performed via a kmeans algorithm on the observed colors that forgets the spatial

structure of the field. The algorithmwas tuned to uncover the same number of groups

of colors as the number of latent colors, namely K = 2. If q2(y) denotes the resulting
field, the set of summary statistics becomes

S(y)=
{
R
(
G4,q2(y)

)
;R
(
G8,q2(y)

)
;T

(
G4,q2(y)

)
;

T
(
G8,q2(y)

)
;U

(
G4,q2(y)

)
;U

(
G8,q2(y)

)}
.

We have assumed here that the number of latent colors is known to keep the same

purpose of selecting the correct neighborhood structure. Indeed Cucala andMarin
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(2013) have already proposed a (complex) Bayesian method to infer the appropriate

number of hidden colors. But more generally, we can add statistics based on various

quantizations qk(y) of ywith k groups.

3.4.3 Numerical results

In all three experiments, we compare three nested sets of summary statistics S2D(y),

S4D(y) and S6D(y) of dimension 2, 4 and 6 respectively. They are defined as the

projection onto the first two (respectively four and six) axes of S(y) described in the

previous section. We stress here that S2D(y), which is composed of the summaries

given by Grelaud et al. (2009), are used beyond the noise-free setting where they are

sufficient formodel choice. In order to study the information carried by the connected

components, we add progressively our geometric summary statistics to the first set,

beginning by the T
(
G ,y

)
-type of statistics in S4D(y). Finally, remark that, before

evaluating the Euclidean distance in ABC algorithms, we normalize the statistics in

each reference tables with respect to an estimation of their standard deviation since all

these summaries take values on axis of different scales. Simulated images have been

drawn thanks to the Swendsen and Wang (1987) algorithm. In the least favourable

experiment, simulations of one hundred pictures (on pixel grid of size 100×100) via
20,000 iterations of this Markovian algorithm when parameters drawn from our prior

requires about one hour of computation on a single CPUwith our optimized C++ code.

Hence the amount of time required by ABC is dominated by the simulations of y via

the Swedsen-Wang algorithm. This motivated Moores, Drovandi, Mengersen, and

Robert (2015) to propose a cut down on the cost of running an ABC experiment by

removing the simulation of an image from hidden Potts model, and replacing it by an

approximate simulation of the summary statistics. Another alternative is the clever

sampler of Mira et al. (2001) that provides exact simulations of Ising models and can

be extended to Potts models.

First experiment. Fig. 3.2(a) illustrates the calibration of the number of nearest

neighbors (parameter k of Algorithm 10) by showing the evolution of the prior error

rates (evaluated on a validation reference table including 20,000 simulations) when k

increases. We compared the errors of six classifiers to inspect the differences between

the three sets of summary statistics (in yellow, green and magenta) and the impact

of the size of the training reference table (100,000 simulations in solid lines; 50,000

simulations in dashed lines). The numerical results exhibit that a good calibration

of k can reduce the prior misclassification error. Thus, without really degrading the

performance of the classifiers, we can reduce the amount of simulations required in
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Figure 3.2: First experiment results. (a) Prior error rates (vertical axis) of ABC with respect
to the number of nearest neighbors (horizontal axis) trained on a reference table
of size 100,000 (solid lines) or 50,000 (dashed lines), based on the 2D, 4D and 6D
summary statistics. (b) Prior error rates of ABC based on the 2D summary statis-
tic compared with 4D and 6D summary statistics including additional ancillary
statistics. (c) Evaluation of the local error on a 2D surface.

the training reference table, whose computation cost (in time) represents the main

obstacle of ABC methods, see also Table 3.1. Moreover, as can be guessed from

Fig. 3.2(a), the sizes of the largest connected components of induced graphs (included

only in S6D(y)) do not carry additional information regarding the model choice and

Table 3.1 confirms this results through evaluations of the errors on a test reference

table of 30,000 simulations drawn independently of both training and validation

reference tables.
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Table 3.1: Evaluation of the prior error rate on a test reference table of size 30,000 in the first
experiment.

Prior error rates

Train size 5,000 100,000

2D statistics 8.8% 7.9%
4D statistics 6.5% 6.1%
6D statistics 7.1% 7.1%
Adaptive ABC 6.2% 5.5%

One can argue that the curse of dimensionality does not occur with such low dimen-

sional statistics and sizes of the training set, but this intuition is wrong, as shown in

Fig. 3.2(b). The latter plot shows indeed the prior misclassification rate as a function

of k when we replace the last four summaries by ancillary statistics drawn indepen-

dently ofm and y. We can conclude that, although the three sets of summary statistics

carry then the same information in this artificial setting, the prior error rates increase

substantially with the dimension (classifiers are not trained on infinite reference ta-

bles!). This conclusion shed new light on the results of Fig. 3.2(a): theU
(
G ,y

)
-type

summaries, based on the size of the largest component, are not concretely able to

help discriminate amongmodels, but are either highly correlated with the first four

statistics; or the resolution (in terms of size of the training reference table) does not

permit the exploitation of the possible information they add.

Fig. 3.2(c) displays the local error ratewith respect to a projection of the image space on

a plan. We have taken here S1(y)= S2D (y) in Definition 5. And S2(y) ranges a plan given

by a projection of the full set of summaries that has been tuned empirically in order to

gather the errors committed by calls of m̂(S2D(y)) on the validation reference table.

The most striking fact is that the local error rises above 0.9 in the oval, reddish area

of Fig. 3.2(c). Other reddish areas of Fig. 3.2(c) in the bottom of the plot correspond

to parts of the space with very low probability, andmay be a dubious extrapolation

of the Kriging algorithm. We can thus conclude that the information of the new

geometric summaries depends highly on the position of y in the image space and

have confidence in the interest of Algorithm 12 (adaptive ABC) in this framework. As

exhibited in Table 3.1(d), this last classifier does not decrease dramatically the prior

misclassification rates. But the errors of the non-adaptive classifiers are already low

and the error of any classifier is bounded from below, as explained in Proposition 3.3.

Interestingly though, the adaptive classifier relies on m̂(S2D(y)) (instead of the most

informative m̂(S6D(y))) to take the final decision at about 60% of the images of our

test reference table of size 30,000.
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Table 3.2: Evaluation of the prior error rate on a test reference table of size 20,000 in the second
experiment.

Prior error rates

Train size 50,000 100,000

2D statistics 4.5% 4.4%
4D statistics 4.6% 4.1%
6D statistics 4.6% 4.3%

Second experiment. The framework was designed here to study the limitations of

our approach based on the connected components of induced graphs. The number

of latent colors is indeed relatively high and the noise process do not rely on any

ordering of the colors to perturbate the pixels. Table 3.2 indicates the difficulty of

capturing relevant information with the geometric summaries we propose. Only the

sharpness introduced by a training reference table composed of 100,000 simulations

distinguishes m̂(S4D (y)) and m̂(S6D (y)) from the basic classifier m̂(§2D (y)). This con-

clusion is reinforced by the low value of number of neighbors after the calibration

process, namely k = 16, 5 and 5 for m̂(S2D (y)), m̂(S4D(y)) and m̂(S6D(y)) respectively.

Hence we do not display in this Chapter other diagnosis plots based on the prior error

rates or the conditional error rates, which led us to the same conclusion. The adaptive

ABC algorithm did not improve any of these results.

Third experiment. The framework here includes a continuous noise process as

described at the end of Section 3.4.1. We reproduced the entire diagnosis process

performed in the first experiment and we obtained the results given in Fig. 3.3 and

Table 3.3. The most noticeable difference is the extra information carried by the

U
(
G ,y

)
-statistics, representing the size of the largest connected component, and the

adaptive ABC relies on the simplest m̂(S2D(y)) in about 30% of the data space (mea-

sured with the prior marginal distribution in y). Likewise, the gain in misclassification

errors is not spectacular, albeit positive.

Table 3.3: Evaluation of the prior error rate on a test reference table of size 30,000 in the third
experiment.

Prior error rates

Train size 5,000 100,000

2D statistics 14.2% 13.8%
4D statistics 10.8% 9.8%
6D statistics 8.6% 6.9%
Adaptive ABC 8.2% 6.7%
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Figure 3.3: Third experiment results. (a) Prior error rates (vertical axis) of ABC with respect
to the number of nearest neighbors (horizontal axis) trained on a reference table
of size 100,000 (solid lines) or 50,000 (dashed lines), based on the 2D, 4D and 6D
summary statistics. (b) Prior error rates of ABC based on the 2D summary statis-
tics compared with 4D and 6D summary statistics including additional ancillary
statistics. (c) Evaluation of the local error on a 2D surface.
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4 Model choice criteria for hidden

Gibbs random field

Throughout Chapter 3, the number of latent states K was assumed to be known but in

many concrete situation this is not the case. Shaped by the development of Geman

and Geman (1984) and Besag (1986), hidden Markov random fields have enjoyed

great success in image segmentation, where one aims at estimating an unknown

class assignment from the observation of a noisy copy of a latent random field. In

this Chapter, we are interested in the joint selection of the dependency structure

and the number of latent states of a hidden Potts model. The Bayesian Information

Criterion (BIC, Schwarz, 1978) is an asymptotical estimate of the evidence that allows

to answer the question from aBayesian viewpoint but its exact computationwithin the

context of hiddenMarkov random field is not feasible due to the intrinsic challenges

of intractable likelihoods. Up to our knowledge, few attention has been paid to this

specific issue in the literature aside from the work of Stanford and Raftery (2002)

and Forbes and Peyrard (2003). The solution of Forbes and Peyrard (2003) derives

from mean field theory which approximates the Markov random field by a system

of independent variables whose distributions are fully tractable. This approach has

proven great efficiency as regards to parameter estimation (Celeux et al., 2003) but

surprisingly encounters difficulties to select a number of latent states. We could have

also mentioned the suggestion of Cucala and Marin (2013) but from an Integrated

Completed Likelihood estimation point of view. Nevertheless their complex algorithm

is time consuming and cannot be easily extended to wider scope such as the choice of

a dependency graph.

In this chapter, we propose approximations of BIC. The general approach described

in Section 4.1 is to replace the intractable Gibbs distribution with a system of indepen-

dent random vectors, namely blocks of the lattice, by taking advantage of the recursive

algorithm of Section 1.3. To illustrate the performance of our approximations of BIC,

in Section 4.3 we focus on three different experiments on simulated data. In particular
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we address the question of the selection of the number of colors and the neighbor-

hood system of a hidden Potts model. We conclude the numerical part of this Chapter

with a comparison between the ABC procedures of Chapter 3 and our model choice

criterion.

4.1 Block Likelihood Information Criterion

4.1.1 Background on Bayesian Information Criterion

The Bayesian Information Criterion offers a mean arising from Bayesian viewpoint to

select a statistical model. This Section is a brief reminder on the construction of BIC

and we refer the reader for instance to Raftery (1995) for a more detailed presentation.

We are given n independent and identically distributed observations y=
{
y1, . . . , yn

}

from an unknown statistical model to estimate. The Bayesian approach to model

selection is based on posterior model probabilities. Consider a finite set of models

{m : 1, . . . ,M } where each one is defined by a probability density function πm related

to a parameter spaceΘm . The model that best fits an observation y is the model with

the highest posterior probability

π
(
m
∣∣ y
)
=

π(m)e
(
y
∣∣m

)
∑

m′ π(m′)e
(
y
∣∣m′) ,

where e
(
y
∣∣m

)
denotes the evidence of m, that is the joint distribution of (y,θm)

integrated over space parameterΘm

e
(
y
∣∣m

)
=
∫

πm

(
y
∣∣ θm

)
πm (θm)dθm .

Under the assumption of model being equally likely a priori, it is equivalent to choose

the model with the largest evidence.

BIC is an asymptotical estimate of the evidence based on Laplace method for integral

(e.g., Schwarz, 1978, Tierney and Kadane, 1986, Raftery, 1995) defined by

−2loge
(
y
∣∣m

)
≃BIC(m)=−2logπm

(
y
∣∣ θ̂MLE

)
+dm log(n), (4.1)

where θ̂MLE is the maximum likelihood estimator of πm and dm is the number of free

parameters for modelm. The dm log(n) term corresponds to a penalty term which

increases with the complexity of the model. Thus selecting the model with the largest

evidence is equivalent to choose the model which minimizes BIC.
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4.1. Block Likelihood Information Criterion

The definition of BIC derives from the following result for which proof can be found,

amongst others, in the orignal paper of Schwarz (1978). We refer also the reader to

Tierney and Kadane (1986) for a formalization of some of the arguments.

Proposition 4.2. Under regularity conditions, the evidence of model m can be written

as

loge
(
y
∣∣m

)
= logπm

(
y
∣∣ θ̂MLE

)
−
dm

2
log(n)+Rm

(
θ̂MLE

)
+O

(
n−

1
2

)
, (4.2)

where Rm is bounded as the sample size grows to infinity.

Proof. Consider the Taylor series expansion of gm(θ)= log
{
πm(y | θ)πm(θm)

}
about

the posterior mode, that is about the value θ∗ that maximizes g (θ). The expansion

writes as

gm(θ)= gm
(
θ∗
)
+
1

2

(
θ−θ∗

)T ∇2 gm
(
θ∗
)(
θ−θ∗

)
+o

(∥∥θ−θ∗
∥∥) .

It follows from the Laplace method for integrals applied to e
(
y
∣∣m

)
=
∫
exp

{
gm(θ)

)
dθ

that

e
(
y
∣∣m

)
= logπm

(
y
∣∣ θ∗

)
+ logπm

(
θ∗
)
+
dm

2
log(2π)−

1

2
det(Am)+O

(
n−1

)
, (4.3)

where Am =−∇2gm (θ∗).

The idea now is that in large samples θ∗ can be approximated with the maximum

likelihood estimator θ̂MLE and the Hessian matrix Am with n times the Fisher infor-

mation matrix I
(
θ̂MLE

)
for one observation, that is Am = nI

(
θ̂MLE

)
where I

(
θ̂MLE

)
=

−E
{
∇2 logπm

(
Y1 | θ̂MLE

)}
, the expectation being taken with respect to the density of

Y1. Hence the determinant of the Hessian matrix taken at the maximum likelihood es-

timator can be estimated by det(Am)≈ ndmdet
(
I
(
θ̂MLE

))
. These two approximations

lead to an O

(
n−

1
2

)
error into equation (4.3).

The result immediately follows with

Rm

(
θ̂MLE

)
= logπm

(
θ∗
)
+
dm

2
log(2π)−

1

2
det

(
I
(
θ̂MLE

))
.

Proposition 4.2means that regardless of the prior on parameter, the error is, in general,

solely bounded and does not go to zero even with an infinite amount of data. The

approximation may hence seem somewhat crude. However as observed by Kass and

Raftery (1995) the criterion does not appear to be qualitatively misleading as long as
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Chapter 4. Model choice criteria for hidden Gibbs random field

the sample size n is much larger than the number dm of free parameters in the model.

In addition, a reasonable choice of the prior can lead to much smaller error. Indeed,

Kass and Wasserman (1995) have found that the error is O
(
n−1/2

)
for a well chosen

multivariate normal prior distribution.

BIC can be defined beside the special case of independent random variables. In the

latter case the approximations at the core of the proof of Proposition 4.2 are slightly

different and the number of free parameter is, in general, not equal to the dimension

of the parameter space as for the independent case. The consistency of BIC has

been proven in various situations such as independent and identically distributed

processes from the exponential families (Haughton, 1988), mixture models (Keribin,

2000), Markov chains (Csiszár et al., 2000, Gassiat, 2002) andMarkov random fields

for the selection of a neighborhood system (Csiszár and Talata, 2006).

When dealing with Markov random fields, penalized likelihood criteria like BIC faces

the problem of an intractable likelihood. In addition to this issue that has been widely

underlined in this dissertation, the number of free parameters in the penalty term has

no simple formula. In the context of selecting a neighborhood system, Csiszár and

Talata (2006) proposed to replace the likelihood by the pseudolikelihood andmodify

the penalty term as the number of all possible configurations for the neighboring sites.

The resulting criterion is shown to be consistent as regards this model choice.

Up to our knowledge such a result has not been yet derived for hiddenMarkov random

field for which another challenge appears as the incomplete likelihood requires to

integrate over the latent

πm

(
y
∣∣ θ
)
=
∫

X

π
(
y
∣∣ x,φ

)
π
(
x
∣∣β,G

)
µ(dx). (4.4)

The problem of approximating BIC could be once again termed a triple intractable

problem since neither the maximum likelihood estimate θ̂MLE nor the incomplete

likelihood πm(· | θ) can be computed with standard methods and no simple definition

of dm is available.

Newton and Raftery (1994) tackled the issue of approximating BIC with an importance

sampling procedure to supersede the crude Monte Carlo estimate based on compu-

tation over all realisations of a Markov chain with stationary distribution π(· |ψ,G ).
Such an approach could have been set up here by considering the likelihood of the

conditional field π(· | y,θ,G ) as an importance sampling function but follows time

consuming procedure that we have decided not to pursue. In what follows, we rather

focus on approximations of the criterion based on approximations of the Gibbs dis-

tribution such as the pseudolikelihood (Stanford and Raftery, 2002) or the mean
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4.1. Block Likelihood Information Criterion

field-like approximations (Forbes and Peyrard, 2003).

4.2.1 Gibbs distribution approximations

The alternate proposal to simulation methods is to replace the Gibbs distribution by

an approximation. As for the pseudolikelihood (Besag, 1975), the main idea consists

in replacing the original Markov distribution by a product easier to deal with. But

while pseudolikelihood is not a genuine probability distribution for Gibbs random

field, the focus hereafter is solely on valid probability function by considering system

of independent variables. This choice is motivated by the observations of Chapter 2

that at finite sample size, misspecification of the model has to be taken into account,

so that constant terms may appear in the remainder Rm of Proposition 4.2.

Finding good approximations of the Gibbs distribution has long standing antecedents

in statistical mechanics when one aims at predicting the response to the system to

a change in the Hamiltonian. One important technique is based on a variational

approach as the minimizer of the free energy, sometimes referred to as variational or

Gibbs free energy, defined with the Kullback-Leibler divergence between P and the

target distribution π(· |ψ,G ) as

F (P)=− logZ
(
ψ,G

)
+KL

(
P,π(· |ψ,G )

)
. (4.5)

The Kullback-Leibler divergence being non-negative and zero if and only if P=π(· |
ψ,G ), the free energy has an optimal lower bound achieved for P=π(· |ψ,G ). Mini-

mizing the free energy with respect to the set of probability distribution onX allows

to recover the Gibbs distribution but presents the same computational intractability.

A solution is to minimize the Kullback-Leibler divergence over a restricted class of

tractable probability distribution onX . This is the basis of mean field approaches

that aim at minimizing the Kullback-Leibler divergence over the set of probability

functions that factorize on sites of the lattice (see also Section 1.8.3). The minimiza-

tion of (4.5) over this set leads to fixed point equations for each marginal of P (see for

example Jordan et al., 1999).

Instead of considering distributions that completely factorize on single sites, we are

interested in tractable approximations that factorize over larger sets of nodes, namely

blocks of the lattice. Consider a partition of S into contiguous rectangular blocks,

namely

S =
C⊔

ℓ=1
A(ℓ),
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and denote D̃ the class of independent probability distributions P that factorize with

respect to this partition, that is ifXA(ℓ) =
∏

i∈A(ℓ)Xi stands for the configuration space

of the block A(ℓ), for all x inX

P(x)=
C∏

ℓ=1
Pℓ

(
xA(ℓ)

)
, where Pℓ ∈M

+
1

(
XA(ℓ)

)
and P ∈M

+
1 (X ).

Our proposal is to derive BIC approximations by replacing the intractable Gibbs

distribution with a well chosen probability distribution in D̃ .

To take over from the Gibbs likelihood, we propose probability distribution of the

form

P
(
x
∣∣ x̃,A(1), . . . ,A(C ),ψ

)
=

C∏

ℓ=1
π
(
xA(ℓ)

∣∣XB(ℓ) = x̃B(ℓ),ψ,G
)
, (4.6)

where x̃ is a constant field inX to specify and B(ℓ) is either the border of A(ℓ), i.e.,

elements of the absolute complement of A(ℓ) that are connected to elements of A(ℓ)

in G , or the empty set. In the latter case, we are cancelling the edges in G that link

elements of A(ℓ) to elements of any other subset ofS such that the factorization is

independent of x̃. The Gibbs distribution is simply replaced by the product of the

likelihood restricted to A(ℓ). For instance a Potts model on X is replaced with a

product of Potts models onXA(ℓ). To underline that point, x̃ is omitted in what follows

when B(ℓ) = �. Note that the composite likelihood (2.1) differs from (4.6) in most

cases since blocks are not allowed to overlap and contrary to conditional composite

likelihoods, neighbors are set to constants. The only example of composite likelihoods

that lies in D̃ is marginal composite likelihoods for non overlapping blocks.

The assumption of independent blocks leads to tractable BIC approximations. Indeed,

plugging the probability distribution (4.6) in place of the Gibbs distribution in (4.4)

yields

Pm

(
y
∣∣ x̃,θ

)
=

∑

x∈X
π
(
y
∣∣ x,φ

)
P
(
x
∣∣ x̃,A(1), . . . ,A(C ),ψ

)

=
C∏

ℓ=1

∑

xA(ℓ)

{
∏

i∈A(ℓ)
π
(
yi
∣∣ xi ,φ

)
}
π
(
xA(ℓ)

∣∣XB(ℓ) = x̃B(ℓ),ψ,G
)

=
C∏

ℓ=1

∑

xA(ℓ)

π
(
yA(ℓ)

∣∣ xA(ℓ),φ
)
π
(
xA(ℓ)

∣∣XB(ℓ) = x̃B(ℓ),ψ,G
)
. (4.7)

This estimate of the incomplete likelihood πm(· | θ) leads to the following BIC approxi-
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mations

BIC(m)≈−2logPm

(
y
∣∣ x̃,θ∗

)
+dm log(|S |) :=BLIC x̃

(
m
∣∣ θ∗

)
, (4.8)

where θ∗ =
(
φ∗,ψ∗

)
is a parameter value to specify. We refer to these approximations

as Block Likelihood Information Criterion (BLIC). In the first instance, the number

of free parameters dm is set to the dimension of Θm , that is we are neglecting the

interaction between variables within a block in the penalty term.

Our proposal relies on that each term of the product (4.7) can be computed using the

recursion of Friel and Rue (2007) as long as the blocks are small enough (see Section

1.3). Indeed for models whose potential linearly depends on the parameter, that is

H (x |ψ,G )=ψTS(x) with S a vector of sufficient statistics, the probability distribution

on A(ℓ) can be written as a Gibbs distribution on the block conditioned on the fixed

border x̃B(ℓ), namely

π
(
xA(ℓ)

∣∣XB(ℓ) = x̃B(ℓ),ψ,G
)
=

1

Z
(
ψ,G , x̃B(ℓ)

) exp
(
ψTS

(
xA(ℓ)

∣∣ x̃
))
,

where S
(
xA(ℓ)

∣∣ x̃
)
is the restriction of S to the subgraph defined on the set A(ℓ) and

conditioned on the fixed border x̃B(ℓ) (see Example 2.1.1). Assuming that all the

marginals of the emission distribution are positive, it follows

∑

xA(ℓ)

π
(
yA(ℓ)

∣∣ xA(ℓ),φ
)
π
(
xA(ℓ)

∣∣XB(ℓ) = x̃B(ℓ),ψ,G
)

=
1

Z
(
ψ,G , x̃B(ℓ)

)
∑

xA(ℓ)

exp
{
logπ

(
yA(ℓ)

∣∣ xA(ℓ),φ
)
+ψTS

(
xA(ℓ)

∣∣ x̃
)}

︸ ︷︷ ︸
=Z(θ,G ,yA(ℓ),x̃B(ℓ))

.

The term Z
(
θ,G ,yA(ℓ), x̃B(ℓ)

)
corresponds to the normalizing constant of the condi-

tional random field XA(ℓ) knowing YA(ℓ) = yA(ℓ) and XB(ℓ) = x̃B(ℓ), that is the initial

model with an extra potential on singletons. Then the algebraic simplification at the

core of Algorithm 3 applies for both normalizing constants, such that we can exactly

compute the Block Likelihood Information Criterion, namely

BLIC x̃
(
m
∣∣ θ∗

)
=−2

C∑

ℓ=1

{
logZ

(
θ∗,G ,yA(ℓ), x̃B(ℓ)

)

− logZ
(
ψ∗,G , x̃B(ℓ)

)}
+dm log(|S |). (4.9)
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4.2.2 Related model choice criteria

This approach encompasses the Pseudolikelihood Information Criterion (PLIC, (1.38))

of Stanford and Raftery (2002) as well as the mean field-like approximations BICMF-like

(1.37) proposed by Forbes and Peyrard (2003) (see Section 1.8.3). When one considers

the finest partition ofS , that is distributions that factorize on sites, they have already

proposed ingenious solutions for choosing x̃ and estimating θ̂MLE in (4.8). Indeed,

Stanford and Raftery (2002) suggest to set (x̃, θ̂MLE) to the final estimates (θ̂ICM, x̃ICM)

of the unsupervised Iterated Conditional Modes (ICM, Besag, 1986) algorithm, while

Forbes and Peyrard (2003) put forward the use of the output (θ̂MF-like, x̃MF-like) of the

simulated field algorithm of Celeux et al. (2003) (see Algorithm 5 in Section 1.5.2). To

make this statement clear, we could note

PLIC(m)=BLIC x̃ICM
(
m
∣∣ θ̂ICM

)
,

BICMF-like(m)=BLIC x̃MF-like
(
m
∣∣∣ θ̂MF-like

)
.

Whilst PLIC shows good result as regards the selection of the number of components

of the hidden state, ICM performs poorly for the parameter estimation in comparison

with the EM-like algorithm of Celeux et al. (2003). Hence we advocate in favour of the

latter in what follows to get estimates of θ̂MLE and to fix a segmented random field x̃.

We shall also remark that for a factorization over the graph nodes when B(ℓ) = �
we retrieve a mixture model. Indeed, turning off all the edges in G leads to approxi-

mate the Gibbs distribution by a multinomial distribution with event probabilities

depending on the potential on singletons. Hence if marginal emission distribution are

Gaussian random variables depending on the component on the latent site associated,

we would deal with a classical Gaussian mixture model.

4.3 Comparison of BIC approximations

Our primary intent with the BIC approximations exposed in Section 4.1 was to choose

the number of latent states and a dependency structure of a hiddenMarkov random

fields. The following numerical experiments illustrate the performances as regards

these questions for realizations of a hidden Potts model. Section 4.3.2 and Section

4.3.3 focus on a comparison between the different criteria to discriminate between

hidden models in various settings while Section 4.3.4 presents a comparison with the

ABC procedures introduced in Chapter 3.
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4.3.1 Hidden Potts models

This numerical part of the Chapter focuses on observations for which the hidden

field is modelled by a K -states Potts model parametrized byψ≡β. The model sets a

probability distribution onX = {1, . . . ,K }n defined by

π
(
x
∣∣β,G

)
=

1

Z
(
β,G

) exp


β

∑

i
G∼ j

1
{
xi = x j

}

 .

We set the emission law π(y | x,φ)=
∏

i∈S π(yi | xi ,φ), such that the marginal distribu-

tion are Gaussian distribution depending on the related latent state, namely

yi | xi = k ∼N
(
µk ,σ

2
k

)
k ∈ {0, . . . ,K −1},

where µk is the mean and σk is the standard deviation for sites belonging to class k.

The parameter to be estimated with the ICM or simulated field algorithms is then

θ =
(
φ,β

)
, with φ=

{(
µk ,σk

)
: k = 0, . . . ,K −1

}
.

We denote HPM(G ,θ,K ), the hidden K-states Potts model defined above.

The common point of our examples is to select the hidden Potts model that better fits

a given observation yobs composed of n = 100×100 pixels among a collection

M =
{
HPM(G ,θ,K ) : K =Kmin, . . . ,Kmax ; G ∈

{
G4,G8

}}
,

where K is the number of colors of the corresponding model and G is one of the

two possible neighborhood systems: G4 and G8 defined in Chapter 1, see Figure 1.1.

For each model HPM(G ,θ,K ), the estimate θ̂MLE and the segmented field x̃ were

computed using SpaCEM3 (see the Documentation on http://spacem3.gforge.inria.fr).

The software allows the implementation of the unsupervised ICM algorithm as well as

the simulated field algorithm and provides computation of PLIC, the mean field-like

approximations BICMF-like and BICGBF (Equation (1.40)). The ICM and the EM-like

algorithms were both initialized with a simple K -means procedure. The stopping

criterion is then settled to a number of 200 iterations that is enough to ensure the

convergence of the procedure.

In what follows, we restrict each A(ℓ) to be of the same dimension and in particular

square block of dimension b×b. For the sake of clarity the Block Likelihood Criterion
is indexed by the dimension of the blocks, namely for a partition of square blocks of

size b×b for which x̃= x̃MF-like and θ̂MLE = θ̂MF-like, we note it BLICMF-like
b×b . As already
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mentioned, we then have BICMF-like =BLICMF-like
1×1 . We recall that when B(ℓ)=�, x̃ is

omitted in the previous notations, that is for a square blocks partition we note our

criterion BLICb×b . Then BLIC1×1 is the BIC approximations corresponding to a finite

independent mixture model. All criterion were tested on simulated images obtained

using the Swendsen-Wang algorithm. We describe below the different experiments

settings we have considered and the results we got.

4.3.2 First experiment: selection of the number of colors

We considered realizations from hidden Potts models with KT = 4 colors. We carried
out 100 simulations from the first order neighborhood structure G4 and 100 simu-

lations from the second order neighborhood structure G8. In this experiment the

dependency structure is assumed to be known and the aim is to recover the number

K of colors of the latent configuration. The interaction parameter β was set close

to the phase transition, namely β = 1 and β = 0.4 for G4 and G8 respectively. These

values of the parameter ensure the images present homogeneous regions and then the

observations exhibit some spatial structure. Such settings illustrate the advantage of

taking into account spatial information of the model. Obviously, for values of βwhere

the interaction is weaker, the benefit of the criterion that include the dependency

structure of the model is not clear. The latter could even be misleading in comparison

with BIC approximations for independent mixture models when β is close to zero. On

the other side, when β is above the phase transition, the distribution onX becomes

heavily multi-modal and there is almost solely one class represented in the image

regardless the number of colors of the model.

The noise process is a homoscedastic Gaussian noise centered at the value of the

related nodes, namely

yi | xi = k ∼N
(
k,σ2

k

)
k ∈ {0, . . . ,K −1},

where σk = 0.5 for k = 1, . . . ,K . Even though the noise model is homoscedastic, we still

index the standard deviation by k since we do not use the assumption of a constant

variance in the estimation procedure, such that the number of parameters estimated

is dm = 2×k+1.

The results obtained for the different criterion are reported in Table 4.1. For b ≥ 2,

BLICb×b outperform the different criterion even though PLIC and BLIC1×1 provide

good results. By contrast approximations based onmean field-like approximations,

that is BICMF-like, BICGBF and BLICMF-like
2×2 , perform poorly. These conclusions need

nonetheless to be put into perspective. Figure 4.1(a) shows that themain issue encoun-
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Table 4.1: Selected K in the first experiment for 100 realizations fromHPM(G4,θ,4) and 100 re-
alizations fromHPM(G8,θ,4) using Pseudolikelihood Information Criterion (PLIC),
mean field-like approximations (BICMF-like, BICGBF) and Block Likelihood Informa-
tion Criterion (BLIC) for various sizes of blocks and border conditions.

HPM(G4,θ,4)

K 2 3 4 5 6 7

PLIC 0 9 91 0 0 0

BICMF-like 0 0 39 23 16 22

BICGBF 0 0 39 25 18 18

BLICMF-like
2×2 0 0 58 18 8 16

BLIC1×1 0 0 97 1 2 0

BLIC2×2 0 0 100 0 0 0

HPM(G8,θ,4)

K 2 3 4 5 6 7

PLIC 0 7 93 0 0 0

BICMF-like 0 0 43 18 19 20

BICGBF 0 0 52 20 19 9

BLICMF-like
2×2 0 0 52 14 17 17

BLIC1×1 0 3 90 1 4 2

BLIC2×2 0 1 99 0 0 0

BLIC4×4 0 0 100 0 0 0

tered by these criterion is their inability to discriminate between the more complex

models. Indeed these BIC approximations reach a plateau from K = 4, a problem that

other criterion do not face. As an example, Figure 4.1(b) and Figure 4.1(c) represent

boxplots of the difference between BIC values for HPM(G4,θ,K ) as K is increasing for

the 100 realizations, namely

∆ (K →K +1)=BIC
(
HPM(G , θ̂MLE,K +1)

)
−BIC

(
HPM(G , θ̂MLE,K )

)
,

for K = Kmin, . . . ,Kmax. Hence, BIC approximations grow with K if ∆ (K →K +1)≥ 0
and decrease otherwise. It appears that BLIC2×2 increases systematically from K = 4
whereas BICMF-like tend to be constant, or even decreases, so that none minimum

can be clearly identified. We do not provide the boxplots for BICMF-like and BICGBF

because they are significantly the same.

Finally these results illustrate in particular the importance of a well chosen segmented

field x̃. Indeed PLIC and BICMF-like are both criterion of type BLICx̃
1×1 but their per-

formances greatly differ on this example. As regards the selection of K , BLICb×b
circumvent this question whilst performing better.

4.3.3 Second experiment: selection of the dependency structure

For this second experiments the setting was exactly the same than for the first experi-

ment. The only difference is that as first instance the number of colors KT is assumed

to be known while the neighborhood system has to be chosen. To answer such a
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Figure 4.1: First experiment results. (a) BICMF-like, BICGBF and BLICMF-like
2×2 values for one

realization of a first order hidden Potts model HPM(G ,θ,4). (b) Difference be-
tween BLICMF-like

2×2 values for 100 realization of a first order hidden Potts model
HPM(G4,θ,4) as K is increasing. (c) Difference between BLIC2×2 values for 100
realization of a first order hidden Potts model HPM(G4,θ,4) as K is increasing

question it is obvious that we can not use criterion BLIC1×1 based on independent

mixture model.

As regards this question, all but two criterion perform very well, see Table 4.2. In the

first place, PLIC faces trouble to select the correct G4. This illustrate the importance

of the estimation of the interaction parameter β. We have observed that the ICM

algorithmwhilst providing good segmented field, produces poorer estimates of the

parameter than the simulated field algorithm. This has an impact quite important

since β sets the strength of interaction between neighboring nodes of the graph G

and is most representative of the spatial correlation. On the other hand, BLIC2×2 fails

to select the neighborhood system for second order hidden Potts model HPM(G8,θ,4).

This conclusion can be simply explained by the fact that the block does not include
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Table 4.2: Selected G in the second experiment for 100 realizations from HPM(G4,θ,4) and
100 realizations fromHPM(G8,θ,4) using Pseudolikelihood Information Criterion
(PLIC), mean field-like approximations (BICMF-like, BICGBF) and Block Likelihood
Information Criterion (BLIC) for various sizes of blocks and border conditions.

HPM(G4,θ,4)

G4 G8

PLIC 53 47

BICMF-like 100 0

BICGBF 100 0

BLICMF-like
2×2 100 0

BLIC2×2 100 0

HPM(G8,θ,4)

G4 G8

PLIC 0 100

BICMF-like 0 100

BICGBF 0 100

BLICMF-like
2×2 0 100

BLIC2×2 59 41

BLIC4×4 0 100

enough spatial information to discriminate between the competing models. When

the primary purpose is the selection of a dependency structure, we should use block

large enough to be informative regarding the different neighborhood systems in

competition.

Aside the two above exceptions, the good performances of all criteria can be surprising.

The same experiment has been done for stronger noise withσk = 0.75 and σk = 1. The
conclusion remains the same. It appears that for a conditionally independent noise

process, neighborhood system are readily distinguished close to the phase transition.

This is not true for any parameter value as illustrated in the third experiment.

In the second instance, we supposed that KT and G were unknown, so that we were

interested in the joint selection of the number of colors and of the dependency graph.

For this example, the results remain the same than in Table 4.1 with the exception of

PLIC. Indeed, the different criterion manage to differentiate the model in terms of the

graph G so that their performances are directly related to their ability to choose the

correct number of colors.

4.3.4 Third experiment: BLIC versus ABC

This third experiment is the occasion to compare BLIC with the ABC procedures

introduced in Chapter 3. We return to the problem of solely selecting the dependency

graph when the number of colors is know. We still consider a homoscedastic Gaussian

noise whose marginal distribution is characterized by

yi | xi = k ∼N (k,σ2
k) k ∈ {0,1}
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Chapter 4. Model choice criteria for hidden Gibbs random field

Table 4.3: Evaluation of the prior error rate of ABC procedures and of the error rate for the
model choice criterion in the third experiment.

Train size 5,000 100,000 Criterion Error rate

2D statistics 14.2% 13.8% PLIC 19.8%

4D statistics 10.8% 9.8% BICMF-like 7.6%

6D statistics 8.6% 6.9% BICGBF 7.1%

Adaptive ABC 8.2% 6.7% BLIC4×4 7.7%

but over bicolor Potts models. The standard deviation σk = 0.39, k ∈ {0,1}, was set so
that the probability of a wrong prediction of the latent color with a marginal MAP rule

on the Gaussian model is about 10% in the thresholding step of the ABC procedure.

Regarding the dependency parameter β, we set prior distributions below the phase

transition which occurs at different levels depending on the neighborhood structure.

Precisely we used a uniform distribution over (0;1) when the adjacency is given by G4

and a uniform distribution over (0;0.35) with G8. In order to examine the performance

of model choice criteria in comparison of ABC, we carried out 1000 realizations from

HPM(G4,θ,2) and 1000 realizations from HPM(G8,θ,2) with parameters from the

priors. The results are presented in Table 4.3

The novel ABC procedure introduced in Chapter 3 appears to provide the best per-

formances but for a training reference table of size 100 000. This reinforces the idea

that for unlimited computation possibilities, ABC can efficiently address situations

where the likelihood is intractable. However, Table 4.3 suggest that for a much lower

computational cost it is possible to get equivalent, or even better, error rate by using

model choice criterion BICMF-like, BICGBF or BLICb×b , while PLIC seems not to be over-

taken. In this example, BICGBF slightly supersede BICMF-like and BLICb×b . This can be

explained by the fact that for parameter from the prior close to zero, the assumption

of independence between the sites is almost true. In the latter case, estimating BIC

using the first order approximations of the partition function of Gibbs distribution

(see the lower bound 1.39 in Section 1.8.3) may be preferable than using normalizing

constants defined on blocks.
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Conclusion

The present dissertation addresses well-known statistical inference issues for Markov

random fields. One of our contribution concerns the calibration of approximate

Bayesian computation algorithms for model choice as a classification problem. In this

context, we have derived a local error rate that is an indicator of the gain or the loss of

statistical information induced by the summary statistics conditional on the observed

value. Consequently, we set up an adaptive classifier which is an attempt to fight

locally against the curse of dimensionality. Our approach is an advance over most

projectionmethods which are focused on parameter estimation (Blum et al., 2013).

While most of these techniques perform a global trade off between the dimension and

the information of the summary statistics over the whole prior domain, our proposal

allows to select, at least in theory, the optimal set of summary statistic as the one

minimizing the local error rate at the observed value. Principles of our proposal

are well founded by avoiding the well-known optimism of the training error rates

and by resorting to validation and test reference tables in order to evaluate the error

practically. Another possibility taken by Pudlo et al. (2014) is to resort to a machine

learning classifier adapted to a large number of covariates such as random forest.

Regarding latent Markov random fields, the proposed method of constructing sum-

mary statistics based on the induced graphs yields a promising route to construct

relevant summary statistics in this framework. The approach is very intuitive and

can be reproduced in other settings. For instance, if the goal is to select between

isotropic latent Gibbs models and anisotropic models, the averaged ratio between the

width and the length of the connected components or the ratio of the width and the

length of the largest connected components can be relevant numerical summaries.

We have also explained how to adapt the method to a continuous noise by performing

a quantization of the observed values at each site of the fields. The detailed analysis

of the numerical results demonstrates that the approach is promising. However the

results on the 16 color example indicate the limitation of the induced graph approach

as the number of colors grows. We believe that there exists a road we did not explore

above with an induced graph that add weights on the edges of the graph according to
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the proximity of the colors, but the grouping of sites on such weighted graph is not

trivial.

The numerical results of Chapter 3 opens up new vistas regarding the calibration of

ABC algorithms. Our contribution could be especially interesting for statistical models

on high dimensional space for which ABC is the only solution available. Our work has

put this statement into perspective for hiddenMarkov random fields. The numerical

results in Chapter 3 highlighted that the calibration of the number of neighbors in

ABC provides better results (in terms of misclassification) than a threshold set as a

fixed quantile of the distances between the simulated and the observed datasets (as

proposed in Marin et al., 2012). Consequently, we pointed out that the shift from

posterior distribution regression to classification problem allows to reduce noticeably

the number of simulation required in the ABC reference table without increasing the

misclassification error rates. The latter represents an important conclusion since

the simulation of a latent Markov random field requires a non-negligible amount of

time. Even though the computational cost is cut down, ABC procedures remain time

consuming in comparison with methods based on approximations of the likelihood

and their relative efficiency in certain situations regarding Markov random fields

can barely justify the extra computational cost. However, mention that we run into

that problem because the computation of the summary statistics require to simulate

from the model. Following Moores et al. (2015), it would be interesting to see if

we could directly simulate the summary statistics which will reduce once again the

computational burden.

Other contributions of the present dissertation focus on possible block approxima-

tions of the Gibbs distribution. These approaches allow to circumvent the major

drawback of Monte Carlo approaches, namely their time complexity. As regards the

estimation of posterior model parameter, we have illustrated the important role con-

ditional composite likelihood approximations can play in the statistical analysis of

Markov random field, and in particular Ising and autologistic models in spatial statis-

tics, as a mean for overcoming the intractability of the likelihood function. In the

Bayesian setting, we proposed an adjustment of the mode and the curvature at the

mode of the posterior distribution as a way to correct the underestimated posterior

mean and variance resulting from the use of a composite likelihood. This work has

in particular pointed out that the main difficulty of such approaches is to handle the

misspecification induced by non genuine likelihood functions.

In a context of model section, we proposed to move towards variational methods and

in particular to use valid probability distributions in place of the intractable likelihood.

Our proposal is to consider a product of valid distributions over non-overlapping
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blocks of the lattice. Consequently, we derived Block Likelihood Information Criterion

to discriminate between hiddenMarkov random fields. According to the numerical

results of Chapter 4, the opportunity appears to be a satisfactory alternative to ABC

model choice algorithms.

Perspectives

The first aspect of a further work is to scale-up all our approaches/algorithms to

lattices of much larger size. Indeed, most of the results were carried out for regular 2D-

grid of 100×100 sites. The flexibility and the ability of the approach to handle larger
graph will play a decisive role in the design of useful methodology. The extension of

the present work is not restricted to the only issue of larger graphs but can also be

studied towards Gibbs random fields with larger number of parameters, such as the

exponential random graph model particularly interesting for the analysis of social

network. In the latter case, it could be interesting to adapt themethods of Chapter 2 to

the hidden case and to study its performance as regards inference on random graph.

Another possibility yet to be explored is the robustness of themodel choice approaches

to the noise process. As a motivation of the question, we observed the limitation of

the induced graph approach on the 16 colors example of Chapter 3 with a completely

disordered noise. For continuous noise model, we have made two assumptions. The

emission distribution was assumed to be first Gaussian and secondly conditionally

independent. Whilst the latter modelling is quite standard, it would be interesting

to further look noise process with heavier distribution tails such as the Student or

Cauchy distributions as well as noise process that includes spatial information.

Besides modelling and practical limitations, the dissertation has raised some other

questions. Our primary interest goes to the approximations of the Gibbs likelihood by

probability distributions that factorize over blocks of the lattice. The latter approach

offers an appealing trade-off between efficient computation and reliable results. Chap-

ter 4 has introduced a novel criterion which makes in its current version twomajor

approximations that are worth exploring. First mention, the choice of a particular

substitute is lead by any optimality conditions. From that viewpoint, the construction

of an optimal approximations regarding the variational free energy over the set of

probability distributions that factorize on blocks is yet to be studied. At first sight, the

existence of an explicit solution seems far from obvious. However it would be inter-

esting to study their possible relation with region-based approximations of Yedidia

et al. (2005). Their generalized belief propagation algorithms could give an estimate of

the Kullback-Leibler divergence solution to build up the intended optimal approxi-
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mations. Overall, variational methods, through the development of new calculation

means, may offers reliable solution for hiddenMarkov random fields.

The second level of approximations concerns the penalty term. The next step of our

work cannot be reduced to the sole aim of improving the quality of the approximations.

Through Chapter 4, we have seen that an optimal solutionwith respect to the Kullback-

Leibler divergence is not sufficient to ensure a good behaviour ofmodel choice criteria,

especially if the more complex model are not enough penalized. The penalty term

used is solely valid for independent variable. We have neglected the interaction within

a block, an assumption that slightly modified the number of free parameter. The

impact of dependence variables on the penalty term is a logical follow-up to our work.
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Résumé

La constante de normalisation des champs de Markov se présente sous la forme d’une intégrale hautement mul-
tidimensionnelle et ne peut être calculée par des méthodes analytiques ou numériques standards. Ceci constitue
une difficulté majeure pour l’estimation des paramètres ou la sélection de modèle. Pour approcher la loi a posteriori
des paramètres lorsque le champ de Markov est observé, nous remplaçons la vraisemblance par une vraisemblance
composite, c’est à dire un produit de lois marginales ou conditionnelles du modèle, peu coûteuses à calculer. Nous
proposons une correction de la vraisemblance composite basée sur une modification de la courbure au maximum
afin de ne pas sous-estimer la variance de la loi a posteriori.
Ensuite, nous proposons de choisir entre différents modèles de champs deMarkov cachés avec des méthodes bayési-
ennes approchées (ABC,Approximate BayesianComputation), qui comparent les données observées à de nombreuses
simulations de Monte-Carlo au travers de statistiques résumées. Pour pallier l’absence de statistiques exhaustives
pour ce choix demodèle, des statistiques résumées basées sur les composantes connexes des graphes de dépendance
des modèles en compétition sont étudiées à l’aide d’un taux d’erreur conditionnel original mesurant la puissance lo-
cale de ces statistiques à discriminer les modèles. Nous montrons alors que nous pouvons diminuer sensiblement le
nombre de simulations requises tout en améliorant la qualité de décision, et utilisons cette erreur locale pour con-
struire une procédure ABC qui adapte le vecteur de statistiques résumées aux données observées.
Enfin, pour contourner le calcul impossible de la vraisemblance dans le critère BIC (Bayesian Information Criterion)
de choix de modèle, nous étendons les approches champs moyens en substituant la vraisemblance par des produits
de distributions de vecteurs aléatoires, à savoir des blocs du champ. Le critère BLIC (Block Likelihood Information

Criterion) que nous en déduisons permet de répondre à des questions de choix demodèle plus large que lesméthodes
ABC, en particulier le choix conjoint de la structure de dépendance et du nombre d’états latents. Nous étudions donc
les performances de BLIC dans une optique de segmentation d’images.

Mots clefs: méthodes de Monte-Carlo, champs de Markov, statistique bayésienne, sélection de modèle, méthodes
ABC, vraisemblances composites.

Abstract

Due to theMarkovian dependence structure, the normalizing constant of Markov random fields cannot be computed
with standard analytical or numerical methods. This forms a central issue in terms of parameter inference or model
selection as the computation of the likelihood is an integral part of the procedure. When the Markov random field is
directly observed, we propose to estimate the posterior distribution of model parameters by replacing the likelihood
with a composite likelihood, that is a product of marginal or conditional distributions of the model easy to compute.
Our first contribution is to correct the posterior distribution resulting from using a misspecified likelihood function
by modifying the curvature at the mode in order to avoid overly precise posterior parameters.
In a second part we suggest to perform model selection between hidden Markov random fields with approximate
Bayesian computation (ABC) algorithms that compare the observed data andmanyMonte-Carlo simulations through
summary statistics. To make up for the absence of sufficient statistics with regard to this model choice, we introduce
summary statistics based on the connected components of the dependency graph of each model in competition. We
assess their efficiency using a novel conditional misclassification rate that evaluates their local power to discriminate
between models. We set up an efficient procedure that reduces the computational cost while improving the quality
of decision and using this local error rate we build up an ABC procedure that adapts the summary statistics to the
observed data.
In a last part, in order to circumvent the computation of the intractable likelihood in the Bayesian Information Crite-

rion (BIC), we extend themean field approaches by replacing the likelihood with a product of distributions of random
vectors, namely blocks of the lattice. On that basis, we derive BLIC (Block Likelihood Information Criterion) that an-
swers model choice questions of a wider scope than ABC, such as the joint selection of the dependency structure and
the number of latent states. We study the performances of BLIC in terms of image segmentation.

Key words: Monte-Carlo methods, Markov random fields, Bayesian statistics, model selection, approximate Bayesian
computation, composite likelihood.


