
HAL Id: tel-01238627
https://hal.science/tel-01238627v1

Submitted on 6 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical contributions to electronic structure
calculations
David Gontier

To cite this version:
David Gontier. Mathematical contributions to electronic structure calculations. Mathematical Physics
[math-ph]. Universite Paris Est, 2015. English. �NNT : �. �tel-01238627�

https://hal.science/tel-01238627v1
https://hal.archives-ouvertes.fr


L’École Doctorale Mathématiques et Sciences et Technologies de l’Information
et de la Communication (MSTIC)

Thèse de doctorat
Discipline : Mathématiques

présentée par

David Gontier

Contributions mathématiques aux calculs de
structures électroniques

Thèse dirigée par Éric Cancès
préparée au CERMICS, Université Paris-Est (ENPC)

Soutenue le 28 septembre 2015 devant le Jury composé de :

Président du jury M. Yvon Maday Université Paris 6

Rapporteurs M. Carlos García Cervera University of California,
Santa Barbara

M. Éric Séré Université Paris-Dauphine

Examinateurs M. Xavier Blanc Université Paris 7
Mme Clotilde Fermanian Université Paris-Est Créteil
M. François Jollet CEA
M. Gabriel Stoltz École des Ponts ParisTech

Directeur de Thèse Éric Cancès École des Ponts ParisTech





3

L’analyse numérique, c’est galère... kin
(William Minvielle)

Soit c’est décroissant, soit c’est des pains au chocolat
(Julia Wang)





REMERCIEMENTS

J’aimerais commencer ce manuscrit en témoignant ma gratitude à Éric Cancès, qui fut pour
moi un excellent directeur de thèse. Il m’a guidé tout au long de cette aventure, et j’ai beaucoup
appris à ses côtés. J’ai souvent souhaité à mes collègues doctorants d’avoir un directeur comme
lui, qui à la fois prend très au sérieux son rôle de directeur de thèse, et à la fois est toujours
d’accord pour faire une pause café et discuter de tout et de n’importe quoi, malgré sa grande
quantité de travail.

Je suis aussi très reconnaissant à Gabriel Stoltz, qui fut comme un co-directeur de thèse
officieux pendant ces trois années. Gabriel me fut d’un grande aide et m’a souvent aidé à
traduire les pensées et les calculs d’Eric. Toujours prêt à rire et à faire rire, Gabriel est une
de ces personnes qu’on a toujours plaisir à voir. Et comme G ne va pas aimer le ton formel de
ces remerciements qui lui sont adressés1, j’ajoute que Gabriel est un traître qui m’a caché que
mes amis venaient m’enlever pour mon enterrement de vie de garçon, et que je me vengerai.

J’aimerais aussi remercier les membres du jury, à commencer par les rapporteurs Carlos
García Cervera et Éric Séré, qui ont dû relire ce présent manuscrit pendant leur mois d’Août.
Merci aussi à Clotilde Fermanian, à Xavier Blanc, à François Jollet et à Yvon Maday, qui
ont accepté de faire partie de mon jury. Je suis sincèrement très heureux d’avoir le nom de
chacune de ces personnes sur la page de garde de mon travail.

La partie la plus difficile de cette thèse fut évidemment de comprendre la méthode GW
de prendre le RER A le matin jusqu’à Noisy-Champs pour aller au Cermics. Heureusement,
une fois arrivé, j’y retrouvais toujours toute une bande de gais lurons, à commencer par
mon co-thésard William. Je le remercie vivement pour ses parties d’échecs2, ses discussions
philosophico-politico-mathématiques des pauses café, ses jeux de mots inévitables et ses ques-
tions impossibles qu’il nous posait régulièrement3. Un grand merci aussi à tous les jeunes ou
ex-jeunes du Cermics, et plus spécifiquement à mes grandes sœurs de thèse Salma, Nahia et

1Pour le citer : Je t’en f**trai des «bien cordialement» !
2Très peu au final, Claude Lebris nous ayant posé le problème suivant, qui nous a bien occupés :

3Dont la fameuse : Est-ce que mettre-ici-le-nom-d’un-espace-de-Banach s’injecte dans BMO?



6

Virginie, avec qui j’ai passé de très bons moments en France comme à l’étranger, et à mes
autres compagnons de route Adela, Christelle, Pauline, Charline, Boris, Houssam, Athmane,
Yannick, François, Jean-Léopold, Rémi, Julien, Mickaël, Thomas, Simon et Charles-Edouard
pour leur bonne humeur. Enfin, j’aimerais exprimer ma reconnaissance quasi-éternelle à Isa-
belle Simunic, qui a beaucoup contribué à l’absence de cheveux blancs sur ma tête.

Comme tout le monde le sait, le principal intérêt de la thèse est d’avoir trois ans de temps
libre4. Il me faut donc remercier toutes les personnes qui ont occupé ce temps libre, par des
bières (qui a dit Max ?), des vins, des repas et des fêtes. Pour commencer, et conformément
à l’article 42b du Code de l’Abbé Mole, je remercie l’ensemble des membres du séminaire de
l’Abbé Mole. Donc

Merci
({

Julien, Silvain, Bastien, Vincent, Vincent, Pierre, Pierre, Irène, Daphné, Manon,

Fathi, Max, Gabriel, Xavier, Arnaud, Jack, Ilia, Jean-François, Julien, Rémi,

Guillaume, Martin, Jonathan et Nicolas5
})
.

Ensuite, un grand merci au bureau du club œnologique de l’ENS (à savoir Arnaud, Dub,
Tony, Julia, Constance, Célia, Micka et Bibi), pour avoir fait de mes mercredis soirs des
bons prétextes (rouges et blancs) pour arriver tard au bureau le jeudi matin. Merci aussi à
l’ancien club du West Coast Swing (à savoir Simon, Camille, Émilie, Nathalie, Rémi, Daphné,
Tiphaine, Adeline, Ismaël et Auréliane) pour m’avoir donné des bons prétextes pour arriver
tard au bureau le samedi et dimanche matin.

Je remercie toutes les personnes qui m’ont invité à dîner pendant cette période. Ces
remerciements concernent particulièrement mes best men Fathi, Bastien et Nathanaël, à la
roadtrippeuse Marie, à la tenniswoman Yasmine, à mon binôme Silvain, à la whisky-drinkeuse
Catherine, au bière-drinkeur Max, au vin-drinkeur Arnaud, à l’opéra-loveuse Léa, au gamer
Vincent, à la Djokovicienne Valérie, au magicien Jean-Baptiste, à la geekette Adeline, au
4D-visionneur Ilia, à la casse-tête-solveuse Albane, à la géniale Tiphaine, au mignon et cha-
rismatique Pierre, à la danseuse Camille, au logicien Simon, à Xavier la blonde, à Anna la
rousse et au Jill- tu-ne-devineras-jamais-ce-qui-m’est-arrivé -Jênn.

Mes derniers remerciements vont à ma famille, qui m’a poussé gentiment à faire une thèse,
et a fait semblant de s’intéresser à mon sujet ensuite. Je remercie en particulier ma femme
Julia, qui m’a accepté comme époux en première année de thèse, et qui l’a regretté les deux
années suivantes6.

Last but not least, je remercie toutes les personnes qui ont cherché leur prénom dans ces
remerciements. Pour ceux qui n’ont pas trouvé leur prénom, c’est une omission de ma part,
et cela ne se reproduira plus.

Enfin, il est faux que je ne remercie pas ceux qui ne croient pas au principe du tiers exclu.

4What else?
5Que je remercie particulièrement pour son mail historique de contrepèteries et le gâteau qui a suivi.
6Surtout depuis qu’elle a dû relire et corriger ces remerciements...



7

Préambule

Cette thèse comprend trois sujets différents, tous en rapport à des problèmes de structures
électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.

Cette thèse commence par une introduction générale présentant les problématiques et les
principaux résultats.

La première partie traite de la théorie de la fonctionnelle de la densité lorsqu’elle est appli-
quée aux modèles d’électrons avec spins polarisés. Cette partie est divisée en deux chapitres.
Dans le premier de ces chapitres, nous introduisons la notion de N -représentabilité, et nous
caractérisons les ensembles de matrices de densité de spin représentables. Dans le second cha-
pitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît
dans les modèles comprenant une polarisation de spin. Le résultat d’existence qui est démon-
tré dans [AC09] pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas
des systèmes avec polarisation de spin.

Dans la seconde partie, nous étudions l’approximation GW. Dans un premier temps, nous
donnons une définition mathématique de la fonction de Green à un corps, et nous expliquons
comment les énergies d’excitation des molécules peuvent être obtenues à partir de cette fonc-
tion de Green. La fonction de Green peut être numériquement approchée par la résolution des
équations GW. Nous discutons du caractère bien posé de ces équations, et nous démontrons
que les équations GW0 sont bien posées dans un régime perturbatif. Ce travail a été effectué
en collaboration avec Eric Cancès et Gabriel Stoltz.

Dans le troisième et dernière partie, nous analysons des méthodes numériques pour cal-
culer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux
chapitres. Dans le premier, nous nous intéressons à l’approximation de Hartree-Fock réduite
(voir [CDL08]). Nous prouvons que si le cristal est un isolant ou un semi-conducteur, alors
les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution
exacte lorsque la taille de la supercellule tend vers l’infini. Ce travail a été réalisé en collabo-
ration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode
numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien
isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère
les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie
Ehrlacher et Damiano Lombardi.
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Preamble

This thesis contains three different topics, all related to electronic structure problems. These
three topics are presented in three independent parts.

This thesis begins with a general introduction presenting the problematics and main re-
sults.

The first part is concerned with Density Functional Theory (DFT), for spin-polarized
models. This part is divided in two chapters. In the first of these chapters, the notion
of N -representability is introduced and the characterizations of the N -representable sets of
spin-density 2× 2 matrices are given. In the second chapter, we show how to mathematically
treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was
proved in [AC09] for spin-unpolarized Kohn-Sham models within the local density approxi-
mation is extended to spin-polarized models.

The second part of this thesis focuses on the GW approximation. We first give a math-
ematical definition of the one-body Green’s function, and explain why methods based on
Green’s functions can be used to calculate electronic-excited energies of molecules. One way
to compute an approximation of the Green’s function is through the self-consistent GW equa-
tions. The well-posedness of these equations is discussed, and proved in the GW0 case in a
perturbative regime. This is joint work with Eric Cancès and Gabriel Stoltz.

In the third and final part, numerical methods to compute band-diagrams of crystalline
structure are analyzed. This part is divided in two chapters. In the first one, we consider a
perfect crystal in the reduced Hartree-Fock approximation (see [CDL08]). We prove that, if the
crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact
solution with an exponential rate of convergence with respect to the size of the supercell. This
is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method
to calculate the band diagram of a crystal (which can be either an insulator or a conductor).
This method, based on reduced basis techniques, speeds up traditional calculations. This is
joint work with Eric Cancès, Virginie Ehrlacher, and Damiano Lombardi.
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CHAPTER 1

INTRODUCTION

1.1 Hamiltonians describing systems of electrons

This thesis focuses on electronic structure problems. We describe a molecule by the non-
relativistic Schrödinger equation in the Born-Oppenheimer approximation. We are interested
in the quantum configurations of the electrons for a given nuclear arrangement. The behavior
of the electrons, from which one can deduce useful physical and chemical properties, is well-
modeled by an electronic Hamiltonian.

1.1.1 The Hamiltonian for spinless systems

In atomic units, the Hamiltonian describing a spinless system of N electrons is of the form

HN (V ) :=

N∑
i=1

(
−1

2
∆i

)
+

N∑
i=1

V (ri) +
∑

1≤i<j≤N

1

|ri − rj |
, (1.1)

where ∆i denotes the Laplacian operator with respect to the i-th spatial component. The
first term of (1.1) corresponds to the kinetic energy. The second term of (1.1) represents the
external potential. For molecular systems, this potential is the classical Coulomb potential
generated by the nuclei

V (r) =
M∑
k=1

−zk
|r−Rk|

, (1.2)

where Rk ∈ R3 denotes the location of the k-th nucleus and zk ∈ N∗ its charge. We denote by
Z :=

∑M
k=1 zk the total nuclear charge of the system. The last term of (1.1) is the electron-

electron Coulomb repulsion. The Hamiltonian HN (V ) acts on the N -fermionic Hilbert space

N∧
L2(R3,C) =

{
Ψ ∈ L2(R3N ,C), ∀p ∈ SN , Ψ(rp(1), . . . , rp(N)) = ε(p)Ψ(r1, . . . , rN )

}
,

(1.3)
endowed with the natural L2(R3N ,C) inner product. In (1.3), SN denotes the set of permu-
tations of [[1, . . . , N ]], and ε(p) the parity of the permutation p. The permutation condition
appearing in (1.3) is referred to as the Pauli principle, and comes from the fact that electrons
are fermions.

Theorem 1.1. Suppose that V is of the form (1.2) with N ≤ Z, and let

D(HN ) :=

{
Ψ ∈

N∧
L2(R3), ∆Ψ ∈ L2(R3N )

}
,



16 Chapter 1. Introduction

where ∆ denotes the Laplacian operator with respect to all 3N variables. Then the operator
HN (V ) with domain D(HN ) is self-adjoint, and its spectrum is as follows:

• the spectrum is bounded from below;

• there exists ΣN ∈ R such that the essential spectrum of HN (V ) is σess(HN (V )) =
[ΣN ,+∞);

• there exist an infinity of eigenvalues below ΣN , which accumulate only at ΣN . All these
eigenvalues are of finite multiplicities [Zhi60];

• if N ≥ 2, then ΣN = E0
N−1 (HVZ Theorem [Hun66, vW64, Zhi60]).

We denote by E0
N (V ) ≤ E1

N (V ) ≤ E2
N (V ) ≤ · · · (or simply E0

N ≤ E1
N ≤ E2

N ≤ · · · when
no confusion is possible) the eigenvalues of HN (V ) below ΣN , ranked in increasing order,
counting multiplicities. With this notation, E0

N (V ) is the ground state energy of HN (V ) (and
a corresponding eigenvector is called a ground state wave-function), and EkN (V ) is the k-th
excited state energy of HN (V ) (and a corresponding eigenvector is called an excited state
wave-function). The spectrum of HN is represented in Figure 1.1.

R

ΣN

E0
N E1

N E2
N · · · σess

eigenvalues embedded in σess

Figure 1.1 – The spectrum of HN (V ).

The set of admissible wave-functions, also called the set of pure-states, is the set of nor-
malized wave-functions with finite kinetic energy, namely

WN :=

{
Ψ ∈

N∧
L2(R3,C), ‖Ψ‖L2(R3N ) = 1, ‖∇Ψ‖L2(R3N ) <∞

}
, (1.4)

where ∇ is the gradient with respect to all 3N variables. With this notation, |Ψ|2(r1, . . . , rN )
represents the density of probability that the N (indistinguishable) electrons are located
at (r1, . . . , rN ).

The ground state energy E0
N (V ) is also the solution of the minimization problem (we

adopt Dirac’s bra-ket notation)

E0
N (V ) := inf

{
〈Ψ|HN (V )|Ψ〉, Ψ ∈ WN

}
. (1.5)

1.1.2 The Hamiltonian for spin-polarized systems

In this thesis, systems of electrons subjected to magnetic fields will also be studied. A good
model to describe such systems is the Schrödinger-Pauli Hamiltonian, which reads, in atomic
units,

H full-SP
N (V,A) :=

 N∑
i=1

(
1

2
|−i∇i + A(ri)|2 + V (ri)

)
+

∑
1≤i<j≤N

1

|ri − rj |

 I2−µ
N∑
i=1

B(ri)·σi,

(1.6)
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where I2 is the 2× 2 identity matrix, A is the external magnetic vector potential, and B :=
curl A is the external magnetic field. The constant µ is the Bohr magneton (whose value
is µ = 1/2 in atomic units). The B · σ term in (1.6) is the Zeeman term, also called the
Stern-Gerlach term, where σi contains the Pauli matrices acting on the i-th spin variable:

σi := (σxi, σyi, σzi) =

((
0 1
1 0

)
i

,

(
0 −i
i 0

)
i

,

(
1 0
0 −1

)
i

)
.

The Schrödinger-Pauli Hamiltonian H full-SP
N (V,A) acts on the N -fermionic Hilbert space

N∧
L2(R3,C2) :=

{
Ψ(r1, s1, . . . , rN , sN ), ri ∈ R3, si ∈ {↑, ↓},∑
s1,··· ,sN∈{↑,↓}N

ˆ
R3N

|Ψ(r1, s1, . . .)|2 dr1 . . . drN <∞,

∀p ∈ SN , Ψ(rp(1), sp(1), . . .) = ε(p)Ψ(r1, s1, . . .)
}
.

endowed with the inner product

〈Ψ1|Ψ2〉 =
∑

(s1,···sN )∈{↑,↓}N

ˆ
R3N

Ψ1(r1, s1, . . .)Ψ2(r1, s1, . . .) dr1 · · · drN .

Here ri ∈ R3 denotes the position of the i-th electron, and si ∈ {↑, ↓} denotes its spin.

In this thesis, we focus on a simplified version of the Schrödinger-Pauli Hamiltonian that we
describe now. Note that the external magnetic vector potential A in (1.6) acts on the spatial
coordinates of the electrons, while the magnetic fieldB acts on the spin of the electrons. These
two effects are of different nature, so that it is convenient to relax the constraint B = curl A,
and consider that the fieldsA andB are independent. Then, by settingA = 0, which amounts
to neglecting orbital magnetism effects, we find the simplified Schrödinger-Pauli Hamiltonian

HSP
N (V,B) :=

N∑
i=1

(
−1

2
∆i + V (ri)

)
I2 − µ

N∑
i=1

B(ri) · σi +
∑

1≤i<j≤N

1

|ri − rj |
I2, (1.7)

which acts on
∧N L2(R3,C2). If the external potential V is of the form (1.2) and the magnetic

field B is in
(
L3/2(R3) + L∞(R3)

)3 and vanishes at infinity, results similar to the ones of
Theorem 1.1 hold true [Gon15a]. We denote by E0

N (V,B) ≤ E1
N (V,B) ≤ . . . the eigenvalues

below the essential spectrum, ranked in increasing order and counting multiplicities. With
this notation, E0

N (V,B) is the ground state energy of the system, and EkN (V,B) is the k-th
excited state energy. As in (1.5), it holds that

E0
N (V,B) := inf

{〈
Ψ
∣∣HSP

N (V,B)
∣∣Ψ〉 , Ψ ∈ Wspin

N

}
, (1.8)

where Wspin
N is the set of admissible spin-polarized wave-functions, defined by

Wspin
N :=

{
Ψ ∈

N∧
L2(R3,C2), ‖Ψ‖L2((R3,C2)N ) = 1, ‖∇Ψ‖L2((R3,C2)N ) <∞

}
.

1.1.3 Problematics

As Dirac wrote in 1929 [Dir29],
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The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble.

This problem is now known as the curse of dimensionality, and refers to the fact that the
state space for problem (1.5) and (1.8) is of dimension 3N , where N is the total number of
electrons in the system into consideration. The state-space cannot be represented numerically
whenever the number of electrons is “too large”. Computing the solution of (1.5) for a small
system like the water molecule H2O (N = 10 electrons) is already unfeasible in practice. This
makes the full problems (1.5) and (1.8) impossible to tackle numerically for most systems of
interest.

The purpose of this thesis is to present some of the approximations that were proposed in
the last decades in the physics and chemistry communities to simplify these problems, and to
study the mathematical properties of the resulting models.

1.2 Density Functional Theory

1.2.1 Derivation of Density Functional Theory

We recall in this section how Density Functional Theory (DFT) is derived. Spin-unpolarized
DFT was introduced in 1964 by Hohenberg and Kohn [HK64] and is a very popular tool in
modern quantum chemistry. The goal of Density Functional Theory (DFT) is to calculate
the ground state energy and the ground state density of an electronic system. It transforms
the high-dimensional linear problems (1.5) or (1.8) into a nonlinear low-dimensional problem.
While DFT has been extensively studied for spin-unpolarized or spinless Hamiltonians of the
form (1.1), its counterpart for spin-polarized Hamiltonian of the form (1.7) (with the Zee-
man term included) received much less attention. When spin is included, we use the name
“Spin-DFT”, or “SDFT”. We present SDFT by following the constraint-search approach by
Levy [Lev79], Valone [Val80] and Lieb [Lie83]. In this section we consider the Schrödinger-
Pauli Hamiltonian HSP

N (V,B) introduced in (1.7), and our goal is to solve (1.8).

The energy of an admissible normalized wave-function Ψ ∈ Wspin
N is

〈
Ψ
∣∣HSP

N (V,B)
∣∣Ψ〉.

By introducing the N -body density matrix ΓΨ = |Ψ〉〈Ψ|, which is the orthogonal projector
onto {CΨ} in

∧N L2(R3,C2), this quantity is also equal to Tr
[
HSP
N (V,B)ΓΨ

]
. The set of

pure-state N -body density matrices is

Gpure
N :=

{
ΓΨ, Ψ ∈ Wspin

N

}
,

and (1.8) can be recast into

E0
N (V,B) = inf

{
Tr
[
HSP
N (V,B)Γ

]
, Γ ∈ Gpure

N

}
.

This is a minimization problem of a linear functional on a (bounded) set. It is therefore
natural to introduce the set of mixed-state N -body density matrices Gmixed

N , defined as the
convex hull of Gpure

N . Naturally, it holds that

E0
N (V,B) = inf

{
Tr
[
HSP
N (V,B)Γ

]
, Γ ∈ Gpure

N

}
= inf

{
Tr
[
HSP
N (V,B)Γ

]
, Γ ∈ Gmixed

N

}
.

(1.9)
For Γ ∈ Gmixed

N with Schwartz kernel Γ(r1, s1, . . . , rN , sN ; r′1, s
′
1, . . . , r

′
N , s

′
N ), we introduce the

spin-density 2× 2 matrix

RΓ(r) :=

(
ρ↑↑Γ ρ↑↓Γ
ρ↓↑Γ ρ↓↓Γ

)
(r),
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where, for α, β ∈ {↑, ↓}2, we set

ραβΓ (r) := N
∑

~s∈{↑,↓}(N−1)

ˆ
R3(N−1)

Γ(r, α,~z, ~s; r, β,~z, ~s) d~z. (1.10)

The key-point of SDFT is to notice that, for Γ ∈ Gmixed
N , it holds that

Tr
[
HSP
N (V,B)Γ

]
= Tr

[
HSP
N (0,0)Γ

]
+

ˆ
R3

trC2

[(
V − µBz −µBx + iµBy

−µBx − iµBy V + µBz

)
RΓ

]
.

(1.11)
Note that the first term of (1.11) no longer depends on the external potential and field. In
the sequel, we denote by

U(V,B) :=

(
V − µBz −µBx + iµBy

−µBx − iµBy V + µBz

)
(1.12)

the matrix which contains all the external data. Let X represents either the word “pure” or
the word “mixed”. From (1.9) and (1.11), we get the so-called constrained-search equality

E0
N (V,B) = inf

Γ∈GXN

{
Tr
[
HSP
N (V,B)Γ

]}
= inf

R∈JXN

{ˆ
R3

trC2 [U(V,B)R] + FX(R)

}
, (1.13)

where JXN is the set of (pure-state or mixed-state) spin-density 2× 2 matrices, defined by

JXN :=
{
RΓ, Γ ∈ GXN

}
, (1.14)

and the function FX is defined by the formula

FX(R) := inf
{

Tr
[
HSP
N (0,0)Γ

]
, Γ ∈ GXN , RΓ = R

}
.

Let us compare (1.8) with (1.13). Problem (1.8) is linear, but suffers from the curse of dimen-
sionality, while (1.13) is a minimization problem on a low-dimensional space, but is nonlinear.
The name SDFT comes from the fact that (1.13) is the minimization of a functional which
depends only on the spin-density 2× 2 matrix R.

In order to solve (1.13), one needs a closed expression for both JXN and FX . Character-
izing the sets J pure

N and Jmixed
N is the N -representability problem, and will be discussed in

Section 1.2.2. As far as FX is concerned, there is no convenient formula for it. Actually, it
was proved that there exists potentials V such that the calculation of E0

N (V,0) at a polyno-
mial accuracy is QMA1-hard [SV09]. This implies that the calculation of FX at a polynomial
accuracy is also QMA-hard. Fortunately, there exist very good computable approximations
of FX that give results in good agreement with physical experiments for most interesting
physical systems. We will discuss one of these approximations in Section 1.2.3.

1.2.2 The N-representability problem

The N -representability problem is concerned with the characterization of the sets J pure
N

and Jmixed
N defined in (1.14). The first results on the N -representability problem were given

by Gilbert [Gil75], Harriman [Har81] and Lieb [Lie83]. In these articles, the authors only
considered the spin-unpolarized case, which amounts to setting B = 0. In this case, it holds
that

trC2 [U(V,0)R] = V ρR,

1QMA stands for Quantum Merlin-Arthur. QMA-hard is the quantum version of NP-hard.
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where ρR = ρ↑↑R +ρ↓↓R is the total electronic density. In the sequel, we denote by ρΓ = ρRΓ
= ρR

when no confusion is possible. The constrained-search method (1.13) in this case can be recast
into

E0
N (V,0) = inf

ρ∈IXN

{ˆ
R3

V ρ+ FX1 (ρ)

}
,

with

IXN =
{
ρΓ, Γ ∈ GXN

}
and FX1 (ρ) = inf

{
Tr [HN (0,0)Γ] , Γ ∈ GXN , ρΓ = ρ

}
.

The N -representability problem in the spin-unpolarized case is therefore concerned with the
characterization of Ipure

N and of Imixed
N .

Theorem 1.2 (Gilbert, Harriman, Lieb). For all N ∈ N∗, it holds that

Ipure
N = Imixed

N = IN :=

{
ρ ∈ L1(R3) ∩ L3(R3), ρ ≥ 0,

ˆ
R3

ρ = N,
√
ρ ∈ H1(R3)

}
. (1.15)

When the magnetic field is not null, we need to characterize the sets J pure
N and Jmixed

N

defined in (1.14). This problem was addressed, but left open, in the work by von Barth and
Hedin [vBH72]. In the sequel,M2×2(E) denotes the set of 2× 2 matrices with coefficients in
the Banach space E. We introduce

CN :=
{
R ∈M2×2(L1(R3,C)), R∗ = R,R ≥ 0,

ˆ
R3

trC2 [R] = N,
√
R ∈M2×2(H1(R3,C))

}
,

(1.16)
and C0

N := {R ∈ CN , detR ≡ 0}. In Chapter 2, we following theorem is proved.

Theorem 1.3 (DG).
Case N = 1: It holds that

J pure
1 = C0

1 and Jmixed
1 = C1.

Case N ≥ 2: For all N ≥ 2, it holds that

J pure
N = Jmixed

N = CN .

Since GXN is convex and the map Γ 7→ RΓ is linear, we deduce that the set CN defined
in (1.16) is convex (which is not obvious from its definition). Comparing (1.15) and (1.16),
we see that Theorem 1.3 is a natural extension of Theorem 1.2.

Representability with paramagnetic-current.
The version of DFT dealing with both charge and current densities is called Current-(Spin)-
DFT, or C(S)DFT [VR88]. For Γ ∈ Gmixed

N , we introduce the paramagnetic current jΓ = j↑Γ+j↓Γ
where

∀α ∈ {↑, ↓} , jαΓ = Im

N ∑
~s∈{↑,↓}N−1

ˆ
R3(N−1)

∇r′Γ(r, α,~z, ~s; r′, α,~z, ~s)
∣∣∣
r′=r

d~z

 .

This current appears when performing the constrained-search method (see (1.13)) on the
full Schrödinger-Pauli Hamiltonian H full-SP

N (V,A) defined in (1.6). More specifically, let us
assume that A is smooth enough so that the domain of H full-SP

N (V,A) is exactly the one of
H full-SP
N (V,0). The constrained-search method in this case leads to

E0
N (V,A) = inf

(R,j)∈KXN

{ˆ
R3

(
trC2 [U(R,B)R] +

|A|2

2
ρ+ A · j

)
+ FX2 (R, j)

}
,
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where U(V,B) was defined in (1.12),

KXN =
{

(RΓ, jΓ), Γ ∈ GXN
}

is the set we would like to characterize, and

FX2 (R, j) = inf
{

Tr
[
H full-SP
N (0,0)Γ

]
, Γ ∈ GXN , (RΓ, jΓ) = (R, j)

}
,

is an unknown functional. In C(S)DFT, the N -representability problem is concerned with
the characterization of Kpure

N and Kmixed
N . Giving an exact expression is known to be very

difficult, but to give (mild) sufficient conditions for a pair (R, j) to be representable is possible.
In [LS13], Lieb and Schrader studied the spin-unpolarized case, and gave such conditions for
the representability of a pair (ρ, j), where ρ is the total electronic density. They proved the
following result, valid for N ≥ 4. Recall that IN was defined in (1.15).

Theorem 1.4 (Lieb, Schrader). Suppose N ≥ 4. A sufficient set of conditions for a pair
(ρ, j) to be pure-state N -representable is that, on the one hand,

ρ ∈ IN , ρ−1|j|2 ∈ L1(R3), (1.17)

and that, on the other hand, there exists δ > 0 such that

sup
r∈R3

f(r)(1+δ)/2
(
|w(r)|+ |∇w(r)|

)
<∞, (1.18)

where w := curl (ρ−1j) is the vorticity, and f(r) := (1 + (r1)2)(1 + (r2)2)(1 + (r3)2).

The conditions in (1.17) are necessary conditions, and the condition (1.18) is very mild.
By adapting their proof to the spin-polarized case, we were able to prove a similar result,
under the condition N ≥ 12 (see Chapter 2). Recall that CN was defined in (1.16).

Theorem 1.5 (DG). Suppose N ≥ 12. A sufficient set of conditions for a pair (R, j) to be
pure-state N -representable is that, on the one hand,

R ∈ CN , ρ−1
R |j|

2 ∈ L1(R3),

and that, on the other hand, there exists δ > 0 such that

sup
r∈R3

f(r)(1+δ)/2
(
|w(r)|+ |∇w(r)|

)
<∞.

1.2.3 The Local Spin-Density Approximation

We now turn to the question of how to approximate the functional FX(R) appearing in (1.13).
In this thesis, we consider the approximation of Fmixed(R). In spin-unpolarized models, the
first successful approximation, called the Local Density Approximation (LDA) was introduced
by Kohn and Sham [KS65], and is still broadly used nowadays. While in their article, the
authors gave some clues on how to adapt their method to spin-polarized systems, the corre-
sponding theory was pioneered by von Barth and Hedin [vBH72] and is known as the Local
Spin-Density Approximation (LSDA).

For a mixed-state Γ ∈ Gmixed
N , we introduce the corresponding one-body spin-density

matrix

γΓ :=

(
γ↑↑Γ γ↑↓Γ
γ↓↑Γ γ↓↓Γ

)
,
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where
γαβΓ (r, r′) := N

∑
~s∈{↑,↓}N−1

ˆ
R3(N−1)

Γ(r, α,~z, ~s; r′, β,~z, ~s) d~z. (1.19)

Comparing (1.10) and (1.19), we see that RΓ(r) = γΓ(r, r), so that RΓ depends on Γ only
through γΓ. We will write Rγ instead of RΓ when no confusion is possible. Likewise, the total
electronic density of a state Γ ∈ Gmixed

N will be denoted by ρΓ = ρR = ργ .

The set of mixed-state one-body spin-density 2× 2 matrices is

PN := {γΓ, Γ ∈ Gmixed
N }.

Identifying the kernel γ(r, r′) with the corresponding operator of S(L2(R3,C2)), where S(H)
denotes the set of bounded self-adjoint operators acting on the Hilbert space H, Coleman
[Col63] proved that

PN =
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}
.

Physically speaking, this is the set of one-body density matrices of systems with N -electrons
(Tr(γ) = N), satisfying the Pauli principle (0 ≤ γ ≤ 1), and with finite kinetic energy
(Tr(−∆γ) <∞). In a similar way, we can define, for λ > 0,

Pλ :=
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr(γ) = λ, Tr(−∆γ) <∞

}
. (1.20)

We also define

Jmixed
λ := {Rγ , γ ∈ Pλ} and Imixed

λ := {ργ , γ ∈ Pλ} .

The sets Jmixed
λ and Imixed

λ have expressions similar to Jmixed
N and Imixed

N (see Theorem 1.5
and (1.15) respectively). The idea of Kohn and Sham [KS65], then adapted by von Barth and
Hedin [vBH72] to the spin-unpolarized setting, is to split Fmixed(R) into three contributions

Fmixed(R) = TKS(R) + J(ρR) + Exc(R). (1.21)

The first term TKS represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

∀R ∈ Jmixed
λ , TKS(R) := inf

{
1

2
Tr (−∆γ) , γ ∈ Pλ, Rγ = R

}
.

The second term of (1.21) is the Hartree term, defined by

∀ρ ∈ Imixed
λ , J(ρ) :=

1

2

¨
R3×R3

ρ(r)ρ(r′)

|r− r′|
dr dr′.

Finally, the last term of (1.21) is the exchange-correlation functional defined by

Exc(R) := Fmixed(R)− TKS(R)− J(ρR).

Since Fmixed is a non-explicit functional, Exc is also a non-explicit functional. It is however
possible to construct explicit approximations of Exc giving rise to accurate predictions for
the ground state energies of most molecular systems [ED11]. In the Local Spin-Density
Approximation derived by von Barth and Hedin [vBH72], it reads

Exc(R) ≈ ELSDA
xc (ρ+, ρ−) :=

1

2

[
ELDA

xc (2ρ+) + ELDA
xc (2ρ−)

]
, (1.22)
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where ρ+/− are the two eigenvalues of the spin-density 2 × 2 matrix R, and ELDA
xc is the

standard LDA exchange-correlation functional in the spin-unpolarized case [KS65], of the
form

ELDA
xc (ρ) :=

ˆ
R3

g(ρ(r)) dr. (1.23)

For all ρ ∈ R+, the real value g(ρ) is an approximation of the exchange-correlation energy
density of the uniform electron gas with density ρ. Several functions g are available (VWS
[VWN80], PZ81 [PZ81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic
conditions for low and high densities. The minimization problem (1.13) with the approxima-
tion (1.22)-(1.23) can be rewritten, using one-body density matrices, as a variational problem
of the form

E0
λ := inf {E(γ), γ ∈ Pλ} , (1.24)

where

E(γ) =
1

2
Tr
(
−∆γ↑↑

)
+

1

2
Tr
(
−∆γ↓↓

)
+ J(ργ) +

ˆ
R3

trC2 [URγ ] + ELSDA
xc (ρ+

γ , ρ
−
γ ).

We recall that the 2× 2 matrix U contains all the external data, i.e. the electric potential V
and the magnetic field B (see (1.12)). The physical situation corresponds to λ = N ∈ N, but
as usual in variational problems set on the whole space, it is useful to relax the constraint
Tr(γ) ∈ N to allow the particles to escape to infinity.

The spin-unpolarized model corresponds to the situation where we impose γ to satisfy
γ↑↑ = γ↓↓ and γ↑↓ = γ↓↑ = 0. The resulting model was studied mathematically by Anan-
tharaman and Cancès [AC09].

In Chapter 3, we prove the following theorem.

Theorem 1.6 (DG). Under the following assumptions

1/ the function g in (1.23) is of class C1(R+) and satisfies:

g(0) = 0

g′ ≤ 0

∃ 0 < β− ≤ β+ <
2

3
, sup

ρ∈R+

|g′(ρ)|
ρβ− + ρβ+ <∞

∃ 1 ≤ α < 3

2
, lim sup

ρ→0+

g(ρ)

ρα
< 0,

(1.25)

2/ all entries of U are in L
3
2

+ε(R3)+L∞(R3) and vanish at infinity, and V := trC2(U) has
the form (1.2),

the problem E0
λ defined in (1.24) has a minimizer whenever λ ≤ Z.

This theorem is a generalization of the spin-unpolarized result [AC09]. In particular, the
conditions (1.25) are the ones found in [AC09]. These conditions are satisfied for the usual
choices of g mentioned above.

1.3 The GW approximation

The fourth chapter of this thesis is concerned with the GW approximation.2 This method was
introduced by Hedin [Hed65, HL70] and is a very successful method to calculate electronic-
excitation energies for finite systems, or band gaps for crystalline structures. Together with

2GW is not an acronym: G denotes the Green’s function and W the screened Coulomb operator.
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Eric Cancès and Gabriel Stoltz, we gave a rigorous definition of the operators involved in the
GW formalism, we reformulated the so-called GW0 equations, and proved the existence of a
solution in a perturbative regime.

While the density functional theory introduced in the previous section works well to cal-
culate ground state energies, it fails to predict excitation properties of molecules, such as the
electronic-excitation energies. In order to calculate such quantities, several approaches have
been considered in the last decades [ORR02]. Among them are the time-dependent DFT
(TDDFT) [MMN+12, MUN+06], wave-function methods [HJO14] such as Coupled-Cluster or
full-CI, and Green’s function methods. The GW method is part of the last category.

From now on, we work with spinless systems for simplicity: our starting N -body Hamil-
tonian is the one in (1.1).

1.3.1 Electronic-excitation energies and Green’s functions

Let us consider anN -electron system modeled by a Hamiltonian of the form (1.1). We perform
the following experiment (called angle-resolved photoelectron spectroscopy, or ARPES):

• we start from the N -electron system in its ground state, with energy E0
N ;

• we give the system some energy (photons) in order to rip an electron off.

After this experiment, we expect the system to relax in either the ground state or an excited
state of the corresponding (N − 1)-electron system (see Figure 1.2).

hν

System with N particles

Ekin

System with N − 1 particles

ΣNE0
N

ΣN−1E0
N−1 E1

N−1

(HVZ theorem)

electronic excitation

Figure 1.2 – Schematic view of an electronic excitation (here, loss of an electron). The system
in the ground state of HN (V ) goes to an excited state of HN−1(V ).

One can also consider the experiment where the system absorbs an electron, and releases
energy. With the notation introduced after Theorem 1.1, the quantities we would like to
evaluate are

E0
N − EkN+1 (gain of an electron) and E0

N − EkN−1 (loss of an electron), (1.26)
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called the electronic-excitation energies of the system. The electronic-excitation energies differ
from the optical-excitation energies, which are quantities of the form E0

N −EkN (same number
of electrons). Note that we neglect the effects due to the relaxation of the nuclei: we impose
the external potential V to be the same before and after the experiment.

We suppose in the sequel that V is of the form (1.2) with N ≥ 2. We also make the
following additional assumptions (we denote by E0

N+1 := inf σ(HN+1)):

• the ground state E0
N is a simple eigenvalue of HN ;

• stability condition:3 it holds 2E0
N ≤ E0

N+1 + E0
N−1.

The first assumption is a very standard one. The second assumption states that the ionization
energy E0

N−1 − E0
N > 0 is strictly greater than the affinity energy E0

N − E0
N+1 > 0. It will

be useful to “link” the problems with N + 1, N and N − 1 electrons. We denote by Ψ0
N the

(real-valued) ground state of HN .

In order to compute the electronic-excitation energies, we introduce the following natural
sets

Sp := σ(HN+1 − E0
N ) (particle electronic-excitation set)

Sh := σ(E0
N −HN−1) (hole electronic-excitation set).

These sets are linked to the so-called particle and hole one-body Green’s functions, that we
define now. Since we are working with a variable number of electrons, it is natural to work
in the Fock space

F =
∞⊕
N=0

HN , where H0 = C, H1 = L2(R3,C), HN =
N∧
H1.

The creation and annihilation operators a† and a are bounded operators from H1 to B(F),
where B(E) denotes the space of bounded operators from the Banach space E into itself.
They satisfy

∀φ ∈ H1, ∀N ∈ N, a†(φ) : HN → HN+1, a(φ) : HN+1 → HN , a†(φ) = (a(φ))∗,

and the expression of a is given by

∀φ ∈ H1, ∀ΨN ∈ HN ,
(
a(φ)|ΨN 〉

)
(r1, . . . , rN−1) =

√
N

ˆ
R3

φ(r)ΨN (r, r1, . . . , rN−1) dr.

When the creation and annihilation operators are evaluated on Ψ0
N , we obtain the operators

A∗+ : H1 → HN+1

f 7→ a†(f)|Ψ0
N 〉

and
A− : H1 → HN−1

f 7→ a
(
f
)
|Ψ0

N 〉
. (1.27)

They satisfy A∗+ ∈ B(H1,HN+1) and A− ∈ B(H1,HN−1). The adjoint of A− is denoted by
A∗− and the one of A∗+ is denoted by A+ :=

(
A∗+
)∗. The one-body particle Green’s function

Gp and hole Green’s function Gh are functions from the time domain R to B(H1), defined by

∀τ ∈ R, Gp(τ) := −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+ (particle), (1.28)

3The question “Is the stability condition always true for Coulomb systems?” is an open problem [BDS14,
Part VII].
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and
∀τ ∈ R, Gh(τ) := iΘ(−τ)A∗−eiτ(HN−1−E0

N )A− (hole). (1.29)

Here, Θ denotes the Heaviside function. Let us give a physical interpretation of the one-body
particle Green’s function Gp. From (1.27) and (1.28), we obtain

∀f, g ∈ H1, 〈g |Gp(τ)| f〉 = −iΘ(τ)
〈

Ψ0
N

∣∣∣a(g)e−iτ(HN+1−E0
N )a†(f)

∣∣∣Ψ0
N

〉
,

which can be read as follows. We first start from the ground state with N electrons Ψ0
N . We

then add an electron in the “orbital” f , and let the system evolves with its N + 1 electrons
for some time τ > 0. Finally, we remove the electron in the “orbital” g, and measure how
close we are from the initial ground state Ψ0

N . A similar interpretation can be given for the
one-body hole Green’s function.

The Green’s functions are fundamental quantities in many-body perturbation theory. The
hole Green’s function contains a lot of useful information about the electronic system. For
instance, by introducing the one-body density matrix γ0

N ∈ B(H1) with kernel

γ0
N (r, r′) := N

ˆ
R3(N−1)

Ψ0
N (r, r2, · · · , rN ) Ψ0

N (r′, r2, · · · , rN ) dr2 · · · drN ,

it can be checked that γ0
N = −iGh(0−) = A∗−A−. As a consequence, the electronic ground-

state density

ρ0
N (r) := N

ˆ
R3(N−1)

∣∣Ψ0
N (r, r2, · · · , rN )

∣∣2 dr2 · · · drN = γ0
N (r, r)

is a quantity encoded in the hole Green’s function. The ground state energy E0
N can also be

recovered from the hole Green’s function via the Galiskii-Migdal formula [GM58]:

E0
N =

1

2
TrH1

[(
d

dτ
− i

(
−1

2
∆ + V

))
Gh(τ)

∣∣∣
τ=0−

]
. (1.30)

Finally, it is possible to extract the particle and hole electronic-excitation sets from the Green’s
functions. To see this, we time-Fourier transform Gp and Gh. We use the following normal-
ization for the time-Fourier transform:

∀f ∈ L1(R, E), E Banach space, [FT f ] (ω) = f̂(ω) =

ˆ +∞

−∞
f(τ) eiωτ dτ.

From the following equality, which holds in the negative Sobolev space H−1(R) for instance,

Θ̂(ω) = πδ0 + ip.v.

(
1

ω

)
, (1.31)

where p.v. is the Cauchy principal value and δ0 is the Dirac distribution at the origin, we
obtain

Ĝp = A+p.v.

(
1

· − (HN+1 − E0
N )

)
A∗+ − i

(
πA+P

HN+1−E0
NA∗+

)
in H−1(Rω,B(H1)),

(1.32)
and

Ĝh = A∗−p.v.

(
1

· − (E0
N −HN−1)

)
A− + i

(
πA∗−P

E0
N−HN−1A−

)
in H−1(Rω,B(H1)),

(1.33)
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where we denoted by PHb := 1b(H) the spectral projection on the Borelian b ∈ B(R) of the
operator H (here B(R) denotes the Borel σ-algebra of R). In the sequel, if A is a bounded
operator on H1, we denote by ReA := 1

2(A + A∗) its self-adjoint part (or real part), and by
ImA := 1

2i(A−A
∗) its skew-adjoint part (or imaginary part).

From (1.32) and (1.33), we see that the electronic-excitation sets Sh and Sp are linked to
the imaginary part of the Green’s functions (also called spectral functions, up to a multiplica-
tive factor). More specifically, it holds that

Sp ⊂ Supp
(

Im Ĝp

)
and Sh ⊂ Supp

(
Im Ĝh

)
.

From this we deduce two facts. First, we can indeed recover the electronic-excitation
energies from the (time-Fourier transform of the) Green’s functions. Then, we expect both Ĝp

and Ĝh to be highly peaked (they are irregular distributions) which makes the mathematical
analysis cumbersome and the numerical approximation of these operators quite difficult.

1.3.2 Analytic continuation and chemical potential

In order to work with more regular objects, we consider the analytical continuations of Ĝp

and Ĝh in the complex plane. To give a flavor of the tools used to perform such an analytical
continuation, we recall the Titchmarsh’s theorem [Tit48] in its simplest form. In the sequel,
we denote by U := {z ∈ C, Im (z) > 0}, and by L := {z ∈ C, Im (z) < 0} the (strict) upper
and lower half complex planes respectively. The Laplace transform of a function f ∈ C∞c (R)
is4

∀z ∈ C, f̃(z) :=

ˆ
R
f(t)eiztdt.

It can be extended in some distributional sense.

Theorem 1.7 (Titchmarsh’s theorem in L2(R) [Tit48]). Let f ∈ L2(R) and let f̂ ∈ L2(R) be
its time-Fourier transform. The following assertions are equivalent:

(i) f is causal (i.e. f(t) = 0 for almost all τ < 0) ;

(ii) there exists an analytic function F in the upper half-plane U satisfying

sup
η>0

(ˆ +∞

−∞
|F (ω + iη)|2 dω

)
<∞

and such that, F (·+ iη)→ f̂ strongly in L2(R), as η → 0+ ;

If these assertions are satisfied, then the function F in (ii) is unique, and coincides with the
Laplace transform f̃ of f .

This theorem states that the function f̂ (which may be irregular) has a regular analytic
continuation f̃ in the strict upper half-plane U, and that we can indeed recover f̂ from f̃ . A
similar theorem holds true for anti-causal functions (i.e. f(t) = 0 for almost all t < 0) by
changing U into L.

4The Laplace transform is usually defined as

F (p) =

ˆ ∞
0

f(τ)e−pτdτ.

Our definition, which is better adapted to our setting, amounts to setting z = ip.
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In our case, the Laplace transforms of Gp and Gh are respectively given by

∀z ∈ U, G̃p(z) := A+
1

z − (HN+1 − E0
N )
A†+ and ∀z ∈ L, G̃h(z) := A†−

1

z − (E0
N −HN−1)

A−.

(1.34)
They are analytic functions on U and L respectively. However, from (1.34), we see that we
can extend the domain of analyticity of G̃p and G̃h to C \ Sp and C \ Sh respectively (see
Figures 1.3 and 1.4).

σ(HN+1 − E0
N )E0

N+1 − E0
N

analytic continuation

Figure 1.3 – The continuation of G̃p(z).

σ(E0
N −HN−1) E0

N − E0
N−1

analytic continuation

Figure 1.4 – The continuation of G̃h(z).

From the stability condition, it holds E0
N − E0

N−1 < E0
N+1 − E0

N . We define the total
Green’s function G̃(z) by (see Figure 1.5)

∀z ∈ U ∪ L ∪ (E0
N − E0

N−1, E
0
N+1 − E0

N ), G̃(z) := G̃p(z) + G̃h(z). (1.35)

We introduce the chemical potential µ, which is any real number satisfying

E0
N − E0

N−1 < µ < E0
N+1 − E0

N . (1.36)

In the sequel, we will only work with the operator-valued regular function ω 7→ G̃(µ + iω).
This function has very nice properties, both in term of regularity and integrability, and it
contains the same information as Gh and Gp altogether. The goal of the GW method is to
provide a computable approximation of this function.

σ(E0
N −HN−1)

σ(HN+1 − E0
N )

E0
N − E0

N−1

E0
N+1 − E0

N

µ+ iR

Figure 1.5 – The domain of analyticity of G̃(z).

Let us conclude this section by identifying the Green’s function in the case of a non-
interacting system. Let

h1 = −1

2
∆ + V1
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be a one-body Hamiltonian, and consider the mean-field N -body non-interacting Hamiltonian

H0,N :=

N∑
i=1

h1,ri =

N∑
i=1

(
−1

2
∆ri + V1(ri)

)
.

We assume that h1 has at least N negative eigenvalues ε1 ≤ ε2 ≤ . . . ≤ εN , counting
multiplicities, and that εN < εN+1, where εN+1 is either the (N + 1)st eigenvalue of h1 if it
exists, or the bottom of the essential spectrum of h1 otherwise. This fact implies both that
the ground state E0

0,N of H0,N is simple (with E0
0,N = ε1 + . . . + εN ), and that the stability

condition is satisfied for the non-interacting system, since

E0
0,N − E0

0,N−1 = εN < εN+1 = E0
0,N+1 − E0

0,N .

We denote by µ0 the chemical potential of the non-interacting system, i.e. any real number
satisfying

εN < µ0 < εN+1. (1.37)

Finally, the H1-orthogonal projection on the occupied states is denoted by

γ0
0,N := 1(−∞,µ0)(h1) =

N∑
k=1

|φk〉〈φk|, (1.38)

where {φk}1≤k≤N is an orthonormal family of (real-valued) eigenfunctions of h1 correspond-
ing to its lowest eigenvalues: h1φk = εkφk. The one-body particle, hole and total Green’s
functions G0,p, G0,h and G0 of the non-interacting system have properties similar to the ones
of the interacting system.

Lemma 1.8. It holds

∀τ ∈ R, G0,p(τ) = −iΘ(τ)
(
γ0

0,N

)⊥
e−iτh1 and G0,h(τ) = iΘ(−τ)γ0

0,Ne−iτh1 . (1.39)

The analytic continuations of their Laplace transforms, G̃0,p and G̃0,h are respectively

∀z ∈ C \ (εN+1,∞), G̃0,p(z) =

(
γ0

0,N

)⊥
z − h1

, and ∀z ∈ C \ (−∞, εN ), G̃0,h(z) =
γ0

0,N

z − h1
.

The total Green’s function of the non-interacting system is, in the complex frequency domain,

∀z ∈ U ∪ L ∪ (εN , εN+1), G̃0(z) = (z − h1)−1 . (1.40)

The Green’s function for the non-interacting system is simply the resolvent of the corre-
sponding one-body operator h1.

1.3.3 The self-energy operator

By analogy to the non-interacting case (1.40), we define the one-body dynamical Hamilto-
nian H̃(z) as

∀z ∈ U ∪ L ∪ (E0
N − E0

N−1, E
0
N+1 − E0

N ), H̃(z) = z − G̃(z)−1,

so that G̃(z) =
(
z − H̃(z)

)−1
. The following lemma shows that this definition indeed makes

sense.

Lemma 1.9. For any z ∈ U ∪ L ∪ ((E0
N −E0

N−1), E0
N+1 −E0

N ), the operator H̃(z) is a well-
defined closed operator on H1, with domain D̃(z), where D̃(z) is dense in H1 and D̃(z) ⊂
H2(R3,C).
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For each complex frequency z, H̃(z) may have (complex) eigenvalues. Such an eigenvalue
is called a quasi-energy, and a corresponding eigenvector is called a quasi-particle.

We finally link the one-body non-interacting Hamiltonian with the one-body dynamical
Hamiltonian. To do so, we assume that the chemical potentials µ and µ0 defined in (1.36)
and (1.37) respectively can be chosen equal. In this case, we can define the self-energy Σ on
the imaginary axis µ+ iR by the Dyson equation

∀ω ∈ R, Σ̃(µ+ iω) := H̃(µ+ iω)− h1 = G̃0(µ+ iω)−1 − G̃(µ+ iω)−1 (Dyson equation).
(1.41)

The self-energy can be defined on a larger domain, but its definition on µ+ iR will be enough
for our purpose. Note that the Dyson equation defines the self-energy, and that the self-energy
depends on the choice of h1.

The road-map of the GW method is as follows:

• Construct a good one-body mean-field Hamiltonian h1. In the original article by
Hedin [Hed65], h1 is the Hartree model, solution of the self-consistent equation


h1 = −1

2∆ + V + ρ0
0,N ∗

1

| · |
,

ρ0
0,N density of γ0

0,N := 1(−∞,µ0)(h1).

(1.42)

We refer to [Sol91] for a mathematical analysis of this model.

• Construct an approximation of the self-energy: Σ̃GW(µ+ i·) ≈ Σ̃(µ+ i·). To construct
such an approximation is the topic on the next section.

• Define the approximation of the Green’s function G̃GW(µ + i·) via the Dyson equa-
tion (1.41).

1.3.4 The Hedin’s equations, the GW equations and the GW0 equations

The definition (1.34)-(1.35) of the Green’s function G̃ is not usable in practice, for it neces-
sitates to compute quantities which suffer from the curse of dimensionality (for instance the
resolvent of HN+1 − E0

N ). Fortunately, it turns out that G̃ satisfies a set of self-consistent
equations, called the Hedin’s equations. These equations were introduced by Hedin in its
pioneering article [Hed65]. They were derived from physical considerations, using many-body
perturbation theory. The derivation of Hedin is beyond the scope of this thesis, and is not
well-understood mathematically speaking.

We denote by 1 := (r1, t1), 2 := (r2, t2), etc. a space-time point. The space-time point
1+ is (r1, t

+
1 ), where t+1 is a time strictly after t1, but infinitesimally close to t1. The notation

d1 stands for dr1dt1. A space-time operator A has a kernel A(12) = A(r1, t1; r2, t2), and all
operators that we will consider satisfy the relation A(12) = A(r1, 0; r2, t2− t1) := A(r1, r2; τ)
where τ = t2 − t1. We denote by A(τ) the operator with kernel A(r1, r2; τ). The Hedin’s
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equations read as follows [Hed65]:

The Hedin’s equations

G(12) = G0(12) +

ˆ
d(34)G0(13)Σ(34)G(42) (Dyson equation)

Σ(12) = i

ˆ
d(34)G(13)W (41+)Γ(32;4) (Self-energy)

W (12) = vc(12) +

ˆ
d(34)vc(13)P (34)W (42) (Screened interaction)

P (12) = −i

ˆ
d(34)G(13)G(41+)Γ(34;2) (Irreducible polarization)

Γ(12;3) = δ(12)δ(13) +

ˆ
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(67;3) (Vertex function).

Here, vc represents the Coulomb operator, with kernel

vc(12) := vc(r1, r2)δ0(τ) :=
1

|r1 − r2|
δ0(τ). (1.43)

As we can see, the Hedin’s equations involve a lot of operator-valued functions. Some
of them are well-defined, and some of them are not well-understood mathematically. In
particular, it is unclear in what sense the partial derivative

∂Σ(12)

∂G(45)
(1.44)

is taken. In practice, it turns out that this term may be neglected for most interesting systems.
To set it to 0 leads to the GW equations, also introduced by Hedin in the same article.

The GW equations Find GGW solution to the system

GGW(12) = G0(12) +

ˆ
d(34)G0(13)ΣGW(34)GGW(42) (1.45a)

ΣGW(12) = iGGW(12)WGW(21+) (1.45b)

WGW(12) = vc(12) +

ˆ
d(34)vc(13)PGW(34)WGW(42) (1.45c)

PGW(12) = −iGGW(12)GGW(21+) (1.45d)

The name “GW” comes from (1.45b). These equations are usually solved self-consistently.
In Chapter 4, we focus on the GW0 equations, which adds an extra simplification. The GW0

equations are obtained by setting WGW ≈ W 0, where W 0 is the screened interaction in the
random phase approximation (RPA).

The GW0 equations Find GGW0

solution to the system

GGW0

(12) = G0(12) +

ˆ
d(34)G0(13)ΣGW0

(34)GGW0

(42) (1.46a)

ΣGW0

(12) = iGGW0

(12)W 0(21+) (1.46b)

In Chapter 4, we transform the GW0 equations (1.46) into formally equivalent equations
having better properties, and we study the resulting equations.
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The kernel-product of operators
The GW0 equation (1.46b) is of the form C(12) = A(12)B(21). The Schwartz kernels of the
operators A and B are multiplied. It is unclear that such a definition makes sense, as the
multiplication of two kernels is not, in general, the kernel of a well-defined operator. We need
to clarify the meaning of such a multiplication.

We start with time-independent operators. Let A ∈ B(H1) and B ∈ B(H1) have ker-
nels A(r, r′) and B(r, r′) respectively. We would like to define the operator C with ker-
nel C(r, r′) := A(r, r′)B(r′, r). Formally, it holds that, for f, g ∈ H1,

〈f |C|g〉 =

ˆ
R3

ˆ
R3

f(r)C(r, r′)g(r′) dr dr′ =

ˆ
R3

ˆ
R3

f(r)A(r, r′)g(r′)B(r′, r) dr dr′

= TrH1(AgBf). (1.47)

This motivates the following definition.

Definition 1.10 (kernel-product). The kernel-product of A ∈ H1 and B ∈ H1 is the opera-
tor C := A�B, if it exists, defined by the sesquilinear form

∀f, g ∈ H1, 〈f |C|g〉 = TrH1(AgBf).

In practice, the well-posedness of the kernel-product A � B is given by results similar
to the following lemma. In the sequel, we denote by Sk(H) the k-th Schatten class of the
Hilbert space H ; S1(H) is the set of trace-class operators on H, and S2(H) is the set of
Hilbert-Schmidt operators on H.

Lemma 1.11. If B ∈ B(H1) is such that, for all f, g ∈ H1, the operator gBf is Hilbert-
Schmidt (i.e. in the Schatten class S2(H1)), with

∃KB ∈ R+, ∀f, g ∈ H1,
∥∥gBf∥∥

S2(H1)
≤ KB‖g‖H1‖f‖H1 ,

then, for all A ∈ B(H1), the operator A�B is a well-defined bounded operator on H1, and

‖A�B‖B(H1) ≤ KB‖A‖B(H1).

Reformulation of the GW0 equations
After some manipulations, that we do not describe in this introduction, we were able to show
that the GW0 equations (1.46) are formally equivalent to the following equations.

The -new- GW0 equations

Find G̃GW0
(µ0 + i·) ∈ L2(Rω,B(H1)) solution to the system

(
GW0

)

G̃GW0

(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0

(µ0 + iω)

)]−1

,

Σ̃GW0
(µ0 + iω) = Kx −

1

2π

ˆ +∞

−∞
G̃GW0(

µ0 + i(ω + ω′)
)
� W̃ 0

c (iω′) dω′,

(1.48)

where h1 is the one-body Hartree operator defined in (1.42), and Kx is the operator with
kernel

Kx(r, r′) = −
γ0

0,N (r, r′)

|r− r′|
. (1.49)
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The first equation of (1.48) is the Dyson equation (1.41). The right-hand side of the sec-
ond equation of (1.48) contains two terms. The first one Kx is the Fock operator (the one
that we find in Hartree-Fock models), and the second one involves the operator W̃ 0

c , which is
the correlation part of the screened interaction (we do not define this operator in this intro-
duction, and refer to Chapter 4, Section 4.4.2). Note that the convolution is performed on an
imaginary axis. The fact that this convolution is equivalent to the time-multiplication (1.46b)
comes from the so-called contour deformation technique introduced first by Rojas, Godby and
Needs [RGN95] (see also [RSW+99]).

Seeing the RPA screened operator W̃ 0 = vc + W̃ 0
c as a dynamical screened Coulomb

operator, the GW approximation can be interpreted as a dynamical version of the Hartree-
Fock model.

1.3.5 Well-posedness of the GW0 equations in a perturbative regime

The main results of Chapter 4 is concerned with the study of the GW0 equations (1.48).
Together with Eric Cancès and Gabriel Stoltz, we first proved that the kernel-product of the
first equation indeed makes sense.

Lemma 1.12. For all Gapp(µ0 + i·) ∈ L2(R,B(H1)) and all ω ∈ R, the operator

Σ̃app
c (µ0 + iω) = − 1

2π

ˆ +∞

−∞
G̃app

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′

is a well-defined bounded operator on H1.

Unfortunately, we were not able to fully analyze (1.48): we did not find mathematical
evidence that the operator µ0 + iω −

(
h1 + Σ̃app(µ0 + iω)

)
should be invertible at each step

of a self-consistent algorithm. We therefore studied the GW0 equations in a perturbative
regime. For λ > 0, we introduce

The GW0
λ equations

Find G̃GW0
λ ∈ L2(R,B(H1)) solution to the system

(
GW0

λ

)

G̃GW0

λ(µ0 + iω) =

[
µ0 + iω −

(
h1 + λΣ̃GW0

λ(µ0 + iω)

)]−1

,

Σ̃GW0
λ(µ0 + iω) = Kx −

1

2π

ˆ +∞

−∞
G̃GW0

λ

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

(1.50)

The case λ = 0 corresponds to the non-interacting system: G̃GW0
λ=0(µ0 +i·) = G̃0(µ0 +i·).

The parameter λ can be seen as a coupling constant for the two-body interaction between
electrons. We proved the following existence and unicity result.

Theorem 1.13 (Eric Cancès, DG, Gabriel Stoltz). There exists λ∗ > 0 such that, for all

0 ≤ λ ≤ λ∗, there exists a unique solution G̃GW0
λ(µ0 + i·) ∈ L2(R,B(H1)) to (1.48) which is

close to G̃0(µ0 + i·) in L2(R,B(H1)).
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1.4 Numerical simulation of crystalline structures

The last part of this thesis concerns the numerical simulation of perfect crystals. A perfect
crystal is characterized by a lattice R of R3 and an R-periodic function µper representing the
nuclear charge density. The electronic system is described by a mean-field one-body electronic
Hamiltonian of the form

Hper := −1

2
∆ + Vper, acting on L2(R3,C), (1.51)

where Vper is an R-periodic potential. In practice, Vper is the solution of a nonlinear self-
consistent equation. Such type of equations are motivated by means of thermodynamic limit
procedures [CLL98b]. In the sequel, we denote by Γ the unit cell of the lattice R, and
by ΓL := LΓ, so that ΓL contains L3 times the unit cell Γ.

The thermodynamic limit
To perform a thermodynamic limit, one must first choose a model to calculate the ground
state energy of a finite system. One can consider the full N -body Schrödinger model (1.5),
or an approximation of it, like a Kohn-Sham model (see e.g. (1.24)), a GW model (1.30), and
so on. We then consider, for L ∈ N∗ the finite system with external (nuclear) potential

Vnuc,L(r) :=

ˆ
R3

µnuc,L(r′)

|r− r′|
dr′, with µnuc,L := µper(r)1 (r ∈ ΓL) .

In other words, we only consider the finite system consisting of the nuclei contained in a
“box” of size L (see Figure 1.6). For L ∈ N∗, we calculate the corresponding ground state
energy EL. The questions then are

• Existence: Does the sequence of energies per unit volume
(
|ΓL|−1EL

)
L∈N∗ converge

to some Eper as L goes to infinity?

• Characterization: If it is the case, is Eper the solution to an explicit problem?

L = 1 L = 2 L = 3

. . .

Figure 1.6 – The thermodynamic limit: µper,L for L = 1, L = 2 and L = 3.

These questions have a positive answer for the Thomas-Fermi (with or without the von
Weizsäcker term) model [CLL96, CLL98b], the Hartree and restricted Hartree models [CLL98a,
CLL02] and the Hartree-Fock and reduced Hartree-Fock models [CLL01]. In addition, some
existence results (but no characterization) were proved for the full N -body Schrödinger
model [Fef85, BLL03, HLS09a, HLS09b].

The supercell thermodynamic limit
Another natural thermodynamic limit one could think of is the supercell thermodynamic limit.
This type of thermodynamic limit was considered in [CDL08] for the reduced Hartree-Fock
model, and is closely linked to numerical simulations. In a supercell model, the system is



1.4. Numerical simulation of crystalline structures 35

confined in a box ΓL := LΓ with periodic boundary conditions. We denote by L2
per(ΓL) the

Hilbert space of locally square integrable functions that are LR-periodic, and we would like
to study one-body mean-field Hamiltonians of the form

HL := −1

2
∆L + Vper,L acting on L2

per(ΓL). (1.52)

Here, −∆L denotes the Laplacian operator acting on L2
per(ΓL), and Vper,L is the sum of the

periodic Coulomb potential generated by the nuclei (and a uniform background of negative
charge)

Vnuc :=

ˆ
Γ
µper(r

′)G1(r− r′) dr′, (1.53)

which is independent of L, and of a mean-field potential Vel,L generated by the electrons (and
a uniform background of positive charge), which may depend on L. The role of the uniform
backgrounds is to neutralize the charge in the supercell so that the Poisson equation with
periodic boundary conditions may be solved. In (1.53), G1 denotes the R-periodic Green
kernel of the Poisson interaction [LS77], solution of

−∆G1 = 4π

(∑
k∈R

δk − 1

)
G1 is R-periodic and

ˆ
Γ
G1 = 0.

(1.54)

Once a model is chosen for the definition of Vel,L, one may ask oneself the same questions
(existence and characterization of the energy per unit cell) as in the standard thermodynamic
limit (see Figure 1.7).

L = 2 L = 3

Figure 1.7 – The supercell thermodynamic limit: ΓL for L = 2 and L = 3.

The supercell method for the linear model (where Vper,L is an R-periodic function inde-
pendent of L) is equivalent to performing a regular sampling of the reciprocal Brillouin zone
(see Section 1.4.3), and is the model usually considered in numerical codes [MP76]. The non-
linear reduced Hartree-Fock model was considered in [CDL08].

In this introduction, we will only present the results for the linear model, and briefly
mention the results in the case of the reduced Hartree-Fock model.

1.4.1 The Bloch transformation

The Bloch transformation is a suitable tool to study periodic operators (see also [RS78,
Chapter XIII] or [Del08]). Let (a1,a2,a3) be a basis of R3 that generates the lattice R, so



36 Chapter 1. Introduction

that
R :=

{
k1a1 + k2a2 + k3a3, (k1, k2, k3) ∈ Z3

}
.

We define the dual lattice

R∗ :=
{
k1a
∗
1 + k2a

∗
2 + k3a

∗
3, (k1, k2, k3) ∈ Z3

}
,

where the vectors a∗i are such that a∗i · aj = 2πδij . The unit cell and the reciprocal unit cell
are respectively defined by

Γ :=
{
α1a1 + α2a2 + α3a3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
,

and
Γ∗ :=

{
α1a

∗
1 + α2a

∗
2 + α3a

∗
3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
.

For w ∈ C∞c (R3), we define the Bloch transform Zw of w by

∀q ∈ R3, ∀r ∈ R3, (Zw)(q, r) := wq(r) :=
∑
R∈R

e−iq·(r+R)w(r + R). (1.55)

Note that since w is compactly supported, the sum in the right-hand side of (1.55) is finite
for all r ∈ R3. For R ∈ R, we define the translation operator τR on L2(R3) by (τRf) (r) =
f(r−R). From the definition (1.55), the function wq isR-periodic for any q ∈ R3: τRwq = wq

for all R ∈ R. On the other hand, by introducing, for m ∈ R∗, the unitary operator Um

(on L2
per(Γ)) defined by

∀m ∈ R∗, ∀f ∈ L2
per(Γ), (Umf) (r) = e−im·rf(r), (1.56)

we see that wq+m = Umwq. Altogether,

∀w ∈ C∞c (R3),

{
∀R ∈ R, ∀q ∈ R3, τRwq = wq

∀m ∈ R∗, ∀q ∈ R3, wq+m = Umwq.
(1.57)

In particular, the function Zw is completely characterized by its values for q ∈ Γ∗ and
r ∈ Γ. We consider the Hilbert space L2(Γ∗, L2

per(Γ)), endowed with the normalized inner
product (we denote by

ffl
Γ∗ = |Γ∗|−1 ´

Γ∗)

〈f(q, r), g(q, r)〉L2(Γ∗,L2
per(Γ)) :=

 
Γ∗

ˆ
Γ
f(q, r)g(q, r) dr dq.

A classical calculation shows that

∀w ∈ C∞c (R3),

ˆ
R3

|w(r)|2 dr =

 
Γ∗

ˆ
Γ
|(Zw) (q, r)|2 drdq = ‖Zw‖2L2(Γ∗,L2

per(Γ)) .

We can therefore extend by continuity the Bloch transform Z to L2(R3). Its extension, still
denoted by Z, is an isometry from L2(R3) to L2(Γ∗, L2

per(Γ)). Its inverse is given by

Z−1 : L2(Γ∗, L2
per(Γ)) → L2(R3)

wq(r) 7→ (Z−1w)(r) :=

 
Γ∗

eiq·rwq(x) dq.

Let A with domain D(A) be a possibly unbounded operator acting on L2
per(Γ). We say

that A commutes with R-translations if τRA = AτR for all R ∈ R. If A commutes with
R-translations, then ZAZ−1 is block diagonal, which means that there exists a family of
operators (Aq)q∈R3 acting on L2

per(Γ), such that, if f ∈ L2(R3) and g ∈ D(A) are such
that f = Ag, then, for almost any q ∈ R3, gq ∈ L2

per(Γ) is in the domain of Aq, and

fq = Aqgq.
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From (1.57), we obtain that

∀m ∈ R∗, ∀q ∈ Γ∗, Aq+m = UmAqU
−1
m , (1.58)

so that the family (Aq)q∈R3 is entirely characterized by its values for q ∈ Γ∗. We write

ZAZ−1 =

 ⊕
Γ∗
Aq dq (Bloch decomposition of A). (1.59)

1.4.2 The linear model on the whole space

Let us apply the Bloch theory to the self-adjoint operator Hper (with domain H2(R3,C))
defined in (1.51). Since Hper commutes with R-translations, it admits a Bloch decomposition
of the form (1.59):

ZHperZ−1 =

 ⊕
Γ∗
Hq dq,

with
Hq :=

1

2
|−i∇1 + q|2 + Vper =

1

2

(
−∆1 − 2iq · ∇1 + |q|2

)
+ Vper. (1.60)

Here, we denoted by5 ∇1 the gradient operator acting on L2
per(Γ) and by ∆1 the Laplacian

operator acting on L2
per(Γ). For each q ∈ R3, the operator Hq with domain H2

per(Γ) is self-
adjoint, bounded below and with compact resolvent. We denote by λ1,q ≤ λ2,q ≤ · · · its eigen-
values, ranked in increasing order, counting multiplicities, and by (un,q)n∈N∗ ∈ (L2

per(Γ))N
∗

an orthonormal basis of associated eigenvectors, so that

∀q ∈ R3, ∀n ∈ N∗, Hqun,q = λn,qun,q. (1.61)

From (5.22), we obtain that

∀q ∈ R3, ∀n ∈ N∗, ∀m ∈ R∗, λn,q+m = λn,q and un,q+m = U−1
m un,q.

The map q 7→ Hq is an holomorphic family of type (A) (see [Kat12, Chapter VII]). In par-
ticular, the maps q 7→ λn,q are Lipschitz (hence continuous). As a result, from [RS78, Chapter
XIII], we deduce that the spectrum of Hper can be recovered from the spectra of (Hq)q∈Γ∗ ,
with

σ (Hper) =
⋃

q∈Γ∗

σ (Hq) =
∞⋃
n=1

[
Σ−n ,Σ

+
n

]
with

[
Σ−n ,Σ

+
n

]
= {λn,q, q ∈ Γ∗} .

The spectrum of H is therefore composed of bands. The map q 7→ {λ1,q, λ2,q, · · · } is called
the band diagram (see Figure (1.8)). We define the integrated density of state per unit cell by

I : R 3 ε 7→ I(ε) :=
∞∑
n=1

 
Γ∗
1(λn,q ≤ ε) dq. (1.62)

It is a continuous non-decreasing function satisfying I(−∞) = 0 and I(+∞) = +∞. Let
N be the number of electrons per unit cell in the system under consideration. We write
I−1({N}) = [ε−, ε+]. Any number ε inside this interval is an admissible Fermi level, or Fermi
energy of the system. When ε− = ε+, this number εF is unique, and the system is a metal.
Otherwise, the system is an insulator or a semiconductor, depending on the magnitude of the

5 If f ∈ L2
per(Γ) has a Fourier decomposition of the form f(r) =

∑
k∈R∗ ck(f)eik·r, then

ck (−∆1f) = |k|2 ck(f) and ck (q · (−i∇1)f) = (q · k) ck(f).
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gap g := ε+ − ε− > 0, and we set εF := (ε− + ε+)/2. By introducing the integrated density
of energy per unit cell

E : R 3 ε 7→ E(ε) :=
∞∑
n=1

 
Γ∗
λn,q1(λn,q ≤ ε) dq, (1.63)

the energy per unit cell of the system is E(εF ).

q ∈ Γ∗

λn,q σ(Hper)

εFg

Figure 1.8 – Band diagrams of Hper. Here, Hper represents an insulator.

The L2(R3)-orthogonal projector on the occupied states γ is defined with the spectral
theorem by γ := 1(Hper ≤ εF ). If the system is an insulator or a semiconductor, then we can
rewrite γ using the Cauchy residual formula as

γ =
1

2iπ

˛
C

dz

z −Hper
.

Here, C is a positively oriented simple closed loop in the complex plane, schematized in
Figure 1.9.

Σ εF

σ(Hper)

C

Figure 1.9 – The loop C .

Since γ commutes with R-translations, it admits a Bloch decomposition of the form (1.59)
with

ZγZ−1 =

 ⊕
Γ∗
γq dq, with γq :=

1

2iπ

˛
C

dz

z −Hq
. (1.64)

For all q ∈ Γ∗, the operator γq is trace-class. Let ργq be the R-periodic density of γq. The
density of the operator γ is the R-periodic function defined by

ργ :=

 
Γ∗
ργq dq. (1.65)



1.4. Numerical simulation of crystalline structures 39

R∗

Γ∗

Γ∗

ΛL

Figure 1.10 – (left) The lattice R∗ and the reciprocal unit cell Γ∗ (in red). (right) The
discretization ΛL (in blue) of Γ∗ (in red). Here, L = 4.

Finally, the energy per unit cell of the system defined in (1.63) is also

Eper := E(εF ) =

 
Γ∗

TrL2
per(Γ) (Hqγq) . (1.66)

1.4.3 The linear model on supercells

In practice, the calculation of the Fermi energy and of the total energy would necessitate
the calculation of λn,q for all q ∈ Γ∗ (see (1.62) and (1.63)). This is of course not possible
numerically. The reciprocal unit cell Γ∗ needs to be discretized. Since the work of Monkhorst
and Pack [MP76], it has been observed that very good results were obtained when consider-
ing uniform discretizations, at least for insulators and semiconductors. As will be make clear
below, this is equivalent to performing a supercell calculation.

We are interested in studying the operator HL defined in (1.52). The operator HL is a
bounded-below self-adjoint operator with compact resolvent, so that we could directly study
the full operator HL. However, it is possible to further simplify the problem by considering a
Bloch-like transform, that we call the supercell Bloch transform.

For L ∈ N∗, we introduce the regular sampling of the reciprocal unit cell, ΛL :=
(
L−1R∗

)
∩

Γ∗, i.e.

ΛL :=

{
2k1

L
a∗1 +

2k2

L
a∗2 +

2k3

L
a∗3, (k1, k2, k3) ∈

{
−L+ η

2
,
−L+ η

2
+ 1, · · · , L+ η

2
− 1

}3
}
,

(1.67)
with η = 1 if L is odd, and η = 0 if L is even, so that there are exactly L3 points in ΛL (see
Figure 1.10). Likewise, we define RL := R∩ ΓL.

For w ∈ C∞per(ΓL), we define the supercell Bloch transform of w by

∀Q ∈ ΛL, (ZLw) (Q, r) := wQ(r) :=
∑

R∈RL

e−iQ·(r+R)w(r + R).

The operator ZL enjoys properties similar to the ones of the operator Z defined in (1.55).
For instance,

∀w ∈ C∞per(ΓL),

ˆ
ΓL

|w|2 =
1

L3

∑
Q∈ΛL

ˆ
Γ
|(ZLw) (Q, r)|2 dr,
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so that the operator ZL can be extended to an unitary operator from L2
per(ΓL) to `2

(
ΛL, L

2
per(Γ)

)
,

where `2
(
ΛL, L

2
per(Γ)

)
is endowed with the normalized inner product

〈f(Q, r), g(Q, r)〉`2(ΛL,L2
per(Γ)) :=

1

L3

∑
Q∈ΛL

ˆ
Γ
f(Q, r)g(Q, r) dr.

The inverse of ZL is

Z−1
L : `2(ΛL, L

2
per(Γ)) → L2

per(ΓL)

wQ(x) 7→ (Z−1
L w)(x) :=

1

L3

∑
Q∈ΛL

eiQ·xwQ(x).

An easy calculation shows that ZLHLZ−1
L is block diagonal. We write, by analogy

with (1.59),

ZLHLZ−1
L :=

1

L3

⊕
Q∈ΛL

HQ (supercell Bloch decomposition of HL),

where the operators HQ, acting on L2
per(Γ), are exactly the ones defined in (1.60). This shows

the relationship between the uniform sampling and the supercell calculation. We deduce that,
if the crystal is an insulator or a semiconductor,

• the Fermi level of the supercell model can be chosen equal to the one of the periodic
model εF ;

• the L2
per(Γ)-orthogonal projection initially defined by γL := 1(HL ≤ εLF ) is also

γL =
1

L3

⊕
Q∈ΛL

γQ,

where γQ were introduced in (1.64). It is a trace-class operator, and its density is

ργL =
1

L3

∑
Q∈ΛL

ργQ ; (1.68)

• the energy per unit cell of the supercell model is

EL :=
1

L3

∑
Q∈ΛL

TrL2
per(Γ) (HQγQ) . (1.69)

1.4.4 Exponential rate of convergence of supercell models

The error on the energy per unit volume Eper − EL, where Eper and EL were respectively
defined in (1.66) and (1.69), is of the form

|Eper − EL| =

∣∣∣∣∣∣
 

Γ∗
f(q) dq− 1

L3

∑
Q∈ΛL

f(Q)

∣∣∣∣∣∣ , where f(q) := TrL2
per(Γ) (Hqγq) . (1.70)

This is the difference between an integral and a corresponding Riemann sum. From this
observation, we were able with Salma Lahbabi to prove the following result (see Chapter 5).

Theorem 1.14 (DG, Salma Lahbabi). Assume Vper ∈ L∞. There exist constants C ∈ R+

and α > 0, that depend on the lattice R, ‖Vper‖L∞, g and εF only, such that

∀L ∈ N∗, |Eper − EL| ≤ Ce−αL (convergence of the ground state energy per unit volume)

and

∀L ∈ N∗, ‖ργ − ργL‖L∞ ≤ Ce−αL (convergence of the ground state density).
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The idea of the proof is to show that the integrand f in (1.70) is an R∗-periodic function
which admits an analytical continuation on a complex strip of the form R3 + i[A,A]3 for some
A > 0, and use the theory of convergence for Riemann sums. The same type of arguments
were used to prove the exponential decay of Wannier functions for insulators [DC64a, DC64b,
Koh59, BPC+07, Pan07].

The reduced Hartree-Fock model
The reduced Hartree-Fock (rHF) model for perfect crystals, or periodic rHF, has been rig-
orously derived from the rHF model for finite molecular systems by means of the classical
thermodynamic limit by Catto, Le Bris and Lions [CLL01]. In [CDL08], Cancès, Deleurence
and Lewin proved that the same periodic rHF model is also the supercell thermodynamic
limit of the supercell rHF model.

The rHF model is a nonlinear model in which the external potential is solution of a self-
consistent equation (both for the supercell model Vper,L and for the periodic model Vper). We
refer to Chapter 5 or to [Del08] for a complete description of these models.

Together with Salma Lahbabi, we proved a result similar to (1.14) in the rHF case (see
Chapter 5). We proved that, if the system is an insulator or a semiconductor, then

• the supercell rHF energy per unit cell converges exponentially fast towards the periodic
rHF energy per unit cell ;

• the supercell rHF ground state density converges exponentially fast towards the periodic
rHF ground state density, in the L∞per(Γ) norm.

The theoretical exponential convergence rates are confirmed by numerical simulations in
Chapter 5.

1.4.5 Reduced basis methods for Brillouin-zone integration

As mentioned before, a numerical calculation needs the discretization of the reciprocal unit
cell. The theory described in the previous section shows that, at least for insulators, the
values obtained on a regular coarse grid gives good results (this is due to the exponential rate
of convergence proved in Theorem 1.14). For metallic systems, a slower rate of convergence is
expected and a much finer sampling is needed to calculate for instance the integrated density
of states I defined in (1.62) (from which we obtain the Fermi level). As a consequence, the
calculation of the eigenmodes of the operator Hq at all the points q of the grid is numeri-
cally much more expensive than in the insulating case. Together with Eric Cancès, Virginie
Ehrlacher and Damiano Lombardi, we proposed a reduced basis method to speed up tradi-
tional calculations (see Chapter 6). Our approach consists in creating reduced bases that are
q-point dependent (hence differs from the method described in [Pau07]).

The basic idea of the proposed numerical scheme is to extract local small reduced bases
from calculations on a coarse uniform grid of size L1×L1×L1 of Γ∗ for some value L1 ∈ N∗.
These are used to compute the eigenmodes of Hq for q on a fine uniform grid of size
L2 × L2 × L2, with L2 � L1. The resulting method is very easy to implement, and al-
ready provides very satisfactory results. It is then possible to further improve the accuracy of
the approximate eigenmodes at a low extra computational time, using a perturbation-based
post-processing method similar to the one introduced in [CDM+14].

The full algorithms and the corresponding numerical results are analysed in Chapter 6.
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CHAPTER 2

THE N -REPRESENTABILITY PROBLEMS

We expose in this chapter the arguments given in [Gon13] and in [Gon15b].

Abstract. This chapter is concerned with the pure-state N -representability problem for
systems under a magnetic field. Necessary and sufficient conditions are given for a spin-
density 2×2 matrix R to be representable by a Slater determinant. We also provide sufficient
conditions on the paramagnetic current j for the pair (R, j) to be Slater-representable in the
case where the number of electrons N is greater than 12. The case N < 12 is left open.

2.1 The N-representability problem in SDFT

The density functional theory (DFT), first developed by Hohenberg and Kohn [HK64], then
further developed and formalized mathematically by Levy [Lev79], Valone [Val80] and Lieb [Lie83],
states that the ground state energy and density of a non-magnetic electronic system can be
obtained by minimizing some functional of the density only, over the set of all admissible
densities. Characterizing this set is called the N-representability problem. More precisely,
as the so-called constrained search method leading to DFT can be performed either with
N -electron wave functions [Lev79, Lie83], or with N -body density matrices [Val80, Lie83],
the N -representability problems can be recast in the pure-state setting resp. in the mixed-
state setting as follows: What is the set of electronic densities that come from an admissible
N -electron wave function, resp. an admissible N -body density matrix? This question was
answered by Gilbert [Gil75], Harriman [Har81] and Lieb [Lie83] (see (2.6) below).

In order to deal with spin magnetic effects, it is necessary to resort to spin-polarized
density functional theory (SDFT) where the objects of interest are the spin-polarized densi-
ties ραβ with α, β ∈ {↑, ↓}. This theory was first developed by von Barth and Hedin [vBH72]
in a very general setting, but most applications use a restricted version of it, where local
magnetization is constrained along a fixed direction (collinear spin-polarized DFT). While
this simplified version is able to account for many magnetic effects, it misses some important
physical behaviors (frustrated solids like γ-Fe or spin dynamics for instance). Actually, the
first calculations for non-collinear spin-polarized DFT have been performed by Sandratskii
and Guletskii [SG86] and Kübler et al. [KHSW88b, KHSW88a] (see [BSFS13] or [SDAD+07]
for some recent works), but no rigorous mathematical background has yet been developed in
this case. We emphasize that SDFT deals with spin effects, but not with orbital magnetic
effects. If the latter are not negligible, we should use another variant of DFT, namely current
-spin- density functional theory (C-S-DFT). This will be the topic of Section 2.2.
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In this section, we are interested in the N -representability problem for the so-called spin-
density 2× 2 matrix (from which we recover the spin-polarized densities). The question was
addressed but left open in the pioneering work by von Barth and Hedin [vBH72]. We provide
in this section a complete characterization of the set of admissible spin-polarized densities
used to perform self-consistent minimizations.

2.1.1 Setting the stage: the spin-density 2× 2 matrix

Recall that the set of admissible antisymmetric wave functions is

Wpure
N :=

{
Ψ ∈

N∧
L2(R3,C2), ‖Ψ‖L2(R3N ) = 1, ‖∇Ψ‖L2(R3N ) <∞

}
,

where L2(R3,C2) is the one-electron state-space

L2(R3,C2) ≡
{

Φ = (φ↑, φ↓)T , ‖Φ‖2L2 :=

ˆ
R3

|φ↑|2 + |φ↓|2 <∞
}
.

A special case of wave functions is given by Slater determinants: let Φ1,Φ2, . . . ,ΦN be a set
of orthonormal functions in L2(R3,C2), the Slater determinant generated by (Φ1, . . . ,ΦN ) is
(we denote by xk := (rk, sk) the k-th spatial-spin component)

S [Φ1, . . . ,ΦN ] (x1, . . . ,xN ) :=
1√
N !

det (Φi(xj))1≤i,j≤N .

The subset of Wpure
N consisting of all finite energy Slater determinants is denoted by WSlater

N .
It holds that WSlater

1 =Wpure
1 and WSlater

N (Wpure
N for N ≥ 2.

For a wave-function Ψ ∈ Wpure
N , we define the corresponding N -body density matrix

ΓΨ := |Ψ〉〈Ψ|, which corresponds to the projection on {CΨ} in
∧N L2(R3,C2). The set of

pure-state and Slater-state N -body density matrices are respectively

Gpure
N :=

{
ΓΨ, Ψ ∈ Wpure

N

}
and GSlater

N :=
{

ΓΨ, Ψ ∈ WSlater
N

}
. (2.1)

It holds that GSlater
1 = Gpure

1 and that GSlater
N ( Gpure

N for N ≥ 2. The set of mixed-state
N -body density matrices Gmixed

N is defined as the convex hull of Gpure
N :

Gmixed
N =

{ ∞∑
k=1

nk|Ψk〉〈Ψk|, 0 ≤ nk ≤ 1,

∞∑
k=1

nk = 1, Ψk ∈ Wpure
N

}
. (2.2)

It is also the convex hull of GSlater
N .

In SDFT, we are interested in the spin-density 2×2 matrix. For Γ ∈ Gmixed
N , the associated

spin-density 2× 2 matrix is the 2× 2 hermitian function-valued matrix

RΓ(r) :=

(
ρ↑↑Γ ρ↑↓Γ
ρ↓↑Γ ρ↓↓Γ

)
(r),

where, for α, β ∈ {↑, ↓}2,

ραβΓ (r) := N
∑

~s∈{↑,↓}(N−1)

ˆ
R3(N−1)

Γ(r, α,~z, ~s; r, β,~z, ~s) d~z. (2.3)
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Here, we denoted by Γ(r1, s1, . . . ; r
′
1, s
′
1, . . .) the Schwartz kernel of the operator Γ ∈ Gmixed

N .
In the case where Γ comes from a Slater determinant S [Φ1, . . . ,ΦN ], we get

RΓ(r) =

N∑
k=1

(
|φ↑k|

2 φ↑kφ
↓
k

φ↑kφ
↓
k |φ↓k|

2

)
(r). (2.4)

The Slater-state, pure-state and mixed-state sets of spin-density 2×2 matrices are respectively
defined by

J Slater
N :=

{
RΓ, Γ ∈ GSlater

N

}
, J pure

N :=
{
RΓ, Γ ∈ Gpure

N

}
and Jmixed

N :=
{
RΓ, Γ ∈ Gmixed

N

}
.

Since the map Γ 7→ RΓ is linear, it holds that J Slater
N ⊂ J pure

N ⊂ Jmixed
N , that Jmixed

N is
convex, and that Jmixed

N is the convex hull of both J Slater
N and J pure

N . With this notation, the
N -representability problem is

N-representability problem : Characterize the sets J Slater
N , J pure

N and Jmixed
N . (2.5)

2.1.2 Pure-state and mixed-state representable spin-density 2× 2 matrices

Before answering problem (2.5), let us address some remarks. In the physics community, the
spin density 2× 2 matrix RΓ is usually replaced by the pair (ρΓ,mΓ), where, ρΓ = ρ↑↑Γ + ρ↓↓Γ
denotes the total electronic density, and mΓ = trC2 [σRΓ] the spin angular momentum density.
Here,

σ := (σx, σy, σz) :=

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
contains the Pauli-matrices. The pair (ρΓ,mΓ) contains the same information as RΓ, hence
the N -representability problem for the matrix R is the same as the one for the pair (ρ,m).
However, as will become clear, it is more natural mathematically speaking to work with RΓ.

In the spin-unpolarized case, which amounts to setting ρ↑↓Γ = ρ↓↑Γ = 0 and ρ↑↑Γ = ρ↓↓Γ
(see Chapter 3, Section 3.2), it is sufficient to characterize IXN = {ρΓ, Γ ∈ GXN}, where X
represents either the set of Slater, pure of mixed states. This problem was first considered
by Gilbert [Gil75] and completely solved by Harriman [Har81]. They proved that ISlater

N =
Ipure
N = Imixed

N := IN with

IN =

{
ρ ∈ L1(R3), ρ ≥ 0,

ˆ
R3

ρ = N,
√
ρ ∈ H1(R3)

}
. (2.6)

A rigorous mathematical construction of DFT was then developed by Lieb in [Lie83].

In the spin-polarized setting, unlike the previous case, we have to distinguish pure-state
representability from mixed-state representability, as is illustrated by the following exam-
ple. Let N = 1 and Φ = (φ↑, φ↓) ∈ Wpure

1 . For Γ = |Φ〉〈Φ|, it holds, according to (2.4),
ραβΓ (r) = φα(r)φβ(r), so that the determinant of RΓ is null. Therefore, J pure

1 only contains
fields of at most rank-1 matrices, whereas, as will be proved latter, Jmixed

1 contains full-rank
matrices.

We now state the main theorem of this section. We first recall that for a Hermitian
matrix R satisfying R ≥ 0,

√
R is a well-defined Hermitian matrix. We also recall the

definition of the Lebesgue spaces Lp(Rd) := {f,
´
Rd f

p < ∞} and of the Sobolev spaces
W 1,p(Rd) := {f ∈ Lp(Rd),∇f ∈ Lp(Rd)}. We introduce

CN :=
{
R ∈M2×2(L1(R3,C)), R∗ = R, R ≥ 0,

ˆ
R3

trC2 [R] = N,
√
R ∈M2×2(H1(R3,C))

}
,

(2.7)
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and C0
N := {R ∈ CN , detR ≡ 0}. The characterization of CN is given by the following lemma

(see Section 2.1.3 for the proof).

Lemma 2.1. A function-valued matrix R =

(
ρ↑ σ
σ ρ↓

)
is in CN iff its coefficients satisfy



ρ↑/↓ ≥ 0, ρ↑ρ↓ − |σ|2 ≥ 0,

ˆ
R3

ρ↑ +

ˆ
R3

ρ↓ = N,√
ρ↑/↓ ∈ H1(R3), σ,

√
det(R) ∈W 1,3/2(R3),

|∇σ|2ρ−1 ∈ L1(R3),∣∣∣∇√det(R)
∣∣∣2 ρ−1 ∈ L1(R3).

(2.8)

The complete answer for N -representability in SDFT is given by the following theorem
(see Section 2.1.3 for the proof).

Theorem 2.2.
Case N = 1: It holds that

J Slater
1 = J pure

1 = C0
1 and Jmixed

1 = C1.

Case N ≥ 2: For all N ≥ 2, it holds that

J Slater
N = J pure

N = Jmixed
N = CN .

The first line of (2.8) states that R must be a positive Hermitian matrix and that the
number of electrons is N . The other three lines are regularity conditions that ensure the
finiteness of the kinetic energy. Comparing (2.6) and (2.7), we see that the above theorem is
a natural and nice extension of the classical N -representability result (2.6).

An interesting consequence of our result is that it is possible to control the eigenvalues
of R. Most applications of SDFT use exchange-correlation functionals of the form Exc(ρ

+, ρ−),
where ρ+ and ρ− are the eigenvalues of R (see Chapter 3, Equation (3.7) for examples and
discussion), so that the knowledge of the regularities of ρ+ and ρ− is desirable for the study
of these applications.

Corollary 2.3.
If R is mixed-state representable, then its two eigenvalues ρ+ and ρ− satisfy

√
ρ± ∈ H1(R3).

Let R ∈ J pure
N be represented by a wave-function ΨR. One can ask oneself whether there

is a way to control the kinetic energy of ΨR (which we know is finite by definition of R) with
respect to, say,

∥∥∥∇√R∥∥∥
L2
? In the spin-unpolarized setting, there is such a control: it is pos-

sible to represent ρ ∈ IN , where IN where defined in (2.6), by a wave-function Ψρ such that
‖∇Ψρ‖L2(R3) ≤ CN‖∇

√
ρ‖6L2 , where CN ∈ R+ is a constant independent of ρ. Unfortunately,

we were not able to prove such a control. This is due to the use of the Lazarev-Lieb orthonor-
malization process [LL13] (see also Lemma 2.5) in the proof. This process is a powerful tool
for representability, but looses control on the kinetic energy [Rut13].

We now prove Lemma 2.1, Theorem 2.2 and Corollary 2.3.
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2.1.3 Proofs of the SDFT results

Proof of Lemma 2.1

Proof. If R satisfies (2.8), then R ∈ CN .
Let R be a matrix satisfying (2.8), so that R is a positive hermitian matrix. The only

non-trivial point to check is that
√
R ∈ M2×2(H1(R3,C)). Writing

√
R :=

(
r↑ s
s r↓

)
, the

equality R =
√
R
√
R is equivalent to

|r↑|2 + |s|2 = ρ↑,
|r↓|2 + |s|2 = ρ↓,
s(r↑ + r↓) = σ.

(2.9)

Together with the relation det(
√
R) = r↑r↓−|s|2 =

√
det, where we denoted by det := det(R),

this leads to

r↑ =
ρ↑ +

√
det(

ρ+ 2
√

det
)1/2

, r↓ =
ρ↓ +

√
det(

ρ+ 2
√

det
)1/2

, and s =
σ(

ρ+ 2
√

det
)1/2

.

Let us show for instance that r↑ ∈ H1(R3), the other cases being similar. Using the inequalities
(a+ b)2 ≤ 2(a2 + b2), ρ ≥ ρ↑ and det ≥ 0, we obtain

∣∣∣r↑∣∣∣2 ≤
(
ρ↑ +

√
det
)2

ρ+ 2
√

det
≤

2
∣∣ρ↑∣∣2 + 2 det

ρ+ 2
√

det
≤ 2ρ+

√
det,

and the right-hand side is integrable, thanks to (2.8). On the other hand, the gradient of r↑

is

∇r↑ =
∇ρ↑ +∇

√
det(

ρ+ 2
√

det
)1/2

− 1

2

(
∇ρ+ 2∇

√
det
)(

ρ↑ +
√

det
)

(
ρ+ 2

√
det
)3/2

,

so that, using the same type of inequalities,∣∣∣∇r↑∣∣∣2 ≤ 2
(∇ρ↑ +∇

√
det)2

ρ+ 2
√

det
+

(ρ+
√

det)2(∇ρ+ 2∇
√

det)2

(ρ+ 2
√

det)3

≤ 4

(
|∇ρ↑|2

ρ↑
+
|∇
√

det|2

ρ
+
|∇ρ|2

ρ
+
|∇
√

det|2

ρ

)
.

Every term of the right-hand side is in L1(R3) according to (2.8). We deduce that r↑ ∈
H1(R3,C), and consequently,

√
R ∈M2×2(H1(R3,C)). In conclusion, R ∈ CN .

If R ∈ CN , then R satisfies (2.8).
Reciprocally, using (2.9), it is not difficult to prove that R satisfies all conditions in (2.8). Let
us prove for instance that

∣∣∣∇√det
∣∣∣ ρ−1. From

√
det = r↑r↓ − |s|2, we get

∇
√

det =
(
∇r↑

)
r↓ + r↑

(
∇r↓

)
− 2Re (s∇s) .

Together with the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we deduce∣∣∣∇√det
∣∣∣2

ρ
= 3

∣∣∇r↑∣∣2 ∣∣r↓∣∣2
ρ

+ 3

∣∣∇r↓∣∣2 ∣∣r↑∣∣2
ρ

+ 6
|∇s|2 |s|2

ρ
≤ 3

∣∣∣∇r↑∣∣∣2 + 3
∣∣∣∇r↓∣∣∣2 + 6 |∇s|2 ,

and the right-hand side is in L1(R3) since R ∈ CN . The result follows.
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Proof of Theorem 2.2

Proof. We break the proof in many parts.

Step 1: Jmixed
N ⊂ CN .

For a mixed state Γ ∈ Gmixed
N , we define the one-body spin-density matrix

γΓ(r, r′) =

(
γ↑↑Γ γ↑↓Γ
γ↓↑Γ γ↓↓Γ

)
(r, r′), (2.10)

where

γαβΓ (r, r′) := N
∑

s∈{↑,↓}N−1

ˆ
R3(N−1)

Γ(r, α, z, s; r′, β, z, s) dz. (2.11)

It holds that RΓ(r) = γΓ(r, r′). We denote by Rγ := RΓ in the sequel. The one-body spin-
density matrix is a very useful quantity in quantum chemistry, and is completely understood
mathematically. Coleman [Col63] proved that any such γ can be written as

γαβ(r, r′) =

∞∑
k=1

nkφ
α
k (r)φβk(r′), 0 ≤ nk ≤ 1,

∞∑
k=1

nk = N,

〈Φk|Φl〉 = δkl, Tr(−∆γ) :=

∞∑
k=1

nk‖∇Φk‖2 <∞.

Let R ∈ Jmixed
N . To prove R ∈ CN , it is enough to prove that R satisfies the conditions (2.8),

thanks to Lemma 2.1. By definition, there exists γ satisfying the above conditions such that
R = Rγ , so that

R =

∞∑
k=1

nk

∣∣∣φ↑k∣∣∣2 φ↑kφ
↓
k

φ↓kφ
↑
k

∣∣∣φ↓k∣∣∣2
 .

Under this form, the first line of (2.8) is obvious. Also, since all elements of R are of the form∑
nkφ

α
k (r)φβk(r) with

∑
nk‖∇φσk‖2 <∞, we easily deduce from the Sobolev embedding that

R ∈W 1,3/2(R3). Moreover, using the Cauchy-Schwarz inequality, it follows, for α ∈ {↑, ↓},

|∇ρα|2 = 4

( ∞∑
k=1

nkRe
(
φαk∇φαk

))2

≤ 4

( ∞∑
k=1

nk|φαk |2
)( ∞∑

k=1

nk|∇φαk |2
)
,

so that |∇
√
ρα|2 ≤ 4

∑
nk|∇φαk |2 (we recall that for f ≥ 0, it holds |∇f |2 = 4f |∇

√
f |2).

Integrating this relation gives ‖∇
√
ρα‖2L2 ≤ Tr(−∆γαα) <∞. Likewise,

|∇σ|2 =

∣∣∣∣∣
∞∑
k=1

nk

(
∇φ↑kφ

↓
k + φ↑k∇φ

↓
k

)∣∣∣∣∣
2

≤

∣∣∣∣∣
∞∑
k=1

nk

(
|φ↑k|

2 + |φ↓k|
2
)1/2 (

|∇φ↑k|
2 + |∇φ↓k|

2
)1/2

∣∣∣∣∣
2

≤ ρ

( ∞∑
k=1

nk

(
|∇φ↑k|

2 + |∇φ↓k|
2
))

,

so that |∇σ|2ρ−1 ≤
∑
nk(|∇φ↑k|

2 + |∇φ↓k|
2). Integrating this relation gives the inequality

‖|∇σ|2ρ−1‖L1 ≤ Tr(−∆γ) <∞. Finally, let us evaluate det(R). From det(R) = ρ↑ρ↓ − |σ|2,
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we get

det(R) =
∞∑

k,l=1

nknl

(∣∣∣φ↑k∣∣∣2 ∣∣∣φ↓l ∣∣∣2 − φ↑kφ↓kφ↓l φ↑l)

=
∑

1≤k<l<∞
nknl

(∣∣∣φ↑k∣∣∣2 ∣∣∣φ↓l ∣∣∣2 +
∣∣∣φ↑l ∣∣∣2 ∣∣∣φ↓k∣∣∣2 − φ↑kφ↓kφ↓l φ↑l − φ↑l φ↓l φ↓kφ↑k)

=
∑

1≤k<l<∞
nknl

∣∣∣φ↑kφ↓l − φ↓kφ↑l ∣∣∣2 =
1

2

∞∑
k,l=1

nknl

∣∣∣φ↑kφ↓l − φ↓kφ↑l ∣∣∣2 .
Using similar arguments as before, we obtain that

√
det ∈W 1,3/2(R3) and that

|∇ det(R)|2 ≤ 8 det(R)ρ

∞∑
k=1

nk

(
|∇φ↑k|

2 + |∇φ↓k|
2
)
.

Integrating this inequality leads to
∥∥∥|∇√det(R)|2ρ−1

∥∥∥
L1
≤ 2Tr(−∆γ) < ∞. Therefore, any

R ∈ Jmixed
N satisfies (2.8), hence is in CN .

Step 2: Case N = 1: J Slater
1 = J pure

1 = C0
1 .

The fact that J Slater
1 = J pure

1 simply comes from the fact that GSlater
1 = Gpure

1 . To prove
J Slater

1 ⊂ C0
1 , we let R ∈ J Slater

1 be represented by Φ = (φ↑, φ↓)T ∈ H1(R3,C2), so that

R =

(
|φ↑|2 φ↑φ↓

φ↓φ↑ |φ↓|2

)
.

Since R ∈ J Slater
1 ⊂ Jmixed

1 ⊂ CN according to Step 1, and since det(R) ≡ 0, we deduce that
R ∈ C0

N .

We now prove that C0
1 ⊂ J Slater

1 . Let R =

(
ρ↑ σ
σ ρ↓

)
∈ C0

1 . From detR ≡ 0 and Lemma 2.1,

we get 
ρ↑/↓ ≥ 0, ρ↑ρ↓ = |σ|2,

ˆ
R3

ρ↑ +

ˆ
R3

ρ↓ = 1,√
ρ↑/↓ ∈ H1(R3), σ ∈W 1,3/2(R3),

|∇σ|2ρ−1 ∈ L1(R3).

(2.12)

There are two natural choices that we would like to make for a representing orbital, namely

Φ1 =

(√
ρ↑,

σ√
ρ↑

)T
and Φ2 =

( σ√
ρ↓
,
√
ρ↓
)T

. (2.13)

Unfortunately, it is not guaranteed that these orbitals are indeed in H1(R3,C2). It is the case
only if |∇σ|2/ρ↓ is in L1(R3) for Φ1, and if |∇σ|2/ρ↑ is in L1(R3) for Φ2. Due to (2.12), we
only know that |∇σ|2/ρ ∈ L1(R3). The idea is therefore to interpolate between these two
orbitals, taking Φ1 in regions where ρ↑ � ρ↓, and Φ2 in regions where ρ↓ � ρ↑. This is done
via the following process.

Let χ ∈ C∞(R) be a non-decreasing function such that 0 ≤ χ ≤ 1, χ(x) = 0 if x ≤ 1/2
and χ(x) = 1 if x ≥ 1. We write σ = α + iβ where α is the real-part of σ, and β is its
imaginary part. We introduce

λ1 :=

√
α2 + χ2(ρ↑/ρ↓)β2√

ρ↓
, µ1 :=

√
1− χ2(ρ↑/ρ↓)

β√
ρ↓
,

λ2 :=
αλ1 + βµ1

ρ↑
, µ2 :=

βλ1 − αµ1

ρ↑
,



52 Chapter 2. The N-Representability problems

and we set
φ↑ := λ1 + iµ1 and φ↓ := λ2 + iµ2.

Let us prove that Φ := (φ↑, φ↓) represents R and that Φ ∈ WSlater
1 . First, an easy calculation

shows that

|φ↑|2 = λ2
1 + µ2

1 =
α2 + χ2β2 + (1− χ2)β2

ρ↓
=
|σ|2

ρ↓
= ρ↑,

|φ↓|2 =
(α2 + β2)(λ2

1 + µ2
1)

(ρ↑)2
=
|σ|2

ρ↑
= ρ↓,

Re
(
φ↑φ↓

)
= λ1λ2 − µ1µ2 =

α(λ2
1 + µ2

1)

ρ↑
= α,

Im
(
φ↑φ↓

)
= λ1µ2 + λ2µ1 =

β(λ2
1 + µ2

1)√
ρ↑

= β,

so that Φ ∈ L2(R3,C2) with ‖Φ‖ = 1, and Φ represents R. To prove that Φ ∈ WSlater
1 , we

need to check that λ1, λ2, µ1 and µ2 are in H1(R3). For λ1, we choose another non-increasing
function ξ ∈ C∞(R) such that 0 ≤ ξ ≤ 1, ξ(x) = 0 for x ≤ 1, and ξ(x) = 1 for x ≥ 2. Note
that (1− χ)ξ ≡ 0. It holds that

∇λ1 = (1− ξ2(ρ↑/ρ↓))∇λ1 + ξ2(ρ↑/ρ↓)∇λ1. (2.14)

The second term in the right-hand side of (2.14) is non-null only if ρ↑ ≥ ρ↓, so that on this
part, it holds χ(ρ↑/ρ↓) = 1. In particular, from the equality ρ↑ρ↓ = |σ|2, we get

ξ2(ρ↑/ρ↓)λ1 = ξ2(ρ↑/ρ↓)
|σ|√
ρ↓

= ξ2(ρ↑/ρ↓)
√
ρ↑,

and similarly,
ξ2(ρ↑/ρ↓)∇λ1 = ξ2(ρ↑/ρ↓)∇

√
ρ↑,

which is in L2(R3) according to (2.12). On the other hand, the first term in the right-hand
side of (2.14) is non-null only if ρ↑ ≤ 2ρ↓, so that (1/3)ρ ≤ ρ↓ on this part. In particular,
from the following pointwise estimate

|∇
√
f + g| = |∇f +∇g|

2
√
f + g

≤ |∇f |
2
√
f + g

+
|∇g|

2
√
f + g

≤ |∇f |
2
√
f

+
|∇g|
2
√
g

= |∇
√
f |+ |∇√g|, (2.15)

which is valid almost everywhere whenever f, g ≥ 0, the inequality (a+ b)2 ≤ 2(a2 + b2), and
the fact that α2 + χ2β2 ≤ |σ|2, we get (we write χ for χ(ρ↑/ρ↓))

|∇λ1|2 =

∣∣∣∣∣
√
ρ↓∇

√
α2 + χ2β2 −

√
α2 + χ2β2∇

√
ρ↓

ρ↓

∣∣∣∣∣
2

≤ 2

(
|∇
√
α2 + χ2β2|2

ρ↓
+

(α2 + χ2β2)

(ρ↓)2
|∇
√
ρ↓|2

)

≤ 2

 |∇α|2
ρ↓

+
2
∣∣∣∇χρ↓∇ρ↑−ρ↑∇ρ↓(ρ↓)2

∣∣∣2 β2

ρ↓
+

2χ2|∇β|2

ρ↓
+

2|σ|2

(ρ↓)2
|∇
√
ρ↓|2

 .

We finally use the inequality (ρ↓)−1 ≤ (3/ρ), and the inequality |σ|2/(ρ↓)2 = ρ↑/ρ↓ ≤ 2 and
get

|∇λ1|2 ≤ C
(
|∇α|2

ρ
+ ‖∇χ‖2L∞

(
|∇ρ↑|2

ρ↑
+
|∇ρ↓|2

ρ↓

)
+
|∇β|2

ρ
+ |∇

√
ρ↓|2

)
.
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The right-hand side is in L1(R3) according to (2.12). Hence, (1− ξ2(ρ↑/ρ↓)) |∇λ1| ∈ L2(R3),
and finally λ1 ∈ H1(R3).
The other cases are treated similarly, observing that,

• whenever ρ↑ ≥ ρ↓, then χ = 1, and Φ = Φ1 where Φ1 was defined in (2.13). We then
control (ρ↑)−1 with the inequality (ρ↑)−1 ≤ 2ρ−1 ;

• whenever ρ↑ ≤ ρ↓/2, then χ = 0, Φ = Φ2. We control (ρ↓)−1 with the inequality
(ρ↓)−1 ≤ 3

2ρ
−1 ;

• whenever ρ↓/2 ≤ ρ↑ ≤ ρ↓, then both (ρ↑)−1 and (ρ↓)−1 are controlled via (ρ↑)−1 ≤ 3ρ−1

and (ρ↓)−1 ≤ 2ρ−1.

The result follows.

Step 3: Case N ≥ 2 : J Slater
N = J pure

N = Jmixed
N = CN .

Since J Slater
N ⊂ J pure

N ⊂ Jmixed
N = CN , according to Step 1, it is enough to prove that

CN ⊂ J Slater
N . We start with a key lemma.

Lemma 2.4. For all M,N ∈ N2, it holds that J Slater
N+M = J Slater

N + J Slater
M .

Proof of Lemma 2.4. The case J Slater
N+M ⊂ J Slater

N + J Slater
M is trivial: if R ∈ J Slater

N+M is rep-
resented by the Slater determinant S [Φ1, . . .ΦN+M ], then, by denoting by R1 (resp. R2)
the spin-density 2 × 2 matrix associated to the Slater determinant S [Φ1, . . . ,ΦN ] (resp.
S [ΦN+1, . . . ,ΦN+M ]), it holds R = R1 + R2 (see Equation (2.4) for instance), with R1 ∈
J Slater
N and R2 ∈ J Slater

M .

The converse is more involving, and requires an orthogonalization step. Let R1 ∈ J Slater
N

be represented by the Slater determinant S [Φ1, . . . ,ΦN ], and R2 ∈ J Slater
M be represented by

the Slater determinant S [Φ̃1, . . . , Φ̃M ]. We cannot directly consider the Slater determinant
S [Φ1, . . . ,ΦN , Φ̃1, . . . , Φ̃M ], for (Φ1, . . . ,ΦN ) is not orthogonal to (Φ̃1, . . . , Φ̃M ).

We use the following lemma, which is a smooth version of the Hobby-Rice theorem [HR65]
(see also [Pin76]), and that was proved by Lazarev and Lieb in [LL13] (see also [LS13]).

Lemma 2.5 (Lazarev, Lieb). For all N ∈ N∗, and for all (f1, . . . , fN ) ∈ L1(R3,C), there
exists a function u ∈ C∞(R3), with bounded derivatives, such that

∀1 ≤ k ≤ N,
ˆ
R3

fke
iu = 0.

Moreover, u can be chosen to vary in the r1 direction only.

We now modify the phases of Φ̃1, . . . , Φ̃M as follows. First, we choose ũ1 as in Lemma 2.5
such that,

∀1 ≤ k ≤ N,
ˆ
R3

(
φ↑kφ̃

↑
1 + φ↓kφ̃

↓
1

)
eiũ1 = 0,

and we set ΦN+1 = Φ̃1eiũ1 . Note that, by construction, ΦN+1 is normalized, in H1(R3,C2),
and orthogonal to (Φ1, . . . ,ΦN ). We then construct ũ2 as in Lemma 2.5 such that

∀1 ≤ k ≤ N + 1,

ˆ
R3

(
φ↑kφ̃

↑
2 + φ↓kφ̃

↓
2

)
eiũ2 = 0,

and we set ΦN+2 = Φ̃2eiũ2 . We continue this process for 3 ≤ k ≤ M and construct ΦN+k =
Φ̃ke

iũk . We thus obtain an orthonormal family (Φ1, . . . ,ΦN+M ). Since the spin-density 2× 2
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matrix of the Slater determinant S [Φ̃1, . . . , Φ̃M ] is the same as the one of S [ΦN+1, . . . ,ΦN+M ]
(the phases cancel out), we obtain that R = R1 +R2, where R is the spin-density 2×2 matrix
represented by S [Φ1, . . . ,ΦN+M ]. The result follows.

We now prove that CN ⊂ J Slater
N for N ≥ 2. We start with the case N = 2.

Case N = 2.

Let R =

(
ρ↑ σ
σ ρ↓

)
∈ C2. We write

√
R =

(
r↑ s
s r↓

)
, with r↑, r↓ ∈ H1(R3,R) and s in

H1(R3,C). Let

R↑ :=

(
|r↑|2 sr↑

sr↑ |s|2
)

and R↓ :=

(
|s|2 sr↓

sr↓ |r↓|2
)
. (2.16)

It is easy to check that R = R↑ + R↓, that R↑/↓ are hermitian, of null determinant, and
that

√
R↑/↓ ∈M2×2

(
H1(R3,C)

)
. However, it may hold that

´
R3 trC2 [R↑] /∈ N∗, so that R↑ is

not in C0
M for some M ∈ N∗.

The cases R↑ = 0 or R↓ = 0 are trivial. Let us suppose that mα :=
´
R3 ρRα 6= 0 for

α ∈ {↑, ↓}. In this case, the matrices R̃α = (mα)−1Rα are in C0
1 , hence are representable by a

single orbital according to Step 2. Let Φ̃ =

(
φ̃↑1, φ̃

↓
1

)T
∈ H1(R3,C2) and Φ̃2 =

(
φ̃↑2, φ̃

↓
2

)T
∈

H1(R3,C2) be normalized orbitals that represent respectively R̃↑ and R̃↓. It holds

Φ̃1Φ̃∗1 = R̃↑ = (m↑)−1R↑ and Φ̃2Φ̃∗2 = R̃↓ = (m↓)−1R↓.

From the Lazarev-Lieb orthogonalization process (see Lemma 2.5), there exists a function
u ∈ C∞(R) with bounded derivatives such that

〈Φ̃1|Φ̃2eiu〉 =

ˆ
R3

(
φ̃↑1φ̃

↑
2 + φ̃↓1φ̃

↓
2

)
eiu = 0. (2.17)

Once this function is chosen, there exists a function v ∈ C∞(R) with bounded derivatives
such that

〈Φ̃1|Φ̃1eiv〉 = 〈Φ̃1|Φ̃2ei(u+v)〉 = 〈Φ̃2eiu|Φ̃1eiv〉 = 〈Φ̃2|Φ̃2eiv〉 = 0. (2.18)

We finally set

Φ1 :=
1√
2

(√
m↑Φ̃1 +

√
m↓Φ̃2eiu

)
and Φ2 :=

1√
2

(√
m↑Φ̃1 −

√
m↓Φ̃2eiu

)
eiv.

From (2.17), we deduce ‖Φ1‖2 = ‖Φ2‖2 = 1, so that both Φ1 and Φ2 are normalized. Also,
from (2.18), we get 〈Φ1|Φ2〉 = 0, hence {Φ1,Φ2} is orthonormal. As Φ̃1 and Φ̃2 are in
H1(R3,C2), and u and v have bounded derivatives, Φ1 and Φ2 are in H1(R3,C2). Finally, it
holds that

Φ1Φ∗1 + Φ2Φ∗2 =
1

2

(
m↑Φ̃1Φ̃∗1 +m↓Φ̃2Φ̃∗2 + 2

√
m↑m↓Re

(
Φ̃1Φ̃∗2e−iu

)
+ m↑Φ̃1Φ̃∗1 +m↓Φ̃2Φ̃∗2 − 2

√
m↑m↓Re

(
Φ̃1Φ̃∗2e−iu

))
= m↑Φ̃1Φ̃∗1 +m↓Φ̃2Φ̃∗2 = R.

We deduce that the Slater determinant S [Φ1,Φ2] represents R, so that R ∈ J Slater
2 . Alto-

gether, C2 ⊂ J Slater
2 , and therefore C2 = J Slater

2 .
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Case N > 2.
We proceed by induction. Let R ∈ CN+1 with N ≥ 2, and suppose CN = J Slater

N . We use the
decomposition (2.16) and write R = R↑+R↓, where R↑/↓ are two null-determinant hermitian
matrices. For α ∈ {↑, ↓}, we denote by mα :=

´
R3 ρRα . Since m↑ +m↓ = N + 1 ≥ 3, at least

m↑ or m↓ is greater than 1. Let us suppose without loss of generality that m↑ ≥ 1. We write
R = R1 +R2 with

R1 := (m↑)−1R↑ and R2 :=
((

1− (m↑)−1
)
R↑ +m↓R↓

)
.

It holds that R1 ∈ C0
1 = J Slater

1 and R2 ∈ CN = J Slater
N (by induction). Together with

Lemma 2.4, we deduce that R ∈ J Slater
N+1 . The proof is complete.

Proof of Corollary 2.3

Proof. Let R ∈ Jmixed
N = CN , and let

√
R =

(
r↑ s
s r↓

)
. The eigenvalues of R are denoted

by 0 ≤ ρ− ≤ ρ+, so that
√
ρ± are the eigenvalues of

√
R. In particular,√

ρ± =
1

2

(
r↑ + r↓ ±

√
∆
)

with ∆ = (r↑ − r↓)2 + 4|s|2.

According to Theorem 2.2, r↑, r↓ and s are in H1(R3). Hence, ∆ is the sum of two quantities
whose square roots are in H1(R3), so that

√
∆ ∈ H1(R3) by convexity of ‖

√
·‖2L2 .The result

follows.
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2.2 Representability in CSDFT

We now get interested in current-spin-density function theory (CSDFT). For a system sub-
jected to a magnetic field, the energy of the ground state can be obtained by a minimization
over the set of admissible pairs (R, j), where R is the spin-density 2× 2 matrix introduced in
Section 2.1.1, and j is the paramagnetic current [VR88]. This has lead to several density-based
theories, that come from several different approximations. In spin-density functional theory
(SDFT), one is only interested in spin effects, hence the paramagnetic term is neglected. In
parallel, in current-density functional theory (CDFT), one is only interested in magnetic or-
bital effects, and spin effects are neglected [Vig87]. In this case, the CDFT energy functional
of the system only depends on ρ and j, and we need a characterization of the set of pure-state
and mixed-state N -representable pairs (ρ, j). Such a characterization was given recently by
Hellgren, Kvaal and Helgaker in the mixed-state setting [TKH14], and by Lieb and Schrader
in the pure-state setting, when the number of electrons is greater than 4 [LS13].

In this section, we give some answers to the N -representability problems in the current-
spin-density functional theory (CSDFT): What is the set of pairs (R, j) that come from an
admissible N -electron wave-function, resp. an admissible N -body density matrix? (pure-state
resp. mixed-state representability). We will answer the question in the mixed-state setting
for all N ∈ N∗, and in the pure-state setting when N ≥ 12 by combining the results of the
previous section and the results in [LS13]. The proof relies on the Lazarev-Lieb orthogonaliza-
tion process. In particular, our method does not give an upper-bound for the kinetic energy
of the wave-function in terms of the previous quantities (we refer to [LL13, Rut13] for more
details). We leave open the case N < 12 for pure-state CSDFT representability.

2.2.1 Representable spin-density 2× 2 matrix with paramagnetic current

We will use the same notation as in the previous section. In addition to the spin-density
2 × 2 matrix, we need to define the paramagnetic current j. For a N -body density matrix
Γ ∈ Gmixed

N , the associated paramagnetic current is jΓ = j↑Γ + j↓Γ where

jαΓ = Im

N ∑
~s∈{↑,↓}N−1

ˆ
R3(N−1)

∇r′Γ(r, α,~z, ~s; r′, α,~z, ~s)
∣∣∣
r′=r

d~z

 .

In the case where Γ comes from a Slater determinant S [Φ1, . . . ,ΦN ], we get

jΓ =
N∑
k=1

Im
(
φ↑k∇φ

↑
k + φ↓k∇φ

↓
k

)
. (2.19)

While only the total paramagnetic current j appears in C(S)DFT, the pair (j↑, j↓) is some-
times used to design accurate current-density functionals (see [VR88] for instance). In this
thesis, we only focus on the representability of j, and not on the pair (j↑, j↓).

Let us recall some classical necessary conditions for a pair (R, j) to be N -representable (we
refer to [TKH14, LS13] for the proofs). In the sequel, we will denote by ρ↑ := ρ↑↑, ρ↓ := ρ↓↓

and σ := ρ↑↓ the elements of a matrix R, so that R =

(
ρ↑ σ
σ ρ↓

)
, and by ρ = ρ↑ + ρ↓ the

associated total electronic density. Recall that the set CN was defined in (2.7).

Lemma 2.6. If a pair (R, j) is representable by a mixed-state N -body density matrix, then{
R ∈ CN
|j|2ρ−1 ∈ L1(R3).

(2.20)
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From the second condition of (2.20), it must hold that the support of j is contained in the
support of ρ. The vector v := ρ−1j is called the velocity field, andw := curl(v) is the vorticity.

Let us first consider the pure-state setting. In the spin-unpolarized setting, for N =
1, a pair (ρ, j) representable by a single orbital φ generally satisfies the curl-free condition
curl(ρ−1j) = 0 (this is the case for instance when φ is of the form φ = |φ|e−iu, where the
phase u is in C1(R3), see [LS13, TKH14]). This is no longer the case when spin is considered,
as is shown is the following Lemma (see Section 2.2.2 for the proof).

Lemma 2.7 (CSDFT, case N = 1). Let Φ = (φ↑, φ↓)T ∈ WSlater
1 be such that both φ↑ and

φ↓ have phases in C1(R). Then, the associated pair (R, j) satisfies R ∈ C0
1 , |j|2ρ−1 ∈ L1(R3),

and the two curl-free conditions

curl
(
j

ρ
− Im (σ∇σ)

ρρ↓

)
= 0, curl

(
j

ρ
+

Im (σ∇σ)

ρρ↑

)
= 0. (2.21)

Remark 2.8. If we write σ = |σ|eiτ , then, |σ|2 = ρ↑ρ↓, and

Im (σ∇σ) = |σ|2∇τ = ρ↑ρ↓∇τ. (2.22)

In particular, it holds that

curl
(

Im (σ∇σ)

ρρ↓
+

Im (σ∇σ)

ρρ↑

)
= curl (∇τ) = 0,

so that one of the equalities in (2.21) implies the other one.

Remark 2.9. We recover the traditional result in the collinear spin setting, where σ ≡ 0.

In the case N > 1, things are very different. In [LS13], the authors proved the following
theorem for N ≥ 4.

Theorem 2.10 (Lieb, Schrader).
A sufficient set of conditions for a pair (ρ, j) to be pure-state N -representable is

• ρ ∈ IN with N ≥ 4 and j satisfies |j|2ρ−1 ∈ L1(R3).

• there exists δ > 0 such that

sup
r∈R3

f(r)(1+δ)/2
(
|w(r)|+ |∇w(r)|

)
<∞ (2.23)

where
f(r) := (1 + (r1)2)(1 + (r2)2)(1 + (r3)2). (2.24)

By adapting their proof to our case, we are able to ensure representability of a pair (R, j)
by a Slater determinant for N ≥ 12 under the same mild condition (see Section 2.2.2 for the
proof).

Theorem 2.11 (CSDFT, case N ≥ 12).
A sufficient set of conditions for a pair (R, j) to be representable by a Slater determinant is

• R ∈ CN with N ≥ 12 and j satisfies |j|2ρ−1 ∈ L1(R3)

• there exists δ > 0 such that,

sup
r∈R3

f(r)(1+δ)/2
(
|w(r)|+ |∇w(r)|

)
<∞, (2.25)

where f is the function defined in (2.24).
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Remark 2.12. The condition (2.25) has of course the same origin as the condition (2.23).
In [LS13], the authors conjectured that this condition “can be considerably loosened”.

Let us turn to the mixed-state case. If (R, j) is representable by a Slater determinant
S [Φ1, . . . ,ΦN ], then, for all k ∈ N∗, the pair (k/N)(R, j) is mixed-state representable,
where N is the number of orbitals (simply take the uniform convex combination of the pairs
represented by S [Φ1], S [Φ2], etc.). In particular, from Theorem 2.11, we deduce the follow-
ing corollary.

Corollary 2.13 (CSDFT, case mixed-state).
A sufficient set of conditions for a pair (R, j) to be mixed-state representable is R ∈ CN for
some N ∈ N∗, j satisfies |j|2ρ−1 ∈ L1(R3), and (2.25) holds for some δ > 0.

In [TKH14], the authors provide different sufficient conditions than (2.25) for a pair (ρ, j)
to be mixed-state representable. They proved that if

(1 + | · |2)ρ
∣∣∇(ρ−1j)

∣∣2 ∈ L1(R3),

then the pair (ρ, j) is mixed-state representable. Their proof can be straightforwardly adapted
for the representability of the pair (R, j), so that similar results hold.

We now prove Lemma 2.7 and Theorem 2.11.

2.2.2 Proofs of the CSDFT results

Proof of Lemma 2.7

Proof. Let Φ = (φ↑, φ↓) ∈ H1(R3,C2) having phases in C1(R), and let (R, j) be the associated
spin-density 2× 2 matrix and paramagnetic current. It holds that

R =

(
ρ↑ σ
σ ρ↓

)
:=

(
|φ↑|2 φ↑φ↓

φ↓φ↑ |φ↓|2

)
.

For α ∈ {↑, ↓}, we let τα be the phase of φα, so that φα =
√
ραeiτα . Setting τ = τ↑ − τ↓,

we obtain σ = |σ|eiτ =
√
ρ↑ρ↓eiτ . On the other hand, the paramagnetic current is, according

to (2.19),
j = ρ↑∇τ↑ + ρ↓∇τ↓ = ρ∇τ↓ + ρ↑∇τ = ρ∇τ↑ − ρ↓∇τ.

In particular, using (2.22),

j

ρ
− Im (σ∇σ)

ρρ↓
=

j− ρ↑∇τ
ρ

= ∇τ↓ and
j

ρ
+

Im (σ∇σ)

ρρ↑
= ∇τ↑.

are curl-free.

Proof of Theorem 2.11

Proof. We break the proof in several steps.

Step 1: Any R ∈ CN can be written as R = R1 +R2 +R3 with Rk ∈ C0
Nk

, Nk ≥ 4.

Let R =

(
ρ↑ σ
σ ρ↓

)
∈ CN , with N ≥ 12. Then,

√
R =

(
r↑ s
s r↓

)
, with r↑, r↓ ∈ H1(R3,R)

and s in H1(R3,C). We write R = R↑ + R↓ where R↑/↓ were defined in (2.16). As in
the proof of Theorem 2.2 for the case N = 2, R↑/↓ are hermitian, of null determinant, and√
R↑/↓ ∈ M2×2

(
H1(R3,C)

)
. However, it may hold that

´
trC2 [R↑] /∈ N∗, so that R↑ is not
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in C0
M for some M ∈ N∗. In order to handle this difficulty, we will distribute the mass of R↑

and R↓ into three spin-density 2× 2 matrices.

More specifically, let us suppose without loss of generality that
´

trC2 [R↑] ≥
´

trC2 [R↓].
We set

R1 = (1− ξ1)R↑ + ξ2R
↓,

R2 = ξ1(1− ξ3)R↑,

R3 = (1− ξ2)R↓ + ξ3R
↑,

(2.26)

where ξ1, ξ2, ξ3 are suitable non-decreasing functions in C∞(R3), that depends only on r1,
and such that, for 1 ≤ k ≤ 3, it holds 0 ≤ ξk ≤ 1. We will choose them of the form ξk(r) = 0
for r1 < αk and ξk(r) = 1 for r1 ≥ βk > αk, and such that

(1− ξ1)ξ2 = (1− ξ2)ξ3 = (1− ξ1)ξ3 = 0. (2.27)

These functions are tuned so that
´
R3 trC2(Rk) ∈ N∗ and

´
R3 trC2(Rk) ≥ 4 for all 1 ≤ k ≤

3 (see Figure 2.1 for a canonical example of such a triplet (ξ1, ξ2, ξ3)). In Figure 2.1, we
clearly see how the non-overlapping condition (2.27) guarantees the null-determinant condition
everywhere. Note that such a spatial decomposition could not have been performed with only
two spin-density 2 × 2 matrices. Although it is not difficult to convince oneself that such
functions ξk exist, we provide a full proof of this fact in Section 2.2.3.

(1− ξ1) ξ2

ξ1(1− ξ3)

(1− ξ2) ξ3

(a)

(b)

(c)

Figure 2.1 – Weights of the matrices R↑ (blue) and R↓ (red) in (a) R1 = (1− ξ1)R↑ + ξ2R
↓,

(b) R2 = ξ1(1− ξ3)R↑ and (c) R3 = (1− ξ2)R↑ + ξ3R
↓.

From (2.27), it holds that, for all 1 ≤ k ≤ 3, Rk ∈ C0
NK

, and that R1 + R2 + R3 =

R↑ + R↓ = R. In order to simplify the notation, we introduce the total densities of R↑ and
R↓:

f↑ := |r↑|2 + |s|2 and f↓ := |r↓|2 + |s|2.

Recall that ρ = f↑ + f↓. We decompose j in a similar fashion. We write j = j1 + j2 + j3 with

j1 := (1− ξ1)

(
f↑

ρ
j− Im (s∇s)

)
+ ξ2

(
f↓

ρ
j + Im (s∇s)

)
,

j2 := ξ1(1− ξ3)

(
f↑

ρ
j− Im (s∇s)

)
,

j3 := (1− ξ2)

(
f↓

ρ
j + Im (s∇s)

)
+ ξ3

(
f↑

ρ
j− Im (s∇s)

)
.

(2.28)
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Step 2: The pair (R1, j1) is representable by a Slater determinant.
Following [LS13], we introduce

ξ(x) =
1

m

ˆ x

−∞

1

(1 + y2)(1+δ)/2
dy,

where δ is the one in (2.25), and m is a constant chosen such that ξ(∞) = 1. We then
introduce

η1,1(r) =
2

N1
ξ(r + α),

η1,2(r) =
2

N1 − 1
ξ(x1 + β)(1− η1(r)),

η1,3(r) =
2

N1 − 2
ξ(x2 + γ)(1− η1(r)− η2(r)),

η1,k(r) =
1

N1 − 3
(1− η1(r)− η2(r)− η3(r)) for 4 ≤ k ≤ N1,

(2.29)

where α, β, γ are tuned so that, if ρ1 := trC2R1 denotes the total density of R1,

∀1 ≤ k ≤ N1,

ˆ
R3

η1,kρ1 = 1. (2.30)

It can be checked (see [LS13]) that η1,k ≥ 0 and that
∑N1

k=1 η1,k = 1. We seek orbitals of the
form

Φ1,k :=
√
η1,k

(√
(1− ξ1)

(
r↑

s

)
+
√
ξ2

(
s
r↓

))
eiu1,k , 1 ≤ k ≤ N1,

where the phases u1,k are chosen carefully later. From (2.27), we recall that (1 − ξ1)ξ2 = 0,
so that, by construction, Φ1,k is normalized, and

Φ1,kΦ
∗
1,k = η1,kR1.

Let us suppose for now that the phases u1,k are chosen so that the orbitals are orthogo-
nal. This will indeed be achieved thanks to the Lazarev-Lieb orthogonalization process (see
Lemma 2.5). Then, Ψ1 := S [Φ1,1, . . . ,Φ1,N ] represents the spin-density 2×2 matrix R1. Ac-
cording to (2.19), the paramagnetic current of Ψ is (we recall that r↑ and r↓ are real-valued,
and we write s = |s|eiτ for simplicity)

jΨ =

N1∑
k=1

η1,k(1− ξ1)
(
|r↑|2∇u1,k + |s|2∇(−τ + u1,k)

)
+ η1,kξ2

(
|s|2∇(τ + u1,k) + |r↓|2∇u1,k

)
=
(

(1− ξ1)f↑ + ξ2f
↓
)( N1∑

k=1

η1,k∇u1,k

)
+ (ξ2 − (1− ξ1)) |s|2∇τ.

Since |s|2∇τ = Im (s∇s), this current is equal to the target current j1 defined in (2.28) if and
only if

ρ1
j

ρ
= ρ1

N1∑
k=1

ηk∇u1,k. (2.31)

In [LS13], Lieb and Schrader provided an explicit solution (u1,1, . . . , u1,N1) of this system
when1 N1 ≥ 4. We do not repeat the proof, but emphasize on the fact that since condi-
tion (2.25) holds true, the phases u1,k can be chosen to have bounded derivatives, so that

1 In the same article, the authors recall (see [TME09] for instance) that (2.31) may not have solutions when
N1 = 2. The case N1 = 3 is still open. Of course, would someone find an explicit solution for N1 = 3, the
condition N ≥ 12 in Theorem 2.11 could be replaced by the weaker condition N ≥ 9.
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the functions Φ1,k are in H1(R3,C2). Also, as their proof relies on the Lazarev-Lieb orthog-
onalization process, it is possible to choose the phases u1,k so that the functions Φ1,k are
orthogonal, and orthogonal to a finite-dimensional subspace of L2(R3,C2).

We proved that the pair (R1, j1) is representable by the Slater determinant S [Φ1,1, . . . ,Φ1,N1 ].

Step 3: Representability of (R2, j2) and (R3, j3), and finally of (R, j).
In order to represent the pair (R2, j2), we first construct the functions η2,k for 1 ≤ k ≤ N2 of
the form (2.29) so that (2.30) holds for ρ2 := trC2R2. We then seek orbitals of the form

Φ2,k :=
√
η2,kξ1(1− ξ3)

(
r↑

s

)
eiu2,k , for 1 ≤ k ≤ N2.

Reasoning as above, the Slater determinant of these orbitals represents the pair (R2, j2) if and
only if

ρ2
j2
ρ

= ρ2

N2∑
k=1

η2,k∇u2,k.

Again, since N2 ≥ 4, this equation admits a solution (u2,1, . . . , u2,N2). Moreover, it is pos-
sible to choose the phases u2,k so that the functions Φ2,k are orthogonal to the previously
constructed Φ1,k.

We repeat again this argument for the pair (R3, j3). Once the new set of functions η3,k is
constructed, we seek orbitals of the form

Φ3,k :=
√
η3,k

(√
(1− ξ2)

(
s
r↓

)
+
√
ξ3

(
r↑

s

))
eiu3,k

and construct the phases so that the functions Φ3,k are orthogonal to the functions Φ1,k

and Φ2,k.

Altogether, the pair (R, j) is represented by the (finite energy) Slater determinant

S [Φ1,1, . . . ,Φ1,N1 ,Φ2,1, . . . ,Φ2,N2 ,Φ3,1, . . . ,Φ3,N3 ],

which concludes the proof.

2.2.3 Construction of the functions ξ1, ξ2 and ξ3

We explain in this section how to construct three functions ξ1, ξ2, ξ3 ∈ C∞(R) like in Fig-
ure 2.1. In order to simplify the notation, we introduce

f(r) :=

¨
R×R

trC2(R↓)(r, r2, r3) dr2dr3, and g(r) :=

¨
R×R

trC2(R↑)(r, y, z) dr2dr3,

where R↑, R↓ were defined in (2.16). We denote by

F (α) :=

ˆ α

−∞
f(x)dx and G(α) :=

ˆ α

−∞
g(x)dx,

and we set F := F (∞) =
´
R f and G := G(∞) =

´
R g. Note that F and G are continuous

non-decreasing functions going from 0 to F (respectively G), and that it holds F+G = N . Let
us suppose without loss of generality that F ≤ G, so that 0 ≤ F ≤ N/2 ≤ G ≤ N . If F = 0,
then R↓ = 0 and we can choose R1 = R2 = (4/N)R↑ ∈ C0

4 and R3 = (N − 8)/NR↑ ∈ C0
N−8.

Since N ≥ 12, it holds N − 8 ≥ 4, so that this gives the desired decomposition. We now
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consider the case F 6= 0.

In order to keep the notation simple, we will only study the case F < 8 (the case F > 8
is similar by replacing the integer 4 by a greater integer M such that F < 2M < N − 4 in
the sequel). We seek for α such that

ˆ α

−∞
f(x)dx < 4 and

ˆ α

−∞
f(x) +

ˆ ∞
α

g(x) > 4,

ˆ ∞
α

f(x)dx < 4 and
ˆ α

−∞
g(x)dx+

ˆ ∞
α

f(x)dx > 4,

or equivalently

F − 4 < F (α) < 4, and F (α) + 4−F < G(α) < F (α) + G − 4. (2.32)

Let α(F−4) be such that F (α(F−4)) = F − 4 (with α(F−4) = −∞ if F ≤ 4), and α(4) be
such that F (α(4)) = 4 (with α(4) = +∞ if F ≤ 4). As F is continuous non-decreasing, the
first equation of (2.32) is satisfied whenever α(F−4) < α < α(4).

The function [α(F−4), α4] 3 α 7→ m(α) := F (α) + 4 − F goes continuously and non-
decreasingly from 0 to 8−F , and the function [α(F−4), α4] 3 α 7→M(α) := F (α)+G−4 goes
continuously and non-decreasingly from N − 8 to G between α(F−4) and α(4). In particular,
since G(α) goes continuously and non-decreasingly from 0 to G, only three cases may happen:

Case 1: There exists α0 ∈ (α(F−4), α(4)) such that m(α0) < G(α0) < M(α0).
In this case, (2.32) holds for α = α0. By continuity, there exists ε > 0 such that

F (α+ ε) < 4, F (α) + G −G(α+ ε) > 4, and G(α) + F − F (α+ ε) > 4.

Let ξ2 ∈ C∞(R) be a non-decreasing function such that ξ2(x) = 0 for x < α and ξ2(x) = 1
for x > α+ ε. Then, as 0 ≤ ξ2 ≤ 1, it holds that:

ˆ
R

(1− ξ2)f ≤ F (α+ ε) < 4 and
ˆ
R

(1− ξ2)f +

ˆ ∞
α+ε

g ≥ F (α) + G −G(α+ ε) > 4.

We deduce that there exists an non-decreasing function ξ3 ∈ C∞(R) such that ξ3(x) = 0 for
x < α+ ε, and such that ˆ

R
(1− ξ2)f + ξ3g = 4.

Note that (1− ξ2)ξ3 = 0. On the other hand, from
ˆ
R
ξ2f ≤ F − F (α) < 4 and

ˆ
R
ξ2f +

ˆ α

−∞
g ≥ F − F (α+ ε) +G(α) > 4,

we deduce that there exists an non-decreasing function ξ1 ∈ C∞(R) such that ξ1(x) = 1 for
x > α, ˆ

R
(1− ξ1)g + ξ2f = 4.

and (1− ξ1)ξ2 = (1− ξ1)ξ3 = 0. Finally, we set

R1 = (1− ξ1)R↑ + ξ2R
↓, R2 = ξ1(1− ξ3)R↑, and R3 = (1− ξ2)R↓ + ξ3R

↑.

By construction, R = R↑ + R↓ = R1 + R2 + R3, R1 ∈ C0
4 and R3 ∈ C0

4 . We deduce that
R4 ∈ C0

N−8, where N − 8 ≥ 4. This leads to the desire decomposition.
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Case 2: For all α ∈ (α(F−4), α(4)), it holds G(α) < m(α).
This may only happen if m(α(4)) > 0, or F < 4, so that G > N −4 ≥ 8. It holds G(α(F−4)) =
0, so that g(r) is null for r < α(F−4). Let α0 be such that α(F−4) < α0 < α(4). As

ˆ
R
f = F > 4 and

ˆ ∞
α0

f = F − F (α0) < 4,

there exists a non-decreasing function ξ1 ∈ C∞(R) satisfying ξ1(x) = 1 for x ≥ α0 and such
that ˆ

R
ξ1f = 4.

Now, since G(α(4)) < m(α(4)) = 8−F , it holds that
ˆ
R

(1− ξ1)f ≤ F (α(4)) = 4 and
ˆ
R

(1− ξ1)f +

ˆ ∞
α0

g ≥ F (α(F−4)) + G −G(α(4)) > 4.

There exists a non-decreasing function ξ2 ∈ C∞(R) satisfying ξ2(x) = 0 for x ≤ α0 and such
that ˆ

R
(1− ξ1)f + ξ2g = 4.

Note that (1− ξ1)ξ2 = 0. Finally, we set

R1 = ξ1R
↓, R2 = (1− ξ2)R↑, and R3 = ξ2R

↑ + (1− ξ1)R↓.

By construction, it holds that R = R1 +R2 +R3, and that R1 ∈ C0
4 and R3 ∈ C0

4 . We deduce
R2 ∈ C0

N−8, and the result follows.

Case 3: For all α ∈ (α(F−4), α(4)), it holds G(α) > M(α).
This case is similar to the previous one.





CHAPTER 3

EXISTENCE OF MINIMIZERS FOR KOHN-SHAM WITHIN THE
LOCAL SPIN DENSITY APPROXIMATION

We expose in this chapter the results given in [Gon15a].

Abstract. The purpose of this chapter is to extend the work by Anantharaman and
Cancès [AC09], and prove the existence of minimizers for the spin-polarized Kohn-Sham model
in the presence of a magnetic field within the local spin density approximation. We show
that for any magnetic field that vanishes at infinity, the existence of minimizers is ensured for
neutral or positively charged systems. The proof relies on classical concentration-compactness
techniques.

3.1 Introduction

The density functional theory (DFT) introduced in 1964 by Hohenberg and Kohn [HK64] is a
very popular tool in modern quantum chemistry. This theory transforms the high-dimensional
Schrödinger problem into a low-dimensional one, hence computationally solvable. The price
to pay is the introduction of the so-called exchange-correlation (xc) energy term, which is
unknown. Throughout the literature, several different approximations of this energy can be
found. The first successful one, and still broadly used nowadays, was proposed by Kohn and
Sham [KS65], and is called the local density approximation (LDA). The mathematical prop-
erties resulting of the Kohn-Sham LDA are still not fully understood. Proving the existence
of minimizers is made difficult by the non-convexity of the problem due to the LDA term.
Using concentration-compactness techniques introduced by Lions [Lio84], it has been possible
to prove the existence of minimizers in several cases. Le Bris [LB93] proved that for a neutral
or positively charged system, the Kohn-Sham problem with LDA exchange-correlation energy
admits a minimizer. A similar result was proved by Anantharaman and Cancès [AC09] for
the so-called extended-Kohn-Sham model with LDA exchange-correlation energy.

In this chapter, we extend the result by Anantharaman and Cancès to spin-polarized
systems, the electrons of the molecular system into consideration being subjected to the
electric potential V created by the nuclei, and to an arbitrary external magnetic field B that
vanishes at infinity. In order to take into account spin effects, we have to resort to spin
density functional theory (SDFT). In this theory, all magnetic contributions coming from
orbital magnetism (paramagnetic current, spin-orbit coupling,...) are neglected. Historically,
while Kohn and Sham briefly discussed the inclusion of spin effects in their model, the general
theory was pioneered by von Barth and Hedin [vBH72] and is known as the local spin density
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approximation (LSDA). These authors proposed the following ansatz to transform a spin-
unpolarized exchange-correlation energy to a spin-polarized version of it:

ELSDA
xc (ρ+, ρ−) :=

1

2

[
ELDA

xc (2ρ+) + ELDA
xc (2ρ−)

]
,

where ELDA
xc is the spinless exchange-correlation energy, and ρ+/− are the eigenvalues of

the spin-density 2 × 2 matrix (see Chapter 2, Section 2.1.1). There are two other major
differences between spin-polarized and spin-unpolarized models. First, the ground state of
spin-unpolarized models is given by a minimization problem onto the set of electronic den-
sities, while in spin-polarized models, it is given by a minimization problem onto the set of
spin-density 2× 2 matrices, which are hermitian matrices. Second, the magnetic field adds a
Zeeman-type term −µ

´
B ·m to the energy functional, where m is the spin angular momen-

tum density.

Due to all those additional difficulties with respect to the spin-unpolarized case, the
fully polarized SDFT has not been very popular until recently. Chemists generally prefer
its collinear version (collinear-SDFT), where all the spins are constrained to be orientated
along a fixed direction on the whole space. This allows one to work with two scalar fields
(one for spin-up, and one for spin-down), instead of fields of hermitian matrices. While this
simplification provides very good results, it misses some physical properties (spin dynamics
[SDAD+07], frustrated solids [BSFS13], and so on). The implementation of the unconstrained
(fully polarizable) model appeared with the work of Sandratskii and Guletskii [SG86], and
Kübler et al. [KHSW88a, KHSW88b], and this model is becoming a standard tool nowadays.
To the best of our knowledge, no rigorous proof of the existence of solutions has yet been
provided for this case.

Our result is that, under the same hypotheses as in [AC09], plus some mild conditions
on B, the existence of minimizers is still ensured for neutral or positively charged systems.
Whereas the main tools of the proof are similar to those used in [AC09], namely concentration-
compactness techniques, some adaptations are necessary, in particular to handle the Zeeman
term. The structure of this chapter is as follows. We first recall how to derive the LSDA
models, and formulate the main theorem. Then, we break the proof of the theorem into
several lemmas, that we prove at the end.

3.2 Derivation of the local spin density approximation models

We recall how extended Kohn-Sham models are derived in the spin setting. We start from
the Schrödinger-Pauli Hamiltonian for N -electrons in the Born-Oppenheimer approximation.
In atomic units, this operator reads

H full-SP
N (V,A) =

N∑
i=1

1

2
(−i∇i + A(ri))

2 I2 +
N∑
i=1

V (ri)I2−µ
N∑
i=1

B(ri) ·σi+
∑

1≤i<j≤N

1

|ri − rj |
I2,

where I2 is the 2× 2 identity matrix,

V (r) = −
M∑
k=1

zk
|r−Rk|

(3.1)

is the electric potential generated by the M nuclei, A is the external magnetic vector potential,
and B := ∇×A is the external magnetic field. We denote by ri (resp. Rk) the positions of
the electrons (resp. nuclei). The charge of the k-th nucleus is zk ∈ N∗ and Z :=

∑M
k=1 zk is
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the total nuclear charge. We can assume without loss of generality that R1 = 0. The constant
µ is the Bohr magneton. Its value is 1/2 in atomic units, but we prefer to keep the notation
µ in the rest of the chapter. The term σi appearing in the Hamiltonian contains the Pauli
matrices acting on the i-th spin variable:

σi := (σxi, σyi, σzi) =

((
0 1
1 0

)
i

,

(
0 −i
i 0

)
i

,

(
1 0
0 −1

)
i

)
.

Although the magnetic field B and magnetic vector potential A are linked by the rela-
tion B = ∇×A, it is often preferable to consider them as two independent fields. Indeed, B
acts on the spin of the electrons, while A acts on the spatial component of the orbitals.
For instance, would we be interested only in studying orbital effects (e.g. paramagnetic cur-
rents), we would neglect the spin effects. We would then take B = 0 and A 6= 0. Such an
approximation leads to the so-called current-density functional theory [VR88]. In this chap-
ter, we are interested in spin effects. We therefore set A = 0, which amounts to neglecting
the paramagnetic currents, while keeping B 6= 0. This approximation is commonly used to
study phenomena such as spin dynamics [SDAD+07] or frustrated solids [BSFS13]. With this
approximation, our Hamiltonian for N electrons reads

HSP
N (V,B) =

 N∑
i=1

−1

2
∆i +

N∑
i=1

V (ri) +
∑

1≤i<j≤N

1

|ri − rj |

 I2 − µ
N∑
i=1

B(ri) · σi.

This Hamiltonian acts on the fermionic Hilbert space

N∧
L2(R3,C2) :=

{
Ψ(r1, s1, · · · , rN , sN ), ri ∈ R3, si ∈ {↑, ↓},∑
s1,···sN∈{↑,↓}N

ˆ
R3N

|Ψ(r1, s1, · · · )|2dr1 · · · drN <∞,

∀p ∈ SN , Ψ(rp(1), sp(1), · · · ) = ε(p)Ψ(r1, s1, · · · )
}
.

Here, SN denotes the set of all permutations of [[1, . . . , N ]], and ε(p) is the parity of the
permutation p. The space

∧N L2(R3,C2) is endowed with the inner product

〈Ψ1|Ψ2〉 =
∑

(s1,···sN )∈{↑,↓}N

ˆ
R3N

Ψ1(r1, s1, · · · )Ψ2(r1, s1, · · · )dr1 · · · drN .

The ground state energy of the system is obtained by solving the minimization problem

E(V,B) := inf
{

Tr
(
HSP
N Γ

)
, Γ ∈ Gpure

N

}
= inf

{
Tr
(
HSP
N Γ

)
, Γ ∈ Gmixed

N

}
where Gpure

N resp. Gmixed
N is the set of spin-polarized pure-state (resp. mixed-state) N -body

density matrices defined in (2.1) resp. (2.2). We study the extended-Kohn-Sham model based
on mixed-state N -body density matrices, for this problem has better properties mathemat-
ically speaking, and allows one to handle more general physical situations as, for instance,
positive temperatures. For Γ ∈ Gmixed

N , direct calculations lead to

Tr
(
HSP
N (V,B)Γ

)
= Tr

(
HSP
N (0,0)Γ

)
+

ˆ
R3

trC2

[(
V − µBz −µBx + iµBy

−µBx − iµBy V + µBz

)(
ρ↑↑Γ ρ↑↓Γ
ρ↓↑Γ ρ↓↓Γ

)]
,

(3.2)
where, for α, β ∈ {↑, ↓}2, ραβΓ was defined in (2.3). In the following, we write

U :=

(
V − µBz −µBx + iµBy

−µBx − iµBy V + µBz

)
and RΓ :=

(
ρ↑↑Γ ρ↑↓Γ
ρ↓↑Γ ρ↓↓Γ

)
.
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We recognize in RΓ the spin-polarized density 2 × 2 matrix introduced in Chapter 2, Sec-
tion 2.1. When B = 0, one recovers the usual potential energy density V ρΓ appearing in
spin-unpolarized DFT. Introducing the spin angular momentum density mΓ = trC2 [σ ·RΓ],
and the total electronic density ρΓ = ρ↑↑Γ + ρ↓↓Γ , it holds

trC2 [URΓ] = V ρΓ − µB ·mΓ. (3.3)

We now apply the constrained search method introduced and studied by Levy [Lev79],
Valone [Val80] and Lieb [Lie83], and write the minimization problem (3.2) in terms of RΓ:

E(V,B) = inf

{
F (R) +

ˆ
R3

trC2 [UR] , R ∈ Jmixed
N

}
, (3.4)

with
F (R) := inf

{
Tr [H(0,0)Γ] , Γ ∈ Gmixed

N , RΓ = R
}
.

The set Jmixed
N is the set of mixed state N -representable spin-density 2 × 2 matrices, that

we characterized in Theorem 2.2. The functional F cannot be straightforwardly evaluated.
In order to make this problem practical, we approximate F . It is standard since the work of
Kohn and Sham [KS65] to approximate this functional by studying a system of non-interacting
electrons. For this purpose, we recall that, for a mixed state Γ ∈ Gmixed

N , the spin-polarized
one-body density matrix γΓ(r, r′) was defined in (2.10)-(2.11). The set of mixed-state 1-body
density matrices is

PN := {γΓ, Γ ∈ Gmixed
N },

and, identifying the kernel γ(r, r′) with the corresponding operator of S(L2(R3,C2)), the
space of self-adjoint operators on L2(R3,C2), Coleman [Col63] proved that

PN =
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}
.

Physically speaking, this is the set of one-body density matrices of systems with N electrons
(Tr(γ) = N), satisfying the Pauli principle (0 ≤ γ ≤ 1), and with finite kinetic energy
(Tr(−∆γ) <∞). In a similar way, we can define, for λ > 0,

Pλ :=
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr(γ) = λ, Tr(−∆γ) <∞

}
. (3.5)

A more practical and equivalent formulation of the Coleman result is that, using the spectral
theory for compact self-adjoint operators, we can write the components γαβ of any γ ∈ Pλ in
the form

γαβ(r, r′) =

∞∑
k=1

nkφ
α
k (r)φβk(r′), 0 ≤ nk ≤ 1,

∞∑
k=1

nk = λ, Φk =

(
φ↑k
φ↓k

)
∈ L2(R3,C2),

〈Φk|Φl〉 = δkl, Tr(−∆γ) :=
∞∑
k=1

nk‖∇Φk‖2L2 = Tr(−∆γ↑↑) + Tr(−∆γ↓↓) <∞. (3.6)

Notice that γΓ(r, r) = RΓ(r), so that we will write Rγ(r) := γ(r, r) for γ ∈ PN . We finally
introduce

Jmixed
λ :=

{
R ∈M2×2(L1(R3)), ∃γ ∈ Pλ, R = Rγ

}
.

The extended version of the Kohn-Sham approach consists in splitting the unknown func-
tional F (R) into three parts:

F (R) = TKS(R) + J(ρR) + Exc(R).
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The first term TKS represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

∀R ∈ Jmixed
λ , TKS(R) := inf

{
1

2
Tr (−∆γ) , γ ∈ Pλ, Rγ = R

}
.

The second term is the Hartree term, defined by

J(ρ) :=
1

2

¨
R3×R3

ρ(r)ρ(r′)

|r− r′|
dr dr′.

Finally, the last term is the exchange-correlation functional defined by

∀R ∈ Jmixed
N , Exc(R) := F (R)− TKS(R)− J(ρR).

Notice that since F is a non-explicit functional, Exc is also a non-explicit functional. It is how-
ever possible to construct explicit approximations of Exc giving rise to accurate predictions of
the ground state energies of most molecular systems [ED11]. The case Exc = 0 corresponds
to the reduced Hartree-Fock model [Sol91].

The local-spin density approximation introduced by von Barth and Hedin [vBH72] consists
in writing

Exc(R) ≈ ELSDA
xc (ρ+, ρ−) :=

1

2

[
ELDA

xc (2ρ+) + ELDA
xc (2ρ−)

]
(3.7)

where ρ+/− are the two eigenvalues of the spin-density 2 × 2 matrix R, and ELDA
xc is the

standard exchange-correlation functional in the spin-unpolarized case, that we can write under
the form [KS65]

ELDA
xc (ρ) =

ˆ
R3

g(ρ(r)) dr. (3.8)

The fact that ELSDA
xc only depends on R via its eigenvalues comes from the locality of the

functional. Indeed, this energy functional must be invariant with respect to local spin rota-
tions. Since R is hermitian at each point, we can always diagonalize R locally, so that a local
energy functional can only depend on the two eigenvalues of R.

In this chapter, we deal with exchange-correlation functionals of the form (3.7)-(3.8). For
all ρ ∈ R+, the real value g(ρ) is an approximation of the exchange-correlation energy density
of the uniform electron gas with density ρ. Several functions g are available (VWS [VWN80],
PZ81 [PZ81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic conditions
for low and high densities. Their mathematical properties are similar to the ones of the Xα-
functional introduced by Slater [Sla51]

ELDA,Xα
xc (ρ) = −CX

ˆ
R3

ρ4/3(r)dr.

Altogether, by recasting problem (3.4) in terms of the one-body density matrices, we end
up with a variational problem of the form

Iλ := inf {E(γ), γ ∈ Pλ} , (3.9)

where

E(γ) =
1

2
Tr
(
−∆γ↑↑

)
+

1

2
Tr
(
−∆γ↓↓

)
+ J(ργ) +

ˆ
R3

trC2 [URγ ] dr + ELSDA
xc (ρ+

γ , ρ
−
γ )

and where Pλ has been defined in (3.5). The physical situation corresponds to λ = N ∈ N,
but as usual in variational problems set on the whole space, it is useful to relax the constraint
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Tr(γ) = N to allow the particles to escape to infinity.

We can recover some other common models by further constraining the minimization set.
For instance, the collinear-SDFT consists in minimizing the functional E onto the set

Pcollinear
λ :=

{
γ ∈ Pλ, γ↑↓ = γ↓↑ = 0

}
.

In this case, the matrices γ and R are both diagonal. In particular, the two eigenvalues of R
are {ρ+, ρ−} = {ρ↑↑, ρ↓↓}. In this model, it holds that

ˆ
R3

trC2 [UR] =

ˆ
R3

V (ρ↑↑ + ρ↓↓)− µ
ˆ
R3

Bz(ρ
↑↑ − ρ↓↓) =

ˆ
R3

V ρ− µ
ˆ
R3

Bzρ ζ.

where

ζ :=
ρ↑↑ − ρ↓↓

ρ↑↑ + ρ↓↓
∈ [−1, 1]

is the relative spin-polarization. This model is simpler than the noncollinear spin-polarized
model, as we are not dealing with fields of matrices, but with two scalar fields. Physically, it
corresponds to constraining the spin along a fixed direction on the whole space. This method
provides results in good agreement with experiments whenever the energy accounting for the
noncollinearity of the spins is negligible.

Then, the spin-unpolarized case consists in minimizing the functional E onto the set

Punpolarized
λ :=

{
γ ∈ Pλ, γ↑↓ = γ↓↑ = 0, γ↑↑ = γ↓↓

}
.

Equivalently, it corresponds to the collinear case with ζ ≡ 0. It then holds that
ˆ
R3

trC2 [UR] =

ˆ
R3

V ρ,

so that the model is independent of the magnetic field B, and can be used whenever spin
effects are negligible. We refer to [AC09] for a mathematical introduction of this model.

3.3 An existence result for the Kohn-Sham LSDA model

The main result of this section is the following

Theorem 3.1. Under the following assumptions

1/ the function g in (3.8) is of class C1(R+) and satisfies:

g(0) = 0

g′ ≤ 0

∃ 0 < β− ≤ β+ <
2

3
, sup

ρ∈R+

|g′(ρ)|
ρβ− + ρβ+ <∞

∃ 1 ≤ α < 3

2
, lim sup

ρ→0+

g(ρ)

ρα
< 0,

(3.10)

2/ all entries of U are in L
3
2

+ε(R3)+L∞(R3) and vanish at infinity, and V := trC2(U) has
the form (3.1),

the problem Iλ defined in (3.9) has a minimizer whenever λ ≤ Z.
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Remark 3.2. The assumptions (3.10) are the same as in [AC09], and are satisfied for all
common functionals. Theorem 3.1 extends [AC09, Theorem 1] to the case when the sys-
tem is spin-polarized by an external magnetic field B. While the strategy of proof, based on
concentration-compactness arguments, is similar to that in [AC09], an additional technical tool
is needed to handle the Zeeman term. This tool seems to be new to the best of our knowledge.
We called it the flip transformation (see Equation (3.11) below).

Remark 3.3. This result does not make any assumption on the strength of the magnetic field
B other than that it vanishes at infinity. If B becomes infinite at infinity, it is easy to see that
the energy is not bounded below: we can orientate the spins of all electrons along the magnetic
field and push them to infinity, so that the energy can be arbitrarily negative.

3.3.1 Strategy of the proof of Theorem 3.1

We use the concentration-compactness method introduced in [Lio84]. We introduce the prob-
lem at infinity

I∞λ = inf {E∞(γ), γ ∈ Pλ} ,

where
E∞(γ) :=

1

2
Tr
(
−∆γ↑↑

)
+

1

2
Tr
(
−∆γ↓↓

)
+ J(ργ) + ELSDA

xc (ρ+, ρ−).

We need several lemmas, the proofs of which are postponed until the following section
for the sake of clarity. We begin with some functional inequalities (see Section 3.4.1 for the
proof).

Lemma 3.4. There exists a constant C such that for all λ > 0 and all γ ∈ Pλ, it holds

‖∇Rγ‖L3/2 ≤ CTr(−∆γ) and ‖∇ρ+/−
γ ‖L3/2 ≤ CTr(−∆γ).

In particular, for all 1 ≤ p ≤ 3, there exists Cp such that, for all λ > 0 and all γ ∈ Pλ,

‖Rγ‖Lp ≤ Cpλ
3−p
2p Tr(−∆γ)

3(p−1)
2p ,

and similarly for ρ+/−
γ .

We easily deduce from the above lemma that the energies Iλ and I∞λ are bounded below.

Lemma 3.5. For all λ > 0, we have Iλ > −∞ and I∞λ > −∞. Moreover, all minimizing
sequences (γn) for Iλ or I∞λ are bounded in the Banach space B, where

B := {γ ∈ S(L2(R3,C2)), ‖γ‖B := Tr(|γ|) + Tr(||∇|γ|∇||) <∞}.

The proof of Lemma 3.5 is given in Section 3.4.2. In the following, we consider sequences
(γn)n∈N∗ ∈ B, and we will write Rn := Rγn and ρn := ργn . The proof of the following lemma
is given in Section 3.4.3.

Lemma 3.6. Let (γn)n∈N∗ be a bounded sequence of B. Then, there exists γ0 ∈ B, such that,
up to a subsequence, (γn)n∈N∗ converges to γ0 for the weak-∗ topology of B, all components of
Rn converge to their respective components in R0 strongly in Lploc(R

3) for 1 ≤ p < 3, weakly
in Lp(R3) for 1 ≤ p ≤ 3, and almost everywhere. The eigenvalues of Rn converge to the
eigenvalues of R0 strongly in Lploc(R

3) for 1 ≤ p < 3, weakly in Lp(R3) for 1 ≤ p ≤ 3 and
almost everywhere.

Moreover, if γn ∈ Pλ for all n, and γ0 ∈ Pλ, the convergences hold strongly in Lp(R3) for
1 ≤ p < 3, and E(γ0) ≤ lim inf E(γn).
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It follows from Lemma 3.5 and Lemma 3.6 that one can extract from any minimizing
sequence (γn)n∈N∗ of (3.9) a minimizing sequence, still denoted by (γn)n∈N, converging to
some γ0 for the weak-∗ topology of B. In particular, 0 ≤ γ0 ≤ 1 and Tr(−∆γ0) < ∞.
To prove that γ0 is indeed a minimizer of (3.9), it remains to prove that Tr(γ0) = λ. Let
α = Tr(γ0). It is easy to get α ≤ λ. If α < λ, then we have loss of compactness (some
electrons leak away). Therefore, to prove that α = λ (at least when λ ≤ Z), we need to
control the behavior at infinity of the minimizers, which is not as simple as in [AC09] because
of the Zeeman term −µ

´
B ·m. In order to control this term, we introduce the following flip

transformation:

For Φ =

(
φ↑

φ↓

)
, we define Φ̃ :=

(
φ↓

−φ↑

)
,

For γ =
∑

nk|Φk〉〈Φk|, we define γ̃ :=
∑

nk|Φ̃k〉〈Φ̃k|
(flip transformation). (3.11)

Note that if

γ =

(
γ↑↑ γ↑↓

γ↓↑ γ↓↓

)
and Rγ =

(
R↑↑ R↑↓

R↓↑ R↓↓

)
,

then

γ̃(x,y) =

(
γ↓↓ −γ↑↓
−γ↓↑ γ↑↑

)
(y,x) and Rγ̃ =

(
R↓↓ −R↑↓
−R↓↑ R↑↑

)
,

from which we deduce the following lemma, whose proof is straightforward.

Lemma 3.7. If γ ∈ Pλ, then γ̃ ∈ Pλ. Moreover, it holds that Tr(−∆γ̃n) = Tr(−∆γn), ρ̃ = ρ,
and m̃ = −m, where ρ and m have been defined in (3.3). In particular, it holds that

trC2 [UR] + trC2

[
UR̃
]

= 2

ˆ
R3

V ρ. (3.12)

In other words, this transformation flips the spin-up and spin-down channels. Lemma 3.7
allows to cancel the Zeeman term, and is an essential tool throughout the proof. The following
lemma is proved in Section 3.4.4.

Lemma 3.8.

(i) For all λ > 0, it holds −∞ < Iλ < I∞λ < 0.

(ii) For all 0 < µ < λ, it holds Iλ ≤ Iµ + I∞λ−µ.

(iii) The functions λ 7→ Iλ and λ 7→ I∞λ are non increasing.

We then have the important result (see Section 3.4.5 for the proof).

Lemma 3.9. Let λ > 0 and (γn)n∈N∗ ∈ Pλ be any minimizing sequence of Iλ that converges
to some γ0 for the weak-∗ topology of B. Let α := Tr(γ0). Then

(i) α ≤ λ.

(ii) α 6= 0.

(iii) If 0 < α < λ, then γ0 is a minimizer for the problem Iα, there exists β > 0 with α+β ≤ λ
such that I∞β has also a minimizer, and Iλ = Iα + I∞β + I∞λ−α−β.

According to Lemma 3.9, if α < λ, then γ0 is a minimizer for Iα. In this case, it satisfies
the Euler-Lagrange equation

γ0 = 1(−∞,εF )(Hγ0) + δ with 0 ≤ δ ⊂ Ker(Hγ0 − εF )
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for some εF < 0 called the Fermi energy, and with Hγ0 defined in (3.24) below. Here,
1(−∞,εF ) is the characteristic function of the interval (−∞, εF ), and the spectral projection
1(−∞,εF )(Hγ0) is defined by the functional calculus. We then use the very general result,
whose proof is given in Section 3.4.6.

Lemma 3.10. It holds σess(Hγ0) = [0,+∞[. Moreover, if 0 < λ < Z, then Hγ0 has in-
finitely many negative eigenvalues, and every eigenvector corresponding to such an eigenvalue
is exponentially decreasing.

From Lemma 3.10, we deduce the concentration-compactness result (see Section 3.4.7 for
the proof).

Lemma 3.11. Let α > 0 and β > 0 be such that α+ β ≤ Z. Suppose that Iα and I∞β admit
minimizers. Then

Iα+β < Iα + I∞β ( < Iα).

The end of the proof of Theorem 3.1 goes as follows. Let us assume that λ ≤ Z, and
α < λ. Then, according to the third point of Lemma 3.9, γ0 is a minimizer for Iα, and
there exists β > 0 such that α + β ≤ λ ≤ Z so that I∞β has also a minimizer, and it holds
Iλ = Iα + I∞β + I∞λ−α−β . Moreover, Lemma 3.11 holds, and Iα+β < Iα + I∞β . Finally, we get

Iλ = Iα + I∞β + I∞λ−α−β > Iα+β + I∞λ−α−β,

which contradicts the second point of Lemma 3.8. Therefore, it holds α = λ, and, according
to Lemma 3.6, γ0 is a minimizer for Iλ, which concludes the proof.

3.4 Proofs of the sub-lemmas of Theorem 3.1

3.4.1 Proof of Lemma 3.4

Let λ > 0 and γ ∈ Pλ. We use the representation (3.6) of γ, and write

γαβ(r, r′) =
∞∑
k=1

nkφ
α
k (r)φβk(r′), 0 ≤ nk ≤ 1,

∞∑
k=1

nk = λ,

Φk =

(
φ↑k
φ↓k

)
∈ L2(R3,C2), 〈Φk|Φl〉 = δkl, Tr(−∆γ) :=

∞∑
k=1

nk‖∇Φk‖2L2 <∞.

In particular, ραβ(r) =
∑
nkφ

α
k (r)φβk(r). Differentiating this expression and using the Cauchy-

Schwarz inequality lead to

|∇ραβ|2 =

∣∣∣∣∣
∞∑
k=1

nk

(
∇φαk (r)φβk(r) + φαk (r)∇φβk(r)

)∣∣∣∣∣
2

≤

∣∣∣∣∣
∞∑
k=1

nk

(
|∇φαk |2 + |∇φβk |

2
)1/2 (

|φαk |2 + |φβk |
2
)1/2

∣∣∣∣∣
2

≤

[ ∞∑
k=1

nk

(
|∇φαk |2 + |∇φβk |

2
)][ ∞∑

k=1

nk

(
|φαk |2 + |φβk |

2
)]

.

We let τα :=
∑∞

k=1 nk|∇φαk |2, so that τα ∈ L1(R3) and
´
R3 τ

α = Tr(−∆γαα). The
previous inequality leads to the pointwise estimate

|∇ραβ| ≤
(
τα + τβ

)1/2 (
ραα + ρββ

)1/2
. (3.13)
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In particular, if α = β, we recover the Hoffman-Ostenhof inequality [HOHO77]

‖∇
√
ραα‖2L2 ≤ Tr(−∆γαα).

Together with the homogeneous Sobolev embedding H1(R3) ↪→ L6(R3), we deduce

‖ραα‖L3 ≤ C Tr(−∆γαα).

Then, using the fact that
(
τα + τβ

)1/2 ∈ L2(R3) and
(
ραα + ρββ

)1/2 ∈ L6(R3) and the Hölder
inequality, it follows from (3.13) that

‖∇ραβ‖L3/2 ≤ ‖(τα + τβ)1/2‖L2 ‖(ραα + ρββ)1/2‖L6 ≤ 4C Tr(−∆γ). (3.14)

For ρ+/−, we use the exact expression of the eigenvalues of a 2× 2 hermitian matrix:

ρ+/− =
1

2

(
ρ±

√
ρ2 − 4 det(R)

)
=

1

2

(
ρ±

√
(ρ↑↑ − ρ↓↓)2 + 4|ρ↑↓|2

)
. (3.15)

If f and g are non negative, then, according to (2.15), we have the pointwise estimate

|∇
√
f + g| = |∇

√
f |+ |∇√g|.

We differentiate (3.15) to get

|∇ρ+/−| ≤ 1

2
|∇ρ|+ 1

2

∣∣∣∣∇√(ρ↑↑ − ρ↓↓)2 + 4|ρ↑↓|2
∣∣∣∣

≤ 1

2
|∇ρ↑↑|+ 1

2
|∇ρ↓↓|+ 1

2

(
|∇ρ↑↑|+ |∇ρ↓↓|+ 2

∣∣∇|ρ↑↓|∣∣) .
All the terms on the right-hand side are in L3/2(R3) and of norms bounded by CTr(−∆γ),
hence the same holds for ∇ρ+/−.

Moreover, γ is in Pλ, so that Tr(γ) =
´
R3 ρ = λ. From the inequality 2|ab| ≤ |a|2 + |b|2,

we get that

|ραβ| =

∣∣∣∣∣
∞∑
k=1

nkφ
α
k (r)φβk(r)

∣∣∣∣∣ ≤
∞∑
k=1

nk
2

(
|φαk |2 + |φβk |

2
)
≤
∞∑
k=1

nk

(
|φ↑k|

2 + |φ↓k|
2
)

= ρ. (3.16)

Integrating on R3 leads to ‖ραβ‖L1 ≤ λ. From the positiveness of Rγ , it also holds that
0 ≤ ρ+/− ≤ ρ so that ‖ρ+/−‖L1 ≤ λ. We conclude from (3.14), the homogeneous Sobolev
embedding W 1,3/2(R3) ↪→ L3(R3), and the Hölder inequality with 1 ≤ p ≤ 3, that

‖ραβ‖Lp ≤ Cpλ
3−p
2p Tr(−∆γ)

3(p−1)
2p ,

and similarly for ρ+/−.

3.4.2 Proof of Lemma 3.5

We prove that Iλ > −∞. The proof is similar for I∞λ . Let λ > 0, and γ ∈ Pλ. Under
conditions (3.10), a straightforward calculation shows that

∣∣ELSDA
xc (ρ+, ρ−)

∣∣ ≤ C (ˆ
R3

(ρ+)p
−

+

ˆ
R3

(ρ+)p
+

)
+ C

(ˆ
R3

(ρ−)p
−

+

ˆ
R3

(ρ−)p
+

)
≤ 2C

(ˆ
R3

ρp
+

+

ˆ
R3

ρp
−
)
,
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where p+/− := 1 + β+/− < 5/3. We used the fact that Rγ is a positive hermitian matrix, so
that 0 ≤ ρ+/− ≤ ρ. Therefore, since J(ρ) ≥ 0, we have the estimate

E(γ) ≥ 1

2
Tr(−∆γ)− C1‖U‖

L
3
2 +ε+L∞

‖R‖L1∩L3−ε′ − C2

(
‖ρ‖p

+

Lp+
+ ‖ρ‖p

−

Lp−

)
,

where ε′ = 4ε/(1 + 2ε) > 0 is chosen such that L3−ε′ is the dual space of L
3
2

+ε. With
Lemma 3.4, it follows

E(γ) ≥ 1

2
Tr(−∆γ)− C ′1‖U‖L 3

2 +ε+L∞
(1 + Tr(−∆γ)α1)− C2 (Tr(−∆γ)α2 + Tr(−∆γ)α3)

with 0 ≤ α1, α2, α3 < 1. The function Y 7→ 1
2Y − C

′′
1 (1 + Y α1) − C2Y

α2 − C2Y
α3 goes to

+∞ when Y goes to +∞ for 0 ≤ α1, α2, α3 < 1. Hence, E(γ) ≥ −C for all γ ∈ Pλ. It
also follows from the above inequality that if (γn)n∈N∗ is a minimizing sequence for Iλ, then
(Tr(−∆γn))n∈N∗ is uniformly bounded. In particular, (γn)n∈N∗ is a bounded sequence of B.

3.4.3 Proof of Lemma 3.6

Let (γn)n∈N∗ be a bounded sequence in B. According to Lemma 3.4, the sequences
(
ραβn
)
n∈N∗

for α, β ∈ {↑, ↓}2 and
(
ρ

+/−
n

)
n∈N∗

are bounded in W 1,3/2(R3). In virtue of the Banach-

Alaoglu theorem, up to a subsequence, the sequence (γn)n∈N∗ converges to some γ0 ∈ B
for the weak-∗ topology of B, and

(
ραβn
)
n∈N∗

and
(
ρ

+/−
n

)
n∈N∗

converge for the weak topol-

ogy of W 1,3/2(R3). To identify the limits, we recall that, for any compact operator K on
L2(R3,C2),

Tr(γnK) −−−→
n→∞

Tr(γ0K) and Tr(|∇|γn|∇|K) −−−→
n→∞

Tr(|∇|γ0|∇|K). (3.17)

ChooseW ∈ C∞c (R3,R). The operator (1+|∇|)−1W (1+|∇|)−1 is compact and in the Schatten
class Sp(L

2(R3,C)) for p > 3
2 according to the Kato-Seiler-Simon inequality [Sim05]. Taking

successively in (3.17)

K =

(
W 0
0 0

)
, K =

(
0 0
0 W

)
, K =

(
0 W
W 0

)
and K =

(
0 iW
−iW 0

)
,

we obtain that, for the first choice of K,ˆ
R3

ρ↑↑n W = Tr(γnW ) = Tr
(
(1 + |∇|)γn(1 + |∇|) · (1 + |∇|)−1W (1 + |∇|)−1

)
−−−→
n→∞

Tr
(
(1 + |∇|)γ0(1 + |∇|) · (1 + |∇|)−1W (1 + |∇|)−1

)
=

ˆ
R3

ρ↑↑0 W

(3.18)

and similarly for ρ↓↓0 , Re (ρ↑↓0 ) and Im (ρ↑↓0 ). We deduce that
(
ραβn
)
n∈N∗

converges to ραβ0

in D′(R3,C) for all α, β ∈ {↑, ↓}2. Identifying the limits, the convergences hold also weakly
in W 1,3/2(R3), strongly in Lploc(R

3) for 1 ≤ p < 3, and almost everywhere, in virtue of the
Sobolev embedding theorem. From (3.15) and the pointwise convergence of

(
ραβn
)
n∈N∗

to

ραβ0 , we also deduce that (ρ
+/−
n )n∈N∗ pointwise converges to ρ+/−

0 . Again, by identifying the
limits, the convergence also holds weakly inW 1,3/2(R3) and strongly in Lploc(R

3) for 1 ≤ p < 3.

Then, let χ ∈ C∞c (R) be a cut-off function such that χ(x) = 1 if |x| < 1 and χ(x) = 0 if
x ≥ 2. We take WA = χ(x/A) in (3.18), and let A go to infinity to obtain that

ρ↑↑0 ∈ L
1(R3) and

ˆ
R3

ρ↑↑0 ≤ lim inf
n→∞

ˆ
R3

ρ↑↑n , (3.19)
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and similarly for ρ↓↓0 . Now, if γn ∈ Pλ and γ0 ∈ Pλ, we get

λ =

ˆ
R3

ρ0 =

ˆ
R3

ρ↑↑0 + ρ↓↓0 ≤
ˆ
R3

ρ↑↑n + ρ↓↓n = λ,

and the inequality (3.19) is an equality. Therefore, (ρn)n∈N∗ converges to ρ0 strongly in L1(R3).
We deduce from (3.16) and 0 ≤ ρ+/−

n ≤ ρn that ρ↑↓n and ρ+/−
n are bounded in L1(R3). A clas-

sical application of the dominated convergence theorem then leads to the fact that
(
ραβn
)
n∈N∗

converges to ραβ0 strongly in L1(R3) for α, β ∈ {↑, ↓}2, and that
(
ρ

+/−
n

)
n∈N∗

converges strongly

to ρ+/−
0 in L1(R3). Finally, the strong convergence still holds in Lp(R3) for 1 ≤ p < 3 accord-

ing to the Hölder inequality.
The proof for the energy is similar to the one in [AC09, Lemma 3]. We do not repeat it

here, but notice that the strong convergence of
(
ρ

+/−
n

)
n∈N∗

to ρ+/−
0 in Lp(R3) for 1 ≤ p < 3

is needed for the convergence of the exchange-correlation functional.

3.4.4 Proof of Lemma 3.8

(ii) Let us first prove that for 0 < µ < λ, it holds that Iλ ≤ Iµ + I∞λ−µ. Let ε > 0, γ ∈ Pµ
and γ′ ∈ Pλ−µ be such that Iµ ≤ E(γ) ≤ Iµ + ε and I∞λ−µ ≤ E∞(γ′) ≤ I∞λ−µ + ε. By density
of finite-rank one-body density matrices in B, and density of C∞c (R3,C2) in H1(R3,C2), we
can assume that γ and γ′ are both of the form

γ(′) =
M∑
i=1

n
(′)
k |Φ

(′)
k 〉〈Φ

(′)
k | with Φ

(′)
k ∈ C

∞
c (R3,C2).

We consider γn := γ+ τneγ
′τ−ne and γ]n := γ+ τneγ̃

′τ−ne where τxf(r) = f(r−x), and e is a
non-null vector. We recall that γ̃′ is the flipped transformation of γ′, as introduced in (3.11).
For n0 large enough, and for n ≥ n0, the supports of the Φk’s and of the τneΦ′k’s are disjoint,
so that γn and γ]n are in Pλ for all n ≥ n0. Also, for n large enough, J(ρn) ≤ J(ρ) +J(ρ′) + ε.
Altogether, we get, for n large enough,

E(γn) + E(γ]n) = 2E(γ) + 2E∞(γ′) + 2

ˆ
V ρ′(· − ne) + 2ε ≤ 2E(γ) + 2E∞(γ′) + 2ε

≤ 2Iµ + 2I∞λ−µ + 6ε.

Hence, either E(γn) or E(γ]n) is smaller than Iµ + I∞λ−µ + 3ε, so that Iλ ≤ Iµ + I∞λ−µ. Similar
arguments show that I∞λ ≤ I∞µ + I∞λ−µ.

(i) We first prove that there exists λ0 small enough such that for all 0 < λ ≤ λ0, it holds
I∞λ < 0. We use a scaling argument. Let φ ∈ C∞c (R3,C) be such that ‖φ‖L2 = 1, and let
φσ = σ3/2φ(σ·) for σ > 0. Note that ‖φσ‖L2 = 1. For λ ≤ 1, we introduce

γλσ(r, r′) = λ

(
φσ(r)φσ(r′) 0

0 0

)
,

so that γλσ ∈ Pλ for all 0 < λ ≤ 1 and σ > 0. Using (3.10), there exists 1 ≤ α < 3/2 such
that ELSDA

xc (λ|φσ|2, 0) ≤ −Cλασ3(α−1)‖φ‖2αL2α . Direct calculations lead to

E∞(γλσ) =
λσ2

2

ˆ
R3

|∇φ|2 + λ2σJ(|φ|2) +

ˆ
R3

ELSDA
xc (|φλσ|2, 0)

≤ λσ2

2

ˆ
R3

|∇φ|2 + λ2σJ(|φ|2)− Cλασ3(α−1)‖φ‖2αL2α .
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It is easy to check that under the condition α < 3/2, there exists λ0 > 0 such that for all
0 < λ ≤ λ0, there exists σ such that E(γλσ) < 0. In particular, I∞λ ≤ E∞(γλσ) < 0. Together
with (ii), we deduce that, for all λ > 0, I∞λ < 0 and Iλ < 0.

We now prove that Iλ < I∞λ , for all λ > 0. Let (γn)n∈N∗ be a minimizing sequence for I∞λ .
We first suppose that

∀A > 0, lim
n→∞

sup
r∈R3

ˆ
r+BA

ρn = 0,

where BA is the ball of radius A centered at the origin. Since (ρn)n∈N∗ is bounded in W 1,3/2

according to Lemma 3.5 and 3.6, we deduce from [Lio84, Lemma I.1] that (ρn)n∈N converges
to 0 strongly in Lp(R3) for 1 < p < 3. Also, because of (3.16), the components of Rn and its
eigenvalues converge to 0 strongly in Lp(R3) for 1 < p < 3. Similarly to [AC09], we deduce
that

I∞λ = lim inf
n→∞

E∞(γn) = lim inf
n→∞

{
1

2
Tr(−∆γn) + J(ρn) + ELSDA

xc (ρ+
n , ρ

−
n )

}
= lim inf

n→∞

1

2
Tr(−∆γn) ≥ 0

which contradicts the first point. Therefore

∃A, η > 0, ∀n ∈ N, ∃rn ∈ R3,

ˆ
rn+BA

ρn ≥ η. (3.20)

Up to translations of the γn’s, we can assume without loss of generality that rn = 0.
We now introduce γ̃n, the flipped version of γn introduced in (3.11). Using (3.12) and the

fact that V (r) ≤ −z1

r
, we get

E(γn) + E(γ̃n) = Tr(−∆γn) + 2J(ρn) + 2ELSDA
xc (ρ+

n , ρ
−
n ) + 2

ˆ
R3

V ρn

= 2E∞(γn) + 2

ˆ
R3

V ρn ≤ 2E∞(γn)− 2

ˆ
BR

z1

|r|
ρn ≤ 2E∞(γn)− 2

z1

R
η.

Hence, either E(γn) or E(γ̃n) is smaller than E∞(γn)−z1R
−1η. Therefore, Iλ ≤ I∞λ −z1R

−1η <
I∞λ .

(iii) The fact that λ 7→ Iλ and λ 7→ I∞λ are non increasing can be read from the other
statements.

3.4.5 Proof of Lemma 3.9

Let λ > 0, and let (γn)n∈N∗ ∈ Pλ be a minimizing sequence for Iλ. According to Lemma 3.5,
up to a subsequence, we can assume that (γn)n∈N∗ converges to some γ0 ∈ B for the weak-∗
topology of B.

(i) The fact that α ≤ λ can be directly deduced from (3.19).

(ii) Suppose that α = 0, so that γ = 0. Then, we have Iλ = lim inf E(γn) = E(γ0) = 0 (we
used the continuity of E , which can be proved similarly to [AC09]). This contradicts the first
point of Lemma 3.8. Hence, α 6= 0.

(iii) Suppose that 0 < α < λ. Following [AC09, FLSS07], we let χ, ξ ∈ C∞c (R3,R+) be
radial functions such that χ2 + ξ2 = 1, with χ(0) = 1, χ < 1 on R3 \{0}, χ(r) = 0 for |r| > 1,
‖∇χ‖L∞ ≤ 2 and ‖∇ξ‖L∞ ≤ 2. We introduce χA(r) := χ(r/A) and ξA(r) := ξ(r/A) and
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finally γn,A := χAγnχA. With those notations, A 7→ Tr(γn,A) is a continuous and increasing
function from 0 to λ. Therefore, there exists An such that γn,An is in Pα.

The sequence (An)n∈N∗ goes to infinity. Otherwise, we would have for A large enough and
according to (3.19),

ˆ
R3

ρ0χ
2
A = lim

n→∞

ˆ
R3

ρnχ
2
A ≥ lim

n→∞

ˆ
R3

ρnχ
2
An = α =

ˆ
R3

ρ0,

which is impossible, since |χ2
A| < 1 on R3.

We introduce γ1,n := χAnγnχAn and γ2,n := ξAnγnξAn . Note that γ1,n ∈ Pα and γ2,n ∈
Pλ−α, and that ρn = ρ1,n + ρ2,n. From the decomposition (3.6) of γn, we can write γn =∑∞

k=1 nk,n|Φk,n〉〈Φk,n|, with 0 ≤ nk,n ≤ 1. We deduce that

Tr(
∣∣|∇|γ1,n|∇|

∣∣) + Tr(
∣∣|∇|γ2,n|∇|

∣∣) ≤ Tr(
∣∣|∇|γn|∇|∣∣) + 8

λ

A2
n

.

Hence, (γ1,n)n∈N∗ and (γ2,n)n∈N∗ are bounded in B. Also, direct calculations lead to

Tr(−∆γ1,n) + Tr(−∆γ2,n) ≤ Tr(−∆γn) + 8
λ

A2
n

. (3.21)

According to Lemma 3.5, up to a subsequence, (γ1,n)n∈N∗ converges for the weak-∗ topology
of B. In this case, for Φ = (φ↑, φ↓) ∈ C∞c (R3,C2), it holds that

Tr(γ1,n|Φ〉〈Φ|) =

ˆ
R3

ρ↑↑1,n|φ
↑|2 +

ˆ
R3

ρ↓↓1,n|φ
↓|2 =

ˆ
R3

χ2
Anρ

↑↑
n |φ↑|2 +

ˆ
R3

χ2
Anρ

↓↓
n |φ↓|2.

For n large enough, the support of Φ is inside the support of χAn , and

Tr(γ1,n|Φ〉〈Φ|) = Tr(γn|χAnΦ〉〈ΦχAn |) −−−→n→∞
Tr(γ|Φ〉〈Φ|).

We deduce that (γ1,n)n∈N∗ converges to γ0 for the weak-∗ topology of B. Finally, since
γ1,n ∈ Pα and γ0 ∈ Pα, (ρ1,n)n∈N∗ converges strongly to ρ0 in Lp(R3) for 1 ≤ p < 3, and
E(γ0) ≤ lim inf E(γ1,n) according to Lemma 3.6.

Let us look more closely to γ2,n. Since (ρ1,n)n∈N∗ converges to ρ0 strongly in Lp(R3)
and (ρn)n∈N∗ converges to ρ0 strongly in Lploc(R

3) for 1 ≤ p < 3, we obtain that ρ2,n = ρn−ρ1,n

(and thus all the components of R2,n and its eigenvalues) converges strongly to 0 in Lploc(R
3)

for 1 ≤ p < 3. Also, it holds that ρ+/−
1,n + ρ

+/−
2,n = ρ

+/−
n . Using (3.21) and the fact that˜

ρ1,n(r)ρ2,n(r′)|r− r′|−1 dr dr′ ≥ 0, we obtain

E(γn) =
1

2
Tr(−∆γn) + J(ρn) +

ˆ
R3

trC2 [URn] + ELSDA
xc (ρ+

n , ρ
−
n )

≥ 1

2
Tr(−∆γ1,n) +

1

2
Tr(−∆γ2,n)− 4

λ

A2
n

+ J(ρ1,n) + J(ρ2,n)+

+

ˆ
R3

trC2 [UR1,n] +

ˆ
R3

trC2 [UR2,n] + ELSDA
xc (ρ+

1,n + ρ+
2,n, ρ

−
1,n + ρ−2,n)

≥ E(γ1,n) + E∞(γ2,n)− 4
λ

A2
n

+

ˆ
R3

trC2 [UR2,n] +

+ ELSDA
xc (ρ+

1,n + ρ+
2,n, ρ

−
1,n + ρ−2,n)− ELSDA

xc (ρ+
1,n, ρ

−
1,n)− ELSDA

xc (ρ+
2,n, ρ

−
2,n).
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We first consider the term
´

trC2 [UR2,n]. We have for A ≥ 0, (we use, for a matrix M , the
notation |M | for the sum of the absolute values of the entries of M)∣∣∣∣ˆ

R3

trC2 [UR2,n]

∣∣∣∣ =

∣∣∣∣ˆ
BA

trC2 [UR2,n]

∣∣∣∣+

∣∣∣∣∣
ˆ

(BA)c
trC2 [UR2,n]

∣∣∣∣∣
≤ ‖U‖

L
3
2 +ε+L∞(BA)

‖R2,n‖L1∩L3−ε′ (BA) + sup
r∈(BA)c

|U(r)|
ˆ

(BA)c
|R2,n|

≤ ‖U‖
L

3
2 +ε+L∞(R3)

‖R2,n‖L1∩L3−ε′ (BA) + sup
r∈(BA)c

|U(r)|
ˆ
R3

|R2,n|,

where ε′ = 4ε/(1+2ε) > 0 is chosen such that L3−ε′ is the dual space of L
3
2

+ε. Using inequality
(3.16), and the fact that

´
ραβ2,n ≤ λ, we get an inequality of the form∣∣∣∣ˆ

R3

trC2 [UR2,n]

∣∣∣∣ ≤ C1‖R2,n‖L1∩L3−ε′ (BA) + C2 sup
r∈(BA)c

|U(r)|

with C1 and C2 independent of A and n. Since all entries of U are vanishing at infinity, we
can first choose A large enough to control the second term, and then use the convergence
of (R2,n)n∈N∗ to 0 strongly in Lp(BA) for 1 ≤ p < 3, to establish the convergence of the
right-hand-side to 0.
For the last term, using (3.10), it holds (we write g2(ρ) = g(2ρ))

ELSDA
xc (ρ+

1,n + ρ+
2,n, ρ

−
1,n + ρ−2,n)− ELSDA

xc (ρ+
1,n, ρ

−
1,n)− ELSDA

xc (ρ+
2,n, ρ

−
2,n) =

1

2

[ˆ
R3

(
g2(ρ+

1,n + ρ+
2,n)− g2(ρ+

1,n)− g2(ρ+
2,n)
)

+

ˆ
R3

g2(ρ−1,n + ρ−2,n)− g2(ρ−1,n)− g2(ρ−2,n)

]
.

(3.22)
Then, we get (dropping the super-script +/− for the sake of clarity)∣∣∣∣ˆ

R3

g2(ρ1,n + ρ2,n)− g2(ρ1,n)− g2(ρ2,n)

∣∣∣∣
≤
ˆ
BA

|g2(ρ1,n + ρ2,n)− g2(ρ1,n)|+
ˆ
BA

|g2(ρ2,n)|+

+

ˆ
(BA)c

|g2(ρ1,n + ρ2,n)− g2(ρ2,n)|+
ˆ

(BA)c
|g2(ρ2,n)|

≤ C
(ˆ

BA

ρ2,n

(
ρp

+

n + ρp
−
n

)
+

ˆ
BA

(
(ρ2,n)p

−
+ (ρ2,n)p

+
))

+ C

(ˆ
(BA)c

ρ1,n

(
ρp

+

n + ρp
−
n

)
+

ˆ
(BA)c

(
(ρ1,n)p

−
+ (ρ1,n)p

+
))

.

We recall that p+/− = 1 +β+/− < 5/3. Since (ρ1,n)n∈N∗ and (ρn)n∈N∗ are bounded in Lp(R3)
for 1 ≤ p < 3, and since (ρ2,n)n∈N∗ converges to 0 in Lploc(R

3) for 1 ≤ p < 3, we deduce
that (3.22) goes to 0 when n goes to infinity (first take A large enough, then n large enough,
as before).
Altogether, for ε > 0, for n large enough,

E(γn) ≥ E(γ1,n) + E∞(γ2,n)− 3ε ≥ Iα + I∞λ−α − 3ε.

Therefore, E(γn) ≥ Iα + I∞λ−α, and Iλ ≥ Iα + I∞λ−α. The second point of Lemma 3.8 states
that Iλ ≤ Iα+ I∞λ−α. Hence Iλ = Iα+ I∞λ−α, and (γ2,n)n∈N∗ is a minimizing sequence for I∞λ−α.

As in the proof of Lemma 3.8, it holds (3.20):

∃A, η > 0, ∀n ∈ N, ∃rn ∈ R3,

ˆ
rn+BA

ρ2,n ≥ η.
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We let γ′2,n = τrnγ2,nτ−rn . Then, (γ2,n) is bounded for the weak-∗ topology of B, and con-
verges, up to a subsequence, to some γ′0 satisfying Tr(γ′0) ≥ η. Let β := Tr(γ′0). We can
repeat the same arguments as before and truncate γ′2,n to ensure that Tr(χAnγ2,nχAn) = β.
We deduce as before that γ′0 is a minimizer for I∞β , and that Iλ = Iα + I∞β + I∞λ−α−β .

3.4.6 Proof of Lemma 3.10

Let us first derive the expression of Hγ0 . Suppose that γ0 ∈ Pλ is a minimizer for Iλ. Then
for γ ∈ Pλ and 0 ≤ t ≤ 1, it holds E(tγ + (1− t)γ0) ≥ E(γ0). In particular, one must have

∂E(tγ + (1− t)γ0)

∂t

∣∣∣
t=0
≥ 0. (3.23)

To perform the calculations, we use the explicit formula (3.15) for ρ+/−, and get

∂ (tρ+ (1− t)ρ0)+/−

∂t

∣∣∣
t=0

=

1

2
trC2

(1 0
0 1

)
± 1√

(ρ↑↑0 − ρ
↓↓
0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ

↓↓
0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ
↑↑
0

) (R−R0)

 .

Similarly to [AC09, CDL08], we conclude that

∂E(tγ + (1− t)γ0)

∂t

∣∣∣
t=0

= Tr (Hγ0(γ − γ0))

with

Hγ0 =

(
−1

2
∆ + ρ0 ∗ | · |−1

)
I2 + U

+
g′(ρ+

0 )

2

(1 0
0 1

)
+

1√
(ρ↑↑0 − ρ

↓↓
0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ

↓↓
0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ
↑↑
0

)
+
g′(ρ−0 )

2

(1 0
0 1

)
− 1√

(ρ↑↑0 − ρ
↓↓
0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ

↓↓
0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ
↑↑
0

) .
(3.24)

Using (3.23), we deduce that γ0 ∈ arginf{Tr(Hγ0γ), γ ∈ Pλ}. Finally,

γ0 = 1(−∞,εF )(Hγ0) + δ with δ ⊂ Ker(Hγ0 − εF ),

where εF is the Fermi energy, determined by the condition Tr(γ0) = λ.

Let us first calculate the essential spectrum of Hγ0 . We recall that H0 = −1

2
∆I2 has

domain H2(R3,C2) and that if u ∈ H2(R3,C), then u vanishes at infinity. We also recall
that for all V ∈ L3/2(R3,C2) + L∞ε (R3,C2) (that is V is of the form V = V3/2 + V∞ with
V3/2 ∈ L3/2(R3,C2), V∞ ∈ L∞(R3) and ‖V∞‖L∞ arbitrary small), V is a compact perturbation

of H0. In our case, we can easily check that ̂ρ0 ∗ | · |−1 = ρ̂0| · |−2 ∈ L1(R3), so that ρ0 ∗ | · |−1

vanishes at infinity. Altogether,

• ρ0 ∗ | · |−1 ∈ L3/2(R3) + L∞ε (R3) ;

• U ∈ L3/2(R3,C2) + L∞(R3,C2) and all entries of U vanish at infinity ;

• |g′(ρ+/−
0 )| ≤ C(ρβ

−

0 + ρβ
+

0 ) hence g′(ρ
+/−
0 ) ∈ L3/2(R3,C2).
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Therefore, according to the Weyl’s theorem, the domain of Hγ0 is H2(R3,C2), and its essential
spectrum is σess(Hγ0) = σess(H0) = [0,+∞[.

Let us now prove that Hγ0 has infinitely many negative eigenvalues whenever λ < Z. First
notice that the matrix

1√
(ρ↑↑0 − ρ

↓↓
0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ

↓↓
0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ
↑↑
0

)

has two eigenvalues, respectively −1 and 1, so that the matrices appearing into the two pairs
of brackets in (3.24) have 0 and 2 as eigenvalues, and therefore are hermitian positive. Also,
recall that under the conditions (3.10) on g, it holds g′ ≤ 0. Altogether, for ψ ∈ C∞c (R3,C),
Ψ = (ψ,ψ)T ∈ C∞c (R3,C2), and Ψ̃ defined as in (3.11), it holds that

〈Ψ|Hγ0 |Ψ〉+ 〈Ψ̃|Hγ0 |Ψ̃〉 ≤
〈

Ψ
∣∣ ((−1

2
∆ + ρ0 ∗ | · |−1

)
I2 + U

) ∣∣Ψ〉
+

〈
Ψ̃
∣∣ ((−1

2
∆ + ρ0 ∗ | · |−1

)
I2 + U

) ∣∣Ψ̃〉
≤ 4

〈
ψ
∣∣− 1

2
∆ + ρ0 ∗ | · |−1 + V

∣∣ψ〉 = 〈ψ|H1|ψ〉1

where H1 := −1
2∆ + ρ0 ∗ | · |−1 + V acts on L2(R3,C), and V is defined in (3.1). We used the

subscript 1 to emphasize that 〈·|·〉1 is the scalar product on L2(R3,C), whereas 〈·|·〉 is the one
on L2(R3,C2). In virtue of [Lio87, Lemma 2.1], the operator H1 has infinitely many negative
eigenvalues of finite multiplicity whenever λ < Z. So has Hγ0 by the min-max principle.
Eventually, εF < 0, and

γ0 =

N1∑
i=1

|Φi〉〈Φi|+
N2∑

i=N1+1

ni|Φi〉〈Φi| with 〈Φi|Φj〉 = δij and Hγ0Φi = εiΦi.

It holds εi < εF if i ≤ N1, and εi = εF if N1 + 1 ≤ i ≤ N2. In the following, we set ni := 1
for i ≤ N1.

Finally, we prove that all eigenvectors associated with negative eigenvalues are exponen-
tially decreasing. Any function u satisfying Hγ0u = λu is in H2(R3,C2), and each component
of u vanishes at infinity. As a byproduct, we obtain that ρ0 =

∑N2
i=1 ni|Φi|2 also vanishes at

infinity. Finally, all the components of

Uγ0 :=ρ0 ∗ | · |−1I2 + U+

+
∑

δ=+/−

g′(ρδ0)

2

(1 0
0 1

)
+ (−1)δ

1√
(ρ↑↑0 − ρ

↓↓
0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ

↓↓
0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ
↑↑
0

)
vanish at infinity. Recall that Hγ0Φi = −1

2∆Φi + UγΦi = εiΦi. Multiplying this equation by
Φi and adding all the terms with prefactors ni, it holds that

N2∑
i=1

niΦ
T
i

(
−1

2
∆

)
Φi +

N2∑
i=1

niΦ
T
i UγΦi =

N2∑
i=1

εini|Φi|2. (3.25)

From the relation ρ0 =
∑N2

i=1 ni|Φi|2, we get

∆ρ0 =

N2∑
i=1

2ni
(
ΦT
i (∆Φi) + |∇Φi|2

)
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and (3.25) becomes

−∆

4
ρ0 +

N2∑
i=1

ni
2
|∇Φi|2︸ ︷︷ ︸
≥0

+

N2∑
i=1

niΦ
T
i UγΦi +

N2∑
i=1

(εF − εi)ni|Φi|2︸ ︷︷ ︸
≥0

−εFρ0 = 0.

Let A be large enough such that, for all r ∈ R3 with |r| ≥ A, the eigenvalues of the ma-
trix Uγ(r) are between

εF
2λ

and −εF
2λ

(recall that εF < 0). In particular, for |r| ≥ A,

|ΦT
i (r)Uγ(r)Φi(r)| ≤ −εF

2λ
|Φi|2, and, on (BA)c,

−∆

4
ρ0 +

εFλ

2λ
ρ0 − εFρ0 ≤ 0 or − ∆

2
ρ0 − εFρ0 ≤ 0.

We easily deduce that ρ0 decreases exponentially. Hence, the same holds true for all the Φi’s
with 1 ≤ i ≤ N2. A similar proof can be used for the remaining negative eigenvalues.

3.4.7 Proof of Lemma 3.11

Let γ0 ∈ Pα be a minimizer for Iα, and γ′0 ∈ Pβ be a minimizer for I∞β . According to the
proof of Lemma 3.10, since α < λ, then γ0 is of form

γ0 =

N2∑
i=1

ni|Φi〉〈Φi| with Hγ0Φi = εiΦi and εi ≤ εF < 0.

We can derive a similar expression for γ′0:

γ′0 =
∞∑
i=1

n′i|Φ′i〉〈Φ′i| with H∞γ′0
Φ′i = εiΦ

′
i and ε′i ≤ ε′F ≤ 0, (3.26)

where H∞γ′0 has a similar expression as Hγ′0
in (3.24), without the U term. Note that in (3.26),

we do not know whether ε′F < 0 or ε′F = 0.

First assume that ε′F < 0, so that Φi and Φ′i are exponentially decreasing, and the sum
in (3.26) is finite. We introduce

γn := min{1, ‖γ0 + τnγ
′
0τ−n‖−1}

(
γ0 + τnγ

′
0τ−n

)
and

γ]n := min{1, ‖γ0 + τnγ̃
′
0τ−n‖−1}

(
γ0 + τnγ̃

′
0τ−n

)
,

where γ̃′0 is the flipped transformation of γ′0, as defined in (3.11). Note that Tr(γn) ≤ α + β

and Tr(γ]n) ≤ α+ β, so that Iα+β ≤ E(γn) and Iα+β ≤ E(γ̃) according to the third assertion
of Lemma 3.8. A straightforward calculation leads to

E(γn) + E(γ]n) = 2E(γ0) + 2E∞(γ̃0)− β(Z − α)

n
+O(e−δn)

= 2Iα + 2I∞β −
β(Z − α)

n
+O(e−δn).

For n large enough, −β(Z−α)n−1 +O(e−δn) becomes negative. Hence, either E(γn) or E(γ]n)
is strictly less than Iα + I∞β . Therefore, Iα+β < Iα + I∞β .
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Let us now assume that ε′F = 0. Then, there exists Ψ ∈ H2(R3,C2) such that ‖Ψ‖L2 = 1,
H∞γ′0

Ψ = 0 and γ′0Ψ = µΨ with µ > 0. For 0 < η < µ, we introduce γη = γ0+η|ΦN2+1〉〈ΦN2+1|
and γ′η = γ′0 − η|Ψ〉〈Ψ|, so that γη ∈ Pα+η and γ′η ∈ Pβ−η. Moreover,

E(γη) = E(γ0) + 2ηεN2+1 + o(η) = Iα + 2ηεN2+1 + o(η)

and
E∞(γ′η) = E∞(γ′0) + o(η) = I∞β + o(η).

Using the facts that γ0 + η|ΦN2+1〉〈ΦN2+1| ∈ Pα+η and γ′0 − η|Ψ〉〈Ψ| ∈ Pβ−η, it holds that

Iα+β ≤ Iα+η + I∞β−η ≤ E(γη) + E∞(γ′η) ≤ Iα + I∞β + 2ηεN2+1 + o(η).

Since εN2+1 < 0, for η small enough, the left hand side is strictly less that Iα + I∞β , which
concludes the proof.
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CHAPTER 4

THE GW METHOD FOR FINITE SYSTEMS

We expose in this chapter the theory and results given in [CGS15]. This work was done in
collaboration with Eric Cancès and Gabriel Stoltz.

Abstract. We analyze the GW method for finite electronic systems in this chapter. In
a first step, we provide a mathematical framework for the usual one-body operators that
appear naturally in many-body perturbation theory. We then discuss the GW equations
which construct an approximation of the one-body Green’s function, and give a rigorous
mathematical formulation of these equations. Finally, we study the well-posedness of the GW0

equations, proving the existence of a unique solution to these equations in a perturbative
regime.

4.1 Introduction

Computational quantum chemistry is nowadays a standard tool to numerically determine the
properties of molecules. The Density Functional Theory (DFT) first developed by Hohenberg
and Kohn [HK64] and by Kohn and Sham [KS65], is a very powerful method to obtain ground
state properties of molecular systems. However, it does not allow one to compute optical prop-
erties and electronic excited energies. In order to calculate such quantities, several approaches
have been considered in the last decades [ORR02]. Among them are the time-dependent DFT
(TDDFT) [MUN+06, MMN+12], wave-function methods [HJO14] such as Coupled-Cluster,
full-CI and Green’s function methods. In this chapter, we study the GW method, which is
based on Hedin’s equations for the one-body Green’s function [Hed65]. The formal derivation
of the latter equations relies on many-body perturbation techniques. While the GW method
has been proven very successful in practice to predict electronic-excited energies, no rigorous
mathematical framework has yet been developed to understand its mathematical properties.
The aim of this work is to present such a framework.

In non-relativistic first-principle molecular simulation, the electrons of a molecular system
are described by an N -body Hamiltonian operator HN , which is a bounded below self-adjoint
operator on the fermionic space

∧N L2(R3) (see Equation (4.30) below). Whenever N ≤ Z,
where Z is the total nuclear charge of the molecular system, HN has an infinity of discrete
eigenvalues E0

N ≤ E1
N ≤ E2

N ≤ · · · below the bottom of the essential spectrum, where E0
N is

its ground state energy. The quantities we would like to evaluate are the electronic-excitation
energies

E0
N − EkN+1 (gain of an electron), and E0

N − EkN−1 (loss of an electron).
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These energy differences are not to be confused with the optical-excitation energies, which
are energy differences of the form EkN − E0

N , between two states with the same number of
electrons. More generally, it is interesting to compute the particle electronic-excitation set
Sp := σ

(
HN+1 − E0

N

)
and the hole electronic-excitation set Sh := σ

(
E0
N −HN−1

)
. As will

be made clear in Section 4.3.2, these sets are closely linked to the one-body Green’s function:
the time-Fourier transform of the Green’s function becomes singular on these sets. In order to
study the electronic-excitation sets, we therefore study the one-body Green’s function. Also,
the one-body Green’s function is a fundamental object which contains a lot of useful informa-
tion, and allows one to easily compute the ground state electronic density, the ground state
one-body density matrix, and even the ground state energy thanks to the Galitskii-Migdal
formula [GM58].

Calculating the one-body Green’s function is however a difficult task. In his pioneering
work in 1965, Hedin proved that the Green’s function satisfies a set of (self-consistent) equa-
tions, now called the Hedin’s equations [Hed65]. These equations link many operator-valued
distributions, namely the reducible and irreducible polarizability operators, the dynamically
screened interaction operator, the self-energy operator, the vertex operator, and of course the
one-body Green’s function. The state-of-the-art method to compute the one-body Green’s
function consists in solving Hedin’s equations.

Immediately, two difficulties arise. The first one is related to the lack of regularity of the
Green’s function (we expect its time-Fourier transform Ĝ to be singular on the electronic-
excitation sets). One way to get around this problem is to consider the analytical extension
of Ĝ into the complex plane, which we denote by G̃. This is possible whenever the following
classical stability condition holds true1:

Stability assumption: It holds that 2E0
N < E0

N+1 + E0
N−1.

The physical relevance of this inequality is discussed for instance in [Far99, Section 4.2]. It
allows one to define the chemical potential µ, chosen such that

E0
N − E0

N−1 < µ < E0
N+1 − E0

N .

Instead of studying the Green’s function G(τ) in the time domain, or its Fourier transform
Ĝ(ω) in the frequency domain, we rather study its analytical continuation G̃ on the imagi-
nary axis µ + iR. The function ω 7→ G̃(µ + iω) enjoys very nice properties, both in terms of
regularity and integrability, which makes it a privileged tool for numerical calculations.

The second difficulty comes from the fact that Hedin’s equations cannot be exactly solved
and, even more importantly, that the mathematical definition of some terms in these equa-
tions are unclear. It however opens the way to some approximate resolutions. The most
widely used approximation nowadays is the so-called GW-approximation, also introduced
by Hedin [Hed65]. These equations are traditionally set on the time-axis, or on the energy-
axis [RJT10, KFSP10]. However, as previously mentioned, the various operators under consid-
eration are singular on these axes, which makes the traditional GW equations cumbersome to
implement numerically, and difficult to analyze mathematically. In order to manipulate better-
behaved equations, it is more convenient to replace every operator-valued distribution involved
in the GW equations by its analytic continuation on an appropriate imaginary axis, thanks
to the “contour deformation” technique introduced in [RGN95, RSW+99]. The resulting GW
equations, which give an approximation of the map ω 7→ G̃(µ+iω), turn out to give simulation

1The question “Is the stability condition always true for Coulomb systems” is still an open problem [BDS14,
Part VII].
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results in very good agreement with experimental data [SDvL06, SDvL09, CRR+12, CRR+13].

From the GW equations set on the imaginary axis, several further approximation may
be performed. The GW equations are solved self-consistently, and the Green’s function is
updated at each iteration until convergence. When only one iteration is performed, we obtain
the one-shot GW approximation, also called the G0W0 approximation of the Green’s func-
tion. For molecules, self-consistent GW approaches give results of similar quality as G0W0,
sometimes almost identical [SDvL09, KFSP10], sometimes slightly worse [RJT10], sometimes
slightly better [CRR+12, CRR+13]. When several iterations are performed, while keeping the
screening operator W fixed, equal to a reference screening operator W 0, we obtain the GW0

approximation of the Green’s function [SDvL09, vBH96]. Since the update of the screening
operator W in a self-consistent GW scheme seems difficult to analyze mathematically, we
prefer to study in this chapter the equations resulting from the GW0 approximation.

The purpose of this work is threefold. First, we clarify the mathematical definitions and
properties of the usual one-body operators involved in many-body perturbation theory. Then,
we embed the GW0 equations in a mathematical framework. Finally, we prove that, in a per-
turbative regime, the GW0 equations admit a unique solution close to a reference Green’s
function.

From a physical viewpoint, the analysis we perform in this work is more relevant for atoms
and molecules. Indeed, as discussed in [BG14, Section 4.1] for instance, fully self-consistent
GW approaches are questionable for solid-state systems, for which quasiparticle methods are
preferred [AG98, AJW00].

This chapter is organized as follows. In Section 4.2, we provide the mathematical tools
that will be used throughout the chapter. We recall the Titchmarsh’s theorem, and introduce
the kernel-product of two operators, which can be seen as an infinite dimensional version of
the Hadamard product for matrices. We also explain the underlying structure that makes the
“contour deformation” possible. In Section 4.3, we recall the standard definitions of the usual
one-body operators that appear in many-body perturbation theory. A consistent functional
setting is given for each of these operators, and their basic properties are recalled and proved.
Section 4.4 is concerned with the GW approximation. We explain why some of the GW
equations are not well-understood mathematically, and prove that the GW0 equations are
well-posed in a perturbative regime. Most of the proofs are postponed until Section 4.6.

4.2 Setting the stage

4.2.1 Some notation

The GW method is based on time-dependent perturbation theory and therefore involves
space-time operators. Following the common notation in physics, we denote by t the time
coordinate, by r the space coordinates, and by x or rt the space-time coordinates. The
functional spaces considered in this work are by default composed of complex-valued functions,
unless we explicitly mention that the functions are real-valued.

Most of the space-time operators appearing in the GW formalism are time-translation
invariant. A time-translation invariant operator C can be characterized by the family of
operators (C(τ))τ∈R such that, formally, the kernel of C is of the form

C(r1t1, r2t2) = C(r1, r2, t1 − t2),

where C(r, r′, τ) is the kernel of the operator C(τ). For clarity, we will systematically use the
letter τ to denote a time variable which is in fact a time difference.
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Let H be a separable complex Hilbert space, whose associated scalar product is simply
denoted by 〈·, ·〉 and the associated norm ‖ · ‖. We denote by B(H) the space of bounded
linear operators on H, by S(H) the space of bounded self-adjoint operators on H, by Sp(H)
(1 ≤ p <∞) the Schatten class

Sp(H) =
{
A ∈ B(H)

∣∣∣ ‖A‖Sp(H) := Tr(|A|p)1/p <∞
}
,

and by A∗ the adjoint of a linear operator A on H with dense domain. The real and imaginary
parts of an operator A ∈ B(H) are defined as

ReA =
A+A∗

2
, ImA =

A−A∗

2i
.

Note that, when A is closed (which implies A∗∗ = A), the operators ReA and ImA are
self-adjoint. For f, g ∈ H and given operators A,B on H, we will often use the notation

〈f |A|g〉H := 〈f,Ag〉H, 〈f |AB|g〉H := 〈f,ABg〉H,

even in cases when the operators are not self-adjoint. Operators are always understood to act
on the function on the right in this notation.

We will sometimes need to manipulate the adjoints of operators between two different
Hilbert spaces Ha and Hb. The adjoint of a bounded operator A ∈ B(Ha,Hb) is the bounded
operator A∗ ∈ B(Hb,Ha) defined by

∀(x, y) ∈ Ha ×Hb, (A∗y, x)Ha = (y,Ax)Hb .

Let E be a Banach space. We denote by S ′(R, E) the space of E-valued tempered-
distributions on R, i.e. the set of continuous linear maps from the Schwartz’s functional
space S (R) into E. Recall that, by definition, a family (Tη)η>0 of elements of S ′(R, E)
converges in S ′(R, E) to some T ∈ S ′(R, E) when η goes to 0 if

∀φ ∈ S (R),
∥∥〈Tη, φ〉S ′,S − 〈T, φ〉S ′,S ∥∥E −→η→0+

0.

Let f ∈ L1(R, E) be a time-dependent E-valued integrable function. The time-Fourier
transform of f is defined, using the standard convention in physics, as

∀ω ∈ R, f̂(ω) := (FT f) (ω) :=

ˆ
R
f(τ)eiωτ dτ. (4.1)

For the sake of clarity, we will sometimes denote by Rt or Rτ the time-domain, by Rω
the frequency-domain, by S ′(Rτ , E) (resp. S ′(Rω, E)) the space of time-dependent (resp.
frequency-dependent) E-valued distributions, etc. We will also denote with a hat the functions
defined on the frequency domain. Using this notation, FT can be extended to a bicontinuous
isomorphism from S ′(Rτ , E) into S ′(Rω, E). When f̂ ∈ L1(Rω, E), we have

∀τ ∈ R,
(
F−1
T f̂

)
(τ) =

1

2π

ˆ
R
f̂(ω)e−iωτ dω.

The Dirac distribution at a ∈ Rd is denoted by δa, and the Heaviside function on R by Θ:

Θ(τ) = 1 for τ > 0, Θ(τ) = 0 for τ < 0, Θ(0) = 1/2. (4.2)

Recall that the time-Fourier transform of Θ is, in the tempered distributional sense,

Θ̂(ω) = πδ0(ω) + ip.v.

(
1

ω

)
, (4.3)

where p.v. is the Cauchy principal value. We will also make use of the notation τ+ for a
number strictly above τ , but infinitesimally close to τ , and of the convention

Θ(τ)δ0(τ+) := δ0(τ), Θ(−τ)δ0(τ+) := 0.
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4.2.2 Hilbert transform of functions and distributions

The Hilbert transform, which amounts to a convolution by π−1p.v.(1
· ), plays a crucial role in

the GW formalism. We first recall some well-known results on the standard Hilbert transform
on Lp(Rω), and extend the results to the Sobolev spaces Hs(Rω) for s ∈ R. Usually, the name
“Hilbert transform” is only used on functional spaces E ⊂ L1

loc(Rω) such that, for any function
f̂ ∈ E, the limit[

f̂ ∗ p.v.

(
1

·

)]
(ω) = p.v.

ˆ +∞

−∞

f̂(ω′)

ω − ω′
dω′ := lim

η→0+

ˆ
R\[ω−η,ω+η]

f̂(ω′)

ω − ω′
dω′

exists for almost all ω ∈ Rω. However, in the sequel, we will also use the name “Hilbert
transform” in functional spaces where the above integral representation is not always valid
(for instance when f̂ is not a locally integrable function). Note that we define the Hilbert
transform on Fourier transforms of functions (i.e. on functions on the frequency domain)
since this is the typical setting in the GW formalism.

Hilbert transform in Lp spaces

We first begin with the following classical definition (see for instance [Gra04, Section 4.1]).

Definition 4.1 (Hilbert transform on S (Rω)). The Hilbert transform of a function φ̂ ∈
S (Rω) is defined by

Hφ̂ :=
1

π
p.v.

(
1

·

)
∗ φ̂, (4.4)

or equivalently by
Hφ̂ :=

(
FT (−i sgn(·))F−1

T

)
φ̂, (4.5)

where p.v.
(

1
·
)
is the Cauchy principal value of the function ω 7→ 1

ω , ∗ the convolution product,
FT the Fourier transform defined in (4.1) and −i sgn(·) the multiplication operator by the L∞

function t 7→ −i sgn(t) (where sgn(t) = Θ(t)−Θ(−t) is the sign function).

The Hilbert transform can be extended by continuity to a large class of tempered distri-
butions. We refer to [Gra04, Rie28] for a proof of the following theorem.

Theorem 4.2. For all f̂ ∈ Lp(Rω) with 1 < p <∞, the Hilbert transform

Hf̂(ω) = p.v.

ˆ ∞
−∞

f̂(ω′)

ω − ω′
dω′

is well-defined for almost all ω ∈ R. It holds H ∈ B(Lp(Rω)) with

‖H‖B(Lp(Rω)) =

∣∣∣∣ tan(π/(2p)) if 1 < p ≤ 2,
cotan(π/(2p)) if 2 ≤ p <∞.

Moreover, the Hilbert transform commutes with the translations and the positive dilations, and
anticommutes with the reflexions. Finally, it is a unitary operator on L2(Rω).

Hilbert transform in Sobolev spaces

Recall that for any s ∈ R, the Sobolev space Hs(Rω) is the Hilbert space defined as

Hs(Rω) :=
{
f̂ ∈ S ′(Rω))

∣∣∣ (1 + | · |2)s/2F−1
T f̂ ∈ L2(Rτ )

}
,

and endowed with the scalar product〈
f̂ , ĝ
〉
Hs

= 2π

ˆ +∞

−∞
(1 + τ2)s(F−1

T f̂)(τ) (F−1
T ĝ)(τ) dτ,
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and thatH−s(Rω) can be identified with the dual ofHs(Rω) when the space L2(Rω) = H0(Rω)
is used as a pivoting space. One of the reasons to introduce these spaces is that the image
of L∞(Rτ ) by the Fourier transform FT is contained in the Sobolev spaces of indices strictly
lower than −1/2.

Lemma 4.3 (Fourier transform in L∞(Rτ )). Let s > 1/2. Then FT (L∞(Rτ )) ⊂ H−s(Rω)
and

‖FT ‖B(L∞,H−s) = Cs with Cs =

(
2π

ˆ
R

dτ

(1 + τ2)s

)1/2

. (4.6)

For completeness, we recall the proof of Lemma 4.3 in Section 4.6.1.

Since the Hilbert transform in S (Rω) amounts to a multiplication by the bounded func-
tion −i sgn(·) in the time domain (see (4.5)), it can be directly extended to the Sobolev spaces
Hs(Rω).

Lemma 4.4. For any s ∈ R, the Hilbert transform H is a unitary operator on the Sobolev
spaces Hs(Rω) satisyfing H−1 = −H (and therefore H2 = −Id).

Remark 4.5 (Hilbert transform of distributions). Extending the Hilbert transform to Sobolev
spaces is straightforward using (4.5). Extensions of the Hilbert transform to other subspaces
of D ′(Rω), such as the D ′Lp(Rω) spaces defined in [Sch66, Section VI.8], can be obtained
from (4.4).

Hilbert transforms of operator-valued distributions

We now need to properly define the Hilbert transform of operator-valued distributions on the
frequency domain, as such objects naturally appear in the GW formalism. We first introduce,
for s ∈ R, the Banach space

Hs(Rω,B(H)) :=
{
Â ∈ S ′(Rω,B(H)))

∣∣∣ (1 + | · |2)s/2F−1
T Â ∈ L2(Rτ ,B(H))

}
,

endowed with the norm∥∥∥Â∥∥∥
Hs(Rω ,B(H))

=
√

2π

(ˆ +∞

−∞
(1 + τ2)s

∥∥∥(F−1
T Â

)
(τ)
∥∥∥2

B(H)
dτ

)1/2

.

The following definition makes sense in view of Lemma 4.4.

Definition 4.6 (Hilbert transforms of frequency-dependent operators). Let H be a Hilbert
space, and consider s ∈ R and Â ∈ Hs(Rω,B(H)). The Hilbert transform of Â is the element
of Hs(Rω,B(H)), denoted by H(Â), and defined by

∀(f, g) ∈ H ×H,
〈
f
∣∣∣H(Â)

∣∣∣ g〉 = H
(〈
f
∣∣∣Â∣∣∣ g〉) . (4.7)

In particular, it is possible to define the Hilbert transform of the Fourier transform of a
uniformly bounded field of time-dependent operators, using the following result, which is a
straightforward extension of Lemma 4.3.

Lemma 4.7. Let H be a Hilbert space, and let s > 1/2. Then for all A ∈ L∞(Rτ ,B(H)), we
have Â ∈ H−s(Rω,B(H)), with

∥∥∥Â∥∥∥
H−s(Rω ,B(H))

=

(
2π

ˆ
R

(
1 + τ2

)−s ‖A(τ)‖2B(H) dτ

)1/2

≤ Cs ‖A‖L∞(Rτ ,B(H)),

where Cs is defined in (4.6).
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Let B(R) be the set of Borel subsets of R, b ∈ B(R) a Borelian set, and H a self-adjoint
operator on a Hilbert space H. We denote by PHb := 1b(H) the spectral projection on b
of H (here, 1b is the characteristic function of the set b, and 1b(H) ∈ B(H) is defined by the
spectral theorem for self-adjoint operators; see for instance [RS78, Theorem VII.2]).

Definition 4.8 (Principal value of the resolvent of a self-adjoint operator). Let H be a self-
adjoint operator on a Hilbert space H. We define the B(H)-valued distribution p.v.

(
1
·−H

)
on

the frequency domain Rω by

∀(f, g) ∈ H ×H,
〈
f

∣∣∣∣p.v.( 1

· −H

)∣∣∣∣ g〉 := πH(µHf,g),

where µHf,g is the finite complex Borel measure on Rω defined by

∀b ∈ B(Rω), µHf,g(b) = 〈f |PHb |g〉.

As any complex-valued bounded Borel measure on Rω is an element of H−s(Rω) for
any s > 1/2 (this is a consequence of the continuous embedding Hs(Rω) ↪→ C0(Rω)∩L∞(R)
for s > 1/2), it follows from Definitions 4.6 and 4.8 that

p.v.

(
1

· −H

)
= πH(PH) in H−s(Rω,B(H)), s > 1/2,

which is the operator analog of the well-known formula

p.v.

(
1

·

)
= πH(δ0) in H−s(Rω), s > 1/2, (4.8)

which is itself a simple reformulation of the equality

F−1
T

[
p.v.

(
1

·

)]
= − i

2
sgn(·) in L∞(Rτ ).

4.2.3 Causal and anti-causal operators

The GW formalism makes use of families of time-dependent operators (Tc(τ))τ∈R and (Ta(τ))τ∈R
of the form

Tc(τ) = Θ(τ)Ac(τ) and Ta(τ) = Θ(−τ)Aa(τ),

where Θ : R→ R is the Heaviside function (4.2), and Ac and Aa belong to L∞(R,B(H)) for
a given Hilbert space H. The family of operators (Tc(τ))τ∈R is called a causal operator, as
Tc(τ) = 0 for all τ < 0. Likewise, the family of operators (Ta(τ))τ∈R is called an anti-causal
operator, as Ta(τ) = 0 for all τ > 0. We recall in this section the basic properties of causal
and anti-causal operators.

Causal operators

Causal functions have very nice properties, because their Fourier transforms have analytic
extensions in the upper half-plane

U := {z ∈ C | Im z > 0} .
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This comes from the fact that, if f ∈ L1(Rτ ) + L∞(Rτ ) is such that f(τ) = 0 for τ < 0, the
Laplace transform f̃ of f , defined on U by2

∀z ∈ U, f̃(z) :=

ˆ
R
f(τ)eizτ dτ =

ˆ +∞

0
f(τ)eizτ dτ, (4.9)

is a natural analytic lifting onto U of the time-Fourier transform f̂ of f defined on Rω = ∂U.
Note that the Laplace transform can be extended to appropriate classes of tempered distri-
butions, see [Sch66, Chapter VIII].

Let us first recall the Titchmarsh’s theorem [Tit48] (see for instance [Nus72, Section 1.6]).

Theorem 4.9 (Titchmarsh’s theorem in L2 [Tit48]). Let f ∈ L2(Rτ ) and f̂ ∈ L2(Rω) be its
time-Fourier transform. The following assertions are equivalent:

(i) f is causal (i.e. f(τ) = 0 for almost all τ < 0);

(ii) there exists an analytic function F in the upper half-plane U satisfying

sup
η>0

(ˆ +∞

−∞
|F (ω + iη)|2 dω

)
<∞

and such that, F (·+ iη)→ f̂ strongly in L2(Rω), as η → 0+;

(iii) Re f̂ and Im f̂ satisfy the first Plemelj formula

Re f̂ = −H
(

Im f̂
)

in L2(Rω); (4.10)

(iv) Re f̂ and Im f̂ satisfy the second Plemelj formula

Im f̂ = H
(

Re f̂
)

in L2(Rω). (4.11)

If these four assertions are satisfied, then the function F in (ii) is unique, and coincides with
the Laplace transform f̃ of f .

We refer to [Tit48] for a proof of this theorem. Formulae (4.10)-(4.11) are sometimes
referred to as the Kramers-Krönig formulae or the dispersion relations in the physics literature.
Titchmarsh’s theorem implies in particular that square integrable causal functions, which can
be very easily characterized in the time domain (they vanish for negative times), can also be
easily characterized in the frequency domain (the imaginary parts of their Fourier transforms
are the Hilbert transforms of their real parts).

We emphasize that the above version of Titchmarsh’s theorem is only valid in L2, while
the GW setting mostly involves L∞ causal functions (see Section 4.3.2 for instance). Weaker
versions of Titchmarsh’s theorem are available for wider classes of tempered distributions (see
[Nus72] and references therein), but the L∞ setting turns out to be sufficient for our purposes
and has the advantage of allowing short, self-contained proofs of all statements. Note that
the assertions are no longer equivalent.

2The Laplace transform is usually defined as

F (p) =

ˆ ∞
0

f(τ)e−pτdτ.

Our definition, which is better adapted to the GW framework, simply amounts to rotating the axis, or, in
other words, to setting z = ip.
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Theorem 4.10 (Titchmarsh’s theorem in L∞(R)). Let g ∈ L∞(Rτ ) be a causal function (i.e.
g(τ) = 0 for τ < 0) and let ĝ ∈ H−s(Rω) for all s > 1/2 be its time-Fourier transform, and
g̃ be its Laplace transform defined on U. Then,

(i) g̃ is analytic on U;

(ii) the function η 7→ g̃(· + iη) is continuous from (0,+∞) to Hs(Rω) for all s ∈ R, and is
uniformly continuous from [0,+∞) to H−s(Rω) for all s > 1/2. Moreover, g̃(·+iη)→ ĝ
strongly in H−s(Rω) for all s > 1/2, as η → 0+;

(iii) for all z ∈ U,

g̃(z) =
1

2iπ

〈
ĝ, (· − z)−1

〉
H−1,H1 . (4.12)

(iv) Re ĝ and Im ĝ satisfy the Plemelj formulae:

Re ĝ = −H (Im ĝ) and Im ĝ = H (Re ĝ) in H−1(Rω). (4.13)

The proof of Theorem 4.10, which is a simplified version of the proof of the more general
result given by [Tay58, Lemma 1] (see also [Nus72, Section 1.7]), is given in Section 4.6.2. For
simplicity, we stated (4.12) and (4.13) in H−s for the value s = 1, but similar results hold for
any value s > 1/2.

Let us now extend these results to operator-valued functions. We recall that a map
Ã(z) from an open set U ⊂ C to a Banach space E is said to be strongly analytic on U if
U 3 z 7→ Ã(z) ∈ E is C-differentiable on U , i.e. dÃ(z)/dz ∈ E for all z ∈ U .

Definition 4.11 (bounded causal operator). Let H be a Hilbert space and Tc ∈ L∞(Rτ ,B(H)).
We say that Tc is a bounded causal operator on H if Tc(τ) = 0 for almost all τ < 0.

Lemma 4.3 and Theorem 4.10 can be straightforwardly extended to operator-valued maps
(see Section 4.6.3 for the proof).

Proposition 4.12. Let H be a Hilbert space and Tc ∈ L∞(Rτ ,B(H)) a bounded causal oper-
ator on H. Then its time-Fourier transform T̂c belongs to H−s(Rω,B(H)) for any s > 1/2,
and its Laplace transform

T̃c(z) :=

ˆ
R
Tc(τ) eizτ dτ =

ˆ +∞

0
Tc(τ) eizτ dτ

is well defined on the upper-half plane U. Moreover,

(i) T̃c is a strongly analytic function from U to B(H);

(ii) the function η 7→ T̃c(·+ iη) is continuous from (0,+∞) to Hs(Rω,B(H)) for all s ∈ R,
and uniformly continuous from [0,+∞) to H−s(Rω,B(H)) for s > 1/2. Moreover, for
any s > 1/2, T̃c(·+ iη)→ T̂c strongly in H−s(Rω,B(H)) as η → 0+;

(iii) for all z ∈ U, it holds

T̃c(z) =
1

2iπ

〈
T̂c, (· − z)−1

〉
H−1,H1

;

(iv) the operators Re T̂c and Im T̂c satisfy the Plemelj formulae:

Re T̂c = −H
(

Im T̂c

)
and Im T̂c = H

(
Re T̂c

)
in H−1(Rω,B(H)). (4.14)
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Besides the general case covered by Proposition 4.12, the particular case of causal time-
propagators is often encountered. Explicit formulae can be provided for the Laplace and
Fourier transforms in this case, as made precise in the following result (see Section 4.6.4 for
the proof).

Proposition 4.13 (Analytic extension of causal time propagators). Let H be a self-adjoint
operator on a Hilbert space H and Ac(τ) := −iΘ(τ)e−iτH . The Laplace transform (Ãc(z))z∈U
coincides with the resolvent of H in U:

Ãc(z) = (z −H)−1.

Moreover, Ãc(·+ iη) converge to Âc in H−1(Rω,B(H)) as η → 0+, and

Re Âc = p.v.

(
1

· −H

)
and Im Âc = −πPH in H−1(Rω,B(H)).

Let us conclude this section with a useful result (see Section 4.6.5 for the proof).

Lemma 4.14. Let Tc ∈ L∞(Rτ ,B(H)) be a bounded causal operator such that it holds
Supp(Im T̂c) ⊂ [ω0,∞) for some ω0 ∈ R. Then Im T̂c ≥ 0 on Rω if and only if Re T̂c ≥ 0
on (−∞, ω0].

Anti-causal operators

Definition 4.15 (bounded anti-causal operator). Let H be a Hilbert space and Ta ∈ L∞(Rτ ,B(H)).
We say that Ta is a bounded anti-causal operator if Ta(τ) = 0 for almost all τ > 0.

All the results for causal operators stated in the previous section can be straightforwardly
transposed to anti-causal operators, by remarking that if (Ta(τ))τ∈R is an anti-causal operator,
then (Ta(−τ))t∈R is a causal operator. We will use in particular the following results, which
are the counterparts of Proposition 4.12, Proposition 4.13 and Lemma 4.14.

Proposition 4.16. Let H be a Hilbert space and Ta ∈ L∞(Rτ ,B(H)) a bounded anti-causal
operator on H. Then its time-Fourier transform T̂a belongs to H−s(Rω,B(H)) for any s > 1/2,
and its Laplace transform T̃a is well defined on the lower half-plane

L = {z ∈ C | Im (z) < 0} .

Moreover,

(i) T̃a is a strongly analytic function from L to B(H);

(ii) the function η 7→ T̃a(· − iη) is continuous from (0,+∞) to Hs(Rω,B(H)) for all s ∈ R,
and uniformly continuous from [0,+∞) to H−s(Rω,B(H)) for s > 1/2. Moreover, for
any s > 1/2, T̃a(· − iη)→ T̂a strongly in H−s(Rω,B(H)) as η → 0+;

(iii) for all z ∈ L, it holds

T̃a(z) = − 1

2iπ

〈
T̂a, (· − z)−1

〉
H−1,H1

;

(iv) the operators Re T̂a and Im T̂a satisfy the Plemelj formulae:

Re T̂a = H
(

Im T̂a

)
and Im T̂a = −H

(
Re T̂a

)
in H−1(Rω,B(H)). (4.15)
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Note that the signs in the Plemelj formulae are different for causal and anti-causal oper-
ators (compare (4.14) and (4.15)). Also, the Laplace transform is defined in the lower-half
plane L for anti-causal operators, while it is defined in the upper-half plane U for causal
operators. The counterpart of Proposition 4.13 is the following proposition.

Proposition 4.17 (Analytic extension of anti-causal time propagators). Let H be a self-
adjoint operator on a Hilbert space H and Aa(τ) := iΘ(−τ)eiτH . The Laplace transform
(Ãa(z))z∈L is

Ãa(z) = (z +H)−1.

Moreover, Ãa(· − iη) converge to Âa in H−1(Rω,B(H)) as η → 0+, and

Re Âa = p.v.

(
1

·+H

)
and Im Âa = πP−H in H−1(Rω,B(H)).

Finally, a result similar to Lemma 4.14 can also be stated.

Lemma 4.18. Let Ta ∈ L∞(Rτ ,B(H)) be a bounded anti-causal operator such that it holds
Supp(Im T̂a) ⊂ (−∞, ω0] for some ω0 ∈ Rω. Then, Im T̂a ≥ 0 if and only if Re T̂a(ω) ≥ 0 on
[ω0,+∞).

4.2.4 Operators defined by kernel products

Two of the fundamental equations in the GW method (see Sections 4.4.2 and 4.4.3) are of the
form

C(x1,x2) = iA(x1,x2)B(x2,x1), (4.16)

where A(x,x′) and B(x,x′) are the kernels of space-time operators invariant by time trans-
lations. As the product of the kernels of two operators is not, in general, the kernel of
a well-defined operator, we have to clarify the meaning of (4.16). We first treat the case of
time-independent operators in Section 4.2.4, and consider time-dependent operators and their
Laplace transforms in a second step (see Section 4.2.4).

Definition of the kernel product

We first consider the special case when the operators in (4.16) are time-independent. Our
aim is to give a meaning to equalities such as

C(r1, r2) := A(r1, r2)B(r2, r1), (4.17)

where A(r, r′) and B(r, r′) are the kernels of two integral operators A and B on L2(R3). For
this purpose, we replace (4.17) by the formally equivalent definition

∀(f, g) ∈ L2(R3)× L2(R3), 〈f |C|g〉 :=

ˆ
R3

ˆ
R3

f(r1)C(r1, r2)g(r2) dr1 dr2

=

ˆ
R3

ˆ
R3

A(r1, r2)g(r2)B(r2, r1)f(r1) dr1 dr2

= TrL2(R3)

(
AgBf

)
, (4.18)

where the last line involves the operators A and B themselves, and not their kernels (f and
g are there seen as multiplication operators by the functions f and g respectively).

The formal equalities leading to (4.18) suggest to define the kernel product of two opera-
tors A and B (defined on dense subspaces of L2(R3)), as the operator on L2(R3) with domain
D ⊂ L2(R3), denoted by A�B and characterized by

∀(f, g) ∈ L2(R3)×D, 〈f |(A�B)|g〉 := TrL2(R3)

(
AgBf

)
. (4.19)
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In particular, the product A�B is a well-defined bounded operator on L2(R3) as soon as AgBf
is trace-class for all (f, g) ∈ L2(R3) × L2(R3) and (f, g) 7→ TrL2(R3)(AgBf) is a continuous
sesquilinear form on L2(R3)×L2(R3). It follows from the above considerations that if A and
B are operators with well-behaved (for instance smooth and compactly supported) kernels
A(r1, r2) and B(r1, r2), then A�B is a bounded integral operator with kernel (A�B)(r1, r2) =
A(r1, r2)B(r2, r1).

Remark 4.19. It is also possible to rely on the formal equality

∀(f, g) ∈ L2(R3)× L2(R3), 〈f |C|g〉 = TrL2(R3)

(
fAgB

)
,

and define another kernel product �̃ by

∀(f, g) ∈ L2(R3)×D,
〈
f
∣∣A �̃B∣∣ g〉 := TrL2(R3)

(
fAgB

)
.

It may hold that A � B is a well-defined bounded operator, while A �̃B is an unbounded
operator.3 In the sequel, we will mostly state the results for the � kernel product.

Remark 4.20. The product A � B can be seen as an infinite-dimensional extension of the
Hadamard product A ◦BT defined for two matrices A ∈ Cm×n and B ∈ Cn×m by

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n,
(
A ◦BT

)
ij

= Aij

(
BT
)
ij

= AijBji.

Let us specify possible sufficient conditions for the operator A�B to be well-defined. The
typical situation we will encounter in the GW setting (see Sections 4.4.2 and 4.4.3) is the case
when A ∈ B(L2(R3)), while B is an operator on L2(R3) satisfying

∀f, g ∈ L2(R3), Tr
(∣∣gBf ∣∣) ≤ CB‖f‖L2‖g‖L2 . (4.20)

In this case, the operator A � B defined in (4.19) is a well-defined bounded linear operator
on L2(R3), and

‖A�B‖B(L2(R3)) ≤ CB‖A‖B(L2(R3)).

The operators B arising in the GW formalism are usually of the form B = B∗1B2B1, where
B1 is an operator from L2(R3) to some Hilbert space H, and B2 ∈ B(H). In fact, assume
that the operator B1 is such that B1f ∈ S2(L2(R3),H) for any f ∈ L2(R3), with

‖B1f‖S2(L2(R3),H) ≤ K‖f‖L2 , (4.21)

for a constant K ∈ R+ independent of f . In the left-hand side of (4.21), f denotes the
multiplication operator by the function f . In this case, (4.20) holds with

CB = K2‖B2‖B(H).

Let us conclude by giving a simple example when (4.21) is satisfied, in the situation when
H = L2(R3).

3 As an example of such a situation, take φ ∈ L2(R3)∩L∞(R3), ψ ∈ L2(R3) \L∞(R3), and set A = |ψ〉〈φ|
and B = |φ〉〈φ|. Then, for all f, g ∈ L2(R3), the operator AgBf = |ψ〉〈φ|g|φ〉〈φf | is a well-defined rank-1
bounded operator since φf ∈ L2(R3), hence is trace class. Moreover,

TrL2(R3)

(
AgBf

)
≤
(
‖φ‖2L∞‖φ‖L2‖ψ‖L2

)
‖f‖L2‖g‖L2 ,

so that A � B is a well-defined bounded operator on L2(R3). On the other hand, it formally holds fAgB =
|fψ〉〈φ|g|φ〉〈φ|. If f is such that fψ /∈ L2(R3), then this operator is not bounded.
We are grateful to Yanqi Qiu for pointing out this counter-example to our attention.
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Lemma 4.21. Let B1 be a linear operator with integral kernel B1(r, r′) ∈ L2
loc(R3 × R3),

such that r 7→ ‖B1(r, ·)‖L∞ ∈ L2(R3). Then B1 ∈ B(L1(R3), L2(R3)), so that B1 defines
an operator on L2(R3) with domain L1(R3) ∩ L2(R3). Moreover, for any f ∈ L2(R3), the
operator B1f is Hilbert-Schmidt on L2(R3), with

‖B1f‖S2(L2(R3)) ≤
(ˆ

R3

‖B1(r, ·)‖2L∞(R3) dr

)1/2

‖f‖L2(R3).

The proof of this result can be read in Section 4.6.6. In the GW setting, a technical result
similar to Lemma 4.21 is provided by Lemma 4.77.

Properties of the kernel product

Lemma 4.22. Consider two bounded operators A,B ∈ B(L2(R3)) such that A,B ≥ 0
and (4.20) holds. Then, A�B is a bounded, positive operator on L2(R3).

The proof of this result is very simple: it relies on the observation that, for any f ∈ L2(R3),

〈f |A�B| f〉 = TrL2(R3)

(
AfBf

)
= TrL2(R3)

(
A1/2fBfA1/2

)
≥ 0,

since fBf is a positive, trace class operator and A1/2 ≥ 0 is a bounded operator.

Lemma 4.23. Consider two bounded operators A,B ∈ B(L2(R3)) such that (4.20) holds.
Then, A�B is a bounded operator with adjoint (A�B)∗ = A∗ �B∗.

The proof of this result is also elementary: for any f, g ∈ L2(R3),〈
f
∣∣ (A�B) g

〉
= TrL2(R3)

(
AgBf

)
= TrL2(R3)

((
AgBf

)∗)
= TrL2(R3) (fB∗gA∗)

= TrL2(R3) (A∗fB∗g) = 〈g, (A∗ �B∗)f〉 = 〈(A∗ �B∗)f, g〉 .

In particular, A�B is self-adjoint whenever A and B are self-adjoint.

Laplace transforms of kernel products

We finally combine the results on causal operators with those on the kernel product � de-
fined in Section 4.2.4 in order to give a meaning to (4.16). Note first that the space-time
operator with kernel C(x,x′) is also time-translation invariant and that the family of opera-
tors (A(τ))τ∈R, (B(τ))τ∈R and (C(τ))τ∈R such that, formally, A(x1,x2) = A(r1, r2, t1 − t2),
B(x1,x2) = B(r1, r2, t1 − t2), and C(x1,x2) = C(r1, r2, t1 − t2), are related by

C(τ) = iA(τ)�B(−τ). (4.22)

We assume here that A and B are such that (4.22) is well-defined. When all the operator-
valued functions have sufficient regularity in time, their Fourier transforms decay sufficiently
fast at infinity and it is possible to Fourier transform (4.22). This is however not the typical
case in the GW setting since we work with causal and anti-causal operators, whose Fourier
transforms are in H−s(Rω) for some s > 1/2.

We therefore rather consider Laplace transforms. More precisely, for two fields of uniformly
bounded operators (A(τ))τ∈R and (B(τ))τ∈R, and provided C(τ) := iA(τ) � B(−τ) is well
defined, we can decompose A, B and C as the sums of their causal and anti-causal parts as

A(τ) = A+(τ) +A−(τ) with A+(τ) := Θ(τ)A(τ) and A−(τ) := Θ(−τ)A(τ),

and similarly for B and C. Then,

C+(τ) = iA+(τ)�B−(−τ) and C−(τ) = iA−(τ)�B+(−τ). (4.23)
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We next consider ω > 0 and 0 < η < ω. From the equality

C+(τ) e−ωτ = i
[
A+(τ) e−(ω−η)τ

]
�
[
B−(−τ) e−ητ

]
,

we deduce, by Fourier transform, that

C̃+(ν + iω) =
i

2π

ˆ +∞

−∞
Ã+
(
ν − ω′ + i(ω − η)

)
� B̃−(−ω′ − iη) dω′. (4.24)

The convolution on the right-hand side is well defined in view of Propositions 4.12 and 4.16.
It however becomes ill-defined as ω, η → 0. In the case when the causal and anti-causal
operators A+ and B− under consideration are time-propagators, it is possible to remove this
singularity by rewriting the convolution on appropriately shifted imaginary axes.

Theorem 4.24. Consider three Hilbert spaces H,Ha,Hb, and assume that

A+(τ) = −iΘ(τ)A∗1e−iτA2A1, A−(τ) = iΘ(−τ)A∗1eiτA2A1,

B+(τ) = −iΘ(τ)B∗1e−iτB2B1, B−(τ) = iΘ(−τ)B∗1eiτB2B1,

where A1 ∈ B(H,Ha), B1 ∈ B(H,Hb) and A2, B2 are possibly unbounded, self-adjoint op-
erators on Ha and Hb respectively, for which there exist real numbers a, b such that A2 ≥
a and B2 ≥ b. We assume in addition that, for any f ∈ H, B1f ∈ S2(H,Hb) with
‖B1f‖S2(H,Hb) ≤ K‖f‖H, for a constant K ∈ R+ independent of f . Then, the opera-
tors C, C+ and C− in (4.22)-(4.23) are well-defined, the Laplace transforms of C+ and C−

admit analytical continuations on U∪L∪ (−∞, a+ b) and U∪L∪ (−(a+ b),∞) respectively,
and it holds for any ν < a+ b and ν ′ ∈ (−b, a− ν),

∀ω ∈ R, C̃+(ν + iω) = − 1

2π

ˆ +∞

−∞
Ã+
(
ν + ν ′ + i(ω + ω′)

)
� B̃−(ν ′ + iω′) dω′, (4.25)

while, for any ν > −(a+ b) and ν ′ ∈ (−a− ν, b),

∀ω ∈ R, C̃−(ν + iω) = − 1

2π

ˆ +∞

−∞
Ã−
(
ν + ν ′ + i(ω + ω′)

)
� B̃+(ν ′ + iω′) dω′. (4.26)

Finally, the following equality holds provided b > 0 and a+b > 0: for any ν ∈ (−(a+b), a+b)
and ν ′ ∈ (−b, b),

∀ω ∈ R, C̃(ν + iω) = − 1

2π

ˆ +∞

−∞
Ã
(
ν + ν ′ + i(ω + ω′)

)
� B̃(ν ′ + iω′) dω′. (4.27)

The proof of Theorem 4.24 can be read in Section 4.6.7. The choices of ν, ν ′ ensure that
the function ω′ 7→ Ã+

(
ν + ν ′ + i(ω + ω′)

)
is in Lp(Rω,B(H)) for any p > 1, while, for any

f, g ∈ H, the function ω′ 7→ gB̃−(ν ′ + iω′)f is in Lp(Rω,S1(H)) for any p > 1. Therefore, in
view of (4.25), the function ω 7→ C̃+(ν+ iω) is in Lp(Rω,B(H)) for any p > 1. Similar results
hold for ω 7→ C̃−(ν + iω) and ω 7→ C̃(ν + iω).

Let us conclude this section by deducing interesting properties from the analytic continu-
ation results given by Theorem 4.24 (see Section 4.6.8 for the proof).

Corollary 4.25. Assume that the conditions of Theorem 4.24 hold. Then,

Supp
(

Im Ĉ+
)
⊂ [a+ b,+∞) , Im Ĉ+ ≥ 0,

Supp
(

Im Ĉ−
)
⊂ (−∞,−(a+ b)] , Im Ĉ− ≥ 0,

(4.28)
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so that
Supp

(
Im Ĉ

)
⊂ R\ (−(a+ b), a+ b) , Im Ĉ ≥ 0.

Moreover,
Ĉ+ = Re Ĉ+ ≥ 0 on

(
−∞, a+ b

)
,

Ĉ− = Re Ĉ− ≥ 0 on
(
− (a+ b),+∞

)
.

(4.29)

In particular, Ĉ = Re Ĉ ≥ 0 on
(
− (a+ b), a+ b

)
.

4.2.5 Second quantization formalism

We recall here the definitions of the main mathematical objects used in the second quantization
formalism, which are used to define – at least formally – the kernels of the operators arising
in the GW method. More details about the second quantization formalism can be found e.g.
in [DG97].

We consider a system ofN electrons in Coulomb interaction subjected to a time-independent
real-valued external potential vext ∈ L2(R3,R) + L∞(R3,R). In order to study the response
of the system when electrons are added or removed, we embed this N -body problem in a
more general framework where the number of electrons is not prescribed. We denote by
H1 = L2(R3,C) the one-electron state space (the spin variable is omitted for simplicity), by
HN =

∧N H1 the N -electron state space, and by F = ⊕+∞
N=0HN the Fock space, with the

convention that H0 = C. The Hamiltonian of the N -particle system reads

HN = −1

2

N∑
i=1

∆ri +
N∑
i=1

vext(ri) +
∑

1≤i<j≤N

1

|ri − rj |
, (4.30)

and the corresponding Hamiltonian acting on the Fock space is denoted by H, so that
HN = H|HN .

For f ∈ H1, the creation and annihilation operators a†(f) and a(f) are the bounded
operators on the Fock space F defined by

∀N ∈ N, a†(f)|HN ∈ B(HN ,HN+1), a(f)|HN+1
∈ B(HN+1,HN ),

and for all ΦN ∈ HN ,

[a†(f)ΦN ](r1, . . . rN+1) :=
1√
N + 1

N+1∑
j=1

(−1)j+1f(rj)ΦN (r1, . . . , rj−1, rj+1, . . . , rN+1),

[a(f)ΦN ](r1, . . . rN−1) :=
√
N

ˆ
R3

f(r)ΦN (r, r1, . . . , rN−1) dr.

(4.31)
The creation and annihilation operators satisfy a†(f) = a(f)∗ and the anticommutation rela-
tions

∀(f, g) ∈ H1 ×H1, [a(f), a(g)]+ = 0, [a†(f), a†(g)]+ = 0, [a(f), a†(g)]+ = 〈f |g〉1F,
(4.32)

where [A,B]+ = AB + BA is the anti-commutator of the operators A and B, and where 1F
is the identity operator on F. In particular,

a†(f)a(f) + a(f)a†(f) = ‖f‖2H1
1F.

The mappings H1 3 f 7→ a†(f) ∈ B(F) and H1 3 f 7→ a(f) ∈ B(F) are respectively linear
and antilinear.
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In most physics articles and textbooks, the GW formalism is presented in terms of the
quantum field operators in the position representation Ψ(r) and Ψ†(r). We recall that, for-
mally,

∀r ∈ R3, Ψ†(r) =
∞∑
i=1

φi(r)a†(φi), Ψ(r) =
∞∑
i=1

φi(r)a(φi),

where {φi}i∈N is any orthonormal basis of H1. Note that for any f ∈ H1,
ˆ
R3

Ψ†(r)f(r)dr = a†(f) and
ˆ
R3

Ψ(r)f(r)dr = a(f).

In the second-quantization formalism, H reads,

H =

ˆ
R3

Ψ†(r)

(
−1

2
∆r + vext(r)

)
Ψ(r) dr +

1

2

ˆ
(R3)2

Ψ†(r)Ψ†(r′)|r− r′|−1Ψ(r′)Ψ(r) dr dr′.

Finally, we introduce the Heisenberg representation of the annihilation and creation field
operators ΨH(rt) and Ψ†H(rt), formally defined by

Ψ†H(rt) = eitHΨ†(r)e−itH and ΨH(rt) = eitHΨ(r)e−itH.

Note that, still formally, ΨH(rt)∗ = Ψ†H(rt), and

Ψ†H(rt)
∣∣
HN

= eitHN+1Ψ†(r) e−itHN , ΨH(rt)
∣∣
HN+1

= eitHNΨ(r) e−itHN+1 . (4.33)

4.3 Operators arising in the GW method for finite systems

This section aims at providing rigorous mathematical definitions of the operators arising in
the GWmethod. For each one of them, we first recall the formal definition given in the physics
literature, using the second quantization formalism. We then explain how to recast this formal
definition into a (formally equivalent) satisfactory mathematical definition involving only well-
defined operators on the k-particle spaces Hk, with k = 1, N−1, N,N+1, the Coulomb space
C (defined in Section 4.3.3), and its dual C′. We finally establish some mathematical properties
of the operator under consideration, using our definition as a starting point. Unless otherwise
specified, scalar products and norms are by default considered on H1 = L2(R3,C).

We first need to make some assumptions on the physical system under consideration (see
Section 4.3.1). We can then define the one-body Green’s functions in Section 4.3.2. Linear
response operators are considered in Section 4.3.3, which culminates with the definition of the
dynamically screened interaction operator W . We finally introduce the self-energy operator
in Section 4.3.4.

4.3.1 Assumptions on the reference N-electron system

Recall that the reference system with N electrons is described by the Hamiltonian HN on HN
defined by (4.30). Our first assumption concerns the ground state energy E0

N of the reference
system described by HN :

Hyp. 1: The ground state energy E0
N is a simple discrete eigenvalue of HN .

In this case, the normalized ground state wave-function Ψ0
N of the reference system is unique

up to a global phase. We also define the energy of the first excited state:

E1
N = min

(
σ(HN )\{E0

N}
)
.
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Together with Ψ0
N , we introduce the ground state one-body reduced density-matrix

γ0
N (r, r′) := N

ˆ
(R3)N−1

Ψ0
N (r, r2, · · · , rN )Ψ0

N (r′, r2, · · · , rN ) dr2 · · · drN , (4.34)

the ground state density

ρ0
N (r) := γ0

N (r, r) = N

ˆ
(R3)N−1

|Ψ0
N (r, r2, · · · , rN )|2 dr2 · · · drN ,

and the ground state two-body density

ρ0
N,2(r, r′) :=

N(N − 1)

2

ˆ
(R3)N−2

|Ψ0
N (r, r′, r3, · · · , rN )|2 dr3 · · · drN (4.35)

of the reference N -electron system.
We recall in the following proposition some important properties on Ψ0

N , γ
0
N , ρ

0
N and ρ0

N,2

(most of the assertions below are well known; we provide elements of proof in Section 4.6.9
for the less standard statements). Note that both γ0

N (r, r′) and ρ0
N,2(r, r′) can be seen as the

kernels of bounded operators on H1 = L2(R3) that we also denote by γ0
N and ρ0

N,2.

Proposition 4.26 (Properties of the ground state). Assume that vext is of the form

vext(r) = −
M∑
k=1

zk
|r−Rk|

,

with zk ∈ N∗ and Rk ∈ R3 for all 1 ≤ k ≤M , and that Hyp. 1 is satisfied. Then,

(1) the ground state wave-function Ψ0
N can be chosen real-valued and Ψ0

N ∈ H2(R3N );

(2) the ground state density ρ0
N is in L1(R3,R) ∩ L∞(R3,R) and ∇

√
ρ0
N ∈

(
L2(R3,R)

)3.
Moreover, ρ0

N is continuous and everywhere positive on R3;

(3) the ground state one-body reduced density operator γ0
N is in

KN :=
{
γN ∈ S(H1)

∣∣∣ 0 ≤ γN ≤ 1, TrH1(γN ) = N, TrH1(|∇|γN |∇|) <∞
}
,

and satisfies

∀(f, g) ∈ H1 ×H1, 〈f |γ0
N |g〉 = 〈Ψ0

N |a†(g)a(f)|Ψ0
N 〉HN ; (4.36)

(4) the kernel γ0
N (r, r′) satisfies the pointwise estimate |γ0

N (r, r′)|2 ≤ ρ0
N (r)ρ0

N (r′);

(5) the operator ρ0
N,2 belongs to S(H1), and ‖ρ0

N,2‖B(H1) ≤
N − 1

2
‖ρ0

N‖L∞.

Much finer regularity results on Ψ0
N are available [FHOHOØS02, FHOHOØS05, Yse10],

but are not needed for our purpose. Similar results hold true if vext is replaced by a potential
generated by smeared nuclei or pseudo-potentials.

Our second assumption is concerned with the (discrete) convexity of N 7→ E0
N . We assume

that N ≥ 1, and that (with the convention E0
0 = 0 in the case N = 1)

Hyp. 2: E0
N − E0

N−1 < E0
N+1 − E0

N .

In this case, any real number µ such that E0
N − E0

N−1 < µ < E0
N+1 − E0

N is an admissible
chemical potential (Fermi level) of the electrons for the ground state of the reference system.
The physical relevance of this assumption is discussed for instance in [Far99, Section 4.2].
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4.3.2 Green’s functions

We begin our journey in the GW formalism with Green’s functions. The GW method has
been designed from the equation of motion for the time-ordered one-body Green’s function
G [Hed65], which is the concatenation of two meaningful physical objects: the particle Green’s
function Gp and the hole Green’s function Gh.

The particle Green’s function Gp

Rigorous definition of the particle Green’s function. The particle (or forward, or
retarded) Green’s function is formally defined by (see for instance [FW03, Section 7])

Gp(rt, r′t′) := −iΘ(t− t′) 〈Ψ0
N |ΨH(rt)Ψ†H(r′t′)|Ψ0

N 〉, (4.37)

where Θ is the Heaviside function (4.2), and ΨH(rt) and Ψ†H(rt) are the Heisenberg repre-
sentations of the annihilation and creation field operators introduced in Section 4.2.5. As
Ψ0
N ∈ HN , we can replace Ψ(rt) and Ψ†(rt) by their expressions (4.33):

Gp(rt, r′t′) = −iΘ(t− t′) 〈Ψ0
N |eitHNΨ(r)e−i(t−t′)HN+1Ψ†(r′)e−it′HN |Ψ0

N 〉

= −iΘ(t− t′) 〈Ψ0
N |Ψ(r)e−i(t−t′)(HN+1−E0

N )Ψ†(r′)|Ψ0
N 〉.

As Gp only depends on the time difference t − t′, it is sufficient to study the function
Gp(r, r′, τ) := Gp(rτ, r′0). We then notice that, for all f ∈ H1,

ˆ
R3

Ψ†(r′)|Ψ0
N 〉f(r′) dr′ = a†(f)|Ψ0

N 〉.

Introducing
A∗+ : H1 → HN+1

f 7→ a†(f)|Ψ0
N 〉

and A+ = (A∗+)∗, we observe that Gp(r, r′, τ) is formally the kernel of the following one-body
operator.

Definition 4.27 (Particle Green’s function). The particle Green’s function is defined as

Gp(τ) := −iΘ(τ) A+e−iτ(HN+1−E0
N )A∗+. (4.38)

First properties of the particle Green’s function. The study of Gp can be decomposed
into the study of the operators A+ and e−iτ(HN+1−E0

N ). The latter is clearly bounded onHN+1.
As for the operator A∗+, we deduce from (4.32) and (4.36) that

〈a†(f)Ψ0
N |a†(g)Ψ0

N 〉 = 〈Ψ0
N |a(f)a†(g)|Ψ0

N 〉 = 〈f |g〉 − 〈Ψ0
N |a†(g)a(f)|Ψ0

N 〉 = 〈f |1− γ0
N |g〉,

or equivalently,
A+A

∗
+ = 1H1 − γ0

N . (4.39)

Hence, A∗+ is a bounded operator from H1 to HN+1, and A+ is a bounded operator from
HN+1 to H1. In fact, since

‖A∗+f‖2HN+1
=
〈
f |(1H1 − γ0

N )|f
〉

=
∥∥(1H1 − γ0

N )f
∥∥2

H1
,

it holds ‖A∗+‖B(H1,HN+1) = 1. The following properties are obtained as a direct corollary of
Proposition 4.13.
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Proposition 4.28 (Properties of the particle Green’s function). The family (Gp(τ))τ∈R de-
fines a bounded causal operator on H1. The real and imaginary parts of its time-Fourier
transform are in H−s(Rω,B(H1)) for all s > 1/2, and are given by

Re Ĝp = A+p.v.

(
1

· − (HN+1 − E0
N )

)
A∗+ and Im Ĝp = −πA+P

HN+1−E0
NA∗+. (4.40)

The analytic operator-valued function G̃p defined in the upper half-plane by

∀z ∈ U, G̃p(z) := A+
1

z − (HN+1 − E0
N )
A∗+ (4.41)

is the Laplace transform of Gp and satisfies

Ĝp = lim
η→0+

G̃p(.+ iη) in H−s(Rω,B(H1)) for all s > 1/2.

The imaginary part of Ĝp is related to the so-called spectral function Ap (see Section
4.3.2).

Analytic continuation to the complex plane. Let us introduce the particle optical
excitation set

Sp := σ(HN+1 − E0
N ). (4.42)

We recall that the operator HN+1 − E0
N with domain HN+1 ∩ H2(R3(N+1)) is self-adjoint

on HN+1. Its essential spectrum is of the form σess(HN+1 − E0
N ) = [ΣN+1,∞), and there

are possibly infinitely many eigenvalues below ΣN+1 that can only accumulate at ΣN+1.
According to the HVZ theorem [Hun66, vW64, Zhi60], ΣN+1 = E0

N −E0
N = 0. In particular,

Sp is the union of a discrete negative part, and the half-line [0,+∞).
We next infer from (4.41) that G̃p(z) can be extended to an analytic function from C \ Sp

to B(H1). This is of particular interest for the following reason. The operator-valued distri-
bution Ĝp(ω) is highly peaked and irregular (for instance, its imaginary part is a sum of Dirac
measures on the discrete part of Sp). Instead of studying Ĝp(ω) on the real axis, we will study
its analytic continuation G̃p(z) (defined a priori only in the upper-half plane, but actually
on C\Sp) on the imaginary axis µ+ iR, where µ < E0

N+1−E0
N ≤ 0 is an admissible chemical

potential (see Hyp. 2). The set Sp can be recovered from ω 7→ G̃p(µ + iω) by locating
the singularities of Ĝp, obtained from G̃p either by analytic continuation, or by fitting some
parameters [RGN95]. We will not address this interesting numerical reconstruction problem.

The following lemma makes precise the behavior of the Green’s function on the vertical
axis µ+ iR. It is a direct consequence of the representation (4.41).

Lemma 4.29. Consider µ < E0
N+1−E0

N . Then the function ω 7→ G̃p(µ+ iω) is real analytic
from Rω to B(H1) and is in Lp(Rω,B(H1)) for all p > 1. Moreover, for all ω ∈ R,

Re G̃p(µ+ iω) = −A+
HN+1 − E0

N − µ
ω2 + (HN+1 − E0

N − µ)2
A∗+

is a negative, bounded, self-adjoint operator on H1 which enjoys the following symmetry prop-
erty:

∀ω ∈ Rω, Re G̃p(µ+ iω) = Re G̃p(µ− iω).

For any f ∈ H1, the function ω 7→ 〈f |Re G̃p(µ+ iω)|f〉 is non-positive, in L1(Rω), and
ˆ +∞

−∞

〈
f
∣∣∣Re G̃p(µ+ iω)

∣∣∣ f〉 dω = −π〈f |(1H1 − γ0
N )|f〉. (4.43)
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0 σess(HN+1 − E0
N )E0

N+1 − E0
N

µ

ω 7→ Ĝp(ω)

ω 7→ G̃p(µ+ iω)

analytic continuation

Figure 4.1 – Illustration of the analytic continuation: from ω 7→ Ĝp(ω) to ω 7→ G̃p(µ+ iω).

The last assertion comes from the spectral theorem, (4.39), and the equality

∀E > 0,

ˆ +∞

−∞

E

ω2 + E2
dω = π.

Remark 4.30. Unfortunately, although Re G̃p(µ+i·) has a sign and (4.43) is satisfied for all
f ∈ H1, the function ω 7→

∥∥∥Re G̃p(µ+ i·)
∥∥∥
B(H1)

does not belong to L1(Rω). This is essentially

due to the fact that

sup
E≥0

(
E

ω2 + E2

)
=

1

2ω
/∈ L1(Rω).

Note that the imaginary part of G̃p(µ+ iω),

Im G̃p(µ+ iω) = −A+
ω

ω2 + (HN+1 − E0
N − µ)2

A∗+,

has no definite sign on Rω, and that, for a generic f ∈ H1, the function ω 7→
〈
f
∣∣∣Im G̃p(µ+ iω)

∣∣∣ f〉
does not belong to L1(Rω). It will therefore be more convenient in general to work with the
real part of G̃p(iω) only, especially since the imaginary part can be recovered from the real
part (see Lemma 4.31 below). Indeed, the operator-valued functions g̃p,η : ω 7→ G̃p(µ−η+iω)

are in L2(R,B(H1)) for any η > 0, and converge to g̃p : ω 7→ G̃p(µ + iω) in L2(R,B(H1)) as
η → 0+. We can therefore apply Titchmarsh’s theorem (see Theorem 4.9), which gives the
following result.

Lemma 4.31. Let µ < E0
N+1 − E0

N . The function ĝp(ω) := G̃p(µ + iω) is the Fourier
transform of the causal function

gp(τ) = −Θ(τ)A+e−τ(HN+1−E0
N−µ)A∗+, (4.44)

which belongs to L2(Rτ ,S(H1)). In particular, the Plemelj formulae hold true:

Re ĝp = −H (Im ĝp) and Im ĝp = H (Re ĝp) in L2(Rω,B(H1)).

Moreover, the function τ 7→ ‖gp(τ)‖B(H1) is exponentially decreasing as |τ | → +∞.

Remark 4.32. The exponential decay of gp is consistent with the analyticity of its Fourier
transform. This property is of interest when calculating numerically convolutions on the imag-
inary axis µ+iR, since convolutions can be replaced, up to a Fourier transform, with point-wise
multiplications of causal functions which are exponentially decreasing. This approach was ad-
vocated in [RSW+99], and is now routinely used in GW computations.
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The hole (backward) Green’s function Gh

Definition and first properties of the hole Green’s function. Together with the
particle Green’s function, we introduce the hole (or backward, or advanced) Green’s function,
formally defined within the second quantization formalism by

Gh(rt, r′t′) := iΘ(t′ − t) 〈Ψ0
N |Ψ

†
H(r′t′)ΨH(rt)|Ψ0

N 〉.

Observing that ˆ
R3

Ψ(r)|Ψ0
N 〉f(r) dr = a(f)|Ψ0

N 〉,

we introduce
A− : H1 → HN−1

f 7→ a(f)|Ψ0
N 〉.

Similarly as before, we note that Gh(rt, r′t′) only depends on the time difference t− t′. Intro-
ducing Gh(r, r′, τ) := Gh(rτ, r′0), we see that Gh(r, r′, τ) is formally the kernel of the following
one-body operator.

Definition 4.33. The hole Green’s function is defined as

Gh(τ) := iΘ(−τ)A∗−eiτ(HN−1−E0
N )A−. (4.45)

Similarly as in (4.39), it holds that

A∗−A− = γ0
N .

Hence, A− is a bounded operator from H1 to HN−1, A∗− is a bounded operator from HN−1

to H1, and it holds ‖A−‖B(H1,HN ) = ‖A∗−‖B(HN−1,H1) ≤ 1. The properties of the hole Green’s
function are quite similar to the properties of the particle Green’s function (compare with
Proposition 4.28).

Proposition 4.34 (Properties of the hole Green’s function). The family (Gh(τ))τ∈R defines
a bounded anti-causal operator on H1. The real and imaginary parts of its time-Fourier
transform are in H−s(Rω,B(H1)) for all s > 1/2, and are given by

Re Ĝh = A∗−p.v.

(
1

· − (E0
N −HN−1)

)
A− and Im Ĝh = πA∗−P

E0
N−HN−1A−. (4.46)

The analytic operator-valued function G̃h defined in the lower half-plane by

∀z ∈ L, G̃h(z) := A∗−
1

z − (E0
N −HN−1)

A− (4.47)

is the Laplace transform of Gh and satisfies

Ĝh = lim
η→0+

G̃h(.− iη) in H−s(Rω,B(H)) for all s > 1/2.

Analytic continuation into the complex plane. The hole optical excitation set is de-
fined as

Sh := σ(E0
N −HN−1). (4.48)

It is clear from (4.47) that the operator-valued function G̃h can be analytically continued to
C\Sh. Instead of studying the highly irregular distribution ω 7→ Ĝh(ω), it is more convenient
to study its analytical continuation G̃h on the imaginary axis µ+ iR, with µ > E0

N − E0
N−1.
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0

σess(E
0
N −HN−1) E0

N − E0
N−1

µ
ω 7→ Ĝh(ω)

ω 7→ G̃h(µ+ iω)analytic continuation

Figure 4.2 – Illustration of the analytic continuation: from ω 7→ Ĝh(ω) to ω 7→ G̃h(µ+ iω).

We can state a result similar to Lemma 4.29.

Lemma 4.35. Consider µ > E0
N −E0

N−1. Then the function ω 7→ G̃h(µ+ iω) is real analytic
from Rω to B(H1) and is in Lp(Rω,B(H1)), for all p > 1. Moreover, for all ω ∈ R,

Re G̃h(µ+ iω) = A∗−
HN−1 + µ− E0

N

ω2 + (E0
N −HN−1 − µ)2

A−

is a positive, bounded, self-adjoint operator, which enjoys the following symmetry property:

∀ω ∈ Rω, Re G̃h(µ+ iω) = Re G̃h(µ− iω).

For any f ∈ H1, the function ω 7→
〈
f
∣∣∣|Re G̃h(µ+ iω)

∣∣∣ f〉 is non-negative, in L1(Rω), and

ˆ +∞

−∞

〈
f
∣∣∣Re G̃h(µ+ iω)

∣∣∣ f〉 dω = π〈f |γ0
N |f〉.

The Galitskii-Migdal formula. The hole Green’s function is of particular interest, as
it contains useful information on the N -body ground state. For instance, from the identity
A∗−A− = γ0

N , we directly obtain Gh(0−) = iγ0
N , so that the expectation value in the ground

state of any one-body operator
∑N

i=1Cri (for C ∈ B(H1)) can be evaluated via〈
Ψ0
N

∣∣∣∣∣
N∑
i=1

Cri

∣∣∣∣∣Ψ0
N

〉
= TrH1

(
Cγ0

N

)
= −i TrH1(CGh(0−)).

This calculation is valid only for one-body operators. It is not possible to obtain the expecta-
tion value in the ground state of a generic two-body operator from the one-body Green’s func-
tion. This is however the case for the ground state energy (the expectation value of the two-
body Hamiltonian HN in the ground state), as was first shown by Galiskii and Migdal [GM58].
Alternative formulae for the ground state energy are provided by the Luttinger-Ward for-
mula [LW60] and the Klein’s formula [Kle61].

Theorem 4.36 (Galitskii-Migdal formula). For all N ≥ 2, the ground state energy can be
recovered as

E0
N =

1

2
TrH1

(
−A∗−

(
HN−1 − E0

N

)
A− +

(
−1

2
∆ + vext

)
A∗−A−

)
(4.49)

=
1

2
TrH1

[(
d

dτ
− i

(
−1

2
∆ + vext

))
Gh(τ)

∣∣∣
τ=0−

]
. (4.50)
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The proof of this theorem can be read in Section 4.6.10. Formula (4.50) is one way to
obtain the right-hand side of (4.49), and is the one found in the original article [GM58].
There are however other ways to obtain (4.49) from the hole Green’s function, without the
use of derivative (which are cumbersome to evaluate numerically). One can for instance use
the following equality, that we do not prove for the sake of brevity,

TrH1

(
A∗−
(
HN−1 + µ− E0

N

)
A−

)
= lim

ω→∞
ω2TrH1

(
Re G̃h(µ+ iω)

)
.

The time-ordered Green’s function G

It is often claimed in the physics literature that the main object of interest is neither the
particle nor the hole Green’s function, but the function

G(rt, r′t′) = Gp(rt, r′t′) + Gh(rt, r′t′),

called the time-ordered Green’s function, which can be seen as a convenient way to concatenate
the information contained in the particle and hole Green’s functions. Obviously, the time-
ordered Green’s function only depends on the time difference τ = t− t′. In view of (4.38) and
(4.45), our definition of the time-ordered Green’s function therefore is the following.

Definition 4.37 (Green’s function). The (time-ordered) Green’s function is the family of
bounded operators (G(τ))τ∈R defined as G(τ) = Gp(τ) +Gh(τ), or equivalently,

G(τ) = −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+ + iΘ(−τ)A∗−eiτ(HN−1−E0

N )A−.

The following results straightforwardly follow from Propositions 4.28 and 4.34, as well
as Lemmas 4.29 and 4.35. We recall that µ is a chemical potential of the electrons for the
ground state Ψ0

N of the reference system, and that E0
N − E0

N−1 < µ < E0
N+1 − E0

N . In the
following, we introduce some C∞(Rω) cut-off functions φ± satisfying 0 ≤ φ± ≤ 1, φ++φ− = 1,
Supp(φ+) ⊂ (E0

N − E0
N−1,+∞) and Supp(φ−) ⊂ (−∞, E0

N+1 − E0
N ) (see Figure 4.3). These

cut-off functions allow us to write properties of the Green’s function in the time representation
without specifying whether τ is positive or negative.

E0
N − E0

N−1

E0
N+1 − E0

Nµ

φ− φ+

Figure 4.3 – The cut-off functions φ±.

Proposition 4.38 (Properties of the Green’s function). The Fourier transform Ĝ = Ĝp + Ĝh

is in H−s(Rω,B(H1)) for any s > 1/2. The operator-valued analytic function G̃ defined on
the physical Riemann sheet C \ (Sp ∪ Sh) by

∀z ∈ C\ (Sp ∪ Sh) , G̃(z) := A+
1

z − (HN+1 − E0
N )
A∗+ +A∗−

1

z − (E0
N −HN−1)

A− (4.51)
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is such that

lim
η→0+

φ±G̃(· ± iη) = φ±Ĝ in H−s(Rω,B(H1)) for all s > 1/2.

The function ω 7→ G̃(µ+ iω) is real analytic from Rω to B(H1), and is in Lp(Rω,B(H1)) for
all p > 1. Moreover, it satisfies the symmetry property

∀ω ∈ Rω, Re G̃(µ+ iω) = Re G̃(µ− iω).

For any f ∈ H1, the function ω 7→ 〈f |Re G̃(µ+ iω)|f〉 is in L1(Rω), and

ˆ +∞

−∞

〈
f
∣∣∣Re G̃(µ+ iω)

∣∣∣ f〉 dω = −π〈f |(1H1 − 2γ0
N )|f〉.

The spectral functions Ap, Ah and A

Spectral functions are essential tools to study many-body effects since they are concentrated
on (subsets of) the particle and hole excitation sets.

Definition 4.39 (Spectral functions). The particle spectral function is the operator-valued
Borel measure on Rω defined by

∀b ∈ B(Rω), Ap(b) = − 1

π
Im Ĝp(b) = A+P

HN+1−E0
N

b A∗+. (4.52)

The hole spectral function is similarly defined:

∀b ∈ B(Rω), Ah(b) =
1

π
Im Ĝh(b) = A∗−P

E0
N−HN−1

b A−.

The time-ordered spectral function is then obtained as A = Ap +Ah.

With those definitions, the following lemma is straightforward, and is usually referred to
as the sum-rule for spectral functions (see for instance [Far99, Section 4.5]).

Proposition 4.40. The spectral functions Ap, Ah and A are S(H1)-valued Borel measures
on Rω, with supports contained in Sp, Sh and Sp∪Sh respectively. For all b ∈ B(Rω), Ap(b),
Ah(b) and A(b) are bounded positive self-adjoint operators on H1 with norms lower or equal
to 1. Moreover, 0 ≤ Ap(b1) ≤ Ap(b2) as self-adjoint operators when b1 ⊂ b2 (and similar
inequalities for Ah and A), and it holds

Ap(Rω) = 1H1 − γ0
N , Ah(Rω) = γ0

N , A(Rω) = 1H1 .

Finally, the Plemelj formulae (4.14) allow us to recover the real part of the Green’s func-
tions from the spectral functions: Re Ĝp = πH(Ap) and Re Ĝh = πH(Ah). It therefore holds
Re Ĝ = πHA.

4.3.3 Linear response operators

We study in this section the reducible polarizability operator χ, which can be defined from the
so-called charge-fluctuation operator introduced in Section 4.3.3. We give a precise mathemat-
ical meaning to χ in Section 4.3.3, and prove Johnson’s sum-rule [Joh74] for χ in Section 4.3.3.
We finally define the dynamically screened Coulomb interaction operator (see Section 4.3.3).



4.3. Operators arising in the GW method for finite systems 111

The charge-fluctuation operator ρH

The charge-fluctuation operator is defined, within the second quantization formalism, by
(see [Far99, Equation (97)])

ρH(rt) := Ψ†H(rt)ΨH(rt)− ρ0
N (r),

so that the action of this operator on the N -body ground state is

ρH(rt)|Ψ0
N 〉 =

(
eit(HN−E0

N )
)

Ψ†(r)Ψ(r)|Ψ0
N 〉 − ρ0

N (r)|Ψ0
N 〉

=
(

eit(HN−E0
N )
)(

Ψ†(r)Ψ(r)− ρ0
N (r)

)
|Ψ0

N 〉.
(4.53)

In order to define more rigorously ρH, we need to introduce functional spaces of charge densities
(the Coulomb space) and electrostatic potentials. The complex-valued Coulomb space

C :=
{
f ∈ S ′(R3,C)

∣∣∣ f̂ ∈ L1
loc(R3,C), | · |−1f̂(·) ∈ L2(R3,C)

}
, (4.54)

is endowed with the inner product

〈f1|f2〉C = 4π

ˆ
R3

f̂1(k)f̂2(k)

|k|2
dk,

where the normalization condition for the space-Fourier transform is chosen such that its
restriction to L2(R3,C) is a unitary operator. The space C is a Hilbert space, and it holds
L6/5(R3,C) ↪→ C thanks to the Hardy-Littlewood-Sobolev inequality (upon rewriting the
products in Fourier space as convolutions). The dual of C (taking L2(R3,C) as a pivoting
space) is

C′ :=
{
v ∈ L6(R3,C)

∣∣∣ ∇v ∈ (L2(R3,C)
)3}

, (4.55)

endowed with the inner product

〈V1|V2〉C′ :=
1

4π

ˆ
R3

∇V1 · ∇V2 =
1

4π

ˆ
R3

|k|2V̂1(k) V̂2(k) dk.

We also introduce the Coulomb operator vc, defined as the multiplication operator by 4π|k|−2

in the Fourier representation, and its square root v1/2
c , defined as the multiplication opera-

tor by (4π)1/2|k|−1 in the Fourier representation. The following result, whose proof is a
straightforward consequence of the above definitions, will be repeatedly used throughout this
chapter.

Lemma 4.41. The operator vc defines a unitary operator from C to C′. The operator v1/2
c

defines a unitary operator from C to H1, as well as a unitary operator from H1 to C′.

It follows that the adjoint of the unitary operator vc : C → C′ is the unitary operator
v∗c = v−1

c : C′ → C.

We are now able to reformulate the charge-fluctuation operator in the ground state as a
well defined bounded operator. For v ∈ C∞c (R3,C), it formally holds(ˆ

R3

(
Ψ†(r)Ψ(r)− ρ0

N (r)
)
|Ψ0

N 〉 v(r)dr

)
(r1, . . . , rN ) =

[(
N∑
i=1

v(ri)

)
−
ˆ
R3

vρ0
N

]
Ψ0
N (r1, . . . rN ).

In order to rewrite more rigorously this equality, we introduce the operator

B : C′ → HN

v 7→

[(
N∑
i=1

v(ri)

)
− 〈v, ρ0

N 〉C′,C

]
|Ψ0

N 〉,
(4.56)
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which is well defined since ρ0
N ∈ L6/5(R3,R) by Proposition 4.26. In fact, as made clear in

Lemma 4.42 below, B is bounded. In view of (4.53), we can finally define the application
to Ψ0

N of the charge-fluctuation operator ρH(t) as follows:

ρH(t)|Ψ0
N 〉 = eit(HN−E0

N )B. (4.57)

Let us conclude this section by giving some properties of the operators introduced above
(see Section 4.6.11 for the proof).

Lemma 4.42. The operator B defined by (4.56) is a bounded operator from C′ to HN . Its
adjoint B∗ is a bounded operator from HN to C′ which satisfies B∗|Ψ0

N 〉 = 0. As a consequence,
ρH|Ψ0

N 〉 ∈ L∞(Rt,B(C′,HN )), and
(
ρH|Ψ0

N 〉
)∗ ∈ L∞(Rt,B(HN , C′)).

The (symmetrized) reducible polarizability operator χ

Definition of the reducible polarizability operator. The reducible polarizability oper-
ator χ(t, t′) is the operator giving the response of the density of the system to perturbations
of the external potential. It is formally defined by its kernel (see [Far99, Equation (96)])

χ(rt, r′t′) := −i
〈

Ψ0
N

∣∣ T {ρH(rt)ρH(r′t′)
} ∣∣Ψ0

N

〉
HN

. (4.58)

In the above equation, ρH is the charge-fluctuation operator whose action on Ψ0
N is defined

by (4.57), and T stands for the bosonic time-ordering operator:

T
{
A1(t)A2(t′)

}
=

∣∣∣∣ A1(t)A2(t′) if t′ < t,
A2(t′)A1(t) if t′ > t.

In view of (4.57), the definition (4.58) of the kernel is formally equivalent to the following
identity, stated for t′ < t (a similar equality being true for t′ > t):

ˆ
R3

f
(
χ(t, t′)g

)
= −i

ˆ
R3

ˆ
R3

f(r)
〈

Ψ0
N

∣∣ ρH(rt)ρH(r′t′)
∣∣Ψ0

N

〉
HN

g(r′) dr dr′

= −i

〈ˆ
R3

f(r)ρH(rt)Ψ0
N dr

∣∣∣∣ˆ
R3

g(r′)ρH(r′t′)Ψ0
N dr′

〉
HN

= −i
〈

eit(HN−E0
N )Bf

∣∣∣ eit′(HN−E0
N )Bg

〉
HN

= −i
〈
f
∣∣∣B∗e−i(t−t′)(HN−E0

N )Bg
〉
C′
.

In order to interpret χ as giving the variation of the ground state density (an element of C)
generated by a variation of the external potential (an element of C′), we rewrite the scalar
product in C′ as a duality braket between C′ and C:

〈f1 |f2 〉C′ =
〈
f1, v

−1
c f2

〉
C′,C . (4.59)

This motivates defining χ(t, t′) as the bounded operator from C′ to C given by

χ(t, t′) = −iv−1
c B∗e−i|t−t′|(HN−E0

N )B.

In particular, χ(t, t′) only depends on the time difference t − t′, and we write in the se-
quel χ(τ) := χ(τ, 0):

χ(τ) = −iv−1
c B∗e−i|τ |(HN−E0

N )B. (4.60)

It turns out to be useful to symmetrize the action of the polarizability operator us-
ing appropriate Coulomb operators. We recall that it holds Bv1/2

c ∈ B(H1,HN ) while
(Bv

1/2
c )∗ = v

−1/2
c B∗ ∈ B(HN ,H1).
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Definition 4.43. The symmetrized reducible polarizability operator χsym ∈ L∞(Rτ ,B(H1))

is defined by χsym(τ) = v
1/2
c χ(τ)v

1/2
c , or equivalently,

χsym(τ) = −iv−1/2
c B∗e−i|τ |(HN−E0

N )Bv1/2
c .

It is convenient to decompose the symmetrized reducible polarizability operator into two
parts, namely its causal part and its anti-causal part:

χsym(τ) = χ+
sym(τ) + χ−sym(τ) with χ±sym(τ) = Θ(±τ)

(
−iv−1/2

c B∗e−i|τ |(HN−E0
N )Bv1/2

c

)
.

(4.61)
In the above expression, the Hamiltonian HN can be replaced by

H]
N := HN

∣∣
{Ψ0

N}⊥
.

This is a consequence of Lemma 4.42 which shows that Ran (B) ⊂
{

Ψ0
N

}⊥. Note that
H]
N − E0

N ≥ E1
N − E0

N .

Properties of the symmetrized reducible polarizability operator. As rigorously
stated below, the symmetrized polarizability operator has singularities at the energy dif-
ferences corresponding to excitation energies for a system with a fixed number N of electrons,
called neutral excitations in [Far99, Section 8]. We therefore introduce the neutral excitation
set

S+
0 := σ(HN − E0

N ) \ {0} = σ
(
H]
N − E

0
N

)
,

its reflection S−0 := −S+
0 and S0 := S+

0 ∪ S
−
0 . Note that S+

0 ⊂ [E1
N − E0

N ,+∞) so that
S−0 ∩ S

+
0 = ∅.

As for Proposition 4.38, it turns out to be convenient to introduce appopriate cut-off
functions. Consider φ1

± such that φ1
− and φ1

+ are in C∞(Rω) and satisfy 0 ≤ φ1
± ≤ 1,

φ1
+ + φ1

− = 1, Supp(φ1
+) ⊂ (−(E1

N − E0
N ),+∞) and Supp(φ1

−) ⊂ (−∞, E1
N − E0

N ) (see
Figure 4.4).

E1
N − E0

NE0
N − E1

N

φ1
− φ1

+

Figure 4.4 – The cut-off functions φ1
±.

Proposition 4.44. The symmetrized reducible polarizability operator χsym satisfies the fol-
lowing properties:

(1) (χ+
sym(τ))τ∈R is a bounded causal operator on H1 while (χ−sym(τ))τ∈R is a bounded anti-

causal operator on H1. They satisfy the following symmetry properties:

∀τ ∈ R, χsym(−τ) = χsym(τ) and χ+
sym(τ) = χ−sym(−τ); (4.62)
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(2) the real and imaginary parts of the time-Fourier transforms of χ+
sym, χ

−
sym are respectively

given by

Re χ̂±sym = ±v−1/2
c B∗p.v.

(
1

· ∓ (H]
N − E0

N )

)
Bv1/2

c ,

and
Im χ̂±sym = −πv−1/2

c B∗P±(H]
N−E

0
N )Bv1/2

c .

In particular, Supp
(

Im χ̂±sym

)
⊂ S±0 and Supp

(
Im χ̂sym

)
⊂ S0;

(3) consider the B(H1)-valued analytic functions χ̃+
sym, χ̃−sym and χ̃sym respectively defined by

∀z ∈ C \ S±0 , χ̃±sym(z) := ±v−1/2
c B∗

1

z ∓ (H]
N − E0

N )
Bv1/2

c ,

and

∀z ∈ C \ S0, χ̃sym(z) := χ̃+
sym(z) + χ̃−sym(z) = −v−1/2

c B∗
2(H]

N − E0
N )

(H]
N − E0

N )2 − z2
Bv1/2

c .

(4.63)
It holds

∀z ∈ C \ S+
0 , χ̃+

sym(z) = χ̃−sym(−z) =
(
χ̃+

sym(z)
)∗

and
∀z ∈ C \ S0, χ̃sym(z) = χ̃sym(−z) =

(
χ̃sym(z)

)∗
.

The functions χ̃+
sym|U and χ̃−sym|L are respectively the Laplace transforms of χ+

sym and χ−sym,
and the following convergences hold in H−s(Rω,B(H1)) for all s > 1/2:

lim
η→0+

χ̃±sym(· ± iη) = χ̂±sym, lim
η→0+

φ1
±χ̃sym(· ± iη) = φ1

±χ̂sym;

(4) for all ω ∈
(
−(E1

N − E0
N ), E1

N − E0
N

)
, χ̃sym(ω) = χ̂sym(ω) is a negative bounded self-

adjoint operator on H1;

(5) for all ω ∈ R, χ̃sym(iω) is a negative bounded self-adjoint operator on H1.

We omit the proof of Proposition 4.44 since the first three assertions are similar to those
of Lemma 4.38, while the last two ones are direct consequences of (4.63).

On the integrability of χ̃sym(iω). As for the Green’s function, ω 7→ χ̂sym(ω) is difficult to
study on the real-axis, and it is more convenient to study its analytical continuation χ̃sym on
the imaginary axis iR. This is possible thanks to the existence of the gap (−(E1

N −E0
N ), E1

N −
E0
N ) around 0. The representation provided in Proposition 4.44 allows one to directly deduce

the integrability properties of the functions ω 7→ χ̃sym(iω) (as in Lemma 4.29).

Corollary 4.45. The functions ω 7→ χ̃±sym(iω) are real-analytic from Rω to S(H1), and are in
Lp(Rω,S(H1)) for all p > 1. For any f ∈ H1, the function ω 7→ 〈f |χ̃sym(iω)|f〉 is non-positive
and in L1(Rω), and it holds

ˆ +∞

−∞
〈f |χ̃sym(iω)|f〉dω = −2π

∥∥∥Bv1/2
c f

∥∥∥2

HN
. (4.64)
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The sum-rule for the reducible polarizability operator χ

The behavior of the reducible polarizability operator in the high imaginary-frequency regime
is well understood. This asymptotic behavior is given by the so-called Johnson’s sum-
rule [Joh74] or f -sum rule, the latter terminology being motivated in [Far99, Section 8.8] by
the fact that it can formally be seen as some equality involving the first moment of Imχ̂sym.
Knowing the large-ω behavior of χ̃sym is important to design appropriate approximate opera-
tors, used in plasmon-pole models to avoid the numerical inversion of the dielectric operator
(which is computationally expensive).

The fifth point of Proposition 4.44 implies that for all ω ∈ Rω, the operator

−χ̃(iω) := −v−1/2
c χ̃sym(iω)v−1/2

c

defines a symmetric, continuous, non-negative sesquilinear form on C′:

∀(f, g) ∈ C′ × C′, 〈f,−χ̃(iω)g〉C′,C =

〈
Bf

∣∣∣∣ 2(H]
N − E0

N )

(H]
N − E0

N )2 + ω2

∣∣∣∣Bg〉
HN

,

so that, formally,

lim
ω→±∞

〈f,−ω2χ̃(iω)g〉C′,C = 2〈Bf |H]
N − E

0
N |Bg〉HN = 2

〈
f, v−1

c B∗
(
H]
N − E

0
N

)
Bg
〉
C′,C

.

The following theorem, whose proof is postponed until Section 4.6.12, confirms that this limit
exists and allows one to identify it.

Theorem 4.46 (Johnson’s sum rule). The operator 2v−1
c B∗(H]

N −E0
N )B is bounded from C′

to C, and 2v−1
c B∗(H]

N − E0
N )B = −div

(
ρ0
N∇·

)
. Moreover, the following weak convergence

holds:

∀(f, g) ∈ C′ × C′, lim
ω→±∞

〈
f,−ω2χ̃(iω)g

〉
C′,C =

〈
f,−div (ρ0

N∇g)
〉
C′,C =

ˆ
R3

ρ0
N∇f · ∇g.

For all g ∈ C′ such that ∆g ∈ L2(R3), the following strong convergence holds:

lim
ω→±∞

ω2χ̃(iω)g = div
(
ρ0
N∇g

)
in C.

The dynamically screened interaction operator W

As the name indicates, the two key operators in the GW method are on the one hand, the
time-ordered Green’s function G, and on the other hand, the so-called dynamically screened
interaction operator W . The latter operator is defined as

W (τ) = vcδ0(τ) + v1/2
c χsym(τ)v1/2

c , (4.65)

where vc is the Coulomb operator introduced in Lemma 4.41. It is convenient to splitW into a
local-in-time exchange contribution vcδ0(τ) (although this is not obvious at this stage, (4.98)
below shows that vcδ0(τ) can be interpreted as an exchange term), and a nonlocal-in-time
correlation contribution:

W (τ) = vcδ0(τ) +Wc(τ) with Wc(τ) := vcχ(τ)vc = v1/2
c χsym(τ)v1/2

c . (4.66)

The properties of the operator Wc(τ) ∈ B(C, C′) therefore readily follow from the properties
of the operators v1/2

c and χsym(τ) established in Lemma 4.41 and Proposition 4.44.
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4.3.4 The self-energy operator Σ

We give in this section the definition of the self-energy operator Σ using the Dyson equation
(see (4.72) below). Let us emphasize that, while the Dyson equation provides a definition of Σ
in terms of Green’s functions, numerical methods work the other way round: an approximation
of the Green’s function G is obtained from the Dyson equation (4.72), using an approximation
of the self-energy operator Σ. This approach is made precise in Section 4.4.

The non-interacting Hamiltonian H0 and associated Green’s function G0

The self-energy operator is defined as the difference between the inverse of the exact Green’s
function G and the inverse of some reference Green’s function G0. The reference Green’s func-
tion is the resolvent of a mean-field non-interacting Hamiltonian. There are several possible
choices for this operator, discussed in Remark 4.49 below. In order to remain as general as
possible, we introduce a one-body operator h1 acting on H1, with domain H2(R3), real-valued
(in the sense that hψ is real-valued whenever ψ is real-valued), and such that σess(h1) = [0,∞).
The corresponding effective non-interacting N -body Hamiltonian is defined on HN by

H0,N =
N∑
i=1

h1(ri).

We define
εk := inf

Vk⊂Vk
sup

v∈Vk\{0}

〈v|h1|v〉
〈v|v〉

,

where Vk is the set of the subspaces of H1(R3) of dimension k. Recall that εk ≤ 0 and that if
εk < 0, then h1 has at least k negative eigenvalues (counting multiplicities) and εk is the kth

smallest eigenvalue of h1 (still counting multiplicities). We make the following assumption in
the sequel.

Hyp. 3: The one-body Hamiltonian h1 has at least N negative eigenvalues, and εN < εN+1.

This assumption implies that there is a gap between the N th eigenvalue and the (N + 1)st

eigenvalue (or the bottom of the essential spectrum if h1 has only N non-positive eigenvalues).
Let us denote by (φ1, · · · , φN ) an orthonormal family of eigenvectors of h1 associated with

the eigenvalues ε1, · · · , εN . Without loss of generality, we can assume that the φk’s are real-
valued. The ground state energy of H0,N is E0

0,N = ε1 + . . .+ εN . The condition εN < εN+1

ensures that E0
0,N is a non-degenerate eigenvalue of H0,N and that the normalized ground

state Φ0
N = φ1 ∧ · · · ∧ φN of H0,N is unique up to a global phase. We introduce the one-body

mean-field density matrix

γ0
0,N (r, r′) :=

N∑
k=1

φk(r)φk(r
′). (4.67)

This function can be seen as the kernel of the spectral projector 1(−∞,µ0)(h1), where µ0 is any
real number in the range (εN , εN+1) (it is an admissible Fermi level for the ground state of
the non-interacting effective Hamiltonian H0,N ). The density of the non-interacting system
is denoted by ρ0

0,N . Results similar to the ones stated in Proposition 4.26 for ρ0
0,N , γ

0
0,N , ...

hold true. Finally, similarly as in Section 4.3.2, we introduce

A∗0,+(f) = a†(f)|Φ0
N 〉 and A0,−(f) = a(f)|Φ0

N 〉.

Definition 4.47 (Reference non-interacting Green’s functions). The reference particle, hole
and time-ordered non-interacting Green’s functions are respectively defined as

G0,p(τ) = −iΘ(τ)A0,+e−iτ(H0,N+1−E0
0,N )A∗0,+, G0,h(τ) = iΘ(−τ)A∗0,−eiτ(H0,N−1−E0

0,N )A0,−,

and G0(τ) = G0,p(τ) +G0,h(τ).
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Results similar to Propositions 4.28, 4.34 and 4.38 hold for these operators, but we do
not write them explicitly for the sake of brevity. However, it should be noted that, in the
non-interacting case, the Green’s functions have simple explicit expressions in terms of h1 (see
Section 4.6.13 for the proof).

Proposition 4.48. It holds

G0,p(τ) = −iΘ(τ)
(
1H1 − γ0

0,N

)
e−iτh1 and G0,h(τ) = iΘ(−τ)γ0

0,Ne−iτh1 .

In particular, for any z ∈ C \ σ(h1),

G̃0,p(z) =
(
1H1 − γ0

0,N

)
(z − h1)−1 and G̃0,h(z) = γ0

0,N (z − h1)−1. (4.68)

Hence,
G̃0(z) = (z − h1)−1 (4.69)

is the resolvent of the one-body operator h1.

Remark 4.49 (On the choice of G0). There are several possible choices for the one-body oper-
ator h1, although this choice is not really properly discussed in the literature to our knowledge.
The first option, which is used in the original derivation of the GW method [Hed65], consists
in choosing

h1 = −1

2
∆ + vext + ρ0

N ∗ | · |−1, (4.70)

where ρ0
N is the exact ground state density. Another option (see for instance [Far99, page 112])

is to consider a one-body operator whose associated ground state density is (as close as possible
to) the exact ground state density ρ0

N . The motivation is that, in this case, the self-energy
should be smaller. The Kohn-Sham [KS65] model formally satisfies this requirement. The
associated one-body operator reads

h1 = −1

2
∆ + vext + ρ0

N ∗ | · |−1 + vxc

[
ρ0
N

]
, (4.71)

where vxc is the (exact) exchange-correlation potential. In practice, approximations of ρ0
N

and vxc

[
ρ0
N

]
are computed by means of a Kohn-Sham LDA or GGA calculation [KS65,

PBE96]. This is believed to provide a sufficiently accurate approximation of the exact ground
state density which does not spoil the results subsequently obtained by GW calculations.

The dynamical Hamiltonian H̃(z)

In view of (4.69), it is natural to introduce the inverse of the time-ordered Green’s function,
which will correspond to some dynamical one-body Hamiltonian. More precisely, we would
like to define, at least for each z ∈ C \ R, a one-body operator H̃(z) such that

G̃(z) :=
(
z − H̃(z)

)−1
, or equivalently, H̃(z) = z −

(
G̃(z)

)−1
.

The following proposition, proved in Section 4.6.14, shows that such a definition makes sense.

Proposition 4.50. Let z ∈ C \R. The operator G̃(z) is an invertible operator from H1 onto
some vector subspace D̃(z) of H1. Moreover, D̃(z) is dense in H1, D̃(z) ⊂ H2(R3), and H̃(z)
is a well-defined closed operator with domain D̃(z).

Remark 4.51. We do not know whether the equality D̃(z) = H2(R3) is true, nor do we know
whether D̃(z1) = D̃(z2) for z1 6= z2.
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Definition of the self-energy operator Σ from the Dyson equation

We are now able to define the exact self-energy operator Σ̃ via the Dyson equation. Note that
we do not define the self-energy in the time domain, but consider only Σ̃(z) (as in [Far99,
Section 5.1]).

Definition 4.52 (Self-energy). The self-energy operator is defined as

∀z ∈ C \ R, Σ̃(z) := G̃0(z)−1 − G̃(z)−1 = (z − h1)−
(
z − H̃(z)

)
= H̃(z)− h1, (4.72)

where h1 is the one-body mean-field Hamiltonian introduced in Section 4.3.4.

The operator Σ̃(z) is the difference between the one-body dynamical Hamiltonian and the
reference one-body mean-field Hamiltonian h1. With this writing, Σ̃(z) can be seen as the
correction term to be added to the reference one-body Hamiltonian in order to obtain the
dynamical mean-field one-body Hamiltonian:

H̃(z) = h1 + Σ̃(z).

4.4 The GW approximation for finite systems

4.4.1 G0W0, self-consistent GW0, self-consistent GW, and all that

The GW equations

We now turn to the GW approximation for finite systems. The purpose of the GW approxima-
tion is to estimate the time-ordered Green’s function G via the Dyson formula (4.72). Instead
of using (4.72) to define the self-energy Σ̃(z), we use this equation with some approximation
Σ̃GW(z) of Σ̃(z) to obtain an approximation G̃GW(z) of the time-ordered Green’s function
via (

G̃GW
)−1

(z) = z −
(
h1 + Σ̃GW(z)

)
. (4.73)

Using the Dyson equation to define the time-ordered Green’s function is only possible if an
alternative expression of the self-energy operator is available. Such an expression was formally
obtained by Hedin in 1965 (see [Hed65]). The GW approximation consists in replacing the
so-called vertex function in Hedin’s equations by a tensor product of Dirac masses.

The original GW equations were derived on the time domain and on the frequency do-
main. However, as noticed several times in Section 4.3, the operators involved in the GW
equations are not smooth on these axes. It turns out that it is formally possible to recast
the equations on some imaginary axis using Theorem 4.24. This approach, first introduced
by Rojas, Godby and Needs [RGN95] (see also [RSW+99]), is now known under the name of
the “analytic continuation method”. For reasons that we will explain throughout this section,
these equations are recast as follows within our mathematical framework.
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Definition 4.53 (GW equations on the imaginary axis of the frequency domain).
Find G̃GW(µ+ i·) ∈ L2(Rω,B(H)) solution to the system

P̃GW
sym (iω) =

1

2π
v1/2
c

(ˆ ∞
−∞

G̃GW
(
µ+ i(ω + ω′)

)
� G̃GW(µ+ iω′) dω′

)
v1/2
c , (4.74a)

χ̃GW
sym(iω) =

(
1H − P̃GW

sym (iω)
)−1
− 1H1 , (4.74b)

W̃GW
c (iω) = v1/2

c χ̃GW
sym(iω)v1/2

c , (4.74c)

Σ̃GW(µ+ iω) = Kx −
1

2π

ˆ ∞
−∞

G̃GW
(
µ+ i(ω − ω′)

)
� W̃GW

c (iω′) dω′, (4.74d)

G̃GW(µ+ iω) =
[
µ+ iω −

(
h1 + Σ̃GW(µ+ iω)

)]−1
, (4.74e)

where h1 is the one-body operator defined in (4.70) and where Kx is the integral operator on
H1 with kernel

Kx(r, r′) := −
γ0

0,N (r, r′)

|r− r′|
,

where γ0
0,N was defined in (4.67).

Remark 4.54. In the GW equations (4.74), the chemical potential µ is supposed to be known a
priori.

The GW equations (4.74) would be the natural equations to work with from a mathemat-
ical viewpoint (they are formally equivalent to the original Hedin’s GW equations). However,
we were not able to study (4.74) for reasons detailed in Remark 4.55 below.

As one can directly see, the equations involve quite a large number of operators, which all
have a physical significance. The operator P̃GW

sym is the GW approximation of the symmetric

irreducible polarizability operator, the operator χ̃GW
sym is the GW approximation of the sym-

metric reducible polarizability operator, the operator W̃GW is the GW approximation of the
dynamically screened Coulomb interaction operator, and finally Σ̃GW is the GW approxima-
tion of the self-energy operator. We recognize in Equation (4.74e) the Dyson equation. The
name “GW” comes from Equation (4.74d).

Different levels of GW approximation

As mentioned below (see Remark 4.55), we were not able to study the full self-consistent
problem (4.74). We will therefore restrict ourselves to the so-called G0W0 and GW0 approx-
imations. We explain in this section how these different models are obtained.

(i) In the fully self-consistent GW (sc-GW) approximation, we assume that the full prob-
lem (4.74) is well-posed, so that there exists a (unique) solution G̃GW. It is then solved
self-consistently: the idea is to start from some trial Green’s function, and keep updating
it with (4.74) until convergence. This method is for instance used in [CRR+12, CRR+13,
KFSP10, RJT10, SDvL06]. It was implemented only quite recently due to its high numerical
cost (one needs to perform the inversion in (4.74b) at each iteration).

(ii) In the so-called self-consistent GW0 approximation, or simply GW0 approximation,
only the Green’s function (and not the screened Coulomb operator) is updated in (4.74d)
(see for instance [SDvL09, vBH96]). This partial update not only speeds up the calculation
(the inversion in (4.74b) is only performed once), but is sometimes in better agreement with
experimental results than the sc-GW approximation. This is the model that we study in
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Section 4.4.3.

(iii) Finally, most works simply consider the G0W0 approximation, where only one itera-
tion of the sc-GW (or equivalently one iteration of GW0) is performed. This model is very
popular due to its relatively low computational cost, and provides already very satisfactory
results (see for instance [BAO11]).

Let us also emphasize that it is unclear that a solution of the fully self-consistent GW
model is a better approximation in any sense to the exact Green’s function than a non self-
consistent approximation such as the one obtained by the G0W0 approximation. This is
discussed in [Far99, Section 9.8], where the author also comments on the possibilities to up-
date the effective one-body operator h1 +Kx along the iterations.

Remark 4.55. We do not know how to give a proper mathematical meaning to Equation (4.74a).
More specifically, one would like to define, for a reasonable choice of Green’s function G̃app,
the operator

∀ω ∈ Rω, P̃sym[Gapp](iω) :=
1

2π
v1/2
c

(ˆ ∞
−∞

G̃app
(
µ+ i(ω + ω′)

)
� G̃app(µ+ iω′) dω′

)
v1/2
c ,

and we would like this operator to be a self-adjoint bounded negative operator on H1. It
is the case for instance when G̃app is the non-interacting Hamiltonian G̃0 defined in (4.69)
(see Proposition 4.59 and Remark 4.64), or when G̃app is the exact Green’s function defined
in (4.51) (this fact can be proved by adapting the arguments given in Section 4.4.2). We
were not able to obtain this result for a generic class of approximate Green’s functions G̃app,
say G̃app of the form (4.74e) with Σ̃GW(µ+ iω) in a small ball of L∞(Rω,B(H1)).

For this reason, we will not study the self-consistent GW equation (4.74).

4.4.2 The operator W̃ 0 and the random phase approximation

The remainder of this section is devoted to the study of the GW0 approximation (which
includes the G0W0 approximation), which amounts to study the two equations (4.74d)-(4.74e)
with a specific fixed choice of the screening operator W 0. This approximation bypasses the
difficulties mentioned in Remark 4.55. In order to present and study the GW0 approximation,
one must first define the operator W 0.

The RPA irreducible polarizability operator P̃ 0

The GW approximation of the irreducible polarizability operator P is formally defined as

PGW(r, r′, τ) = −iG(r, r′, τ)G(r′, r,−τ). (4.75)

When the Green’s function G is the non-interacting one G0 defined in (4.47), this corresponds
to the so-called random phase approximation of the reducible polarizability operator (compare
for instance (4.83) with the expression in [CS12]) defined by

P 0(r, r′, τ) := −iG0(r, r′, τ)G0(r′, r,−τ).

This operator is expected to have properties similar to the operator χ defined in Section 4.3.3.
In particular, P 0(τ) is expected to be a bounded operator from C′ to C. It is therefore more
convenient to work with its symmetrized counterpart P 0

sym(τ) := v
1/2
c P 0(τ)v

1/2
c , which is

expected to be a bounded operator on H1. We decompose P 0
sym as P 0

sym = P 0,+
sym +P 0,−

sym where,
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using the kernel-product � defined in Section 4.2.4, and the explicit expressions of G0,p and
G0,h given in Proposition 4.48,

P 0,+
sym(τ) = −iΘ(τ)v1/2

c G0,p(τ)�G0,h(−τ)v1/2
c (4.76)

= −iΘ(τ)v1/2
c

((
1H1 − γ0

0,N

)
e−iτh1 � γ0

0,Neiτh1

)
v1/2
c (4.77)

and

P 0,−
sym(τ) = −iΘ(−τ)v1/2

c G0,h(τ)�G0,p(−τ)v1/2
c

= −iΘ(−τ)v1/2
c

(
γ0

0,Ne−iτh1 �
(
1H1 − γ0

0,N

)
eiτh1

)
v1/2
c .

Actually, with this definition, we were not able to give a meaning to P 0,−
sym (it may not be a

bounded operator on H1). We therefore prefer to use the modified kernel-product �̃ defined
in Remark 4.19. Our correct mathematical definition for P 0,−

sym then is

P 0,−
sym(τ) = −iΘ(−τ)v1/2

c G0,h(τ) �̃G0,p(−τ)v1/2
c (4.78)

= −iΘ(−τ)v1/2
c

(
γ0

0,Ne−iτh1�̃
(
1H1 − γ0

0,N

)
eiτh1

)
v1/2
c . (4.79)

As will be shown in Lemma 4.56, this amounts to defining P 0,−(τ) = P 0,+(−τ). We recall
that γ0

0,N is the orthogonal projector on the vector space spanned by the eigenvectors of h1

associated with the lowest N eigenvalues (see (4.67)), so that

γ0
0,N =

N∑
k=1

|φk〉〈φk|, (4.80)

where h1φk = εkφk, and the eigenfunctions φk are real-valued and orthonormal. The follow-
ing result shows that our definitions make sense, and gives explicit formulae for P 0,+ (see
Section 4.6.15 for the proof).

Lemma 4.56. The family
(
P 0,+

sym(τ)
)
τ∈Rτ

defined by (4.76) is a bounded causal operator

on H1, while
(
P 0,−

sym(τ)
)
τ∈Rτ

defined by (4.78) is a bounded anti-causal operator on H1. It

holds P 0,−
sym(τ) = P 0,+

sym(−τ) and

P 0,+
sym(τ) = −iΘ(τ)

N∑
k=1

v1/2
c φk

(
1H1 − γ0

0,N

)
e−iτ(h1−εk)

(
1H1 − γ0

0,N

)
φkv

1/2
c . (4.81)

Remark 4.57. For 1 ≤ k ≤ N , the notation φk in (4.81) refers to the multiplication operator
by the function φk. It is a bounded operator from C′ to H1, and from H1 to C (see the proof
of Lemma 4.56). The operator φkv

1/2
c is bounded on H1, and one can check that its adjoint

on H1 is (φkv
1/2
c )∗ := v

1/2
c φk.

The properties of the Laplace and Fourier transforms of P 0,+
sym are easily deduced from (4.81)

using Proposition 4.13 and Lemma 4.14.

Proposition 4.58. The function z 7→ P̃ 0,+
sym(z) is analytic on the upper half-plane U, and can

be analytically continued to the lower half-plane L through the semi-real line (−∞, εN+1−εN ).
For all z ∈ C \ [εN+1 − εN ,∞),

P̃ 0,+
sym(z) =

N∑
k=1

v1/2
c φk

(
1H1 − γ0

0,N

z − h1 + εk

)
φkv

1/2
c . (4.82)
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Moreover P̃ 0,+
sym(·+ iη) converges to P̂ 0,+

sym in H−1(Rω,B(H1)) as η → 0+, with

Re P̂ 0,+
sym = p.v.

(
N∑
k=1

v1/2
c φk

(
1H1 − γ0

0,N

· − h1 + εk

)
φkv

1/2
c

)

and

Im P̂ 0,+
sym = −π

(
N∑
k=1

v1/2
c φk

(
1H1 − γ0

0,N

)
P h1−εkφkv

1/2
c

)
.

It also holds
∀z ∈ C \ [εN+1 − εN ,∞), P̃ 0,−

sym(z) = P̃ 0,+
sym(−z),

so that, for z ∈ U ∪ L ∪ (−(εN+1 − εN ), εN+1 − εN ),

P̃ 0
sym(z) = −2

N∑
k=1

v1/2
c φk(1H1 − γ0

0,N )

(
h1 − εk

(h1 − εk)2 − z2

)
(1H1 − γ0

0,N )φkv
1/2
c . (4.83)

The properties of P̂ 0,+
sym and of P̂ 0,−

sym can be directly read off from the previous expressions.

For instance, we see that Im P̂ 0,+
sym and Im P̂ 0,−

sym are negative operator-valued measures, with
support in (εN+1 − εN ,∞) and (−∞,−(εN+1 − εN )) respectively. For ω in the real gap

(−(εN+1 − εN ), εN+1 − εN ), we see that P̂ 0,±
sym(ω) = Re P̂ 0,±

sym(ω) is a negative bounded self-
adjoint on H1.
For our purpose, we only need to know the behavior of P̃ 0

sym on the imaginary axis iRω.
We summarize the corresponding most important results in the following proposition (see
Section 4.6.16 for the proof).

Proposition 4.59. It holds

∀ω ∈ Rω, P̃ 0
sym(iω) = −2

N∑
k=1

v1/2
c φk

(
1H1 − γ0

0,N

)( h1 − εk
ω2 + (h1 − εk)2

)(
1H1 − γ0

0,N

)
φkv

1/2
c .

(4.84)
In particular, for all ω ∈ Rω, the operator P̃ 0

sym(iω) is a negative, self-adjoint bounded operator

on H1 satisfying P̃ 0
sym(−iω) = P̃ 0

sym(iω). In addition, the function ω 7→ P̃ 0
sym(iω) is analytic

from Rω to S(H1), and is in Lp(Rω,S(H1)) for all p > 1. For any f ∈ H1, the function
ω 7→

〈
f
∣∣∣P̃ 0

sym(iω)
∣∣∣f〉 is non-positive, in L1(Rω), and

ˆ +∞

−∞

〈
f
∣∣∣P̃ 0

sym(iω)
∣∣∣f〉dω = −2π

〈
f
∣∣∣v1/2
c

((
1H1 − γ0

0,N

)
� γ0

0,N

)
v1/2
c

∣∣∣f〉
= −2π

〈
f

∣∣∣∣∣
N∑
k=1

v1/2
c φk

(
1H1 − γ0

0,N

)
φkv

1/2
c

∣∣∣∣∣ f
〉
. (4.85)

Finally, there exists a constant C ∈ R+ such that

∀ω ∈ Rω, 0 ≤ −P̃ 0
sym(iω) ≤ C

(ω2 + 1)1/2

(
v1/2
c ρ0

0,Nv
1/2
c

)
, (4.86)

where ρ0
0,N is the multiplication operator by the (real-valued) function ρ0

0,N , the latter operator
being bounded from C′ to C.
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The sum-rule for the operator P̃ 0. We end this section with the sum-rule for the operator
P̃ 0 = v

−1/2
c P̃ 0

symv
−1/2
c , which goes from C′ to C. We postpone the proof until Section 4.6.17.

Theorem 4.60. The operator 2
∑N

k=1 φk(1H1 − γ0
0,N )(h1 − εk)φk is bounded from C′ to C,

and it holds

2
N∑
k=1

φk(1H1 − γ0
0,N )(h1 − εk)φk = div (ρ0

0,N∇·).

Moreover, the following weak-convergence holds:

∀(f, g) ∈ C′ × C′, lim
ω→±∞

〈
f,−ω2P̃ 0(iω)g

〉
C′,C

=
〈
f,−div

(
ρ0

0,N∇g
)〉
C′,C =

ˆ
R3

ρ0
0,N∇f · ∇g.

Finally, for all g ∈ C′ such that ∆g ∈ L2(R3), the following strong convergence holds:

lim
ω→±∞

ω2P̃ 0(iω)g = div
(
ρ0

0,N∇g
)

in C.

This sum-rule automatically leads to a sum-rule for the reducible polarizability operator
in the random phase approximation χ0 (see Theorem 4.67).

The analytical continuation method

In this section, we explain why (4.74a) can be thought of as a natural reformulation of the usual
physical definition (4.75), and why problems arise with Definition (4.74a) (see Problem 4.55).
This section also serves as a guideline to understand why (4.74d) is a natural reformulation of
the usual physical definition of ΣGW (see (4.97) below). In the previous section, we gave the
properties of P̃ 0 using the explicit expression of P 0 given in (4.81). While this approach sim-
plifies the proofs, it somehow hides some structural properties that we highlight in this section.

Recall that P 0
sym = P 0,+

sym + P 0,−
sym with

P 0,+
sym(τ) = −iΘ(τ)v1/2

c G0,p(τ)�G0,h(−τ)v1/2
c

and
P 0,−

sym(τ) = −iΘ(−τ)v1/2
c G0,h(τ) �̃ G0,p(−τ)v1/2

c ,

where

G0,p(τ) = −iΘ(τ)A0,+e−iτ(H0,N+1−E0
0,N )A∗0,+, G0,h(τ) = iΘ(−τ)A∗0,−eiτ(H0,N−1−E0

0,N )A0,−.

The idea is to use the results of Theorem 4.24. We first consider P 0,+
sym, and prove that the

hypotheses of Theorem 4.24 are satisfied. This is given by the following lemma.

Lemma 4.61. There exists a constant C ∈ R+ such that, for any f ∈ H1, it holds A0,−

(
v

1/2
c f

)
∈

S2(H1) with ∥∥∥A0,−

(
v1/2
c f

)∥∥∥
S2(H1)

≤ C‖f‖H1 .

Moreover, H0,N+1 − E0
0,N ≥ εN+1 and H0,N−1 − E0

0,N ≥ −εN .

Proof. The first point comes from the fact that A∗0,−A0,− = γ0
0,N and that v1/2

c f ∈ C′ ↪→ L6

whenever f ∈ H1, together with Lemma 4.77.
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In particular, the hypotheses of Theorem 4.24 are satisfied, and we deduce that for any
ν ′ > εN and ν + ν ′ < εN+1,

∀ω ∈ R, P̃ 0,+
sym(ν + iω) =

1

2π

ˆ +∞

−∞
v1/2
c

(
G̃0,p

(
ν + ν ′ + i(ω + ω′)

)
� G̃0,h(ν ′ + iω′)

)
v1/2
c dω′.

(4.87)

We treat P̃ 0,−
sym is a similar way, and find that for any ν ′ < εN+1 and ν + ν ′ > εN ,

∀ω ∈ R, P̃ 0,−
sym(ν + iω) =

1

2π

ˆ +∞

−∞
v1/2
c

(
G̃0,h

(
ν + ν ′ + i(ω + ω′)

)
�̃ G̃0,p(ν ′ + iω′)

)
v1/2
c dω′.

(4.88)
Actually, the kernel-product �̃ in the latter expression can be transformed into the kernel-
product �, thanks to the following lemma, whose proof is given in Section 4.6.18.

Lemma 4.62. For any ν ′ < εN+1, any ν + ν ′ > εN and any ω, ω′ ∈ Rω,

G̃0,h

(
ν + ν ′ + i(ω + ω′)

)
�̃ G̃0,p(ν ′ + iω′) = G̃0,h

(
ν + ν ′ + i(ω + ω′)

)
� G̃0,p(ν ′ + iω′),

as bounded operators from C′ to C.

We can perform the same type of calculation for Gh � Gh. Following the proof of Theo-
rem 4.24, we deduce from Gh(τ)�Gh(−τ) = 0 that, for any ν ′ > εN and ν + ν ′ > εN ,

∀ω ∈ Rω,
1

2π

ˆ +∞

−∞
v1/2
c

(
G̃0,h

(
ν + ν ′ + i(ω + ω′)

)
� G̃0,h(ν ′ + iω′)

)
v1/2
c dω′ = 0. (4.89)

Similarly, from Gp(τ) � Gp(−τ) = 0, we deduce that, at least formally, for any ν ′ < εN+1,
and any ν + ν ′ < εN+1,

∀ω ∈ Rω,
1

2π

ˆ +∞

−∞
v1/2
c

(
G̃0,p

(
ν + ν ′ + i(ω + ω′)

)
� G̃0,p(ν ′ + iω′)

)
v1/2
c dω′ = 0. (4.90)

Remark 4.63. The last equality is formal, in the sense that the integrand G̃0,p � G̃0,p is
actually not well-defined: it does not define a bounded operator from C′ to C. However, we

can proceed as follows. For ω ∈ Rω, let P̃+,+
] (iω) be the operator defined on the core H1 ∩ C

by

∀f, g ∈ H1 ∩ C,
〈
f

∣∣∣∣P̃+,+
] (iω)

∣∣∣∣ g〉
:=

1

2π

ˆ +∞

−∞
TrH1

[
G̃0,p

(
ν + ν ′ + i(ω + ω′)

) (
v1/2
c g

)
G̃0,p(ν ′ + iω′)

(
v1/2
c f

)]
dω′.

Noticing that v1/2
c f and v

1/2
c g are in H1 since f, g ∈ C, and reasoning as in the proof of

Lemma 4.62, we can prove that the operator in the trace is indeed trace-class, with∣∣∣TrH1

[
G̃0,p

(
ν + ν ′ + i(ω + ω′)

) (
v1/2
c g

)
G̃0,p(ν ′ + iω′)

(
v1/2
c f

)]∣∣∣ ≤ pω(ω′)‖f‖C‖g‖C ,

where pω is an integrable function independent of f and g. Moreover, following the proof of
Theorem 4.24, we can prove that, as expected,

∀f, g ∈ H1 ∩ C,
〈
f

∣∣∣∣P̃+,+
] (iω)

∣∣∣∣ g〉 = 0.

The unique continuation on H1 of P̃+,+
] (iω) therefore is the null operator. It is unclear to us

how to extend a similar reasoning for a generic class of approximated Green’s function G̃app.
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By gathering (4.87), (4.88), (4.89) and (4.90), we find that, for any ν ′ ∈ (εN , εN+1) and
ν + ν ′ ∈ (εN , εN+1),

∀ω ∈ Rω, P̃ 0
sym(ν + iω) =

1

2π

ˆ +∞

−∞
v1/2
c

(
G̃0

(
ν + ν ′ + i(ω′ + ω)

)
� G̃0(ν ′ + iω′)

)
v1/2
c dω′.

In particular, this equality holds for the particular choice ν ′ = µ0 and ν = 0.

Remark 4.64. To summarize the work performed in this section, we transformed the equation

P 0(r, r′, τ) := −iG0(r, r′, τ)G0(r′, r,−τ) (4.91)

into: for any ν ′ ∈ (εN , εN+1) and ν ∈ (εN − ν ′, εN+1 − ν ′)

P̃ 0(ν + i·) =
1

2π

ˆ +∞

−∞

(
G̃0

(
ν + ν ′ + i(ω′ + ·)

)
� G̃0(ν ′ + iω′)

)
dω′. (4.92)

Note that the manipulations performed in this section to transform (4.91) into (4.92) are
possible since the two operators involved in the kernel-product (here, both are equal to G̃0(z))
are analytic on some common domain U ∪ L ∪ (a, b) with a < b (the presence of a gap is
important to deform the contour as in Theorem 4.24).

The RPA reducible polarizability operator χ0

In order to calculate the GW approximation of the self-energy, one needs the reducible polariz-
ability operator χ, defined in Section 4.3.3. Unfortunatly, the expression of χ is not accessible
in practice. One needs to approximate this operator. The GW approximation, which amounts
to approximating the so-called vertex function, provides a natural approximation χGW of χ:
in Equation (4.74b), χGW is defined from GGW (see also [Far99, Equation (103)] or [Hed65,
Equations (A.20) and (A.28)]). However, in view of Remark 4.55, the definition of χGW is not
well-understood mathematically. In the GW0 framework, we use the RPA reducible polariz-
ability operator χ0, which is itself defined in terms of the RPA irreducible polarizability P 0.
The GW0 approximation of the (symmetrized) reducible polarizability operator is usually
defined in the frequency domain as

χ̂0
sym(ω) :=

(
1H1 − P̂ 0

sym(ω)
)−1
− 1H1 .

The formal analytic continuation of the above definitions is (see [Far99, Equation (139)])

χ̃0
sym(z) :=

(
1H1 − P̃ 0

sym(z)
)−1
− 1H1 . (4.93)

Note that we use the “tilde” notation in χ̃0
sym, although it is unclear that this operator-

valued function is indeed the Laplace transform of some operator-valued function in the time
domain. Also, it is a priori unclear whether the operators 1H1 − P̂GW

sym (ω) or 1H1 − P̃GW
sym (z)

are invertible. This is however the case for appropriate values of z, as shown by the following
lemma.

Lemma 4.65. For z ∈ (−(εN+1 − εN ), εN+1 − εN ) and z ∈ iR, the operator 1H1 − P̃ 0
sym(z)

is invertible.

This result is a direct consequence of the explicit formula (4.83) for P̃ 0, which ensures
that P̃ 0

sym(z) is a bounded self-adjoint negative operator for the values of z under consideration.
Let us deduce some extra properties of χ̃0.
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Lemma 4.66. For any ω ∈ R, the operator χ̃0
sym(iω) is a bounded, negative, self-adjoint

operator on H1, satisfying χ̃0
sym(−iω) = χ̃0

sym(iω), and such that

P̃ 0
sym(iω) ≤ χ̃0

sym(iω) ≤ 0. (4.94)

The function ω 7→ χ̃0
sym(iω) is analytic from Rω to S(H1) and is in Lp(Rω,S(H1)) for all

p > 1. Finally, there exists a constant C ∈ R+ such that

0 ≤ −χ̃0
sym(iω) ≤ C

(ω2 + 1)1/2

(
v1/2
c ρ0

0,Nv
1/2
c

)
. (4.95)

This result is deduced from the definition (4.93), the inequality x ≤ (1− x)−1 − 1 ≤ 0 for
x ≤ 0, and Proposition 4.59.

Sum-rule for χ̃0. From the sum-rule stated in Theorem 4.60, we readily deduce the sum-
rule for χ̃0 := v

−1/2
c χ̃0

symv
−1/2
c , which is a bounded operator from C′ to C. Indeed, from the

equality (1− x)−1 − 1 = x+ x2(1− x)−1, we obtain

∀ω ∈ Rω, χ̃0
sym(iω) = P̃ 0

sym(iω) +
(
P̃ 0

sym(iω)
)2 (

1H1 − P̃ 0
sym(iω)

)−1
.

In particular,

∀ω ∈ Rω, ω2χ̃0(iω) = ω2P̃ 0(iω)+
1

ω2

(
ω2P̃ 0(iω)

)(
v1/2
c

(
1H1 − P̃ 0

sym(iω)
)−1

v1/2
c

)(
ω2P̃ 0(iω)

)
.

This shows that the asymptotic behavior of χ̃0(iω) is, at dominant order, the same as for
P̃ 0(iω). Taking the limit ω → ±∞ leads to a theorem similar to Theorem 4.60, whose proof
is skipped here for the sake of brevity.

Theorem 4.67. The following weak-convergence holds:

∀(f, g) ∈ C′ × C′, lim
ω→±∞

〈
f,−ω2χ̃0(iω)g

〉
C′,C

=
〈
f,−div

(
ρ0

0,N∇g
)〉
C′,C =

ˆ
R3

ρ0
0,N∇f · ∇g.

For all g ∈ C′ such that ∆g ∈ L2(R3), the following strong convergence holds:

lim
ω→±∞

ω2χ̃0(iω)g = div
(
ρ0

0,N∇g
)

in C.

By comparing Theorems 4.67 and 4.46, we see why using (4.71) instead of (4.70) for the
definition of h1 may lead to better approximations, since ρ0

0,N = ρ0
N in this case, so that the

GW approximation χGW of χ becomes exact in the high imaginary frequency domain.

Theorem 4.67 is useful for the design of the so-called Plasmon-Pole models (PPM) [HL86,
vdLH88, GN89, EF93]. Since the definition (4.93) requires the computation of a resolvent, the
calculation of χ̃0(z) is numerically very expensive in practice. Some authors suggested to ap-
proximate χ̃0 by an operator χ̃PPM which is computationally less expensive. In practice, χ̃PPM

has a prescribed functional form, with adjustable parameters. Different approaches are taken
in order to tune these parameters, and the previous sum-rule provides a standard way to fit
some of them. This is done for instance in the PPM by Hybersten and Louie [HL86] and in
the PPM by Engel and Farid [EF93]. In the later article, the authors extensively comment
on the fact that this sum-rule is an important requirement to be satisfied for a PPM.
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The RPA dynamically screened operator W 0

From the approximation χ0 of χ, we directly deduce the approximation W 0 of W . Following
the path taken in Section 4.3.3, we define

W̃ 0(z) := vc + W̃ 0
c (z) with W̃ 0

c (z) := v1/2
c χ̃0

sym(z)v1/2
c . (4.96)

This operator, when well-defined (say on the gap (−(εN+1 − εN ), εN+1 − εN ) or on the
imaginary axis iR) is a bounded operator from C to C′. The properties of W̃ 0 are directly
deduced from the ones of χ̃0

sym, so we do not repeat them here for brevity.

4.4.3 A mathematical study of the GW0 approximation

The G0W0 approximation of the self-energy

In this section, we study the G0W0 approximation as a preliminary step to the study of the
self-consistent GW0 approximation. This will help us understand some technical points to
address in the analysis of the GW0 method.

The G0W0 approximation of the self-energy operator is formally defined as

Σ00(r, r′, τ) := iG0(r, r′, τ)W 0(r, r′,−τ+). (4.97)

Here, G0 represents the Green’s function of the non-interacting system introduced in Defini-
tion 4.47, and W 0 is the random phase approximation of the dynamically screened operator
defined in Section 4.4.2. Already one difficulty arises: in Section 4.4.2, we only defined the
function W̃ 0(z) on the complex frequency domain, but we did not define some operator-valued
function on the time-domain. In this section, we assume that the function W̃ 0(z) is indeed
the Laplace transform of some operator W 0(τ). This will allow us to transform (4.97) into
a formally equivalent definition that only involves W̃ 0. The resulting definition will be our
starting point for the GW0 approximation.

With the kernel-product defined in Section 4.2.4, the definition (4.97) can be recast as

Σ00(τ) = iG0(τ−)�W 0(−τ).

In view of the decomposition provided in (4.96), it is natural to split Σ00 into an exchange
part Σ00

x and a correlation part Σ00
c (the terminology is motivated below):

Σ00 = Σ00
x + Σ00

c with Σ00
x (τ) = iG0,h(0−)� vcδ0(τ) and Σ00

c (τ) = iG0(τ)�Wc(−τ).

Let us first consider the exchange part. As iG0,h(0−) = −γ0
0,N , we obtain

Σ00
x (τ) = Kxδ0(τ), (4.98)

where Kx is the integral operator on H1 with kernel

Kx(r, r′) := −
γ0

0,N (r, r′)

|r− r′|
. (4.99)

We recover the usual Fock exchange operator associated with γ0
0,N , which justifies the termi-

nology “exchange part” for Σ00
x . Let us now consider the correlation part. Observing that

• G̃0 is analytic on U ∪ L ∪ (εN , εN+1) (hence has a gap around µ0);
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• W̃ 0 is analytic on U ∪ L ∪ (−(εN+1 − εN ), εN+1 − εN ) (hence has a gap around 0),

we can use the same ideas as in Section 4.4.2. By analogy with Remark 4.64, we recast
the physical definition of Σ̃00 in (4.97) in a formally equivalent definition in the complex
frequency plane. This reformulation was first given by Rojas, Godby and Needs [RGN95] (see
also [RSW+99]), and is now known as the “contour deformation” technique.

Definition 4.68 (G0W0 approximation of the self-energy). The exchange part of the self-
energy in the G0W0 approximation is defined in the complex frequency domain by

∀z ∈ C, Σ̃00
x (z) = Kx,

while the correlation part is defined, for ν ′ ∈ (−(εN+1−εN ), εN+1−εN ) and ν+ν ′ ∈ (εN , εN+1)
by

∀ω ∈ Rω, Σ̃00
c (ν + iω) = − 1

2π

ˆ +∞

−∞
G̃0

(
ν + ν ′ + i(ω + ω′)

)
� W̃ 0

c (ν ′ + iω′) dω.

The fact that the above quantity is independent of the choice of ν ′ comes from the ana-
lyticity of the integrand on the region of interest. In practice, we will focus on the case ν ′ = 0

and ν = µ0, and therefore consider the function Rω 3 ω 7→ Σ̃00
0 (µ0 + iω) defined by

∀ω ∈ Rω, Σ̃00
c (µ0 + iω) = − 1

2π

ˆ +∞

−∞
G̃0

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω. (4.100)

The next proposition shows that the above definition makes sense.

Proposition 4.69. The operator Kx arising in the exchange part Σ00
c of the self-energy is

a negative Hilbert-Schmidt operator on H1. Furthermore, for any ω ∈ Rω, the operator
Σ̃00
c (µ0 + iω) is a bounded operator on H1, and satisfies Σ̃00

c (µ0 − iω) = Σ̃00
c (µ0 + iω)∗. The

function ω 7→ Σ̃00
c (µ0+iω) is analytic from Rω to B(H1) and is in Lp(Rω,B(H1)) for all p > 1.

The first statements of Proposition 4.69 can be seen as a special case of Proposition 4.73,
while the symmetry property for the adjoint and the Lp integrability follow from the properties
of G̃0 and W̃ 0

c .

Well-posedness of the GW0 approximation in the perturbative regime.

We finally study the GW0 approximation. Following our definition (4.100) of the G0W0

approximation of the self-energy, we recast the GW0 equation as follows.

Definition 4.70 (The GW0 problem on the imaginary axis in the frequency domain).
Find GGW0 ∈ L∞(Rω,B(H1)) solution to the system

(GW0)


Σ̃GW0

(µ0 + iω) = Kx −
1

2π

ˆ +∞

−∞
G̃GW0(

µ0 + i(ω + ω′)
)
� W̃ 0

c (iω′) dω′,

G̃GW0
(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0

(µ0 + iω)

)]−1

,

where h1 is the one-body mean-field Hamiltonian defined in (4.70) and Kx is the exchange
operator defined by (4.67)-(4.99).

Remark 4.71. We are looking for a solution in L∞(Rω,B(H1)). Note that the true Green’s
function G̃(µ + i·) is in Lp(Rω,B(H1)) for all p > 1 (in particular for p = ∞). We chose to
work with L∞(Rω,B(H1) for simplicity, but it is possible to work with other spaces Lp(Rω,B(H1))
with p > 1.
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Since this problem seems quite difficult to study mathematically, we will only study it in
a perturbative regime. More specifically, seeing ΣGW as a correction term (see the discussion
after Definition 4.52), we propose to study the following problem.

Definition 4.72 (The GW0
λ problem on the imaginary axis on the frequency domain).

Find GGW0
λ ∈ L∞(Rω,B(H1)) solution to the system

(GW0
λ)


Σ̃GW0

λ(µ0 + iω) = Kx −
1

2π

ˆ +∞

−∞
G̃GW0

λ

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′

G̃GW0
λ(µ0 + iω) =

[
µ0 + iω −

(
h1 + λΣ̃GW0

λ(µ0 + iω)

)]−1

.

(4.101)

According to (4.69), the unique solution for λ = 0 is the Green’s function for the non

interacting system G̃GW0
λ=0 = G̃0. This fact will allow us to treat the equation perturbatively.

The exact GW0 equations correspond to the case λ = 1. Of course, several other choices of
perturbation can be used. For instance, we can put the parameter λ in front of the correlation
part of the self-energy only. This amounts to considering the Hartree-Fock Hamiltonian as
the reference Hamiltonian (instead of the Hartree Hamiltonian). The theory that we develop
here can be straightforwardly generalized to such other cases.

It is convenient for the mathematical analysis to introduce the functionals s and g respec-
tively defined as

s : L2(Rω,B(H1)) → L∞(Rω,B(H1))

G̃app(µ0 + i·) 7→ s
[
G̃app

]
(µ0 + i·) := Kx −

1

2π

ˆ +∞

−∞
G̃app(µ0 + i(·+ ω′))� W̃ 0

c (iω′) dω′,

and

gλ : L∞(Rω,B(H1)) → L2(Rω,B(H1))

Σ̃app(µ0 + i·) 7→ g
[
Σ̃app

]
(µ0 + i·) :=

[
µ0 + i · −

(
h1 + λΣ̃app(µ0 + i·)

)]−1
.

With this notation, G̃GW0
λ is a solution of the GW0

λ equations (4.101) if and only if it is a
fixed-point of gλ◦s. The fact that these maps are indeed well-defined is proved in the following
proposition (see Section 4.6.19 for the proof).

Proposition 4.73. The operator s is a bounded linear operator from L2(Rω,B(H1)) to
L∞(Rω,B(H1)). On the other hand, for all M > 0, there exists λM > 0 and CM ∈ R+

such that for all 0 ≤ λ < λM , and all Σ̃app such that
∥∥∥Σ̃app(µ0 + i·)

∥∥∥
L∞(Rω ,B(H1))

≤ M , the

function gλ[Σapp](µ0 + i·) is well-defined as an element of L2(Rω,B(H1)) ∩ L∞(Rω,B(H1)),
with ∥∥∥gλ [Σ̃app

]
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

+
∥∥∥gλ [Σ̃app

]
(µ0 + i·)

∥∥∥
L∞(Rω ,B(H1))

≤ CM .

Moreover, for all Σ̃app
1 , Σ̃app

2 ∈ L∞(Rω,B(H1)) such that
∥∥∥Σ̃app

j (µ0 + i·)
∥∥∥
L∞(Rω ,B(H1))

≤ M

for 1 ≤ j ≤ 2,

gλ

[
Σ̃app

1

]
− gλ

[
Σ̃app

2

]
= λgλ

[
Σ̃app

1

] (
Σ̃app

2 − Σ̃app
1

)
gλ

[
Σ̃app

2

]
. (4.102)
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To prove the existence of a fixed-point for gλ ◦ s, we rely on Picard’s fixed-point theorem.
Since the solution of the GW0

λ=0 equations (4.101) for λ = 0 is G̃0, we are lead to introduce,
for r > 0, the (closed) ball

B
(
G̃0, r

)
=

{
G̃app(µ0 + i·) ∈ L2(Rω,B(H1)) ,

∥∥∥G̃app(µ0 + i·)− G̃0(µ0 + i·)
∥∥∥
L2(Rω ,B(H1))

≤ r
}
.

The existence of a fixed-point is given by the following theorem (see Section 4.6.20 for the
proof).

Theorem 4.74. There exists λ∗ > 0 and r > 0 such that, for all 0 ≤ λ ≤ λ∗, there exists a

unique element G̃GW0
λ ∈ B

(
G̃0, r

)
solution to the GW0

λ equations (4.101), or equivalently to
the fixed point equation

G̃GW0
λ = gλ ◦ s

(
G̃GW0

λ

)
.

In addition, for all ω ∈ Rω, G̃GW0
λ(µ0 + iω) is an invertible operator, and∥∥∥∥∥

(
G̃GW0

λ(µ0 + i·)
)−1

−
(
G̃0(µ0 + i·)

)−1
∥∥∥∥∥
L∞(Rω ,B(H1))

<∞. (4.103)

Finally, the iterative sequence (gλ ◦ s)k
[
G̃0

]
converges to G̃GW0

λ, and there exists 0 ≤ α < 1

and C ∈ R+ such that∥∥∥∥(G̃GW0
λ − (gλ ◦ s)k

[
G̃0

])
(µ0 + i·)

∥∥∥∥
L∞(Rω ,B(H1))

≤ Cαk.

Remark 4.75. It is not difficult to deduce from (4.103) that the function ω 7→ G̃GW0
λ(µ+ iω)

is actually in Lp(Rω,B(H1)), for all p > 1.

4.5 Conclusion

In this chapter, we formalized with full mathematical rigor the GW theory for finite molecular
systems derived by Hedin in his seminal work published in 1965 [Hed65]. In Section 4.3, we
provided a mathematical definition of some one-body operators arriving in many-body per-
turbation theory for electronic systems, namely the one-body Green’s function G, the spectral
function A, the reducible polarizability operator χ, the dynamically screened interaction op-
erator W , and the self-energy operator Σ.

In Section 4.4, we worked out a mathematically consistent formulation of the GW0 ap-
proximation of the GW equations, and we proved that the GW0 model has a solution in a
perturbation regime. As a by-product, we also showed that the widely used G0W0 approxi-
mation of the self-energy makes perfect mathematical sense.
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4.6 Proofs

4.6.1 Proof of Lemma 4.3

Let s > 1/2. For f ∈ L∞(Rτ ) and ϕ̂ ∈ S (Rω),∣∣∣〈FT f, ϕ̂〉S ′,S ∣∣∣ =
∣∣∣〈f,FT ϕ̂〉S ′,S ∣∣∣ = 2π

∣∣∣∣ˆ
R
f(−τ)(F−1

T ϕ̂)(τ) dτ

∣∣∣∣
= 2π

∣∣∣∣ˆ
R

f(−τ)

(1 + τ2)s/2
(1 + τ2)s/2(F−1

T ϕ̂)(τ) dτ

∣∣∣∣ ≤ Cs ‖f‖L∞‖ϕ̂‖Hs ,

where we have used the Cauchy-Schwarz inequality in the last step. By density, FT f can be
extended to a linear form on Hs(R). The equality case ‖FT f‖H−s = Cs‖f‖L∞ is obtained for
constant functions.

4.6.2 Proof of Theorem 4.10

Proof of (i). The analyticity of g̃ directly follows from the results of [Sch66, Chapter VIII].

Proof of (ii). Let s > 1/2, and consider ϕ ∈ S (R). Relying on the fact that g̃(·+ iη) can
be seen as the Fourier transform of τ 7→ g(τ)e−ητ , we obtain

〈g̃(·+ iη), ϕ〉H−s,Hs − 〈ĝ, ϕ〉H−s,Hs =
〈
g e−ητ , ϕ̂

〉
S ′,S

− 〈g, ϕ̂〉S ′,S

=

ˆ ∞
0

(
g(τ)

(1 + τ2)s/2

)
(1 + τ2)s/2ϕ̂(τ)

(
e−ητ − 1

)
dτ,

(4.104)
where the integral makes sense since τ 7→ g(τ)(1 + τ2)−s/2 and τ 7→ (1 + τ2)s/2ϕ̂(τ) are
in L2(R). It is then possible to extend the above formula to any ϕ ∈ Hs(R). Moreover, by
the Cauchy-Schwarz inequality,∣∣〈g̃(·+ iη), ϕ〉H−s,Hs − 〈ĝ, ϕ〉H−s,Hs

∣∣ ≤ Iη,s‖ϕ‖Hs‖g‖L∞ ,

where

Iη,s =

(
2π

ˆ +∞

0

(1− e−ητ )2

(1 + τ2)s
dτ

)1/2

<∞.

Therefore, ‖g̃(·+ iη)− ĝ‖H−s ≤ ‖g‖L∞Iη,s. By dominated convergence, Iη,s → 0 as η → 0+,
which allows us to conclude to the strong convergence of g̃(·+ iη) to ĝ in H−s(Rω).

A similar computation shows that, for 0 < η1 ≤ η2 and s ∈ R,

‖g̃(·+ iη1)− g̃(·+ iη2)‖Hs ≤ ‖g‖L∞
(

2π

ˆ +∞

0
e−2η1τ

(
1− e−(η2−η1)τ

)2
(1 + τ2)s dτ

)1/2

,

where we crucially use that η1 > 0 to ensure the convergence of the time integral for s > −1/2.
The right-hand side goes to 0 as η2 goes to η1 by dominated convergence. This allows one to
conclude to the continuity of η 7→ g̃(· + iη) from (0,+∞) to Hs(R). When s < −1/2, it is
possible to pass to the limit η1 → 0 and obtain the uniform continuity from [0,+∞) to Hs(R).

Proof of (iii). We follow the approach used in [Tay58] for instance. Fix z0 ∈ U, and
consider, for R > 0 and 0 < α ≤ Im (z0)/2, the oriented contour C in the complex plane
composed of the semi-circle iα+Reiθ for 0 ≤ θ ≤ π and the line iα+ω for −R ≤ ω ≤ R. The
value R is taken sufficiently large for z0 to be inside the domain encircled by the contour (see
Figure 4.5).
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z0

iα R

C

Figure 4.5 – The contour C used in the proof of (iii).

By Cauchy’s residue theorem,

g̃(z0) =
1

2iπ

˛
C

g̃(z)

z − z0
dz =

1

2iπ

ˆ R

−R

g̃(ω + iα)

ω + iα− z0
dω +

1

2π

ˆ π

0
g̃(iα+Reiθ)

Reiθ

Reiθ + iα− z0
dθ.

(4.105)
Now, for z ∈ U,

|g̃(z)| ≤ ‖g‖L
∞

Im (z)
,

so that∣∣∣∣ˆ π

0
g̃(iα+Reiθ)

Reiθ

Reiθ + iα− z0
dθ

∣∣∣∣ ≤ ‖g‖L∞ ˆ π

0

R

|α+R sin θ| |Reiθ + iα− z0|
dθ,

which, by dominated convergence, converges to 0 as R→ +∞ when α is fixed. On the other
hand, g̃(· + iα) belongs to L2(Rω), while (· + iα − z0)−1 is in H1(Rω), since iα − z0 has a
non-zero imaginary part. Therefore, the limit R → +∞ can be taken in the first integral on
the right-hand side of (4.105), which leads to

g̃(z0) =
1

2iπ

ˆ +∞

−∞

g̃(ω + iα)

ω + iα− z0
dω =

1

2iπ

〈
g̃(·+ iα), (·+ iα− z0)−1

〉
H−1,H1 .

The conclusion now follows from the strong convergences of (· + iα − z0)−1 to (· − z0)−1 in
H1(Rω) and of g̃(·+ iα) to ĝ in H−1(Rω) as α→ 0.

Proof of (iv). Let ϕ be a real-valued function in S (Rω). From (4.12), we get
ˆ
R
g̃(ω + iη)ϕ(ω) dω =

1

2iπ

ˆ
R

〈
ĝ, (· − ω − iη)−1

〉
H−1,H1 ϕ(ω) dω.

Taking the real parts of both sides, we obtain
ˆ
R

Re (g̃(ω + iη))ϕ(ω) dω

=
1

2π

ˆ
R

(〈
Im ĝ,

· − ω
(· − ω)2 + η2

〉
H−1,H1

+

〈
Re ĝ,

η

(· − ω)2 + η2

〉
H−1,H1

)
ϕ(ω) dω.

(4.106)
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Consider now φ ∈ C∞(R2), with support contained in [−R,R] × R for some finite R > 0.
Then, Fubini’s theorem for distributions (see [Sch66, Chapter IV, Theorem IV]) asserts that,
for a given distribution T ∈ S ′(R) and ϕ ∈ S (R),

ˆ
R
〈T, φ(·, ω)〉S ′,S ϕ(ω) dω =

〈
T,

ˆ
R
φ(·, ω)ϕ(ω) dω

〉
S ′,S

.

When T ∈ H−1(R), the above linear form can be extended to functions in H1(R). Therefore,
(4.106) can be rewritten as

ˆ
R

Re (g̃(ω + iη))ϕ(ω) dω =

〈
Im ĝ,

1

2π

ˆ
R

· − ω
(· − ω)2 + η2

ϕ(ω) dω

〉
H−1,H1

+

〈
Re ĝ,

1

2π

ˆ
R

η

(· − ω)2 + η2
ϕ(ω) dω

〉
H−1,H1

.

(4.107)

In view of the following strong convergences in H1(R),

1

2π

ˆ
R

ξ − ω
(ξ − ω)2 + η2

ϕ(ω) dω −−−→
η→0

1

2
(Hϕ)(ξ),

1

2π

ˆ
R

η

(ξ − ω)2 + η2
ϕ(ω) dω −−−→

η→0

1

2
ϕ(ξ),

the equality (4.107) leads, in the limit η → 0+, to

〈Re ĝ, ϕ〉H−1,H1 =
1

2
〈Im ĝ,H(ϕ)〉H−1,H1 +

1

2
〈Re ĝ, ϕ〉H−1,H1 .

The first equality in the statement of item (iv) is finally obtained with the following lemma
(recall that, according to Lemma 4.4, Hs(R) is stable by the Hilbert transform). The second
equality follows by applying H to both sides and remembering that H2 = −Id.

Lemma 4.76. Let s ≥ 0. For any T ∈ H−s(R) and ϕ ∈ Hs(R),

〈H(T ), ϕ〉H−s,Hs = −〈T,H(ϕ)〉H−s,Hs .

Proof. Consider first the case when T, ϕ ∈ S (R). Then, using Plancherel’s formula, the
duality product can be rewritten using a L2-scalar product

〈HT, ϕ〉S ′,S = (HT , φ)L2 = 2π
(
F−1(HT ),F−1ϕ

)
L2

= 2π
(
−i sgn(·)F−1T ,F−1ϕ

)
L2

= 2π
(
F−1T , i sgn(·)F−1ϕ

)
L2 = −

(
T ,Hϕ

)
L2 = −〈T,Hϕ〉S ′,S .

The conclusion is obtained by a density argument.

4.6.3 Proof of Proposition 4.12

The proof presented in Section 4.6.2 can be followed mutatis mutandis upon introducing, for
given elements f, g ∈ H, the bounded causal function

af,g(τ) = 〈f |Tc(τ)| g〉 ,

and noting that ‖af,g‖L∞ ≤ ‖Tc‖L∞(B(H))‖f‖‖g‖.
The only additional technical point is the strong analyticity property, which is however

easily obtained from the following bound: for z = ω + iη ∈ U,∥∥∥∥∥dT̃c(z)

dz

∥∥∥∥∥
B(H)

=

∥∥∥∥ˆ ∞
0

Tc(τ)(iτ)e−ητeiωτ dτ

∥∥∥∥
B(H)

≤ ‖Tc‖L∞(Rτ ,B(H))

ˆ ∞
0

τe−ητ dτ =
‖Tc‖L∞(Rτ ,B(H))

η2
< +∞.
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4.6.4 Proof of Proposition 4.13

For z ∈ U, we have

Ãc(z) =

ˆ
R
Ac(τ) eizτ dτ = −i

ˆ +∞

0
e−iτHeizτ dτ.

A simple computation shows that

Ãc(ω + iη) = −i

ˆ +∞

0

ˆ
R

eiτ(ω+iη−λ) dPHλ dτ =

ˆ
R

1

ω + iη − λ
dPHλ = (ω + iη −H)−1.

The series of equalities can be made rigorous by testing them against functions f, g ∈ H, and
using Fubini’s theorem to justify the exchange in the order of integration.

The strong convergence of Ãc(·+iη) to Âc in H1(Rτ ,B(H)) is ensured by Proposition 4.12.
The Fourier transform can therefore be deduced from this limiting procedure. We consider the
limit of Im Ãc(·+iη), the real part of Ãc(·+iη) being obtained from (4.14) and Definition 4.8.

Let f ∈ H and ϕ ∈ S (Rω). Then, using Fubini’s theorem,〈〈
f
∣∣∣Im Ãc(·+ iη)

∣∣∣ f〉 , ϕ〉
S ′,S

= −
ˆ
R

ˆ
R

η

(ω − λ)2 + η2
ϕ(ω)µHf (dλ) dω = −

ˆ
R
tη(λ)µHf (dλ),

(4.108)
where the measure µHf is defined by µHf (b) = 〈f

∣∣PHb ∣∣ f〉 for any b ∈ B(R), and

tη(λ) =

ˆ
R

η

(ω − λ)2 + η2
ϕ(ω) dω =

ˆ
R

1

ξ2 + 1
ϕ(λ+ ηξ) dξ.

Note that

|tη(λ)− πϕ(λ)| ≤
ˆ
R

1

ξ2 + 1
|ϕ(λ+ ηξ)− ϕ(λ)|dξ ≤ √η‖ϕ′‖L2

ˆ
R

√
ξ

1 + ξ2
dξ,

where the last bound is obtained by rewriting ϕ(λ+ ηξ)− ϕ(λ) as the integral of its deriva-
tive and using a Cauchy-Schwarz inequality. This also shows that tη is uniformly bounded
as η → 0+. Since the measure µHf is finite, (4.108) leads by dominated convergence to〈〈

f
∣∣∣Im Ãc(·+ iη)

∣∣∣ f〉 , ϕ〉
S ′,S

−−−→
η→0

−π
ˆ
R
ϕ(λ)µHf (dλ),

which shows that Im Âc = −π PH .

4.6.5 Proof of Lemma 4.14

Let us first assume that Im T̂c ≥ 0. The aim is to prove that Re T̂c ≥ 0 on (−∞, ω0]. Consider
to this end ϕ ∈ S (R) with Supp(ϕ) ⊂ (−∞, ω0] and ϕ ≥ 0. Then, for any ω ≥ ω0 and ω′ ≤ 0,
it holds ϕ(ω − ω′) = 0, so that

∀ω ≥ ω0, (Hϕ)(ω) = lim
ε→0+

ˆ
R\[−ε,ε]

ϕ(ω − ω′)
ω′

dω′ = lim
ε→0+

ˆ +∞

ε

ϕ(ω − ω′)
ω′

dω′ ≥ 0.

(4.109)
Let f ∈ H. In view of (4.14) and Lemma 4.76,〈〈

f
∣∣∣Re T̂c

∣∣∣ f〉 , ϕ〉
H−1,H1

= −
〈〈
f
∣∣∣H(Im T̂c

)∣∣∣ f〉 , ϕ〉
H−1,H1

= −
〈
H
(〈
f
∣∣∣Im T̂c

∣∣∣ f〉) , ϕ〉
H−1,H1

=
〈〈
f
∣∣∣Im T̂c

∣∣∣ f〉 ,Hϕ〉
H−1,H1

.
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The latter quantity is non-negative since Im T̂c ≥ 0 and Hϕ ≥ 0 on Supp(Im T̂c) ⊂ [ω0,+∞)
(by (4.109)).

Let us now assume that Re T̂c ≥ 0 on (−∞, ω0]. The aim is to prove that Im T̂c ≥ 0 on
the support of this distribution, which is included in [ω0,+∞). Consider therefore ϕ ∈ S (R)
with Supp(ϕ) ⊂ [ω0,+∞) and ϕ ≥ 0. Note that

∀ω ≤ ω0, (Hϕ)(ω) = lim
ε→0−

ˆ ε

−∞

ϕ(ω − ω′)
ω′

dω′ ≤ 0,

and, for any f ∈ H,〈〈
f
∣∣∣Im T̂c

∣∣∣ f〉 , ϕ〉
H−1,H1

= −
〈〈
f
∣∣∣Re T̂c

∣∣∣ f〉 ,Hϕ〉
H−1,H1

≥ 0.

This gives the desired conclusion.

4.6.6 Proof of Lemma 4.21

The fact that B1 ∈ B(L1(R2), L2(R3)) is a simple consequence of the following inequality: for
ϕ ∈ L1(R3), it holds, for almost all r ∈ R3,

|B1ϕ(r)| =
∣∣∣∣ˆ

R3

B1(r, r′)ϕ(r′)dr′
∣∣∣∣ ≤ ‖B1(r, ·)‖L∞(R3) ‖ϕ‖L1(R3).

This shows that B1ϕ ∈ L2(R3) with

‖B1ϕ‖L2(R3) ≤
(ˆ

R3

‖B1(r, ·)‖2L∞(R3) dr

)1/2

‖ϕ‖L1(R3).

Now, for f ∈ L2(R3), it is easy to see thatB1f is an integral operator with kernelB1(r, r′)f(r′).
In addition,

‖B1f‖2S2(L2(R3)) =

ˆ
R3

ˆ
R3

∣∣B1(r, r′)f(r′)
∣∣2 drdr′ ≤

ˆ
R3

ˆ
R3

‖B1(r, ·)‖2L∞(R3)|f(r′)|2 dr dr′

=

(ˆ
R3

‖B1(r, ·)‖2L2(R3)dr

)
‖f‖2L2(R3).

This gives the claimed result.

4.6.7 Proof of Theorem 4.24

Fix 0 < η < ω and f, g ∈ H. We start from (4.24), which we rewrite as

C̃+(ν + iω) =
i

2π

ˆ +∞

−∞
Ã+
(
ν + ν ′ − ω′ + i(ω − η)

)
� B̃−(ν ′ − ω′ − iη) dω′. (4.110)

By Proposition 4.13 and Proposition 4.17,

Ã+(z) = A∗1(z −A2)−1A1, B̃−(z) = B∗1(z +B2)−1B1. (4.111)

The poles of z 7→ Ã+
(
ν+ν ′+i(ω−η)−z

)
are located on the half-line i(ω−η)+(−∞, ν+ν ′−a),

while those of z 7→ B̃−(ν ′ − iη − z) are located on the half-line −iη + (b + ν ′,+∞). For any
closed contour not enclosing any point of those two half-lines, the integral of

z 7→ Ã+
(
ν + ν ′ + i(ω − η)− z

)
� B̃−(ν ′ − iη − z)
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on this contour vanishes. Let us choose the contour CL plotted in Figure 4.6 and evaluate the
contributions of the left-hand side of˛

CL

TrH

[
Ã+
(
ν + ν ′ + i(ω − η)− z

)
gB̃−(ν ′ − iη − z)f

]
dz = 0, (4.112)

on the various segments. Recall that we choose ν < a + b and ν ′ ∈ (−b, a − ν), so that
ν + ν ′ − a < 0 < ν ′ + b. Let us also emphasize that the operators appearing in the integrand
do not have singularities.

poles of B̃−(ν ′ − iη − ·)ν ′ + b

poles of Ã+(ν + ν ′ + i(ω − η)− ·)

ν + ν ′ − a

i(ω − η)

η

L

−L

L

−L

CL

Figure 4.6 – Contour CL used to compute the integral (4.112), with η > 0 small compared
to ω. Note that the condition ν + ν ′ − a < 0 < ν ′ + b ensures that the central vertical part of
the contour does not intersect the poles of the functions in the integrand.

Let us first consider the part of the integral corresponding to the right side of the contour.
Using (4.111), we obtain that for all ω′ ∈ [0, L],∣∣∣∣ˆ L

0
TrH

[
Ã+
(
ν + ν ′ − L+ i(ω − η − ω′)

)
gB̃−

(
ν ′ − L− i(ω′ + η)

)
f
]

dω′
∣∣∣∣

≤
ˆ L

0

∣∣∣∣TrH

[
A∗1

1

ν + ν ′ − L+ i(ω − η − ω′)−A2
A1gB

∗
1

1

ν ′ − L− i(ω′ + η) +B2
B1f

]∣∣∣∣ dω′
≤
∥∥B1f

∥∥
S2(H,Hb)

‖B1g‖S2(H,Hb) ‖A1‖2B(H,Ha)

×
ˆ L

0

∥∥∥∥ 1

ν + ν ′ − L+ i(ω − η − ω′)−A2

∥∥∥∥
B(Ha)

∥∥∥∥ 1

ν ′ − L− i(ω′ + η) +B2

∥∥∥∥
B(Hb)

dω′

≤ C‖f‖H‖g‖H
1

L

ˆ L

0

dω′

ω′ + η
= C‖f‖H‖g‖H

1

L
log

(
L+ η

η

)
,

where we have used A2− (ν+ ν ′) +L ≥ a− (ν+ ν ′) +L ≥ L. Similar estimates can be stated
for the upper, lower and left parts of the contour. For the upper part for instance, for which
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the integration is performed from z = L+ iL to z = iL, we get∣∣∣∣ˆ 0

L
TrH

[
Ã+
(
ν + ν ′ − ω′ + i(ω − η − L)

)
gB̃−

(
ν ′ − ω′ − i(η + L)

)
f
]

dω′
∣∣∣∣

≤ C‖f‖H‖g‖H
ˆ L

0

∥∥∥∥ 1

ν + ν ′ − ω′ + i(ω − η − L)−A2

∥∥∥∥
B(Ha)

∥∥∥∥ 1

ν ′ − ω′ + i(L+ η)−B2

∥∥∥∥
B(Hb)

dω′

≤ C‖f‖H‖g‖H
ˆ L

0

(
1

L+ η

)
1

ω′ + a− (ν + ν ′)
dω′

= C‖f‖H‖g‖H
log
(
L+ a− (ν + ν ′)

)
− log

(
a− (ν + ν ′)

)
L+ η

,

where we recall that a−(ν+ν ′) > 0. We then take the limit L→ +∞, so that the contributions
to the integral which are not on the imaginary axis or on the real axis vanish. We deduce
that ˆ ∞

−∞
TrH

[
Ã+
(
ν + ν ′ − ω′ + i(ω − η)

)
gB̃−(ν ′ − ω′ − iη)f

]
dω′

= i

ˆ +∞

−∞
TrH

[
Ã+
(
ν + ν ′ + i(ω − η + ω′)

)
gB̃−

(
ν ′ + i(ω′ − η)

)
f
]

dω′

= i

ˆ +∞

−∞
TrH

[
Ã+
(
ν + ν ′ + i(ω + ω′)

)
gB̃−(ν ′ + iω′)f

]
dω′.

In view of (4.110), we finally obtain that

C̃+(ν + iω) = − 1

2π

ˆ +∞

−∞
Ã+
(
ν + ν ′ + i(ω + ω′)

)
� B̃−(ν ′ + iω′) dω′. (4.113)

We next note that our choices for ν, ν ′ ensure that the expressions on both sides are analytic
for all ω > 0, and can be extended analytically to all ω ∈ R. Therefore, the above equality
also holds true for ω ≤ 0.

In a similar fashion, we prove that, for all ω ∈ R,

C̃−(ν + iω) = − 1

2π

ˆ +∞

−∞
Ã−
(
ν + ν ′ + i(ω + ω′)

)
� B̃+(ν ′ + iω′)dω′.

This equality is established as for (4.113) by considering C̃−(ν− iω) for ω > 0 and evaluating
the various parts of the left-hand side of

˛
CL

TrH

[
Ã−
(
ν + ν ′ − i(ω − η)− z

)
gB̃+(ν ′ + iη − z)f

]
dz = 0.

The poles of the integrand are on the half-lines

−i(ω − η) + (ν + ν ′ + a,+∞) and iη + (−∞,−b+ ν ′).

The conditions ν > −(a + b) and −a − ν < ν ′ < b ensure that −b + ν ′ < 0 < ν + ν ′ + a, so
that the integrand has no singularity on the imaginary axis.

Finally, since A+(τ) � B+(−τ) = A−(τ) � B−(−τ) = 0 for τ 6= 0, we can concatenate
C̃+(ν + iω) and C̃−(ν + iω), and obtain

C̃(ν + iω) = − 1

2π

ˆ +∞

−∞
Ã
(
ν + ν ′ + i(ω + ω′)

)
� B̃(ν ′ + iω′) dω′.
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4.6.8 Proof of Corollary 4.25

The proof is based on the representation (4.25) with the choice ω = 0. Consider ν < a+ b. It
holds

Ĉ+(ν) = C̃+(ν) = − 1

2π

ˆ +∞

−∞
Ã+(ν + ν ′ + iω′)� B̃−(ν ′ + iω′) dω′

= − 1

2π

ˆ +∞

−∞

[
A∗1

ν + ν ′ −A2 − iω′

(ν + ν ′ −A2)2 + (ω′)2
A1

]
�
[
B∗1

ν ′ +B2 − iω′

(ν ′ +B2)2 + (ω′)2
B1

]
dω′.

The odd terms in ω′ cancel out by symmetry, so that

Ĉ+(ν) =
1

2π

ˆ +∞

−∞

[
A∗1

A2 − (ν + ν ′)

(ν + ν ′ −A2)2 + (ω′)2
A1

]
�
[
B∗1

ν ′ +B2

(ν ′ +B2)2 + (ω′)2
B1

]
dω′

+
1

2π

ˆ +∞

−∞

[
A∗1

ω′

(ν + ν ′ −A2)2 + (ω′)2
A1

]
�
[
B∗1

ω′

(ν ′ +B2)2 + (ω′)2
B1

]
dω′.

(4.114)
This shows that this operator is positive and self-adjoint in view of Lemmas 4.22 and 4.23.
As a result, Im Ĉ+(ν) = 0 for ν < a+ b. This proves the first assertion in (4.29). Also, we get
from (4.114) that Ĉ+(ν) = Re Ĉ+ ≥ 0 for ν < a+ b. Together with Lemma 4.14, this shows
the first assertion of (4.28). The results concerning Im Ĉ− are proved in a similar way.

4.6.9 Proof of Proposition 4.26

The first assertion follows from the fact that the domain of HN is H2(R3N ) and from the
equalities HNRe (Ψ0

N ) = E0
NRe (Ψ0

N ) and HN Im (Ψ0
N ) = E0

N Im (Ψ0
N ).

The density ρ0
N is bounded since it decreases exponentially fast away from the nuclei and

is continuous [FHOHOØS02].

In order to prove (4.36), we rely on (4.31) and (4.34) in order to write (recall that Ψ0
N is

real valued)

〈
Ψ0
N |a†(g)a(f)|Ψ0

N

〉
HN

=
〈
a(g)Ψ0

N

∣∣a(f)Ψ0
N

〉
HN

= N

ˆ
R3(N−1)

(ˆ
R3

g(r)Ψ0
N (r,~z) dr

)(ˆ
R3

f(r′)Ψ0
N (r′,~z) dr′

)
d~z

=

ˆ
R3

ˆ
R3

g(r)γ0
N (r, r′)f(r′) dr dr′ = 〈f |γ0

N |g〉.

To bound the kernel |γ0
N (r, r′)|2, we use the Cauchy-Schwarz inequality and get

|γ0
N (r, r′)|2 = N2

∣∣∣∣∣
ˆ

(R3)N−1

Ψ0
N (r,~z)Ψ0

N (r′,~z) d~z

∣∣∣∣∣
2

≤ N2

(ˆ
(R3)N−1

∣∣Ψ0
N (r,~z)

∣∣2 d~z

)(ˆ
(R3)N−1

∣∣Ψ0
N (r′,~z)

∣∣2 d~z

)
≤ ρ0

N (r)ρ0
N (r′),

Let us finally recall why ρ0
N,2 defines a bounded integral operator. Note first that it
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holds ρ0
N,2(r, r′) ≥ 0. For f, g ∈ H1, the Cauchy-Schwarz inequality then leads to∣∣〈f |ρ0
N,2|g〉

∣∣ =

∣∣∣∣ˆ
R3

ˆ
R3

f(r)ρ0
N,2(r, r′)g(r′) dr dr′

∣∣∣∣
≤
(ˆ

R3

ˆ
R3

|f(r)|2ρ0
N,2(r, r′) dr dr′

)1/2(ˆ
R3

ˆ
R3

|g(r′)|2ρ0
N,2(r, r′) drdr′

)1/2

=
(N − 1)

2

(ˆ
R3

|f |2 ρ0
N

)1/2(ˆ
R3

|g|2 ρ0
N

)1/2

≤ (N − 1)

2

∥∥ρ0
N

∥∥
L∞
‖f‖H1‖g‖H1 .

This shows that ρ0
N,2 defines a bounded operator on H1, with operator norm lower or equal

to (N − 1)
∥∥ρ0

N

∥∥
L∞

/2.

4.6.10 Proof of Theorem 4.36

Since
A−f(r1, . . . , rN−1) =

√
N

ˆ
R3

f(r)Ψ0
N (r, r1, . . . , rN−1) dr,

and introducing

∆N−1 =
N−1∑
i=1

∆ri ,

it is easily seen that (1−∆N−1)A− is an integral operator whose kernel is[
(1−∆N−1)Ψ0

N

]
(r1, . . . , rN−1; r).

As Ψ0
N ∈ H2(R3N ), it follows that (1−∆N−1)A− ∈ S2(H1,HN−1). Therefore, any operator

of the form A∗−BA−, where the operator B on HN−1 is such that

(1−∆N−1)−1/2B(1−∆N−1)−1/2 ∈ B(H1),

is trace-class. In particular, the operator

∂τGh(τ)
∣∣
τ=0−

= −A∗−(HN−1 − E0
N )A−,

is trace-class.
Let us now compute more explicitly the action of this operator. Let

h1 := −1

2
∆ + vext.

We use the definition (4.31) of a(f), and obtain(
N−1∑
i=1

h1(ri)

)[
a(f)Ψ0

N

]
(r1, . . . , rN−1) =

√
N

ˆ
R3

f(rN )

(
N−1∑
i=1

h1(ri)

)
Ψ0
N (r1, . . . , rN ) drN

=
√
N

ˆ
R3

f(rN )
(
H0,NΨ0

N

)
(r1, . . . , rN ) drN (4.115)

−
√
N

ˆ
R3

(h1f)(rN )Ψ0
N (r1, . . . , rN ) drN ,

so that

(HN−1A−f) (r1, . . . , rN−1) = E0
N (A−f) (r1, . . . , rN−1)− (A−h1f) (r1, . . . , rN−1)

−
√
N

N−1∑
i=1

ˆ
R3

f(r)
Ψ0
N (r, r1, . . . , rN−1)

|r− ri|
dr.
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Moreover, it is easily seen that, for any ΦN−1 ∈ HN−1,(
A∗−ΦN−1

)
(r) =

√
N

ˆ
R3(N−1)

Ψ0
N (r, r1, . . . , rN−1)ΦN−1(r1, . . . , rN−1) dr1 . . . drN−1.

Therefore, (
A∗−
(
HN−1 − E0

N

)
A−f

)
(r) = −

(
γ0
Nh1f

)
(r)−

ˆ
R3

KN (r, r′)f(r′) dr′,

with

KN (r, r′) = N
N−1∑
i=1

ˆ
R3(N−1)

Ψ0
N (r, r1, . . . , rN−1)Ψ0

N (r′, r1, . . . , rN−1)

|r′ − ri|
dr1 . . . drN−1.

Since we already know that the integral operator KN on H1, with kernel KN (r, r′) is trace-
class, and that Ψ0

N is continuous and decays exponentially fast (see e.g. [FHOHOØS02]), we
have [Sim05, Theorem A.2]

TrH1(KN ) =

ˆ
R3

KN (r, r) dr = N(N − 1)

ˆ
R3(N−1)

∣∣Ψ0
N (r, r1, . . . , rN−1)

∣∣2
|r− r1|

dr1 . . . drN−1

= 2

ˆ
R3

ˆ
R3

ρ0
N,2(r, r′)

|r− r′|
dr dr′,

where we recall that ρ0
N,2 is the two-body density matrix defined in (4.35).

Finally,

TrH1

(
∂τGh(τ)

∣∣
τ=0−

)
= −TrH1

(
A∗−(HN−1 − E0

N )A−
)

= TrH1

(
γ0
Nh1

)
+ 2

ˆ
R3

ˆ
R3

ρ0
N,2(r, r′)

|r− r′|
dr dr′,

which gives the claimed result in view of the following representation of the ground state
energy:

E0
N = 〈Ψ0

N |HN |Ψ0
N 〉 = TrH1

(
h1γ

0
N

)
+

ˆ
R3

ˆ
R3

ρ0
N,2(r, r′)

|r− r′|
dr dr′. (4.116)

4.6.11 Proof of Lemma 4.42

Proposition 4.26 shows that ρ0
N ∈ Lp(R3) for 1 ≤ p ≤ +∞. This implies that

(∑N
i=1 v(ri)

)
Ψ0
N

belongs to HN for v ∈ C′ since, from the inequality
(∑N

i=1 v(ri)
)2
≤ N

∑N
i=1 v(ri)

2 and
Hölder’s inequality, it holds that

ˆ
R3N

(
N∑
i=1

v(ri)

)2

|Ψ0
N (r1, . . . , rN )|2 dr1 . . . drN ≤ N

ˆ
R3

v2ρ0
N ≤ N‖v‖2L6‖ρ0

N‖L3/2

≤ NCC′‖v‖2C′‖ρ0
N‖L3/2 ,

where we have used the embedding C′ ↪→ L6(R3). Moreover, ρ0
N ∈ L6/5(R3) ↪→ C, so that∣∣〈v, ρ0

N 〉C′,C
∣∣ ≤ ‖v‖C′‖ρ0

N‖C . We therefore deduce that B is a bounded operator from C′ to
HN , whose norm satisfies

‖B‖B(C′,HN ) ≤
√
NCC′‖ρ0

N‖L3/2 + ‖ρ0
N‖C .

We finally have, for v ∈ C′,〈
Ψ0
N

∣∣∣∣∣
N∑
i=1

v(ri)

∣∣∣∣∣Ψ0
N

〉
HN

=

ˆ
R3

v(r)ρ0
N (r) dr = 〈v, ρ0

N 〉C′,C

from which we deduce that 〈Ψ0
N |Bv〉HN = 0. Since v was arbitrary, we conclude thatB∗Ψ0

N = 0.
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4.6.12 Proof of Theorem 4.46

Consider f, g ∈ C∞c (R3,C) (that is C∞ with compact supports). From (HN −E0
N )|Ψ0

N 〉 = 0,
we obtain

〈f, v−1
c B∗(HN − E0

N )Bg〉C′,C = 〈f
∣∣B∗(HN − E0

N )B
∣∣ g〉C′ =

〈
Bf
∣∣HN − E0

N

∣∣Bg〉HN
=

〈
Ψ0
N

∣∣∣∣∣∣
 N∑
j=1

f(rj)

 (HN − E0
N )

(
N∑
i=1

g(ri)

)∣∣∣∣∣∣Ψ0
N

〉
HN

.

We next observe that

(HN − E0
N )

(
N∑
i=1

g(ri)Ψ
0
N (r1, . . . , rN )

)
=

=

(
−1

2

N∑
i=1

∆g(ri)

)
Ψ0
N (r1, . . . , rN )−

N∑
i=1

∇g(ri) · ∇riΨ
0
N (r1, . . . , rN ),

so that, using the fact that Ψ0
N is real-valued (see Proposition 4.26),〈

f
∣∣B∗(HN − E0

N )B
∣∣ g〉C′ =

=
N∑

i,j=1

ˆ
R3N

f(rj)

(
−1

2
∆g(ri)

)
|Ψ0

N (r1, . . . rN )|2 dr1 . . . drN

−
N∑

i,j=1

ˆ
R3N

f(rj)Ψ
0
N (r1, . . . , rN )∇g(ri) · ∇riΨ

0
N (r1, . . . , rN ) dr1 . . . drN

=
1

2

N∑
i=1

ˆ
R3N

∇f(rj) · ∇g(ri)|Ψ0
N (r1, . . . rN )|2dr1 . . . drN

+
1

2

N∑
i,j=1

ˆ
R3N

f(rj)∇g(ri) · ∇ri

(∣∣Ψ0
N (r1, . . . , rN )

∣∣2) dr1 . . . drN

−
N∑

i,j=1

ˆ
R3N

f(rj)Ψ
0
N (r1, . . . , rN )∇g(ri) · ∇riΨ

0
N (r1, . . . , rN )dr1 . . . drN

=
1

2

ˆ
R3

∇f(r) · ∇g(r)ρ0
N (r)dr.

We deduce that 2v−1
c B∗(HN − E0

N )B = 2v−1
c B∗(H]

N − E0
N )B = −div

(
ρ0
N∇·

)
as operators

on the core C∞c (R3,C). We next observe that div
(
ρ0
N∇·

)
can be extended as a bounded

operator from C′ to C. Indeed, for f, g ∈ C∞c (R3,C),∣∣∣〈g,div
(
ρ0
N∇f

)〉
C′,C

∣∣∣ ≤ ∥∥ρ0
N

∥∥
L∞
‖∇f‖L2‖∇g‖L2 = 4π‖ρ0

N‖L∞‖f‖C′‖g‖C′ ,

which shows that ∥∥div
(
ρ0
N∇·

)∥∥
B(C′,C) ≤ 4π

∥∥ρ0
N

∥∥
L∞

.

Therefore, 2v−1
c B∗(H]

N − E0
N )B = −div

(
ρ0
N∇·

)
as bounded operators from C′ to C.

For the second part of the proof, we first note that it is sufficient to check the convergence
in the case when f = g ∈ C∞c (R3,R). It holds:〈
f, v−1

c B∗
H]
N − E0

N

(H]
N − E0

N )2 + ω2
ω2Bf

〉
C′,C

− 〈f, v−1
c B∗(H]

N − E
0
N )Bf〉C′,C =

= −

〈
f, v−1

c B∗

(
(H]

N − E0
N )3

(H]
N − E0

N )2 + ω2

)
Bf

〉
C′,C

= −
ˆ +∞

0

(
λ3

λ2 + ω2

)
d

∥∥∥∥PH]
N−E

0
N

λ (Bf)

∥∥∥∥2

HN
,
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where we used the spectral decomposition of H]
N − E0

N in the last equality. The integrand
of the last integral converges pointwise to 0 when |ω| → +∞. It is also non-negative and
uniformly bounded by λ1[0,+∞)(λ), which is integrable since
ˆ +∞

0
λd

∥∥∥∥P (H]
N−E

0
N )

λ (Bf)

∥∥∥∥2

HN
=
〈
f, v−1

c B∗
(
H]
N − E

0
N

)
Bf
〉
C′,C

=
1

2

ˆ
R3

ρ0
N |∇f |2 <∞.

The weak convergence therefore follows from the dominated convergence theorem.
To prove the strong convergence, we use the following rewriting for g ∈ C′:

v−1
c B∗

(
(H]

N − E0
N )3

(H]
N − E0

N )2 + ω2

)
Bg = v−1

c B∗AωMg,

where

Aω =
(H]

N − E0
N )2

(H]
N − E0

N )2 + ω2

strongly converge to 0 on HN , and

Mg := (H]
N − E

0
N )Bg =

N∑
i=1

(
−1

2
∆g(ri)Ψ

0
N −∇g(ri) · ∇riΨ

0
N

)
.

When g ∈ C′ is such that ∆g ∈ L2, it holds that Mg ∈ HN (by a proof similar to the one in
Section 4.6.11), which allows us to conclude.

4.6.13 Proof of Proposition 4.48

We first prove (4.68) and (4.69). We start from an expression similar to the one provided by
Lemma 4.38:

G̃0(z) := A0,+

(
z − (H0,N+1 − E0

0,N )
)−1

A∗0,+ +A∗0,−
(
z +H0,N−1 − E0

0,N

)−1
A0,−.

Then, we notice that, for f ∈ H1, it holds
N+1∑
i=1

h1(ri)
(
A∗0,+f

)
=

N+1∑
i=1

h1(ri)
(
a†(f)|Φ0

N 〉
)

= a†(h1f) |Φ0
N 〉+ a†(f)

∣∣∣∣∣
(

N∑
i=1

h1(ri)

)
Φ0
N

〉
,

(4.117)
or, equivalently,

H0,N+1A
∗
0,+(f) = A∗0,+ (h1f) + E0

0,NA
∗
0,+(f);

so that (
z − (H0,N+1 − E0

0,N )
)
A∗0,+ = A∗0,+(z − h1). (4.118)

Hence, the particle part of (4.68) is a consequence of the equality A0,+A
∗
0,+ = 1H − γ0

0,N

(similarly to (4.39)). To handle the hole part, we use computations similar to (4.115), and
find

H0,N−1A0,−(f) = E0
0,NA0,−(f)−A0,− (h1f) .

We deduce that
(z +H0,N−1 − E0

0,N )A0,− = A0,−(z − h1), (4.119)

and we conclude using the fact that A∗0,−A0,− = γ0
0,N . Combining (4.118) and (4.119) leads to

G̃0(z)(z−h1) = A∗0,−A0,−+A0,+A
∗
0,+ = 1H1 . Upon replacing z by z and passing to adjoints,

it also follows (z − h1)G̃0(z) = 1H1 . This shows that G̃0(z) = (z − h1)−1.

To prove the first assertion of Proposition 4.48, we notice that the operator-valued func-
tions τ 7→ −iΘ(τ)

(
1H1 − γ0

0,N

)
e−iτh1 and τ 7→ G0,p(τ) have the same Laplace transforms

(see Proposition 4.13). We conclude that the two operators coincide since the Laplace trans-
form is one-to-one. The proof for G0,h is similar.
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4.6.14 Proof of Proposition 4.50

Let z ∈ C \R. Let us first prove that G̃(z) is a one-to-one operator. Let f ∈ H1 be such that
G̃(z)f = 0. From

Im
(〈
f
∣∣∣G̃(z)

∣∣∣ f〉) = Im

(〈
A∗+f

∣∣∣(z − (HN+1 − E0
N )
)−1
∣∣∣A∗+f〉HN+1

(4.120)

+
〈
A−f

∣∣∣(z − (E0
N −HN−1)

)−1
∣∣∣A−f〉

HN−1

)
=− Im (z)

ˆ
R

(
(Re (z) + E0

N − λ)2 + Im (z)2
)−1

d
∥∥∥PHN+1

λ

(
A∗+f

)∥∥∥2

HN+1

− Im (z)

ˆ
R

(
(Re (z)− E0

N + λ)2 + Im (z)2
)−1

d
∥∥∥PHN−1

λ (A−f)
∥∥∥2

HN−1

,

(4.121)

we deduce that both terms in the right-hand side must vanish. In particular, since Im (z) 6= 0,
it must hold A∗+f = A−f = 0. In view of the identity A∗−A− + A+A

∗
+ = 1H1 , this implies

f = 0. Hence, G̃(z) is one-to-one.
As a consequence, G̃(z) is an invertible operator from H1 to its image D̃(z). Since(

G̃(z)
)∗

= G̃(z) is also one-to-one, D̃(z) is dense in H1.

Let us finally prove that D̃(z) ⊂ H2(R3). We use to this end the equality (4.51). Let us
consider the first term in this equality. A simple computation shows that,

∀ΦN+1 ∈ HN+1, (A+ΦN+1) (r) =
√
N + 1

ˆ
R3N

ΦN+1(r,~z)Ψ0
N (~z) d~z,

so that A+ is a bounded operator from H2(R3N ) ∩ HN to H2(R3). Since A∗+ is a bounded
operator from H1 to HN+1 and (z − HN+1 + E0

N )−1 is a bounded operator from HN+1 to
H2(R3N ) ∩ HN , we deduce that A+(z − HN+1 + E0

N )−1A∗+ is a bounded operator from H1

to H2(R3). Similarly, for any ΦN−1 ∈ HN−1,(
A∗−ΦN−1

)
(r) =

√
N

ˆ
R3(N−1)

ΦN−1(r2, . . . , rN )Ψ0
N (r, r2, . . . , rN ) dr2 . . . drN ,

so that A∗− is a bounded operator from HN−1 to H2(R3). This allows us to prove that
A∗−(z + HN−1 − E0

N )−1A− is a bounded operator from H1 to H2(R3). Finally, G̃(z) is a
bounded operator from H1 to H2(R3), which proves that D̃(z) ⊂ H2(R3).

4.6.15 Proof of Lemma 4.56

Let us first prove that
(
P 0,+

sym(τ)
)
τ∈R

defines a bounded causal operator. The proof is similar

for
(
P 0,−

sym(τ)
)
τ∈R

. We rely on the following result.

Lemma 4.77. For all h ∈ L6(R3), the operator γ0
0,Nh is a Hilbert-Schmidt operator on H1,

and there exists K ∈ R+ such that

∀h ∈ L6(R3),
∥∥γ0

0,Nh
∥∥
S2(H1)

≤ K‖h‖L6 .

Proof of Lemma 4.77. Since γ0
0,N is a projector, for h ∈ L6(R3), the operator

hγ0
0,Nγ

0
0,Nh = h(1−∆)−1/2(1−∆)1/2γ0

0,N (1−∆)1/2(1−∆)−1/2h
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is the composition of (1 − ∆)1/2γ0
0,N (1 − ∆)1/2 ∈ S1(H1) with the two bounded operators

(1−∆)−1/2h and h(1−∆)−1/2. In fact (1−∆)−1/2h ∈ S6(H1) with∥∥∥(1−∆)−1/2h
∥∥∥
S6(H1)

≤ K‖h‖L6

by the Kato-Seiler-Simon inequality [SS75, Sim05]. Therefore, γ0
0,Nh ∈ S2(H1) with∥∥γ0

0,Nh
∥∥
S2(H1)

≤ K‖h‖L6 ,

which concludes the proof.

We now proceed to the proof of Lemma 4.56. We first note that, for f, g ∈ C∞c (R3,C), it
holds

〈f |v1/2
c g〉H1 = 〈v−1/2

c f |g〉C = 〈v1/2
c f, g〉C′,C . (4.122)

In particular, for τ ∈ R+
τ , and for f, g ∈ H1, we get

〈f |P 0,+
sym(τ)g〉H1 =

〈
f
∣∣∣v1/2
c P 0,+(τ)v1/2

c g
〉
H1

= −iΘ(τ)
〈
v1/2
c f,G0,p(τ)�G0,h(−τ)v1/2

c g
〉
C′,C

= −iΘ(τ)TrH1

[
G0,p(τ)

(
v1/2
c g

)
G0,h(−τ)

(
v1/2
c f

)]
.

Let us prove that G0,p(τ)
(
v

1/2
c g

)
G0,h(−τ)

(
v

1/2
c f

)
is indeed a trace-class operator. Re-

placing G0,p and G0,h by their expressions found in Proposition 4.48, and owing to the fact
that γ0

0,N is a projector commuting with h1, we obtain

∣∣〈f |P 0,+
sym(τ)|g〉

∣∣ =
∣∣∣TrH1

(
(1H1 − γ0

0,N )e−iτh1

(
v1/2
c g

)
γ0

0,Neiτh1γ0
0,Nγ

0
0,N

(
v1/2
c f

))∣∣∣
≤
∥∥∥(1H1 − γ0

0,N )e−iτh1

∥∥∥
B(H1)

∥∥∥eiτh1

∥∥∥
B(H1)

×
∥∥∥γ0,N

(
v1/2
c f

)∥∥∥
B(H1)

∥∥∥γ0,N

(
v1/2
c g

)∥∥∥
B(H1)

‖γ0
0,N‖S1(H1).

According to Lemma 4.41, v1/2
c f ∈ C′ ↪→ L6(R3). Therefore, γ0

0,N

(
v

1/2
c f

)
∈ S2(H1) by

Lemma 4.77, hence is bounded, with∥∥∥γ0
0,N

(
v1/2
c f

)∥∥∥
B(H1)

≤
∥∥∥γ0

0,N

(
v1/2
c f

)∥∥∥
S2(H1)

≤ C
∥∥∥v1/2

c f
∥∥∥
L6
≤ C̃‖f‖H1 .

Similarly,
∥∥∥(v1/2

c g
)
γ0

0,N

∥∥∥
B(H1)

≤ C̃‖g‖H1 . Altogether, we found a constant C ∈ R+ indepen-

dent of τ such that

∀f, g ∈ H1,
∣∣〈f |P 0,+

sym(τ)|g〉
∣∣ ≤ C‖f‖H1‖g‖H1 ,

which proves that
(
P 0,+

sym(τ)
)
τ∈R

is a bounded causal operator on H1.

Let us now prove that φk is a bounded operator from H1 to C. Recall that φk is real-valued
and φk ∈ H2(R3) ⊂ L2(R3,R) ∩ L∞(R3,R) for 1 ≤ k ≤ N . For f ∈ H1, we obtain

‖φkf‖C ≤ C ‖φkf‖L6/5 ≤ C ‖φk‖L3 ‖f‖H1 ,

where C is a constant independent of f . The proof that φk is also a bounded operator from C′
to H1 is similar, noticing that C′ ↪→ L6(R3). We now use (4.80), and find that, for f, g ∈ H1
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and for τ ∈ R+
τ ,

〈f |P 0,+
sym(τ)|g〉 = −i

N∑
k=1

TrH1

(
(1H1 − γ0

0,N )e−iτh1

(
v1/2
c g

)
|φk〉eiτεk〈φk|

(
v1/2
c f

))
= −i

N∑
k=1

TrH1

(
(1H1 − γ0

0,N )e−iτ(h1−εk)
∣∣∣(v1/2

c g
)
φk

〉〈(
v1/2
c f

)
φk

∣∣∣)
= −i

N∑
k=1

〈(
v1/2
c f

)
φk

∣∣∣ (1H1 − γ0
0,N )e−iτ(h1−εk)(1H1 − γ0

0,N )
∣∣∣(v1/2

c g
)
φk

〉
,

(4.123)

which gives (4.81).

We finally prove that P 0,−
sym(τ) = P 0,+

sym(−τ). Performing similar calculation as for P 0,+
sym, we

find that, for f, g ∈ H1 and for τ < 0,

〈f |P 0,−
sym(τ)|g〉 = −i

N∑
k=1

〈(
v1/2
c g

)
φk

∣∣∣ (1H1 − γ0
0,N )eiτ(h1−εk)

∣∣∣(v1/2
c f

)
φk

〉
= 〈g|P 0,+

sym(−τ)|f〉.

For a bounded operator A ∈ B(H1) and for f, g ∈ H1, it holds 〈f |Ag〉 = 〈Ag|f〉 = 〈g|A∗f〉,
so that, since the functions φk are real-valued for 1 ≤ k ≤ N ,

〈f |P 0,−
sym(τ)|g〉 =

〈
f
∣∣∣(P 0,+

sym(−τ)
)∗
g

〉
. (4.124)

Since h1 is real-valued, in the sense that h1f is real-valued whenever f is real-valued, we easily
get that

∀f ∈ H1, (1H1 − γ0
0,N )e−iτh1f = (1H1 − γ0

0,N )eiτh1f,

so that, (
P 0,+

sym(−τ)
)∗
g = P 0,+

sym(−τ)g.

Together with (4.124), this proves P 0,−(τ) = P 0,+(−τ)∗.

4.6.16 Proof of Proposition 4.59

The expression for P̃ 0
sym in (4.84) comes from the expression for P̃ 0

sym in (4.82). Since for
k ≤ N , it holds εk ≤ εN , we obtain

∀1 ≤ k ≤ N, (1H1 − γ0
0,N )(h1 − εk) ≥ εN+1 − εN > 0. (4.125)

From (4.84), we deduce that P̃ 0
sym(iω) is a negative bounded operator for all ω ∈ Rω. The

self-adjointness comes from Remark 4.57.

The bound (4.85) is proved similarly as in Lemma 4.29. Let us now prove (4.86). From (4.125),
it holds that, for all 1 ≤ k ≤ N ,

0 ≤ (1H1−γ0
0,N )

h1 − εk
ω2 + (h1 − εk)2

≤ sup
E≥εN+1−εN

(
E

ω2 + E2

)
=


1

2ω
if ω ≥ εN+1 − εN
εN+1 − εN

ω2 + (εN+1 − εN )2
otherwise.
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In particular, there exists a constant C ∈ R+ such that

∀1 ≤ k ≤ N, ∀ω ∈ Rω, 0 ≤ (1H1 − γ0
0,N )

h1 − εk
ω2 + (h1 − εk)2

≤ C√
ω2 + 1

.

Using the fact that for 1 ≤ k ≤ N , φk is real-valued, with
∑N

k=1 φ
2
k = ρ0

0,N , we obtain

∀ω ∈ Rω, 0 ≤ −P̃ 0
sym(iω) ≤ 2C√

ω2 + 1

N∑
k=1

v1/2
c φ2

kv
1/2
c =

2C√
ω2 + 1

v1/2
c ρ0

0,Nv
1/2
c ,

which proves (4.86). The fact that v1/2
c ρ0

0,Nv
1/2
c is indeed a bounded self-adjoint operator

on H1 comes from the fact that v1/2
c is a bounded operator from C to H1 and from H1

to C′, and that the operator of multiplication by φk is a bounded operator from C′ to H1 and
from H1 to C. Together with the fact that the function ω 7→ (ω2 + 1)−1/2 is in Lp(Rω) for
all p > 1, this implies that P̃ 0

sym(i·) ∈ Lp(Rω,S(H1)) for all p > 1. The analyticity of this
map is straightforward.

4.6.17 Proof of Theorem 4.60

Let us prove the equality 2
∑N

k=1 φk(1H1 − γ0
0,N )(h1 − εk)φk = −div

(
ρ0

0,N∇·
)
, as operators

from C′ to C. We first note that, since φk ∈ L4(R3) for 1 ≤ k ≤ N , it holds φkφl ∈ H1

for 1 ≤ k, l ≤ N . In particular,
N∑
k=1

φkγ
0
0,N (h1 − εk)φk =

N∑
k=1

N∑
l=1

|φkφl〉(εl − εk)〈φlφk| = 0,

so that

2

N∑
k=1

φk(1H1 − γ0
0,N )(h1 − εk)φk = 2

N∑
k=1

φk(h1 − εk)φk. (4.126)

Consider now f, g ∈ C∞c (R3,C). In view of the equality

(h1 − εk) (φkg) = φk

(
−1

2
∆g

)
−∇φk · ∇g,

it follows that

2

〈
f

∣∣∣∣∣
N∑
k=1

φk(h1 − εk)φk

∣∣∣∣∣g
〉
H1

=

〈
f

∣∣∣∣∣
N∑
k=1

φ2
k (−∆g)

〉
H1

− 2

〈
f

∣∣∣∣∣
N∑
k=1

φk∇φk · ∇g

〉
H1

= 〈f |ρ0
0,N (−∆g)〉H1 − 〈f |∇ρ0

0,N · ∇g〉H1 =

ˆ
R3

ρ0
0,N∇f · ∇g,

where we used an integration by part to obtain the last equality. Together with (4.126), we
obtain that the operators 2

∑N
k=1 φk(1H1 −γ0

0,N )(h1− εk)φk and −div
(
ρ0

0,N∇·
)
are equal on

the core C∞c (R3,C). The end of the proof is similar to the one of Theorem 4.46.

4.6.18 Proof of Lemma 4.62

It is sufficient to prove that, for any ν ′ < εN+1, ν > εN − ν ′, ω, ω′ ∈ Rω, and f, g ∈ H1, it
holds

TrH1

((
v1/2
c f

)
G̃0,h(ν + ν ′ + i(ω + ω′))

(
v1/2
c g

)
G̃0,p(ν ′ + iω′)

)
= TrH1

(
G̃0,h(ν + ν ′ + i(ω + ω′))

(
v1/2
c g

)
G̃0,p(ν ′ + iω′)

(
v1/2
c f

))
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We will only consider the case ν = 0, ν ′ = µ0, ω = ω′ = 0 for simplicity, the other cases
being similar. We rely on the fact that if A,B ∈ B(H1) are such that AB and BA are trace-
class operators, then Tr(AB) = Tr(BA) [Sim05]. In our case, we consider f, g ∈ C∞c ⊂ H1, so
that f1 := v

1/2
c f and g1 := v

1/2
c g are in C′∩L∞, and we set A = f1 and B = G̃0,h(µ0)gG̃0,p(µ0).

The operators A and B are bounded operators on H1. Moreover, from Proposition (4.48), we
get

BA = G̃0,h(µ0)g1G̃0,p(µ0)f1 = γ0
0,N

(
1

µ0 − h1
g1

)(
1H1 − γ0

0,N

µ0 − h1
f1

)
.

It holds γ0
0,N ∈ S1(H1). Also, from the definition of µ0, it is easy to see that there exists

0 < c ≤ C <∞ such that

c(1−∆) ≤ |µ0 − h1| ≤ C(1−∆).

In particular, the operator (µ0 − h1)−1g1 =
[
(µ0 − h1)−1(1−∆)

] [
(1−∆)−1g1

]
is the com-

position of two bounded operators. Actually, the operator (1 − ∆)−1g1 is in the Schatten
class S6(H1), thanks to the Kato-Seiler-Simon inequality [SS75, Sim05], and it holds∥∥(1−∆)−1g1

∥∥
B(H1)

≤
∥∥(1−∆)−1g1

∥∥
S6(H1)

≤ C‖g1‖L6 ≤ C ′‖g‖H1 , (4.127)

where C ′ ∈ R+ is a constant independent of g. Similarly, (1 − γ0,N )(µ0 − h1)−1f1 is a
bounded operator, satisfying estimates similar to (4.127). Altogether, we deduce that, for all
f, g ∈ C∞c (R3),

G̃0,h(µ0)
(
v1/2
c g

)
G̃0,p(µ0)

(
v1/2
c f

)
∈ S1(H1),

with ∥∥∥G̃0,h(µ0)
(
v1/2
c g

)
G̃0,p(µ0)

(
v1/2
c f

)∥∥∥
S1(H1)

≤ C‖g‖H1‖f‖H1 , (4.128)

where C ∈ R+ is a constant independent of f and g. The proof thatAB = G̃0,p(µ0)g1G̃0,h(µ0)f1

is trace-class is similar. As a result, we deduce that for any f, g ∈ C∞c ,

TrH1

((
v1/2
c f

)
G̃0,h(µ0)

(
v1/2
c g

)
G̃0,p(µ0)

)
= TrH1

(
G̃0,h(µ0)

(
v1/2
c g

)
G̃0,p(µ0)

(
v1/2
c f

))
.

The proof for the general case f, g ∈ H1 is deduced by density from the estimate (4.128).

4.6.19 Proof of Proposition 4.73

Let us first prove that s is a bounded linear operator. Let G̃app(µ0 +i·) ∈ L2(Rω,B(H1)). For
f, g ∈ H1 and ω ∈ Rω,〈
f
∣∣∣s [G̃app

]
(µ+ iω)

∣∣∣g〉 = 〈f |Kx|g〉 −
1

2π

ˆ +∞

−∞
TrH1

(
G̃app

(
µ0 + i(ω + ω′)

)
gW̃ 0

c (iω′)f
)

dω′.

Let us first treat the exchange part Kx, and prove that it is a Hilbert-Schmidt operator. From
the definition (4.99), Kx is an integral operator, and, from Proposition 4.26, its kernel satisfies

ˆ
R3

ˆ
R3

∣∣Kx(r, r′)
∣∣2 dr dr′ ≤

ˆ
R3

ˆ
R3

ρ0
0,N (r)ρ0

0,N (r′)

|r− r′|2
dr dr′ <∞,

where the last inequality comes from the fact that ρ0
0,N ∗ | · |−2 ∈ L∞(R3) (since it holds

ρ0
0,N ∈ L1(R3) ∩ L∞(R3), while | · |−2 ∈ L1(R3) + L∞(R3)) and ρ0

0,N ∈ L1(R3). We conclude
that Kx is a Hilbert-Schmidt operator, hence is bounded.

For the correlation part, we use the following lemma.
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Lemma 4.78. For all f, g ∈ H1 and all ω ∈ Rω, the operator gW̃ 0
c (iω)f is trace-class, and

∃C ∈ R+, ∀f, g ∈ H1,
∥∥∥gW̃ 0

c (iω)f
∥∥∥
S1(H1)

≤ C

(ω2 + 1)1/2
‖f‖H1‖g‖H1 . (4.129)

Proof of Lemma 4.78. We first prove (4.129) for f = g ∈ H1. Let ψ ∈ C∞c (R3,C), we have〈
ψ
∣∣∣fW̃ 0

c (iω)f
∣∣∣ψ〉 =

〈
ψ
∣∣∣fv1/2

c χ̃0
sym(iω)v1/2

c f
∣∣∣ψ〉 ,

and we infer from (4.95) that

∀f ∈ H1, ∀ω ∈ Rω,
∥∥∥fW̃ 0

c (iω)f
∥∥∥
S1(H1)

≤ C

(ω2 + 1)1/2

∥∥fvcρ0
0,Nvcf

∥∥
S1(H1)

.

Since

∥∥fvcρ0
0,Nvcf

∥∥
S1(H1)

=
∥∥∥√ρ0

0,Nvcf
∥∥∥2

S2(H1)
=

ˆ
R3

ˆ
R3

ρ0
0,N (r) |f(r′)|2

|r− r′|2
dr dr′ ≤ C‖f‖2H1

,

where we used again the fact that ρ0
0,N ∗ | · |−2 is bounded, we obtain that (4.129) holds true

for f = g. For f 6= g, we deduce from the fact that χ̃0
sym(iω) is a bounded self-adjoint negative

operator, that∥∥∥gW̃ 0
c (iω)f

∥∥∥
S1(H1)

=
∥∥∥gv1/2

c χ̃0
sym(iω)v1/2

c f
∥∥∥
S1(H1)

=

∥∥∥∥gv1/2
c

√
−χ̃0

sym(iω)

√
−χ̃0

sym(iω)v1/2
c f

∥∥∥∥
S1(H1)

≤
∥∥∥∥gv1/2

c

√
−χ̃0

sym(iω)

∥∥∥∥
S2(H1)

∥∥∥∥√−χ̃0
sym(iω)v1/2

c f

∥∥∥∥
S2(H1)

≤
∥∥∥gv1/2

c χ̃0
sym(iω)v1/2

c g
∥∥∥1/2

S1(H1)

∥∥∥fv1/2
c χ̃0

sym(iω)v1/2
c f

∥∥∥1/2

S1(H1)

≤ C

(ω2 + 1)1/2
‖f‖H1‖g‖H1 .

We now proceed to the proof of Proposition 4.73. From Lemma 4.78, we get, for f, g ∈ H1,∣∣∣〈f ∣∣∣sc [G̃app
]

(µ+ iω)
∣∣∣g〉∣∣∣ =

1

2π

∣∣∣∣ˆ +∞

−∞
TrH1

(
G̃app

(
µ0 + i(ω + ω′)

)
gW̃ 0(iω′)f

)
dω′
∣∣∣∣

≤ 1

2π

ˆ +∞

−∞

∥∥∥G̃app(µ0 + i(ω + ω′))
∥∥∥
B(H1)

∥∥∥gW̃ 0(iω′)f
∥∥∥
S1(H1)

dω′

≤
ˆ +∞

−∞

∥∥∥G̃app(µ0 + i(ω + ω′))
∥∥∥
B(H1)

C

(ω′2 + 1)1/2
‖f‖H1‖g‖H1dω′

≤ C ′
∥∥∥G̃app(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

‖f‖H1‖g‖H1 ,

where we used the Cauchy-Schwarz inequality for the last inequality and the fact that it
holds ω 7→ (ω2+1)−1/2 ∈ L2(Rω). Here, C ′ does not depend on ω ∈ Rω nor on f, g ∈ H1. Alto-
gether, we deduce that s is a bounded linear operator from L2(Rω,B(H1)) to L∞(Rω,B(H1)).

We now prove the claimed properties of gλ. Consider M > 0. By definition of µ0,
the real number d := max(εN+1 − µ0, µ0 − εN ) is positive, and |µ0 − h1| ≥ d. Let us
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choose 0 < λM < d/M . For 0 ≤ λ ≤ λM and Σ̃app(µ0 + i·) ∈ L∞(Rω,B(H1)) such that∥∥∥Σ̃app(µ0 + i·)
∥∥∥
L∞(Rω ,B(H1))

≤M , it holds for ω ∈ Rω,

µ0 + iω − h1 − λΣ̃app(µ0 + iω) = [µ0 + iω − h1]
(

1− λ [µ0 + iω − h1]−1 Σ̃app(µ0 + iω)
)
.

Since∥∥∥λ [µ0 + iω − h1]−1 Σ̃app(µ0 + iω)
∥∥∥
B(H1)

≤ λ

d

∥∥∥Σ̃app(µ0 + iω)
∥∥∥
B(H1)

≤ λ

d
M ≤ λM

d
M < 1,

the operator 1− λ [µ0 + iω − h1]−1 Σ̃app(µ0 + iω) is invertible, with∥∥∥∥(1− λ [µ0 + iω − h1]−1 Σ̃app(µ0 + iω)
)−1

∥∥∥∥
B(H1)

≤ d

d− λMM
.

Since µ0 + iω − h1 is an invertible operator with
∥∥(µ0 + iω − h1)−1

∥∥
B(H1)

≤ (ω2 + d2)1/2, we

obtain that µ0 + iω − h1 − λΣ̃app(µ0 + iω) is invertible, with∥∥∥∥[µ0 + iω − h1 − λΣ̃app(µ0 + iω)
]−1
∥∥∥∥
B(H1)

≤ d

d− λMM
∥∥(µ0 + iω − h1)−1

∥∥
B(H1)

≤ KM

(ω2 + 1)1/2
.

We deduce from this inequality that∥∥∥gλ (Σ̃app
)

(µ0 + i·)
∥∥∥
L∞(Rω ,B(H1))

+
∥∥∥gλ (Σ̃app

)
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

≤ CM ,

where the constant CM ∈ R+ does not depend on λ ∈ [0, λM ]. This gives the claimed result.
Finally, (4.102) is a direct consequence of the resolvent formula.

4.6.20 Proof of Theorem 4.74

Let us denote for simplicity

‖s‖ = ‖s‖B(L2(Rω ,B(H1)),L∞(Rω ,B(H1))),

and fix M > ‖s‖
∥∥∥G̃0(µ+ i·)

∥∥∥
L2(Rω ,B(H1))

. Let λM and CM be chosen as in Proposition 4.73

for this choice of M > 0, and introduce

r =
M

‖s‖
−
∥∥∥G̃0(µ+ i·)

∥∥∥
L2(Rω ,B(H1))

> 0.

For this choice of r, it holds that, for any G̃app ∈ B
(
G̃0, r

)
,∥∥∥s [G̃app

]
(µ0 + i·)

∥∥∥
L∞(Rω ,B(H1))

≤M.

Therefore, from Proposition 4.73, gλ ◦ s
[
G̃app

]
is well-defined for all λ ∈ [0, λM ].

Let us prove that there exists λ∗ > 0 sufficiently small such that for any 0 ≤ λ ≤ λ∗, gλ ◦ s
maps B

(
G̃0, r

)
into itself. For G̃app ∈ B

(
G̃0, r

)
, it holds∥∥∥(gλ ◦ s [G̃app

]
− G̃0

)
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

≤
∥∥∥(gλ ◦ s [G̃app

]
− gλ ◦ s

[
G̃0

])
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

(4.130)

+
∥∥∥(gλ ◦ s [G̃0

]
− G̃0

)
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

. (4.131)

To control the first term (4.130), we use the following result.
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Lemma 4.79. The map gλ ◦ s is (λC2
M‖s‖)-Lipschitz on B

(
G̃0, r

)
.

Proof of Lemma 4.79. Let G̃app
1 , G̃app

2 ∈ B
(
G̃0, r

)
. From (4.102), we obtain

gλ ◦ s
[
G̃app

1

]
− gλ ◦ s

[
G̃app

2

]
= λ

(
gλ ◦ s

[
G̃app

1

])(
s
[
G̃app

2

]
− s

[
G̃app

1

])(
gλ ◦ s

[
G̃app

2

])
.

(4.132)
From Proposition 4.73,∥∥∥gλ ◦ s [G̃app

j

]
(µ0 + i·)

∥∥∥
L∞(Rω ,B(H1))

≤ CM for 1 ≤ j ≤ 2.

Moreover,∥∥∥(s [G̃app
2

]
− s

[
G̃app

1

])
(µ0 + i·)

∥∥∥
L∞(Rω ,B(H1)

≤ ‖s‖
∥∥∥(G̃app

2 − G̃app
1

)
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

.

Plugging these estimates into (4.132), we obtain∥∥∥(gλ ◦ s [G̃app
1

]
− gλ ◦ s

[
G̃app

2

])
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

≤ λC2
M‖s‖

∥∥∥(G̃app
2 − G̃app

1

)
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

,

which proves that gλ ◦ s is (λC2
M‖s‖)-Lipschitz on B

(
G̃0, r

)
.

Let us now control (4.131). By noting that gλ=0 ◦ s
[
G̃0

]
= G̃0, we get from the resolvent

formula that

gλ ◦ s
[
G̃0

]
− G̃0 = (gλ − g0) ◦ s

(
G̃0

)
= λ

(
gλ ◦ s

[
G̃0

])(
s
[
G̃0

])
G̃0.

Using estimates similar to the ones used in the proof of Lemma 4.79, we deduce that∥∥∥(gλ ◦ s [G̃0

]
− G̃0

)
(µ0 + i·)

∥∥∥
L2(Rω ,B(H1))

≤ λC2
M

∥∥∥s [G̃0

]
(µ0 + i·)

∥∥∥
L∞(Rω ,B(H1))

. (4.133)

From Lemma 4.79 and (4.133), we arrive at the conclusion that for all 0 ≤ λ ≤ λ∗, where

λ∗ =
1

C2
M

(
‖s‖r +

∥∥∥s [G̃0

]
(µ0 + i·)

∥∥∥
L∞(Rω ,B(H1))

) ,
it holds gλ ◦ s

(
B
(
G̃0, r

))
⊂ B

(
G̃0, r

)
.

Finally, without loss of generality, we can assume that λ∗C2
M‖s‖ < 1, so that, from

Lemma 4.79, we get that for all 0 ≤ λ ≤ λ∗, the map gλ ◦ s is a contraction. The end of the
proof follows from Picard’s fixed point theorem.
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Numerical simulation of perfect
crystals





CHAPTER 5

CONVERGENCE RATES FOR SUPERCELL MODELS

We expose in this chapter the results given in [GL15]. This work was done in collaboration
with Salma Lahbabi.

Abstract. This chapter is concerned with the numerical simulations of perfect crystals.
We study the rate of convergence of the reduced Hartree-Fock (rHF) model in a supercell
towards the periodic rHF model in the whole space. We prove that, whenever the crystal is
an insulator or a semi-conductor, the supercell energy per unit cell converges exponentially
fast towards the periodic rHF energy per unit cell, with respect to the size of the supercell.

5.1 Introduction

The numerical simulation of the electronic structure of crystals is a very active research area in
solid state physics, materials science and nano-electronics. When the crystal is perfect, a good
approximation of its electronic ground state density can be obtained by solving a mean-field
nonlinear periodic model set on the whole space. Using the Bloch transform [RS78, Chapter
XIII], we can recast such a problem as a continuous family of compact problems indexed by
points of the Brillouin zone. In practice, the compact problems are solved on a discretization
of this Brillouin zone. There is therefore an inherent error coming from the fact that the
Brillouin zone is sampled, and it is not obvious a priori whether this error is small, due to the
nonlinearity of the problem. It has been observed numerically since the work of Monkhorst
and Pack [MP76] that this error is indeed very small when the discretization is uniform, and
when the crystal is an insulator or a semiconductor. To our knowledge, no rigorous proof
of this fact was ever given. In this chapter, we prove why it is indeed the case in the linear
model, and in the reduced Hartree-Fock (rHF) model, which is a Hartree-Fock model where
the exchange term is neglected. This model was studied in [CDL08, CLL01].

A crystal is modeled by a periodic nuclear charge distribution µper. The corresponding
rHF energy per unit cell is denoted by I

µper
per . When numerical calculations are performed

over a regular discretization of the Brillouin-zone, this amounts to calculate the energy on a
supercell, i.e. on a large box containing L times the periodicity of µper in each direction (for
a total of L3 unit cells in the supercell), and with periodic boundary conditions. The rHF
energy on a supercell of size L is denoted by Iµper

L , so that the corresponding energy per unit
cell is L−3I

µper

L .

It was proved in [CDL08] that L−3I
µper

L converges to Iµper
per as L goes to infinity, when the

crystal is an insulator or a semiconductor. However, following the proof in [CDL08], we find
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a rate of convergence of order L−1, which is well below what is numerically observed. Our
main result is that, if the crystal is an insulator or a semiconductor, then there exist constants
C ∈ R+ and α > 0, such that

∀L ∈ N∗,
∣∣L−3I

µper

L − Iµper
per

∣∣ ≤ Ce−αL. (5.1)

We also prove that the supercell electronic density converges exponentially fast to the periodic
rHF electronic density, in the L∞(R3) norm. To prove such rates of convergence, we recast
the problem into the difference between an integral and a corresponding Riemann sum, and
show that the integrand is both periodic and analytic on a complex strip. Similar tools were
used in [DC64a, DC64b, Koh59, BPC+07, Pan07] to prove that the Wannier functions of
insulators are exponentially localized.

This chapter is organized as follows. In Section 5.2, we recall how the rHF model is
derived, and present the main results. In Section 5.4, we apply the Bloch theory for both
periodic models and supercell models. The proofs of the main results are postponed until Sec-
tion 5.5. Finally, we illustrate our theoretical results with numerical simulations in Section 5.7.

Throughout this chapter, we will give explicit values of the constants appearing in the
inequalities. These values are very crude, but allows one to see how these constants depend
on the parameters of the electronic problem.

5.2 Presentation of the models

A perfect crystal is a periodic arrangement of atoms. Both the nuclear charge density µper

and the electronic density are R-periodic functions, where R is a discrete periodic lattice of
R3. Let Γ be the Wigner-Seitz cell of the lattice, and let Γ∗ be the first Brillouin zone. For
instance, for R = aZ3, Γ = [−a/2, a/2)3, R∗ = (2π/a)Z3 and Γ∗ = [−π/a, π/a)3. For R ∈ R,
we let τR be the translation operator on L2(R3) defined by (τRf)(x) := f(x−R).

We will assume that the nuclear charge density µper is in L2
per(Γ) for simplicity, but

distributions with singularity points may also be handled [BLL03].

5.2.1 The supercell rHF model

In a supercell model, the system is confined to a box ΓL := LΓ with periodic boundary
conditions. We denote by L2

per(ΓL) the Hilbert space of locally square integrable functions
that are LR-periodic. The Fourier coefficients of a function f ∈ L2

per(ΓL) are defined by

∀k ∈ L−1R∗, cLk(f) =
1

|ΓL|

ˆ
ΓL

f(x)e−ik·xdx,

so that, for any f ∈ L2
per(ΓL),

f(x) =
∑

k∈L−1R∗
cLk(f)eik·x a.e. and in L2

per(ΓL).

The set of admissible electronic states for the supercell model is

PL :=
{
γL ∈ S(L2

per(ΓL)), 0 ≤ γL ≤ 1, TrL2
per(ΓL) (γL) + TrL2

per(ΓL) (−∆LγL) <∞
}
,

where S(H) denotes the space of the bounded self-adjoint operators on the Hilbert space H.
Here, TrL2

per(ΓL) (−∆LγL) is a shorthand notation for

TrL2
per(ΓL) (−∆LγL) :=

3∑
i=1

TrL2
per(ΓL) (Pj,LγLPj,L) , (5.2)
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where, for 1 ≤ j ≤ 3, Pj,L is the self-adjoint operator on L2
per(ΓL) defined by cLk(Pj,Lf) =

kjc
L
k(f) for all k = (k1, k2, k3) ∈ L−1R∗. Note that cLk(−∆Lf) = |k|2cLk(f) for all k ∈ L−1R∗.
We introduce the LR-periodic Green kernel GL of the Poisson interaction [LS77], solution

of {
−∆GL = 4π

(∑
k∈R δk − 1

)
GL is LR-periodic.

The expression of GL is given in the Fourier basis by

GL(x) = cL +
4π

|ΓL|
∑

k∈L−1R∗\{0}

eik·x

|k|2
, (5.3)

where cL = |ΓL|−1
´

ΓL
GL. The constant cL can be any fixed constant a priori. In one of the

first article on the topic [LS77], the authors chose to set cL = 0, but other choices are equally
valid (see [CDL08] for instance). This is due to the fact that cL does not play any role for
neutral systems. We choose to set cL = 0 for simplicity. The supercell Coulomb energy is
defined by

∀f, g ∈ L2
per(ΓL), DL(f, g) :=

ˆ
Γ
(f ∗ΓL GL)(x)g(x)dx, (5.4)

where (f ∗ΓL GL)(x) :=
´

Γ f(y)GL(x − y)dy. We recall that the map ρ 7→ ρ ∗ΓL GL is con-
tinuous from L2

per(ΓL) to L∞per(ΓL).

Any γL ∈ PL is locally trace-class, and can be associated an LR-periodic density ργL ∈
L2

per(ΓL). For γL ∈ PL, the supercell reduced Hartree-Fock energy is

Eµper

L (γL) :=
1

2
TrL2

per(ΓL)(−∆LγL) +
1

2
DL(ργL − µper, ργL − µper). (5.5)

The first term of (5.5) corresponds to the supercell kinetic energy, and the second term
represents the supercell Coulomb energy. The ground state energy of the system is given by
the minimization problem

I
µper

L = inf

{
Eµper

L (γL), γL ∈ PL,
ˆ

ΓL

ργL =

ˆ
ΓL

µper

}
. (5.6)

Using techniques similar to [CDL08, Theorem 4], the following result holds (we do not prove
it, for the arguments are similar to the ones in [CDL08]).

Theorem 5.1 (Existence of a supercell minimizer). For all L ∈ N∗, the minimization prob-
lem (5.6) admits minimizers. One of these minimizers γL,0 satisfies τRγL,0 = γL,0τR. All
minimizers share the same density ργL,0, which is R-periodic. Finally, γL,0 satisfies the self-
consistent equation 

γL,0 = 1
(
HL,0 < εLF

)
+ δ

HL,0 = −1
2∆L + VL,0

VL,0 =
(
ργL,0 − µper

)
∗Γ G1.

(5.7)

where HL,0 acts on L2
per(ΓL) and 0 ≤ δ ≤ 1(HL,0 = εLF ) is a finite rank operator.

Here, εLF is the Fermi level of the supercell model. It is chosen so that the charge constraint
in (5.6) is satisfied.

Remark 5.2. The LR-periodic density of the minimizers ργL,0 is actually R-periodic. It is
unclear that such a property should hold for more complex models (e.g. Kohn-Sham models).
This is the reason why we state our results for the rHF model. We believe however that
similar results should hold true for more complex systems, provided that the supercell density
is R-periodic for each size of the supercell.
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5.2.2 The reduced Hartree-Fock model for perfect crystals

The rHF model for perfect crystals, or periodic rHF, has been rigorously derived from the rHF
model for finite molecular systems by means of a thermodynamic limit procedure by Catto,
Le Bris and Lions [CLL01]. In [CDL08], Cancès, Deleurence and Lewin proved that the same
periodic rHF model is the limit of the rHF supercell model as the size of the supercell goes
to infinity.

We introduce the set of admissible density matrices

Pper :=
{
γ ∈ S(L2

per(Γ)), 0 ≤ γ ≤ 1, ∀R ∈ R, τRγ = γτR, Tr (γ) + Tr (−∆γ) <∞
}
,

(5.8)
where Tr denotes the trace per unit volume. For any locally trace class operator A that
commutes with R-translations, it reads

Tr (A) := lim
L→∞

1

L3
Tr (1LΓA1LΓ) . (5.9)

The trace per unit volume Tr can also be defined via the Bloch transform (see Equation (5.23)
below). Here, Tr (−∆γ) is a shorthand notation for

Tr (−∆γ) :=

3∑
j=1

Tr (PjγPj) ,

where Pj = −i∂xj is the momentum operator in the jth direction. The Coulomb energy per
unit volume is defined by

∀f, g ∈ L2
per(Γ), D1(f, g) :=

ˆ
Γ
(f ∗Γ G1)(x)g(x)dx, (5.10)

where G1 was introduced in (5.3).

Any γ ∈ Pper is locally trace-class, and can be associated an R-periodic density ργ ∈
L2

per(Γ). For γ ∈ Pper, the reduced Hartree-Fock energy is given by

Eµper
per (γ) :=

1

2
Tr (−∆γ) +

1

2
D1 (ργ − µper, ργ − µper) . (5.11)

The first term of (5.11) corresponds to the kinetic energy per unit volume, and the second
term represents the Coulomb energy per unit volume. Finally, the periodic rHF ground state
energy is given by the minimization problem

I
µper
per := inf

{
Eµper

per (γ), γ ∈ Pper,

ˆ
Γ
ργ =

ˆ
Γ
µper

}
. (5.12)

It has been proved in [CDL08] that the minimization problem (5.12) admits a unique mini-
mizer γ0, which is the solution of the self-consistent equation

γ0 = 1(H0 < εF ) + δ
H0 = −1

2∆ + V0

V0 = (ργ0 − µper) ∗Γ G1,
(5.13)

where H0 acts on L2(R3) and 0 ≤ δ ≤ 1(H0 = εF ) is a finite rank operator. Here, the Fermi
energy εF is the Lagrange multiplier corresponding to the charge constraint

´
Γ ργ0 =

´
Γ µper.

We make the following assumption:

(A1) The system is an insulator, in the sense that H0 has a spectral gap around εF .

In particular, δ = 0.
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5.3 Main results

Our main results are concerned with the rate of convergence of supercell models towards
corresponding periodic models. We first prove the exponential rate of convergence in a linear
setting, where the mean-filed potential V is a fixed R-periodic function: V ∈ L∞per(Γ). We
then extend our result to the nonlinear rHF model, where the external potential is the solution
of the self-consistent equation (5.7) or (5.13).

We start with the linear case. The proof of the following proposition is given in Section 5.5.

Proposition 5.3 (Convergence rate of the linear supercell model). Let V ∈ L∞per(Γ) be such
that the operator H = −1

2∆ + V acting on L2(R3) has a gap of size g > 0 centered around
the Fermi level εF . Then, for any L ∈ N∗, the operator HL := −1

2∆L +V acting on L2
per(ΓL)

has a gap of size at least g around εF . Let

γ = 1 (H ≤ εF ) and γL = 1
(
HL ≤ εF

)
. (5.14)

Then, γ ∈ Pper and γL ∈ PL, and there exist constants C ∈ R+ and α > 0, that depend on
the lattice R, ‖V ‖L∞, g and εF only, such that

∀L ∈ N∗,
∣∣Tr (γH)− Tr L

(
γLH

L
)∣∣ ≤ Ce−αL (ground state energy per unit volume)

(5.15)
and

∀L ∈ N∗, ‖ργ − ργL‖L∞ ≤ Ce−αL (ground state density). (5.16)

In a second step, we will use the projectors γ and γL obtained for well chosen potentials
V as candidates for the minimization problems (5.12) and (5.6) respectively. We have the
following result (see Section 5.5.5 for the proof).

Corollary 5.4. With the same notation as in Proposition 5.3, there exist constants C ∈ R+

and α > 0, that depend on the lattice R, ‖V ‖L∞ , g and εF only, such that

∀L ∈ N∗,
∣∣Eµper

per (γ)− L−3Eµper

L (γL)
∣∣ ≤ Ce−αL. (5.17)

We are now able to state our main result for the rHF model. The proof of the following
theorem is given in Section 5.6. In the sequel, we denote by B(E) the set of bounded operators
acting on the Banach space E.

Theorem 5.5 (Convergence rate of the rHF supercell model). Under hypothesis (A1), there
exist C ∈ R+ and α > 0 independent of L such that the following estimates hold true:

• convergence of the ground state energy per unit volume:

∀L ∈ N∗, |L−3I
µper

L − Iµper
per | ≤ Ce−αL;

• convergence of the ground state density:

∀L ∈ N∗, ‖ργL,0 − ργ0‖L∞per(Γ) ≤ Ce−αL;

• convergence of the mean-field Hamiltonian:

∀L ∈ N∗, ‖HL −H0‖B(L2(R3)) ≤ Ce−αL,

where HL := −1
2∆ +

(
ργL,0 − µper

)
∗Γ G1 and H := −1

2∆ + (ργ0 − µper) ∗Γ G1 are acting on
L2(R3).

The fact that the supercell quantities converge to the corresponding quantities of the
periodic rHF model was already proved in [CDL08, Theorem 4]. However, following the proof
of the latter article, we only find a O

(
L−1

)
convergence rate.

The proof of Proposition 5.3 and Theorem 5.5 rely on Bloch transforms.
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5.4 Bloch transform and supercell Bloch transform

5.4.1 Bloch transform from L2(R3) to L2
per(Γ

∗, L2(Γ))

We recall in this section the basic properties of the usual Bloch transform [RS78, Chapter
XIII]). Let (a1,a2,a3) be a basis of the lattice R, so that R = Za1 +Za2 +Za3. We define the
dual lattice R∗ by R∗ = Za∗1 + Za∗2 + Za∗3 where the vectors a∗i are such that a∗i · aj = 2πδij .
The unit cell and the reciprocal unit cell are respectively defined by

Γ :=
{
α1a1 + α2a2 + α3a3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
,

and
Γ∗ :=

{
α1a

∗
1 + α2a

∗
2 + α3a

∗
3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
.

Note that Γ∗ differs from the first Brillouin-zone when the crystal is not cubic. We consider
the Hilbert space L2(Γ∗, L2

per(Γ)), endowed with the normalized inner product

〈f(q,x), g(q,x)〉L2(Γ∗,L2
per(Γ)) :=

 
Γ∗

ˆ
Γ
f(q,x)g(q,x) dx dq.

The Bloch transform is defined by

Z : L2(R3) → L2(Γ∗, L2
per(Γ))

w 7→ (Zw)(q,x) := wq(x) :=
∑
R∈R

e−iq·(x+R)w(x + R). (5.18)

Its inverse is given by

Z−1 : L2(Γ∗, L2
per(Γ)) → L2(R3)

wq(x) 7→ (Z−1w)(x) :=

 
Γ∗

eiq·xwq(x) dq.

It holds that Z is an isometry, namely

‖Zw‖2L2(Γ∗,L2
per(Γ)) =

 
Γ∗

ˆ
Γ
|(Zw)(q,x)|2 dx dq = ‖w‖2L2(R3).

For m ∈ R∗, we introduce the unitary operator Um acting on L2
per(Γ) defined by

∀m ∈ R∗, ∀f ∈ L2
per(Γ), (Umf) (x) = e−im·xf(x). (5.19)

From (5.18), it is natural to consider Zw as a function of L2
loc

(
R3, L2

per(Γ)
)
such that

∀w ∈ L2(R3), ∀m ∈ R∗, ∀q ∈ Γ∗, (Zw) (q + m, ·) = wq+m = Umwq = Um (Zw(q, ·)) .
(5.20)

Let A with domain D(A) be a possibly unbounded operator acting on L2
per(Γ). We say

that A commutes with R-translations if τRA = AτR for all R ∈ R. If A commutes with R-
translations, then it admits a Bloch decomposition. The operator ZAZ−1 is block diagonal,
which means that there exists a family of operators (Aq)q∈Γ∗ acting on L2

per(Γ), such that, if
f ∈ L2(R3) and g ∈ D(A) are such that f = Ag, then, for almost any q ∈ Γ∗, gq ∈ L2

per(Γ) is
in the domain of Aq, and

fq = Aqgq. (5.21)

In this case, we write

ZAZ−1 =

 ⊕
Γ∗
Aqdq (Bloch decomposition of A).
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From (5.20), we extend the definition of Aq, initially defined for q ∈ Γ∗, to q ∈ R3, with

∀m ∈ R∗, ∀q ∈ Γ∗, Aq+m = UmAqU
−1
m , (5.22)

so that (5.21) holds for almost any q ∈ R3. If A is locally trace-class, then Aq is trace-class
on L2

per(Γ) for almost any q ∈ R3. The operator A can be associated a density ρA, which is
an R-periodic function, given by

ρA =

 
Γ∗
ρAqdq,

where ρAq is the density of the trace-class operator Aq. The trace per unit volume of A
(defined in (5.9)) is also equal to

Tr (A) =

 
Γ∗

TrL2
per(Γ) (Aq) dq. (5.23)

5.4.2 Bloch transform from L2
per(ΓL) to `2(ΛL, L

2
per(Γ))

We present in this section the “supercell” Bloch transform. This transformation goes from L2
per(ΓL)

to `2(ΛL, L
2
per(Γ)), where ΛL :=

(
L−1R∗

)
∩ Γ∗, i.e.

ΛL :=

{
2k1

L
a∗1 +

2k2

L
a∗2 +

2k3

L
a∗3, (k1, k2, k3) ∈

{
−L+ η

2
,
−L+ η

2
+ 1, · · · , L+ η

2
− 1

}3
}
,

(5.24)
with η = 1 if L is odd, and η = 0 if L is even, so that there are exactly L3 points in ΛL.
Similarly, we define RL := R ∩ ΓL, which contains L3 points of the lattice R. The supercell
Bloch transform has properties similar to those of the standard Bloch transform, the main
difference being that there are only a finite number of fibers. We introduce the Hilbert space
`2(ΛL, L

2
per(Γ)) endowed with the normalized inner product

〈f(Q,x), g(Q,x)〉`2(ΛL,L2
per(Γ)) :=

1

L3

∑
Q∈ΛL

ˆ
Γ
f(Q,x)g(Q,x) dx.

The supercell Bloch transform is defined by

ZL : L2
per(ΓL) → `2(ΛL, L

2
per(Γ))

w 7→ (ZLw)(Q,x) := wQ(x) :=
∑

R∈RL

e−iQ·(x+R)w(x + R).

Its inverse is given by

Z−1
L : `2(ΛL, L

2
per(Γ)) → L2

per(ΓL)

wQ(x) 7→ (Z−1
L w)(x) :=

1

L3

∑
Q∈ΛL

eiQ·xwQ(x).

It holds that ZL is an isometry, i.e.

‖w‖2L2
per(ΓL) =

1

L3

∑
Q∈ΛL

ˆ
Γ
|(ZLw) (Q,x)|2 dx.

We can extend Z to `∞
(
L−1R∗, L2

per(Γ)
)
with

∀w ∈ L2
per(ΓL), ∀m ∈ R∗, ∀Q ∈ ΛL, wQ+m = UmwQ,

where the operator Um was defined in (5.19).
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Let AL with domain D
(
AL
)
be an operator acting on L2

per(ΓL). If A commutes with R-
translations, then it admits a supercell Bloch decomposition. The operator ZLALZL is block
diagonal, which means that there exists a family of operators (ALQ)Q∈ΛL acting on L2

per(Γ)

such that if f = ALg with f ∈ L2
per(ΓL) and g ∈ D(AL), then for all Q ∈ ΛL,

fQ = ALQgQ. (5.25)

We write

ZLALZ−1
L :=

1

L3

⊕
Q∈ΛL

ALQ (supercell Bloch decomposition of AL).

The spectrum of AL can be deduced from the spectra of
(
ALQ

)
Q∈ΛL

with

σ
(
AL
)

=
⋃

Q∈ΛL

σ
(
ALQ
)
. (5.26)

Similarly to (5.22), we extend the definition of AQ to L−1R∗ with

∀m ∈ R∗, ∀Q ∈ ΛL, AQ+m = UmAQU
−1
m ,

so that (5.25) holds for all Q ∈ L−1R∗.
Finally, if the operator AL is trace-class, we define the trace per unit volume by

Tr L(AL) =
1

L3
TrL2

per(ΓL)(A
L) =

1

L3

∑
Q∈ΛL

TrL2
per(Γ)(A

L
Q), (5.27)

and the associated density is given by ρAL =
1

L3

∑
Q∈ΛL

ρALQ
, where ρALQ is the density of the

trace-class operator ALQ.

5.5 Proof of Proposition 5.3: the linear case

The proofs of Proposition 5.3 and Theorem 5.5 are based on reformulating the problem using
the Bloch transforms. Comparing quantities belonging to the whole space model on the one
hand, and to the supercell model on the other hand amounts to comparing integrals with
Riemann sums. The exponential convergence then relies on two arguments: quantities of
interest are R∗-periodic and have analytic continuations on a complex strip, and the Riemann
sums for such functions converge exponentially fast to the corresponding integrals.

We prove in this section the exponential convergence of Proposition 5.3.

5.5.1 Convergence of Riemann sums

We recall the following classical lemma. For A > 0, we denote by

SA :=
{
z ∈ C3, |Im (z)|∞ ≤ A

}
= R3 + i [−A,A]3.

If E is a Banach space and d ∈ N∗, an E-valued function F : Ω ⊂ Cd → E is said to be
(strongly) analytic if (∇zF )(z) exists in Ed for all z ∈ Ω. In the sequel, we assume without
loss of generality that the vectors spanning the lattice R∗ are ordered in such a way that
|a∗1| ≤ |a∗2| ≤ |a∗3|.
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Lemma 5.6. Let f : R3 → C be an R∗-periodic function that admits an analytic continuation
on SA for some A > 0. Then, there exists C ∈ R+ and α > 0 such that

∀L ∈ N∗,

∣∣∣∣∣∣
 

Γ∗
f(q) dq− 1

L3

∑
Q∈ΛL

f (Q)

∣∣∣∣∣∣ ≤ C0 sup
z∈SA

|f(z)| e−αL.

The constants may be chosen equal to

α = (2/3)πA|a∗3|−1 and C0 = 2

(
3 + e−2α

(1− e−α)3

)
. (5.28)

Proof of Lemma 5.6. Let cR(f) :=
ffl

Γ∗ f(q)e−iR·q dq be the Fourier coefficients of f , so that

f(q) =
∑
R∈R

cR(f)eiq·R.

It holds ∣∣∣∣∣∣
 

Γ∗
f(q)dq− 1

L3

∑
Q∈ΛL

f (Q)

∣∣∣∣∣∣ =

∣∣∣∣∣∣c0(f)− 1

L3

∑
Q∈ΛL

∑
R∈R

cR(f)eiQ·R

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

R∈R\{0}

cR(f)

 1

L3

∑
Q∈ΛL

eiQ·R

∣∣∣∣∣∣ .
By noticing that ∑

Q∈ΛL

eiQ·R =

{
0 if R /∈ LR
L3 otherwise ,

we obtain ∣∣∣∣∣∣
 

Γ∗
f(q)dq− 1

L3

∑
Q∈ΛL

f (Q)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

R∈R\{0}

cLR(f)

∣∣∣∣∣∣ . (5.29)

If f is analytic on SA, we deduce from f(q) =
∑

R∈R cR(f)eiR·q that the analytic continuation
of f is given by

∀q ∈ R3, ∀y ∈ [−A,A]3, f(q + iy) =
∑
R∈R

cR(f)eiR·q e−R·y,

so that
{
cR(f)e−R·y

}
R∈R are the Fourier coefficients of the R∗-periodic function q 7→ f(q+

iy). In particular,

∀R ∈ R, ∀y ∈ [−A,A]3, |cR(f)| ≤ sup
q∈Γ∗

|f(q + iy)| eR·y. (5.30)

We make the following choice for y. We write R = k1a1 +k2a2 +k3a3 with k1, k2, k3 ∈ Z, and
we let 1 ≤ m ≤ 3 be the index such that |km| = |kj |∞. Choosing y = −sgn(km)A|a∗3|−1a∗m ∈
[−A,A]3, leads to

|cR(f)| ≤ sup
z∈SA

|f(z)| e−2πA|a∗3|−1|k|∞ ≤ sup
z∈SA

|f(z)| e−α|k1|1

where we used the inequality |k|∞ ≥ (1/3)|k|1, and we set α = (2/3)πA|a∗3|−1. Note that
the Fourier coefficients of f are exponentially decreasing. We conclude with (5.29) and the
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inequality∣∣∣∣∣∣
∑

R∈R\{0}

cLR(f)

∣∣∣∣∣∣ ≤
∑

R∈R\{0}

|cLR(f)| ≤ sup
z∈SA

|f(z)|
∑

k∈Z3\{0}

e−αL|k|1

≤ sup
z∈SA

|f(z)|

(∑
k∈Z

e−αL|k|

)3

− 1

 = sup
z∈SA

|f(z)|
(

2(3 + e−2α)

(1− e−α)3

)
e−αL.

5.5.2 Analyticity and basic estimates

The exponential rates of convergence observed in (5.15), (5.16) and (5.17) will come from
Lemma 5.6 for appropriate choices of functions f . In order to construct such functions, we
notice that H and HL defined in Proposition 5.3 commute with R-translations, thus admit
Bloch decompositions. From

∀q ∈ R3, (−∆)q = |−i∇1 + q|2 =
3∑
j=1

(Pj,1 + qj)
2 and ∀Q ∈ L−1R∗, (−∆L)Q = (−∆)Q ,

where ∇1 denotes the gradient on the space L2
per(Γ), we obtain (recall that ∆1 was defined

in (5.2))

ZHZ−1 =

 ⊕
Γ∗
Hq dq with Hq :=

1

2
|−i∇1 + q|2 + V =

1

2

(
−∆1 − 2iq · ∇1 + |q|2

)
+ V,

(5.31)
and

ZLHLZ−1
L =

1

L3

⊕
Q∈ΛL

HQ.

In other words, for all Q in ΛL,
(
HL
)
Q

= HQ. In addition, the spectrum of H can be
recovered from the spectra of (Hq)q∈Γ∗ with [RS78, Chapter XIII]

σ(H) =
⋃

q∈Γ∗

σ(Hq)

Together with (5.26) we deduce that, since H has a gap of size g centered around εF , then
HL has a gap of size at least g around εF .

In the sequel, we introduce, for z ∈ C3, the operator (we denote by z2 :=
∑3

j=1 z
2
j for

simplicity)

Hz :=
1

2

(
−∆1 − 2iz · ∇1 + z2

)
+ V acting on L2

per(Γ). (5.32)

With the terminology of [Kat12, Chapter VII], the map z 7→ Hz is an holomorphic family of
type (A). Let Σ := inf σ(H) be the bottom of the spectrum of H. We consider the positively
oriented simple closed loop C = C1 ∪ C2 ∪ C3 ∪ C4 in the complex plane, consisting of the
following line segments: C1 = [εF − i, εF + i], C2 = [εF + i,Σ−1 + i], C3 = [Σ−1 + i,Σ−1− i]
and C4 = [Σ− 1− i, εF − i].

The projectors defined in (5.14) can be written, using the Cauchy’s residue theorem, as

γ =
1

2iπ

˛
C

dλ

λ−H
and γL =

1

2iπ

˛
C

dλ

λ−HL
.
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Σ εF

σ(H)C1

C2

C3

C4

Figure 5.1 – The loop C .

Together with (5.31), it follows that γ and γL commutes with R-translations, with

ZγZ−1 =

 ⊕
Γ∗
γqdq and ZLγLZ−1

L =
1

L3

⊕
Q∈ΛL

γQ, (5.33)

where we set
∀q ∈ R3, γq :=

1

2iπ

˛
C

dλ

λ−Hq
. (5.34)

For Q ∈ R∗, it holds (γL)Q = γQ. The analytic continuation of (5.34) is formally

∀z ∈ C3, γz :=
1

2iπ

˛
C

dλ

λ−Hz
.

The fact that λ−Hz is indeed invertible, at least for z in some SA for A > 0 is proved in the
following lemma. For z ∈ C3, and λ ∈ C , we introduce

B1(λ, z) := (1−∆1)
1

λ−Hz
and B2(λ, z) :=

1

λ−Hz
(1−∆1). (5.35)

Lemma 5.7. For all q ∈ R3, and all λ ∈ C , the operator λ − Hq is invertible, and there
exists a constant C1 ∈ R+ such that,

∀q ∈ Γ∗, ∀λ ∈ C , ‖B1(λ,q)‖B(L2
per(Γ)) ≤ C1 and ‖B2(λ,q)‖B(L2

per(Γ)) ≤ C1. (5.36)

Denoting by |Γ∗|2 := sup {|q|2, q ∈ Γ∗}, we can choose

C1 = 4 +
2 + 4|Γ∗|22 + 8‖V ‖L∞ + 8εF

min(1, g)
. (5.37)

Moreover, there exists A > 0 such that, for all z ∈ SA and all λ ∈ C , the operator λ−Hz is
invertible, and there exists a constant C2 ∈ R+ such that

∀z ∈ Γ∗+i [−A,A]3, ∀λ ∈ C , ‖B1(λ, z)‖B(L2
per(Γ)) ≤ C2 and ‖B2(λ, z)‖B(L2

per(Γ)) ≤ C2.

(5.38)
We can choose

A = min

(
1,

1

2C1(1 + |Γ∗|2)

)
and C2 = 2C1. (5.39)

This lemma was proved in the one-dimensional case by Kohn in [Koh59], and similar
results were discussed by Des Cloizeaux in [DC64a, DC64b].

Remark 5.8. The bounds (5.36) and (5.38) are not uniform for q ∈ R3 (they are only valid
for q ∈ Γ∗). This comes from the fact that, for m ∈ R∗,∥∥∥∥ 1−∆1

1 + (−i∇1 + m)2

∥∥∥∥
B(L2

per(Γ))

≥
〈

e−im·x

|Γ|1/2

∣∣∣∣ 1−∆1

1 + (−i∇1 + m)2

∣∣∣∣ e−im·x

|Γ|1/2

〉
=

1 + |m|2

|Γ|
.
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Remark 5.9. From Lemma 5.7, we deduce that (γz)z∈SA is an analytic family of bounded
operators. Since γq is an orthogonal projector for q ∈ R3, i.e. γq = γqγq, we deduce that
γz = γzγz for all z ∈ SA, so that γz is a (not necessarily orthogonal) projector. Also, Tr(γz)
is a constant independent of z ∈ SA.

Proof of Lemma 5.7. From the inequality |a|2 ≤ 2|a + b|2 + 2|b|2, we get that, for q ∈ Γ∗, it
holds |−i∇1 + q|2 + |q|2 ≥ −1

2∆1. We deduce that

∀q ∈ Γ∗, Hq ≥ −
1

4
∆1 −

1

2
|Γ∗|22 − ‖V ‖L∞ . (5.40)

We first consider the part C1 of the contour C (see Figure 5.1). It holds

∀λ ∈ C1, ∀q ∈ Γ∗, |Hq − λ|2 ≥ |Re (Hq − λ)|2 = |Hq − εF |2 . (5.41)

Since |Hq − εF | ≥ g/2, we get

∀λ ∈ C1, ∀q ∈ Γ∗, |Hq − λ| ≥ g/2. (5.42)

On the other hand, from (5.40) and (5.41), it holds that

∀λ ∈ C 1, ∀q ∈ Γ∗, |Hq − λ| ≥ Hq − εF ≥ −
1

4
∆1 −

1

2
|Γ∗|22 − ‖V ‖L∞ − εF . (5.43)

Combining (5.42) and (5.43) leads to

∀M ≥ 0, ∀λ ∈ C1, ∀q ∈ Γ∗, (M + 4)|Hq − λ| ≥ −∆1 +M
g

2
− 2|Γ∗|22 − 4‖V ‖L∞ − 4εF .

Choosing M = (2 + 4|Γ∗|22 + 8‖V ‖L∞ + 8εF )/g gives

∀λ ∈ C 1, q ∈ Γ∗, |Hq − λ| ≥
(

4 +
2 + 4|Γ∗|2∞ + 8‖V ‖L∞ + 8εF

g

)−1

(1−∆1),

which proves (5.36) for λ ∈ C1. The inequalities on the other parts of C are proved similarly,
the inequalities (5.42) and (5.43) being respectively replaced by their equivalent

∀λ ∈ C2 ∪ C4, |Hq − λ|2 ≥ |Im (Hq − λ)|2 ≥ 1 and |Hq − λ| ≥ Hq − Σ− 1 ≥ Hq − εF ,
∀λ ∈ C3, |Hq − λ|2 ≥ |Re (Hq − λ)|2 ≥ 1 and |Hq − λ| ≥ Hq − Σ− 1 ≥ Hq − εF .

This proves (5.36). We now prove (5.38). For z = q + iy ∈ C3 with q ∈ Γ∗ and y ∈ R3, one
can rewrite (5.32) as

Hz = Hq + y · ∇1 + iq · y − 1

2
|y|2 = Hq + y ·

(
∇1 −

1

2
y + iq

)
.

In particular,

λ−Hz = λ−Hq +Hq −Hz = (λ−Hq)

(
1− (λ−Hq)−1

[
y ·
(
∇1 −

1

2
y + iq

)])
= (λ−Hq)

(
1−B2(λ,q)

1

1−∆1

[
y ·
(
∇1 −

1

2
y + iq

)])
. (5.44)

For |y|∞ ≤ 1, we have∣∣∣∣ 1

1−∆1

[
y ·
(
∇1 −

1

2
y + iq

)]∣∣∣∣ ≤ |y|∞(∣∣∣∣ |∇1|
1−∆1

∣∣∣∣+
1

2
|y|∞ + |q|∞

)
≤ |y|∞ (1 + |Γ∗|2) .
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Together with (5.36), we obtain that for all |y|∞ ≤ A := min
(
1, (2C1(1 + |Γ∗|2))−1

)
,∥∥∥∥B2(λ,q)

1

1−∆1

[
y ·
(
∇1 −

1

2
y + iq

)]∥∥∥∥ ≤ 1

2
.

As a result, from (5.44), we get that for all q ∈ Γ∗ and all y ∈ [−A,A], the operator λ−Hz

is invertible, with∥∥∥∥ 1

λ−Hz
(1−∆1)

∥∥∥∥
B(H1)

≤ C2 := 2C1 and
∥∥∥∥(1−∆1)

1

λ−Hz

∥∥∥∥
B(H1)

≤ C2.

For z ∈ SA, we introduce the operators B̃1(z) and B̃2(z) respectively defined by

B̃1(z) := (1−∆1)γz and B̃2(z) := γz(1−∆1). (5.45)

In the sequel, for k ∈ N∗, we denote by Sk(H) the k-th Schatten class [Sim05] of the Hilbert
space H ; S1(H) is the set of trace-class operators, and S2(H) is the set of Hilbert-Schmidt
operators. From Lemma 5.7, we obtain the following result.

Lemma 5.10. There exists a constant C3 ∈ R+ such that

∀z ∈ Γ∗ + i[−A,A]3,
∥∥∥B̃1(z)

∥∥∥
B(L2

per(Γ))
≤ C3 and

∥∥∥B̃2(z)
∥∥∥
B(L2

per(Γ))
≤ C3.

The value of C3 can be chosen equal to

C3 =
1

π
C1 (3 + εF + ‖V ‖L∞) .

Also, for all z ∈ Γ∗ + i[−A,A]3, the operator γz is trace-class, and

‖γz‖S1(L2
per(Γ)) ≤ C4 with C4 = C2

1

∑
k∈R∗

(
1

1 + |k|2

)2

. (5.46)

Proof. The first assertion comes from the fact that

B̃1(z) =
1

2iπ

˛
C
B1(λ, z) dλ,

and the fact that |C | = 6 + 2(εF − Σ) (see Figure 5.1). Note that since |−i∇1 + q|2 ≥ 0, it
holds Σ ≥ −‖V ‖L∞ . To get the second assertion, we note that γz is a projector, so that

γz = γzγz = B̃2(z)

(
1

1−∆1

)2

B̃1(z).

The operator (1−∆1)−2 being trace-class, with

∥∥(1−∆)−2
∥∥
S1(L2

per(Γ))
=
∑
k∈R∗

(
1

1 + |k|2

)2

,

we obtain (5.46).
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5.5.3 Convergence of the kinetic energy per unit volume

The kinetic energy per unit volume of the states γ and γL defined in (5.14) are respectively
given by

Kper := Tr (−∆γ) and KL := Tr L (−∆LγL) .

Using the Bloch decomposition of γ and γL in (5.33)-(5.34), and the properties (5.23) and (5.27),
we obtain that

Kper =

3∑
j=1

 
Γ∗
Kj(q) dq and KL =

3∑
j=1

1

L3

∑
Q∈ΛL

Kj(Q)

where, for 1 ≤ j ≤ 3, we introduced the function

Kj : q 3 R3 7→ TrL2
per(Γ) ((Pj + qj) γq (Pj + qj)) .

Here, we denoted by Pj := P1,j for simplicity. Recall that the operator P1,j was defined
in (5.2). The error on the kinetic energy per unit volume Kper−KL is therefore equal to the
difference between integrals and corresponding Riemann sums. In the sequel, we introduce,
for 1 ≤ j ≤ 3, the function

∀z ∈ SA, Kj(z) := TrL2
per(Γ) ((Pj + zj) γz (Pj + zj)) .

Lemma 5.11 (Exponential convergence of the kinetic energy). For all 1 ≤ j ≤ 3, the function
Kj is R-periodic, and admits an analytic continuation on SA, where A > 0 was defined
in (5.39). Moreover, it holds

sup
z∈SA

|Kj(z)| ≤ C5 where C5 =

(
|Γ∗|2 +A+

1

2

)2

C2
3C4. (5.47)

As a consequence, from Lemma 5.6, it holds∣∣Kper −KL
∣∣ ≤ C0C5e−αL,

where C0 ∈ R+ and α > 0 were defined in (5.28).

Proof. The R-periodicity comes from the covariant identity (5.22). To prove the analyticity,
it is enough to prove that ∂zk ((Pj + zj)γz(Pj + zj)) is a trace-class operator for all z ∈
Γ∗+ i[−A,A]3. We only consider the case j = 1 and k = 1, the other cases being similar. We
have

∂z1 ((P1 + z1)γz(P1 + z1)) = γz(P1 + z1) + (P1 + z1)(∂z1γz)(P1 + z1) + (P1 + z1)γz. (5.48)

We first show that (P1 + z1)γz is a bounded operator. We have

(P1 + z1)γz =
(P1 + z1)

1−∆1
B̃1(z),

where B̃1 was defined in (5.45). From Lemma (5.10) and the fact that (P1 + z1)(1 −∆1)−1

is a bounded operator, we deduce that (P1 + z1)γz is bounded. The proof is similar for the
operator γz(P1 + z1). We now turn to the middle term of (5.48). Since γz is a projector, it
holds γz = γzγz. We obtain

(P1 + z1)(∂z1γz)(P1 + z1) = (P1 + z1) [γz(∂z1γz) + (∂z1γz)γz] (P1 + z1)

= [(P1 + z1)γz] γz(∂z1γz)(P1 + z1) + (P1 + z1)(∂z1γz)γz [γz(P1 + z1)] .
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We already proved that the operators (P1 + z1)γz and γz(P1 + z1) were bounded. Also, γz is
a trace-class operator. To prove that (P1 + z1) (∂z1) γz(P1 + z1) is trace class, it is therefore
sufficient to show that (P1 + z1)(∂z1γz) is bounded. We have

(P1 + z1)(∂z1γz) =
1

2iπ

˛
C

(P1 + z1)
1

λ−Hz
(P1 + z1)

1

λ−Hz
dλ

=
1

2iπ

˛
C

(
P1 + z1

1−∆1
B1(λ, z)

)2

dλ,

which is a bounded operator. We conclude that ∂z1 ((P1 + z1)γz(P1 + z1)) is a trace-class
operator. Finally, for 1 ≤ j ≤ 3, Kj is an analytic function on SA.

To get the bound (5.47), we write that

Kj(z) = TrL2
per(Γ) ((Pj + zj)γz(Pj + zj)) = TrL2

per(Γ) ((Pj + zj)γzγzγz(Pj + zj))

= TrL2
per(Γ)

(
Pj + zj
1−∆1

B̃1(z)γzB̃2(z)
Pj + zj
1−∆1

)
.

The bound (5.47) easily follows from Lemma 5.10 and the estimate

∀z ∈ Γ∗ + i[−A,A]3,

∥∥∥∥Pj + zj
1−∆1

∥∥∥∥
B(L2

per(Γ))

≤ |zj |+
∥∥∥∥ Pj

1−∆1

∥∥∥∥
B(L2

per(Γ))

≤ |Γ∗|2 +A+
1

2
.

5.5.4 Convergence of the ground state density

We now prove (5.16). The densities of γ and γL defined in (5.33)-(5.34) are respectively

ργ :=

 
Γ∗
ργq dq and ργL :=

1

L3

∑
Q∈ΛL

ργQ .

In particular, if W is a regular R-periodic trial function, it holds that

Mper
W :=

ˆ
Γ
ργW =

 
Γ∗

TrL2
per

(γqW ) dq and ML
W :=

ˆ
Γ
ργLW =

1

L3

∑
Q∈ΛL

TrL2
per

(γQW ) ,

so that the error Mper
W −ML

W is again the difference between an integral and a corresponding
Riemann sum. We introduce, for W ∈ L1

per(Γ) the function

∀z ∈ SA, MW (z) := TrL2
per

(γzW ) . (5.49)

Lemma 5.12. For allW ∈ L1
per(Γ),MW defined in (5.49) is well-defined R∗-periodic analytic

function on SA, where A > 0 was defined in (5.39), and it holds that

sup
z∈SA

|MW (z)| ≤ C6‖W‖L1
per(Γ) with C6 = C2

3

∑
k∈R∗

(
1

1 + |k|2

)2

. (5.50)

As a consequence, from Lemma 5.6, it holds that

‖ργ − ργL‖L∞(Γ) ≤ C0C6e−αL, (5.51)

where C0 and α were defined in (5.28).
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Proof of lemma 5.12. We first prove that MW is well defined whenever W ∈ L1
per(Γ). For

W ∈ L1
per(Γ), we have

MW (z) = TrL2
per(Γ) (γzW ) = TrL2

per(Γ) (γzWγz)

= TrL2
per(Γ)

(
B̃2(z)(1−∆1)−1W (1−∆1)−1B̃1(z)

)
.

According to the Kato-Seiler-Simon inequality [Sim05, Theorem 4.1]1, it holds that the op-
erator (1 − ∆1)−1

√
|W | is Hilbert-Schmidt (i.e. in the Schatten space S2(L2

per(Γ))), and
satisfies ∥∥∥(1−∆1)−1

√
|W |

∥∥∥
S2(L2

per(Γ))
≤

(∑
k∈R∗

(
1

1 + |k|2

)2
)1/2

‖W‖1/2
L1(Γ)

.

It follows that (1−∆1)−1W (1−∆1)−1 is in S1(L2
per(Γ)) with

∥∥(1−∆1)−1W (1−∆1)−1
∥∥
S1(L2

per(Γ))
≤

(∑
k∈R∗

(
1

1 + |k|2

)2
)
‖W‖L1(Γ), (5.52)

The proof of (5.50) then follows from Lemma 5.10.
Let us now prove that, for W ∈ L1(Γ), MW is analytic on SA. To do so, it is sufficient to

show that, for 1 ≤ k ≤ 3, ∂zk(γzWγz) is a trace class operator. We do the proof for k = 1.
We have

∂z1(γzWγz) = (∂z1γz)Wγz + γzW (∂z1γz)

=
1

(2iπ)2

˛
C

˛
C
B2(λ, z)

1

1−∆1
(P1 + z1)B2(λ, z)

1

1−∆1
W

1

1−∆1
B1(λ′, z)dλdλ′

+
1

(2iπ)2

˛
C

˛
C
B2(λ, z)

1

1−∆1
W

1

1−∆1
B1(λ′, z)(P1 + z1)

1

1−∆1
B1(λ′, z)dλdλ′.

We deduce as in the proof of Lemma 5.11 that ∇z(γzWγz) is trace class, which concludes the
proof.

5.5.5 Proof of Proposition 5.3 and Corollary 5.4

We now proceed with the proof of Proposition 5.3. The assertion (5.16) was proved in
Lemma 5.12. To get (5.15), we write that

Tr (γH) =
1

2
Tr (−∆γ) + Tr (V γ) and Tr L

(
γLH

L
)

=
1

2
Tr L (−∆Lγ) + Tr L (V γL) ,

so that∣∣Tr (γH)− Tr L
(
γLH

L
)∣∣ ≤ 1

2
|Tr (−∆γ)− Tr L (−∆Lγ)|+ ‖V ‖L1

per(Γ) ‖ργ − ργL‖L∞per(Γ) .

The proof of (5.15) then follows from Lemma 5.11 and (5.51).

We now prove Corollary 5.4. We compare the total energies

Eµper
per (γ)− Eµper

L (γL) =
1

2
(Tr (−∆γ)− Tr L(−∆LγL))

+
1

2
(D1(ργ − µper, ρ− µper)−D1(ργL − µper, ργL − µper)) , (5.53)

1The proof in [Sim05] is actually stated for operators acting on Lp(R3). However, the proof applies
straightforwardly to our bounded domain case Lpper(Γ).
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and notice that

|D1(ργ − µper, ργ − µper)−D1(ργL − µper, ργL − µper)| = |D1(ργ − ργL , ργ + ργL − 2µper)|
(5.54)

Using for instance the inequality (recall that |a∗1| ≤ |a∗2| ≤ |a∗3|)

∀f, g ∈ L2
per(Γ), |D1(f, g)| =

∣∣∣∣∣∣
∑

R∈R\{0}

ck (f)ck (g)

|k|2

∣∣∣∣∣∣ ≤ 1

|a∗3|
2

∑
R∈R\{0}

∣∣∣ck (f)ck (g)
∣∣∣

≤ 1

|a∗3|
2 |Γ|
‖f‖L2

per(Γ)‖g‖L2
per(Γ), (5.55)

and combining (5.53), (5.54) and (5.55), we obtain

∣∣Eµper
per (γ)− Eµper

L (γL)
∣∣ ≤ 1

2
|Tr (−∆γ)− Tr L(−∆LγL)|

+
1

2|a∗3|2|Γ|
‖ργ − ργL‖L2

per(Γ) ‖ργ + ργL − 2µper‖L2
per(Γ) .

Corollary 5.4 is therefore a consequence of Lemma 5.11, (5.51) and the embedding L∞per(Γ) ↪→
L2

per(Γ).

5.6 Proof for the nonlinear reduced Hartree-Fock case

In this section, we prove the exponential rate of convergence of the supercell model to the
periodic model in the nonlinear rHF case (see Theorem 5.5). The proof consists of three steps.

Step 1: Convergence of the ground-state energy per unit volume

In the sequel, we denote by V0 := (ργ0 − µper) ∗Γ G1 and VL,0 :=
(
ργL,0 − µper

)
∗Γ G1 (see

also (5.7) and (5.13)). We recall that

H0 = −1

2
∆ + V0 and γ0 = 1(H0 < εF ) act on L2(R3),

HL,0 = −1

2
∆L + VL,0 and γL,0 = 1(HL,0 < εF ) act on L2

per(ΓL).

We denote by g > 0 the gap of H0 around the Fermi level εF .

It was proved in [CDL08] that the sequence (VL,0)L∈N∗ converges to V0 in L∞per(Γ). We
will prove later that this convergence is actually exponentially fast. As a result, we deduce
that for L large enough, say L ≥ Lgap, the operator HL,0 is gapped around εF , and one may
choose the Fermi level of the supercell εLF defined in (5.7) equal to εF . We denote by gL the
size of the gap of HL,0 around εF . Without loss of generality we may assume that Lgap is
large enough so that

∀L ≥ Lgap, gL ≥
g

2
.

In the last section, we proved that the constants C ∈ R+ and α > 0 appearing in Propo-
sition 5.3 are functions of the parameters R, ‖V ‖L∞ , g and εF of the problem only. In
particular, it is possible to choose C ∈ R+ and α > 0 such that, for any choice of potentials
V among

{
V0, (VL,0)L≥Lgap

}
, the inequalities (5.15), (5.16) and (5.17) hold true.
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We first consider V = V0 in Proposition 5.3. We denote by γL ∈ PL the one-body density
matrix defined in (5.33) for this choice of potential. Together with Corollary 5.4, we get

∀L ∈ N∗, L−3I
µper

L = L−3Eµper

L (γL,0) ≤ L−3Eµper

L (γL) ≤ Eµper
per (γ0) +Ce−αL = I

µper
per +Ce−αL.

On the other hand, choosing V = VL,0 with L ≥ Lgap in Proposition 5.3, and denoting by
γ′L ∈ Pper the one-body density matrix defined in (5.33) for this choice of potential, we get

∀L ≥ Lgap, I
µper
per = Eµper

per (γ0) ≤ Eµper
per (γ′L) ≤ L−3Eµper

L (γL,0) + Ce−αL = L−3I
µper

L + Ce−αL.

Combining both inequalities leads to

∀L ≥ Lgap,
∣∣L−3I

µper

L − Iµper
per

∣∣ ≤ Ce−αL. (5.56)

This leads to the claimed rate of convergence for the ground-state energy per unit cell.

Step 2: Convergence of the ground state density

In order to compare ργ0 and ργL,0 , it is useful to introduce the Hamiltonian HL := −1

2
∆L+V0

acting on L2
per(ΓL). We also introduce γL := 1(HL < εF ). Note that γL ∈ PL is the

operator obtained in (5.33) by taking V = V0 in Proposition 5.3. Therefore, according to this
proposition, there exist C ∈ R+ and α > 0 such that

∀L ∈ N∗, ‖ργ0 − ργL‖L∞(Γ) ≤ Ce−αL. (5.57)

In order to compare ργL with ργL,0 , we note that, since γL,0 is a minimizer of (5.6), then,
using (5.17) and (5.56), we get that, for any L ∈ N∗,

0 ≤ L−3Eµper

L (γL)− L−3Eµper

L (γL,0) =
(
L−3Eµper

L (γL)− Eµper
per (γ0)

)
+
(
Eµper

per (γ0)− L−3Eµper

L (γL,0)
)

≤ 2Ce−αL,

so that
∀L ∈ N∗, 0 ≤ Eµper

L (γL)− Eµper

L (γL,0) ≤ L32Ce−αL ≤ C ′e−α′L

for some constants C ′ ∈ R+ and α′ > 0 independent of L. This inequality can be recast into

∀L ∈ N∗, 0 ≤ Tr L ((HL,0 − εF ) (γL − γL,0)) +
1

2
D1(ργL − ργL,0 , ργL − ργL,0) ≤ C ′e−α′L.

Both terms are non-negative, so each one of them is decaying exponentially fast. From the
inequality (recall that we assumed |a∗1| ≤ |a∗2| ≤ |a∗3|)

∀f ∈ L2
per(Γ), ‖f ∗Γ G1‖2L2

per(Γ) =
∑

R∈R\{0}

|ck (f)|2

|k|4
≤ 1

|a∗3|
2

∑
R∈R\{0}

|ck (f)|2

|k|2
=

1

|a∗3|
2D1(f, f),

we obtain that

∀L ∈ N∗, ‖(ργL−ργL,0)∗ΓG1‖2L2
per(Γ) ≤

1

|a∗3|
2D1(ρL−ργL,0 , ρL−ργL,0) ≤ 2C ′

|a∗3|
2 e−α

′L. (5.58)

Consider W ∈ L2
per(Γ). It holds that, for any L ≥ Lgap,

ˆ
Γ
(ργL − ργL,0)W =

1

L3

∑
Q∈ΛL

TrL2
per(Γ) [((γL)Q − (γL,0)Q)W ]

=
1

2iπL3

∑
Q∈ΛL

˛
C

TrL2
per(Γ)

(
1

λ− (H0)Q

(
(ργL,0 − ργL) ∗Γ G1

) 1

λ− (HL,0)Q
W

)
dλ (5.59)

=
1

2iπL3

∑
Q∈ΛL

˛
C

TrL2
per(Γ)

(
Bper

2 (λ,Q)
1

1−∆1

(
(ργL,0 − ργL) ∗Γ G1

)
BL

2 (λ,Q)
1

1−∆1
W

)
dλ,
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where Bper
2 is the operator defined in (5.35) for H = H0, and BL

2 is the one for H = HL,0.
From the expression of the constant C1 in (5.37), we deduce that there exists a constant
C̃1 ∈ R+ such that, for all L ≥ Lgap,

∀λ ∈ C , ∀Q ∈ ΛL, ‖Bper
2 (λ,Q)‖B(L2

per(Γ)) ≤ C̃1 and
∥∥BL

2 (λ,Q)
∥∥
B(L2

per(Γ))
≤ C̃1.

As a result,∣∣∣∣ˆ
Γ
(ργL − ργL,0)W

∣∣∣∣ ≤ |C | C̃1
2

2π

∥∥∥∥ 1

1−∆1

(
(ργL,0 − ργL) ∗Γ G1

)∥∥∥∥
S2(L2

per(Γ))

∥∥∥∥ 1

1−∆1
W

∥∥∥∥
S2(L2

per(Γ))

.

We deduce from the Kato-Seiler-Simon inequality [Sim05, Theorem 4.1] and the estimate (5.58)
that there exists constant C ∈ R+ and α > 0 independent of W such that,∣∣∣∣ˆ

Γ
(ργL − ργL,0)W

∣∣∣∣ ≤ Ce−αL ‖W‖L2
per(Γ) .

This being true for all W ∈ L2
per(Γ), we obtain

∀L ≥ Lgap,
∥∥ργL − ργL,0∥∥L2

per(Γ)
≤ Ce−αL.

This proves the convergence in L2
per(Γ). To get the convergence in L∞per(Γ), we bootstrap

the procedure. Since (ργL,0 − ργL) ∈ L2
per(Γ), then (ργL,0 − ργL) ∗Γ G1 ∈ L∞per(Γ) with

∀L ≥ Lgap,
∥∥(ργL,0 − ργL) ∗Γ G1

∥∥
L∞per

(Γ) ≤ C ′e−αL. (5.60)

Consider W ∈ L1
per(Γ). Performing similar calculations as in (5.59), we get (with obvious

notation)
ˆ

Γ
(ργL − ργL,0)W

=
1

2iπL3

∑
Q∈ΛL

˛
C

TrL2
per(Γ)

(
Bper

1 (λ,Q)
(
(ργL,0 − ργL) ∗Γ G1

)
BL

2 (λ,Q)
1

1−∆1
W

1

1−∆1

)
dλ,

so that∣∣∣∣ˆ
Γ
(ργL − ργL,0)W

∣∣∣∣ ≤ |C | C̃1
2

2π

∥∥(ργL,0 − ργL) ∗Γ G1

∥∥
L∞per(Γ)

∥∥∥∥ 1

1−∆1
W

1

1−∆1

∥∥∥∥
S1(L2

per(Γ))

,

and we conclude from (5.52) and (5.60) that there exist constants C ∈ R+ and α > 0 such
that

∀L ≥ Lgap,
∥∥ργL − ργL,0∥∥L∞per(Γ)

≤ Ce−αL.

Together with (5.57), we finally obtain

∀L ≥ Lgap,
∥∥ργ0 − ργL,0

∥∥
L∞per(Γ)

≤ Ce−αL.

Step 3: Convergence of the mean-field Hamiltonian

Finally, since
HL −H0 = (ργL,0 − ργ0) ∗Γ G1,

the estimate (5.60) implies the convergence of the operator HL −H0 to 0 in B(L2(R3)) with
an exponential rate of convergence.
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Remark 5.13. The convergence of the operators implies the convergence of the eigenvalues.
More specifically, from the min-max principle, we easily deduce that

sup
q∈Γ∗

sup
n∈N∗

|εn,q[HL]− εn,q[H0]| ≤ Ce−αL

where (εn,q[H])n∈N∗ denotes the eigenvalues of the operator Hq ranked in increasing order,
counting multiplicities.

5.7 Numerical simulations

In this final section, we illustrate our theoretical results with numerical simulations. The
simulations were performed using a home-made Python code, run on a 32 core Intel Xeon
E5-2667.

The linear model (Proposition 5.3)
We consider crystalline silicon in its diamond structure. A qualitatively correct band diagram
of this system can be obtained from a linear Hamiltonian of the form H = −1

2∆+V lin
per, where

the potential V lin
per is the empirical pseudopotential constructed in [CB66]. The lattice vectors

are
a1 =

a

2
(0, 1, 1)T , a2 =

a

2
(1, 0, 1)T and a3 =

a

2
(1, 1, 0)T

and the reciprocal lattice vectors are

a∗1 =
2π

a
(−1, 1, 1)T , a∗2 =

2π

a
(1,−1, 1)T and a∗3 =

2π

a
(1, 1,−1)T ,

where the lattice constant is [CB66] a = 10.245 Bohr (that is about a = 5.43 Å). In the
sequel, Γ∗ denotes the Brillouin zone of the fcc lattice. The high-symmetry points of Γ∗ are

Γ =
2π

a
(0, 0, 0)T , L =

2π

a
(1/2, 1/2, 1/2)T , X =

2π

a
(1, 0, 0)T ,

W =
2π

a
(1, 1/2, 0T ), K =

2π

a
(3/4, 3/4, 0)T and U =

2π

a
(1, 1/4, 1/4)T .

The pseudopotential V lin
per is given by the expression [CB66]

V lin
per(x) =

∑
k∈R∗

Vkeik·x with ∀k ∈ R∗, Vk = S[k] cos

(
a(k1 + k2 + k3)

8

)
(5.61)

where

S[k] =


−0.105 if |k|2 = 3(2π/a)2

0.02 if |k|2 = 8(2π/a)2

0.04 if |k|2 = 11(2π/a)2

0 otherwise.

The band diagram of this system is represented in Figure 6.1 along the path L→ Γ→ X →
W → Γ→ U → X.

This system is an insulator when the number of particle (electron pairs) per unit cell
is N = 4, so that the hypotheses of Proposition 5.3 are satisfied. In the sequel, the calculations
are performed in the planewave basis

X =

{
ek, k ∈ R∗,

|k|2

2
< Ecut-off

}
, (5.62)
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Figure 5.2 – Band diagram (in eV) of crystalline silicon in its diamond structure along the
path L→ Γ→ X →W → Γ→ U → X.

where the cut-off energy is Ecut-off = 736 eV. The corresponding size of the basis is |X| = 749.

In Figure 5.3, we represent the error on the ground state energy per unit cell and the
L∞(R3) error on the ground state density (in log scale) for different sizes of the regular
grid. The value of L in (5.24) varies between 4 to 28. The quantities of reference are the ones
calculated for the regular grid of size 60. We observe in Figure 5.3 the exponential convergence
for both the energy per unit cell and the density as predicted in Proposition 5.3.

The rHF model (Theorem 5.5)
We now consider the rHF model. To our knowledge, no pseudopotential has ever been designed
for this model. Since constructing pseudopotentials is a formidable task, we limit ourselves
to the following poor man’s solution, which does not aim at capturing the physics but only
at illustrating numerically our theoretical convergence results. We decompose the potential
self-consistent V0 appearing in (5.13) into

V0 = (ργ0 − µper) ∗Γ G1 = ργ0 ∗Γ G1 − µper ∗Γ G1,

and we make the approximation V0 = V lin
per, where V lin

per is the pseudopotential defined in (5.61).
This leads to the rHF pseudopotential of the form

V rHF
per := V lin

per − ργ0 ∗Γ G1.

In practice, we calculate V rHF
per with the potential ργ0 obtained previously for the grid of size 60.

The minimization problem (5.6)-(5.7) is solved self-consistently in the basisX defined in (5.62)
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Figure 5.3 – The error on the ground-state energy (in eV) and the L∞ error on the ground-
state density with respect to the size of the regular mesh for the linear model. The logarithm
of the errors are represented. The linear regression curves are also displayed.

(we refer to [Can00] for a survey on self-consistent procedures for such problems). We stop
the self-consistent procedure when the L∞(R3) difference between two consecutive densities
is less than 10−7. The size of the regular mesh varies between 8 to 36. The quantities of
reference are the ones calculated for the regular mesh of size 60. The error on the energy per
unit cell and the L∞(R3) error on the density are displayed in Figure 5.4.

We observe in Figure 5.4 the exponential convergence announced in Theorem 5.5.
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Figure 5.4 – The error in energy (in eV) and the L∞ error of the density with respect to the
size of the regular mesh for the rHF model. The logarithm of the errors are represented. The
linear regression curves are also displayed.





CHAPTER 6

REDUCED BASIS METHODS FOR
BRILLOUIN-ZONE INTEGRATION

This work was done in collaboration with Eric Cancès, Virginie Ehrlacher and Damiano Lom-
bardi. It is part of a comprehensive numerical analysis article [CEG+15] (in preparation) on
quadrature methods for Brillouin-zone integration.

Abstract. We introduce new reduced basis techniques that allow fast and accurate cal-
culations of the Fermi level and the ground state energy per unit cell for empirical effective
Hamiltonian models.

6.1 Introduction

The study of the electronic structure of perfect crystals is a central problem in solid-state
physics and materials science. Although perfect crystals do not exist in nature, they consti-
tute useful idealized systems to understand many fundamental properties of real crystalline
solids (electric conductivity, dielectric permittivity of insulators and semiconductors, photo-
electric effect, ...). Besides, the study of perfect crystals is an unavoidable preliminary to the
one of real crystals, that are crystals with point and extended defects (vacancies, interstitials,
impurities, dislocations, grain boundaries).

A perfect crystal is modeled by a Bravais latticeR of R3, and a motif, that is anR-periodic
distribution describing the natures and the positions of the atoms, or more specifically of the
bare nuclei in all-electron models, and of the ionic cores in empirical models, or in models
with pseudopotentials. The Fermi level and the energy per unit cell of a such a crystal can
be evaluated from the study of an electronic (empirical or mean-field) Hamiltonian H. Math-
ematically speaking, H is an unbounded one-body operator acting on L2(R3) that commutes
with the translations of the lattice R. Thanks to the Bloch transformation [RS78, Chapter
XIII], the study of this Hamiltonian amounts to studying a continuous set of compact resol-
vent operators Hq indexed by points q of the Brillouin zone. In particular, one can evaluate
the Fermi level and the energy per unit cell by evaluating integrals over the Brillouin zone.
The integrands are functions of the eigenvalues (and of the eigenvectors in mean-field models)
of the compact resolvent operators Hq (see Section 6.2).

From a numerical point of view, such integrals cannot be computed exactly, and the
Brillouin zone needs to be sampled. In [MP76, BJA94] for instance, the authors considered
uniform samplings of the Brillouin zone. If L denotes the number of points per direction
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of such a sampling, the total number of points is L3. This number of points to explicitly
consider can be reduced using the symmetries of the crystal [MP76]. For insulating systems,
the energy per unit cell can be estimated precisely with a coarse grid (small value of L). This
is due to the exponential rate of convergence proved in Chapter 5. For metallic systems, a
slower rate of convergence is expected and a much finer sampling is needed (large value of L).
As a consequence, the calculation of the eigenmodes of the operator Hq at all the points q of
the grid is numerically much more expensive than in the insulating case.

The goal of this chapter is to explain how to use the information on a coarse grid to speed
up the calculation on a much finer grid by means of reduced basis techniques. Similar ideas
were already considered by Pau in [Pau07]. Our approach, which consists in creating bases
that are q-point dependent, allows the identification of the main contribution of the reduced
basis error, resulting in much more accurate results at low extra-costs.

The proposed numerical methods are illustrated by the computation of the Fermi level
and total energy per unit cell for both insulating and metallic systems.

6.2 Notation and presentation of the model

We consider closed-shell electronic structure models and assume that each spatial electronic
state is either empty or doubly occupied (that is filled with two electrons, one with spin up
and one with spin down). In both empirical and mean-field electronic structure models of
perfect crystals, a key role is played by the electronic (empirical or mean-field) Hamiltonian,
which is an unbounded self-adjoint operator H on L2(R3) with domain H2(R3) of the form

H = −1

2
∆ + Vper, (6.1)

where Vper is either a real-valued locally square integrable R-periodic function on R3, or a
bounded self-adjoint operator on L2(R3) commuting with the translations of the lattice R.
The latter situation is encountered in particular in Hartree-Fock models and in Kohn-Sham
models with pseudopotentials. Since the operator H commutes with R-translations we can
consider its Bloch transform [RS78, Chapter XIII]. We denote by Γ the Wigner-Seitz cell of
R, by R∗ the reciprocal lattice, by Γ∗ the first Brillouin zone, by

L2
per(Γ) :=

{
f ∈ L2

loc(R3), f R-periodic
}

the periodic L2 space and by

∀s ∈ R, Hs
per(Γ) :=

{
f ∈ Hs

loc(R3), f R-periodic
}

the periodic Sobolev spaces. It holds that (we denote by
ffl

Γ∗ := |Γ∗|−1
´

Γ∗)

H =

 ⊕
Γ∗
Hq dq, with Hq :=

1

2
|−i∇+ q|2 + Vper, (6.2)

where, for all q ∈ Γ∗, the operator Hq with domain H2
per(Γ), is a bounded below self-adjoint

compact resolvent operator acting on L2
per(Γ). We denote by λ1,q ≤ λ2,q ≤ · · · its eigenval-

ues, ranked in increasing order, counting multiplicities, and by (un,q)n∈N∗ ∈ (L2
per(Γ))N

∗ an
orthonormal basis of associated eigenvectors.

With this notation, the integrated density of state (per unit cell) I and the integrated
density of energy (per unit cell) E are respectively defined by

∀ε ∈ R, I(ε) =
∞∑
n=1

 
Γ∗
1(−∞,ε](λn,q) dq (6.3)
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and

∀ε ∈ R, E(ε) = 2
∞∑
n=1

 
Γ∗
λn,q1(−∞,ε](λn,q) dq, (6.4)

where 1(−∞,ε] denotes the characteristic function of the interval (−∞, ε]. The factor 2 in (6.4)
accounts for the spin. Note that the sums appearing in (6.3) and in (6.4) are finite for any
value of ε, since the sequence (λn,q)n∈N∗ goes to infinity, uniformly in q ∈ Γ∗.

Let Npair be the number of electron pairs in the crystal. As the function I is continuous,
non-decreasing, and satisfies

I(ε) = 0 for ε < min(σ(H)) = inf {λ1,q, q ∈ Γ∗} and lim
ε→+∞

I(ε) = +∞,

the set I−1({N}) is a non-empty bounded closed interval of R. We write I−1({N}) = [ε−, ε+].
Any number ε inside this interval is an admissible Fermi level of the system. When ε− = ε+,
this number εF is unique, and the system is a metal. Otherwise, the system is an insulator or
a semi-conductor, depending on the magnitude of the (indirect) gap g := ε+ − ε−. The func-
tion E has a constant value E(εF ) on this interval, called the energy per unit cell, where εF
is any number in this interval. For our purpose, we can choose for instance εF = (ε−+ ε+)/2.

The expressions (6.3) and (6.4) involve integrations over the Brillouin zone Γ∗. In practice,
an analytical integration cannot be performed and hence numerical quadrature techniques
must be resorted to. Several methods were proposed to sample the Brillouin zone. In [MP76]
for instance, Monkhorst and Pack suggested to use a regular grid. Let us consider a basis
(a1,a2,a3) of the lattice R, so that R = Za1 + Za2 + Za3, and the associated dual basis
(a∗1,a

∗
2,a
∗
3) of the reciprocal lattice, so that R∗ := Za∗1 + Za∗2 + Za∗3 and ai · a∗j = 2πδij . For

L ∈ N∗, the L× L× L regular grid is defined by

ΛL :=

{
2k1

L
a∗1 +

2k2

L
a∗2 +

2k3

L
a∗3, (k1, k2, k3) ∈

{
−L+ η

2
,
−L+ η

2
+ 1, · · · , L+ η

2
− 1

}3
}
,

(6.5)
where η = 0 if L is even, and η = 1 otherwise. Note that there are exactly L3 points in ΛL,
and that the point q = 0 lies inside ΛL for all L ∈ N∗. This grid can be reduced using the
symmetries of the system [MP76].

Finally, the infinite dimensional form domain H1
per(Γ) of Hq is approximated by a finite-

dimensional conformal discretization space XN ⊂ H1
per(Γ). In this chapter, we mostly study

the planewave discretization case, where

XN := Span

{
ek, k ∈ R∗,

|k|2

2
≤ Ecut-off

}
. (6.6)

Here, ek(x) := |Γ|−1/2eik·x is the Fourier mode with wave vector k, and Ecut-off is the cut-off
energy. Usually in physics, the approximation space XN is characterized by the value of
Ecut-off (in eV) rather than by the value of N := dim(XN ).

In the sequel, we consider that λn,q and un,q are the reference solutions computed in a
fine discretization space XN (N � 1), and we will compare the results obtained with our
reduced basis methods to the ones obtained with those reference solutions. The Dirac’s bra-ket
notation refers to the L2

per(Γ) inner product on XN .

6.3 The simple reduced basis method

The basic idea of the proposed numerical scheme is to extract local reduced bases from cal-
culations on a coarse uniform grid of size L1 × L1 × L1 of Γ∗ for some value L1 ∈ N∗. These
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are used to compute the eigenmodes of Hq for q on a fine uniform grid of size L2 × L2 × L2,
with L2 � L1. In order to give rise to fast computations on the fine grid, the size N ∈ N∗ of
the reduced bases must be much smaller than the size of the initial basis: N � N .

Let L1 ∈ N∗ be the number of points per direction of the coarse grid ΛL1 . A point of
the coarse grid will be denoted by Q (uppercase letter) for the sake of clarity. For Q ∈ ΛL1

and N ∈ N∗ we denote by
XN

Q := Span {u1,Q, . . . ,uN,Q}

the subspace of XN of dimension N consisting of the eigenvectors associated to the lowest
N eigenvalues of the operator HQ. Let L2 ∈ N∗ be the number of points per direction of the
fine grid ΛL2 . A point of the fine grid will be denoted by q (lowercase letter). For q in the
fine grid ΛL2 , we denote by P (q) a set of points of the coarse grid that are close to q. One
can take for instance

P (q) := {Q ∈ ΛL1 , |Q− q|∞ < r} ,
where | · |∞ denotes the `∞ norm in the euclidian basis, and where r is a well-chosen positive
cut-off radius. In what follows, we take r = L−1

1 .

The first method, called hereafter simple reduced basis, or simple-RB, is straightforward.
Let m be a positive integer chosen beforehand so that λm,q ≥ εF for all q ∈ Γ∗. If the
system into consideration is an insulator, we take m = Npair. For each point q ∈ ΛL2 and
each Q ∈ P (q), we compute the first m eigenmodes of Hq in the basis XN

Q . We obtain

a set of eigenvalues
(
λN,Qn,q

)
1≤n≤m

, and an orthonormal family of associated eigenvectors(
uN,Qn,q

)
1≤n≤m

, in the sense that

λN,Q1,q ≤ λ
N,Q
2,q ≤ . . . ≤ λ

N,Q
m,q

and
∀1 ≤ n ≤ m, ∀w ∈ XN

Q ,
〈
w
∣∣∣Hq

∣∣∣uN,Qn,q

〉
= λN,Qn,q

〈
w
∣∣∣uN,Qn,q

〉
.

We then choose Q0 ∈ P (q) such that
m∑
k=1

λN,Q0
n,q = inf

{
m∑
k=1

λN,Qn,q , Q ∈ P (q)

}
.

Another, more expensive, option consists in considering the approximation space spanned
by all the eigenvectors

(
uN,Qn,q

)
1≤n≤m,Q∈P (q)

The simple-RB method consists in making the

approximation
λn,q ≈ λN,Q0

n,q and un,q ≈ uN,Q0
n,q .

This method is very easy to implement, and already provides satisfactory results. It is however
possible to improve subsequently the results by further analyzing the source of the error coming
from the reduced basis approximation.

6.4 Perturbation expansion

We present in this section an approach to improve the accuracy of the approximate eigenmodes
obtained by the procedure described in the previous section, using a perturbation-based post-
processing method similar to the one introduced in [CDM+14]. We first make the following
observation. From the definition of Hq in (6.2), it holds that

Hq =
1

2
|−i∇+ q|2 + Vper = −1

2
∆− iq · ∇+

|q|2

2
+ Vper = Aq +

|q|2

2
,
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where
Aq := −1

2
∆− iq · ∇+ Vper

is a bounded below self-adjoint operator acting L2
per(Γ) with domain H2

per(Γ). The eigenvalues
of Aq are

µn,q := λn,q −
|q|2

2
,

and its eigenvectors are the same as those of Hq. It is more convenient to work with the
operator Aq than with the operator Hq, as the former depends linearly on q ∈ Γ∗.

Let q ∈ ΛL2 and Q ∈ P (q). Our analysis is based on the fact that

Aq = AQ + (q−Q) · (−i∇) = AN,Qq +WN,Q
q (6.7)

where AN,Qq and WN,Q
q are respectively defined by

AN,Qq =
(
AQ + ΠXN

Q
(q−Q) · (−i∇)ΠXN

Q

)
and

WN,Q
q =

(
(q−Q) · (−i∇)−ΠXN

Q
(q−Q) · (−i∇)ΠXN

Q

)
.

Here, ΠXN
Q

denotes the orthogonal projector on XN
Q (for the L2

per(Γ) inner product). The
approximate and exact eigenmodes respectively satisfy

AN,Qq uN,Qn,q = µN,Qn,q uN,Qn,q and
(
AN,Qq +WN,Q

q

)
un,q = µn,q un,q.

The exact eigenmodes can therefore be considered as perturbations of the approximate eigen-
modes. Using first-order perturbation theory, we obtain

un,q = uN,Qn,q + vN,Qn,q + rN,Qn,q , (6.8)

where

vN,Qn,q := −
Π⊥
XN

Q

AQ − µN,Qn,q

(
(q−Q) · (−i∇uN,Qn,q )

)
, (6.9)

and where, for (q − Q) small enough, the H1
per(Γ)-norm of the remainder rN,Qn,q is of or-

der |q−Q|2. Here, Π⊥
XN

Q
:= 1−ΠXN

Q
denotes the orthogonal projector on XN

Q
⊥.

The approximation (6.8) suggests that the eigenvector un,q is better approximated by
uNn,q + vN,Qn,q than by uNn,q. The idea is then to replace the initial discretization space XN

Q by

X̃M,Q
q := Span

{
uN,Q1,q + vN,Q1,q , . . . , uN,QM,q + vN,QM,q

}
, (6.10)

and hopefully get better approximations with this new basis set. The method using this
correction will be called the corrected reduced basis, or corrected-RB, method.

Remark 6.1. While the initial discretization space XM
Q was only Q-dependent, the new one

is (Q,q)-dependent: a new reduced basis is created for each point q of the fine grid ΛL2, and
each point Q ∈ P (q).

Remark 6.2. The new discretization space is of dimension M ≤ N . In general, one needs
to take M < N . This comes from the fact that the operator

(
AQ − µNn,q

)
Π⊥
XN

Q
appearing

in (6.9) needs to be invertible on (XN
Q )⊥. A natural way to ensure invertibility is to impose

µM,Q < µN+1,Q.
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Note that the multiplication of a vector by the operator (q−Q) ·(−i∇) appearing in (6.9)
is inexpensive if the initial basis set is the planewave basis XN defined in (6.6). However,
in order to evaluate the new basis, one must also be able to compute the multiplication of a
vector by the large matrix

(
AQ − µNn,q

)
Π⊥
XN

Q
appearing in (6.9). This may be troublesome in

practice if N is too large. The approximation of this operator is discussed in the next section.

6.5 An approximation of the resolvent

We discuss in this section some numerical methods to approximate the inverse of the opera-
tor

(
AQ − µNn,q

)
Π⊥
XN

Q
. The first natural way to approximate it is to set

Π⊥
XN

Q
≈ Π

X
Nmed
Q

−ΠXN
Q

(6.11)

where Nmed ∈ N∗ is chosen such that N � Nmed � N . In this case, only the first Nmed
eigenmodes of AQ must be computed for all Q ∈ ΛL1 , and it holds

Π⊥
XN

Q

AQ − µN,Qn,q

≈
Nmed∑
k=N+1

|uk,Q〉〈uk,Q|
µk,Q − µNn,q

.

However, by making the approximation (6.11), the resulting vNn,Q,q defined in (6.9) belong

to XNmed
Q . Since uNn,q ∈ XN

Q ⊂ XNmed
Q , we deduce that the space X̃M

n,Q,q defined in (6.10)

satisfies X̃M
n,Q,q ⊂ XNmed

Q . As a consequence, the results obtained with the corrected-RB
method together with the approximation (6.11) are less accurate than the simple-RB method
with bases of size Nmed. Another approach is to make the crude approximation

Π⊥
XN

Q

AQ − µN,Qn,q

≈ Π⊥
XN

Q

1

1 + 1
2 |−i∇+ q|2

Π⊥
XN

Q
. (6.12)

Note that it holds
Π⊥
XN

Q

AQ − µN,Qn,q

−Π⊥
XN

Q

1

1 + 1
2 |−i∇+ q|2

Π⊥
XN

Q
=

Π⊥
XN

Q

AQ − µN,Qn,q

(
V N,Q
n,q

1

1 + 1
2 |−i∇+ q|2

)
Π⊥
XN

Q
,

where

V N,Q
n,q := 1 + µN,Qn,q +

|q|2

2
− Vper

is a multiplication operator. In particular, thanks to the Kato-Seiler-Simon inequality [Sim05],

the operator

(
V N,Q
n,q

1

1 + 1
2 |−i∇+ q|2

)
Π⊥
XN

Q
is compact, and, for fixed n, converges to 0 when

N goes to infinity. While this argument is not sufficient to mathematically certify the sug-
gested approximation, it hints that it should significantly improve the results of a naive
computation. This will be confirmed in the numerical experiments presented in Section 6.6.

The corrected-RB method together with the approximation (6.12) is called the partially
corrected reduced basis, or partially-corrected-RB, method. In this case, we solve the eigenvalue
problem of Hq in the basis

X̃M,Q
q := Span

{
uN,Q1,q + ṽN,Q1,q , . . . , uN,QM,q + ṽN,QM,q

}
,

where we set

ṽN,Qn,q := −Π⊥
XN

Q

1

1 + 1
2 |−i∇+ q|2

Π⊥
XN

Q

(
(q−Q) · (−i∇uN,Qn,q )

)
. (6.13)
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Remark 6.3. The functions appearing in (6.13) are inexpensive to compute in the plane-wave
basis XN defined in (6.6).

6.6 Numerical results

We illustrate our method with numerical tests. The simulations were performed using a
home-made Python code, run on a 32 core Intel Xeon E5-2667. The purpose of this section is
to demonstrate the accuracy of the various reduced basis methods described in the previous
sections. We do not report computational times, since our Python code uses very efficient par-
allel linear algebra packages to diagonalize the matrices, which favors the full-diagonalization
approach, while our implementation of the reduced basis method was not optimized. An
implementation of our reduced basis method in Abinit [GAA+09] is in progress.

Insulating case
We first consider the insulating case and study the crystalline silicon in its diamond struc-
ture. We take the empirical pseudopotential described in [CB66]. The corresponding Bravais
lattice is generated by the vectors a1 := (a/2)(0, 1, 1)T , a2 := (a/2)(1, 0, 1)T and a3 :=
(a/2)(1, 1, 0)T , where a is the lattice constant of the crystal a = 10.245 Bohr (that is
a ≈ 5.43Å). In the sequel, Γ∗ denotes the Brillouin zone of the fcc lattice. The high-symmetry
points of Γ∗ are Γ = (2π/a)(0, 0, 0)T , L = (2π/a)(1/2, 1/2, 1/2)T , X = (2π/a)(1, 0, 0)T ,
W = (2π/a)(1, 1/2, 0), K = (2π/a)(3/4, 3/4, 0)T and U = (2π/a)(1, 1/4, 1/4)T .
In atomic units, the corresponding linear mean-field Hamiltonian is H = −1

2∆ + Vper, where
Vper is the effective pseudopotential constructed in [CB66] of the form

Vper(x) =
∑
k∈R∗

Vkeik·x with ∀k ∈ R∗, Vk = S[k] cos

(
a(k1 + k2 + k3)

8

)

where

S[k] =


−0.105 if |k|2 = 3(2π/a)2

0.02 if |k|2 = 8(2π/a)2

0.04 if |k|2 = 11(2π/a)2

0 otherwise.

There are Npair = 4 electron-pairs per unit cell. The band diagram of this system is repre-
sented in Figure 6.1 along the path L→ Γ→ X →W → Γ→ U → X.

To illustrate our methods in the insulating case, we choose the coarse grid to be 6× 6× 6
(that is 10 irreducible q-points) and the fine grid to be 24 × 24 × 24 (that is 240 irreducible
q-points). We take N = 749 (which corresponds to a cut-off energy Ecut-off = 736 eV), and
we vary the size of the reduced basis from 20 to 150. The error on the ground state energy
per unit cell is displayed in Figure 6.2 and the error in the L∞(R3) norm of the electronic
density is displayed in Figure 6.3.

We see from Figures 6.2 and 6.3 that our simple-RB method already provides results in
good agreement with the full calculation. The corrected-RB method improves the simple-RB
method by a factor 102 for the energy and a factor 3 to 10 for the density. Finally, the
partial-corrected-RB method provides results which are close to the ones obtained with the
corrected-RB.

Metallic case
We now consider the metallic case. We study the fcc structure crystalline aluminum with
the empirical pseudopotential described in [HA93]. The Bravais lattice is generated by the
vectors a1 := (a/2)(0, 1, 1)T , a2 := (a/2)(1, 0, 1)T and a3 := (a/2)(1, 1, 0)T with a = 7.64 Bohr
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Figure 6.1 – Band diagram (in eV) of crystalline silicon in its diamond structure along the
path L→ Γ→ X →W → Γ→ U → X.

(that is a ≈ 4.05 Å). The mean-field Hamiltonian is H = −1
2∆ + Vper where the effective

pseudopotential Vper is of the form [HA93]

Vper(x) =
∑

k∈R∗,
|k|2/2≤Ecut-off

Vkeik·x with ∀k ∈ R∗, Vk = Ṽ (|k|),

where, for all q ∈ R3,

Ṽ (q) = −β cos (qrc)
ε(q)

q2
with ε(q) = 1 +

Π(q)

1− g(q)Π(q)
.

The functions Π and g are given by (we denote by x := q/(2kf ))

Π(q) =

(
1

πkfa0

)
1

x2

(
1

2
+

(1− x2)

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣) and g(q) =

(
2 +

1

αx2

)−1

.

The values of the constants are, in atomic units, β = 0.338, rc = 1.338 (which corresponds
to rc = 0.709 Å found in [HA93]), a0 = 1 and kf = 0.927. The number of electron pairs is
Npair = 1.5. The band diagram of this system is represented in Figure 6.4 along the path
L→ Γ→ X →W → Γ→ U → X.

The Fermi level, the total energy per unit cell and the density are calculated with the
improved tetrahedron method together with the Blöchl correction [BJA94]. The Fermi level
is calculated with a simple dichotomy method with a precision of 10−7 eV.
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Figure 6.2 – Error on the ground state energy per unit cell (in log scale) with respect to the
size of the reduced basis for crystalline silicon. The dotted line represents the error between
the energy calculated on the coarse grid and the one calculated on the fine grid.

Figure 6.3 – L∞ error on the ground state electronic density (in log scale) with respect to
the size of the reduced basis for crystalline silicon. The dotted line represents the L∞ error
between the electronic density calculated on the coarse grid and the one calculated on the
fine grid.
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Figure 6.4 – Band diagram of Al in its fcc structure (in eV) along the path L → Γ → X →
W → Γ→ U → X. The dotted line represents the Fermi level.

The error on the Fermi level and on the total energy per unit cell with respect to the size
of the regular grid (the integer L in (6.5)) is displayed in Figure 6.5. The size of the grid
varies from 4 to 60. The quantities of reference are the ones calculated at L = 80.

In Figure 6.5, we see the slow convergence of these quantities with respect to the size of
the grid. To obtain an accuracy of 10−2 eV on the energy per unit cell, we need to consider a
grid of size at least 30×30×30. In the sequel, the calculations are performed with the coarse
grid 8 × 8 × 8 (that is 20 irreducible q-points) and the fine grid 40 × 40 × 40 (that is 916
irreducible q-points). The error on the ground state energy per unit cell with respect to the
size of the reduced basis is displayed in Figure 6.6, the error on the Fermi level is displayed in
Figure 6.7 and the L∞ error for the ground state electronic density is displayed in Figure 6.8.

Whereas the convergence in the insulating case with respect to the size of the reduced basis
looks exponentially fast (see Figure 6.2 and Figure 6.3), the convergence in the conducting
case looks much slower. However, we see that even a very small reduced basis already recovers
the Fermi level and the energy per unit cell with an accuracy of 10−3.
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Figure 6.5 – The error on the Fermi level and on the total energy per unit cell (in log scale)
with respect to the number of k-pts per direction. The linear regression curve for the energy
is also plotted.

Figure 6.6 – Error on the ground state energy (in log scale) with respect to the size of the
reduced basis for crystalline aluminum. The dotted line represents the error between the
energy calculated on the coarse grid and the one calculated on the fine grid.
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Figure 6.7 – The error of the Fermi level (in log scale) with respect to the size of the reduced
basis for crystalline aluminum. The dotted line represents the error between the Fermi level
calculated on the coarse grid and the one calculated on the fine grid.

Figure 6.8 – The L∞ error of the electronic density (in log scale) with respect to the size of
the reduced basis aluminum. The dotted line represents the L∞ error between the electronic
density calculated on the coarse grid and the one calculated on the fine grid.
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