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Thèse dirigée par Eric Gaussier
et codirigée par Massih-Reza Amini
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A B S T R A C T

The present study focuses on (a) predicting parameters of already existing standard IR
models and (b) learning new IR functions.

We first explore various statistical methods to estimate the collection parameter of family
of information based models (Chapter 2). This parameter determines the behavior of a
term in the collection. In earlier studies, it was set to the average number of documents
where the term appears, without full justification. We introduce here a fully formalized
estimation method which leads to improved versions of these models over the original
ones. But the method developed is applicable only to estimate the collection parameter
under the information model framework.

To alleviate this we propose a transfer learning approach which can predict values for
any parameter for any IR model (Chapter 3). This approach uses relevance judgments
on a past collection to learn a regression function which can infer parameter values for
each single query on a new unlabeled target collection. The proposed method not only
outperforms the standard IR models with their default parameter values, but also yields
either better or at par performance with popular parameter tuning methods which use
relevance judgments on target collection.

We then investigate the application of transfer learning based techniques to directly
transfer relevance information from a source collection to derive a “pseudo-relevance”
judgment on an unlabeled target collection (Chapter 4). From this derived pseudo-
relevance a ranking function is learned using any standard learning algorithm which
can rank documents in the target collection. In various experiments the learned function
outperformed standard IR models as well as other state-of-the-art transfer learning based
algorithms.

Though a ranking function learned through a learning algorithm is effective still it has a
predefined form based on the learning algorithm used. We thus introduce an exhaustive
discovery approach to search ranking functions from a space of simple functions (Chapter
5). Through experimentation we found that some of the discovered functions are highly
competitive with respect to standard IR models.
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R É S U M É

Dans cette thèse, nous nous intéressons (a) à l’estimation des paramètres de modèles
standards de Recherche d’Information (RI), et (b) à l’apprentissage de nouvelles fonctions
de RI.

Nous explorons d’abord plusieurs méthodes permettant, a priori, destimer le paramètre
de collection des modèles dinformation (chapitre 2). Jusquà présent, ce paramètre était
fixé au nombre moyen de documents dans lesquels un mot donné apparaissait. Nous
présentons ici plusieurs méthodes destimation de ce paramètre et montrons quil est
possible daméliorer les performances du système de recherche dinformation lorsque ce
paramètre est estimé de faon adéquate.

Pour cela, nous proposons une approche basée sur l’apprentissage de transfert qui peut
prédire les valeurs de paramètre de n’importe quel modèle de RI (chapitre 3). Cette
approche utilise des jugements de pertinence d’une collection de source existante pour
apprendre une fonction de régression permettant de prédire les paramètres optimaux
d’un modèle de RI sur une nouvelle collection cible non-étiquetée. Avec ces paramètres
prédits, les modèles de RI sont non-seulement plus performants que les młme modèles
avec leurs paramètres par défaut mais aussi avec ceux optimisés en utilisant les jugements
de pertinence de la collection cible.

Nous étudions ensuite une technique de transfert permettant d’induire des pseudo-
jugements de pertinence des couples de documents par rapport à une requłte donnée
d’une collection cible (chapitre 4). Ces jugements de pertinence sont obtenus grce à
une grille d’information récapitulant les caractéristiques principale d’une collection.
Ces pseudo-jugements de pertinence sont ensuite utilisés pour apprendre une fonc-
tion d’ordonnancement en utilisant n’importe quel algorithme d’ordonnancement existant.
Dans les nombreuses expériences que nous avons menées, cette technique permet de
construire une fonction d’ordonnancement plus performante que d’autres proposées dans
l’état de l’art.

Dans le dernier chapitre de cette thèse (chapitre 5), nous proposons une technique
exhaustive pour rechercher des fonctions de RI dans l’espace des fonctions existantes en
utilisant un grammaire permettant de restreindre l’espace de recherche et en respectant les
contraintes de la RI. Certaines fonctions obtenues sont plus performantes que les modèles
de RI standards.
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1
I N T R O D U C T I O N

Archiving information and later finding them from the archives efficiently has been
practiced since 3000BC [Singhal, 2001]. Back then, Sumerians designated special areas to
store clay tablets with cuneiform inscriptions. They even designed efficient methodologies
to find information from these archives. Nowadays with the invention of computers,
it has become possible to store large amount of information. Hence, to access and
retrieve information efficiently from such large collection, has become a necessity. In 1945,
Vannevar Bush published an article titled “As We May Think” which gave birth to the
concept of automated retrieval of information from large amount of stored data. The field
of information retrieval has advanced very fast over last sixty years. Currently various
information retrieval based applications have been developed and commercialized. Many
of them, such as the Web search engines, have become an integrated part of day to day
human life.

In this introductory chapter we present different basic notions of information retrieval
which are relevant to this thesis. Starting with a very brief outline of information retrieval
as a whole (Section 1.1), we will discuss basics of two standard IR models used in this
thesis (Section 1.2). These models are associated with different free parameters. In Section
1.3 we mention different strategies commonly used by researchers to set these parameter
values. We then move to explain the heuristic IR constraints proposed by the community
which a good IR scoring function should satisfy (Section 1.4). Then we explore two
effective applications of machine leaning in information retrieval (Section 1.5). Finally, we
mention the research questions that we will investigate throughout this thesis (Section 1.6
and how this thesis is organized (Section 1.7).

1.1 information retrieval

The term information retrieval (IR) is used very broadly. Just searching a phone number from
the phone book of a mobile is a form of information retrieval, as well as searching a topic
from the Web by some search engine. As an academic field of study, [Manning et al., 2008]
defined information retrieval as:

Information retrieval (IR) is finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).

1



2 introduction

Here a document is a file containing significant text content with some minimal structures
e.g. title, author, subject, etc. A set of similar documents is called a collection. Generally
all activities of an IR system is performed on a collection. Though the term information
retrieval is associated with textual retrieval, but the corresponding data can also be images
or musics. In this thesis we focus only on textual data.

1.1.1 Information Retrieval Procedure

The retrieval process is interpreted in terms of two main components or sub-processes -
Indexing and Retrieval. Figure 1 explains the overview of the procedure.

Collection of Documents

Indexed
Collection

Indexing

User

Query

Query
Interpreted

Query Processing

Index
Searching

and
Matching

Relevant
Documents

Figure 1: Outline of the IR Procedure.

Indexing This step involves processing each document in a collection and building a data
structure so that they can be found efficiently. The documents are first parsed and
preprocessed. Preprocessing commonly involves stopword removal and stemming.
Finally each term in the document is inserted in the structure of indexed documents.
Efficiency of the IR system depends on the data structure used to store indexed
documents. Most commonly used data structure is an Inverted Index, where for a
term w, inverted index stores a list of IDs of all documents containing w. Then the
term set is organized in a suitable data structure, e.g. array or hash table or binary
search tree. Structure of a typical inverted index is shown in Figure 2.

Retrieval An information need is specified via a query, which is first preprocessed
with same preprocessing steps as indexing. This transformed query is a system
representation for the original information need. Then the query terms are searched
within the indexed terms and corresponding document lists are retrieved from the
indexed data structure. The retrieved documents are ranked according to some
ranking function (explained in Section 1.2) and the ranked list is returned to the
user.
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w1

w2

docIDjdocIDi

docIDm docIDn

Figure 2: Structure of an Inverted Index.

1.1.2 Evaluation of an IR System

To evaluate the performance of an ad hoc IR system, it is generally tested on a collection
typically consisting of a set of documents, a test suite of queries, a set of relevance judgments,
which gives some form of assessment of each query-document pair, that tells the degree
of relevance of the document to the query. Document collection and query suite must
be of reasonable size. There exists a number of popular evaluation workshops, e.g. TREC
(trec.nist.gov), CLEF (www.clef-campaign.org) and FIRE (www.isical.ac.in/~clia/),
that facilitates research by providing the collections for comparing models and techniques.

The standard approach to IR system evaluation revolves around the notion of relevant
and non-relevant documents. This relevance may be binary or graded. In the first case
a document is either relevant or non-relevant to a query, where as for the second case
relevancy of a document to a query is specified using a scale of numbers signifying its level
of relevancy (e.g. 0 for ‘not relevant’, 1 for ‘relevant’, 2 for ‘very relevant’). Throughout this
thesis we will consider only binary relevance. So here we describe measures to indicate
the performance of an IR system based on binary relevance.

1.1.2.1 Evaluation of Unranked Retrieval Sets

The two basic parameters for performance measurement of an IR system are precision and
recall. These are initially defined for the simple case where the IR system returns only
a set of documents, not a ranked list. These definitions can be extended for IR systems
which returns a set of documents along with their ranks.

Precision is the fraction of the documents retrieved that are relevant to the user’s infor-
mation need.

Precision =
number of relevant documents retrieved

total number of documents retrieved

Recall is the fraction of the successfully retrieved documents that are relevant to the
query.

Recall =
number of relevant documents retrieved

total number of relevant documents

trec.nist.gov
www.clef-campaign.org
www.isical.ac.in/~clia/
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1.1.2.2 Evaluation of Ranked Retrieval Results

In a ranked retrieval context, simple ratios like precision and recall defined above are not
so effective. One has to consider the position of the document in the list. If a relevant
document appears way below in the ranked list, then it should be penalized. This is taken
into account in the evaluation measure named Mean Average Precision (MAP).

For a single query, average precision (AP) is defined as the average of the precision value
obtained for a ranked set of documents after each relevant document is retrieved. Let the
ranked list of documents returned by an IR system for a query qj be D = {d1, . . . d|D|}.
Let reljk be 1, if dk ∈ D is relevant to query qj, 0 otherwise. Average precision for query qj

is defined as:

APqj =
|D|
∑
i=1

P@i× relji

Here P@i is precision at i. It is defined as:

P@i =
number of relevant documents in the rank list up to ith position

i

When no relevant document is retrieved for a query, the average precision value in the
above equation is taken to be zero.

Let the complete query set be Q. MAP of Q is the average of APqj for all qj ∈ Q. Thus:

MAP =
1
|Q|

|Q|
∑
j=1

APqj

In Web search, when results are returned, most of the users do not go beyond the first
page, and thus it is very important for the system to present maximum possible relevant
documents within this page. If each page contains n documents, precision at n (by the
expression P@n defined above) is an important evaluation measure. Typically a result page
for a Web search engine contains ten results, so n = 10 is a natural choice. This gives
another important evaluation measure, precision at 10 documents (P@10).

There exist other evaluation measures in the literature for graded relevancy, such as
normalized discounted cumulative gain or NDCG. But as we consider only binary relevance in
this thesis, MAP and P@10 are sufficient enough for our purposes.

1.2 standard ir models

To retrieve relevant documents from a pool of documents and later to rank them, one
needs to associate some scores to the documents with respect to the query in hand. This
is what an IR model does. Each IR model is associated with a scoring function (also called
ranking function) which formulates a scoring strategy that uses various information about
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the document in light of the query. Two main quantities are term frequency and document
frequency. Term frequency of a term w in document d is defined as the number of times
that w occurs in d. Whereas, document frequency of w is the number of documents in the
collection that w occurs in. Scoring functions are sometimes referred to as retrieval status
value or RSV, as it provides the value of the retrieval status of a document with respect to
a query.

Many classical IR models are proposed in the literature. Most efficient and popular ones
include vector space model, tf-idf model, probabilistic models, language models and
more recently DFR models, information based models. Scores provided by these standard
models are often used as features in learning to rank approach (Section 1.5.1).

Once a new model is developed, it is common practice to compare it with already existing
models. In this thesis, when we will develop any approach, we will compare them with
three standard models, namely Okapi BM25, language models and information based
models. Scores calculated using these three models will also be used as features to learn a
ranking function in Chapter 4. First two models are discussed briefly in next two sections
whereas the information model is discussed in Chapter 2.

1.2.1 Okapi BM25

The Okapi BM25 ranking model [Robertson and Walker, 1994, Zaragoza et al., 2004] is
based on probabilistic retrieval framework and has become one of the most popular
benchmark models in IR research. The main idea of this model is based on the simple
observation that a term appearing in a small distinct number of documents with high
frequency is far more important than the terms appearing in a large number of documents
with very low frequency. Thus a document can be called important with respect to a
term, if the term occurs frequently in that document, but the term itself occurs rarely
throughout the collection. These terms are conventionally called the elite terms and clearly,
such a term has a high term frequency in the document in question but low document
frequency.

For a query q and a document d, s(q, d) gives a score to d to indicate how important it
is to the query q. Both q and d are actually a string of individual terms. BM25 assumes a
bag-of-word approach which ignores any relation between the terms in a document or
a query, and hence each query term is processed independently as a single term query.
Thus assuming s(w, d) assigns a score to d with respect to w, one has:

s(q, d) = ∑
w∈q∩d

s(w, d)

To score a document with respect to a term, [Robertson and Walker, 1994] considered
three components:
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1. From the observation above, it can be said that the importance of term w in document
d is proportional to the term frequency of w in d (denoted by td

w). But different
documents in the collection have different lengths and thus raw occurrences are
normalized and following is the term frequency factor considered:

(k1 + 1)× td
w

k1

(
(1− b) + b ld

lavg

)
+ td

w

where ld is the length of document d, lavg is the average document length in the
collection and k1 and b are two free parameters.

2. Again from the observation above, it can be said that the importance of term w is
inversely proportional to the document frequency of w (denoted by Nw). Taking into
account this fact and assuming a 2-Poisson mixture model for elite and non-elite
terms, [Robertson and Walker, 1994] derived the inverse document frequency factor:

ln
(N −Nw + 0.5
Nw + 0.5

)

where N is the number of documents in the collection.

3. Finally, the score is weighted by the number of occurrences of the term w inside the
query q itself (denoted by tq

w). But here also the raw occurrence is normalized as
following:

(k3 + 1)× tq
w

k3 + tq
w

where k3 is a free parameter.

Combining all the components the score of document d for query q calculated by BM25

thus becomes:

s(q, d) = ∑
w∈q∩d

(k3 + 1)× tq
w

k3 + tq
w

(k1 + 1)× td
w

k1

(
(1− b) + b ld

lavg

)
+ td

w

ln
(N −Nw + 0.5
Nw + 0.5

)
(1.2.1)

Now, to successfully deploy BM25 one has to properly fix its free parameter values. We
will discuss the details of that in Section 1.3.

1.2.2 Language Models

Language modeling approach proposed by Ponte and Croft [Ponte and Croft, 1998] as-
sumes that a query q is close to a document d if and only if q can be generated using the
language model associated to d. Formally, assuming a query q = {wq

1, . . . , wq
K} and a
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document d = {wd
1, . . . , wd

n}, the goal is to estimate the probability that language model
of d can generate the observed query q, P(d|q). Applying Bayes’ rule one has:

P(d|q) = P(q|d)P(d)
P(q)

Here P(q|d) is the conditional probability of the query q given the document d, P(d) is
the a priori probability that d is relevant and P(q) is the a priori probability that q can be
generated. For any query, the quantity P(q) is equal for all the documents in the collection,
thus does not affect the retrieval process. Moreover, one should not give any a priori
privilege to a particular document in terms of relevance, hence the distribution P(d) is
assumed to be uniform and no longer has any effect on the retrieval process. Thus the
expression for language model reduced to P(q|d). Commonly, a unigram language model
is assumed which essentially means that given a document, the terms in the query are
independent from each other, thus giving:

P(q|d) =
K

∏
i=1

P(wq
i |d)

Lastly, assigning zero probabilities to documents where the term under consideration does
not occur poses a risk of vanishing the entire probability. Instead, for those documents,
the probability P(w|d) is assigned with the probability of presence of the term in the
collection, that is:

∀w ∈ q, w /∈ d, P(w|d) = cdP(w|C)
The normalizing factor cd = 1−∑w∈d P(w|d)

1−∑w∈d P(w|C) ensures that ∑w∈C P(w|d) = 1. With all necessary
components, now the query can be decomposed into the terms it contains:

ln P(q|d) =
K

∑
i=1

ln P(wq
i |d) = ∑

i:wi∈d
ln P(wq

i |d) + ∑
i:wi /∈d

ln
(
cdP(wq

i |C)
)

The expression ∑K
i=1 ln P(wq

i |C) can also be decomposed as following:

K

∑
i=1

ln P(wq
i |C) = ∑

i:wi∈d
ln P(wq

i |C) + ∑
i:wi /∈d

ln P(wq
i |C)

After substituting and rearranging one has:

ln P(q|d) = ∑
i:wi∈d

ln
(

P(wq|d)
cdP(wq|C)

)
+ Klncd +

K

∑
i=1

ln P(wq
i |C)

The last term of the above equation is independent of the documents and can be ignored
from the retrieval process. So the final form becomes:

ln P(q|d) = ∑
i:wi∈d

ln
(

P(wq|d)
cdP(wq|C)

)
+ Klncd (1.2.2)
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Now for a given query all the documents in the collection are ranked based on the score
ln P(q|d). This score can be calculated by estimating the probability P(wq|d). Commonly,
P(wq|C) estimated by the ratio of total number of occurrences of w in the collection C and
the size of the dictionary. There exist various methods to estimate P(wq|d), but here we
discuss the method using Dirichlet prior.

Maximum a posteriori method using Dirichlet prior assumes that a language model is
a multinomial distribution. In this method, the estimated probability is deduced to be
[Zhai and Lafferty, 2001]:

Pdir(w|d) =
td
w + µP(wq|C)

ld + µ
(1.2.3)

Here td
w is the term frequency of w in d, ld is the length of d and µ is a free parameter

called as smoothing parameter.

Another popular smoothing method is Jelinek-Mercer. But in this thesis we will use the
Dirichlet prior version of language model as it yields better results than the one based on
Jelinek-Mercer smoothing [Ponte and Croft, 1998, Zhai and Lafferty, 2004].

1.3 model parameters and how to deal with them

Like many mathematical models, IR models also have some free parameters. Proper
adjustment of the parameters allows the models to get adapted with the collections
they are applied on. The standard models we discussed in the previous sections also
have free parameters: b, k1 and k3 for BM25, smoothing parameter µ for language model
with Dirichlet prior. The values of the free parameters used in the models may be fixed
empirically or by educated guesses from previous experiences or even randomly. Here we
will discuss some strategies commonly used to set the parameter values.

1.3.1 Default Values

The most common setting is the one where the parameters are assigned to some “default”
values. Mostly these values are educated guesses and observed to perform well in various
experiments and thus it is assumed that they will perform reasonably well on new
collections as well.

As for example, in BM25 the parameter k1 (Eq. 1.2.1) controls the document term frequency
scaling, k1 = 0 signifies a binary model without any term frequency whereas a large
value means no normalization and raw term frequency. Keeping in mind the purpose of
variables (as well as by experiments), researches have determined that BM25 should work
well if k1 ∈ [1.2, 2] [Manning et al., 2008]. Similarly the suggested range for query term
frequency scaling parameter k3 is also [1.2, 2][Manning et al., 2008]. Lastly the parameter
b controls the scaling by document length and 0 ≤ b ≤ 1. b = 0 means no length
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normalization and b = 1 means complete term weight normalization by the document
length. Again, b is set to 0.75 by researchers which keeps partial balance (yet not full)
towards normalization by the document length [Manning et al., 2008].

The popular IR experimental simulation platform Terrier [Ounis et al., 2006] assigns:
b = 0.75, k1 = 1.2, k3 = 8 for BM25 and µ = 2500 for language models with Dirichlet prior.
Other IR platforms also assign similar default values to these parameters.

1.3.2 Parameter Tuning

Default parameter values generally perform reasonably well on any collection, but still they
cannot yield the best performance from the associated models. Setting these parameters
to a proper value for a particular collection has attracted attention from many researchers.
Many techniques have been developed to automatically set the parameter values. This
procedure is commonly referred to as parameter tuning. Parameters can be tuned in a
supervised or an unsupervised manner.

1.3.2.1 Supervised Tuning

Supervised tuning involves some relevance information on the collection. The values for
the parameters are searched to maximize the performance of the model (in terms of any
evaluation measure, e.g. MAP). This search can be either manual or automated e.g. linear or
grid search. Once the best parameter value is obtained, that value is used for the model.
But it will be a wrongful evaluation if the performance of the model is reported on a test
collection which is also used to tune parameters. One possible solution is to have one
or more validation collections on which parameters are tuned, and then the models are
tested on a separate test collection. This method is able to provide an unbiased estimate
of performance.

Let us assume that a collection C has a set of queries Q, and a model M is to be evaluated
on C. Suppose M has a free parameter p which needs to be tuned. Following are two
commonly used supervised parameter tuning techniques, among many, which use a single
collection both for tuning and performance evaluation, but also avoid the issue of wrongful
evaluation. Note that p can also be a set of parameters (e.g. for BM25, p = {b, k1, k3}), and
in those cases following methods can be applied separately on each of the parameters of
the set. But for simplicity reason, we here assume a single parameter.

k Fold Crossvalidation: The query set is sequentially partitioned into k disjoint subsets
Q1, . . . ,Qk each containing 1

k portion of all the queries. Sequential partition means
that Q1 contains the first 1

k portion of the queries from the original set Q, Q2
contains the second 1

k portion and so on. Of these k subsets, a single subset is
retained for testing the model, and the remaining (k− 1) subsets are used for tuning
the parameter p. For example, in the first step p is tuned using the queries of
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Q2 ∪Q3 ∪ . . . ∪Qk and the model M is evaluated on Q1 using the tuned value of p.
The tuning means searching a value for p from a range of possible values which will
maximize the performance of M on the tuning query set in terms of some evaluation
measure. Similarly, in the second iteration Q2 is retained for testing and rest is used
for tuning p and so on. This cross-validation process is repeated k times, with each
of the k subsets used exactly once for testing. Each time performance of M is noted.
After k folds, the average of the performance of M on all the subsets is reported.

Random Split: First the query set Q is split into two disjoint subsets Q1 and Q2, each
containing 50% of the queries. This split is done randomly, meaning those 50%
queries are selected randomly. Q1 is associated with the relevance judgments. The
parameter p is tuned on Q1 following a similar method as k fold crossvalidation. For
that p is assigned a value from a range of possible values and performance of M is
evaluated using Q1 on C. The range of values are searched for which performance of
M is maximized on Q1. Once the “best” value for p is identified, M is tested with that
value of p on the other set Q2. Note that relevance judgment on Q2 is not used for
tuning and only used for final evaluation. Often this procedure is repeated multiple
times and the average of the performances are reported.

Chapter 3 will discuss more about supervised approaches of parameter tuning. For
different experiments that we will conduct throughout this thesis, in Chapters 2 and 5 we
will use k fold crossvalidation assuming k = 5, in Chapter 3 we will use random split.

1.3.2.2 Unsupervised Tuning

Unlike supervised approaches, unsupervised parameter tuning methods try to fix parame-
ter values using only statistical information gathered from the collection and does not use
any relevance information. Unsupervised techniques mostly deploy statistical methods
like estimation. Being unsupervised, these techniques do not need any prior training and
commonly do not involve any learning at all. But these techniques are mostly developed
under a particular framework and tailored to estimate parameters in that framework only.

Notable work in this direction is “leave-one-out” likelihood estimation of smoothing
parameter µ of language model with Dirichlet prior [Zhai and Lafferty, 2004], expectation
maximization estimation of relevance feedback parameter [Tao and Zhai, 2006]. In Chap-
ter 2 we will develop an unsupervised parameter estimation method for the collection
parameter of information based models (described in Section 2.2).

1.4 heuristic retrieval constraints

IR models we presented here along with other probabilistic models are generally developed
under different frameworks. But interestingly they share some common hypothetical
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properties observed by the researchers. This enables these models to be expressed in
a single framework. These empirical hypotheses were first formalized by Fang et. al.
[Fang et al., 2004]. The conditions derived from the hypotheses lays a guideline of how a
good IR function should behave. When IR functions are analyzed and described through
these conditions, it is called axiomatic approach to IR.

[Clinchant and Gaussier, 2011] studied these conditions and expressed them in analytical
forms in terms of first and second order derivatives of the IR scoring function. These
analytical forms enable one to easily determine if a IR scoring function is satisfying the
hypothetical conditions. [Amini and Gaussier, 2013] summarizes these constraints.

An IR scoring function, also referred to as retrieval status value (RSV), scores a document
d with respect to a query q. Mostly each term in the query is assumed to be independent
of each other and the score of d for q is the sum of the scores d gets for all the terms
w ∈ q. As we have seen for standard IR models, a scoring function is a function of
several variables namely term frequency (td

w), a collection based statistics of w (generally
document frequency Nw), length of the document (ld) and a set of parameters (θ). Thus a
standard RSV can be written as:

RSV(q, d) = ∑
w∈q

a(tq
w)h(td

w,Nw, ld, θ)

Here a is a function of occurrences of w in the query and is usually set to the identity
function. h scores document d with respect to an individual query term w based on td

w,
Nw, ld, and θ. The form of h depends on the IR model considered.

The conditions are categorized into two categories. The first group of constraints defines
the general form of the function h, hence are called form conditions. Whereas constraints
from the second group aim to adjust the function h satisfying the form conditions by
regulating the interaction between term frequency and document length. Hence this
group is called adjustment conditions.

Four form conditions are as follows:

TF Effect aims to capture the fact that the documents with higher occurrences of the
query term is more important and should get a higher score. This gives that the
score h of a document d should increase with the number of occurrences of term w.
Analytically:

∀(Nw, ld, θ),
∂h
∂td

w
> 0 (TF Effect)

Concavity Effect suggests that the increase of score with td
w must be restricted for high td

w
values. As for example, the increase from 100 to 101 is much less significant than the
increase from 1 to 2, as the increase in first case is only 1% where as in the second
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case it is 100%. Mathematically this can be ensured by imposing a concave form on
the function h. Analytically:

∀(Nw, ld, θ),
∂2h

∂(td
w)

2 < 0 (Concavity Effect)

IDF Effect ensures that scores for very frequent terms in the collection are weighed down.
These terms occur in many documents and are most commonly used terms, thus
have little importance. Indeed these are the non-elite terms as described in BM25

framework (Section 1.2.1). Here the term IDF stands for inverse document frequency.
Hence the score h of document d must decrease when the associated term w has a
high document frequency. Analytically:

∀(td
w, ld, θ),

∂h
∂Nw

< 0 (IDF Effect)

One can note that, if document frequency is replaced by any other collection based
statistics of the term w (e.g. collection frequency), the same condition holds.

Document Length Effect takes into account the difference of length of the documents in
the collection. Suppose two documents of different length have the same number
of occurrences of the term w. Then the scoring function should penalize the longer
document over the shorter one as the longer one tends to cover additional irrelevant
topics. So the score h of d must decrease as length of d increases. Analytically:

∀(td
w,Nw, θ),

∂h
∂ld

< 0 (Document Length Effect)

In this thesis we will use above four form constraints and when developing scoring
functions (Chapter 5) we will ensure that these constraints are always satisfied. We will
also try to verify the effectiveness of these conditions for defining an IR scoring function
by empirically validating them (Section 5.6.1).

Though we will not explicitly use the adjustment constraints in this thesis, we briefly
mention here two of them defined by [Fang et al., 2004]:

1. Document Length Effect penalizes longer documents, whereas the first adjustment
constraint avoids over-penalizing long documents. It is defined as:

Let q be a query. ∀k > 1, if d1 and d2 are two documents such that
ld1 = k× ld2 and for all words w, td1

w > td2
w , then RSV(q, d1) ≥ RSV(q, d2).

This constraint ensures that redundancy within a document is not penalized. Sup-
pose a new document d2 is generated by concatenating document d2 k times with
itself, then the score of the new document d2 should not be lower than the original
d1.
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2. Suppose w is a query word, d1 and d2 are two documents. Let d1 be longer than
d2 and the excess length of d1 is caused by the query word w. Under this scenario,
document length effect will punish d1 for its higher length. The goal is to promote
the high occurrences of the query word w, and thus in this case one has to ensure
that d1 is not penalized just because it is longer. So a longer document must not be
penalized over a shorter document if the excess length is due to the occurrences of
the query term. This condition is defined as:

Let q = w be a single word query, if td1
w > td2

w and ld1 = ld2 + (td1
w − td2

w ),
then RSV(q, d1) > RSV(q, d2).

1.5 machine learning and ir

Machine learning pioneers the concept of automated learning from data with either small
or none manual intervention. Technically a learning algorithm is supplied with proper
representation of data (called feature vector) and sometimes with some training examples
to learn from or sometimes without any such examples. The first case where training data,
often in form of labels associated with the original data, are available is referred to as
supervised learning, whereas the later case is called unsupervised learning as no annotation
or label is available with the data for learning and the algorithm must learn on the run.

In IR the main goal is to distinguish, for a given query, the relevant documents from
non-relevant documents. Thus key IR processes can be seen as a classification task. Instead
of developing term and document frequency based scoring function by hand, there is a
possibility of defining retrieval as a classification task and deploying machine learning
tools to learn a scoring function. To do so, scores of different standard IR models can be
used as features in the learning problem and the classifier can be supplied with samples
of relevant and non-relevant documents for different queries on which the classifier can
be trained. Then this classifier can predict scores for different document for any unseen
query. Clearly this is a supervised approach and we briefly describe this approach in the
next section. Another popular approach is to apply supervised heuristic search techniques
like genetic algorithm and genetic programming to find an effective scoring function. We
will discuss this approach in Section 5.2.

Apart from the ranking itself, machine learning has been applied to other IR components,
such as collection fusion, user modeling, query formulation etc.

1.5.1 Learning to Rank

A traditional IR scoring function does not need any a priori training like learning functions
do. Once they are deployed (as for example BM25 in Eq. 1.2.1 or language model in
Eq. 1.2.3), they can start scoring the documents in the collection without any prior labeled
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data (relevance judgments). Though sometimes some labeled data is required to tune the
free parameters of these models (Section 1.3).

In contrast to these conventional approaches, learning to rank makes use of machine
learning tools to automatically learn a scoring function from a family of functions1. Of
course, to build such a scoring function some labeled information is needed first to train
the system. This approach is motivated by the increasing use of web-based search engines
where it is possible to easily accumulate users’ click through data which serve as relevance
information from which the system can be trained. Learning to rank approaches can also
be adopted for the ad hoc IR task by relying on various existing test collections (e.g. TREC).

Like all other supervised machine learning algorithms, learning to rank also has two
distinct phases, namely training and testing.

1.5.1.1 Training

Training data associates query, documents and some labels in the form of relevancy of
the documents to the queries. Relevancy (hence the labels) can be binary or graded.
Note that graded relevance can always be transformed into binary, but the opposite is
not true. Throughout this thesis we will only consider binary relevance. So the set of
labels is Y = {0, 1}, where 1 means relevant and 0 means non-relevant. Suppose Q is
a query set and D is a document set inside a collection C. For every pair (qi, dj), where
qi ∈ Q, dj ∈ D , there is a associated relevancy label yij ∈ Y . Thus the training set consists
of:

T = {
(
(qi, dj), yij

)
; qi ∈ Q, dj ∈ D , yij ∈ Y}

A feature vector is defined over the pair (qi, dj), denoted by f(qi, dj). In literature various
quantities are used as features. Three categories of features are considered when building
f(qi, dj): query independent features (e.g.d̃ocument frequency in collection), query related
features (e.g.l̃ength of the query) and features related to both query and document
(e.g.t̃erm frequency or scores of other standard IR models).

Once a (qi, dj) pair gets represented by a proper feature vector, the training set takes the
form based on the type of learning to rank algorithm to be used. [Liu, 2009] divided
different learning to rank approaches into three broad categories:

Pointwise approaches assume that every query-document pair has a ordinal score and
thus the ranking problem is formulated as regression problem which can provide
an absolute score to the query-document pair. Thus the training data for a query
document pair is of the form:

T = {
(
f(qi, dj), yij

)
; qi ∈ Q, dj ∈ D , yij ∈ R}

1 The learned function is normally a classifier capable of predicting classification probabilities which in turn is
used for ranking, thus is the name “learning to rank”.
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As ranking is now a regression problem, the relevance is a real score. Normally
higher the score, more the document dj is relevant to the query qi.

Pairwise approaches take document pairs and a pairwise classifier is trained by mini-
mizing the misordering of these document pairs and the trained classifier is used
to assign positive and negative labels of new document pairs to determine their
relative ranking. Goal of the trained classifier is to predict positive labels for those
document pairs whose first document is more relevant than the second one, and
to predict negative labels for other pairs. Suppose there is a pair of documents
d, d′ ∈ D and with respect to query qi ∈ Q, the document d is more relevant than
the document d′. Commonly the assciation between the pair (d, d′) and the query
qi is represented as the difference between the feature vectors f(qi, d) and f(qi, d′).
The feature vector f(qi, d)− f(qi, d′) is thus assigned a positive label and the feature
vector f(qi, d′)− f(qi, d) is assigned a negative label. Training data for a pairwise
algorithm takes the form:

T =

{
((f(qi, d)− f(qi, d′)) ,+1) ;
((f(qi, d′)− f(qi, d)) ,−1) ;

qi ∈ Q, (d, d′) ∈ D
}

[Joachims, 2002] used support vector machine (SVM) to classify the order of pairs of
documents and utilize the classifier in the ranking task. This version of SVM using
pairwise approach is popularly known as RankingSVM.

Listwise approaches consider the entire ranking list of each query both for training and
prediction. One sub-category of these algorithms considers rank list of all documents
associated with a query along with their degrees of relevance or scores and tries
to directly optimize widely used IR evaluation measures. An alternative approach
considers different permutations of the documents associated with a single query.
Here the loss function measures the discrepency between a given permutation with
the ground truth permutation. These algorithms can distinguish between documents
in the ranking list of different queries and their positions in the list.

With the training set in hand, now the goal is to learn a scoring function h(q, d) which can
assign a score to a feature vector f(q, d) which is also considered as the score given to the
pair (q, d) itself. For this step any standard regressor or classifier can be used.

1.5.1.2 Testing

Let qnew is an unseen query, and qnew /∈ Q. For qnew the documents of set D have to be
ranked. A test set is prepared from the feature vectors in accordance with the algorithm
used for learning. In case of both pointwise and pairwise algorithms, for all pairs of the
form (qnew, dj), where dj ∈ D the test set is of the form:

S = {f(qnew, dj); dj ∈ D}
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Every pair in the test set is given a score using the learned scoring function h. For
pointwise algorithms h is a regressor function whereas for pairwise algorithms it is a
classifier. The pairs are sorted based on the scores and a ranking list is prepared from the
associated documents obtained from the sorted pairs.

Detailed literature surveys about these three approaches are discussed in Section 4.2. In
Chapter 4 we will develope a pairwise learning to rank algorithm which also uses the
concept of transfer learning, described in the next section.

1.5.2 Transfer Learning

Most machine learning algorithms are trained and used on data with the same underlying
distribution and representation, whereas real world applications often involve data for
which the distribution and representation change over time. Technically those data is
referred to as a different domain. As for example, an object recognition algorithm trained
on some commercial photos of objects, suppose from Amazon, seldom works well on
images of the same objects but taken with low quality cameras, suppose by customers
[Saenko et al., 2010]. Transfer learning is deployed to alleviate this type of situations. For a
given learning task and two source and target domains, algorithms under this paradigm
aims to improve the performance of the predictive function on the target by using labeled
instances from source domain. The predictive function can either be learned directly
on the source and then adapted to be used in the target domain, or the source labeled
information can be represented in the target domain and the predictive function is learned
in the target domain. Transfer learning is defined by [Pan and Yang, 2010] as:

Given a source domain Ds and learning task Ts, a target domain Dt and a
learning task Tt, transfer learning aims to help improve the learning of the
target predictive function ht(.) in Dt using the knowledge in Ds and Ts, where
Ds 6= Dt, or Ts 6= Tt.

Based on this definition, [Pan and Yang, 2010] categorized transfer learning approaches
into three categories:

Inductive Transfer Learning. Under this setting, source and target tasks are different
(Ts 6= Tt), irrespective of the status of the source and target domains. Here some
labeled data in the target domain is necessary to induce the predictive function h(.)
to be applied in the target domain.

Transductive Transfer Learning. The opposite of the previous case is considered in this
setting where the source and target tasks are identical but the domains are dif-
ferent (Ds 6= Dt) [Arnold et al., 2007]. Here no labeled data in the target do-
main is available. Source and target domains can differ in two ways: the feature
space between them are different and the knowledge transfer is instance based
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[Sugiyama et al., 2008], or the feature space is same but the data distributions are
different and the knowledge transfer is feature based [Blitzer et al., 2008]. The later
case is popularly known as domain adaptation in literature.

Unsupervised Transfer Learning. Lastly, this setting focuses on unsupervised learning
tasks in the target domain, as for example clustering. Here source and target tasks
are different but related. Like all unsupervised learning problems, in this case also
neither source nor target domain contains any labeled data.

1.5.2.1 Transfer Learning applied to IR

In the field of IR, a domain is essentially a collection and the knowledge that needs to
be transferred is the relevance judgments. The learning task for both source and target
domains is ranking, and one has Ts = Tt. In the normal learning to rank setup described
above in Section 1.5.1, one has a collection C, some training queries Q with relevance
judgments and a document set D on which a scoring function h(.) is learned. Then h(.) is
applied to a new query qnew /∈ Q to rank documents from the same document set D in
the same collection C. Thus one must have some annotated data (in the form of relevance
judgments) on C to deploy a learning to rank algorithm. If a new collection is obtained or
even if the old collection is modified, for example by introduction of new documents, the
learned function needs to be retrained from scratch and for that new annotations have to
be created to build new training data.

Now, instead of one single collection, we have two collections, namely source collection
Cs and target collection C t. Cs has a query set Qs and a document set Ds, and for every
query document pair in the source collection (qs

i , ds
j ) there is an associated relevance label

ys
ij ∈ Y . Here Y = {0, 1} is the set of binary relevance labels. By representing the (qs

i , ds
j )

pairs using some feature vector f, one can define a training set just like a normal learning
to rank setting (Section 1.5.1):

T = {
(

f(qs
i , ds

j ), ys
ij

)
; qs

i ∈ Qs, ds
j ∈ Ds, ys

ij ∈ Y}

The target collection C t has a document set Dt. For a new query qt
new intended on C t,

the aim is to rank documents in Dt. But in contrast with source, the target collection
do not have any labeled data (or relevance judgments). In general transfer learning
framework, the feature space of source domain may be different than the target domain.
We here assume that the same feature vector f can be calculated on the source as well
as on the target collection, as three catogories of features mentioned in Section 1.5.1 can
be computed from basic collection statistics of any collection irrespective of different
dictionaries and different word distributions of those collections. Thus the training set
becomes:

S = {f(qt
new, dt

j); dt
j ∈ Dt}
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Going by the definition of transfer learning and the fact that here the learning task for
both source and target domains is same, which is ranking, we can apply transfer learning
when Cs 6= Ct. Moreover, as the feature space of both source and target domains is same,
the problem of ranking falls under the category of domain adaptation and feature based
transductive transfer learning.

The transfer learning paradigm is mainly developed for classification and regression tasks.
In Chapter 3 we will use transfer learning for regression whereas in Chapter 4 we will
apply transfer learning for classification or more precisely for the ranking task. The set up
and framework of each of these tasks are detailed in those chapters.

1.6 research questions

We here concentrate on two major directions for IR research, firstly to improve already
existing IR models through proper tuning of the associated free parameters, and to learn
new IR models.

Researchers have explored both avenues of parameter tuning, supervised as for ex-
ample in [Taylor et al., 2006, Lv and Zhai, 2009] and unsupervised as for example in
[Zhai and Lafferty, 2004, Tao and Zhai, 2006]. As most unsupervised approaches are de-
signed for a particular framework, for a newly developed model these models are not
applicable. Thus one has to develop one such parameter estimation technique from scratch
using basic statistical theories.

One such newly developed IR framework is the family of information based models
[Clinchant and Gaussier, 2010] which relies on a parameter named collection param-
eter (details in Section 2.2) that directly impacts the performance of the model. In
[Clinchant and Gaussier, 2010], very little was explored regarding this parameter, which
gives rise to an obvious question, is it possible to tune this parameter on collections
without relevance judgments? This is realistic as one may want to deploy the model on a
new collection where no relevance judgment is available.

Unsupervised techniques for parameter tuning mostly rely on statistical methods devel-
oped under a particular IR framework. Technique developed for one framework is not ap-
plicable to another. As for example the model which was developed to predict smoothing
parameter of language model using “leave one out estimation” in [Zhai and Lafferty, 2004]
cannot be applied to predict collection parameter for information based models. This
again turns the focus towards supervised approaches, which use relevance judgments
to tune parameters and work for any parameter of any IR model. If one wants to tune
parameters of an IR model on a new collection where no relevance judgment is available,
these supervised tuning methods do not work anymore. Creating relevance judgment
for a new collection is not an easy solution either. It involves manual effort and thus
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very expensive and tedious task [Carterette, 2007]. Thus is it possible to tune IR model
parameters without any relevance judgment?

To answer this question, a machine learning paradigm namely transfer learning (Section
1.5.2) is explored which studies the “transfer” of labeled information from source domain
to a target domain. Application of this paradigm enables one to utilize already available
relevance information on past collections (as TREC collections) to tune or learn param-
eters which can be applied to new collections. But different collections have different
vocabularies and different word distributions. Tuning on one collection and applying on
another may not help directly. Then how can one use the parameter values tuned in one
collection (with the relevance judgments) on another? One solution is to represent the
source and target queries in the space where they no longer depend on word distribution
or dictionary of the individual collections. This helps in two aspects, firstly it enables
the transfer of tuned parameter values from source to target collection, and it sets the
parameter values for each separate query (unlike commonly used tuning methods like k
fold or “random split”, where a single parameter value is set for an entire set of queries)
thus giving the models the possibility to adapt at a finer granularity.

Beyond the transfer of tuned parameter values through a common representation space
of queries, one can ask whether it is possible to transfer the relevance information for
the learning to rank framework? This can be solved in two slightly different strategies.
The first one is to learn a ranking model in the source collection using the relevance
judgments and then to transfer the model so that it can adapt to the target collection.
[Gao et al., 2010, Cai et al., 2011b] showed that this is indeed possible. But the drawback
is that the learned model depends too much on the source collection. If not transferred
from a suitable source, the model may not work well on a target collection. This leaves
another possibility, which is to transfer the relevance information from source to target
collection, that is to build some “pseudo-relevance” on the target based on the source
collection, then train a model on target collection using this pseudo-relevance information.
This should not be sensitive to the selection of the source collection and, as nothing
is modified within the learning algorithm, it is possible to apply any learning to rank
algorithm out of the box.

In practice learning to rank is very effective [Liu, 2009] and if deployed properly it can
learn good ranking functions. But those learned functions will always remain in a
predefined format depending on the learning algorithm used. As for example, for ranking
SVM the form the function will be related to the kernel used (linear, polynomial, Gaussian
etc.). The learning algorithm only learns optimized weights to different variables laid
out in the predefined format. Thus is it possible to learn a function where there is no
restriction on its form? In other words can new IR functions be generated using some
basic variables and operations? This form of learning can be called “discovery”, because it
is equivalent to searching a function from the function space. Due to the huge (potentially
infinite) dimension of this space, the intuitive solution is some heuristic search technique.
Evolutionary approaches as genetic algorithm [Gordon, 1988] and genetic programming
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[Fan et al., 2000] can be used here, but they are bound not to consider some valid and
may be interesting functions. So the question that arises here is, is it possible to explore
the function space exhaustively? [Maes et al., 2011] proposed an intelligent exhaustive
discovery approach to find good solution for famous multi-arm bandit problem which can
be applied to find IR scoring functions as well. This exhaustive approach helps to explore
simpler yet effective functions. As these functions are generated without any restriction
on their form, they are not so easy to interpret theoretically. Thus this method can find
functions which cannot be developed from theoretical intuitions.

In a nut-shell, the research questions that we attempt to answer in this thesis can be
summarized as:

1. How to set the value of the collection parameter of information based models?

2. Is it possible to transfer parameter values of standard IR models tuned on past
labeled collections to a new collection without any relevance judgments?

3. Is it possible to learn new IR functions on collections without any relevance judg-
ments by transferring the relevance information from past labeled collections?

4. Is it possible to exhaustively search the function space in order to discover new
effective IR functions?

1.7 thesis outline and contributions

This thesis distinctly explores two different problem areas and is thus divided into two
parts. Part I (Chapters 2 and 3) deals with the problem of identifying proper parameter
values for different IR models either by unsupervised or by supervised methods. Part II
(Chapters 4 and 5) concentrates on learning new IR functions either by applying learning
algorithms or by simply intelligently generating new functions from basic variables and
operations.

In order to venture different possibilities of unsupervised parameter tuning, we concen-
trated on the collection parameter of the information based model. In Chapter 2 we
explore various methods to estimate the collection parameter of the information based
models for ad hoc information retrieval (described in Section 2.2). In previous studies,
this parameter was set to the average number of documents where the word under con-
sideration appears. We introduce here a fully formalized estimation method for both the
log-logistic and the smoothed power law models that leads to improved versions of these
models in IR. Furthermore, we show that the previous setting of the collection parameter
of the log-logistic model is a special case of the estimated value proposed here.

Though the methods of Chapter 2 are able to estimate the value of the collection parameter
successfully, they are not applicable to estimate other parameters, for example, free
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parameters of different models. In Chapter 3 we present a new method based on the
transfer learning paradigm to predict the values of the parameters of standard IR models
on new collections (target collection) without any relevance judgments, by using already
available relevance judgments on some other collections (source collections). This learning
is achieved by first mapping queries (with and without relevance judgments, from different
collections, potentially in different languages) into a common space corresponding to
the feature space of a positive definite symmetric kernel between queries. Standard
kernel regression functions, as kernel support regression, can then be used to learn a
mapping between queries lying in the kernel induced feature space and IR parameter
values. We furthermore introduce a simple positive definite kernel from which one can
develop more complex kernels. Our experiments, conducted on standard English and
Indian IR collections, show (a) that there is no significant difference between the different
kernels considered, (b) that the versions of the standard IR models we obtain not only
outperform the versions with default parameters, but can also outperform the versions
in which the parameter values have been optimized globally over a set of queries with
target relevance judgments (even though no target relevance judgments are used in the
method we propose), and (c) that our approach is collection and language independent
and can be used to efficiently tune, query by query, standard IR models to new collections,
potentially written in different languages.

Application of transfer learning in a regression task to learn parameter values inspired
us to explore the possibilities of directly transferring relevance information between
collections, which brings us to Part II of the thesis. In Chapter 4 we propose a general
approach to learn a ranking function on a target collection without relevance judgments by
transferring knowledge from a source collection having such information. The relevance
information in the source collection is summarized in a grid that provides, for each term
frequency and document frequency values of a word in a document, an empirical estimate
of the relevance of that document. We then, propagate this information from a source to a
target collection using the grid and obtain a first pool of pairwise preferences over the
pairs of documents in the latter. The algorithm then iteratively learns a ranking function
on the target collection and assigns pairwise preferences to its documents using the scores
of the learned function. Our approach can be coupled with easy in hand transfer strategies,
and we further propose a simple source selection procedure in order to choose the best
associated source collection for each query in a target dataset. We show the effectiveness
of our approach through a series of extensive experiments which proved that the proposed
approach yields results consistently and significantly above state-of-the-art IR functions as
well as a state-of-the-art transfer ranking approaches.

The functions learned in Chapter 4 assumes a predefined form based on the learning
algorithm used. At this point we ask the question if it is possible to learn new IR scoring
functions which does not assume any predefined form. In Chapter 5 we develop an
approach to search and discover functions for IR ranking from a space of simple functions.
In general all IR ranking models are based on two basic variables, namely, normalized
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term frequency and document frequency. Here a grammar for generating all possible
functions is defined which consists of the two above mentioned variables and basic
mathematical operations and functions: addition, subtraction, multiplication, division,
logarithm, exponential and square root. The large set of functions generated by this
grammar is filtered by checking mathematical feasibility and satisfiability to heuristic
constraints on IR scoring functions proposed by the community. Obtained candidate
functions are tested on various standard IR collections and several simple but promising
scoring functions are identified. We show that these newly discovered functions are
outperforming other state-of-the-art IR scoring models through extensive experimentation
on several IR collections. We also compare the performance of functions satisfying IR
constraints and those which do not, where the earlier set of functions clearly outperforms
the later set. In doing so we also empirically validate these constraints.

Finally Chapter 6 summarizes the contributions of this thesis and discusses possible
perspectives obtained from the thesis.



Part I

Predicting IR Model Parameters on
Unlabeled Collections
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2
E S T I M AT I O N O F T H E C O L L E C T I O N PA R A M E T E R
O F I N F O R M AT I O N M O D E L S

In this chapter we explore various methods to estimate the collection parameter
of the information based models for ad hoc information retrieval. In previous
studies, this parameter was set to the average number of documents where
the word under consideration appears. We introduce here a fully formalized
estimation method for both the log-logistic and the smoothed power law
models that leads to improved versions of these models in IR. Furthermore,
we show that the previous setting of the collection parameter of the log-logistic
model is a special case of the estimated value proposed here.

2.1 introduction

Clinchant and Gaussier [Clinchant and Gaussier, 2010] introduced the family of information-
based models for ad hoc information retrieval. One of the main ideas behind this family
of models is based on the information content of a term, which measures how much a
term deviates in a document from its average behavior in the collection. The more a
term deviates in a document from its average behavior in the collection, the more likely
it is significant or informative for this particular document. The retrieval status value of
a document is then computed as the weighted average of information content of the
query terms present in the document. To describe the average behavior of a term w, a
“bursty” probability distribution with a single parameter λw is introduced, describing
the distribution of term w in the collection. We call λw collection parameter of w as it
regulates the way term w behaves in the collection, given the probability distribution. In
[Clinchant and Gaussier, 2010], λw was simply set to the average number of documents
where the word w appears, without much justification, except from the fact that such a
setting allows the obtained model to satisfy the IDF effect [Fang et al., 2004].

We explore in this chapter different theoretical frameworks to estimate the collection
parameter of information-based models, focusing on the two probability distributions
proposed in previous work for this framework, namely the log-logistic distribution and the
smoothed power law distribution. The estimation we finally propose is theoretically well
motivated, provides an explanation to the setting used before and yields state-of-the-art
performance in ad hoc information retrieval.

25
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Using statistical methods to estimate model parameters is not novel in the field of IR.
[Zhai and Lafferty, 2001] considered “leave-one-out” likelihood method to estimate Dirich-
let prior smoothing parameter µ, and [Tao and Zhai, 2006] used regularized expectation
maximization method to estimate the balance parameter of relevance feedback on language
models. Similarly, here we aim to develop estimation techniques under the information
model framework that will be able to predict the collection parameter λw defined under
this framework.

We first present in section 2.2 a brief overview of information models and the role played
by the collection parameter. In section 2.3, various estimation techniques are explored for
estimating the collection parameter λw. Section 2.4 provides the experimental details and
2.5 experimentally validates the models with their collection parameter estimated properly.
These experiments show that when the collection parameter is properly estimated, a gain
in performance is obtained.

2.2 information models and collection parameter

In this section we will give a short overview of the Information-based models proposed by
[Clinchant and Gaussier, 2010] and the probability distributions associated to it. We will
also derive the formal constraints for these probability distributions based on the heuristic
IR constraints (described in previous chapter Section 1.4), that needs to be satisfied by the
estimation functions. The notations used in this chapter are summarized in table 1. Here
w represents a term.

Notation Description
td
w term frequency of term w in document d

tq
w number of occurrences of term w in query q

xd
w normalized version of term frequency of w in d

ld length of document d in number of terms
lq length of document q in number of terms
lavg average document length in the collection
N number of documents in the collection
Nw number of documents in the collection that contains w,

Nw = ∑d I(td
w > 0)

Table 1: Notations

2.2.1 Information Model

The term information in information models, means Shannon information. If the behavior
of a term w in a document d is as expected by its behavior in the whole collection, the
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probability of occurrence of w in the document, p is high. So the Shannon information of
w in the document, − log(p) is low. But, the word w is more informative for a document
if p is low with respect to the collection distribution. Based on this theory, the retrieval
status value, which scores a document d with respect to a query q, of information based
models is formulated as:

RSV(q, d) =
1
lq

∑
w∈q∩d

−tq
w log P(Xw ≥ xd

w|λw)

This ranking function calculates the mean information the document d brings to the query
q. Equivalently it calculates the mean of the document information brought by each query
term. Since the term 1

lq is same for all the documents, it does not affect the ranking and
hence can be dropped. Thus the above RSV takes the following form:

RSV(q, d) = ∑
w∈q∩d

−tq
w log P(Xw ≥ xd

w|λw) (2.2.1)

Different components of this model are as follows:

1. xd
w is a normalization function depending on the term frequency td

w, of w in d,
and on the length, ld, of d. This is because in IR, documents which are com-
pared and ranked are of different lengths. So, in almost all IR models, instead of
taking raw term frequency values the normalized versions are used. Following
[Clinchant and Gaussier, 2010], in this work it is defined as:

xd
w = td

w log
(

1 + c
lavg

ld

)
(2.2.2)

where c is the smoothing parameter.

2. P is a probability distribution defined over a random variable, Xw, associated to
each word w. This probability distribution must be:

- Continuous, the random variable under consideration, xd
w, being continuous;

- Compatible with the domain of xd
w, i.e. if xmin is the minimum value of xd

w,
then P(Xw ≥ xmin|λw) = 1;

- Bursty, i.e. representing the property that when a word occurs in a document,
it is much likely to appear again. Formally it should be such that:
∀ε > 0, gε(x) = P(X ≥ x + ε|X ≥ x) is strictly increasing in x;

3. λw is a collection-dependent parameter of P, set in [Clinchant and Gaussier, 2010]
to λw = Nw

N . We want in this study to provide a sound estimation for this parameter.
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2.2.2 Information Model and Heuristic IR Constraints

Heuristic retrieval constrains proposed by [Fang et al., 2004] are conditions that a good IR
functions should satisfy. These constraints are descried in Section 1.4.

From the definition of xd
w (Eq. 2.2.2) it can be clearly deduced that:

∂xd
w

∂td
w

> 0;
∂xd

w
∂ld

< 0;
∂2xd

w

∂(td
w)

2 ≥ 0

For the information model family h = log P(Xw ≥ xd
w|λw).

- Indeed P(Xw ≥ xd
w|λw) is a decreasing function with respect to xd

w. Thus:

∂P
∂xd

w
< 0⇒ ∂h

∂xd
w
> 0

Since we have ∂xd
w

∂td
w
> 0, we can deduce ∂h

∂xd
w
> 0 by applying chain rule for derivatives,

giving that h satisfies TF effect.

- As mentioned above, P is a bursty distribution. [Clinchant and Gaussier, 2010]
presented that a bursty distribution like P always satisfies ∂2P

∂(td
w)

2 > 0, thus giving
∂2h

∂(td
w)

2 < 0. This proves that h satisfies the concavity effect.

- Again applying chain rule for derivatives:

∂h
∂ld

=
∂h

∂xd
w

.
∂xd

w
∂ld

We already have ∂h
∂xd

w
> 0 and ∂xd

w
∂ld

< 0, hence it can be said that ∂h
∂ld

< 0. So, h satisfies
document-length effect as well.

The fourth important effect, the IDF effect, has to be enforced by the setting of λw. In the
next section we discuss this constraint in light of λw.

2.2.3 IDF Effect and λw

IDF effect stipulates that while assigning a retrieval score to a document, there should be
a constraint to weigh down the effect of those terms on the scoring which have a high
document or collection frequency, as these terms have lower discrimination power. The
IDF effect is satisfied only with a proper choice of λw. So here we formalize a constraint
based on IDF effect which must be followed by λw .

For information model family h = −logP(Xw ≥ xd
w|λw). The IDF effect ensures that

∂h
∂Nw

< 0, which again implies ∂P
∂Nw

> 0. Now P is a function of λw and in turn λw is a
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function of Nw (Section 2.2.1), as it gets estimated by a suitable technique. Henceforth the
notation λw is treated as a function which actually estimates the collection parameter. So,
we can write:

∂P
∂Nw

=
∂P

∂λw
.
∂λw

∂Nw

But, we have ∂P
∂Nw

> 0. Hence, the IDF effect becomes:

∂P
∂λw

.
∂λw

∂Nw
> 0 (2.2.3)

Above is the form of IDF effect which the estimation function λw must follow. If P
decreases with the parameter λw, then the estimation function must decrease with Nw.
On the other hand if P increases with parameter λw, then the estimation function must
also increase with Nw.

2.2.4 Probability Distributions in Information Models

As one can note, Equation 2.2.1 computes the information brought by the document
on each query word (− log P(Xw ≥ xd

w|λw)) weighted by the importance of the word
in the query ( tq

w
lq ). In order to define a proper IR model, one needs to choose a partic-

ular bursty distribution. Two such distributions have been proposed and studied by
[Clinchant and Gaussier, 2010], and we will rely on them here. These are the log-logistic
and smoothed power law distributions. In this section we derive the forms of IDF effect
for these distributions which must be followed by any estimation method.

2.2.4.1 Log-logistic Distribution

Log-logistic distribution, denoted by LGD, is a power law distribution which is also bursty.
For X ≥ 0, LGD is defined by:

PLGD(X < x|r, β) =
xβ

xβ + rβ

where β is the shape parameter and r is the scale parameter. [Clinchant and Gaussier, 2010]
considered a restricted form, where β = 1. The distribution takes the following form,
where the collection parameter λw = r.

PLGD(X ≥ xd
w|λw) =

λw

xd
w + λw

To check the nature of PLGD with respect to λw, we take the following derivative:

∂PLGD

∂λw
=

(xd
w + λw)− λw

(xd
w + λw)2

=
xd

w

(xd
w + λw)2 > 0 [ ∵ xd

w > 0, λw > 0 ]
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So, for log-logistic distribution the IDF effect becomes:

∂λw

∂Nw
> 0 (2.2.4)

i.e. the estimation function should be an increasing function of Nw.

2.2.4.2 Smoothed Power-Law Distribution

Smoothed power-law distribution, denoted by SPL is also a power law distribution which
is bursty. For X > 0, SPL is defined as:

PSPL(X > xd
w|λw) =

(λw)
xd

w
xd

w+1 − λw

1− λw
, (0 < λw < 1)

To check the nature of PSPL with respect to λw, we take the following derivative:

∂PSPL

∂λw
=

( xd
w

xd
w+1 (λw)

− 1
xd

w+1 − 1
)
(1− λw) +

(
(λw)

xd
w

xd
w+1 − λw

)

(1− λw)2

It is given that 0 < λw < 1. So the term (1− λw) is always positive, as is (1− λw)2. Now
let,

f (λw) =
( xd

w

xd
w + 1

(λw)
− 1

xd
w+1 − 1

)
(1− λw) +

(
(λw)

xd
w

xd
w+1 − λw

)

=
xd

w

xd
w + 1

(λw)
− 1

xd
w+1 (1− λw) + (λw)

xd
w

xd
w + 1

− 1

∂ f
∂λw

= f ′(λw) = − xd
w

(xd
w + 1)2 (λw)

− xd
w+2

xd
w+1 (1− λw)−

xd
w

xd
w + 1

(λw)
− 1

xd
w+1 +

xd
w

xd
w + 1

(λw)
− 1

xd
w+1

= − xd
w

(xd
w + 1)2 (λw)

− xd
w+2

xd
w+1 (1− λw)

Since, xd
w > 0, xd

w
(xd

w+1)2 > 0. It is also given that 0 < λw < 1. So, the terms (λw)
− xd

w+2

xd
w+1

w

and 1− λw > 0 are also positive. Hence, f ′(λw) < 0 which implies that f (λw) is strictly
decreasing with respect to λw. Now, f (0) = −1 and f (λw) is strictly decreasing. This
concludes that, for λw ∈ (0, 1), f (λw) is always negative.

We have, ∂PSPL
∂λw

= f (λw)
(1−λw)2 . For λw ∈ (0, 1), the denominator is always positive and

numerator is always negative. Hence, ∂PSPL
∂λw

< 0.

For smoothed power law distribution the IDF effect becomes:

∂λw

∂Nw
< 0 (2.2.5)

i.e. the estimation function should be a decreasing function of Nw.
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2.3 estimation of the collection parameter

We review here three important methods for estimating the collection parameter λw on
the basis of idf effect derived in the previous section. Firstly, most widely used and
standard method, maximum likelihood estimation, which in this case fails to yield any valid
estimate for both distributions. Secondly, Kaplan-Meier estimation, used mainly in survival
analysis, also fails to yield any valid estimate for smoothed power law distribution.
Lastly, generalized method of moments, which is able to estimate the parameters for both
distributions.

2.3.1 Maximum Likelihood Estimation

Maximum likelihood is a standard choice for estimating the parameters of probability
distributions. However, this method does not always yield an estimate as the likelihood
may be maximum at the bounds of the definition domain of the parameter. If the bounds
are not valid values for the parameter, then the estimate is undefined. This is exactly what
happens here for both the log-logistic and smoothed power law distributions.

2.3.1.1 Log-logistic Distribution

For the log-logistic distribution, the probability density function is given by:

PDF(λw, xd
w) =

1
λw

(1 + xd
w

λw
)2

=
λw

(xd
w + λw)2

Thus likelihood function of log-logistic distribution is:

L(λw, Xw) = log ∏
d

λw

(xd
w + λw)2

= ∑
d

log
λw

(xd
w + λw)2

= N log λw −∑
d

2. log(xd
w + λw)

The word w is present in Nw documents. So for N −Nw documents xd
w = 0. So the above

expression can be decomposed into two parts:

∑
d

2. log(xd
w + λw) = ∑

d|xd
w>0

2. log(xd
w + λw) + ∑

d|xd
w=0

2. log(xd
w + λw)
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Clearly, the expression ∑d|xd
w>0 2. log(xd

w + λw) contains Nw terms and the expression
∑d|xd

w=0 2. log(xd
w + λw) contains N −Nw terms. For any λw, we have:

∑
d|xd

w=0

2. log(xd
w + λw) = 2.(N −Nw) log λw

Replacing the values in the log-likelihood of LGD:

L(λw, Xw) = N log λw − 2.(N −Nw) log λw − ∑
d|xd

w>0

2. log(xd
w + λw)

= (2Nw −N ) log λw − 2 ∑
d|xd

w>0

log(xd
w + λw)

If the documents frequency of w is below half the number of documents in the collection,
that is Nw < N

2 , then L(λw, Xw) is maximized when λw → 0. In practice, Nw < N
2 for

most of the terms, and the maximum likelihood estimation method does not yield any
valid estimate.

2.3.1.2 Smoothed Power Law Distribution

Log likelihood of smoothed power law is:

L(λw, Xw) = log ∏
d

[− log λw

1− λw

(λw)
xd

w
xd

w+1

(xd
w + 1)2

]

= −N log
log λw

1− λw
+ ∑

d
log

(λw)
xd

w
xd

w+1

(xd
w + 1)2

= −N log log λw + N log(1− λw) + ∑
d

[ xd
w

xd
w + 1

log λw − 2 log(xd
w + 1)

]

Taking derivative of L(λw, Xw) with respect to λw:

∂L
∂λw

= L′(λw, Xw) = −N
1

log λw

1
λw
− N

1
1− λw

+ ∑
d

xd
w

xd
w + 1

1
λw

=
1

λw

[
− N

1
log λw

− Nλw

1− λw
+ ∑

d

xd
w

xd
w + 1

]

Now equating L′(λw, X) = 0 to find the value of λw where the likelihood is maximum:

1
λw

[
− N

1
log λw

− Nλw

1− λw
+ ∑

d

xd
w

xd
w + 1

]
= 0

=⇒ −N
1

log λw
− Nλw

1− λw
+ ∑

d

xd
w

xd
w + 1

= 0 [ ∵ λw > 0 ]

=⇒ λw

1− λw
=

1
N ∑

d

xd
w

xd
w + 1

− 1
log λw
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Let, g(λw) = λw
1−λw

and h(λw) = − 1
log λw

= −(log λw)−1. For a particular term xd
w is

constant. So, c = 1
N ∑d

xd
w

xd
w+1 is also a constant. The above equation can be written as:

g(λw) = c + h(λw)

Given that the range of λw is (0, 1). g(λw) and h(λw) both increases from 0 to ∞ as λw

goes from 0 to 1. So, c + h(λw) goes from c to ∞ as λw goes from 0 to 1. Figure 3 shows
how g(λw) and c + h(λw) behaves as λw goes from 0 to 1.

λw

g(λw)

c+ h(λw)

0 1

0

∞

c

∞

Figure 3: Nature of g(λw) and = c + h(λw).

If g(λw) and c + h(λw) crosses each other, the equation will have a solution for λw. For
that we need to show that for at least one value of λw, g(λw) > h(λw).

We start with the following standard logarithmic inequality:

log(1 + p) >
p

p + 1

By replacing p by p− 1:

log p >
p− 1

p
(2.3.1)

If possible, let us assume g(λw) > h(λw). Then,

λw

1− λw
> − 1

log λw

=⇒ λw

λw − 1
<

1
log λw

[ multiplying both side by −1 ]

=⇒ λw log λw

λw − 1
> 1 [ ∵ 0 < λw < 1,∴ log λw < 0 ]

=⇒ λw log λw < λw − 1 [ ∵ 0 < λw < 1,∴ λw − 1 < 0 ]

=⇒ log λw <
λw − 1

λw

But from the logarithmic inequality 2.3.1, this is not true. Hence g(λw) < h(λw) and c > 0.

g(λw) < c + h(λw)

Thus, here again, the maximum likelihood method does not yield an estimate for λw.



34 estimation of the collection parameter of information models

2.3.2 Kaplan Meier Estimation

The Kaplan-Meier estimation method [Kaplan and Meier, 1958] as designed for survival
analysis, where the primary interest is the survival function of the form P(T > t) which is
the probability that a member from a given population will have a lifetime exceeding time
t. For a sample set of size N, sorting the samples according to their observed death time
t1 < . . . < ti < . . . < tN . Here ti is the death time of the ith sample. Then the survival
probability of a sample after time ti, P(T > ti) is estimated as:

P(T > ti) =
i

∏
r=1

N − r
N − r + 1

The form of survival function P(T > t) is of course the one used in the information
models: P(Xw > xd

w|λw). The Kaplan-Meier method proposes an estimate for all the
quantities P(Xw > xd

w|λw) corresponding to the different observed values of xd
w in a given

collection. Let the sorted (non-decreasing) normalized term frequencies for a term w in the
documents in the collection be xd1

w ≤ xd2
w ≤ . . . ≤ xdN

w (one can always obtain this form by
renumbering the documents in the collection). Let the ‘time’ be the domain of normalized
term frequency values and ‘observed death times’ are normalized term frequency values.
Hence, for i ≤ N , the probability P(X ≥ xdi

w ) can be estimated through the Kaplan Meier
estimator:

P(X ≥ tdi
w) =

i

∏
r=1

N − r
N − r + 1

The bias of this estimator increases when xdi
w increases [Balakrishnan and Rao, 2004] and,

to rely on an estimate with lower bias, i is chosen such that xdi
w is the first non zero

normalized term frequency value; hence i = N −Nw. According to the Kaplan-Meier
estimation formula, one thus has:

Pest(X ≥ xdi
w ) =

N − i
N

We are now going to see how this applies to the log-logistic and smoothed power law
distributions.

2.3.2.1 Log-logistic Distribution

Equating the probability estimated by Kaplan-Meier to its theoretical value leads, for the
log-logistic distribution, to:

λw

xdi
w + λw

=
N − i
N =

Nw

N

=⇒ λw =
Nw

N −Nw
xdi

w (2.3.2)
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To verify whether this estimation technique is satisfying the idf effect for LGD (Eq. 2.2.4):

∂λw

∂Nw
=

(N −Nw)−Nw.(−1)
(N −Nw)2 xd

w

=
(N −Nw) +Nw

(N −Nw)2 xd
w =

N
(N −Nw)2 xd

w

Since, N , Nw and xd
w all are non-negative, N

(N−Nw)2 xd
w > 0, thus giving ∂λw

∂Nw
> 0. The IDF

criterion is thus satisfied, which shows that this estimate can be used for the log-logistic
information model. The model obtained with this estimate will be referred to as LGDKM.

2.3.2.2 Smoothed Power Law Distribution

Equating the estimated probability by Kaplan Meier estimation to the probability obtained
by SPL function:

λ

(
x

di
w

x
di
w +1

)

w − λw

1− λw
=
N − i
N =

Nw

N

=⇒ Nλ

(
x

di
w

x
di
w +1

)

w −Nλw = Nw −Nwλw

=⇒ Nλ

(
x

di
w

x
di
w +1

)

w −Nw = Nλw −Nwλw

=⇒ Nλ

(
x

di
w

x
di
w +1

)

w −Nw = λw(N −Nw)

Recall that for SPL, the domain of λw is (0, 1). The above equation however does not
always have a solution in (0, 1). Indeed, let us consider a plausible setting where for a
word normalized term frequency xdi

w = 1 and Nw = N
2 . Now substituting xdi

w and Nw in
the above equation one has:

N (λw)
1
2 − N

2
= λwN −

λwN
2

⇒ 2N
√

λw −N = λwN
⇒ λw − 2

√
λw + 1 = 0

⇒
(√

λw − 1
)2

= 0

This equation has only one solution, namely λw = 1, which is outside the domain of λw.
Thus we have shown a counter example where the equation do not have any solution for
λw in (0, 1) under a reasonable and probable settings. Hence, Kaplan-Meier estimate does
not always yield a valid solution for the smoothed power law.

Even if the Kaplan-Meier estimate can be used for the log-logistic distribution, it still
suffers from the fact that it is based on a quantity, xdi

w , which is not robust as it consists
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of a single observation (i.e. a single document) in the collection for any given word. We
are going to present another estimation method which does not suffer from the same
drawback and which yields valid estimates for both the log-logistic and the smoothed
power law distributions.

2.3.3 Generalized Method of Moments

The probability that a term w is present in a document d is given, under the log-logistic
and smoothed power law distributions, by P(xd

w ≥ 1|λw). But according to the definition
of xd

w (Eq. 2.2.2):

xd
w = td

w log
(

1 + c lavg
ld

)

=⇒ td
w = xd

w

log
(

1+c
lavg

ld

)

which enables to rewrite the probability equation as:

P(td
w ≥ 1|λw) = P(xd

w ≥ log
(

1 + c
lavg

ld

)
|λw)

The expectation of observing a term w in documents of the collection is thus:

∑
d

P(xd
w ≥ log

(
1 + c

lavg

ld

)
|λw)

The generalized method of moments simply amounts here in equating this expectation
with the actual number of documents in which the term occurs, Nw, leading to the
following constraint:

Nw = ∑
d

P(xd
w ≥ log

(
1 + c

lavg

ld

)
|λw) = ∑

d
P(xd

w ≥ αd|λw) (2.3.3)

where αd = log
(

1 + c lavg
ld

)
.

The application of generalized method of moments is not novel in IR. Johnson and Kotz
[Johnson et al., 1993], for example, used a variant of the standard method of moments
in which the empirical variance is replaced by the inverse document frequency. Church
and Gale [Church and Gale, 1995] used the term “generalized method of moments” to
denote a method in which the parameter of a probability distribution is set according to a
constraint making use of a quantity observed in the collection (as the IDF, which is related
to Nw).

The main advantage of this method is that it relies on a robust quantity, namely Nw, to
estimate the value of λw. Contrary to the Kaplan-Meier estimate which relies on a quantity
observed in only one document and subject to variations (related to the fact, for example,



2.3 estimation of the collection parameter 37

that an author may have used a different term, or less occurrences of the term, to express
the same idea), here one relies on the number of documents in which the term occurs,
which is more robust to these types of variations. We are now going to see how the above
constraint is expressed in the log-logistic and smoothed power law distributions.

2.3.3.1 Log-logistic Distribution

For the log-logistic distribution, Equation 2.3.3 is expressed as:

Nw = ∑d
λw

αd+λw
, λw > 0

=⇒ Nw

λw︸︷︷︸
f (λw)

= ∑
d

1
αd + λw︸ ︷︷ ︸
g(λw)

, λw > 0 (2.3.4)

Clearly f ′(λw) < 0, f ′′(λw) > 0, g′(λw) < 0, g′′(λw) > 0, hence both f and g are concave
functions, and are such that g(0) = ∑d(αd)

(−1) < f (0) = +∞. Figure 4 illustrates how the
functions f and g behave. Let a be a strictly positive number; we have f (a) = Nw

a and

(0, 0)
λwa

Nw

a

Ac

Bc
f(λw)

g(λw)

Figure 4: Condition to have a solution for λw in LGD using generalized method of moments.

g(a) = ∑d(αd + a)(−1). A solution to Equation 2.3.4, for all terms w, exists in (0, a) if and
only if g(a) > Nw

a for all terms w, i.e. if and only if:

a ∑
d

1

log
(

1 + c lavg
ld

)
+ a

> N max
w (2.3.5)

As lima→+∞a ∑d
1

log
(

1+c
lavg

ld

)
+a

= N > N max
w , a solution will necessarily exist for a suffi-

ciently large. The free parameter (as the smoothing coefficient of language models, k1 in
BM25 and c in the information models) is usually optimized on a subset of queries for
which one has associated relevance judgments. We adopt here the same strategy, with an
additional step checking whether the above condition is satisfied:
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1. Choose a value range for c;

2. Choose a large, as a = 100 (one thus has λw ∈ (0, a) ∀w);

3. For each value of c, if it satisfies the condition 2.3.5, estimate λw for each w by
solving Equation 2.3.4;

4. If the current value of c does not satisfy condition 2.3.5, increase a and go back to
step 3.

Two remarks need be made here:

(a) Equation 2.3.4 can be solved by standard methods, as Newton-Raphson method or
using a simple (yet less efficient) dichotomy process;

(b) λw is estimated for w in the collection, so that the treatment of subsequent queries is
efficient and straightforward.

The IDF criterion for LGD stipulates that λw should increase with Nw (Eq. 2.2.4). We now
show that this criterion is satisfied with the above estimate. We know that λw is a solution
of the equation:

Nw = ∑
d

λw

αd + λw
= h(λw)

Taking derivative it is trivial to show that h′(λw) > 0, so h is an increasing function of λw.
But from the equality above, if Nw increases, so does h(λw). This directly gives that Nw

increases with λw, thus satisfying IDF criterion for the estimate obtained with the above
method. We will refer to the model obtained, for the log-logistic distribution, through the
generalized method of moments as LGDGM.

2.3.3.2 Smoothed Power Law Distribution.

For smoothed power law distribution, Equation 2.3.3 is expressed as:

Nw = ∑
d

λ
αd

αd+1
w − λw

1− λw
, λw ∈ (0, 1)

=⇒ (1− λw)(N −Nw) +Nw = ∑
d

λ
αd

αd+1
w , λw ∈ (0, 1)

=⇒ λw(N −Nw) +Nw︸ ︷︷ ︸
f (λw)

= ∑
d

λ
αd

αd+1
w

︸ ︷︷ ︸
g(λw)

, λw ∈ (0, 1) (2.3.6)

Clearly f is a linear increasing function. As g′(λw) < 0 and g′′(λw) > 0, g is a concave
function. We also have g(0) < f (0) and g(1) = f (1) = N . To have a solution of



2.3 estimation of the collection parameter 39

λw

g(λw)

f(λw)

(0, 0)

N

Nw

1

Figure 5: Condition of to have a solution for λw in SPL using generalized method of
moments.

Equation 2.3.6 for CP, f (λw) and g(λw) must cross at a point in (0, 1), because λw ∈ (0, 1).
The situation is explained in Figure 5. As f > g at λw = 0, after crossing it must be
f < g. Since f (1) = g(1), g must be above f in the neighborhood of 1. For a very small
positive constant ε the condition for having a solution of Equation 2.3.6 for λw becomes
f (1− ε)− g(1− ε) < 0. One has:

f (1− ε) = (1− ε)N + εNw and

g(1− ε) = ∑
d
(1− ε)

αd
αd+1 ≈∑

d
1− ε

αd
αd+1

= N −∑
d

ε
αd

αd + 1

Thus f (1 − ε) − g(1 − ε) = ε(Nw + ∑d
αd

αd+1 − N ). Since ε > 0, g is above f in the
neighborhood of 1, if and only if:

(
Nw + ∑

d

αd

αd + 1
−N

)
> 0

⇒ ∑
d

log(1 + c lavg
ld
)

1 + log(1 + c lavg
ld
)
< N −Nw

For all terms w, the above condition can be generalized to:

∑
d

log(1 + c lavg
ld
)

1 + log(1 + c lavg
ld
)
< N −N max

w (2.3.7)

which provides a constraint on the admissible values of c. For all the values of c compatible
with this constraint, one can then estimate λw by solving Equation 2.3.6, which can be
done using standard methods.

However, the constraint expressed by Equation 2.3.7 is strong as soon as there are terms
in the collections which occur in many documents. The presence of such terms limits the
range in which accurate estimates for λw can be found for the other terms. It turns out in
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(a) CLEF3

(b) TREC7

Figure 6: Distribution of Nw on 2 collections with horizontal line set at p = 0.05% of total
number of terms.

practice that very few terms appear in many documents, as illustrated in Figure 6 which
displays the values of Nw for all the terms in two different collections that will be detailed
in Section 2.4.1. The shapes for the other collections are identical to the ones displayed
here. In order not to limit the range of possible values for c, we recommend in practice
to set λw to Nw

N (i.e. the setting recommended in [Clinchant and Gaussier, 2010]) for the
p most frequent terms, as measured by Nw, of the collection, and to use the generalized
method of moments for the other terms, with N max

w taken from this latter set. In our
experiments, we set p to 0.05% of total number of terms in the collection but none of the
query terms encountered belong to this set of highly frequent terms.

Lastly, the estimate obtained through this method also satisfies the IDF criterion. We have:

Nw = ∑
d

λ
αd

αd+1
w − λw

1− λw
= h(λw)
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As the function h(λw) has the form of smoothed power law itself which is a concave
function and increases with λw. Using a similar logic used to prove the idf effect for
LGDGM, it can be said that when Nw increases, so does λw, thus satisfying the idf effect
given in Equation 2.2.5. We will refer to the model obtained, for the smoothed power law
distribution, through the generalized method of moments as SPLGM.

2.4 experimental setup

In this section we describe all the necessary details regarding the experimental validation
of the estimation methods.

2.4.1 Collections

For the experimentation, we used five standard IR collections from two major evaluation
campaigns, namely TREC (trec.nist.gov) and CLEF (www.clef-campaign.org). Table
2 shows basic statistics of different collections used in the experimentations, namely
TREC-3,6,7,8 and CLEF-3 AdHoc Task in English. Collections are indexed using Terrier
IR Platform v3.5 [Ounis et al., 2006](http://www.terrier.org). All the collections are
preprocessed before creating an index. This prepossessing includes stemming using
standard Porter Stemmer, already implemented in Terrier, and removing stop-words using
the stopword list provided by Terrier.

Collection N lavg Index size # queries

TREC-3 741856 261 427.7 MB 50

TREC-6 528155 296 373.0 MB 50

TREC-7 528155 296 373.0 MB 50

TREC-8 528155 296 373.0 MB 50

CLEF-3 169477 301 126.2 MB 60

Table 2: Statistics of the different collections used in our experiments, sorted by their Index
size.

2.4.2 IR Models and Corresponding Parameters

Models with estimates parameters LGDKM, LGDGM, SPLGM (Section 2.3) are tested and evaluated
against:

- Original log-logistic model (denoted by LGD) and smoothed power law model
(denoted by SPL) proposed in [Clinchant and Gaussier, 2010] with λw = Nw

N .

trec.nist.gov
www.clef-campaign.org
http://www.terrier.org
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- Standard Okapi BM25 [Robertson and Zaragoza, 2009]

- Language model with Dirichlet prior (denoted by LM) and we restrict ourselves here
to this version of the language model, which yields better results than the one based
on Jelinek-Mercer smoothing [Ponte and Croft, 1998][Zhai and Lafferty, 2001].

Mean average precision (MAP) and precision at 10 documents (P@10) measures are used for
evaluation.

For every model on each collection we performed 5 fold cross validation meaning that the
query set is sequentially partitioned into 5 subsets of equal size. Of the 5 subsets, a single
subset is retained for testing the model, and the remaining 4 subsets are used as training
set to chose the best free parameter values of each model which optimize MAP and P@10

respectively. The free parameters are:

- c for all versions of information based models (original LGD, SPL along with LGDKM,
LGDGM, SPLGM),

- b and k1 for BM25,

- smoothing parameter µ for LM.

The best parameter are chosen during training phase from a set of values. These set of
values for different parameters are shown in Table 3. Then with those trained values,
performance is measured on the set kept aside for testing. The cross-validation process is
then repeated 5 times, with each of the 5 subsets used exactly once for testing. Each time
a query-wise average precision is calculated for each set. After 5 folds, average precision
of all the queries are obtained and MAP is calculated. For each fold we also calculate
the P@10 value. We report the average of those 5 values as the final P@10 value. During
comparison, to find if the performances two models are significantly different we used
a paired two-sided t-test at the 0.1 level. We used query-wise average precision values
for all the queries obtained after 5 folds of the cross-validation method for this statistical
significance testing.

b (BM25) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0
k1 (BM25) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0
c (all LGD,

0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0
all SPL)

µ (LM)
10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500,
3000, 4000, 5000, 10000

Table 3: Sets of values of different parameters used for tuning standard IR models through
5 fold cross validation.

Note that BM25 has another free parameter namely k3. This parameter is used in normal-
ization of tq

w, the number of occurences of the query term in the query itself (Eq. 1.2.1). If
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tq
w = 1, which is almost always the case in the all the queries provided by TREC and CLEF

collections, then the whole normalized td
w weighting term becomes a constant and thus

irrerelevant in the ranking. So instead of tuning, this parameter is assigned to its default
value implemented in Terrier, which is 8. Lv and Zhai[Lv and Zhai, 2012] proposed a
method, based on the log-logistic distribution to estimate k1. But we rely here on an
optimization that likely to provide a better estimate.

2.4.3 Implementation of Estimation Methods

All the experiments are performed on Terrier IR Platform v3.5 [Ounis et al., 2006](http:
//www.terrier.org) as all standard models are integrated there. As mentioned before we
used indexing component of Terrier to index the collections. We also used the evaluation
component to determine the performance of different models.

We implemented our estimation models inside Terrier framework. We used standard
Newton’s method to solve fixed point Equations 2.3.4 for LGDGM and 2.3.6 for SPLGM for
λw. Note that λw has a clear analytical form for LGDKM (Eq. 2.3.2) and can be determined
directly. The 5 fold cross validation method of free parameter tuning is implemented
using shell script and inside the script Terrier is used as main retrieval and evaluation
module.

2.5 results

We conducted experiments in two phases. Firstly information-based models with es-
timated λw are compared against their original versions with λw = Nw

N (Section 2.5.1).
That is original versions of both log-logistic (LGD) and smoothed power law (SPL) dis-
tributions are compared against the same with the λw estimated with Kaplan-Meier
estimation (LGDKM) and generalized method of moments (LGDGM, SPLGM). Then we compare
the information-based models with estimated λw (LGDKM, LGDGM, SPLGM) against other two
standard IR models considered here, namely BM25 and language model (LM) mentioned in
Section 2.5.2.

2.5.1 Comparison with Original Information-based Models

Table 4 presents the experimental results comparing LGD with LGDKM, LGDGM and SPL with
SPLGM. Here the best results of each category of information model for every collection
are given in bold font. The MAP values marked with a ↑ are significantly better than the
respective original version of information models.

http://www.terrier.org
http://www.terrier.org
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TREC-3 TREC-6 TREC-7

MAP P@10 MAP P@10 MAP P@10

LGD 0.2456 0.4840 0.2449 0.4040 0.1895 0.4420

LGDKM 0.2483 0.5000 0.2466 0.4040 0.1896 0.4440
LGDGM 0.2560↑ 0.5180↑ 0.2457 0.4060 0.1892 0.4340

SPL 0.2517 0.5240 0.2503 0.4040 0.1844 0.4500
SPLGM 0.2677↑ 0.5460↑ 0.2519 0.4040 0.1909 0.4480

TREC-8 CLEF-3

MAP P@10 MAP P@10

LGD 0.2582 0.4560 0.3855 0.3136

LGDKM 0.2577 0.4500 0.3847 0.3192
LGDGM 0.2587 0.4560 0.3951 0.3153

SPL 0.2556 0.4620 0.3890 0.3282

SPLGM 0.2628↑ 0.4700 0.4042↑ 0.3394↑

Table 4: LGDKM, LGDGM versus LGD and SPLGM versus SPL. Best results are given in bold, and
a result with ↑ are significantly better than the respective original version of information
models according to a paired two-sided t-test at the 0.1 level.

As one can see, the new models developed here outperform their original version in
most cases, the difference being significant for the smoothed power law model in three
collections out of five. The fact that LGDGM and LGDKM are not really significantly better than
LGD can be explained by the fact that LGD represents an approximation of both the models.
Indeed, if ld ≈ lavg then αd becomes a constant (αd = α) and the solution to Equation 2.3.4
is λw = αNw

N−Nw
, which is also the form used in LGDKM. As, for most terms (and for all the

query terms in all the collections considered here) Nw � N , we have: λw = αNw
N . This is

the setting of λw proposed in [Clinchant and Gaussier, 2010] with a constant factor which
however does not change the ranking of documents. Note that the same does not hold for
SPL and SPLGM.

2.5.2 Comparison with Standard IR Models

The comparison of LGDKM, LGDGM and SPLGM with Okapi BM25 and the Dirichlet language
model (LM) is presented in Table 5. Here also the best results for each collection are given
in bold, and a result with ↓ is significantly worse than the best model.

As one can note, the SPLGM model provides the best results on four collections out of five
for the MAP, and three collections out of five for P@10. Moreover, when SPLGM is the best
model, its performance is significantly better than the ones of other models in most cases.
When it is not the best model, the difference with the best model is not significant. This
shows that the new versions of the information models introduced in this paper do not
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TREC-3 TREC-6 TREC-7

MAP P@10 MAP P@10 MAP P@10

BM25 0.2732 0.5620 0.2376
↓

0.3940
↓

0.1908 0.4300

LM 0.2685 0.5580 0.2427
↓

0.3900
↓

0.1888 0.4240
↓

LGDKM 0.2483
↓

0.5000
↓

0.2466
↓

0.4040 0.1896 0.4440

LGDGM 0.2560
↓

0.5180
↓

0.2457
↓ 0.4060 0.1892 0.4340

↓

SPLGM 0.2677 0.5460 0.2519 0.4040 0.1909 0.4480
TREC-8 CLEF-3

MAP P@10 MAP P@10

BM25 0.2589
↓

0.4640 0.3988 0.3338

LM 0.2543
↓

0.4520
↓

0.3938
↓

0.3158
↓

LGDKM 0.2577 0.4500
↓

0.3847
↓

0.3192
↓

LGDGM 0.2587
↓

0.4560
↓

0.3951
↓

0.3153
↓

SPLGM 0.2628 0.4700 0.4042 0.3394

Table 5: LGDKM, LGDGM and SPLGM versus standard IR models, BM25 and LM. Best results are
given in bold, and a result with ↓ is significantly worse than the best model according to a
paired two-sided t-test at the 0.1 level.

only outperform their original counterpart, but also that they provide state-of-the-art
results, outperforming other IR models on most of the collections retained here.

2.6 conclusion

The collection parameter of the family of information models determines the nature of
a term in the collection. In earlier studies, it was assigned to the average number of
documents where the term appears, even though this setting was not fully justified. In this
chapter we have explored various techniques to properly estimate this collection parameter
and have shown that the generalized method of moments provide valid estimate for both
the log-logistic and smoothed power law distributions, compatible with the IDF criterion.
These estimates also yield state-of-the-art results in our IR experiments, significantly
improving over the original setting in case of the smoothed power law. Furthermore,
the new version of the SPL model developed here regularly outperforms all the other
models in most cases (which was not the case for its original version), leading to a new,
state-of-the-art IR model.

In this chapter we have shown that using generalized method of moments it is possible
to successfully estimate the collection parameter λw of information based models. One
can note that this estimation technique uses only statistical data from the collection
and does not need any relevance judgment to estimate λw. But at the same time the
whole estimation method was developed solely for the collection parameter and it is
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not applicable to estimate any other parameters. As for example, the free parameter c
of the models used here. In this work we used a cross validation method to tune this
parameter c along with other free parameters (b and k1 of BM25 and µ of LM). This tuning
approach uses relevance judgment for selecting the best parameter on the training set
before applying that parameter to the test set. But this situation is unrealistic in the
sense that under practical situations relevance judgment is seldom available for a real life
collection. Moreover, even for the test collections, preparing relevance judgment needs
manual effort and hence is very costly.

In the next chapter we will address precisely these drawbacks and we will try to device a
technique that:

(a) is applicable to predict any free parameter of any IR model, and

(b) does not use the relevance judgment on the querying collection, instead it uses
relevance judgment already available on some other collection potentially in different
languages.



3
Q U E RY- B A S E D T R A N S F E R L E A R N I N G O F
S TA N D A R D I R M O D E L PA R A M E T E R S

This chapter presents a new method to predict the values of the parameters of
standard IR models on new collections (target collection) without any relevance
judgments, by using already available relevance judgments on some other
collections (source collections). This learning is achieved by first mapping
queries (with and without relevance judgments, from different collections,
potentially in different languages) into a common space corresponding to the
feature space of a positive definite symmetric kernel between queries. Standard
kernel regression functions, as kernel support regression, can then be used to
learn a mapping between queries lying in the kernel induced feature space
and IR parameter values. We furthermore introduce a simple positive definite
kernel from which one can develop more complex kernels. Our experiments,
conducted on standard English and Indian IR collections, show (a) that there is
no significant difference between the different kernels considered, (b) that the
versions of the standard IR models we obtain not only outperform the versions
with default parameters, but can also outperform the versions in which the
parameter values have been optimized globally over a set of queries with target
relevance judgments (even though no target relevance judgments are used in
the method we propose), and (c) that our approach is collection and language
independent and can be used to efficiently tune, query by query, standard IR
models to new collections, potentially written in different languages.

3.1 introduction

In many situations, one has to deploy IR models on new collections (on new domains or
languages) from scratch. In such cases, developing relevance judgments so as to adapt the
retrieval models to the new collections considered is a costly operation. An alternative is
of course to simply rely on default parameters of the IR models, hoping that the results
obtained will be reasonable, i.e. not too far away from the ones obtained by “adapting” the
models (as we will see in Section 3.7, default results are reasonable on several collections,
however not on all of them). As discussed in Section 1.3.1 this “default” strategy is the one
traditionally adopted in IR evaluation campaigns (as TREC or CLEF) when new collections
and languages are introduced. In fact, each time a collection changes substantially, e.g.

47
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through the introduction of new documents, then the IR models that are employed, should
be adapted so as to follow the potential evolution of the collection. Though this does not
necessarily mean that the IR model will change, but that it may change and thus needs to
be given the opportunity to get adapted.

Of course, one would like to perform such an adaptation at a minimal cost, and, ideally,
without resorting to new, specific relevance judgments, albeit using any relevance judg-
ments available on known, past collections. This is precisely the problem we are investigat-
ing in this study, focusing on learning the underlying parameter(s) of standard IR models
as BM25 [Robertson and Zaragoza, 2009], language models (LM) [Ponte and Croft, 1998]
and log-logistic information-based models (LGD) [Clinchant and Gaussier, 2010]. Our fo-
cus on these particular IR models is motivated by the fact that these models are the most
widely used in different IR tasks (as ad hoc IR, structured IR or social IR for example) and
serve as components of learning to rank models deployed e.g. on web collections. Thus,
the fundamental problem we address in this chapter is the first research question asked in
Section 1.6 and can be formulated as follows: How to infer the parameter values of standard
IR models (BM25, LM, LGD) on collections without any relevance judgments by using past labeled
collections?

One solution, as explained in the previous chapter, is to use various statistical estimation
techniques e.g. maximum likelihood estimation or expectation maximization. But these
estimation techniques generally take different forms for different parameters and frame-
works and they are tailored and thus suitable to estimate a particular parameter under a
particular framework. As for example, technique developed to estimate the smoothing
parameter µ in language models with Dirichlet prior in [Zhai and Lafferty, 2001] cannot
be applied to estimate parameters of BM25. Same applies to SPLGM and other information
models developed in the previous chapter.

However, we presents here a novel method that can predict parameters of any IR function
for any given query even if no relevance judgments are available for such queries. The
only necessary knowledge about unseen queries comes from unlabeled text corpora and
a set of available queries for which the relevance judgment information exists on some
source collections. Our method also relates to different research fields as model adaptation
and transfer learning, where a model learned on a source collection is biased towards a
target collection or where relevance information from a source collection is propagated to
a target collection. Model adaptation and transfer learning are, in many studies, considered
to be the same; we adopt this viewpoint here even though the term transfer learning is
more appropriate in our case. Our parameter prediction approaches map queries from
different collections into common vector spaces. In those spaces regression functions can
be efficiently learned on training data obtained using relevance information from source.
Then the same regression function can predict parameters for the target queries which are
also mapped in the same common vector space. Three key elements of our approach are:
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• Unlike pointwise learning to rank methods for IR that directly learn a ranking model,
our approach aims at estimating the value of the parameters of a standard IR model;

• The method proposed allows to obtain parameter values for a single query, so that
IR models are optimized per query on the new collection;

• The representations used are language-independent, so that parameter values can
be estimated for new collections, in new languages.

We performed rigorous experimentation using nine different English collections from
TREC and CLEF campaigns and two non-english Indian language collections from FIRE

campaign. We found that our method not only outperforms the models with default
parameter values, in some cases it provides better results than the ones one can obtain
by tuning the parameters of the model with relevance judgments. This latter result may
be due to the fact that the prediction is made in a continuous space whereas standard
tuning procedures use a fixed set of discrete parameter values. Our learning model
does not require any manually defined hyperparameters and unseen queries are mapped
using a positive-definite kernel over the space induced by queries for which relevance
judgments exist on some source collections. Using this set, we then use a regression
model to learn the association between the kernel-based feature representation of queries
and their optimized associated parameter using the relevance judgments. On the top of
this model, we also investigate how different IR scoring functions with their predicted
parameter values can be combined using two existing transfer learning strategies.

The remainder of the chapter is organized as follows. We first discuss related work
in Section 3.2. Then we explore why parameter prediction is required (Section 3.3.
The framework and the approach developed for learning the parameter(s) of standard
IR models on collections with no relevance judgments, using known collections with
relevance judgments are described in Sections 3.4 and 3.5 respectively. We then illustrate
several aspects of the method we propose and its effectiveness in Sections 3.6 and 3.7 on
several collections, prior to conclude (Section 3.8).

3.2 related work

IR models are generally defined with some free parameters, for example the b and k
for BM25 [Robertson and Walker, 1994], the Dirichlet smoothing coefficient µ for language
models [Jelinek and Marcer, 1980] and parameter c for LGD [Clinchant and Gaussier, 2010].
These parameters are query and collection dependent and hence their tuning is un-
avoidable to achieve good performance within the collection. [Zhai and Lafferty, 2001]
explained the necessity of empirical tuning of the parameters for traditional models like
vector space model or BM. Due to the absence of a direct combined modeling or represen-
tation of queries and documents, it becomes extremely hard for the model to incorporate
special characteristics through the parameters which address them. To this end language



50 query-based transfer learning of standard ir model parameters

models have the advantage of directly representing both queries and documents through
statistical language models. Harnessing this representation [Zhai and Lafferty, 2001]
proposed an automated “leave-one-out” likelihood method to estimate Dirichlet prior
smoothing parameter µ. Effectiveness of pseudo-relevance feedback over language model
framework is examined by [Tao and Zhai, 2006] where a mixture model is proposed and
regularized expectation maximization method is used to estimate the parameter which
determines the balance between the original query against its feedback based counterpart.
Both the methods are applicable across the collection meaning a single parameter value for
all the queries in the collection. [Lv and Zhai, 2009] used an logistic regression model to
predict the balance parameter of pseudo-relevance feedback for each query separately and
observed significant improvement. This proves the effectiveness of querywise parameter
setting.

However, in the case where the relevance judgments exist, the optimal values of these free
parameters are generally found by testing different parameter values from a predefined
set of discrete values for each parameter on a set of queries with associated relevance
judgments, and then selecting the parameter values that lead to the best performance w.r.t
the evaluation measure considered. This greedy search has been found to be competitive
compared to simple learning strategies that optimize some differentiable IR measures
[Taylor et al., 2006]. This said, the complexity of the greedy search increases exponentially
with respect to the number of free-parameters making the search unfeasible in some
extreme cases. Any method of tuning that utilize relevance judgment information is very
much unrealistic in many real retrieval scenarios [Bennett et al., 2008]. Furthermore, the
use of relevance judgments has motivated a large amount of research in the learning to
rank framework [Liu, 2009].

But generating relevance judgments on a new test collection mostly involves manual
effort and assigning relevance judgments manually, for even a small set of queries, is
a very costly task [Carterette, 2007]. Some works directly considered the problem of
unsupervised parameter estimation [Zhai and Lafferty, 2001, Tao and Zhai, 2006] which
do not need any relevance information and relies only on statistical data available from
the collection. But these methods were developed under the language model framework
with a probabilistic view over the generation of words. These techniques are thus not
applicable to other non-probabilistic IR models.

Some other works utilized a paradigm called transductive transfer learning which deals
with the problem of using knowledge from some existing source domain, mostly in
the form of labeled instances, to either learn or improve the learning of a prediction
function for a target domain with no labeled data. This paradigm is developed both for
classification and regression tasks. The two main approaches to transductive transfer
learning are either instance-based [Sugiyama et al., 2008] or feature-based (also referred to
as domain adaptation in the literature) [Blitzer et al., 2008]. In instance-based approaches,
the optimization of the objective function for the target domain is generally carried out
by adding different penalty values to each labeled instance in the source domain. For
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example, [Huang et al., 2009] proposed a kernel-mean matching algorithm to learn these
penalty values by matching the means between the source and the target domain data in
a reproducing-kernel Hilbert space. [Sugiyama et al., 2008] proposed an algorithm which
directly estimates these penalty values by minimizing the Kullback-Leibler divergence
between the probability distributions of instances in the source and the target domains.
On the other hand, the overall aim in feature-based approaches is to propagate, in
some manner, the label information from the source to the target domain. For example,
[Dai et al., 2007] proposed a co-clustering algorithm to diffuse the label information across
different domains, and [Xing et al., 2008] studied the cross-domain transfer learning
problem under a spectral classification framework in which the objective function takes
into account the consistency between the supervision provided in the source domain and
the structure of the target domain. A review of the work, prior to 2010, done in transfer
learning for classification and regression may be found in [Pan and Yang, 2010].

Several studies have been done to adapt cross domain approaches to learning to rank
framework [Chen et al., 2008a, Chen et al., 2010, Gao et al., 2010]. But in this chapter we
will concentrate on using transfer learning to predict parameter values for different
standard IR models and to the best of our knowledge this study is the first to do so.

Lastly, our approach bears some similarities with the study described in [Lv and Zhai, 2009]
aiming at learning, on a query by query basis, the parameter of feedback models. The
main difference between this study and ours lies in the fact that we are interested in the pa-
rameters of IR models in a standard ad hoc retrieval scenario, whereas [Lv and Zhai, 2009]
focuses on the feedback coefficient in a typical relevance feedback scenario. This difference
entails that the representation spaces used in each case radically differ: we use feature
spaces induced by positive definite kernels defined on a new query representation whereas
[Lv and Zhai, 2009] uses an explicit feature space capturing the properties of the query,
the documents in the feedback set and the relation between the two.

3.3 beyond default parameters

Our goal here is to predict the parameters of standard IR models on the target collection
by transferring the relevance information known on source collection. Two questions that
directly arise are:

1. Is it worth doing so, or, in other words, is it possible to improve upon the default
values usually used in IR models?

2. Should one learn global values that will be used for all target queries or should one
learn different values for each query?

To answer these questions, we computed the mean average precision (MAP) of three
standard IR models namely BM25, the Dirichlet language model (denoted by LM) and



52 query-based transfer learning of standard ir model parameters

the log-logistic distribution of information-based model family (denoted by LGD) on four
collections namely TREC-7, TREC-8, WT10G and GOV2 (details of these collection are given
in Section 3.6.1) with three different settings. Like all standard available collections, we
here consider that a set of test queries are provided with a collection. Three different
settings are:

Default: This setting uses fixed default parameter values of each model on all the test
collections and is most commonly used setting. These default values, as explained in
Section 1.3.1, are observed to perform well in various experiments and thus assumed
to be reasonably well also on a new collection.

OptGlobal: This setting selects a single parameter value for all the target queries in the
target collection that provides the highest MAP on that collection. This strategy
searches for the best parameter value from a range or a set of values. Clearly this
makes use of the relevance judgments on the target collections. The associated MAP

corresponds to the upper bound of methods aiming at finding the best parameter
value globally for all queries.

OptPerQuery: This setting selects a parameter value for each query in the query set of
the target collection that provides the highest average precision for the query under
consideration. Here also the best parameter value is searched from a range or a set
of values. Again as before, this makes use of the relevance judgments on the target
collection. The mean of all the average precision obtained for every query in this
way yields a MAP value that corresponds to the upper bound of methods aiming at
finding the best parameter value individually per query.

The results obtained are displayed in Figure 7. As one can note, the difference between
default values and optimized ones varies according to the models and collections con-
sidered. This difference is relatively small, in the range 0− 2.5% for all collections and
models, when the optimization is performed globally over all queries (OptGlobal). It is
more important when the optimization is performed query by query (OptPerQuery), even
though the value varies from one collection to another: around 2− 3% for all models on
TREC-7,8, around 5− 6% for all models on GOV2 and WT10G, the difference being however
less marked for LGD. These results show that:

1. it may not be possible to obtain significant improvements over default values on all
collections, as such values yield results close to the best possible ones,

2. higher gains can be expected by optimizing the parameters per query.

The sets of values used to search and select the best parameter are described in 3.6, along
with other experimental details.
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(a) BM25 (b) LM

(c) LGD

Figure 7: Performance of IR models with default parameter values (�), parameters opti-
mized within the whole collection i.e. OptGlobal (�) and per query basis i.e. OptPerQuery
(�). The results are in terms of MAP on TREC-7,8, WT10G and GOV2 collections for (a) BM25
(b) LM and (c) LGD.

3.4 framework

The situation we are interested in consists of a source collection Cs, composed of a set
of documents Ds, a set of n queries Qs = {qs

1, . . . , qs
n} and relevance judgments for each

query in Qs. Furthermore, we consider a target collection C t, composed of a set of
documents Dt and a set of m queries Qt = {qt

1, . . . , qt
m}. Each query q, in any collection,

is constituted by a set of terms q = {wq
1 , . . . , wq

|q|}.
The methodology we follow thus relies on the following steps:

1. For all IR models and using the selection method OptPerQuery (Section 3.3) on
the source collection, we first create the vectors of optimized parameter values of
each query in Qs, denoted by cs

opt = (cqs
1
, . . . , cqs

n)
>, where > denotes the transpose
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operator. Thus each value cqs
i
∈ cs

opt corresponds to the parameter value that
produces best MAP for query qs

i ∈ Qs.

2. A regression model is learned using the association between queries in Qs and cs
opt.

3. Finally the learned regression model is used to predict a parameter value for each
query in Qt.

Figure 8 roughly illustrates this procedure.

The last steps of the above procedure however require that the queries in Qs and Qt lie
in a common space. For this purpose, it is not possible to directly rely on the standard
representation of queries as the vocabulary used in the different collections can be radically
different. Indeed, as mentioned above, one may be interested in predicting the parameter
values of standard IR models on collections written in different languages, with potentially
no (or little) vocabulary overlap with the collections encountered so far. Moreover, different
queries may contain different number of terms, thus disabling their representation directly
in a fixed dimension vector space. We explore the details of this problem in next section.

cqs1, . . . , cqsi , . . . , cqsn parameter space

common query spaceφ(qs1)

φ(qsi )
φ(qsn)

qs1, . . . , q
s
i , . . . , q

s
n

set of queries, where each query
is defined as a set of vectors

learning the association

Figure 8: Each target query is mapped in the common vector space and an associated
parameter of the IR model is predicted using the learned association model.

3.5 learning ir model parameters

As seen in the previous section it is not possible here to directly represent queries by the
terms they contain as different collections rely on different vocabularies, potentially from
different languages and may content different number of terms. In order to bypass this
problem, in this section we first present a query representation using the statistical data of
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different terms in the query (Section 3.5.1). This enables the query to be represented as a
set of vectors, where each vector represents a single term contained in the query. Then
we describe the mapping of these queries (either source or target) in a common vector
space. We will consider two such common vector spaces based on kernel and similarity
measures between queries. We will also discuss some of the regression models that can be
used in these spaces. These elements are respectively described in Sections 3.5.2 and 3.5.3.

3.5.1 Query Representation

Each query term wq ∈ Q is represented as a 4-dimensional vector:

wq = (id f (wq), µ(wq), σ(wq), sk(wq)) ∈ R4 (3.5.1)

where id f (wq) denote the inverse document frequency of wq , and µ(wq), σ(wq) and sk(wq)

are the empirical estimates of the first (mean), second (standard deviation) and third
(skewness) moments of term frequency distribution of wq on the collection associated with
q. The id f (wq) can be any standard function to calculate the inverse document frequency
of wq . In the present study we have assumed id f (wq) = N

Nw
, where Nw is the document

frequency of wq in the collection and N is the number of documents in the collection.

For a bounded distribution, like the term frequency distribution here, combination of
the moments of all orders (from 0 to ∞) uniquely determines the distribution. Thus the
first three moments can be considered to define a natural summary of the distribution
of the term frequency scores of the word in the collection. It is common practice in IR
to represent a term with its term frequency and inverse document frequency. Following
the same path, here also the term wq is represented with its id f (wq) and three moments
which essentially summarizes its term frequency distribution. Thus the vector of Equation
3.5.1 is an acceptable way of representing the word wq .

Now each term is statistically summarized within a vector and from that, each query q is
represented as a set of such term vectors:

q = {wq
1, . . . , wq

|q|} (3.5.2)

For example, starting from the query (extracted from the WT10G collection described in
Section 3.6.1) q:lava lamps, one gets as representative vectors for lava and lamps:

lava : (6.7762, 0.0012, 0.0050, 137.0581)>

lamps : (5.6177, 0.0059, 0.0355, 81.8577)>

where > denotes the transpose and the first three moments are calculated over normalized
TF scores. For readability reasons, all elements are truncated after the fourth decimal. The
final representation for the query is then:

q = {(6.7762, 0.0012, 0.0050, 137.0581)>, (5.6177, 0.0059, 0.0355, 81.8577)>}
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3.5.2 Mapping Queries into a Common Feature Space Through PDS Kernels

Though each query q now has an enriched representation (Eq. 3.5.2), it is still not possible
to learn the association between queries and the optimized parameter values. Because
queries are defined as a set of term vectors and they do not lie in a fixed vector space.
To overcome this problem, we map both source and target queries into common vector
spaces. We introduce here a collection-independent vector representation of queries
through the use of kernels, which opens the door to kernel regression methods as kernel
Support Vector Regression (kernel SVR) [Vapnik, 2000] or Kernel Ridge Regression (KRR)
[Saunders et al., 1998]. Among these methods, we focus in this paper on kernel SVR, as
this technology has been shown to perform well in practice.

We denote by κ a positive definite symmetric (PDS) kernel taking as input a pair of queries
represented, as described above, by a set of 4-dimensional word vectors (Eq. 3.5.2) and
taking values in R+. Any such PDS kernel is associated with a mapping φ that maps
queries into a vector space F ⊆ Rp (with p potentially infinite) such that: κ(q, q′) =

〈φ(q), φ(q′)〉, where 〈., .〉 denotes the dot product. As long as κ is a valid PDS kernel, F
defines a feature (and a vector) space common to all queries and in which a regression
function can be learned, through kernel regression methods as kernel SVR. Note that the
mapping φ and the feature space F may not be explicitly defined; all is required is the
knowledge of κ, and this knowledge is sufficient to learn a regression function in F .

To formalize let H denote the family of linear functions in the induced feature space F :

H = {hω : q 7→ ω �φ(q) + b, ω ∈ Rp, b ∈ R}

where φ denotes the mapping, from the input space to the feature space, associated with a
positive definite symmetric (PDS) kernel κ. φ(q) thus represents the vector representation
of q in F and the kernel κ defines a similarity between queries in the input space that
implicitly represents a dot product between the vector representation of queries. The
optimization problem for kernel SVR is usually defined as:

min
ω,b

1
2
||ω||2 + C

n

∑
i=1
|cqs

i
− (〈ω, φ(qs

i )〉+ b)|ε

where ω ∈ F and b ∈ R are the weights to be learned and | |ε represents the ε-insensitive
loss which for ε > 0 is defined as: |y− y′|ε = max(0, |y− y′| − ε). This loss function has
been shown to lead to sparse solutions, with few support vectors. As one can not always
specify the mapping φ, a dual formulation, involving the kernel κ is usually adopted (see
for example [Mohri et al., 2012]). Thus the optimization problem takes the following form
(see for example [Mohri et al., 2012]):

KSVR-opt:

max
α,α′
−ε(α′ + α)>1 + (α′ − α)>cs − 1

2
(α′ − α)>K(α′ − α)

s. t. 0 ≤ αi, α′i ≤ C(1 ≤ i ≤ n), (α′ − α)>1 = 0
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where cs
opt ∈ Rn is the vector of optimized parameter values for the source queries, 1 ∈ Rn

is a vector containing only 1s, K is the kernel (or Gram) matrix (Ki,j = κ(qs
i , qs

j ), 1 ≤ i, j ≤
n) and α, α′ ∈ Rn are the parameters to be learned and are such that either αi or α′i is non
null (this happens if qs

i is a support vector), or they are both null (if qs
i is not a support

vector).

The above optimization problem is a convex quadratic programming problem that can
be solved by any convex QP solver. The value predicted for a new query qt in the target
collection is obtained by:

cqt =
n

∑
i=1

(α′i − αi)κ(qs
i , qt) + b (3.5.3)

the offset b being defined for any support vector qs
l by:

b =
n

∑
i=1

(αi − α′i)κ(q
s
i , qs

l ) + cqs
l
+ ε (3.5.4)

As one can note, in the above formulation, source and target queries are mapped into
a common vector space through the mapping φ associated to the PDS kernel used. In
Section 3.5.4, we will describe a simple yet effective PDS kernel that we retained for our
experiments and for which it is possible to explicitly define the mapping φ(.). But at the
same time it is important to note that any PDS kernel over the representation for queries
we have defined above can be used.

The overall process for predicting the parameter value of standard IR models on new,
unlabeled collections can thus be summarized as follows:

For each free parameter of the standard IR model under consideration:

1. Training step:

(a) Compute the optimal value cqs of the free parameter for each query qs in Qs

(e.g. using a line search);

(b) Solve the KSVR-opt problem above with any convex QP solver.

2. Prediction:

(a) For each query qt, compute cqt through Equation 3.5.3 with b defined by
Equation 3.5.4.

3.5.3 Mapping Queries into a Common Similarity-based Query Space

In the previous parameter learning approach, the mapping is embedded in the kernel
based optimization problem. A more conventional way to tackle the parameter learning
problem is to explicitly represent each query in a vector space, and then to learn the
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association between the vectors of source queries and the parameter values through a
classical regression model, such as random forests.

To do so, we propose a simple mapping technique that relies on a collection Cr, composed
of a set of documents Dr and a set of p queries Qr = {qr

1, . . . , qr
p}. We now define a

similarity measure, denoted as sim(., .) in the following, between two queries each defined
as a set of word vectors (Section 3.5.1). In this case, the mapping of any query q would be:

∀q, φr(q) = (sim(q, qr
1), . . . , sim(q, qr

p))
> ∈ Rp (3.5.5)

The process for learning and predicting the parameter value can then be summarized as
follows:

For each free parameter of the standard IR model under consideration:

1. Training step:

(a) For each query qs in Qs, compute the optimal value cqs of the free parameter for
the IR model of interest;

(b) Represent the query using a query set Qr and a similarity function sim(., .) as in
Equation 3.5.5;

(c) Learn the association between the new representation of queries in Qs, given
by {φr(q

s
1), . . . , φr(q

s
n)} and their corresponding optimal parameter values, {cqs

1
,

. . . , cqs
n}, using a regression modelM : Rm → R+.

2. Prediction:

(a) For each query qt in the target collection Qt, use the same query set Qr and
the similarity function sim(., .) as in the previous step to represent qt; φr(q

t)

Equation 3.5.5;

(c) Apply the learned modelM on φr(q
t) to predict the free parameter of the IR

model for qt.

In the next section we will exhibit a similarity function, which turns out to be a PDS
kernel as well.

3.5.4 Simple PDS Kernels

We introduce in this section several kernels that can be used within the framework defined
before. Let us recall that the representation of queries we are starting from is a set of 4-
dimensional vectors: q = {wq

1, . . . , wq
|q |}, with wq = (id f (wq), µ(wq), σ(wq), sk(wq)) ∈

R4. On this representation, we first define the following similarity measure that computes
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the normalized sum of all pairwise dot products between the vectors of two queries q and
q
′
:

κall(q, q
′
) =

1
|q|

1
|q′ |

|q |
∑
i=1

|q′ |
∑
j=1

〈
wq

i, wq′

j

〉
(3.5.6)

κall defines a similarity measure between queries in the sense that κall will likely be higher
for queries containing words with similar distributions in the collections considered than
for queries containing words with very different distributions. The subscript ”all” in κall
denotes the fact that all pairs of words, from the two queries, are compared. κall can
thus be used to map queries into the common similarity-based query space introduced
previously. It is important to note that we do not need here a precise definition of what
a similarity measure is, as the development presented in Section 3.5.3 is valid for any
real-valued function defined over a pair of queries.

Note that in the definition of κall only the word vectors of the queries are required and
there is no restrictions that they have to be from the same collection. This enables us to
compare two queries from two different collections may be even in different languages.

The following property shows that κall also defines a valid PDS kernel, so that it can also
be used to map queries into a common feature space as discussed in Section 3.5.2.

Property 1. κall is a PDS kernel.

Proof. Exploiting twice the bi-linearity of the dot product, one has:

κall(q, q′) =
1
|q|

1
|q′|

(〈 |q|
∑
i=1

wq
i ,
|q′|
∑
j=1

wq′

j

〉)

=

〈 |q|
∑
i=1

wq
i
|q| ,

|q′|
∑
j=1

wq′

j

|q′|

〉

Therefore, κall corresponds to a dot product in the 4-dimensional vector space introduced
earlier; it thus defines a PDS kernel. �

The mapping φ associated with the above kernel takes the form:

φ(q) =
|q|
∑
i=1

wq
i
|q| (3.5.7)

and corresponds to the average of the vectors of the words present in q. The kernel κall
thus simply amounts to the dot product between the average word vectors of each query:

κall(q, q′) =
〈
φ(q), φ(q′)

〉
(3.5.8)

We will use this simple PDS kernel in our experiments, both for the mapping into a
common feature space (Eq. 3.5.8)and for the mapping into a common similarity-based
query space (Eq. 3.5.7).
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From the form given in Equation 3.5.8, one can further define new kernels, by substituting
the dot product by any valid PDS kernel. We consider here homogeneous polynomial
kernels and Gaussian kernels, widely used in text processing, leading to:

κpoly-δ
(q, q′) = (φ(q)>φ(q′))δ

κgau-σ(q, q′) = exp(−||φ(q)−φ(q′)||22
2σ2 )

where δ corresponds to the degree of the polynomial kernel and σ to the standard
deviation of the Gaussian kernel.

The different kernels (κall, κpoly-δ
, and κgau-σ) will be used for solving the KSVR-opt

problem and for predicting new parameter values as defined by the regression function in
Equation 3.5.3.

3.6 experimental setup

We present in this section experimental details including description of collections used
(Section 3.6.1), IR models used and associated different free parameters (Section 3.6.2),
different modes of selecting a proper parameter value considered in this work (Section
3.6.3 and finally the implementation details of the regression method proposed (Section
3.6.4.

3.6.1 Collections

Experiments are performed on eleven standard IR collections from three different lan-
guages, namely English, and two Indian languages Hindi and Bengali. It is interesting to
note that these three languages not only have different vocabulary, but their scripts are
also different. Basic statistics on these collections are provided in Table 6.

We used nine English collections here, one is from CLEF1 and remaining eight are from
TREC2. Among these collection, TREC-6, TREC-7 and TREC-8 use the same document sets
(TREC disks 4 and 5) but different query sets, whereas WT10G, TREC-3,4,5, CLEF-3 and GOV2

use unique document sets and unique query sets. We appended TREC-9 Web and TREC-10

Web tracks and used the combined track to experiment with WT10G. Similarly TREC-2004

Terabyte and TREC-2005 Terabyte tracks are combined and used for experimenting with
GOV2.

Two non-English collections used here are from latest corpus available in FIRE3 campaign.
Among various other Indian language collections we used Bengali (denoted by FIRE-BN

1 www.clef-campaign.org
2 trec.nist.gov
3 www.isical.ac.in/~clia/

www.clef-campaign.org
trec.nist.gov
www.isical.ac.in/~clia/
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Collection N lavg Index size #queries

GOV2 25,177,217 646 19.6 GB 100

WT10G 1,692,096 398 1.3 GB 100

FIRE-BN 500,122 245 498.6 MB 50

TREC-3 741,856 261 427.7 MB 50

TREC-4 567,529 323 379.0 MB 50

TREC-5 524,929 339 378.0 MB 50

TREC-6

TREC-7 528,155 296 373.0 MB 50

TREC-8

FIRE-HN 331,599 178 225.5 MB 50

CLEF-3 169,477 301 126.2 MB 60

Table 6: Statistics of various collections used in our experiments, sorted by size.

and Hindi (denoted by FIRE-HN collections. These are used to show the language inde-
pendency of our approach proposed here. Hence, any collection in any other language
can be used in this purpose.

Standard preprocessing steps to create an index are performed using Terrier IR platform
v3.5 (terrier.org) which include stemming using Porter stemmer and removing stop-
words using the stop-word list provided by Terrier. On FIRE collections, we used the
stop-word lists available at the corresponding website, but did not use any stemmer. As
we will do a comparative study, not using any stemmer on FIRE collections will not affect
our purposes.

In most of our experiments, we considered CLEF-3, TREC-3,4,5,6 as source collections,
and used TREC-7,8 as well as WT10G and GOV2 for testing. In order to see how the
projection in the query space is dependent to the languages of the source and target
collections, we also tested our strategy by learning the regression model on English source
collections WT10G, GOV2 and predicting model parameters on both FIRE collections, as
well as the other way around by learning the regression model on FIRE collections and
predicting model parameters on WT10G and GOV2 collections. For the similarity-based
regression model we used both the FIRE collections as representation set Qr and all source
and target queries are represented in a 100-dimensional vector space (because combined
query set of two FIRE collections contains 100 queries in total).

Results are evaluated using the mean average precision MAP and precision at 10 documents
P@10 measures (relevance judgments on the target collections, are just used for evaluating
the models). We furthermore use the Wilcoxon statistical test with a p-value of p = 0.05
to assess whether the difference between two methods is significant or not.
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3.6.2 Standard IR Models and Free Parameters

We used three different, widely used, IR ranking models, namely Okapi BM25 (denoted
by BM25) [Robertson and Walker, 1994], the language model with Dirichlet smoothing
(denoted by LM) [Jelinek and Marcer, 1980], and the log-logistic information-based model
(denoted by LGD) [Clinchant and Gaussier, 2010] from the Divergence from Randomness
family. These models contain free parameters and goal here is to identify most appropriate
value for these parameters.

BM25 has three free parameters, b, k1 and k3, whereas the method proposed here can
predict only one parameter at its current stage. In the experiments we just considered the
parameter b and kept the two other parameters fixed to their default values (k1 = 1.2 and
k3 = 8.0). The parameter k3 is used in normalization of tq

w, the number of occurrences of
the query term in the query itself (Eq. 1.2.1). If tq

w = 1, which is almost always the case in
the short queries provided by TREC and CLEF collections, then the whole normalized td

w
weighting term becomes a constant and thus irrelevant in the ranking. Among k1 and b,
we are particularly interested in b, because it controls the effect of document length in the
term frequency normalization, the role similar to the parameter c in LGD.

3.6.3 Parameter Values

Our goal is to compare the performance of standard IR models described in the previous
section with their default parameter values against the values predicted by the proposed
regression approach on target collections. We also wish to position our method with
respect to other popular parameter tuning methods which uses relevance information on
the target collection. Thus following parameter value settings are used here:

- The default value setting offers a fixed value for the parameters and performs fairly
well on all occasions. In our experimentation, we use values provided as default in
Terrier IR framework: b = 0.75 for BM25, µ = 2500.0 for LM and c = 1.0 for LGD.

- For tuning the parameters using relevance judgment the query set Qt is split into
two disjoint subsets each containing 50% of the queries selected randomly. Among
these two subsets one is associated with the relevance judgments and are used to
identify the best performing parameter value for all IR models from a predefined
set of values. This sets of predefined parameter values for three IR models are given
in Table 7. Note that the sets of values are the same as the ones used in Chapter
2 (Table 3). This step simply consists in selecting the parameter value that yields
the best MAP value on the first subset of queries. Then the second subset is used for
testing the models with identified parameter values. We performed 10 such random
splits of the target queries and hence denote this method as 10split.
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b (BM25) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0

µ (LM)
10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500,
3000, 4000, 5000, 10000

c (LGD) 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0

Table 7: Set of values considered for the free parameter of the different IR models. These
values are used to find the optimal parameter values on the source collection to construct
the training set, and on the target collection (a) to construct the global and per query
upper bounds (Section 3.3) and (b) to find the optimal parameter value from a subset of
the target queries (method 10split).

- The parameters are predicted using the regression model proposed here. Details of
its implementation are given in the next section.

- Parameter values are optimized either globally for all the queries in the query set
(OptGlobal) or per query basis (OptPerQuery) as described in Section 3.3. These
optimization methods use relevance judgments and provide upper bounds of per-
formance achievable by changing the free parameter values. Both OptGlobal and
OptPerQuery select best parameter values from the sets shown in Table 7.

3.6.4 Implementation of Kernel Regression Model

Each query q here is represented by the 4-dimensional vector φ(q) which expression is
given in Equation 3.5.7. First step is to compute the vectors wq for all wq ∈ q. This can
be done during index construction of the collection. While indexing a collection C, for
each word in the dictionary and all the documents where the word occurs, corresponding
term frequency scores along with the document frequency of the word are computed and
stored in the postings lists. At the same time the components of the vectors (idf and first
three moments of tf scores) can be calculated and stored in the same postings list. Hence
for a query word the corresponding vector can be accessed from its index and needs not
to be calculated on the spot every time a query is issued and thus incurs only a constant
memory access time.

3.6.4.1 Training Data

The regression models require training data to learn an association between the queries
and corresponding optimal parameter values. Hence we need to compute the vectors
cs

opt of optimized parameter values on the source collections. In a source collection Cs,
suppose qs

i is a query in the set Qs. To determine the best parameter value cs
qs

i
for qs

i of
one of the models (mentioned in Section 3.6.2), retrieval process is run for qs

i on Cs using
each of the parameter values in the sets provided in Table 7. In each retrieval run the
result is evaluated in terms of average precision. The parameter value for which we obtain
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the highest average precision is selected as the optimized parameter value cs
qs

i
for qs

i . The
relevance judgment on Cs is used for these evaluations. For retrieval step we use Terrier
as all models as well as evoluation modules are already implemented. We used shell
scripts to automatically supply all the parameter values to Terrier and to determine the
best average precision.

Once we have optimized parameters for all the queries in Qs, that is the vector cs
opt, the

training set for kernel regression model (Section 3.5.2) can be built just by associating
a query qi ∈ Qs with the corresponding best parameter value cs

qs
i

of the vector cs
opt.

But for similarity-based regression model (Section 3.5.3) first the similarity measure
κall(., .) (Eq. 3.5.6) is employed to represent queries with respect to a given representation
set Qr (Eq. 3.5.5). In this representation each query is now a |qr|-domensional vector.
Now training data for similarity-based regressor is built by associating a query qi ∈ Qs

represented in the similarity-based space with the corresponding best parameter value cs
qs

i
of the vector cs

opt.

In general a collection contains very few queries (50 to 100) in its query set (Table
6) which is very few for learning a regressor. To alleviate this problem, we consider
multiple collections as sources (mentioned in Section 3.6.1). For each source collection
we independently calculate the vector cs

opt and the corresponding training data for all the
queries in the corresponding query set using the method described above. Then we merge
all these individial training data to obtain a larger one. This does not affect the overall
learning process as each learning example, that is the query and the associated parameter
values are obtained independently from each other and on the corresponding collection
only.

3.6.4.2 Learning a Regressor

As mentioned in Section 3.5.2, we mainly focus on kernel support vector regression as
our kernel regression method. We denote it as k-SVR. LIBSVM4 implementation of ε-SVR

is used. The ε is fixed to 0.1. The hyperparameter C is found by cross-validation on the
training set and the LIBSVM implementation includes this cross-validation module.

For our second approach presented in Section 3.5.3, we used random forests as the
regression model (denoted by RF in the following). Random forest regressor is used as
this is a similarity measure based approach and the used similarity measure may not
necessarily be a kernel. Here we used Python Scikit-learn5 implementation of random
forest regressor. Different hyperparameters of random forest regressor are set by cross-
validation. These hyperparameters are, number of trees in the forest (n estimators),
number of features to consider when looking for the best split (max features), maximum
depth of the tree till which the nodes are to be expanded (max depth) and minimum
number of samples required to split an internal node (min samples split). We used a
python script to implement this cross-validation step.

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
5 http://scikit-learn.org

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://scikit-learn.org
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For experimentation we consider three IR models each having a single free parameter
(Section 3.6.2) totalling three parameters. For each of these parameters, a separate training
set is prepared and eventually three separate regression models are learned, thus providing
a dedicated regressor to predict the values of each of the parameter.

3.6.4.3 Prediction

Once three separate regressors are learned (either k-SVR or RF) they are used for predicting
the parameter values for the target queries. For a target query qt the corresponding word
vectors can be accessed from the index of the corresponding target collection. Then the
query representation qt = {wq1

, . . . , wq|q|} is passed to the kernel regressor k-SVR which
predicts the parameter value. For the similarity-based regressor the query qt is first
represented in the similarity-based common space using similarity measure defined in
Equation 3.5.6 with respect to the representation set Qr (Eq. 3.5.5). This representation is
then passed to RF to get a prediction of the parameter value.

This predicted value is used for the retrieval run using Terrier for qt on the target collection
C t. This procedure is followed for all the queries in the query set Qt. The results are
merged and evaluated using Terrier’s evaluation module. MAP and P@10 are reported to
evaluate the performance of the predicted parameters.

Note that relevance judgments on the target is only used for evaluating the final perfor-
mance of the predicted parameters. For parameter prediction step itself no relevance
information is used.

3.7 results

Here we first assess the effect of different kernels used in the regression model in Section
3.7.1. In Section 3.7.2 we do a comparative study among the two methods proposed here
namely k-SVR and RF. Then we inspect whether the method we propose improves over the
one based on default parameter values (Section 3.7.3) and how it performs against popular
method of parameter tuning and two upper bounds introduced in Section 3.3 (Section
3.7.4). We also consider how our method performs in terms of extra time burden it incurs
(Section 3.7.5).Then we illustrate its use on collections written in different languages
(Section 3.7.6). Lastly, in Section 3.7.7, we investigate the behavior of the method with
respect to the number of queries used for training.

3.7.1 Different Kernels

We first compare the method proposed with the different kernels introduced in Section 3.5:
κall, κpoly−δ

and κgau-σ. We tried a varied range of values for the parameters δ and σ.
For κpoly−δ

we tried with δ = 2, 3, 4, that is second, third and fourth degree polynomial
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kernel. For κgau-σ we tried with σ = 10, 50, 70, 100 which is a considerably large range of
values. The results are reported in Table 8 in terms of MAP and P@10.

TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25

κall 0.1903 0.4300 0.2495 0.4720 0.2052 0.3090 0.3031 0.5879
κpoly-2 0.1898 0.4280 0.2489 0.4660 0.2050 0.3080 0.2993 0.5848

κpoly-3 0.1897 0.4280 0.2489 0.4680 0.2050 0.3080 0.2994 0.5838

κpoly-4 0.1897 0.4280 0.2490 0.4680 0.2049 0.3100 0.2994 0.5848

κgau-10 0.1901 0.4300 0.2491 0.4700 0.2054 0.3110 0.2999 0.5818

κgau-50 0.1900 0.4300 0.2491 0.4680 0.2058 0.3120 0.2999 0.5818

κgau-70 0.1900 0.4300 0.2492 0.4680 0.2058 0.3120 0.2999 0.5818

κgau-100 0.1900 0.4300 0.2492 0.4680 0.2059 0.3120 0.2999 0.5818

LM

κall 0.1914 0.4120 0.2473 0.4480 0.2102 0.3010 0.2944 0.5476

κpoly-2 0.1914 0.4120 0.2478 0.4480 0.2109 0.3040 0.2933 0.5485

κpoly-3 0.1914 0.4120 0.2478 0.4480 0.2109 0.3040 0.2933 0.5485

κpoly-4 0.1914 0.4120 0.2478 0.4480 0.2109 0.3040 0.2933 0.5485

κgau-10 0.1914 0.4120 0.2480 0.4480 0.2110 0.3050 0.2934 0.5465

κgau-50 0.1914 0.4120 0.279 0.4480 0.2109 0.3040 0.2933 0.5485
κgau-70 0.1914 0.4120 0.2478 0.4480 0.2109 0.3040 0.2933 0.5485

κgau-100 0.1914 0.4120 0.2478 0.4480 0.2109 0.3040 0.2933 0.5485

LGD

κall 0.1900 0.4420 0.2564 0.4660 0.2002 0.2910 0.2962 0.5646

κpoly-2 0.1897 0.4420 0.2571 0.4640 0.2024 0.2890 0.2975 0.5718

κpoly-3 0.1897 0.4420 0.2563 0.4600 0.2022 0.2910 0.2982 0.5724

κpoly-4 0.1897 0.4420 0.2568 0.4600 0.2024 0.2910 0.2984 0.5728

κgau-10 0.1899 0.4380 0.2558 0.4620 0.2001 0.2900 0.2947 0.5606

κgau-50 0.1899 0.4380 0.2560 0.4640 0.1998 0.2910 0.2949 0.5626

κgau-70 0.1899 0.4380 0.2560 0.4640 0.1998 0.2890 0.2949 0.5626

κgau-100 0.1899 0.4380 0.2560 0.4640 0.1998 0.2890 0.2949 0.5626

Table 8: Comparison of different kernels in SVR in terms of MAP and P@10 on TREC-7,8,
WT10G and GOV2. The different kernels used are (a) kernel κall, (b) polynomial kernels
with δ = 2, δ = 3 and δ = 4 (κpoly-δ

) and (c) Gaussian kernels with σ = 10.0, σ = 50.0,
σ = 70.0 and σ = 100.0 (κgau-σ). Best results are shown in bold and a bold result with †
is significantly better than the others at p-value threshold of 0.05.

As one can note, the different kernels yield very similar results, without any significant
difference between them. The reason is that the space in which κall operates is only a
4-dimensional space in which linear kernels are likely to behave well; κall amounts to
a dot product in this space, and the extra dimensions brought by the polynomial and



3.7 results 67

Gaussian kernels are of no use here. This result is not really surprising, but still needed
experimental confirmation. We thus focus on κall in the remainder of this study.

3.7.2 Kernel-based vs Similarity-based Regression Models

We now compare between both parameter learning strategies, operating in the embedded
query space using k-SVR (Section 3.5.2), and in the explicit similarity-based vector space
using RF (Section 3.5.3). As mentioned in Section 3.6.1 the representation set Qr is
constituted of all queries in the two FIRE collections and we used all query sets from
CLEF-3 and TREC-3,4,5,6 datasets as source collections. Table 9 summarizes results
on TREC-7,8, WT10G and GOV2 collections obtained with the three IR models with their
free-parameters predicted using these two approaches.

TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25
k-SVR 0.1903↑ 0.4300 0.2495↑ 0.4720 0.2052 0.3090 0.3031⇑ 0.5879⇑

RF 0.1895 0.4280 0.2473 0.4700 0.2017 0.3030 0.2921 0.5616

LM
k-SVR 0.1914↑ 0.4120⇑ 0.2473↑ 0.4480⇑ 0.2102 0.3010↑ 0.2944⇑ 0.5576⇑

RF 0.1884 0.3940 0.2447 0.4380 0.2079 0.2960 0.2868 0.5494

LGD
k-SVR 0.1900 0.4420 0.2564 0.4660⇑ 0.2002 0.2910 0.2962 0.5646

RF 0.1887 0.4460 0.2551 0.4540 0.2036 0.2950 0.2990 0.5707

Table 9: MAP and P@10 measures of different standard IR models on TREC-7,8, WT10G and
GOV2 collections, when the free-parameters of these models are predicted with k-SVR and
RF regression functions. The source collections used to train the regression functions are
CLEF-3 and TREC-3,4,5,6 datasets. For building the similarity based query vector space
queries of both FIRE collections are used as representation set Qr. Best results are shown
in bold. A result with ↑ is significantly better than the other at 0.05 level and a result with
⇑ is significantly better at 0.025 level according to Wilcoxon rank sum test.

From these results, it comes out that in all cases except five, learning the kernel based
regression model in the embedded query space performs better than the regression model
operating in the similarity based vector space. These five exceptions are all for LGD: for
P@10 on TREC-7 and for both MAP and P@10 on WT10G and GOV2. But for any of these five
cases the difference is not significant. Whereas, for most other cases k-SVR is significantly
better than RF according to Wilcoxon rank sum test.

There are different factors which may affect the results of the RF model, among which
there is the size of the query set, Qr, as well as the linguistic difference between queries in
this set and those in the source and target collections. In order to verify these points, we
changed Qr by selecting queries from TREC-7 and TREC-8 datasets at random. Table 10

shows the MAP measures of LGD and LM models in the case where the free-parameters of
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these models are predicted with RF, on WT10G and GOV2 collections for different size of the
representation set, Qr.

|Qr| WT10G GOV2

LM LGD LM LGD

50 0.2061 0.2028 0.2854 0.2989

75 0.2071 0.2037 0.2860 0.2994

100 0.2076 0.2046 0.2866 0.3002

Table 10: MAP measure of LGD and LM models, when the free-parameters are predicted
with RF, on WT10G and GOV2 datasets for an increasing size of the representation set, Qr,
constituted by queries of TREC-7 and TREC-8 collections.

We can see that in this case, the MAP measures of both models improves very slightly
(only 1− 2%) when the size of Qr passes from 50 to 100. Moreover, performance of the
models are almost same when |Qr| = 100 irrespective of the representation set be FIRE

collection or TREC-7,8 (compare last line of Table 10 and performance of RF in Table 9).
Thus the main conclusion from these results, is that for creating the query vector space,
the performance of RF are not much affected by the language and the number of queries
in Qr.

Summarizing, it is clearly evident from the experiments that k-SVR performs significantly
better than RF on almost all cases that we experimented on. Thus from now on we will
mainly focus on k-SVR to further continue our study.

3.7.3 Learned Values vs Default Ones

We then evaluate the validity of the approach proposed by comparing the different IR
models:

(a) with their parameter set to their default values (Section 3.6.3), denoted by def, and

(b) with their parameter values estimated by SVR based on the simple kernel κall (Section
3.5.4), denoted by k-SVR.

The results obtained are reported in Table 11.

As one can note, the method proposed yields MAP results significantly higher than the
ones obtained with the default values on all models and collections except for LGD on
TREC-8, for which there is no significant difference between the two. The same holds for
the P@10 measure, with two exceptions this time: LGD and BM25 on TREC-8. Note however
that in our setting the regressor is trained to optimize the average precision of each query
on the source collection and is thus in line with MAP and not P@10. It is of course straight
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TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25
def 0.1828 0.4180 0.2409 0.4740 0.1842 0.2910 0.2739 0.5384

k-SVR 0.1903↑ 0.4300↑ 0.2495↑ 0.4720 0.2052⇑ 0.3090↑ 0.3031⇑ 0.5879⇑

LM
def 0.1863 0.3920 0.2401 0.4320 0.2040 0.2930 0.2798 0.5545

k-SVR 0.1914↑ 0.4120⇑ 0.2473↑ 0.4480↑ 0.2102↑ 0.3010 0.2944⇑ 0.5576↑

LGD
def 0.1882 0.4280 0.2547 0.4740 0.1949 0.2870 0.2876 0.5414

k-SVR 0.1900↑ 0.4420↑ 0.2564 0.4660 0.2002 0.2910 0.2962↑ 0.5646⇑

Table 11: Comparison of IR models with parameters set to their default values (def) against
the predicted parameter values using k-SVR in terms of MAP and P@10. The regressor is
trained to optimize the average precision of each query on the source collection. Best
results are shown in bold. A result with ↑ is significantly better than the other at 0.05 level
and a result with ⇑ is significantly better at 0.025 level according to Wilcoxon rank sum
test.

forward to directly optimize the P@10, but we want to assess here whether the method
tuned towards MAP also behaves well on P@10.

Lastly, as conjectured in Section 3.3, the difference between the default values and the
approach proposed varies from one collection to the other, and from one model to the
other. Indeed, as mentioned before, the difference is not significant for LGD on TREC-8,
which corresponds to the smallest difference between the default values and the upper
bounds displayed in Figure 7. Thus in this case there is very little room for improvement
over the default values.

3.7.4 Learned Values vs Optimized Ones

We now compare the results obtained by the method developed in this study and the
ones corresponding to two ”ideal” cases. The first ideal case corresponds to the method
10split (Section 3.6.3) and is a standard procedure to tune the parameters. The second
ideal case corresponds to the upper bounds already discussed in Section 3.3 where all the
relevance judgments on the target collections are used to optimize the parameters either
globally for all queries (OptGlobal) or query by query (OptPerQuery).

Table 12 displays the results obtained by 10split, together with the ones obtained by
kernel regression approach k-SVR. As discussed in Section 3.6.3, for 10split method
10 random splits are performed on target query set and here we report mean (denoted
by 10splitm) as well as the variance (denoted by 10splitv) of MAP and P@10 yielded by
each of these splits. One can note that the variance is always very small, for all models
and collections and for both MAP and P@10, showing that the results remain stable even
though the query set considered for training changes. Another interesting fact is that
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TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25
10splitm 0.1820 0.4192 0.2453 0.4552 0.1961 0.3094 0.3054 0.6018↑

10splitv 0.00029 0.00053 0.00121 0.00149 0.00046 0.00048 0.00022 0.00041

k-SVR 0.1903↑ 0.4300↑ 0.2495 0.4720↑ 0.2052↑ 0.3090 0.3031 0.5879

LM
10splitm 0.1821 0.4224 0.2545 0.4536 0.1967 0.3076 0.3019 0.5679
10splitv 0.00035 0.00115 0.00048 0.00059 0.00052 0.00062 0.00019 0.00096

k-SVR 0.1914↑ 0.4120 0.2473 0.4480 0.2102⇑ 0.3010 0.2944 0.5576

LGD
10splitm 0.1803 0.4304 0.2608 0.4584 0.1924 0.2908 0.3026 0.5901⇑

10splitv 0.00039 0.00167 0.00048 0.00079 0.00053 0.00037 0.00023 0.00088

k-SVR 0.1900↑ 0.4420↑ 0.2564 0.4660 0.2002 0.2910 0.2962 0.5646

Table 12: Comparison of IR models with optimized parameter values using 10 random
splits, against the predicted parameter values using k-SVR in terms of MAP and P@10.
The regressor is trained to optimize the average precision of each query on the source
collection Best results are shown in bold. A result with ↑ is significantly better than the
other at 0.05 level and a result with ⇑ is significantly better at 0.025 level according to
Wilcoxon rank sum test.

our approach, which does not make use of any relevance judgments on the collection
queried (target), is either better or at par with the 10split method which uses 50% of the
queries (25 for TREC-7,8 and 50 for WT10G and GOV2) with their relevance judgments on
each collection.

We finally compare our approach to the ideal situation when the relevance judgments of
all queries in the target collection are used. Let us recall that this ideal situation provides
both an upper bound for the methods selecting a global parameter value for the query set,
and an upper bound for the methods selecting a parameter value for each query. Figure 9,
which parallels Figure 7 of Section 3.3, shows the comparison of this ideal situation with
respect to our approach and the one relying on default parameters.

The first point that one can note is that the results obtained by k-SVR are very close to
the ones of the upper bound of the global optimization methods (second and third bars
on each set of histograms). A Wilcoxon test revealed no significant difference between
them, whatever the collection, whatever the model. This shows that our approach is at
least as good as any method optimizing IR parameters globally over all queries, whether
this method uses relevance judgments or not (the def and 10split strategies are such
methods, outperformed, as we have seen before, by our approach).

The second point to notice is that our approach is still 2 to 4% below the upper bound for
methods providing optimal parameters per query. This suggests that there is still room
for improvement over the approach considered in this study.
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(a) BM25 (b) LM

(c) LGD

Figure 9: Comparison of IR models with parameters optimized per query basis (�) and
optimized within the whole collection (�) against the predicted parameter values using
k-SVR (�) and default parameter values (�). The results are in terms of MAP on TREC-7,8,
WT10G and GOV2 collections for (a) BM25 (b) LM and (c) LGD.

3.7.5 Time considerations

As our approach estimates a value for each query, it is important to measure the extra
time needed, per query, for this estimation. The word vectors defined by Eq. 3.5.1 can be
computed offline and stored in the traditional way IDF scores are stored during indexing
(as explained in Section 3.6.4). This means that the query representation defined by
Eq. 3.5.7 can be computed with (almost) no extra burden. The step that requires additional
time with respect to standard IR models is the one corresponding to the application of
the regression function on the target query, given by Eq. 3.5.3. As one can note, this step
involves the computation of a limited number (at most n, the number of source queries)
of dot products between 4-dimensional vectors. One can thus conjecture that the extra
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time for this step is limited. Table 13 gives this extra time, per query, for all collections
and models considered.

Extra Time Taken (milisec.)

TREC-7 TREC-8 WT10G GOV2

BM25 31.22 31.03 16.81 16.99

LM 30.89 31.80 17.23 16.94

LGD 31.51 31.41 16.98 17.46

Table 13: Average extra time taken per query (in milliseconds) by k-SVR over default
parameter value settings.

Clearly, this extra time is in the range 15− 30 milliseconds, and can be easily decreased by
parallelizing the different dot products (by e.g. devoting one core to each source query).
These results show that k-SVR method can be deployed with almost none extra time
burden compared to the default parameter setting.

3.7.6 Breaking the Language Barrier

We investigate here the language independency of the regression method. We perform
experiments to validate whether k-SVR behaves well when the source and target collections
considered are written in different languages. To this end, we performed two kinds of
experiments:

1. We first trained k-SVR on WT10G and GOV2 collections and tested it on non-English
FIRE collections;

2. We then performed the reciprocal experiment by training k-SVR on both FIRE

collections and testing on WT10G and GOV2 collections.

Note that here we are using three languages in total, English, Hindi and Bengali. MAP and
P@10 results are respectively reported in Table 14 and Table 15. Except for LGD on FIRE

and WT10G collections, one can note that in all other cases, IR models with their predicted
free-parameters perform significantly better than with their default values. Furthermore,
one can note that the MAP measures of all IR models for the collections WT10G and GOV2

are similar to the ones reported in Table 11. The representation of queries is based on TF
moments of query words across a given collection, which allows one to use collections in
different languages to learn the regressor, as illustrated in these experiments.

It can be said that the parameter prediction method k-SVR can be applied on target
collections written in different languages. Thus availability of training data in any
language (and eventually multiple languages as the case we studied here) enables k-SVR
to predict better parameter values for any unseen query in any language.
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FIRE-HN FIRE-BN

MAP P@10 MAP P@10

BM25
def 0.2946 0.4540 0.1409 0.2480

k-SVR 0.3029↑ 0.4780↑ 0.1532↑ 0.2680↑

LM
def 0.2682 0.4640 0.1535 0.2520

k-SVR 0.2839↑ 0.4740↑ 0.1576↑ 0.2640↑

LGD
def 0.3092 0.4640 0.1567 0.2840
k-SVR 0.3078 0.4880↑ 0.1566 0.2820

Table 14: Comparison of default parameter values (def) and predicted ones (k-SVR) in
terms of MAP and P@10 when non-English FIRE collections are used as target and WT10G

and GOV2 as source. Best results are shown in bold and a bold result with ↑ is significantly
better than the others at p-value threshold of 0.05 according to Wilcoxon rank sum test.

WT10G GOV2

MAP P@10 MAP P@10

BM25
def 0.1842 0.2910 0.2739 0.5384

k-SVR 0.2075↑ 0.3250↑ 0.3017↑ 0.5808↑

LM
def 0.2040 0.2930 0.2798 0.5545
k-SVR 0.2105↑ 0.3060↑ 0.2933↑ 0.5515

LGD
def 0.1949 0.2870 0.2876 0.5414

k-SVR 0.1985 0.3040↑ 0.2905↑ 0.5455↑

Table 15: Comparison of default parameter values (def) and predicted ones (k-SVR) in
terms of MAP and P@10 when WT10G and GOV2 are used as target and non-English FIRE

collections as source. Best results are shown in bold and a result with ↑ is significantly
better than the others at p-value threshold of 0.05 according to Wilcoxon rank sum test.

3.7.7 The Effect of the Number of Queries for Training

We also analyze the behavior of the IR models for an increasing number of queries in Qs

for training the k-SVR model. This will also help to reveal the number of queries necessary
to train the k-SVR properly. To create Qs, we randomly selected queries from CLEF-3,
TREC-3,4,5,6 source collections to include in the training set. After Qs is finalized the
training set is prepared by the method described in Section 3.6.4.

Figure 10, illustrates this by showing the evolution of MAP on WT10G and GOV2 with respect
to the size of Qs. As expected all performance curves increase monotonically with respect
to the additional training queries, though the increase reaches rapidly a plateau and 150

queries seem sufficient on both collections to learn the regressor at the basis of our method.
The findings of these results are:
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(a) WT10G

(b) GOV2

Figure 10: Evolution of MAP for BM25, LM and LGD on (a) WT10G and (b) GOV2 collections
with respect to the size of Qs. The queries constituting Qs are randomly sampled from
the collections CLEF-3 and TREC-3,4,5,6.

(a) a simple linear model is sufficient to learn the association between the mapping of
queries in the vector space (Equation 3.5.7) and their desired parameter values, and

(b) with a limited amount of source labeled queries, the k-SVR model is able to predict
accurate parameter values and concluding from the results of Section 3.7.6, these
limited amount of source queries can be gathered from collections written in any
language.
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3.8 conclusion

We have presented two learning strategies to predict, on a query by query basis, the
values of the parameters of standard IR models on new collections for which no relevance
judgments are available. To do so, we have first introduced a new representation of queries
as a set of 4-dimensional vectors, each vector summarizing the behavior of a query word
in the collection associated to the query. From this representation, we have shown how to
build two collection and language independent vector spaces: the first one corresponds to
the feature space of a PDS kernel between queries, and the second one to the similarity
scores between the query under consideration and a set of representational queries. We have
then shown how to learn standard state-of-the-art regression functions in these spaces:
kernel support vector regression for the feature space, and random forests for the query
similarity space. Other kernel regression methods can of course be used in the feature
space, as other regression methods can be used in the query similarity space. Finally, we
have introduced a simple PDS kernel that we used in the construction of both spaces. We
also considered several traditional and popular PDS kernels (polynomial and Gaussian)
to be used in the feature space.

Our experiments, conducted on standard collections, have revealed several points:

1. Among two approaches we have developed, the one based on the feature space (as
opposed to the query similarity space) behaves slightly better and does not depend
on a set of “external” queries that can bring a bias in the representation chosen.

2. The feature space method significantly outperforms, in terms of MAP, the one using
default parameter values (def) on the collections and models considered (the MAP is
the measure optimized during training); it either significantly outperforms or is on
a par with the method that uses half target queries with their relevance judgments
to find the best parameter value over all queries (10split). These two methods
(def and 10split) are instances of ”global methods” which make use of the same
parameter value for all queries of a given collection.

3. In the collections considered, we have also found that our method is at least as good
as any global method, potentially using all the relevance judgments on the target
collection.

4. The feature space method is still below the upper bound provided by optimizing
parameter values per query basis using all the relevance judgments on the target
collection, and there is 2% to 4% room for improvement.

5. The extra time required by our method for each query lies in the range 15-30

milliseconds. This extra time, which can be decreased through parallel computation,
corresponds to the application of the regression function on the query representation.
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6. The number of source queries with relevance judgments required by our method is
in the range 150 for all the collections and models we have considered. Furthermore,
the source queries used need not be from a collection written in the same language
as the one of the collection queried.

7. Our approach is collection and language independent and can be used to predict
parameter values of standard IR models to new collections even written in other
languages, as illustrated on the FIRE collections.

8. Lastly, the method can be easily applied to any IR model with few free parameters.

Two methods proposed here make use of the paradigm known as transfer learning in
literature. They use relevance judgments on source collection first to determine the
optimal parameter values for different IR models and transfer the knowledge of these
parameter values through a regression model. This transfer became possible because
of the common representation of the queries on some vector space defined here. This
approach of transferring knowledge opens the door to transfer relevance information
directly between collections, instead of transferring it through the parameter values. But
in order to do that a proper representation of complete collections is required. We focus
on this problem in the next chapter where we try to design a data structure that will
enable us to summarize and represent the relevance information of a complete collection
so that it can be transferred to a target collection. Once we are able to infer some relevance
information on the target any standard ranking algorithm can be deployed to learn a
ranking function.
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4
K N O W L E D G E T R A N S F E R I N I R : L E A R N I N G T O
R A N K O N U N L A B E L L E D C O L L E C T I O N S

We propose a general approach to learn a ranking function on a target collec-
tion without relevance judgments by transferring knowledge from a source
collection having such information. The relevance information in the source
collection is summarized in a grid that provides, for each term frequency and
document frequency values of a word in a document, an empirical estimate
of the relevance of that document. We hence, propagate this information
from a source to a target collection using the grid and obtain a first pool of
pairwise preferences over the pairs of documents in the latter. The algorithm
then iteratively learns a ranking function on the target collection and assigns
pairwise preferences to its documents using the scores of the learned function.
Our approach can be coupled with easy in hand transfer strategies, and we
further propose a simple source selection procedure in order to choose the
best associated source collection for each query in a target dataset. We show
the effectiveness of our approach through a series of extensive experiments
on CLEF-3 and several collections from TREC and show that the proposed
approach yields results consistently and significantly above state-of-the-art IR
functions as well as a state-of-the-art transfer ranking approach.

4.1 introduction

Many applications of information retrieval (IR), as ad hoc retrieval, routing or collaborative
filtering, rely on ranking functions, and IR has a long tradition in designing such functions.
More recently, IR researchers have explored the possibility to learn ranking functions
from relevance judgments on query-document pairs, an approach known as learning
to rank. Such an approach has been extremely productive and has led to new ranking
functions that are built on a set of comprehensive features, including standard IR functions
originally developed for unlabeled collections. In learning to rank for IR, the training
data consists of a set of queries, a set of retrieved documents associated to each query,
as well as relevance judgments for all query-document pairs. In many cases however,
acquiring precise relevance judgments is a time consuming operation that requires an
important manual effort. To alleviate this problem, researchers have explored ways
to transfer known annotations, in the form of relevance information, from one source
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collection to a target collection, a field of research often referred to as cross-domain
adaptation. Two situations have been considered: (a) a few relevance judgments are
available on the target collection that can be combined with the information of the source
collection to learn an appropriate ranking function [Chen et al., 2008a, Chen et al., 2008b,
Chen et al., 2010], and (b) no relevance judgments are available on the target collection
and the only information one can exploit to learn a new ranking function is the one
contained in the source collection [Gao et al., 2010, Cai et al., 2011b, Cai et al., 2011a].

Our work fits within this latter line of research and aims at learning an IR function on a
collection with no relevance judgments. This is a typical situation in IR, in competitions like
the TREC IR tracks for example, but also in retrieving information on new web collections
related to new domains. In both cases, one is dealing with the problem of ranking
documents with respect to different information needs for which no relevance judgments
are available. In both cases however, some effort to gather (automatically or manually)
relevance judgments for past collections and domains (and thus past queries) have already
been made. The studies presented in [Gao et al., 2010, Cai et al., 2011b, Cai et al., 2011a]
have shown that it was indeed possible to learn a good ranking IR function in this scenario.
However, they have also shown that the function learned by their method on the target
domain heavily depends on the source domain used.

We introduce in this study a new framework for transferring information from a source
collection so as to learn a ranking function on a target collection. Our framework differs
from the preceding ones and aims at learning the IR ranking function directly on the target
domain. We refer to this research field as transfer learning to rank and will study several
aspects of the problem, as the one related to the adequacy of the source collection for a
given target collection and we will also explore the possibilities to select the appropriate
source collection from which to transfer relevance information. Note that we used a
similar transfer learning technique in the previous chapter to predict free parameters
for IR models. However, here we attempt to learn the ranking function itself by directly
transferring the relevance information from source to target instead of doing so through
the parameter values.

The transfer learning to rank problem is addressed here by propagating relevance infor-
mation from a source collection to a target collection, so as to obtain pairwise preferences
over the pairs of documents in the latter. This propagation is achieved by first construct-
ing a grid associating normalized Document Frequency (DF) and Term Frequency (TF)
values to a relevance score in the source collection. The individual scores of each term
in a (query, document) pair of the target collection are then looked-up in the grid and
combined to form a global score for the query-document pair. This score is finally used to
build pairwise preference judgments on the target collection. The ranking algorithm then
trains a ranking function as the combination of baseline ranking scores, using pairwise
preferences obtained previously. These two steps of pseudo-labeling, using the current
ranking function, and pairwise learning are then iterated until a convergence criterion is
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reached. The set of features as well as the model and algorithm that form the basis of our
approach are standard components of learning to rank approaches.

Using CLEF-3, TREC-3, TREC-4, TREC-5, TREC-6, TREC-7, TREC-8, WT10G and GOV2 collec-
tions, we show that our approach consistently and significantly improves over state-of-
the-art IR functions as well as other state-of-the-art transfer learning approaches. We
also propose a simple source selection strategy which using the grid information chooses
for each query in the target collection the most similar source collection before learning.
This is to study the situations in which the source selection would be most profitable, in
terms of a distance between the source and target collections. Our analyses show that the
efficiency of transfer learning depends, to a certain extent, on the adequacy of the source
collection with respect to the target one.

The remainder of the paper is organized as follows: Section 4.2 positions our work with
respect to the state-of-the-art. Section 4.3 describes the problem of knowledge transfer
from a source domain to a target domain for learning to rank. In Section 4.4 we present
the details of the grid which forms the basis of the knowledge transfer we consider here, as
well as the self-learning algorithm we consider. The experimental setup and the validation
of the approach proposed here are presented and discussed in Section 4.5 and Section 4.6
respectively. Finally, we summarize the main findings of this study in Section 4.7.

4.2 related work

Learning to rank approaches have been mainly developed within a supervised learning
paradigm, and they are traditionally grouped into three main categories: pointwise,
listwise and pairwise [Liu, 2009].

Pointwise approaches [Crammer and Singer, 2001, Harrington, 2003, Li et al., 2008] as-
sume that each query-document pair has an ordinal score. Ranking is then formulated
as a regression problem, in which the rank value of each document is estimated as an
absolute quantity. In the case where relevance judgments are given as orders or pairwise
preferences (rather than relevance degrees), it is usually not straightforward to apply these
algorithms for learning. Moreover, the two main problems reported in the literature are
that pointwise based techniques do not consider the interdependency among documents,
so that the position of documents in the final ranked list is missing in the regression-like
loss functions used for parameter tuning [Chapelle et al., 2011]. Furthermore, these algo-
rithms ignore the association of some training documents with the same query, and in
some extreme cases, the ranking loss function may be dominated by queries having a large
number of associated retrieved documents [Chen et al., 2009]. On the other hand, list-
wise approaches [Valizadegan et al., 2009, Xu and Li, 2007, Xu et al., 2008] take the entire
ranked list of documents for each query as a training instance. As a direct consequence,
these approaches are able to differentiate documents from different queries, and consider
their position in the output ranked list at the training stage. However, listwise techniques
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aim to directly optimize a ranking measure, so they generally face a major problem of
dealing with non-convex, non-differentiable and discontinuous functions which in some
cases may be difficult to calibrate with respect to Average Precision and the Expected
Reciprocal Rank, which are widely used in IR evaluations [Calauzènes et al., 2012]. Fi-
nally, in pairwise approaches [Cohen et al., 1999, Freund et al., 2003, Joachims, 2002], the
ranked list is decomposed into a set of document pairs. Ranking is therefore considered
as the classification of pairs of documents, such that a classifier is trained by minimizing
the number of misorderings in ranking. In the test phase, the classifier assigns a positive
or negative class label to a document pair that indicates which of the documents in
the pair should be better ranked than the other one. SVM is undoubtedly one of the
most popular classifiers used to perform binary classification on the pairs of documents
for ranking [Cao et al., 2006, Herbrich et al., 1999, Joachims, 2002]. Other adaptation of
popular classifiers to pairwise ranking, like RankBoost which minimizes the exponential
loss over document pairs [Freund et al., 2003], has also attracted attention in the recent
past. More recently, some work considered a smooth approximation to the gradient of the
ranking loss instead of searching for a smooth and convex approximation to the ranking
loss itself [Burges, 2010], while others considered a direct optimization of the ranking loss
function [McAllester et al., 2010].

Creating new test collections, or manually assigning relevance judgments for even a
small set of queries, is a tedious task [Carterette, 2007]; at the same time, many efforts
have already been made to conceive and develop different collections through existing
competitions like TREC, and one can wonder whether such annotated collections can be
used for unannotated ones. This is precisely the point investigated in transductive transfer
learning mainly developed for classification and regression tasks. For a given learning
task and two source and target domains, approaches proposed under this paradigm
also aim to improve the learning of a target predictive function (or simply to learn this
function) by using the knowledge in the source domain (mostly in the form of labeled
instances), as well as unlabeled examples from the target domain. Different approaches
to transductive transfer learning and corresponding works done in those directions are
discussed in Sections 1.5.2 and 3.2. A survey on the studies made in transfer learning till
2010 is provided in [Pan and Yang, 2010].

Recently, some innovative studies have extended the cross-domain learning to ranking
[Chen et al., 2008a, Chen et al., 2010, Gao et al., 2010]. While some of them made use
of both labeled queries in the source and a small set of labeled queries in the target
to learn a ranking function [Chen et al., 2010], others considered that only the source
collection contains labeled information, while queries in the target collection have no
associated relevance judgments [Gao et al., 2010, Cai et al., 2011b]. This is also the setting
we consider in this study. In these latter approaches, the transfer learning is done by
weighting documents in the source collection using unlabeled queries and documents
from the target dataset. More precisely, a classifier is first learned aiming at discriminating
source and target documents or queries on the basis of standard features similar to the
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ones retained in this study. The score of the classifier on each source (query,document)
pair is then used as an indicator of the proximity of this pair to the target collection. A
ranking function is then learned on the source collection, with (query,document) pairs
weighted according to their proximity to the target collection: the closer a pair is to the
target collection, the more importance it will be in the learning process.

This approach has been shown to work in the case where the source and target collections
are close to each other. In the case where they contain different ? subjects (?) ?, the
ranking function learned with the weighted (query,document) pairs will not lead to
efficient rankings as illustrated in table 22. This remark is valid for all transfer learning
approaches we are aware of (including ours), and justifies the need for a source selection
procedure. We know of no (direct) ways to select source collections with the approach
outlined above. Indeed, as the source (query, document) weights vary from one source
collection to another, one has to select the source collection, and hence a ranking function,
per target query, meaning that no single ranking functions can be used on target queries.
In contrast, our approach directly learns the ranking function on the target collection from
a set of queries, after having selected the source collection for transfer for each of these
queries. In our early study, we noticed that this transfer strategy might be efficient in some
interesting cases where the target set and the source collections might be typically different
[Goswami et al., 2013]. In this work, we present a general algorithm that encompasses
our early model and which can be easily adapted to more complex settings.

4.3 framework

We consider here a source collections Cs composed of a set of documentsDs, a set of queries
Qs and relevance judgments for each query in Qs. These relevance judgments are assumed
to be binary, which is the most common situation. We also consider a target collection C t,
composed of a set of documents Dt and a set of m queries Qt = {qt

1, qt
2, . . . , qt

m} without
any relevance judgments.

Our goal here is to transfer relevance information from Cs to C t and then learn a ranking
function on C t. To do so, we propose:

(a) to induce relative relevance judgments between documents in C t by transferring
relevance information from Cs,

(b) to learn a ranking function in C t from the relative relevance judgments obtained
previously.

As in traditional learning to rank approaches for IR, each query-document pair in the
target collection (qt, d) ∈ Qt ×Dt is represented as a K-dimensional feature vector f:

f(qt, d) def
= ( f1(qt, d), . . . , fK(qt, d)) (4.3.1)
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The vector attributes, fk(., .); k ∈ {1, . . . , K}, considered in this work include standard
features used in document retrieval as well as three state-of-the-art IR scoring functions.
These features are presented in more details in Section 4.5.2.

For each query qt in the target collection, the transfer of relevance information from the
source collection to the target one results in a set of relative relevance judgment pairs for
documents in Dt. If d, d′ are two documents in Dt, then the relative relevance judgment is
of the form d �qt d′, where �qt denotes a preference relationship and means more relevant
to query qt than. That is d �qt d′ means d is more relevant with respect to query qt than
d. From these sets, one can then construct a ranking function h : RK → R that assigns a
score to documents in Dt for each query qt ∈ Qt. Similarly to previous learning to rank
studies, we focus here on linear ranking functions:

h(f(q
t,d))

ω = 〈ω, f(qt, d)〉 (4.3.2)

where 〈., .〉 stands for an inner product and the weight vector ω represents the model
parameters. Table 16 gives the notations used in the chapter.

Notation Description
td
w term frequency of term w in a document d

tq
w number of occurrences of term w in a query q

tCw number of occurrences of term w in a collection C
xd

w normalized version of term frequency
Nw(C ) document frequency of term w in collection C
yw(C ) normalized version of document frequency
zw(C ) inverse document frequency of term w in C
N(C ) number of documents in collection C
Nq

R(C ) number of relevant documents in C for query q
R(q) Set of documents relevant to query q
ld length of document d in # of terms
lq length of query q in # of terms
lC length of collection C in # of terms
lavg(C ) average length of documents in collection C

Table 16: Notations

4.4 transfer learning for ranking

In the following sections, we first show how to obtain relative relevance judgments from a
source collection Cs for a target collection C t and then propose a learning algorithm to
transfer the obtained relevance information (Section 4.4.1, 4.4.2, 4.4.3). We then extend our



4.4 transfer learning for ranking 85

algorithm so that a single source collection can be selected for a given target query from a
set of available source collections (Section 4.4.4).

4.4.1 Transferring relevance information

As mentioned above, our goal is to transfer relevance information from a source collection
to a target one, so as to be able to develop a pairwise ranking algorithm on the target
collection. For each query, we thus want to obtain relative relevance judgments between
document pairs. One possibility would be to tune an IR model, say BM25, on the source
collection Cs, and then use its scores on the target collection C t to form document pairs,
that is if BM25(qt, dqt) > BM25(qt, d

′
qt) then dqt �qt d

′
qt . The problem with this approach

is that classical IR scoring functions constitute an important part of the vector features
in the representation of query-document pairs, i.e. in f(., .) (see e.g. [Cao et al., 2006]).
Constructing a training set with BM25 and then using it as one of the attributes to learn a
ranking function h will result in h behaving as BM25. To avoid this, one can think of:

(a) using a first IR scoring function, tuned on the source collection, to build the training
set,

(b) relying on different IR scoring functions to form attributes of the examples in the
target collection.

This procedure would avoid the problem mentioned above if the two scoring functions
yield different rankings.

BM25 vs LM BM25 vs LGD LM vs LGD
TREC-6 0.9998 0.9998 0.9998

TREC-7 0.9997 0.9997 0.9997

TREC-8 0.9997 0.9997 0.9998

Table 17: Kendall τ rank correlation coefficient between 3 state-of-the-art IR scoring
functions on three collections.

Table 17, displays the Kendall τ rank correlation coefficients for three state-of-the-art IR
scoring functions, on three different collections. The three scoring functions considered are:
the language model with Dirichlet smoothing [Zhai and Lafferty, 2001], denoted as LM,
BM25 [Robertson and Zaragoza, 2009], and the log-logistic model of the information-based
family [Clinchant and Gaussier, 2010], denoted LGD. The three collections are TREC-6,
TREC-7 and TREC-8, further described in Section 4.5.1. For each query in each collection,
the Kendall τ rank correlation coefficient is computed between any two scoring functions,
and then average value over all queries within a collection is reported in this table.
Maximum possible value of Kendall τ rank correlation coefficient is 1, which indicates
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that the two scoring functions under observation yield exactly the same ranking. As one
can note, the values taken by the correlation coefficient here are very high, meaning that
all functions provide very similar rankings.

Therefore, using any of these functions to construct a training set and other ones to
form attributes for learning will again result in a function h equivalent to the IR scoring
functions. We thus have to rely on a different strategy that avoids resorting to IR scoring
functions, and makes explicit use of the relevance information provided by a source
collection.

A word w can be characterized by two quantities which constitute the basis of all IR
scoring functions. Firstly the normalized document frequency which corresponds to:

yw(Cs) =
Nw(Cs)

N(Cs)

Secondly normalized number of occurrences of w in any document d of the collection con-
sidered, which is set, following [Amati and van Rijsbergen, 2002a] and [Clinchant and Gaussier, 2010],
to:

xd
w = td

w log(1 +
lavg(Cs)

ld
)

In the remainder, we will use the term NDF for yw(C ) and NTF for xd
w interchangeably.

Suppose w is a term in a query q and a d is a document where w occurs. We wish to
estimate the contribution of w to the relevance of d to q. Now if a query qs is identified in
the source collection Cs with same (NDF, NTF) values as w, the relevance can be estimated
through the proportion of relevant documents with respect to qs. One can recall, this is
possible because relevance judgements for the sources are availble. The proportion of
relevant documents qs in source collection Cs that have the same (NDF, NTF) values as
yw(C ) and xd

w is given by:

|{d′ ∈ Ds, ∃(q′ ∈ Qs, w′ ∈ q′), d′ ∈ R(q′) ∧ eq((w′, d′), (w, d))}|
|{d′ ∈ Ds, ∃(q′ ∈ Qs, w′ ∈ q′ ∩ d′), eq((w′, d′), (w, d))}| (4.4.1)

where eq((w′, d′), (w, d)) means the situation where NDF and NTF of w and w′ are same,
that is:

yw′(Cs) = yw(C ) ∧ xd′
w′ = xd

w

|{}| denotes the cardinality of a set. Let d′ be a document in source document set Ds, q
′

be a query in source query set Qs and w′ be a term in query q
′
. The numerator of the

above ratio represents the number of relevant documents with respect to query q
′

under
the situation where any term w′ in q

′
has same NDF and NTF as term w in the original

query q under question. It is an estimate of the number of relevant documents to q with
respect to source collection C and is determined by finding a similar query q

′
in Qs in

terms of (NDF, NTF) for which relevance judgement is known. Similarly denominator of
the ratio represents the number of all the documents retrieved for source query q

′
which

is similar to original query q in terms of same (NDF, NTF) of the words contained by
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the queries. Hence the complete ratio represents the proportion of relevant documents
of target query q with respect to a similar source query q

′
. In other words the quantity

estimates the probability that d is relevant to q knowing w and the relevance information
in Cs.

However, as typical IR collections only contain few queries, very few words will have
exactly same (NDF, NTF) values and the above estimate will likely not be robust. One
way to avoid this problem is to consider regions in the (NDF, NTF) space into which
the different values are considered equivalent. This amounts to discretize the NDF
and NTF values, e.g. by defining intervals on each value range and then by assigning
a representative value (commonly the median) to each of these regions. If the real
normalized document frequency value of w in a collection C is yw(C ), then [yw(C )]dis is
the representative value of that NDF region where yw(C ) belongs. Similarly for term
frequency value xd

w, the representative value of the NTF value region where xd
w is denoted

by [xd
w]dis.

The probability that document d is relevant to query q knowing term w and a source
collection Cs can now be rewritten as:

P̂(d ∈ R(q)|w; Cs) =
|{d′ ∈ Ds, ∃(q′ ∈ Qs, w′ ∈ q′), d′ ∈ R(q′) ∧ eqdis((w

′, d′), (w, d))}|
|{d′ ∈ Ds, ∃(q′ ∈ Qs, w′ ∈ q′ ∩ d′), eqdis((w′, d′), (w, d))}|

(4.4.2)
where eqdis((w

′, d′), (w, d)) means the situation where both NDF and NTF of w and w′

falls in the same discrete region, that is:

[yw′(Cs)]dis = [yw(C )]dis ∧ [xd′
w′ ]dis = [xd

w]dis

Above ratio is a similiar one with the previous one (Eq. 4.4.1). The only difference is that
now the (NDF, NTF) equality condition is relaxed to a discrete region instead of exact
equality. As the previous ratio (Eq 4.4.1), it also estimates the probability that d is relevant
to q knowing w and the relevance information in Cs. Due to the discretization, this ratio
no longer suffers from the robustness of estimation issue like the previous one.

Figure 11 displays the proportion of relevant documents in 88 different regions of the
normalized (NDF, NTF) space for the TREC-3, TREC-4, TREC-6 and CLEF-3 collections
(described in Section 4.5.1). Here, the DF dimension has been discretized into 8 discrete
values in steps of 0.05; the TF one into 11 values in steps of 0.5. This difference in
discretization is due to the difference in stretch for the two scores. We finally obtain
a 11×8 structure for any source collection, based on 8 discrete values for NDF and 11

discrete values for NTF along with the proportion of relevant documents for each region
(details are in Section 4.5.2). We call such curves grids in the following.

The goal is to infer relative relevance rankings or a preference relationship between
document pairs (Section 4.3) of a target collection. In order to do that one needs to derive
a global score for each document on the complete query. But from the definition of grid
it is clear that the information contained in the grid only concerns the contribution of a
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(a) TREC-3 Grid (b) TREC-4 Grid

(c) TREC-6 Grid (d) CLEF-3 Grid

Figure 11: Proportion of relevant documents in each region of the normalized (DF, TF)
space, for the TREC-3, TREC-4, TREC-6 and CLEF-3 collections. A gray scale is used to
differentiate the proportions (the whiter, the higher). The small peak in the CLEF-3 grid is
however rendered whiter for readability reasons.

single query term to the relevance of a document. A global score or retrieval status value,
RSVCs(qt, d), for a document d in the retrieved set of qt can be computed on the basis of
the (log) probability that d is relevant to qt, that is:

RSVCs(qt, d) = log P(d ∈ R(qt)|qt)

Using Bayes formula and assuming query terms are independent of one another, one has:

P(d ∈ R(qt)|qt) =
P(qt|d ∈ R(qt)P(d ∈ R(qt))

P(qt)

=
P(d ∈ R(qt))

P(qt) ∏
w∈qt

P(w|d ∈ R(qt))xqt
w

Reapplying Bayes formula on the second term:

P(d ∈ R(qt)|qt) =
P(d ∈ R(qt))

P(qt) ∏
w∈qt

(
P(d ∈ R(qt)|w)P(w)

P(d ∈ R(qt))

)xqt
w
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The term P(d ∈ R(qt)) is independent of query term w, hence:

P(d ∈ R(qt)|qt) =

(
P(d ∈ R(qt))

)1−|qt|

P(qt) ∏
w∈qt

(P(w))xqt
w ∏

w∈qt

(
P(d ∈ R(qt)|w)

)xqt
w

=

(
P(d ∈ R(qt))

)1−|qt|

P(qt)
P(qt) ∏

w∈qt

(
P(d ∈ R(qt)|w)

)xqt
w

=
(

P(d ∈ R(qt))
)1−|qt| ∏

w∈qt

(
P(d ∈ R(qt)|w)

)xqt
w

The last two steps are for the fact that ∏w∈qt P(w) = P(qt). In the absence of any
information on the query qt, all the documents in the collection have the same probability
of being relevant. Thus the term P(d ∈ R(qt)) is independent of query qt, so it does
not affect the retrieval process and hence can be ignored. Now a document d will either
contain the term w or it will not. Hence the events w ∈ qt ∩ d and w ∈ qt\d are mutually
exclusive. This leads to:

P(d ∈ R(qt)|qt) = ∏
w∈qt∩d

(
P(d ∈ R(qt)|w)

)xqt
w × ∏

w∈qt\d

(
P(d ∈ R(qt)|w)

)xqt
w

The quantity P(d ∈ R(qt)|w), for w ∈ qt ∩ d, can be estimated by P̂(d ∈ R(qt)|w; Cs) using
the grid of Cs. For w ∈ qt\d, we have: P(d ∈ R(qt)|w) = P(d ∈ R(qt)). This is simply the
probability of the relevancy of document d to the query qt and can be estimated as:

P(d ∈ R(qt)) =
|R(qt)|
N(C t)

But relevance judgments are not available in the target collection C t. One does not have a
direct access to this quantity, but it can be estimated through the average of the proportion
of relevant documents for queries in the source collection:

P(d ∈ R(qt)) ≈ 1
Qs ∑

qs∈Qs

|R(qs)| in Cs

N(Cs)

One can note that now the term P(d ∈ R(qt) depends on query term w as well as the the
documents, hence it cannot be ignored as it affects the retrieval process directly. Replacing
this estimated quantites in the above equation of P(d ∈ R(qt)|qt):

P(d ∈ R(qt)|qt) = ∏
w∈qt∩d

(
P(d ∈ R(qt)|w)

)xqt
w × ∏

w∈qt\d

(
1

Qs ∑
qs∈Qs

|R(qs)| in Cs

N(Cs)

)xqt
w
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From the definition of retrieval status value we thus finally obtain:

RSVCs(qt, d) = log P(d ∈ R(qt)|qt)

= log


 ∏

w∈qt∩d

(
P(d ∈ R(qt)|w)

)xqt
w × ∏

w∈qt\d

(
1

Qs ∑
qs∈Qs

|R(qs)| in Cs

N(Cs)

)xqt
w




RSVCs(qt, d) = ∑
w∈qt∩d

xqt

w log(P̂(d ∈ R(qt)|w; Cs))

+ ∑
w∈qt\d

xqt

w log

(
1

Qs ∑
qs∈Qs

|R(qs)| in Cs

N(Cs)

)
(4.4.3)

It is important to note here that, for a target query qt, RSVCs(qt, d) is based on the informa-
tion brought by source queries similar to qt. Indeed, the first term in RSVCs(qt, d) makes
use of those query-document pairs in Cs that contain words with similar (NDF, NTF)
values as the ones in (d, qt).

The procedure we use for transferring relevance information from a source collection Cs

to a target query qt can then be summarized as follows :

1. Construct the grid for Cs that provides the proportion of relevant documents in all
the regions (as defined above) of the (NDF, NTF) space;

2. For all documents in the target collection, compute RSVCS(qt, d) according to
Eq. 4.4.3;

3. If two documents d and d′ in the retrieved set of qt are such that RSVCs(qt, d) is
sufficiently larger than RSVCs(qt, d′), then assume that d �qt d′.

Of course, the grid for any source collection can be constructed off-line, and does not
need to be re-constructed for each new query. The details of step 3 will be discussed in
Section 4.4.2.

BM25 vs GCs LM vs GCs LGD vs GCs

TREC-6 0.8843 0.8842 0.8843

TREC-7 0.8711 0.8710 0.8710

TREC-8 0.8112 0.8111 0.8111

Table 18: Kendall τ rank correlation coefficient between 3 IR scoring functions and the
grid score.

Interestingly, the correlation between the rankings provided by a grid and IR scoring
functions is significantly lower than the one between IR scoring functions themselves. It
can be seen in Table 18 that displays the Kendall τ rank correlation coefficient between
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the scoring function given in Eq. 4.4.3 using grid GCs built from the TREC-3 collection and
the three standard IR scoring functions mentioned above (these rank coefficients are again
computed on TREC-6, TREC-7 and TREC-8). Table 17 displays the same between three
state-of-the-art IR scoring functions themselves. Lower correlation between grid based
scoring function and IR scoring functions infers that the ranking generated using grid
score is significantly different than the ranking by standard IR models.

We are thus in a position where learning with the relative relevance judgments obtained
by the grid would lead to a different (and hopefully better) ranking function than state-of-
the-art IR scoring functions.

4.4.2 Learning a pairwise classifier

We now transform the transferred information to create training data to learn the ranking
function h (Eq. 4.3.2). The relevance information transferred from the source collection
to the target one takes the form of pairwise relative judgments on which one can learn a
pairwise classifier. To do so, for any query qt in Qt and any instance pair (d, d′) ∈ Dt, one
first constructs a pseudo-label z̃(d, d′) as:

z̃d,d′ =

{
+1 if RSVCs(qt, d) ≥ RSVCs(qt, d′) + δ

−1 if RSVCs(qt, d) ≤ RSVCs(qt, d′)− δ
(4.4.4)

where Cs is the source collection. The pseudo-label z̃(d, d′) is +1 if score of d with respect
to the source collection Cs is significantly higher than that of d′. This actually means that
the document d is much more relevant with respect to the source Cs in comparison with d′.
In Eq. 4.4.4 δ represents a margin over the grid scores which defines significance difference
in the scores, that is z̃(d, d′) is +1 or −1 if the absolute difference of the scores of d and
d′ is atleast δ. This also avoids possible noise in transfer by filtering out documents with
very similar score. Because document pairs with very little score difference are basically
very similar and thus unfit to define a proper and effective preferential relationship.

However, as illustrated in [Cao et al., 2006], queries with more retrieved documents will
be associated with more examples and the learned function will have a tendency to be
biased undesiredly towards those queries. To avoid that, we randomly sample the set of
examples associated to each query so as to have exactly Np examples for each query. Here
Np is an abbreviation of number of pairs of examples. The final training set, T , for learning
the pairwise classifier is then collected from all instance pairs in Dt for all queries qt ∈ Qt

and their associated pseudo-labels:

T = {(f(qt, d)− f(qt, d′), z̃d,d′); qt ∈ Qt, (d, d′) ∈ Dt}

The function h is then learned from this set, which contains Np × |Qt| pseudo-labeled
vectors, using a standard ranking SVM algorithm [Cao et al., 2006, Herbrich et al., 1999,
Joachims, 2002]. It has to be noted however that, because of the fixed number of examples
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per query imposed here, the query bias of ranking SVM highlighted in [Cao et al., 2006]
is not present.

4.4.3 A self-learning improvement

We now introduce the iterative approach we have followed to learn the ranking function h
(Eq. 4.3.2) using training data T .

A description of the different steps of the iterative approach is given in Algorithm 4.1.
For each query qt, in the target domain, pseudo-relevance judgments are assigned to Np

random pairs chosen from the retrieved set of qt (Eq. 4.4.4) based on the grid information
obtained from source collection Cs. The pairwise learning/pseudo-labeling steps are then
iterated by alternately training a new pairwise classifier on the training set built from
all the sets of document pairs and their associated pseudo-labels and assigning pseudo
labels to randomly chosen document pairs for queries in the target collection, Qt. These
pseudo-label assignments also follow from Equation 4.4.4, but using this time the pairwise
preferences given by the current ranking model rather than the grid. This algorithm is
an instance of the discriminant CEM algorithm [McLachlan, 1992, p. 39] and it is easy to
show that it converges to a discriminant version of the log-classification-likelihood over
document pairs. Other variants of the discriminant CEM algorithm have been used in a
more traditional semi-supervised learning setting, and applied to various IR problems
[Amini and Gallinari, 2002].

In a typical transfer scenario for IR, e.g. [Cai et al., 2011b], rely on a single source to
transfer knowledge. This brings stagnancy in terms of information obtained from source.
[Gao et al., 2010] observed that when source is not similar to the target domain the transfer
can be highly inefficient. This is experimentally proved in Section 4.6.1. To be more specific,
a typical transfer learning algorithm uses same source collection for all the target queries.
But this approach prevents one from taking into account the fact that queries are usually
different from one another and that different collections generally display different query
types. So to harness the complete effectiveness of knowledge transfer we propose a simple
extension of Algorithm 4.1 in the following section which takes into account multiple
sources to transfer knowledge.

4.4.4 Transferring relevance information by source selection

As one can note from Figure 11, the grids obtained from the three collections may differ
significantly. As for example grid of TREC-6 (Figure 4.11(c)) is very much different in shape
than the other grids. Moreover, grids can differ on several regions, as for example the small
peak exhibited on the CLEF-3 grid around the (DF, TF) values of 0.1 and 6.5 (rendered
whiter in Figure 4.11(d)). Relevance preferences extracted from the grid from TREC-3
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ALGORITHM 4.1: Transductive Learning to Rank (TLR)
Given :
− A target collection C t with a set of queries Qt = {qt

1, qt
2, . . . , qt

m} with a set of
retrieved documents dqt

i
= {d1

qt
i
, d2

qt
i
, . . . , dn

qt
i
} for each query qt

i ∈ Qt;

−GCs , grid information obtained from a source collection Cs (equation 4.4.3);

− Number of pairs of documents to be selected Np;

− A margin δ > 0;

− The expected precision ε > 0;

Initialization :
− j← 0 ;

− ∀qt ∈ Qt, select Np pairs at random from Dqt = {(dqt , d′qt) ∈ dqt × dqt};

− Set T (0) = {(f(qt, dqt)− f(qt, d′qt), z̃(0)dqt ,d′
qt
); qt ∈ Qt, (dqt , d′qt) ∈ Dqt} where

∀(dqt , d′qt) ∈ Dqt :

z̃(0)dqt ,d′
qt
=

{
+1 if GCs(dqt) ≥ GCs(d′qt) + δ

−1 if GCs(dqt) ≤ GCs(d′qt)− δ

repeat
−j← j + 1;

−Train h(j)
ω on T (j− 1);

−∀qt ∈ Qt, select Np pairs at random from Dqt = {(dqt , d′qt) ∈ dqt × dqt} ;

−Set T (j) = {(f(qt, dqt)− f(qt, d′qt), z̃(j)
dqt ,d′

qt
); qt ∈ Qt, (dqt , d′qt) ∈ Dqt} where

∀(dqt , d′qt) ∈ Dqt :

z̃(j)
dqt ,d′

qt
=





+1 if h(j)
ω (f(qt, dqt)− f(qt, d′qt)) ≥ δ

−1 if h(j)
ω (f(qt, dqt)− f(qt, d′qt)) ≤ −δ

until ||ω(j) −ω(j−1)|| < ε;

Output : The final ranking function h(j)
ω

will miss the behavior of CLEF-3 query-document pairs in this particular region. This is
related to the fact, mentioned above, that different collections tend to use different types
of queries, which motivates our will to select, for each target query, a source collection
that is appropriate for transferring information.

Instead of a single source we now consider here a set of source collections. Suppose
{Cs1 , · · · , CsL} is a set of L source collections, where ith source Csi is composed of a set
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of documents Dsi , a set of queries Qsi and binary relevance judgments for each query in
Qsi , 1 ≤ i ≤ L. Same as before C t is a target collection, with a set of documents Dt and a
set of m queries Qt = {qt

1, qt
2, . . . , qt

m} without any relevance judgments.

Let qt be a target query. We will first select a source for qt from the set {Cs1 , · · · , CsL} and
then transfer information by learning a ranking function as described in Section 4.4.1.

Let qt be a target query, w a word in qt and NTF1, · · · , NTFn are n different discrete
NTF values (or representative values of each NTF region). As before, [xd

w]dis denotes the
discrete NTF value associated to xd

w and [yw(C )]dis the discrete NDF value associated to
yw(C ).
For any collection C ∈ C t ∪ {Cs1 , · · · , CsL}, let us consider the n-dimensional vector s(w, C).
The ith component of this vector corresponds to the proportion of number of documents
for which xd

w falls within the ith discrete NTF value range of C :

s(w, C )i =
|{d ∈ C , s.t. [xd

w]dis = NTFi}|
yw(C )

, 1 ≤ i ≤ n

One can note that the calculation of the vector s(w, C ) for any collection C does not involve
any relevance information and hence can be calculated even for target collection. s(w, C )
thus indicates how w is distributed in the documents of C 1, an information that can be
summarized through the skewness value. The skewness of a vector s(w, C ) is defined by:

sk(s) =

1
n

n

∑
i=1

(si − s̄)3

(
1
n

n

∑
i=1

(si − s̄)2

) 3
2

(4.4.5)

where n corresponds to the dimension of the vector, si to its ith coordinate and s̄ to the
mean of its coordinates. Indeed, the skewness measures the asymmetry of an empirical
distribution and aims at assessing whether the mass of a distribution is concentrated on
the right or the left tail. The more similar two distributions are, similar their shapes will
be and also closer their skewness values will be. So the score of a collection C with respect
to the word w is defined as the skewness of the vector s(w, C ). And the score of C with
respect to the whole query qt is the average or sum of skewness values of each word in q.

If the absolute value of the difference between skewness of two distributions is low, then
the distributions have the same shape. Going by this logic, we measure the difference
of skewness values of the vector for target collection s(w, C t) and same of all the source
collections s(w, Csi), 1 ≤ i ≤ L. The source having minimum difference displays the
closest (NDF, NTF) distribution to the words contained in qt and is selected as the source

1 In other words, this vector indicates the spread of w in the documents of C . The s of notation s(w, C ) is an
abbreviation of the word spread
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for qt. The source collection used to build pairwise relevance judgments for qt is thus
defined as:

Cs
qt = argmin

C∈{Cs1 ,··· ,CsL}
∑

w∈qt

|sk(s(w, C t))− sk(s(w, C ))| (4.4.6)

With the aid of source selection approach, now the initial training set T (0) is to be built
on the pseudo-labels collected from the selected source for a particular target query.
Algorithm 4.1.1 summarizes the steps for querywise source selection which are to be
added at the beginning of Algorithm 4.1:

ALGORITHM 4.1.1: Querywise Source Selection

forall the ∀qt ∈ Qt do
− Select the source Cs

qt (Eq. 4.4.6) ;

− Select Np pairs (dqt , d′qt) at random from the retrieved set of qt ;

− Set T (0) = {(f(qt, dqt)− f(qt, d′qt), z̃(0)dqt ,d′
qt
); qt ∈ Qt} where:

z̃(0)dqt ,d′
qt
=

{
+1 if RSVCs

qt
(qt, dqt) ≥ RSVCs

qt
(qt, d′qt) + δ(0)

−1 if RSVCs
qt
(qt, dqt) ≤ RSVCs

qt
(qt, d′qt)− δ(0)

end

Here for each query qt, in the target collection, its most similar source is first selected (Eq.
4.4.6), then pseudo-relevance judgments are assigned to Np random pairs chosen from the
retrieved set of qt (Eq. 4.4.4) and the initial training set T (0) is build. After that the steps
are same as described in Algorithm 4.1.

4.5 experimental setup

Various experiments are performed aimed at evaluating to which extend the knowledge
transfer presented above can help to learn an efficient ranking function on the target
domain. To this end, we considered different collections with different associated query
sets, sharing or not the same document sets.

4.5.1 Collections

Experiments are done using nine standard IR datasets from the TREC and CLEF2 evaluation
campaigns. Simple statistics of the data sets used are shown in table 19. Among these
data sets, TREC-6, TREC-7 and TREC-8 use the same document sets (TREC disks 4 and

2 http://www.clef-campaign.org

http://www.clef-campaign.org
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5) but different query sets, whereas WT10G, TREC-3,4,5 CLEF-3 and GOV2 use unique
document sets and unique query sets. We appended TREC-9 Web and TREC-10 Web tracks
and used the combined track to experiment with WT10G. Similarly TREC-2004 Terabyte
and TREC-2005 Terabyte tracks are combined and used for experimenting with GOV2.
Collections are indexed using Terrier IR Platform v3.5[Ounis et al., 2006] (http://www.
terrier.org). Collections are preprocessed while indexing and the preprocessing steps
include stemming using Porter stemmer and removing stop-words using the stopword
list provided by Terrier 3.5.

Collection, C N(C ) lavg(C ) Index size |Q|
GOV2 25,177,217 646 19.6 GB 100

WT10G 1,692,096 398 1.3 GB 100

TREC-3 741,856 261 427.7 MB 50

TREC-4 567,529 323 379.0 MB 50

TREC-5 524,929 339 378.0 MB 50

TREC-6 50

TREC-7 528,155 296 373.0 MB 50

TREC-8 50

CLEF-3 169,477 301 126.2 MB 60

Table 19: Statistics of various collections used in our experiments sorted by size.

4.5.2 Implementing Transfer learning using Grids

To constitute the grid GCs for a source collection C , we used labeled set of queries, along
with their associated retrieved documents, from Cs. The list of associated retrieved
documents contains all the documents which contain at least one of the query words.
We used Terrier to obtain the list. First both NDF and NTF dimensions are discretized
where we considered a step of 0.05 along the NDF dimension, and of 0.5 along the NTF
dimension (the NDF scores are lower than the NTF scores, hence different scales are
used in two dimensions). For every query term w ∈ qs such that qs ∈ Qs and for every
document d ∈ Ds a term-document pair (w, d) can be obtained. A (NDF, NTF) value
pair is associated to every (w, d) pair. These (NDF, NTF) value pairs are points in a
NDF− NTF space. Every single (NDF, NTF) point is assigned to a discrete region where
it belongs to. Furthermore, as in all the test collections we considered, very few terms
have NDF values above 0.35 and NTF values above 5, all the data points above these two
values are grouped in the same interval. It is checked if the document d involed in the
(NDF, NTF) pair is relevant or not to the query qs where the involved term w belongs.
The relevance judgement on the source collection is used in this step. By this processing
of the (NDF, NTF) points the number of relevant points as well as total number of points

http://www.terrier.org
http://www.terrier.org
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per discrete region are counted. Once these counts are obtained the P̂(d ∈ R(q)|w; Cs) is
calculated using Equation 4.4.2 for each NDF-NTF region and the grid is constructed. In
the experimental results below, we designate the transfer from a source collection Cs to a
target collection C t using the grid built over the source collection, GCs , by: Cs y

GCs C t.

The proposed transfer learning to rank approach (Algorithm 4.1) is denoted as TLRppr.
Here ppr is an abbreviation of pairwise pseudo-relevance, as the proposed transfer learning
to rank approach here uses source grids to assign a pseudo-relevance between a pair of
documents in the target.

For this pseudo-relevance based label assignments (Eq. 4.4.4), we fixed the initial margin
δ(0) to 10% of the diameter of the scoring intervals returned by the aggregation function
RSVCs

qt
(Eq. 4.4.3). This choice was motivated by our observations that the proposed

algorithm is not too sensitive to this threshold value, as for all not so high threshold values
allowing the constitution of pseudo-labeled pairs we obtain merely the same performance
result. The increasing step µ is also fixed to 10% of the scoring intervals returned either
by the aggregation or the ranking function learned at each step. The precision ε is set to
10−3. We also fixed Np, the number of document pairs for each query to be added in the
training set, to 150. For high value of this margin (δ ≥ 60% of the diameter of the scoring
intervals) it becomes extremely hard and eventually impossible to find Np document pairs
(d, d′) per target query with score difference more than δ. But for all target collections we
experimented with the margin never reached that high and almost always the algorithm
terminated after three or four iterations.

For learning the ranking function, we employed SVM on the pairwise representation
of documents using the SVMLight [Joachims, 1999] implementation. In order to avoid
overfitting the pseudo-label assignments obtained from the grid (Eq.4.4.4) of each of the
ranking functions found iteratively in algorithm 4.1, we fixed the hyperparameter C of
the SVM to 10−4.

Furthermore, in order to define the attributes, we used the three IR models (BM25, LM,
LGD) in the feature vector created for each document-query pair (Eq. 4.3.1). The inherent
idea behind this choice is to evaluate in which cases the combination of standard scoring
functions would be beneficial on a new target collection using the grid. The other vector
attributes we considered are standard features used in document retrieval [Nallapati, 2004].
All these features are depicted in Table 20. Note that this list contains two among three
types of features mentioned in Section 1.5.1. Features numbered 2, 3 are query independent
quantites and rest are quantities related to both query and documents.

In our transductive transfer learning setting, we use all the unlabeled set of queries, i.e.
queries without relevant judgments, and their associated retrieved document lists in the
target collection for training. Note that true relevance judgments provided with the target
collections are only used for final evaluation. In order to compare the performance of the
algorithms we computed the mean average precision (MAP) and the average precision at
the 10

th document (P@10) across queries.
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Features

1. ∑
w∈q∩d

log(1 + td
w) 2. ∑

w∈q∩d
log(1 +

lC
tCw

)

3. ∑
w∈q∩d

log(zw(C )) 4. ∑
w∈q∩d

log(1 +
td
w
ld
)

5. ∑
w∈q∩d

log(1 +
td
w
ld

.zw(C )) 6. ∑
w∈q∩d

log(1 +
td
w
ld

.
lC
tCw

)

7. BM25(q, d) 8. LM(q, d)
9. LGD(q, d)

Table 20: Features in the vector representation of (q, d), see table 16 for notations.

Finally, experiments are performed on Terrier IR platform v3.5 as all standard modules are
integrated. We implemented our models inside this framework and used other necessary
standard modules by Terrier, mainly the indexing and the evaluation components. Some
auxiliary shell scripts are used to coordinate between SVMLight and Terrier as for example
preparing training data for SVMLight and supplying results produced by SVMLight to
Terrier etc.

4.5.3 Standard IR Models

To validate the transfer learning to rank approach TLRppr, we considered the following
models for comparison:

• The learning to rank approach using training data from the related domain proposed
in [Cai et al., 2011b] and denoted as TLRqw. Here qw stands for query weighting, as
in this model the source queries are assigned a weight with respect to the target
domain which are eventually used to learn an IR scoring function. This approach is
based on a classification criterion, and in the results presented in [Cai et al., 2011b]
it came out that the transfer learning for ranking is highly dependent to the source
collection. Hence, in our experiments we analyze the impact of a pure ranking
approach for transfer learning and also the effect of source selection for this task.

• Furthermore, we considered as baseline models the three standard IR models:
language model with Dirichlet smoothing [Jelinek and Marcer, 1980] denoted as LM,
BM25 [Robertson and Walker, 1994], and the log-logistic model of the information-
based family [Clinchant and Gaussier, 2010], denoted as LGD. For the language
model, we restricted ourselves to the Dirichlet smoothing variant as it yielded better
results than the other language models on all of the experiments we performed.
Furthermore, because relevance information is not available in the target collection,
we fixed the hyper-parameters of the these models to their default values provided
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within the Terrier IR platform, that is: for BM25, b = 0.75, k1 = 1.2 and k3 = 8.0; for
LM, the smoothing parameter µ is set to 2500; for LGD, the parameter c is fixed to 1.0.

• The aggregation function found over the grid of a source collection (Eq. 4.4.3)
denoted as RSVCs .

4.6 results

We start our evaluation by comparing the transfer knowledge based ranking algorithms
TLRppr (Section 4.4) and state-of-the-art standard IR models in Section 4.6.1. This first
evaluation will provide a first insight into the effectiveness of cross-domain knowledge
transfer for learning to rank. We proceed further by comparing TLRppr with a state-of-the-
art transfer learning algorithm TLRqw proposed by [Cai et al., 2011b] in Section 4.6.2. Then
we analyze the effect of different choice of sources (Section 4.6.2.1) and the effect of size of
the sources (Section 4.6.3) on knowledge transfer. Finally in Section 4.6.4 we venture the
effect of source selection per target query on TLRppr.

4.6.1 Knowledge transfer for ranking

We start our evaluation by analyzing the gains provided by our transductive ranking
algorithm TLRppr over standard IR models when we use the grid information from CLEF-3,
TREC-3, TREC-4 and TREC-6 taken as source collections. Each time a single source is used
for knowledge transfer. We used TREC-7, TREC-8, WT10G and GOV2 as target collections.

We have reported the MAP and P@10 of all the ranking models as well as the ranking
provided by the grid itself (using Eq. 4.4.3). Table 21 summarizes these results. We use
bold face to indicate the best performance on a target collection. The symbol ↓ indicates
that performance is significantly worse than the best result, according to a Wilcoxon rank
sum test at a p-value threshold of 0.05[Rice, 2006].

From these results in Table 21 it becomes clear that:

1. The transfer ranking algorithm TLRppr consistently improves over other standard
IR models on MAP and P@10. Moreover, these results are robust over the choice of the
source collection.

2. For WT10G and GOV2 the performance of TLRppr are notably better than standard IR
models. For all the source collections, TLRppr is always significantly better than the
the standard IR models on GOV2. However the impact of the choice of source is
more on GOV2 in comparison to other target collections. For WT10G, when TREC-4

and TREC-6 is used as source TLRppr is significantly better. These observations lead
to two remarks, firstly TLRppr seems to perform better on larger target collections
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CLEF-3yGCs C t

C t ≡ TREC-7 C t ≡ TREC-8 C t ≡ WT10G C t ≡ GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

RSVCs 0.149
↓

0.354
↓

0.214
↓

0.470 0.147
↓

0.218
↓

0.219
↓

0.443
↓

BM25 0.183
↓

0.418
↓

0.241 0.472 0.184
↓

0.291 0.272
↓

0.533
↓

LM 0.186 0.392
↓

0.240 0.432
↓

0.204 0.293 0.278
↓

0.549
↓

LGD 0.188 0.428 0.255 0.474 0.195 0.287 0.285
↓

0.536
↓

TLRppr 0.194 0.442 0.260 0.480 0.207 0.308 0.299 0.571

TREC-3yGCs C t

C t ≡ TREC-7 C t ≡ TREC-8 C t ≡ WT10G C t ≡ GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

RSVCs 0.154
↓

0.384
↓

0.222
↓

0.456
↓

0.156
↓

0.227
↓

0.234
↓

0.453
↓

BM25 0.183
↓

0.418
↓

0.241 0.472 0.184
↓

0.291 0.272
↓

0.533
↓

LM 0.186 0.392
↓

0.240 0.432
↓

0.204 0.293 0.278
↓

0.549
↓

LGD 0.188
↓

0.428 0.255 0.474 0.195 0.287
↓

0.285
↓

0.536
↓

TLRppr 0.196 0.442 0.262 0.476 0.208 0.311 0.306 0.576

TREC-4yGCs C t

C t ≡ TREC-7 C t ≡ TREC-8 C t ≡ WT10G C t ≡ GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

RSVCs 0.156
↓

0.378
↓

0.227
↓

0.450
↓

0.159
↓

0.228
↓

0.239
↓

0.447
↓

BM25 0.183
↓

0.418
↓

0.241 0.472 0.184
↓

0.291
↓

0.272
↓

0.533
↓

LM 0.186 0.392
↓

0.240 0.432
↓

0.204 0.293 0.278
↓

0.549
↓

LGD 0.188 0.428 0.255 0.474 0.195
↓

0.287
↓

0.285
↓

0.536
↓

TLRppr 0.193 0.456 0.261 0.474 0.207 0.315 0.309 0.579

TREC-6yGCs C t

C t ≡ TREC-7 C t ≡ TREC-8 C t ≡ WT10G C t ≡ GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

RSVCs 0.155
↓

0.390
↓

0.224
↓

0.448
↓

0.145
↓

0.211
↓

0.223
↓

0.434
↓

BM25 0.183
↓

0.418
↓

0.241 0.472 0.184
↓

0.291
↓

0.272
↓

0.533
↓

LM 0.186 0.392
↓

0.240
↓

0.432
↓

0.204 0.293 0.278
↓

0.549
↓

LGD 0.188
↓

0.428 0.255 0.474 0.195
↓

0.287 0.285
↓

0.536
↓

TLRppr 0.196 0.446 0.262 0.476 0.208 0.308 0.301 0.562

Table 21: MAP and P@10 measures on different target collections when using CLEF-3,
TREC-3, TREC-4 and TREC-6 as source data sets respectively. The best result is in bold, and
a ↓ indicates a result that is statistically significantly worse than the best, according to a
Wilcoxon rank sum test at a p-value threshold of 0.05.
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and secondly when given a choice to select a source per query (Algorithm 4.1.1)
probably the most affected target is GOV2.

3. Finally, the MAP and P@10 measures of rankings obtained from the scores derived from
the grid, RSVCs (Eq. 4.4.3) are in the same range even though below the performance
(in terms of MAP and P@10) of standard IR models in most cases. Moreover, for
almost all source target combinations presented here TLRppr performs significantly
better than RSVCs . This fact suggests that the self-learning improvement over the
grid scores for pairwise learning helps to boost the performance significantly.

The consistent improvements obtained with TLRppr show that it is possible to learn an
efficient combination of state-of-the-art IR scoring functions from the relevance judgments
provided by a source collection. The information provided by the grid and the state-of-
the-art IR scoring functions is thus complementary, which is in line with the preliminary
analysis we did on the ranking correlations between the grid scores and the baseline
models (Section 4.4.1, Table 18). However, our results also show that the transfer learning
based approach proposed here is somewhat robust on the choice of the source collection
used. But it also revealed that venturing the effect of choice of source on larger collection
may be interesting, as well as the effect of the size and the diversity in the source collection.

4.6.2 The effect of a ranking criterion to build pseudo-pairs on the target collection

Now we compare TLRppr with TLRqw, proposed in [Cai et al., 2011b]. TLRqw is based on
classification criterion to constitute the pseudo relevance-pairs to learn the ranking model
on the target collection. Table 22, shows MAP results on TREC-7, TREC-8, WT10G and GOV2

taken as target collections using CLEF-3, TREC-3, TREC-4 and TREC-6 respectively as source
collection for knowledge transfer.

For all the cases except one (on GOV2 using TREC-6 as source) TLRppr performs significantly
better than TLRqw, especially when TREC-4 is used as source. From these results, it can
be seen that the performance of TLRqw, on a given target collection, varies significantly
depending on the source collection in use. These results also suggest that the efficiency of
transfer learning may highly depend on the adequacy of the source collection with respect
to the target one, and failure to identify a proper source for transfer may result in negative
transfer [Pan and Yang, 2010].

TLRqw first classifies between source and target domain query-document pairs by learning
a hyperplane and then predicts the weights of source queries with respect to target
domain based on the distances of the source query-document pairs from this hyperplane.
Then TLRqw incorporates the weights into source ranking model to rank documents in
target domain. So the knowledge is transferred through the model using a classification
criterion, making TLRqw extremely sensitive to the similarity of source and target domain.
This is evident in the performance of TLRqw when TREC-4 is source. On the other hand
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Targets (C t)

TREC-7 TREC-8 WT10G GOV2

CLEF-3yGCs C t TLRqw 0.186 0.253 0.177
↓

0.271
↓

TLRppr 0.194 0.260 0.208 0.299

TREC-3yGCs C t TLRqw 0.163
↓

0.218
↓

0.189
↓

0.276
↓

TLRppr 0.196 0.262 0.208 0.306

TREC-4yGCs C t TLRqw 0.077
↓

0.099
↓

0.091
↓

0.163
↓

TLRppr 0.193 0.261 0.207 0.309

TREC-6yGCs C t TLRqw 0.189 0.259 0.205 0.302
TLRppr 0.196 0.262 0.208 0.301

Table 22: Comparison between the knowledge transfer based ranking algorithms TLRppr
(Section 4.4) and TLRqw. MAP measures are shown on four different collections taken as
target collections and when only one fixed source is used. Best results are shown in bold,
and a ↓ indicates a result that is statistically significantly worse than the best, according to
a Wilcoxon rank sum test at a p-value threshold of 0.05.

TLRppr uses the source grid for building a ranking model in the target domain itself, thus
incorporating a pure ranking approach, making it less susceptible to the similarity of
source and target domains.

4.6.2.1 The effect of the distance between collections

As seen in table 21, TLRppr is robust to the choice of sources. But TLRppr deploys a self-
learning iterative algorithm on the information obtained based on the source grid and
it is evident from the same table that the performance of the original grid based RSVCs

depends highly on the selected source. In general RSVCs performs worse when CLEF-3

is used as source and performs better when TREC-4 is used as source. When TREC-6 is
source, RSVCs performs better on smaller targets but is significantly worse on larger targets.
A natural explanation for this is that TREC-6 collection, and more precisely the grid one
can construct from it, is better suited for TREC-7, TREC-8 than for WT10G, GOV2.

To understand the effect of a source on knowledge transfer, first a similarity measure
between collections is required. As described previously, a grid is a summary of a
collection. So the comparison between the shapes of two grids should represent the
comparison between the underlying collections. Going by this intuition, we now describe
similarity measures between collections which are computed from the corresponding
grids.

Following observations can be made while transferring knowledge based on grids:

• A grid constitutes 88 discrete regions over normalized (NDF, NTF) space; 8 discrete
values are considered along the normalized DF axis and 11 along the normalized TF
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axis. Each region has a corresponding proportion value of relevant documents in
that particular region (Eq. 4.4.2). These proportions carry the relevance information
that is getting transferred from the source to the target. When the shape of a grid is
referred, actually the shape provided by these values are considered.

• Each discrete NDF region constitutes a number of query terms (i.e. the terms having
normalized DF that falls in that region) that contributed to that portion of the grid.
One can note that, RSVCs (hence TLRppr as well) fetches information from a source
based on target query terms (Algorithm 4.1). Only those portion of a source grid
contribute to the transfer where some target query terms exist. Other portions of the
source grid is redundant to the target under consideration. Hence, when measuring
similarity between a source and a target grid, different regions should be weighted
based on the number of target query terms present in that region.

• Each grid region actually corresponds to a certain number of documents (both
relevant and non relevant) that actually contains the terms having the corresponding
normalized DF and TF values for that region. The proportion values of relevant
documents are actually an estimate of the probability that document d is relevant to
target query qt. Hence, more the number of documents in a region, better would be
the estimate. Similarly, the ratio of number of documents in a region of the source
grid against the target grid determines the relative effectiveness of the estimate.
Larger this ratio, better would be the estimation. Hence each region should be
weighted by the number of document ratio between source and target to measure
the similarity between the grids.

Taking into account the above observations, we now define a similarity measure between
a source and a target grid, namely Gs and Gt. Suppose Gs(i, j) (or Gt(i, j)) is the proportion
of relevant documents in the region corresponding to ith discrete normalized DF region
and jth discrete normalized TF region of grid Gs (or Gt), where 1 ≤ i ≤ 8 and 1 ≤ j ≤ 11.
Normalized number of terms present in the ith discrete normalized DF region of Gt is
denoted by #nterms-Gt(i). Number of documents present in the region corresponding to
ith discrete normalized DF region and jth discrete normalized TF region of grid Gs (or Gt)
is denoted by #docs-Gs(i, j) (or #docs-Gt(i, j)). So we define the distance between Gs and
Gt as:

dist(Gt,Gs) =

√√√√
8

∑
i=1

11

∑
j=1

(
Gt(i, j)− Gs(i, j)

)2 × #nterms-Gt(i)×
#docs-Gt(i, j)
#docs-Gs(i, j)

This distance is calculated by an euclidean distance of grid values between the same
regions of two grids weighted by number of target query terms present in the region and
ratio of number of documents in that region. One can note that the number of document
ratio between the source grid and the target grid is proportional to the similarity between
two grids, thus inversely proportional to the distance. Hence in the distance equation
above the reverse of the ratio is considered.
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We now define similarity between Gt and Gs as the inverse of their distances :

sim(Gt,Gs) =
1

dist(Gt,Gs)
(4.6.1)

The weighted similarity measure given by the above equation between different source
(CLEF-3, TREC-3, TREC-4, TREC-6) and target grids (TREC-7, TREC-8, WT10G, GOV2) used
here is presented in Table 23. Note that here relevant judgemnt on different target
collections are used to measure the similarity. But at the same time, it is only for
analysis purpose by which we are trying to understand the behaviour of transfer learning
algorithms.

TREC-7 TREC-8 WT10G GOV2

CLEF-3 0.9 1.3 0.9 0.2
TREC-3 2.4 3.6 1.7 0.3
TREC-4 2.5 3.8 2.4 0.4
TREC-6 2.5 2.1 0.4 0.1

Table 23: Weighted similarity measures between different 3D grids calculated by Equation
4.6.1.

These results are consistent with the performance of the grid scores RSVCs on target
collections that we considered in our experiments. Indeed, as shown in table 21, the
more a source collection is similar to a target collection (Table 23), the higher is the MAP
performance of RSVCs for those source and target collections. One can note that though
RSVCs is susceptible to the similarity of source and target collections, but final ranking
function learned by the self-learning iterative algorithm is able to shed off this dependency.

4.6.3 The effect of size and diversity in the source collection

Here we analyze the behavior of TLRppr for growing amounts of queries and their associ-
ated relevance judgments in the source collection.

Let C1 and C2 be two collections with document sets D1 and D2 and query sets Q1 and
Q2 respectively. Augmentation of two collections C1 and C2 (denoted by C1 ⊕ C2) means
merging their document sets (D12 = D1 ∪D2) and appending the associated query sets
(Q12 = {Q1, Q2}). This eventually leads to the merging of the retrieved document sets by
the queries in Q12 as well as merging of corresponding relevance judgements. Clearly
C1 ⊕ C2 itself is a collection with a document set D12 and query set Q12 along with
relevance judgements. Thus it is possible to build a grid using C1 ⊕ C2.

We first start experimenting with the CLEF-3 collection as the source, then we advance
with CLEF-3⊕TREC-3 as source and finally CLEF-3⊕TREC-3⊕TREC-6 as source. At each



4.6 results 105

Figure 12: Evolution of MAP on TREC-7, TREC-8 and WT10G taken as target collections;
when the grid is built up gradually over CLEF-3 (�), CLEF-3⊕ TREC-3 (�), and, CLEF-3⊕
TREC-3⊕ TREC-6 (�). ⊕ represents the merging operation.

step a new grid is build from the corresponding augmented source collection to trans-
fer knowledge. Figure 12 illustrates the evolution of MAP for these successive source
augmentations on TREC-7, TREC-8 and WT10G taken as target collections.

On all these three target collections, one can notice that the improvements of MAP for
the TLRppr model when augmenting CLEF-3 with TREC-3 are more substantial than when
augmenting TREC-6 to the set of previously augmented source data sets, even though
TREC-6 is 5 times larger in size than CLEF-3 (Table 19). To analyze the reason behind it we
caluculated the weighted similarities (Eq. 4.6.1) between the grids from TREC-7, TREC-8
and WT10G and those obtained after augmenting incrementally the three source collections,
which are CLEF-3, CLEF-3⊕TREC-3 and CLEF-3⊕TREC-3⊕ TREC-6. Table 24 shows the
calculated weighted similarities.

TREC-7 TREC-8 WT10G

CLEF-3 0.9 1.3 0.9
CLEF-3⊕ TREC-3 2.6 3.8 2.0

CLEF-3⊕ TREC-3⊕ TREC-6 3.7 4.8 1.9

Table 24: Weighted similarity measures calculated by Equation 4.6.1 between different
3D grids obtained after augmeting incrementally CLEF-3, TREC-3 and TREC-6 source
collections. ⊕ represents the merging operation.
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As it can be seen, the grids corresponding to different target collections and the incre-
mentally augmented source collections become more and more closer as more source
collections are added. There is a jump in the similarity after the first augmentation of
(CLEF-3 and TREC-3) over CLEF-3 alone which is inline with the first jump of MAP values
in Figure 12. The highest improvement here is thus obtained through the merging of two
dissimilar collections (CLEF-3 and TREC-3) and not through the addition of many more
queries from TREC-6. This suggests that the diversity of the source collections has more
impact in the transfer of pairwise preferences on the target collections than the size of the
source data sets.

4.6.4 The effect of source selection

In Section 4.6.1 we discussed how the choice of source may or may not affect the per-
formance of TLRppr on different target collections. In this section we further explore this
idea using an extension of TLRppr in the form of source selection (Algorithm 4.1.1). This
extension is denoted by TLRssppr, where the ss is the abbreviation of source selection.

We now use TREC-3, TREC-4, TREC-5, TREC-6 and CLEF-3 as the pool of source collections
from which each target query can select the most appropriate source for knowledge
transfer using Algorithm 4.1.1. We measured the MAP and P@10 of all the models on
TREC-7, TREC-8, WT10G and GOV2. Note that for TLRqw the source selection step is not
trivial to carry out as the transfer is done as a whole from a source to a target instead of
individual target queries. For comparison, we included best MAP performance for TLRppr
on each target collection over different sources (Table 21). Table 25 summarizes these
results. We use bold face to indicate the best performances. The symbol ↓ (respectively
⇓) indicates that performance is significantly worse than our approach, according to a
Wilcoxon rank sum test used at a p-value threshold of 0.05 (respectively 0.01) [Rice, 2006].

C t ≡ TREC-7 C t ≡ TREC-8 C t ≡ WT10G C t ≡ GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25 0.183
↓

0.418
⇓

0.243
⇓

0.472 0.184
⇓

0.291
↓

0.272
⇓

0.533
⇓

LM 0.186 0.392
⇓

0.240
↓

0.432
⇓

0.204 0.293
↓

0.278
⇓

0.549
⇓

LGD 0.188
↓

0.428 0.255
⇓

0.474 0.195
↓

0.287
↓

0.285
⇓

0.536
⇓

TLRppr 0.196 0.446 0.262 0.476 0.208 0.311 0.309 0.579

TLRssppr 0.197 0.446 0.263 0.468 0.210 0.318 0.312 0.582

Table 25: MAP and P@10 measures on different target collections where query wise source
data sets are selected from CLEF-3, TREC-3,4,5,6. The best results are in bold, and a ↓

(respectively ⇓) indicates a result that is statistically significantly worse than the best result,
according to a Wilcoxon rank sum test used at a p-value threshold of 0.05 (respectively
0.01).
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Following points can be observed from these results:

1. Like the original TLRppr algorithm, the source selection extension TLRssppr also im-
proves consistently and significantly over other standard IR models on MAP and P@10

in most cases.

2. TLRssppr is almost always slightly better than the original TLRppr but not significantly
better. This again proves that TLRppr is robust against the choice of source selection,
and that the main improvement comes from the constitution of pseudo-labeled pairs
which is performed using the ranking strategy of (Eq. 4.4.4).

3. Among different targets, TLRssppr gets maximum improvement over TLRppr on GOV2,
thus implying source selection has maximum impact on this target. This is inline
with the observation in Section 4.6.1 (Table 21) where the impact of the choice of
source is more notable on GOV2 in comparison to other target collections.

4.7 conclusion

We have studied in this chapter the problem of learning a ranking function from collections
without relevance information. To do so, we have used a transfer learning approach by
which we try to derive relative pseudo-relevance judgments in a target collection from
absolute relevance judgments available in the source collection. This derivation relies
on a grid that associates to each (NDF, NTF) value of a term in a query-document pair
and a relevance score, which is then combined over all query terms. A ranking SVM

system is then deployed on the obtained relative pseudo-relevance judgments, and further
improved through a self-learning mechanism. The experiments we have conducted show
that the ranking function obtained in this way consistently and significantly outperforms
state-of-the-art IR ranking functions in the majority of cases on a whole range of TREC
collections with respect to the MAP and the P@10 measures.

Our approach directly learns a ranking function on the target collection as opposed
to previous approaches developed in the same setting and which learned the ranking
function on re-weighted version of the source collection. Thus this approach allows the
method to adapt to more complex setting, as well as it can be coupled with easy in
hand transfer strategies for ranking. We employed a simple source selection procedure in
order to choose the best associated source collection for each query in a target collection.
Compared to a state-of-the-art transfer learning approach for ranking, our results suggest
that the central significant step to make the transfer work is to use a ranking strategy to
create a first pool of pseudo-labeled pairs for each query in the target collection.

The conventionally used term “learning a function” actually means learning the weights
associated with the variables of a function whose form is predefined. As for exam-
ple, in learning to rank scenario (as well as the case we studied here) ranking SVM
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[Herbrich et al., 1999] assumes a linear form as given in Equation 4.3.2, which again
comes from defining a minimization problem over the hinge loss function. Though use of
different kernels (e.g. polynomial, gaussian etc.) enables to assume a non-linear form, but
these kernels themselves have predefined forms which is again imposed on the learned
ranking function. Similar is true for any standard ranking algorithm. To this end the
question is, whether it is possible to learn a ranking function which has no restriction on
its form. This question leads us to the next chapter where we investigate this problem.



5
E X P L O R I N G T H E S PA C E O F I R F U N C T I O N S

In this chapter we propose an approach to search and discover formulas for
IR ranking from a space of simple formulas. In general all IR ranking models
are based on two basic variables, namely, term frequency and document
frequency. Here a grammar for generating all possible formulas are defined
which consists of two above said variables and basic mathematical operations
- addition, subtraction, multiplication, division, logarithm, exponential and
square root. The large set of formulas generated by this grammar are filtered by
checking mathematical feasibility and satisfiability to heuristic constraints on
IR scoring functions proposed by the community. Obtained candidate formulas
are tested on various standard IR collections and several simple but promising
scoring formulas are identified. We show that these newly discovered formulas
are outperforming other state-of-the-art IR scoring models through extensive
experimentation on several IR collections. We also compare the performance of
formulas satisfying IR constraints and those which do not, where the earlier set
of formulas clearly outperforms the later set. In doing so we also empirically
validate these constraints.

5.1 introduction

Developing new term-document scoring functions that outperform already existing tradi-
tional scoring schemes is one of the most interesting and popular research area in theo-
retical information retrieval (IR). Many state-of-the-art IR scoring schemes have been devel-
oped since the dawn of IR research, such as the vector space model [Salton and McGill, 1983],
the language model [Ponte and Croft, 1998], BM25 [Robertson and Zaragoza, 2009], and,
more recently, the HMM [Metzler and Croft, 2005], DFR [Amati and van Rijsbergen, 2002a],
information-based models [Clinchant and Gaussier, 2010] and learning to rank [Liu, 2009].
All these scoring schemes were developed along one what could be called a ”theoretical
line”, in which theoretical principles guide the development of the scoring function, and
then assessed on different standard IR test collections. There is however a chance, or
more precisely a risk, that some high performing scoring schemes will not come into light
through such an approach, as they are not so intuitive and/or are not so easily explainable
theoretically. Quoting [Fan et al., 2004]:

109
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There is no guarantee that existing ranking functions are the best/optimal ones
available. It seems likely that more powerful functions are yet to be discovered.

The motivation of finding the best or optimal IR scoring function has led the researchers to
explore the space of IR functions in a more systematic way. But, such attempts have always
been limited by the complexity of search space with regard to the current computational
power. One can note that the search space is of infinite dimension containing potentially all
real functions. The first attempts to this exploration were based on genetic programming
and genetic algorithms, which were seen as a way to automatically learn IR functions
by exploring parts of the solution space stochastically [Gordon, 1988, Pathak et al., 2000,
Cummins and O’Riordan, 2006b]. Even though all of these methods enlarge the space of
scoring functions, they are still limited in two aspects: first, they usually assume that the
IR scoring function takes a particular form (e.g. linear or polynomial), and they require
some training set in order to learn the parameters of the function given a particular
collection. Two questions, directly addressed in the current study, thus remain open:

a) Is it possible to explore the space of IR scoring functions in a more systematic (i.e.
exhaustive) way?

b) Is it possible to find a function that behaves well on all (or most) collections, and thus
dispenses from re-training the function each time a new collection is considered?

To answer those questions, we introduce an automatic discovery approach based on the
systematic exploration of a search space of simple closed-form mathematical functions.
This approach is inspired from the work of [Maes et al., 2011] on multi-armed bandit
problems and is here coupled with the use of heuristic IR constraints [Fang et al., 2004] to
prune the search space and so, limiting the computational requirements. Such a possibility
was mentioned in [Cummins and O’Riordan, 2006b] but has not been tried to the best of
our knowledge.

We performed extensive experiments on CLEF-3, TREC-3, TREC-5, TREC-6, TREC-7, TREC-8,
WT10G and GOV2 to evaluate the performance of the scoring functions discovered by our
search strategy. We show that these functions are simple yet effective on most of the
collections and performs significantly better than other state-of-the-art IR scoring functions.
While going through the search space we also stored the functions that does not comply
with the heuristic IR constraints and compared them with the functions that satisfies those
constraints. This experiments show that later set of functions significantly outperforms
the first set, thus empirically validating the heuristic IR constraints.

Rest of the chapter is organized as follows: Section 5.2 discusses the previous work
done to explore the space of IR functions and places our work with respect to the
previous approaches. Section 5.3 introduces the function generation process using the
search strategy we have followed and Section 5.4 describes the method of selecting best
performing functions from the pool of generated functions. Sections 5.5 and 5.6 present
the experiments and results obtained. Finally, Section 5.7 concludes the chapter.
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5.2 related work

Use of heuristic and intelligent search algorithms in the field of IR is not naive. The first
attempts to this exploration were based on genetic algorithm [Goldberg, 1989] and genetic
programming [Koza, 1992]. Genetic algorithm is a heuristic optimization strategy inspired
by the principles of biological evaluation. It considers each solution to be an individual
and iteratively tries to find the optimal solution by means of genetic operations (crossover
and mutation) on the existing population to create more diverse and efficient generation
of population. Genetic programming is an extension of genetic algorithm where each
individual is essentilly a program (or algorithm) to solve the problem. It applies same
techniques to evolve a program which can best perform a given task based on some fitness
criteria.

First direct application of genetic algorithm in IR comes in the form of finding suitable
document descriptions and in general, modifying the document indexing [Gordon, 1988,
Blair, 1990]. This approach considers multiple complete descriptions of a single document
so that it can be found on the basis of the description that best describes the document
with respect to a query. Genetic algorithm is used to create a new generation of descrip-
tions from the existing ones on the basis of feedback generated from past queries which
enables to have better retrieval results for a group of users searching for similar topics.
[Vrajitoru, 1998] has analyzed the effect of crossover operation of genetic algorithm on the
model described by [Gordon, 1988] and has shown that the proper choice of crossover
operator can significantly improve the basic model. This similar approach was used by
[Gordon, 1991], where the genetically generated document subject descriptions were used
to form clusters of co-relevant documents for a set of queries. This document cluster-
ing problem was also addressed by [Raghavan and Agarwal, 1987]. [Yang et al., 1992]
presents another direction where genetic algorithm is applied to the query space to find
the optimal query term weights inside a relevance feedback framework. Genetic algo-
rithm was applied by [Petry et al., 1994] to build and modify weighted Boolean queries to
improve the performance in terms of precision and recall. Moreover, they also studied the
effect of fitness function on the overall performance. [Chen, 1995] assumed documents
to be individuals (chromosomes) and binary presence of keywords (0 or 1) as genes and
used genetic algorithm to optimize these keywords so that the system can suggest most
relevant document to the user.

Above mentioned genetic algorithm based techniques concentrates mainly on document
and query representations and their modifications. [Pathak et al., 2000] attempted to
use genetic algorithm directly to the retrieval procedure by means of learning the best
weights of a linear weighted combination of different scoring (or matching) functions
which yielded promising results. A similar problem was studied by [Billhardt et al., 2002],
where genetic algorithm was used in two fold. First to select a set of candidate matching
functions (or retrieval experts) from a pool of different matching functions, and then to find
the weight of these candidate functions in a linear combination. This brings us to the point
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of finding the ranking function itself which can be directly applied as a retrieval model.
But genetic algorithm by definition can only operate on individuals with a fixed-length
string description which disables it to explore the function space where functions of
different lengths can be involved.

One major advantage of genetic programming over genetic algorithm is the flexibility of
data representation. Individuals considered by genetic programming are not constrained
by the fixed length representaion. [Fan et al., 2000] was the first to apply genetic program-
ming to explore the IR function space and the problem was revisited by a later work
in [Fan et al., 2004]. Each function is represented by a tree (more specifically parse-tree)
structure which enables the easy parsing and implementation. Functions are composed
of literals, i.e. some basic IR variables (e.g. tf, df etc.) and operations (+, ×, / and log).
A set of random functions are generated to serve as initial population. Some queries
and corresponding labeled documents are used for training and cross validaion and
performance of each generated scoring function is measured in terms of average precision.
This measured performance is used as the fitness value. Iterative genetic programming
method is deployed on the initial population which involves two genetic operations.
Firstly, reproduction, which copies top 10% funcions of the current generation with respect
to the fitness value to the next generation without any alteration. Secondly, crossover,
where some randomly selected functions from the new generation exchange subtrees.
This ensures that the new genration contains functions different from the parent genera-
tion. [Fan et al., 2004] simulated this method for thirty generation and selected the best
performing function based on the performance over the cross validation set. This method
is summrazied in Figure 13

Intial
Population

Training
Documents

scoring

fitness value
calculation

genetic
operations

New
Generation

Repeat for 30 generations

30th

Generation

scoring

Cross
Validation
Documents

select best function with
highest fitness value

Figure 13: Overview of genetic programming based approach to ranking function discov-
ery problem

The same problem was studied by [Oren, 2002] where mutation operation was also used
along with reproduction and crossover. [Cummins and O’Riordan, 2006b] attempted
to explore the search space more systematically by evolving scoring functions in lo-
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cal (within-document) and global (collection-wide) domains and later combining them.
[Cummins and O’Riordan, 2006a] uses a similar strategy by considering a term weighting
scheme to have three parts, a global part, a term-frequency part and a normalization
part. These techniques allow to search each part of the term-weighting scheme separately,
thus reducing the complexity of the process. These approaches show the power of auto-
mated function discovery using machine intelligence tools. But, being a non-deterministic
method, the solutions generated by these genetic programming based approaches are
often difficult to analyze. [Cummins and O’Riordan, 2005] tries to analyze the weighting
schemes generated by this approach and [Cummins and O’Riordan, 2006a] provides met-
rices to measure distances between rank lists generated by different generated solutions
and thus explaining their position in the solution space.

More recently, researchers have focused on particular function forms as linear combina-
tions or well-defined kernel functions, the parameters of which are learned from some
training data. This approach has been highly successful in IR, through the various
“learning to rank” methods proposed so far: pointwise, e.g. [Crammer and Singer, 2001],
pairwise, e.g. [Cohen et al., 1999, Freund et al., 2003, Joachims, 2002], or list wise ap-
proaches, e.g. [Valizadegan et al., 2009]. [Yeh et al., 2007] applied genetic programming
to learning to rank scenario where an efficient ranking function is searched given the
pairwise training data. But, as pointed out in Section 4.7 of previous chapter, this approach
of learning a ranking function involves finding out weights of variables of functions with
a certain form.

Here another search strategy is proposed which explores the search space exhaustively but
systematically. This search technique to find a suitable solution for a particular problem is
not novel in computer science. This approach was first introduced to find solution to the
multi-arm-bandit problem [Maes et al., 2011, Maes et al., 2012]. [Castronovo et al., 2012]
used this technique to find solutions for Markov decision problems.

The difference between the automated strategy explained in this chapter and the genetic
programming based approach are mainly two folds. As mentioned above, solutions
yielded by genetic programming based methods are often very complex because of
its non-deterministic nature. Moreover, there is another issue associated with genetic
programming, namely “code bloat” – the fact that almost all genetic programming
algorithms have a tendency to produce larger and larger functions along the iterations.
As for example, the consensus scoring function reported in [Fan et al., 2004] for a TREC

ad-hoc task is as follows:

log
(
td
w ×

(
tavg
w + td

w
log((td

w)2×tavg
w )

+ td
w×N
Nw
× tavg

w ×(tmax
w +uq)
Nw

))

uq + 2× tmax
w + 0.373

where, td
w is term frequency, Nw is document frequency, tavg

w is the average term frequency
within the document, tmax

w is the maximum term frequency in the entire collection, N
is the number of documents in the collection and uq is the number of unique term in
the document. Thus there is a high risk of missing simple functions of high quality.
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Whereas our method is deterministic and explores the entire search space till a given
length (explained in 5.3.4), thus it does not miss simple yet effective solutions. Genetic
programming enforces a selection step based on the fitness function (in most literature
MAP or similar evaluation measure) at every generation which in some sense is optimiza-
tion based on some already labeled data (relevance judgment). Our approach initially
generates the set of all suitable candidate functions and later test them directly, hence
involving no learning step. Moreover, our approach uses the heuristic IR constraints
[Fang et al., 2004] to restrict the solution space at the beginning to get only good candidate
functions and which in turn limits the computational requirements. This also enables us
to study the effect of these constraints on the retrieval system. [Zheng and Fang, 2009]
and [Fang and Zhai, 2011] experimentally evaluated the performances of IR models based
on the heuristic IR constraints. We also provide an empirical proof of the effectiveness of
these constraints in the light of the framework presented here.

5.3 function generation

Retrieval status value (RSV) scores a document d with respect to a query q. It in turn
does a weighted scoring of the document in question with respect to every term w in the
query q.

RSV(d, q) = ∑
w∈q

tq
w g(d, w)

The function g assigns a positive score to the document with respect to every query
term. We call g(d, w) a scoring function. In this section we present the proposed discovery
strategy for function generation and the validity verification steps that we deploy to find
a set of candidate scoring functions from the space of IR functions. All the notations are
summarized in Table 26.

Notation Description
td
w term frequency of term w in document d

tq
w number of occurrences of term w in query q

xd
w normalized version of term frequency
Nw document frequency of term w
yw normalized version of document frequency
N number of documents in a given collection
ld length of document d in number of terms
lavg average length of documents in a given collection

Table 26: Notations
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5.3.1 Variables

All classical IR scoring functions to score a document d with respect to a query term w
consists of two basic variables:

- The term frequency td
w of term w in document d is defined as the number of times

that w occurs in d.

- The document frequency Nw of a term w is the number of documents in the collection
that w occurs in.

However it is well known that normalized versions of these variables yield better re-
sults. There exist numerous normalization schemes available in literature, for example
language models use relative term counts [Ponte and Croft, 1998] and the BM25 model
uses the Okapi normalization [Robertson and Zaragoza, 2009]. For this work, we selected
a common scheme, which is the one used in DFR and in information based models
[Clinchant and Gaussier, 2010].

Thus, we consider the following variables:

1. Normalized term frequency given by:

xd
w = td

w log
(

1 + c
lavg

ld

)
(5.3.1)

Here c ∈ R is a multiplying factor. Note that this variable incorporates both td
w and

ld. For simplicity, unless otherwise stated it is written as x from now on;

2. Normalized document frequency given by:

yw =
Nw

N
For simplicity, unless otherwise stated it is written as y from now on;

3. A constant real valued parameter k ∈ R.

5.3.2 Operations

A scoring function can be seen as a combination of the basic quantities x, y and k, and
some unary and binary mathematical operations. The operations considered here are most
commonly used in all standard existing IR scoring functions. Again, this list is modifiable
and the proposed approach is independent of the operations used.

Here in this work unary operations can be logarithm, exponentiation with respect to e
(exp()), square root or unary negation. Binary operations can be any four basic mathe-
matical operations (addition, subtraction, multiplication, division) or exponentiation with
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respect to any real number. Variables and operations considered here are summarized in
Table 27.

Variables normalized tf (x), normalized df (y), constant (k)

Operations
binary: +, −, ×, ÷, pow
unary: log, exp, sqrt, unary negation

Table 27: Variables and operations considered.

5.3.3 The Grammar

A grammar in a formal language is a finite set of recursive rewriting rules (called productions)
to generate strings in the formal language under consideration. The set of rules are used
to generate strings using the alphabet of the language so that the generated strings follow
the syntax of the language. The alphabet (conventionaly denoted by Σ) of a language is
a non-empty set of symbols from which the strings are generated. The symbols in the
alphabet set Σ are often called terminal symbols as they appear in the strings. On the other
hand another set (conventionaly denoted N) of auxiliary symbols is also considered, which
are called nonterminal symbols. These are used as placeholders for patterns of terminal
symbols and gets replaced by the group of terminal symbols it represents according to a
production rule. Formally a grammar G is defined by a four tuple (N, Σ, P, S), where N
and Σ are set of nonterminal and the alphabet respectively as described above. P is the
finite set of production rules and S is a special nonterminal called start symbol which acts
as the initial symbol to start with to generate a string by the grammar.

A grammar is called a context free grammar if all the production rules of P are of the
form X → ω where X is a single nonterminal (X ∈ N) and ω is a string of terminals
and nonterminals (ω ⊆ Σ ∪ N). Context free grammars are particularly very useful to
formalize mathematical formulas.

Here we use a context free grammar to generate syntactically correct functions. We define
a grammar G as following:

• N = {B(·, ·), U(·), S, g}

• Σ = {x, y, k,+,−,×,÷, pow, log, exp, sqrt,−(·)

• S = g

• P is described by Figure 14.

The −(·) signifies the unary negation operation (e.g. −y). Thus, by this grammar G a
function g may be a binary expression B(g, g), or a unary expression U(g), or a symbol S.
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g ::= B(g, g) | U(g) | S
B ::= + | − | × | ÷ | pow
U ::= log | exp | sqrt | − (.)
S ::= x | y | k

Figure 14: Grammar G to generate scoring functions

5.3.4 Validity Verification

Grammar G generates functions which are syntactically sound. After this first combination
of the variables and operations we look at the validity of the generated functions. This
validity verification is a four-step process.

1. Presence of both x and y: We consider it to be mandatory that an IR scoring function
must contain both basic variables, x and y. This imposition is supported by the fact
that the scoring functions either with only term frequency or with only document
frequency perform poorly with respect to functions containing both of them. All
functions with only one of these variables are rejected. One can note that the
presence of the constant k is kept optional.

2. Domain of definition: This step ensures that a function generated by the grammar
is mathematically well defined, that is to verify that all the operations used in a
function are well defined. Bad operations include logarithm or square root of a
negative number and division by zero.

3. Positiveness: Here we check that a generated function is non-negative valued. We
restrict ourselves only to non-negative functions because it prunes the search space
and concentrates on scoring functions which assign non-negative scores to docu-
ments. We can always get negative valued functions from a non-negative valued
function either by multiplying it with −1 or subtracting a negative constant from it.

4. IR constraints: Heuristic IR constraints [Fang et al., 2004] proposed by the commu-
nity guides how a “good” IR scoring function should behave analytically. These
constraints were discussed in Section 1.4. In this step it is checked if a generated
function satisfies the heuristic IR constraints or not. For ease of implementation
and interpretebality we use the analytical form of the constraints proposed in
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[Clinchant and Gaussier, 2011, Clinchant and Gaussier, 2010]. That is for the gener-
ated function g(x, y), we must have1:

∂g
∂td

w
> 0 tf effect

∂2g
(∂td

w)
2 < 0 concavity effect

∂g
∂Nw

< 0 df effect

∂g
∂ld

< 0 doc-len effect

From the definition of x (Eq. 5.3.1), taking derivative with respect to td
w we have:

∂x
∂td

w
= log

(
1 + c

lavg

ld

)

Here c, lavg, ld > 0, thus
(

1 + c lavg
ld

)
> 1 giving right hand side of the equation

always positive. That is ∂x
∂td

w
> 0. So starting from the tf effect given above, using

chain rule for derivatives we have the following:

∂g
∂td

w
=

∂g
∂x

.
∂x
∂td

w

Since ∂x
∂td

w
> 0, hence to make ∂g

∂td
w
> 0 we need:

∂g
∂x

> 0 (C1)

Applying Faà di Bruno’s formula for chain rule to the second order derivative, from
the concavity effect we have:

∂2g
∂(td

w)
2 =

∂2g
∂x2 .

(∂g
∂x

)2
+

∂g
∂x

.
∂2x

∂(td
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From the definition of x (Eq. 5.3.1), ∂2x
∂(td

w)2 = 0. Hence the above derivative is reduced
to:

∂2g
∂(td

w)
2 =

∂2g
∂x2 .

(∂g
∂x

)2

But if g satisfies C1, we also have
(

∂g
∂x

)2
> 0. Thus the derivative ∂2g

∂(td
w)2 will be

negative if and only if:
∂2g
∂x2 < 0 (C2)

1 for the ease of readability we have used g for the function g(x, y)
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Now from defintion of y, taking derivative with respect to Nw: ∂y
∂Nw

= 1
N . Since

N > 0, we always have ∂y
∂Nw

> 0. Starting form the df effect above:

∂g
∂Nw

=
∂g(x, y)

∂y
.

∂y
∂Nw

It has been shown that ∂y
∂Nw

> 0, hence to have left hand side of the equation to be
negative it must be ensured that:

∂g
∂y

< 0 (C3)

Again from definition of x taking derivative with respect to ld:

∂x
∂ld

= −td
w

1(
1 + c lavg

ld

)
(

c
lavg

ld

)

which is always negative as td
w, c, lavg, ld > 0. Now starting from the doc-len effect we

have:
∂g
∂ld

=
∂g
∂x

.
∂x
∂ld

We already proved that ∂x
∂ld

< 0. So to have ∂g
∂ld

< 0 we must ensure that ∂g
∂x > 0

which is already ensured by C1.

To summarize, it is sufficient to check if g satisfies the following three constraints
(denoted by C1, C2 and C3):

∂g
∂x

> 0
︸ ︷︷ ︸

C1

,
∂2g
∂x2 < 0
︸ ︷︷ ︸

C2

,
∂g
∂y

< 0
︸ ︷︷ ︸

C3

For every generated function g it is mandatory to pass all four validity verification steps.
Then only it is considered well defined and eligible to be used as an IR scoring function.
Even if the function fails to satisfy only one step, it is considered non-valid and is not
considered in any later steps.

5.3.5 Generating Candidate Functions

Before going into the details of the function generation procedure, two concepts need to
be defined:

Definition. The length of a function is defined as the number of symbols or operators present in
that function.

As for example the function sqrt(x/y) has a length 4, where sqrt() and the division are
two operators and x, y are two symbols present. Similarly sqrt(x) ∗ exp(−y) has a length
6. One can note that the length of a function loosely reflects the complexity of the function.
More length it has, more complex it is.
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Definition. A function generated by grammar G is said to be a candidate scoring function if it
survives all the validity verification steps described earlier.

ALGORITHM 5.3.1: Generating candidate scoring functions
Input : maximum length lmax, the grammar G
Output :
− set of candidate functions CV till lmax

− set of functions which do not satisfy heuristic IR constraints but pass
other two validity tests, CN

Initialization : CV ← { }, CN ← { }, S ← { }
for lcurr ∈ {1, 2, . . . , lmax} do

repeat
A new function g|S|+1 is created by any of the following rules:
− Create a symbol (variable or constant): g|S|+1 = x, y or k
− Take unary operation: g|S|+1 = U(gi), i ∈ [1, |S|]
− Take a binary operation: g|S|+1 = B(gi, gj), i, j ∈ [1, |S|]

S ← S ∪ {g|S|+1}
if g|S|+1(x, y) satisfies presence of both x and y test AND g|S|+1(x, y) satisfies
domain of definition test AND g|S|+1(x, y) satisfies positiveness then

if g|S|+1(x, y) satisfies heuristic IR constraints then

CV ← CV ∪ {g|S|+1}
else

CN ← CN ∪ {g|S|+1}
end

end
until all the functions till lcurr in SG are generated;

end

A iterative length-limited strategy is used here to generate the set of all candidate scoring
functions till length lmax. The set is denoted by CV . Complete procedure is summarized
in Algorithm 5.3.1. The algorithm works as follows. Suppose SG is the set of all possible
functions generated by grammar G. In a particular iteration S ⊂ SG is the set of already
generated functions with a length less than or equal to lcurr where lcurr < lmax and
S = {g1, g2, . . . , g|S|}. Next iteration expands the set S by creating new functions. A new
function g|S|+1 is created either by starting with a symbol that is S, or taking any unary
operation of any function gi ∈ S that is U(gi), or by taking any binary operation of two
functions gi, gj ∈ S that is B(gi, gj). As for example, starting from an initial empty set
S = {}, the function sqrt(x/y) is generated by the following steps:

(g1 = x)→ (g2 = y)→ (g3 = g1/g2)→ (g4 = sqrt(g3))
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Once a new function g|S|+1 is generated its validity is checked. If it passes all four steps, it
is included in the set of generated candidate scoring functions CV , otherwise it is rejected.
Note that if g|S|+1 is rejected it is still kept in the set S . Because g|S|+1 itself may not be
valid but later in the procedure it can contribute to generate a valid candidate function. As
for example, −x does not satisfies “presence of both x and y” step as well as “positiveness”
step, but log(−x + x+y

y ) is a valid candidate function which contains −x. A pictorial
representation of the algorithm is presented in Figure 15.

gnew =
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x|y|k
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symbolic
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Figure 15: Method to generate the set of candidate scoring functions using the grammar
G.

5.3.6 Generating Functions Based on IR Constraint Satisfaction

One can note that for the purpose of our experimental study, Algorithm 5.3.1 also stores
the functions until length lmax which do not satisfy heuristic IR constraints but otherwise
are valid (denoted by CN). By adopting some simple changes to the algorithm it is not
difficult to get sets of functions satisfying only one of the IR constraints among three. This
will help study the effect of individual constraints in more detail. Let us assume that the
functions in set C i

N satisfies the ith constraint only.

Algorithm 5.3.2 shows the necessary modifications. If a newly generated function g|S|+1

successfully passes through first three validity verification steps and all three IR constraints
(C1, C2 and C3), then g|S|+1 is included in CV . Otherwise the Algorithm 5.3.2 considers
each of the IR constraints separately instead of treating them as a single module like
Algorithm 5.3.1. As for example if g|S|+1 satisfy constraint C1 only it is included C1

N . One
can note that the sets C1

N , C2
N and C3

N may not be disjoint, as a function may satisfy two
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constraints but not all three. Finally, if g|S|+1 does not satisfy either C1 or C2 or C3, is it
included in CN . The rest of the algorithm remains same.

ALGORITHM 5.3.2: Constraintwise Function Generation
if g|S|+1(x, y) satisfies presence of both x and y test AND g|S|+1(x, y) satisfies domain
of definition test AND g|S|+1(x, y) satisfies positiveness then

if g|S|+1(x, y) satisfies all three heuristic IR constraints then

CV ← CV ∪ {g|S|+1}
end

if g|S|+1(x, y) satisfies only the constraint C1: ∂g(x,y)
∂x > 0 then

C1
N ← C1

N ∪ {g|S|+1}
end

if g|S|+1(x, y) satisfies only the constraint C2: ∂2g(x,y)
∂x2 < 0 then

C2
N ← C2

N ∪ {g|S|+1}
end

if g|S|+1(x, y) satisfies only the constraint C3: ∂g(x,y)
∂y < 0 then

C3
N ← C3

N ∪ {g|S|+1}
end
if g|S|+1(x, y) does not satisfies any of the heuristic IR constraints then

CN ← CN ∪ {g|S|+1}
end

end

5.4 function selection

Algorithm 5.3.1 has been applied to generate functions till length 8. Thus in this work
we assume lmax = 8. Table 28 shows the number of candidate functions available at each
length till length 8 and also the corresponding generation time. The total numbers of valid
and non-valid functions (i.e. |CV ∪ CN |) are also shown. One can note that a large number
of functions (up to 97%) got discarded for not satisfying IR constraints. These numbers
suggest how effective the constraints are to prune the search space. Another point to note
is that functions with length less than 4 did not pass the four steps of validity verification.

There are a total of 5407 valid functions from length 4 to length 8. Testing all these
functions and getting the best performing functions on all standard IR collections is very
time consuming, especially on large collections like WT10G and GOV2 (details in Section
5.5.1). Hence we chose a simple strategy. CLEF-3 is the smallest among the collections used
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length # of valid and non-valid # of candidate generation
functions |CV ∪ CN | functions |CV | time

4 42 2 ≈1 sec
5 328 10 ≈1 min
6 2378 100 ≈5 min
7 16447 638 ≈30 min
8 49989 4657 ≈1 day

Table 28: Number of candidate functions and generation times for different lengths.

here (Table 29). Initially all 5407 functions are tested on CLEF-3. The 500 best performing
functions, among 5407, on CLEF-3 are selected with respect to the MAP measure. These 500

functions are further tested on the remaining collections. This strategy is justified because
it is very much unlikely that a function appearing lower than 500 top positions with
respect to CLEF-3 will come up to a top position in other collections. These experiments
are performed under the default parameter value settings.

After the initial run on CLEF-3, the top 500 functions are analyzed over the TREC-3,5,6,7,8
collections to obtain the best performing ones. Further experiments are done on WT10G,
GOV2 and with default as well as tuned parameter setting (explained in Section 5.5.2).
Details of these findings are discussed in Section 5.6.

In the classification task in machine learning, while a classifier is learned, at every step
the model is made a bit more detailed and more training cases covered. That is the model
is refined incrementally using the training data as the source of reference. However, there
is a possibility that the algorithm reaches such a level of refinement where it simply
describes specific random features of the data (or noise) instead of the actual underlying
relationship. Thus the model becomes sensitive to the training data and performs poorly
on any unseen data. This problem is known as overfitting. When the model is a complex
one it has a greater chance of refinement and hence is more susceptible to overfitting.

The selection strategy proposed above selects the functions by optimizing their perfor-
mance in terms of MAP on CLEF-3. One can thus wonder whether there is a risk of
overfitting the CLEF-3 collection by selecting the top 500 functions on it. The risk increases
even more as the lengths of the functions are increased. Because functions with higher
length are more complex and hence more prone to overfitting.

From the machine learning theory, we know that the risk of overfitting is present as
soon as one is dealing with infinite sets of functions. We are here considering a finite
set of functions, consisting of 5407 different functions, thus limiting overfitting on any
collection. Furthermore, the capacity of a classification model is defined using Vapnik-
Chervonenkis dimension or VC dimension and it is related to how complex the model can
be. The VC dimension of any finite set of functions is always finite and the empirical risk
minimization for families of functions with finite VC dimension is consistent [Vapnik, 1995,
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Vapnik, 2000]. This suggests that the behavior of a function, from the finite set retained,
on a collection with enough queries is a good indicator of the behavior in general.

One can note that, irrespective of the considered length, set of candidate functions CV

is always finite. Thus the selection strategy we proposed here does not suffer from the
problem of overfitting.

5.5 experimental setup

We conducted a number of experiments aimed at validating the discovered candidate
functions. We looked into the behaviour of IR constraints by studying the functions which
do or do not respect those constraints. We also compare these functions with respect to
classical IR models.

5.5.1 Collections

The candidate functions are tested using seven standard IR collections which includes
one from CLEF (www.clef-campaign.org) and six from TREC (trec.nist.gov) collections.
Basic statistics of the collections used are provided in Table 29.

We appended TREC-9 Web and TREC-10 Web tracks and used the combined track to
experiment with WT10G. Similarly TREC-2004 Terabyte and TREC-2005 Terabyte tracks
are combined and used for experimenting with GOV2. These collections are indexed
using Terrier IR Platform v3.5 (terrier.org). Preprocessing steps in creating an index
include stemming using Porter stemmer and removing stop-words using the stopword
list provided by Terrier 3.5.

Collection N lavg Index size #queries

GOV2 25,177,217 646 19.6 GB 100

WT10G 1,692,096 398 1.3 GB 100

TREC-3 741,856 261 427.7 MB 50

TREC-5 524,929 339 378.0 MB 50

TREC-6 50

TREC-7 528,155 296 373.0 MB 50

TREC-8 50

CLEF-3 169,477 301 126.2 MB 60

Table 29: Statistics of various collections used in our experiments, sorted by size.

www.clef-campaign.org
trec.nist.gov
terrier.org
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5.5.2 Standard IR Models and Parameter Values

For comparison purpose three standard IR models are used, namely Okapi BM25 (denoted
by BM25) [Robertson and Walker, 1994], language model with Dirichlet prior (denoted
by LM) [Jelinek and Marcer, 1980] and log-logistic model of information model family
[Clinchant and Gaussier, 2010]. These models are used with two different settings for the
values of the free parameters.

- In default parameters setting, values of the free parameters are the values provided as
default in Terrier. That is b = 0.75, k1 = 1.2, k3 = 8.0 for BM25, µ = 2500 for LM and
c = 1.0 for LGD.

- For tuned parameters version, the free parameters are tuned from a set of values using
5 fold cross validation. The sets of values used in this tuning are given by Table 30.
The query set is sequentially partitioned into 5 subsets. Of the 5 subsets, a single
subset is retained for testing the model, and the remaining four subsets are used
as training the parameters of each model (b and k1 for BM25, µ for LM and c for LGD).
The cross-validation process is then repeated 5 times, with each of the 5 subsets used
exactly once for testing. Each time a query-wise average precision and precision
at 10 documents is calculated for each set. After 5 folds, average precision of all
the queries are obtained and Mean Average Precision (MAP) is calculated. Similarly
average of precision at 10 documents for each query is obtained and average of the
quantity (P@10) is reported.

b 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0
c 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0

µ
10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500,
3000, 4000, 5000, 10000

Table 30: Set of values of different parameters used for tuning standard IR models through
5 fold cross validation.

5.5.3 Implementing Function Generation

Algorithm 5.3.1 has been implemented using python (www.python.org). The symbolic
mathematics library of python, SymPy (sympy.org) combined with some other simulations
is used to symbolically verify presence of both x and y, domain of definition, positiveness and
heuristic IR constraints. For testing candidate functions, retrieval simulations are performed
on Terrier IR platform v3.5 (terrier.org) as all standard modules are integrated. We
implemented our functions inside this framework and used other necessary standard
modules by Terrier, mainly the indexing and the evaluation components. Mean average
precision (MAP) and presicion at 10 documents (P@10) measures are used for evaluation.

www.python.org
sympy.org
terrier.org
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To check the signs of a given expression 1000 random combinations of non-negative values
of x and y are used. The functions and their first and second derivatives are evaluated
with these random values using SymPy. If for all the combinations of the values of x and
y an expression evaluates to be positive then the expression is considered to be positive
valued. On the other hand, if the expression evaluates to be negative for all combinations,
then it is considered to be negative valued. This technique is used to verify the positiveness
step as well as the signs of the derivatives in the heuristic IR constraints verification step.

For the discovered functions, we assume k = 1.0. One can note that in the definion of
x (Section 5.3.1) a real valued free parameter c is included. This is the same c used in
the term frequency normalization of log-logistic model. Hence for both the versions of
parameter settings value of c is fixed according to the rules used for LGD. That is for the
default parameters version we have taken c = 1.0, and for tuned version same 5 fold cross
validation method is used over the set of values of c as given in Table 30. Initial selection
of functions (Section 5.4) on CLEF-3 is performed with default parameter value settings. 5

fold cross validation method is used to compare the position of the discovered functions
with respect to other standard IR models when the parameters are optimized (Section
5.6.3).

As symbolic libraries are used for generating functions, sometimes two generated functions
may be symbolically different but analytically identical. As for exmple, following two
valid functions generated by Algorithm 5.3.1 are analytically identical but symbolically
different:

√√
xy
y

and

√√
x
y

Primarily these type of functions can be detected if they yield exactly same MAP and P@10

in the initial run on CLEF-3. Note that functions producing same MAP but different P@10
(or other way round) are not considered as identical. But having same MAP and P@10 is
a necessary condition for two functions to be identical, not sufficient, as there may exist
non-identical functions having same MAP and P@10. Once two possible identical functions
are detected, again 1000 random combinations of non-negative values of x and y are used.
If for both the functions in question yield exactly same value for all 1000 combinations
then they are declared identical. In that case only one of the functions is preserved and
the other one is removed from consideration.

5.6 results

We first begin our investigation over the comparison of functions which satisfy IR con-
straints and functions which do not (Section 5.6.1). This will help us understand the
effectiveness of the heuristic IR constraints. Then we compare valid candidate functions
with classical IR functions with default parameter values (Section 5.6.2) as well as tuned
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parameter values (Section 5.6.3). Finally we compare some best discovered functions with
the genetic algorithm based approaches (Section 5.6.5).

5.6.1 Effectiveness of IR Constraints

From Algorithm 5.3.1, two sets of functions are produced, namely the set of all valid can-
didate functions (CV) and the set of functions which do not satisfy heuristic IR constraints,
but are valid otherwise (CN) (Section 5.3.5). These sets are used to emperically justify the
usefullness of heuristic IR constraints by comparing the performances of functions from
CV and functions from CN .

From each of the sets CV and CN , 10 subsets are created. Each subset contains 100

randomly selected sample functions chosen from the initial set (CV or CN). When creating
a subset, 100 functions are selected without replacement. When creating another different
subset, again all functions are considered for selection. That is a function may repeat
itself in a different subset but never within the same subset. These samples are tested
on CLEF-3 and TREC-3,5,6,7,8. For each function MAP and P@10 are noted and they are
averaged over all 100 functions within a single sample set. Finally, average performance
over 10 sample sets are reported.

Datasets
MAP P@10

CN CV CN CV

CLEF-3 0.162
↓ 0.307 0.131

↓ 0.238
TREC-3 0.045

↓ 0.151 0.093
↓ 0.303

TREC-5 0.019
↓ 0.077 0.036

↓ 0.141
TREC-6 0.104

↓ 0.163 0.144
↓ 0.272

TREC-7 0.063
↓ 0.123 0.139

↓ 0.269
TREC-8 0.083

↓ 0.164 0.152
↓ 0.295

Table 31: Average MAP and P@10 of the set of valid of CV and non-valid CN functions. The
best results are in bold, and a ↓ indicates a result that is statistically significantly worse
than the best result according to a Wilcoxon rank sum test used at a p-value threshold of
0.05.

Table 31 shows the average MAP and P@10 of 10 sample sets drawn from both CV and
CN over these collections. As it can be seen the average MAP measure of functions in CV

are 6% to 14% higher than the MAP measures of functions in CN , and the average P@10

measures of CV are 10% to 21% higher than that of the set CN . These results empirically
validate the effectiveness of IR constraints, i.e. IR scoring functions following these
constraints yields better performance. This finding is in line with other empirical studies
which aimed to test the validity of these constraints [Cummins and O’Riordan, 2009b,
Cummins and O’Riordan, 2009a].
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Above experiments analyze all the constraints as a single module. Performances are
compared between funtions which satisfy all the constraints against functions which
satisfy none of them. Now we move to examine the effect of each constraint separately.
Let us assume the set C i

N contains functions which satisfy only ith constraint. Algorithm
5.3.2 generates three separate sets of functions: C1

N , C2
N and C3

N which satisfy either C1 or
C2 or C3 respectively.

An initial intuition can be made by the sizes of the sets C1
N , C2

N and C3
N . Figure 16 shows

the number of functions in each of these sets till length 8. It is clearly visible from the plot
that constraint C3 is the harshest one, where C1 is the loosest one. Because the number of
functions satisfying C3 is the minimum among the three, whereas the number of functions
satisfying C1 is the maximum. Another very trivial yet interesting observation is that CN

is the biggest set and CV is the smallest one among all five sets.
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Figure 16: Number of functions in the sets CN , C1
N , C2

N , C3
N and CV till length 8.

To compare the performances of C1
N , C2

N and C3
N , a similar experimental strategy is adopted

like the previous experiment. For every set CN , C1
N , C2

N , C3
N and CV 10 sample sets are

created each containing 100 random functions selected without replacement. These
functions are again tested on CLEF-3 and TREC-3,5,6,7,8. MAP and P@10 measures are
averaged over 100 functions in a sample set and average of all 10 sample sets are reported.

Figure 17 shows a plot of average MAP and P@10 of 10 sample sets from all five sets CN ,
C1

N , C2
N , C3

N and CV . As expected CV is always best and CN is always worst among the five
sets. Performance of other three sets C1

N , C2
N and C3

N are in between CV and CN . Both for
average MAP and P@10, C3 is best performing on 4 out of 6 collections. But for TREC-3 and
TREC-5 C2 is either better or equal to C3. There is no deterministic comparative pattern
between C1 and C2. All possible relative orders in terms of performance between C1 and
C2 is visible. As for example in case of average MAP (Figure 5.17(a)) C1>C2 on CLEF-3,
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C1<C2 on TREC-3,5 and C1≈C2 on TREC-6,7,8. Same erratic behaviour is visible for
average P@10 (Figure 5.17(b)). In summary the general trend is that C3 is the most effective
among three constraints although the plots display an inconclusive pattern. Thus it can be
said that the relative effectiveness of the constraints is highly dependent on the collection
in hand.

(a) MAP

(b) P@10

Figure 17: Average MAP and P@10 of the sets CN (�), C1
N (�), C2

N (�), C3
N (�) and CV (�)

till length 8.

Above experiments are performed to study the effects of each constraint. But these
experiments also revealed that combination of all the constraints (i.e. set CV) always
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performs best. Hence for all practical purposes it is always better to utilize all the
constraints together as done in Algorithm 5.3.1.

5.6.2 Function Validation for Default Parameter Setting

Intially top 500 functions are identified by the strategy explained in Section 5.4 and
further experiments are performed on these functions. We first limit our analysis over
the TREC-3,5,6,7,8 collections. We tested these 500 functions on all five TREC collections.
Functions are ranked based on MAP and P@10 within each collection. Average rank of a
function is estimated by the average of all the ranks it got on all the collections. Note
that functions with lower average ranks are better performing. Average ranks of standard
models, BM25, LM and LGD with respect to these 500 functions over the test collections
are also considered. Two separate average ranks are calculated: one based on MAP based
rankings and one on P@10 based rankings. For this phase of experiment, we consider the
default parameter value settings for all the functions and standard models.

Table 32 shows the top 7 functions along with three standard IR models with respect to
the average rank over 5 test collections, TREC-3,5,6,7,8. In the tables we replaced k with
1 and presented the simplified functions. We denote these functions by using an exponent
‘M’ or ‘P’ for whether they are the best performing functions with respect to MAP or P@10,
and ‘d’ to indicate that their default parameter values are used.

on MAP on P@10

functions
denoted

rankavg functions
denoted

rankavgby by

e

√
log
(

x+y
y

)

f M-d
1 4.8 e

√
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(

x+y
y

)

f P-d
1 19.8√

log(1+x)√
y f M-d

2 14.8 log
(
−x + x+y

y

)
f P-d
2 24.6

√√
xy
y f M-d

3 15.6
√

x +
√

x
y f P-d

3 25.2
√

y +
√

x
y f M-d

4 17.8
√√

x +
√

x
y f P-d

4 27.6
√√

x
y .e−y f M-d

5 18.8
√

log(1+x)√
y f P-d

5 27.8
√√

x +
√

x
y f M-d

6 19.0 log
(

x+y
y

)
f P-d
6 30.0

log
(
−x + x+y

y

)
f M-d
7 20.0 log

(
x
y +
√

e
)

f P-d
7 34.2

LGD LGDd 26.0 LGD LGDd 36.8
BM25 BM25d 108.8 BM25 BM25d 43.6
LMDir LMd 129.6 LMDir LMd 208.4

Table 32: Best functions with default parameter values based on their average ranks on
TREC-3,5,6,7,8.
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We note that all 7 best ranked functions over the 5 TREC collections are better ranked than
all three classical IR models. The same function is the best one for both the lists, that is

f M-d
1 = f P-d

1 . This first ranked function (x, y) 7→ e

√
log
(

x+y
y

)

is 2 to 6 times better ranked
(with respect to P@10 and MAP) than the best standard IR model. Interestingly this first
ranked function is basically the exponential of square root of LGD.

In tables 33 and 34 we show the ranks each function got and respectively the MAP and the
P@10 measures on TREC-3,5,6,7,8 collections. In each case we statistically compare the
performance of standard models with first ranked function in terms of MAP using a paired
two sided t-test at 0.05 level. A ↓ indicates that the corresponding model is statistically
significantly worse than the first ranked function.

TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

BM25d(1; .252) f M-d
1 (1; .140) f M-d

1 (1; .249) f M-d
4 (5; .194) f M-d

1 (1; .256)

f M-d
5 (2; .252) f M-d

2 (3; .139) f M-d
6 (2; .248) f M-d

3 (6; .194) f M-d
7 (6; .255)

f M-d
3 (3; .250) f M-d

5 (4; .138) f M-d
4 (4; .247) f M-d

5 (8; .194) LGDd(11; .255)

f M-d
2 (4; .249) BM25d(5; .138) f M-d

3 (5; .247) f M-d
6 (9; 194) f M-d

6 (30; .252)

f M-d
1 (5; .249) LMd(10; .137) f M-d

2 (7; .246) f M-d
2 (13; .193) f M

d4 (46; .250)

f M-d
4 (7; .249) f M-d

3 (13; .137) LGDd(16; .245) f M-d
1 (16; .192) f M-d

2 (47; .249)

LMd(8; .249) f M-d
7 (14; .137) f M-d

5 (19; .244) f M-d
7 (41; .189) f M-d

3 (51; .249)

f M-d
7 (9; .248) f M-d

4 (27; .136) f M-d
7 (30; .244) LGDd(49; .188) f M-d

5 (61; .248)

f M-d
6 (12; .246) LGDd(40; .135) BM25d(252; .232)↑ LMd(64; .186) BM25d(181; .241)↑

LGDd(14; .245) f M-d
6 (42; .134) LMd(381; .222)↑ BM25d(105; .183) LMd(185; 0.240)↑

Table 33: MAP based ranks of functions with default parameter values (first value in the
parenthesis) and their corresponding MAP (second value in the parenthesis).

TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

LMd(1; .532) LMd(1; .276) f P-d
5 (1; .418) f P-d

1 (6; .432) f P-d
6 (4; .474)

f P-d
3 (6; .516) f P-d

3 (6; .248) BM25d(2; .414) f P-d
5 (11; .430) f P-d

2 (5; .474)

BM25d(9; .514) f P-d
1 (47; .236) f P-d

4 (7; .402) f P-d
6 (16; .428) LGDd(7; .474)

f P-d
4 (12; .506) f P-d

4 (49; .234) f P-d
1 (12; .400) f P-d

7 (17; .428) f P-d
7 (8; .472)

f P-d
2 (13; .504) f P-d

2 (53; .234) f P-d
3 (15; .398) f P-d

2 (18; .428) BM25d(14; .472)

f P-d
1 (15; .504) BM25d(63; .232) f P-d

6 (29; .396) LGDd(26; .428) f P-d
1 (19; .468)

f P-d
5 (25; .496) f P-d

5 (73; .228) f P-d
7 (33; .396) f P-d

4 (27; .426) f P-d
5 (29; .460)

f P-d
6 (27; .496) f P-d

6 (74; .228) f P-d
2 (34; .396) f P-d

3 (58; .422) f P-d
3 (41; .458)

f P-d
7 (28; .496) LGDd(75; .228) LGDd(47; .396) BM25d(130; .418) f P-d

4 (43; .458)

LGDd(29; .496) f P-d
7 (85; .226) LMd(483; .346) LMd(285; .392) LMd(272; .432)

Table 34: P@10 based ranks of functions with default parameter values (first value in the
parenthesis) and their corresponding P@10 (second value in the parenthesis).
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Here we see that the ranks of the 7 best functions over different collections stay approx-
imately on the same range, while the ranks of IR models may vary a lot. For example,
considering the MAP, BM25 with its default values is ranked first on TREC-3 while it is
ranked 252nd on TREC-6 (Table 33). We find the same result by looking at the ranks of
different models with respect to their P@10 measure on different TREC collections (Table
34). As for example the language model is ranked first on TREC-3 and TREC-5 whereas it
has the lowest rank over the three other TREC collections. In the beginning (Section 5.1) it
is mentioned that one of the goal of this study is to find something which will work well
on almost all collections. It is evident here that these discovered functions behave more or
less consistently on all the collections, whereas rankings state-of-the-art IR models varies
a lot.

5.6.3 Function Validation for Tuned Parameter Setting

We now consider the top 25 functions among the best performing functions under default
parameter setting based on average ranks they have, and optimize their hyper-parameter c
using 5 fold cross validation (Section 5.5.3). In order to maintain our comparisons, we also
consider the optimized versions of the standard models, BM25, LM and LGD using again 5

fold cross validation (Section 5.5.2). Table 35 shows the top optimized functions along
with optimized standard IR models with respect to the average rank over TREC-3,5,6,7,8.
Like previous tables we replaced k with 1 and presented the simplified functions. The
exponent ‘M’ or ‘P’ denotes whether they are the best performing functions with respect
to MAP or P@10, and the index o indicates that the function or the standard IR models are
used with their optimized (or tuned) parameter values.

Here again 7 best functions with respect to MAP are better ranked than all classical IR
models. Moreover, the best function of Table 32 has been placed second in terms of MAP.
But on the basis of average ranking on P@10 standard IR models are better placed.

One can note that the top two functions with respect to MAP based ranking in Table 35 are
also in top two positions in Table 32. Hence it is evident these two functions are worth
looking into. These functions are further tested in Section 5.6.5.

In tables 36 and 37 we show detailed ranks of the optimized versions of different functions
with respect to their MAP and P@10 measures on different TREC-3,5,6,7,8 collections. A ↓

indicates that the corresponding model is statistically significantly worse than the first
ranked function with respect to a paired two sided t-test at 0.05 level.

In these tables also the earlier trend is clearly visible. Though it may seem that the
difference between the average ranks of the optimized IR models and the top 7 generated
functions have decreased, but we did this optimization on total 28 models, 25 generated
functions and 3 standard models. So this ranking has been done among 28 models instead
of 503 in previous section. Taken that into consideration here also BM25 and LM varies
more in comparison to others.
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on MAP on P@10
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Table 35: Best functions with optimized parameter values based on average rank on
TREC-3,5,6,7,8.

TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

BM25o(1; .273)↓ f M-o
1 (1; .141) f M-o

1 (1; .255) f M-o
5 (4; .195) f M-o

1 (1; .262)

LMo(2; .269)↓ LMo(2; .141) f M-o
7 (2; .250) f M-o

1 (6; .194) f M-o
2 (2; .261)

f M-o
5 (3; .260) f M-o

4 (3; .139) f M-o
6 (4; .249) f M-o

6 (7; .193) BM25o(10; .259)

f M-o
4 (4; .258) f M-o

5 (4; .138) f M-o
3 (7; .248) f M-o

3 (9; .193) LGDo(15; .258)

f M-o
3 (5; .257) f M-o

3 (5; .138) f M-o
4 (9; .248) f M-o

4 (10; .193) f M-o
3 (18; .257)

f M-o
1 (6; .256) f M-o

2 (6; .138) f M-o
2 (12; .248) f M-o

2 (12; .192) f M-o
4 (19; .257)

f M-o
7 (7; .253) f M-o

6 (8; .137) f M-o
5 (15; .247) f M-o

7 (15; .191) f M-o
7 (22; .256)

f M-o
6 (8; .252) f M-o

7 (9; .135) LGDo(20; .245) BM25o(16; .191) f M-o
5 (24; .256)

f M-o
2 (10; .251) LGDo(20; .133) LMo(27; .243)↑ LGDo(20; .190) f M-o

6 (25; .255)

LGDo(13; .246)↑ BM25o(28; .126)↑ BM25o(28; .232)↑ LMo(25; .189) LMo(26; .254)

Table 36: MAP based ranks of functions with optimized parameter values (first value in the
parenthesis) and their corresponding MAP (second value in the parenthesis).

5.6.4 Performance of Functions on Larger Collections

We performed experiments with the discovered functions on WT10G and GOV2 collections.
Under default parameter settings top 7 functions of Table 32 both in are tested on WT10G



134 exploring the space of ir functions

TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

BM25o(1; .562) LMo(1; .274) f P-o
4 (1; .410) f P-o

1 (1; .444) BM25o(1; .464)

f P-o
5 (2; .560) f P-o

5 (2; .258) f P-o
1 (2; .406) f P-o

3 (3; .442) f P-o
2 (3; .458)

LMo(3; .558) BM25o(4; .250) f P-o
3 (6; .404) LGDo(4; .442) f P-o

7 (4; .458)

f P-o
4 (7; .538) f P-o

4 (9; .240) f P-o
2 (8; .404) f P-o

2 (5; .440) f P-o
3 (5; .456)

f P-o
1 (17; .490) f P-o

2 (13; .238) f P-o
6 (9; .404) f P-o

7 (6; .440) f P-o
6 (7; .456)

f P-o
3 (19; .490) f P-o

7 (14; .238) LGDo(11; .404) f P-o
6 (7; .438) LGDo(9; .456)

LGDo(20; .484) f P-o
1 (15; .238) f P-o

5 (15; .400) BM25o(13; .430) f P-o
1 (11; .452)

f P-o
2 (21; .482) f P-o

3 (19; .236) f P-o
7 (18; .400) LMo(17; .424) LMo(13; .452)

f P-o
6 (22; .476) LGDo(21; .236) BM25o(26; .394) f P-o

5 (18; .416) f P-o
4 (19; .444)

f P-o
7 (25; .472) f P-o

6 (22; .234) LMo(27; .390) f P-o
4 (19; .412) f P-o

5 (27; .438)

Table 37: P@10 based ranks of functions with optimized parameter values (first value in
the parenthesis) and their corresponding P@10 (second value in the parenthesis).

and GOV2 along with standard IR models. Top functions obtained from MAP is used to
compare in terms of MAP. These results are given in Table 38. The models are sorted
in descending order of MAP or P@10. Similarly for optimized parameter settings top 7

functions from Table 35 are used. Table 39 shows the performance of the models when
parameters are optimized. Here also models are sorted in descending order of MAP or
P@10.

WT10G GOV2

MAP P@10 MAP P@10

LMd(.204) f P-d
5 (.300) f M-d

1 (.291) LMd(.555)

f M-d
7 (.196) f P-d

1 (.299) f M-d
7 (.289) f P-d

7 (.544)

LGDd(.194) LMd(.293) LGDd(.288) f P-d
1 (.543)

f M-d
1 (.194) f P-d

4 (.292) LMd(.280) f P-d
2 (.542)

f M-d
4 (.187) BM25d(.291) f M-d

2 (.274) f P-d
6 (.541)

f M-d
3 (.187) f P-d

6 (.287) BM25d(.274) LGDd(.541)

f M-d
5 (.187) LGDd(.287) f M-d

6 (.265) BM25d(.538)

f M-d
6 (.186) f P-d

2 (.284) f M-d
3 (.262) f P-d

5 (.535)

f M-d
2 (.186) f P-d

7 (.284) f M-d
4 (.261) f P-d

4 (.525)

BM25d(.184) f P-d
3 (.256) f M-d

5 (.260) f P-d
3 (.471)

Table 38: MAP and P@10 measures of different functions and IR models with their default
values on WT10G and GOV2 datasets.

On GOV2, function 2 behaves well with a difference of 5% in MAP with the second best
model when optimizing the parameters. However on WT10G, though function 1 and 3 are
best models but the difference is not significant with the performances of other models. It
seems that the simple strategy of selecting the first 500 functions over CLEF-3 has its limits
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WT10G GOV2

MAP P@10 MAP P@10

f M-o
1 (.209) BM25o(.320) f M-o

2 (.302) f P-o
2 (.557)

f M-o
3 (.209) LMo(.310) f M-o

1 (.295) f P-o
6 (.553)

LMo(.208) f P-o
2 (.300) LMo(.294) f P-o

1 (.551)

f M-o
7 (.208) f P-o

6 (.299) LGDo(.288) LMo(.551)

f M-o
5 (.284) f P-o

1 (.298) BM25o(.284) f P-o
3 (.550)

f M-o
4 (.284) f P-o

3 (.297) f M-o
7 (.274) LGDo(.541)

f M-o
6 (.207) LGDo(.297) f M-o

3 (.271) f P-o
7 (.539)

f M-o
2 (.207) f P-o

4 (.296) f M-o
6 (.271) BM25o(.531)

BM25o(.206) f P-o
7 (.293) f M-o

4 (.270) f P-o
4 (.505)

LGDo(.203) f P-o
5 (.258) f M-o

5 (.269) f P-o
5 (.469)

Table 39: MAP and P@10 measures of different functions and IR models with their optimized
values on WT10G and GOV2 datasets.

on larger collections, but the selected functions are still competitive on MAP and P@10 with
respect to standard models over these large datasets.

5.6.5 Comparison with Genetic Programming based Approaches

Several genetic programming based approaches are mention in Section 5.2. In this section
we compare scoring functions generated by two state-of-the-art genetic programming
based methods against two best functions discovered by the method proposed here.

The two genetic programming based scoring functions considered here are the following:

1. [Fan et al., 2004] reported the following consensus scoring function (denoted by
GP1) for a TREC ad-hoc task:

GP1(d, w) =
log
(
td
w ×

(
tavg
w + td

w
log((td

w)2×tavg
w )

+ td
w×N
Nw
× tavg

w ×(tmax
w +uqd)
Nw

))

uqd + 2× tmax
w + 0.373

Here, td
w is term frequency, Nw is document frequency, tavg

w is the average term
frequency within the document, tmax

w is the maximum term frequency in the entire
collection, N is the number of documents in the collection and uqd is the number of
unique terms in the document.

2. [Cummins and O’Riordan, 2006a] divides a term weighting scheme in three parts:
a global part (gww), a term-frequency part (nt f d

w) and a normalization part (n). The
final scoring function is defined as a product of these three components:

GP2(d, w) = gww × nt f d
w × n
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The best evolved parts reported by [Cummins and O’Riordan, 2006a] are as follows:

gww =
(c fw)2

√
c fw

(Nw)3

nt f d
w = log

(
√√√√200. td

w
n

1 + td
w
n

)

n =
√

log(|q|)× log(|q|)× uqd

lavg

Here td
w is term frequency, Nw is document frequency, c fw is the collection frequency,

|q| is the total length of the query, uqd is the number of unique term in the document
and lavg is the average document length of the collection. Note that td

w in nt f d
w is

normalized using the normalization term n.

We compare these state-of-the-art genetic programming approaches with top two discov-
ered scoring functions (Table 32 and 35). The performance of the models are given in
Table 40 over TREC-7,8, WT10G and GOV2. The best results are in bold, and a result with
a ↓ indicates that it is statistically significantly worse than the best result according to a
Wilcoxon rank sum test used at a p-value threshold of 0.05.

TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

GP1 0.157
↓

0.330
↓

0.207
↓

0.350
↓

0.119
↓

0.192
↓

0.143
↓

0.363
↓

GP2 0.165
↓

0.330
↓

0.216
↓

0.342
↓

0.142
↓

0.217
↓

0.162
↓

0.394
↓

e

√
log
(

x+y
y

)

0.192 0.432 0.256 0.468 0.194 0.299 0.291 0.543√
log(1+x)√

y 0.193 0.430 0.249 0.460 0.186 0.300 0.274 0.535

Table 40: Comparison of MAP and P@10 based performances between top discovered func-
tions against two genetic algorithm based approaches denoted by GP1 [Fan et al., 2004]
and GP2 [Cummins and O’Riordan, 2006a]. The best results are in bold, and a ↓ indicates
a result that is statistically significantly worse than the best result according to a Wilcoxon
rank sum test used at a p-value threshold of 0.05.

Clearly on all occasions functions discovered by the strategy proposed here significantly
outperform the functions evolved by genetic programming based approaches.

5.7 conclusion

In this chapter we have addressed the problem of exploring the space of simple IR
functions with the goal to discover some promising IR scoring functions. To do so, we
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proposed a systematic iterative approach to explore the search space till some given length
and to identify the set of candidate scoring functions which are mathematically valid and
satisfy heuristic IR constraints. We tested the functions obtained on a variety of standard
IR test collections.

With our results, we empirically validated that the scoring functions satisfying IR con-
straints perform significantly better than valid scoring functions which do not satisfy
them. Secondly, extensive testing of the discovered scoring functions shows that these
functions are highly competitive with respect to standard IR models. We found that these
functions behave almost similarly on different collection, while, standard IR models have
more unstable behavior over different collections. Moreover best of the discovered func-
tions outperformed functions evolved by state-of-the-art genetic programming methods.
Ultimately, we showed that it is possible to search the space of simple closed-form IR
scoring functions exhaustively and the discovered functions can perform consistently well
on all the collections.

Our results show that, if one wants to make use of an efficient IR scoring function without
tuning parameters on a collection, then one should use:

ES− LGD(x, y) = e

√
log
(

x+y
y

)

where the name ES-LGD derives from the fact that this function consists in the exponential
of the square root of the log-logistic function. ES-LGD is consistently above (for the MAP)
all other ones; furthermore, the difference with standard IR functions is significant in
several cases. This result is all the more interesting that the “complexity” of this function
(measured by its length) is smaller than the one of BM25d and LMd, which can, in theory, be
generated by our method using a different term frequency normalization but nevertheless
require additional computing resources as they involve more operators. In the situation
where it is possible to optimize the value of some parameters (i.e. when relevance
judgments are readily available), our results are more contrasted: the difference in ranks
between the best functions and the standard ones is not as important as before and if
in several cases the difference is significant in favor of the discovered functions, it is, in
other cases, in favor of standard functions. All in all, there is no real difference in this
case. As ES-LGD is ranked second in this setting, we recommend its use in all cases if one
is interested in the MAP. It can of course be used as an additional feature in learning to
rank approaches.
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6
C O N C L U S I O N A N D P E R S P E C T I V E S

The goal of the thesis was to explore the areas of performance improvement of standard IR
models by proper tuning of the associated parameters and to learn new IR functions. To
do so we studied unsupervised and supervised methods of parameter tuning and learning
to rank based algorithms to learn IR functions and exhaustive exploration techniques to
discover new IR functions.

Firstly we investigated various possibilities to estimate the collection parameter of infor-
mation based models. The collection parameter controls the behavior of a term in the
collection and thus needs proper estimation, but in earlier studies it was assigned to the
average number of documents where the term appears, without a full explanation. After
exploring various estimation techniques including maximum likelihood estimation and
Kaplan-Meier estimation, we have shown that generalized method of moments is able to
provide valid estimate for the collection parameter under both log-logistic and smoothed
power law distributions and we have also proved that this method complies with the IDF
criterion. Aim was to investigate the question:

How to set the value of the collection parameter of information-based models?

Through various experiments we have shown that with new estimates information models
yield state-of-the-art results, improving over the original setting. The improvement is
significant for smoothed power law model. Unlike the original version, the new version of
this model regularly outperforms other standard IR models in most cases.

As we saw in Chapter 2, log-logistic and smoothed power law distributions with their
original collection parameter or estimated collection parameter performs very well in
practice. But there exist other distributions with same power law based features like
these ones, as for example Pareto Distribution. This distribution was applied earlier to
derive normalization of term frequency which was in turn applied to a model based on
Bose-Einstein statistics [Amati and van Rijsbergen, 2002b]. It would be interesting to see
the application of these distributions applied in information based models, as well as how
they are impacted by the estimation of the collection parameter.

Even if the above estimation method was able to yield a state-of-the-art IR model, but
like other unsupervised methods it is unable to estimate parameter values for any other
parameter. This is why we turned to supervised methods and we also ventured the
possibilities to apply these methods on the collections where relevance judgments are not
readily available. Here the goal was to investigate the question:

139
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Is it possible to transfer parameter values of standard IR models tuned on past
labeled collections to a new collection without any relevance judgments?

We have proposed two learning strategies which exactly do that. Instead of commonly
used tuning methods, our approach predict the parameters at query level, that is a single
parameter value for each query. To do so, we first introduced a 4-dimensional vector which
summarizes a word in the collection and used these vectors to represent each word in a
query, thus allowing the query to be represented as a set of these vectors. Then we build
two collection and language independent vector spaces, one based on the feature space of
positive definite kernels between queries, and one based on similarity scores between the
query under consideration and a set of representational queries. We introduced a simple
similarity measure between queries which turns out to be a positive definite kernel as
well. Moreover for the kernel induced space we considered other traditional positive
definite kernels namely polynomial and Gaussian. We learn the association between the
parameter values tuned in the source collection and the queries represented in either of
the vector spaces through a regression function (kernel regression function for the feature
space and potentially any regression function for similarity space). In our experiments
we used support vector regression on feature space and random forest regression on
similarity space over several source and target collections. These experiments revealed
that the proposed methods (a) significantly outperform the models which uses default
parameters (Section 1.3.1), (b) either outperform or is at par with commonly used tuning
methods (Section 1.3.2) which uses relevance information on the target collection, (c) are
significantly faster and incurs almost no extra time burden, (d) requires little training
data (150 queries are sufficient) (e) independent of languages and regressor trained in any
language (they can even be applied to collections written in different languages).

The proposed method, at its current stage, can predict the value of single parameter. What
if the model has more than one parameter, like BM25 (which originally has three free
parameters, b, k1, and k3)? One obvious way out is to train separate regressors for each of
the parameters. This works fine as long as there is no dependency between the parameters,
meaning that changing one will not need the changing of the other(s) to optimize the
model performance. But the inter-dependency among the parameters depends completely
on the IR model and it cannot be safely assumed that the parameters of all IR models have
no such dependencies. So the immediate possible future study could be to concentrate on
this problem so that the method can predict values for multiple parameters. This could be
done, for example, by relying on a regression function predicting a vector of values so
as to take into account the potential dependencies between the parameters considered.
Furthermore, we plan to investigate new query representation spaces, not necessarily
based on PDS kernels, with the hope to better capture the relation between queries and
optimal parameter values.

Successful application of transfer learning to transfer parameter values creates a possibility
to learn entire ranking functions through learning to rank framework but using relevance
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information from a source collection. In this context we explored the solution to the
question:

Is it possible to learn new IR functions on collections without any relevance
judgments by transferring the relevance information from past labeled collec-
tions?

To answer this we introduced a transfer learning method which uses absolute relevance
judgments available in the source collection and tries to infer relative “pseudo-relevance”
judgments between the documents in the target collection. We first develop a data
structure, called grid, that associates a relevance score with basic quantities, normalized
term and document frequency values of a term in a query-document pair. These grids
are build on source collections and can predict relevance score for a target query term
in a target query-document pair with normalized term and document frequency values.
This predicted relevance score is then combined over all query terms. Then a learning to
rank algorithm is deployed on the obtained relative pseudo-relevance judgments which is
further improved using an iterative self-learning mechanism. In our experimentation we
used ranking SVM as the learning algorithm. Through the experiments we have conducted,
it can indeed be said that the ranking functions learned through our approach significantly
outperforms standard IR functions in almost all cases. Moreover, as our approach learns
the ranking function directly on the target it is robust against the choice of source, unlike
previous approaches which learned the ranking function on re-weighted version of the
source collection. We also attempted a simple source selection procedure where the
algorithm is given an option to select most appropriate source for a single query from a
pool of available sources. But, not much improvement was gain over the original version,
enforcing the fact that the algorithm is robust to the choice of source collection.

The transfer learning approach to predict parameter values proposed in Chapter 3 works
well even when the transfer is done between collections written in different languages. It
would also be interesting to study whether this holds for our transfer learning to rank
framework. We conjecture it does, because the experiments have shown that the proposed
transfer technique through grids is robust to the choice of source. The proposed transfer
learning to approach used underlying kernels of the employed learning algorithm to
represent feature vectors associated with query-document pairs. However, in Chapter 3

we showed that queries represented in a common vector space enhanced the learning
providing promising results. Similarly, if an embedded representation can be developed
for query-document pairs in some common vector space, then there is a broader chance
to capture the behaviors of the query-document pairs through this representation and
their association with the relevance judgments. Moreover, like Chapter 3, this will enable
a collection and language independent representation of the query-document pairs and
the transfer may become simpler and more effective.

Learning to rank algorithms attempt to learn a ranking function by optimized weights
of different variables inside a predefined function. Though these algorithms are very
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effective in practice, still one can ask how the functions behave when one assumes no
particular intuitionistic forms. This motivates us to study IR functions which can be
learned without standard restrictions on the family of the functions considered. As any
restriction on the form is relieved, development of ranking function from intuitions and
theoretical angle becomes difficult, which turns the attention to explore the space of simple
IR functions with the goal to discover some promising IR scoring functions. Different
heuristic search techniques like genetic programming have been applied to explore the
space of IR functions. But we wish to do it deterministically and exhaustively. So one
possible rephrasing of the question is:

Is it possible to exhaustively search the function space in order to discover new
effective IR functions?

We proposed a systematic iterative approach to explore the search space till some given
length. While exploring we utilized simple tools like mathematical validity of a function or
heuristic IR constraints (Section 1.4). We searched for functions which are mathematically
valid and satisfy heuristic IR constraints. This helped to prune the search space determin-
istically. We performed extensive experiments to test the functions obtained though which
(a) we empirically validated heuristic IR constraints by comparing the performances of the
functions which satisfy these constraints and which do not, (b) we discovered some highly
competitive functions with respect to standard IR models, and which also outperformed
functions evolved by state-of-the-art genetic programming methods, and (c) we found that
these functions performs almost similarly on different collections, whereas standard IR
models have more unstable behavior. As an example, one of the promising functions that
the approach discovered is:

e

√
log
(

x+y
y

)

where x is the normalized term frequency and y is the normalized document frequency.
Interestingly this function is the exponential of the square root of the log-logistic function.
Clearly this function is obtained because there was no restriction of form and it consistently
outperformed other standard IR models.Thus it can be concluded that it is indeed possible
to discover good functions through an exhaustive search of simple closed-form IR function
space.

This explorative strategy have already discovered promising functions till length 8. Imme-
diate goal is to explore functions with higher lengths. But generating candidate functions
till length 8 took almost a day, and for higher lengths it can take weeks or even months.
Considering that, here we wish to assume that good candidate functions of a higher
length can be found by combining good candidate functions of lower lengths. Number
of functions obtained at a lower depth are reasonably low and it is feasible to test them
all on several collections to get top performing functions. Then these good functions
can be combined to yield functions with higher length. But first the basic assumption
needs experimental validation. If that is a valid assumption, it can be helpful in two ways:
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firstly, it can take into consideration several collections while selecting top performing
functions (opposed to the the strategy proposed in Section 5.4 which uses only CLEF-3 for
this purpose), secondly it enables to explore functions of higher depth which with current
approach is very time and resource consuming. Note that, if successful, this assumption
acts as another filtering step just like four other mentioned in Section 5.3.4 which prune
the search space so that an exhaustive search becomes feasible.

To summarize, in this thesis we proposed:

1. a new unsupervised method to estimate the collection parameter of information
models, which improved the performance of these models over their original ver-
sions,

2. two supervised transfer learning strategies to predict values of any free parameter
of any IR model which do not need any relevance judgment on the collection it is
working on, instead it make use of past labeled collections,

3. a transfer learning to rank algorithm to learn IR functions on a collection without
any relevance judgments by using the same from a different labeled collection,

4. a explorative discovery approach which can learn new IR function without restriction
on its form, thus allowing to obtain functions which are not intuitive and difficult to
comprehend theoretically.

The perspectives we envisioned from this thesis can be summarized as:

1. Application of different power law distributions (for example Pareto distribution) in
information based models and the effect of the estimation of the collection parameter
on these distributions.

2. Modification of the parameter learning approach proposed in Chapter 3 so that
it can predict values for multiple parameters by taking into consideration their
inter-dependency in the model.

3. Study of other possible query representation spaces similar to one used in Chapter 3

which can better capture the relation between queries and optimal parameter values.

4. Development of a embedded representation of the query-document pairs in a com-
mon space which can provide a collection and language independent representation
of the query-document pairs and which can enhance the effectiveness of the transfer
learning to rank approach proposed in Chapter 4.

5. Development and validation of explorative strategy based on the assumption that
good candidate functions of higher lengths can be discovered by combining good
candidate functions of lower lengths.
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