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RESUME: L’objectif de cette thèse est de développer des outils et des méthodes pour l’évaluation
de la qualité de service (Quality of Service - QoS) perçue par les utilisateurs, en fonction de la demande
de trafic, dans les réseaux cellulaire sans fil moderne. Ce problème complexe, directement liée au
dimensionnement du réseau, implique la modélisation des processus dynamiques à plusieurs échelles de
temps, qui en raison de leurs nature aléatoire se prêtent à la formalisation probabiliste.

Tout d’abord, sur la base de la théorie de l’information, nous capturons les performances d’un seul
lien entre une station de base et un utilisateur dans un réseau cellulaire avec des canaux orthogonaux et
la technologie MIMO. Nous prouvons et utilisons certaines bornes inférieures de la capacité ergodique en
vue de la théorie de l’information d’un tel lien, qui prend aussi en compte la variabilité du canal rapide
causée par la propagation des trajets multiples. Ces bornes donnent une base solide pour l’évaluation
plus profonde de la qualité de service perçue par les utilisateurs.

Ensuite, on considère plusieurs utilisateurs (éventuellement mobiles), arrivant dans le réseau et de-
mandant un service. Nous considérons des services (élastiques) à débit variable dans lesquels les trans-
missions de certaines quantités de données sont réalisées d’une manière ”best-effort”, ou services à débit
constant, dans lesquels une certaine vitesse de transmission doit être maintenue pendant les périodes
demandées. Sur la base de la théorie des files d’attente, on capture cette demande du trafic et processus
de service à l’aide des modèles appropriés (multi-classes) de partage du processeur (processor-sharing
PS) ou modèle de perte. Dans cette thèse, nous adaptons les modèles PS existants et développons un
nouveau modèle de perte pour le trafic streaming de transmission sans fil, où les bornes théoriques (au
regard de la théorie de l’information) mentionnées ci-dessus de la capacité des liens simples décrivent
les taux de service instantanés des utilisateurs. Les modèles multi-classes sont utilisés pour capturer
l’hétérogénéité spatiale des canaux utilisateur. Ceux-ci dépendent de l’emplacement géographique de
l’utilisateur et du phénomène de ”shadowing” de propagation.

Enfin, au-dessus des processus de file d’attente théoriques, il faut tenir compte d’un réseau multicel-
lulaire, dont les stations de base ne sont pas nécessairement régulièrement placées, et dont la géométrie
est en outre perturbée par la phénomène de shadowing. Nous abordons cet aspect aléatoire en utilisant
des modèles de géométrie stochastique, notamment processus de Poisson ponctuels et le formalisme de
Palm appliqué à la cellule typique du réseau. En appliquant l’approche triple mentionnée ci-dessus,
censée à représenter tous les mécanismes cruciaux et les paramètres de l’ingénierie des réseaux cellu-
laires (tels que LTE - Long Term Evolution), nous établissons des relations macroscopiques entre la
demande de trafic et les métriques de la qualité de service perçue par les utilisateurs pour certains ser-
vices à débit binaire élastiques et constants. Ces relations sont obtenues principalement d’une manière
semi-analytique, c’est-à-dire qu’elles concernent des simulations statiques d’un processus ponctuel de
Poisson (modélisation des emplacements des stations de base). Ceci afin d’évaluer ses caractéristiques
qui ne se prêtent pas aux expressions analytiques.

Plus précisément, en ce qui concerne le trafic de données (le service de débit binaire élastique), nous
capturons l’interférence inter-cellule, rendant les modèles des files d’attente PS de cellules individuelles
dépendantes, via un système d’équations de charge des cellules. Ces équations permettent de déterminer
le débit moyen par utilisateur, le nombre moyen d’utilisateurs et la charge moyenne de la cellule dans
un grand réseau, en fonction de la demande du trafic. La distribution spatiale de ces métriques de QoS
dans le réseau est également étudiée. Nous validons notre approche en comparant les résultats obtenus
avec ceux mesurés à partir de traces du réseau réel. Nous observons une concordance remarquable entre
les prédictions du modèle et les données statistiques recueillies dans plusieurs scénarios de déploiement.

En ce qui concerne les services de débit binaire constants, nous proposons un nouveau modèle stochas-
tique pour évaluer la fréquence et le nombre d’interruptions lors de streaming en temps réel en fonction
des conditions radio utilisateur. Nous l’utilisons pour étudier les métriques de la qualité de service en
fonction des conditions radio utilisateur dans les réseaux LTE.

Tous les résultats établis ici contribuent au développement de méthodes de dimensionnement de
réseau et sont actuellement utilisés dans les outils internes d’Orange pour les calculs de capacité du
réseau.

MOTS-CLEFS: QoS; LTE; débit; charge; théorie des files d’attente; géométrie stochastique; mesures;
3GPP
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ABSTRACT: The goal of this thesis is to develop tools and methods for the evaluation of the
QoS (Quality of Service) perceived by users, as a function of the traffic demand, in modern wireless
cellular networks. This complex problem, directly related to network dimensioning, involves modeling
dynamic processes at several time-scales, which due to their randomness are amenable to probabilistic
formalization.

Firstly, on the ground of information theory, we capture the performance of a single link between
a base station and a user in the context of a cellular network with orthogonal channels and MIMO
technology. We prove and use some lower bounds of the information-theoretic ergodic capacity of such
a link, which account also for the fast channel variability caused by multi-path propagation. These
bounds give robust basis for further user QoS evaluation.

Next, one considers several (possibly mobile) users, arriving in the network and requesting some
service from it. We consider variable (elastic) bit-rate services, in which transmissions of some amounts
of data are realized in a best-effort manner, or constant bit-rate services, in which a certain transmission
rate needs to be maintained during requested times. On the ground of queuing theory, one captures this
traffic demand and service process using appropriate (multi-class) processor sharing (PS) or loss models.
In this thesis, we adapt existing PS models and develop a new loss model for wireless streaming traffic,
in which the aforementioned information-theoretic capacities of single links describe the instantaneous
user service rates. The multi-class models are used to capture the spatial heterogeneity of user channels,
which depends on the user geographic locations and propagation shadowing phenomenon.

Finally, on top of the queueing-theoretic processes, one needs to consider a multi-cellular network,
whose base stations are not necessarily regularly placed, and whose geometry is further perturbed by
the shadowing phenomenon. We address this randomness aspect by using some models from stochastic
geometry, notably Poisson point processes and Palm formalism applied to the typical cell of the network.

Applying the above three-fold approach, supposed to represent all crucial mechanisms and engineer-
ing parameters of cellular networks (such as LTE), we establish some macroscopic relations between the
traffic demand and the user QoS metrics for some elastic and constant bit-rate services. These relations
are mostly obtained in a semi-analytic way, i.e., they only involve static simulations of a Poisson point
process (modeling the locations of base stations) in order to evaluate its characteristics which are not
amenable to analytic expressions.

More precisely, regarding the data traffic (the elastic bit-rate service), we capture the inter-cell
interference, making the PS queue models of individual cells dependent, via some system of cell-load
equations. These equations allow one to determine the mean user throughput, the mean number of users
and the mean cell load in a large network, as a function of the traffic demand. The spatial distribution of
these QoS metrics in the network is also studied. We validate our approach by comparing the obtained
results with those measured from live-network traces. We observe a remarkably good agreement between
the model predictions and the statistical data collected in several deployment scenarios.

Regarding constant bit-rate services, we propose a new stochastic model to evaluate the frequency
and the number of interruptions during real-time streaming calls in function of user radio conditions.
We use it to study the quality of service metrics in function of user radio conditions in LTE networks.

All established results contribute to the development of network dimensioning methods and are
currently used in Orange internal tools for network capacity calculations.

KEY-WORDS: QoS; LTE; throughput; load; queueing theory; stochastic geometry; measures; 3GPP
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Chapter 1

Introduction

1.1 Thesis motivation

There is a need for simple, yet realistic methods for the evaluation of the quality of service
(QoS) in wireless networks capturing both the spatial distribution of the elements of the network
and the temporal dynamics of users and having a limited number of parameters. This can be
obtained by decomposing the problem into three layers corresponding to different time-scales,
which are addressed on the ground of information theory, queuing theory and stochastic geometry.
Firstly, information theory studies the performance of a single radio link accounting particularly
for the signal variations due to multi-path fading. Once the link performance is characterized,
resources (power, bandwidth etc.) are allocated to the users while accounting for their mutual
interference. This can be modelled by an appropriate service policy on the ground of queuing
theory which accounts next for the users’ arrivals, mobility and departures and allows appropriate
time averages. Finally, stochastic geometry is used to model network, i.e. base stations spatial
pattern and shadowing.

Individual elements of the above puzzle (i.e. information theory, queuing theory and stochas-
tic geometry models) are often studied and optimized separately. The main specificity of the
methodology proposed in this thesis is a global approach that combines these three elements. In
doing so, it is necessary to separate carefully the time scales of different elements of the network
dynamics.

We apply an information-theoretic modeling of a link layer between a user and a base station.
In this context we show that the worst additive noise is the white Gaussian one and establish a
lower bound for the link capacity. Further the modeling approach consists in representing the
configuration of users (positions, call durations or volumes, allocated resources) as a random
object (point pattern with associated random variables), which evolves in time. The quality of
service perceived by the users may then be expressed as a function of the stationary state of this
process and thus will depend only on its distribution parameters. This approach often allows
one for an explicit evaluation of the key QoS characteristics and for efficient optimization of the
network cost and capacity. Some examples from other research works which prove the pertinence
of this approach, can be found in [49], [78], [24], [68], [42], [10], [54]. We use homogeneous
spatial Poisson point processes to model base station positions and apply results from stochastic
geometry to evaluate QoS.

The performance of wireless cellular networks is often evaluated in terms of parameters such
as the spectral efficiency [7] (in particular within 3GPP [3]) or the outage probability [44].
However from the point of view of an operator, it is even more important to calculate the QoS

13
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perceived by the users; and in particular to relate this QoS to the key network parameters such
as the traffic demand, the cell radius, the transmitted power, etc. This relation is crucial for the
network dimensioning; i.e., evaluating the minimal number of base stations (more generally, the
required network setup) assuring some QoS (for some given traffic demand). This permits in
particular to minimize the network cost. The probabilistic approach described above often allows
an explicit evaluation of the key characteristics such as users QoS and for efficient optimization
of the network dimensioning.

Classically, the services are classified into two main categories:

• Variable bit-rate (VBR); e.g., mail, ftp. Users aim to transmit some given volume of data
at a bit-rate which may be decided by the network

• Constant bit-rate (CBR); e.g., voice, video conferencing. Users require some given (con-
stant) bit-rate for some duration. In this case the requested bit-rates may sometimes exceed
the available capacity, a situation usually called congestion. CBR services do not tolerate
temporary interruptions of their transmissions. Consequently, if congestion occurs, the net-
work blocks (i.e., refuses the access to) new calls and/or drops (i.e., interrupts definitely)
some other calls during their transmissions.

When we account for calls’ arrivals, mobility and departures, the QoS perceived by the
users (in the long run of the network) is different for each of the above traffic classes. For VBR
connections, the QoS may be defined in terms of the mean throughput or delay per user [25], [59].
For CBR calls, the main QoS indicators are the blocking and dropping probabilities [10], [42], [59].
The research done in the last few years permitted to build efficient methods to calculate these
QoS indicators (see for example [6]). These methods are based respectively on processor sharing
for VBR and on multi-class Erlang models for CBR services.

However, new multimedia services are gaining interest in wireless cellular networks, especially
streaming services [45]. Streaming connections require some given bit-rate for some duration [68],
[75]. Thus congestion may occur (when the bit-rates requested by the users in the network exceed
the available capacity). All streaming calls are admitted, but, as a counterpart, they tolerate
temporary interruptions of their transmission. We distinguish two sub-classes:

• Streaming-RT (Real-Time): e.g. mobile TV, RTP streaming. When congestion occurs, the
corresponding portions of some calls are definitely lost, but the call is not dropped.

• Streaming-NRT (Non-Real-Time): e.g., streaming-video (youtube, dailymotion, on de-
mand video) on the web. When congestion occurs, the corresponding portions of calls are
delayed.

For the streaming users, the QoS is related to the frequency of the interruption of their calls
and the durations of these interruptions. These performance measures depend strongly on the
mobility of users, as mobility increases the variability of the radio conditions.

1.2 Thesis contribution and structure

This thesis comprises three technical chapters. In Chapter 2 we focus on the first element of
the analytic approach: single link quality between a user and a base station. We examine
radio links in cellular networks such as LTE (Long Term Evolution) and HSDPA (High-Speed
Downlink Packet Access) and take into account MIMO (Multiple Input Multiple Output) and
OFDM (Orthogonal Frequency Division Multiplex) technologies. The principal result is a lower
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theoretical bound for a single link quality which is very close to the exact link quality and which
is tractable analytically; i.e. calculated in a simple manner.

Once expressions for link quality are developed, we take into account user dynamics using
queuing theory. Finally, we apply the results from stochastic geometry to model the spatial
configuration of network resources and users. In Chapter 3 and Chapter 4 we apply the above
mentioned methodology to evaluate QoS for the different types of services. Namely, in Chapter 3
we develop a method for the user throughput estimation in large cellular networks, regular or
irregular, for VBR traffic. In addition, we could estimate the mean number of users and the mean
cell load in the network. All the above means account for the disparity of different base stations
and traffic randomness over some period of time (one hour, for example). Further, we are able
to estimate the spatial CDF (Cumulative Distribution Function) of mean user throughput, mean
number of users and cell load over all base stations (averaged in time).

The core of the mathematical modeling in Chapter 3 was to capture the dependence between
the traffic demand and the interference in cellular networks with orthogonal channels (in time
and/or frequency). We did this using the aforementioned probabilistic tools in order to get
analytically tractable and simple relations, but in a manner that reflects the physical behaviour
of the system. It turns out that the dependence between the traffic demand and the interference
is well captured via a fixed-point problem. Solving this problem, we get all elements to evaluate
QoS as function of traffic demand.

In Chapter 4 the evaluation of the QoS for real-time streaming is presented. The number
and duration of interruptions are calculated as function of traffic demand and radio conditions,
i.e. SINR (Signal to Interference and Noise Ratio). Hexagonal cellular network with orthogonal
channels is considered. The stochastic analysis is based on Poisson processes representation of
the traffic and Palm formalism related to the typical call. The results can be used to estimate
the QoS for this type of traffic, but also for network dimensioning. In fact, based on the spatial
distribution of radio conditions we can deduce the QoS at all positions in a cell (area served
by one base station) for a given traffic demand. On the other hand the spatial distribution of
SINR depends on cell radius. So, determining a constraint on QoS, one can deduce what is the
necessary cell radius to satisfy this constraint on QoS. This manipulation can be done for any
value of traffic demand, which is the cellular network dimensioning.

Chapter 2 is based on the following publications [61] and [63]. Chapter 3 is constructed from
the following articles [62], [15], [57] and [16] and the Chapter 4 is an adapted version of [17].

The results of the thesis are used in Orange tools, such as the operational tool Utrandim,
for the dimensioning of wireless cellular networks. They are also used to study the spectral and
energy efficiencies and the required emitted power in these networks.
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Chapter 2

Link quality

2.1 Introduction

In this Chapter we are interested in the link quality analysis. A link is a communication channel
between two or more communicating devices. We need it to develop a global analytic approach
to the performance evaluation of wireless cellular networks and especially LTE networks.

The link performance in an OFDM (used in LTE) cellular network with MIMO antennas may
be studied using two methodologies. Information theory considers the ultimate performance of
best possible coding schemes and looks for mathematical formulae to describe this performance.
Real systems, such as 3GPP (3rd Generation Partnership Project) [3], deploy suboptimal coding
schemes which are usually evaluated by simulation.

A key link characteristic of OFDM cellular networks is the peak bit-rate at each location
defined as the maximal bit-rate a user can get at the considered location from his serving base
station. The objective of the present Chapter is to establish some closed form information
theoretic bounds for the peak bit-rate in OFDM cellular networks with MIMO and compare them
to real system performance predicted by simulation and estimated from field measurements.

We describe a simple model of a MIMO cellular network which permits to obtain an analytical
expression of users’ bit-rates, which are feasible from the information theory point of view.
This expression accounts for the variety of MIMO configurations (numbers of transmitting and
receiving antennas) and radio conditions (SINR). This expression is compared to practical LTE
performance evaluated by 3GPP simulations for different cases including the so-called calibration
case [3]. The comparison shows that the analytical expression may be adjusted to the practical
performance by a multiplicative coefficient, which depends on the MIMO configuration but not
on the SINR. Additionally, we show the progress margin for potential evolution of the technology.

The capacity of the MIMO channel without interference is known. Accounting for the extra-
cell interference, Proposition 2 gives a lower bound for the downlink capacity in a multi-cell
OFDM network with MIMO antennas. This bound relies on the observation made in Proposi-
tion 3 that the worst additive noise for the capacity of the MIMO flat-fading complex-valued
channel is the white Gaussian one. In order to make the established lower bound more explicit,
we give an asymptotic approximation based on random matrix theory and derive also a further
lower bound from Jensen’s inequality.

Finally we build bounds for the peak bit-rate of the MMSE (Minimum Mean Square Error)
scheme currently implemented in operational networks as well as its improvement MMSE-SIC
(Successive Interference Cancellation).

17
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2.2 Related work

Telatar [91] gives the information theoretic capacity of a MIMO channel with fading and AWGN
(Additive White Gaussian Noise). Different MIMO configurations are compared for this channel
by Foschini and Gans [46]. Blum et al. [22] study the capacity of a MIMO cellular network with
flat Rayleigh fading. Clark et al. [32] show that in an OFDM system with a sufficiently large
number of sub-carriers, the capacity with respect to Rayleigh fading is approximately normally
distributed. Tulino and Verdu [94] apply random matrix theory to analyze this capacity. Random
matrix theory is useful to study CDMA as for example in [93], [95] and [43].

The 3GPP [3] evaluates the performance of LTE systems by simulation. Goldsmith and
Chua [53] observed that real coding schemes performance may be described by a modification
of the famous log2 (1 + SNR) Shannon’s formula. Mogensen et al. [73] have observed that the
LTE capacity in the AWGN context is well approximated by this formula with a multiplicative
coefficient. These ideas will be extended in the present Chapter to MIMO cellular networks with
fading.

Explicit expressions for the capacity of AWGN channels are well known. Interference in
wireless cellular networks is not necessarily Gaussian nor white (the term white means that
the samples are independent and identically distributed). The explicit expression for capacity
in such context is not known. To circumvent this difficulty, a possible idea is to look for a
lower bound and check whether it is tight enough to meet a desired precision. Using a result
of Shannon [84, Theorem 18], it may be shown that, in a SISO channel, the worst additive
noise process with given power is AWGN. This result is extended to a network with relays by
Shomorony and Avestimehr [85]. Diggavi and Cover [40] study the worst noise process for an
additive channel under covariance constraints and characterize the so-called saddle-point input
and noise distributions for the mutual information [40, Theorem II.1]. Girnyk et al. [51] calculate
the asymptotic sum-rate of uplink MIMO cellular network.

Note that the fact that the worst additive noise is Gaussian may be derived from [40, The-
orem II.1]; but the input and the noise vectors are real-valued there whereas we shall consider
complex-valued random vectors. The whiteness of the worst noise process proved in Proposition 3
does not follow immediately from the aforementioned result either.

2.3 OFDM Cellular network with MIMO

2.3.1 Network model

We consider a wireless network composed of several base stations (BS). The power transmitted by
each BS is limited to some given maximal value. The network operates the Orthogonal Frequency-
Division Multiple Access (OFDMA) linked to OFDM, which we describe now. The frequency
spectrum allocated to the considered network is divided into a given number of sub-carriers,
which are made available to all base stations. Each BS allocates disjoint subsets of the sub-
carriers to its users. Each user is served by a single BS and receives only other-BS interference;
that is the sum of powers emitted by other BS on the sub-carriers allocated to him by his serving
BS. We consider multiple input and multiple output (MIMO) antennas. More precisely, BS are
equipped with tA transmitting antennas whereas users have rA receiving antennas and each BS
uses all its transmitting antennas to serve a given user.

We assume that the bandwidth of each sub-carrier is smaller than the coherence frequency
of the channel, so we can consider that the fading in each sub-carrier is flat [23]. That is, the
output of the channel at a given time depends on the input only at the same instant of time.
Indeed, the use of a cyclic prefix in OFDM permits to transform the frequency selective fading
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channel into a set of parallel flat fading channels [92, §3.4.4]. We don’t make any assumption
on the correlation of the fading processes corresponding to different subcarriers for a given user
and a given BS. However, the fading processes for different users or base stations are assumed
independent.

Time is divided into time-slots of length smaller than the coherence time of the channel, so
that, for a given sub-carrier, the fading remains constant during each time-slot and the fading
process in different time-slots may be assumed ergodic. Such model for fading generalizes the
so-called quasi-static model where the fading process at different time-slots is assumed to be
independent and identically distributed. We shall always assume that the receiver knows the
fading.

The codeword duration equals the time-slot, which is assumed sufficiently large so that the
capacity (peak bit-rate) within each time-slot may be defined in the asymptotic sense of the
information theory.

Users perform single user detection; thus the interference from other BS is added to AWGN.
The statistical properties of the interference are not known a priori since they depend on the
coding of other BS.

Consider a user served by a BS indexed by u. For a given sub-carrier and time-slot, we
consider the following discrete-time model of the OFDM channel with MIMO [23, Equation (7)]

Yn = L−1/2
u HuΨn + Θn + In, n ∈ N (2.1)

where n is a discrete-time index, Yn ∈ CrA is the channel output, Ψn ∈ CtA is the channel input
signal, Hu is a complex matrix of dimension rA× tA representing the fading with the serving BS
u, In ∈ CrA is the interference, Θ1,Θ2, . . . are i.i.d. random noises with values in CrA such that
each Θn is circularly-symmetric Gaussian with covariance matrix E[ΘnΘ∗n] = N IrA where Θ∗n
designates the transpose complex conjugate of Θn, N is a given positive constant and IrA is the
identity matrix of dimension rA, and Lu is the propagation loss due to distance and shadowing
between the user and BS u. The propagation loss Lu is the ratio between the emitted and

received powers, hence the factor L
−1/2
u in Equation (2.1).The interference equals to

In =
∑
v 6=u

L−1/2
v HvΨv,n

where the sum is over the interfering BS v 6= u, Ψv,n is the transmitted signal by the interfering
BS v, Hv represents fading for BS v, and Lv is the propagation loss due to distance and shadowing
between the user and BS v.

We make the following probabilistic assumptions:

(H1) All the channel input signals are centred; i.e. E [Ψn] = 0.

(H2) The signals transmitted by different antennas including multiple antennas of the same
BS are independent. Let P be the power transmitted by each BS in a given sub-carrier
aggregated over all the tA transmitters. Assume that this power is equally partitioned
between the tA transmitting antennas; each one emitting a power P/tA. This assumption
is justified by the last statement in Proposition 3.

(H3) The fading matrices Hv are constant for all channel uses n ∈ N within a given time-slot
and sub-carrier. For a given BS v, the fading matrix Hv is resampled across different time-
slots, and we assume that it follows a stationary and ergodic sequence of random matrices.
Moreover, these processes are independent across different BS v.

(H4) Users are motionless at the considered information theoretic time-scale; that is Lv are
constant for all BS v and time-slots.
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2.3.2 Link capacity given fading

In this section, we focus on a given time-slot and sub-carrier; that is, the expectation E [·] is taken
with respect to the distribution of the transmitted signals and noise. By Assumptions (H1-H2),
the covariance matrix of the transmitted signals are

E [ΨnΨ∗n] = E
[
Ψv,nΨ∗v,n

]
=
P

tA
ItA (2.2)

and the covariance matrix of the interference equals

E [InI∗n] = E

∑
v 6=u

L−1
v HvΨv,nΨ∗v,nH

∗
v


=
∑
v 6=u

L−1
v HvE

[
Ψv,nΨ∗v,n

]
H∗v =

P

tA

∑
v 6=u

HvH
∗
v

Lv

Noise and interference are assumed independent, thus the covariance matrix of Σn = Θn+In
is

∆=E [ΣnΣ∗n] = N IrA +
P

tA

∑
v 6=u

HvH
∗
v

Lv
(2.3)

The capacity of a channel may be interpreted as a maximal average bitrate sustainable in long
communication time. The capacity C is defined in Section 2.6.2.

Proposition 1 The capacity C of the OFDM channel with MIMO (2.1) with power constraint (2.2)
is lower bounded by

C ≥ log2 det

(
IrA +

P

tA

HuH
∗
u

Lu
∆−1

)
(2.4)

where the noise plus interference covariance matrix ∆ is given by (2.3).

Proof. The mathematical background and proof are defended in Section 2.6.2.

We call the right-hand side of the above equation1 feasible bit-rate for the considered user.
Since our assumptions (H1)-(H5) are the same for all users, we get similar expressions for the
feasible bit-rates of the other users and this collection of bit-rates of the different users is feasible.

Remark 1 Continuous-time. Consider a continuous-time model of the channel (2.1). Let w
be the bandwidth of the considered sub-carrier. The results in the discrete-time extend to the
continuous-time case, but the capacity bounds, such as the right-hand side of (2.4), should be
multiplied by the bandwidth w of the considered sub-carrier.

2.3.3 Ergodic capacity

Consider now a given sub-carrier and multiple time-slots. Recall that we assumed that the fading
matrices are ergodic across different time-slots. Then, by the ergodic theorem, the capacity
averaged over a large number of time-slots approaches the ergodic capacity E [C] where the
expectation is taken with respect to the fading distribution.

1which is consistent with [22, Equation (2)]
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Corollary 1 The ergodic capacity of the OFDM channel with MIMO (2.1) is lower bounded by

E [C] ≥ E
[
log2 det

(
IrA +

P

tA

HuH
∗
u

Lu
∆−1

)]
(2.5)

where ∆ is given by (2.3).

Proof. The result follows by taking the expectation of Equation (2.4) with respect to the
fading.

Asymptotic bound

The right-hand side of the Equation (2.5) may be approximated using the following asymptotic
result when the number of transmitting and receiving antennas goes to infinity. As will be
shown in Appendix 2.1.3, the approximation remains reasonable even for a moderate number of
antennas.

Lemma 1 [69, Appendix] Assume that the fading matrix of each base station has i.i.d. centred
components with variance 1. (Recall that we have already assumed that Hv are independent
across v.) Assume that tA, rA →∞ such that tA

rA
→ Q, then

1

rA
log det

IrA +
P

tA

HuH
∗
u

Lu

N IrA +
P

tA

∑
v 6=u

HvH
∗
v

Lv

−1
 (2.6)

converges almost surely to

Q
∑
v 6=u

log

(
Lv + P

N
η1

Q

Lv + P
N
η2

Q

)
+Q log

(
1 +

P

NLu
η1

Q

)

+ log

(
η2

η1

)
+ η1 − η2 (2.7)

where η1 and η2 are respectively solutions of

η1 +
∑
v

Pη1

P
Qη1 +NLv

= 1

η2 +
∑
v 6=u

Pη2

P
Qη2 +NLv

= 1

The above expressions involve solutions of two non linear equations, which require the knowl-
edge of the received powers from all interfering base stations. In what follows we will establish
another lower bound for the capacity, whose evaluation is much simpler, as simple as the evalu-
ation of the capacity of the AWGN channel, and requires only the knowledge of the interference
power aggregated over all the interfering base stations. We shall compare the two bounds nu-
merically in Section 2.3.3 below.
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Jensen’s bound

The following proposition gives a lower bound for the ergodic capacity under the assumption
that the covariance of the fading matrix Hv equals identity; that is

E [HvH
∗
v ] = IrA , for all BS v

which means in particular that the fadings of two different transmitting antennas are uncorre-
lated.

Proposition 2 Assume that E [HvH
∗
v ] = IrA , for all base station v, then the ergodic capacity

E [C] of the channel (2.1) is lower bounded by

E [C] ≥ E [log2 det (IrA + SINRHuH
∗
u)] (2.8)

where

SINR =
(P/tA) /Lu

N + (P/tA)
∑
v 6=u 1/Lv

(2.9)

The SINR in the above equation can be seen as the Signal to Interference and Noise Ratio
per transmitting antenna.

Proof. Let E [·|Hu] designate the expectation conditionally to Hu. By the properties of the
conditional expectation we have

E [C] = E [E [C|Hu]]

Equation (2.4) implies that

E [C|Hu] ≥ E
[

log2 det

(
IrA +

P

tA

HuH
∗
u

Lu
∆−1

)∣∣∣∣Hu

]
where ∆ is given by (2.3).

Using Jensen’s inequality and convexity of the function A 7→ log2 det
(
IrA + P

tA
HH∗A−1

)
on

the set of positive definite matrices of CrA×rA (cf. [40, Lemma II.3]), we deduce that

E [C|Hu] ≥ E [ log2 det (IrA + SINRHuH
∗
u)|Hu]

where the SINR is given by (2.9). Thus

E [C] = E [E [C|Hu]]

≥ E [E [log2 (1 + SINRHuH
∗
u) |Hu]]

= E [log2 (1 + SINRHuH
∗
u)]

Remark 2 Note that the right-hand side of (2.8) represents the capacity of a MIMO channel with
AWGN channel and i.i.d. circularly symmetric Gaussian fading given in Telatar [91, Theorem 1].
Thus, it may be calculated using the analytic formula given in [91, Theorem 2] or approximated
with the help of the asymptotic result of Lemma 4 stated in the Appendix as follows

E [C] ≥ E [log2 det (IrA + SINRHuH
∗
u)]

' rA
log (2)

C
(
tA × SINR,

tA
rA

)
(2.10)

where C is given by (2.30).
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Remark 3 Time/frequency diversity. Averaging over a large number of time-slots corresponds
to exploiting the so-called time-diversity, which is suitable for the analysis of the performance
of a variable bit-rate traffic as observed in [30, §I]. Consider now a given time-slot and large
number n of sub-carriers. Assume that the fadings for different sub-carriers are i.i.d., then
again, by the law of large numbers, the capacity of a large number n of sub-carriers approaches
the ergodic capacity. Thus the ergodic capacity is also appropriate for a constant bit-rate traffic
provided the number of sub-carriers allocated to each user is large enough. If the number of sub-
carriers allocated to each user is not sufficiently large, then, as observed in [30, §I], a relevant
performance indicator is the outage probability, defined as the probability that the capacity in a
given time-slot is smaller than the desired bit-rate r. Evaluation of this latter characteristic is
not in the scope of this thesis.

Comparison of the lower bounds

We aim now to compare numerically the bounds (2.7) and (2.8). In this regard, we consider a
hexagonal cell surrounded by 6 neighboring base stations. The distance between two base stations
is 0.5km and the distance propagation law, i.e. path-loss is l (r) = (Kr)

β
where K = 7764,

β = 3.52 which are the typical values in urban areas. We consider that a noise power equals
N = −93dBm, standard deviation of shadowing of 8dB and a transmission power of the base
station P = 58.5dBm. We consider 2 receiving antennas and a number of transmitting antennas
tA ∈ {1, 2, 8}. Figure 2.1 gives the capacity lower bounds (2.7) and (2.8) called, respectively,
asymptotic and Jensen bound, as function of the distance between the user and the central base
station. This figure shows that the two bounds are close to each other.
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Figure 2.1: Jensen (2.8) and asymptotic (2.7) lower bounds for the capacity (peak bit-rate) of the
MIMO flat fading channel with additive noise in the downlink of an OFDMA cellular network.
Capacity as function of the distance between the user and his serving base station.

2.4 MMSE

The linear MMSE (Minimum Mean Square Error) decoder of the channel (2.1) means that the
receiver estimates the transmitted signal Ψn using a linear transformation Ψn of the received

signal Yn minimizing the error E

[∥∥∥Ψn − Ψ̂n

∥∥∥2
]
. MMSE-SIC (Successive Interference Cancella-



24 CHAPTER 2. LINK QUALITY

tion) consists in decoding successively the tA transmitting antennas while suppressing recursively
the previously decoded signals. The objective of the present section is to establish lower bounds
for the capacity of MMSE and MMSE-SIC for a cellular network where interference is neither
white nor Gaussian.

2.4.1 MMSE capacity given fading

We consider a single time-slot and sub-carrier in this section; thus the fading is assumed given.
It follows from the general theory of linear estimation [28, §3.3] that

Ψ̂n = ΓΨnYnΓ−1
Yn
Yn, n ∈ N (2.11)

where ΓYn = E [YnY
∗
n ] = ΓΣ+ P

tALu
HH∗ is the covariance matrix of Yn and ΓΨnYn = E [ΨnY

∗
n ] =

P

tAL
1/2
u

H∗ is the covariance matrix of Ψn and Yn. Equation (2.11) is in fact a system of tA

equations corresponding to the estimation of the signals emitted by the different transmitting
antennas of the serving BS. More specifically, denoting by Ψn (k) the signal emitted by the k-th
antenna and Ψ̂n (k) the corresponding estimation, Equation (2.11) decomposes into

Ψ̂n (k) = ΓΨn(k)YnΓ−1
Yn
Yn, n ∈ N

where ΓΨn(k)Yn = E [Ψn (k)Y ∗n ]. The above equation may be written in the form

Ψ̂n (k) = α∗Ψn (k) + zn

where α ∈ C and zn is a random variable with values in C. The above expression may be seen as
the input-output relation of an additive channel corresponding to the k-th transmitting antenna.
It is shown in [92, Equation (8.67)] that the corresponding signal to noise power ratio equals

SNRk =
E
[
|α∗Ψn (k)|2

]
E
[
|zn|2

] =
P

tALu
h∗kΓ−1

k hk, k = 1, . . . , tA (2.12)

where hk is the k-th column of the fading matrix Hu and

Γk = ∆ +

tA∑
i=1,i6=k

P

tALu
hih
∗
i , k = 1, . . . , tA

where ∆ is given by (2.3). It follows from Corollary 2 that the capacity of the k-th transmitting
antenna (when considering interference from other antennas as well as from other BS) is lower
bounded by

Ck ≥ log2 (1 + SNRk) , k = 1, . . . , tA

Thus the capacity of the channel is lower bounded by

CMMSE =

tA∑
k=1

Ck ≥
tA∑
k=1

log2 (1 + SNRk) (2.13)
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2.4.2 MMSE ergodic capacity

Consider now a given sub-carrier and multiple time-slots. The capacity of the channel is then
the expectation of the above capacity (2.13) with respect to fading; thus

E [CMMSE] ≥
tA∑
k=1

E [log2 (1 + SNRk)]

=

tA∑
k=1

E [E [ log2 (1 + SNRk)|Hu]]

Using [40, Lemma II.3] and Jensen’s inequality, it follows that

E [CMMSE] ≥
tA∑
k=1

E

[
log2

(
1 +

P

tALu
h∗kΓ̄−1

k hk

)]
(2.14)

where

Γ̄k = E [Γk|Hu] =

N +
P

tA

∑
v 6=u

1

Lv

 IrA +

tA∑
i=1,i6=k

P

tALu
hih
∗
i

The right-hand side of (2.14) may be evaluated numerically using Monte Carlo method based on
samples of the fading matrix Hu.

2.4.3 MMSE-SIC

As we said previously, MMSE-SIC consists in decoding successively the tA transmitting antennas,
but before decoding the signal from a given antenna we suppress the previously decoded signals.
Thus the channel for the k-th transmitting antenna is an additive channel with SNR given
by (2.12) where the matrix Γk is now given by

Γk = ∆ +

tA∑
i=k+1

P

tALu
hih
∗
i , k = 1, . . . , tA

The lower bound (2.13) of capacity given the fading remains valid with the above modification
of SNR. The lower bound (2.14) of the ergodic capacity holds also true with

Γ̄k =

N +
P

tA

∑
v 6=u

1

Lv

 IrA +

tA∑
i=k+1

P

tALu
hih
∗
i

The proof is based on Jensen inequality and follows the same lines as for MMSE. It follows
from [92, Equation (8.71)] that

tA∑
k=1

E

[
log2

(
1 +

P

tALu
h∗kΓ̄−1

k hk

)]
= E [log2 det (IrA + SINRHuH

∗
u)]

where SINR is given by (2.9). Note that the right-hand sides of the above equation and Equa-
tion (2.8) are equal; that is we retrieve the same capacity lower bound as for the original chan-
nel (2.1).
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2.5 Numerical results for the link capacity

The objective of the present section is to compare the theoretical expressions established in the
previous section to real field measurements and to some simulation compliant with the 3GPP
recommendation [3].

2.5.1 Link layer model calibration

We consider firstly a user served by a base station through an additive white Gaussian noise
(AWGN) SISO channel neglecting fading and interference for the moment. The user gets ideally
(i.e. in the asymptotic sense of information theory) a bit-rate given by the famous Shannon’s
formula w log2 (1 + SNR) where w is the bandwidth allocated to the considered user and SNR
is the signal to noise power ratio. In order to get rid of the dependence of the bit-rate on the
bandwidth, we define the spectral efficiency as the ratio of the bit-rate to the bandwidth which
equals log2 (1 + SNR) in the AWGN context.

Mogensen et al. [73], [53] and the 3GPP [4, §A.2] have observed that the LTE system spectral
efficiency in this AWGN context is well approximated by

C ' c log2 (1 + qSNR) (2.15)

for some constant c < 1 and q accounting on the one hand for the gap between the practical
coding schemes and the optimal ones and on the other hand for the loss of capacity due to
signalling. This observation shall be confirmed and the typical value of c and q for LTE will be
given.

First, we will calibrate these parameters c and q for real coding schemes considering the
simplest AWGN SISO channel, and then use them in the analysis of the MIMO channel with
fading and interference.

Note that the relative difference 1−c for q = 1 between the Shannon’s limit and the practical
LTE system may be seen as a progress margin for potential evolution of the technology in the
AWGN context.

According to [2, §6.8], [35, p.155] LTE signalling consumes about 30% of the available capacity.
On the other hand, different M -QAM modulations with M ∈ {4, 16, 64} are used with link
adaptation and a target block error rate 10−2. Moreover, CRC and turbo coding are implemented.
The 3GPP [4, §A.2] shows that the bit-rate of LTE is about 25% smaller than the Shannon
capacity. In order to account for these losses, we assume

c = (1− 0.3)× (1− 0.25) ' 0.5, and q = 1 (2.16)

in Equation (2.15).

Figure 2.2 shows that the analytic approximation (2.15) of the SISO capacity with the values
of c and q proposed in (2.16) fits well the results of Orange’s link simulation tool in AWGN.
Thus we will retain c = 0.5 and q = 1 to weigh, respectively, the capacity and the SINR in the
subsequent analysis of the MIMO channel with fading and interference.

More specifically, using the modified AWGN formula (2.15), the capacity lower bound (2.10)
becomes

E [C] ≥ c rA
log (2)

C
(
tA × SINR,

tA
rA

)
(2.17)

where the parameter c is given by (2.16) and the function C is given by Equation (2.30).
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Figure 2.2: Performance of SISO without fading evaluated using analytic approximation (2.15)
and link simulation.

2.5.2 Comparison to simulation

We compare now our theoretical bound to 3GPP simulation [3]. The simulation is carried out
under the following assumptions. There are 2 transmitting and 2 receiving antennas. Each
base station always transmits at its maximal power. The receiver is MMSE-SIC (interference
cancellation), the channel is 3GPP Spatial Channel Model (SCM) and users’ speed is 3km/h.
Several realizations of the user positions, shadowing losses and fading channels are generated.
For each user location and each shadowing realization, the capacity is averaged over about 1000
fadings samples. Moreover, the value of the SINR including only the distance and the shadowing
effects (and not fading) is also given. The simulation accounts for correlations between individual
MIMO sub-antennas.

Figure 2.3 shows the simulation results compared to the analytic bound for MMSE-SIC with
correlated antennas. Observe that the analytic curves agree with simulation results; but there is
more variability in simulation due to the averaging over fading which does not yet converge to
the ergodic capacity.

2.5.3 Comparison to measurements

We take measurements from the city of Marseille. These measurements are collected by dedicated
users in the downlink of Orange’s experimental LTE network composed of 75 cells each having
2 transmitting antennas. The mobiles used for measurements have also 2 receiving antennas.
Carrier frequency is 2.6GHz, bandwidth is 20MHz.

Figure 2.4 shows these measurements compared to the analytic bounds (2.14) and (2.8) for
MMSE and MMSE-SIC respectively.

The curve ’MMSE Correl’ shows the results of the MMSE scheme with correlations between
individual MIMO antennas; more precisely we assume a correlation factor of 0.3 for transmitting
antennas and 0.9 for receiving antennas as proposed by 3GPP [5, §B.2.3]. We observe that this
assumption fits the real performance of the current network. The curve ’MMSE-SIC Correl’
predicts the performance of the MMSE-SIC scheme still with correlated antennas. If technol-
ogy allows for decorrelated antennas, then the performance can reach the values predicted by
”MMSE Uncorr’ and ’MMSE-SIC Uncorr’ depending on the used scheme. Recall that MMSE-
SIC with decorrelated antennas gives the full MIMO capacity and that the corresponding analytic
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Figure 2.3: Analytic relation of the peak bit-rate to SINR compared to 3GPP simulation

bound (2.8) is well approximated by the asymptotic expression (2.17) as shown in Section 2.3.3.

2.5.4 Approximate link quality estimation via simulations

The goal is to use the Orange’s internal 3GPP simulators mentioned earlier and develop a quick
and simple estimation of link performance for different configurations of MIMO. Indeed the
signalling loss depends on the number of transmitting and receiving antennas and consequently
the weighting constants c and q. It is about 40/168 = 24%, 48/168 = 29% and 52/168 = 31%
respectively for SIMO 1× 2, MIMO 2× 2 and MIMO 4× 2 (see [2, §6.8], [35, p.155]). Here, all
the considered cases have a MRC (Maximum Ratio Combining) receiver, except the MIMO 4×2
case which has a MMSE receiver, which is different compared to Section 2.5.2, where MMSE-SIC
is used. At the base station side, the transmitting antennas are pairwise cross-polar. In the case
MIMO 4 × 2 the two cross-polar pairs of transmitting antennas are separated by 10 times the
wavelength.

In order to simplify the notation, we denote by Ŝ the analytical (lower bound for the) spectral
efficiency given in the right-hand side of (2.8) weighted by the parameter c = 0.5 obtained in the
previous section; that is

Ŝ (SINR, tA, rA) = cE [log2 det (IrA +HuH
∗
uSINR)] (2.18)

where SINR is the signal to interference and noise ratio (per transmitting antenna) given by
Equation (2.9).

In order to get the practical LTE performance, we make the same kind of comparison as in
Section 2.5.2. We consider the output of Orange’s simulator compliant with the 3GPP recom-
mendation [3] (see this reference for the details of the simulations) in the so-called calibration
case. It corresponds to MIMO 1 × 2 with round robin (RR) scheduler. We consider also other
MIMO configurations and proportional fair (PF) scheduler, keeping all the other parameters
unchanged. In particular, each base station always transmits at its maximal power (full buffer).

The spectral efficiency as function of the SINR is compared to the theoretical relation (2.18) or
equivalently (2.17). More specifically, we make a linear regression between the spectral efficiency
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Figure 2.4: Analytic relations of the peak bit-rate to SINR compared to measurements; see
Section 2.5.3 for the details.

MIMO Scheduler b residual stand. dev. b′

1× 2 RR 0.83 0.45 0.98
1× 2 PF 1.02 0.65 1.19
2× 2 PF 0.67 0.74 1.08
4× 2 PF 0.49 0.76 0.90

Table 2.1: Results of the linear fittings.

obtained from simulations and the theoretical efficiency given by Equation (2.18); that is we
search for some b such that

ŝ ' b× Ŝ (SINR, tA, rA) (2.19)

Table 2.1 gives the results of the linear fitting (2.19); i.e. the values of b and the corresponding
residual standard deviation for different MIMO configurations (the first row corresponds to the
calibration case [3, Table A.2.2-1]). Moreover, the 95%-confidence interval is about b± 0.01 for
all the studied cases.

Figure 2.5 shows the spectral efficiency as function of the SINR from simulations and from
the analytical expression (right-hand side of (2.19)) for the calibration case. Observe again that
the analytical expression reproduces well the general tendency of the empirical data obtained
from simulations, similar as in Section 2.5.2.

Remark 4 In order to simplify the calculations we have also tested a linear regression between
the spectral efficiency ŝ obtained from simulations and the AWGN expression (2.15). Observe
from Equation (2.9) that when noise is dominant against interference, then

SINR =
(P/tA) /Lu
N

=
P/Lu
N

× 1

tA

Thus, in this particular case, the term P/Lu
N in the right-hand side of (2.15) equals SINR × tA.

Then, in the general case, it is natural to look for a fitting in the form

ŝ ' b′ × c log2 (1 + SINR× tA)

The resulting values of b′ are indicated in Table 2.1 with residual standard deviations close to
those indicated in the fourth column of that table.
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Figure 2.5: Simulations versus the analytical expression (right-hand side of (2.19)) for the cali-
bration case

2.6 Link quality observed by a typical user

The objective of the present section is to estimate the spatial distribution of the link performance
parameters (SINR, spectral efficiency etc.) observed by a typical user whose location will be
randomly chosen in the network. We generate the link performance parameters distribution
based on the aforementioned study and in the context of the 3GPP simulation scenario [3]. So,
we want to apply the above analysis to produce for example the spatial distribution of the SINR,
and in such a manner provide the link quality ingredient as a corner stone in our further Quality
of Service (QoS) examination.

2.6.1 SINR

For the analytical approach we use a similar geometric pattern of the network (hexagonal) and the
same propagation-loss modeling regarding the distance and shadowing effects (fading has been
already taken into account on the link level in the previous section) as the 3GPP calibration
case [1, Table A.2.1.1-3] and [3, Table A.2.2-1].

More specifically, the frequency carrier is 2GHz. The path-loss model is l(r) = 128.1 + 37.6×
log10(r) [in dB]. A supplementary penetration loss of 20dB is added. The shadowing is modeled
as a centered log-normal random variable of standard deviation 8dB. The following 2D horizontal
antenna pattern is used

A (ϕ) = −min

(
12

(
ϕ

ζ

)2

, Am

)
, ζ = 70◦, Am = 20dB (2.20)

The system bandwidth is W = 10MHz, the noise power equals N = −95dBm (−174dBm/Hz,
noise figure=9dB) and the transmission power of the base station is P = 60dBm (46dBm plus
G = 14dBi of antenna gain). The network is composed of 36 hexagons (6× 6). Each hexagon
comprises three sectors which gives a total of 108 sectors. The distance between the centers of
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two neighboring hexagons is 500m. We generate 3600 random user locations uniformly in the
network; that is 100 user locations per hexagon on average.

The 3GPP simulations published in [3] are made on a planar network with random locations
of the users. In the present study, two network models are considered: either planar or toroidal
(to avoid the border effects).

Each mobile is served by the base station with the smallest propagation-loss (including dis-
tance, shadowing and antenna pattern). In order to facilitate the comparison of our results to
those of 3GPP, we define the coupling-gain as the antenna gain G minus propagation-loss L with
the serving base station. The cumulative distribution function (CDF)2 of the coupling gain ob-
tained by 3GPP simulations [3, Figures A.2.2-1 (left)] and by our models are given in Figure 2.6.
This figure shows that the results of our planar network are close to those of 3GPP simulations,
whereas those of the toroidal network give larger coupling gain. This is due to the fact that in
a planar network edge users get smaller coupling gain than in the toroidal one.
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Figure 2.6: CDF of the coupling gain (antenna gain minus propagation loss)

The SINR for each mobile is calculated by Equation (2.9), where u is the index of the serving
base station. Figure 2.7 shows the CDF of the SINR coming from 3GPP simulations [3, Figure
A.2.2-1 (right)] compared to that resulting from our models. Again our planar model gives closer
results to the 3GPP simulations than the toroidal one. Nevertheless, the difference between the
SINRs of the toroidal and the planar networks is smaller than 0.5dB.

Figure 2.7 shows that the SINR does not exceed 17dB. Indeed, each mobile served by a given
base station (sector) is at least interfered by the two other sectors on the same site. The power
received from each of these sectors is at least 10−2 times that received from the serving BS (this
is related to Am = 20dB in Equation (2.20)). The interference to signal ratio is consequently
larger than 2× 10−2 i.e. −17dB which explains the observed upper limit of the SINR.

Remark 5 Observe that the SINR defined by Equation (2.9) is different from the SINR calcu-

2over all the user locations in the network
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Figure 2.7: CDF of SINR

lated by 3GPP simulations which equals

SINR3GPP =
P/Lu

N + P
∑
v 6=u 1/Lv

However, if noise is negligible compared to interference, then the two SINRs are identical. This
is the case in the considered urban scenario (small cell radius), so we do not have to distinguish
between these two SINRs.

2.6.2 Spectral efficiency

For each mobile we calculate the spectral efficiency corresponding to its SINR by relation (2.19).
In order to facilitate the comparison of our results to those of 3GPP, we define the normalized user
throughput as the spectral efficiency divided by 10 (this is historically related to the fact there are
10 users per cell in 3GPP simulations). The CDFs of the normalized user throughput obtained by
3GPP simulations [3, Figure A.2.2-3 (left)] and by our model are plotted in Figure 2.8. The 3GPP
distribution is more spread than that of our models; this is related to the fact that the 3GPP
spectral efficiency represents some variability around the analytic one as shown in Figure 2.5.
Moreover, we observe that the results of the planar and toroidal models for the network are close
to each other. Thus, the toroidal model is considered for the remaining part of the Section.

Table 2.2 gives the arithmetic mean of the spectral efficiencies at the different locations (called
cell spectral efficiency) for both, the 3GPP simulations and analytic approach. The results of
two methods agree for all the considered MIMO and scheduler configurations.

Note that the results of the simulations given in Table 2.2 are produced by the simulator of
Orange which is one of the contributors to 3GPP. The values indicated in [3, Table A.2.2-2] are
in fact averaged over the different 3GPP contributors including Orange. In particular, for the
calibration case (MIMO 1× 2 with RR scheduler) Orange’s result is 1.01 whereas 3GPP average
is 1.1. The variability of the results amoung the contributors is partially due to the randomness
induced by the shadowing.
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Figure 2.8: CDF of normalized user throughput

Arithmetic mean Harmonic mean

MIMO Scheduler Simus Analytic Simus Analytic

1× 2 RR 1.01 1.00 0.50 0.69
1× 2 PF 1.32 1.23 0.80 0.85
2× 2 PF 1.43 1.41 0.84 1.00
4× 2 PF 1.54 1.54 0.95 1.18

Table 2.2: Cell spectral efficiency: Comparison of the 3GPP simulations and the analytic results.

Table 2.2 shows the harmonic means of the spectral efficiency obtained from 3GPP simulations
and from the analytical expression. The difference may be explained as follows. Recall that the
harmonic mean is sensitive to the minimal value of the considered data; for example if one of
these data is null then the harmonic mean vanishes. Moreover, Figure 2.5 shows that the 3GPP
spectral efficiency represents some variability around (and in particular comprise smaller values
than) the analytic curve. This explains why the harmonic means obtained from simulations in
Table 2.2 are lower than the analytic ones.
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Appendix

2.A Theoretical results: MIMO flat-fading channel with
additive noise

We shall establish in what follows a useful lower bound of the capacity of a general additive
noise channel, where the noise is not necessarily Gaussian nor white. Our motivation is that
interference in wireless networks does not have necessarily these properties.

2.1.1 Model

Consider a discrete-time model of a multiple input and multiple output (MIMO) channel with tA
transmitting and rA receiving antennas such that, at each time n = 1, 2, . . ., the channel output
Yn ∈ CrA is related to the channel input Ψn ∈ CtA by

Yn = HΨn + Σn, n = 1, 2, . . . (2.21)

where H is a complex matrix of dimension rA × tA modelling the fading, and Σ1,Σ2, . . . ∈ CrA
is the noise process. We assume that the fading matrix H is deterministic. The channel input is
subject to a power constraint of the form

1

n

n∑
k=1

Ψ∗kΨk ≤ P, n = 1, 2, . . .

where P is a given positive constant and Ψ∗k designates the transpose complex conjugate of Ψk.
Note that the above constraint concerns the total power aggregated over all the tA transmitters
and averaged over n channel uses. The channel (2.21) is called MIMO additive noise channel
with deterministic fading.

2.1.2 Capacity lower bound

We are interested in the capacity of the channel (2.21) when the noise samples Σ1,Σ2, . . . are
not necessarily Gaussian nor independent. We shall in fact establish an explicit lower bound for
this capacity.

We begin by some definitions and notation. The identity matrix of dimension rA × rA is
denoted by IrA . The covariance matrix of a centred random vector Ψ ∈ CtA is denoted by

ΓΨ = E [ΨΨ∗]

The covariance matrix of two centred random vectors Ψ ∈ CtA and Y ∈ CrA is denoted by

ΓΨY = E [ΨY ∗]

35
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A random vector Ψ ∈ Cn is called circularly-symmetric if eiφΨ has the same distribution as Ψ
for all φ ∈ R which implies that Ψ is centred.

From now on all the considered random vectors are assumed to have well defined entropies [56,
§ 1.3]. For example, if the random vector Ψ ∈ Cn has a density pΨ with respect to the Lebesgue
measure on Cn, then its entropy is defined by h(Ψ) = −

∫
Cn pΨ(x) log pΨ(x)dx provided the

Lebesgue integral is well defined. We denote by I (Ψ;Y ) the mutual information between two
random vectors Ψ and Y which is related to the entropy by [56, Theorem 1.6.2]

I (Ψ;Y ) = h (Ψ)− h (Ψ|Y ) (2.22)

where h (Ψ|Y ) is the entropy of Ψ conditionally to Y .
We give now two preliminary lemmas.

Lemma 2 Let Ψ1,Ψ2, . . . ,Ψn be random vectors in CtA and Y1, Y2, . . . , Yn be random vectors
in CrA . Denote Ψ(n) = (Ψ1,Ψ2, . . . ,Ψn) and Y (n) = (Y1, Y2, . . . , Yn). If Ψ1,Ψ2, . . . ,Ψn are
independent, then

I
(

Ψ(n);Y (n)
)
≥

n∑
k=1

I (Ψk;Yk)

Proof. The mutual information may be expressed in terms of the entropy as follows [56,
Theorem 1.6.2]

I
(

Ψ(n);Y (n)
)

= h
(

Ψ(n)
)
− h

(
Ψ(n)|Y (n)

)
Since Ψ1,Ψ2, . . . ,Ψn are independent, the entropy h

(
Ψ(n)

)
may be decomposed as the sum of

the individual entropies [56, Theorem 1.3.2 (h.6)] h
(
Ψ(n)

)
=
∑n
k=1 h (Ψk). On the other hand,

the conditional entropy h
(
Ψ(n)|Y (n)

)
may be bounded as follows

h
(

Ψ(n)|Y (n)
)

=

n∑
k=1

h
(

Ψk|Y (n),Ψ1, . . . ,Ψk−1

)
≤

n∑
k=1

h
(

Ψk|Y (n)
)
≤

n∑
k=1

h (Ψk|Yk)

where for the first equality we use [56, Theorem 1.3.2 (h.7)] and for the two above inequalities
we use [56, Theorem 1.3.2 (h.7)] and [56, Theorem 1.3.2 (h.5)] respectively. Combining the above
three equations, we get the desired result.

The following lemma may be seen as an extension of [56, Theorem 1.8.6] or [40, Lemma II.2]
to the complex case. Our proof is inspired by [71] and [64].

Lemma 3 Consider three random vectors Ψ ∈ CtA , Y, Ỹ ∈ CrA . Assume that the random vector(
Ψ, Ỹ

)
is circularly-symmetric Gaussian with the same covariance matrix as (Ψ, Y ) and that

ΓY is invertible. Then
I(Ψ;Y ) ≥ I(Ψ; Ỹ )

Proof. For any deterministic matrix A ∈ CtA×rA ,

h (Ψ|Y ) = h (Ψ−AY |Y ) ≤ h (Ψ−AY ) (2.23)

where for the above inequality we use [56, Theorem 1.3.2]. In particular, taking A = ΓΨY Γ−1
Y in

which case AY is the best quadratic approximation of Ψ by a linear function of Y , and letting
U = Ψ−AY , we get

h (Ψ−AY ) = h(U) ≤ log [det (πeΓU )] (2.24)



2.A. THEORETICAL RESULTS 37

Combining the above two inequalities we get h (Ψ|Y ) ≤ log [det (πeΓU )]. Then Equation (2.22)
implies

I (Ψ;Y ) ≥ h (Ψ)− log det (πeΓU ) (2.25)

Apply now the above arguments with Ỹ in the role of Y . Observe that Ũ = Ψ − AỸ
is circularly-symmetric Gaussian, thus equality holds in (2.24). Moreover, Ũ is independent

from Ỹ since ΓŨỸ = E
[
Ũ Ỹ ∗

]
= ΓΨY − AΓY = 0, and decorrelation implies independence for

circularly-symmetric Gaussian random vectors. Thus equality holds also in (2.23) which shows
that

I
(

Ψ; Ỹ
)

= h (Ψ)− log det (πeΓŨ )

which combined with the observation that ΓU = ΓΨ−ΓΨY Γ−1
Y ΓYΨ = ΓŨ and (2.22) finishes the

proof of the desired inequality.
We show now that the above lemmas permit to deduce a lower bound for the capacity of

the channel (2.21). The considered channel has memory; i.e. different channels uses are not
independent because of the noise samples might be correlated, thus its information capacity C
is defined as follows

C = lim inf
n→∞

1

n
C(n)

where

C(n) = sup
Ψ(n)

{
I
(

Ψ(n);Y (n)
)

;
1

n

n∑
k=1

E [Ψ∗kΨk] ≤ P

}
where Ψ(n) = (Ψ1, . . . ,Ψn) is a random object with values in (CtA)

n
; and Y (n) is the output of

the channel associated to the input Ψ(n).

Proposition 3 Assume that the covariance matrix E[ΣkΣ∗k] of the noise Σk is finite for all
k ∈ N and denote

∆n =
1

n

n∑
k=1

E[ΣkΣ∗k]

Then the information capacity of the channel (2.21), given the fading matrix H, is lower bounded
by

C ≥ lim inf
n→∞

[
log2 det

(
IrA +

P

tA
HH∗∆−1

n

)]
(2.26)

The above inequality remains true under the additional constraint that the signals emitted by the
transmitting antennas are independent and have equal powers.

Proof. Consider independent inputs Ψ1,Ψ2, . . ., then by Lemma 2

I
(

Ψ(n);Y (n)
)
≥

n∑
k=1

I (Ψk;Yk)

Assume now that each Ψk is circularly-symmetric Gaussian, independent of Σk, and with covari-
ance matrix E[ΨkΨ∗k] = P

tA
ItA . Note that

E [ΨkY
∗
k ] = E [ΨkΨ∗kH

∗] + E[ΨkΣ∗k] =
P

tA
H∗

and

E [YkY
∗
k ] = E [HΨkΨ∗kH

∗] + E[ΣkΣ∗k] =
P

tA
HH∗ + E[ΣkΣ∗k]
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Consider Σk circularly-symmetric Gaussian independent from Ψk and with the same covariance

matrix as Σk. Denoting Ỹk = HΨk + Σk, then
(

Ψk, Ỹk

)
is circularly-symmetric Gaussian with

the same covariance matrix as (Ψk, Yk). We deduce from Lemma 3 that

I(Ψk;Yk) ≥ I(Ψk; Ỹk)

= h(Ỹk)− h(Ỹk|Ψk)

= h(Ỹk)− h(Σk)

= log2

[
det

(
πe

(
P

tA
HH∗ + E[ΣkΣ∗k]

))]
− log2 [det (πeE[ΣkΣ∗k])]

= log2 det

(
IrA +

P

tA
HH∗E[ΣkΣ∗k]−1

)
Using Jensen’s inequality and convexity of the function A 7→ log2 det

(
IrA + P

tA
HH∗A−1

)
on

the set of positive definite matrices of CrA×rA , cf. [40, Lemma II.3], we obtain

1

n

n∑
k=1

I (Ψk;Yk) ≥ log2 det

(
IrA +

P

tA
HH∗∆−1

n

)
which concludes the proof of (2.26).

The last statement in the Proposition follows from the fact that the above inequality is proved
for inputs Ψ1,Ψ2, . . . such that each Ψk is circularly-symmetric Gaussian with covariance matrix
E[ΨkΨ∗k] = P

tA
ItA , which implies that, for each k ∈ N∗, the components of the vector Ψk are

independent from each other.
We make an observation and give a corollary.

Remark 6 Assume that Σ1,Σ2, . . . have the same covariance matrix E[ΣkΣ∗k] = ∆, then, the
right-hand side of (2.26) equals

log2 det

(
IrA +

P

tA
HH∗∆−1

)
Note that the above formula gives also the capacity of a MIMO channel with additive circularly-
symmetric Gaussian noise process with independent samples and equi-partition of power between
the transmitting antennas.

The following Corollary of Proposition 3 states that, for a single input and single output
(SISO) channel tA = rA = 1, the worst additive noise process distribution (not necessarily white
nor Gaussian) for capacity with given second moment, is the additive white Gaussian noise
(AWGN). This result may be seen as an extension of Gallager’s result [47, Theorem 7.4.3] for
memoryless channels to the channels with memory. It may also be deduced from Shannon’s
result [84, Theorem 18]–proved there by the entropy power inequality– and from the fact that
the entropy power is not larger than the average power.

Corollary 2 Consider a SISO channel whose input and output, at time n, represented by Ψn ∈
C, Yn ∈ C respectively, are related by

Yn = Ψn + Σn, n = 1, 2, . . .
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where the noise process Σ1,Σ2, . . . ∈ C is assumed stationary and satisfies E
[
|Σn|2

]
= N .

Assume that the channel has a power constraint in the form 1
n

∑n
k=1 |Ψk|2 ≤ P . Then the

information capacity C of the channel is lower bounded by

C ≥ log2

(
1 +

P

N

)
(2.27)

2.1.3 Asymptotic analysis

Consider a particular case where the noise samples Σ1,Σ2, . . . are i.i.d. each being circularly-
symmetric Gaussian with covariance matrix E[ΣnΣ∗n] = N IrA where N is a given positive
constant. In this case, the right-hand side of (2.26) equals

log2 det

(
IrA +

P

tAN
HH∗

)
= log2 det

(
IrA +

P

tA
HH∗

)
(2.28)

where P = P
N is the signal to noise power ratio (SNR). For given tA and rA the capacity (2.28)

depends on H.
Frequently, one is interested in the ergodic capacity, that is the expectation of the capacity

with respect to the fading matrix H assumed random with a given distribution. Assume for
example that H has i.i.d. components each being circularly-symmetric Gaussian with variance

1. In this case, the expectation E
[
log2 det

(
IrA + P

tA
HH∗

)]
may be calculated with the help of

the analytical result given by Telatar [91, Theorem 2].
Alternatively, the capacity (2.28) may be approximated with the help of the following asymp-

totic result saying that when the number of transmitting and receiving antennas go to infinity,
the capacity per receiving antenna converges to a deterministic limit.
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Figure 2.9: Comparison of the analytic capacity and the asymptotic formula

Lemma 4 [95, Equations (9), (38)], [79, Appendix] Assume that the fading matrix H ∈ CrA×tA
has i.i.d. components, centred and with variance 1. Assume that tA, rA → ∞ such that tA

rA
→

Q ∈ R+, then
1

rA
log det

(
IrA +

P

tA
HH∗

)
→ C (P,Q) (2.29)
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almost surely, where

C (P,Q) := Q log

(
1 +

P

Q
− 1

4
F
(
P

Q
,Q

))
+ log

(
1 + P − 1

4
F
(
P

Q
,Q

))
− Q

4P
F
(
P

Q
,Q

)
(2.30)

where

F (ξ,Q) =

(√
ξ
(

1 +
√
Q
)2

+ 1−
√
ξ
(

1−
√
Q
)2

+ 1

)2

The above asymptotic result gives a good approximation of the expectation E
[

1
rA

log det
(
IrA + P

tA
HH∗

)]
even for a small number of antennas as already observed in [69, Table 1] for SNR = 10dB and
confirmed for SNR ∈ [−15dB, 30dB] in Figure 2.9 where we consider 2 receiving antennas and a
number of transmitting antennas tA ∈ {1, 2, 4, 8}.



Chapter 3

User throughput versus traffic
demand — global network
performance via a fixed point
problem

3.1 Introduction

The traffic demand in wireless cellular networks is increasing rapidly and is expected to double
every year. To respond efficiently to this demand the new generation of mobile cellular systems
called LTE is being developed as a successor of the currently deployed 2G and 3G systems.

The deployment of such networks, frequently based on coverage conditions, should now be
revised to account for this traffic increase. In particular, a densification is sometimes required.
But how many sites are required to satisfy a given traffic demand with a specified quality of
service target? This is a dimensioning problem. Another important question is to establish
a relationship between the QoS perceived by the users, e.g. user throughput and the traffic
demand. This would enable for example network operators to know how close their networks are
to some ”stability” limits. We focus on variable bit-rate (VBR) traffic; that is users requiring
some volume of date to transmit at a bit-rate which may be decided by the network. In this
case, the traffic demand may be expressed in bit/s/km2 and the quality of service in terms of
the mean throughput (in bit/s) offered to users in the long run of arrivals and departures.

The objective of this chapter is to develop an approach based on queueing theory and stochas-
tic geometry, as well as on the previous results of Chapter 2, to tackle the dimensioning and QoS
prediction problems in an efficient way.

In the present chapter we continue building the analytical approach and consider two network
scenarios: symmetric (regarding the spatial pattern of base stations’ positions) or regular and
non-symmetric or irregular:

• We account for the dynamics of call arrivals and departures and calculate within this
context the QoS perceived by users. This represents a step forward compared to the
classical coverage (or static capacity) point of view.

• We continue the idea proposed in [82] of studying the dependence of load on traffic demand

41
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by developing an analytical approach based on queueing theory.

• We show and mathematically capture the dependence between loads of base stations in the
network via a fixed-point problem.

• We use the obtained results to show how to dimension a symmetric network.

• Exploring the results of Chapter 2 and a queueing approach analysis we apply the results
of stochastic geometry and examine the user QoS in non-symmetric network e.g. Poisson,
which is more realistic scenario.

• We show how the mean user throughput depends on the traffic demand in large irregular
networks and after give the spatial CDF of the following QoS parameters: cell load, mean
users number and mean user throughput characterizing each base station and averaged
over one particular hour.

• We do an analytic and numerical study for irregular networks, the same one as mentioned
in the previous point, considering heterogeneous, multi-tier networks

• We validate our whole approach by comparing our result to these obtained via 3GPP simu-
lations [3] and real-field measurements from Orange network and present some advantages
of the developed methods compared to a pure simulation approach.

Most of the time in this chapter we will be interested in the mean user throughput as a key
QoS metric. Mean user throughput is a key quality-of-service metric in cellular data networks.
It describes the average “speed” of data transfer during a typical data connection. It is usually
defined as the ratio of the average number of bits sent (or received) per data request to the
average duration of the data transfer. Since coexisting connections in a given network cell share
some given cell transmission capacity, mean user throughput depends inherently on the requested
data traffic. It also depends on the network architecture (positioning of the base stations) and
in fact may significantly vary across different network cells. Moreover, extra-cell interference
makes performance of different cells interdependent. Predicting the mean user throughput as
function of the mean traffic demand locally (for each cell) and globally in the network (which
involves appropriate spatial averaging in conjunction with the temporal one, already present in
the classical definition of the throughput) is a key engineering task in cellular communications.
We will use this metric in a two-fold manner, as an indicator of the network performance and as
a dimensioning constraint.

Little’s law allows to calculate the mean user throughput as the ratio of the mean traffic
demand (number of bits requested per unit of time) to the mean number of users in the steady
state of the network. This argument can be used to express mean user throughput locally in
any region of the network. Using this argument along with some others presented in the thesis,
we show in Section 3.4 how to perform a network dimensioning (planning) assuming all cells
”are the same”, i.e. considering a symmetric spatial pattern of base stations. If a network is
symmetric, a hexagonal network for example, then all cells are of equal are if we do not consider
the shadowing. On the other hand, shadowing is the same random process for all cells in the
network. So, any cell is a statistical representative of the network. Consequently, considering
only one cell we can capture the network performance in terms of the mean user throughput and
study the dimensioning of the network. The obtained results are compared to 3GPP simulations
in Section 3.7.2.

Regarding non-symmetric networks, treated in Section 3.5, we introduce the notion of a
”typical cell” as a statistical representative of the network. The problem arising here consists in
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adequate averaging including the spatial one and not only the temporal one. In this case, base
stations form some irregular spatial point pattern.

Spatial averages of point patterns, modeling in our case the geographic locations of base
stations, can be studied using the formalism of Palm distributions naturally related to the ergodic
results for point processes. Within this setting one considers a typical base station with its typical
cell (zone of service) whose probabilistic characteristics correspond to the aforementioned spatial
averages of the characteristics for all base stations in the network. Adopting this formalism,
we define the mean user throughput in the infinite ergodic network as the limit of the ratio of
the mean volume of the data request to the mean service duration in a large, increasing to the
whole plane, network window. As the main result, we prove that such defined (macroscopic)
throughput characteristic is equal to the ratio of the mean traffic demand to the mean number
of users in the typical cell of the network. Both these means account for double averaging: over
time and network geometry.

In Section 3.7.3 we compare the results regarding the QoS in irregular networks to real-
field measurements. More precisely, statistics usually collected in operational networks allow
to estimate the mean traffic demand and the mean number of users for each cell and hour of
the day. Even if they carry important information about the local network performance, they
exhibit important variability over time (24 hours) and network cells; cf. Figure 3.8. This can be
explained by the fact that mean user throughput in a particular cell does not depend only on the
traffic in this cell, but also on the neighbouring cells. Moreover, the geometry of different cells
in a real network may significantly differ. For these two reasons, the family of local (established
for each cell) throughput-versus-traffic laws usually exhibits a lot of variability both in real data
and in network simulations, and hence does not explain well the macroscopic (network- level)
relation between the mean traffic demand and mean user throughput. Finding such a macroscopic
relation in irregular networks is an important task for network dimensioning. It is clear that an
appropriate spatial averaging analogous to the one considered in the analytic model is necessary
to discover such a macroscopic law.

A key element of the analysis of the cellular network is the spatial distribution of the signal-to-
interference-and-noise ratio (SINR). We show how this distribution enters into the macroscopic
characterization of the throughput. When considering SINR we are able to account for the fact
that the base stations which are idling, i.e., have no users to serve, do not contribute to the
interference. This makes the performance of different cells interdependent and we take it into
account via a system of cell-load fixed point equations in Section 3.5.3.

Finally, we show how to amend the model letting it account for the shadowing in the path
loss. The latter is known to impact the geometry of the network, in the sense that the serving
base station is not necessarily the closest one. It also alters the distribution of the SINR.

3.2 Related work

3.2.1 Related work regarding the dimensioning problem

The dimensioning of cellular networks is often treated using a coverage or static capacity ap-
proach. Basically one aims to assure that the bit-rate (or the SINR) of a permanent user exceeds
some target value with a high probability. To do so, in [52] the (CDF) of the so-called effective
SINR (‘averaged’ over the different OFDM subcarriers) is calculated with the help of a Gaussian
approximation. Then this CDF is used to assure the coverage condition. A similar approach is
adopted in [66] where other approximations for the CDF of the SINR are proposed. In these
works arrivals and departures of users are not considered. This dynamic context is taken into
account in the present chapter.
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The dimensioning problem in this dynamic context may, in principle, be solved using a simu-
lation approach such as that proposed in [3]. There are some other simulation tools (not neces-
sarily compliant with 3GPP) such as LTE-Sim [77] developed by TelematicsLab, LTE simulator
developed by University of Vien [72,86] and LENA tool [12,13] developed by CTTC.

However the simulation approach requires a huge amount of time and it is useless in the
context of dimensioning. Indeed, calculating the users quality of service for a particular network
configuration by 3GPP simulations takes up to a few weeks of calculation, and thus the dimen-
sioning problem, which requires tens of such calculations, would take about a year! Analytic
alternatives to pure simulations have already been proposed for VBR calls. They are essentially
based on queueing theory.

The dynamics of user arrivals and departures are taken into account in [25], [54], [58] assuming
the symmetric network pattern and that base stations are always transmitting at their maximal
power and . In this context, the peak bit-rate at a given location is defined as the bit-rate
obtained by a user assumed alone in the cell. The quality of service perceived by the users
in the long run of their arrivals and departures is then calculated using multi-class processor
sharing models [33], [26, Proposition 3.1]. The effect of mobility on the users’ QoS is studied
in [24, §4], [60].

In reality, the base stations emit only when they have at least one user to serve, and thus
interference depends on the traffic of other base stations. In order to account for this dependence,
the authors of [82] describe a fixed-point problem and propose to solve it iteratively.

3.2.2 Related work regarding QoS evaluation

The evaluation of user QoS metrics in cellular networks is a hard problem, but crucial for network
operators and equipment manufacturers. It also motivates a lot of engineering and research
studies and as dimensioning can be done using similar types of simulations as mentioned above.

A possible analytical approach to this problem is based on the information theoretic char-
acterization of the individual link performance; cf e.g. [53, 73], in conjunction with a queueing
theoretic modeling and analysis of the user traffic; cf. e.g. [24–26, 54, 62, 82]. All these works
consider some particular aspects of the network and none of them considers a large, irregular
multi-cell network. Such a scenario is studied in our approach by using stochastic-geometric
tools combined with the two aforementioned theories. As a result, we propose a global, macro-
scopic approach to the evaluation of the user QoS metrics in cellular networks, which we compare
and validate with respect to real network measurements. Stochastic geometry has already been
shown to give analytically tractable models of cellular networks, see e.g. [8].

The disparity of cell load and QoS parameters has already been observed in the literature. For
example [97] shows temporal and spatial cell load fluctuations in cellular commercial networks.
These results are obtained from data collected by the mobile operators. In [76], traffic and cell
load disparity are shown graphically. Data are derived from nationwide 3G cellular network and
the results are presented from network and user point of view. In [48] the authors analyzed
QoS (throughput etc.) perceived by the users using data collected from mobile operators and
experiments. QoS parameters such as throughput, latency etc. are also analyzed based on
field-measurements in [89]. Cell load and QoS parameters disparity are assumed in many studies
treating load balancing. Load balancing consists in the redistribution of load between cells in such
a way that all cells are equally loaded. Namely, articles as [74], [41], [96] and [103] present different
algorithms for spectrum and energy efficient load balancing. The performance of heterogeneous
networks gained a lot of research interest recently, for example see [31] and [50], since their
deployment is already commercial and will probably continue to grow. In [70] the authors give
an algorithm for network planning implying cell load disparity such that to compensate spatially
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non-uniform traffic demand, but they do not give the CDF of cell load and other QoS parameters.
The authors of [62] and [87] describe the dependence between the traffic demand and the

interference in wireless cellular networks and show that there is a fixed-point problem in the
expressions giving the cell load.

3.3 Processor-sharing queue model for one cell scenario

We consider a cell comprising a finite set {1, 2, . . . , J} of possible locations. We denote by Rj the
peak bit-rate at each location j ∈ {1, 2, . . . , J} of the cell; that is the bit-rate allocated by the
base station to the user at this location assuming that: (1) the user is alone in the considered
cell; and (2) the other base stations transmit at their maximal powers (this assumption will be
revisited later). The peak bit-rate can be e.g. the outcome of the link analysis in Chapter 2.

We describe now the allocation of the resources to the different users present in the cell at a
given time. Let xj be the number of users at location j and x = (x1, x2, . . . , xJ) be the vector
counting the number of users at each location called configuration of the users. Assume that the
base station allocates to each user at location j a specific portion of time ϕj depending on its
location, then such user gets the bit-rate

rj = ϕjRj (3.1)

Writing that the sum of the time portions may not exceed 1; i.e.
∑J
j=1 xjϕj ≤ 1, we get the

following constraint on the bit-rates which may be allocated by the base station to the different
users in its cell

J∑
j=1

xj
rj
Rj
≤ 1 (3.2)

We shall assume that each user gets an equal portion of time ϕj = 1/N where N is the total
number of users in the cell; then we deduce from Equation (3.1)

rj =
Rj
N
, j ∈ {1, 2, . . . , J} (3.3)

Remark 7 The constraint (3.2) (and the particular allocation (3.3)) may also be obtained by
multiplexing the users in frequency or codes (or any mixture of time, frequency and code multi-
plexing). The only condition is that the users are served in a strictly orthogonal way. Moreover,
the bit-rates rj should be understood as an average over a sufficiently long run of the multiplexing.

We now introduce the dynamics of user (call) arrivals and departures. The inter-arrival times
at location j are assumed to be exponentially distributed random variables with parameter λj
(average inter-arrival duration equals 1/λj). The users arriving to location j require to transmit
some volumes of data (in bits) which are i.i.d. random variables of mean 1/µj , not necessarily
exponentially distributed. We assume independence between the inter-arrivals of users and the
required volumes. We call ρj := λj/µj the traffic demand at location j and ρ =

∑J
j=1 ρj the

total traffic demand in the cell. We denote by λ =
∑J
j=1 λj the total arrival rate.

3.3.1 No mobility case

We assume in the present section that the users do not move during their calls. The following
proposition gives the performance in the long run of the calls arrivals and departures. Denote
the set of locations by D := {1, 2, . . . , J}. In order to position our problem in the queueing
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theory context, we may view a cell as a queue and a location as a class. In doing so, a cell may
be considered as a multi-class processor sharing queue. We define a critical traffic demand as
follows:

ρc :=
ρ∑J

j=1 ρjR
−1
j

(3.4)

Proposition 4 The cell is stable if and only if the traffic demand does not exceed the critical
traffic demand; that is

ρ

ρc
=

J∑
j=1

ρjR
−1
j < 1 (3.5)

In case of stability, the steady state distribution of the configuration of the users is

π (x) =

(
1− ρ

ρc

)
xD!
∏
j∈D

(ρj/Rj)
xj

xj !
, x ∈ ND (3.6)

where x = (xj)j∈D is a vector counting the numbers of users in each location and xD :=
∑
j∈D xj.

Moreover, the mean number of users, the delay and the throughput per user at a given location
j ∈ {1, 2, . . . , J} are respectively given by

N̄j =
ρj(

1− ρ
ρc

)
Rj
, T̄j =

1(
1− ρ

ρc

)
Rjµj

, r̄j =

(
1− ρ

ρc

)
Rj (3.7)

and the mean number of users, the delay and the throughput per user in the cell in the steady
state are respectively given by

N̄ =
ρ

ρc − ρ
, T̄ =

ρ

(ρc − ρ)λ
, r̄ = ρc − ρ (3.8)

Remark 8 It might look cumbersome to express the stability condition (3.5) in terms of ρ
ρc

.
This is particularly convenient when the traffic demand ρj at location j is parameterized in the
following manner:

ρj = ρdj , j ∈ {1, 2, . . . , J} (3.9)

where dj is a geographical distribution of traffic and ρ is a parameter expressing the total traffic
demand. In this case

ρc :=

 J∑
j=1

djR
−1
j

−1

(3.10)

and the condition 3.5 can be written as:
ρ < ρc (3.11)

In the remaining part we will always assume traffic demand in the form of (3.9).

Proof of Proposition 4. See the appendix 3.A for a detailed proof in the Markovian case;
i.e., when the transmitted volumes are assumed exponentially distributed. In the more general
case (when the transmitted volumes are arbitrary distributed) the proof is more involved. For
the stability condition (3.11) and the expression (3.6) of the steady state distribution see [33], [26,
Proposition 3.1].

The mean number of users, the delay and the throughput expressions may be obtained
from [25] or by specializing [58, Example 10] to the current discrete context with no mobility.
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We give here an outline of the proof of Equations (3.7) and (3.8). The mean number of users
(either in a given location or in the cell) is obtained from the expression (3.6) of the steady state
distribution. The delays are then deduced from Little’s formula [11]

T̄j =
N̄j
λj
, T̄ =

N̄

λ

The throughput per user at a given location j is simply the average volume 1/µj divided by the
delay T̄j . It remains to show the expression of the throughput per user in the cell; i.e. r̄ = ρc−ρ.
To do so, observe that the throughput of the whole cell at the steady state is equal to the traffic
demand ρ; since at equilibrium the volumes of data incoming to and leaving the cell in the long
run should be equal. The throughput per user in the cell is defined as the ratio of the cell
throughput ρ by the average number of users; that is r̄ = ρ

N̄
= ρc − ρ.

Note that (3.6) may be written as follows

π (x) = [(1− ρ′) ρ′xD ]

xD!

J∏
j=1

(
ρ′j/ρ

′)xj
xj !

 , x ∈ NJ

where ρ′j = ρj/Rj and ρ′ = ρ/ρc. If follows that the distribution of the total number of users

in the cell XD :=
∑J
j=1Xj is the geometric distribution on N with parameter 1 − ρ′ = 1 − ρ

ρc
;

that is Pr (XD = n) = (1− ρ′) ρ′n, n ∈ N. In particular the probability that the cell is not empty
equals ρ′ = ρ

ρc
(called load of the cell).

Moreover the above expression shows that, given the total number of users n, the distribution
of the number of users among the different locations is multinomial of size (n, J) and parameters
(ρ′1/ρ

′, . . . , ρ′J/ρ
′); this is equivalent to say that the users are assigned to classes independently

of each other, with the probability ρ′j/ρ
′ of a given user to be assigned to class j.

Corollary 3 With the notations of Proposition 4, if ρ < ρc then

r̄ =
ρ∑J

j=1 ρj r̄
−1
j

and

T̄ =
1

λ

J∑
j=1

λj T̄j

where λ =
∑J
j=1 λj is the total arrival rate to the cell.

Proof. Straightforward calculations from (3.7) and (3.8).
The above corollary shows that the throughput per user in the cell is the harmonic mean of

the throughputs at the different locations weighted by the traffic demands; whereas the delay
per user in the cell is the arithmetic mean of the delays at the different locations pondered by
the arrival rates. So we should be careful when calculating the average of the quality of service
over a cell.

Mobile categories

A user located at a given geographic location undergoes some radio conditions; i.e., some specific
propagation losses (due to distance, shadowing and indoor) with the different base stations in
the network. Given these radio conditions, the user gets some bit-rate. The relation between the
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radio conditions and the bit-rate may be specific to each mobile category. We shall use the term
class to designate not only the geographic location but also the specific mobile’s category.

Let K be the number of mobile categories and I be the number of geographic locations, then
a class j is a pair (i, κ) where i ∈ {1, 2, . . . , I} is a geographic location and κ ∈ {1, 2, . . . ,K} is
the mobile category. The number of classes is now J = I × K. With this extended notion of
class, the results of Proposition 4 obviously apply; we get in particular the expression for the
throughput and delay for each class j = (i, κ). The following proposition gives the expressions
for the throughput and delay per mobile’s category but averaged over the geographic locations.

Proposition 5 Assume the stability condition (3.11). For a given mobile’s category κ ∈ {1, 2, . . . ,K},
the throughput per user in the cell in the steady state is

r̄κ =

∑I
i=1 ρi,κ∑I

i=1 ρi,κr̄
−1
i,κ

that is the harmonic mean of the throughputs at the different geographic locations weighted by
the corresponding traffic demands. The delay per user in the cell in the steady state is

T̄κ =

∑I
i=1 λi,κT̄i,κ∑I
i=1 λi,κ

that is the arithmetic mean of the delays at the different geographic locations pondered by the
corresponding arrival rates.

Proof. The result is obtained by specializing [58, Example 10] to the current discrete context
with no mobility.

Connection between traffic demand, QoS, capacity and cell radius

Fixing a target value r̄ for the throughput per user in the cell, we deduce from (3.8)

ρc − ρ = r̄

Since ρ and ρc are functions of the cell radius, the above equation might be solved with respect
to the cell radius. This approach will be further developed in Section 3.4 and illustrated by
numerical examples in Section 3.7.2.

We assume, without loss of generality, that the peak bit-rates are sorted in decreasing order;
that is R1 > R2 > . . . > RJ . Fixing a target value r̄J of the throughput per user in the cell
border, we deduce from (3.7)

ρ

ρc
= 1− r̄J

RJ

which may be taken as the dimensioning constraint.
Given some q ∈ [0, 1], let jq be the q-quantile of the traffic distribution (d1, d2, . . . , dJ); i.e.

such that
jq−1∑
j=1

dj < q ≤
jq∑
j=1

dj

Then fixing a target value r̄jq for the throughput per user at location jq, we deduce from (3.7)

ρ

ρc
= 1−

r̄jq
Rjq

which may be taken also as the dimensioning constraint.
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Remark 9 Note that jq is not the q-quantile of the proportion of users in the steady state(
N̄1/N̄, N̄2/N̄, . . . , N̄J/N̄

)
since from (3.7)

N̄j
N̄

=
ρc

ρ

ρj
Rj

= dj
ρc

Rj

Thus we should not say that a proportion q of the users in the steady state would have a throughput
larger than r̄jq ; but we should say that a proportion q of the cell area (weighted by the traffic
demand) would have a throughput larger than r̄jq .

3.3.2 Infinite mobility

Now we will study the effect of mobility on performance from the queueing theory point of view.
The case when the average user’s speed is finite and nonnull is intractable analytically. But it
may be bounded by the two extreme cases of no mobility and infinite mobility since mobility
improves performance as proved in [24, §4.2.2]. This motivates our study of the infinite mobility
case where each user is assumed to move along all the possible locations and thus experiences all
the radio conditions during his call (whereas in the no mobility case, the user undergoes a given
radio condition).

We assume in the present section that the mean volume of data does not depend on the
location; that is µj ≡ µ. We assume also that each user moves according to some ergodic
Markov process with invariant distribution (%1, %2, . . . , %J). Moreover we assume that each user

moves so fast that he receives a peak bit-rate averaged over his mobility; that is
∑J
j=1 %jRj .

Then the bit-rate allocation (3.3) is now replaced by

rj ≡ r :=

∑J
j=1 %jRj

N
, j ∈ {1, 2, . . . , J} (3.12)

Proposition 6 In case of infinite mobility, the cell is stable when

ρ < ρc

where

ρc :=

J∑
j=1

%jRj (3.13)

In case of stability, the mean number of users, the delay and the throughput per user in the cell
at the steady state are respectively given by

N̄ =
ρ

ρc − ρ
, T̄ =

ρ

(ρc − ρ)λ
, r̄ = ρc − ρ

Proof. See [60, Proposition 2].

Note that ρc is the arithmetic mean of the peak bit-rates weighted by the mobility distribution
(%1, %2, . . . , %J). Assume that the traffic demand (ρ1, ρ2, . . . , ρJ) is proportional to the mobility
distribution, then, since the arithmetic mean is larger than the harmonic mean, we deduce that
the critical traffic with mobility is larger than the critical traffic in the no mobility case which is
consistent with [24, §4.2.2].
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Mobile categories

If there are different mobile categories, then it is natural to assume that mobility holds between
the geographic locations {1, 2, . . . , I} but not between categories {1, 2, . . . ,K}. We assume that
the mean volume of data does not depend on the geographic location but may depend on the
mobile’s category; that is

µi,κ ≡ µκ, i ∈ {1, 2, . . . , I} , κ ∈ {1, 2, . . . ,K}

Again we assume that each user of category κ ∈ {1, 2, . . . ,K} moves so fast that he receives a
peak bit-rate averaged over his mobility; that is

Rκ :=

I∑
l=1

%l,κRl,κ, κ ∈ {1, 2, . . . ,K} (3.14)

Thus the bit-rate allocation is now

ri,κ ≡ rκ :=

∑I
l=1 %l,κRl,κ

N
, i ∈ {1, 2, . . . , I} , κ ∈ {1, 2, . . . ,K}

Proposition 7 The cell is stable when

ρ < ρc :=
ρ∑K

κ=1 ρκR
−1
κ

where Rκ are given by (3.14) and

ρκ :=

I∑
l=1

ρl,κ, κ ∈ {1, 2, . . . ,K}

is the cell traffic for category κ. In case of stability, the mean number of users, the delay and the
throughput per user of category κ ∈ {1, 2, . . . ,K} are respectively given by

N̄κ =
ρκ(

1− ρ
ρc

)
Rκ

, T̄κ =
1(

1− ρ
ρc

)
Rκµκ

, r̄κ =

(
1− ρ

ρc

)
Rκ

and the mean number of users, the delay and the throughput per user in the cell in the steady
state are respectively given by

N̄ =
ρ

ρc − ρ
, T̄ =

ρ

(ρc − ρ)λ
, r̄ = ρc − ρ

Proof. Observe that the present context is similar to that of Proposition 4 with the categories
here in the role of the locations there and where the peak bit-rates are given now by (3.14). The
desired results then follow from Proposition 4.

3.4 Multi-cell scenario: symmetric networks

An LTE cellular network is composed of base stations covering some geographic zone. Each base
station transmits at some power limited to some maximal value P and assigns a specific portion
w of the total system bandwidth W to each user. Here, we consider that all cells have the same
form.
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Since fading is already averaged out at the link level, the remaining propagation loss comprises
only the distance and shadowing. Consider a given user and let Lv be his propagation loss with
base station v. We assume that each user is served by the base station (denoted by index u)
with the smallest loss; that is Lu = inf {Lv}. Assume moreover that each base station transmits
a constant power spectral density.

We assume in the present section that each base station transmits at its maximal power P
Then the received signal power equals

P̂ =
w

W

P

Lu

and the interference equal

I =
w

W

∑
v 6=u

P

Lv

Let N be the noise power in the system bandwidth, then the SINR per transmitting antenna1

equals

SINR =
P̂
tA

w
WN + I

tA

=
1

NLu
tAP

+ f
(3.15)

where

f :=
∑
v 6=u

Lu
Lv

(3.16)

is called the interference factor. The SINR calculated by Equation (3.15) should be plugged in
Equation (2.19) to get the corresponding bit-rate.

3.4.1 Cell load

In this Section we will explain the dependence between cells in a given LTE network, and propose
a fixed-point equation which can capture this dependance. We assumed in the previous section
that the interfering base stations transmit always at their maximal power P . In fact a base
station does not transmit when there are no users to serve. The power transmitted by base
station v is then 1 {Xv (t) 6= 0}P where Xv (t) is the number of users served by base station v
at time t.

Thus the interference at time t equals

I (t) =
w

W

∑
v 6=u

1 {Xv (t) 6= 0} P
Lv

Explicit analysis of the multi-cell model with assumption is not possible. Even the stability
condition of the network in this case is not yet known. Nevertheless, the full activity assumption
made in the previous section gives a useful lower bound for the peak bit-rates and thus a lower
bound of the critical traffic demand. We shall make now another model assumption.

1See [94, Equation (3.169)].
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Invoking the law of large numbers, we may approximate the interference as follows

I (t) ' w

W

∑
v 6=u

E [1 {Xv (t) 6= 0}] P
Lv

=
w

W

∑
v 6=u

Pr (Xv (t) 6= 0)
P

Lv

=
w

W

∑
v 6=u

ρ

ρc

P

Lv

where for the third equality we use the observation following Proposition 4. Then the SINR
equals

SINR =
1

NL0

tAP
+ ρ

ρc
f

and the corresponding peak bit-rate equals

R = Wψ(SINR) = Wψ

(
1

NL0

tAP
+ ρ

ρc
f

)
(3.17)

where the function ψ is given for example by (2.17).
Equations (3.4) and (3.13) show that the critical traffic ρc is a function of the peak bit-rates

which are themselves functions of the critical traffic as shown in the above equation. Thus ρc

may be obtained by solving a fixed-point problem. For example, in the case of infinite mobility
Equation (3.13) implies

ρc = E [R] = E

[
Wψ

(
1

NL0

tAP
+ ρ

ρc
f

)]
(3.18)

where the expectation is with respect to a user distributed according to the mobility invariant
distribution %. Once the above fixed-point problem is solved, the ratio

θ :=
ρ

ρc
(3.19)

is called the load of the system. The equation given by (3.18) we call fixed-point equation.

Definition 1 The following different load situations are considered in conjunction with the
queueing approach:

• Adapted (Weighted) interference (load): A base station transmits only when it has at least
one user to serve.

• Full interference (load): Base stations are always transmitting at their maximal power.

• Null interference (load): Interference is assumed completely cancelled. This corresponds to
a cell in isolation.

Remark 10 Note that the load depends on the traffic demand, so we can not consider these two
parameters as independent inputs when evaluating the users QoS.

Remark 11 The above queueing analysis is carried out for a typical cell of a network composed
of multiple cells assumed statistically equivalent. Indeed, the interference between the different
cells is taken into account through the interference factor (3.16) and the solution of the fixed-point
problem (3.18).
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3.5 Multi-cell irregular networks scenario

In contrast to Section 3.4, here we consider irregular cellular networks, which corresponds better
to the commercially deployed networks, especially in urban areas. Irregular means here that a
spatial pattern of base stations’ locations is non-symmetric and that different base stations radiate
different powers (in the first part of the analysis we will consider constant radiation power).

3.5.1 Network model

We consider locations {v1, v2, . . .} of base stations (BS) on the plane R2 as a realisation of a point
process, which we denote by Φ. 2 We assume that Φ is stationary and ergodic with positive,
finite intensity (mean number of BS per unit of area) γ. 3

In order to simplify the presentation, we shall make first the following two assumptions, which
will be relaxed in Sections 3.5.3 and 3.5.3, respectively.

1. There is no shadowing. The (time-averaged over fading) propagation loss depends only on
the distance r between the transmitter and the receiver through a path-loss function l(r),
which we assume increasing. The SINR expression remains valid except that instead of
propagation loss, we consider only the path-loss.

2. Full load (interference). Each base station is always transmitting at some fixed power P ,
common for all stations.

We will also assume throughout the whole Section that each user is served by the BS which he
or she receives with the strongest signal power. The consequence of the assumption 1 above is that
each BS u ∈ Φ serves users in a geographic zone V (u) = {y ∈ R2 : |y − u| ≤ minv∈Φ,v 6=u |y − v|}
which is called Voronoi cell of u in Φ.

For single link performance, we use formula (2.17) from Section 2.5. We assume the same
service policy and traffic demand as in Section 3.3. We assume spatially uniform traffic demand,
which means that different base stations have different traffic demands to serve. The traffic
demand in a given cell equals

ρ (v) = ρ |V (v)| , v ∈ Φ. (3.20)

3.5.2 Generalization of processor sharing model

In this section, we generalize the results already presented in Section 3.3. Namely, there we
consider the case when the cell is stable, that is (3.11) is always valid. Here, we consider also the
possibility that there are unstable cells present in a network. Another difference is that evidently
here different base stations serve zones (cells) of different size even without considering the shad-
owing. For a fixed configuration of BS Φ, the service of users arriving to the cell V (v) of a given
BS v ∈ Φ can be modeled by an appropriate (spatial) multi-class processor sharing queue, with
classes corresponding to different peak bit-rates characterized by user locations y ∈ V (v). Note
also that a consequence of our model assumptions (in particular the full interference assump-
tion 2, inter-cell channel independence and space-time Poisson arrivals) the service processes of
different queues are independent.

2According to the formalism of the theory of point processes (cf e.g. [37]), a point process is a random measure
Φ =

∑
j δXj , where δx denotes the Dirac measure at x.

3Stationarity means that the distribution of the process is translation invariant, while ergodicity allows to
interpret some mathematical expectations as spatial averages of some network characteristics.
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We consider now the steady-state number of users served in each cell V (v). 4 The following
expressions follow from the queueing-theoretic analysis of the processor sharing systems of each
BS v ∈ Φ, explained in Section 3.3.1, also, cf [25, 62] for the details.

• The service process of BS v ∈ Φ is stable if and only if its traffic demand does not exceed
the critical value that is the harmonic mean of the peak bit-rate over the cell:

ρc (v) :=
|V (v)|∫

V (v)
1/R (SINR (y,Φ)) dy

. (3.21)

Note that ρc(v) depends on v and on Φ. The same observation is valid for the subsequent
cell characteristics. This definition comes from (3.10).

• The mean user throughput in the given cell, defined as the ratio of the mean volume of
the data request 1/µ to the average service time of users in this cell, can be expressed as
follows

r (v) = max(ρc (v)− ρ (v) , 0) . (3.22)

• The mean number of users in steady state of the given cell equals to

N (v) =
ρ (v)

r (v)
. (3.23)

Note that N(v) =∞ if ρ(v) ≥ ρc(v).

• The probability that the given BS is not idling in steady state (has at least one user to
serve) equals

p (v) = min (θ (v) , 1) , (3.24)

where θ(v), which we call cell load, is defined as

θ (v) :=
ρ (v)

ρc (v)
. (3.25)

Note that the cell is stable if and only if θ(v) < 1 and

θ(v) = ρ

∫
V (v)

1/R (SINR (y,Φ)) dy . (3.26)

Moreover,

N(v) =
θ(v)

1− θ(v)
, (3.27)

r(v) = ρ(v)(1/θ(v)− 1) (3.28)

provided θ(v) < 1. The function R is the same as in (3.17).
The above expressions allow to express all other characteristics in terms of the traffic demand

per cell ρ(v) and the cell load θ(v).

Remark 12 All the above characteristics are local network characteristics in the sense that they
characterize the service at each BS v and vary over v ∈ Φ. Real data analysis and simulations
for Poisson network models exhibit a lot of variability among these characteristics. In particular,
plotting the mean user throughput r(v) as function of the mean traffic demand ρ(v) for different
v ∈ Φ does not reveal any apparent systematic relation between these two local characteristics;
cf. Figure 3.8.

4Note that the (mean) QoS characteristics of users in this state correspond to time-averages of user character-
istics.
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3.5.3 Global network characteristics

In this section we propose some global characteristics of the network allowing to characterize its
macroscopic performance. We are particularly interested in finding such a relation between the
(per area) traffic demand ρ and the (global) mean user throughput in the network, with this
latter characteristic yet to be properly defined.

Typical cell of the network

A first, natural idea in this regard is to consider spatial averages of the local characteristics in
an increasing network window A, say a ball centered at the origin and the radius increasing to
infinity. Assuming ergodicity of the point process Φ of the BS, these averages can be expressed
and calculated as Palm-expectations of the respective characteristics of the so called “typical
cell” V (0). For example

lim
|A|→∞

1/Φ(A)
∑
v∈A

ρ(v) = E0[ρ(0)] = ρE0[|V (0)|] . (3.29)

The typical cell V (0) is the cell of the BS located at the origin v = 0 and being part of the
network Φ distributed according to the Palm distribution Pr0 associated to the original stationary
distribution Pr of Φ. In the case of Poisson process, the relation between the Palm and stationary
distribution is particularly simple and (according to Slivnyak’s theorem) consists just in adding
the point v = 0 to the stationary pattern Φ.

The convergence analogue to (3.29) holds for each of the previously considered local char-
acteristics E0[ρc(0)], E0[r(0)], E0[N(0)], E0[p(0)] and E0[θ(0)]. The convergence is Pr almost
sure and follows from the ergodic theorem for point processes (see [9, Theorem 4.2.1], [37, The-
orem 13.4.III]). However, as we will explain in what follows, not all of these mean-typical cell
characteristics have natural interpretations as macroscopic network characteristics.

First, note that the existence of some (even arbitrarily small) fraction of BS v which are not
stable (with ρ(v) ≥ ρc(v), hence N(v) =∞) makes E0[N(0)] =∞.

Remark 13 For a well dimensioned network one does not expect unstable cells. For a perfectly
hexagonal network model Φ all cells are stable or unstable depending on the value of the per-
area traffic demand ρ. An artifact of an infinite, homogeneous, Poisson model Φ is that for
arbitrarily small ρ there exists a non-zero fraction of BS v ∈ Φ, which are non-stable. This
fraction is very small for reasonable ρ, allowing to use Poisson model to study QoS metrics
which, unlike E0[N(0)], are not “sensitive” to this artifact.

We will also show in the next section that it is not natural to interpret E0[r(0)] (which is not
sensitive to the existence of a small fraction of unstable cells) as the mean user throughput in
the network; see Remark 16. Before we give an alternative definition of this latter QoS, let us
state the following result, which will be useful in what follows.

Proposition 8 We have

E0[ρ(0)] =
ρ

γ
, (3.30)

E0[θ(0)] =
ρ

γ
E[1/R (SINR (0,Φ))] . (3.31)

Proof. The first equation is quite intuitive: the average cell area is equal to the inverse of the
average number of BS per unit of area. Formally, both equations follow from the inverse formula
of Palm calculus [9, Theorem 4.2.1]. In particular, for (3.31) one uses representation (3.26) in
conjunction with the inverse formula.
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Remark 14 Note that the expectation in the right-hand-side of (3.31) is taken with respect to the
stationary distribution of the BS process Φ. It corresponds to the spatial average of the inverse of
the peak bit-rate calculated throughout the network. The (only) random variable in this expression
is the SINR experienced by the typical user. This distribution is usually known in operational
networks (estimated from user measurements). It can also be well approximated using a Poisson
network model for which its distribution function admits an explicit expression [19].

Mean user throughput in the network

Faithful to the usual definition of the mean user throughput as the ratio of the mean volume
of the data request to the mean service duration (which we retained at the local, cell level) we
aim to define now the mean user throughput in the (whole) network as the ratio of these two
quantities taken for increasing network window A. However in order to “filter out” the impact
of cells which are not stable and avoid undesired degeneration of this characteristic (e.g. for
Poisson process; cf. Remark 13) let us consider the union of all stable cells

S :=
⋃

v∈Φ:ρ(v)<ρc(v)

V (v) .

Note that the stationarity of Φ implies the same for the random set S. We denote by πS =
E[1(0 ∈ S)] the volume fraction of S and call it the stable fraction of the network. It is equal
to the average fraction of the plane covered by the stable cells; cf. [9, Definition 3.4 and the
subsequent Remark]. Denote also

N0 := E0[N(0)1(N(0) <∞)] .

We are ready now to define the mean user throughput in the network r0 as the ratio of the average
number of bits per data request to the average duration of the data transfer in the stable part
of the network

r0 := lim
|A|→∞

1/µ

(temporal-)mean service time in A ∩ S
. (3.32)

Here is the key result of the typical cell approach. Its proof is given at the end of this section.

Theorem 1 For an ergodic network Φ we have

r0 =
ρ πS
γN0

. (3.33)

Remark 15 Equation (3.33) provides a macroscopic relation between the traffic demand and the
mean user throughput in the network, which we are primarily looking for. It will be validated by
comparison to real data measurements. The quantities N0 and πS do not have explicit analytic
expressions analogous to (3.31). Nevertheless they can be estimated from simulations of a given
network model Φ. Note that these are static simulations of the network model. No simulation of
the traffic demand process is necessary, which greatly simplifies the task. For small and moderate
values of the traffic demand (observed in real networks) one obtains πS ' 1. Moreover, in
Section 3.5.4 we will propose some more explicit approximation of N0.

Remark 16 Assume that there are no unstable cells in the network. This is the case e.g. for
lattice (say hexagonal) network models with traffic demand ρ < ρc(v) = ρc, where the value of
the critical traffic is the same for all cells. Then πS = 1, N0 = E0[N(0)] and the relation (3.33)
takes form

r0 =
ρ

γE0[N(0)]
=

E0[ρ(0)]

E0[N(0)]
. (3.34)
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Thus, in general r0 6= E0[r(0)] = E0[ρ(0)/N(0)]. We want to emphasize that this is not merely
a theoretical detail resulting from our (and common) definition of the mean throughput (3.32).
The expression E0[r(0)] = E0[ρ(0)/N(0)], which in principle can be considered as another global
QoS metric, is in practice difficult to estimate. Indeed, when estimating E0[r(0)] as the average
of the ratio “traffic demand to the number of users” from real data measurements, one needs to
give a special treatment to observations which correspond to cells during their idling hours (i.e.,
with no user, and such observations are not rare in operational networks). Neither skipping nor
literal acceptance of these observations captures the right dependence of the mean user throughput
on the traffic demand.

Proof of Theorem 1. By Little’s law [11] the temporal mean service time TW of users
in any region of the network W, say the union of stable cells with BS in some region A, W =⋃
v∈A∩S V (v), is related to the mean number NW of the users served in this region W in the

steady state by the equation NW = λ|W|TW . Consequently, the mean user throughput in this
region W can be expressed as 1/(µTW) = ρ|W|/NW . Using

|W|
NW

=
|W|∑

v∈A∩S N(v)

=

∑
v∈A |V (v)|1(N(v) <∞)

|A|
|A|∑

v∈A∩S N(v)

and again the ergodic theorem for point yprocess Φ, we obtain that the limit in (3.32) is Pr-
almost surely equal to ρE0[|V (0)|1(N(0) <∞)]/E0[N(0)1(N(0) <∞)]. By the aforementioned
inverse formula of Palm calculus we conclude E0[|V (0)|1(N(0) <∞)] = E[1(0 ∈ S)]/γ.

Cell-load equations

We have to revoke now the full interference assumption 2 made in Section 3.5.1. An amend-
ment is necessary in this matter for the model to be able to predict the real network data; cf
numerical examples in Section 3.7. Recall that the consequence of this assumption is that in the
expression (3.15) of the SINR all the interfering BS are always transmitting at a given power
P . In real networks BS transmit only when they serve at least one user. 5 Taking this fact
into account in an exact way requires introducing in the denominator of (3.15) the indicators
that a given station v ∈ Φ at a given time is not idling. This, in consequence, would lead to
the probabilistic dependence of the service process at different cells and result in a non-tractable
model. In particular, we are not aware of any result regarding the stability of such a family of
dependent queues. For this reason, we take into account whether v is idling or not in a simpler
way, multiplying its powers P by the probability p(v) that it is not idle in the steady state. In
other words we modify the expression of the SINR as follows (for base station u as a serving base
station)

SINR (y,Φ) :=
P/l (|y − u|)

N + P
∑

v∈Φ\{u}
p (v) /l (|y − v|)

, (3.35)

for y ∈ V (v), v ∈ Φ where p(v) are cell non-idling probabilities given by (3.24). We will see
in Section 3.7 that this model, called weighted interference (load) model, fits better to real field
measurements than the full interference model. The above modification of the model preserves
the independence of the processor-sharing queues at different cells given the realization Φ of the
network (thus allowing for the explicit analysis of Section 3.5.2). However the cell loads θ(v) are

5Analysis of more sophisticated power control schemes is beyond the scope of this thesis.
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no longer functions of the traffic demand and the SINR experienced in the respective cells, but
are related to each other by the following equations that replace (3.26)

θ (v) = ρ

∫
V (v)

1

R

(
P/l(|y−u|)

N+P
∑

v∈Φ\{u}
min(θ(v),1)/l(|y−v|)

) dy . (3.36)

We call this system of equations in the unknown cell loads {θ (v)}v∈Φ the cell-load equations.

Remark 17 (Spatial stability) The weighted interference model introduces more “spatial” de-
pendence between the processor sharing queues of different cells, while preserving their “temporal”
(conditionally, given Φ) independence. A natural question regarding the existence and uniqueness
of the solution of the fixed point problem (3.36) arises. Note that the mapping in the right-hand-
side of (3.36) is increasing in all θ(v), v ∈ Φ provided function R is increasing. Using this
property it is easy to see that successive iterations of this mapping started off θ(v) ≡ 0 on one
hand side and off θ(v) as in (3.26) (full interference model) on the other side, converge to a
minimal and maximal solution of (3.36), respectively. An interesting theoretical question regards
the uniqueness of the solution of (3.36), in particular for a random, say Poisson, point process Φ.
Answering this question, which we call “spatial stability” of the model, is unfortunately beyond
the scope of this thesis.6 The simulation study of the typical cell model, presented in Section 3.7
(where we use Matlab to find a solution of (3.36) for any given finite pattern of base stations Φ)
is less stable for larger values of the traffic demand ρ.

In the mean cell approach (cf Section 3.5.4) we take into account the weighted interference
model by the following (single) equation in the mean-cell load θ̄

θ̄ =
ρ

γ
E

[
1/R

(
P/l (|v∗|)

N + P
∑
v∈Φ\{v∗} θ̄/l (|y − v|)

)]
(3.37)

where v∗ is the location of the BS whose cell covers the origin. We solve the above equation with
θ̄ as unknown. We will show in the numerical section that the solution of this equation gives a
good estimate of the empirical average of the loads {θ (v)}v∈Φ obtained by solving the system of
cell-load equations (3.36) for the simulated model.

Remark 18 (Pilot channel) The cells which are not idle might still emit some power (e.g. in
the pilot channel). This can be taken into account by replacing p(v) = min(θ(v), 1) in (3.36) by
p(v)(1 − ε) + ε, where ε is the fraction of the power emitted all the time. Similar modification
concerns θ̄ in the right-hand-side of (3.37).

Shadowing

Until now we were assuming that the propagation loss is only induced by the distance between the
transmitter and the receiver. In this section we will briefly explain how the effect of shadowing
can be taken into account.

Assume that the shadowing between a given station v ∈ Φ and all locations y ∈ R2 is
modeled by some random field Sv (y − v). That is, we assume the propagation loss between v

and y Lv (y) = l(|y−v|)
Sv(y−v) . We assume that, given Φ, the random fields Sv(·) are independent

6Existence and uniqueness of the solution of a very similar problem (with finite number of stations and a
discrete traffic demand) is proved in [87].
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across v ∈ Φ and identically distributed. In general, we do not need to assume any particular
distribution for Sv(·) (neither independence nor the same distribution of Sv(y) across y).

The assumption that each user is served by the BS received with the smallest path-loss results
in the following modification of the geographic service zone of u, which we keep calling “cell”

V (u) = {y ∈ R2 : Lu (y) ≤ min
v∈Φ,v 6=u

Lv (y)} . (3.38)

For mathematical consistency we shall assume that, almost surely, the origin belongs to a unique
cell (i.e., is not located on any cell boundary).

The SINR at location y can be expressed by (3.15) or (3.35) with l(|y− v|) replaced by Lv(y)
for v ∈ Φ, depending on whether we consider the full interference or the weighted interference
model, for y ∈ V (v), with V (v) defined by (3.38). The same modification regards the cell-load
equations (3.36) and (3.37).

All the previous results involving the typical cell remain valid for this modification of the
model. In particular, the results of Proposition 8 can be extended to the model with shadowing
(where the cell associated to each base station is not necessarily the Voronoi cell) provided the
origin 0 belongs to a unique cell almost surely.

Note that the mean cell surface E0[|V (0)|] = 1/γ, and hence the mean traffic demand per cell
E0[ρ(0)] = ρ/γ, do not depend at all on the shadowing. The values of other characteristics of the
typical and the mean cell will change depending on the distribution of the random shadowing
field Sv(y) (both the marginal distributions and the correlation across y). An interesting remark
in this regard is as follows.

In the full interference model, the mean load of the typical cell and the load of the mean
cell (which are by the definition equal E0[θ(0)] = θ̄) depend only on the stationary marginal
distribution of SINR(0,Φ), cf. (3.40). Hence, it does not depend on the (spatial) correlation
of Sv(y) across y. Moreover, this distribution is known in the case of the Poisson network
and identically distributed marginal shadowing Sv(y) ∼ S. As explained in [19], in this case
SINR(0,Φ) in the model with shadowing has the same distribution as in the model without
shadowing and the density of stations equal to γ ×E[S2/β ]. In particular, a specific distribution
of S and the correlation of Sv(y) across y play no role. This equivalence of the two models (with
and without shadowing) is more general, as explained in [19] and [21], and applies also to the
mean-cell-load equation (3.37).

Remark 19 The impact of the shadowing on the mean cell model, both in full and weighted
interference scenario in the above Poisson model with Sv(y) ∼ S can be summarized as fol-
lows. It modifies only the cell load θ̄ and not the traffic demand ρ̄. Moreover, multiplying γ by
E[S2/β ] and dividing ρ by the same moment one obtains an equivalent (in terms of all considered
characteristics) mean cell without shadowing.

3.5.4 Mean cell

It is tempting to look for a synthetic model which would allow to relate main parameters and QoS
metrics of a large irregular cellular network in a simple, yet not simplistic way. The typical cell
approach described up to now offers such possibility. In this section we will go a little bit further
and propose an even simpler model mimicking that of Section 3.4.1. It consists in considering a
virtual cell, to which we will assign the parameters and QoS metrics inspired by the analysis of
the typical cell. In contrast to the typical cell, our virtual cell is not random and this is why we
call it the mean cell. Specifically, we define it as a (virtual) cell having the same traffic demand
ρ̄ and load θ̄ as the typical cell. Note that these two characteristics admit explicit expressions;
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cf. Proposition 8 and Remark 14.

ρ̄ := E0 [ρ (0)] =
ρ

γ
, (3.39)

θ̄ := E0 [θ (0)] =
ρ

γ
E[1/R (SINR (0,Φ))] . (3.40)

For the remaining characteristics, we assume that they are related to the above two via the
relations presented in Section 3.5.2. Specifically, following (3.20) we define the area of the mean
cell by V̄ = ρ̄/ρ and in analogy to (3.25) we define the critical load of the mean cell as

ρ̄c :=
ρ̄

θ̄
. (3.41)

We say that the mean cell is stable if ρ̄ < ρ̄c. Inspired by (3.22) we define the user’s throughput
in the mean cell by

r̄ := max (ρ̄c − ρ̄, 0)

and, as in (3.23), the mean number of users in the mean cell is defined as

N̄ :=
ρ̄

r̄
.

We observe the following immediate relations.

Corollary 4 The mean cell is stable if and only if θ̄ < 1. In this case

N̄ =
θ̄

1− θ̄
, (3.42)

r̄ = ρ̄(1/θ̄ − 1) , (3.43)

which are analogous to (3.27) and (3.28), respectively.

Remark 20 The equation (3.43) provides an alternative macroscopic relation between the traffic
demand and the mean user throughput in the network. It is purely analytic; no simulations are
required provided one knows the distribution of the SINR of the typical user in (3.40). It will
be validated by comparison to real data measurements. We consider it as an approximation
of (3.33). It consists in assuming N̄ ' N0/πS . This latter hypothesis will be also separately
validated numerically.

Remark 21 Note that the key characteristic of the mean cell is its load θ̄. In analogy to the load
factor of the (classical) M/G/1 processor sharing queue, it characterizes the stability condition,
mean number of users and the mean user throughput.

3.6 Heterogeneous networks

The objective of the present section is to extend our model to heterogenous wireless cellular
networks comprising different categories of base stations transmitting at distinct powers. This
model permits to calculate by static simulation (Monte carlo estimation of some functionals of
Poisson point process) the quality of service perceived by the users served by each category of
base stations. Analytical approximations are also proposed.

Specifically, we shall build a model for cellular networks comprising macro and micro BS
emitting different powers. The user is served by the BS offering the strongest received power
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among all the BS in the network. In this context, we calculate the quality of service (QoS) offered
to the users by each category of BS (macro and micro). Extending the results from Section 3.5
we develop here also the corresponding typical cell and mean cell approach globally and for each
base station category. Further, we analyse the QoS parameters: mean user throughput, mean
number of users and cell load per base station category.

3.6.1 Model description

We consider a cellular network comprising different categories of BS characterized by different
transmitting powers. In this section we restrict ourselves to a Poisson model. Let O be the finite
set of possible categories of base stations. The locations of BS of category o ∈ O are modeled
by a homogeneous Poisson point process of intensity parameter γo ∈ R+ and denoted by Φo.
The transmitting power of BS of category o is denoted by Po ∈ R+. Let Φ be the superposition
of {Φo}o∈O. Then Φ = {vn}n∈N is a homogeneous Poisson point process of intensity parameter
γ =

∑
o∈O γo.

Inversely, starting from the point process Φ we may retrieve the processes with the same
distribution as {Φo}o∈O in the following manner. Let Zn be i.i.d. marks of Φ such that

P(Zn = o) =
γo
γ
, o ∈ O,n ∈ N∗

Then
Φo =

∑
n∈N∗

δvn1 {Zn = o} , o ∈ O

Much as in Section 3.5 the propagation loss due to distance is a power function l(x) = (K |x|)β
where K > 0 and β > 2 are given constants. The shadowing between a given station vn ∈ Φ and
all locations y ∈ R2 is modeled by some stochastic process Sn (y − vn) taking values in R+. The
shadowing stochastic processes Sn (·) are i.i.d. marks of Φ. We assume that S1(y) are identically
distributed across y. (We do not make any assumption concerning the dependence of S1(y) across
y.) Thus the received power at location y ∈ R2 from base station vn ∈ Φ equals

PZnSn (y − vn)

l (|y − vn|)

The shadowing fields Sn (·) and the categories of BS Zn are assumed independent.
In order to simplify the notation, let {Z (x)}x∈R2 be a stochastic process such that Z (vn) =

Zn. In a similar way, let {Sx (·)}x∈R2 be a stochastic process such that Svn (·) = Sn (·).
Let Lvn (y) be the inverse of the received power at location y from BS vn; that is

Lvn (y) =
l (|y − vn|)

PZ(vn)Svn (y − vn)
, n ∈ N∗ (3.44)

Each user is served by the BS offering the strongest received power among all the BS in the
network. Then the cell served by BS u ∈ Φ is

V (u) =
{
y ∈ R2 : Lu (y) ≤ Lv (y) ,∀v ∈ Φ

}
(3.45)

The signal to interference and noise ratio (SINR) at location y in the downlink (BS to user)
equals

SINR (y,Φ) =

1
Lu(y)

N +
∑
v∈Φ\{u}

1
Lv(y)

, y ∈ V (u) , u ∈ Φ (3.46)
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where N is the noise power. Note that the above expression of SINR relies on the full interference
model from Definition 1 which will be improved in Section 3.6.4.

We assume that the peak bit-rate at location y, defined as the bit-rate of a user located at y
when served alone by its BS, is some function R(SINR) given for example in (3.17). Local cell
characteristics and traffic dynamics are assumed to be the same as in Section 3.5.2.

3.6.2 Typical and mean cell in multi-tier network

We aim to study the distribution of the received powers for a user located at the origin. The
inverse of the power received from BS vn ∈ Φ may be deduced from (3.44)

Ln := Lvn (0) =
l(|vn|)
SnPZn

where Sn := Sn (0− vn) are the shadowing random variables. Let Φ̂ = {Ln}n∈N∗ which is a
point process on R+ and S = S1.

Lemma 5 Assume that E
[
S2/β

]
< ∞. Then Φ̂ = {Ln}n∈N∗ is a Poisson point process with

intensity measure
Γ (0,m] = am2/β

where

a :=
πE
[
S2/β

]
K2

∑
o∈O

γoP
2/β
o

Proof. It follows from our assumptions on the shadowing that the random variables Sn =
Sn (−vn) are i.i.d. marks of Φ. Introducing S̃n := SnPZn , we get

Ln =
l(|vn|)
S̃n

Since S̃n := SnPZn are i.i.d. marks of Φ (which may be viewed as modified shadowing), then Φ̂
may be obtained by a transformation of Φ through the kernel

p(x,A) = P
(
l(x)

S̃1

∈ A
)

By the displacement theorem Φ̂ is a Poisson process with intensity measure

Γ [0,m) =

∫
R2

p(x, [0,m))γdx

= γ

∫
R2

P
(
l(x)

S̃1

∈ [0,m)

)
dx

= γ

∫
R2×R

1

{
l(x)

s
∈ [0,m)

}
dxPS̃1

(ds)

= γ

∫
R2×R

1

{
|x| < (sm)

1
β

1

K

}
dxPS̃1

(ds)

= γ

∫
R

π (sm)
2/β

K2
PS̃1

(ds) =
γπ

K2
E
[
S̃

2/β
1

]
m2/β
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Note that
E
[
S̃

2/β
1

]
= E

[
S2/β

]
E
[
P

2/β
Zn

]
= E

[
S2/β

]∑
o∈O

γoP
2/β
o

which completes the proof.
It follows from the above lemma that the typical user (located at the origin) receives powers

from the different BS as if the network was a homogeneous one, i.e. with a single category of
BS transmitting at power

P =

(∑
o∈O

γo
γ
P 2/β
o

)β/2
(3.47)

Let Φ̂o be the process of the inverses of the received powers from BS of category o ∈ O. They
are independent Poisson point processes with respective intensity measures

Γo (0,m] = aom
2/β , o ∈ O

where

ao =
πE
[
S2/β

]
K2

γoP
2/β
o , o ∈ O

We may view the whole process Φ̂ as a superposition of the point processes
{

Φ̂o

}
o∈O

. Inversely,

these latter processes may be obtained from Φ̂ = {Ln}n∈N∗ by generating i.i.d. marks
{
Ẑn

}
n∈N∗

such that
P(Ẑn = o) =

ao
a
, o ∈ O,n ∈ N∗ (3.48)

in which case
Φ̂o =

∑
n∈N∗

δLn1
{
Ẑn = o

}
, o ∈ O

Let Z∗ be the category of the BS serving the user located at the origin and L∗ = minn∈N∗ Ln.

Lemma 6 The probability that the user at the origin is served by a BS of category o ∈ O equals

P (Z∗ = o) =
ao
a

(3.49)

Moreover, Φ̂ and Z∗ are independent and in particular the random variables L∗ and Z∗ are
independent.

Proof. We may assume without loss of generality that the points {Ln}n∈N∗ of Φ̂ are sorted
in the increasing order. Then

P (Z∗ = o) = P
(
Ẑ1 = o

)
=
ao
a

On the other hand, since Z∗ = Ẑ1, it follows from (3.48) that Z∗ is independent from Φ̂.
The above lemma shows that the process of powers received from all the BS is independent

from the category of the serving base station. In particular, the interference and the signal to
interference and noise ratio (SINR) are independent from the category of the serving base station.

Remark 22 It follows from Lemma 6 that P (L∗ > m|Z∗ = o) = P (L∗ > m); i.e. the distribu-
tion of the received power from each category of BS is the same.
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3.6.3 Full interference model

The average of the characteristics of the cells described in Section 3.6.1, i.e. Section 3.5.2 over the
whole network gives a first global indication of the network performance. We may also average
these characteristics per category of BS leading to the notion of typical cell for each category
of BS. The objective of the present section is to establish the relations between these averages.
The Section title relates to the load (interference) scenarios in 1.

Typical cell approach

Traffic and load We shall average the characteristics of the cells over an increasing sequence of
discs, denoted by A, of radii going to infinity, exactly in the same way as it is done in Section 3.5.3;
for example the global average traffic demand per cell equals

ρ̄ := lim
|A|→∞

1

Φ (A)

∑
v∈Φ∩A

ρ (v)

whereas the average traffic demand per cell of category o is

ρ̄o := lim
|A|→∞

1

Φo (A)

∑
v∈Φo∩A

ρ (v) (3.50)

We define similarly the global average load θ̄ and the average load θ̄o for cells of category o.
The following lemma gives the explicit expressions of the average traffic demands per cell

both globally and for each category of BS. Palm theory will be useful in the proof of this lemma
as well as for upcoming results. The following statements are also inspired by the considerations
in Section 3.5.3. In particular we shall make use of the Palm probability P0 associated to the
point process Φ of base station locations. Let E0 [·] be the expectation with respect to P0.

Lemma 7 We have

ρ̄ =
ρ

γ

ρ̄o =
ρao
γoa

, o ∈ O (3.51)

Proof. Since the point process Φ is ergodic, it follows from the ergodic theorem for point
processes that [36, Proposition 12.2.VI]

ρ̄ = E0 [ρ (0)] = ρE0 [|V (0)|] =
ρ

γ

where the second equality is due to (3.20), and the last equality follows for the inverse formula of
Palm calculus [9, Theorem 4.2.1] (which may be extended to the case where the cell associated
to each BS is not necessarily the Voronoi cell; the only requirement is that the user located at 0
belongs to a unique cell almost surely). Similarly,

ρ̄o = lim
|A|→∞

Φ (A)

Φo (A)

1

Φ (A)

∑
v∈Φ∩A

ρ (v) 1 {v ∈ Φo}

=
γ

γo
E0 [ρ (0) 1 {0 ∈ Φo}]

= E0 [ρ (0) |0 ∈ Φo] = ρE0 [|V (0)| |0 ∈ Φo] (3.52)
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Moreover,

E0 [|V (0)| |0 ∈ Φo] =
E0 [|V (0)| × 1 {0 ∈ Φo}]

P0 (0 ∈ Φo)

=

1
γP (v∗ ∈ Φo)

P0 (0 ∈ Φo)

=

1
γ
ao
a

γo
γ

=
ao
γoa

(3.53)

where the second equality follows from the inverse formula of Palm calculus, v∗ designates the
BS serving the origin and the third equality follows from Lemma 6.

Remark 23 We may interpret Equation (3.53) as follows. Consider a sufficiently large area A
and denote its area by |A|. By the ergodic theorem, there are γo |A| base stations of category o
within A. On the other hand, the probability that a user is served by a BS of category o is ao

a
and consequently a portion ao

a of the area of A is covered by γo |A| base stations. So, the mean
cell area of a base station of category o is

ao
a |A|
γo |A|

=
ao
γoa

The following lemma shows that the global average cell load is related to the stationary
distribution of the SINR for a user located at the origin. It gives also the expression of the
average load for cells of each category.

Proposition 9 The average loads per cell equal

θ̄ =
ρ

γ
E
[
R−1 (SINR (0,Φ))

]
(3.54)

θ̄o = θ̄
γao
γoa

= θ̄
P

2/β
o

P 2/β
, o ∈ O (3.55)

where P is given by (3.47).

Proof. Along the same lines as the proof of (3.52), we have

θ̄o = E0 [θ (0) |0 ∈ Φo]

On the other hand, let

g (y,Φ (ω)) = ρR−1 (SINR (y,Φ (ω))) , y ∈ R2, ω ∈ Ω

let v∗y be the BS serving the user at location y, and let v∗ be the BS serving the origin, then

θ̄o = E0 [θ (0) |0 ∈ Φo]

= E0 [θ (0) 1 {0 ∈ Φo}] /P0 (0 ∈ Φo)

= E0

[∫
V (0)

g (y,Φ) 1
{
v∗y ∈ Φo

}
dy

]
/P0 (0 ∈ Φo)

=
1

γ
E [g (0,Φ) 1 {v∗ ∈ Φo}] /P0 (0 ∈ Φo)

=
1

γ
E [g (0,Φ)]

P (v∗ ∈ Φo)

P0 (0 ∈ Φo)
=

1

γ
E [g (0,Φ)]

γao
γoa
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where the fourth equality follows from the inverse formula of Palm calculus [9, Theorem 4.2.1],
the fifth equality follows from Lemma 6 and the last equality follows from (3.49). It follows that

θ̄ = E0 [θ (0)]

=
∑
o∈O

E0 [θ (0) |0 ∈ Φo]P0 (0 ∈ Φo)

=
∑
o∈O

1

γ
E [g (0,Φ)]P (v∗ ∈ Φo) =

1

γ
E [g (0,Φ)]

Remark 24 Heterogeneous versus homogeneous network. Surprisingly, the global average cell
load in the heterogeneous network is the same as that in the corresponding homogeneous network
(where all the BS transmit the same power (3.47)). This observation holds for the current full
interference model.

Users number and throughput Note that if for BS v, θ (v) ≥ 1 then the corresponding
number of users N (v) is infinite; in which case we say that BS v is instable. The empirical
average of the number of users over the cells in the network would then be infinite. In order to
avoid this degeneration, we define the global average number of users as

N̄ := lim
|A|→∞

1

Φ (A)

∑
v∈Φ∩A

N (v) 1 {θ (v) < 1}

= E0 [N (0) 1 {θ (0) < 1}]

where the second equality follows from ergodicity. Similarly, the average number of users for BS
of category o ∈ O

N̄o := lim
|A|→∞

1

Φo (A)

∑
v∈Φo∩A

N (v) 1 {θ (v) < 1} (3.56)

= E0 [N (0) 1 {θ (0) < 1} |0 ∈ Φo]

Let So be the union of stable cells of category o ∈ O; that is

So =
⋃

v∈Φo:θ(v)<1

V (v)

and S =
⋃
o∈O So. The user’s average throughput is defined as the mean transmitted volume

per call; i.e. 1/µ, divided by the mean call duration; that is

r̄ := lim
|A|→∞

1/µ

mean call duration in A ∩ S

and for category o ∈ O,

r̄o := lim
|A|→∞

1/µ

mean call duration in A ∩ So
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Proposition 10 We have

r̄ =
ρ̄

N̄
π

r̄o =
ρ̄o
N̄o

πo, o ∈ O (3.57)

where

π = P (θ (v∗) < 1)

πo = P (θ (v∗) < 1|v∗ ∈ Φo) , o ∈ O

where v∗ is the BS serving the origin.

Proof. Let Wo =
⋃
v∈A∩So V (v). Consider call arrivals and departures to Wo over a suffi-

ciently large time interval. Let TWo be the mean call duration in Wo, and let NWo be the mean
number of users in Wo. By Little’s law

NWo = λ |Wo|TWo

Thus the user’s throughput in Wo equals

1/µ

TWo
=
ρ |Wo|
NWo

= ρ

∑
v∈A∩So |V (v)|∑
v∈A∩So N (v)

= ρ

∑
v∈A∩Φ |V (v)| 1 {θ (v) < 1, v ∈ Φo}∑
v∈A∩ΦN (v) 1 {θ (v) < 1, v ∈ Φo}

When |A| → ∞, it follows from the ergodic theorem that

r̄o = ρ
E0 [|V (0)| 1 {θ (0) < 1, 0 ∈ Φo}]
E0 [N (0) 1 {θ (0) < 1, 0 ∈ Φo}]

On the other hand, it follows from the inverse formula of Palm calculus that

E0 [|V (0)| 1 {θ (0) < 1, 0 ∈ Φo}] =
1

γ
P (θ (v∗) < 1, v∗ ∈ Φo)

Then

r̄o =
ρ

γ

P (θ (v∗) < 1, v∗ ∈ Φo)

P0 (0 ∈ Φo) N̄o

=
ρ

γ

P (v∗ ∈ Φo)P (θ (v∗) < 1|v∗ ∈ Φo)

P0 (0 ∈ Φo) N̄o

=
ρ̄o
N̄o

P (θ (v∗) < 1|v∗ ∈ Φo) =
ρ̄o
N̄o

πo

The expression for r̄ may be proved in the same lines as above.
Under Palm probability, the cell of the base station located at 0 is usually called typical cell.

Note that the typical cell has not a concrete existence, but it is rather a useful mathematical tool
to analyze or predict the behavior of the empirical averages over many cells. We define both a
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global typical cell and also a typical cell per category of BS. The global typical cell has a traffic
demand ρ̄, a load θ̄, a users number N̄ and a user’s throughput r̄. The typical cell of category
o ∈ O has a traffic demand ρ̄o, a load θ̄o, a users number N̄o and a user’s throughput r̄o.

Unfortunately, neither the number of users nor the user’s throughput in the typical cell have
explicit analytic expression. We shall introduce in the following section an approximation called
mean cell whose characteristics admit explicit expressions and approximate those of the typical
cell both globally and for each category of BS.

Mean cell approximation

We define a mean cell as a virtual cell having traffic demand ρ̃ := ρ̄ and load θ̃ := θ̄. Similarly,
we introduce a mean cell for each category o ∈ O as a virtual cell having traffic demand ρ̃o := ρ̄o
and load θ̃o := θ̄o. The mean cells are assumed to behave like a concrete cell from the queuing
theory point of view as described in Sections 3.6.1 and 3.5.2. Specifically, we define the critical
load of each mean cell in analogy to (3.25) as

ρ̃c :=
ρ̃

θ̃
, ρ̃co :=

ρ̃o

θ̃o
, o ∈ O

Inspired by (3.22), the user’s throughput in the mean cell is defined as

r̃ := max(ρ̃c − ρ̃, 0), r̃o := max(ρ̃co − ρ̃o, 0), o ∈ O

The users number in the mean cell is defined following (3.23) as

Ñ =
ρ̃

r̃
, Ño =

ρ̃o
r̃o
, o ∈ O

Combining Equations (3.51) and (3.55), we see that ρ̃co = ρ̃c; that is the critical traffic of the
mean cell is the same for all the categories of the BS. Moreover, observe that all the characteristics
of the mean cell are straightforwardly deduced from its traffic and load which in view of (3.54)
depends on the distribution of SINR (0,Φ) whose analytic expression is given in [19].

We shall evaluate the mean cell approximation (both globally and per category) by compar-
ison to the characteristics of the typical cell obtained both from simulation and from real field
measurements.

3.6.4 Weighted interference model

Typical cell approach

The expression (3.46) of SINR relies on the assumption that the interfering BS are always trans-
mitting at their maximal power. In real networks, the BS transmits only when it serves at least
one user. Since the probability of such event is given by (3.24), we modify the expression of
SINR as follows, for y ∈ V (u) , u ∈ Φ,

SINR (y,Φ) =

1
Lu(y)

N +
∑
v∈Φ\{u}

min(θ(v),1)
Lv(y)

(3.58)

It follows from Equation (3.25) that

θ (u) = ρ

∫
V (u)

R−1

 1
Lu(y)

N +
∑
v∈Φ\{u}

min(θ(v),1)
Lv(y)

 dy (3.59)
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which is a system of equations with the loads {θ (v)}v∈Φ as unknowns. Given a realization
of the network, one gets the loads of the different BS by solving numerically the above system,
similarly as in 3.5.3. The traffic demand (or equivalently surface) of each cell {ρ (v)}v∈Φ may also
be estimated numerically. The other characteristics of each cell are then deduced from the load
and traffic demands using the relations in Section 3.6.1 and 3.5.2; specifically, the critical traffic
is deduced from (3.25), the user’s throughput from (3.22) and the users number from (3.23).

The characteristics of the typical cell for each category of BS may then be computed by taking
the empirical averages over the cells of each category as explained in Section 3.6.3. Specifically,
the traffic is calculated by (3.50) with a similar formula for the load, the number of users is
calculated by (3.56) and the user’s throughput is given by (3.57) since Proposition 10 holds
true in the present context. Moreover, the results of Proposition 9 remain true; in particular
the load of the typical cell of a given category θ̄o is related to the global typical cell load θ̄ by
Equation (3.55).

We will see in the numerical section that such model, called (load-)weighted interference
model, fits better to real field measurements than the full interference model. In particular, the
fact that the average load of each category of BS increases with its power through a simple law
will be validated by real field measurements in the numerical section.

Mean cell approximation

In the mean cell approximation, the expression (3.58) of the SINR is modified by replacing the
load of each BS by the mean load of the corresponding category; that is

S̃INR (y,Φ) =

1
Lu(y)

N +
∑
o∈O θ̃o

∑
v∈Φo\{u}

1
Lv(y)

Moreover, by analogy to (3.54) and (3.55) we assume that

θ̃ =
ρ

γ
E
[
R−1

(
S̃INR (0,Φ)

)]
θ̃o = θ̃

P
2/β
o

P 2/β
(3.60)

Combining the three above equations we deduce that θ̃ is solution of the following fixed-point
equation

θ̃ =
ρ

γ
E

[
R−1

(
1

Lu(0)

N + θ̃
∑
o∈O αo

∑
v∈Φo\{u}

1
Lv(0)

)]
(3.61)

where

αo :=
P

2/β
o

P 2/β
, o ∈ O (3.62)

Solving the above equation we get the load of the mean cell; then we deduce the load of the
mean cell of each category by applying (3.60). The characteristics of the mean cell both globally
and for each category are then deduced from its traffic and load by the relations presented in
Section 3.6.3.

3.7 Numerical results: network dimensioning and QoS es-
timation

In this Section the following results are presented:
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• Firstly, the validation is done for a dynamic context of users arivals and departures from
the network by comparison to 3GPP simulations results.

• Then, the results for dynamic context are applied to dimension hexagonal cellular LTE
network based on Section 3.4.

• Finally, the previous two tasks are extended to demonstrate the results concerning irreg-
ular networks. QoS estimation as function of traffic demand is done for irregular cellular
networks and results are compared to real-field measurements.

Throughout this Section we assume that user channels are intra-cell orthogonal and inter-cell
independent : if BS u serves n users located at y1, y2, . . . , yn ∈ V (u) then the bit-rate of the
user located at yj equals to 1/n th of its peak bit-rate 1

nR (SINR (yj ,Φ)), j ∈ {1, 2, . . . , n}. 7The
pattern of BS Φ does not evolve in time.

3.7.1 Validation in a dynamic context

The aim is to compare the results of the queueing approach described in Section 3.4.1 to those of
3GPP simulations in a dynamic context ; i.e. calls arrive and depart from the network and each
base station transmits only when it has at least one user to serve. This context is called FTP
traffic model in [3, §A.2.1.3.1].

As simulation results, we consider the results of tools which are compliant with 3GPP ap-
proach [3] (an Orange simulator developed in C++ being one of them). The average (as well
confidence intervals at 20% and 80%) of the results of the different contributors to 3GPP will be
plotted and compared to our analytical approach (implemented in Matlab).

We begin by describing the subset of the parameters in [1, Table A.2.1.1-3], [3, Table A.2.2-1]
which are used in our analytical calculations. The frequency carrier equals 2GHz; the path-loss
model is l (r) = 128.1 + 37.6 × log10(r) [in dB] (where r is in km); the penetration loss equals
20dB and the shadowing is centered and log-normally distributed with standard deviation 8dB.

The antenna pattern in the horizontal plane is A (ϕ) = −min
(

12 (ϕ/ϕ3dB)
2
, Am

)
where ϕ3dB =

70◦, Am = 20dB. The system bandwidth equals W = 10MHz; the noise power is N = −95dBm
and the base station transmission power equals P = 60dBm (including antenna gain).

Figure 3.1 gives the load as function of traffic demand per cell resulting from 3GPP simulations
and from the queueing approach. For 3GPP simulations, the load is calculated as the fraction
of time where a base station has at least one user to serve. The average of the simulation results
of the different 3GPP contributors as well the confidence intervals at 20% and 80% are plotted.
For the queueing approach, the load is calculated by Equation (3.19) where the critical traffic
ρc is the solution of the fixed-point problem (3.18). We observe in Figure 3.1 that the two loads
calculated by these two methods are close, except when the queueing load is close to 1. Indeed
in this case, the system is at its limit of stability and therefore the time averages converge very
slowly to their ergodic limits [80, p.114]. This explains why the 3GPP simulations are too time
consuming at high loads (up to 3 weeks of calculation) and also the gap between the simulation
and queueing loads in Figure 3.1. To get the curves in Figure 3.1, the computing time for the
3GPP simulations is several weeks whereas it is about 1 minute for the queueing approach.

Figure 3.2 gives the mean user throughput as function of traffic demand for the different load
situations described in Definition 1 and for 3GPP simulations. In this latter case, the mean user
throughput is obtained by averaging the users throughput over the whole simulation time.

7This can be achieved using various multiple access schemes, e.g. time (related to HSDPA) or frequency
(related to LTE) division.
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Figure 3.1: Load versus traffic demand per cell

One can observe that the curve obtained from 3GPP simulations and the one derived from
the queueing approach with adapted load are close, except for the highest value of traffic demand
(which corresponds to a load close to 1). This gap is due to the slow convergence rate of the
3GPP simulations discussed above. On the other hand, as expected, the curves for the full and
adapted load converge for the highest value of the traffic demand since this corresponds to the
limit of stability of the network (when the user throughput vanishes). Going backward with
the values of traffic demand, the difference between these two curves increases up to factor 5.
Finally, the null and adapted load curves have the same value for the smallest traffic demand
and diverge as the traffic demand increases.

Figure 3.3 gives the 95% quantile of user throughput as function of the traffic demand for
3GPP simulations and the queueing approach. Observe that the quantiles of the 3GPP simula-
tions are smaller than those of the queueing approach with adapted load; nevertheless the two
curves have the same tendency. This is related to the fact that peak bit-rates of 3GPP simula-
tions are more dispersed than the analytical ones as shown in Figure 2.5. On the other hand,
the null and full load curves agree with the adapted load one for the smallest and the highest
values of traffic demand, respectively.

In this Section we want to use all previously developed results and apply them to various
numerical examples of cellular network dimensioning and QoS performance evaluation. We will
use the results from Section 3.4 to calculate the cell radius necessary to satisfy the traffic demand
and some QoS constraint with a given network setup, which is network dimensioning.

Using the model described in Section 3.5 we will estimate the QoS parameters and network
performance and compare the results to the real-field measurements.
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Figure 3.2: Mean user throughput versus traffic demand per cell
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Figure 3.3: 95% quantile of user throughput versus traffic demand

3.7.2 Hexagonal LTE network dimensioning

We aim now to illustrate the processor-sharing queueing approach for cellular network dimen-
sioning purposes applied to a multi-cell scenario in symmetric hexagonal networks. In this case
all cells are ”the same”, that is to say, if we take randomly any cell then it represents the typical
cell, so we can use the approach described in Section 3.4 for network dimensioning. Figure 3.4
shows mean user throughput as function of cell radius for traffic demand densities equal to 0.1
and 10Mbit/s/km2 and different load situations (see Definition 1). The mean user throughput r̄
is calculated by (3.8) where the critical traffic ρc is the solution of the fixed-point problem (3.18).

As expected, for each value of the traffic demand, the curves are in decreasing order for
respectively the null, adapted and full load situations. Moreover, observe that the null and
adapted load curves are close to each other for the small value of traffic demand since in this
case the interference is too small. Contrarily, for higher value of traffic demand, interference is
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Figure 3.4: Mean user throughput as function of the cell radius for different load situations

significant so that adapted load curve deviates from the null load one. Moreover, as observed
previously, the adapted and full load curves converge for the limit of stability of the network
(when user throughput vanishes). The computing time to get Figure 3.4 is some minutes, whereas
it would require several weeks for 3GPP simulations.

Figure 3.5 shows mean user throughput as function of cell radius for different traffic demand
densities for adapted load situation. As expected each curve is decreasing and ultimately van-
ishes for some critical value of cell radius corresponding to the stability limit of the network.
Additionally, when the traffic increases, the curves decrease and the critical cell radius decreases
rapidly. On the other hand, the curves for traffic demands of 10 and 100kbit/s/km2 are close to
that of null traffic up to the cell radius of 2km which shows that noise is preponderant against
interference.
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We give now the numerical solution of the dimensioning problem in terms of the cell radius
which is more appealing than the number of base stations per unit surface (note, however, that
the latter is inversely proportional to the square of the former). Figure 3.6 shows cell radius
versus traffic demand density for two target arithmetic means of the user throughput equal to
1 and 10Mbit/s for the three load situations described in Definition 1. For the smaller user
throughput, the three curves are close to each other whereas for the larger throughput they
differ significantly from each other. The adapted load curve lies between the null and full load
ones; and meets each of them for low and high traffic, respectively. This is due to the fact that
when traffic increases, the network evolves from a noise-limited to an interference-limited regime.
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Figure 3.6: Cell radius versus traffic demand density for mean user throughput 104kbit/s

Figure 3.7 shows cell radius versus traffic demand density for different target values of the
arithmetic mean of the user throughput. As expected, the cell radius is decreasing with the
traffic demand and with the user throughput. Note that, for the three largest user throughputs,
the curve comprises a stationary part corresponding to a coverage constraint and a decreasing
part corresponding to a capacity constraint.

Figures 3.6 and 3.7 are obtained in few minutes by the analytical approach, whereas they
would require several months for 3GPP simulations.
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3.7.3 Mean performance estimation of irregular network using Poisson
process

Here, we consider the irregular cellular network with orthogonal users’ channels as described in
Section 3.5 and produce the examples showing the network performance as function of the traffic
demand. Also, the figures showing the mean user throughput as function of the traffic demand
can be useful not only in the sense of their own explicit importance (gives the information about
the QoS in a network), but also for network dimensioning and capacity.

To illustrate the motivation of this work, we present first in Figure 3.8 non-averaged data
obtained from the measurements performed in an operational network in some zone of some
big city in Europe. More precisely, a dense urban network zone consisting of 382 base stations
was selected in a big European city, whose locations loosely satisfy the homogeneous spatial
Poisson assumption. Ripley’s L-function, cf [88, page 50], plotted on Figure 3.16, was used to
verify this latter assumption. The density of base stations in this dense urban zone is about 4.62
base stations per km2. Later, we will consider also an urban zone of a different European city,
where the spatial homogeneous Poissonianity of the base station locations can also be retained;
cf. Figure 3.16, with roughly four times smaller density of base stations, more precisely 1.15
stations per km2. In both cases the network operates a HSDPA system with MMSE coding.

Different points in this figure correspond to the measurements of the traffic demand and the
estimation of the user throughput made by different cells during different hours of the day. No
apparent relation between these two quantities can be observed in this way.

In order to uderstand and predict the performance of the network for which we have presented
the above data, we will now specify correspondingly our general model and study it using the
proposed approach. The obtained results will be compared to the appropriately averaged real
field measurements.

Consider the following numerical setup. Assume a Poisson process of BS with intensity
γ = 4.62km−2 (which corresponds to an average distance between two neighbouring BS of
0.5km). We assume the path-loss function l(r) = (Kr)β , with K = 7117km−1, and the path
loss exponent β = 3.8. The propagation model comprises the log-normal shadowing with the
logarithmic standard deviation 10dB; cf [20], and the mean spatial correlation distance 0.05km.

The transmission power is P = 58dBm, with a fraction ε = 10% used in the pilot channel.
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Figure 3.8: Local user throughput versus local traffic demand for some zone (selected to satisfy
a spatial homogeneity of the base stations) of an operational cellular network deployed in a big
city in Europe. 9288 different points correspond to the measurements made by different sectors
of different base stations during 24 different hours of some given day.

The antenna pattern is described in [3, Table A.2.1.1-2]. The noise power is N = −96dBm.

We assume the peak bit-rate to be equal to 30% of the ergodic capacity of the AWGN channel
with the frequency bandwidth W = 5MHz and the Rayleigh fading with mean power E[|H|2] = 1.

Estimations of the typical cell are performed by the simulation of 30 realizations of the Poisson
model within a finite observation window, which is taken to be the disc of radius 2.63km. We
first average over all BS in this window and then over the model realizations. The empirical
standard deviation from the obtained averages will be presented via error-bars.

We shall study now our model using the typical and mean cell approach, assuming first the
full interference model and then the weighted one.

Full interference

We consider first the full interference model (i.e. all BS emit the signal all the time, regardless of
whether or not they serve users). Figure 3.9 shows the mean cell load of the typical cell E0[θ(0)]
and the stable fraction of the network πS obtained from simulations, as well as the analytically
calculated load of the mean cell θ̄, versus mean traffic demand per cell ρ/γ. We confirm that the
typical cell and the mean cell models have the same load. Note that for a traffic demand up to
500kbps per cell we do not observe unstable cells in our simulation window (πS = 1).

Figure 3.10 shows the mean number of users per cell in the stable part of the network N0/πS
(obtained from simulations) and the analytically calculated number of users in the mean cell
N̄ versus mean traffic demand per cell. We have two remarks. For the traffic demand smaller
than 500kbps per cell (for which all the simulated cells are stable; πS = 1, cf. Figure 3.9), both
models predict the same mean number of users per cell. Beyond this value of the traffic demand
per cell the estimators of the number of users in the typical cell become inaccurate due to the
very rapidly increasing fraction of the unstable region. (Error bars on all figures represent the
standard deviation in the averaging over 30 realizations of the Poisson network).

Finally, Figure 3.11 presents the dependence of the mean user throughput in the network
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Figure 3.9: Cell load and the stable fraction of the network versus traffic demand per cell in the
full interference model.

Figure 3.10: Number of users per cell versus traffic demand per cell in the full interference model.

on the mean traffic demand per cell obtained using the two approaches: r0 and for the typical
cell and r̄ for the mean cell. Again, both models predict the same performance up to roughly
500kbps.
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Figure 3.11: Mean user throughput in the network versus traffic demand per cell in the full
interference model.

Weighted interference

We consider now the load-weighted interference model taking into account idling cells. We see in
Figures 3.12, 3.13 and 3.14 that the consequence of this (more realistic) assumption is that the
cell loads are smaller, a larger fraction πS of the network remains stable, and the two approaches
(by the typical cell and by the mean cell) predict similar values of the QoS metrics up to a larger
value of the traffic demand per cell, roughly 700kbps. Note that it is in this region that the real
network operates for which we present the measurements, and that its performance coincides with
the performance metrics calculated using the typical and mean cell approach. More precisely,
the field measurements in Figures 3.12, 3.13 and 3.14 correspond to the same day and network
zone considered in Figure 3.8.

Figure 3.12: Load and the stable fraction of the network versus traffic demand in the weighted
interference model. Also, load estimated from real field measurements.
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Figure 3.13: Number of users versus traffic demand per cell in the weighted interference model.
Also, the same characteristic estimated from the real field measurements.

Figure 3.14: Mean user throughput in the network versus traffic demand per cell in the weighted
interference model. Also, the same characteristic estimated from the real field measurements.

Remark 25 (Measurement methodology) Measurement points in Figure 3.12 show the frac-
tion of time, within a given hour, when the considered base stations were idle, averaged over the
base stations, as function of the average traffic demand during this hour. Similarly, measurement
points in Figure 3.13 show the spatial average of the mean number of users reported by the con-
sidered base stations within a given hour, as function of the average traffic demand during this
hour. Finally, measurements in Figure 3.14 give the ratio of the total number of bits transmitted
by all the base stations during a given hour, to the total number of users they served during this
hour as function of the average traffic demand during this hour.
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Remark that Figure 3.14 makes evident a macroscopic relation between the traffic demand
and the mean user throughput in the network zone already considered on Figure 3.8. This
relation, we are primarily looking for here, is not visible without the spatial averaging of the
network measurements described in Remark 25. In order to assure the reader that a relatively
good matching between the measurements and the analytic prediction is not a coincidence, we
present in Figure 3.15 similar results for an urban zone of a different European city, where
the spatial homogeneous Poissonianity of the base station locations can also be retained; cf.
Figure 3.16. The only engineering difference of this network zone with respect to the previously
considered dense urban zone is roughly four times smaller density of base stations, more precisely
1.15 stations per km2.

Remark 26 (Day and night hours) Let us make a final remark regarding the empirical rela-
tion between the mean user throughput and the mean traffic demand revealed in Figures 3.14 and
3.15. Recall that different points in these plots correspond to different hours of some given day.
In fact, the points below the mean curve correspond to day hours while the points above the mean
curve correspond to night hours. This “circulation” of the measured values around the theoretical
mean curve, indicated in Figure 3.15 and visible in both presented plots of the throughput, seems
to be a more general rule, which escapes from the analysis presented in this thesis and remains
an open question. A possible explanation can lie in a different space-time structure of the traffic
during the day and night, with the former one being much more clustered (fewer users, requesting
larger volumes, generating less interference and overhead traffic).

Figure 3.15: Mean user throughput in the network versus traffic demand per area for an urban
zone of a big city in Europe. (The density of base stations is 4 times smaller than in the dense
urban zone considered in Figure 3.14).
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Figure 3.16: Ripley’s L-function calculated for the considered dense urban and urban network
zones. (L function is the square root of the sample-based estimator of the expected number of
neigbours of the typical point within a given distance, normalized by the mean number of points
in the disk of the same radius. Slinvyak’s theorem allows to calculate the theoretical value of this
function for a homogeneous Poisson process, which is L(r) = r.) In fact, in large cities spatial,
homogeneous “Poissonianity” of base-station locations is often satisfied “per zone” (city center,
residential zone, suburbs, etc.). Moreover, log-normal shadowing further justifies the Poisson
assumption, cf. [20, 29] .

3.7.4 Numerical results for heterogeneous networks

We consider the following numerical setting representative of an operational network in some big
city in Europe comprising macro and micro base stations. The performance of each category of
BS calculated using the approach proposed in the present Chapter is compared to the real field
measurements.

Model specification

The network comprises macro and micro base stations indexed by 1 and 2 respectively. The BS
locations are generated as a realization of a Poisson point process of intensity γ = γ1 + γ2 =
4.62km−2 (which corresponds to an average distance between two base stations of 0.5km) over a
sufficiently large observation window which is taken to be the disc of radius 2.63km. The ratio
of the micro to macro BS intensities equals γ2/γ1 = 0.039.

The powers transmitted by macro and micro BS equal P1 = 58.26dBm, P2 = 47.42dBm
respectively. The global average power calculated by (3.47) equals P = 58.03dBm.

The propagation loss due to distance is l(x) = (K |x|)β where K = 7117km−1 and the path
loss exponent β = 3.8. Shadowing is assumed log-normally distributed with standard deviation
σ = 10dB and spatial correlation 0.05km.
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The technology is HSDPA (High-Speed Downlink Packet Access) with MMSE (Minimum
Mean Square Error) receiver in the downlink. The peak bit-rate equals to 30% of the information
theoretic capacity of the Rayleigh fading channel with AWGN; that is

R (SINR) = 0.3WE
[
log2

(
1 + |H|2 SINR

)]
where the expectation E [·] is with respect to the Rayleigh fading H of mean power E[|H|2] = 1,
and W = 5MHz is the frequency bandwidth.

A fraction ε = 10% of the transmitted power is used by the pilot channel (which is always
transmitted whether the BS serve users or not). The antenna pattern is described in [3, Table
A.2.1.1-2]. The noise power is −96dBm.

We study now our model using the typical and mean cell approaches, assuming first the
full interference model and then the weighted one. We shall give the performance results both
globally for all the categories of BS and separately for macro and micro categories.

The results for the typical cell approach are obtained either by simulation or from measure-
ments, whereas the results for the mean cell approach are analytic. Note that the mean load is
known analytically (3.19) for both the typical and mean cells; nevertheless, we will associate this
analytic expression to the mean cell approach in the legends of the subsequent curves.
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Figure 3.17: Accuracy of the homogeneous approximation of the mean cell

Full interference

We consider first the full interference model (i.e. each BS always transmits at its maximal power
even when it has no user to serve). This model is analyzed by simulation with the typical cell
approach or analytically with the mean cell approach (no measurements are available in the full
interference case).

Figure 3.18 shows the mean cell load of the typical cell θ̄ and the stable fraction of the network
π obtained from simulations, as well as the load of the mean cell θ̃ calculated analytically, versus
mean traffic demand per cell ρ/γ. This figure confirms that the typical cell and the mean cell
models have the same load both globally and for each category of BS.

Figure 3.19 shows the mean number of users per cell N̄ (obtained from simulations) and the
analytically calculated number of users in the mean cell Ñ versus mean traffic demand per cell.
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Again the mean cell reproduces well the results of the typical cell at least for moderate traffic
demands; i.e. as long as the stable fraction of the network π remains close to 1 as may be seen
in Figure 3.18.

Finally, Figure 3.20 presents the dependence of the mean user throughput in the network on
the mean traffic demand per cell obtained using the two approaches: r̄ and for the typical cell
and r̃ for the mean cell. Observe again for moderate traffic demands the good fit between the
mean and typical cells both globally and for each BS category.
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Figure 3.18: Cell load versus traffic demand per cell in the full interference model.
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Figure 3.19: Number of users per cell versus traffic demand per cell in the full interference model.
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Figure 3.20: Mean user throughput in the network versus traffic demand per cell in the full
interference model.

Weighted interference

We consider now the load-weighted interference model accounting for idle periods of the inter-
fering BS.

Figure 3.21 shows the mean cell load and the stable fraction of the network, Figure 3.22
presents the mean number of users per cell, and Figure 3.23 shows the mean user throughput.
Besides the results of the analytic mean cell and the simulated typical cell, these figures give
also the typical cell characteristics deduced from measurements in the operational network. As
expected, the performance is improved compared to the full interference model.

Moreover, observe that the analytic mean cell load and number of users fits well with both
the simulated and measured typical cell; particularly in the range of traffic demands for which
measurements are available. This agreement holds both globally and for each category of BS;
in particular the dependence of the average load of each category of BS with its power in the
operational network is well explained by the simple law (3.60).
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Figure 3.21: Cell load versus traffic demand per cell in the weighted interference model.
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Figure 3.22: Number of users per cell versus traffic demand per cell in the weighted interference
model.
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Figure 3.23: Mean user throughput in the network versus traffic demand per cell in the weighted
interference model.
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3.7.5 Spatial distribution of QoS parameters averaged over many cells
in the network

In Section 3.7.3 we demonstrated the results for estimation of the QoS metrics as function of
the traffic demand. Also, we assumed that all base stations transmit at the same power. In this
section we are interested in the spatial distribution of cell load, number of users and mean user
throughput considering that different base stations transmit at different powers. We consider
only the weighted interference case. Each BS v is characterized by a transmitting power Pv ∈ R∗+.
We shall assume that Pv are i.i.d. (independent and identically distributed) marks of the point
process Φ (i.e., given Φ, the transmitting powers P1, P2, . . . are i.i.d. random variable with some
fixed distribution).

The received power at location y ∈ R2 from BS u equals now

L−1
u (y) =

PuSu (y − u)

` (y − u)
(3.63)

The cell is now given by the follwing formula:

V (u) =

{
y ∈ R2 : Lu (y) ≤ min

v∈Φ\{u}
Lv (y)

}
(3.64)

The SINR formula given in (3.35) is now

SINR (y,Φ) :=
PuSu (y − u) /l (|y − u|)

N +
∑

v∈Φ\{u}
PvSv (y − v) p (v) /l (|y − v|)

(3.65)

for a user at position y served by the base station u as a base station offering him the strongest
signal. Considering the different transmitting powers does not change the model itself developed
in Section 3.5 and consequently we obtain the same system of cell-load equations as presented
in Section 3.5.3. Solving this system again we obtain the cell loads of all cells in a considered
area (network). It is obvious from the results in Section 3.5.2 and Theorem 1 that solving
the (3.36) one can obtain the cell load and further deduce the number of users and the mean
user throughput for all cells in the network. In such a way we obtain the cumulative distribution
function of aforementioned parameters. The ultimate goal is to compare the results to the
real-field measurements.

Real-field measurements

Now we describe the real-field measurements. The raw data are collected using a specialized
tool which is used by operational engineers for network maintenance. This tool measures several
parameters for every base station 24 hours a day. In particular, one can get the cell load, traffic
demand, number of users, mean user throughput for each cell in each hour. We have also the
BS coordinates which permits to estimate the intensity γ of BS per unit area.

We choose one hour during the day and estimate the corresponding empirical CDF of the
QoS parameters.

Numerical setup for simulation

The numerical setup is the same as in Section 3.7.3 except that the transmitting power is not
constant over the network. We assume that the transmitting power Pv has a log-normal distribu-
tion of logarithmic-standard deviation σP . In order to justify this model, we give the empirical
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CDF of transmitting powers in dB estimated from measurements in the operational network in
Figure 3.24. This figure shows that this CDF may be approximated by a normal distribution
with standard deviation σP = 5.3dB. The mean transmitting power of each BS including a global
antenna gain equals E [Pn] = 60dBm.
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Figure 3.24: CDF of BS powers in the operational network in the downtown of a big city (blue)
and normal distribution approximation (red).

With the constant power described in Section 3.5.1, each BS transmits at a constant power
P̃n = 60dBm and the shadowing (3.5.3) has a log-normal distribution of standard deviation

σS̃ =
√
σ2
S + σ2

P ' 9.6dB

The other sources of irregularities, as for example non-uniform traffic demand, are not con-
sidered. Consequently, we will consider networks or parts of a network where we can assume
uniform spatial traffic demand (e.g. downtown of a big city or a typical rural area).

MEASURES mean standard deviation
cell load 0.1854 0.1337
mean number of users 0.2608 0.2511
mean user
throughput[kbit/s] 2135 698
SIMULATIONS mean standard deviation
cell load 0.1845 0.1059
mean number of users 0.2531 0.2147
mean user
throughput[kbit/s] 2054 425

Table 3.1: Mean and standard deviation of spatial distribution of QoS metrics for the downtown
of a big city

Results

Figures 3.25, 3.26 and 3.27 show the spatial distribution (across different cells) of the cell
load, mean number of users per cell and the mean user throughput in the network deployed in
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MEASURES mean standard deviation
cell load 0.1190 0.1035
mean number of users 0.1530 0.1734
mean user
throughput[kbit/s] 1975 733
SIMULATIONS mean standard deviation
cell load 0.1321 0.0937
mean number of users 0.1774 0.2861
mean user
throughput[kbit/s] 2051 601

Table 3.2: Mean and standard deviation of spatial distribution of QoS metrics for the mid-size
city

the downtown of a big city. Recall that these metrics represent, themselves, the steady-state
(averaged over time) performance characteristics of individual cells.
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Figure 3.25: CDF of cell load for the downtown of a big city obtained either from the variable
power model, from real-field measurements, or from the model where the transmitted powers are
assumed constant.

Analogous characteristics regarding the network in a mid-size city are presented in Fig-
ures 3.28, 3.29 and 3.30. Tables 3.1 and 3.2 show means and standard deviations of these
spatial distributions.

All figures and tables present the distributions estimates in our model as well as the real-field
measurements. For sake of comparison, we present also in the figures the results obtained in
the model described in Section3.5.1 where the transmitted powers are assumed constant. The
simulation curves represent the means over ten repeated network simulations, with the horizontal
bars giving the standard deviation of this averaging. In what follows we discuss the presented
results in more detail.

The estimated network density and the traffic demand in the downtown of the big city are,
respectively, γ = 4.62km−2 and ρ = 483kbit/s/cell. Analogous values for the mid-size city are
γ = 1.27km−2 and ρ = 284kbit/s/cell. Note that in the latter scenario the traffic demand is
smaller, but the network is less dense and also less regular (cf Figure 3.16). We use these values
as input parameters for our model.

In general we see a good agreement between real field measures and the model analysis with
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Figure 3.26: CDF of the mean users number for the downtown of a big city.
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Figure 3.27: CDF of the throughput for the downtown of a big city.
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Figure 3.28: CDF of cell load for a mid-size city obtained either from the variable power model,
from real-field measurements, or from the model where the transmitted powers are assumed
constant.
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Figure 3.29: CDF of the mean number of users for the mid-size city.
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Figure 3.30: CDF of the throughput for the mid-size city.

randomized transmitted power. Under the constant power assumption the model predicts well the
median of the cell load and the mean number of users but fails to match the spatial distribution of
these characteristics. Clearly, the spatial variability of power creates more spatial heterogeneity
of these characteristics in the network. Regarding the mean user throughput the constant power
assumption fails to predict even the median. Extensions of the model, e.g. letting it account for
further sources of disparity in the deployed networks (e.g. different heights of antennas) could
perhaps improve the accuracy of prediction.
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Appendix

3.A Proof of Proposition 4 in the Markovian case

Assume that the transmitted volumes are exponentially distributed. In this particular case, the
process {X (t) ; t ≥ 0} describing the number of users of the different classes is a continuous-time
Markov process with discrete state space ND and admits the following generator{

q (x, x+ εj) = λj , x ∈ ND

q (x, x− εj) = µjRj
xj
xD
, x ∈ ND, xj > 0,

(3.66)

where εj designates the vector of ND having coordinate 1 at position j and 0 elsewhere and
xD :=

∑
j∈D xj the total number of users in the queue. It is easy to see that the process

{X (t) ; t ≥ 0} is regular [27, p.337] and irreducible [27, p.357] and that it admits as invariant
measure

α (x) = xD!
∏
j∈D

(
ρ′j
)xj

xj !
, x ∈ ND, (3.67)

where ρ′j := λj/ (µjRj) = ρj/Rj . If ρ′ :=
∑J
j=1 ρ

′
j < 1 then

∑
x∈ND α (x) = 1

1−ρ′ , indeed

1

1− ρ′
=

∞∑
n=0

ρ′n

=

∞∑
n=0

∑
j∈D

ρ′j

n

=

∞∑
n=0

∑
x∈ND:xD=n

n!
∏
j∈D

ρ
′xj
j

xj !

=
∑
x∈ND

xD!
∏
j∈D

(
ρ′j
)xj

xj !
=
∑
x∈ND

α (x)

We deduce that if ρ′ < 1 then the process {X (t) ; t ≥ 0} admits π = (1− ρ)α as invariant
distribution; and hence this process is t-positive recurrent [27, p.357]. We deduce from (3.67)
that the invariant distribution is

π (x) = (1− ρ′)xD!
∏
j∈D

(
ρ′j
)xj

xj !
, x ∈ ND

Let X = (X1, X2, . . . , XJ) be the vector counting the number of users of each class in the steady
state, and let XD :=

∑
j∈DXj be the total number of users in the queue. The vector X has π as

93
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distribution, then, for n ∈ N,

P (XD = n) =
∑

x∈ND:xD=n

π (x)

= (1− ρ′)
∑

x∈ND:xD=n

n!
∏
j∈D

(
ρ′j
)xj

xj !

= (1− ρ′) ρ′n,

which is the geometric distribution on N with parameter 1 − ρ′ = 1 − ρ/ρc where ρc is given
by (3.4). The mean number of users is

N̄ := E [XD] =
ρ′

1− ρ′
=

ρ

ρc − ρ

From Little’s formula [11] the expected delay, denoted T̄ , equals

T̄ =
E [XD]

λ
=

ρ

(ρc − ρ)λ

In the steady state the queue throughput equals the traffic demand ρ. The throughput per user
is defined as the ratio of the above queue throughput by the average number of users; that is

r̄ =
ρ

E [XD]
= ρc − ρ

For a given class j ∈ D,

N̄j := E [Xj ]

=
∑
x

xjπ (x)

=
∑

x:xj 6=0

(1− ρ′)xD!xj
∏
i∈D

(ρ′i)
xi

xi!

=
∑
x′

(1− ρ′) (x′D + 1)x′D!
∏
i∈D

(ρ′i)
xi

x′i!

=
∑
x′

(x′D + 1)π (x′)

= ρ′jE [XD + 1] =
ρj(

1− ρ
ρc

)
Rj

where for the fourth equality we introduce the vector x′ related to x as follows

x′i =

{
xi i 6= j
xi − 1 i = j

From Little’s formula the expected delay, denoted T̄j , equals

T̄j =
E [Xj ]

λj
=

1(
1− ρ

ρc

)
Rjµj
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The expected throughput of class j, denoted r̄j , is the average required volume µ−1
j divided by

the expected delay, that is

r̄j =
µ−1
j

T̄j
=

(
1− ρ

ρc

)
Rj
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Chapter 4

Quality of service in real-time
streaming

4.1 Introduction

Wireless cellular networks offer nowadays possibility to watch TV on mobile devices, which
is an example of the real-time content streaming. This type of traffic demand is expected to
increase significantly in the future. In order to cope with this process, network operators need
to implement in their dimensioning tools efficient methods allowing to predict the quality of this
type of service. The quality of real-time streaming (RTS) is principally related to the number
and duration of outage incidents — (hopefully short) periods when the network cannot deliver
to a given user in real-time the requested content of the required quality. In this Chapter we
propose a stochastic model allowing for an analytic evaluation of such metrics. It assumes a traffic
demand with different radio conditions of calls, and can be specified to take into account the
parameters of a given wireless cellular technology. We develop expressions for several important
performance characteristics of this model, including the mean time spent in outage and the mean
number of outage incidents for a typical streaming call as function of its radio conditions. These
expressions involve only stationary probabilities of the (free) traffic demand process, which is a
vector of independent Poisson random variables describing the number of users in different radio
conditions.

We use this model to analyze RTS in a typical cell of a 3GPP Long Term Evolution (LTE)
cellular network assuming orthogonal intra-cell user channels with the peak bit-rates (achievable
when there are no other users in the same cell) close to the theoretical Shannon bound in the
additive white Gaussian noise (AWGN) channel, with the extra-cell interference treated as noise.
These assumptions lead to a radio resource constraint in a multi-rate linear form. Namely,
each user experiencing a given signal-to-(extra-cell)-interference-and-noise ratio (SINR) requires
a fixed fraction of the normalized radio capacity, related to the ratio between its requested and
peak bit-rates. All users of a given configuration (experiencing different SINR values) can be
entirely satisfied if and only if the total required capacity is not larger than one.1

In the above context of a multi-rate linear radio resource constraint, we analyze some natural

1Recall that in the case of voice calls and, more generally, constant bit-rate (CBR) calls the multi-rate lin-
ear form of the resource constraints has already proved to lead to efficient model evaluation methods, via e.g.
Kaufman-Roberts algorithm [65, 81]. Despite some fundamental similarities to CBR service, the RTS gives rise
to a new model, due to the fact that the service denials are not definitive for a given call, but have a form of
temporal interruptions (outage) periods.

97
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parametric class of least-effort-served-first (LESF) service policies, which assign service to users
in order of their increasing radio capacity demand, until the full capacity (possibly with some
margin) is reached. The capacity margin may be used to offer some “lower quality” service to
users temporarily in outage thus realizing some type of fairness with respect to unequal user
radio-channel conditions. This class contains an optimal and a fair policy, the latter being
suggested by LTE implementations.

In order to evaluate explicitly the quality of service metrics induced by the LESF policies,
we relate the mean time spent in outage and the mean number of outage incidents for a typical
streaming call in given radio conditions to the distribution functions of some linear functionals of
the Poisson vector describing the steady state of the system. We calculate the Fourier transforms
of these functions and use a well-known Fourier transform inversion method to obtain numerical
values of the quantities of interest. We also study the mean throughput during a typical streaming
call evaluating the expectations of the corresponding non-linear functionals of the Poisson vector
describing the steady state of the system via the Monte Carlo method.

Using this approach, we present a thorough study of the quality of RTS with LESF policies in
the aforementioned Markovian setting. For completeness we present also some pure-simulation
results illustrating the impact of a non Poisson-arrival assumption.

4.2 Related work

Let us now recollect a few related works on the performance evaluation of cellular networks.
In the early 80’s, wireless cellular networks were carrying essentially voice calls, which require
constant bit-rates (CBR) and are subject to admission control policies with blocking (at the
arrival epoch) to guarantee these rates for calls already in service. An important amount of work
has been done to propose efficient call admission policies [83, 100, 102]. Policies with admission
conditions in the multi-rate linear form have been considered e.g. in [10,42,59].

Progressively, cellular networks started carrying also calls with variable bit-rates (VBR), used
to transmit data files. The available resources are (fairly) shared between such calls and when the
traffic demand increases, the file transfer delays increase as well, but (in principle) no call is ever
blocked. These delays may be evaluated analytically using multi-rate linear resource constraint
in conjunction with multi-class processor sharing models; cf e.g. [25, 59].

Recently, users may access multimedia streaming services through their mobile devices [45].
They are provided via CBR connections, essentially without admission control, but they tolerate
temporary interruptions, when network congestion occurs. One may distinguish two types of
streaming traffic. In real-time streaming (RTS) (as e.g. in mobile TV), considered in this thesis,
the portions of the streaming content emitted during the time when the transmission to a given
user is interrupted (is in outage) are definitely lost for him (unless a “secondary”, lower-rate
streaming is provided during these periods). In non-real-time streaming (NRTS) (like e.g., video-
on-demand, YouTube, Dailymotion, etc), a user starts playing back the requested multimedia
content after some initial delay, required to deliver and buffer on the user device some initial
portion of it. If further transmission is interrupted for some time making the user buffer content
drop to zero (buffer starvation) then the play-back is stopped until some new required portion of
the content is delivered. Several papers study the effect of the variability of the wireless channel
on the performance of a single streaming call; see for e.g. [68], [75]. In [82] VBR transmissions and
RTS are considered jointly in some analytical model, however the number and duration of outage
periods are not evaluated. In [99] the tradeoff between the start-up delay and the probability of
buffer starvation is analyzed in a Markovian queuing framework for NRTS streaming.

We do not consider any cell-load balancing; see [14] for some recent work on this problem in



4.3. STREAMING IN WIRELESS CELLULAR NETWORKS 99

the video streaming context. Also, [67,98] consider some admission control policies to guarantee
non-dropping of multimedia calls due to caller impatience and/or handoffs.

4.3 Streaming in wireless cellular networks

In this section we present a new stochastic model of RTS in cellular networks.

4.3.1 System assumptions

We consider the following scenario of multi-user streaming in a cellular network.

Network layer

Geographically distributed users wish to obtain down-link wireless streaming of some (typically
video) content, contacting base stations of a network at random times, for random durations,
requesting some fixed streaming bit-rates. We consider a uni-cast traffic (as opposed to the
broadcast or multi-cast case), i.e.; the content is delivered to all users via private connections.
Different classes of users (calls) need to be distinguished, regarding their radio channel conditions,
requested streaming bit-rates and mean streaming times. Each user chooses one base station,
the one with the smallest path-loss, independently of the configuration of users served by this
base station. Thus, we do not consider any load-balancing policy.

Data layer — streaming policies

If a given base station cannot serve all the users present at a given time, it temporarily stops
streaming the requested content at the requested rate to users of some classes, according to
some given policy (to be described), which is supposed to preserve a maximal subset of served
users. We call these (classes of) users with the requested bit-rate temporarily denied in outage.
The users in outage will not receive the part of the content which is transmitted during their
outage times (this is the principle of the RTS). We will also consider policies, which offer some
“best-effort” streaming bit-rates for some classes of users in outage, thus allowing for example
to keep receiving the requested content but of a lower quality. Users, which are (temporarily)
denied even this lower quality of service are called in deep outage.

Medium access

In this thesis we assume that users are connected to the serving antennas via orthogonal single-
input-single-output (SISO) channels allowing for a peak-rate close to the theoretical Shannon
bound in the additive white Gaussian noise (AWGN) model, with the (extra-cell) interfer-
ence treated as noise.2 We will also comment on how to model multiple-input-multiple-output
(MIMO) and broadcast channels.

Physical layer

The quality of channel of a given user depends on the path-loss of the signal with respect to
its serving base station, a constant noise, and the interference from other (non-serving) base
stations. These three components determine its signal-to-interference-and-noise ratio (SINR).

2Orthogonality of channels is an appropriate assumption for current LTE (Long Term Evolution) norm for
cellular networks based on OFDMA, as well as for other multiple access techniques as FDA, TDMA, CDMA
assuming perfect in-cell orthogonality, and even HDR neglecting the scheduler gain.
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Both path-loss from the serving station and interference account for the distance and random
propagation effects (shadowing). Our main motivation for considering a multi-class model is to
distinguish users with different SINR values. In other words, even if we assume that all users
require the same streaming times and rates, we still need a multi-class model due to (typically)
different SINR’s values of users in wireless cellular networks.

Performance characteristics

We will present and analytically evaluate performance of some (realistic) streaming policies in
the context described above. We will be particularly interested in the following characteristics:

• fraction of time spent in outage and in deep outage during the typical call of a given class,

• number of outage incidents occurring during this call,

• mean throughput (average bit-rate) during such call, accounting for the requested bit-rates
and for the “best-effort” bit-rate obtained during the outage periods.

4.3.2 Model description

In what follows we describe a mathematical model of the RTS that is an incarnation of a new,
more general, stochastic service model with capacity sharing and interruptions presented and
analyzed in Appendix 4.4.2. This is a single server model which allows to study the performance
of one tagged base station of a multi-cellular network satisfying the above system assumptions.
More details on how this model fits the multi-cell scenario will be presented in Section 4.4.

Traffic demand

Consider J ≥ 1 classes of calls (or, equivalently, users) characterized by different requested
streaming bit-rates rk, wireless channel conditions described by the signal-to-(extra-cell)-interference-
and-noise ratio SINRk with respect to the serving base-station 3 and mean requested streaming
times 1/µk, k = 1, . . . , J .

We assume that calls of class k ∈ {1, . . . , J} arrive in time according to a Poisson process with
intensity λk > 0 (number of call arrivals per unit of time, per base station) and stay in the system
(keep requesting streaming) for independent times, having some general distribution with mean
1/µk <∞. 4 Different classes of calls are independent from each other. We denote by Xk(t) the
number of calls of a given class requesting streaming from a given BS at time t; see Section 4.1.1
in the Appendix for a formal definitions of these variables in terms of arrival process and service
times. Let X(t) = (X1(t), . . . , XJ(t)); we call it the (vector of) user configuration at time t. The
stationary distribution π of X(t) coincides with the distribution of the vector (X1, . . . , XJ) of
independent Poisson random variables with means E[Xk] := ρk = λk/µk, k = 1, 2, . . . , J . We
call ρk the traffic demand (per base station) of class k.

Wireless resource constraints

Users are supposed to be offered the requested streaming rates for the whole requested streaming
times. However, due to limited wireless resources, for some configuration of users X(t), the
requested streaming rates r = (r1, . . . , rJ) may not be achievable. Following the assumption of

3In this thesis the interference is always caused only by non-serving base stations.
4All the results presented in this Chapter do not depend on the particular choice of the streaming time

distributions. This property is often referred to in the queuing context as the insensitivity property.
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orthogonal AWGN SISO wireless channels (with the (extra-cell) interference treated as noise)
available for users of a given base station, we assume that the requested rates are achievable for
all calls present at time t if

Xk(t)rk = νkRk, k = 1, . . . , J, (4.1)

for some non-negative vector (ν1, . . . , νJ), such that
∑J
k=1 νk ≤ 1, where

Rk = cW log(1 + SINRk) (4.2)

is the maximal (peak) bit-rate of a user of class k, whose channel conditions are characterized
by SINRk. (The rate Rk is available to a user of class k if it is the only user served by the base
station.) Here W is the frequency bandwidth and c (with 0 < c ≤ 1) is a coefficient capturing
how close a given coding scheme approaches the theoretical Shannon bound (corresponding to
c = 1); cf [34, Th .9.1.1]. 5 Note that the assumption (4.1) corresponds to the situation, when
users neither hamper nor assist each other’s transmission. They use channels which are perfectly
separated in time, frequency or by orthogonal codes, nevertheless sharing these resources. 6

We can interpret the ratio between the requested and maximal bit-rates ϕk = rk/Rk as the
resource demand of a user of class k. Note that the configuration of users X(t) can be entirely
served if and only if the total resource demand satisfies the constraint

J∑
k=1

ϕkXk(t) ≤ 1 . (4.3)

This is a multi-rate linear resource constraint.

Service policy

If the requested streaming rates are not achievable for a given configuration of users X(t) present
at time t, then some classes of users will be temporarily put in outage at time t, meaning that
they will receive some smaller bit-rates (whose values are not guaranteed and may depend on
the configuration X(t)). These smaller, “best-effort” bit-rates may drop to 0, in which case we
say that users are in deep-outage. Let us recall that the times at which users are in outage and
deep outage do not alter the original streaming times; i.e. the streaming content is not buffered,
nor delayed during the outage periods.

We will define now a parametric family of service polices for which classes with smaller
resource demands have higher service priority. In this regard, in the remaining part of this
Section we assume (without loss of generality) that the resource demands of users from different
classes are ordered ϕ1 < ϕ2 < . . . < ϕJ .

5It was also shown in [61] that the performance of AWGN multiple input multiple output (MIMO) channel can
be approximated by taking values of γ ≥ 1. Another possibility to consider MIMO channel is to use the exact
capacity formula given in [90].

6From an information theory point of view, the orthogonality assumption is not optimal. In fact, the theo-
retically optimal performance is offered by the broadcast channel model. It is known that in the case of AWGN
broadcast channel the rates r are (theoretically) achievable for the configuration X if (and only if) there exists a

vector (ν1, . . . , νJ ), such that
∑J

k=1 νk ≤ 1 and

Xkrk = W log

(
1 +

νk

1/SINRk +
∑k−1

i=1 νi

)
k = 1, . . . , J,

where the classes of users are numbered such that SINR1 ≥ SINR2 ≥ . . . ≥ SINRJ ; cf [92, Eq. 6.29].
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Least-effort-served-first policy For a given configuration of users X = X(t) requesting
streaming at time t, least-effort-served-first policy with δ-margin (LESF(δ) for short) attributes
the requested bit-rates to all users in classes k = 1, . . . ,K, where

K =Kδ(X) = max {k ∈ {1, . . . , J} : (4.4)

k−1∑
j=1

ϕjXj + ϕk

J∑
j=k

Xj1(ϕj ≤ ϕk(1 + δ)) ≤ 1

 ,

where 1A(x) = 1 is the indicator function of set A and δ is a constant satisfying 0 ≤ δ ≤ ∞.

Remark 27 The LESF(0) policy is optimal in the following sense: given constraint (4.3) and
the assumption that the classes with smaller resource demands have higher priority, this policy
allows to serve the maximal subset of users present in the system. For the same reason any
LESF(δ) policy with δ > 0 is clearly sub-optimal. In order to explain the motivation for consid-
ering such policies, one needs to extend the model and explain what actually happens with classes
of users which experience outage. In this regard, note that C =

∑K
j=1 ϕjXj ≤ 1 is the actual

fraction of the server capacity consumed by the users which are not in outage. The remaining
server capacity 1 − C (which is not needed to serve users in classes 1, . . . ,K) can be used to
offer some “lower quality” service (e.g. streaming with lower video resolution, etc) to the users
in classes K + 1, . . . , J which are in outage. Note by (4.4) that the remaining server capacity
under the policy LESF(δ) is at least

1− C ≥ ϕK
J∑

j=K+1

Xj1(ϕj ≤ ϕK(1 + δ)) .

Hence, the server accepting the class K as the least-priority class being “fully” served, leaves
enough remaining capacity to be able to make the same effort (allocate service capacity ϕK) for
all users in outage in classes whose service demand exceeds ϕK by no more than δ × 100%.
These latter users will not have “full” required service (since this requires more resources, ϕj >
ϕK , for the full service) but only some “lower quality” service (to be specified in what follows).
Consequently, one can conclude that policies LESF(δ) with δ > 0, being sub-optimal, ensure some
fairness, in the sense explained above. Clearly the policy LESF(∞) (i.e., with δ =∞) is the most
fair, in the sense that it reserves enough remaining capacity to offer the “lower quality” service
for all users in outage (no deep outage). Thus, we will call LESF(∞) the LESF fair policy.

Best-effort service for users in outage We will specify now a natural model for the “best-
effort” streaming bit-rates that can be offered for users in outage in association with a given
LESF(δ) policy. For k > K = Kδ(X) denote

r′k = r
′δ
k (X) = Rk

1−
∑K
j=1Xjϕj∑J

j=K+1Xj1(ϕj ≤ (1 + δ)ϕK)
(4.5)

if ϕk ≤ (1 + δ)ϕK and 0 otherwise.

The rates (r1, . . . , rK , r
′
K+1, . . . , r

′
J) are achievable for the configuration X under resource con-

straint (4.3). Note that users in classes j such that ϕj > (1 + δ)ϕK do not receive any positive
bit-rate. We say, they are in deep outage. Finally, we remark that the service (4.5) is “resource
fair” among users in outage but not in deep outage.
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Performance metrics

The configuration of users X(t) evolves in time, it changes at arrival and departure times of
users. At each arrival or departure epoch the base station applies the outage policy to the new
configuration of users to decide which classes of users receive requested streaming rates and which
are in outage (or deep outage).

Let us introduce the following characteristics of the typical call (user) of class k = 1, . . . , J .

• Pk denotes the probability of outage at the arrival epoch for class k. This is the probability
that the typical call of this class is put in outage immediately at its arrival epoch.

• Dk denotes the mean total time spent in outage during the typical call of class k.

• Mk denotes the mean number of outage incidents experienced during the typical call of class
k.

More formal definitions of these characteristics, as well as other system characteristics (as
e.g. the intensity of outage incidents) are given in the Appendix. We also introduce two further
characteristics related to the mean throughput obtained during the typical call of class k =
1, . . . , J .

• Denote by Υk the mean throughput during the typical call of class k. This is the mean
bit-rate obtained during such a call, taking into account the bit-rate rk when the call is
not in outage and the best-effort bit rate r′k obtained during the outage periods, averaged
over the call duration.

• Let Υ′k be the part of the throughput obtained during the outage periods of the typical call
of class k. This is the mean best-effort bit-rate of such call averaged over outage periods.

4.3.3 Model evaluation

Results

We will show how the performance metrics regarding outage incidents and duration, introduced in
Section 4.3.2, can be expressed using probability distribution functions of some linear functionals
of the random vector X1, . . . , XJ of independent Poisson random variables with parameters ρj ,
respectively. Recall that these random variables correspond to the number of calls of different
classes present in the stationary regime of our streaming model.

Specifically, for given δ > 0, k = 1, . . . , J and t ≥ 0 denote

F δk (t) := Pr


k∑
j=1

Xδ,k
j ϕj ≤ t

 , (4.6)

where Xδ,k
j = Xj for j = 1, . . . , k − 1 and Xδ,k

k =
∑J
j=kXj1(ϕj ≤ ϕk(1 + δ)).

The following results follow from the analysis of a more general model presented in the
Appendix.

Proposition 11 The probability of outage at the arrival epoch for user of class k is equal to

Pk = 1− F δk (1− ϕk) k = 1, . . . , J . (4.7)
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The mean total time spent in outage during the typical call of class k is equal to

Dk =
Pk
µk

=
1− F δk (1− ϕk)

µk
k = 1, . . . , J . (4.8)

The mean number of outage incidents experienced during the typical call of class k (after its
arrival) is equal to

Mk =
1

µk

J∑
j=1

λj
(
F δk (1− ϕk)− F δk (1− ϕk − ϕj)

)
k = 1, . . . , J . (4.9)

Proof. Note first that the functions F δk (t) defined in (4.6) allow one to represent the station-
ary probability that the configuration of users is in a state in which the LESF(δ) policy serves
users of class k

F δk (1) = Pr


k∑
j=1

Xδ,k
j ϕj ≤ 1

 .

In the general model described in the Appendix we denote this state by Fk and its probability
by π(Fk). Thus π(Fk) = F δk (1). Moreover,

1− F δk (1− ϕk) = Pr


k∑
j=1

Xδ,k
j ϕj > 1− ϕk


is the probability that the steady state configuration of users appended with one user of class k is
in the complement F ′k of the state Fk, i.e., all users of class k are in outage (meaning k > Kδ(X′),
where X′ = (X1, . . . , Xk + 1, . . . , XJ)). Thus the expression (4.7) follows from Proposition 13.
Similarly (4.8) follows from Proposition 14 and (4.9) follows from Proposition 15.

Regarding the throughput characteristics, we have the following result.

Proposition 12 The mean throughput during the typical call of class k is equal to

Υk = rk(1− Pk) + Υ′k = rkF
δ
k (1− ϕk) + Υ′k ,

where

Υ′k = E
[
r
′δ
k (X1, . . . , Xk + 1, . . . , XJ) (4.10)

1
(
Kδ(X1, . . . , Xk + 1, . . . , XJ) < k

)]
,

with the best-effort rate r′k(·) given by (4.5) and the least-priority class Kδ(·) begin served by the
LESF(δ) policy given by (4.4), is the part of the throughput obtained during the outage periods.

Proof of this proposition is given in the Appendix.

Remark 28 Recall from (4.5) that the variable rates r′k are obtained by the user of class k when
he is in outage, i.e., k > K. They are non-null, r′k > 0, only if ϕk ≤ (1 + δ)ϕK . In the case of
equal requested rates rk, the intersection of the two conditions 0 < r′k and k > K is equivalent to

(1 + SINRK)1/(1+δ) − 1 ≤ SINRk ≤ SINRK . (4.11)
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Remarks on numerical evaluation

In order to be able to use the expressions given in (11) we need to evaluate the distribution
functions F δk (t). In what follows we show how this can be done using Laplace transforms.
Regarding the throughput in outage Υ′k, expressed in (4.10) as the expectation of a non-linear
functional of the vector (X1, . . . , XJ), we will use Monte Carlo simulations to obtain numerical
values for this expectation.

Denote by Lδk(θ) :=
∫∞

0
e−θsF δk (s)ds the Laplace transform of the function F δk (t).

Fact 2 We have

Lδk(θ) =
1

θ
exp

 k∑
j=1

ρδ,kj
(
e−θϕj − 1

) ,
where ρδ,kj = ρj for j = 1, . . . , k − 1 and ρδ,kk =

∑J
j=k ρj1(ϕj ≤ ϕk(1 + δ)).

Proof. Note that for given δ > 0, k = 1, . . . , J the random variables Xδ,k
1 , . . . , Xδ,k

k are

independent, of Poisson distribution, with parameters ρδ,k1 , . . . , ρδ,kk , respectively. The result
follows from [9, Proposition 1.2.2] and a general relation

∫∞
0
e−θsF (s) ds = 1

θ

∫∞
0
e−θsF (ds).

The probabilities F δk (·) may be retrieved from Lδk(·) using standard techniques. For ex-
ample with the algorithm implemented by [55] in Matlab [38]. In what follows we present a
more explicit result based on the Bromwich contour inversion integral. In this regard, denote

L̄
δ

k(θ) = 1/θ − Lδk(θ) (which is the Laplace transform of complementary distribution function
1− F δk (t)). Also, denote by R(z) the real part of the complex number z.

Fact 3 We have

F δk (t) = 1− 2eat

π

∫ ∞
0

R
(
L̄
δ

k(a+ iu)

)
cosut du , (4.12)

where a > 0 is an arbitrary constant.

Proof. See [6].

Remark 29 As shown in [6], the integral in (4.12) can be numerically evaluated using the
trapezoidal rule, with the parameter a allowing to control the approximation error. Specifically,
for n = 0, 1, . . . define

hn(t) = hn(t; a, k, δ) :=
(−1)nea/2

t
R
(
L̄
δ

k

(
a+ 2nπi

2t

))
,

Sn(t) := h0(t)
2 +

∑n
i=1 hi(t), and S(t) = limn→∞ Sn(t). Then

∣∣F δk (t)− (1− S(t))
∣∣ ≤ e−a. Finally,

the (alternating) infinite series S(t) can be efficiently approximated using for example the Euler
summation rule

S(t) ≈
M∑
i=0

(
M

i

)
2−MSN+i(t)

with a typical choice N = 15, M = 11.

Remark 30 The expression (4.9) for the mean number of outage incidents involves a sum of a
potentially big number of terms F δk (1− ϕk)− F δk (1− ϕk − ϕj), j = 1, . . . , J , which are typically
small, and which are evaluated via the inversion of the Laplace transform. Consequently the sum
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may accumulate precision errors. In order to avoid this problem we propose another numerical
approach for calculating Mk. It consists in representing Mk equivalently to (4.9) as

Mk =
F δk (1− ϕk)

µk

J∑
j=1

λjbk(j) k = 1, . . . , J (4.13)

where

bk (j) =
F δk (1− ϕk)− F δk (1− ϕk − ϕj)

F δk (1− ϕk)
(4.14)

Let k and δ be fixed. Recall the definition of F δk (t) in (4.6) and note that the expression (4.14)
may be written as

bk (j) =
Pr (X ∈ F , X + εj /∈ F)

Pr (X ∈ F)

where F = F(k) =
{
X ∈ RJ :

∑k
j=1X

δ,k
j ϕj ≤ 1− ϕk

}
. The above expression may be seen as

the blocking probability for class j in a classical multi-class Erlang loss system with the admis-
sion condition X ∈ F . Consequently, bk (·) may be calculated by using the Kaufman-Roberts
algorithm [65, 81] and plugged into (4.13). Note that by doing this we still need to calculate
F δk (1− ϕk) however avoid summing of O differences of these functions as in (4.9).

4.4 Quality of real-time streaming in LTE

In this section we will use the model developed in Section 4.3 to evaluate the quality of RTS in
LTE symmetric networks. This single-server (base station) model will be used to study the per-
formance of one tagged base station of a multi-cellular network under the following assumptions:

• We assume a regular hexagonal lattice of base stations on a torus. This allows us to consider
the tagged base station of the network as a typical one.

• Homogeneous (in space and time) Poisson arrivals on the torus are marked by i.i.d. (across
users and base stations) variables representing their shadowing with respect to different
base stations. These variables, together with independent user locations determine their
serving (strongest) base stations. A consequence of the independence of users locations
and shadowing variables is that the arrivals served by the tagged base station form an
independent thinning of the total Poisson arrival process to the torus and thus a Poisson
process too. Uniform distribution of user locations and identical distribution of the their
shadowing variables imply that the intensity of the arrival process to the tagged base
station is equal to the total arrival intensity to the torus divided by the number of stations.
Moreover, the distribution of the SINR of the typical user of the tagged base station
coincides with the distribution of the typical user of the whole network.

• The intensity of arrivals of some particular (SINR)-class to the tagged base station is equal
to the total intensity of arrivals to the tagged cell times the probability of the random
SINR of the typical user being in the SINR-interval corresponding to this class.

• We consider the “full interference” scenario, i.e. all base stations transmit the signal at the
constant power, regardless of the number of users they serve (this number can be zero).
This makes the interference, and hence the service rates, of users of a given base station
independent of the service of other base stations (decouples the service processes of different
base stations).



4.4. QUALITY OF REAL-TIME STREAMING IN LTE 107

4.4.1 LTE model and traffic specification

SINR distribution

Recall that the main motivation for considering a multi-class model was the necessity to dis-
tinguish users with different radio conditions, related to different values of the SINR they have
with respect to the serving base stations. In order to choose representative values of SINR in a
given network and to know what fraction of users experience a given value, we need to know the
(spatial) distribution of the SINR (with respect to the serving base station) experienced in this
network (possibly biased by the spatial repartition of arrivals of streaming calls). This distribu-
tion can be obtained from real-network measurements, simulations or analytic evaluation of an
appropriate spatial, stochastic model.7 In this Section we will use the distribution of SINR ob-
tained from the simulation compliant with the 3GPP recommendation in the so-called calibration
case (to be explained in what follows). At present, assume simply, that we are given a cumula-
tive distribution function (CDF) of the SINR expressed in dB, F (x) := Pr{10 log10(SINR) ≤ x},
obtained from either of these methods. In other words, F (x) represents the fraction of mobile
users in the given network which experience the SINR (expressed in dB) not larger than x.

Consider a discrete probability mass function

pk := F

(
xk+1 + xk

2

)
− F

(
xk + xk−1

2

)
k = 1, 2, . . . , J , (4.15)

with x0 = −∞, xJ+1 = ∞. We define the class k = 1, . . . , J of users as all users having

the SINR expressed in dB in the interval
(

(xk+xk−1)
2 , (xk+1+xk)

2

)
, and approximate their SINR

by the common value SINRk = 10xk/10. Clearly pk is the fraction of mobile users in the given
network which experience the SINR close to SINRk. Hence, in the case of homogeneous streaming
traffic (the same requested streaming rates and mean streaming times, which will be our default
assumption in the numerical examples) we can assume the intensity of arrivals λk of users of

class k to be equal to λk = pkλ where λ =
∑J
i=k λk is the total arrival intensity (per unit of time

per serving base station) to be specified together with the CDF F of the SINR.

CDF of the SINR for 3GPP recommendation We obtain the CDF F of the SINR from the
simulation compliant with the 3GPP recommendation in the so-called calibration case, (compare
to [3]). More precisely, we consider the geometric pattern of BS placed on the 6 × 6 hexagonal
lattice. In the middle of each hexagon there are three symmetrically oriented BS antennas,
which gives a total of 108 BS antennas. The distance between the centers of two neighboring
hexagons is 0.5 km. Each BS antenna is characterized by the following horizontal pattern A(φ) =
−min(12(φ/ζ)2, Am), where φ is the angle in degrees, with ζ = 70◦, Am = 20dB, and uses
transmission power P = 60dBm (including omnidirectional gain of 14dBi). The distance-loss
model (corresponding to the frequency carrier 2GHz) is L(r) = 128.1 + 37.6× log10(r)[dB] where
r is the distance in km. A supplementary penetration loss of 20dB is added. The shadowing
is modeled as a log-normal random variable of mean one and logarithmic standard deviation
of deviation 8dB, cf [18]. The noise power equals −95dBm (which corresponds to a system
bandwidth of 10MHz, a noise floor of −174dBm/Hz and a noise figure of 9dB). In order to
obtain the empirical CDF of the SINR we generate 3600 random user locations uniformly in the
network (100 user locations per hexagon on average). Each user is connected to the antenna
with the strongest received signal (smallest propagation-loss including distance, shadowing and

7For this latter possibility, we refer the reader to a recent paper on Poisson modeling of real cellular networks
subject to shadowing [20], as well as to [39], completed in [19], where the distribution of the the SINR in Poisson
networks is evaluated explicitly.
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antenna pattern) and the SINR is calculated. The obtained empirical CDF F of the SINR is
shown in Figure 4.1.

Figure 4.1: Cumulative distribution function of the SINR obtained according to 3GPP specifica-
tion; see Section 4.4.1. An abrupt transition of the CDF to 1 at SINR = 17dB is due to the cell
sectorization: each mobile is interfered by each of the two antennas co-located with its serving
antenna on the same site (and serving the different sectors) with the power equal to at least 1%
of the power received from the serving BS. Therefore the signal to interference ratio is at most
0.5× 10−2 = 17dB.

Link characteristics

3GPP shows in [4] that there is a 25% gap between the practical coding schemes and the Shannon
limit for the AWGN channel. Moreover, some of the transmitted bits are used for signaling,
which induces a supplementary capacity loss of about 30% (see [2]). This made us assume
c = 0.5(≈ 0.75(1− 0.3)) in (4.2). The system bandwidth is W = 10MHz.

Streaming traffic

We assume that all calls require the same streaming rate rk = 256 kbit/s and have the same
streaming call time distribution. We split them into J = 100 user classes characterized by
values of the SINR falling into different intervals regularly approximating the SINR domain
from x1 = −10dB to xJ = 17dB as explained in Section 4.4.1. In our performance evaluation
we will consider two values of the spatially uniform traffic demand: 900 and 600 Erlang/km2.
(All results presented in what follows do not depend on the mean streaming time but only on
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the traffic demand). Consequently, the k th class traffic demand per unit of area is equal to,
respectively, pk × 900 and pk × 600 Erlang/km2, where pk are given by (4.15). Multiplying
by the area served by one base station equal to

√
3 · (0.5 km)2/6 ≈ 0.0722 km2 we obtain the

traffic demand per cell, per class, equal to ρk = pk × 900 × 0.0722 ≈ pk × 64.9 Erlang and
ρk = pk × 600× 0.0722 ≈ pk × 43.3 Erlang, respectively, for the two studied scenarios.

4.4.2 Performance evaluation

Assuming the LTE and traffic model described above, we consider now streaming policies LESF(δ)
defined in Section 4.3.2. Recall that in doing so, we assume that users are served by the antenna
offering the smallest path-loss, and dispose orthogonal down-link channels, with the maximal
rates Rk depending on the value of the SINR (interference comes from non-serving BS) charac-
terizing class k. Roughly speaking, LESF(δ) policy assigns the total requested streaming rate
rk = 256kbit/s for the maximal possible subset of classes in the order of decreasing SINR, leaving
some capacity margin to offer some “best-effort” streaming rates for (some) users remaining in
outage. These streaming rates r′k given by (4.5) depend on the current configuration of users and
are non-zero for users with SINR within the interval (1 + SINRK)1/(1+δ) − 1 ≤ SINR ≤ SINRK ,
where SINRK is the minimal value of SINR for which users are assigned the total requested
streaming rate; cf Remark 28. In particular, LESF(0), called the optimal policy, leaves no ca-
pacity margin for users in outage, while LESF(∞), called the fair one, offers a “best-effort”
streaming rate for all users in outage at the price of assigning the full requested rate 256kbit/s
to a smaller number of classes (higher value of the SINRK) 8. In what follows, we use our results
of Section 4.3.3 to evaluate performance of these streaming policies in the LTE network model.

Outage time

Figure 4.2 shows the mean time of the streaming call spent in outage normalized by call duration,
µkDk, evaluated using (4.8), as function of the SINR value characterizing class k, for the traffic
900 Erlang/km2 and different policies LESF(δ). Figure 4.3 shows the analogous results assuming
a traffic load of 600 Erlang/km2. The main observations are as follows:

• All LESF policies exhibit a cut-off behaviour: the fraction of time in outage drops rapidly
from 100% to 0% when the SINR exceeds some critical values. This cut-off is more strict
for the optimal policy.

• For the traffic of 900 Erlang/km2, users with the SINR≥ 3dB are practically never in
outage, when the optimal policy is used. The same holds true for users with SINR≥ 13dB,
when the fair policy is used.

• When the traffic drops to 600 Erlang/km2, these critical values of SINR decrease by 2dB
and 5dB, respectively, for the optimal and the fair policy. Note that the fair policy is more
sensitive to higher traffic load.

Number of outage incidents

Figure 4.4 shows the mean number of outage incidents per streaming call, Mk evaluated us-
ing (4.9), as function of the SINR value characterizing class k, for the traffic 900 Erlang/km2

and different policies LESF(δ). (Recall that we assume the same streaming time distribution
for all users, and hence λj/µk = ρj making the expression in (4.9) depend only on the vector of

8The LESF fair policy seems to be adopted in some implementations of the LTE.
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Figure 4.2: Mean fraction of the requested streaming time in outage, as function of the user
SINR for different policies LESF(δ); traffic 900 Erlang/km2.

traffic demand per class.) Figure 4.5 shows the analogous results assuming a traffic demand of
600 Erlang/km2. The main observations are as follows:

• For all policies, the number of outage incidents (during the service) is non-zero only for
users with the SINR close to the critical values revealed by the analysis of the outage times.
Users with SINR below these values are constantly in outage while users with SINR above
them are never in outage.

• More fair policies generate slightly more outage incidents. The worst values are 2 to 2.2
interruptions per call for the optimal policy, depending on the traffic value, and 2.4 to 3
interruptions per call for the fair policy.

Studying outage times and outage incidents we do not see apparent reasons for considering
fair policies. This motivates our study of the best-effort service in outage.

The role of the ”best effort” service

Figure 4.6 shows the fraction of time spent in deep outage as function of the SINR, assuming
traffic 900 Erlang/km2. These values should be compared to the fraction of time spent in outage
(for convenience copied in Figure 4.6 from Figure 4.2). Recall, users in outage do not receive
the full requested streaming rate (assumed 256kbit/s in our example), however they do receive
some non-null “best effort” rates given by (4.5), unless they are in deep outage — have SINR too
small; cf Remark 28. Considering users in outage but not in deep outage as “partially satisfied”,
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Figure 4.3: Fraction of time in outage as on Figure 4.2 for traffic 600 Erlang/km2.

increasing fairness margin δ allows to (at least) partially satisfy users with decreasing SINR
values. Obviously the level of the “partial satisfaction” depends on the throughput obtained in
outage periods, which is our quantity of interest in Figure 4.7. It shows also two curves for all
policies LESF(δ) assuming traffic 900 Erlang/km2. The upper ones represent the mean total
throughput realized during the service, normalized to its maximal value; i.e., Υk/(256kbit/s),
in function of the SINR value characterizing class k. The fractions of this throughput realized
during outage periods, Υ′k/(256kbit/s), are represented by the lower curves.

Figures 4.7 and 4.6 teach us that the role of the LESF(δ) policies with δ > 0 may be two-fold.

• LESF(δ) policies with small values of δ, e.g. δ = 0.5, improve “temporal homogeneity” of
service with respect to the optimal policy, for users having SINR near the critical value.
For example, a user having SINR equal to 1dB is served by the optimal policy during
80% of the time with the full requested streaming rate (cf. Figure 4.6). However, for the
remaining 20% of the time it does not receive any service (deep outage, rate 0bits/s). The
policy LESF(0.5) offers to such a user 80% of the requested streaming rate during the whole
streaming time (cf. Figure 4.7), with no deep outage periods (cf. Figure 4.6). The price
for this is that a slightly higher SINR is required to receive the full requested streaming
rate (at least 5dB, instead of 3dB for the optimal policy).

• The fair policy LESF(∞) improves the spatial homogeneity of service. It leaves no user
in deep outage, however a much larger SINR= 13dB is required for not to be in outage
(cf. Figure 4.6). Moreover, the throughput of all users in outage but not in deep outage
is substantially reduced e.g. from 80% to 40% for SINR= 1dB, with respect to some
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Figure 4.4: Number of outage incidents during the requested streaming time, as function of the
user SINR for different policies LESF(δ); traffic 900 Erlang/km2.

intermediate LESF(δ) policies (with 0 < δ <∞). These intermediate policies can offer an
interesting compromise between the optimality and fairness.

Impact of non-Poisson-arrivals

Recall that the performance analysis of the model presented in this Chapter is insensitive to the
distribution of the requested streaming times. In this section we will briefly study the impact of
a non Poisson-arrival assumption. In this regard we simulate the dynamics of the model with
deterministic inter-arrival times (with all other model assumptions as before) and estimate the
mean fraction of time in outage µkDk and mean number of outage incidents Mk for each class
k. For the comparison, as well as for the validation of the theoretical work, we perform also the
simulation of the model with Poisson arrivals. The results are plotted in Figures 4.8, 4.9 and
4.10, 4.11. Observe first that the simulations of the Poisson model confirm the results of the
theoretical analysis. Regarding the impact of the deterministic inter-arrival times a (somewhat
expected) fact is that the optimal policy remains optimal regarding the fraction of time spent
in the outage and the number of outage incidents. Another, less evident, observation is that the
deterministic inter-arrivals (more regular than in the Poisson case) do not improve the situation
for all classes of users. In fact, users with small values of the SINR have a smaller fraction of
time in outage under Poisson arrival assumption than in the deterministic one! This is different
from what we can observe for the blocking probability for the classical Erlang’s loss model; cf
e.g. [101, Figure 8]. Moreover, the deterministic arrivals increase the number of outage incidents
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Figure 4.5: Number of outage incidents as in Figure 4.4 for traffic 600 Erlang/km2.

for intermediate values of the SINR and decrease for extreme ones, especially with the fair policy.
Concluding these observations one can say however, that the differences between Poisson and
deterministic are not very significant and hence the Poisson model can be used to approximate
a more realistic traffic model.
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Figure 4.6: Deep outage versus outage time. For any policy LESF(δ), with 0 < δ <∞, the left
curve of a given style represents the fraction of time spent in deep outage. The right curve of
a given style recalls the fraction of time spent in outage (already plotted on Figure 4.2). The
optimal policy (δ = 0) does not offer any “best effort” service. The fair policy (δ = ∞) offers
this service for all users in outage.
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Figure 4.7: Mean total throughput normalized to its maximal value 256kbit/s obtained during
the service time (upper curves) and its fraction obtained when a user is in outage (lower curves)
for different policies LESF(δ) traffic 900 Erlang/km2.
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Figure 4.8: Impact of the deterministic arrival process (as compared to the Poisson one) on the
mean fraction of the requested streaming time in outage, for the optimal and fair policy; traffic
900 Erlang/km2.
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Figure 4.9: Impact of the deterministic arrival process (as compared to the Poisson one) on the
mean fraction of the requested streaming time in outage, for the optimal and fair policy; traffic
600 Erlang/km2.
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Figure 4.10: Impact of the deterministic arrival process (as compared to the Poisson one) on the
mean number of outage incidents for the optimal and fair policy; traffic 900 Erlang/km2.



4.4. QUALITY OF REAL-TIME STREAMING IN LTE 119

Figure 4.11: Impact of the deterministic arrival process (as compared to the Poisson one) on the
mean number of outage incidents for the optimal and fair policy; traffic 600 Erlang/km2.
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Appendix

4.A A general real-time streaming (RTS) model

In this section we will present a general stochastic model for real-time streaming. An instantiation
of this model was used in the main body of this Chapter to evaluate the real-time streaming in
wireless cellular networks. This model comprises a Markovian, multi-class process of call arrivals
and their independent, arbitrarily distributed streaming times. These calls are served by a server
whose service capacity is limited. Depending on the numbers of calls of different classes present in
the system, the server may not be able to serve some classes of users. If such a congestion occurs,
these classes are temporarily denied the service, until the next call arrival or departure, when the
situation is reevaluated. These service denial periods, called outage periods, do not alter the call
sojourn times in the system. Our model allows for a very general service (outage) policy saying
which classes of users are temporarily denied the service due to insufficient service capacity. We
will evaluate key characteristics of this model using the formalism of point processes and their
Palm theory, often used in the modern approach to stochastic networking [11]. Specifically, we
are interested in the intensity of outage incidents, the mean inter-outage times and the outage
durations of a given class, seen from the server perspective, as well as the probability of outage at
the arrival epoch, mean total time in outage and mean number of outage incidents experienced
by a typical user of a given class. The expressions developed for these characteristics involve
only stationary probabilities of the (free) traffic demand process, which in our case is a vector of
independent Poisson random variables. Recall that such a representation is possible e.g. for the
well known Erlang-B formula, giving the blocking probability in the classical (possibly multi-
class) Erlang’s loss model. Indeed, our model can be seen as an extension of the classical loss
model, where the losses (i.e., service denials) are not definitive for a given call, but only temporal
— having the form of outage periods.

4.1.1 Traffic demand

Consider J ≥ 1 classes of users identified with calls. We assume that users of class k ∈ {1, . . . , J}
arrive in time according to a Poisson process Nk = {T kn : n} 9 with intensity λk > 0 and stay in
the system for independent requested streaming times W k

n having some general distribution with
mean 1/µk <∞. All the results presented in what follows do not depend on the particular choice
of the streaming time distributions — the property called in the queueing-theoretic context in-
sensitivity property. Denote by Ñk = {(T kn ,W k

n ) : n} the process of arrival epochs and streaming
times (call durations) of users of class k. We assume that Ñk are independent across k = 1, . . . , J .
Denote by Xk(t) =

∑
n 1[Tkn ,T

k
n+Wk

n )(t) the number of users of class k present in the system at

9The time instants Tk
n are used only in the Appendix and should not be confused with Tk denoting in the

main stream of (and in the proof of Proposition 12 at the end of the Appendix) the mean throughput of a user
in class k.
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time t and let X(t) = (X1(t), . . . , XJ(t)); we call it the (vector of) user configuration at time t.
The stationary distribution π of X(t) coincides with the distribution of a vector of independent
Poisson random variables (X1, . . . , XJ) with means E[Xk] := ρk = λk/µk, k = 1, 2, . . . , J . We
call ρk the traffic demand of class k.

We adopt the usual convention for the numbering of the arrival epochs T k0 ≤ 0 < T k1 . The
same convention is used with respect to all point processes denoting some time epochs.

4.1.2 Resource constraints and outage policy

For class k = 1, . . . , J , let a subset of user configurations Fk ⊂ N̄J be given, where N̄ = {0, 1, . . .},
such that all Xk users of class k present in the configuration X = (X1 . . . , Xk, . . . , XJ) are served
if and only if X ∈ Fk and no user of class k is served (we say it is in outage) if X 6∈ Fk. We
call Fk the k th class (service) feasibility set. Denote by πk = π(Fk) the probability that the
stationary configuration of users is in k th class feasibility set.

We assume that, upon each arrival or departure of a user, the system updates its decision
and, for any class k, it assigns the service to all users of class k if the updated configuration of
users is in Fk. All users of any class j for which the updated configuration is in F ′k = N̄J \ Fk
will be placed in outage (at least) until the next user arrival or departure.

In what follows we will assume that no user departure can cause outage of any class of users
i.e., switch a given configuration from Fk to F ′k. (However a user departure may make some
class j switch from F ′j to Fj .)

Denote by X̃k(t) := Xk(t)1Fk(X(t)) the number of users of class k not in outage at time t.
Denote by X̃(t) = (X̃i(t), . . . , X̃J(t)) the configuration of users not in outage at time t.

4.1.3 Performance metrics

In what follows we will be interested in the following characteristics of the model.

Virtual system metrics

During its time evolution, the user configuration X(t) alternates visits in the feasibility set Fk
and its complement F ′k, for each class k = 1, . . . , J . We are interested in the expected visit
durations in these sets as well as the intensities (frequencies) of the alternations. More formally,
for each given k = 1, . . . , J , we define the point process Bk := {τkn : n} of exit epochs of X(t)
from Fk; i.e., all epochs t such that (X(t−),X(t)) ∈ Fk×F ′k (with the convention τk0 ≤ 0 < τk1 ).
These are epochs when all users of class k present in the system (if any) have their service
interrupted.

Denote by σ′kn := sup{t − τkn : X(s) ∈ F ′k ∀s ∈ [τkn , t)} the duration of the n th visit of the
process X(t) in F ′k and by σkn := τkn+1 − τkn − σ′kn the duration of the n th visit of the process
X(t) in Fk. We define for each class k = 1, . . . , J :

• The intensity of outage incidents of class k, i.e., the mean number of outage incidents of
this class per unit of time

Λk := lim
T→∞

1

T

∑
n

1[0,T )(τ
k
n) .

Obviously Λk is also the intensity of entrance to the k th class feasibility set Fk.
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• The mean service time between two outage incidents of class k

σ̄k := lim
N→∞

1

N

N∑
n=1

σkn .

• The mean outage duration of class k

σ̄′k := lim
N→∞

1

N

N∑
n=1

σ′kn .

Note that the above metrics characterize a “virtual” quality of the service, since some visits
in Fk and F ′k may occur when there is no k th class user in the system (in the latter case the
outage of this class is not experienced by any user).

User metrics

We adopt now a user point of view on the system. We define for each class k = 1, . . . , J :

• The probability of outage at the arrival epoch for user of class k

Pk = lim
N→∞

1

N

N∑
n=1

1F ′k(X(T kn )) .

• The mean total time in outage of user of class k

Dk = lim
N→∞

1

N

N∑
n=1

∫
[Tkn ,T

k
n+Wk

n )

1F ′k(X(t)) dt .

• The mean number of outage incidents experienced by user of class k after its arrival

Mk = lim
N→∞

1

N

N∑
n=1

∑
m

1(Tkn ,T
k
n+Wk

n )(τ
k
m) .

Note that possible outage experienced at the arrival of a given user is not counted in Mk.
The mean total number of outage incidents (including possibly at the arrival epoch) is
hence Pk +Mk.

4.1.4 Mathematical results

For a given class k = 1, . . . , J , denote by εk = (0, . . . , 1, . . . , 0) ∈ N̄J the unit vector having its
k th component equal to 1. Hence x+εk represents adding one user of class k to the configuration
of users x ∈ N̄J . Denote by Pr the probability under which {X(t) : t} is stationary and by E
the corresponding expectation. Recall that π{x ∈ ·} = Pr{X(t) ∈ ·} is the distribution of the
stationary configuration of users X(t) (it corresponds to independent Poisson variables of mean
ρk).
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General results

We present first results regarding the virtual system metrics. These results will be next used to
evaluate the user metrics.

Lemma 8 The intensity of outage incidents of class k is Pr-almost surely equal to

Λk =

J∑
j=1

λjπ {x ∈ Fk,x + εj ∈ F ′k} k = 1, . . . , J.

Proof. Let N =
∑J
j=1Nj be the point process counting the arrival times of users of all

classes. By independence, N is the Poisson point process of intensity λ =
∑J
j=1 λj . Then, by

the ergodicity of the process X(t) and the fact that the exits from Fk can take place only at
some user arrival epoch we have by the Campbell’s formula 10 [11, Equation (1.2.19)],

Λk = E

[∫
[0,1)

1Fk×F ′k (X (t−) ,X (t))N (dt)

]

= λ
0

Pr
N
{X(0−) ∈ Fk,X(0) ∈ F ′k} ,

where Pr0
N designates the Palm probability associated to N (which is, roughly speaking, the

conditional probability given an arrival at time 0). By the PASTA (Poisson Arrivals See Time
Averages) property [11, Equation (3.3.4)] the configuration of users X(0−) under Pr0

N has dis-
tribution π. Moreover, X(0) = X(0−) + εξ where ξ ∈ {1, . . . , J} is under Pr0

N independent of
X(0−) and takes value j with probability λj/λ. This completes the proof.

Lemma 9 The mean service time between two outage incidents and the mean outage duration
of class k are Pr-almost surely equal to, respectively,

σ̄k =
π (Fk)

Λk
, σ̄′k :=

π(F ′k)

Λk
k = 1, . . . , J,

where Λk is given in Lemma 8.

Proof. First we prove the expression for σ̄k. By ergodicity σ̄k = E0
Bk

[
σk0
]

Pr-almost surely,
where E0

Bk
designates the expectation with respect to the Palm probability associated to Bk,

and E0
Bk

[
τk0
]

= 1/Λk; [11, see e.g. Equation (1.6.8) and Equation (1.2.27)]. Applying the mean

value formula [11, Equation (1.3.2)]11 we get π(Fk) = ΛkE
0
Bk

[
σk0
]
, which completes the proof

of the expression for σ̄k. For the other expression, note by the definition of the sequence σkn, σ
′k
n

and τkn that Pr-almost surely,

σ̄′k = E0
Bk

[
σ′k0
]

= E0
Bk

[
τk1 − σk0

]
=

1

Λk
− π(Fk)

Λk
=
π(F ′k)

Λk
,

which completes the proof.

Proposition 13 The probability of outage at the arrival epoch for a user of class k is equal to

Pk = π {x + εk ∈ F ′k} k = 1, . . . , J (4.16)

Pr-almost surely.

10With Zn := (X(Tn−),X(Tn)) and f(t, z) = 1[0,1)(t)1Fk×F′k
(z)

11with Zk (t) = 1Fk (X (t))
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Proof. By ergodicity we have Pk = Pr0
Nk
{X(0) ∈ F ′k}, where Pr0

Nk
designates the Palm

probability associated to Nk (arrival process of the users of class k). By the PASTA property the
configuration of users X(0−), just before arrival of the user of class k at time 0, has distribution
π. Once the user enters the system, the user configuration becomes X(0−) + εk, whence the
result.

Proposition 14 The mean total time in outage of a user of class k is Pr-almost surely equal to

Dk =
1

µk
π {x + εk ∈ F ′k} k = 1, . . . , J . (4.17)

Proof. Again using the ergodicity of {X (t)} we can write

Dk = E0
Nk

[∫
[0,Wk

0 )

1F ′k(X(t)) dt

]
.

Denote by Y(t) := X(t) − εk1[Tk0 ,T
k
0 +Wk

0 )(t) the process of configurations of users other than

the user number 0 of class k (which arrives at time 0 under E0
Nk

). By Slivnyak theorem [9, see

e.g. Theorem 1.13] the distribution of the process {Y(t) : t} under Pr0
Nk

is the same as this

of {X(t) : t} under Pr. Using the fact that W k
0 and Y(t) are independent under Pr0

Nk
with

E0
Nk

[W k
0 ] = 1/µk we obtain

Dk =

∫ ∞
0

E0
Nk

[
1[0,Wk

0 )(t)1F ′k(Y(t) + εk)
]

dt

=
1

µk
π {x + εk ∈ F ′k)] ,

which completes the proof.

Proposition 15 The mean number of outage incidents experienced by user of class k after its
arrival is Pr-almost surely equal to

Mk =
1

µk

J∑
j=1

λjπ {x + εk ∈ Fk,x + εk + εj ∈ F ′k} , (4.18)

k = 1, . . . , J .

Proof. Again using the ergodicity of {X (t)} we know that, Pr-almost surely,

Mk = E0
Nk

[∫
(0,Wk

0 )

Bk(dt)

]
.

Using the fact that W k
0 and Y(t) are independent under Pr0

Nk
with E0

Nk
[W k

0 ] = 1/µk we obtain

Mk = E0
Nk

[
B∗k(0,W k

0 )
]

=
Λ∗k
µk

,

where B∗k =: {τ∗kn : n} is the point process of exit epochs of X(t) from F∗k = {x : x + εk ∈ Fk}
and Λ∗k its intensity. Using Lemma 8 with Fk replaced by F∗k concludes the proof.

We will now prove the result regarding the throughput of the typical call of class k.
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Proof of Proposition 12. We have

Υk = Υδ
k = µkE

0
Nk

[∫
[0,Wk

0 )

rk1(X(t) ∈ Fδk)

+ r
′δ
k (X(t))1(X(t) 6∈ Fδk) dt

]
.

It is easy to see, as in the proof of Proposition 14, that Υk = rkπ
{
x + εk ∈ Fδk

}
+ Υ′k, where

Υ′k = E
[
r
′δ
k (X(t) + εk)1((X(t) + εk) 6∈ Fδk)

]
is the part of the throughput obtained by a user of class k during its outage time.



Chapter 5

Conclusion and future work

This thesis aimed at developing the methods for the examination of the QoS perceived by users
in cellular networks. QoS for services such as data transmission and real-time streaming are
examined. The approach consists in decomposing the problem into three levels corresponding to
three time scales. Firstly, the single link capacity is studied on the ground of information theory,
after that users’ arrivals and departures are considered using queuing theory. Finally, the spatial
patterns of network resources are taken into account using stochastic geometry.

More specifically, in Chapter 2 we describe a simple model of a MIMO cellular network which
permits to obtain an analytical lower bound for user bit-rates which are feasible from the infor-
mation theory point of view. This expression accounts for the variety of MIMO configurations
(numbers of transmitting and receiving antennas) and radio conditions (SINR). We validate the
analytical lower bound by comparison to the results of 3GPP simulations and to measurements
in the field.

In Chapter 3 we establish the dependence relation between the traffic demand and mean user
throughput for large wireless cellular networks serving variable bit-rate calls.

Further, we evaluate the user QoS (spatial CDFs of mean user throughput per cell, mean
number of users per cell and cell loads. We develop two approaches: the typical cell approach
corresponds to spatial averages of the characteristics of the cells in a large network. Since
the averages of some crucial characteristics do not have explicit expressions, we propose the
alternative mean cell approach. It permits an explicit expression of the major characteristics
and approximates well the typical cell. Also a heterogeneous cellular network model allowing
for different BS types (having different transmission powers) is proposed, aiming to help in
performance evaluation and dimensioning of real (large, irregular) operational networks. It
allows one to identify key laws relating the performance of the different base station types.We
validate the proposed approach by comparing its results to real field measurements.

The dimensioning for streaming traffic as well as mixing such traffic with variable bit-rate
calls are important axes for future work. These studies raised also open theoretical questions
regarding the stability of spatially and, more difficult, space-time dependent processor sharing
queues modeling the performance of individual network cells (cf Section 3.5.3). More work is
also required to understand the problem of different performance of the network during day and
night hours (cf Figure 3.15).

In Chapter 4, a real-time streaming (RTS) traffic, as e.g. mobile TV, is analyzed in the
context of wireless cellular networks. An adequate stochastic model is proposed to evaluate user
performance metrics, such as frequency and number of interruptions during RTS calls as function
of user radio conditions. Despite some fundamental similarities to the classical Erlang loss model,

127



128 CHAPTER 5. CONCLUSION AND FUTURE WORK

a new model was required for this type of service, where the service denials are not definitive
for a given call, but only temporal – having the form of, hopefully short, interruptions (outage)
periods. Our model allows one to take into account realistic implementations of the RTS service,
e.g. in the LTE networks. In this latter context, several numerical demonstrations are given,
presenting the quality of service metrics as function of user radio conditions.
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