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Préambule

Cette thése comprend trois sujets différents, tous en rapport & des problémes de structures
électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.

Cette thése commence par une introduction générale présentant les problématiques et les
principaux résultats.

La premiére partie traite de la théorie de la fonctionnelle de la densité lorsqu’elle est appli-
quée aux modéles d’électrons avec spins polarisés. Cette partie est divisée en deux chapitres.
Dans le premier de ces chapitres, nous introduisons la notion de N-représentabilité, et nous
caractérisons les ensembles de matrices de densité de spin représentables. Dans le second cha-
pitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparait
dans les modéles comprenant une polarisation de spin. Le résultat d’existence qui est démon-
tré dans [AC09| pour des systémes de Kohn-Sham sans polarisation de spin est étendu au cas
des systémes avec polarisation de spin.

Dans la seconde partie, nous étudions I’approximation GW. Dans un premier temps, nous
donnons une définition mathématique de la fonction de Green a un corps, et nous expliquons
comment les énergies d’excitation des molécules peuvent étre obtenues & partir de cette fonc-
tion de Green. La fonction de Green peut étre numériquement approchée par la résolution des
équations GW. Nous discutons du caractére bien posé de ces équations, et nous démontrons
que les équations GW? sont bien posées dans un régime perturbatif. Ce travail a été effectué
en collaboration avec Eric Cancés et Gabriel Stoltz.

Dans le troisiéme et derniére partie, nous analysons des méthodes numériques pour cal-
culer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux
chapitres. Dans le premier, nous nous intéressons & ’approximation de Hartree-Fock réduite
(voir [CDLO08]). Nous prouvons que si le cristal est un isolant ou un semi-conducteur, alors
les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution
exacte lorsque la taille de la supercellule tend vers l'infini. Ce travail a été réalisé en collabo-
ration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode
numeérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent étre aussi bien
isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélére
les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancés, Virginie
Ehrlacher et Damiano Lombardi.



Preamble

This thesis contains three different topics, all related to electronic structure problems. These
three topics are presented in three independent parts.

This thesis begins with a general introduction presenting the problematics and main re-
sults.

The first part is concerned with Density Functional Theory (DFT), for spin-polarized
models. This part is divided in two chapters. In the first of these chapters, the notion
of N-representability is introduced and the characterizations of the N-representable sets of
spin-density 2 x 2 matrices are given. In the second chapter, we show how to mathematically
treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was
proved in [ACO09] for spin-unpolarized Kohn-Sham models within the local density approxi-
mation is extended to spin-polarized models.

The second part of this thesis focuses on the GW approximation. We first give a math-
ematical definition of the one-body Green’s function, and explain why methods based on
Green’s functions can be used to calculate electronic-excited energies of molecules. One way
to compute an approximation of the Green’s function is through the self-consistent GW equa-
tions. The well-posedness of these equations is discussed, and proved in the GW? case in a
perturbative regime. This is joint work with Eric Cancés and Gabriel Stoltz.

In the third and final part, numerical methods to compute band-diagrams of crystalline
structure are analyzed. This part is divided in two chapters. In the first one, we consider a
perfect crystal in the reduced Hartree-Fock approximation (see [CDLO08|). We prove that, if the
crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact
solution with an exponential rate of convergence with respect to the size of the supercell. This
is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method
to calculate the band diagram of a crystal (which can be either an insulator or a conductor).
This method, based on reduced basis techniques, speeds up traditional calculations. This is
joint work with Eric Cancés, Virginie Ehrlacher, and Damiano Lombardi.
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CHAPTER 1

INTRODUCTION

1.1 Hamiltonians describing systems of electrons

This thesis focuses on electronic structure problems. We describe a molecule by the non-
relativistic Schrodinger equation in the Born-Oppenheimer approximation. We are interested
in the quantum configurations of the electrons for a given nuclear arrangement. The behavior
of the electrons, from which one can deduce useful physical and chemical properties, is well-
modeled by an electronic Hamiltonian.

1.1.1 The Hamiltonian for spinless systems

In atomic units, the Hamiltonian describing a spinless system of N electrons is of the form

HN(V):ZN:< >+ZV1~1 Py

=1 1<i<j<N

(1.1)

z_r]|

where A; denotes the Laplacian operator with respect to the i-th spatial component. The
first term of (1.1) corresponds to the kinetic energy. The second term of (1.1) represents the
external potential. For molecular systems, this potential is the classical Coulomb potential
generated by the nuclei

M
= 1.2
i) "

where Ry, € R? denotes the location of the k-th nucleus and z, € N* its charge. We denote by
Z = Z,ivil zj the total nuclear charge of the system. The last term of (1.1) is the electron-
electron Coulomb repulsion. The Hamiltonian Hx (V') acts on the N-fermionic Hilbert space

N
/\LZ(RS,C) = {‘;[/ S LQ(R?’N,C), Vp € S, \I/<I‘p(1), ceey rp(N)) = e(p)\I/(I‘l, R ,I‘N>} ,
(1.3)
endowed with the natural L2(R3Y,C) inner product. In (1.3), Sy denotes the set of permu-
tations of [1,..., N], and €(p) the parity of the permutation p. The permutation condition
appearing in (1.3) is referred to as the Pauli principle, and comes from the fact that electrons
are fermions.

Theorem 1.1. Suppose that V is of the form (1.2) with N < Z, and let

N
D(Hy) := {\IJ e \L*(R?), AV € LQ(]R?’N)}
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where A denotes the Laplacian operator with respect to all 3N wvariables. Then the operator
Hy(V) with domain D(Hp) is self-adjoint, and its spectrum is as follows:

e the spectrum is bounded from below;

e there exists ¥y € R such that the essential spectrum of Hn(V) is oess(Hn(V)) =
[ZN7+OO);

e there exist an infinity of eigenvalues below X, which accumulate only at . All these
eigenvalues are of finite multiplicities [Zhi60);

o if N >2, then ¥ = EY _, (HVZ Theorem [Hun66, vW6/, Zhi60]).
f ) N-—1 Y ’

We denote by ES(V) < EA(V) < E%(V) < --- (or simply ES < EN < E% < --- when
no confusion is possible) the eigenvalues of Hy (V') below Xy, ranked in increasing order,
counting multiplicities. With this notation, ES,(V) is the ground state energy of Hy (V') (and
a corresponding eigenvector is called a ground state wave-function), and E¥ (V) is the k-th
excited state energy of Hy(V) (and a corresponding eigenvector is called an ezxcited state
wave-function). The spectrum of Hy is represented in Figure 1.1.

eigenvalues embedded in gegg

7N

| | | L
] ] ] [TTTT
E?V E]lv EJQV | Oess R

XN

Figure 1.1 — The spectrum of Hy (V).

The set of admissible wave-functions, also called the set of pure-states, is the set of nor-
malized wave-functions with finite kinetic energy, namely

N
Wy = {\IJ € /\LQ(RS,C)> 9] Le@msny =1, V¥ p2@sny < OO}’ (1.4)

where V is the gradient with respect to all 3N variables. With this notation, |¥|?(ry,...,ry)
represents the density of probability that the N (indistinguishable) electrons are located
at (ri,...,rn).

The ground state energy E?V(V) is also the solution of the minimization problem (we
adopt Dirac’s bra-ket notation)

E{(V) :=inf {(U|HN(V)|T), ¥ € Wn}. (1.5)

1.1.2 The Hamiltonian for spin-polarized systems

In this thesis, systems of electrons subjected to magnetic fields will also be studied. A good
model to describe such systems is the Schrodinger-Pauli Hamiltonian, which reads, in atomic
units,

N N
1 1
Hfull SP V A 2 : <2 |_ivi + A(I‘i)’2 + V(I‘z)> + E i HQ—,U E B(I'i)-az‘a
Py 1<icgen 11T T i=1
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where I5 is the 2 x 2 identity matrix, A is the external magnetic vector potential, and B :=
curl A is the external magnetic field. The constant p is the Bohr magneton (whose value
is 4 = 1/2 in atomic units). The B - o term in (1.6) is the Zeeman term, also called the
Stern-Gerlach term, where o; contains the Pauli matrices acting on the ¢-th spin variable:

0 1 0 —i 1 0
0 = (Uxiyayivazi): 1 0/°’\i 0/ ’\0 -1/ )°

The Schrédinger-Pauli Hamiltonian H{USP (V] A) acts on the N-fermionic Hilbert space

N
/\L2(R37C2) ::{\I](rlasla s rNasN) r; € Rgasi € {T?\L}v

Z / I‘1,81,...)|2d1‘1...dI‘N<OO,

1, )SNG{T \L}N
Vp e Sny U(Tp) sps- o) = ()1, 51, .. .)}.

endowed with the inner product

<\I»'1|\112> Z / \111 1‘1,51, . )‘IJQ(I'l,Sl,.. )dI’l d

(s1,sN)E{T N

Here r; € R? denotes the position of the i-th electron, and s; € {1, ]} denotes its spin.

In this thesis, we focus on a simplified version of the Schréodinger-Pauli Hamiltonian that we
describe now. Note that the external magnetic vector potential A in (1.6) acts on the spatial
coordinates of the electrons, while the magnetic field B acts on the spin of the electrons. These
two effects are of different nature, so that it is convenient to relax the constraint B = curl A,
and consider that the fields A and B are independent. Then, by setting A = 0, which amounts
to neglecting orbital magnetism effects, we find the simplified Schrédinger-Pauli Hamiltonian

N N
1 1
SP — E . ) _ E N . g E
HN (Vv B) = : <_2Az + V(rz)> HZ 2 : B(rl) o; + L ’ri _ I‘j‘}b’ (17)
i=1 i=1 1<i<j<N

which acts on A" L2(R3,C2). If the external potential V is of the form (1.2) and the magnetic

field B is in (L3/ 2(R3) + LOO(R?’))3 and vanishes at infinity, results similar to the ones of
Theorem 1.1 hold true [Gonl5a]. We denote by EX(V,B) < EL(V,B) < ... the eigenvalues
below the essential spectrum, ranked in increasing order and counting multiplicities. With
this notation, EY,(V,B) is the ground state energy of the system, and E%(V,B) is the k-th
excited state energy. As in (1.5), it holds that

E(V,B) := inf {<\If |HSP(V,B)| W), e Wf&’m} , (1.8)
where W]S\I,)in is the set of admissible spin-polarized wave-functions, defined by

N
W = {‘1’ € NL2R®,C?), 1] p2(s,comy = 1, [Vl 2me,c2pmy < OO} '

1.1.3 Problematics
As Dirac wrote in 1929 [Dir29],
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The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble.

This problem is now known as the curse of dimensionality, and refers to the fact that the
state space for problem (1.5) and (1.8) is of dimension 3N, where N is the total number of
electrons in the system into consideration. The state-space cannot be represented numerically
whenever the number of electrons is “too large”. Computing the solution of (1.5) for a small
system like the water molecule HoO (N = 10 electrons) is already unfeasible in practice. This
makes the full problems (1.5) and (1.8) impossible to tackle numerically for most systems of
interest.

The purpose of this thesis is to present some of the approximations that were proposed in
the last decades in the physics and chemistry communities to simplify these problems, and to
study the mathematical properties of the resulting models.

1.2 Density Functional Theory

1.2.1 Derivation of Density Functional Theory

We recall in this section how Density Functional Theory (DFT) is derived. Spin-unpolarized
DFT was introduced in 1964 by Hohenberg and Kohn [HKG64] and is a very popular tool in
modern quantum chemistry. The goal of Density Functional Theory (DFT) is to calculate
the ground state energy and the ground state density of an electronic system. It transforms
the high-dimensional linear problems (1.5) or (1.8) into a nonlinear low-dimensional problem.
While DFT has been extensively studied for spin-unpolarized or spinless Hamiltonians of the
form (1.1), its counterpart for spin-polarized Hamiltonian of the form (1.7) (with the Zee-
man term included) received much less attention. When spin is included, we use the name
“Spin-DFT”; or “SDFT”. We present SDFT by following the constraint-search approach by
Levy [Lev79], Valone [Val80] and Lieb [Lie83|. In this section we consider the Schrédinger-
Pauli Hamiltonian HYF (V,B) introduced in (1.7), and our goal is to solve (1.8).

The energy of an admissible normalized wave-function ¥ &€ WJS\I,)in is <\IJ ‘H]SVP(V,B)‘ \IJ>
By introducing the N-body density matrix I'y = |¥)(¥|, which is the orthogonal projector
onto {CU} in AV L2(R3,C?), this quantity is also equal to Tr [HYF (V,B)I'y]. The set of
pure-state N-body density matrices is

Gy = {ry, we Wy,
and (1.8) can be recast into
ER(V,B) = inf {Tr [H}"(V,B)I], T € GR"™}.

This is a minimization problem of a linear functional on a (bounded) set. It is therefore
natural to introduce the set of mized-state N-body density matrices G%lxed, defined as the
convex hull of G}, Naturally, it holds that

EY(V,B) = inf {Tr [HSF(V,B)[], T € GR°} = inf {Tr [HSP(V,B)T], T € G%ixed}.
(1.9)
For I' € G with Schwartz kernel I'(r1, s1,...,TN, SN;T), 8], ..., Ty, 8) ), We introduce the
spin-density 2 X 2 matrix
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where, for «, 8 € {1,1}?, we set
Pay=N Y / T(r,a.7,5x, 8,7, 5) d7. (1.10)
seftpyov-n R

The key-point of SDFT is to notice that, for I' € Gr]{}ixed, it holds that

V —uB, —puBy +ipBy
trea [(—NBJC —iuB, V4puB. )|
(1.11)

Note that the first term of (1.11) no longer depends on the external potential and field. In
the sequel, we denote by

Tr [HJSVP(V,B)F] =Tr [H]S\,P(oyo)p] +/

R3

V —uB, —,LLB;E—Fi,LLBy) (1.12)

U(V.B) := (—uBm —ipB, V +uB.

the matrix which contains all the external data. Let X represents either the word “pure” or
the word “mixed”. From (1.9) and (1.11), we get the so-called constrained-search equality

EY(V,B) = Fle%f {Tx [HYF (V,B)I']} :Rg}fx {/RS trez [U(V, B)R]+FX(R)}, (1.13)

where J3f is the set of (pure-state or mixed-state) spin-density 2 x 2 matrices, defined by
JN = {Rr, T €GN}, (1.14)
and the function FX is defined by the formula
FX(R) == inf {Tr [HY'(0,0)T], I € GX, Rr = R}.

Let us compare (1.8) with (1.13). Problem (1.8) is linear, but suffers from the curse of dimen-
sionality, while (1.13) is a minimization problem on a low-dimensional space, but is nonlinear.
The name SDFT comes from the fact that (1.13) is the minimization of a functional which
depends only on the spin-density 2 x 2 matrix R.

In order to solve (1.13), one needs a closed expression for both J3 and FX. Character-
izing the sets Jy° and Ji*d is the N-representability problem, and will be discussed in
Section 1.2.2. As far as F'X is concerned, there is no convenient formula for it. Actually, it
was proved that there exists potentials V such that the calculation of E%(V,0) at a polyno-
mial accuracy is QMA!-hard [SV09]. This implies that the calculation of FX at a polynomial
accuracy is also QMA-hard. Fortunately, there exist very good computable approximations
of FX that give results in good agreement with physical experiments for most interesting
physical systems. We will discuss one of these approximations in Section 1.2.3.

1.2.2 The N-representability problem

The N-representability problem is concerned with the characterization of the sets JN™
and J2ed defined in (1.14). The first results on the N-representability problem were given
by Gilbert |Gil75]|, Harriman [Har81| and Lieb [Lie83]. In these articles, the authors only
considered the spin-unpolarized case, which amounts to setting B = 0. In this case, it holds
that

tre2 [U(V, 0)R] = Vg,

1QMA stands for Quantum Merlin-Arthur. QMA-hard is the quantum version of NP-hard.
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where pr = pg + p% is the total electronic density. In the sequel, we denote by pr = pr. = pr

when no confusion is possible. The constrained-search method (1.13) in this case can be recast
into

EX(V,0) = inf {/Rs Vp+F1X(p)},

X
pELN

with
In = {pr, T € Gy} and Ff(p) =inf {Tr[Hy(0,0)T], T € G, pr =p}.

The N-representability problem in the spin-unpolarized case is therefore concerned with the
characterization of ZJI\),ure and of Ijr{}ixed.

Theorem 1.2 (Gilbert, Harriman, Lieb). For all N € N*, it holds that

I}ifure _ I]r{[ﬂxed — IN = {p c LI(RS) N L3(R3)’ ) > 0’ /R3 p= ]\77 \/ﬁ S Hl(Rg)} . (1.15)

When the magnetic field is not null, we need to characterize the sets Jy"° and J, ]r\?ixed
defined in (1.14). This problem was addressed, but left open, in the work by von Barth and
Hedin [vBH72|. In the sequel, Mayo(FE) denotes the set of 2 x 2 matrices with coefficients in

the Banach space E. We introduce

tr(cz [R] = N, \/E S MZXQ(HI(R37C))}a
(1.16)

e i= {R € My LB, R = R R 20, [
R

and C% := {R € Cy, det R =0}. In Chapter 2, we following theorem is proved.

Theorem 1.3 (DG).
Case N = 1: It holds that

JPe=c) and Jrt =
Case N > 2: For all N > 2, it holds that
j]{)[ure — j]I\lfiiXed — CN-

Since G% is convex and the map I' — Rp is linear, we deduce that the set Cy defined
in (1.16) is convex (which is not obvious from its definition). Comparing (1.15) and (1.16),
we see that Theorem 1.3 is a natural extension of Theorem 1.2.

Representability with paramagnetic-current.

The version of DFT dealing with both charge and current densities is called Current-(Spin)-
DFT, or C(S)DFT [VRS88]. For ' € G'*¢d  we introduce the paramagnetic current jr = jlt—i—jliﬂ
where

Vaoe{t,l}, jt=Im [N > / VoD(r,a,Z, 81, a,Z,5)| dZ
seqt Nt TR e

This current appears when performing the constrained-search method (see (1.13)) on the
full Schrédinger-Pauli Hamiltonian HWSF (V] A) defined in (1.6). More specifically, let us
assume that A is smooth enough so that the domain of HY"-SP(V, A) is exactly the one of
HUSP(V.0). The constrained-search method in this case leads to

‘ 2

A
E%(V,A) = inf {/ <tr(cz [UR,B)R]+ —p+ A .j> + F2X(R,j)},
(Rj)ekX LJr3 2
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where U(V,B) was defined in (1.12),
Kx = {(Rr.,jr), T € Gx}
is the set we would like to characterize, and
F5 (R, ) = inf {Tr [HF'5F(0,0)T] , T € Gy, (Rr.jr) = (R.J)},

is an unknown functional. In C(S)DFT, the N-representability problem is concerned with
the characterization of X" and IC]m\,ixed. Giving an exact expression is known to be very
difficult, but to give (mild) sufficient conditions for a pair (R, j) to be representable is possible.
In [LS13], Lieb and Schrader studied the spin-unpolarized case, and gave such conditions for
the representability of a pair (p,j), where p is the total electronic density. They proved the
following result, valid for N > 4. Recall that Zyy was defined in (1.15).

Theorem 1.4 (Lieb, Schrader). Suppose N > 4. A sufficient set of conditions for a pair
(p,j) to be pure-state N-representable is that, on the one hand,

pE€In, pli* e L'(R?), (1.17)
and that, on the other hand, there exists & > 0 such that

sup )2 (|w(r)| + [Vw(r)]) < oo, (1.18)

where w := curl (p~'j) is the vorticity, and f(r) := (14 (r1)?)(1 + (r2)2)(1 + (r3)?).

The conditions in (1.17) are necessary conditions, and the condition (1.18) is very mild.
By adapting their proof to the spin-polarized case, we were able to prove a similar result,
under the condition N > 12 (see Chapter 2). Recall that Cy was defined in (1.16).

Theorem 1.5 (DG). Suppose N > 12. A sufficient set of conditions for a pair (R,j) to be
pure-state N -representable is that, on the one hand,

ReCy, ppllil* € L'(R?),
and that, on the other hand, there exists § > 0 such that

sup )2 (w(e)] + [Vw(o)]) < oo.
reRs3

1.2.3 The Local Spin-Density Approximation

We now turn to the question of how to approximate the functional FX (R) appearing in (1.13).
In this thesis, we consider the approximation of F™*¢d(R). In spin-unpolarized models, the
first successful approximation, called the Local Density Approzimation (LDA) was introduced
by Kohn and Sham [KS65], and is still broadly used nowadays. While in their article, the
authors gave some clues on how to adapt their method to spin-polarized systems, the corre-
sponding theory was pioneered by von Barth and Hedin [vBH72| and is known as the Local
Spin-Density Approximation (LSDA).

For a mixed-state I' € G%ixed, we introduce the corresponding one-body spin-density
matrix
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where

V?B(r,r') =N Z / [(r,«o,Z 57, 3,%,5)dzZ. (1.19)
sy TR

Comparing (1.10) and (1.19), we see that Rp(r) = 7r(r,r), so that Rp depends on T' only
through ~r. We will write R, instead of Rr when no confusion is possible. Likewise, the total
electronic density of a state I' € GR*°d will be denoted by pr = pr = p,.

The set of mixed-state one-body spin-density 2 X 2 matrices is
Py = {yr, [ € Guixedy,

Identifying the kernel (r,r’) with the corresponding operator of S(L?(R3,C?)), where S(H)
denotes the set of bounded self-adjoint operators acting on the Hilbert space H, Coleman
[Col63] proved that

Py = {7 € S(L*(R*,C?)), 0< v <1, Tr(y) = N, Tr(—Ay) < oo}

Physically speaking, this is the set of one-body density matrices of systems with N-electrons
(Tr(y) = N), satisfying the Pauli principle (0 < ~ < 1), and with finite kinetic energy
(Tr(—A7) < 00). In a similar way, we can define, for A > 0,

Py i= {7 € S(IARY,CY), 0< 7 <1, Te(y) = A, Te(—-Ay) <oo}.  (1.20)
We also define
Joxed .— (R yePy\} and IPdi={p  ~yeP}.

The sets J. /{mxed and I;\“ixed have expressions similar to 7, ]I\}lixed and I}{}i"ed (see Theorem 1.5
and (1.15) respectively). The idea of Kohn and Sham [KS65], then adapted by von Barth and
Hedin [vBH72] to the spin-unpolarized setting, is to split F™*¢d(R) into three contributions

Frixed(RY — Tis(R) + J(pr) + Exe(R). (1.21)

The first term Tkg represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

i 1
VR € Jped, Tig(R) = inf {QH (“A9), 7€ Py, Ry = R} |
The second term of (1.21) is the Hartree term, defined by

i 1 p(r)p(r')
Vpe Iy J(p) = - L dr
pE A ) (p) 2//R3><R3 |I’—I‘l‘ rdr
Finally, the last term of (1.21) is the exchange-correlation functional defined by
Exe(R) := F™*(R) — Tis(R) — J(pr).

Since F™ixed j5 a non-explicit functional, Ey. is also a non-explicit functional. It is however
possible to construct explicit approximations of Ey. giving rise to accurate predictions for
the ground state energies of most molecular systems [ED11]. In the Local Spin-Density
Approximation derived by von Barth and Hedin [vBH72], it reads

1

Exe(R) ~ B2V (0", p7) =

[ELPA(20") + ELPM(207)], (1.22)
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where pt/~ are the two eigenvalues of the spin-density 2 x 2 matrix R, and ELPA is the
standard LDA exchange-correlation functional in the spin-unpolarized case [KS65], of the
form

BPNp) = [ glole)ar. (123
For all p € RT, the real value g(p) is an approximation of the exchange-correlation energy
density of the uniform electron gas with density p. Several functions g are available (VWS
[VWNS&O0], PZ81 [PZ81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic
conditions for low and high densities. The minimization problem (1.13) with the approxima-
tion (1.22)-(1.23) can be rewritten, using one-body density matrices, as a variational problem
of the form

ES :=inf{&(7), v € Pa}, (1.24)

where

1 1
— _AA~ATT - A~ LSDA, + —
8(7)—2Tr( Ay >+2Tr< Ary >+J(p7)+/Rgtr@z [UR,) + EXSPA (o po).

We recall that the 2 x 2 matrix U contains all the external data, i.e. the electric potential V'
and the magnetic field B (see (1.12)). The physical situation corresponds to A = N € N, but
as usual in variational problems set on the whole space, it is useful to relax the constraint
Tr(vy) € N to allow the particles to escape to infinity.

The spin-unpolarized model corresponds to the situation where we impose v to satisfy
AT = ~H and 4™ = A" = 0. The resulting model was studied mathematically by Anan-
tharaman and Cances [ACO09].

In Chapter 3, we prove the following theorem.
Theorem 1.6 (DG). Under the following assumptions
1/ the function g in (1.23) is of class C1(R*) and satisfies:

(9(0) =0
g <0
_ 2 9'(p)]

J0< B <pT <, sup 0t 1.25

3" per+ PP+ 07 129
3
Jl1<a< -, limsup@ <0,
p—0t P

2/ all entries of U are in Lg“(Rg) + L% (R3) and vanish at infinity, and V := trc2(U) has
the form (1.2),

the problem EY defined in (1.24) has a minimizer whenever A < Z.

This theorem is a generalization of the spin-unpolarized result [AC09]. In particular, the
conditions (1.25) are the ones found in [AC09|. These conditions are satisfied for the usual
choices of g mentioned above.

1.3 The GW approximation

The fourth chapter of this thesis is concerned with the GW approximation.? This method was
introduced by Hedin [Hed65, HL70] and is a very successful method to calculate electronic-
excitation energies for finite systems, or band gaps for crystalline structures. Together with

2GW is not an acronym: G denotes the Green’s function and W the screened Coulomb operator.
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Eric Cancés and Gabriel Stoltz, we gave a rigorous definition of the operators involved in the
GW formalism, we reformulated the so-called GW? equations, and proved the existence of a
solution in a perturbative regime.

While the density functional theory introduced in the previous section works well to cal-
culate ground state energies, it fails to predict excitation properties of molecules, such as the
electronic-excitation energies. In order to calculate such quantities, several approaches have
been considered in the last decades [ORR02|. Among them are the time-dependent DFT
(TDDFT) [MMNT12, MUNT06], wave-function methods [HJO14] such as Coupled-Cluster or
full-CI, and Green’s function methods. The GW method is part of the last category.

From now on, we work with spinless systems for simplicity: our starting N-body Hamil-
tonian is the one in (1.1).

1.3.1 Electronic-excitation energies and Green’s functions

Let us consider an N-electron system modeled by a Hamiltonian of the form (1.1). We perform
the following experiment (called angle-resolved photoelectron spectroscopy, or ARPES):

e we start from the N-electron system in its ground state, with energy E?\,;
e we give the system some energy (photons) in order to rip an electron off.

After this experiment, we expect the system to relax in either the ground state or an excited
state of the corresponding (N — 1)-electron system (see Figure 1.2).

R

(HVZ theorem)

System with N particles

electronic excitation

- e
- R

System with N — 1 particles ES | EX | Sy

Figure 1.2 — Schematic view of an electronic excitation (here, loss of an electron). The system
in the ground state of Hy (V') goes to an excited state of Hy_1(V).

One can also consider the experiment where the system absorbs an electron, and releases
energy. With the notation introduced after Theorem 1.1, the quantities we would like to
evaluate are

ES — EJ]%H (zain of an electron) and ES — E% | (loss of an electron), (1.26)
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called the electronic-excitation energies of the system. The electronic-excitation energies differ
from the optical-excitation energies, which are quantities of the form E?V — Efv (same number
of electrons). Note that we neglect the effects due to the relaxation of the nuclei: we impose
the external potential V' to be the same before and after the experiment.

We suppose in the sequel that V' is of the form (1.2) with N > 2. We also make the
following additional assumptions (we denote by EY,, := inf o(Hy41)):

e the ground state E?V is a simple eigenvalue of Hy ;

e stability condition:® it holds | 2E% < E?\H_l +ES .

The first assumption is a very standard one. The second assumption states that the ionization
energy EJO\,_1 — E?V > 0 is strictly greater than the affinity energy E?V — E?\H-l > 0. It will
be useful to “link” the problems with N 4+ 1, N and N — 1 electrons. We denote by \119\, the
(real-valued) ground state of Hy.

In order to compute the electronic-excitation energies, we introduce the following natural
sets

S, :=0(Hny1 — EY) (particle electronic-excitation set)

Sy :=0(E{ — Hy_1) (hole electronic-excitation set).

These sets are linked to the so-called particle and hole one-body Green’s functions, that we
define now. Since we are working with a variable number of electrons, it is natural to work
in the Fock space

0 N
Fo @, e H=C M= PO, Hy— AH
N=0

The creation and annihilation operators af and a are bounded operators from #; to B(F),
where B(FE) denotes the space of bounded operators from the Banach space E into itself.
They satisfy

Vo e Hi, YNeN, al(¢): Hy — Hny, ald): Hyi — Hy, a'(¢) = (a(¢))*,

and the expression of a is given by
Vo € Hi, Y¥y € Hp, (a(¢)]‘~I/N>)(r1, c o TN_1) = \/ﬁ/d o(r)UnN(r,ry,...,ry_1)dr.
R

When the creation and annihilation operators are evaluated on \I/?V, we obtain the operators

Aj_: 7'[1 — HN—}—I and A_ 7‘[1 — ,H]\Lfl
foo= d(Hey) fooma(f) ey

They satisfy A% € B(Hi,Hn+1) and A_ € B(H1,Hn—-1). The adjoint of A_ is denoted by
A* and the one of A% is denoted by A, := (Aj_)* The one-body particle Green’s function
G} and hole Green’s function Gy, are functions from the time domain R to B(#1), defined by

(1.27)

VreR, Gp(r):= —i@(T)A+e_iT(HN+1_E?V)A*+ (particle), (1.28)

3The question “Is the stability condition always true for Coulomb systems?” is an open problem [BDS14,
Part VIIJ.
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and
Vr€R, Gu(r) :=10(—7)A* TIN1=FR) A (hole). (1.29)

Here, © denotes the Heaviside function. Let us give a physical interpretation of the one-body
particle Green’s function Gp,. From (1.27) and (1.28), we obtain

nyg S Hl, <g ’Gp(’i')‘ f> = —1@(7—) <\I/9V ’a(g)e_iT(HN-FI_EJOV)aT(f)’ \Ij?v> 7

which can be read as follows. We first start from the ground state with N electrons \IIS)V. We
then add an electron in the “orbital” f, and let the system evolves with its N 4 1 electrons
for some time 7 > 0. Finally, we remove the electron in the “orbital” g, and measure how
close we are from the initial ground state \IIS)V. A similar interpretation can be given for the
one-body hole Green’s function.

The Green’s functions are fundamental quantities in many-body perturbation theory. The
hole Green’s function contains a lot of useful information about the electronic system. For
instance, by introducing the one-body density matrix ’y?\, € B(H1) with kernel

A, r’) =N . T (r,ro, -, rn) U (r, ro, -, ry)dry - - - dry,
R3(N -

it can be checked that 7]0\7 = —iGL(07) = A* A_. As a consequence, the electronic ground-

state density

2
PX(r) =N ‘\Ilg]v(r,rg,~-- ,rN)‘ dry---dry =A% (r, r)
R3(N-1)

is a quantity encoded in the hole Green’s function. The ground state energy E?V can also be
recovered from the hole Green’s function via the Galiskii-Migdal formula [GM58]:

1 d . 1

Finally, it is possible to extract the particle and hole electronic-excitation sets from the Green’s
functions. To see this, we time-Fourier transform G|, and Gy,. We use the following normal-
ization for the time-Fourier transform:

T:o] . (1.30)

Vf e LY(R,E), F Banach space, [Frf](w)= J?(w) = o (1) e“T dr.

—00

From the following equality, which holds in the negative Sobolev space H !(R) for instance,

O(w) = T + ip.v. <i> : (1.31)

where p.v. is the Cauchy principal value and dqg is the Dirac distribution at the origin, we
obtain

_— 1 0
= A.p.v. A* —i (1A, PHN1—EN A% in H YR,
G ey ('_(HN+1—E?V)> * 1(7r * " +) m (Ro, B(#1)),
(1.32)

and

1
-— (B} —Hyn—

é; = AtpV < )> A_ +1 (WA*_PE?V_HN_lA_) in H_1<Rw78(7'l1>)7

(1.33)
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where we denoted by PH := 1,(H) the spectral projection on the Borelian b € %(R) of the
operator H (here #(R) denotes the Borel o-algebra of R). In the sequel, if A is a bounded
operator on Hi, we denote by Re A := %(A + A*) its self-adjoint part (or real part), and by
Im A := (A — A*) its skew-adjoint part (or imaginary part).

From (1.32) and (1.33), we see that the electronic-excitation sets Sy, and S}, are linked to
the imaginary part of the Green’s functions (also called spectral functions, up to a multiplica-
tive factor). More specifically, it holds that

S, C Supp <Im é\p) and S, C Supp (Im é\h) .

From this we deduce two facts. First, we can indeed recover the electronic-excitation
energies from the (time-Fourier transform of the) Green’s functions. Then, we expect both G},

and é; to be highly peaked (they are irregular distributions) which makes the mathematical
analysis cumbersome and the numerical approximation of these operators quite difficult.

1.3.2 Analytic continuation and chemical potential

In order to work with more regular objects, we consider the analytical continuations of (/}'\p
and é; in the complex plane. To give a flavor of the tools used to perform such an analytical
continuation, we recall the Titchmarsh’s theorem [Tit48| in its simplest form. In the sequel,
we denote by U := {z € C, Im(z) > 0}, and by L := {z € C, Im (2) < 0} the (strict) upper
and lower half complex planes respectively. The Laplace transform of a function f € C2°(R)
is?

VzeC, f(z /f )el#dt.

It can be extended in some distributional sense.

Theorem 1.7 (Titchmarsh’s theorem in L2(R) [Tit48]). Let f € L%(R) and let f € L2(R) be
its time-Fourier transform. The following assertions are equivalent:

(i) f is causal (i.e. f(t) =0 for almost all T <0) ;

(ii) there exists an analytic function F in the upper half-plane U satisfying

+o0o
sup </ |F(w —l—in)]?dw) < 00

n>0 —00
and such that, F(- +in) — f strongly in L*(R), as n — 07 ;

If these assertions are satisfied, then the function F' in (i) is unique, and coincides with the
Laplace transform f of f.

This theorem states that the function f (which may be irregular) has a regular analytic
continuation f in the strict upper half-plane U, and that we can indeed recover f from f. A
similar theorem holds true for anti-causal functions (i.e. f(¢t) = 0 for almost all ¢ < 0) by
changing U into L.

4The Laplace transform is usually defined as

F(p) = / T predr.

Our definition, which is better adapted to our setting, amounts to setting z = ip.
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In our case, the Laplace transforms of G|, and Gy, are respectively given by

1
z— (Hy41 — EY)

1
i A_.
z — (EN — HNfl)
(1.34)
They are analytic functions on U and L respectlvely However, from (1.34), we see that we

vz e U, a;)(z) = AL AL and Vzel, a;l(z) = Al

can extend the domain of analyticity of G and Gh to C\ Sp and C \ Sy respectively (see
Figures 1.3 and 1.4).

analytic continuation /- T T W T T T
——+H
[ Bepy — B :

Figure 1.3 — The continuation of GNP(Z)

Figure 1.4 — The continuation of al(z)

From the stability condition, it holds E?V — E?\,_l < E?V 11— E?V. We define the total
Green’s function G(z) by (see Figure 1.5)

V2 e UULU(EY — EX_1, EXy — EX),  G(2) := Gp(2) + Gu(2). (1.35)
We introduce the chemical potential p, which is any real number satisfying
EY —EY_  <u<EYy —EY. (1.36)

In the sequel, we will only work with the operator-valued regular function w é(u + iw).
This function has very nice properties, both in term of regularity and integrability, and it
contains the same information as Gy, and G}, altogether. The goal of the GW method is to
provide a computable approximation of this function.

o+ iR ]

Figure 1.5 — The domain of analyticity of é(z)

Let us conclude this section by identifying the Green’s function in the case of a non-
interacting system. Let

1
h1:—§A+‘/1
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be a one-body Hamiltonian, and consider the mean-field N-body non-interacting Hamiltonian

N N 1
H07N = Zeri = Z <_2A1‘i + ‘/i(rz)) .
=1 =1
We assume that h; has at least N negative eigenvalues ¢ < 9 < ... < ey, counting

multiplicities, and that ey < eyy1, where ey is either the (N + 1) eigenvalue of hy if it
exists, or the bottom of the essential spectrum of h; otherwise. This fact implies both that
the ground state E&N of Hy n is simple (with E87N =e¢e1+...+epn), and that the stability
condition is satisfied for the non-interacting system, since

Eg,N - E87N,1 =EN <EN+1 = Eg,N+1 - E8,N'
We denote by pg the chemical potential of the non-interacting system, i.e. any real number
satisfying
eEN < o < EN41- (1.37)
Finally, the H;-orthogonal projection on the occupied states is denoted by

N
W = Tmooge) (1) = > dk) (xl, (1.38)
k=1

where {¢y}; <<y is an orthonormal family of (real-valued) eigenfunctions of h; correspond-
ing to its lowest eigenvalues: hi¢y = er¢r. The one-body particle, hole and total Green’s
functions Gop, Gon and Gg of the non-interacting system have properties similar to the ones
of the interacting system.

Lemma 1.8. It holds

VreR, Gop(r)=—i0(7) (787N)L e ™ and  Gon(r) = iO(—T)Y0 ye M. (1.39)

)

The analytic continuations of their Laplace transforms, é?;; and é;ﬂl are respectively

0
Yo,N

1
—_ (’78,]\[) ——
Vze C\ (en41,0), Gop(z) =-——"—, and VzeC\(—o0,en), Gon(z)= p——
—

z — hl ’
The total Green’s function of the non-interacting system is, in the complex frequency domain,
Vz e UULU (en,ent1), Go(z) = (z—h1)7L. (1.40)

The Green’s function for the non-interacting system is simply the resolvent of the corre-
sponding one-body operator hj.

1.3.3 The self-energy operator

By analogy to the non-interacting case (1.40), we define the one-body dynamical Hamilto-
nian H(z) as

V2 e UULU (EY — E%_ 1, EXoq — EX), H(2)=z2-G(2)7,

so that G(z) = <z - H (z)) . The following lemma shows that this definition indeed makes
sense.

Lemma 1.9. For any z € UULU (B}, — EX_,), B}y, — EY), the operator H(z) is a well-

defined closed operator on My, with domain D(z), where D(z) is dense in Hy and D(z) C
H?(R3,C).
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For each complex frequency z, H(z) may have (complex) eigenvalues. Such an eigenvalue
is called a quasi-energy, and a corresponding eigenvector is called a quasi-particle.

We finally link the one-body non-interacting Hamiltonian with the one-body dynamical
Hamiltonian. To do so, we assume that the chemical potentials p and po defined in (1.36)
and (1.37) respectively can be chosen equal. In this case, we can define the self-energy 3 on
the imaginary axis p 4 iR by the Dyson equation

VweR, N(u+iw):= H(u+iw) —hi = Go(p+iw) ' — G(u+iw)™"  (Dyson equation).

(1.41)
The self-energy can be defined on a larger domain, but its definition on p+ iR will be enough
for our purpose. Note that the Dyson equation defines the self-energy, and that the self-energy
depends on the choice of hj.

The road-map of the GW method is as follows:

e Construct a good one-body mean-field Hamiltonian h;. In the original article by
Hedin [Hed65], h; is the Hartree model, solution of the self-consistent equation

1
h1 :—%A‘FV‘FP&N*W,
(1.42)

,087N density of 78,N = 1 (oo o) (P1).

We refer to [Sol91]| for a mathematical analysis of this model.

e Construct an approximation of the self-energy: “GW (y + i-) &~ %(u + i-). To construct
such an approximation is the topic on the next section.

e Define the approximation of the Green’s function GSW(u + i-) via the Dyson equa-
tion (1.41).

1.3.4 The Hedin’s equations, the GW equations and the GW’ equations

The definition (1.34)-(1.35) of the Green’s function G is not usable in practice, for it neces-
sitates to compute quantities which suffer from the curse of dimensionality (for instance the
resolvent of Hyy1 — E?V) Fortunately, it turns out that G satisfies a set of self-consistent
equations, called the Hedin’s equations. These equations were introduced by Hedin in its
pioneering article [Hed65]. They were derived from physical considerations, using many-body
perturbation theory. The derivation of Hedin is beyond the scope of this thesis, and is not
well-understood mathematically speaking.

We denote by 1 := (r1,t1), 2 := (re,t2), etc. a space-time point. The space-time point
17 is (ry, tf), where tf is a time strictly after ¢1, but infinitesimally close to t;. The notation
d1 stands for drid¢;. A space-time operator A has a kernel A(12) = A(ry,t1;r2,t2), and all
operators that we will consider satisfy the relation A(12) = A(r1,0;ra,t2 —t1) := A(ry,ro;7)
where 7 = to — t;. We denote by A(7) the operator with kernel A(ry,re;7). The Hedin’s
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equations read as follows [Hed65]:

‘ The Hedin’s equations ‘

G(12) = Go(12) + / d(34)Go(13)5(34)G(42) (Dyson equation)
$(12) = i/d(34)G(13)W(41+)P(32; 4) (Self-energy)
W12) = v(12) + / d(34)0.(13) P(34)W (42) (Screened interaction)
P(12) = —i / d(34)G(13)G(417)1'(34; 2) (Irreducible polarization)
P(12:3) = §5(12)5(13) + / A(4567) gégiga(m)c;(m)r(m; 3) (Vertex function).

Here, v, represents the Coulomb operator, with kernel

1

Uc(lz) = Uc(rlvrQ)(sO(T) = m

do(7)- (1.43)

As we can see, the Hedin’s equations involve a lot of operator-valued functions. Some
of them are well-defined, and some of them are not well-understood mathematically. In
particular, it is unclear in what sense the partial derivative

%(12)
9G(45)

(1.44)

is taken. In practice, it turns out that this term may be neglected for most interesting systems.
To set it to 0 leads to the GW equations, also introduced by Hedin in the same article.

‘The GW equations‘ Find G%W solution to the system

GWV(12) = Go(12) + / d(34)Go(13)2%WV(34)GEW (42) (1.45a)
»OW(12) =iV (12)wEW(21H) (1.45b)
WEWY(12) = v.(12) +/d(34)vc(13)PGW(34)WGW(42) (1.45c¢)
PV (12) = —igWV(12)G%W(211) (1.45d)

The name “GW” comes from (1.45b). These equations are usually solved self-consistently.
In Chapter 4, we focus on the GW? equations, which adds an extra simplification. The GW?
equations are obtained by setting WEW ~ WO, where W9 is the screened interaction in the
random phase approzimation (RPA).

The GW' equations| Find GV’ solution to the system

GV (12) = Go(12) + / d(34)Go(13)2V (34)GWV° (42) (1.46a)
ROV (12) =iV (12)Ww0(211) (1.46b)

In Chapter 4, we transform the GW? equations (1.46) into formally equivalent equations
having better properties, and we study the resulting equations.
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The kernel-product of operators

The GW? equation (1.46b) is of the form C(12) = A(12)B(21). The Schwartz kernels of the
operators A and B are multiplied. It is unclear that such a definition makes sense, as the
multiplication of two kernels is not, in general, the kernel of a well-defined operator. We need
to clarify the meaning of such a multiplication.

We start with time-independent operators. Let A € B(H1) and B € B(H;) have ker-
nels A(r,r’) and B(r,r’) respectively. We would like to define the operator C' with ker-
nel C(r,r') := A(r,r")B(r',r). Formally, it holds that, for f,g € Hi,

il = [ [ Fwctaae)asal = [ ] G B drar
R3 JR3
= Try, (AgBf). (1.47)
This motivates the following definition.

Definition 1.10 (kernel-product). The kernel-product of A € Hi and B € H; is the opera-
tor C := A ® B, if it exists, defined by the sesquilinear form

Vf,g€Hi, (fIC|g) = Try, (AgBYf).

In practice, the well-posedness of the kernel-product A ® B is given by results similar
to the following lemma. In the sequel, we denote by & (H) the k-th Schatten class of the
Hilbert space H ; &1(H) is the set of trace-class operators on H, and So(H) is the set of
Hilbert-Schmidt operators on H.

Lemma 1.11. If B € B(H1) is such that, for all f,g € Hi, the operator gBf is Hilbert-
Schmidt (i.e. in the Schatten class Sa(H1)), with

E|I(B € R+7 \v/fag € Hlv HQB?HGQ(HQ < KBHgHHleHHl?
then, for all A € B(H1), the operator A ® B is a well-defined bounded operator on H1, and

1A ® Bllga,) < KBllAllBe3)-

Reformulation of the GW? equations
After some manipulations, that we do not describe in this introduction, we were able to show
that the GW? equations (1.46) are formally equivalent to the following equations.

The -new- GW equations

Find GEW° (4o + 1) € L2(Ry, B(H1)) solution to the system
2 Yy

—1
GV (1o + iw) = [Mo +iw — <h1 + BOW (g + iw))] ,

(GW?) (1.48)

I
NOW (g 4 iw) = K, — 2/ GOV’ (g +i(w + w')) © WO(iw') du/,
™ —0o0
where hy is the one-body Hartree operator defined in (1.42), and K, is the operator with
kernel 0 .
VO,N(ﬂ r')
v — /|

K.(r,r') = — (1.49)
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The first equation of (1.48) is the Dyson equation (1.41). The right-hand side of the sec-
ond equation of (1.48) contains two terms. The first one K is the Fock operator (the one

that we find in Hartree-Fock models), and the second one involves the operator W2, which is
the correlation part of the screened interaction (we do not define this operator in this intro-
duction, and refer to Chapter 4, Section 4.4.2). Note that the convolution is performed on an
imaginary axis. The fact that this convolution is equivalent to the time-multiplication (1.46b)
comes from the so-called contour deformation technique introduced first by Rojas, Godby and
Needs [RGN95| (see also [RSWT99]).

Seeing the RPA screened operator wo = ve + W9 as a dynamical screened Coulomb

operator, the GW approximation can be interpreted as a dynamical version of the Hartree-
Fock model.

1.3.5 Well-posedness of the GW’ equations in a perturbative regime

The main results of Chapter 4 is concerned with the study of the GW? equations (1.48).
Together with Eric Cancés and Gabriel Stoltz, we first proved that the kernel-product of the
first equation indeed makes sense.

Lemma 1.12. For all G®P(ug + i) € L?(R,B(H1)) and all w € R, the operator

+oo

e (o +iw) =~ [ Gy +i(w + W) © W(iw') du

is a well-defined bounded operator on H;.

Unfortunately, we were not able to fully analyze (1.48): we did not find mathematical
evidence that the operator pg + iw — (hl + ggp/P(uo + iw)) should be invertible at each step

of a self-consistent algorithm. We therefore studied the GW? equations in a perturbative
regime. For A > 0, we introduce

The GWY equations

Find GEWX e L2(R, B(#,)) solution to the system

-1
GOW (o + iw) = [uo +iw — <h1 +AREWR (g + iw))] ,

1 [t
SOWR (o + iw) = K, — Dy GOV (1o +i(w + o)) © WO(iw') du,
—0o0

(GWY) (1.50)

The case A = 0 corresponds to the non-interacting system: GGW3=o (po +i-) = az)(,uo +1i-).
The parameter A can be seen as a coupling constant for the two-body interaction between
electrons. We proved the following existence and unicity result.

Theorem 1.13 (Eric Cancés, DG, Gabriel Stoltz). There exists A\x > 0 such that, for all

0 < A < ., there exists a unique solution GV (g + i-) € L*(R, B(H1)) to (1.48) which is
close to Go(po +1i-) in L3(R, B(H1)).
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1.4 Numerical simulation of crystalline structures

The last part of this thesis concerns the numerical simulation of perfect crystals. A perfect
crystal is characterized by a lattice R of R? and an R-periodic function Mper Tepresenting the
nuclear charge density. The electronic system is described by a mean-field one-body electronic
Hamiltonian of the form

1
Hper == _iA + Vper, acting on L*(R3,C), (1.51)

where Vjer is an R-periodic potential. In practice, Vjer is the solution of a nonlinear self-
consistent equation. Such type of equations are motivated by means of thermodynamic limit
procedures [CLL98b|. In the sequel, we denote by I' the unit cell of the lattice R, and
by 'y, := LT, so that I';, contains L3 times the unit cell T.

The thermodynamic limit

To perform a thermodynamic limit, one must first choose a model to calculate the ground
state energy of a finite system. One can consider the full N-body Schrédinger model (1.5),
or an approximation of it, like a Kohn-Sham model (see e.g. (1.24)), a GW model (1.30), and
so on. We then consider, for L € N* the finite system with external (nuclear) potential

/

fnue, (T .

Vaue,L(r) := / L(/) dr’,  with pnuer = pper(r)L (r €T1).
rs [T —1|

In other words, we only consider the finite system consisting of the nuclei contained in a

“box” of size L (see Figure 1.6). For L € N* we calculate the corresponding ground state

energy . The questions then are

e Existence: Does the sequence of energies per unit volume (\FL\_IEL) converge

to some Eper as L goes to infinity?

LeN*
e Characterization: If it is the case, is Fpe the solution to an explicit problem?

o o o

Figure 1.6 — The thermodynamic limit: piper, for L =1, L =2 and L = 3.

These questions have a positive answer for the Thomas-Fermi (with or without the von
Weizsicker term) model [CLLI6, CLLI8b|, the Hartree and restricted Hartree models [CLL98a,
CLL02] and the Hartree-Fock and reduced Hartree-Fock models [CLLO1]. In addition, some
existence results (but no characterization) were proved for the full N-body Schrodinger
model [Fef85, BLL03, HLS09a, HLS09b].

The supercell thermodynamic limit

Another natural thermodynamic limit one could think of is the supercell thermodynamic limit.
This type of thermodynamic limit was considered in [CDLO8| for the reduced Hartree-Fock
model, and is closely linked to numerical simulations. In a supercell model, the system is
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confined in a box I'g, := LI’ with periodic boundary conditions. We denote by L2, (I'.) the
Hilbert space of locally square integrable functions that are LR-periodic, and we would like
to study one-body mean-field Hamiltonians of the form
1
Hp = =5 AL+ Voer,p acting on L2 (T'). (1.52)

per

Here, —A} denotes the Laplacian operator acting on Lger(l“ L), and Vper, 1 is the sum of the
periodic Coulomb potential generated by the nuclei (and a uniform background of negative

charge)
Vaue = / pper(r') Gy (r — 1') dr’, (1.53)
r

which is independent of L, and of a mean-field potential Vg 1, generated by the electrons (and
a uniform background of positive charge), which may depend on L. The role of the uniform
backgrounds is to neutralize the charge in the supercell so that the Poisson equation with
periodic boundary conditions may be solved. In (1.53), G denotes the R-periodic Green
kernel of the Poisson interaction [LS77], solution of

—AG1:4W<§:5k—1>

keR

(G1 is R-periodic and /G1 =0.
r

(1.54)

Once a model is chosen for the definition of V1, one may ask oneself the same questions
(existence and characterization of the energy per unit cell) as in the standard thermodynamic
limit (see Figure 1.7).

Q O 9o o o @ O o o o
@ O 9o o o O/ @ O0/0
O/ /0 O /0 @ 0/0
O/ /0 O /0 @ O0/0
o O o o o @ O o o o
L=2 L=3

Figure 1.7 — The supercell thermodynamic limit: I'y, for L = 2 and L = 3.

The supercell method for the linear model (where Vjer 1, is an R-periodic function inde-
pendent of L) is equivalent to performing a regular sampling of the reciprocal Brillouin zone
(see Section 1.4.3), and is the model usually considered in numerical codes [MP76]|. The non-
linear reduced Hartree-Fock model was considered in [CDLOS|.

In this introduction, we will only present the results for the linear model, and briefly
mention the results in the case of the reduced Hartree-Fock model.

1.4.1 The Bloch transformation

The Bloch transformation is a suitable tool to study periodic operators (see also [RST7S,
Chapter XIII| or [Del08]). Let (aj,az,a3) be a basis of R? that generates the lattice R, so
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that
R = {klal + kQaQ + ki333, (kla k27 k3) € Z3} '

We define the dual lattice
R* = {klaf + k2a§ + k3a§, (kl, ko, kg) S Zg} s

where the vectors a; are such that a - a; = 27d;;. The unit cell and the reciprocal unit cell
are respectively defined by

I':={oa; + aay + asag, (1,02, 03) € [-1/2,1/2)°},
and
I'* = {aia} + aza} + asal, (a1, a0,a3) € [-1/2,1/2)%}.
For w € C°(R?), we define the Bloch transform Zw of w by
VqeR, VreR? (Zw)(qr) i=wq(r) = Y e TRyr 4 R). (1.55)
ReR

Note that since w is compactly supported, the sum in the right-hand side of (1.55) is finite
for all r € R®. For R € R, we define the translation operator g on L?(R®) by (tr f) (r) =
f(r—R). From the definition (1.55), the function wq is R-periodic for any q € R?: TRwq = wq
for all R € R. On the other hand, by introducing, for m € R*, the unitary operator Uy,
(on Lper( )) defined by

Vm e R*, Vfe L. (), (Unf)(r)=e ™% f(r), (1.56)
we see that wgim = Umwg. Altogether,

VRER, VqeR3 Ttrwq=wq

Vm € R*, Vq€ER3 wgim = Unwq. (1.57)

Yw € C°(R3), {

In particular, the function Zw is completely characterized by its values for q € I'* and
r € I'. We consider the Hilbert space L?(I'*, L?_,(T')), endowed with the normalized inner

per
product (we denote by fn. = "' [..)

(Fawn).g(an) e g, m = 1., [ Farstandrda
A classical calculation shows that
vweCE®), [ = £ [z @nf drda = 120l g w)-

We can therefore extend by continuity the Bloch transform Z to L?(R?). Its extension, still
denoted by Z, is an isometry from L?(R3) to L*(T'*, L?_.(T)). Its inverse is given by

z-t. L2 L2,.(T) — L*R%)
wa(r) = (2 w)(r) = ﬁ*eiq'rwq(x)dq.

Let A with domain D(A) be a possibly unbounded operator acting on L2 (I'). We say
that A commutes with R-translations if TR A = Amr for all R € R. If A commutes with
R-translations, then ZAZ~! is block diagonal, which means that there exists a family of
operators (Aq),cgs acting on L2..(T), such that, if f € L*(R?) and g € D(A) are such
that f = Ag, then, for almost any q € R3, g4 € L?

ser(I') is in the domain of Ag, and

fa = Aq9q-
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From (1.57), we obtain that
YmeR*, VqeT*, Agim = UmAqUn, (1.58)

so that the family (Aq) qeR? 1S entirely characterized by its values for q € I'*. We write

@
ZAZ7 = Aqdq (Bloch decomposition of A). (1.59)
F*

1.4.2 The linear model on the whole space

Let us apply the Bloch theory to the self-adjoint operator Hper (with domain H?(R3,C))
defined in (1.51). Since Hpe, commutes with R-translations, it admits a Bloch decomposition

of the form (1.59):
@

ZHpeZ 7' = 4 Hydq,
1"*
with

I L :
Hq:= - |*1V1 + CI|2 + Vper = 5 (*Al —2iq- Vi + |q‘2) + Vper- (1.60)

Here, we denoted by® V; the gradient operator acting on Lper( ) and by A; the Laplacian

operator acting on L2, (T). For each q € R?, the operator Hq with domain HZ2 (T') is self-

adjoint, bounded below and with compact resolvent. We denote by M q < Agq < --- its eigen-
values, ranked in increasing order, counting multiplicities, and by (u q)nen+ € (L%er(F))N*
an orthonormal basis of associated eigenvectors, so that

VqeR? VneN*, Hqung= Anqlng. (1.61)
From (5.22), we obtain that
VqeR?, VneN, VmeER", Mgim=Mgq and Ungim = Uy tng.

The map q — Hg is an holomorphic family of type (A) (see [Kat12, Chapter VII|). In par-
ticular, the maps q — A, q are Lipschitz (hence continuous). As a result, from [RS78, Chapter

XIII|, we deduce that the spectrum of Hper can be recovered from the spectra of (Hg) a)qer
with
o0
o(Hper)= | J o U (2,5 with  [2,,55] = (Mg, g€}
qel* n=1

The spectrum of H is therefore composed of bands. The map q — {1 g, A2,q,- - } is called
the band diagram (see Figure (1.8)). We define the integrated density of state per unit cell by

I:Roew I(e Z][ Mg < €)dq. (1.62)

It is a continuous non-decreasing function satisfying I(—oo) = 0 and I(4+00) = +oo. Let
N be the number of electrons per unit cell in the system under consideration. We write

“L({N}) = [e_,e4]. Any number ¢ inside this interval is an admissible Fermi level, or Fermi
energy of the system. When e_ = ¢, this number ep is unique, and the system is a metal.
Otherwise, the system is an insulator or a semiconductor, depending on the magnitude of the

If f € L}, (T) has a Fourier decomposition of the form f(r) = 3, C . ck(f)e™™, then

ac(—ALf) = kP ex(f) and e (a- (=iV1)f) = (a- k) ex(/f).
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gap g :=e4 —e_ > 0, and we set ep := (e_ + €4)/2. By introducing the integrated density
of energy per unit cell

E:R>em E(e) := Z][ Mgl (Mg < €)da, (1.63)
n=1 =

the energy per unit cell of the system is E(ep).

An,a U(Hper)

EF

Figure 1.8 — Band diagrams of Hpe,. Here, Hper represents an insulator.

The L?(R3)-orthogonal projector on the occupied states v is defined with the spectral
theorem by v := 1(Hper < €f). If the system is an insulator or a semiconductor, then we can
rewrite v using the Cauchy residual formula as

1 dz
Y= 5 s Ho
im Jo 2 — Hper

Here, € is a positively oriented simple closed loop in the complex plane, schematized in
Figure 1.9.

¢

o(Hper)
7_7'

by EF

Figure 1.9 — The loop % .

Since v commutes with R-translations, it admits a Bloch decomposition of the form (1.59)
with

Zz—l—][@ dq, with -—1515 dz (1.64)
Ry A b T Sir o 2 — Hy' '

For all q € I'*, the operator 7q is trace-class. Let p,, be the R-periodic density of v4. The
density of the operator « is the R-periodic function defined by

Py 1= ]i Pryq da. (1.65)
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R* r*

F*

Figure 1.10 — (left) The lattice R* and the reciprocal unit cell I'* (in red). (right) The
discretization Ay (in blue) of T'* (in red). Here, L = 4.

Finally, the energy per unit cell of the system defined in (1.63) is also
Eper = E(gF) = ]i TrL%er(F) (Hq’Yq> : (166)

1.4.3 The linear model on supercells

In practice, the calculation of the Fermi energy and of the total energy would necessitate
the calculation of A\, 4 for all g € I'* (see (1.62) and (1.63)). This is of course not possible
numerically. The reciprocal unit cell I'* needs to be discretized. Since the work of Monkhorst
and Pack [MP76], it has been observed that very good results were obtained when consider-
ing uniform discretizations, at least for insulators and semiconductors. As will be make clear
below, this is equivalent to performing a supercell calculation.

We are interested in studying the operator Hy, defined in (1.52). The operator Hp, is a
bounded-below self-adjoint operator with compact resolvent, so that we could directly study
the full operator Hy,. However, it is possible to further simplify the problem by considering a
Bloch-like transform, that we call the supercell Bloch transform.

For L € N*, we introduce the regular sampling of the reciprocal unit cell, Ay, := (LilR*) N
I, i.e.

2k, 2k, 2ks —L+n —L+n L+n 3
AL~—{La1+Laz+L337 (k1, ko, k3) € 5 T o +17"'5T 1 )

(1.67)
with 7 = 1 if L is odd, and i = 0 if L is even, so that there are exactly L? points in Aj (see
Figure 1.10). Likewise, we define Ry := RNT'L.

For w € Cpg,(T'L), we define the supercell Bloch transform of w by

YQEAL (Zpw)(Q.r) i=wq(r) = Y e XEHRiyr 4 R),
ReRy,

The operator Zj, enjoys properties similar to the ones of the operator Z defined in (1.55).
For instance,

1
Vw € C3%(T), /F wf = 2 3 /Fy(sz) (Q.r)[? dr,

QeAL
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so that the operator Z, can be extended to an unitary operator from Lper(FL) to £? (AL, per(I‘)) ,
where (% (Ag, L2..(T")) is endowed with the normalized inner product

Q1) 0(Qu 1)) (ap gty = 75 D / F(Q.r)g(Qur) dr

QeAp
The inverse of Zj, is
Z:b (AL, L2, (1) — L2,(Tp)

per per

wq(x) = (20 w)(x) = % Z el Qxy

QEAL
An easy calculation shows that ZpH LZL_I is block diagonal. We write, by analogy
with (1.59),
ZLHLZ, L. 73 @ Hq (supercell Bloch decomposition of Hy,),
QeAL

where the operators Hq, acting on L2_ ('), are exactly the ones defined in (1.60). This shows
the relationship between the uniform sampling and the supercell calculation. We deduce that,
if the crystal is an insulator or a semiconductor,

e the Fermi level of the supercell model can be chosen equal to the one of the periodic
model ep ;

e the L2_ (I)-orthogonal projection initially defined by vz := 1(Hp < &) is also

1
*3@7@7

QeAL

where yq were introduced in (1.64). It is a trace-class operator, and its density is
1
Py = 3 Z Pyq s (1.68)
QEAL
e the energy per unit cell of the supercell model is
Z Tl“Lger r) (Hq7q) - (1.69)
QEAL
1.4.4 Exponential rate of convergence of supercell models

The error on the energy per unit volume Ey,e — Ep, where Ener and Ej, were respectively
defined in (1.66) and (1.69), is of the form

B = Bul = |f_fl@da= 75 Y £(Q), where fla) = Trug, o) (Haa) - (170)
QeAr

This is the difference between an integral and a corresponding Riemann sum. From this
observation, we were able with Salma Lahbabi to prove the following result (see Chapter 5).

Theorem 1.14 (DG, Salma Lahbabi). Assume Vyer € L. There exist constants C € RT
and o > 0, that depend on the lattice R, |Vper|lL<, g and ep only, such that

VL € N*,  |Eper — Er| < Ce™®F  (convergence of the ground state energy per unit volume)
and

VLeN*, |py=pylle < Ce=L (convergence of the ground state density).
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The idea of the proof is to show that the integrand f in (1.70) is an R*-periodic function
which admits an analytical continuation on a complex strip of the form R +i[A, A]? for some
A > 0, and use the theory of convergence for Riemann sums. The same type of arguments
were used to prove the exponential decay of Wannier functions for insulators [DC64a, DC64b,
Koh59, BPCT07, Pan07].

The reduced Hartree-Fock model
The reduced Hartree-Fock (rHF) model for perfect crystals, or periodic rHF, has been rig-
orously derived from the rHF model for finite molecular systems by means of the classical
thermodynamic limit by Catto, Le Bris and Lions [CLLO1|. In [CDLO08], Cances, Deleurence
and Lewin proved that the same periodic rHF model is also the supercell thermodynamic
limit of the supercell rHF model.

The rHF model is a nonlinear model in which the external potential is solution of a self-
consistent equation (both for the supercell model Ve, 1, and for the periodic model Vjer). We
refer to Chapter 5 or to [Del08| for a complete description of these models.

Together with Salma Lahbabi, we proved a result similar to (1.14) in the rHF case (see
Chapter 5). We proved that, if the system is an insulator or a semiconductor, then

e the supercell rHF energy per unit cell converges exponentially fast towards the periodic
rHF energy per unit cell ;

e the supercell rHF ground state density converges exponentially fast towards the periodic
rHF ground state density, in the L3 (I') norm.

per

The theoretical exponential convergence rates are confirmed by numerical simulations in
Chapter 5.

1.4.5 Reduced basis methods for Brillouin-zone integration

As mentioned before, a numerical calculation needs the discretization of the reciprocal unit
cell. The theory described in the previous section shows that, at least for insulators, the
values obtained on a regular coarse grid gives good results (this is due to the exponential rate
of convergence proved in Theorem 1.14). For metallic systems, a slower rate of convergence is
expected and a much finer sampling is needed to calculate for instance the integrated density
of states I defined in (1.62) (from which we obtain the Fermi level). As a consequence, the
calculation of the eigenmodes of the operator Hq at all the points q of the grid is numeri-
cally much more expensive than in the insulating case. Together with Eric Cancés, Virginie
Ehrlacher and Damiano Lombardi, we proposed a reduced basis method to speed up tradi-
tional calculations (see Chapter 6). Our approach consists in creating reduced bases that are
g-point dependent (hence differs from the method described in [Pau07]).

The basic idea of the proposed numerical scheme is to extract local small reduced bases
from calculations on a coarse uniform grid of size Ly x L1 x Ly of I'* for some value L € N*.
These are used to compute the eigenmodes of Hqy for q on a fine uniform grid of size
Lo x Lo X Lo, with Ly > L;. The resulting method is very easy to implement, and al-
ready provides very satisfactory results. It is then possible to further improve the accuracy of
the approximate eigenmodes at a low extra computational time, using a perturbation-based
post-processing method similar to the one introduced in [CDM ™ 14].

The full algorithms and the corresponding numerical results are analysed in Chapter 6.
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CHAPTER 2

THE N-REPRESENTABILITY PROBLEMS

We expose in this chapter the arguments given in [Gonl3] and in [Gonl15b].

Abstract. This chapter is concerned with the pure-state N-representability problem for
systems under a magnetic field. Necessary and sufficient conditions are given for a spin-
density 2 x 2 matrix R to be representable by a Slater determinant. We also provide sufficient
conditions on the paramagnetic current j for the pair (R, j) to be Slater-representable in the
case where the number of electrons IV is greater than 12. The case N < 12 is left open.

2.1 The N-representability problem in SDFT

The density functional theory (DFT), first developed by Hohenberg and Kohn [HK64], then
further developed and formalized mathematically by Levy [Lev79], Valone [Val80] and Lieb [Lie83],
states that the ground state energy and density of a non-magnetic electronic system can be
obtained by minimizing some functional of the density only, over the set of all admissible
densities. Characterizing this set is called the N-representability problem. More precisely,
as the so-called constrained search method leading to DFT can be performed either with
N-electron wave functions [Lev79, Lie83|, or with N-body density matrices [Val80, Lie83],
the N-representability problems can be recast in the pure-state setting resp. in the mixed-
state setting as follows: What is the set of electronic densities that come from an admissible
N-electron wave function, resp. an admissible N-body density matriz? This question was
answered by Gilbert |Gil75]|, Harriman [Har81] and Lieb [Lie83| (see (2.6) below).

In order to deal with spin magnetic effects, it is necessary to resort to spin-polarized
density functional theory (SDFT) where the objects of interest are the spin-polarized densi-
ties p®? with o, 8 € {1, ]}. This theory was first developed by von Barth and Hedin [vBH72]
in a very general setting, but most applications use a restricted version of it, where local
magnetization is constrained along a fixed direction (collinear spin-polarized DFT). While
this simplified version is able to account for many magnetic effects, it misses some important
physical behaviors (frustrated solids like «-Fe or spin dynamics for instance). Actually, the
first calculations for non-collinear spin-polarized DFT have been performed by Sandratskii
and Guletskii [SG86] and Kiibler et al. [KHSW88b, KHSW88a| (see [BSFS13] or [SDADT07]
for some recent works), but no rigorous mathematical background has yet been developed in
this case. We emphasize that SDFT deals with spin effects, but not with orbital magnetic
effects. If the latter are not negligible, we should use another variant of DFT, namely current
-spin- density functional theory (C-S-DFT). This will be the topic of Section 2.2.
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In this section, we are interested in the IN-representability problem for the so-called spin-
density 2 x 2 matrix (from which we recover the spin-polarized densities). The question was
addressed but left open in the pioneering work by von Barth and Hedin [vBH72|. We provide
in this section a complete characterization of the set of admissible spin-polarized densities
used to perform self-consistent minimizations.

2.1.1 Setting the stage: the spin-density 2 x 2 matrix

Recall that the set of admissible antisymmetric wave functions is
N
W]%ure = {\I/ S /\L2(R3,C2), H\I/HLQ(RBN) =1, HV\IIHLz(RsN) < OO} )
where L?(R3,C?) is the one-electron state-space

PR, = {8 = (06", [0l = [ 67+ 10 < oo

A special case of wave functions is given by Slater determinants: let ®1,®o,..., ®n be a set
of orthonormal functions in L?(R3,C2), the Slater determinant generated by (®1,...,®y) is
(we denote by xj := (rg, sx) the k-th spatial-spin component)

1
y[@l,...,th} (Xl,...,XN) = Wdet (q)i(xj))lgi,jSN'

The subset of Wi consisting of all finite energy Slater determinants is denoted by W]S\,later.
It holds that WPater = WP and WRlater C WRY® for N > 2.

For a wave-function ¥ € W}Z,ure, we define the corresponding N-body density matrix
Dy := |U)(¥|, which corresponds to the projection on {C¥} in AN L2(R3,C2?). The set of
pure-state and Slater-state N-body density matrices are respectively

G = {Ty, ¥ e W™} and G := {r@, VS W]%later}. (2.1)

It holds that G%later = Glfure and that G%}ater - G?\}He for N > 2. The set of mixed-state
N-body density matrices GH*°d is defined as the convex hull of GR™:

o 0o
G%ixed — {Z nk;|\1’k><\11k‘" 0<n, <1, Z?’Lk =1, U, € W]Iifure} . (22)
k=1 k=1

It is also the convex hull of G]S\}ater.

In SDFT, we are interested in the spin-density 2 x 2 matrix. For I' € G%ixed, the associated
spin-density 2 X 2 matrix is the 2 x 2 hermitian function-valued matrix

where, for a, 8 € {1, i}za

ww=N Y[ Trezsngs) d (2.3)
serpyov-n TR
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Here, we denoted by I'(r1,s1,...;r},s,...) the Schwartz kernel of the operator I' € Giixed,
In the case where I' comes from a Slater determinant .#[®1,..., ®y], we get

N .
Pk ¢T¢¢>
Rr(r) = E (k kTk ) (r). (2.4)
A=A e

The Slater-state, pure-state and mixed-state sets of spin-density 2 x 2 matrices are respectively
defined by

jJ%later — {RF, re G?\}ater}’ j]l\)[ure — {RF7 Te GIJ)\}lre} and j]{[nixed — {RF7 re G%ixed} .

Since the map I"' +— Rp is linear, it holds that 7. ﬁ,later c J }\),ure C J ]{,nixed, that jj{,“ixed is
convex, and that J ]I\}lixed is the convex hull of both 7. ﬁlater and Jy°. With this notation, the
N-representability problem is

N-representability problem : Characterize the sets J**, Jo" and Jaxed | (2.5)

2.1.2 Pure-state and mixed-state representable spin-density 2 x 2 matrices

Before answering problem (2.5), let us address some remarks. In the physics community, the
spin density 2 x 2 matrix Rp is usually replaced by the pair (pr, mr), where, pr = py + p#
denotes the total electronic density, and mp = trez [0 Rr] the spin angular momentum density.

Here, i
et (00 D)0 %)

contains the Pauli-matrices. The pair (pp, mr) contains the same information as Rp, hence
the N-representability problem for the matrix R is the same as the one for the pair (p, m).
However, as will become clear, it is more natural mathematically speaking to work with Rr.

In the spin-unpolarized case, which amounts to setting plti = pff = 0 and pltT = p%}
(see Chapter 3, Section 3.2), it is sufficient to characterize Znx = {pr, I' € GX}, where X
represents either the set of Slater, pure of mixed states. This problem was first considered
by Gilbert [Gil75] and completely solved by Harriman [Har81]. They proved that I]S\}ater =
N = 7Rixed .= Ty with

Iy = {peL1<R3>, pzo,/ p=N, \/EGHI(R?’)}- (2.6)
R3
A rigorous mathematical construction of DFT was then developed by Lieb in [Lie83].

In the spin-polarized setting, unlike the previous case, we have to distinguish pure-state
representability from mixed-state representability, as is illustrated by the following exam-
ple. Let N = 1 and ® = (¢!, ¢*) € W™, For I' = |®)(®|, it holds, according to (2.4),
p2P(r) = ¢*(r)$B(r), so that the determinant of Rp is null. Therefore, J*™ only contains
fields of at most rank-1 matrices, whereas, as will be proved latter, jlmixed contains full-rank

matrices.

We now state the main theorem of this section. We first recall that for a Hermitian
matrix R satisfying R > 0, VR is a well-defined Hermitian matrix. We also recall the
definition of the Lebesgue spaces LP(R?) := {f, Jga f? < oo} and of the Sobolev spaces
WLP(RY) := {f € LP(R?),Vf € LP(R%)}. We introduce

CN = {R S M2><2(L1(R37C))7 R = Rv R > 07 /

trez [R] = N, \/ﬁ S MQXQ(Hl(RSvC))}y
R3

(2.7)
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and C% := {R € Cy, det R = 0}. The characterization of Cyy is given by the following lemma
(see Section 2.1.3 for the proof).

T.
Lemma 2.1. A function-valued matriz R = (Z ;) is in Cn iff its coefficients satisfy

pt >0, plpt o> >0, /,oTJr/ pt =N,
R3 R3

Vol e H®), o, Ja(R) € WHRR), 28)

Vol?p™ e L'(R?),

‘V\/det(R)‘Qp_l e L'(R).

The complete answer for N-representability in SDFT is given by the following theorem
(see Section 2.1.3 for the proof).

Theorem 2.2.
Case N = 1: It holds that

jlslater _ jlpure _ C? and jlmixed _ Cl-
Case N > 2: For all N > 2, it holds that
j]%later — ]p\;ure _ jjrvnixed _ CN‘

The first line of (2.8) states that R must be a positive Hermitian matrix and that the
number of electrons is N. The other three lines are regularity conditions that ensure the
finiteness of the kinetic energy. Comparing (2.6) and (2.7), we see that the above theorem is
a natural and nice extension of the classical N-representability result (2.6).

An interesting consequence of our result is that it is possible to control the eigenvalues
of R. Most applications of SDFT use exchange-correlation functionals of the form Ey.(p™, p7),
where p* and p~ are the eigenvalues of R (see Chapter 3, Equation (3.7) for examples and
discussion), so that the knowledge of the regularities of p* and p~ is desirable for the study
of these applications.

Corollary 2.3.
If R is mived-state representable, then its two eigenvalues p and p~ satisfy \/p* € H'(R3).

Let R € JN"° be represented by a wave-function Up. One can ask oneself whether there
is a way to control the kinetic energy of Wp (which we know is finite by definition of R) with

respect to, say,

V\/EH 2? In the spin-unpolarized setting, there is such a control: it is pos-
L

sible to represent p € Iy, where Zy where defined in (2.6), by a wave-function ¥, such that
IV, 12rsy < CnIIV/pl%2, where Cy € RY is a constant independent of p. Unfortunately,
we were not able to prove such a control. This is due to the use of the Lazarev-Lieb orthonor-
malization process |[LL13| (see also Lemma 2.5) in the proof. This process is a powerful tool
for representability, but looses control on the kinetic energy [Rut13].

We now prove Lemma 2.1, Theorem 2.2 and Corollary 2.3.
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2.1.3 Proofs of the SDFT results
Proof of Lemma 2.1

Proof. If R satisfies (2.8), then R € Cx.
Let R be a matrix satisfying (2.8), so that R is a positive hermitian matrix. The only

+
non-trivial point to check is that VR € Mayo(H'(R3,C)). Writing VR := <7:9 7j>’ the

equality R = vRVR is equivalent to

P2+ s> = o,
PSP = et (2.9)
S(T‘T+7‘¢) = o.

Together with the relation det(v/R) = rTr+—|s|? = v/det, where we denoted by det := det(R),
this leads to

b p! +Vdet L p* + Vdet B o
r! = e = 3 and s = 2k
(p + 2\/det) <p + 2\/det> (,0 + 2\/det>

Let us show for instance that 7T € H'(R3), the other cases being similar. Using the inequalities
(a+b)% < 2(a® +b?), p > p' and det > 0, we obtain

2
‘¢‘2< (p“rvdet) <2\pT\2+2det
,
T o p+2Vdet T p+2vdet

and the right-hand side is integrable, thanks to (2.8). On the other hand, the gradient of 7T
is

< 2p + Vdet,

ot — Vol 4+ V/det _E(Vp+2vx/ﬁ) (pT+\/CE>
(,0—1-2\/@)1/2 2 <p+2\/(ﬁ>3/2 .

so that, using the same type of inequalities,
Vp! + V/det)? N (p+ Vdet)?(Vp + 2V+/det)?
p + 2v/det (p + 2v/det)3
T2 2 2 det 2
< (wp 2, [VVAelP [V | |VVdel ) |

‘VT‘T)Q < 2(

p! p P p

Every term of the right-hand side is in L'(R®) according to (2.8). We deduce that T €
H'(R3,C), and consequently, V'R € Mayo(H(R?, C)). In conclusion, R € Cy.

If R € Cy, then R satisfies (2.8).
Reciprocally, using (2.9), it is not difficult to prove that R satisfies all conditions in (2.8). Let

us prove for instance that ‘V\/ det‘ p~'. From v/det = rTrt —|s|?, we get

VVdet = <VTT> T (VW) —2Re (5Vs).

Together with the inequality (a + b+ ¢)? < 3(a® 4 b% + ¢?), we deduce

2
+6|Vs|?,

2
N N O e A
=3 +3 +6
p p
and the right-hand side is in L'(R3) since R € Cx. The result follows. O

2
< 3(vﬁ‘ +3’vr¢
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Proof of Theorem 2.2

Proof. We break the proof in many parts.

Step 1: Jf\fnixed C Cn.

For a mixed state I' € G%ixed, we define the one-body spin-density matrix
N
T
s (I‘, I'/) = ET ILL (I’, I',), (210)
o O
where
( r):=N Z / I'(r,a,z,s;7,3,2,8) d (2.11)
sty TR

It holds that Rp(r) = ~r(r,r’). We denote by R, := Rr in the sequel. The one-body spin-
density matrix is a very useful quantity in quantum chemistry, and is completely understood
mathematically. Coleman [Col63] proved that any such « can be written as

ank L 0<n, <1, an_

k=1

(k| @) = Oty Tr(—A7) = mil|[ VO < o0
k=1

Let Re J, ]{fnixed. To prove R € Cy, it is enough to prove that R satisfies the conditions (2.8),
thanks to Lemma 2.1. By definition, there exists v satisfying the above conditions such that
R = R, so that

& (e ook
o \otol [ot]

Under this form, the first line of (2.8) is obvious. Also, since all elements of R are of the form

> nkqbz‘(r)(bf(r) with >~ ng||[VeZ||? < oo, we easily deduce from the Sobolev embedding that
R € W3/2(R3). Moreover, using the Cauchy-Schwarz inequality, it follows, for o € {1, ]},

o0 2 o0 o0
VP -4 (z e <¢f:v¢g>> < (znkw) (z nkww) |
k=1 k=1 k=1

so that |[Vy/p? < 43 ng|Ve¢|? (we recall that for f > 0, it holds |V f|? = 4f|V/]|?).
Integrating this relation gives ||[Vy/p®||2, < Tr(—Ay**) < co. Likewise,

2
> 1/2
Vol = an (Velot+ ww) S (I6}2 +1642) " (1VoL + Vi) ‘
k=1
T2 412
<p (an (’quk] + \V(ZS,C\ )) )
so that [Vo|?p™t < S n (\V¢£\2 + |V¢t]2). Integrating this relation gives the inequality
1IVa|?p~ | < Tr( A7) < co. Finally, let us evaluate det(R). From det(R) = p'p* — |o|?,
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we get
aee#) = 3 muo (|61 o[~ olfete]
k=1
= D> (M)? WP + W‘? ‘gbtf — olLrorel — ¢1T</5z¢¢t¢£>
1<k<l<oo
- 1<l§l:<oo nEn )szﬁf)li - ﬁblﬁ‘b”z = ;kil nEny )gbzgj)li _ ¢’¢§¢”2.

Using similar arguments as before, we obtain that v/det € W13/2(R?3) and that
IV det(R)|* < 8det(R)p > my (ng\? + \V(;ﬁtP) .
k=1

Integrating this inequality leads to H\V\/det(R)Pp_lHLl < 2Tr(—A%) < co. Therefore, any
R € Jiuixed gatisfies (2.8), hence is in Cy.

Step 2: Case N = 1: jlslater = jlpure = C?.
The fact that jISIater = JP™° simply comes from the fact that G%later = GY"°. To prove
Jitater < 9 we let R € JP'" be represented by ® = (6", ¢%)T € H'(R3,C?), so that

_ (10" ¢lot
R=1{ 5 2]
oL
Since R € jlslater C jlmixed C Cy according to Step 1, and since det(R) = 0, we deduce that
ReCY.
o

4
We now prove that C) C JP#tr. Let R = (l; p‘L> € CY. From det R = 0 and Lemma 2.1,

we get
pr =0, plot =10, / p! +/ pr=1,
R3 R3

\/pth e HY(R?), o e WI3/2(R?),
IVo|?p~t € LY(R?).

There are two natural choices that we would like to make for a representing orbital, namely

7 \T o ; T
(I)l = (\/ﬁv \/ﬁ) and (I)Q = <\/ﬁ7 \/F> . (2.13)
Unfortunately, it is not guaranteed that these orbitals are indeed in H!(R3, C?). It is the case
only if [Vo|?/p* is in L'(R3) for @y, and if |V |?/p! is in L'(R?) for ®3. Due to (2.12), we
only know that |Vo|?/p € L'(R3). The idea is therefore to interpolate between these two
orbitals, taking ®; in regions where p’ > p*, and ®, in regions where p* > p'. This is done
via the following process.

(2.12)

Let x € C*°(R) be a non-decreasing function such that 0 < xy <1, x(z) =0 if x < 1/2
and x(x) = 1if x > 1. We write 0 = a + i where « is the real-part of o, and S is its
imaginary part. We introduce

2 20T /o 32
Al = \/ X /7()6 /p )B y M1 =y 1- XZ(pT/pi) ’
PV ar + B B —am
2 m pg =
P p

SIE
H

Y
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and we set
o= +ipr and @b = Ay + ipe.

Let us prove that ® := (¢7, ¢*) represents R and that ® € Wlslater. First, an easy calculation
shows that

£ 2824 (L= DB o2 _ 4

[@"1* =X + i =

pi - p¢ ’
’¢¢|2 _ (a2 +/82)(>‘% +N%) — @ _ ,Oi
Gk i
_ )\2 2
e (¢T¢¢> = MA2 — pipe = oM+ 141) _THH) =aq,
P
m (¢T¢¢> = A2+ Xy = B+ 1) =0,
Nz

so that ® € L?(R3,C?) with ||®| = 1, and ® represents R. To prove that ® € W3t we
need to check that \i, Ao, 1 and po are in H 1(R3). For \;, we choose another non-increasing
function £ € C*°(R) such that 0 < ¢ <1, {(x) =0 for z < 1, and {(z) = 1 for > 2. Note
that (1 — x)¢ = 0. It holds that

VA= (1=&(p"/p")VA + (o /p") VA1 (2.14)

The second term in the right-hand side of (2.14) is non-null only if pT > p*, so that on this
part, it holds x(p'/p*) = 1. In particular, from the equality pp* = |o|?, we get

20,1 /M — ol 15/,
Ep"/pM =" /p )ﬁ RSN

and similarly,

Ep' )V =€ /p) VT,
which is in L?(R3) according to (2.12). On the other hand, the first term in the right-hand
side of (2.14) is non-null only if pT < 2p*, so that (1/3)p < p* on this part. In particular,
from the following pointwise estimate

IVi+ Vgl _ V] Vgl VSl VYl
IV f+g| = NETIE 2\/fT+2\/fT—2f 2/ = |VVfl+ 1Vl (2.15)

which is valid almost everywhere whenever f,g > 0, the inequality (a 4 b)? < 2(a® + b?), and
the fact that o® + x28?% < |o|?, we get (we write x for x(p'/p"))

|V)\1|2 — ‘ \/EV\/OE + X252 - \/042 + X

P
V 042 +X262 2 042 +X262
2<| T
prVpl—ptVpt |% p2
vap |, 2[Vxe TP s el
<2 + + Vv pt
p+ p+ p (p+)? | |

We finally use the inequality (p*)™! < (3/p), and the inequality |o|?/(p%)? = pT/p* < 2 and
get

Val? Vpll2  |Vpt? Aok
yVA1\2§C<| p' + VX3 <| ;' +| ;1' >+| p' +|V\/p¢\2>.
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The right-hand side is in L'(R?) according to (2.12). Hence, (1 — £2(p'/p")) |V 1] € L2(R?),
and finally \; € H!(R3).
The other cases are treated similarly, observing that,

e whenever p' > pt, then ¥ = 1, and ® = ®; where ®; was defined in (2.13). We then

control (p')~! with the inequality (p7)~! < 2p!;

e whenever pl' < pt/2, then y = 0, & = ®;. We control (p*)~! with the inequality
(p) M <507

e whenever p*/2 < p < pt, then both (p')~! and (p*)~! are controlled via (p!)~! < 3p~!
and (p*)~! < 2p~ L

The result follows.

Step 3: Case N > 2: Jyater = e = Jiixed — o,
Since J. E;later c Iy C J, ]{?imd = Cp, according to Step 1, it is enough to prove that
Cn C JNa*r. We start with a key lemma.

Lemma 2.4. For all M,N € N2, it holds that Jy®% = JRlater 4 gpfater,

Proof of Lemma 2.4. The case jjélitj\e/} C jﬁflater + jj\s/}ater is trivial: if R € Jﬁlﬂ\ej is rep-
resented by the Slater determinant .#[®1,... ®Pnyas], then, by denoting by Ry (resp. Ra)
the spin-density 2 x 2 matrix associated to the Slater determinant .#[®q,...,Px] (resp.
LPN11y-- -, PNtu]), it holds R = Ry + Ra (see Equation (2.4) for instance), with R; €
jj%later and RQ c j]\S}ater.

The converse is more involving, and requires an orthogonalization step. Let Ry € J. ]%later
be represented by the Slater determinant .7 [®1,...,®y], and R € 7, AS}ater be represented by

the Slater determinant %/ [51, 0 Mm]. We cannot directly consider the Slater determinant
LNP1,..., PN, Py, ..., Py, for (Pq,...,Py) is not orthogonal to (P1,...,Pys).

We use the following lemma, which is a smooth version of the Hobby-Rice theorem [HR65]
(see also |Pin76]), and that was proved by Lazarev and Lieb in [LL13] (see also [LS13]).

Lemma 2.5 (Lazarev, Lieb). For all N € N*, and for all (f1,...,fn) € LY(R3,C), there
exists a function u € C(R3), with bounded derivatives, such that

V1<k<N, / fre = 0.
R3

Moreover, u can be chosen to vary in the r1 direction only.

We now modify the phases of ;}I, ... ,2}3\2 as follows. First, we choose u7 as in Lemma 2.5
such that,

V1<k<N, / <¢,ﬁ¢{ +¢,ﬁ¢%> S—
R3

and we set ®yy1 = C/}iei{fl. Note that, by construction, ® 1 is normalized, in Hl(R3,C2),
and orthogonal to (®1,...,Px). We then construct uz as in Lemma 2.5 such that

V1<k<N-+1, / (@tgbgwwg) o2 = 0,
R3

@gd we set Py o = @ei@. We continue this process for 3 < k < M and construct ¢y x =
®pel¥* . We thus obtain an orthonormal family (®1,...,®y 7). Since the spin-density 2 x 2
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matrix of the Slater determinant 5’[:51, ol &)\]\;] is the same as the one of [P 41, ..., Pnia]
(the phases cancel out), we obtain that R = R; + Ra, where R is the spin-density 2 x 2 matrix
represented by . [®1,..., ®n4ar]. The result follows.

L]

We now prove that Cny C jﬁlater for N > 2. We start with the case N = 2.

ot 1
Let R = (” ‘1) € Cy. We write VR = <T i), with rT,7+ € H'(R3,R) and s in
o p s T

T2 0 2 1
S A L 1 (18] sr
R = < |S|2> and R = <S’["‘L |1"“J/|2 . (216)

dl

It is easy to check that R = RT + RY, that R+ are hermitian, of null determinant, and
that VRV € Mayo (H'(R3?,C)). However, it may hold that [, tre2[R'] ¢ N*, so that R is
not in C% for some M € N*.

The cases Rt = 0 or R¥ = 0 are trivial. Let us suppose that m® := ng pre # 0 for

a € {1,/}. In this case, the matrices Ro = (m®)~LRY are in C? , hence are representable by a
T

— \T —
single orbital according to Step 2. Let ® = (qﬁ, qﬁ%) € H'(R3,C?) and &5 = <¢g, ¢$> €
H'(R3,C?) be normalized orbitals that represent respectively R" and RY. It holds

3,37 =R = (m"'RT and 3,8} = R} = (m¥)"'R%.

From the Lazarev-Lieb orthogonalization process (see Lemma 2.5), there exists a function
u € C*°(R) with bounded derivatives such that

@l = [ (olo]+ otof) e 0. 217

Once this function is chosen, there exists a function v € C°°(R) with bounded derivatives
such that o o o o
(B1|B1el?) = (B1]Doe )Y = (Byel|Bel?) = (By|Doe”) = 0. (2.18)

We finally set

@y = o (Vi + Vi) and By = (Vindd) — Vindbae) e
V2 V2
From (2.17), we deduce ||®1]|> = ||®2]|? = 1, so that both ®; and ®3 are normalized. Also,
from (2.18), we get (®1|®3) = 0, hence {®, Py} is orthonormal. As ®; and ®y are in
H'(R3,C?), and u and v have bounded derivatives, ®; and ®3 are in H!(R3 C?). Finally, it
holds that

1 -~ ~ ~ ~ ~. .
1] + @305 =  (mB1B] + miBy8 + 2vimTmiRe (B1B5e )

+ mT® 8% + m‘ P83 — 2vVmTmlRe (%ﬁf%e_i“))
= mT(AI;ﬁT)T + m¢<52<5§ = R.

We deduce that the Slater determinant .7 [®q, @3] represents R, so that R € jQSlater. Alto-
gether, Co C Jp'™" and therefore Cy = Jy 24T,
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Case N > 2.

We proceed by induction. Let R € Cy41 with N > 2, and suppose Cny = J, ]%later. We use the
decomposition (2.16) and write R = R" 4+ R¥, where R'/+ are two null-determinant hermitian
matrices. For a € {1,]}, we denote by m® := [p3 pra. Since ml +mb =N 41> 3, at least
m' or mt is greater than 1. Let us suppose without loss of generality that m! > 1. We write
R = Ry + Ry with

Ry = (m")'R" and Ry:= ((1 . (mT)*l) R +m¢R¢).

It holds that Ry € C) = jlslater and Ry € Cy = jﬁlater (by induction). Together with
Lemma 2.4, we deduce that R € J, ]%lfler. The proof is complete. O

Proof of Corollary 2.3

S

. t
Proof. Let R € jj{f,llxed = Cy, and let VR = <2 . i) . The eigenvalues of R are denoted

by 0 < p~ < pt, so that \/pT are the eigenvalues of v/R. In particular,
1
VpE = 5 (rT + v+ \/E) with A = (T —rh)2 4 4]/

According to Theorem 2.2, 7T, 7+ and s are in H'(R?). Hence, A is the sum of two quantities
whose square roots are in H'(R?), so that VA € H'(R?) by convexity of |/~ |2,.The result
follows. O
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2.2 Representability in CSDFT

We now get interested in current-spin-density function theory (CSDFT). For a system sub-
jected to a magnetic field, the energy of the ground state can be obtained by a minimization
over the set of admissible pairs (R, j), where R is the spin-density 2 x 2 matrix introduced in
Section 2.1.1, and j is the paramagnetic current [VR88|. This has lead to several density-based
theories, that come from several different approximations. In spin-density functional theory
(SDFT), one is only interested in spin effects, hence the paramagnetic term is neglected. In
parallel, in current-density functional theory (CDFT), one is only interested in magnetic or-
bital effects, and spin effects are neglected [Vig87|. In this case, the CDFT energy functional
of the system only depends on p and j, and we need a characterization of the set of pure-state
and mixed-state N-representable pairs (p,j). Such a characterization was given recently by
Hellgren, Kvaal and Helgaker in the mixed-state setting [TKH14]|, and by Lieb and Schrader
in the pure-state setting, when the number of electrons is greater than 4 [LS13].

In this section, we give some answers to the N-representability problems in the current-
spin-density functional theory (CSDFT): What is the set of pairs (R,j) that come from an
admissible N -electron wave-function, resp. an admissible N-body density matriz? (pure-state
resp. mixed-state representability). We will answer the question in the mixed-state setting
for all N € N*, and in the pure-state setting when N > 12 by combining the results of the
previous section and the results in [L.S13]. The proof relies on the Lazarev-Lieb orthogonaliza-
tion process. In particular, our method does not give an upper-bound for the kinetic energy
of the wave-function in terms of the previous quantities (we refer to [LL13, Rut13] for more
details). We leave open the case N < 12 for pure-state CSDFT representability.

2.2.1 Representable spin-density 2 x 2 matrix with paramagnetic current

We will use the same notation as in the previous section. In addition to the spin-density
2 x 2 matrix, we need to define the paramagnetic current j. For a N-body density matrix
I'e G%D{ed, the associated paramagnetic current is jr = jlt + jliﬂ where

jF=Im [N Y / Vel(r,a,7, 51 o,7,5)| dZ
Fe{t -1 RANED v
In the case where I' comes from a Slater determinant . [®1, ..., ®x], we get
N _ _
=Y tm (4[Ve] +6{ve}). (219)
k=1

While only the total paramagnetic current j appears in C(S)DFT, the pair (j',j') is some-
times used to design accurate current-density functionals (see [VR88| for instance). In this
thesis, we only focus on the representability of j, and not on the pair (jT,j*).

Let us recall some classical necessary conditions for a pair (R, j) to be N-representable (we
refer to [TKH14, LS13] for the proofs). In the sequel, we will denote by pl := p'T, pt := pH

pT

and o := p™ the elements of a matrix R, so that R = < ;), and by p = p! + p* the
associated total electronic density. Recall that the set Cy was defined in (2.7).

Lemma 2.6. If a pair (R,j) is representable by a mized-state N-body density matriz, then

{RECN

.9 — 2.20
et e LU(®?). (220)
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From the second condition of (2.20), it must hold that the support of j is contained in the
support of p. The vector v := p~1j is called the velocity field, and w := curl(v) is the vorticity.

Let us first consider the pure-state setting. In the spin-unpolarized setting, for N =
1, a pair (p,j) representable by a single orbital ¢ generally satisfies the curl-free condition
curl(p~!j) = O (this is the case for instance when ¢ is of the form ¢ = |¢le” ™, where the
phase v is in C*(R3), see [L.S13, TKH14]). This is no longer the case when spin is considered,
as is shown is the following Lemma (see Section 2.2.2 for the proof).

Lemma 2.7 (CSDFT, case N = 1). Let ® = (¢, ¢")T € W™ be such that both ¢ and
¢ have phases in C*(R). Then, the associated pair (R,j) satisfies R € CY, |j|?p~! € L'(R?),
and the two curl-free conditions

curl ('] - W) =0, curl <'] + W) =0. (2.21)
p pp p pp

Remark 2.8. If we write o = |o|e'”, then, |o|? = plpt, and
Im (GVo) = |0|?V71 = plp*Vr. (2.22)
In particular, it holds that

curl <Im (EYU) N Im (ETVJ)
pp pp

) = curl (V) =0,

so that one of the equalities in (2.21) implies the other one.
Remark 2.9. We recover the traditional result in the collinear spin setting, where o = 0.

In the case N > 1, things are very different. In [LS13], the authors proved the following
theorem for N > 4.

Theorem 2.10 (Lieb, Schrader).
A sufficient set of conditions for a pair (p,j) to be pure-state N -representable is

e p €Iy with N >4 and j satisfies |j|>p~! € L1(R3).

o there exists & > 0 such that

sup F)IT2 (|lw(r)| + [Vw(r)]) < oo (2.23)
where
Fr) o= (L4 (r0)) (1 + (r2)?) (1 + (r3)%). (2.24)

By adapting their proof to our case, we are able to ensure representability of a pair (R, j)
by a Slater determinant for N > 12 under the same mild condition (see Section 2.2.2 for the
proof).

Theorem 2.11 (CSDFT, case N > 12).
A sufficient set of conditions for a pair (R,j) to be representable by a Slater determinant is

e RcCy with N > 12 and j satisfies |j|>p~! € L' (R?)
e there exists 6 > 0 such that,

s;lﬂg) F@)IFI2(|w(r)| + |[Vw(r)]) < oo, (2.25)

where f is the function defined in (2.24).
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Remark 2.12. The condition (2.25) has of course the same origin as the condition (2.23).
In [LS13], the authors conjectured that this condition “can be considerably loosened”.

Let us turn to the mixed-state case. If (R,j) is representable by a Slater determinant
L[P1,...,Pn], then, for all £ € N*/ the pair (k/N)(R,j) is mixed-state representable,
where N is the number of orbitals (simply take the uniform convex combination of the pairs
represented by .7 [®1], .7 [P2], etc.). In particular, from Theorem 2.11, we deduce the follow-
ing corollary.

Corollary 2.13 (CSDFT, case mixed-state).
A sufficient set of conditions for a pair (R,j) to be mized-state representable is R € Cn for
some N € N*, j satisfies |j|*p~! € LY(R3), and (2.25) holds for some § > 0.

In [TKH14|, the authors provide different sufficient conditions than (2.25) for a pair (p, j)
to be mixed-state representable. They proved that if
12
(L+1-Pe |V 9| e L'(R?),
then the pair (p, j) is mixed-state representable. Their proof can be straightforwardly adapted
for the representability of the pair (R,j), so that similar results hold.

We now prove Lemma 2.7 and Theorem 2.11.

2.2.2 Proofs of the CSDFT results
Proof of Lemma 2.7

Proof. Let ® = (¢!, ¢*) € H'(R3,C?) having phases in C*(R), and let (R, j) be the associated
spin-density 2 X 2 matrix and paramagnetic current. It holds that

A A R
B=\% o) =\oa otp)
g op ¢ ol o]
For a € {1,1}, we let 7% be the phase of ¢*, so that ¢% = \/p®el™. Setting 7 = 77 — 7},
we obtain o = |o|el” = \/pTptel”. On the other hand, the paramagnetic current is, according

to (2.19),
j=p'Vrl 4+ ptvrt = pVrt + p'Vr = pvrt — ptvr

In particular, using (2.22),

Im (cVo)

=vr'.
pp!

Im (6V j—p'V j
J m(aia):.] p T:V7'¢ and i+
P pp P P

are curl-free. O

Proof of Theorem 2.11

Proof. We break the proof in several steps.

Step 1: Any R € Cy can be written as R = Ry + Ry + R3 with Ry € CJOVk, N > 4.

T T
Let R = (Z ;1) € Cy, with N > 12. Then, VR = (’; :¢>’ with 71,7+ € H(R3,R)

and s in H'(R3 C). We write R = R' + R" where R'V were defined in (2.16). As in
the proof of Theorem 2.2 for the case N = 2, R/} are hermitian, of null determinant, and
VRV € Mays (HY(R3,C)). However, it may hold that [ trez[R'] ¢ N*, so that R' is not



2.2. REPRESENTABILITY IN CSDFT 59

in CY, for some M € N*. In order to handle this difficulty, we will distribute the mass of R'
and RY into three spin-density 2 x 2 matrices.

More specifically, let us suppose without loss of generality that [tre2[RT] > [ tree [RY].
We set
Ry =(1-&)R"+&RY,
Ry =&(1-&)RT, (2.26)
Ry = (1-&)R" + &R,

where &1, &, &3 are suitable non-decreasing functions in C°°(R?), that depends only on 71,
and such that, for 1 < k < 3, it holds 0 < & < 1. We will choose them of the form & (r) =0
for m < ay and & (r) =1 for r1 > B > g, and such that

(1-&)6=(1-§)s=(1-8)&s=0. (2.27)

These functions are tuned so that [ps tre2(Ry) € N* and [ps tre2(Rg) > 4 for all 1 < k <
3 (see Figure 2.1 for a canonical example of such a triplet (£1,&2,&3)). In Figure 2.1, we
clearly see how the non-overlapping condition (2.27) guarantees the null-determinant condition
everywhere. Note that such a spatial decomposition could not have been performed with only
two spin-density 2 x 2 matrices. Although it is not difficult to convince oneself that such
functions &, exist, we provide a full proof of this fact in Section 2.2.3.

(@) (1-&) Y

\ // &2

(b) // §1(1 - &3) A

A
©  (1-&) \\ ya

Figure 2.1 — Weights of the matrices R (blue) and R* (red) in (a) Ry = (1 — &)R" + &RV,
(b) Ro = &(1 - &)R" and (c) Ry = (1 — &)RT + &R

From (2.27), it holds that, for all 1 < k < 3, Ry € COK, and that Ry + R + R3 =

R" + RV = R. In order to simplify the notation, we introduce the total densities of RT and
RY:
£l P o and i R sl

Recall that p = fT 4+ f+. We decompose j in a similar fashion. We write j = j; + jo + j3 with
. /T, fr
h=0-&) (pJ —Im (sVs)) + & <p'] +Im (sVs)) ,
. /T, _
J2 1= 51(1 — ég) <p_] —Im (SVS)) s (228)

j3 = (1-¢&) (JC:J +Im (sVs)) + &3 <]:J —Im (sVs)) .
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Step 2: The pair (Ry,j1) is representable by a Slater determinant.
Following [LS13], we introduce
m / (1+5) Ao arepW

where ¢ is the one in (2.25), and m is a constant chosen such that £(co) = 1. We then
introduce

nmuw:§§@+ax

malr) = G + A1 — m(r))
! (2.29)
M,3(r) = E(z2 +7)(1 = m(r) —n2(r)),
Ny —2
1
M,k(r) = N, - 5 (1= m(r) =m2(r) —m3(r)) for 4 <k <N,
where «, 3,7 are tuned so that, if p; := trc2 Ry denotes the total density of Ry,
V1 § k S Nl, / 771,k/)1 =1. (2.30)
R3

It can be checked (see [LS13]) that 7 > 0 and that ZkN:ll ni,k = 1. We seek orbitals of the

form
(I)lk = /N < (1-51)( >+ §2<T8¢>> i1,k 1<k<N17

where the phases u; j are chosen carefully later. From (2.27), we recall that (1 — &;)& = 0,
so that, by construction, ®1 ; is normalized, and

Dy @] = M kR

Let us suppose for now that the phases wu;j are chosen so that the orbitals are orthogo-
nal. This will indeed be achieved thanks to the Lazarev-Lieb orthogonalization process (see
Lemma 2.5). Then, ¥; := .7 [®11,..., Py n] represents the spin-density 2 x 2 matrix Ry. Ac-
cording to (2.19), the paramagnetic current of ¥ is (we recall that 7" and r+ are real-valued,
and we write s = |s|el” for simplicity)

Ny

jo = an,k(l — &) (]rT|2VU1,k + |52V (—1 + ulk)> + k62 <|s|2V(T +uy ) + \rﬂzVul,k)
k=1

<(1 -&)fM+ §2f¢) (Zm KV k) + (62— (1 —=&)|s*Vr

Since |s|?V7 = Im (3Vs), this current is equal to the target current j; defined in (2.28) if and
only if

. 1
J
p1==p1 anVULk. (2.31)
P k=1
In [LS13], Lieb and Schrader provided an explicit solution (uq,1,...,u1 n,) of this system
when! N; > 4. We do not repeat the proof, but emphasize on the fact that since condi-
tion (2.25) holds true, the phases u; ) can be chosen to have bounded derivatives, so that

! In the same article, the authors recall (see [TME09] for instance) that (2.31) may not have solutions when
N; = 2. The case N1 = 3 is still open. Of course, would someone find an explicit solution for N; = 3, the
condition N > 12 in Theorem 2.11 could be replaced by the weaker condition N > 9.
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the functions @1 ; are in H'(R?, C?). Also, as their proof relies on the Lazarev-Lieb orthog-
onalization process, it is possible to choose the phases uq ) so that the functions ®q, are
orthogonal, and orthogonal to a finite-dimensional subspace of L?(R3,C?).

We proved that the pair (Ry, j1) is representable by the Slater determinant .7 [®; 1, ..., ®1 n,].

Step 3: Representability of (Rg,j2) and (Rs3,js3), and finally of (R, j).
In order to represent the pair (Rq,j2), we first construct the functions 7y, for 1 <k < Ny of
the form (2.29) so that (2.30) holds for py := tre2 R2. We then seek orbitals of the form

T .
Dok i= /M2 k€1 (1 — &3) (2) 2k for 1<k < No.

Reasoning as above, the Slater determinant of these orbitals represents the pair (Ra, jo) if and
only if

. No
J2

p2= = p2 E N2,k VU2 -
P k=1

Again, since Ny > 4, this equation admits a solution (u21,...,us n,). Moreover, it is pos-
sible to choose the phases ug ) so that the functions ®;j are orthogonal to the previously
constructed ®q .

We repeat again this argument for the pair (Rg3,js). Once the new set of functions 73y is
constructed, we seek orbitals of the form

o (1 (1) 5 )

and construct the phases so that the functions ®3; are orthogonal to the functions ®;
and ®o 4.

Altogether, the pair (R, j) is represented by the (finite energy) Slater determinant
S, PN Poty s Pong, Py, Pa )

which concludes the proof. O

2.2.3 Construction of the functions &, & and &3

We explain in this section how to construct three functions &i,&2,&3 € C°(R) like in Fig-
ure 2.1. In order to simplify the notation, we introduce

f(r) = //]R XRtrcz<R¢>(r,rz,r3> dradrs, and g(r) := //]R XRtrcz<RT><r,y,z> dradrs,

where RT, R were defined in (2.16). We denote by

«

F(a) = / f(z)dz and G(a):= / g(x)dz,
and we set F := F(o0) = [ f and G := G(o0) = [p g. Note that F' and G are continuous
non-decreasing functions going from 0 to F (respectively G), and that it holds F+G = N. Let
us suppose without loss of generality that F < G, so that 0 < F < N/2< G< N. If F =0,
then R* = 0 and we can choose Ry = Ry = (4/N)R" € CJ and R3 = (N —8)/NR' € C{ _.
Since N > 12, it holds N — 8 > 4, so that this gives the desired decomposition. We now
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consider the case F # 0.

In order to keep the notation simple, we will only study the case F < 8 (the case F > 8
is similar by replacing the integer 4 by a greater integer M such that F < 2M < N —4 in
the sequel). We seek for o such that

/_O;Of(az)dx<4 and /_(:Of(x)+/cyoog(3:)>4,
/:Of(x)dx<4 and / dm+/:of 2)da > 4,

F—-—4<F(a)<4, and Fla)+4—-F<G(a)< F(a)+G—4. (2.32)

or equivalently

Let Q(F—4) be such that F(Oé(]:,4)) = F — 4 (with Q(F—g) = —0O0 if F <4), and Qy) be
such that F'(ag)) = 4 (with ayy = +oc if F < 4). As F' is continuous non-decreasing, the
first equation of (2.32) is satisfied whenever a(r_y) < a < ay).

The function [o(r_4), 4] 2 a = m(a) := F(a) +4 — F goes continuously and non-
decreasingly from 0 to 8 — F, and the function [a(r_4), 4] > a = M(a) := F(a)+G —4 goes
continuously and non-decreasingly from N — 8 to G between a(r_4) and a(y). In particular,
since G () goes continuously and non-decreasingly from 0 to G, only three cases may happen:

Case 1: There exists ag € (a(r_4), (4)) such that m(ap) < G(ag) < M (ap).
In this case, (2.32) holds for a = ag. By continuity, there exists ¢ > 0 such that

Fla+e¢) <4, Fla)+G—-G(a+¢e)>4, and G(a)+F—F(a+e)>4.

Let & € C*°(R) be a non-decreasing function such that £(z) = 0 for z < « and &(x) = 1
for x > a4+ ¢e. Then, as 0 < & < 1, it holds that:

/(l—gg)ng(a+6)<4 and /(1—52)f+/00ng(a)+g—G(a+a)>4.
R R

a-+te

We deduce that there exists an non-decreasing function 3 € C*°(R) such that &3(z) = 0 for
r < o+ ¢, and such that

/(1 —&)f + 839 =4
R

Note that (1 — &2)&3 = 0. On the other hand, from
/fzfé}'—F(a) <4 and /§2f+/ 9> F—Fla+e) +Gla) >4,
R R —00

we deduce that there exists an non-decreasing function £ € C°°(R) such that & (z) = 1 for
r >,

/R(l —&)g+&f =4
and (1 —&1)&e = (1 — &1)&3 = 0. Finally, we set
Ri=(1-&)RT+&RY, Ry=&(1-&)R', and Ry=(1-&)RV+ &R

By construction, R = R + R¥ = Ry + Ry + R3, Ry € C) and R3 € CJ. We deduce that
Ry € CJO\FS, where NV — 8 > 4. This leads to the desire decomposition.
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Case 2: For all a € (a(r_4), 2(4)), it holds G(a) < m(a).
This may only happen if m(a(4)) > 0, or F < 4, so that G > N —4 > 8. It holds G(o(r_4)) =
0, so that g(r) is null for r < a(r_4). Let ag be such that az_4) < ap < agy). As

/Rf:}">4 and /:Of:}'—F(ao)<4,

there exists a non-decreasing function & € C*°(R) satisfying & (z) = 1 for > ap and such

that
/ &f =4
R

Now, since G(av4)) < m(a(yy) =8 — F, it holds that
La-er<Faw =1 ad [ a-e)f+ [ 9> Flag) +6 - Glaw) >4

0

There exists a non-decreasing function & € C°°(R) satisfying &2(x) = 0 for z < ag and such
that

/R(l — &) f+ &g =4
Note that (1 — &1)& = 0. Finally, we set
Ri=&6RY, Ry=(1-&)R", and R3=&R'+ (1-&)R

By construction, it holds that R = R; + Rs + R3, and that R; € Cff and R3 € Cﬁf. We deduce
Ry € C]O\LS, and the result follows.

Case 3: For all a € (a(r_4), (4)), it holds G(a) > M (a).
This case is similar to the previous one.







CHAPTER 3

LEXISTENCE OF MINIMIZERS FOR KOHN-SHAM WITHIN THE
LOCAL SPIN DENSITY APPROXIMATION

We expose in this chapter the results given in [Gonl5a).

Abstract. The purpose of this chapter is to extend the work by Anantharaman and
Cances [AC09], and prove the existence of minimizers for the spin-polarized Kohn-Sham model
in the presence of a magnetic field within the local spin density approximation. We show
that for any magnetic field that vanishes at infinity, the existence of minimizers is ensured for
neutral or positively charged systems. The proof relies on classical concentration-compactness
techniques.

3.1 Introduction

The density functional theory (DFT) introduced in 1964 by Hohenberg and Kohn [HK64] is a
very popular tool in modern quantum chemistry. This theory transforms the high-dimensional
Schrédinger problem into a low-dimensional one, hence computationally solvable. The price
to pay is the introduction of the so-called exchange-correlation (xc) energy term, which is
unknown. Throughout the literature, several different approximations of this energy can be
found. The first successful one, and still broadly used nowadays, was proposed by Kohn and
Sham [KS65], and is called the local density approximation (LDA). The mathematical prop-
erties resulting of the Kohn-Sham LDA are still not fully understood. Proving the existence
of minimizers is made difficult by the non-convexity of the problem due to the LDA term.
Using concentration-compactness techniques introduced by Lions [Lio84], it has been possible
to prove the existence of minimizers in several cases. Le Bris [LB93| proved that for a neutral
or positively charged system, the Kohn-Sham problem with LDA exchange-correlation energy
admits a minimizer. A similar result was proved by Anantharaman and Cancés [AC09] for
the so-called extended-Kohn-Sham model with LDA exchange-correlation energy.

In this chapter, we extend the result by Anantharaman and Cancés to spin-polarized
systems, the electrons of the molecular system into consideration being subjected to the
electric potential V created by the nuclei, and to an arbitrary external magnetic field B that
vanishes at infinity. In order to take into account spin effects, we have to resort to spin
density functional theory (SDFT). In this theory, all magnetic contributions coming from
orbital magnetism (paramagnetic current, spin-orbit coupling,...) are neglected. Historically,
while Kohn and Sham briefly discussed the inclusion of spin effects in their model, the general
theory was pioneered by von Barth and Hedin [vBH72| and is known as the local spin density
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approximation (LSDA). These authors proposed the following ansatz to transform a spin-
unpolarized exchange-correlation energy to a spin-polarized version of it:

_ 1 _
EZPMp*07) = 5 (B2 (20) + B2 (207)]

where E)I;CDA is the spinless exchange-correlation energy, and p*/~ are the eigenvalues of
the spin-density 2 x 2 matrix (see Chapter 2, Section 2.1.1). There are two other major
differences between spin-polarized and spin-unpolarized models. First, the ground state of
spin-unpolarized models is given by a minimization problem onto the set of electronic den-
sities, while in spin-polarized models, it is given by a minimization problem onto the set of
spin-density 2 x 2 matrices, which are hermitian matrices. Second, the magnetic field adds a
Zeeman-type term —p [ B-m to the energy functional, where m is the spin angular momen-
tum density.

Due to all those additional difficulties with respect to the spin-unpolarized case, the
fully polarized SDFT has not been very popular until recently. Chemists generally prefer
its collinear version (collinear-SDFT), where all the spins are constrained to be orientated
along a fixed direction on the whole space. This allows one to work with two scalar fields
(one for spin-up, and one for spin-down), instead of fields of hermitian matrices. While this
simplification provides very good results, it misses some physical properties (spin dynamics
[SDADT07], frustrated solids [BSFS13], and so on). The implementation of the unconstrained
(fully polarizable) model appeared with the work of Sandratskii and Guletskii [SG86], and
Kiibler et al. [KHSW88a, KHSWS88b]|, and this model is becoming a standard tool nowadays.
To the best of our knowledge, no rigorous proof of the existence of solutions has yet been
provided for this case.

Our result is that, under the same hypotheses as in [AC09], plus some mild conditions
on B, the existence of minimizers is still ensured for neutral or positively charged systems.
Whereas the main tools of the proof are similar to those used in [AC09]|, namely concentration-
compactness techniques, some adaptations are necessary, in particular to handle the Zeeman
term. The structure of this chapter is as follows. We first recall how to derive the LSDA
models, and formulate the main theorem. Then, we break the proof of the theorem into
several lemmas, that we prove at the end.

3.2 Derivation of the local spin density approximation models

We recall how extended Kohn-Sham models are derived in the spin setting. We start from
the Schrodinger-Pauli Hamiltonian for N-electrons in the Born-Oppenheimer approximation.
In atomic units, this operator reads

N

1
HfullSP(vA Z— —1V +A I'l HZ+ZV r; ]IQ*/LZB I'z 0+ Z
1 1<i<j<N

\)

Z_r_]|

where Is is the 2 x 2 identity matrix,

Z ‘F_Rk‘ (3.1)

is the electric potential generated by the M nuclei, A is the external magnetic vector potential,
and B :=V x A is the external magnetic field. We denote by r; (resp. Ry) the positions of
the electrons (resp. nuclei). The charge of the k-th nucleus is z; € N* and Z := Zé/il zp is
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the total nuclear charge. We can assume without loss of generality that R; = 0. The constant
w is the Bohr magneton. Its value is 1/2 in atomic units, but we prefer to keep the notation
i in the rest of the chapter. The term o; appearing in the Hamiltonian contains the Pauli
matrices acting on the i-th spin variable:

' 0 1 0 —i 1 0
oi = (owisoyio=) = ({1 o) i o) lo _1) )

Although the magnetic field B and magnetic vector potential A are linked by the rela-
tion B =V x A, it is often preferable to consider them as two independent fields. Indeed, B
acts on the spin of the electrons, while A acts on the spatial component of the orbitals.
For instance, would we be interested only in studying orbital effects (e.g. paramagnetic cur-
rents), we would neglect the spin effects. We would then take B = 0 and A # 0. Such an
approximation leads to the so-called current-density functional theory [VR88]. In this chap-
ter, we are interested in spin effects. We therefore set A = 0, which amounts to neglecting
the paramagnetic currents, while keeping B # 0. This approximation is commonly used to
study phenomena such as spin dynamics [SDAD 07| or frustrated solids [BSFS13|. With this
approximation, our Hamiltonian for IV electrons reads

N 1 N 1 N
HY(V,B) = Z—§Ai+ZV(ri)—|— > T I, —p» B(ri) o
=1 =1 =1

— |r’L -
1<i<j<N

This Hamiltonian acts on the fermionic Hilbert space

N
/\L2(R37C2) ::{\I](rlasla to arNysN)v r; € R378’£ S {Tai})
Z / [W(r,s1,---)]2dry -+ dry < oo,
51, s NE{T Y RN

Vp € SN, \I’(rp(l)asp(l)v o) = €(p)¥(ry, 51, - )}

Here, Sy denotes the set of all permutations of [1,..., N], and e(p) is the parity of the
permutation p. The space /\N L?(R3,C?) is endowed with the inner product

(U1|Wg) = Z " Uy (ry,s1,- - )Wa(ry, s, )dry - - dry.
(s1,-sn)e{n 3y “ K

The ground state energy of the system is obtained by solving the minimization problem
E(V,B) = inf {TI‘ (H]SVPF) ,Te G}])\}lre} — inf {TI‘ (H]SVPF) ,Te G%ixed}

where GR™ resp. G*d is the set of spin-polarized pure-state (resp. mixed-state) N-body
density matrices defined in (2.1) resp. (2.2). We study the extended-Kohn-Sham model based
on mixed-state N-body density matrices, for this problem has better properties mathemat-
ically speaking, and allows one to handle more general physical situations as, for instance,
positive temperatures. For I' € G%ixed, direct calculations lead to

< V—uB,  —puBs+ iuBy> P ol
_MBCC - i/LBy V+ MBZ pikT ,OJEL ’

(3.2)

Tr (HYF (V,B)T') = Tr (HY (0,0)T) + / tree
R3

where, for o, 8 € {1,]}?, p%ﬁ was defined in (2.3). In the following, we write

U::< V = b _“Bx“/“‘By) and R (P1PE)
—uB, —iuB,  V +puB, pr pE
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We recognize in Rp the spin-polarized density 2 x 2 matrix introduced in Chapter 2, Sec-
tion 2.1. When B = 0, one recovers the usual potential energy density Vpr appearing in
spin-unpolarized DFT. Introducing the spin angular momentum density mr = trez [0 - Rr],
and the total electronic density pr = pltT + ,olif, it holds

tre2 [URr] = Vpr — uB - mp. (3.3)

We now apply the constrained search method introduced and studied by Levy [Lev79|,
Valone |Val80| and Lieb [Lie83|, and write the minimization problem (3.2) in terms of Rr:

E(V,B) :inf{F(R)+ / tre2 [UR], R € j}vnixed}, (3.4)
RS

with
F(R) := inf {Tr [H(0,0)], T € Gmixed | R = R},

The set J ]‘Vnixe‘i is the set of mixed state N-representable spin-density 2 x 2 matrices, that
we characterized in Theorem 2.2. The functional F' cannot be straightforwardly evaluated.
In order to make this problem practical, we approximate F'. It is standard since the work of
Kohn and Sham [KS65] to approximate this functional by studying a system of non-interacting
electrons. For this purpose, we recall that, for a mixed state I' € G%ixed, the spin-polarized
one-body density matrix yp(r,r’) was defined in (2.10)-(2.11). The set of mixed-state 1-body
density matrices is
P i= [, T € GRPd),

and, identifying the kernel ~(r,r’) with the corresponding operator of S(L?(R3,C?)), the
space of self-adjoint operators on L?(R3, C?), Coleman [Col63] proved that

Py ={v€ S(L*(R3,C?)), 0 <~y <1, Tr(y) = N, Tr(-Ay) < 0o} .

Physically speaking, this is the set of one-body density matrices of systems with NV electrons
(Tr(y) = N), satisfying the Pauli principle (0 < v < 1), and with finite kinetic energy
(Tr(—A7v) < 00). In a similar way, we can define, for A > 0,

Pri={y € S(L*(R?,C?), 0 <y <1, Tr(y) = A, Tr(~Ay) < oo} (3.5)

A more practical and equivalent formulation of the Coleman result is that, using the spectral
theory for compact self-adjoint operators, we can write the components 7 of any v € P in
the form

oo 0o 1
fyaﬁ(rv I'/) - an¢g(r)¢£(r/)a 0<ng <1, an = A, & = (Zf) € LZ(Rgv (C2)7
k=1

k=1 k

(Dp|®1) = 0a,  Tr(=A7) =Y ng|[Vk[|72 = Tr(=A"T) + Tr(—AyH) < o0, (3.6)
k=1

Notice that yr(r,r) = Rrp(r), so that we will write R,(r) := ~v(r,r) for v € Py. We finally
introduce
j}fmxed = {R c M2><2(L1<R3)), El’)/ €Pyr, R= R’y} .

The extended version of the Kohn-Sham approach consists in splitting the unknown func-
tional F'(R) into three parts:

F(R) =Txs(R) + J(pr) + Exc(R).
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The first term Tkg represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

) 1
VR € g Tks(R) := inf {2Tr (—A7v), v€ Py, Ry= R} .

The second term is the Hartree term, defined by

I Y
J(p) ._2//R3XR3 T ar

Finally, the last term is the exchange-correlation functional defined by
VR e N, Ex(R):= F(R) - Txs(R) — J(pr).

Notice that since F' is a non-explicit functional, F. is also a non-explicit functional. It is how-
ever possible to construct explicit approximations of Ey. giving rise to accurate predictions of
the ground state energies of most molecular systems [ED11]. The case Fy. = 0 corresponds
to the reduced Hartree-Fock model [Sol91].

The local-spin density approximation introduced by von Barth and Hedin [vBH72]| consists
in writing
_ 1 _
Exe(R) ~ B2 (0%, p7) o= 5 [BR0M (207) + B2 (207)] (3.7)

where pt/~ are the two eigenvalues of the spin-density 2 x 2 matrix R, and E}I;CDA is the
standard exchange-correlation functional in the spin-unpolarized case, that we can write under
the form [KS65]
LDA

EEPMp) = [ alpte) ar. (33)
The fact that ELSPA only depends on R via its eigenvalues comes from the locality of the
functional. Indeed, this energy functional must be invariant with respect to local spin rota-
tions. Since R is hermitian at each point, we can always diagonalize R locally, so that a local
energy functional can only depend on the two eigenvalues of R.

In this chapter, we deal with exchange-correlation functionals of the form (3.7)-(3.8). For
all p € R, the real value g(p) is an approximation of the exchange-correlation energy density
of the uniform electron gas with density p. Several functions g are available (VWS [VWN8(],
PZ81 [PZ81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic conditions
for low and high densities. Their mathematical properties are similar to the ones of the X a-
functional introduced by Slater [Sla51]

BLPAXe(p) — _ 0y /R M),

Altogether, by recasting problem (3.4) in terms of the one-body density matrices, we end
up with a variational problem of the form

I, :=inf {&E(v), v € Pa}, (3.9)

where
E(v) = *1 T *AWTT + *1T AR+ + t UR,|dr + EY ~
( ) 9 r 2 r Y (p'y) 5 I'c2 [ ’Y] r xcC (pfy » Py )

and where Py has been defined in (3.5). The physical situation corresponds to A = N € N,
but as usual in variational problems set on the whole space, it is useful to relax the constraint
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Tr(vy) = N to allow the particles to escape to infinity.

We can recover some other common models by further constraining the minimization set.
For instance, the collinear-SDFT consists in minimizing the functional £ onto the set

Pﬁollinear — {’Y € Py, ,}/Ti — nyzT = 0} .

In this case, the matrices v and R are both diagonal. In particular, the two eigenvalues of R
are {p*,p~} = {p'", p"}. In this model, it holds that

/trcz[UR]Z/ V(ﬂ”ﬂ)”)—ﬂ/ Bz(p”—p“)Z/ Vp—#/ B.p C.
R3 R3 R3 R3 R3

- pTT — pu

R
is the relative spin-polarization. This model is simpler than the noncollinear spin-polarized
model, as we are not dealing with fields of matrices, but with two scalar fields. Physically, it
corresponds to constraining the spin along a fixed direction on the whole space. This method
provides results in good agreement with experiments whenever the energy accounting for the
noncollinearity of the spins is negligible.

where

€ [-1,1)

Then, the spin-unpolarized case consists in minimizing the functional £ onto the set
,P;\mpolarized — {’Y € P, ,),Ti _ ,YiT =0, fyTT — »yii} .

Equivalently, it corresponds to the collinear case with ¢ = 0. It then holds that

/ trez [UR] :/ Vo,
R3 R3

so that the model is independent of the magnetic field B, and can be used whenever spin
effects are negligible. We refer to [AC09] for a mathematical introduction of this model.

3.3 An existence result for the Kohn-Sham LSDA model

The main result of this section is the following
Theorem 3.1. Under the following assumptions

1/ the function g in (3.8) is of class C*(R') and satisfies:

(9(0)=0
g <0
_ 2 l9'(p)|

J0<pf <pT<Z, sup A 3.10

3" per+ p7 + P (310
3
Jl1<a< -, limsup@ <0,
p—0t P

2/ all entries of U are in L%+E(R3) + L>®(R?) and vanish at infinity, and V := trc2(U) has
the form (3.1),

the problem Iy defined in (3.9) has a minimizer whenever A < Z.
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Remark 3.2. The assumptions (3.10) are the same as in [AC09], and are satisfied for all
common functionals. Theorem 3.1 extends [AC09, Theorem 1] to the case when the sys-
tem is spin-polarized by an external magnetic field B. While the strategy of proof, based on
concentration-compactness arqguments, is similar to that in [AC09], an additional technical tool
is needed to handle the Zeeman term. This tool seems to be new to the best of our knowledge.
We called it the flip transformation (see Equation (3.11) below).

Remark 3.3. This result does not make any assumption on the strength of the magnetic field
B other than that it vanishes at infinity. If B becomes infinite at infinity, it is easy to see that
the energy is not bounded below: we can orientate the spins of all electrons along the magnetic
field and push them to infinity, so that the energy can be arbitrarily negative.

3.3.1 Strategy of the proof of Theorem 3.1

We use the concentration-compactness method introduced in [Lio84]. We introduce the prob-
lem at infinity
I =mf {€%(7), v € Pa},

where . )
£2(7) = ;T (—AW) + 5T (—A’V”) +J(py) + ESPA (T, 7).

We need several lemmas, the proofs of which are postponed until the following section
for the sake of clarity. We begin with some functional inequalities (see Section 3.4.1 for the
proof).

Lemma 3.4. There exists a constant C' such that for all A > 0 and all v € Py, it holds
IVR, o2 < CTe(=Ay) and  [[Vp2/~[|a/2 < CTe(—An).

In particular, for all 1 < p < 3, there exists Cp such that, for all X > 0 and all v € Py,

3(p—1)

and similarly for pfyr/f.

We easily deduce from the above lemma that the energies I, and I3° are bounded below.

Lemma 3.5. For all A > 0, we have I\ > —oo and I3° > —oo. Moreover, all minimizing
sequences (Yn) for I or IS are bounded in the Banach space B, where

B:={y € S(L*([R’,C?), |7l :=Te(17]) + Ta(|[V]7|VI]) < o0}

The proof of Lemma 3.5 is given in Section 3.4.2. In the following, we consider sequences
(Yn)nen+ € B, and we will write R, := R, and p, := p,,. The proof of the following lemma
is given in Section 3.4.3.

Lemma 3.6. Let (7, )nen+ be a bounded sequence of B. Then, there exists o € B, such that,
up to a subsequence, (Yn),cn+ converges to o for the weak-x topology of B, all components of
R, converge to their respective components in Ry strongly in Lfoc(]R3) for 1 < p < 3, weakly
in LP(R3) for 1 < p < 3, and almost everywhere. The eigenvalues of R, converge to the
eigenvalues of Ry strongly in Lfoc(R3) for 1 < p < 3, weakly in LP(R3) for 1 < p < 3 and
almost everywhere.

Moreover, if v, € Py for all n, and vy € Py, the convergences hold strongly in LP(R3) for

1 <p<3, and E(y) < liminf E(yy,).
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It follows from Lemma 3.5 and Lemma 3.6 that one can extract from any minimizing
sequence (Vn)nen+ of (3.9) a minimizing sequence, still denoted by (vy)nen, converging to
some 7y for the weak-* topology of B. In particular, 0 < 9 < 1 and Tr(—A~y) < oo.
To prove that 7 is indeed a minimizer of (3.9), it remains to prove that Tr(yp) = A. Let
a = Tr(vp). It is easy to get a < A\. If @ < A, then we have loss of compactness (some
electrons leak away). Therefore, to prove that & = X (at least when A\ < Z), we need to
control the behavior at infinity of the minimizers, which is not as simple as in [AC09| because
of the Zeeman term —yu [ B-m. In order to control this term, we introduce the following flip
transformation:

o _
FOFCI):( i),wedeﬁne@:: —1
¢ —¢ (flip transformation). (3.11)

For ~ = an"bk><@k‘, we define 7 := an@kﬂg’k’
Note that if N N,
_ (7 _ (R R
v= (v“ 7¢¢) and [y = ( RU Ru) )
S T— RN RN)

F(x,y) = (—7” 4T ) (y,x) and Ry = <_ R R

from which we deduce the following lemma, whose proof is straightforward.

then

Lemma 3.7. If v € Py, theny € Py. Moreover, it holds that Tr(—A7,) = Tr(—=Av,), p = p,
and m = —m, where p and m have been defined in (3.3). In particular, it holds that

tree [UR] + tres [U}ﬂ =2 / V. (3.12)
R3

In other words, this transformation flips the spin-up and spin-down channels. Lemma 3.7
allows to cancel the Zeeman term, and is an essential tool throughout the proof. The following
lemma is proved in Section 3.4.4.

Lemma 3.8.
(1) For all X > 0, it holds —oo < Iy < I3° < 0.
(1t) For all 0 < p < A, it holds I < I, + 152,
(111) The functions X+ Iy and X — IS° are non increasing.
We then have the important result (see Section 3.4.5 for the proof).

Lemma 3.9. Let A > 0 and (7p)nen+ € Pa be any minimizing sequence of Iy that converges
to some 7o for the weak-+ topology of B. Let o := Tr(vy). Then

(i) a <A
(ii) o # 0.

(iii) If0 < a < A, then 7y is a minimizer for the problem I, there exists § > 0 with a4+ < A
such that Igo has also a minimizer, and I\ = I, + Igo + Ifia_ﬂ.

According to Lemma 3.9, if a < A, then 7 is a minimizer for I,. In this case, it satisfies
the Euler-Lagrange equation

Y0 = L(ooep)(Hyy) +60  with 0< 0 C Ker(Hy, —€F)
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for some ep < 0 called the Fermi energy, and with H,, defined in (3.24) below. Here,
1 (—so,c) 18 the characteristic function of the interval (—oc,er), and the spectral projection
1 (—soer)(Hy,) is defined by the functional calculus. We then use the very general result,
whose proof is given in Section 3.4.6.

Lemma 3.10. [t holds 0ess(H,,) = [0,400[. Moreover, if 0 < X < Z, then Hy, has in-
finitely many negative eigenvalues, and every eigenvector corresponding to such an eigenvalue
is exponentially decreasing.

From Lemma 3.10, we deduce the concentration-compactness result (see Section 3.4.7 for
the proof).

Lemma 3.11. Let o > 0 and 8 > 0 be such that o+ 5 < Z. Suppose that I, and Iz admit
minimizers. Then
IOH-B < Ia + ]go ( < Ia)

The end of the proof of Theorem 3.1 goes as follows. Let us assume that A < Z, and
a < A. Then, according to the third point of Lemma 3.9, vy is a minimizer for I,, and
there exists § > 0 such that a + 8 < A < Z so that Igo has also a minimizer, and it holds
=1+ Igo + Ij’\ia_ﬁ. Moreover, Lemma 3.11 holds, and 1,15 < I, + IEO. Finally, we get

Di=Ia+ 157+ I3 5> loyp + I 0
which contradicts the second point of Lemma 3.8. Therefore, it holds o = A, and, according
to Lemma 3.6, g is a minimizer for I, which concludes the proof.
3.4 Proofs of the sub-lemmas of Theorem 3.1

3.4.1 Proof of Lemma 3.4
Let A > 0 and € Py. We use the representation (3.6) of v, and write

B (r,r) = angb%(r)gbf(r’), 0<n;<1, an =\,
k=1 k=1

T oe]
Py = <zﬂf> € L*(R?,C?), (Qp|®s) = 0, Tr(—Av) 1= ml| V|72 < 0.
k k=1

In particular, p?(r) = > ng¢2 (r)qS’g (r). Differentiating this expression and using the Cauchy-
Schwarz inequality lead to

2

V57 = |3 (Vo (006 () + 6 (1) Vo (r) )
k=1

IN

00 2
S (1vapl+ 1) (o + 16717)
k=1

[Z w (IVR12+ VL) | |3 (logl? + \qﬁf\?)] -
k=1 k=1

We let 7% := Y72 ng|VoR[?, so that 7* € L'(R3) and [ps 7% = Tr(—Ay*?). The
previous inequality leads to the pointwise estimate

IN

VP < (To‘ + 7"8> i (po‘o‘ + ,05’3> e ) (3.13)
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In particular, if & = 3, we recover the Hoffman-Ostenhof inequality [HOHO77|
IV V/52, < Tr(—Aq).

Together with the homogeneous Sobolev embedding H!(R3) — L5(R3), we deduce
1% NIzs < € Tr(=Ay*%).

1/2

Then, using the fact that (7% +77)"/" € L?(R3) and (p* + p55)1/2 € L%(R?) and the Hélder

inequality, it follows from (3.13) that
IVl s < I+ 72) 2|2 1(0% + 77) 2| 1 < AC Tr(=An). (3.14)

For pT/~, we use the exact expression of the eigenvalues of a 2 x 2 hermitian matrix:

_ 1 1
Pt =5 (o V@) = 5 (o = 2 a2, (3.15)
If f and g are non negative, then, according to (2.15), we have the pointwise estimate

IV +gl = VVF+ 1Vl

We differentiate (3.15) to get

1 1
Vo /T < 51Vl + 5 ‘V\/(p” — pH)?

< SV 4+ 51V 4+ 5 (196114 [V + 2191

All the terms on the right-hand side are in L32(R3) and of norms bounded by CTr(—Av),
hence the same holds for Vp*/~.

Moreover, 7 is in Py, so that Tr(y) = [ps p = A. From the inequality 2|ab| < |a|* + [b]?,
we get that

[e.e]

8 2 (I +1922) < ink(w 2+ 16t2) = p. (3.16)

k=1 k=1

Integrating on R? leads to |[p®?||;1 < A. From the positiveness of R, it also holds that
0 < pt/= < pso that ||p™/~||1 < A\. We conclude from (3.14), the homogeneous Sobolev
embedding W13/2(R3) < L3(R?), and the Holder inequality with 1 < p < 3, that

3(p—1)

3—
162 )le < CoA % (A7) %

and similarly for p*/~.

3.4.2 Proof of Lemma 3.5

We prove that Iy > —oco. The proof is similar for I3°. Let A > 0, and v € P,. Under
conditions (3.10), a straightforward calculation shows that

BP0t )| < C (/Rg(pﬂp +/Rg(p+)p+> Lo </Rg(p—)p +/R3(p_),,+)
§20< R3pp++/Rspp_>’
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where p/~ := 1+ 87/~ < 5/3. We used the fact that R, is a positive hermitian matrix, so
that 0 < p™/~ < p. Therefore, since J(p) > 0, we have the estimate

1 n _
E() 2 5Tr(=07) = CLllUN g, MR pigoe = Co (Mo + o, )

where € = 4¢/(1 + 2¢) > 0 is chosen such that L3¢ is the dual space of L3, With
Lemma 3.4, it follows

(M) = %Tr(*Av) = CIUN, g1e o0 U4 Tr(=Ay)™) = Co (Tr(=Av)* + Tr(=A7)*)

+Lo

with 0 < a1,a9,a3 < 1. The function ¥ %Y —C7(1+Y*) — OV — CY*8 goes to
+oo when Y goes to 400 for 0 < ag,a9,a3 < 1. Hence, £(y) > —C for all v € Py. It
also follows from the above inequality that if (7,,),en+ 1S @ minimizing sequence for I, then
(Tr(=Avn)),en- is uniformly bounded. In particular, (v,)nen+ is a bounded sequence of B.

3.4.3 Proof of Lemma 3.6
Let (vn)nen+ be a bounded sequence in B. According to Lemma 3.4, the sequences (pﬁﬂ ) N
neN*

for a, 8 € {1,1}? and (p:{/_)neN* are bounded in W13/2(R3). In virtue of the Banach-

Alaoglu theorem, up to a subsequence, the sequence (y,)nen+ converges to some vy € B

for the weak-* topology of B, and (pgﬁ ) N and (,0?1L / _> converge for the weak topol-
neN* n

N*
ogy of W13/ 2(R3). To identify the limits, we recall that, for any compact operator K on
L*(R3,C?),

Tr(yn k) ——— Tr(nK) and  Tr(|V[y,|V[K) —— Tr([V]y0| V| K). (3.17)
n—oo n—oo

Choose W € C2°(R3,R). The operator (1+|V|) "W (1+|V|)~! is compact and in the Schatten
class &,(L*(R3,C)) for p > 2 according to the Kato-Seiler-Simon inequality [Sim05|. Taking
successively in (3.17)

W 0 0 0 0 W 0 W
K‘<0 0)’ K‘(o W)’ K_<W 0) and K_<—iW 0)’

we obtain that, for the first choice of K,

@@Wﬁﬂmm=ﬁm+MMUHW%HWWWﬂHWW)
(3.18)
;gﬁmHWMHWWWMWWMHWﬂzéﬁW

B

and similarly for péi, Re (pgi) and Im (pgi). We deduce that <pﬁ’3 ) ye Converges to pg
n *

in D'(R3,C) for all o, 8 € {1,1}2. Identifying the limits, the convergences hold also weakly
in W1H3/2(R3), strongly in LP (R3) for 1 < p < 3, and almost everywhere, in virtue of the

loc

Sobolev embedding theorem. From (3.15) and the pointwise convergence of (;ﬁﬂ ) N to
neN*

pgﬁ , we also deduce that (p,JLr / " )nen+ pointwise converges to pg /- Again, by identifying the

limits, the convergence also holds weakly in TW13/2(R?) and strongly in L} (R?) for 1 < p < 3.

Then, let x € C°(R) be a cut-off function such that x(z) =1 if |z| < 1 and x(z) = 0 if
x > 2. We take W4 = x(x/A) in (3.18), and let A go to infinity to obtain that

pol e LN(R?) and / pol <liminf [ pff, (3.19)

R3 n—oo R3
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and similarly for péi. Now, if 7, € Py and vy € Py, we get
A= Spo—/ +p”</ phl -+ o= A,
R

and the inequality (3.19) is an equality. Therefore, ( Pr)neN+ converges to pg strongly in L' (R3),
We deduce from (3.16) and 0 < p,, < pn that pht and p:{/_ are bounded in L!(R3). A clas-

sical application of the dominated convergence theorem then leads to the fact that (pgﬁ ) N
neN*

converges to pOB strongly in L' (R3) for o, 8 € {1,1}?, and that ( = > e COTVerges strongly
neN*

to ,0+/ in L'(R3). Finally, the strong convergence still holds in LP(R3) for 1 < p < 3 accord-
ing to the Holder inequality.
The proof for the energy is similar to the one in [AC09, Lemma 3]. We do not repeat it
here, but notice that the strong convergence of (p,t/*) N to par/f in LP(R3) for 1 <p<3
neN*

is needed for the convergence of the exchange-correlation functional.

3.4.4 Proof of Lemma 3.8

(it) Let us first prove that for 0 < p < A, it holds that Iy < I, + I3 . Let € >0, v € Py
and 7" € Pr—, be such that [, < E(y) < Iy +eand IP? < EX(y) < I3° , + e By density
of finite-rank one-body density matrices in B, and density of C2°(R3,C?) in H(R3,C?), we
can assume that v and v/ are both of the form

M
=Sl le) @) with @) e O(R?,C?).

We consider 7y, := 7 + Tne'T-ne and ¥4 := 7+ e/ T_ne Where = f(r) = f(r—x), and e is a
non-null vector. We recall that 7’ is the flipped transformation of 7/, as introduced in (3.11).
For ng large enough, and for n > ng, the supports of the ®;’s and of the 7,6®} s are disjoint,
so that v, and +4 are in Py for all n > ng. Also, for n large enough, J(pn) < J(p)+J(p') +¢€
Altogether, we get, for n large enough,

E(vn) +ENE) = 2E(7) + 26%(y) + 2 / Vo' (- —ne) 4+ 2 < 2E(y) + 2E°(7') + 2¢
< 20, 4 2I5° , 4 6e.

Hence, either £(7,) or £(74) is smaller than I+ I, + 3¢, so that I < I, +I5° . Similar
arguments show that I3° < I7° + Ij’\iu.

(i) We first prove that there exists Ao small enough such that for all 0 < A < Ag, it holds
If° < 0. We use a scaling argument. Let ¢ € C°(R3,C) be such that ||¢]z2 = 1, and let
bs = 03/%2¢(c-) for ¢ > 0. Note that ||¢y |2 = 1. For A < 1, we introduce

(-t ),

N —
’)’)\U(P,I')—)\ 0

so that vy, € Py for all 0 < A < 1 and o > 0. Using (3.10), there exists 1 < a < 3/2 such
that ELSPA(N|¢,[2,0) < —CA¥a3@D||¢||23,. Direct calculations lead to

L2(x
£ (1rg) = / V62 + N2a(162) + / ELSPA (6, 12,0)
)\
<25 [ IV0R + X (o) - xva e g
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It is easy to check that under the condition o < 3/2, there exists A\g > 0 such that for all
0 < A < A, there exists o such that £(7),) < 0. In particular, I3° < £%°(y),) < 0. Together
with (i), we deduce that, for all A > 0, I® < 0 and Iy < 0.

We now prove that I < I9°, for all A > 0. Let (7,)nen+ be a minimizing sequence for 15°.

We first suppose that
VA >0, lim sup / pn =0,
N0 peR3 Jr+By

where By is the ball of radius A centered at the origin. Since (p,)nen+ is bounded in wi3/2
according to Lemma 3.5 and 3.6, we deduce from [Lio84, Lemma I.1] that (py)nen converges
to 0 strongly in LP(R?) for 1 < p < 3. Also, because of (3.16), the components of R, and its
eigenvalues converge to 0 strongly in LP(R?) for 1 < p < 3. Similarly to [AC09], we deduce
that

—00

1 1
I3° = liminf £%°(y,,) = lim inf {Tr(—A’yn) + J(pn) + ELPA(pF p;)} = liminf —Tr(—A~,) >0
N—00 n 2 n—oo 2
which contradicts the first point. Therefore
JA,n>0, VneN, Ir,cR3 / Pn > 1. (3.20)
rn“l‘BA

Up to translations of the ~,’s, we can assume without loss of generality that r,, = 0.
We now introduce 7, the flipped version of -, introduced in (3.11). Using (3.12) and the

fact that V(r) < —Z—l, we get
r

E () + E(n) = Tr(—Aya) + 27 (pn) + 2ESPA(pF p) + 2 / Von
RS

L < 26 (1) — 22,

=2E%(n) + 2/ 7

Vi <2E%() — 2/
R3

Bgr |r|

Hence, either &(7,,) or £(7,,) is smaller than £%°(v,,) —z1 R~ . Therefore, I < I°—z R~ !n <
I,
A

(1it) The fact that A — Iy and A — I{° are non increasing can be read from the other
statements.

3.4.5 Proof of Lemma 3.9

Let A > 0, and let (7,)nen+ € P be a minimizing sequence for I. According to Lemma 3.5,
up to a subsequence, we can assume that (v, )nen+ converges to some vy € B for the weak-x
topology of B.

(i) The fact that e < A can be directly deduced from (3.19).

(ii) Suppose that o = 0, so that v = 0. Then, we have I, = liminf £(~,,) = E(70) = 0 (we
used the continuity of £, which can be proved similarly to [AC09]). This contradicts the first
point of Lemma 3.8. Hence, a # 0.

(i4i) Suppose that 0 < a < A. Following [AC09, FLSS07|, we let x,& € C°(R3,R*) be
radial functions such that 2 +¢2? = 1, with x(0) = 1, x < 1 on R?\ {0}, x(r) = 0 for |r| > 1,
IVxllee < 2 and ||VE| g < 2. We introduce ya(r) := x(r/A) and 4(r) := £(r/A) and
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finally v, 4 := xa7mxa. With those notations, A — Tr(v, 4) is a continuous and increasing
function from 0 to A. Therefore, there exists A, such that v, 4, is in P,.

The sequence (A, )pen+ goes to infinity. Otherwise, we would have for A large enough and
according to (3.19),

/ poxs = lim / paxa = lim [ puxh, =a= / po;
R3 n—oo R3 n—oo R3 R3
which is impossible, since [x%4| < 1 on R3.
We introduce v1,, = X4, XA, and Y2, = £a,Vn€a,. Note that v1, € P, and vy, €

Pir—a, and that p, = p1, + p2n. From the decomposition (3.6) of 7, we can write v, =
> e | Prn) (Prp |, with 0 < nyp, < 1. We deduce that

A
ﬁ.

n

r(| [V Iyl VI) + Te(|[V]v2n V) < Te(|[VInl V) + 8
Hence, (71,n)nen+ and (y2,n)nen= are bounded in B. Also, direct calculations lead to

A
TI“(—A’Yl,n) + Tr(—A727n) S TI“(—A’YH) + Sﬁ (3.21)

According to Lemma 3.5, up to a subsequence, (71, )nen+ converges for the weak- topology
of B. In this case, for & = (¢, ¢*) € C*(R3,C?), it holds that

Tl @)@ = [ Tl + [ ofhlo = [ 3 e+ [, pitiet
For n large enough, the support of @ is inside the support of x4, , and
T (71,0 ) (@) = Tr(ya x4, @) (x4, ]) —— Tr(]2) (@),

We deduce that (y1,)nen+ converges to vy for the weak-* topology of B. Finally, since
Y1,n € Po and Yo € Pa, (p1,n),cn- converges strongly to po in LP(R3) for 1 < p < 3, and
E(y0) < liminf £(y1,,) according to Lemma 3.6.

Let us look more closely to 7a2,. Since (p1n,)nen+ converges to py strongly in LP(R3)
and (pp )nen+ converges to po strongly in Lp (R3) for 1 < p < 3, we obtain that p2 , = pn—p1n

(and thus all the components of Rj, and 1ts eigenvalues) converges strongly to 0 in L | (R3)
for 1 < p < 3. Also, it holds that p+/ + p+/ = prf/ . Using (3.21) and the fact that

I p1.n(x)p2n(r’)|r — /| "t drdr’ > 0, we obtain

1 _
&) = FT=A) + T(pu) + [ trco [UR + BP0 )
1 A
5 Tr(—Ayip) + Tr( Ao ) — 4@ + J(p1n) + J(p2n)+
+ /IRB tr(C? URl n /R3 tree [UR2,TL] + E)ECSDA(/)T,H + p2+,n7 pin + pin)

A
> E(vim) +EC(v2n) — 4— +/ trez [UR2y] +
A2 Jos

LSDA — — LSDA — LSDA —
+Exc (pi’:n—i_p;—,n’pl,n—’—pln) _Exc (pii_,rwpl,n) - B c (p;n7p2,n)'
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We first consider the term [ tree [URs,,]. We have for A > 0, (we use, for a matrix M, the
notation |M| for the sum of the absolute values of the entries of M)

/ tres [U Ron] / e [U Roun]| + / reo [U Ron]
R3 By (Ba)©

<|IUIl, 3. HRQ I pinzs—e sup |U(r )‘ ’RQ |
L2+ Loo( nHLINL (BA) e( A)C n
U e 4+ su /
— H ||L§+€ Loo(Rd)” 27””1/10113 (BA) re 2 |

where € = 4¢/(14-2€) > 0 is chosen such that L3~ is the dual space of Late, Using inequality
(3.16), and the fact that [ pgi < A, we get an inequality of the form

/ trgo [U Roun]
R3

with Cy and C5 independent of A and n. Since all entries of U are vanishing at infinity, we
can first choose A large enough to control the second term, and then use the convergence
of (Ran),en+ to 0 strongly in LP(Ba) for 1 < p < 3, to establish the convergence of the
right-hand-side to 0.

For the last term, using (3.10), it holds (we write g2(p) = g(2p))

LSDA
B

< 01HR2 nHL1|’]L3 €/ (By) +C2 ES('I;p) ‘U(I‘)‘
r A)€

ELSDA( ELSDA(

Pl + 3 Pin + Pon) — Pl s 1) — D3> Pom) =

1 N _ B
= [/RS (92(01% + p3n) — 92(01,) — gz(ﬂL)) + /Rg 92(P1p + P2p) — 92001 0) — 92(P3)

2
(3.22)
Then, we get (dropping the super-script +/— for the sake of clarity)

‘/R?’ 92(p1,n + P27n) - 92(Pl,n) - 92(/’2,71)

S/ 192(p1,n + P2,n) — 92(p1.0)| +/ |92(p2,n )|+
Ba Ba

+ / l92(P1,n + P2,0) — 92(p2,n)| + / l92(p2,n)]
(Ba)e (

Ba)¢

<C < / o (40T ) + / (mar+ (pa,n>p+))
+C ( /( g P () + /( G <p1,n>p*)> .

We recall that pt/= = 1487/~ < 5/3. Since (p1,n)nen+ and (pn)nen+ are bounded in LP(R?)
for 1 < p < 3, and since (p2,n)nen+ converges to 0 in L (R3) for 1 < p < 3, we deduce
that (3.22) goes to 0 when n goes to infinity (first take A large enough, then n large enough,
as before).

Altogether, for € > 0, for n large enough,

E(m) = EMmpn) +E%(v2m) —3e > 1y + 132, — 3e.

Therefore, E(y,) > 1o + 13, and Iy > I, + I° . The second point of Lemma 3.8 states
that I < I, +13° . Hence I = I, + 1%, and (72,n)nen+ is a minimizing sequence for I3° .
As in the proof of Lemma 3.8, it holds (3.20):

3A,7>0, VYneN, 3r,ecR3 / p2,n > 1.
rn+By
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We let 7§7n = Tr,V2,nT—r,- Lhen, (72,) is bounded for the weak-* topology of B, and con-
verges, up to a subsequence, to some 7 satisfying Tr(vy)) > 7. Let 8 := Tr(v;). We can
repeat the same arguments as before and truncate '757,1 to ensure that Tr(xa,v2.nX4,) = 5.
We deduce as before that 7 is a minimizer for Igo, and that I, = I, + Igo + I;ia_ﬁ.

3.4.6 Proof of Lemma 3.10

Let us first derive the expression of H,,. Suppose that 9 € P, is a minimizer for /. Then
for vy € Py and 0 <t <1, it holds E(ty + (1 — t)y9) > E(70). In particular, one must have

ot t=0 )

To perform the calculations, we use the explicit formula (3.15) for pt/~, and get

mw+u—wmﬁF,
ot t=0

lt Lo + 1 pgT - péi 2/)(T)i R—R
27 [\o 1 e s\ 2t ]| °)
\/(po —05)? + 4o’ 0 o o

Similarly to [AC09, CDLO08|, we conclude that

IE(ty + (1 = t)%) ‘
ot t=0

with

1
H70:<2A+p0*|-|_1)H2+U

L 9e) <1 0> + . (pgT f v h o TT)
2 01 2 — 3.24
_ Vil = otz ot \ 20 et meo J] (320
L ') <1 0) B 1 (ﬂgT o Tf%i fpgi ﬁ)
2 0 1 ) _
_ Vbt =k +alphip \ 20 00— )|
Using (3.23), we deduce that v € arginf{Tr(H,,7), v € Px}. Finally,
Y0 = L (—ooep)(Hyy) +0  with 0 C Ker(Hy, —er),
where ep is the Fermi energy, determined by the condition Tr(yy) = A.
1
Let us first calculate the essential spectrum of H, . We recall that Hy = —§A]I2 has

domain H?(R3,C?) and that if u € H?(R3,C), then u vanishes at infinity. We also recall
that for all V' € L3/2(R3,C?) + L>®(R?,C?) (that is V is of the form V = V39 + Voo with
Vs € L3/2(R3,C?), Vao € L°(R?) and ||V || oo arbitrary small), V is a compact perturbation
of Hy. In our case, we can easily check that pg |- |~1 = po| - |72 € L} (R?), so that pg |- | 7!
vanishes at infinity. Altogether,

o pox|-|7he LR + LE(RY) ;

o UeL¥R3C? + L®(R? C? and all entries of U vanish at infinity ;
— - + —

o 9o/ I<Cl +py) hence g'(p'7) € LP/AR,C?).
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Therefore, according to the Weyl’s theorem, the domain of H.,, is H 2(R3,C?), and its essential
spectrum is oess(Hy,) = 0ess(Ho) = [0, +00.

Let us now prove that H.,; has infinitely many negative eigenvalues whenever A < Z. First
notice that the matrix

s )
2 _
Vol = a2+l \ 200 A~ o

has two eigenvalues, respectively —1 and 1, so that the matrices appearing into the two pairs
of brackets in (3.24) have 0 and 2 as eigenvalues, and therefore are hermitian positive. Also,
recall that under the conditions (3.10) on g, it holds g < 0. Altogether, for ¢ € C° (R3,C),
U = (¢,9)1 € C(R3,C?), and ¥ defined as in (3.11), it holds that

(91 ) + (F1, ) < (] (584 msl- 1) ) [0)

+ <§17\ <<—;A+p0* E |—1> H2+U> \\Tf>
<4l = gA+ ] [ VI0) = Wi,

where Hy := —3A+ po || +V acts on L*(R3,C), and V is defined in (3.1). We used the
subscript 1 to emphasize that (|-); is the scalar product on L?(R3, C), whereas (-|-) is the one
on L2(R3,C?). In virtue of [Lio87, Lemma 2.1], the operator H; has infinitely many negative
eigenvalues of finite multiplicity whenever A < Z. So has H,, by the min-max principle.
Eventually, e < 0, and

N1 N2
Yo =D PN@i|+ D @) (@i with (@] ®;) =0 and  Ho,®; = e;®;.
i=1 i=N1+1

It holds ¢; < ep if i < Ny, and ¢; = ep if N1 +1 < i < N,. In the following, we set n; := 1
for i < Nj.

Finally, we prove that all eigenvectors associated with negative eigenvalues are exponen-
tially decreasing. Any function u satisfying H. u = Au is in H?(R?,C?), and each component
of w vanishes at infinity. As a byproduct, we obtain that py = vajl n;|®;|? also vanishes at
infinity. Finally, all the components of

Uy i=po* || 2+ U+
s g [(1 0 + (1) 1 o =gt 2ph
2 |\o 1 T e g2 \ 208 pgt el
o=+/- (Po — P57 ) +4lpy|

vanish at infinity. Recall that H, ®; = —%A@i + U,®; = ¢;®;. Multiplying this equation by
®; and adding all the terms with prefactors n;, it holds that

No N2 Na

1
> ni®] <—2A> O+ Y ni® U Dy = eing| @[, (3.25)
i=1 i=1 =1

From the relation pg = ZZN:Q1 ni|®;|%, we get

N2
Apo = 2n; (D] (A®;) + |V,
=1
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and (3.25) becomes

A Ny N Ny No
—ZPO + Z é\V(I)ZF + Zniq)zTU'yq)i + Z(&F — 81')7%’(1)@“2 —EpFpo = 0.
i=1

i=1 i=1

>0 >0

Let A be large enough such that, for all r € R3 with |r| > A, the eigenvalues of the ma-

trix U,(r) are between ;—I; and —;—i (recall that ep < 0). In particular, for |r| > A,

(O] (r)U, (1)(r)| < —X|if%, and, on (Ba)",

A e’:‘F)\

A
T POt PO ERPO S 0 or ——po—erpo =0

We easily deduce that pg decreases exponentially. Hence, the same holds true for all the ®;’s
with 1 <1¢ < Ny. A similar proof can be used for the remaining negative eigenvalues.

3.4.7 Proof of Lemma 3.11

Let 79 € P, be a minimizer for I,, and 7, € Pg be a minimizer for I5°. According to the
proof of Lemma 3.10, since o < A, then ~q is of form

Na
Yo=Y ni|®i)(®;| with Hy,® =&;®; and g <ep <0,
i=1
We can derive a similar expression for 7(:

)

[o¢]
Y0 =Y nj|®)(®}| with HZ®;=e;®; and & <ep <0, (3.26)
=1

where H has a similar expression as H,; in (3.24), without the U term. Note that in (3.26),

0
we do not know whether ¢ < 0 or ¢ = 0.

First assume that € < 0, so that ®; and @] are exponentially decreasing, and the sum
in (3.26) is finite. We introduce

Yo = min{1, [0 + Ty T—nll "} (Y0 + TG T—n)

and

v = min{1, |[vo + 7 37—n | "} (Y0 + TnAbTn) ,

where 7, is the flipped transformation of 7(, as defined in (3.11). Note that Tr(y,) < a+
and Tr(y4) < a + 4, so that Inip < E(ym) and Inqp < E(7) according to the third assertion
of Lemma 3.8. A straightforward calculation leads to

BZ - )

E(m) + E(ME) = 2E(70) + 26> (o) — +0(e™)

B2 — )

—on
- +O0(e™").

=2I, + 215 —

For n large enough, —3(Z —a)n~! 4+ O(e™") becomes negative. Hence, either &(7y,) or 5(%%)
is strictly less than I, + Igo. Therefore, I3 < I + [g".
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Let us now assume that €/, = 0. Then, there exists ¥ € H?(R?, C?) such that | ¥z = 1,
ij’g\ll = 0 and v,V = pV with 4 > 0. For 0 < n < pu, we introduce v, = 0 +1|Pny+1) (P Ny+1]
and v, = 75 — 0| W) (¥, so that v, € Paty and v, € Ps_,. Moreover,

E(m) = €(0) + 2neNy+1 + 0(n) = Lo + 2nEN,41 + 0(n)

and
£ (1) = €% (v0) + o(n) = I + o(n).
Using the facts that o + 7|®ny+1) (PNo+1| € Pagn and vy — n|¥)(¥] € Pg_y, it holds that
Totp < Tagn + 150—77 < E(vy) + 500(7;;) <o+ IEO + 20N, 41 + o(n).

Since en,4+1 < 0, for n small enough, the left hand side is strictly less that I, + I3°, which
concludes the proof.
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CHAPTER 4

THE GW METHOD FOR FINITE SYSTEMS

We expose in this chapter the theory and results given in [CGS15]. This work was done in
collaboration with Eric Cancés and Gabriel Stoltz.

Abstract. We analyze the GW method for finite electronic systems in this chapter. In
a first step, we provide a mathematical framework for the usual one-body operators that
appear naturally in many-body perturbation theory. We then discuss the GW equations
which construct an approximation of the one-body Green’s function, and give a rigorous
mathematical formulation of these equations. Finally, we study the well-posedness of the GW?
equations, proving the existence of a unique solution to these equations in a perturbative
regime.

4.1 Introduction

Computational quantum chemistry is nowadays a standard tool to numerically determine the
properties of molecules. The Density Functional Theory (DFT) first developed by Hohenberg
and Kohn [HK64] and by Kohn and Sham [KS65], is a very powerful method to obtain ground
state properties of molecular systems. However, it does not allow one to compute optical prop-
erties and electronic excited energies. In order to calculate such quantities, several approaches
have been considered in the last decades [ORR02|. Among them are the time-dependent DFT
(TDDFT) [MUNT06, MMNT12|, wave-function methods [HJO14] such as Coupled-Cluster,
full-CI and Green’s function methods. In this chapter, we study the GW method, which is
based on Hedin’s equations for the one-body Green’s function [Hed65]. The formal derivation
of the latter equations relies on many-body perturbation techniques. While the GW method
has been proven very successful in practice to predict electronic-excited energies, no rigorous
mathematical framework has yet been developed to understand its mathematical properties.
The aim of this work is to present such a framework.

In non-relativistic first-principle molecular simulation, the electrons of a molecular system
are described by an N-body Hamiltonian operator H, which is a bounded below self-adjoint
operator on the fermionic space A" L2(R3) (see Equation (4.30) below). Whenever N < Z,
where Z is the total nuclear charge of the molecular system, Hy has an infinity of discrete
eigenvalues EJOV < E}V < Ejzv < -+ below the bottom of the essential spectrum, where E?V is
its ground state energy. The quantities we would like to evaluate are the electronic-excitation
energies

ES — Ejli/-s-l (gain of an electron), and E% — E% | (loss of an electron).
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These energy differences are not to be confused with the optical-excitation energies, which
are energy differences of the form Eé‘{, — EY., between two states with the same number of
electrons. More generally, it is interesting to compute the particle electronic-excitation set
Spi=o0 (HN+1 — E?V) and the hole electronic-excitation set Sy, := o (ER, — HN,l). As will
be made clear in Section 4.3.2, these sets are closely linked to the one-body Green’s function:
the time-Fourier transform of the Green’s function becomes singular on these sets. In order to
study the electronic-excitation sets, we therefore study the one-body Green’s function. Also,
the one-body Green’s function is a fundamental object which contains a lot of useful informa-
tion, and allows one to easily compute the ground state electronic density, the ground state
one-body density matrix, and even the ground state energy thanks to the Galitskii-Migdal
formula [GM58].

Calculating the one-body Green’s function is however a difficult task. In his pioneering
work in 1965, Hedin proved that the Green’s function satisfies a set of (self-consistent) equa-
tions, now called the Hedin’s equations [Hed65|. These equations link many operator-valued
distributions, namely the reducible and irreducible polarizability operators, the dynamically
screened interaction operator, the self-energy operator, the vertex operator, and of course the
one-body Green’s function. The state-of-the-art method to compute the one-body Green’s
function consists in solving Hedin’s equations.

Immediately, two difficulties arise. The first one is related to the lack of regularity of the
Green’s function (we expect its time-Fourier transform G to be singular on the electronic-
excitation sets). One way to get around this problem is to consider the analytical extension
of G into the complex plane, which we denote by G. This is possible whenever the following
classical stability condition holds true':

Stability assumption: It holds that 2E% < E?\,Jrl +E% .

The physical relevance of this inequality is discussed for instance in [Far99, Section 4.2]. It
allows one to define the chemical potential u, chosen such that

B}y —EY_ i <pu<E}y —EYX.

Instead of studying the Green’s function G(7) in the time domain, or its Fourier transform
a(w) in the frequency domain, we rather study its analytical continuation G on the imagi-
nary axis p + iR. The function w — G(p + iw) enjoys very nice properties, both in terms of
regularity and integrability, which makes it a privileged tool for numerical calculations.

The second difficulty comes from the fact that Hedin’s equations cannot be exactly solved
and, even more importantly, that the mathematical definition of some terms in these equa-
tions are unclear. It however opens the way to some approximate resolutions. The most
widely used approximation nowadays is the so-called GW-approximation, also introduced
by Hedin [Hed65]. These equations are traditionally set on the time-axis, or on the energy-
axis [RJT10, KFSP10]. However, as previously mentioned, the various operators under consid-
eration are singular on these axes, which makes the traditional GW equations cumbersome to
implement numerically, and difficult to analyze mathematically. In order to manipulate better-
behaved equations, it is more convenient to replace every operator-valued distribution involved
in the GW equations by its analytic continuation on an appropriate imaginary axis, thanks
to the “contour deformation” technique introduced in [RGN95, RSW99]. The resulting GW
equations, which give an approximation of the map w — G(u+iw), turn out to give simulation

!The question “Is the stability condition always true for Coulomb systems” is still an open problem [BDS14,
Part VIIJ.
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results in very good agreement with experimental data [SDvL06, SDvL09, CRR*12, CRR13].

From the GW equations set on the imaginary axis, several further approximation may
be performed. The GW equations are solved self-consistently, and the Green’s function is
updated at each iteration until convergence. When only one iteration is performed, we obtain
the one-shot GW approximation, also called the GoW? approximation of the Green’s func-
tion. For molecules, self-consistent GW approaches give results of similar quality as GoW?,
sometimes almost identical [SDvL09, KFSP10], sometimes slightly worse [RJT10], sometimes
slightly better [CRR ™12, CRR"13]. When several iterations are performed, while keeping the
screening operator W fixed, equal to a reference screening operator W9, we obtain the GW?
approximation of the Green’s function [SDvL09, vBH96]. Since the update of the screening
operator W in a self-consistent GW scheme seems difficult to analyze mathematically, we
prefer to study in this chapter the equations resulting from the GW° approximation.

The purpose of this work is threefold. First, we clarify the mathematical definitions and
properties of the usual one-body operators involved in many-body perturbation theory. Then,
we embed the GW equations in a mathematical framework. Finally, we prove that, in a per-
turbative regime, the GW? equations admit a unique solution close to a reference Green’s
function.

From a physical viewpoint, the analysis we perform in this work is more relevant for atoms
and molecules. Indeed, as discussed in [BG14, Section 4.1] for instance, fully self-consistent
GW approaches are questionable for solid-state systems, for which quasiparticle methods are
preferred [AG98, AJWO00].

This chapter is organized as follows. In Section 4.2, we provide the mathematical tools
that will be used throughout the chapter. We recall the Titchmarsh’s theorem, and introduce
the kernel-product of two operators, which can be seen as an infinite dimensional version of
the Hadamard product for matrices. We also explain the underlying structure that makes the
“contour deformation” possible. In Section 4.3, we recall the standard definitions of the usual
one-body operators that appear in many-body perturbation theory. A consistent functional
setting is given for each of these operators, and their basic properties are recalled and proved.
Section 4.4 is concerned with the GW approximation. We explain why some of the GW
equations are not well-understood mathematically, and prove that the GW? equations are
well-posed in a perturbative regime. Most of the proofs are postponed until Section 4.6.

4.2 Setting the stage

4.2.1 Some notation

The GW method is based on time-dependent perturbation theory and therefore involves
space-time operators. Following the common notation in physics, we denote by ¢ the time
coordinate, by r the space coordinates, and by x or rt the space-time coordinates. The
functional spaces considered in this work are by default composed of complex-valued functions,
unless we explicitly mention that the functions are real-valued.

Most of the space-time operators appearing in the GW formalism are time-translation
invariant. A time-translation invariant operator C can be characterized by the family of
operators (C(7)),cr such that, formally, the kernel of C is of the form

C(I’ltl,rgtg) = C(I’l,rz,tl — tz),

where C(r,r’, 7) is the kernel of the operator C(7). For clarity, we will systematically use the
letter 7 to denote a time variable which is in fact a time difference.
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Let H be a separable complex Hilbert space, whose associated scalar product is simply
denoted by (-,-) and the associated norm || - ||. We denote by B(#) the space of bounded
linear operators on H, by S(#) the space of bounded self-adjoint operators on H, by &,(H)
(1 < p < 00) the Schatten class

&,(H) = {4 € BO) | Alls, 00 = Tr(1AP)/? < o0 |

and by A* the adjoint of a linear operator A on H with dense domain. The real and imaginary
parts of an operator A € B(H) are defined as

Note that, when A is closed (which implies A** = A), the operators Re A and Im A are
self-adjoint. For f,g € H and given operators A, B on H, we will often use the notation

(flAlg)2 = (f, Ag)n, (fIAB|g)w := (f, ABg)n,

even in cases when the operators are not self-adjoint. Operators are always understood to act
on the function on the right in this notation.

We will sometimes need to manipulate the adjoints of operators between two different
Hilbert spaces H, and Hjp. The adjoint of a bounded operator A € B(H,, Hyp) is the bounded
operator A* € B(Hy, H,) defined by

V(x,y) € Ha X %bv (A*yvx)Ha = (yvAx)’Hb

Let E be a Banach space. We denote by ./(R, E) the space of E-valued tempered-
distributions on R, i.e. the set of continuous linear maps from the Schwartz’s functional
space .(R) into E. Recall that, by definition, a family (7},),>0 of elements of /(R E)
converges in ./(R, F) to some T € ./(R, E') when 7 goes to 0 if

Vo € S(R), (T, &)5r. 0 — (T, §) /yHE — 0.

0+
Let f € L'(R,E) be a time-dependent E-valued integrable function. The time-Fourier

transform of f is defined, using the standard convention in physics, as

VweR, flw):=(Frf)( /f )T dr. (4.1)

For the sake of clarity, we will sometimes denote by R; or R, the time-domain, by R,
the frequency-domain, by .#/(R., E) (resp. /'(R,, F)) the space of time-dependent (resp.
frequency-dependent) E-valued distributions, etc. We will also denote with a hat the functions
defined on the frequency domain. Using this notation, Fr can be extended to a bicontinuous
isomorphism from ./ (R, E) into .’ (R,,, E). When f € LY(R,,, E), we have

Vr e R, (]—" ) ( /f Je T du.
T or
The Dirac distribution at a € R? is denoted by d,, and the Heaviside function on R by ©:

O(r) = 1for 7 > 0, O(r) =0 for 7 <0, ©(0)=1/2. (4.2)

Recall that the time-Fourier transform of © is, in the tempered distributional sense,

~

B(w) = 76o(w) + ip.v. G) , (4.3)

where p.v. is the Cauchy principal value. We will also make use of the notation 77 for a
number strictly above 7, but infinitesimally close to 7, and of the convention

O(7)oo(tT) :=bo(1), O(—7)(7T) :=0.



4.2. SETTING THE STAGE 91

4.2.2 Hilbert transform of functions and distributions

The Hilbert transform, which amounts to a convolution by 7~ p.v.(1), plays a crucial role in
the GW formalism. We first recall some well-known results on the standard Hilbert transform
on LP(R,,), and extend the results to the Sobolev spaces H*(R,,) for s € R. Usually, the name
“Hilbert transform” is only used on functional spaces E C L] (R,,) such that, for any function
]?E FE, the limit

[f*p.v. (lﬂ (@) = p.v. / W) i f@)

oo W— W n=0+ JR\[wenwtn W — W

exists for almost all w € R,,. However, in the sequel, we will also use the name “Hilbert
transform” in functional spaces where the above integral representation is not always valid
(for instance when f is not a locally integrable function). Note that we define the Hilbert
transform on Fourier transforms of functions (i.e. on functions on the frequency domain)

since this is the typical setting in the GW formalism.

Hilbert transform in LP spaces
We first begin with the following classical definition (see for instance |Gra04, Section 4.1]).

Definition 4.1 (Hilbert transform on .#(Ry)). The Hilbert transform of a function ¢ €
S (Ry,) is defined by

~ 1 1 ~
or equivalently by R R
96 = (Fr(-isgn(-)) F7') ¢, (4.5)
where p.v. (l) 1s the Cauchy principal value of the function w +— %, x the convolution product,

Fr the Fourier transform defined in (4.1) and —isgn(-) the multiplication operator by the L™
function t — —isgn(t) (where sgn(t) = O(t) — O(—t) is the sign function).

The Hilbert transform can be extended by continuity to a large class of tempered distri-
butions. We refer to [Gra04, Rie28| for a proof of the following theorem.

Theorem 4.2. For all fe LP(R,,) with 1 < p < oo, the Hilbert transform
N 00 A(w/)

Hf(w) =p.v.

dw’

oo W — W
is well-defined for almost all w € R. It holds $ € B(LP(R,,)) with

tan(m/(2p))  f1<p<2,

19llswr@n = | cotan(r/(@p))  if2 < p < co.

Moreover, the Hilbert transform commutes with the translations and the positive dilations, and
anticommutes with the reflexions. Finally, it is a unitary operator on L*(R,,).

Hilbert transform in Sobolev spaces

Recall that for any s € R, the Sobolev space H*(R,,) is the Hilbert space defined as
H'Ry) 1= {J € #'(RW) | (L4 |- )27 T e I2(R,) ],

and endowed with the scalar product

+o0

(Ra), =2 [ @+ DO F 90

—00
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and that H~*(R,,) can be identified with the dual of H*(RR,,) when the space L?(R,,) = H(R,,)
is used as a pivoting space. One of the reasons to introduce these spaces is that the image
of L>*(R;) by the Fourier transform Fr is contained in the Sobolev spaces of indices strictly
lower than —1/2.

Lemma 4.3 (Fourier transform in L>(R;)). Let s > 1/2. Then Fr (L>*(R;)) C H*(R,)
and

. dr 1/2
||~FT”B(LOO7H—S) = Cs with Cs = <27T/R (1—|—7’2)S> . (46)

For completeness, we recall the proof of Lemma 4.3 in Section 4.6.1.

Since the Hilbert transform in ./(R,) amounts to a multiplication by the bounded func-
tion —isgn(+) in the time domain (see (4.5)), it can be directly extended to the Sobolev spaces

H*(R,).

Lemma 4.4. For any s € R, the Hilbert transform $ is a unitary operator on the Sobolev
spaces H*(Ry,) satisyfing H~' = —$ (and therefore $H? = —1d).

Remark 4.5 (Hilbert transform of distributions). Extending the Hilbert transform to Sobolev
spaces s straightforward using (4.5). FEztensions of the Hilbert transform to other subspaces
of 7'(Ry,), such as the Z7,(Ry) spaces defined in [Sch66, Section VI.8], can be obtained

from (4.4).

Hilbert transforms of operator-valued distributions

We now need to properly define the Hilbert transform of operator-valued distributions on the
frequency domain, as such objects naturally appear in the GW formalism. We first introduce,
for s € R, the Banach space

H*(R,, B(H)) = {/T e ' (Ro, B(H))) ) 1+ A2 FtA e LQ(RT,B(H))},

endowed with the norm

B(H

] ~var ([ Ty

H* (R, B(H)) —o0

(f;lﬁ) (7')H2 | d¢> "

The following definition makes sense in view of Lemma 4.4.

Definition 4.6 (Hilbert transf/(\)rms of frequency-dependent operators). Let H be a Hilbert
space, and consider s € R and A € H*(Ry,, B(H)). The Hilbert transform of A is the element
of H*(Ry, B(H)), denoted by $H(A), and defined by

Vg enxH,  (f|od)|g)=95((r|4]s)). (4.7)

In particular, it is possible to define the Hilbert transform of the Fourier transform of a
uniformly bounded field of time-dependent operators, using the following result, which is a
straightforward extension of Lemma 4.3.

Lemma 4.7. Let H be a Hilbert space, and let s > 1/2. Then for all A € L**(R.,B(H)), we
have A € H™*(R,,, B(H)), with

1/2
] L
8,y = (27 047 1A a7) < €Al o

where Cy is defined in (4.6).
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Let A(R) be the set of Borel subsets of R, b € #(R) a Borelian set, and H a self-adjoint
operator on a Hilbert space H. We denote by PbH := 1,(H) the spectral projection on b
of H (here, 1, is the characteristic function of the set b, and 1,(H) € B(H) is defined by the
spectral theorem for self-adjoint operators; see for instance [RS78, Theorem VII.2|).

Definition 4.8 (Principal value of the resolvent of a self-adjoint operator). Let H be a self-

adjoint operator on a Hilbert space H. We define the B(H)-valued distribution p.v. (%H) on

the frequency domain Ry, by

o euxt (v (g )|e) = roud).

where p?g 1s the finite complex Borel measure on Ry, defined by

Wb e BR.),  upg(b) = (fIF]9).

As any complex-valued bounded Borel measure on R, is an element of H *(R,) for
any s > 1/2 (this is a consequence of the continuous embedding H*(R,,) < C°(R,,) N L>(R)
for s > 1/2), it follows from Definitions 4.6 and 4.8 that

pov. (_1H> — 2 H(PY) in B (R, BH)), s> 1/2,

which is the operator analog of the well-known formula

pv. <1) —xH(0) in H(R,), s>1/2, (4.8)

which is itself a simple reformulation of the equality
—1 1 1 : o)
Frolpv.(— )| = D) sgn(-) in L™(R;).

4.2.3 Causal and anti-causal operators

The GW formalism makes use of families of time-dependent operators (15(7))rer and (75(7))rer
of the form

To(1) =O(1)Ac(r) and T,(7) = O(—7)As(7),

where © : R — R is the Heaviside function (4.2), and A, and A, belong to L (R, B(H)) for
a given Hilbert space H. The family of operators (Tc(7)),cr is called a causal operator, as
T.(1) = 0 for all 7 < 0. Likewise, the family of operators (T,(7))-er is called an anti-causal
operator, as T,(7) = 0 for all 7 > 0. We recall in this section the basic properties of causal
and anti-causal operators.

Causal operators

Causal functions have very nice properties, because their Fourier transforms have analytic
extensions in the upper half-plane

U:={2€C|Imz > 0}.
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This comes from the fact that, if f € L*(R;) + L*°(R;) is such that f(7) = 0 for 7 < 0, the
Laplace transform f of f, defined on U by?

Vz e U, f(z) == /Rf(r)ei” dr = /0+OO f(T)e* dr, (4.9)

is a natural analytic lifting onto U of the time-Fourier transform fof f defined on R, = 0U.

Note that the Laplace transform can be extended to appropriate classes of tempered distri-
butions, see [Sch66, Chapter VIII].

Let us first recall the Titchmarsh’s theorem [Tit48| (see for instance [Nus72, Section 1.6]).

Theorem 4.9 (Titchmarsh’s theorem in L2 [Tit48]). Let f € L%(R,) and f € L2(Ry) be its
time-Fourier transform. The following assertions are equivalent:

(i) f is causal (i.e. f(1) =0 for almost all T <0);

(ii) there exists an analytic function F' in the upper half-plane U satisfying

+o0
sup (/ |F(w+ in)]de) < o0

n>0 —00
and such that, F(- +in) — f strongly in L*(Ry), asn — 07F;

(i1i) Re f and Im f satisfy the first Plemelj formula

Ref=—§ (Im f) in L2(Ry,); (4.10)

(iv) Ref and Im]? satisfy the second Plemelj formula

I f =% (Re f) in L3(R,). (4.11)

If these four assertions are satisfied, then the function F in (ii) is unique, and coincides with
the Laplace transform f of f.

We refer to |[Tit48| for a proof of this theorem. Formulae (4.10)-(4.11) are sometimes
referred to as the Kramers-Kronig formulae or the dispersion relations in the physics literature.
Titchmarsh’s theorem implies in particular that square integrable causal functions, which can
be very easily characterized in the time domain (they vanish for negative times), can also be
easily characterized in the frequency domain (the imaginary parts of their Fourier transforms
are the Hilbert transforms of their real parts).

We emphasize that the above version of Titchmarsh’s theorem is only valid in L?, while
the GW setting mostly involves L causal functions (see Section 4.3.2 for instance). Weaker
versions of Titchmarsh’s theorem are available for wider classes of tempered distributions (see
[Nus72] and references therein), but the L setting turns out to be sufficient for our purposes
and has the advantage of allowing short, self-contained proofs of all statements. Note that
the assertions are no longer equivalent.

2The Laplace transform is usually defined as

F(p) = /000 f(r)e P7dr.

Our definition, which is better adapted to the GW framework, simply amounts to rotating the axis, or, in
other words, to setting z = ip.
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Theorem 4.10 (Titchmarsh’s theorem in L*(R)). Let g € L*(R;) be a causal function (i.e.
g(t) =0 for 7 <0) and let g € H*(Ry,) for all s > 1/2 be its time-Fourier transform, and
g be its Laplace transform defined on U. Then,

(i) g is analytic on U;

(ii) the function n — g(- + in) is continuous from (0,+o0) to H*(R,) for all s € R, and is
uniformly continuous from [0, +00) to H=*(R,,) for all s > 1/2. Moreover, g(-+in) — g
strongly in H=5(R,,) for all s >1/2, asn — 0F;

(1i1) for all z € U,

- 1. _

)= g 5.~ D w12
(iv) Reg and Imq satisfy the Plemelj formulae:

Reg=-$H(Img) and Img=$H(Reg) in H '(R,). (4.13)

The proof of Theorem 4.10, which is a simplified version of the proof of the more general
result given by [Tay58, Lemma 1] (see also [Nus72, Section 1.7]), is given in Section 4.6.2. For
simplicity, we stated (4.12) and (4.13) in H~* for the value s = 1, but similar results hold for
any value s > 1/2.

Let us now extend these results to operator-valued functions. We recall that a map
g(z) from an open set U C C to a Banach space F is said to be strongly analytic on U if
U 5 z+ A(2) € E is C-differentiable on U, i.e. dA(z)/dz € E for all z € U.

Definition 4.11 (bounded causal operator). Let H be a Hilbert space and T € L (R, B(H)).
We say that T¢ is a bounded causal operator on H if Te(1) = 0 for almost all T < 0.

Lemma 4.3 and Theorem 4.10 can be straightforwardly extended to operator-valued maps
(see Section 4.6.3 for the proof).

Proposition 4.12. Let H be a Hilbert space and T, € L*(R;, B(H)) a bounded causal oper-
ator on H. Then its time-Fourier transform T, belongs to H*(R,,, B(H)) for any s > 1/2,
and its Laplace transform

. +oo .
Te(z) == /RTC(T) e*Tdr = /0 Te(1) e dr

is well defined on the upper-half plane U. Moreover,
(i) T. is a strongly analytic function from U to B(H);
(ii) the function 1 — Te(- 4 in) is continuous from (0,400) to H(R, B(H)) for all s € R,
and uniformly _continuous from [0,+00) to H™*(Ry, B(H)) for s > 1/2. Moreover, for
any s > 1/2, Tc(- +in) — Te strongly in H*(Ry, B(H)) as n — 07;

(ii3) for all z € U, it holds

(iv) the operators RefC and ImfC satisfy the Plemelj formulae:

ReT, = —§ (Imﬁ) and Im7T, = (Reﬁ) in H 'Ry, BH)).  (4.14)
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Besides the general case covered by Proposition 4.12, the particular case of causal time-
propagators is often encountered. Explicit formulae can be provided for the Laplace and
Fourier transforms in this case, as made precise in the following result (see Section 4.6.4 for
the proof).

Proposition 4.13 (Analytic extension of causal time propagators). Let H be a self-adjoint
operator on a Hilbert space H and A.(t) := —iO(7)e "H. The Laplace transform (Ac(2)).cu
coincides with the resolvent of H in U:

A(z) = (z—H)™L.

Moreover, Ac(- +1in) converge to A. in H™ (R, B(H)) as n — 0T, and

Re A\c = p.v. <1I‘I> and Im A\c = _WPH in H_I(ROMB(H))

Let us conclude this section with a useful result (see Section 4.6.5 for the proof).

Lemma 4.14. Let Tc € L>*(R,,B(H)) be a bounded causal operator such that it_holds
Supp(ImT;) C [wp,00) for some wyg € R. Then ImT. > 0 on Ry, if and only if ReT, > 0
on (—o0,wp.

Anti-causal operators

Definition 4.15 (bounded anti-causal operator). Let H be a Hilbert space and T, € L™ (R, B(H)).
We say that Ty is a bounded anti-causal operator if To(7) = 0 for almost all 7 > 0.

All the results for causal operators stated in the previous section can be straightforwardly
transposed to anti-causal operators, by remarking that if (7,(7)),er is an anti-causal operator,
then (T,(—7))er is a causal operator. We will use in particular the following results, which
are the counterparts of Proposition 4.12, Proposition 4.13 and Lemma 4.14.

Proposition 4.16. Let H be a Hilbert space and T, € L®(R;,B(H)) a bounded anti-causal
operator on H. Then its time-Fourier transform T, belongs to H™*(Ry,, B(H)) for any s > 1/2,
and its Laplace transform T, is well defined on the lower half-plane

L={z€C|Im(z) <0}.
Moreover,
(i) Ty is a strongly analytic function from L to B(H);
(ii) the function 1 — Ty(- —in) is continuous from (0,400) to H*(Ry, B(H)) for all s € R,
and uniformly _continuous from [0,+00) to H=*(Ry, B(H)) for s > 1/2. Moreover, for
any s > 1/2, To(- —in) — T, strongly in H=5(Ry,, B(H)) asn — 0F;

(iii) for all z € L, it holds

N 1/~ .
Ta(z) = 2 <Ta’ (-=2) >H*1,H1 '
(iv) the operators Reﬁ and Imﬂ satisfy the Plemelj formulae:

ReTy = % (Imﬂ) and Tm7Ty = —9 (Reﬁ) in H 'Ry, B(H)).  (4.15)
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Note that the signs in the Plemelj formulae are different for causal and anti-causal oper-
ators (compare (4.14) and (4.15)). Also, the Laplace transform is defined in the lower-half
plane L for anti-causal operators, while it is defined in the upper-half plane U for causal
operators. The counterpart of Proposition 4.13 is the following proposition.

Proposition 4.17 (Analytic extension of anti-causal time propagators). Let H be a self-
adjoint operator on a Hilbert space H and A,(7) = iO(—7)e™ . The Laplace transform

(Aa(2))zeL is -
Au(2) = (2 + H)L.

Moreover, ﬁa( —in) converge to A, in H (R, B(H)) asn — 0T, and

Re A\a = p.Vv. <_|_1_H> and Im ;{a = 7TP7H in Hil(RLwB(H))

Finally, a result similar to Lemma 4.14 can also be stated.

Lemma 4.18. Let T, € L*(R.,B(H)) be a bounded anti-causal operator such that it holds
Supp(ImT,) C (—o0,wp| for some wy € Ry,. Then, ImT, > 0 if and only if ReTy(w) > 0 on
[wo, +OO) .

4.2.4 Operators defined by kernel products

Two of the fundamental equations in the GW method (see Sections 4.4.2 and 4.4.3) are of the
form

C(Xl,Xg) = iA(Xl,Xg)B(Xz,Xl), (416)

where A(x,x’) and B(x,x’) are the kernels of space-time operators invariant by time trans-
lations. As the product of the kernels of two operators is not, in general, the kernel of
a well-defined operator, we have to clarify the meaning of (4.16). We first treat the case of
time-independent operators in Section 4.2.4, and consider time-dependent operators and their
Laplace transforms in a second step (see Section 4.2.4).

Definition of the kernel product

We first consider the special case when the operators in (4.16) are time-independent. Our
aim is to give a meaning to equalities such as

C(I‘1,I’2) = A(rl,rg)B(rg,rl), (4.17)

where A(r,r’) and B(r,r’) are the kernels of two integral operators A and B on L?(R?). For
this purpose, we replace (4.17) by the formally equivalent definition

W(f0) € PR« PR, (fICl) = [ [ Te)0mglr) drydr,
= / / A(rl,rg)g(rg)B(rg,rl)f(rl)drl dry
R3 JR3 -
= Tr/2ps) (AgBf), (4.18)

where the last line involves the operators A and B themselves, and not their kernels (f and
g are there seen as multiplication operators by the functions f and g respectively).

The formal equalities leading to (4.18) suggest to define the kernel product of two opera-
tors A and B (defined on dense subspaces of L?(R?)), as the operator on L?(R?) with domain
D C L*(R?), denoted by A ® B and characterized by

Y(f,g9) € L*(R3) x D, (fI(A® B)lg) := Trr2(rs) (AgBf) . (4.19)
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In particular, the product A® B is a well-defined bounded operator on L?(R?) as soon as AgB f
is trace-class for all (f,g) € L*(R3) x L*(R3) and (f,g) — TrLz(Rs)(Ang) is a continuous
sesquilinear form on L?(R3) x L?(R?). It follows from the above considerations that if A and
B are operators with well-behaved (for instance smooth and compactly supported) kernels
A(ry,r2) and B(ry, ra), then A®B is a bounded integral operator with kernel (A®B)(ry,r2) =
A(I‘l, I‘Q)B(I'Q, I'1).

Remark 4.19. [t is also possible to rely on the formal equality
V(f,9) € L*(R?) x L*(R®),  (f|Clg) = Trp2(gs) (fAgB),
and define another kernel product ® by
V(f.g) € L*(R?) x D, (f|A©B|g) := Trpzms) (fAgB) .

It may hold that A ® B is a well-defined bounded operator, while A® B is an unbounded
operator.® In the sequel, we will mostly state the results for the ® kernel product.

Remark 4.20. The product A ® B can be seen as an infinite-dimensional extension of the
Hadamard product A o BT defined for two matrices A € C™*™ and B € C™™ by

Vi<i<m, V1<j<n, (A o BT)Z.]. = Aij (BT)ij = Aiiji~

Let us specify possible sufficient conditions for the operator A® B to be well-defined. The
typical situation we will encounter in the GW setting (see Sections 4.4.2 and 4.4.3) is the case
when A € B(L?(R?)), while B is an operator on L?(R3) satisfying

Vf,g € L*(R%), Tr(|lgBf|) < ChllflL2lgllze- (4.20)

In this case, the operator A ® B defined in (4.19) is a well-defined bounded linear operator
on L*(R3), and
A ® Bllgr2msy) < CallAllgr2®s))-

The operators B arising in the GW formalism are usually of the form B = B ByB;, where
By is an operator from L?(R3) to some Hilbert space H, and By € B(H). In fact, assume
that the operator By is such that By f € Ga(L*(R3),H) for any f € L?(R?), with

| B1fllesr2®s) ) < Kl fllz2, (4.21)

for a constant K € R* independent of f. In the left-hand side of (4.21), f denotes the
multiplication operator by the function f. In this case, (4.20) holds with

Cp = K*|| Bz p3)-

Let us conclude by giving a simple example when (4.21) is satisfied, in the situation when
H = L?(R3).

3 As an example of such a situation, take ¢ € L?(R®) N L (Rgl, ¥ € L2(R?)\ L*°(R?), and set A = |1)(¢]
and B = |¢){$|. Then, for all f,g € L*(R?), the operator AgBf = |){¢|g|¢)(¢f| is a well-defined rank-1
bounded operator since ¢f € L? (]R?’)7 hence is trace class. Moreover,

Trr2esy (AgBT) < (IllZe< Il 2 ¢l ) /1l z2llgll 22

so that A ® B is a well-defined bounded operator on L?(R?®). On the other hand, it formally holds fAgB =
| f)(blgle)(#|. If f is such that fi ¢ L*(R?), then this operator is not bounded.
We are grateful to Yanqi Qiu for pointing out this counter-example to our attention.
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Lemma 4.21. Let By be a linear operator with integral kernel Bi(r,x') € L2 (R3 x R3),

loc

such that v — || Bi(r,")||z~ € L?*(R3). Then By € B(L'(R3), L?(R?)), so that By defines
an operator on L*(R3) with domain L'(R®) N L?(R3). Moreover, for any f € L*(R3), the
operator By f is Hilbert-Schmidt on L*(R3), with

1/2
B lsazeon < [ 110 Mgy dr) - e

The proof of this result can be read in Section 4.6.6. In the GW setting, a technical result
similar to Lemma 4.21 is provided by Lemma 4.77.

Properties of the kernel product

Lemma 4.22. Consider two bounded operators A,B € B(L*(R®)) such that A,B > 0
and (4.20) holds. Then, A® B is a bounded, positive operator on L*(R3).

The proof of this result is very simple: it relies on the observation that, for any f € L?(R3),
(flA® Bl f) = Trpams) (AfBf) = Trro(gs) (Al/QfoAl/Q) >0,

since fBf is a positive, trace class operator and A2 > 0 is a bounded operator.

Lemma 4.23. Consider two bounded operators A, B € B(L?*(R3)) such that (4.20) holds.
Then, A ® B is a bounded operator with adjoint (A ® B)* = A* ® B*.

The proof of this result is also elementary: for any f,g € L?(R?),

(f|(A© B)g) = Trpas) (AgBF) = Tepas) ((A9BT)") = Tepaes) (JBGAY)
= Trpo(rs) (A*fB*g) = (9, (A" © B*) f) = (A" © BY) f, g) .

In particular, A ® B is self-adjoint whenever A and B are self-adjoint.

Laplace transforms of kernel products

We finally combine the results on causal operators with those on the kernel product @ de-
fined in Section 4.2.4 in order to give a meaning to (4.16). Note first that the space-time
operator with kernel C(x,x’) is also time-translation invariant and that the family of opera-
tors (A(7))rer, (B(7))rer and (C(7))rer such that, formally, A(x;,x2) = A(r1,re,t1 — t2),
B(x1,x2) = B(r1,ra,t; — ta), and C(x1,x2) = C(r1,r2,t1 — t2), are related by

C(r) =1A(T) © B(—7). (4.22)

We assume here that A and B are such that (4.22) is well-defined. When all the operator-
valued functions have sufficient regularity in time, their Fourier transforms decay sufficiently
fast at infinity and it is possible to Fourier transform (4.22). This is however not the typical
case in the GW setting since we work with causal and anti-causal operators, whose Fourier
transforms are in H*(R,) for some s > 1/2.

We therefore rather consider Laplace transforms. More precisely, for two fields of uniformly
bounded operators (A(T))rer and (B(7T))rer, and provided C(7) := 1A(7) ® B(—7) is well
defined, we can decompose A, B and C' as the sums of their causal and anti-causal parts as

A(T) = AT (1) + A~ (1) with AY(r):=0(r)A(r) and A (1) := O(—7)A(7),
and similarly for B and C. Then,

CT(r)=iAT (1)@ B~ (-7) and O (1) =iA" (1) ® BT (-1). (4.23)
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We next consider w > 0 and 0 < n < w. From the equality
CT(r)e ™™™ =i [A+(T) e_(‘”_”)T] ® [B7(-1)e "],

we deduce, by Fourier transform, that

. i [oo N

Ctv+iw) = L / At(v—w' +i(w—n)) © B~ (- —in) dw'’. (4.24)
7T —0o0

The convolution on the right-hand side is well defined in view of Propositions 4.12 and 4.16.

It however becomes ill-defined as w,n — 0. In the case when the causal and anti-causal

operators AT and B~ under consideration are time-propagators, it is possible to remove this

singularity by rewriting the convolution on appropriately shifted imaginary axes.

Theorem 4.24. Consider three Hilbert spaces H,Hq, Hy, and assume that

A+(T) = _i@(T)A*{efi‘rAzAb A~ (T) — i@(_T)ATeiTA2A17
B+(7) = _j@(T)BikefirBsz Bf(T) — i@(_T)Bikei‘rBth

where Ay € B(H,H,), B1 € B(H,Hy) and Aa, B are possibly unbounded, self-adjoint op-
erators on H, and Hy respectively, for which there exist real numbers a,b such that Ay >
a and By > b. We assume in addition that, for any f € H, Bif € Sao(H,Hy) with
1Bifllesmum,) < Klflln, for a constant K € RT independent of f. Then, the opera-
tors C, CT and C~ in (4.22)-(4.23) are well-defined, the Laplace transforms of C* and C~
admit analytical continuations on UUL U (—o0,a+b) and UULU (—(a+b),00) respectively,
and it holds for any v < a+b and v' € (—b,a — v),

— +too __ —
Vw € R, Ctrv+iw) = —2171_/ At(v+V +ilw+w)) ©B-(V +iw')dw’, (4.25)

while, for any v > —(a+b) and V' € (—a — v, b),

—~ 1 too

Yw € R, C~(v+iw) = ~5 A-(v+V +iw+w)) o /B\i(ul +iw')dw’.  (4.26)
T J—0

Finally, the following equality holds provided b > 0 and a+b > 0: for any v € (—(a+b),a+b)

and V' € (=b,b),

1 [t ~
Vw € R, Clv+iw) = o / Alv+vV +ilw+w)) @B/ +iw') dw'. (4.27)

The proof of Theorem 4.24 can be read in Section 4.6.7. The choices of v, V' ensure that
the function o’ — At (v + 1/ +i(w + w')) is in LP(R,,, B(H)) for any p > 1, while, for any
f,g € H, the function w’' — gB~ (V' +iw') f is in LP(R,, &1(H)) for any p > 1. Therefore, in

view of (4.25), the function w — C*(v+iw) is in LP(Ry,, B(H)) for any p > 1. Similar results
hold for w — C~ (v + iw) and w — C(v + iw).

Let us conclude this section by deducing interesting properties from the analytic continu-
ation results given by Theorem 4.24 (see Section 4.6.8 for the proof).

Corollary 4.25. Assume that the conditions of Theorem 4.2 hold. Then,

Supp(lm@)C[a—Fb,—Foo), IméjfZO,
N (4.28)
Supp (ImC") C (—o0,—(a+b)], ImC— >0,
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so that R R
Supp (ImC) C R\ (=(a+1b),a+10), ImC > 0.

Moreover,
Ct=ReCt>0 on (—o0,a+b),

—

- (4.29)
C-=ReC~ >0 on (- (a+b),+00).

In particular, C = ReC >0 on (—(a+b),a+b).

4.2.5 Second quantization formalism

We recall here the definitions of the main mathematical objects used in the second quantization
formalism, which are used to define — at least formally — the kernels of the operators arising
in the GW method. More details about the second quantization formalism can be found e.g.
in [DGI7].

We consider a system of N electrons in Coulomb interaction subjected to a time-independent
real-valued external potential vexy € L2(R3,R) + L*°(R3,R). In order to study the response
of the system when electrons are added or removed, we embed this N-body problem in a
more general framework where the number of electrons is not prescribed. We denote by
H1 = L?(R3,C) the one-electron state space (the spin variable is omitted for simplicity), by
Hy = /\N H1 the N-electron state space, and by F = @EOZOOHN the Fock space, with the
convention that Hg = C. The Hamiltonian of the N-particle system reads

N N
1 1
Hy =<3 An+ Y ve(r D — 4.30
N 9 £ r; T 2 Ve t(rz) + ’I" — I'j‘ ( )

1<i<j<N '"*

and the corresponding Hamiltonian acting on the Fock space is denoted by H, so that
Hy =Hl|y,.

For f € Hj, the creation and annihilation operators af(f) and a(f) are the bounded
operators on the Fock space F defined by

VNEN, aT(f)"HN GB(HN,HN+1), a’(f)’HN+1 EB(HN-FD,HN)?

and for all &y € Hy,

1 N+1 '
[a"(f)Pn](r1,.. . TNy1) = ————— (=17 f(r))®n(r1, .. T 1, Tt TN,
N\l N+1 mj:1 7)E¥N11 =1 tj+1 N+1
[a(f)®N](r1,...tn_1) = VN - f()®xn(r,ry,...,r_1)dr.

(4.31)
The creation and annihilation operators satisfy af(f) = a(f)* and the anticommutation rela-
tions

V(f,9) € Hix Hi, [a(f),a(9)l+ =0, [al(f),a’(9)]l+ =0, [a(f),a"(9)]+ = (flg)Lr,
(4.32)
where [A, Bl = AB + BA is the anti-commutator of the operators A and B, and where 1p
is the identity operator on F. In particular,

al(fa(f) + a(f)a' (f) =1 £]3, Lr.

The mappings H1 > f +— al(f) € B(F) and H1 > f +— a(f) € B(F) are respectively linear
and antilinear.
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In most physics articles and textbooks, the GW formalism is presented in terms of the
quantum field operators in the position representation W(r) and ¥'(r). We recall that, for-
mally,

vr e RY, Wir) =) gilr)al(en),  W(r)=)_ di(r)a(d),
i=1 i=1

where {¢;},. is any orthonormal basis of H;. Note that for any f € Hy,

[ Vi =ai() and [ s = )
R3 R3

In the second-quantization formalism, H reads,

1 1 ) . / /
H = g oi(r) <_2Ar + Uext(r)> U(r)dr + 3 /(R3)2 W)U () e — )7 0 () () dr dr.

Finally, we introduce the Heisenberg representation of the annihilation and creation field
operators Wy (rt) and \I/L(rt), formally defined by

\I/L(rt) = QT (r)e ™™ and  Wy(rt) = @ (r)e .
Note that, still formally, ¥y (rt)* = \IlL(rt), and

Wl (rt)],, = e wl(r) eIV Wy (rt) [y, = V() e (4.33)

4.3 Operators arising in the GW method for finite systems

This section aims at providing rigorous mathematical definitions of the operators arising in
the GW method. For each one of them, we first recall the formal definition given in the physics
literature, using the second quantization formalism. We then explain how to recast this formal
definition into a (formally equivalent) satisfactory mathematical definition involving only well-
defined operators on the k-particle spaces Hy, with k =1, N —1, N, N + 1, the Coulomb space
C (defined in Section 4.3.3), and its dual C’. We finally establish some mathematical properties
of the operator under consideration, using our definition as a starting point. Unless otherwise
specified, scalar products and norms are by default considered on H; = L?(R3, C).

We first need to make some assumptions on the physical system under consideration (see
Section 4.3.1). We can then define the one-body Green’s functions in Section 4.3.2. Linear
response operators are considered in Section 4.3.3, which culminates with the definition of the
dynamically screened interaction operator W. We finally introduce the self-energy operator
in Section 4.3.4.

4.3.1 Assumptions on the reference N-electron system

Recall that the reference system with N electrons is described by the Hamiltonian Hpy on Hy
defined by (4.30). Our first assumption concerns the ground state energy E?V of the reference
system described by Hy:

Hyp. 1: The ground state energy E?V is a simple discrete eigenvalue of Hy.

In this case, the normalized ground state wave-function \II(J)V of the reference system is unique
up to a global phase. We also define the energy of the first excited state:

Bk = min (o(Hy)\{ES}).
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Together with 1119\,, we introduce the ground state one-body reduced density-matrix

W(r,r') =N s T (r, 12, ,rN) U (2, T2, -+ T ) drg - - - dry, (4.34)
(R3)N=

the ground state density

P (r) =% (r,r) = N | (r,ro, -, ry)|?dry - - - dry,
(RS)Nfl

and the ground state two-body density
N(N -1
p(])V,Q(rv r') = (2)/ | (r, 1/, v, -, ry)2drs - - dry (4.35)
(RB)N—Q

of the reference N-electron system.

We recall in the following proposition some important properties on ¥9,, '7?\/7 p?v and p?\,z
(most of the assertions below are well known; we provide elements of proof in Section 4.6.9
for the less standard statements). Note that both 4% (r,r’) and p(])\w(r, r’) can be seen as the

kernels of bounded operators on Hy = L*(R3?) that we also denote by 7% and p% ,.

Proposition 4.26 (Properties of the ground state). Assume that vex is of the form

M o
vt (X) = =D R
k=1 k

with z, € N* and Ry, € R3 for all 1 <k < M, and that Hyp. 1 is satisfied. Then,

(1) the ground state wave-function WQ; can be chosen real-valued and W9, € H(R3N);

(2) the ground state density pQ is in L*(R3,R) N L®(R3,R) and V4/p% € (LQ(R?’,R))?’.
Moreover, ,09\, is continuous and everywhere positive on R3;

(3) the ground state one-body reduced density operator 'Y?v 18 in

Ky = {71\7 €S(H1) |0 < v <1, Tryy, (yv) = N, Tro, (V| V]) < OO},
and satisfies

V(f.9) € Hix Hi,  (FNlg) = (PR la’(9)a(f) PR )y (4.36)

(4) the kernel A% (r,t’) satisfies the pointwise estimate |v%(r,1’)|? < p% (1) % (r');
N -1
2

Much finer regularity results on W9 are available [FHOHO®S02, FHOHO®S05, Ysel0],
but are not needed for our purpose. Similar results hold true if vey is replaced by a potential
generated by smeared nuclei or pseudo-potentials.

%[l -

(5) the operator p?\,z belongs to S(H1), and ||p?\,72||3(7_[1) <

Our second assumption is concerned with the (discrete) convexity of N — EY,. We assume
that N > 1, and that (with the convention EJ = 0 in the case N = 1)

Hyp. 2: B}, — E}_, < E},, — EX}.

In this case, any real number p such that E, — ES, | < p < E’JO\,_H — EY; is an admissible
chemical potential (Fermi level) of the electrons for the ground state of the reference system.
The physical relevance of this assumption is discussed for instance in [Far99, Section 4.2].
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4.3.2 Green’s functions

We begin our journey in the GW formalism with Green’s functions. The GW method has
been designed from the equation of motion for the time-ordered one-body Green’s function
G [Hed65], which is the concatenation of two meaningful physical objects: the particle Green’s
function G, and the hole Green’s function Gy,.

The particle Green’s function G,

Rigorous definition of the particle Green’s function. The particle (or forward, or
retarded) Green’s function is formally defined by (see for instance [FWO03, Section 7])

Gp(rt, r't') := —iO(t — t') (W | Wy (rt) Wl (') WR), (4.37)

where © is the Heaviside function (4.2), and Wy(rt) and \I/L(rt) are the Heisenberg repre-
sentations of the annihilation and creation field operators introduced in Section 4.2.5. As
U0, € Hy, we can replace ¥(rt) and ¥T(rt) by their expressions (4.33):
Gp(rt, r't') = —i0(t — t') (WQ [N (r)e N1 gt (p/)e 1 HN | R )
= Ot — 1) (W (r)e I PR (e ),

As G, only depends on the time difference ¢ — ¢/, it is sufficient to study the function
Gp(r,r’,7) := G,(r7,1'0). We then notice that, for all f € Hy,

[, IR0 £ ' = al (1))

Introducing
A"‘Jr : H1 — Hym
foom d()IeR)
and Ay = (A%)*, we observe that Gp(r,r’, 7) is formally the kernel of the following one-body
operator.

Definition 4.27 (Particle Green’s function). The particle Green’s function is defined as

Gp(7) = —iO(7) Ae THN1=ER) g% (4.38)

First properties of the particle Green’s function. The study of G}, can be decomposed

into the study of the operators A, and e~ IT(HN+1-EX) | The latter is clearly bounded on Hy+1.
As for the operator A%, we deduce from (4.32) and (4.36) that

(a (£)Tlal (9)T) = (TN la(Ha’(9ITR) = (Flg) — (TXla’ (9)a())TY) = (F]1 =} g),

or equivalently,
ALAY =19, — W (4.39)

Hence, A% is a bounded operator from H; to Hyi1, and A is a bounded operator from
Hy41 to Hy. In fact, since

1A% 1By = (I =AY = || (B, =A%) F I3,

it holds ||A%[|g(#, #y.,) = 1. The following properties are obtained as a direct corollary of
Proposition 4.13.
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Proposition 4.28 (Properties of the particle Green’s function). The family (Gp(7))rcr de-
fines a bounded causal operator on Hy. The real and imaginary parts of its time-Fourier
transform are in H=*(Ry,, B(H1)) for all s > 1/2, and are given by

1
— (Hn41 —

Re G, = Ayp.v. ( 0 )) A% and TmGp = —mA, PINH=ER A% (4.40)
N

The analytic operator-valued function ép defined in the upper half-plane by

1

VzelU, Gyz):=A
p() +Z—(HN—|-1_E]0\7>

A% (4.41)

is the Laplace transform of G|, and satisfies

Gp= lim Gy(.+in) in H*(R,,B(H,)) forall s>1/2.
n—0t

The imaginary part of é; is related to the so-called spectral function A, (see Section
4.3.2).

Analytic continuation to the complex plane. Let us introduce the particle optical
excitation set

S, :=0(Hny1 — EY). (4.42)
We recall that the operator Hyiq — EY with domain Hyy1 N H2(R3V+D) is self-adjoint
on Hy41. Its essential spectrum is of the form oess(Hn41 — ER,) = [¥n+1,00), and there
are possibly infinitely many eigenvalues below X4 that can only accumulate at Xpq.
According to the HVZ theorem [Hun66, vW64, Zhi60], Xy41 = ES, — E%, = 0. In particular,
Sp is the union of a discrete negative part, and the half-line [0, 4+-00).

We next infer from (4.41) that CA?;(Z) can be extended to an analytic function from C \ S,
to B(H1). This is of particular interest for the following reason. The operator-valued distri-
bution C/?;(w) is highly peaked and irregular (for instance, its imaginary part is a sum of Dirac
measures on the discrete part of Sp). Instead of studying C/};(w) on the real axis, we will study
its analytic continuation G, p(2) (defined @ priori only in the upper-half plane, but actually
on C\ Sp) on the imaginary azis p+iR, where p < EN+1 — E% < 0is an admissible chemical
potential (see Hyp 2). The set S, can be recovered from w — G, p(p + iw) by locating
the singularities of Gp, obtained from G either by analytic continuation, or by fitting some
parameters [RGN95|. We will not address this interesting numerical reconstruction problem.

The following lemma makes precise the behavior of the Green’s function on the vertical
axis u + iR. It is a direct consequence of the representation (4.41).

Lemma 4.29. Consider j < E; — EY. Then the function w CTp(ujLiw) is real analytic
from Ry, to B(H1) and is in LP(Ry, B(H1)) for all p > 1. Moreover, for all w € R,

—~ . Hyy1— EY — 1 %
ReGplp+iw) = =4+ 75 + (Hyy1— B —p)2 "

is a negative, bounded, self-adjoint operator on Hy which enjoys the following symmetry prop-
erty: . .
Vw e R,, ReGp(p+iw) =ReGp(p — iw).

For any f € Hi, the function w — (f|Re (?p(,u +iw)|f) is non-positive, in L'(R,), and

+00
/_ < ‘RGG “+lw)‘f> dw = =7 (f[(L3¢, = )| f)- (4.43)
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(\ analytic continuation

w > Gy(w)

w = Gp(p+iw)

: EON-H - E?V 0 Oess(HN+1 — ER,)

Figure 4.1 — Illustration of the analytic continuation: from w é;(w) to w évp(,u + iw).

The last assertion comes from the spectral theorem, (4.39), and the equality
+o0 E
VE>0, /;oo mdw:ﬂ'

Remark 4.30. Unfortunately, although Re GNp(,u‘i‘i') has a sign and (4.43) is satisfied for all
f € Ha, the function w — HRe é\;(u + i')HB(H : does not belong to L' (Ry,). This is essentially
1

due to the fact that

E 1
2 ) == ¢ LR,
e <w2+E2> 2w L (R

Note that the imaginary part of évp(u + iw),

— w
ImG,(p+iw) =—-A AL
p(N ) +W2+(HN+1_E?\[—M)2 +

has no definite sign on R,,, and that, for a generic f € #H1, the function w — <f ‘Im a;(u + iw)‘ f>

does not belong to L'(R,). It will therefore be more convenient in general to work with the
real part of CTp(iw) only, especially since the imaginary part can be recovered from the real
part (see Lemma 4.31 below). Indeed, the operator-valued functions gy, : w évp(,u—n—i—iw)
are in L%(R,B(H,)) for any n > 0, and converge to gp : w — évp(,u +iw) in L*(R,B(H1)) as
n — 07. We can therefore apply Titchmarsh’s theorem (see Theorem 4.9), which gives the
following result.

Lemma 4.31. Let p < EY,, — EY. The function gy(w) := Gp(u + iw) is the Fourier
transform of the causal function

gp(T) = —O(7) Aype TN ER 1) g* (4.44)
which belongs to L*(R,,S(H1)). In particular, the Plemelj formulae hold true:
Regp = —H(Img,) and Img, =H(Regy) in L*(R,,B(H1)).
Moreover, the function T = ||gp(7)||g(2,) is ezponentially decreasing as |7| — +o0.

Remark 4.32. The exponential decay of g, is consistent with the analyticity of its Fourier
transform. This property is of interest when calculating numerically convolutions on the imag-
inary axis p+iR, since convolutions can be replaced, up to a Fourier transform, with point-wise
multiplications of causal functions which are exponentially decreasing. This approach was ad-
vocated in [RSW 99, and is now routinely used in GW computations.
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The hole (backward) Green’s function Gy,

Definition and first properties of the hole Green’s function. Together with the
particle Green’s function, we introduce the hole (or backward, or advanced) Green’s function,
formally defined within the second quantization formalism by

Gu(rt, x't') == iO(t' — t) (U | WL (x't) gy (rt) [ TR).
Observing that
[, R ) b = (P,

we introduce

A_: Hy — 'Hﬂ_l
fooe a(fIeR).
Similarly as before, we note that Gy(rt,r't’) only depends on the time difference ¢ —¢'. Intro-
ducing Gy (r,r’, 7) := Gy (r7,r'0), we see that Gy, (r,r’, 7) is formally the kernel of the following
one-body operator.

Definition 4.33. The hole Green’s function is defined as

Gh(7) 1= 10(—7) A% e THN-1-BR) 4 _ (4.45)

Similarly as in (4.39), it holds that
A* A =%

* is a bounded operator from Hy_1
to Hi, and it holds ||A—||g, 2y) = AL B3y _1,71) < 1. The properties of the hole Green’s
function are quite similar to the properties of the particle Green’s function (compare with
Proposition 4.28).

Hence, A_ is a bounded operator from Hi to Hy_1, A*

Proposition 4.34 (Properties of the hole Green’s function). The family (Gy(7))rer defines
a bounded anti-causal operator on Hi. The real and imaginary parts of its time-Fourier
transform are in H™*(Ry,, B(H1)) for all s > 1/2, and are given by

1
- — (B, — Hy_,

Re(/;; = A*p.v. ( )> A_ and Imé; — wA* PER—HN-1 4 (4.46)

The analytic operator-valued function é\; defined in the lower half-plane by

—~ 1
Vz el G = A” A_ 4.47
z ’ h(z) 72 _ (E?V _ HN_l) ( )

is the Laplace transform of Gy, and satisfies

Gn = lim Gu(.—in) in H°(Ry, B(H)) forall s>1/2.

n—0+

Analytic continuation into the complex plane. The hole optical excitation set is de-
fined as
Sy = o(ES — Hy_1). (4.48)

It is clear from (4.47) that the operator-valued function G can be analytically continued to
C\ Sy. Instead of studying the highly irregular distribution w — Gy, (w), it is more convenient
to study its analytical continuation G}, on the imaginary axis p + iR, with u > ES — EQ,_;.
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0 0
Oess(E — Hy—1) ‘EN —Ey_

w C/;\h(w) a 0

analytic continuation W é\;(,u + iw)

Figure 4.2 — Illustration of the analytic continuation: from w é;l(w) to w évh(,u + iw).

We can state a result similar to Lemma 4.29.

Lemma 4.35. Consider y > EY — ES._;. Then the function w CTh(ujL iw) is real analytic
from Ry, to B(H1) and is in LP(Ry, B(H1)), for all p > 1. Moreover, for all w € R,

Hy_1+p— E%

A_
P+ (B8, — H1 — )P

Re Gp(p + iw) = A*

is a positive, bounded, self-adjoint operator, which enjoys the following symmetry property:
Vw € Ry, ReGh(p+iw) = ReGp(p — iw).
For any f € Hi, the function w — <f ‘|Re (?h(u + iw)‘ f> is non-negative, in L'(R,), and
+00 __
[ (s [ReGut )] £) do = mlsoR 1)
—0o0
The Galitskii-Migdal formula. The hole Green’s function is of particular interest, as
it contains useful information on the N-body ground state. For instance, from the identity

A* A_ = 1%, we directly obtain Gy,(07) = i7%;, so that the expectation value in the ground
state of any one-body operator Y% | Cy, (for C' € B(#H1)) can be evaluated via

N
<\I/9v > Cr,

i=1
This calculation is valid only for one-body operators. It is not possible to obtain the expecta-
tion value in the ground state of a generic two-body operator from the one-body Green’s func-
tion. This is however the case for the ground state energy (the expectation value of the two-
body Hamiltonian Hy in the ground state), as was first shown by Galiskii and Migdal [GM58].
Alternative formulae for the ground state energy are provided by the Luttinger-Ward for-
mula [LW60] and the Klein’s formula [Kle61].

‘I’(z]v> = Try, (CHR) = —1Try, (CGR(07)).

Theorem 4.36 (Galitskii-Migdal formula). For all N > 2, the ground state energy can be
recovered as

1
“Try, (A*_ (Hv-1— ER) A+ (2A - vext) A*_A> (4.49)

1
2
1 d . 1
= §Tr,H1 |:<d7' —1 <—2A + 'Uext>> Gh(T)

TO] . (4.50)
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The proof of this theorem can be read in Section 4.6.10. Formula (4.50) is one way to
obtain the right-hand side of (4.49), and is the one found in the original article [GM58].
There are however other ways to obtain (4.49) from the hole Green’s function, without the
use of derivative (which are cumbersome to evaluate numerically). One can for instance use
the following equality, that we do not prove for the sake of brevity,

Try, (Ai (Hy—1+ p— EY) A_) — lim w?Try, (Re(Th(u + iw)) .

w—00

The time-ordered Green’s function GG

It is often claimed in the physics literature that the main object of interest is neither the
particle nor the hole Green’s function, but the function

G(rt,x't") = Go(rt, r't') + G (rt, r't’),

called the time-ordered Green’s function, which can be seen as a convenient way to concatenate
the information contained in the particle and hole Green’s functions. Obviously, the time-
ordered Green’s function only depends on the time difference 7 = ¢t —¢'. In view of (4.38) and
(4.45), our definition of the time-ordered Green’s function therefore is the following.

Definition 4.37 (Green’s function). The (time-ordered) Green’s function is the family of
bounded operators (G(7))rer defined as G(1) = Gp(T) + Gn(7), or equivalently,

G(r) = —iO(r) Ape TN aPRIAT 4 i0(—7) AT TN TR

The following results straightforwardly follow from Propositions 4.28 and 4.34, as well
as Lemmas 4.29 and 4.35. We recall that p is a chemical potential of the electrons for the
ground state \IISJV of the reference system, and that E?V — E?\/—l << EJOV+1 - E?V. In the
following, we introduce some C*°(RR,,) cut-off functions ¢4 satisfying 0 < ¢4 < 1, ¢4 +¢_ =1,
Supp(¢4) C (EY — EY_;,+00) and Supp(¢—_) C (—oo, B, — EX) (see Figure 4.3). These
cut-off functions allow us to write properties of the Green’s function in the time representation
without specifying whether 7 is positive or negative.

o O+

Figure 4.3 — The cut-off functions ¢..

Proposition 4.38 (Properties of the Green’s function). The Fourier transform G= C/}’; +C/¥;
is in H=*(Ry,, B(H1)) for any s > 1/2. The operator-valued analytic function G defined on
the physical Riemann sheet C\ (Sp U Sy) by

1 1

VzeC\(Sp,USh), G(z):=A A* 4 A*
\(p h) (2) +2—(HN+1—ER7) + Z—(EEJV—HN—l)

A_ (451)
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1s such that

lim_ ¢+G(-+in) = ¢+ G in H *(Ry, B(H1)) forall s >1/2.
n—

The function w — G + iw) is real analytic from Ry, to B(Hy), and is in LP(R,, B(H1)) for
all p > 1. Moreover, it satisfies the symmetry property

Vw € Ry, ReG(u+iw) = ReG(u — iw).

For any f € Hi, the function w — (f|Re G(u + iw)|f) is in L'(Ry), and

/ N (F|ReGlu+iw)| £) dw = ~m{fl(n, = 29%)1F)-

—00

The spectral functions A, A, and A

Spectral functions are essential tools to study many-body effects since they are concentrated
on (subsets of ) the particle and hole excitation sets.

Definition 4.39 (Spectral functions). The particle spectral function is the operator-valued
Borel measure on R, defined by

1 —~ _
Ve BR),  Apb) = ——TmGy(b) = AL BN RV (4.52)

The hole spectral function is similarly defined:
1 —~ 0o _
Vbe BR,),  An(b) = ~TmGp(b) = AT PEV V14
T

The time-ordered spectral function is then obtained as A = Ap + Ay,.

With those definitions, the following lemma is straightforward, and is usually referred to
as the sum-rule for spectral functions (see for instance [Far99, Section 4.5]).

Proposition 4.40. The spectral functions Ap, Ay and A are S(H1)-valued Borel measures
on Ry, with supports contained in Sy, Sy and S, U Sy respectively. For allb € B(Ry,,), Ay (D),
An(b) and A(b) are bounded positive self-adjoint operators on Hy with norms lower or equal
to 1. Moreover, 0 < A, (b1) < Ap(b2) as self-adjoint operators when by C by (and similar
inequalities for Ay and A), and it holds

‘AP<RW) =1y, — 7.(/)\7a Ah(Rw> = 7?\[7 A(Rw) =1y,

Finally, the Plemelj formulae (4.14) allow us to recover the real part of the Green’s func-
tions from the spectral functions: Re G, = 7$(A;,) and Re Gy, = 79 (Ap). It therefore holds
ReG =7mHA.

4.3.3 Linear response operators

We study in this section the reducible polarizability operator x, which can be defined from the
so-called charge-fluctuation operator introduced in Section 4.3.3. We give a precise mathemat-
ical meaning to x in Section 4.3.3, and prove Johnson’s sum-rule [Joh74] for x in Section 4.3.3.
We finally define the dynamically screened Coulomb interaction operator (see Section 4.3.3).
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The charge-fluctuation operator py

The charge-fluctuation operator is defined, within the second quantization formalism, by
(see [Far99, Equation (97)])

pu(rt) := Wiy (xt) U (1) — o (v),
so that the action of this operator on the N-body ground state is
pr(en)| %) = (U ER) W) w ()| W) — ol ()| WR)
= (VB (W) w(r) = pR(x) ) [9%):

In order to define more rigorously pr1, we need to introduce functional spaces of charge densities
(the Coulomb space) and electrostatic potentials. The complex-valued Coulomb space

(4.53)

C = {f c y’(RS,C) ) fAE Llloc(R37C)7 ’ . |—1fA() c L2(R3,(C) }’ (454)

is endowed with the inner product

(filfa)e = 4 /R 3 ﬁ““f{{;(k)dk,

where the normalization condition for the space-Fourier transform is chosen such that its
restriction to L?(R3,C) is a unitary operator. The space C is a Hilbert space, and it holds
LS/5(R3,C) < C thanks to the Hardy-Littlewood-Sobolev inequality (upon rewriting the
products in Fourier space as convolutions). The dual of C (taking L?(R3 C) as a pivoting
space) is

¢ = {v e L5(R?,C) ) Vo € (LX(R3,C))° } (4.55)

endowed with the inner product

1 e 1 ~ ~
(Vi|Va)er == o | YV V= / k[*V1 (k) Va (k) dk.
T JR3 47 R3

We also introduce the Coulomb operator v., defined as the multiplication operator by 4r|k| =2
in the Fourier representation, and its square root vé/ 2, defined as the multiplication opera-
tor by (4m)Y/2|k|~! in the Fourier representation. The following result, whose proof is a
straightforward consequence of the above definitions, will be repeatedly used throughout this
chapter.

1/2

Lemma 4.41. The operator v, defines a unitary operator from C to C'. The operator v,
defines a unitary operator from C to Hi, as well as a unitary operator from Hy to C'.

It follows that the adjoint of the unitary operator v. : C — C’ is the unitary operator

vi=ol:C = C.

We are now able to reformulate the charge-fluctuation operator in the ground state as a
well defined bounded operator. For v € C2°(R3, C), it formally holds

(/Rs (\IIT(r)\I/(I‘) —p9v(r)) \\If%)v(r)dr> (ry,...,tn) = Ki“(ri)> _/Rg o

=1

U (ry,...ry).

In order to rewrite more rigorously this equality, we introduce the operator

90,), (4.56)

o () ke
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which is well defined since pQ € L5/°(R3,R) by Proposition 4.26. In fact, as made clear in
Lemma 4.42 below, B is bounded. In view of (4.53), we can finally define the application
to UQ; of the charge-fluctuation operator pp(t) as follows:

pr ()T = tHN-ER) B, (4.57)

Let us conclude this section by giving some properties of the operators introduced above
(see Section 4.6.11 for the proof).

Lemma 4.42. The operator B defined by (4.56) is a bounded operator from C' to Hy. Its
adjoint B* is a bounded operator from Hy to C' which satisfies B*|¥%;) = 0. As a consequence,
pu|T%) € L®(Ry, B(C',Hn)), and (pu|¥%))" € L®(Ry, B(Hn,C')).

The (symmetrized) reducible polarizability operator y

Definition of the reducible polarizability operator. The reducible polarizability oper-
ator x(t,t') is the operator giving the response of the density of the system to perturbations
of the external potential. It is formally defined by its kernel (see [Far99, Equation (96)])

x(rt, r't') == —i (T} | T {pu(rt)pu(r }‘\Il >7-£N (4.58)

In the above equation, py is the charge-fluctuation operator whose action on \I'(])V is defined
by (4.57), and T stands for the bosonic time-ordering operator:

| M)A i<,
T{Ai(0)A2() ) —‘ da(E) A (1) i >t

In view of (4.57), the definition (4.58) of the kernel is formally equivalent to the following
identity, stated for ¢’ < t (a similar equality being true for ¢ > t):

/]Rs I xte /IRB/ Flr) (o | pu(rt) pua (x ‘\Ifo > g(r') drdr’
— i [ 1l ar / o8yp('?) W )

R3 Hu

— <e1t(HN* ?V)Bf eit’(HNfE?v)Bg>

— <f ’B*efi(tft/)(HNfE?\,)Bg >c' _

HN

In order to interpret x as giving the variation of the ground state density (an element of C)
generated by a variation of the external potential (an element of C'), we rewrite the scalar
product in C" as a duality braket between C’ and C:

(fl |f2 >C’ = <E7 ,Uc_lf2>cl7c . (459)
This motivates defining x(¢,t") as the bounded operator from C’ to C given by
X(t, t/) — _ivc—lB*e—i‘t—tl‘(HN—E?V)B.

In particular, x(¢,¢) only depends on the time difference ¢ — ', and we write in the se-
quel x(7) := x(7,0):

x(7) = —iv; ' Bre TN -EX) B (4.60)

It turns out to be useful to symmetrize the action of the polarizability operator us-
ing appropriate Coulomb operators. We recall that it holds Bvl/ 2 e B(Hi,Hy) while

(Bu/?y* = v 2B* € B(Hn, Hy).
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Definition 4.43. The symmetrized reducible polarizability operator Xsym € L™°(R;, B(H1))
is defined by Xsym(T) = vg/2x(7)vi/2, or equivalently,

Xsym (T) = —iv V2B ITI(HN=ER) By 1/2,

It is convenient to decompose the symmetrized reducible polarizability operator into two
parts, namely its causal part and its anti-causal part:

_ . - * —i —E9
Ny (T) = Xgun (7) + Xagma(7) With x5, (7) = ©(7) (v V2B 0N =B gyl /2
(4.61)
In the above expression, the Hamiltonian Hy can be replaced by

Hjy = Hy| g )1

This is a consequence of Lemma 4.42 which shows that Ran(B) C {\II(J)V}J'. Note that
HY — EY > EL — EY,.

Properties of the symmetrized reducible polarizability operator. As rigorously
stated below, the symmetrized polarizability operator has singularities at the energy dif-
ferences corresponding to excitation energies for a system with a fixed number N of electrons,
called neutral excitations in [Far99, Section 8|. We therefore introduce the neutral excitation
set

Sf = o(Hy — E%)\ {0} = o (H}‘V . E%) ,

its reflection Sy := —S; and Sy := Sj U S;. Note that S; C [E — E%,+00) so that
So NSy =0.

As for Proposition 4.38, it turns out to be convenient to introduce appopriate cut-off
functions. Consider ¢L such that ¢! and ¢! are in C°(R,) and satisfy 0 < ¢L < 1,
oL + ¢L = 1, Supp(¢l) C (—(E) — EY),+o0) and Supp(¢l) C (—oo,Ex — ER) (see
Figure 4.4).

oL 2

| |
| |
ES —EL | EX, - EY

Figure 4.4 — The cut-off functions ¢J.

Proposition 4.44. The symmetrized reducible polarizability operator Xsym satisfies the fol-
lowing properties:

(1) (Xdym(7))rer is a bounded causal operator on Hy while (Xsym(T))rer i a bounded anti-
causal operator on Hy. They satisfy the following symmetry properties:

VT € R, Xsym(_T) = XSym(T) and X;_ym(T) = Xs_ym(—T); (462)
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(2) the real and imaginary parts of the time-Fourier transforms of X:ym, Xsym are respectively
given by
1

Rexsij = +uY2B*p.v. () Buv}/?,
F (Hy — EY)

and -
Im xem = —WUC_I/QB*Pi(Hg\f—EIDV)ng/?

In particular, Supp (Im thym> C SSE and Supp (Im @) C So;

—_—~—

(3) consider the B(H1)-valued analytic functions Xaym, Xsym and Xsym respectively defined by

1 B,Ul/2
2 F (Hy — BY)

c

VzeC\ ST, )%,vm(z) = o] 1/2B*

and
. e ij2 e 2(HY = EY
Vz € C\ So, Xsym(2) := Xj},m(z) + xsym(2) = —v, 12p ti( N 5 ZN) 2ng/2.
(Hy — EN) -z
(4.63)
It holds - - - §
Ve C\S,  Xdm(z) = Xgm(—2) = (\Gm(?))

and

— — *

VzeC \ SO, ys\y;(z) = Xsym(*z) = (Xsym(z)) .
The functions X;rym\tu and xsym|L are respectively the Laplace transforms of X:Fym and Xgym>
and the following convergences hold in H*(Ry,, B(H1)) for all s > 1/2:

—~ —

Hm Xam (- £ 1) = Xym, lm ¢4 Xeym (- £ 1) = ¢L Xeym;
n—0+ n—0+

—~—

(4) for all w € (—(Ey — ER), Ey — EY), Xsym(w) = Xsym(w) is a negative bounded self-
adjoint operator on Hi;

(5) for all w € R, Xeym(iw) is a negative bounded self-adjoint operator on H;.

We omit the proof of Proposition 4.44 since the first three assertions are similar to those
of Lemma 4.38, while the last two ones are direct consequences of (4.63).

On the integrability of ysym(iw). As for the Green’s function, w — Ysym(w) is difficult to
study on the real-axis, and it is more convenient to study its analytical continuation Ysym on
the imaginary axis iR. This is possible thanks to the existence of the gap (—(EL — EY), EX —
E?V) around 0. The representation provided in Proposition 4.44 allows one to directly deduce
the integrability properties of the functions w — Xsym(iw) (as in Lemma 4.29).

Corollary 4.45. The functions w ng,m(iw) are real-analytic from Ry, to S(H1), and are in
LP(Ry,,S(H1)) for allp > 1. For any f € H1, the function w — {f|Xsym(iw)|f) is non-positive
and in L'(Ry), and it holds

+oo 2
| e = -2x Bt (4.64)

—0o0
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The sum-rule for the reducible polarizability operator y

The behavior of the reducible polarizability operator in the high imaginary-frequency regime
is well understood. This asymptotic behavior is given by the so-called Johnson’s sum-
rule [Joh74] or f-sum rule, the latter terminology being motivated in [Far99, Section 8.8] by
the fact that it can formally be seen as some equality involving the first moment of Imxsﬁ.
Knowing the large-w behavior of )?;,; is important to design appropriate approximate opera-
tors, used in plasmon-pole models to avoid the numerical inversion of the dielectric operator
(which is computationally expensive).
The fifth point of Proposition 4.44 implies that for all w € R,,, the operator

—X(iw) := —vgl/2)?s;,;(iw)v;1/2

defines a symmetric, continuous, non-negative sesquilinear form on C’:

AT B 2(HY, — EX)
V(fv g) el xC ) <f7 —X(l(d)g>cl’c - <Bf‘ (H]ﬁ\[ _NEE)V)2]Y’_W2

Bg> ;
HN
so that, formally,

. 9~ 0 T . —1 0
Jim (F.—w*R(w)g)e e = 2BfIHY — EX|Bg)ny = 2(F.07' B (Hy - EY) Bg)

c’

The following theorem, whose proof is postponed until Section 4.6.12, confirms that this limit
exists and allows one to identify it.

Theorem 4.46 (Johnson’s sum rule). The operator 2v; ! B* (H]ﬁ\, — EY)B is bounded from C'
to C, and ZUc_lB*(H]ﬁV — EJOV)B = —div (p]OVV-). Moreover, the following weak convergence
holds:

w—Foo

V(f,g) el x, lim (f, —wQX(iw)g>c,7c = (f,—div (pS)va)>c',c = /R3 N VFf-Vg.

For all g € C' such that Ag € L*(R3), the following strong convergence holds:

lim w?X(iw)g = div (p(]]VVg) in C.

w—rFoo

The dynamically screened interaction operator W

As the name indicates, the two key operators in the GW method are on the one hand, the
time-ordered Green’s function GG, and on the other hand, the so-called dynamically screened
interaction operator W. The latter operator is defined as

W (1) = veo(T) + viﬂxsym(T)vcl/z, (4.65)

where v, is the Coulomb operator introduced in Lemma 4.41. It is convenient to split W into a
local-in-time exchange contribution v.dp(7) (although this is not obvious at this stage, (4.98)
below shows that v.00(7) can be interpreted as an exchange term), and a nonlocal-in-time
correlation contribution:

W(T) = vo(7) + We(r)  with  We(T) == vex(T)ve = v}/ 2 xeym (T)0Y2. (4.66)

The properties of the operator W.(7) € B(C,C’) therefore readily follow from the properties
1/2

of the operators v.'~ and xsym(7) established in Lemma 4.41 and Proposition 4.44.
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4.3.4 The self-energy operator X

We give in this section the definition of the self-energy operator > using the Dyson equation
(see (4.72) below). Let us emphasize that, while the Dyson equation provides a definition of ¥
in terms of Green’s functions, numerical methods work the other way round: an approximation
of the Green’s function G is obtained from the Dyson equation (4.72), using an approximation
of the self-energy operator 3. This approach is made precise in Section 4.4.

The non-interacting Hamiltonian Hy and associated Green’s function Gy

The self-energy operator is defined as the difference between the inverse of the exact Green’s
function G and the inverse of some reference Green’s function Gg. The reference Green’s func-
tion is the resolvent of a mean-field non-interacting Hamiltonian. There are several possible
choices for this operator, discussed in Remark 4.49 below. In order to remain as general as
possible, we introduce a one-body operator hy acting on 1, with domain H?(R?), real-valued
(in the sense that hi) is real-valued whenever 1 is real-valued), and such that gess(h1) = [0, 00).
The corresponding effective non-interacting N-body Hamiltonian is defined on Hy by

N
HO,N = Z hl(ri).
=1

We define ,
g, := inf  sup 7<v| 1]v>’
ViV vevi\{0} (v]v)
where V), is the set of the subspaces of H!(R?) of dimension k. Recall that g, < 0 and that if
er < 0, then hy has at least k negative eigenvalues (counting multiplicities) and ey, is the k"
smallest eigenvalue of hy (still counting multiplicities). We make the following assumption in
the sequel.

Hyp. 3: The one-body Hamiltonian h; has at least N negative eigenvalues, and ey < en41. ‘

This assumption implies that there is a gap between the N*® eigenvalue and the (N + 1)t
eigenvalue (or the bottom of the essential spectrum if h; has only N non-positive eigenvalues).

Let us denote by (¢1,- -, ¢n) an orthonormal family of eigenvectors of hy associated with
the eigenvalues €1, - -+ ,eny. Without loss of generality, we can assume that the ¢;’s are real-
valued. The ground state energy of Hy y is E87N =¢€1+ ...+ en. The condition ey < en41
ensures that Eg} n is a non-degenerate eigenvalue of Hp ny and that the normalized ground
state @ = ¢y A--- A dn of Hy y is unique up to a global phase. We introduce the one-body
mean-field density matrix

N
o) =" dp(r)dr(r’). (4.67)
k=1

This function can be seen as the kernel of the spectral projector 1(_, ,,y(h1), where pg is any
real number in the range (en,en+1) (it is an admissible Fermi level for the ground state of
the non-interacting effective Hamiltonian Hy n). The density of the non-interacting system
is denoted by p87 n- Results similar to the ones stated in Proposition 4.26 for p87 N 787 N e
hold true. Finally, similarly as in Section 4.3.2, we introduce

A5 () =al(f)|@}) and  Ao_(f) = a(f)|8R).

Definition 4.47 (Reference non-interacting Green’s functions). The reference particle, hole
and time-ordered non-interacting Green’s functions are respectively defined as

Gop(r) = —i@(T)AO,Jre_iT(HOvN“_Eng)A(’;,JF, Gon(T) = i@(—r)Aa_eiT(HOval_E&N)Ao’_,

and Go(1) = Go,p(7) + Gon(T).
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Results similar to Propositions 4.28, 4.34 and 4.38 hold for these operators, but we do
not write them explicitly for the sake of brevity. However, it should be noted that, in the
non-interacting case, the Green’s functions have simple explicit expressions in terms of hy (see
Section 4.6.13 for the proof).

Proposition 4.48. [t holds

Gop(T) = —i0(7) (]1;:.11 — 787]\,) e T gnd Gon(T) = i@(—7)78 Ne_iThl.

)

In particular, for any z € C\ o(h1),

Gop(2) = (I, —0n) (2 —h)™" and Gon(z) =19n(z — ha) 7% (4.68)

Hence, s
Go(z) = (z — hy) 7! (4.69)

is the resolvent of the one-body operator hi.

Remark 4.49 (On the choice of Gy). There are several possible choices for the one-body oper-
ator hi, although this choice is not really properly discussed in the literature to our knowledge.
The first option, which is used in the original derivation of the GW method [Hed65], consists
in choosing

1 _
h1:—§A+UeXt+p9\7*|'| L (4.70)

where p; is the exact ground state density. Another option (see for instance [Far99, page 112])
is to consider a one-body operator whose associated ground state density is (as close as possible
to) the exact ground state density p?v. The motivation is that, in this case, the self-energy
should be smaller. The Kohn-Sham [KS65] model formally satisfies this requirement. The
associated one-body operator reads

1 _
hi = =5 A+ Vet + iy [+ [T+ e [0R] (4.71)

where vy is the (exact) exchange-correlation potential. In practice, approximations of p(])v
and Uxc [,09\[} are computed by means of a Kohn-Sham LDA or GGA calculation [KS65,
PBE96]. This is believed to provide a sufficiently accurate approzimation of the exact ground
state density which does not spoil the results subsequently obtained by GW calculations.

The dynamical Hamiltonian H(z)

In view of (4.69), it is natural to introduce the inverse of the time-ordered Green’s function,
which will correspond to some dynamical one-body Hamiltonian. More precisely, we would
like to define, at least for each z € C\ R, a one-body operator H(z) such that

G(z) := (z - ff(z))il . or equivalently, H(z)=z— (é(z))il .

The following proposition, proved in Section 4.6.14, shows that such a definition makes sense.

Proposition 4.50. Let z € C\R. The operator é(z) is an invertible operator from Hy onto
some vector subspace D(z) of Hy. Moreover, D(z) is dense in Hi, D(z) C H*(R?), and H(z)
is a well-defined closed operator with domain D(z).

Remark 4.51. We do not know whether the equality D(z) = H2(R3) is true, nor do we know
whether D(z1) = D(z2) for z1 # 2.
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Definition of the self-energy operator ¥ from the Dyson equation

We are now able to define the exact self-energy operator 3 via the Dyson equation. Note that
we do not define the self-energy in the time domain, but consider only ¥(z) (as in [Far99,
Section 5.1]).

Definition 4.52 (Self-energy). The self-energy operator is defined as

V2eC\R,  5(2):=Colz) ' = G(2) " = (2 — hy) — (z - fi(z)) — H(z) — hy,| (4.72)

where hy is the one-body mean-field Hamiltonian introduced in Section 4.3./.

The operator f)(z) is the difference between the one-body dynamical Hamiltonian and the
reference one-body mean-field Hamiltonian h;. With this writing, ¥(z) can be seen as the
correction term to be added to the reference one-body Hamiltonian in order to obtain the
dynamical mean-field one-body Hamiltonian:

H(z) = hy + 3(2).

4.4 The GW approximation for finite systems

4.4.1 GyW?, self-consistent GW", self-consistent GW, and all that
The GW equations

We now turn to the GW approximation for finite systems. The purpose of the GW approxima-
tion is to estimate the time-ordered Green’s function G via the Dyson formula (4.72). Instead
of using (4.72) to define the self-energy ¥(z), we use this equation with some approzimation
SGW(2) of %(2) to obtain an approximation GSW(z) of the time-ordered Green’s function
via

(GGW)*I () =2~ (m + 59V (). (4.73)

Using the Dyson equation to define the time-ordered Green’s function is only possible if an
alternative expression of the self-energy operator is available. Such an expression was formally
obtained by Hedin in 1965 (see [Hed65]). The GW approximation consists in replacing the
so-called vertex function in Hedin’s equations by a tensor product of Dirac masses.

The original GW equations were derived on the time domain and on the frequency do-
main. However, as noticed several times in Section 4.3, the operators involved in the GW
equations are not smooth on these axes. It turns out that it is formally possible to recast
the equations on some imaginary axis using Theorem 4.24. This approach, first introduced
by Rojas, Godby and Needs [RGN95] (see also [RSW199]), is now known under the name of
the “analytic continuation method”. For reasons that we will explain throughout this section,
these equations are recast as follows within our mathematical framework.
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Definition 4.53 (GW equations on the imaginary axis of the frequency domain).
Find GSW(u +1-) € L2(Ry,, B(H)) solution to the system

];s(\ggv(iw) = ;92/2 </ CE&VV(M +i(w+w))® 55’7\7(# + iw’) dw') vl/? (4.74a)
7

NG (i) = (T2 = PGW(iw)) = T, (4.74b)
WEW (iw) = vimgg,v/n\{(iw)viﬂ, (4.74c)
Z/](\}V/V(u +iw) = K; — % /0; CE(\;VV(M +i(w—w')) © WEW(iw') du’, (4.74d)
C?GVV(M +iw) = {u +iw — (h1 + Z/IGV/V(,u + iw))} o , (4.74e)

where hy is the one-body operator defined in (4.70) and where K, is the integral operator on
H1 with kernel
fy(()],N(rv I‘,)

Km(rar/) = |I‘—I‘/| )

where 78,]\, was defined in (4.67).

Remark 4.54. In the GW equations (4.74), the chemical potential p is supposed to be known a
PTLOTY.

The GW equations (4.74) would be the natural equations to work with from a mathemat-
ical viewpoint (they are formally equivalent to the original Hedin’s GW equations). However,
we were not able to study (4.74) for reasons detailed in Remark 4.55 below.

As one can directly see, the equations inv/o\lle quite a large number of operators, which all

have a physical significance. The operator PS%‘I’Y is the GW approximation of the symmetric

—~—

irreducible polarizability operator, the operator Xg,vn‘{ is the GW approximation of the sym-

metric reducible polarizability operator, the operator WGEW is the/\G/W approximation of the
dynamically screened Coulomb interaction operator, and finally X6W is the GW approxima-
tion of the self-energy operator. We recognize in Equation (4.74¢) the Dyson equation. The
name “GW” comes from Equation (4.74d).

Different levels of GW approximation

As mentioned below (see Remark 4.55), we were not able to study the full self-consistent
problem (4.74). We will therefore restrict ourselves to the so-called GoW? and GW? approx-
imations. We explain in this section how these different models are obtained.

(i) In the fully self-consistent GW (sc-GW) approximation, we assume that the full prob-

lem (4.74) is well-posed, so that there exists a (unique) solution GEW. Tt is then solved
self-consistently: the idea is to start from some trial Green’s function, and keep updating
it with (4.74) until convergence. This method is for instance used in [CRR*12, CRR*13,
KFSP10, RJT10, SDvL06|. It was implemented only quite recently due to its high numerical
cost (one needs to perform the inversion in (4.74b) at each iteration).

(ii) In the so-called self-consistent GW? approximation, or simply GW? approximation,
only the Green’s function (and not the screened Coulomb operator) is updated in (4.74d)
(see for instance [SDvL09, vBH96]). This partial update not only speeds up the calculation
(the inversion in (4.74b) is only performed once), but is sometimes in better agreement with
experimental results than the sc-GW approximation. This is the model that we study in
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Section 4.4.3.

(iii) Finally, most works simply consider the GoW" approximation, where only one itera-
tion of the sc-GW (or equivalently one iteration of GWY) is performed. This model is very
popular due to its relatively low computational cost, and provides already very satisfactory
results (see for instance [BAO11]).

Let us also emphasize that it is unclear that a solution of the fully self-consistent GW
model is a better approximation in any sense to the exact Green’s function than a non self-
consistent approximation such as the one obtained by the GoW? approximation. This is
discussed in [Far99, Section 9.8|, where the author also comments on the possibilities to up-
date the effective one-body operator hy + K, along the iterations.

Remark 4.55. We do not know how to give a proper mathematical meaning to Equation (4.74a).

More specifically, one would like to define, for a reasonable choice of Green’s function G2PP,
the operator

Yw € Ry,  Paym[G™P](iw) = %vi/ i </ GP (1 + i(w + ') © GPP( + i) d“”) vl/?,

and we would like this operator to be a self-adjoint bounded negative operator on Hiy. It
is the case for instance when GAPP s the non- mtemctmg Hamiltonian Go defined in (4.69)

(see Proposition 4.59 and Remark 4.64), or when GaPP s the evact Green’s function defined
in (4.51) (this fact can be proved by adapting the arguments given in Section 4.4.2). We

were not able to obtain this result for a generic class of approximate Green’s functions G3PP,

say GaPP of the form (4.74e) with XEW (1 + iw) in a small ball of L (R,,, B(H1)).

For this reason, we will not study the self-consistent GW equation (4.74).

4.4.2 The operator WO and the random phase approximation

The remainder of this section is devoted to the study of the GW? approximation (which
includes the GoW? approximation), which amounts to study the two equations (4.74d)-(4.74e)
with a specific fixed choice of the screening operator W9. This approximation bypasses the
difficulties mentioned in Remark 4.55. In order to present and study the GW? approximation,
one must first define the operator W7°.

The RPA irreducible polarizability operator PO
The GW approximation of the irreducible polarizability operator P is formally defined as
PWY(r, v/, 7) = —iG(r,x',7)G(r' v, —7). (4.75)

When the Green’s function G is the non-interacting one Gy defined in (4.47), this corresponds
to the so-called random phase approximation of the reducible polarizability operator (compare
for instance (4.83) with the expression in [CS12|) defined by

Por,r',7) := —iGo(r,x’, 7)Go(r', r, —T).

This operator is expected to have properties similar to the operator y defined in Section 4.3.3.
In particular, PY(7) is expected to be a bounded operator from C’ to C. It is therefore more

convenient to work with its symmetrized counterpart Psoym( T) = v/ 2PO( ) Y 2 which is
expected to be a bounded operator on H1. We decompose PSOym as Psg,m = P sym T Psoy’r; where,
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using the kernel-product ® defined in Section 4.2.4, and the explicit expressions of G, and
Gon given in Proposition 4.48,
P (T) = —i0(1)0}/*Gop(7) © Gop(—T)vl/? (4.76)
= —iO(7)v}/? ((]IH1 — 787]\,) e iTht ¢ 787NeiTh1) v}/? (4.77)
and
PoL(1) = —10(=T)02Gon(T) © Gop(—T)vd/?

sym
= —i@(—T)Ug/Q <’78,Ne_i7h1 © (]lﬂl - 78,N) eiThl) Ugm-

Actually, with this definition, we were not able to give a meaning to PS%,; (it may not be a
bounded operator on H;1). We therefore prefer to use the modified kernel-product @ defined
in Remark 4.19. Our correct mathematical definition for Ps(g;; then is

Pian(r) = =10(=1)0/*Go(r) & Go,p (70l (4.78)
= —i0(=7)ul/? (1 we™E (e, — Ahx) T ) vH/2, (4.79)

As will be shown in Lemma 4.56, this amounts to defining P%~(7) = P%*(—7). We recall
that 787 n is the orthogonal projector on the vector space spanned by the eigenvectors of h;
associated with the lowest N eigenvalues (see (4.67)), so that

N
W =D er)(dnl, (4.80)
k=1

where hi¢r = ¢y, and the eigenfunctions ¢y, are real-valued and orthonormal. The follow-
ing result shows that our definitions make sense, and gives explicit formulae for P%T (see
Section 4.6.15 for the proof).

Lemma 4.56. The family (Ps%rt(T)) 2 defined by (4.76) is a bounded causal operator
TE

T

on Hi, while ( Soym(T)> i defined by (4.78) is a bounded anti-causal operator on Hi. It
TE T
holds Pom () = Pyt (—7) and

N

Pyih(r) = =10(r) Y v Pon (Lo, —10.x) € 7M7) (T, — g ) dwve. (4.81)
k=1

Remark 4.57. For 1 < k < N, the notation ¢y, in (4.81) refers to the multiplication operator
by the function ¢y. It is a bounded operator from C' to Hi, and from Hi to C (see the proof

of Lemma 4.56). The operator qbkvi/Q 1s bounded on Hy, and one can check that its adjoint
. 1/2\« 1/2
on Hy is (Prve’ )" = ve' "o

The properties of the Laplace and Fourier transforms of Psoy’;{l are easily deduced from (4.81)
using Proposition 4.13 and Lemma 4.14.

Proposition 4.58. The function z — Ps%,’j{l(z) is analytic on the upper half-plane U, and can
be analytically continued to the lower half-plane I through the semi-real line (—oo,en+1—EN)-
For all z € C\ [en41 — eN,00),

0+ 1/2 — %o 1/2
Poih(2 Zv b ( A o >¢ka . (4.82)
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o~ —

Moreover Poih(- +in) converges to P in HL(Ry,, B(H1)) as 7 — 0T, with

50+ > Ly, — Yo
1
Re Pl = p.v. (Zvi/2<f>k (M) ¢’f”5/2>

k=1

and

—_— N
Im PO = —n (Z v (Lo, — Yo w) Phlekqskvg/?) :
k=1

It also holds

—_—~

Vze C\ [ent1 —en,0), Poym(z) = Pyh(—2),

so that, for z € UULU (—(en4+1 —EN),EN+1 — EN),

N

- h1 — &k

PY . (2) = —QZUi/Qﬁbk(ﬂHl — YoN) <(h1—5k)2—2’2> Iy, — '78,N)¢kvi/2- (4.83)
k=1

—_—

The properties of ng’;g and of Psoy’; can be directly read off from the previous expressions.

For instance, we see that Im Psoy’$ and Im Psf)y’;l are negative operator-valued measures, with
support in (en41 — en,00) and (—oo, —(en41 — €n)) respectively. For w in the real gap

(—(en+1 — EN),EN+1 — EN), We see that Psg;i(w) = Re Psoyi(w) is a negative bounded self-
adjoint on H;.

For our purpose, we only need to know the behavior of Ps(g,m on the imaginary axis iR,,.
We summarize the corresponding most important results in the following proposition (see
Section 4.6.16 for the proof).

Proposition 4.59. [t holds

—

N
hy —e¢
0 (i) — _ 1/2 _ 0 1~ Ck 0 1/2
Vw e Ry, Pon,(iw)= 2;:1 v b (]17.[1 'YO,N) <w2 T+ —Ek)2> (]1H1 ’)/O,N) PR, .

(4.84)

In particular, for allw € R, the operator Psg,m(iw) s a negative, self-adjoint bounded operator
on Hy satisfying PY,, (—iw) = P, (iw). In addition, the function w — P3 (iw) is analytic

from Ry, to S(H1), and is in LP(Ry,S(H1)) for all p > 1. For any f € Hi, the function
W <f Ps(g,m(iw)‘f> is mon-positive, in L' (R,), and

4

]g;a/m(iw)’f> dw = —27 <f

vi/? ((Ly, — 78,1\7) O] ’Yg,N) 92/2’f>

N
=27 <f ngﬂgbk (]IH1 — VS,N) gbkvéﬂ f> . (4.85)
k=1
Finally, there exists a constant C € RT such that
YweR,, 0< —I;r(iw) < ¢ <v1/2p8 Nv1/2> , (4.86)
= sym — (w2+1)1/2 C y [

where P8,N is the multiplication operator by the (real-valued) function p87N, the latter operator
being bounded from C' to C.
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The sum-rule for the operator P9, We end this section with the sum-rule for the operator
PO = ;2P0 071/2, which goes from C’ to C. We postpone the proof until Section 4.6.17.

sym "~ C

Theorem 4.60. The operator 22{:11 orx(L3g, — Y0 n) (M1 — ek) bk is bounded from C' to C,

and it holds
N

2> (L, — Y0 n) (1 — e)pr = div (o) N V).
k=1

Moreover, the following weak-convergence holds:

V(f, g) € C/ X C/7 w1—1>1:lr:loo <?7 _W2P0(iw)g>0/ c = <?a —div (pg,va) >CI7C = ‘/]R3 p8,NW ' Vg

)

Finally, for all g € C' such that Ag € L*(R?), the following strong convergence holds:

lim wQﬁ)(iw)g = div (p87NVg) in C.

w—Foo

This sum-rule automatically leads to a sum-rule for the reducible polarizability operator
in the random phase approximation x° (see Theorem 4.67).

The analytical continuation method

In this section, we explain why (4.74a) can be thought of as a natural reformulation of the usual
physical definition (4.75), and why problems arise with Definition (4.74a) (see Problem 4.55).
This section also serves as a guideline to understand why (4.74d) is a natural reformulation of
the usual physical definition of W (see (4.97) below). In the previous section, we gave the
properties of PO using the explicit expression of PV given in (4.81). While this approach sim-
plifies the proofs, it somehow hides some structural properties that we highlight in this section.

Recall that PO = PYf + PO with

sym

PO (1) = —10(1)v}2Co 5 (1) © Gopn(—T)vl/?

sym
and
Poa(7) = =i0(=m)v*Gop(7) & Gop(—T)vl/?,
where
Govp(T) _ _i@(T)Aod_efiT(Ho,N-H*Eg,N)Aa_H GO,h(T) _ i@(_T)Aa_eiT(Ho,N_lfE'g,N)AO’_'

The idea is to use the results of Theorem 4.24. We first consider ng’;ﬁ, and prove that the
hypotheses of Theorem 4.24 are satisfied. This is given by the following lemma.

Lemma 4.61. There exists a constant C € Rt such that, for any f € Ha, it holds Ao — (vimf) €
62(7‘[1) with

|40 (v221))

Moreover, Ho ny1 — Eg}N > eny1 and Ho n_1 — E&N > —¢enN-

<C .
oy < Ol

Proof. The first point comes from the fact that Aj Ao = fyg’ y and that vi/ 2 fecl — LS
whenever f € H1, together with Lemma 4.77. O
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In particular, the hypotheses of Theorem 4.24 are satisfied, and we deduce that for any
vV >eyand v+ <engq,

—— 1 +o0 __ —
Vw eR, PYh(v+iw) = 277/ vl/? (Go,p (v+ 1V +i(w+w)) ©Gon(V + iw')) v}/2du’.
B (4.87)

—_~

We treat Ps(;,’r; is a similar way, and find that for any v/ < enyy1 and v+ 1/ > ey,

o 1 [t — ~
VweR, Pym(v+iw) = / v}/? (G(),h(y +V +i(w+w)) © Gop(t + iw’)) v}2du’.

27 J_
(4.88)
Actually, the kernel-product ® in the latter expression can be transformed into the kernel-
product @, thanks to the following lemma, whose proof is given in Section 4.6.18.

Lemma 4.62. For any V' < eny1, any v +v' > en and any w,w’ € R,

65;1(1/ +v +i(w+ w')) 0 Cflovp(u' +iw') = Cfr’ov,h(y +v +i(w+ w')) ® C:’OV@(V' +iw’),
as bounded operators from C' to C.

We can perform the same type of calculation for Gy, ® Gy. Following the proof of Theo-
rem 4.24, we deduce from Gy, (7) ® Gp(—7) = 0 that, for any v/ > ey and v + /' > ey,

1 +o0 . —
Vw € R, 27T/ v}/? <G0,h (v+v +i(w+w)) ©Gon( + iw’)) v}/2dw’ = 0. (4.89)

Similarly, from Gp(7) ® Gp(—7) = 0, we deduce that, at least formally, for any v/ < en41,
and any v + v < enyq,

Vw € Ry, / 1/2 GOp(V+V +i(w+w')) @GA(),/IJ(V’—l—iw’)) v}/2dw’ = 0. (4.90)

Remark 4.63. The last equality is formal, in the sense that the integrand C/?;)Tp ® C/?B,/p 18
actually not well-defined: it does not define a bounded operator from C' to C. However, we

—~—

can proceed as follows. For w € R, let Pﬁ+’+(iw) be the operator defined on the core Hi NC
by

Vg e HNC, <f’P++ >\g>
1 [t

_ - Try, [C/i);)(y + 4 i(w +W/)) (vg/2g) é\O—;)(y/ + iw’) (vé/2?)} dw’

Noticing that vc f and ’UC/ g are in Hy since f,g € C, and reasoning as in the proof of
Lemma 4.62, we can prove that the operator in the trace is indeed trace-class, with

(Ton, [Gop v+ +ilw +) (v29) Gop(v' +iw) (v/2F) ]| < pute)l Fllcllglle

where p,, is an integrable function independent of f and g. Moreover, following the proof of
Theorem 4.24, we can prove that, as expected,

Vf,g e HinC, <f

Pﬁ+’+(iw)‘ g> = 0.

—

The unique continuation on Hi of Pﬂ+’+(iw) therefore is the null operator. It is unclear to us

how to extend a similar reasoning for a generic class of approximated Green’s function G2PP.
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By gathering (4.87), (4.88), (4.89) and (4.90), we find that, for any v/ € (en,en+1) and
v+ e (5N75N+1),

— 1 [t —~ —~
YweR,, P (v+iw)= Py / v}/? (Go (v+ v +i(w +w)) ©@Go(v + iw')) v}/ 2du.

Y ) o
In particular, this equality holds for the particular choice v/ = py and v = 0.

Remark 4.64. To summarize the work performed in this section, we transformed the equation
Por, v/, 7) := —iGo(r,v’, 7)Go(r', r, —7) (4.91)

into: for any V' € (en,ent+1) and v € (eny — V', eny1 — V')

POy +1) = 1 /+°o (50 (v+ 1 +i(w + ) © Go(v' + id)) duw'. (4.92)

T J -0

Note that the manipulations performed in this section to transform (4.91) into (4.92) are

possible since the two operators involved in the kernel-product (here, both are equal to G°(z))
are analytic on some common domain UUL U (a,b) with a < b (the presence of a gap is
important to deform the contour as in Theorem 4.24).

The RPA reducible polarizability operator y°

In order to calculate the GW approximation of the self-energy, one needs the reducible polariz-
ability operator y, defined in Section 4.3.3. Unfortunatly, the expression of x is not accessible
in practice. One needs to approximate this operator. The GW approximation, which amounts
to approximating the so-called vertex function, provides a natural approximation YW of y:
in Equation (4.74b), xSV is defined from GEW (see also [Far99, Equation (103)] or [Hed65,
Equations (A.20) and (A.28)]). However, in view of Remark 4.55, the definition of Y& is not
well-understood mathematically. In the GW? framework, we use the RPA reducible polariz-
ability operator x°, which is itself defined in terms of the RPA irreducible polarizability P°.
The GW? approximation of the (symmetrized) reducible polarizability operator is usually
defined in the frequency domain as

— —

-1
Wy (@) 1= (M, = Phnl@)) = Tty

The formal analytic continuation of the above definitions is (see [Far99, Equation (139)])

—_~— —_~—

-1
Wymn(2) 1= (M, = Ponl2)) = Tty (4.93)

—_~

Note that we use the “tilde” notation in ngm, although it is unclear that this operator-
valued function is indeed the Laplace transform of some operator-valued function in the time

domain. Also, it is a priori unclear whether the operators 13, — PSW (w) or T3, — PSY (2)
are invertible. This is however the case for appropriate values of z, as shown by the following
lemma.

—~——

Lemma 4.65. For z € (—(en4+1 —&n),en+1 — en) and z € iR, the operator 13, — PY,,(2)
is invertible.
This result is a direct consequence of the explicit formula (4.83) for ﬁ), which ensures
sym

that PO (z) is a bounded self-adjoint negative operator for the values of z under consideration.

Let us deduce some extra properties of x0.
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Lemma 4.66. For any w € R, the operator )zgyjn(iw) is a bounded, negative, self-adjoint
operator on Hi, satisfying X9y, (—iw) = xqm(iw), and such that

—_—~

P (iw) < X0 (iw) < 0. (4.94)
The function w )/(Q;;(iw) is analytic from Ry, to S(H1) and is in LP(Ry,,S(H1)) for all
p > 1. Finally, there exists a constant C € Rt such that

— C
10 i - - 1/2 0 1/2
0< Xsym(lw) < (w2 T 1)1/2 (Uc Po,NVc ) : (495)

This result is deduced from the definition (4.93), the inequality = < (1 —2)~! -1 <0 for
x < 0, and Proposition 4.59.

Sum-rule for ;{6. From the sum-rule stated in Theorem 4.60, we readily deduce the sum-
rule for 0 := v, 1 Qngmv; 1 ?_ which is a bounded operator from C’ to C. Indeed, from the

equality (1 —2)™! —1 =2+ 22(1 — 2)~!, we obtain

—~—

VW € Ruy (i) = P (i) + (Phn()) (s = Phunlics))

In particular,
Vw e Ry, wiy0(iw) = szO(iw)—i—E (wQPO(iw)) (vg/z <11H1 - Ps(g,m(iw)> vi/2> (szO(iw)> .

This shows that the asymptotic behavior of ;6(10.1) is, at dominant order, the same as for

ﬁ)(iw). Taking the limit w — £oo leads to a theorem similar to Theorem 4.60, whose proof
is skipped here for the sake of brevity.

Theorem 4.67. The following weak-convergence holds:

\V/(f, g) € C, X C/a wgriloo <?7 _WQXO(iw)g> c = <?> —div (Iog,vag) >C/’C = /]R3 pg,NW : Vg

C’,
For all g € C' such that Ag € L*(R3), the following strong convergence holds:

. 2-0/: — 0 .
wl_l)gloow x%(iw)g = div (pO’NVg) in C.

By comparing Theorems 4.67 and 4.46, we see why using (4.71) instead of (4.70) for the
definition of hy may lead to better approximations, since p8’ N= p?v in this case, so that the
GW approximation YW of y becomes exact in the high imaginary frequency domain.

Theorem 4.67 is useful for the design of the so-called Plasmon-Pole models (PPM) [HLS6,
vdLH88, GN89, EF93|. Since the definition (4.93) requires the computation of a resolvent, the

calculation of xY(z) is numerically very expensive in practice. Some authors suggested to ap-

proximate x° by an operator x*'*M which is computationally less expensive. In practice, yP*M

has a prescribed functional form, with adjustable parameters. Different approaches are taken
in order to tune these parameters, and the previous sum-rule provides a standard way to fit
some of them. This is done for instance in the PPM by Hybersten and Louie [HL86| and in
the PPM by Engel and Farid [EF93]. In the later article, the authors extensively comment
on the fact that this sum-rule is an important requirement to be satisfied for a PPM.
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The RPA dynamically screened operator W°

From the approximation x° of x, we directly deduce the approximation W of W. Following
the path taken in Section 4.3.3, we define

%(z) = v, + W0(z) with Wcﬁ(z) = vin;g,;(z)vé/z. (4.96)

This operator, when well-defined (say on the gap (—(ent+1 — €n),EN+1 — €n) Or on the
imaginary axis iR) is a bounded operator from C to C’. The properties of W0 are directly

deduced from the ones of ngm, so we do not repeat them here for brevity.

4.4.3 A mathematical study of the GW’ approximation
The GoW" approximation of the self-energy

In this section, we study the GoW? approximation as a preliminary step to the study of the
self-consistent GW? approximation. This will help us understand some technical points to
address in the analysis of the GW" method.

The GoW? approximation of the self-energy operator is formally defined as
YO, v/, 7) := iGo(r,x’, )W (r, v/, —77). (4.97)

Here, G represents the Green’s function of the non-interacting system introduced in Defini-
tion 4.47, and W0 is the random phase approximation of the dynamically screened operator
defined in Section 4.4.2. Already one difficulty arises: in Section 4.4.2, we only defined the
function W0(z) on the complex frequency domain, but we did not define some operator-valued

function on the time-domain. In this section, we assume that the function W0(z) is indeed
the Laplace transform of some operator W9(7). This will allow us to transform (4.97) into

a formally equivalent definition that only involves WO. The resulting definition will be our
starting point for the GW? approximation.

With the kernel-product defined in Section 4.2.4, the definition (4.97) can be recast as
507) =iGo(r7) © WO(—7).

In view of the decomposition provided in (4.96), it is natural to split £ into an exchange
part X9 and a correlation part 2 (the terminology is motivated below):

YO =204 50 with ¥(7) =iGon(07) ®vedo(r) and XX(7) = iGo(1) ©@ We(—7).
Let us first consider the exchange part. As iGon(07) = —78, N+ We obtain
S9(1) = Kybo(T), (4.98)
where K, is the integral operator on H; with kernel

O (r, 1
K,(r,r) = () (4.99)

r—x|

We recover the usual Fock exchange operator associated with ’yg n» Which justifies the termi-
nology “exchange part” for ¥%. Let us now consider the correlation part. Observing that

. avo is analytic on UUL U (en,en+1) (hence has a gap around p);
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o WO is analyticon UUL U (—(en4+1 —€n),en+1 — €n) (hence has a gap around 0),

we can use the same ideas as in Section 4.4.2. By analogy with Remark 4.64, we recast

the physical definition of %00 in (4.97) in a formally equivalent definition in the complex
frequency plane. This reformulation was first given by Rojas, Godby and Needs [RGN95] (see
also [RSW199]), and is now known as the “contour deformation” technique.

Definition 4.68 (GoW?' approximation of the self-energy). The exchange part of the self-
energy in the Go WP approzimation is defined in the complex frequency domain by

Vz € C, 59;5(2) = K,,

while the correlation part is defined, for v € (—(ent1—en),en+1—eN) andv+V' € (eEn,EN+1)
by
1 [t~

Yw € Ry, 5173/0(11 +iw) = 5 Go(v+v +ilw+w)) o ﬁ//g(y' +iw') dw.
T J -0

The fact that the above quantity is independent of the choice of v/ comes from the ana-
lyticity of the integrand on the region of interest. In practice, we will focus on the case V=0

and v = pig, and therefore consider the function Ry, 3 w — £0°(uo + iw) defined by

1 [t~
Yw € R, X0O(ug+iw) = / Go (o +i(w+w')) © W(iw') dw. (4.100)

T or
The next proposition shows that the above definition makes sense.

Proposition 4.69. The operator K, arising in the exchange part X2 of the self-energy is
a_negatwe Hilbert-Schmidt operator on Hi. Furthermore, for any w € Ry, the operator

Y00(pg + iw) is a bounded operator on Hi, and satisfies X9 (uo — iw) = X9(uo + iw)*. The
function w — X0 (po+iw) is analytic from Ry, to B(H1) and is in LP(Ry,, B(H1)) for allp > 1.

The first statements of Proposition 4.69 can be seen as a special case of Proposition 4.73,
while the symmetry property for the adjoint and the L? integrability follow from the properties
of GO and W0.

Well-posedness of the GW? approximation in the perturbative regime.

We finally study the GW? approximation. Following our definition (4.100) of the GoW?°
approximation of the self-energy, we recast the GW? equation as follows.

Definition 4.70 (The GW? problem on the imaginary axis in the frequency domain).
Find GV ¢ L>*(Ry, B(H1)) solution to the system

1 [+ =5
YOW (4o +iw) = K, — 277/ GOV’ (po +i(w + o)) @ WO (iw') du’,
—00

(GW?)

—1
GOW’ (pg + iw) = [Mo +iw — (hl + SGW (o + iw))] ,

where hy is the one-body mean-field Hamiltonian defined in (4.70) and K, is the exchange
operator defined by (4.67)-(4.99).

Remark 4.71. We are looking for a solution in L>®(R,, B(H1)). Note that the true Green’s
function G(pu +1-) is in LP(Ry,, B(H1)) for all p > 1 (in particular for p = oo). We chose to
work with L™ (Ry,, B(H1) for simplicity, but it is possible to work with other spaces LP(R,,, B(H1))
with p > 1.
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Since this problem seems quite difficult to study mathematically, we will only study it in
a perturbative regime. More specifically, seeing W as a correction term (see the discussion
after Definition 4.52), we propose to study the following problem.

Definition 4.72 (The GW())\ problem on the imaginary axis on the frequency domain).
Find GEWA ¢ L>*(Ry, B(H1)) solution to the system

1 oo
SOWS (g + iw) = Ky — — / GOV (1 + i(w + o)) © WO(iw') d!

2w J_
> (4.101)

(GW3) 4
GEWR (1o + iw) = [,uo +iw — <h1 + ADOWR (1o + iw))} .

According to (4.69), the unique solution for A = 0 is the Green’s function for the non

P

interacting system GOW3iso = CA?B. This fact will allow us to treat the equation perturbatively.
The exact GW? equations correspond to the case A = 1. Of course, several other choices of
perturbation can be used. For instance, we can put the parameter A in front of the correlation
part of the self-energy only. This amounts to considering the Hartree-Fock Hamiltonian as
the reference Hamiltonian (instead of the Hartree Hamiltonian). The theory that we develop
here can be straightforwardly generalized to such other cases.

It is convenient for the mathematical analysis to introduce the functionals s and g respec-
tively defined as

5. L*(Ry, B(H1)) — L®(Ru, B(H1))

—~—— o 1 +oo
G (g +1) = 5G| (o +1i) 1= Ky — - / GoPP (g + (- + ') © WO (iw') du’,

— 0o
and

gr: L®[Ry,B(H1)) — L*(Ry,B(H1))

S (g +1) g [S] (o 1) = [jao + 3 — (£ AT +1))]

With this notation, GEW2 is a solution of the GWY equations (4.101) if and only if it is a
fixed-point of gy os. The fact that these maps are indeed well-defined is proved in the following
proposition (see Section 4.6.19 for the proof).

Proposition 4.73. The operator s is a bounded linear operator from L*(R,,B(H1)) to
L>®(Ry,B(H1)). On the other hand, for all M > 0, there exists A\py > 0 and Cpy € R

such that for all 0 < X < Aur, and all $#PP such that Hi;p/p(po —|—i-)H < M, the

L>*(Ry,,B(H1))
function g\[X*P](uo + i-) is well-defined as an element of L*(R,,, B(H1)) N L>®(Ry, B(H1)),
with

< Cpr.

HQA [ﬁp} (o +1-) o ng\ [ﬁp] (po +1-)

L2(Ry,,B( ‘L“’(Rw B(H1))

Moreover, for all E/ﬁﬁp,i?p € L*®(Ry,B(H1)) such that Hi?ﬁp(uo +i‘)HL°°(]Rw,B(H1)) <M
for1<j <2,

o0 5] — 00 5] 0 [599] (5 -5 o [5). aa)
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To prove the existence of a fixed-point for gy os, we rely on Picard’s fixed-point theorem.
Since the solution of the GWE{:O equations (4.101) for A = 0 is Go, we are lead to introduce,
for r > 0, the (closed) ball

% (Gor) = {Efppm 1) € LRy, B(H1)), [[GP(so + i2) = Go(po + ) R }

The existence of a fixed-point is given by the following theorem (see Section 4.6.20 for the
proof).
Theorem 4.74. There exists A\, > 0 and r > 0 such that, for all 0 < X < A, there exists a

unique element GEW3 € B (@6,7“) solution to the GWR equations (4.101), or equivalently to
the fixzed point equation

GGWS — gr05 <GGW§> )

In addition, for all w € R, GOW3 (1o + iw) is an invertible operator, and

H (C/JE}\V@ (o + i.)) o (E;Vo(uo + i.))_1 < 0. (4.103)

Lo (Rew,B(H1))

Finally, the iterative sequence (gy o s)* [56} converges to GGWR, and there exists 0 < o < 1
and C € RT such that

- ot )i

< Cak.

L (Re,B(H1))

Remark 4.75. It is not difficult to deduce from (4.103) that the function w GOW3 (1 +iw)
is actually in LP(R,,, B(H1)), for all p > 1.

4.5 Conclusion

In this chapter, we formalized with full mathematical rigor the GW theory for finite molecular
systems derived by Hedin in his seminal work published in 1965 [Hed65]. In Section 4.3, we
provided a mathematical definition of some one-body operators arriving in many-body per-
turbation theory for electronic systems, namely the one-body Green’s function G, the spectral
function A, the reducible polarizability operator y, the dynamically screened interaction op-
erator W and the self-energy operator 3.

In Section 4.4, we worked out a mathematically consistent formulation of the GW? ap-
proximation of the GW equations, and we proved that the GW" model has a solution in a
perturbation regime. As a by-product, we also showed that the widely used GoW? approxi-
mation of the self-energy makes perfect mathematical sense.
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4.6 Proofs

4.6.1 Proof of Lemma 4.3
Let s > 1/2. For f € L*(R;) and ¢ € .Y (R,),

Frf. @ | = [(£.F12) 05| = 2m

/ F(=r)(F53) (r) dr
R

=27 < Cs [ fllze= @l s,

| TS ey o o

where we have used the Cauchy-Schwarz inequality in the last step. By density, Frf can be
extended to a linear form on H*(R). The equality case ||Frf||g-s = Cs||f||1 is obtained for
constant functions.

4.6.2 Proof of Theorem 4.10
Proof of (i). The analyticity of g directly follows from the results of [Sch66, Chapter VIII].

Proof of (ii). Let s > 1/2, and consider ¢ € .#(R). Relying on the fact that g(- + in) can
be seen as the Fourier transform of 7 — g(7)e™", we obtain

<§( + 177)7 @)H*S,HS - </g\7 S0>H*5,HS = <geim-7 9/0\>y/7y - <g7 @>’y)/’(y

_ > g(T) 2\8/2 ~ -7 _
_/0 <(1 +7-2)5/2> (L+72)%9(T) (e 1) dr,
(4.104)
where the integral makes sense since 7 — g(7)(1 + 72)%/2 and 7 — (1 + 72)*/23(7) are

in L2(R). It is then possible to extend the above formula to any ¢ € H*(R). Moreover, by
the Cauchy-Schwarz inequality,

‘@(' +1in), 0 s, 15 — (G ) a5, 15 | < Insllellmsllgllzee,

“+00 (1 _ e—n‘r)Q 1/2
I,s=12 —d < 00.
" ( ”/o (1+72) ) >~

Therefore, ||g(- +in) — Gl g—s < l|gllzcIy,s. By dominated convergence, I,, s — 0 as n — 07,
which allows us to conclude to the strong convergence of g(- +in) to g in H*(R,).
A similar computation shows that, for 0 < n; <17y and s € R,

where

+o0 2 1/2
56+ im) =3+ il < e (20 [ o207 (1= ety g spar)
0

where we crucially use that 71 > 0 to ensure the convergence of the time integral for s > —1/2.
The right-hand side goes to 0 as 72 goes to 11 by dominated convergence. This allows one to
conclude to the continuity of n — g(- + in) from (0, +o00) to H*(R). When s < —1/2, it is
possible to pass to the limit 7; — 0 and obtain the uniform continuity from [0, +00) to H*(R).

Proof of (iii). We follow the approach used in [Tay58| for instance. Fix zgp € U, and
consider, for R > 0 and 0 < a < Im(2)/2, the oriented contour ¢ in the complex plane
composed of the semi-circle i+ Re'? for 0 < 6 < 7 and the line ic +w for —R < w < R. The
value R is taken sufficiently large for zy to be inside the domain encircled by the contour (see
Figure 4.5).
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Figure 4.5 — The contour % used in the proof of (iii).

By Cauchy’s residue theorem,

_ 1 q 1 By i I : Rel?
g(20) = 95{; 9(2) dz = / de+%/(] g(ia+ReIQ);d6’.

21 Jo 2 — 20 2im _pw+tia— 2z Rel? +ia — 2
(4.105)
Now, for z € U,
~ gl o
19(2)] < m»
so that
T . Rei@ ™ R
glia+ Rel%) —— —df| < s . dé,
/0 glia + Re )Rele—i—ia—zo ‘_ gl /0 |a + Rsin 6] |Rel? + ia — zg|

which, by dominated convergence, converges to 0 as R — 400 when « is fixed. On the other
hand, (- + i) belongs to L?(Ry), while (- +ia — 29)~! is in HY(R,), since ia — 2y has a
non-zero imaginary part. Therefore, the limit R — +o0o can be taken in the first integral on
the right-hand side of (4.105), which leads to

_ 1 [ G(w+ia) 1 . 1
= " dw = —— (g(- +ia), (- + i — 2z09)~ .
9(20) = 52 /_oo wtio—z . 2ir (G +i0), (o= 20)7) o g

The conclusion now follows from the strong convergences of (- + ia — 29) ™! to (- — z9)~! in
H'(R,) and of §(- +ia) to g in H71(R,) as a — 0.

Proof of (iv). Let ¢ be a real-valued function in .(R,,). From (4.12), we get

[t rinp)ds = 5 [ (@6 —w=im )y plw) do,
R R

Taking the real parts of both sides, we obtain
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Consider now ¢ € C°°(R?), with support contained in [~R, R] x R for some finite R > 0.
Then, Fubini’s theorem for distributions (see [Sch66, Chapter IV, Theorem IV]) asserts that,
for a given distribution 7" € .%/(R) and ¢ € . (R),

AT 0 0 0t dw—< [ o) >§W.

When T' € H~1(R), the above linear form can be extended to functions in H'(R). Therefore,
(4.106) can be rewritten as

/Re gw+in)) p(w) dw = <Im97 2;/(_;0_)2C:L772‘p(w)dw>H_17H1

1 (4.107)
~ n
+ ( Regy, / ————(w)dw )
< P om R(—w)?+ 77290( ) >H1,H1
In view of the following strong convergences in H'(R),
1 §—w 1 1 n 1
g (€ —w)2+n? p(w) dw ’HTHO 2(3590)(5)7 2 Jo (€= )2 + 12 o(w) dw oﬁneo 2¢(§),

the equality (4.107) leads, in the limit n — 07, to

—~ 1 —~
(Reg, ‘10>H—1,H1 D) (Img, H()) g1 HY T 5 (Rega >H—1,H1 .

The first equality in the statement of item (iv) is finally obtained with the following lemma
(recall that, according to Lemma 4.4, H*(R) is stable by the Hilbert transform). The second
equality follows by applying §) to both sides and remembering that $H? = —Id.

Lemma 4.76. Let s > 0. For any T € H *(R) and ¢ € H*(R),

(T), @) o e = = (T 50D o e

Proof. Consider first the case when T,¢ € .#(R). Then, using Plancherel’s formula, the
duality product can be rewritten using a L2-scalar product

(T, @)rr,7 = (BT, 6)12 = 2 (FIST), F o) | = 2m (<isn()F'T.F %) 1,
=27 (]—'717, isgn(')]-"*lga)L2 = — (T,)ﬁgp)LQ =—(T,9¢) .7 .

The conclusion is obtained by a density argument. O

4.6.3 Proof of Proposition 4.12

The proof presented in Section 4.6.2 can be followed mutatis mutandis upon introducing, for
given elements f, g € H, the bounded causal function

afq(T) = (f|Tc(7) g)

and noting that [|ay gL < |7l zoo B0yl f1Ill9]l-
The only additional technical point is the strong analyticity property, which is however
easily obtained from the following bound: for z = w +in € U,

dTe(2)

B(H)

/ Te(7) (iT)e_”Tei‘” dr
0

B(H)

| Tell oo (v, B(2))
772

o0
< ”TCHL‘X’(]RT,B(H))/O Te "Tdr = < +o0.
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4.6.4 Proof of Proposition 4.13

. +m . .
= / Ac(r)e*Tdr = —i/ e ITHGIET 47
R 0

A simple computation shows that

For z € U, we have

+o00 1
A(w+l'r] / / 17_w+"7 /\)dPHdT—/\uJ—HMdP/\ —(w+177 H)

The series of equalities can be made rigorous by testing them against functions f, g € H, and
using Fubini’s theorem to justify the exchange in the order of integration.

The strong convergence of A(-+in) to A, in H! (R;, B(H)) is ensured by Proposition 4.12.
The Fourier transform can therefore be deduced from this limiting procedure. We consider the
limit of Im A (- +in), the real part of gc( +in) being obtained from (4.14) and Definition 4.8.

Let f € H and ¢ € L (R,). Then, using Fubini’s theorem,

((rmacc+m| ) o), == | [ o o @) o= —/Rtnuiu?(d?),
4.108
where the measure u? is defined by u? (b) = (f | Pf| f) for any b € B(R), and

tn(A)_Aw%¢ /§2+1 (A +né)dE.

Note that

00) = o] < [ g lolr-+ 1) — oI < Vil s [ 15 e

where the last bound is obtained by rewriting (A + n&) — ¢(A) as the integral of its deriva-
tive and using a Cauchy-Schwarz inequality. This also shows that ¢, is uniformly bounded
asn — 0T. Since the measure u]{{ is finite, (4.108) leads by dominated convergence to

<<f ‘Irn?lvc( +in)) f> ,w>ﬂy o~ —W/Rw(/\) pi (),

which shows that Im;l\c = —7w PH,

4.6.5 Proof of Lemma 4.14

Let us first assume that Im fc > 0. The aim is to prove that Re fc > 0 on (—oo,wp]. Consider
to this end ¢ € . (R) with Supp(p) C (—00,wp] and ¢ > 0. Then, for any w > wp and w’ < 0,
it holds ¢p(w — w') = 0, so that

g
Yw > wo, (H9)(w) = lim M dw’' = lim ;
0" JR\[—e,¢] w e—0t J¢ w

Let f € H. In view of (4.14) and Lemma 4.76,

([ReTe] 1), 0),y s = =0 (0 )
= ([ mT

12 g =~ (3 (1

f> ’y)(p>H*17H1 )
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The latter quantity is non-negative since Im 7, > 0 and $¢ > 0 on Supp(Im75) C [wo, +00)
(by (4.109)).

Let us now assume that Re T\C > 0 on (—o0,wp|. The aim is to prove that Im fc > 0 on
the support of this distribution, which is included in |wg, +00). Consider therefore ¢ € . (R)
with Supp(p) C [wo, +00) and ¢ > 0. Note that

Vw < wy, (H¢)(w) = lim

e=0" J o w’

and, for any f € H,

(7)), = (e

This gives the desired conclusion.

f> ’f')(p>H—1,H1 =0

4.6.6 Proof of Lemma 4.21

The fact that By € B(L'(R?), L?(R?)) is a simple consequence of the following inequality: for
¢ € LY(R?), it holds, for almost all r € R3,

|Bip(r)| =

/ Bi(r,r")p(r)dr’
R3

< |1 Ba(r, )l oomsy @l 1 w3y

This shows that Byp € L*(R3) with

1/2
IBieliae < ([ 1B By ar) ol

Now, for f € L?(R3), it is easy to see that B f is an integral operator with kernel By (r,r’) f(r').
In addition,

2
HBlfHéz(L?(]Rii)):/ / | B (x,x') f(x')]| drdr’g/ / ”Bl(r")H%M(RB)If(r’)\erdr’
R3 JR3 o Js
- </]R3 | B (r, -)H%2(R3)dr) ”f”%Q(R3).

This gives the claimed result.

4.6.7 Proof of Theorem 4.24

Fix 0 <np <wand f,g € H. We start from (4.24), which we rewrite as

— i too __ —
Ctv+iw) = 21/ At(v+V —w' +i(w—n) @B~V — o' —in)dw'. (4.110)
T

—00

By Proposition 4.13 and Proposition 4.17,

At(2) = Af(z — A9) YAy,  B~(2) = B} (2 + Bs) "' Bx. (4.111)

The poles of z - A+ (v+1V/+i(w—n)—z) are located on the half-line i(w—n)+(—oc, v+ —a),

while those of z — B= (V' — in — z) are located on the half-line —in + (b + v/, +00). For any
closed contour not enclosing any point of those two half-lines, the integral of

z»—)f/l\jf(y%—l/—ki(w—n)—z)@B*(l/'—in—z)
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on this contour vanishes. Let us choose the contour %7, plotted in Figure 4.6 and evaluate the
contributions of the left-hand side of

75 Try [;1\1 (v+v +i(lw—n) - Z)g/B\:(I/, —in—2)f|dz =0, (4.112)
Cr

on the various segments. Recall that we choose v < a + b and v/ € (=b,a — v), so that
v+ —a <0<V +0b. Let us also emphasize that the operators appearing in the integrand
do not have singularities.

L
poles of ;1:(1/4— Vti(lw—mn)—")
X Filw=n) GL
—L
| XX =
v+ —a Vb ‘poles of Bt(y’ —in—"-IL
—L

Figure 4.6 — Contour %7, used to compute the integral (4.112), with n > 0 small compared
to w. Note that the condition v + 1/ —a < 0 < v/ + b ensures that the central vertical part of
the contour does not intersect the poles of the functions in the integrand.

Let us first consider the part of the integral corresponding to the right side of the contour.
Using (4.111), we obtain that for all W’ € [0, L],

/0 ey [AF (4407 = LiGw - )9 (0 — L~ (! + 1)) F] o

L
</
0

3 — 2
< B fll sy 00 1Bl 2020) 141 B0 30,

/
X
0 B(Ha)

v+ —L+ilw—n—uw)— A
1 [ dw 1 L+
<C — =C —log ( — |,
< Clflaling [ = Clllalgleg o (<

1 AvaB? 1
v+ —L+ilw—n—uw)— A L9 YW —L—i(w +1n)+ By

Blf:| ’ dw'

TI‘H |:A>{

1

d/
vV — L —i(w' +n)+ B “

B(Hs)

where we have used Ay — (v+1v')+ L > a— (v+1/)+ L > L. Similar estimates can be stated
for the upper, lower and left parts of the contour. For the upper part for instance, for which
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the integration is performed from z = L +iL to z = iL, we get

/LO Try [ﬂ(y +vV —w +i(lw—n— L))g/Bi(l/ —w —i(n+ L))ﬂ dw’

1
v+ —w +i(lw—n—L)— A

L 1 1
<C dw’
<Clfludal [ (155) oo

1 L _ Ny —1 B ,
— Ol gl 28 LT (HVL)inog(a W)

1

d/
vV —w +i(L+n)— B v

B(Hs)

L
< Ollf Illgl /

B(Hu)

where we recall that a—(v+1') > 0. We then take the limit L — 400, so that the contributions
to the integral which are not on the imaginary axis or on the real axis vanish. We deduce
that

/OO Try [;11 v+ - +i(w— n))g/B\:(l/ —w - in)ﬂ dw’

—00

+00 — — -
= i/ Try [A+ (v+ v +i(w—n+uw"))gB (V' +ilw — n))f] du'
400 — — -
= i/ Try [A+ (v+ v +i(w+w))gB= (V' + iw’)f} dw'.
In view of (4.110), we finally obtain that
-~ . 1 oo ’ . !/ o o /
C+(y+1w):—2— At(v+V +i(w+w)) @B~ (V +iw') dw'. (4.113)
™ —0o0

We next note that our choices for v,/ ensure that the expressions on both sides are analytic
for all w > 0, and can be extended analytically to all w € R. Therefore, the above equality
also holds true for w < 0.

In a similar fashion, we prove that, for all w € R,
— 1 —

+o0 _
C~(v+iw) = ~5- / A= (v + vV +i(w+w)) ©BHY +iw')dw'.

This equality is established as for (4.113) by considering C- (v —iw) for w > 0 and evaluating
the various parts of the left-hand side of

35 Try {A* (v+v —i(w—n) - z)gEjr(l/ +in—2)f|dz = 0.
(KL
The poles of the integrand are on the half-lines

—i(w—n)+¥+v +a,+0) and in+ (—oo,—b+ V).

The conditions v > —(a +b) and —a — v < v/ < b ensure that —b+ 1/ <0 < v+ +a, so
that the integrand has no singularity on the imaginary axis.

Finally, since AT(7) ® BT (—7) = A~ (1) © B~ (—7) = 0 for 7 # 0, we can concatenate
é\jr(l/ + iw) and C/T:(I/ + iw), and obtain

1 [T ~
Cv+iw) = _27r/ Av+V +i(w+w)) © Bl + i) dw'.
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4.6.8 Proof of Corollary 4.25

The proof is based on the representation (4.25) with the choice w = 0. Consider v < a+b. It
holds

1 +OON —_—

2 | At(v+vV +id) © B~ (V' +iw') du’
T

1 +°° v+ — Ay — i Vv 4+ By — i’
_ A* A B B | do'.
o [ o+ — A2+ ()2 }@[ Wt B+ @)

CHw)=CH) =—

The odd terms in w’ cancel out by symmetry, so that

I Ay — (v +7) V' + By
+ * * /
=g [ Miari o] © [P e e

1 +OO|: . WI

/

_*_7

o ( )231] du'.

A (v+v — Ay)? + (w’)2A1] © [Bl (V' + B2)? + (o
(4.114)

This shows that this operator is positive and self-adjoint in view of Lemmas 4.22 and 4.23.
As a result, Im (/J'jr(u) = 0 for v < a+b. This proves the first assertion in (4.29). Also, we get
from (4.114) that 6’1(1/) —=ReC* >0 for v < a+b. Together with Lemma 4.14, this shows
the first assertion of (4.28). The results concerning Im C~ are proved in a similar way.

4.6.9 Proof of Proposition 4.26

The first assertion follows from the fact that the domain of Hy is H2(R3") and from the
equalities HyRe (U8) = EQRe (¥}) and HyIm (V) = E3Im (¥%).

The density p?\, is bounded since it decreases exponentially fast away from the nuclei and
is continuous [FHOHO®S02].

In order to prove (4.36), we rely on (4.31) and (4.34) in order to write (recall that W9; is
real valued)

(Wl @a(TR), = (alg)TX]a(HTR),,

= Jasov (/ 9(r) ¥ (r,2) r> ( . F@)O (v, 2) dr') 4z

/ / r)2 % (e ) T dr v’ = (F1y%lg).

2

To bound the kernel |78 (r,r")|?, we use the Cauchy-Schwarz inequality and get

2
iy ()2 = N2

e, BRI ) 0

([ wearas) ([ el ) < R

Let us finally recall why p(J)\,2 defines a bounded integral operator. Note first that it
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holds p?\w(r, r’') > 0. For f,g € Hi, the Cauchy-Schwarz inequality then leads to

il = | [ [ Fhfeatrryote)ara
1/2 1/2
<([, [irorsawrraar ) ([ ] awRk s arar)
R3 JR3 R3 JR3

1/2 1/2
2 (/Rd !f\209v> (/w \9\2:0?\{>

(V-1
2

< 1680 oo 111341 1932, -

This shows that P?v,Q defines a bounded operator on Hy, with operator norm lower or equal

to (N — 1) [|p%]] L /2-

4.6.10 Proof of Theorem 4.36

Since

A_f(ry,...,tN_1) = VN , f(r)\Il(])V(r,rl,...,rN_l)dr,
R

and introducing

N-1
AN—I = E Aria
=1

it is easily seen that (1 — Ay_1)A_ is an integral operator whose kernel is

[(1 — AN—l)\II[])\[] (I‘l, e PN 13 I‘).

As \I’(])V € H%(R3Y), it follows that (1 — Ax_1)A_ € Go(H1,Hn_1). Therefore, any operator
of the form A* BA_, where the operator B on Hy_1 is such that

(1—An_1) V2Bl — An_1)"Y? € B(H1),
is trace-class. In particular, the operator

aTGh(T)‘T = —A*_ (HN—l — E]OV)A_,

—0—
is trace-class.
Let us now compute more explicitly the action of this operator. Let

1
hi = _iA + Vext-

We use the definition (4.31) of a(f), and obtain

(Zhlrz> \IIO](rh..., ) \/7 fI‘N (Zh1r1>\I’NI'1,...,I'N)dI'N

— \/N/Rgf(rN) (HonTY) (r1,...,rn)dry (4.115)
- \/N Rs(hlf)(I'N)\I/S)V(I'l, ceey I'N) dI‘N,

so that
(Hy—1A_f) (r1,...,xn_1) = B (A f) (r1,....vn-1) — (A_hif) (r1,...,tn-1)

_ NZ \IlNrrl,...,rN,l)dr‘

|r — ;]
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Moreover, it is easily seen that, for any ®n_1 € Hny_1,
(A*_<I>N,1) (r) = VN S (e, ey, ., ry_ )@ (g, ..., ry_1)dry .. dry_g.
Therefore,
(A (Hy-1 — Ex) A_f) (r) = = (W3 f) (x) — 8 Kn(r,r') f(x') dr’,
with

0 /
I‘ I'l,...,I'N_l)\I/N(I',I‘17...,I'N_1)
(r, r ) =N drq...dry_1.
Z/3<N .

|/ — 1

Since we already know that the integral operator K on H;, with kernel Ky(r,r’) is trace-
class, and that UY; is continuous and decays exponentially fast (see e.g. [FHOHO®S02]), we
have [Sim05, Theorem A.2]

WO (r,1rq, ... TN
Try, (Kn) = KN(r,r)dr:N(N—l)/ [V e, x1 ry-1)| dry...dry—

R3 R3(N—-1) |r —rq]

—2//'0]\[2 dr dr’,
R3 JR3 ‘I'—I'

where we recall that /)9\/,2 is the two-body density matrix defined in (4.35).
Finally,

Try, (0-Gn(7)| —Try, (A" (Hy_1 — ER)A-)

7:0—) =

pNQ /
— Tr hy) +2 ar’
Hl Nl + /R3/R3 ’I‘—I‘/‘ r r

which gives the claimed result in view of the following representation of the ground state
energy:

/
EY = (U Hn|[OQ) = Tray, (mR) + //p“)drdr’. (4.116)
R3

v —r'|

4.6.11 Proof of Lemma 4.42

Proposition 4.26 shows that p%; € LP(R?) for 1 < p < +oc0. This implies that (Z A v(rz)> vl
2

belongs to Hy for v € C' since, from the inequality (Zf\il v(ri)> < NZi:l v(r;)? and

Holder’s inequality, it holds that

N

2
/ (Zv(ra) 00 (r1,. .., rn)[Pdry . .dry < N / v2p% < NlJollZs[lp% | a2
R3N R3

—1
< NCe vl o]l 132

where we have used the embedding €’ < LS(R?). Moreover, pQ € L5/°(R3) < C, so that
|(v, X)ere] < [lvllerl|p%lle. We therefore deduce that B is a bounded operator from C' to
H n, whose norm satisfies

1Bl a4y < A/ NCerlloXll sz + o lle-

We finally have, for v € C’,
N
<‘I’9V \If%> = [ o)k ) dr = e
HN

2 ()
from which we deduce that (¥Q;|Bv)4,, = 0. Since v was arbitrary, we conclude that B*¥{, = 0.

i=1
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4.6.12 Proof of Theorem 4.46

Consider f,g € C°(R3,C) (that is C*° with compact supports). From (Hy — ES)|¥%) = 0,
we obtain

(f,ve'B*(Hy — EX)Bg)crc = (f | B*(Hy — EX)B| g)er = (Bf |[Hy — EX| Bg),, |

N N
_ <w9v S 77| - EY) (ng)) w9v>
= i=1

Hn

We next observe that

N
HN EN <Zg r; \IIN rla"wrN)) =

i=1

N N
1
= (—2 ZAQ(Pz)> \P(])V(I'l, .. .,I'N) — ZVQ(rZ) . vrilll?\/(rla L 7rN)7
=1

=1

so that, using the fact that \I/?V is real-valued (see Proposition 4.26),

(f|B*(Hy — EY) Blg),

_ Z/ ;) (-Ag(rz)> W0 (1, . rx) P dry .. dry

,Jl

- Z / Fr)®(r1,. .., eN)Vg(rs) - Vi, ¥ (r1, ..., rn)dry ... dry

,Jl

,Z V() Var) ¥ (re,...vx)[2dry ... dry

R3N
2
+ = Z/ fI‘J Vgrz TZ(‘\IJNI‘17"'7 )‘)drl...drN
i,j=1
- Z 3N T (r1,. .., vn) V(i) - Ve, U (r1, ..., ry)dry ... dry
R

1,j=1

=:;]£3Vf@ﬁ'Vgﬁﬂp%@ﬁdh

We deduce that 20, ' B*(Hy — EQ)B = 2v;'B*(HYy — E})B = —div (pQV-) as operators
on the core C°(R3, C). We next observe that div (p?vv-) can be extended as a bounded
operator from C’ to C. Indeed, for f,g € C°(R3,C),

(g, div (p9va)>c,7c’ < |6 || o IV Fll22 11V gl 2 = dnll ol | flle llgller,

which shows that

ldiv (P& V) lser.cy < 4 [l e -

Therefore, 2vng*(H?V — ER))B = —div (p}V) as bounded operators from C’ to C.

For the second part of the proof, we first note that it is sufficient to check the convergence

in the case when f = g € C°(R3,R). It holds:

e [ HY —BR)? __M< e )\
— <f,vc B ((H%—E?V)Q—i—wz Bf c,’c— /0 7/\2—1-&)2 d

-1 H?V — E?V 2 —1 px* f 0 _
W BN IR 2By (T B (H — BY)Bf)ec =
(HN - EN) +w ce

HY —EY, 2
PN TN(B)

HN

)
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where we used the spectral decomposition of H?V — E?V in the last equality. The integrand
of the last integral converges pointwise to 0 when |w| — 4o00. It is also non-negative and
uniformly bounded by A g 4)(A), which is integrable since

2
(HY—ER)
A

+oo
/ Ad’P
0 Hy

The weak convergence therefore follows from the dominated convergence theorem.
To prove the strong convergence, we use the following rewriting for g € C’:

Hﬁ _ EO 3
ooip [ —x — By Bg =wv,'B*A,Myg,
¢ i 02 2 ¢
(Hy —ER)? +w

(B1) :

<f, vlB (HN E?V) Bf>C/7C - 1/RS PV 2 < co.

where

(Hy — ER)*
(Hy — ER)? +w?

w =

strongly converge to 0 on H, and
N

1
Mg := (H?V — EY)Bg = Z (—2Ag(ri)\1/9\f — Vy(r;) - vrill’?\/) :
=1

When g € C’ is such that Ag € L?, it holds that Mg € Hy (by a proof similar to the one in
Section 4.6.11), which allows us to conclude.

4.6.13 Proof of Proposition 4.48

We first prove (4.68) and (4.69). We start from an expression similar to the one provided by
Lemma 4.38:

~ —1 ¥ -1
Go(2) = Ao+ (2 — (Honv+1 — Eq ) A4+ A5 (2+ Hono1— Eg ) Ao
Then, we notice that, for f € Hq, it holds

N+1 N+1
> har) (A5 f) = Z ha(r;) ( % >) a'(h f) |9%) + af ‘ (Z ha(r;) ) > ,
- (4.117)
or, equivalently,
Ho w4145 1 (f) = A5 1 (hf) + Bo v AG 4. (f);
so that
(z = (Hon+1 — EQN)) Ap 4 = A 4 (2 — ha). (4.118)

Hence, the particle part of (4.68) is a consequence of the equality Ao+ Ay 4 = Ty — 78]\,
(similarly to (4.39)). To handle the hole part, we use computations similar to (4.115), and
find

Hon-140-(f) = Eg,zvf%,—(f) — Ao, (h1f).
We deduce that
(z+ Hon—1 — E§ y)Ao— = Ao (2 — hy), (4.119)
and we conclude using the fact that Aj Ao = 78’]\,. Combining (4.118) and (4.119) leads to
éo(z)(z —hy) = Ap — Ao~ + Ao+ Aj + = 1x,. Upon replacing z by z and passing to adjoints,
it also follows (z — h1)Go(z) = 13;,. This shows that Go(z) = (z — hy) ™

To prove the first assertion of Proposition 4.48, we notice that the operator-valued func-
tions 7 — —iO(7) (]l;.[l - 78’]\,) e” ™ and 7+ Gpp(7) have the same Laplace transforms

(see Proposition 4.13). We conclude that the two operators coincide since the Laplace trans-
form is one-to-one. The proof for Gy, is similar.
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4.6.14 Proof of Proposition 4.50

Let z € C\R. Let us first prove that G(z) is a one-to-one operator. Let f € #; be such that
G(2)f = 0. From

Im (<f ‘é(z)‘ f>) — Im <<A*+f )(z ~ (Hyi — E?V))_ll A:f> (4.120)

HN+1

- <A,f ‘ (z— (B} — HN—I))il) Af>HN_1>

== () [ ((Re(@)+ By =X +1m ) [P (),
~tm () [ ((Re(z)— B+ 27 +m(e) a0 |

(4.121)

we deduce that both terms in the right-hand side must vanish. In particular, since Im (z) # 0,
it must hold A% f = A_f = 0. In view of the identity A* A + A A% = 13,, this implies
f=0. Hence, G(2) is one-to-one. B

As a consequence, G(z) is an invertible operator from #; to its image D(z). Since
<é(z)> = G(z) is also one-to-one, D(z) is dense in Hj.

Let us finally prove that D(z) ¢ H2(R3). We use to this end the equality (4.51). Let us
consider the first term in this equality. A simple computation shows that,

V(I)NJrl S HNJrl, (A+(I)N+1) (I') =VvVN+1 CI)N+1(I', Z)‘I’?V(Z) dZ,

R3N

so that Ay is a bounded operator from H?(R3N) N Hy to H?(R?). Since A* is a bounded
operator from H; to Hy41 and (z — Hy41 + E’?\,)_1 is a bounded operator from Hyy1 to
H?(R3N) N Hy, we deduce that A4 (z — Hyy1 + ES) 1A% is a bounded operator from H;
to H2(R?). Similarly, for any ®x_1 € Hy_1,

(Ai(I)N_l) (I‘) = \/N <I>N_1(r2, . ,I'N)\IJS)V(I‘,I'Q, c. 7I‘N) dI’Q e dI‘N7

R3(N-1)

so that A* is a bounded operator from Hy_1 to H 2(R3). This allows us to prove that

A* (2 + Hy—1 — EY%)7'A_ is a bounded operator from H; to H%(R3). Finally, G(2) is a
bounded operator from H; to H2(R3), which proves that D(z) C H?(R3).

4.6.15 Proof of Lemma 4.56

Let us first prove that (PS()},’;Z(T)) e defines a bounded causal operator. The proof is similar
TE

for (PS%,};(TD . We rely on the following result.
TE

Lemma 4.77. For all h € L5(R3), the operator 787Nh 1s a Hilbert-Schmidt operator on Hi,
and there exists K € RT such that

Vh e LS(R?), HVS,NhHGQ(HI) < K||h| ge-
Proof of Lemma 4.77. Since ’YSN is a projector, for h € L(R3), the operator

I ok = h(1 = A)712(1 = A)250 (1= A)2(1 = A)72h



144 CHAPTER 4. THE GW METHOD FOR FINITE SYSTEMS

is the composition of (1 — A)1/2787N(1 — A)Y/2 € &1(H1) with the two bounded operators
(1—A)"Y2h and k(1 — A)~Y/2. In fact (1 — A)~'/2h € &g(H,) with

1 a) < K|h
I ovsy < KlIblzs

by the Kato-Seiler-Simon inequality [SS75, Sim05]. Therefore, 787 NP € Ga(H1) with

0
HVo,NhHGQ(HI) < K|hl s,
which concludes the proof. =

We now proceed to the proof of Lemma 4.56. We first note that, for f,g € C°(R3,C), it
holds

(Floe gy, = (072 flg)e = (i’ F, 9)erc. (4.122)
In particular, for 7 € R, and for f,g € H1, we get
(FIBS (Paw, = (S|P (elf%g) = —i0(7) (0!/°T. Cop(r) © Gon(~r)ull%)

= —10(r) Ty, [Gop(r) (v1/29) Gon(—7) (2¥7F)] .

cc

Let us prove that Gop(7) (vi/gg) Gon(—7) (vi/gf) is indeed a trace-class operator. Re-
placing Gop, and G by their expressions found in Proposition 4.48, and owing to the fact
that 787 N 1s a projector commuting with hq, we obtain

(APSEOI] = |Tra (Lo = A0x)e™ ™ (02/29) 28 e ™98 sl (02/27) )|
< 1 A0 —ithy iThi
> H( Hi /YO,N)e B(H1) €

<o (52F) |y, [0 (20729) [, D8 130

According to Lemma 4.41, vl/2f € C' < LS(R3). Therefore, 70N< 1/2f) € G9(H1) by
Lemma 4.77, hence is bounded, with

o8 (42725) | < I (v27)

B(H1)

<C
Ga(H1)

127 <&
s o7, < Cllf e

Similarly,
dent of 7 such that

( 12 g) % NHB(H < C||gll3,. Altogether, we found a constant C' € R* indepen-

Vf.g €M, [fIPGRDIa)| < Cllfll gl

which proves that ( S%,$(T)) e is a bounded causal operator on H;.
TE

Let us now prove that ¢y is a bounded operator from H; to C. Recall that ¢, is real-valued
and ¢ € H2(R3?) C L3(R3,R) N L>®(R3,R) for 1 <k < N. For f € H;, we obtain

[6rflle < Cliorfllpers < Clldrllps 1f 1,

where C' is a constant independent of f. The proof that ¢y, is also a bounded operator from C’
to H; is similar, noticing that C’ < L(R?). We now use (4.80), and find that, for f,g € H;
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and for 7 € R,

= (v29) ox) ((2271) )

ARSI =~ T, (1 = 8 w)e™™ (029) Iox)e ™ (6] (v/2T))

= _iiTr?h <<]1H1 — g )e Tk ek)

-y ((272F) 0] (12 =28 w)e™ 01720 (g =18 ) | (v27%9) o)
(4.123)

which gives (4.81).

We finally prove that Psoy’r;(T) = Psoy’rfl(fT). Performing similar calculation as for Psoy’;ﬁ, we
find that, for f,g € H; and for 7 < 0,

(fIPGm(T)]g) = —ii <<v§/2§> ¢k‘ (Tggy — A )e™P1=e)

k=1
= (gIPGH (=TI ).

(2) )

For a bounded operator A € B(H1) and for f,g € Hi, it holds (f|Ag) = (Ag|f) = (g|A*f),
so that, since the functions ¢ are real-valued for 1 < k < N,

(11P(rle) = { 1| (P a). (1120

Since h is real-valued, in the sense that h f is real-valued whenever f is real-valued, we easily
get that

VieH, Ly, — VS’N)efirhlf = (1p, — ,YS’N)eiThlfv
so that,
B
(Poi(-m) 5= PYi(-n)a.

Together with (4.124), this proves P%~(7) = PY%+(—71)*.

4.6.16 Proof of Proposition 4.59

—_~

The expression for ]/DSBy; in (4.84) comes from the expression for P3, in (4.82). Since for
k < N, it holds e < e, we obtain

VI<Kk<N, (I, —yn)(h1—er) > enp —en > 0. (4.125)

From (4.84), we deduce that PO (iw) is a negative bounded operator for all w € R,. The

sym
self-adjointness comes from Remark 4.57.

The bound (4.85) is proved similarly as in Lemma 4.29. Let us now prove (4.86). From (4.125),
it holds that, for all 1 <k < N,

0< (g, - < sup —_ w _
(T, O’N)w2 + ("1 —€r)? 7 Evenyi-—en \W2 + E? - _fj(VH EN )
w? + (en41 — €N

.
hi — e < E )_ 5, 1§ w2ent1i—en

5 otherwise.
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In particular, there exists a constant C' € R such that
h1 — &k C
2 7 S :
+ (h1 = &) w241

VI<k<N, YweR,, 0< Ly, —n)
W
Using the fact that for 1 < k < N, ¢y is real-valued, with chv:l 3 = ng\,7 we obtain

VL2232 — 20 12,0 172

VWGRW, 0< PO ( ) \/mc Po,NVc"

sym

WZ

which proves (4.86). The fact that vl/ 2p0 Nvi/ is indeed a bounded self-adjoint operator

on Hq comes from the fact that vc/ % is a bounded operator from C to H; and from H;
to C’, and that the operator of multiplication by ¢y, is a bounded operator from C’ to H; and
from H; to C. Together with the fact that the function w — (w? 4+ 1)"Y2 is in LP(R,,) for

all p > 1, this implies that Pg,m(' i) € LP(R,,S(H1)) for all p > 1. The analyticity of this
map is straightforward.

4.6.17 Proof of Theorem 4.60

Let us prove the equality 222]:1 dr(Ly, — 78’N)(h1 — k)¢ = —div <p8’NV‘>, as operators
from C’ to C. We first note that, since ¢, € L*(R?) for 1 < k < N, it holds ¢r¢y € Hi
for 1 < k,l < N. In particular,

N N
Zqﬁk’YoN (1 —ex)br = D> lowdn) (1 — ex) (didhr| =0,
k=1 k=1 1=1
so that
N N
2> " or(La, — 0N (b1 — er)br =2 dr(hn — x)dre (4.126)
k=1 k=1

Consider now f,g € C°(R3,C). In view of the equality

(h1 — ex) (Prg) = P (—;Ag> — V¢y, - Vg,

N
g> =<f Z¢Z(—Ag>> —2<f
Hi k=1 H1

= Sl (=B = IV Vohus = [ | AxTF -V

it follows that
2 < ;

where we used an integration by part to obtain the last equality. Together with (4.126), we

N
> drlha — ex)dn
k=1

N
> Ve - Vg>
Ha

k=1

obtain that the operators 233 | éx (13, — 787N)(h1 — ek )or and —div <p8’NV-> are equal on
the core C°(R3,C). The end of the proof is similar to the one of Theorem 4.46.

4.6.18 Proof of Lemma 4.62

It is sufficient to prove that, for any v/ < eyi1, v > ey — vV, w,’ € Ry, and f,g € Hq, it
holds

Torg, ((0272F) Gonlw + 9/ +i(w +) (22/20) Gl + 1))
= Tryy, (éov,h(V + v +i(w+w)) (vg/zg) Gop(V/ +iw') <vg/2f>>
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We will only consider the case v = 0, v/ = pg, w = ' = 0 for simplicity, the other cases
being similar. We rely on the fact that if A, B € B(H;) are such that AB and BA are trace-
class operators, then Tr(AB) = Tr(BA) [Sim05|. In our case, we consider f,g € C>° C Hy, so
that f1 := vi/2f and g7 := vi/zg arein C'NL>, and we set A = f; and B = %(uo)géz);(uo).
The operators A and B are bounded operators on Hi. Moreover, from Proposition (4.48), we
get

__ —— _ 1 1y, — '78 N—+
BA =G G =) < ) ’ :
0.u(#0)91Gop (o) f1 = Yo.n o — o o — S

It holds 787 N € 61(H1). Also, from the definition of pg, it is easy to see that there exists
0 < ¢ < (C < oo such that

c(1—A) < o — h| < C1—A).

In particular, the operator (po — h1)~'g1 = [(to — h1) 7' (1 = A)] [(1 = A)7'g1] is the com-
position of two bounded operators. Actually, the operator (1 — A)~lg; is in the Schatten
class Sg(H1), thanks to the Kato-Seiler-Simon inequality [SS75, Sim05], and it holds

10 = 201 ey < 10 = 2 a1l < Cllanlzs < Cligli (4.127)

where ¢’ € RT is a constant independent of g. Similarly, (1 — von)(po — h1)71f1 is a
bounded operator, satisfying estimates similar to (4.127). Altogether, we deduce that, for all
f.g € CE(R?),

Gonlko) (v4/%9) Goplpmo) (v!/F) € &1(32),
ith
N |Gantuo) (v2%0) Goptio) (22T )|, ) < Clollas s (4.128)

where C' € R is a constant independent of f and g. The proof that AB = é?);( o) 9165101,0)?1
is trace-class is similar. As a result, we deduce that for any f,g € C°,

Try, (( /2 f) Gon(ho) ( 2 )Go,p(ﬂo)> = Try, (Go n(ko) ( /2 )GO (1o) (Ui/Q?» :
The proof for the general case f,g € H; is deduced by density from the estimate (4.128).

4.6.19 Proof of Proposition 4.73

Let us first prove that s is a bounded linear operator. Let Gavp (po+i-) € L*(Ry,, B(H1)). For
f,9 € Hi and w € Ry,

<f‘s [55’} (b + iw)’9> = (fIKalg) — — /+oo Try, (553 (10 +i(w + w’))gWB(iw’)f) dw’.

27 J_

Let us first treat the exchange part K, and prove that it is a Hilbert-Schmidt operator. From
the definition (4.99), K, is an integral operator, and, from Proposition 4.26, its kernel satisfies

o8
// rr\drdr<// o pO,gf ) qrdr’ < oo,
R3 JR3 R3 JR3 I'—I"

where the last inequality comes from the fact that pg’ N x| |72 € L®(R?) (since it holds
p87N € LY(R3) N L>®(R3), while | - |2 € LY(R3) + L>®(R?)) and p87N € LY(R3). We conclude
that K, is a Hilbert-Schmidt operator, hence is bounded.

For the correlation part, we use the following lemma.
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Lemma 4.78. For all f,g € H1 and all w € Ry, the operator gW0(iw) f is trace-class, and

C
ELIAL T e (4.129)

3C e R", Vf, g€ H, ’WO L
1.9 ! )g (iw f‘ S1(H1) (w2 +1)

Proof of Lemma 4.78. We first prove (4.129) for f = g € Hy. Let ¢ € C*(R3,C), we have
(0 [ 1W2G)T| ) = (| Fol/ X ()t | )

and we infer from (4.95) that

VfeH, VYweR,, HfWO (iw) f‘

ooy < 2y e I eerb el o

Since

po(r () / 2
vl en = [Vl = [ [ 20 drae < iR

where we used again the fact that p87 ~ * | +|7% is bounded, we obtain that (4.129) holds true

for f = g. For f # g, we deduce from the fact that )/(g:,;(iw) is a bounded self-adjoint negative
operator, that

0 1220 i) 0l/2F ’ 1/2, /30 X (v 2F
HgW 1w f‘@l 7-[1) gu, Xsym(lw f 1( Hl) gu. \/ Xsym(IW)\/ Xsym(lw)vc f 6103
<oyt Gt
Sa(H1) S2(H1)
1/2 —— —[|1/2
< [|gu2/2x0  (w)vl/?g 1230 (iw)ol/?
> |9V, Xsym( ‘61 H1) ‘fvc XSym(lw)Uc / &1(H1)
C
< WHN%HQHM
O

We now proceed to the proof of Proposition 4.73. From Lemma 4.78, we get, for f,g € H1,

‘<f‘5c {C%} (e + iw)‘g>‘ = % ‘/Jroo Try, (6;1’?’(#0 +i(w +w/))gwﬁ(iw’)f) du’

1
o

+oo
/ HGaPP(uo Fiwtw ))H

<

/

| /\

HGapp 1o +i(w + w ))H

WO ()7 |
¢
B(Hl) (w/2 + 1)1/2

B(#H1) &1 (H1)

IN

| £ 1122, g1l de”

G (o + 1)

R A7
where we used the Cauchy-Schwarz inequality for the last inequality and the fact that it
holds w — (w?+1)"1/2 € L(R,,). Here, C’ does not depend on w € Ry, nor on f, g € H;y. Alto-
gether, we deduce that s is a bounded linear operator from L?(R,, B(H1)) to L (R, B(H1)).

We now prove the claimed properties of gy. Consider M > 0. By definition of uqg,
the real number d := max(ey41 — po, o — €n) is positive, and |ug — hi| > d. Let us
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choose 0 < A\py < d/M. For 0 < A < Ay and iaT’/P(po +1i) € L>®(R,,B(H1)) such that

) AP (110 + i.)HL . < M, it holds for w € R,
oo W 1

po +iw — hy — A%(ug +iw) = [po + iw — hq] <1 — X po + iw — he] ™ %(,uo + iw)) .
Since

— A\ (| ——
)\ . N h - Zapp . H < d Hzapp . H

[V bo -+ i =) S g )| <G [ i)

the operator 1 — X [ + iw — hy] ™" fi?P/P(uo + iw) is invertible, with

d

e~ —1
1— o + iw — hi] ™ 2P (g + iw) <.

Since g + iw — hy is an invertible operator with H(,uo +iw — hy)7! HB(Hl) < (W2 + d*)V2, we
obtain that pg +iw — hy — )\ggp/p(,uo + iw) is invertible, with

— —1
[,uo +iw — hy — AX2PP (g + iw)}

. _ K
H(Mo—ﬂw—hl) IHB(Hl) < ( M

B = d—\uyM w? 4+ 1)1/2°
(H1)

We deduce from this inequality that

HQA (iﬁ) (p0 + i')” Chr,

. o7 (599 (1o + 1)

<
Lo (R, B( L2(Ru,B(H1)) —

where the constant Cp; € RT does not depend on A € [0, A\ps]. This gives the claimed result.
Finally, (4.102) is a direct consequence of the resolvent formula.

4.6.20 Proof of Theorem 4.74
Let us denote for simplicity
Isll = [Isll (L2 (R, B(H1)), L% (Rer,B(H1))) >

and fix M > ||s]| Haf)(,u + 1)) LB B Let Ay and Cpr be chosen as in Proposition 4.73
Wy 1
for this choice of M > 0, and introduce

M
Il

> 0.

- H@(“ + i')’ L2(Re,,B(H1))

r

For this choice of r, it holds that, for any Gavp € B (CTO, 7"),

<M.

H5 {%} (o +1) ’Lw(Rm(Hm =

Therefore, from Proposition 4.73, gy o s [C/J;P/P} is well-defined for all A € [0, Ap].

Let us prove that there exists A, > 0 sufficiently small such that for any 0 < A < A, gpos
maps ‘B (GO,T’) into itself. For G2PP € 5 (Go,r>, it holds

H (9,\ o8 [Gapp] — CTO) (o + i')}

L2(Re,B(H1))

< || (ros [@] ~gros[Go] ) o+ i), (4.130)
+ H <gA o8 [évo} - (?)) (1o + i')‘ L2(Rw,B(H1)) (4.131)

To control the first term (4.130), we use the following result.
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Lemma 4.79. The map gy o s is (A\C%,||s||)-Lipschitz on B (6’6, 7").

Proof of Lemma 4.79. Let EEFE, C/Jgﬁ €5 (é\a,r). From (4.102), we obtain

s G] - [57]  o4[57) 0 6] [6) (s[5
From Proposition 4.73, (4.132)

GAPP i < for 1<j<2.
158 ] 4 S0 0 15

Moreover,

—_~—

| [657] == [67]) o +10]

< 1ol [ (637 = 67 G0+ 99 L

L>(Ry,,B(H1)

Plugging these estimates into (4.132), we obtain
[ (302 [677] —gnos [@7]) (o 1)

< ACRylsl | (657 — G7) (o + 1]

L2(Rew,B(H1))

L2(Ru,B(H1))

which proves that gy o s is (A\C3,||s||)-Lipschitz on B <év0, r). O

Let us now control (4.131). By noting that gy—gos [CTO} = E}'vo, we get from the resolvent
formula that

05 [Ga] o= (or ) o5 (G0) = A (on o [@0]) (o)) &0
Using estimates similar to the ones used in the proof of Lemma 4.79, we deduce that

(e 6] -

< ACH Hﬁ {évo} (po + 1)

‘ . (4.133)
Lo (R B(H:))

L?(Re,B(H1))
From Lemma 4.79 and (4.133), we arrive at the conclusion that for all 0 < A < A, where

1

A =
i (1ol + s [Ga] o+

9

‘LOO(]RW,B(Hl))>
it holds gy o s (% (E%,r)) c% (@,r).

Finally, without loss of generality, we can assume that A\.C%||s|| < 1, so that, from
Lemma 4.79, we get that for all 0 < A < \,, the map gy o s is a contraction. The end of the
proof follows from Picard’s fixed point theorem.
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CHAPTER b

CONVERGENCE RATES FOR SUPERCELL MODELS

We expose in this chapter the results given in [GL15]. This work was done in collaboration
with Salma Lahbabi.

Abstract. This chapter is concerned with the numerical simulations of perfect crystals.
We study the rate of convergence of the reduced Hartree-Fock (rHF) model in a supercell
towards the periodic rHF model in the whole space. We prove that, whenever the crystal is
an insulator or a semi-conductor, the supercell energy per unit cell converges exponentially
fast towards the periodic rHF energy per unit cell, with respect to the size of the supercell.

5.1 Introduction

The numerical simulation of the electronic structure of crystals is a very active research area in
solid state physics, materials science and nano-electronics. When the crystal is perfect, a good
approximation of its electronic ground state density can be obtained by solving a mean-field
nonlinear periodic model set on the whole space. Using the Bloch transform [RS78, Chapter
XIII|, we can recast such a problem as a continuous family of compact problems indexed by
points of the Brillouin zone. In practice, the compact problems are solved on a discretization
of this Brillouin zone. There is therefore an inherent error coming from the fact that the
Brillouin zone is sampled, and it is not obvious a priori whether this error is small, due to the
nonlinearity of the problem. It has been observed numerically since the work of Monkhorst
and Pack [MP76] that this error is indeed very small when the discretization is uniform, and
when the crystal is an insulator or a semiconductor. To our knowledge, no rigorous proof
of this fact was ever given. In this chapter, we prove why it is indeed the case in the linear
model, and in the reduced Hartree-Fock (rHF) model, which is a Hartree-Fock model where
the exchange term is neglected. This model was studied in [CDL08, CLLO1].

A crystal is modeled by a periodic nuclear charge distribution pper. The corresponding
rHF energy per unit cell is denoted by Igé’?. When numerical calculations are performed
over a regular discretization of the Brillouin-zone, this amounts to calculate the energy on a
supercell, i.e. on a large box containing L times the periodicity of piper in each direction (for
a total of L? unit cells in the supercell), and with periodic boundary conditions. The rHF
energy on a supercell of size L is denoted by [ Zper, so that the corresponding energy per unit
cell is L‘3I€p°r.

It was proved in [CDLOS8] that L=31 fp" converges to Iffe‘fr as L goes to infinity, when the
crystal is an insulator or a semiconductor. However, following the proof in [CDLO08|, we find
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a rate of convergence of order L™!, which is well below what is numerically observed. Our
main result is that, if the crystal is an insulator or a semiconductor, then there exist constants
C € R* and a > 0, such that

VL € N*, |73 — IL8| < Ce k. (5.1)

We also prove that the supercell electronic density converges exponentially fast to the periodic
rHF electronic density, in the L°°(R?) norm. To prove such rates of convergence, we recast
the problem into the difference between an integral and a corresponding Riemann sum, and
show that the integrand is both periodic and analytic on a complex strip. Similar tools were
used in [DC64a, DC64b, Koh59, BPCT07, Pan07| to prove that the Wannier functions of
insulators are exponentially localized.

This chapter is organized as follows. In Section 5.2, we recall how the rHF model is
derived, and present the main results. In Section 5.4, we apply the Bloch theory for both
periodic models and supercell models. The proofs of the main results are postponed until Sec-
tion 5.5. Finally, we illustrate our theoretical results with numerical simulations in Section 5.7.

Throughout this chapter, we will give explicit values of the constants appearing in the
inequalities. These values are very crude, but allows one to see how these constants depend
on the parameters of the electronic problem.

5.2 Presentation of the models

A perfect crystal is a periodic arrangement of atoms. Both the nuclear charge density fiper
and the electronic density are R-periodic functions, where R is a discrete periodic lattice of
R3. Let I" be the Wigner-Seitz cell of the lattice, and let I'* be the first Brillouin zone. For
instance, for R = aZ?®, T = [~a/2,a/2)%, R* = (2r/a)Z3 and T* = [~7/a,w/a)3. For R € R,
we let TR be the translation operator on L?(R?) defined by (trf)(x) := f(x — R).

We will assume that the nuclear charge density fpiper is in L?)er(F) for simplicity, but
distributions with singularity points may also be handled |[BLLO03|.

5.2.1 The supercell rHF model

In a supercell model, the system is confined to a box I'y, := LI' with periodic boundary
conditions. We denote by per(F ) the Hilbert space of locally square integrable functions
that are L'R-periodic. The Fourier coefficients of a function f € Lper(F 1) are defined by

1

Vk € LT'R*, cE(f) =
[Tzl Jr,

f( ) 71k-xdX7

so that, for any f € Lper(I‘L),

f(x) = Z L (f)e™®*  ae. and in Lper(FL).

keL-1R*

The set of admissible electronic states for the supercell model is

PL {VL € S(Lpe(Tr)), 0 <yp <1, Trpa v,y (vp) + Trpz ) (Arr) < OO}»

where S(#H) denotes the space of the bounded self-adjoint operators on the Hilbert space H.
Here, Trpz (1) (—=Aprvr) is a shorthand notation for

Trrz, (rp) (FAL7L) : ZTrLz rp) (BiLyePir), (5.2)
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where, for 1 < j < 3, Pj is the self-adjoint operator on L2_(I'z) defined by cf(P;rf) =
kjck(f) for all k = (ki, kz,kg) € L71R*. Note that cL(—ALf) = [k|[>cL(f) for all k € L71R*.
We introduce the LR-periodic Green kernel Gy, of the Poisson interaction [LS77], solution

G is L'R-periodic.

The expression of Gy, is given in the Fourier basis by

of

4 e1k-x
Gl =ert S G (53)
'L keL—1R*\{0}

where ¢, = |T'p|™* fFL G1. The constant ¢y, can be any fixed constant a priori. In one of the
first article on the topic [LS77], the authors chose to set ¢ = 0, but other choices are equally
valid (see [CDLOS8| for instance). This is due to the fact that ¢; does not play any role for
neutral systems. We choose to set ¢y, = 0 for simplicity. The supercell Coulomb energy is

defined by

Vg€ Lper(FL)v DL(fvg) = /I’(f *Tp GL)(X)g(X)dX7 (54)
where (f #r, G1)(x) := [ f(y)Gr(x —y)dy. We recall that the map p — p*p, Gp, is con-
tinuous from L%er( ) to Lg‘ér( L)

Any ~ € Pr, is locally trace-class, and can be associated an LR-periodic density p,, €
Lper(FL) For vr, € Pr, the supercell reduced Hartree-Fock energy is

1
€07 () = 5 Trra, ) (= Ary) + DL(ML Hpers Py, = Hper)- (5.5)

The first term of (5.5) corresponds to the supercell kinetic energy, and the second term
represents the supercell Coulomb energy. The ground state energy of the system is given by
the minimization problem

[gper = inf {Sgper(W’L% v € Pr, / PyL = / ﬂper} : (5.6)
FL l_‘L

Using techniques similar to [CDL08, Theorem 4], the following result holds (we do not prove
it, for the arguments are similar to the ones in [CDLO08|).

Theorem 5.1 (Existence of a supercell minimizer). For all L € N*, the minimization prob-
lem (5.6) admits minimizers. One of these minimizers 1o satisfies TRYL0 = YLoTR. All
minimizers share the same density p-, ,, which is R-periodic. Finally, v o satisfies the self-
consistent equation

Yoo =1 (HL,Q < Ef’;) +46

Hpop =—3A0+ Vi (5.7)

VL70 = (PWL,O - Nper) *r G1.

where Hr, o acts on Lper(FL) and 0 < § < 1(Hp = k) is a finite rank operator.

Here, el{i is the Fermi level of the supercell model. It is chosen so that the charge constraint
n (5.6) is satisfied.

Remark 5.2. The L'R-periodic density of the minimizers p,, , is actually R-periodic. It is
unclear that such a property should hold for more complex models (e.g. Kohn-Sham models).
This is the reason why we state our results for the rHF model. We believe however that
similar results should hold true for more complex systems, provided that the supercell density
is R-periodic for each size of the supercell.
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5.2.2 The reduced Hartree-Fock model for perfect crystals

The rHF model for perfect crystals, or periodic tHF, has been rigorously derived from the rHF
model for finite molecular systems by means of a thermodynamic limit procedure by Catto,
Le Bris and Lions [CLLO1]. In [CDLO08|, Cancés, Deleurence and Lewin proved that the same
periodic tHF model is the limit of the rHF supercell model as the size of the supercell goes
to infinity.

We introduce the set of admissible density matrices

Pper := {’y € S(Lger(l“)), 0<~y<1, VRER, TRY =7TR, Tr () +Tr (-Av) < oo} ,
(5.8)
where Tr denotes the trace per unit volume. For any locally trace class operator A that
commutes with R-translations, it reads

1
Tr (A) := lim ﬁTr(]leA]le). (5.9)

L—oo

The trace per unit volume Tr can also be defined via the Bloch transform (see Equation (5.23)
below). Here, Tr (—A~) is a shorthand notation for

3
Tr (—A9) =Y Tr (PyP),
j=1

where Pj = —i0,; is the momentum operator in the 4% direction. The Coulomb energy per
unit volume is defined by

V.9 € L), Dilf.g)i= [ (F s Gxg(x)dx (5.10)
where G was introduced in (5.3).

Any v € Pper is locally trace-class, and can be associated an R-periodic density p, €
L2 (). For 4 € Pper, the reduced Hartree-Fock energy is given by

per

. 1 1
Ep&" (1) = 5 Tx (=A%) + 5 D1 (Py = Hper: py = Hper) - (5.11)

The first term of (5.11) corresponds to the kinetic energy per unit volume, and the second
term represents the Coulomb energy per unit volume. Finally, the periodic rHF ground state
energy is given by the minimization problem

Iggfr = inf {55&”(7), v e Ppera /p’y = / Nper} . (5.12)
I I

It has been proved in [CDLO8| that the minimization problem (5.12) admits a unique mini-
mizer g, which is the solution of the self-consistent equation

v = 1L(Hy<ep)+6
Hy = —iA+1 (5.13)
Vo = (pyo — Hper) *r G1,

where Hy acts on L?(R?) and 0 < 6 < 1(Hp = f) is a finite rank operator. Here, the Fermi
energy ep is the Lagrange multiplier corresponding to the charge constraint fr Pro = fr Hper-
We make the following assumption:

‘ (A1) The system is an insulator, in the sense that Hy has a spectral gap around ep. ‘

In particular, § = 0.



5.3. MAIN RESULTS 157

5.3 Main results

Our main results are concerned with the rate of convergence of supercell models towards
corresponding periodic models. We first prove the exponential rate of convergence in a linear
setting, where the mean-filed potential V' is a fixed R-periodic function: V' € L2 (T'). We
then extend our result to the nonlinear rHF model, where the external potential is the solution
of the self-consistent equation (5.7) or (5.13).

We start with the linear case. The proof of the following proposition is given in Section 5.5.
Proposition 5.3 (Convergence rate of the linear supercell model). Let V' € L35 (') be such
that the operator H = —%A +V acting on L*(R3) has a gap of size g > 0 centered around
the Fermi level ep. Then, for any L € N*, the operator HY = —%AL +V acting on Lf)er(FL)
has a gap of size at least g around ep. Let

vy=1(H <ep) and yL:IL(HLgep). (5.14)

Then, v € Pper and v, € Pr, and there exist constants C € R™ and o > 0, that depend on
the lattice R, ||V||z~, g and ep only, such that

VL eN*, |Tr (yH)-Tr, (’yLHL)’ < Ce L (ground state energy per unit volume)
(5.15)
and
VL e N*,  |lpy = pysllpoe < Ce ™ (ground state density). (5.16)

In a second step, we will use the projectors v and 7z, obtained for well chosen potentials
V' as candidates for the minimization problems (5.12) and (5.6) respectively. We have the
following result (see Section 5.5.5 for the proof).

Corollary 5.4. With the same notation as in Proposition 5.3, there exist constants C € R
and a > 0, that depend on the lattice R, ||V ||, g and e only, such that

VL € N*,  [ER5™ () — LT2EP™" (vp)| < Ce L. (5.17)

We are now able to state our main result for the rHF model. The proof of the following
theorem is given in Section 5.6. In the sequel, we denote by B(FE) the set of bounded operators
acting on the Banach space E.

Theorem 5.5 (Convergence rate of the rHF supercell model). Under hypothesis (A1), there
exist C € R™ and « > 0 independent of L such that the following estimates hold true:

e convergence of the ground state energy per unit volume:

VL € N*, |L73I1P — 65| < Ce ™k,

e convergence of the ground state density:

VL € N7, ||p’YL,0 - p’70||L°O o) < Ce_aLQ

per
e convergence of the mean-field Hamiltonian:

VL € N*, ||Hy — Hollg2ms)) < Ce *F,

where Hy, := —%A + (p%,O — uper) xp G1 and H := —%A + (pyo — Hper) *r G are acting on
L?(R?).

The fact that the supercell quantities converge to the corresponding quantities of the
periodic rHF model was already proved in [CDL08, Theorem 4|. However, following the proof
of the latter article, we only find a O (L*I) convergence rate.

The proof of Proposition 5.3 and Theorem 5.5 rely on Bloch transforms.
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5.4 Bloch transform and supercell Bloch transform

5.4.1 Bloch transform from L*(R?) to L?_(I'*, L*(T))

per

We recall in this section the basic properties of the usual Bloch transform [RS78, Chapter
XIII]). Let (a1, ag,ag) be a basis of the lattice R, so that R = Za; + Zag + Zas. We define the
dual lattice R* by R* = Zaj + Zaj + Zaj where the vectors aj are such that aj - a; = 27;;.
The unit cell and the reciprocal unit cell are respectively defined by

I':= {a1a1 + asag + azas, (al,ag,ag) € [—1/2, 1/2)3},

and
T* .= {alaf + anaj + aza;, (a1, a2,a3) € [—1/2, 1/2)3} .
Note that I'* differs from the first Brillouin-zone when the crystal is not cubic. We consider

the Hilbert space L?(I'*, L2.,(T")), endowed with the normalized inner product

per

(fla:x),9(a, %)) 21+ 2., (1) ][*/fq, g9(q,x) dxdq.

The Bloch transform is defined by

Z: I*R% — LA(I*, L2.(T))

wo e (Zw)(qx) = wg(x) = Y e TRy (x + R). (5.18)
ReR

Its inverse is given by

Z=t. LA+ L2,.(I) — L*R3)

per

Wq(x) = (27 w) (x) = ﬁ ' I% g (x) dq.

It holds that Z is an isometry, namely

1ZwlZere 12, ) = |(Zw)(q,%)[* dx dg = [[w]| 2 gay.
(T*, Ler (1) - Jr (R3)
For m € R*, we introduce the unitary operator Um acting on L2,.(I') defined by
vmeR*, Vfe Ll (), (Unf)(x) =e ™*f(x). (5.19)

From (5.18), it is natural to consider Zw as a function of L7 (R? L2_ (T')) such that
vw € L*(R?), YmeR*, VqeT*, (Zw)(q+m,-)=wgim = Unwq= Un (Zw(q,-)).
(5.20)
Let A with domain D(A) be a possibly unbounded operator acting on L2 (I'). We say
that A commutes with R-translations if TRA = Amg forall R e R. If A commutes with R-
translations, then it admits a Bloch decomposition. The operator ZAZ~! is block diagonal,
which means that there exists a family of operators (Aq),p- acting on Lper( ), such that, if
f € L?(R?) and g € D(A) are such that f = Ag, then, for almost any q € I'*, gq € Lper(F) is
in the domain of A4, and

fqa = Aq9q- (5.21)
In this case, we write

®
ZAZ™! = Aqdq (Bloch decomposition of A).
F*
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From (5.20), we extend the definition of Aq, initially defined for q € I'*, to q € R3, with
VmeR*, VqeT*, Agim = UmAqUn, (5.22)

so that (5.21) holds for almost any q € R3. If A is locally trace-class, then Aq is trace-class
on L2_.(T) for almost any q € R®. The operator A can be associated a density p4, which is

per
pA = ][ pA.dq,
F*

an R-periodic function, given by
where pa, is the density of the trace-class operator Aq. The trace per unit volume of A
(defined in (5.9)) is also equal to

per

Te(d) = f Trugqn) (Ag) da (5.23)

5.4.2 Bloch transform from L2 (T';) to ¢*(Ap, L2, (T))

per per

We present in this section the “supercell” Bloch transform. This transformation goes from L%er(f‘ L)
to (2(Ar, L2, (), where Ap := (L7'R*) NT*, i.e.

per

2k 2% 2%
Ap = {1a’{ + Pas + ah, (ki ko, ks) € {

3
Lan zLtm o\ Lt 170
L L L

2 2 ’ 2

(5.24)
with = 1 if L is odd, and n = 0 if L is even, so that there are exactly L3 points in Af.
Similarly, we define Ry, := R NT'r, which contains L3 points of the lattice R. The supercell
Bloch transform has properties similar to those of the standard Bloch transform, the main
difference being that there are only a finite number of fibers. We introduce the Hilbert space
(A, L2, (")) endowed with the normalized inner product

per

(1@ 9@ en, g0y = 75 3 [ FQx)a(Qux)dx.

QeAL
The supercell Bloch transform is defined by
Zr: L?)er(FL) — [ (AL’ Lger(r))
w = (Z2Lw)(Q,x) == wq(x) = Z TR (x + R).
ReRy,

Its inverse is given by

Z:b (AL, L2, (D) — L2,(Tp)

per per

wq(x) = (20 w)(x) = % Z Qg (x).
QeAL

It holds that Z;, is an isometry, i.e.
1 2
ol e =75 3 [ (2w @ ax
QeAr r

We can extend Z to (> (L™ 'R*, L2 (T')) with

Yw € Lf)er(I‘L), VmeR*, VQeAL wqim=Umwq,

where the operator Uy, was defined in (5.19).
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Let A® with domain D (A%) be an operator acting on L2_,(I'z). If A commutes with R-
translations, then it admits a supercell Bloch decomposition. The operator ZXA%Z% is block

diagonal, which means that there exists a family of operators (Aé)QeAL acting on L2, (T')
such that if f = Alg with f € L2 (I'z) and g € D(AL), then for all Q € Ay,

per
fq = A&9q. (5.25)
We write
1
ZrAtz = 73 @ Aé (supercell Bloch decomposition of AL).
QeAL
The spectrum of A” can be deduced from the spectra of (Aé) with
QEeAL

o(A") = | o(48). (5.26)

QeAL
Similarly to (5.22), we extend the definition of Aq to L™'R* with
YmeR*, VQeEAL, Aqim=UmAQUy',

so that (5.25) holds for all Q € L™1R*.
Finally, if the operator A" is trace-class, we define the trace per unit volume by

1 1
TJL(AL) = ﬁTrLger(rL)(AL) I3 Z Tnger(F)(Aé)7 (5.27)
QeAL

1
and the associated density is given by p, r = I3 Z PaL> where p A4 is the density of the
QEeAL
trace-class operator Aé.

5.5 Proof of Proposition 5.3: the linear case

The proofs of Proposition 5.3 and Theorem 5.5 are based on reformulating the problem using
the Bloch transforms. Comparing quantities belonging to the whole space model on the one
hand, and to the supercell model on the other hand amounts to comparing integrals with
Riemann sums. The exponential convergence then relies on two arguments: quantities of
interest are R*-periodic and have analytic continuations on a complex strip, and the Riemann
sums for such functions converge exponentially fast to the corresponding integrals.

We prove in this section the exponential convergence of Proposition 5.3.

5.5.1 Convergence of Riemann sums

We recall the following classical lemma. For A > 0, we denote by
Sa={z€C3 |Im(z)s <A} =R>+i[-A, A]>.

If E is a Banach space and d € N*, an E-valued function F : Q ¢ C? — E is said to be
(strongly) analytic if (V,F)(z) exists in E for all z € . In the sequel, we assume without
loss of generality that the vectors spanning the lattice R* are ordered in such a way that
|ail < la3] < aj].
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Lemma 5.6. Let f : R? — C be an R*-periodic function that admits an analytic continuation
on Sa for some A > 0. Then, there exists C € RT and o > 0 such that

* 1 —o
VL € N, s f(Q)dq—L?,Q;Lf(Q) SCOZS§£|f(Z)‘e L

The constants may be chosen equal to

(5.28)

—2a
a=(2/3)rAlal|"! and Cp= 2( Ste > .

(1—e)’

Proof of Lemma 5.6. Let cr(f) := fp. f(q)e™adq be the Fourier coefficients of f, so that

f@) =3 cr(f)eR.

ReR
It holds
Fot@da- 35 3 1@ =|aln - F; ¥ X e(nen
QeAr QeAL RER
| Y | 3 den
ReR\{0} QeAp,

By noticing that

Z eiQ.R:{ 0 lf R¢LR

L3 otherwise ,
QeAL

we obtain

 fada=35 3 5@)=| ¥ emln). (5.29)

QeAL ReR\{0}

If f is analytic on Sa, we deduce from f(q) = Y g cr(f)e'®9 that the analytic continuation
of f is given by

VqeR?, Vye[-A AP, fla+iy) =) cer(f)eRre R,
ReR

so that {cr(f)e ™ ®Y
iy). In particular,

}R ¢ are the Fourier coefficients of the R*-periodic function q — f(q+

VRER, Vye[-AAP, [er(f)< sup |f(a+iy)|e™. (5.30)
qel™

We make the following choice for y. We write R = ki1a; + ksas + ksas with k1, ko, ks € Z, and
we let 1 < m < 3 be the index such that |kp,| = |k;|_ . Choosing y = —sgn(km)Ala}| 'a}, €
[—A, A3, leads to

e (f)] < sup |f(z)]e 2™ Mo < up | f(z)] el
zES zES

where we used the inequality |k|o > (1/3)|k|1, and we set o = (2/3)wAlaj|~t. Note that
the Fourier coefficients of f are exponentially decreasing. We conclude with (5.29) and the
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inequality

S oar| < Y lar(h) < sup |fz)] D eotkh

RER\{0} RER\{0} 254 keZ?\ {0}
3
o 2(3 +e 2 o
< sup |£(2) (Ze L'k) 1] = s 1) (2P e,
z€SA ez z€SA (1—e@)

5.5.2 Analyticity and basic estimates

The exponential rates of convergence observed in (5.15), (5.16) and (5.17) will come from
Lemma 5.6 for appropriate choices of functions f. In order to construct such functions, we
notice that H and H” defined in Proposition 5.3 commute with R-translations, thus admit
Bloch decompositions. From

3
VqeR?, (-A) = |-iVi+a’ =) (Pi1+q)? and VQe LT'R*, (-AL)q =(-A)q,
j=1

where V; denotes the gradient on the space L2, ('), we obtain (recall that A; was defined
in (5.2))

@ 1 1
ZHZ 1 = Hydq with Hqg:= 3 |—iV1 + q|2 +V = 3 (—Al —2iq-Vi+ !q|2) +V,
F*
(5.31)

and

1

L -1

Z i 2" = o5 (D Ha
QeAL

In other words, for all Q in Aj, (HL)Q = Hq. In addition, the spectrum of H can be
recovered from the spectra of (Hq),cp. with [RS78, Chapter XIII|

qel™

Together with (5.26) we deduce that, since H has a gap of size g centered around ep, then
H" has a gap of size at least g around ep.

In the sequel, we introduce, for z € C3, the operator (we denote by z? := Z?:l ?72 for
simplicity)
1 . ;
H, = 3 (—A1 —2iz-V1+ z2) + V' acting on L%er(f‘). (5.32)

With the terminology of [Kat12, Chapter VII|, the map z — H, is an holomorphic family of
type (A). Let ¥ :=inf o(H) be the bottom of the spectrum of H. We consider the positively
oriented simple closed loop € = %1 U %2 U 63 U €4 in the complex plane, consisting of the
following line segments: €1 = [ep —l,ep+1i], 62 = [er+1, X —1+41i], €3 = [X—1+i, X —1—]]
and €4 =X —1—1i,ep —1i].
The projectors defined in (5.14) can be written, using the Cauchy’s residue theorem, as
1 dA 1 dA

TS foa—H MY ET o N HL
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G

€3 ©1 o(H)

G

Figure 5.1 — The loop %.

Together with (5.31), it follows that v and 7 commutes with R-translations, with

@ 1
ZyZ7l = ][ Yqdq and Zpyp 2t = 3 P e (5.33)
’ QeAL
where we set ) D
Vq e R? = . 5.34
q € 9 ryCl 217_[_ %ﬁ )\ _ Hq ( )
For Q € R*, it holds (v1)qQ = 7q. The analytic continuation of (5.34) is formally
1 dA
vz € C = —— :
€N T Y AT,

The fact that A — H, is indeed invertible, at least for z in some S4 for A > 0 is proved in the
following lemma. For z € C3, and A € €, we introduce

1

Bi(\z):=(1—Ay) N_ o

and Ba(A,z) :=

Ty (1—Ay). (5.35)

Lemma 5.7. For all q € R3?, and all A € €, the operator A\ — Hgy is invertible, and there
exists a constant C; € RY such that,

\V/q € ]._‘*, Ve (g, ||B]_ ()\’q)”B(L%er(F)) < Cl and ”BQ(}\, q)HB(Lger(F)) < C]_. (536)
Denoting by |I'*|2 :=sup{|q|2, q € I'*}, we can choose

2+ 4T* 3 + 8|V ||L + 8eF
min(1, g) ’

Moreover, there exists A > 0 such that, for all z € S4 and all X € €, the operator A — Hy is
invertible, and there exists a constant Co € RT such that

Vz € r* +1i [—A, A]s, Ve Cg, HBl (>\7Z)HB(L12)er(F)) < CQ and ”BQ()\, z)||B(L;2)er(F)) < 02.
(5.38)

We can choose
1

A=min(1l, ——————
< 201(1 + ‘F*|2)

) and 02 = 201. (539)

This lemma was proved in the one-dimensional case by Kohn in [Koh59|, and similar
results were discussed by Des Cloizeaux in [DC64a, DC64b].

Remark 5.8. The bounds (5.36) and (5.38) are not uniform for q € R3 (they are only valid
for q € I'*). This comes from the fact that, for m € R*,

—im-x
e

1- A, y <
Bz.m) \ T2

H 1+ (—=iVy +m)? o

1+ (=iV1 +m)?

e~ imx _1+\m]2
vz /o n
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Remark 5.9. From Lemma 5.7, we deduce that (VZ)zeSA is an analytic family of bounded

operators. Since g s an orthogonal projector for q € R3, i.e. Yq = YqYq, we deduce that
Yz = VaYz for all z € S4, so that 7y, is a (not necessarily orthogonal) projector. Also, Tr(v,)
is a constant independent of z € S4.

Proof of Lemma 5.7. From the inequality |a|? < 2|a + b|? + 2|b|?, we get that, for q € T'*, it
holds [-iV; + g/ + |q|? > —2Ay. We deduce that

Vaer*, Hy>—3Ar— TR~ Ve~ (5.40)
We first consider the part ) of the contour € (see Figure 5.1). It holds
VA€, VYqeT*, |Hq—M?>|Re (Hyq—\)|*=|Hq—cr*. (5.41)
Since |Hq — er| > g/2, we get
VAe ¢, VYqel*, |Hq—\>g/2. (5.42)
On the other hand, from (5.40) and (5.41), it holds that
VA€%!, Vqel*, |Hq— A2 Hq—ep> —%Al - %\r*\g Vil —er (5.43)
Combining (5.42) and (5.43) leads to
YM >0, YAEE, VYqeTl*, (M+4)|Hq—\>—A;+ Mg TR — 4|V |1 — dep.
Choosing M = (2 + 4|T*|3 + 8||V ||~ + 8er)/g gives

2+ 4|02, + 8||V|| 1~ + 8eF
g

-1
VAe%!, qel”, |Hq—)\|2<4~|— > (1-Ay),

which proves (5.36) for A\ € %7. The inequalities on the other parts of € are proved similarly,
the inequalities (5.42) and (5.43) being respectively replaced by their equivalent

YA€ G U®EG, |Hq—A?>|Im (Hq—N)|*>1 and |Hq—\>Hq—%—1>Hq—¢p,
YA€ G, |Hq—MN?>|Re (Hq—N°>1 and |[Hq—A>Hq— X —1> Hy—cp.
This proves (5.36). We now prove (5.38). For z = q + iy € C3 with q € I'* and y € R3, one

can rewrite (5.32) as

: 1 1 :
HZ:Hq+y-V1+1q-y—§]y]2:Hq+y- <V1—2y+1q>.

In particular,

A=Hy,=A—Hq+Hq—Hy = (A~ Hg) <1_(A_H")_1 [y(m_;yﬁq)D

=(A—Hg) (1 — Ba(A, q)1_1A1 [y- <V1 - %y + iq)D . (5.44)

For |y|e < 1, we have

1 1 . |V1| 1 .
. —_ < - < '
‘1—A1 {y <V1 2y+1q)” < ¥l ('1 —A1'+ 51¥loo + |q\oo> <yl (1+ T%]2)
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Together with (5.36), we obtain that for all [y|e < A :=min (1, (2C; (1 + [[*|2))~1),

1 1 ) 1
HBz()\,Q)l_AI [Y' (V1 - 2y+1q>} H <5

As a result, from (5.44), we get that for all @ € I'* and all y € [—A, A], the operator A — H,
is invertible, with

1 1
(1 - Al) S 02 = 201 and H(l — Al) § 02.
HA—HZ B(H1) A= Hallpou)
O]
For z € S4, we introduce the operators E(z) and E(Z) respectively defined by
Bi(z):= (1 — A1)y, and By(z) :=v5(1 — Ay). (5.45)

In the sequel, for k € N*, we denote by & (#H) the k-th Schatten class [Sim05]| of the Hilbert
space H ; 61(H) is the set of trace-class operators, and Go(H) is the set of Hilbert-Schmidt
operators. From Lemma 5.7, we obtain the following result.

Lemma 5.10. There exists a constant C3 € RT such that

Vz e T* +i]—A, A]%, HE H <Cy and H§ H < Cs.
sl Hil-4 4] R T 2 gag, ) < 8
The value of C3 can be chosen equal to
1
Cy = —Ci(3+er+|V]e).
Also, for all z € T* +i[—A, A]3, the operator vy, is trace-class, and
1 2
- 2
H’YzHel(LIz)er(l—x)) S C4 with C4 = Cl Z (]_—|—|k|2) . (546)
keR*
Proof. The first assertion comes from the fact that
—~ 1
Bl(Z) = \% Bl()\,Z) d)\,
2im Jo

and the fact that || = 6 + 2(ep — %) (see Figure 5.1). Note that since |—iV; +q|*> > 0, it
holds ¥ > —||V||z~. To get the second assertion, we note that v, is a projector, so that

Yo = Va2 = Ba(2) (1 _1A1)279V1(Z)-

The operator (1 — A;)~2 being trace-class, with

_ 1)
10 =2l 2y = D <1+|k‘2> :

keR*

we obtain (5.46). O
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5.5.3 Convergence of the kinetic energy per unit volume

The kinetic energy per unit volume of the states v and vy, defined in (5.14) are respectively
given by
Kper :=Tr (-Ay) and Kp:=Tr; (-Arvz).

Using the Bloch decomposition of v and ~yz, in (5.33)-(5.34), and the properties (5.23) and (5.27),
we obtain that

3 3
. 1
ket =3 Kj@da md KF=Y LY KQ
j=171" j=1" QeAr

where, for 1 < 5 < 3, we introduced the function
Kj:a3 R = Trpz ) (P +4)va (P +45)) -

Here, we denoted by P; := P;; for simplicity. Recall that the operator P;; was defined
in (5.2). The error on the kinetic energy per unit volume KP® — K is therefore equal to the
difference between integrals and corresponding Riemann sums. In the sequel, we introduce,
for 1 < j < 3, the function

Vz € Sa, Kj(z):=Trrz ) (P +25) 72 (P + 25)) -

Lemma 5.11 (Exponential convergence of the kinetic energy). For all 1 < j < 3, the function
K is R-periodic, and admits an analytic continuation on Sa, where A > 0 was defined
in (5.39). Moreover, it holds

1\ 2
sup |Kj(z)] < Cs5 where Cs= (!F*\Q +A+ 2> C3Cy. (5.47)
zESH

As a consequence, from Lemma 5.6, it holds
‘err . KL} < CgC5e_aL,
where Cy € RT and o > 0 were defined in (5.28).

Proof. The R-periodicity comes from the covariant identity (5.22). To prove the analyticity,
it is enough to prove that 0., ((Pj + 2j)7z(P; + zj)) is a trace-class operator for all z €
I'* +1i[—A, A]3. We only consider the case j = 1 and k = 1, the other cases being similar. We
have

Oz (P1+ 21)72(P1 4 21)) = 7a(P1r + 21) + (P4 21)(0:72) (P + 21) + (Pr 4 21)72. - (5:48)
We first show that (P + 21)7z is a bounded operator. We have

P+ 21)~
(Pr+21)72 = (11_A11)31(Z),
where B; was defined in (5.45). From Lemma (5.10) and the fact that (P, + z1)(1 — Ay)~?
is a bounded operator, we deduce that (P, + 21)7, is bounded. The proof is similar for the
operator v,(P1 + z1). We now turn to the middle term of (5.48). Since 7, is a projector, it
holds v, = v27,. We obtain

(P + Zl)(az{VZ)(Pl +21) = (P1+ 1) ['Yz(azfyz) + (821'72)'%] (P + 21)
= [(P1 + 21)7) V2(02 v2) (P1 + 21) + (P1 + 21)(02,Y2) Yz [v2(P1 + 21)] -
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We already proved that the operators (P; + z1)vz and v,(P1 + z1) were bounded. Also, 7, is
a trace-class operator. To prove that (P + 21) (0s,) v2(P1 + 21) is trace class, it is therefore
sufficient to show that (P; 4 21)(0,,7z) is bounded. We have

1 1 1
P, 21 7Vz) = 5. P — (P
(P14 21)(0272) zmﬁéﬂ( IR v A
1 <P1+21
€

2 1— A

2

2
Bl()\a Z)) d)\a

which is a bounded operator. We conclude that 9., ((P1 + 21)7z(P1 + 21)) is a trace-class
operator. Finally, for 1 < j <3, K, is an analytic function on Sy4.

To get the bound (5.47), we write that

Kj(z) = Trrz_ ) (P + 2)72(P) + 25)) = Trrz ) (P + 2j)727272(F5 + 25))

P+ 2z~ =~ Pj+z
= TrL%)cr(F) <1J_ Af Bl(Z)’YZB2(Z) 1]_ Ai) :

The bound (5.47) easily follows from Lemma 5.10 and the estimate

Dj+ 2
1-A

b
1— A

1
VZ € F* + i[iAaA]Sv ' S ‘F*|2 + A + 5

< |Zj|+H

B(Lge, ()

per

B(L3er(T)

per

5.5.4 Convergence of the ground state density
We now prove (5.16). The densities of v and vy, defined in (5.33)-(5.34) are respectively
1
Py = Prq dg and  p,, = I3 Z J
= QeAp
In particular, if W is a regular R-periodic trial function, it holds that

or 1
My; :z/FmW=]£ Triz, (1qW)da and M :=/Fp7LW= I3 > Tz, (W),
QeAL

so that the error Ma}ar — MVLV is again the difference between an integral and a corresponding

Riemann sum. We introduce, for W e L} (I') the function

Vz € Sa, Mw(z) = Trrz  (7=W). (5.49)

Lemma 5.12. For allW € Ly (T), My defined in (5.49) is well-defined R*-periodic analytic

function on Sy, where A > 0 was defined in (5.39), and it holds that

1 2
sup | My (z)| < Cs||W with Cg = C} — . 5.50
sup My (@) < ColW g m =Y () - 6w
As a consequence, from Lemma 5.6, it holds that
oy = vaHLoo(r) < CoCge™F, (5.51)

where Cp and a were defined in (5.28).
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Proof of lemma 5.12. We first prove that My, is well defined whenever W € L
W e L.(T), we have

per

Ler(D). For

Mw (z) = Tl"Lger(F) (W) = TI"Lger(r) (2Wz)
:ﬁp()@aﬂﬂ—AQAWﬂ—AQAEQD.

According to the Kato-Seiler-Simon inequality [Sim05, Theorem 4.1]!, it holds that the op-
erator (1 — Ap)~1y/|W]| is Hilbert-Schmidt (i.e. in the Schatten space &y(L2..(I'))), and

satisfies 12
1
[N . (z (i) ) e,

It follows that (1 — A1) 7'W (1 — Ay)~tis in &1(L per( )) with

per

1 2
H(l - A1)711/1/(1 —Ay)” Hbl (L (1) < (Z <1+|k|2> > ||W||L1(F)7 (5.52)

keR*

The proof of (5.50) then follows from Lemma 5.10.

Let us now prove that, for W € L}(I'), My is analytic on S4. To do so, it is sufficient to
show that, for 1 < k < 3, 0,,(72W1z) is a trace class operator. We do the proof for k = 1.
We have

021 (VaWz) = (02 72) Wz + %W (02, 72)

1 1
P+ Zl)BQ()\, Z) 1A, Wl A Bl()\/, Z)d)\d)\/

I—Al(

BQ()" Z)
€

1 1
BQ()‘7Z) w BI(A,’Z)(Pl +Zl)

/ /
—a A By(X,z)dAdN.

1
1—-A

We deduce as in the proof of Lemma 5.11 that V,(v,W+,) is trace class, which concludes the
proof. O

5.5.5 Proof of Proposition 5.3 and Corollary 5.4

We now proceed with the proof of Proposition 5.3. The assertion (5.16) was proved in
Lemma 5.12. To get (5.15), we write that

1 1
Te (yH) = 5Tr (~Ay) + T (Vo) and Trp (v HY) = STrp (=Ary) + Doy (Vaz)
so that

[Tr (vH) — Tr g (v HY)| < 5 1T (~A9) = T (~Au)| + VIl oy = v s, ry-

l\)\i—‘

The proof of (5.15) then follows from Lemma 5.11 and (5.51).

We now prove Corollary 5.4. We compare the total energies

1
EE () — € (1) = 5 (L(=Ay) = Tr f(~Aryr))
1
+ 9 (Dl(Pv — Hper, P — Nper) - Dl(p'yL — HMper, Py — Nper)) ) (5-53)

'The proof in [Sim05] is actually stated for operators acting on L”(R?®). However, the proof applies
straightforwardly to our bounded domain case L}, (I").
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and notice that

|D1(py — Hper, Py — fper) = D1(pyy — fpers Py, — Hper)| = [D1(py — pyps Py + Py, — 2fiper)|
(5.54)

Using for instance the inequality (recall that |aj| < |a3| < |aj])

Vige o, Ditfgl=| Y *EDI LS )

RGR\{O} K| 3] ReR\{0}

< — s ez, mllglizz,. (5.59)
| 3\ L ’

and combining (5.53), (5.54) and (5.55), we obtain

er er 1
[Epe™ (7) = €07 ()| < 5 [Tr(=Ay) = Trp(=Apy)|
1
+ 237 Iy = p’YL”LIQ)er(F) 1oy + Py — 2MperHLger(p)
Corollary 5.4 is therefore a consequence of Lemma 5.11, (5.51) and the embedding Lpg, (I') —
L3 r(T).
per

5.6 Proof for the nonlinear reduced Hartree-Fock case

In this section, we prove the exponential rate of convergence of the supercell model to the
periodic model in the nonlinear rHF case (see Theorem 5.5). The proof consists of three steps.

Step 1: Convergence of the ground-state energy per unit volume

In the sequel, we denote by Vp := (py, — fiper) *r G1 and Vg := (pAYL’0 - uper) xp G (see
also (5.7) and (5.13)). We recall that

1
Hy = _iA + Vo and vy =1(Hyp<ep) acton LQ(R3),
1
Hpo= _iAL +Vio and ~vpo=1(Hpo<ep) acton Lper(I‘L).
We denote by g > 0 the gap of Hy around the Fermi level p.

It was proved in [CDLO8| that the sequence (VL) converges to Vo in Lgg (I'). We
will prove later that this convergence is actually exponentially fast. As a result, we deduce
that for L large enough, say L > L&, the operator Hy, o is gapped around er, and one may
choose the Fermi level of the supercell efﬁ defined in (5.7) equal to ep. We denote by gy, the
size of the gap of Hp o around ep. Without loss of generality we may assume that L& is
large enough so that

VL > L¥*P, g >

l\D\Q

In the last section, we proved that the constants C' € R* and a > 0 appearing in Propo-
sition 5.3 are functions of the parameters R, ||[V||L~, g and €r of the problem only. In
particular, it is possible to choose C € RT and « > 0 such that, for any choice of potentials

V among {Vo, (VL70)L>Lgap}, the inequalities (5.15), (5.16) and (5.17) hold true.
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We first consider V' = V4 in Proposition 5.3. We denote by ~;, € P, the one-body density
matrix defined in (5.33) for this choice of potential. Together with Corollary 5.4, we get

VL € N*, L7310 = L3 (yp0) < LT3EM () < EP&™ (70) + Ce™ L = Ihoe + Ce™k,

On the other hand, choosing V' = Vi, ¢ with L > L& in Proposition 5.3, and denoting by
Yy € Pper the one-body density matrix defined in (5.33) for this choice of potential, we get

VL > L8P, IpE" = ERE" (o) < Ep& (v1) < LT2EL" (yp.0) + Ce™® = L7211 4 Ce™h.
Combining both inequalities leads to

VL > L#P, L7310 — e < Ce™F (5.56)

This leads to the claimed rate of convergence for the ground-state energy per unit cell.

Step 2: Conwvergence of the ground state density

1
In order to compare p, and py, ,, it is useful to introduce the Hamiltonian H L= —§A .+

acting on L2 (I'z). We also introduce 77 := 1(H" < er). Note that v, € Pr is the

per

operator obtained in (5.33) by taking V' = 1}y in Proposition 5.3. Therefore, according to this
proposition, there exist C' € R* and a > 0 such that

VLEN, oy = poy ey < Ce ok, (5.57)

In order to compare p,, with p,, ;, we note that, since vz is a minimizer of (5.6), then,
using (5.17) and (5.56), we get that, for any L € N*,

0. L7364 () — L3647 () = (L5 (v0) — E65" (30)) + (€65 () — L €1 (11.0)
< 2C’e_°‘L,

so that
VL e N*, 0 < &P (yz) — £ (ypo) < L32Ce ™k < Cle't

for some constants C’ € R™ and o/ > 0 independent of L. This inequality can be recast into
1 o
VL € N*7 0<Tr, ((HL,O - gF) (’YL - ’VL,O)) + §D1(va = Py, Pyp — p'YL,O) < C'e™® L.

Both terms are non-negative, so each one of them is decaying exponentially fast. From the
inequality (recall that we assumed |af| < |a}| < |aj|)

2 2
VF e L), Ifw Gl = 3 @Ec Ll Lo,

we KT P e, KP
we obtain that
1
|a

(T"). It holds that, for any L > L&,

/
C oL, (5.58)

VL € N, ||(p’YL _p’YL,o)*F Gl”%ﬁ ™) < %2
per |a3|

|2 Dl (PL _p’YL,m pL_pWL,o) <

W *

Consider W € L2

per

/(Pm — Py W = % > Tre,m (E)e — (z.0)Q) W]
r QeAL

1 1 1
= 2inL3 ZL ﬂngrL%er(F) (A—(Ho)Q ((Pyz0 = Pyi) *r G1) ngw) dX (5.59)

1 o 1 . 1
= 9 l3 Z yiTrLger(F) (Bg (A, Q)l—iAl ((Pm,o = Pyp) *T Gl) By (A Q) 1-A, W) dA,
L
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where BY" is the operator defined in (5.35) for H = Hy, and B¥ is the one for H = H,.
From the expression of the constant C; in (5.37), we deduce that there exists a constant
Cy € RT such that, for all L > L&,

VAe?, VQEAL ||B§er()\a Q)||B(L;2>er(r)) < a and HB§(>‘7 Q)HB(Lger(F)) < a
As a result,

—~2
€| Cy
'/F(p’YL - IO"/L,O)W‘ < o

We deduce from the Kato-Seiler-Simon inequality [Sim05, Theorem 4.1] and the estimate (5.58)
that there exists constant C' € R™ and a > 0 independent of W such that,

w

1
'1 — Al ((p’YL,O - p’YL) *T Gl)

1
1-4A

(L3 (1))

62(L]%cr(r)) per

‘/F(Pn - IO’YL,O)W’ < Cemot HWHLger(F) :

This being true for all W € L2 (T), we obtain

per

VL > L&, < Ce ok,

HP’YL ~ Pyro HLger(F)

This proves the convergence in L%er(F). To get the convergence in L33, (I'), we bootstrap

the procedure. Since (py, o — py,) € L2 (D), then (py, , — py,) *0 G1 € L2, (T') with
YL I, (g — ) 0 Gl (T) < Cleo, (5.60
per

Consider W € Ll (T'). Performing similar calculations as in (5.59), we get (with obvious
notation)

/F(p'YL - p’YL,o)W

1 er I 1 1
T 2inL? QZ ?ngrLg“(F) (Bf A Q) (P = o)+ G1) By (X, Q) AT A1> °

€A

so that

1 1

—~2

€| C1
<

1-— A1W1 — A4

’/F(p’YL - p'YL,O)W‘ =" or H(p’YL,O - p’YL) *T GlHngr(F)

)

61 (L3er(I))

and we conclude from (5.52) and (5.60) that there exist constants C € RT and a > 0 such
that

—aL
VL > LEP, oy, — pVL,OHngr(F) < e
Together with (5.57), we finally obtain
—aL
VL > L%, HPWO - p’YL,OHngr(F) < Ce™%.

Step 3: Convergence of the mean-field Hamiltonian
Finally, since
Hp — Ho = (py,0 = Pyo) *1 G,

the estimate (5.60) implies the convergence of the operator Hy, — Hy to 0 in B(L*(R?)) with
an exponential rate of convergence.



172 CHAPTER 5. CONVERGENCE RATES FOR SUPERCELL MODELS

Remark 5.13. The convergence of the operators implies the convergence of the eigenvalues.
More specifically, from the min-max principle, we easily deduce that

sup sup |en.q[Hr] — enqlHo)| < Ce L
q€el™ neN*

where (en,q[H]), e+ denotes the eigenvalues of the operator Hq ranked in increasing order,
counting multiplicities.

5.7 Numerical simulations

In this final section, we illustrate our theoretical results with numerical simulations. The
simulations were performed using a home-made Python code, run on a 32 core Intel Xeon
E5-2667.

The linear model (Proposition 5.3)
We consider crystalline silicon in its diamond structure. A qualitatively correct band diagram
of this system can be obtained from a linear Hamiltonian of the form H = —%A + Vphe‘;, where
the potential V;iel} is the empirical pseudopotential constructed in [CB66|. The lattice vectors
are

ar=2(0,1,1)7, a;=2(1,0,1)7 and ag= =(1,1,0)"

2 2 2

and the reciprocal lattice vectors are

2T 2T 27
T= (-1, aj="(1,-1,1)7 and aj="—
a1 a( 77)7 D) a(v 7) an as a

(17 17 _1)T7

where the lattice constant is [CB66] a = 10.245 Bohr (that is about a = 5.43 A). In the
sequel, I'* denotes the Brillouin zone of the fcc lattice. The high-symmetry points of I'* are

2 2 2

P=2"0,007, £="0/21/21/27, X="7(1,00),
2 2 2

W= TN 1/2,07), K= TN3/4,3/4.0)7 and U= =(1,1/4,1/4)7)

The pseudopotential V! is given by the expression [CB66]

per

th<X) _ Z Vkeik-x with  Vk e R*, Vk _ S[k] cos (a(kl + k2 + k3)> (561)

’ keR* 8
where
—0.105 if k|? = 3(27/a)?
S[k] = 0.02 if k|? = 8(27/a)?
0.04 if k|2 = 11(27/a)?
0 otherwise.

The band diagram of this system is represented in Figure 6.1 along the path L - T - X —
W-I-=U-—X.

This system is an insulator when the number of particle (electron pairs) per unit cell
is N = 4, so that the hypotheses of Proposition 5.3 are satisfied. In the sequel, the calculations
are performed in the planewave basis

2
k|

k
X = {ek, k S R*, 7 < Ecut—oﬂ} 5 (562)
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Figure 5.2 — Band diagram (in eV) of crystalline silicon in its diamond structure along the
pathL T - X ->W ->T—->U — X.

where the cut-off energy is Ecyt.of = 736 €V. The corresponding size of the basis is | X | = 749.

In Figure 5.3, we represent the error on the ground state energy per unit cell and the
L>(R3) error on the ground state density (in log scale) for different sizes of the regular
grid. The value of L in (5.24) varies between 4 to 28. The quantities of reference are the ones
calculated for the regular grid of size 60. We observe in Figure 5.3 the exponential convergence
for both the energy per unit cell and the density as predicted in Proposition 5.3.

The rHF model (Theorem 5.5)

We now consider the rHF model. To our knowledge, no pseudopotential has ever been designed
for this model. Since constructing pseudopotentials is a formidable task, we limit ourselves
to the following poor man’s solution, which does not aim at capturing the physics but only
at illustrating numerically our theoretical convergence results. We decompose the potential
self-consistent V) appearing in (5.13) into

Vo = (pyo — Hper) ¥ G1 = pyg *1 G1 — pper *r G,

and we make the approximation Vy = VI where VI is the pseudopotential defined in (5.61).

per» per

This leads to the rHF pseudopotential of the form

rHF . y/lin
Vper T Vper — Pyo *T Gl'

In practice, we calculate Vlng with the potential p,, obtained previously for the grid of size 60.

The minimization problem (5.6)-(5.7) is solved self-consistently in the basis X defined in (5.62)
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Figure 5.3 — The error on the ground-state energy (in ¢V) and the L error on the ground-
state density with respect to the size of the regular mesh for the linear model. The logarithm
of the errors are represented. The linear regression curves are also displayed.

(we refer to [Can00] for a survey on self-consistent procedures for such problems). We stop
the self-consistent procedure when the L>°(R3) difference between two consecutive densities
is less than 10~7. The size of the regular mesh varies between 8 to 36. The quantities of
reference are the ones calculated for the regular mesh of size 60. The error on the energy per
unit cell and the L>(R3) error on the density are displayed in Figure 5.4.

We observe in Figure 5.4 the exponential convergence announced in Theorem 5.5.
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linear regression curves are also displayed.






CHAPTER O

REDUCED BASIS METHODS FOR
BRILLOUIN-ZONE INTEGRATION

This work was done in collaboration with Eric Cancés, Virginie Ehrlacher and Damiano Lom-
bardi. It is part of a comprehensive numerical analysis article [CEGY 15] (in preparation) on
quadrature methods for Brillouin-zone integration.

Abstract. We introduce new reduced basis techniques that allow fast and accurate cal-
culations of the Fermi level and the ground state energy per unit cell for empirical effective
Hamiltonian models.

6.1 Introduction

The study of the electronic structure of perfect crystals is a central problem in solid-state
physics and materials science. Although perfect crystals do not exist in nature, they consti-
tute useful idealized systems to understand many fundamental properties of real crystalline
solids (electric conductivity, dielectric permittivity of insulators and semiconductors, photo-
electric effect, ...). Besides, the study of perfect crystals is an unavoidable preliminary to the
one of real crystals, that are crystals with point and extended defects (vacancies, interstitials,
impurities, dislocations, grain boundaries).

A perfect crystal is modeled by a Bravais lattice R of R3, and a motif, that is an R-periodic
distribution describing the natures and the positions of the atoms, or more specifically of the
bare nuclei in all-electron models, and of the ionic cores in empirical models, or in models
with pseudopotentials. The Fermi level and the energy per unit cell of a such a crystal can
be evaluated from the study of an electronic (empirical or mean-field) Hamiltonian H. Math-
ematically speaking, H is an unbounded one-body operator acting on L?(R3) that commutes
with the translations of the lattice R. Thanks to the Bloch transformation [RS78, Chapter
XIII|, the study of this Hamiltonian amounts to studying a continuous set of compact resol-
vent operators Hy indexed by points q of the Brillouin zone. In particular, one can evaluate
the Fermi level and the energy per unit cell by evaluating integrals over the Brillouin zone.
The integrands are functions of the eigenvalues (and of the eigenvectors in mean-field models)
of the compact resolvent operators Hq (see Section 6.2).

From a numerical point of view, such integrals cannot be computed exactly, and the
Brillouin zone needs to be sampled. In [MP76, BJA94] for instance, the authors considered
uniform samplings of the Brillouin zone. If L denotes the number of points per direction
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of such a sampling, the total number of points is L2. This number of points to explicitly
consider can be reduced using the symmetries of the crystal [MP76]. For insulating systems,
the energy per unit cell can be estimated precisely with a coarse grid (small value of L). This
is due to the exponential rate of convergence proved in Chapter 5. For metallic systems, a
slower rate of convergence is expected and a much finer sampling is needed (large value of L).
As a consequence, the calculation of the eigenmodes of the operator Hq at all the points q of
the grid is numerically much more expensive than in the insulating case.

The goal of this chapter is to explain how to use the information on a coarse grid to speed
up the calculation on a much finer grid by means of reduced basis techniques. Similar ideas
were already considered by Pau in [Pau07|. Our approach, which consists in creating bases
that are g-point dependent, allows the identification of the main contribution of the reduced
basis error, resulting in much more accurate results at low extra-costs.

The proposed numerical methods are illustrated by the computation of the Fermi level
and total energy per unit cell for both insulating and metallic systems.

6.2 Notation and presentation of the model

We consider closed-shell electronic structure models and assume that each spatial electronic
state is either empty or doubly occupied (that is filled with two electrons, one with spin up
and one with spin down). In both empirical and mean-field electronic structure models of
perfect crystals, a key role is played by the electronic (empirical or mean-field) Hamiltonian,
which is an unbounded self-adjoint operator H on L?(R?) with domain H?(R3) of the form

1
H = _§A+Vper, (6.1)

where Ve is either a real-valued locally square integrable R-periodic function on R3, or a
bounded self-adjoint operator on L?(R3) commuting with the translations of the lattice R.
The latter situation is encountered in particular in Hartree-Fock models and in Kohn-Sham
models with pseudopotentials. Since the operator H commutes with R-translations we can
consider its Bloch transform [RS78, Chapter XIII|. We denote by I' the Wigner-Seitz cell of
R, by R* the reciprocal lattice, by I'* the first Brillouin zone, by

L2.(1) ={f € L (R*), f R-periodic}

per

the periodic L? space and by
Vs e R, HS.(T):={f € H.(R%, fR-periodic}

per

the periodic Sobolev spaces. It holds that (we denote by fn.. := [[*|7! [i..)

@ 1
H={ Hgqdq, with Hg:=_|-iV+ al® + Vper, (6.2)
F*
where, for all q € I'*, the operator Hq with domain ngr(F), is a bounded below self-adjoint
compact resolvent operator acting on Lger(f‘). We denote by Aj q < Ay g < -+ its eigenval-

ues, ranked in increasing order, counting multiplicities, and by (un.q)nen+ € (L%er(F))N* an
orthonormal basis of associated eigenvectors.

With this notation, the integrated density of state (per unit cell) I and the integrated
density of energy (per unit cell) E are respectively defined by

VeeR, I(e)= Z][ 1o (Mng)dg (6.3)
n=1
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and -
VeeR, B(e)=2 Z][ Mmal( oo (Ang) da, (6.4)
n=1 =

where 1(_,, ) denotes the characteristic function of the interval (—oc, ¢]. The factor 2 in (6.4)
accounts for the spin. Note that the sums appearing in (6.3) and in (6.4) are finite for any
value of ¢, since the sequence (A, q)nen+ goes to infinity, uniformly in q € I'™*.

Let Npair be the number of electron pairs in the crystal. As the function I is continuous,
non-decreasing, and satisfies

I(e) =0 for e<min(o(H))=inf{\1q, q€I™} and lim I(e) = o0,

e—+00
the set =1 ({N}) is a non-empty bounded closed interval of R. We write I~1({N}) = [e_,e4].
Any number ¢ inside this interval is an admissible Fermi level of the system. When e_ = ¢,

this number e is unique, and the system is a metal. Otherwise, the system is an insulator or
a semi-conductor, depending on the magnitude of the (indirect) gap g := e+ —e_. The func-
tion E has a constant value E(ep) on this interval, called the energy per unit cell, where ep
is any number in this interval. For our purpose, we can choose for instance ep = (e_ +¢4)/2.

The expressions (6.3) and (6.4) involve integrations over the Brillouin zone I'*. In practice,
an analytical integration cannot be performed and hence numerical quadrature techniques
must be resorted to. Several methods were proposed to sample the Brillouin zone. In [MP76]
for instance, Monkhorst and Pack suggested to use a regular grid. Let us consider a basis
(a1, a9,a3) of the lattice R, so that R = Za; + Zag + Zag, and the associated dual basis
(aj,a%,a}) of the reciprocal lattice, so that R* := Zaj + Za} + Za} and a; - a;f = 27d;;. For
L € N*, the L x L x L regular grid is defined by

%, , 2ky , 2ks ,

A = {Laf + Taz + Tag, (kl,kg,kg) € {

“L4n —L4n o Ltn }3}

2 72 72 ’

(6.5)

where 1 = 0 if L is even, and 7 = 1 otherwise. Note that there are exactly L3 points in Ay,

and that the point q = 0 lies inside Ay, for all L € N*. This grid can be reduced using the
symmetries of the system [MP76].

Finally, the infinite dimensional form domain ngr(I’) of Hq is approximated by a finite-
dimensional conformal discretization space XV ¢ H}!

per(I'). In this chapter, we mostly study
the planewave discretization case, where

k 2
XV .= Span {ek, k € R, ’2| < Ecut_og} . (6.6)

Here, ex(x) := ]F[‘l/ 2eikx i5 the Fourier mode with wave vector k, and E.yof is the cut-off
energy. Usually in physics, the approximation space XN is characterized by the value of
Eeutoff (in €V) rather than by the value of A := dim(X*).

In the sequel, we consider that A, q and u, q are the reference solutions computed in a
fine discretization space XN (M > 1), and we will compare the results obtained with our
reduced basis methods to the ones obtained with those reference solutions. The Dirac’s bra-ket

notation refers to the L2_ (I') inner product on XN,

6.3 The simple reduced basis method

The basic idea of the proposed numerical scheme is to extract local reduced bases from cal-
culations on a coarse uniform grid of size L1 X L1 X L1 of I'* for some value L1 € N*. These
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are used to compute the eigenmodes of H for q on a fine uniform grid of size Ly x Ly X Lo,
with Lo > L;. In order to give rise to fast computations on the fine grid, the size N € N* of
the reduced bases must be much smaller than the size of the initial basis: N < N.

Let Ly € N* be the number of points per direction of the coarse grid Ar,. A point of
the coarse grid will be denoted by Q (uppercase letter) for the sake of clarity. For Q € Ay,
and N € N* we denote by

Xg := Span {u,q,...,un.Q}

the subspace of X of dimension N consisting of the eigenvectors associated to the lowest
N eigenvalues of the operator Hg. Let Ly € N* be the number of points per direction of the
fine grid Ar,. A point of the fine grid will be denoted by q (lowercase letter). For q in the
fine grid Az,, we denote by P(q) a set of points of the coarse grid that are close to q. One
can take for instance

P(q):={Q€ AL, |Q—-d|, <7},

where | - | denotes the £>° norm in the euclidian basis, and where r is a well-chosen positive
cut-off radius. In what follows, we take r = Ll_l.

The first method, called hereafter simple reduced basis, or simple-RB, is straightforward.
Let m be a positive integer chosen beforehand so that A, q > e for all q € I'*. If the
system into consideration is an insulator, we take m = Npai,. For each point q € Az, and
each Q € P(q), we compute the first m eigenmodes of Hg in the basis Xg. We obtain

a set of eigenvalues <x\ﬁ}?

N,Q
(un,q

) , and an orthonormal family of associated eigenvectors
1<n<m

) , in the sense that
1<n<m
N.Q N,Q N,
Mg SAgg <o < )‘mg

and
V1l <n<m, VwEXg, <w’Hq

We then choose Qo € P(q) such that

D ANR0 = inf {Z A2 Qe P(q)} .
k=1 k=1

Another, more expensive, option consists in considering the approximation space spanned

by all the eigenvectors (u,jy ’O?

N N

N,Q
QY.

) The simple-RB method consists in making the
1<n<m, QE€P(q)

approximation

Ang R )\fx;?o and  up g & uﬁ{fo.
This method is very easy to implement, and already provides satisfactory results. It is however
possible to improve subsequently the results by further analyzing the source of the error coming

from the reduced basis approximation.

6.4 Perturbation expansion

We present in this section an approach to improve the accuracy of the approximate eigenmodes
obtained by the procedure described in the previous section, using a perturbation-based post-
processing method similar to the one introduced in [CDM*14]. We first make the following
observation. From the definition of Hq in (6.2), it holds that

LT laf?

1 1
qui‘—iv+Q|2+Vper:—iA—iQ'V+7+Vper:Aq+T,
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where

1
Aq = —fA—iq-V—‘erer

is a bounded below self-adjoint operator acting Lper( I') with domain ngr( ). The eigenvalues
of Aq are
\ e

n,q — 9 )
and its eigenvectors are the same as those of Hqy. It is more convenient to work with the
operator Aq than with the operator Hg, as the former depends linearly on q € I'*.

Hn,q =

Let q € Az, and Q € P(q). Our analysis is based on the fact that
Ag=Aq+(a-Q)- (-iV) = AP+ W (6.7)
where Ag Q and Wév Q are respectively defined by
AYQ = (Aq +Tly(a— Q) (—iV)ITyy)
and
W@ = ((a- Q) (iV) ~ Hxx(a— Q) (~iV)lyy) -

Here, HXN denotes the orthogonal projector on XQ (for the Lper(F) inner product). The
approxnnate and exact eigenmodes respectively satisfy

AN,Q NQ = MnNc? év’(? and (A(]JV’Q + Wé\f’Q) Un,q = Hn,q Un,q-

The exact eigenmodes can therefore be considered as perturbations of the approximate eigen-
modes. Using first-order perturbation theory, we obtain

Ung = Up gt + U T (6.8)
where
HJ_
Uni? o= AiQQ ((a- Q) - (-ivulQ)), (6.9)
Q — Hn
’Q

and where, for (@ — Q) small enough, the H_  (I')-norm of the remainder rn is of or-

per(
der |q — Q|?. Here, H)LU\, =1- HXS denotes the orthogonal projector on XQ
Q

The approximation (6.8) suggests that the eigenvector w, g is better approximated by
at vn Q than by uY .. The idea is then to replace the initial discretization space Xg by

X9 .~ Span {ul QiNa e vﬂ’}fg} , (6.10)

and hopefully get better approximations with this new basis set. The method using this

correction will be called the corrected reduced basis, or corrected-RB, method.

Remark 6.1. While the initial discretization space Xé‘{ was only Q-dependent, the new one
is (Q, q)-dependent: a new reduced basis is created for each point q of the fine grid Ar,, and
each point Q € P(q).

Remark 6.2. The new discretization space is of dimension M < N. In general, one needs
to take M < N. This comes from the fact that the operator (AQ —,ufxq) HJ-N appearing

in (6.9) needs to be invertible on (Xg)L. A natural way to ensure invertibility is to impose
UM.Q < AN+1,Q-
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Note that the multiplication of a vector by the operator (q—Q)-(—iV) appearing in (6.9)
is inexpensive if the initial basis set is the planewave basis X* defined in (6.6). However,
in order to evaluate the new basis, one must also be able to compute the multiplication of a
vector by the large matrix (AQ — uﬁ q) H)i( x appearing in (6.9). This may be troublesome in

practice if A is too large. The approximation of this operator is discussed in the next section.

6.5 An approximation of the resolvent

We discuss in this section some numerical methods to approximate the inverse of the opera-
tor (AQ — ,ufzv’q) HJ)ZS" The first natural way to approximate it is to set

HLN ~ I —Mxy (6.11)

X Nmed

where Npeq € N* is chosen such that N < Npjeq < N. In this case, only the first Npeq
eigenmodes of Aq must be computed for all Q € Az, and it holds

I Nine
X3 Zd |ug, Q)(uk,Q|
Aq—phQ "~ 5, e — Hhg

However, by making the approximation (6.11), the resulting v n.Qq defin defined in (6.9) belong
to XNmed. Since ulY q € XQ C XNmed, we deduce that the space Xan defined in (6.10)

—_—

satisfies X MQ q C X de. As a consequence, the results obtained with the corrected-RB
method together Wlth the approximation (6.11) are less accurate than the simple-RB method
with bases of size Nyeq. Another approach is to make the crude approximation

iNQ S ! 510y (6.12)
Aq — pinjg Q1+ 5|1V +gd|
Note that it holds

H)i(g It

- =~ HLN 1 HLN — XN ,Q 1 HLN;
Ag— Q& " Xa14+1|-iv+q? Yo 4q-— un,o? 14 l-iv4qP? ) e
where
la?
2
is a multiplication operator. In particular, thanks to the Kato-Seiler-Simon inequality [Sim05],
N.Q 1 1
the operator | V3, 4 = % v q|2 ng
N goes to infinity. While this argument is not sufficient to mathematically certify the sug-
gested approximation, it hints that it should significantly improve the results of a naive
computation. This will be confirmed in the numerical experiments presented in Section 6.6.

Vn]Y(iQ =1+ Uy ’qQ + —— — Vper

is compact, and, for fixed n, converges to 0 when

The corrected-RB method together with the approximation (6.12) is called the partially
corrected reduced basis, or partially-corrected-RB, method. In this case, we solve the eigenvalue
problem of Hg in the basis

XémQ = Span{ N.Q +vdiQ,...,uJ\A2’7Q —i—vN’Q},

where we set

N,Q . 1 1 1 iV N,Q
n - H H . ’ . 6'13
Un,q XN 1 %| v |2 XN ((q Q) ( 1V Uy, )) ( )
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Remark 6.3. The functions appearing in (6.13) are inexpensive to compute in the plane-wave
basis XN defined in (6.6).

6.6 Numerical results

We illustrate our method with numerical tests. The simulations were performed using a
home-made Python code, run on a 32 core Intel Xeon E5-2667. The purpose of this section is
to demonstrate the accuracy of the various reduced basis methods described in the previous
sections. We do not report computational times, since our Python code uses very efficient par-
allel linear algebra packages to diagonalize the matrices, which favors the full-diagonalization
approach, while our implementation of the reduced basis method was not optimized. An
implementation of our reduced basis method in Abinit [GAAT09] is in progress.

Insulating case

We first consider the insulating case and study the crystalline silicon in its diamond struc-
ture. We take the empirical pseudopotential described in [CB66]. The corresponding Bravais
lattice is generated by the vectors a; := (a/2)(0,1,1), a; := (a/2)(1,0,1)" and az :=
(a/2)(1,1,0)T, where a is the lattice constant of the crystal a = 10.245 Bohr (that is
a ~ 5.43A). In the sequel, I'* denotes the Brillouin zone of the fcc lattice. The high-symmetry
points of T* are T' = (27/a)(0,0,0)T, L = (2n/a)(1/2,1/2,1/2)T, X = (27/a)(1,0,0)T,
W = (2r/a)(1,1/2,0), K = (27/a)(3/4,3/4,0)T and U = (27/a)(1,1/4,1/4)T.

In atomic units, the corresponding linear mean-field Hamiltonian is H = —%A + Vper, where
Vper s the effective pseudopotential constructed in [CB66] of the form

i k k k
Voer(Xx) = Z Vie'®*  with Vk € R*, Vi = S[k]cos (a( 1+ ko + 3))

keR* 8
where
—0.105 if k|2 = 3(27/a)?
STk] = 0.02 if k|? = 8(27/a)?
0.04 if k|2 = 11(27/a)?
0 otherwise.

There are Npair = 4 electron-pairs per unit cell. The band diagram of this system is repre-
sented in Figure 6.1 along the path L - T' - X - W - T - U — X.

To illustrate our methods in the insulating case, we choose the coarse grid to be 6 x 6 x 6
(that is 10 irreducible g-points) and the fine grid to be 24 x 24 x 24 (that is 240 irreducible
g-points). We take N' = 749 (which corresponds to a cut-off energy Eeutoff = 736 €V), and
we vary the size of the reduced basis from 20 to 150. The error on the ground state energy
per unit cell is displayed in Figure 6.2 and the error in the L>°(R?) norm of the electronic
density is displayed in Figure 6.3.

We see from Figures 6.2 and 6.3 that our simple-RB method already provides results in
good agreement with the full calculation. The corrected-RB method improves the simple-RB
method by a factor 10 for the energy and a factor 3 to 10 for the density. Finally, the
partial-corrected-RB method provides results which are close to the ones obtained with the
corrected-RB.

Metallic case

We now consider the metallic case. We study the fcc structure crystalline aluminum with
the empirical pseudopotential described in [HA93]. The Bravais lattice is generated by the
vectors aj := (a/2)(0,1,1)T, ay := (a/2)(1,0,1)T and a3 := (a/2)(1,1,0)" with a = 7.64 Bohr
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Figure 6.1 — Band diagram (in eV) of crystalline silicon in its diamond structure along the
pathL T - X ->W ->T—->U — X.

(that is @ ~ 4.05 A). The mean-field Hamiltonian is H = —3A + Vier where the effective
pseudopotential Vi, is of the form [HA93]

Voer(®) = Y Vie™™* with VkeR*, Vi =V(k]),
keR*,
‘klZ/ZSEcut—oﬂ

where, for all g € R?,

e(q)

V(q) = —Bcos (qre) 2 with e(q) =1+ I(q)

1 —g(q)(q)

The functions IT and g are given by (we denote by = := q/(2ky))

I(q) = (Wkiao) % (; e ;;”2) In ) and  g(q) = (2 + a;) o

The values of the constants are, in atomic units, 5 = 0.338, r. = 1.338 (which corresponds
to 7. = 0.709 A found in [HA93]), ap = 1 and k; = 0.927. The number of electron pairs is
Npair = 1.5. The band diagram of this system is represented in Figure 6.4 along the path
LT —-X—->W-=>I-U-—=X.

The Fermi level, the total energy per unit cell and the density are calculated with the
improved tetrahedron method together with the Blochl correction [BJA94|. The Fermi level
is calculated with a simple dichotomy method with a precision of 1077 V.

1+z
1—=z
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Figure 6.2 — Error on the ground state energy per unit cell (in log scale) with respect to the
size of the reduced basis for crystalline silicon. The dotted line represents the error between
the energy calculated on the coarse grid and the one calculated on the fine grid.
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Figure 6.3 — L® error on the ground state electronic density (in log scale) with respect to
the size of the reduced basis for crystalline silicon. The dotted line represents the L error
between the electronic density calculated on the coarse grid and the one calculated on the
fine grid.
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30

Figure 6.4 — Band diagram of Al in its fcc structure (in €V) along the path L - T' — X —
W — T — U — X. The dotted line represents the Fermi level.

The error on the Fermi level and on the total energy per unit cell with respect to the size
of the regular grid (the integer L in (6.5)) is displayed in Figure 6.5. The size of the grid
varies from 4 to 60. The quantities of reference are the ones calculated at L = 80.

In Figure 6.5, we see the slow convergence of these quantities with respect to the size of
the grid. To obtain an accuracy of 1072 ¢V on the energy per unit cell, we need to consider a
grid of size at least 30 x 30 x 30. In the sequel, the calculations are performed with the coarse
grid 8 x 8 x 8 (that is 20 irreducible g-points) and the fine grid 40 x 40 x 40 (that is 916
irreducible g-points). The error on the ground state energy per unit cell with respect to the
size of the reduced basis is displayed in Figure 6.6, the error on the Fermi level is displayed in
Figure 6.7 and the L* error for the ground state electronic density is displayed in Figure 6.8.

Whereas the convergence in the insulating case with respect to the size of the reduced basis
looks exponentially fast (see Figure 6.2 and Figure 6.3), the convergence in the conducting
case looks much slower. However, we see that even a very small reduced basis already recovers
the Fermi level and the energy per unit cell with an accuracy of 1073,
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is also plotted.
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reduced basis for crystalline aluminum. The dotted line represents the error between the
energy calculated on the coarse grid and the one calculated on the fine grid.
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Figure 6.7 — The error of the Fermi level (in log scale) with respect to the size of the reduced
basis for crystalline aluminum. The dotted line represents the error between the Fermi level
calculated on the coarse grid and the one calculated on the fine grid.
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