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Abstract

Inverse problems related to physical processes are of great importance in practically every

field related to signal processing, such as tomography, acoustics, wireless communications,

medical and radar imaging, to name only a few. At the same time, many of these problems are

quite challenging due to their ill-posed nature.

On the other hand, signals originating from physical phenomena are often governed by

laws expressible through linear Partial Differential Equations (PDE), or equivalently, integral

equations and the associated Green’s functions. In addition, these phenomena are usually

induced by sparse singularities, appearing as sources or sinks of a vector field. In this thesis we

primarily investigate the coupling of such physical laws with a prior assumption on the sparse

origin of a physical process. This gives rise to a “dual” regularization concept, formulated either

as sparse analysis (cosparse), yielded by a PDE representation, or equivalent sparse synthesis

regularization, if the Green’s functions are used instead. We devote a significant part of the

thesis to the comparison of these two approaches. We argue that, despite nominal equivalence,

their computational properties are very different. Indeed, due to the inherited sparsity of the

discretized PDE (embodied in the analysis operator), the analysis approach scales much more

favorably than the equivalent problem regularized by the synthesis approach.

Our findings are demonstrated on two applications: acoustic source localization and epileptic

source localization in electroencephalography. In both cases, we verify that cosparse approach

exhibits superior scalability, even allowing for full (time domain) wavefield extrapolation in

three spatial dimensions. Moreover, in the acoustic setting, the analysis-based optimization

benefits from the increased amount of observation data, resulting in a speedup in processing

time that is orders of magnitude faster than the synthesis approach. Numerical simulations

show that the developed methods in both applications are competitive to state-of-the-art

localization algorithms in their corresponding areas. Finally, we present two sparse analysis

methods for blind estimation of the speed of sound and acoustic impedance, simultaneously

with wavefield extrapolation. This is an important step toward practical implementation,

where most physical parameters are unknown beforehand. The versatility of the approach is

demonstrated on the “hearing behind walls” scenario, in which the traditional localization

methods necessarily fail.

Additionally, by means of a novel algorithmic framework, we challenge the audio declipping

problem regularized by sparsity or cosparsity. Our method is highly competitive against state-

of-the-art, and, in the cosparse setting, allows for an efficient (even real-time) implementation.
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Résumé en français

Le résumé suivant propose un survol intuitif du contenu de cette thèse, en langue française.

Un panorama de l’état de l’art, le détail des méthodes proposées et les perspectives futures

ouvertes par notre travail sont disponibles (en anglais) dans le reste du manuscrit.

Introduction Si l’on devait décrire de la manière la plus concise possible le traitement du

signal en tant que discipline, on pourrait probablement dire qu’il s’agit de la discipline s’atta-

chant à résoudre des problèmes inverses. En effet, pratiquement toutes les tâches de traitement

de signal, aussi naïves fussent-elles, peuvent être formulées comme des problèmes inverses.

Malheureusement, beaucoup de problèmes inverses sont mal posés ; ils sont généralement

abordés par le biais de techniques de régularisation appropriées.

La régularisation au moyen d’un modèle parcimonieux des données (également appelé modèle

de parcimonie à la synthèse, ou tout simplement parcimonie) est une tendance désormais bien

installée (elle dure depuis plus de vingt ans !) et qui a été appliquée avec succès à de nombreux

cas. Son succès est attribué à une explication intuitive, selon laquelle les signaux de la Nature

admettent des descriptions « simples » – dans le cas de la parcimonie à la synthèse, une

combinaison linéaire de quelques atomes choisis dans un dictionnaire. Plus récemment, une

régularisation alternative (ou complémentaire) a émergé : le modèle de parcimonie à l’analyse

(ou coparcimonie), dans lequel on suppose que le signal peut être rendu parcimonieux par

l’application d’une transformation linéaire bien choisie, désignée sous le nom d’opérateur

d’analyse. Ces deux modèles sont fondamentalement différents, en dehors du cas particulier

où le dictionnaire et l’opérateur sont inverses l’un de l’autre. En règle générale, on ne peut

répondre catégoriquement à la question : « quel est le meilleur modèle ? ». Il est plutôt supposé

que leur utilité dépend principalement du problème particulier que l’on est en train de

considérer. Cependant, les études qui comparent vraiment ces deux modèles, en dehors du

contexte purement théorique, sont extrêmement rares. Dans les travaux que nous présentons,

nous visons à faire la lumière sur cette question, en nous concentrant sur une classe de

problèmes inverses liés aux processus physiques, que nous baptisons problèmes inverses

gouvernés par la Physique.

Prologue : la désaturation audio Avant de plonger dans nos contributions principales, nous

prendrons un détour. Nous explorons le problème inverse de la désaturation des signaux au-

dibles, régularisé par un modèle parcimonieux ou coparcimonieux. La saturation d’amplitude,
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Résumé en français

en anglais clipping, se produit souvent lors d’un enregistrement audio, de sa restitution ou

lors des conversions analogique-numérique. Ce problème commun en traitement de signal

audio existe également dans les domaines du traitement de l’image ou des communications

numériques (par exemple, en OFDM).

L’observation-clef est que la saturation produit des discontinuités, qui se traduisent en une

dispersion de l’énergie dans le plan temps-fréquence. Cette constatation peut être exploitée

pour inverser le processus : construire un estimateur du signal d’origine qui soit cohérent

avec les contraintes liées à la saturation et dont l’énergie soit concentrée en temps-fréquence.

Notre but est de développer un algorithme de désaturation audio, compétitif face à l’état de

l’art, qui puisse intégrer de la même manière une hypothèse de parcimonie à la synthèse ou

à l’analyse, de manière à former un bon indicateur de comparaison des deux modèles. Ce

but est atteint dans le cadre algorithmique que nous avons baptisé SParse Audio DEclipper

(SPADE). Il déploie la régularisation parcimonieuse ou coparcimonieuse par une approche

gloutonne non-convexe, fondée sur les algorithmes de type Alternating Direction Method of

Multipliers (ADMM).

Les résultats sont présentés en termes de performances numériques et d’évaluation perceptive,

et incluent une comparaison avec l’état de l’art. Ils nous ont amenés à la conclusion que la

méthode fondée sur la parcimonie à la synthèse est légèrement plus performante en termes

de reconstruction du signal, mais au prix d’un coût computationnel énorme. D’autre part,

la version fondée sur la parcimonie à l’analyse se situe à peine en-dessous en termes de

performance, mais permet une mise en œuvre extrêmement efficace, permettant même un

traitement en temps-réel. De surcroît, les deux versions de SPADE sont tout-à-fait compétitives

face aux approches de l’état de l’art.

Problèmes inverses gouvernés par la Physique Nous poursuivons nos investigations avec

des problèmes inverses soulevés dans un contexte physique (que nous appelons « gouvernés

par la Physique »), qui sont des problèmes d’une grande importance pratique dans bien des

domaines reliés au traitement du signal. Ils sont fondamentaux dans des applications telles que

la tomographie, l’acoustique, les communications sans fil, le radar, l’imagerie médicale, pour

n’en nommer que quelques unes. Dans le même temps, beaucoup de ces problèmes posent

de grands défis, en raison de leur nature mal-posée. Cependant, les signaux qui émanent

de phénomènes physiques sont souvent gouvernés par des lois connues, qui s’expriment

sous la forme d’équations aux dérivées partielles (EDP). Pourvu que certaines hypothèses sur

l’homogénéité des conditions initiales et aux limites soient vérifiées, ces lois possèdent une

représentation équivalente sous la forme d’équations intégrales, et des fonctions de Green

associées.

De plus, les phénomènes physiques considérés sont souvent induit par des singularités que

l’on pourrait qualifier de parcimonieuses, décrites comme des sources ou des puits dans un

champ vectoriel. Dans cette thèse, nous étudions en premier lieu le couplage entre de telles

lois physiques et une hypothèse initiale de parcimonie des origines du phénomène physique.

Ceci donne naissance à un concept de dualité des régularisations, formulées soit comme un

problème d’analyse coparcimonieuse (menant à la représentation en EDP), soit comme une
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parcimonie à la synthèse équivalente à la précédente (lorsqu’on fait plutôt usage des fonctions

de Green). Nous nommons ce concept cadre (co)parcimonieux gouverné par la Physique

(physics-driven (co)sparse framework) et dédions une part significative de notre travail à la

comparaison entre les approches de synthèse et d’analyse. Nous défendons l’idée qu’en dépit

de leur équivalence formelle, leurs propriétés computationnelles sont très différentes. En effet,

en raison de la parcimonie héritée par la version discrétisée de l’EDP1 (incarnée par l’opérateur

d’analyse), l’approche coparcimonieuse passe bien plus favorablement à l’échelle que le

problème équivalent régularisé par parcimonie à la synthèse. Afin de résoudre les problèmes

d’optimisation convexe découlant de l’une et l’autre des approches de régularisation, nous

développons une version générique et sur-mesure de l’algorithme Simultaneous Direction

Method of Multipliers (SDMM), baptisé Weighted SDMM. Nos constatations sont illustrées

dans le cadre de deux applications : la localisation de sources acoustiques, et la localisation de

sources de crises épileptiques à partir de signaux électro-encéphalographiques.

Application 1 : localisation de sources acoustiques Parmi bien d’autres applications, la

localisation de sources acoustiques (ou sonores) est notamment utilisée pour le débruitage, la

déréverbération, le suivi de sources, le positionnement de robots, ou l’imagerie sismique ou

médicale. Les méthodes traditionnelles de localisation de source sont fondées sur l’estimation

de la différence de temps d’arrivée (en anglais TDOA pour Time Difference Of Arrival) ou sur

des techniques de formation de voies (beamforming). Toutes ces approches, qu’elles soient

plus ou moins performantes en terme de robustesse ou de précision, souffrent invariablement

de la réverbération (c’est-à-dire l’existence de trajets acoustiques multiples) et visent à en

supprimer les effets. Pourtant, dans d’autres domaines tels que les communications sans

fil, les chemins multiples sont régulièrement et efficacement exploités en tant que source

supplémentaire d’information, souvent dans le but d’améliorer le Rapport Signal-sur-Bruit (en

anglais SNR pour Signal-to-Noise Ratio). Inspirés par ces techniques et motivés par le succès

de plusieurs travaux récents dans cette direction, nous proposons une méthode générique de

localisation de sources sonores qui s’appuie sur l’interpolation du champ sonore.

Après avoir rappelé que la propagation du son dans l’air est modélisée par une EDP linéaire

dépendant du temps appelée équation des ondes, nous la discrétisons et l’embarquons dans

un opérateur d’analyse qui s’exprime sous forme matricielle (et qui incorpore également

les conditions initiales et aux bords). Dans ce cadre, la représentation équivalente par les

fonctions de Green est obtenue en formant un dictionnaire de synthèse qui n’est autre que

l’inverse matriciel de l’opérateur d’analyse. En supposant que le nombre de sources est petit

par rapport à l’ensemble de l’espace discrétisé, nous pouvons alors formuler un problème

inverse régularisé d’interpolation du champ sonore, c’est-à-dire un problème d’estimation

du champ de pression acoustique à toutes les coordonnées de l’espace-temps discrétisé.

L’estimateur obtenu est alors seuillé afin de déterminer les positions potentielles des sources

sonores.

Nos simulations indiquent que les deux approches, parcimonieuse comme coparcimonieuse,

atteignent de hautes performances de localisation, et, comme prévu, qu’elles produisent des

1Pourvu que la méthode de discrétisation choisie soit à support local.
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estimées identiques (à la précision numérique près). Cependant, la seconde démontre une

meilleure capacité de passage à l’échelle (O(st) vs O(mst2), où m, s et t désignent respective-

ment le nombre de microphones, de points dans l’espace et d’échantillons temporels), au

point qu’elle permet même une interpolation complète du champ de pression dans le temps

et en trois dimensions. De plus, l’optimisation fondée sur le modèle d’analyse bénéficie d’une

augmentation du nombre de données observées, ce qui débouche sur une accélération du

temps de traitement, qui devient plus rapide que l’approche de synthèse dans des proportions

atteignant plusieurs ordres de grandeur. Enfin, l’approche proposée est compétitive face à la

version stochastique de l’algorithme SRP-PHAT, qui constitue actuellement l’état de l’art dans

la tâche de localisation de source.

Scénarios avancés de localisation coparcimonieuse de sources sonores L’approche précé-

demment introduite repose lourdement sur la connaissance explicite de la géométrie spatiale

de la pièce, de la paramétrisation des conditions aux limites, et du milieu de propagation.

Afin de relâcher ces hypothèses incommodes, nous proposons deux algorithmes réalisant

l’estimation simultanée du champ de pression acoustique et de certains de ces paramètres

physiques.

En premier lieu, nous considérons le cas d’une vitesse du son inconnue, ce qui est pertinent

d’un point de vue pratique, en raison par exemple de l’existence d’un gradient de température

dans la pièce. Nous introduisons l’hypothèse raisonnable que la vitesse du son est constante

dans le temps et fonction assez régulière de l’espace. Concrètement, nous considérons qu’elle

peut être approchée par un polynôme discrétisé d’ordre r, ce qui réduit drastiquement le

nombre de degrés de liberté pour ce paramètre (O(rd) vs O(st), où d est le nombre de dimen-

sions). Le problème de l’estimation simultanée de la vitesse du son et du champ de pression

sonore est biconvexe, et nous lui appliquons une heuristique de type ADMM non-convexe

pour en approcher la solution. Cette méthode est baptisée Blind Localization and Sound

Speed estimation (BLESS). Les résultats préliminaires indiquent qu’une estimation presque

parfaite est possible lorsque r= 1 ou r= 2, au prix d’une augmentation modérée du nombre

de microphones (par rapport aux cas où la vitesse de propagation du son est parfaitement

connue au préalable).

Dans un second scénario, nous étudions la possibilité d’estimer simultanément le champ

de pression acoustique et le coefficient d’impédance acoustique spécifique, qui paramétrise

les bords du domaine. C’est également un problème qui a des implications pratiques impor-

tantes, car il est généralement très difficile de deviner précisément et à l’avance la valeur de ce

paramètre physique. Pour contourner le caractère mal-posé de ce problème, nous supposons

que l’impédance est constante par morceaux, ce qui est justifié physiquement par le fait que

les bords sont habituellement constitués de structures macroscopiquement homogènes, telles

que des murs, des portes ou des fenêtres. L’hypothèse nous suggère qu’une régularisation

de type variation totale peut être utilisée pour promouvoir des solutions de cette nature. À

nouveau, l’estimation simultanée est formulée comme un problème biconvexe et résolue par

une forme non-convexe d’ADMM. Les résultats de simulation sont étonnamment optimistes,

puisque notre méthode, baptisée Cosparse Acoustic Localization, Acoustic Impedance estima-
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tion and Signal recovery (CALAIS), atteint des résultats presque identiques aux résultats d’une

localisation coparcimonieuse standard en présence de conditions aux bords parfaitement

connues.

Pour finir, nous démontrons la capacité de la localisation coparcimonieuse à aborder un

problème où les méthodes traditionnelles échoueraient nécessairement. Dans ce scénario,

que nous appelons « entendre derrière les murs », les sources sonores et les microphones sont

séparés par un obstacle acoustiquement opaque qui empêche toute observation du chemin

direct de propagation (mais permet à des réflexions d’atteindre les microphones). Tandis que

l’absence de la contribution du chemin direct à l’observation interdit toute application des

méthodes classiques fondées sur le TDOA, la localisation coparcimonieuse exploite l’informa-

tion contenue dans les échos pour réaliser une localisation précise des sources, même lorsque

la « porte » qui permet le passage de ces chemins multiples est relativement petite.

Application 2 : localisation de sources dans le cerveau Notre dernière application cible est

l’électro-encéphalographie (EEG), ou plus précisément, la localisation de sources de crises

épileptiques à partir des mesures du potentiel électrique sur le scalp. Le modèle physique sous-

jacent, qui lie les potentiels en surface et les sources épileptiques, c’est-à-dire les courants

électriques distincts dans le cerveau, est gouverné par l’équation de Poisson. En sus, les sources

sont modélisées comme des dipôles électriques, ce qui mime l’activité corrélée de groupes

de neurones parallèles. Enfin, il est physiologiquement admis que les sources pertinentes

se situent exclusivement dans la région du cortex, et sont orientées perpendiculairement à

la matière grise. Ces hypothèses facilitent la résolution du problème inverse émergeant du

système de mesures (limité à des électrodes sur la surface de la tête), qui serait autrement très

mal posé.

Malheureusement, ces connaissances et hypothèses préalables restent insuffisantes pour assu-

rer que le problème inverse de localisation de sources en EEG soit bien posé. Par conséquent,

le problème est généralement abordé par des techniques variées, par exemple statistiques

(fondées sur les moments ou les cumulants d’ordre supérieur), ou variationnelles (par exemple

la régularisation de Tikhonov). Plusieurs méthodes récentes supposent que les sources sont

spatialement parcimonieuses, ce qui est également l’approche que nous avons choisie.

La méthode que nous proposons découle tout naturellement de notre cadre de régularisation

(co)parcimonieuse gouvernée par la physique. La discrétisation de l’équation de Poisson

et l’ajout du modèle de sources dipolaires conduit à l’expression de l’opérateur d’analyse.

Le dictionnaire de synthèse correspondant se réduit, à nouveau, à l’inverse matriciel de

l’opérateur d’analyse. Comme dans le cas de l’acoustique, la version c« analyse » passe bien

mieux à l’échelle que la version « synthèse », qui toutes les deux fournissent des performances

compétitives devant l’état de l’art. La méthode proposée se révèle particulièrement robuste au

cas où les sources épileptiques sont mutuellement dépendantes. Dans ce cas, les performances

des méthodes d’inversion statistiques (par exemple, la bien connue méthode MUltiple SIgnal

Classification – MUSIC) décroissent très significativement.
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S. Kitić, N. Bertin and R.Gribonval. Hearing behind walls: localizing sources in the room

next door with cosparsity. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 3087-3091. IEEE, 2014.
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1 Introduction

The history of the human race is a tale riddled with examples of how our inherent curiosity

and the need to discover and understand can be hindered by the limitations of our perception

and technology. “What is the shape of the Earth?”, for instance, is one fundamental question

to which various cultures provided different answers that were often quite creative yet un-

equivocally wrong, with some persisting until as late as the 17th century. The most common

misconception was “the flat Earth” model, where Earth was thought of as a disk or a square,

for some even magically supported on the back of a giant turtle [176]. The first ones to come

close to reality were the Pythagoreans, who proposed a spherical model of the Earth around

6th century BC. This model was later elaborated on by Aristotle, who offered in its favor the

argument that the shadow that the Earth casts onto the Moon during lunar eclipses is round

[116]. Today, the generally accepted model is a refinement of the Pythagorean one, and Earth

is modeled as an oblate ellipsoid.

Why have we taken this brief stroll through history? Our aim was to illustrate how, in the

absence of direct observation, philosophers and scientists are forced to rely on indirect obser-

vation to develop models that fit reality. Such problems are referred to as inverse problems in

the world of science, and by offering a solution for any of them, we try to shed new light on the

inner workings of Nature.

In an effort to achieve this goal, numerous scientists have provided their contributions through-

out history. The result of this joint endeavor is a collection of mathematical models through

which the observed physical manifestations are explained. Needless to say, all of these models

are wrong [38] (or, to put it another way, not perfectly accurate), but some of them can be

highly useful. Often, we are incapable of directly observing certain phenomena, and the model

that we have remains our best guess. One illustrative example comes from astronomy, where

we determine the chemical structure of a star based on the observations of its light emissions.

There, the objects of interest are usually (extremely) far and out of our reach, and the bigger

part of our knowledge base comes from models based on scarce observations.

The quality of such models naturally varies with the amount and quality of the information

1



Chapter 1. Introduction

that is available — our use of the word “guess” in the previous paragraph was hardly accidental.

In many cases, an inverse problem, if tackled from a single standpoint, is ambiguous and

ill-posed. Returning to the shape of the Earth — If we only take the point of view of a single

individual standing on the surface, one understands how Earth can appear to be flat. Also, the

“lunar shadow argument” by Aristotle is insufficient on its own as proof that Earth is not flat or

is round. Indeed, if the Earth and the Sun were static relative to each other, a flat disc could

project a shadow of the same shape. Therefore, the problem of describing the shape of the

Earth based solely on the shape of its shadow on the Moon is ill-posed. Whenever we have an

ill-posed inverse problem, our goal is to make it well-posed or regularize it, by adding extra

information until we have unambiguous confirmation of the model.

Before going further with more formal discussion on inverse problems in signal processing,

we temporary narrow the scope and give a flavor of what is the subject of this thesis. We are

interested in so-called “inverse source problems”, which lay on the blurry boundary between

physics and signal processing. These problems are usually severely ill-posed and to address

them we exploit particular regularization methods discussed later in this Chapter. On the

practical side, we are primarily interested in the inverse source problems in acoustics and

electroencephalography, which we informally describe in the following text.

Acoustics is the scientific discipline that investigates propagation of sound. Sound can be

interpreted as the manifestation of mechanical vibration of fluid, such as air or water, which is

called a propagating medium. Sound is not necessarily audible, i.e. it is not always possible

to register it by the human auditory system. For instance, whales are using infrasound to

communicate, and the ultrasound is used in sonography to visualize internal structure of

human body. Both of these are usually not perceivable by humans due to physical limitations

of our auditory system in terms of frequency. Loosely speaking, sound frequency is the rate

of oscillations of particles in the propagating fluid. What distinguishes sound from other

types of propagations, such as electromagnetic waves, is its mechanical nature (thus it cannot

exist in vacuum) and the frequency range. A sound source is a vibrating region of space that

produces sound, such as a guitar string. Imagine two guitarists playing in a small room. After

a guitar string has been hit, depending on the speed of sound, the vibrations amplified by the

soundboard will eventually propagate everywhere in the room (which can be justified by the

fact that we would be able to hear it wherever we stand in the room). If we had microphones,

placed in different regions of the room, they would all record sound which is a “mixture” of

music, played by both guitarists. In the acoustic inverse source problem we are interested

in characterizing “guitarists” on the basis of the microphone recording. By characterization,

we mean inferring their locations within the room, the content of their plays, and the time

instants when they start and stop playing. Replace “guitarists” by any sound sources, and

this is an inverse acoustic source problem in an enclosed environment. In this thesis, we are

primarily interested in the first property, namely, the locations of the sound sources. Sound

(acoustic) source localization has many uses, starting from robot navigation, audio and speech

enhancement, aeroacoustic noise suppression, ocean acoustics etc. More details will be given

in Chapter 4.
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1.1. Inverse problems

Electroencephalography (EEG) is concerned with measuring electrical activity of brain sources,

usually in a non-invasive way. It is by now widely known that neurons in the brain produce

some amount of electrical activity, which can be passively measured by placing electrodes

along human scalp. By investigating electrode recordings, one can infer information useful for

diagnosing epileptic seizures, tumors, stroke or brain death in comatose patients. Nowadays,

it is mostly used for diagnosing epileptic sources in the brain, which is an inverse source

problem. This is an important information for the physician, as he may decide to surgically

remove the part of the brain responsible for the seizures. The issues related to solving this

inverse problem are presented in Chapter 6.

1.1 Inverse problems

In this section we informally and formally define inverse problems, with an emphasis on

inverse problems in signal processing. However, the demarcation line between scientific

disciplines is not clear, as we will see in what follows.

The significance of inverse problems in science and engineering cannot be overstressed. In

signal processing, they are omnipresent, and examples are numerous: source localization

[62, 243, 45], radar imaging [210, 18, 9], image processing [112, 24, 95], acoustic imaging and

tomography [182, 79], medical imaging [262, 233, 203], compressed sensing [50, 96, 106],

tracking [174, 252, 3], denoising [93, 19], declipping [227, 75, 144] etc, to cite only a few. Their

generality is of such a wide scope that one may even argue that solving inverse problems is what

signal processing is all about. Albeit being true, this is not a particularly useful generalization,

quite similar to “everything is an optimization problem” [254] paradigm. What matters is

identifying which inverse problems are solvable and finding a means to solve them.

Generally, two problems are considered being inverse to each other if the formulation of one

problem requires the solution of the other [97]. A traditional way to define an inverse problem

is to see it as the inverse of a forward (direct) problem. Despite the lack of scientific consensus

on this type of categorization [138], in this thesis we will maintain the conventional wisdom

and consider (informally) that forward problems start from the known input while inverse

problems start from the known output [220]. Thus, the forward problem is usually the “easier”

one, where certain conditions (“parameters”) generate observable effects. In time-dependent

systems, the forward problem usually respects the causality principle: the solution of the

forward problem at time t = t1 does not depend on the input at time t = t2, when t1 < t2.

Conversely, inverse problems are often non-causal and non-local, which makes them more

challenging to solve.

More formally, the forward problem is often defined through a mathematical model sublimed

in the measurement operator M [16]. This operator maps the objects of interest x from the

parameter space X , to the space of observations or measurements y ∈Y :

y =M(x). (1.1)
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Then, the inverse problem is to recover (or estimate) the parameters x from the observed data

y by means of a method that “reverts” M. We will assume that X and Y are vector spaces,

sometimes equipped with an additional structure (e.g. norm and/or inner product). In the

context of signal processing, we often call these quantities signals.

In practice, one often encounters linear inverse problems, characterized by the fact that the

measurement operator M := M is linear:

y =M(x) = M x. (1.2)

In the spirit of “all models are wrong” principle, one should replace the equality sign in (1.1)

and (1.2) by the approximation (“≈”). However, the meaning of “≈” is more subtle, and needs

to be specifically defined for a particular problem. Even if the observation model M is perfect,

in practice, the observation data y is inaccurate, due to imperfections in physical measurement

systems. Often, this collection of model and measurement inaccuracies is labeled as “noise”.

The most common model for noisy observations is to consider an additive noise:

y =M(x)+e, (1.3)

where e denotes the noise vector. This model implicitly assumes that x and e are statistically

independent, which is not always true (e.g. when the noise is caused by quantization [117]).

However, its convenient form makes it widely used in signal processing.

Concerning “solvability” of a particular problem, Jacques Hadamard introduced [121] (by now

widely-accepted) conditions to determine if a problem is well-posed:

Existence: There exist a solution for the problem.

Uniqueness: The solution is unique.

Stability: The solution depends continuously on the data.

For the inverse problems defined previously, these conditions translate into properties of

the measurement operator M. Assuming that the forward problem is well-posed and that

{∀y ∈Y ,∃x ∈X | y =M(x)}, to have a well-posed inverse problem the operator M needs to

be:

1. Injective: M(x1) =M(x2) ⇒ x1 = x2 and

2. Stable:1 x → x∗ is equivalent to y → y∗, where y =M(x) and y∗ =M(x∗).

Unfortunately, many interesting inverse problems are ill-posed in the sense of Hadamard. A

rather famous example is the deconvolution problem, where direct inversion of the transfer

1By u → v we mean d(u − v) → 0, where d(·) is a distance functional.
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function results in instabilities at high frequencies [135]. Moreover, even if a problem is well-

posed, it may be badly conditioned, which is another practical restriction. A simple example

is the finite-dimensional linear system y = Mx where M is invertible, but the condition number

κ(M) = ‖M‖2‖M−1‖2 is large, leading to numerical instabilities and erroneous results [111].

Tikhonov argued [236] that some of these problems may be solved by restricting the set of

solutions to C ⊂ X , where C is termed the correctness class. For the solutions x ∈ C , the

measurement operator M is indeed injective and stable, and the inverse problem is called

conditionally correct according to Tikhonov [129]. Promoting solutions from the correctness

class C is called regularization of the inverse problem and its success depends on the nature

of C and the applied numerical method. In signal processing community, a correctness class

is often called a data model.

1.2 Regularization

Regularization can be considered from different points of view. Roughly speaking, regulariza-

tion approaches can be seen as deterministic (which are exploited in this work) or stochastic.

The most well-known deterministic approach is the variational method, to which subec-

tion 1.2.1 is devoted. Another, by now well-established approach, is the so-called low-

complexity regularization, which is at the core of this thesis. We discuss the ideas behind this

approach in subsection 1.2.2. Beside the variational method and low-complexity regulariza-

tion, there are other deterministic approaches widely used in practice, such as the truncated

singular value decomposition and truncated iterative linear solvers. These are usually applied

to well-posed, but badly conditioned linear systems [135].

Overall, this section serves as an introductory review of deterministic regularization methods.

However, stochastic regularization, or statistical inversion methods, are equally important. In

a stochastic framework, all involved quantities are treated as random variables with an associ-

ated probability distribution. To apply regularization through the Bayesian framework, one

builds a posterior probability distribution given the observed data used for computing a point

estimate, such as the conditional mean or the posterior mode [135]. A potential difficulty with

the former point estimate is the necessity to numerically integrate the posterior distribution.

This is usually infeasible, and instead approximated by Markov Chain Monte Carlo methods

[108] such as the Gibbs sampler [52]. Computing the posterior mode (i.e. Maximum A Posteri-

ori (MAP) estimation) is sometimes more practical, and leads to an optimization problem that

may be easier to solve. In some cases, the generated optimization problem coincides with a

deterministic regularization problem, but one should be cautious when drawing conclusions

concerning connections between the two [119].
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1.2.1 Variational regularization

In many cases the term “regularization” is used interchangeably with variational regularization,

which indicates the longevity of the variational method. The theory of variational regulariza-

tion is rich and vast, based on variational calculus and convex analysis in Banach and Hilbert

spaces. Therefore, in this introduction we do not limit the concept to finite dimensional

spaces. Moreover, the problems we are going to tackle are genuinely continuous, although,

in practice, we will handle them in a finite-dimensional manner. Hence, in the context of

variational regularization, we consider the signal of interest to be a continuous functional

x = x(ω) : Ω 7→ C defined over some domain Ω (e.g. R
n). Furthermore, we assume that x

belongs to Hd(Ω) Sobolev space, i.e. the space of square-integrable functions whose first d

weak derivatives2 are also in L2(Ω).

Intuitively, the idea behind the variational approach is to yield an estimate by minimizing an

“energy” represented by a sum of functionals. These are chosen such that they promote solu-

tions from the correctness class C . Particularly, an inverse problem consisting in estimation of

x from the observed data y is formulated as an optimization problem of the following form:

x̂ = arginf
x

fd

(

y,M(x)
)

+ fr (x) , (1.4)

where fd is known as a data fidelity or discrepancy term and fr is a regularizer. The role of

the data fidelity functional is to ensure that the estimate x̂ in some sense complies with the

observed data y , while the fr penalty actually embodies regularization. Informally, fr is also

called a “prior”, indicating that it arose from a prior knowledge we have about the estimate.

The choice of penalties fr and fd is dictated by the particular problem at hand.

Certainly, the most common choice of the data fidelity is the quadratic penalty fd = f ·
q , such

as the well-known squared difference3:

f Y

q

(

y −M(x)
)

=
∫

Ω

(

y −M(x)
)2

dω= ‖y −M(x)‖2
Y

, (1.5)

where the norm ‖ ·‖Y is the usual norm associated with an inner product 〈·, ·〉Y . The penalty

f Y
q puts large weight on the large components of the residual r = y −M(x) and vice-versa,

a small weight on the small components. Effectively, it promotes solutions x̂ such that the

residual r contains a large amount of low-magnitude components.

If both fd and fr are given in the form of f ·
q , with fd = f Y

q

(

y −M(x)
)

and fr = λ f V
q (Lx), the

regularization approach is known as (generalized) Tikhonov regularization [222]:

inf
x

fd

(

y,M(x)
)

+ fr (x) = inf
x
‖y −M(x)‖2

Y
+λ‖Lx‖2

V
, (1.6)

2The generalization of the notion of derivative: d(ω) is the dth weak derivative of x(ω) if and only if
∀u(ω) ∈C∞(Ω) :

∫

Ω
x(ω)∂du(ω) = (−1)|d|

∫

Ω
d(ω)u(ω).

3Assuming the integral exist and is finite.
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with L : X 7→ V a bounded linear mapping4. In practice, L is often a differential operator which

promotes some level of smoothness on the estimated solution x̂ (e.g. L is the gradient operator

∇). In this case, C is the subset of solutions {x | y ≈M(x)} such that x̂ ∈ C is smooth in the

corresponding H s sense. If, for instance, L = I (where I is the identity operator), Tikhonov

regularization encourages estimates from the correctness class of “minimal L2-norm” [14].

Tikhonov regularization is widely used nowadays, since smoothness of the objective is at-

tractive from a numerical optimization standpoint. Namely, if M = M and L = L are finite-

dimensional linear mappings, (1.6) is given as:

inf
x

fd (y,M(x))+ fr (x) ⇔ minimize
x

‖y−Mx‖2
2 +λ‖Lx‖2

2, (1.7)

which admits a closed-form solution

x̂ = (MHM+λLHL)−1MHy.

Note that, for general non-linear M, the optimization problem may be non-convex and thus,

difficult to solve exactly.

While Tikhonov regularization leads to an unconstrained optimization problem, the two

related regularizations are based on constraints embedded in either fd or fr . Morozov regular-

ization [135] is defined as follows:

inf
x
‖x‖2

V
subject to ‖y −M(x)‖Y ≤ ε, (1.8)

where ε can be interpreted as the standard deviation of the noise in the measurement data.

Ivanov regularization [180], on the other hand, bounds the regularizing norm:

inf
x
‖y −M(x)‖2

Y
subject to ‖x‖V ≤ τ. (1.9)

The two latter types of regularization do not have a closed-form solution even in the linear

case. However, they can be expressed as an unconstrained Tikhonov regularization (1.6) by an

appropriate choice of the parameter λ [35].

Although very useful, minimization of the squared inner product norm is, by no means, the

only available regularization method. Another useful regularizer is the L1 norm5. In the linear

setting, with a usual quadratic discrepancy term, it corresponds to the following optimization

problem:

inf
x

fd (y,M(x))+ fr (x) = inf
x
‖y −M x‖2

Y
+λ

∫

Ω

|Lx|dω. (1.10)

A very common choice for the operator L is, again, L =∇. This type of regularization is known

as total variation minimization [222], and it, intuitively, favors piecewise constant estimates x̂.

4Same as before, ‖ ·‖V is the usual norm associated with the inner product 〈·, ·〉V .
5We implicitly assumed that x and the associated mappings now also belong to L1 space.
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Chapter 1. Introduction

There are many other variational priors beyond those mentioned, but these are out of the

scope of this thesis. Lastly, we emphasize that all optimizations are necessarily performed in

finite dimensions. Therefore, discretization of continuous problems plays an important role.

1.2.2 Low complexity regularization

The idea of “simple” models is not new, but after being rediscovered in the beginning of

1990s, it somewhat revolutionized modern signal processing. The idea behind this type of

regularization is inspired by the Occam’s razor principle: “Numquam ponenda est pluralitas

sine necessitate” (Plurality must never be posited without necessity). This can be interpreted as

“the underlying model should not be more complicated than necessary to accurately represent

the observations”. In the context of prediction theory, Solomonoff [228] mathematically

formalized this principle and shown that shorter theories do have larger weight in computing

the probability of next observation.

Nevertheless, in regularization, Occam’s razor emerges from the empirical observation that

many natural signals can be approximated by a “simple” representation, although their “stan-

dard” or “altered” (e.g. noisy) representation may be complex. The notion of what do we mean

by “simple” is important. Here, we identify with “simple” a signal whose intrinsic dimension

is much smaller that the ambient space. The ambient space is the space “surrounding” a

mathematical object, while the intrinsic dimension is the “true” number of degrees of freedom

of an object (for instance, a plane in 3D ambient space has an intrinsic dimension two).

Implicitly, this fact is the foundation of compression, which exploits redundancy of “standard”

representations to reduce the amount of data necessary to archive or transmit a signal. Some

examples are transform coding schemes embedded in MP3, MPEG, JPEG and JPEG2000

standards. Beyond compression, applications such as in radar [125, 18], seismic [77] and

medical imaging [241, 164], telecommunications [198, 207], computer vision [259, 53] and

genomics [201], confirm the “simple” or “low complexity” intuition in practice.

In this subsection we restrict the discussion to finite dimensional spaces6, as the theory of

infinite dimensional “low complexity” regularization is not unified and, in many segments,

not fully mature yet (although there are some notable works [123, 208]). Still, even with this

constraint, one can imagine different types of simplicity in signals, such as (among many):

k-sparse signals For a signal x ∈R
n with k< n non-zero elements, the ambient dimension is

n, and the intrinsic dimension is k [33].

l-cosparse signals Given a matrix A ∈ R
p×n, a signal x ∈ R

n is l-cosparse if the product Ax

contains only p− l non-zero components; the ambient dimension is again n, but the

intrinsic dimension is typically n− l [187].

6
R
n, Cn and, technically, any finite dimensional Hilbert space, since these are isomorphic to R

n, Cn.
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Rank-r matrices A matrix R ∈ R
n1×n2 of rank r has the ambient dimension n1n2 and the

intrinsic dimension r(n1+n2)− r2 [49].

Hermitian Toeplitz matrices For a Hermetian Toeplitz matrix of size n×n, the ambient di-

mension is n2, but the intrinsic dimension is 2n−1 [212].

The first two signal models are widely applicable concepts in many settings: for instance,

previously mentioned compression coding schemes (implicitly) rely on the sparse / cosparse

prior. Low rank matrix models are used, e.g. in recommender systems [146], while the co-

variance matrices of wide-sense stationary signals have Hermitian Toeplitz structure [212].

Furthermore, signals may have a structure expressed by an “interSection of models”, i.e. they

exhibit properties that can be characterized by several models ([162, 12, 246], for example).

The sparse synthesis data model

The sparse synthesis data model, or simply sparsity, has been an active area of research

for more than two decades. Impressive results were obtained in many applications, with

compressive sensing [51, 96, 106] being the flagship of the field.

It is illustrative to introduce the model using the variational form given in (1.4) (bearing in

mind that it should not be confused with variational regularization, which is elaborated later

in the text). Hence, sparse synthesis regularization may be seen as an optimization problem

involving the ℓ0 “norm” as a regularizer:

minimize
x

fd

(

y,M(x)
)

+ fr (x) = minimize
x

fd

(

y,M(x)
)

+‖x‖0. (1.11)

Here fr (x) = ‖x‖0 is the count of non-zero elements in x ∈R
d, which is not absolutely homo-

geneous (‖λx‖0 6= |λ|‖x‖0), and therefore, not a true norm. An alternative is the characteristic

function7 χℓ0≤k (x), which imposes the constraint that the estimated vector x cannot have

more than k non-zero components. In any case, the assumption is that ‖x‖0 ≪ d, where d is

the ambient dimension.

A common extension is the model in which the signal is sparse in a dictionary, expressed as

follows:.

minimize
x

fd

(

y,M(Dx)
)

+‖x‖0, (1.12)

where the dictionary matrix D ∈C
n×d can be overcomplete (n< d), making it more general than

basis. Its columns are often called atoms. The set Φ of indices of non-zero components in a

vector x is termed support of x. We will denote by DΦ the restriction of the matrix D to the

columns of the dictionary corresponding to support.

Unfortunately, sparse synthesis regularization leads to NP-hard (combinatorial-type) prob-

7Formally defined in appendix A.
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lems cf. [105]. Moreover, the ℓ0 “norm” is discontinuous, and, from a numerical point of view,

very unstable: small perturbations of the signal may have a large impact on the results. This is

also a reason why one should not confuse (conceptual) sparse and cosparse regularization to a

variational approach, which requires a well-posed minimization problem [165]. On the other

hand, in many cases convex relaxations and greedy algorithms are very effective in recovering

sparse signals.

Convex relaxations substitute ℓ0 by a convex penalty, in which case (co)sparse regularization

coincides with variational methods, discussed in the previous subsection. Their principal

advantage is that convexity ensures that the attained minimum is indeed global (which does

not necessarily mean that the estimate is unique - this is reserved for strictly convex functions

[40]). Relating convex penalties to sparse signal recovery is somewhat technical [54], but

the common intuition is that the ℓ1 norm is known to promote generally sparse solutions.

If a signal has additional structure, such as group sparsity8, this can be also promoted by

appropriate choice of a group norm [14, 132]. The goal of greedy algorithms is to recover

the support of a signal, and therefore the signal itself, by an iterative estimation procedure.

There are many variants, such as Matching Pursuit [173], Orthogonal Matching Pursuit (OMP)

[204, 189], Iterative Hard Thresholding (IHT) [32] or Compressive Sampling Matching Pursuit

(CoSaMP) [191]. These algorithms can be seen as non-convex heuristics, but they come with

certain performance guarantees.

Theoretical aspects of sparse signal recovery has been exhaustively researched. The most

referenced concept is the Restricted Isometry Property (RIP) or uniform uncertainty principle

[51, 106]. In linear inverse problems (M= M), for the class of signals sparse in a dictionary

D, it characterizes the sensing matrix MD with the so-called restricted isometry constant. It is

defined as the smallest constant δk > 0 such that the following holds:

(1−δk)‖x‖2
2 ≤ ‖MDx‖2

2 ≤ (1+δk)‖x‖2
2, ∀ {x | ‖x‖0 ≤ k} . (1.13)

For some applications and classes of sensing matrices, recovery conditions based on the

restricted isometry constants have been established. For instance, a famous result in com-

pressed sensing states that, with e.g. Gaussian or Bernoulli sensing matrices [106], one needs

only m ∝ k ln n
k

measurements to obtain robust signal recovery. Moreover, this has been

accomplished not only for convex decoders9, but also for several greedy algorithms (including

the ones mentioned above). However, evaluating δk in (1.13), for general matrices, is also NP-

hard [238]. In cases where the restricted isometry constant cannot be calculated, (suboptimal)

recovery results based on coherence [106] may be attainable.

A recent research direction is the generalization of the RIP concept to more general decoders,

or even to different signal models (e.g. [37]).

8We will evoke some group sparse structures in subSection 4.3.4 of Chapter 4.
9Decoder is a means of estimating x from the measurements y.
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The sparse analysis data model

The sparse analysis data model or cosparsity [187], has only recently attracted as much

attention of the scientific community as the synthesis model. It differs from sparsity due to

the presence of a matrix A, termed the analysis operator :

minimize
x

fd

(

y,M(x)
)

+‖Ax‖0. (1.14)

The analysis operator A ∈R
p×n can be overcomplete, in the sense that it contains more rows

than columns (p > n). The index set Λ of rows of A orthogonal to a vector x is termed co-

support of x. The restriction of the matrix A to the set of rows referenced by cosupport is

denoted AΛ. One of the most common use cases of cosparsity is the well-known total variation

regularization (1.10), for which the matrix A is an approximation of the gradient operator ∇.

One could see the cosparse model as a generalization of the synthesis model (which is re-

covered by A = I), but a more appropriate view is that sparse and cosparse signals belong to

different unions of subspaces [166, 33]. While k-sparse signals are members of the union of

all k-dimensional subspaces spanned by columns of DΦ (|Φ| = k), l-cosparse signals belong

to the union of all (n− l)-dimensional subspaces spanned by columns of null(AΛ) (|Λ| = l).

In fact, there is only one particular case where the two models are equivalent, and that is

when D = A−1, which requires the two matrices to be square-invertible [94]. In many practical

scenarios, however, the dictionary and the analysis operator are overcomplete, rendering the

two models different. For the cosparse model, we assume that ‖Ax‖0 ≪ p. If the matrix A is of

full column rank, there is an obvious limit to the number of possible rows orthogonal to x (the

product Ax is usually “less sparse” compared to the synthesis case). However, it should not be

interpreted as a weakness of this data model.

We know that ℓ0 minimization is computationally intractable. As in the synthesis setting,

convex relaxations and greedy methods have been proposed to approximate the solutions

of (1.14). Assuming no additional structure in Ax, one would again use the ℓ1 norm ‖Ax‖1

as a convex relaxation [187, 242]. Analogously, if the structure is available, more appropriate

objectives can be used. Concerning greedy methods, counterparts of the most common

synthesis-based algorithms have been proposed in the analysis context. Some of these are

Greedy Analysis Pursuit (GAP) [186, 187], Analysis Iterative Hard Thresholding (Analysis IHT)

and Analysis Compressive Matching Pursuit (Analysis CoSaMP) [109].

The necessary condition to have any hope of cosparse signal recovery is that the null spaces of

A and M intersect only trivially:

null

([

A

M

])

= {0} . (1.15)

Otherwise, obviously, uniqueness cannot be assured.

An adaptation of the RIP to the sparse analysis data model, known as D-RIP [46, 133], is the
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following:

(1−δl)‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1+δl)‖x‖2
2, ∀

{

x = ATz | ‖z‖0 ≤ l
}

, (1.16)

i.e., it should hold for all l-cosparse vectors x. For A = I and M := MD, the RIP condition for

sparse-in-a-dictionary signals (1.13) is recovered. However, as argued in [187], the D-RIP

tends to keep the sparse synthesis perspective, and the results derived in this spirit do not

reflect the true ability of sparse analysis regularization to recover cosparse signals. Different

conditions, such as the ones derived using the so-called Null Space Property [242, 133, 187]

are more applicable.

1.3 Thesis guideline

The main objective of this thesis is to gain a profound understanding of potentials and draw-

backs of the sparse synthesis and sparse analysis regularizations in the context of so-called

physics-driven signal processing inverse problems. This class of problems is inspired by cer-

tain physical laws and characterized by an a priori knowledge that the involved signals can

be modeled as sparse or cosparse. The “dual” nature of the problems, poses the following

questions:

1. Which of the two data models is more appropriate?

2. How to choose a synthesis dictionary / an analysis operator for the given problem?

3. How to efficiently solve the regularized inverse problem?

Our goal in this work is to shed some light on these fundamental issues.

The thesis is organized as follows:

• Chapter 1 was the thesis introduction.

• Chapter 2 is a prelude to physics-driven (co)sparse regularization. It is concerned with

the audio declipping inverse problem regularized by sparsity and cosparsity, highlighting

the qualitative and numerical differences of the two priors in this context.

• In Chapter 3 the physics-driven (co)sparse framework is introduced. Computational

complexity of using either of the two approaches is discussed.

• Acoustic source localization addressed by physics-driven (co)sparse regularization is dis-

cussed in Chapter 4. We review state-of-the-art and provide comprehensive simulation

results with both synthesis and analysis approaches.

• The ability of the cosparse localization approach to handle difficult scenarios –where

physical parameters are unknown or the environment is adverse–, is presented in

Chapter 5.
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• The brain source localization problem in EEG is challenged by means of the physics-

driven (co)sparse framework in Chapter 6. The approach is confronted to several state-

of-the-art methods.

• Conclusions, final remarks and perspectives are discussed in Chapter 7.

• Appendices A, B, C and D provide background material occasionally recalled in the

thesis.

Except for the Introduction, Conclusions and Appendices, every chapter begins with a state-

ment of the main topic, a note on the related publications resulted from this work, and an

introduction of the chapter structure. Chapters end with a summary of the presented material

and a short remark concerning our contributions.
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2 Audio inpainting

In the first chapter we argued that, although perhaps deceivingly similar, the sparse synthesis

and sparse analysis data models are fundamentally different. There is only one modus operandi

where the two models become nominally equivalent, and that is when the dictionary and the

analysis operator are inverse of each other. The reminder of the thesis will revolve around this

special case, due to the particular class of problems we are interested in (these are elaborated

in chapter 3). The goal of this chapter is to give a taste of practical implications of using the

two models in non-equivalent settings.

We discuss the so-called inverse problem of audio inpainting, which is a term that first ap-

peared in [157, 2]. The purpose was to highlight similarities with well-known image inpainting

problem [24, 68, 95], concerned with partial recovery or object removal in images. Analogously,

in audio inpainting one is interested in recovering a part of audio signal, which is either miss-

ing or degraded, using the surrounding “reliable” (undistorted) audio data. The problem is

very general, and includes cases such as packet loss in Voice-over-IP networks [205], impulsive

noise (“clicks”), scratches and breakages in the recording medium [110], clipping [134], audio

bandwidth extension [155] etc (an exhaustive list of references is available in [2]). The scope

of this work is inpainting the audio signals degraded by clipping, or magnitude saturation. We

first formally define the goal:

Given the saturated single channel recording, estimate the original audio signal.

This is a well-known problem in signal processing, arising not only in audio, but also in image

processing [13, 183] and digital communications [161]. Still, the focus is on single channel

audio, although the main principles and algorithms may be generalized.

The chapter proceeds as follows: in the first section, we introduce the inverse problem of

audio declipping, which is followed, in the second section, by the review of state-of-the-

art approaches in the field. The third section proposes new sparse-cosparse algorithmic

framework for audio declipping. In the fourth section we provide numerical and perceptual

performance evaluation. The material in this chapter is based on publications [143, 141].
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Chapter 2. Audio inpainting

2.1 The inverse problem of audio declipping

Audio signals become saturated usually during acquisition, reproduction or A/D (Analogue-

to-Digital) conversion. The perceptual manifestation of clipped audio depends on the level of

clipping degradation and the audio content. In case of mild to moderate clipping, the listener

may notice occasional “clicks and pops” during playback. When clipping becomes severe, the

audio content is usually perceived as if it was contaminated with a high level of additive noise,

which may be explained by the introduction of a large number of harmonics caused by the

discontinuities in the degraded signal. In addition to audible artifacts, some recent studies

have shown that clipping has a negative impact on Automatic Speech Recognition [234, 124]

and source separation [27] performance.

In the following text, a sampled audio signal is represented by the vector x ∈R
n and its clipped

version is denoted by y ∈R
n. The latter can be easily deduced from x through the following

nonlinear measurement model, called hard clipping:

yi =M(x)i =







xi for |xi| ≤ τ,

sgn(xi)τ otherwise1.
(2.1)

While idealized, this clipping model is a convenient approximation allowing to clearly dis-

tinguish the clipped parts of a signal by identifying the samples having the highest absolute

magnitude. Indices corresponding to “reliable” samples of y (not affected by clipping) are

indexed by Ωr , while Ω
+
c and Ω

−
c index the clipped samples with positive and negative magni-

tude, respectively. An illustrative example of a clipped sinusoidal signal is given in figure 2.1a.

Our goal is to estimate the original signal x from its clipped version y, i.e. to “declip” the signal

y. Ideally, the estimated signal x̂ should satisfy natural magnitude constraints in order to be

consistent with the clipped measurements. Thus, we seek an estimate x̂ which meets the

following criteria:

x̂ ∈Ξ=
{

x ∈R
n | Mr x = Mr y, M+

c x ≥ M+
c y, M-

c x ≤ M-
c y

}

, (2.2)

where the matrices Mr, M-
c and M+

c are restriction operators. These are simply row-reduced

identity matrices used to extract the vector elements indexed by the sets Ωr , Ω+
c and Ω

−
c ,

respectively. We write the constraints (2.2) as x̂ ∈Ξ.

Obviously, consistency alone is not sufficient to ensure uniqueness of x̂, thus one needs to

further regularize the inverse problem. The declipping inverse problem is amenable to several

regularization approaches proposed in the literature, such as based on linear prediction [131],

minimization of the energy of high order derivatives [124], psychoacoustics [75], sparsity

[2, 144, 227, 75, 256] and cosparsity [143, 141]. The latter two priors are based on the fact

that the energy of audio signals is often concentrated either in a small number of frequency

1sgn(·) is component-wise sign operator.
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Figure 2.1 – Hard clipping example (left) and spectrograms of the clipped (top right) and the original
(bottom right) audio signals.

components, or in short temporal bursts [206], i.e. they are (approximately) time-frequency

sparse. This observation enables some state-of-the-art methods in clipping restoration (for

illustration, figure 2.1b shows the spectrogram effects of audio clipping).

2.1.1 Theoretical considerations

From the theoretical perspective, the declipping inverse problem regularized by sparse rep-

resentations has not been investigated. One of the reasons is that the measurement system

violates principal assumptions of the compressed sensing theory. Namely, the sampling pro-

cess is signal-dependent, and, thus, cannot be modeled in a standard way (e.g. by uniform

distribution). Moreover, the class of signals Ξ imposes rather complex structure, beyond the

ones commonly considered in compressive sensing (i.e. k-sparse or group sparse signals). In

addition, there is some practical evidence [256, 75, 2] that standard convex relaxation methods

underperform when compared to greedy declipping heuristics. This is another indicator that

the declipping inverse problem is much different than compressed sensing, despite the fact

that the underlying regularizers are the same.

For these reasons, all research results thus far (including ours) are of empirical nature. In prac-

tice, particularly in audio, these can actually be more relevant. The end users are interested in

audible, rather than numerical improvements. On the other hand, when a declipping algo-

rithm serves as a pre-processing block for some other application (e.g. a speech recognizer),

the estimation accuracy may be more important.
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2.2 Prior art

Since declipping is a special case of audio inpainting, any algorithm that addresses the latter,

can be used for solving the former inverse problem. Historically, one of the first such “audio

interpolation” approaches, due to Janssen et al. [131], is based on autoregressive (AR) modeling

of audio signals. Autoregression is known to be a good model of human glottal tract [245],

and therefore, good model for speech signals. However, the approach does not generalize

well to other audio signals (e.g. music). Moreover, it is successful only for relatively mild

clipping (usually corresponding to small “gaps” in audio), since it does not take into account

the particularities of clipping.

Methods that specifically target the declipping inverse problem are relatively new. Most of

them are based on some form of the sparse synthesis prior and time-frequency dictionaries.

Adler et al. [2] proposed a two-stage declipping method based on the OMP algorihtm, termed

constrained Orthogonal Matching Pursuit. In the first stage, the algorithm uses reliable part of

the signal to estimate the support in transform domain. Then, in the second, refinement stage,

the estimate is projected to the constraint set Ξ, while preserving only those atoms of the

dictionary agreeing with the support set. Since the support estimation is performed without

exploiting clipping constraints, the first stage of the algorithm is highly susceptible to errors.

This has been demonstrated in [144], on both simulated and real audio data.

In the same paper, a new declipping algorithm based on Iterative Hard Thresholding for Com-

pressed Sensing [32] was proposed. By introducing additional penalties in the objective, this

algorithm, termed Consistent IHT, simultaneously enforces sparsity and clipping consistency

of the estimate. At the same time, the low complexity feature of the original IHT algorithm is

preserved. The algorithm iterates the following expression:

z(i+1) =Hi+1[z(i) +m(i) DT
B(y−Dz(i))], (2.3)

where the operator Hk(v) performs hard thresholding, i.e. sets all but k highest in magnitude

components of v to zero, thereby encouraging sparsity. Since k := i+1, the algorithm incre-

mentally allows more non-zero components to be transferred between iterations, acting as a

heuristic sparsity-learning strategy. The operator B(v) is part of the negative gradient term,

which incorporates the data fidelity and clipping consistency penalization:

B(v)j =







vj j ∈Ωr

(vj)+ j ∈Ω
+
c

(vj)− j ∈Ω
−
c ,

(2.4)

where (·)+ and (·)− are positive- and negative- thresholding operators, respectively. The

multiplier m(i) is computed by line-search. Both constrained OMP and Consistent IHT use

block-based processing: the algorithms operate on individual blocks of audio data, which is

subsequently resynthesized by means of the overlap-add scheme.
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2.3. The SPADE algorithms

Recently, a new sparsity-based declipping algorithm was introduced by Siedenburg et al. [227].

The algorithm exploits a structured sparsity prior known as social sparsity [148], which encour-

ages estimates whose time-frequency support is clustered (“neighborhood” sparsity). This

improves estimation and declipping performance, but at the expense of higher computational

cost. Namely, the algorithm requires batch processing of the entire audio signal, in order to be

able to perform accurate time-frequency clustering. This limitation can become cumbersome

in applications where real-time processing is required. More details and the pseudocode are

provided in appendix C.

Another approach from the sparse synthesis family was proposed by Defraene et al. [75]. It

is the only considered algorithm that uses convex optimization, although it was previously

argued that, for the declipping problem, greedy heuristics seem to outperform convex relax-

ations. The distinct feature of this approach is that it uses perceptually weighted dictionary,

and, as such, is better adapted to human auditory system. Unfortunately, due to the applied

convex relaxation, it performs worse than plain (clipping-unaware) OMP algorithm in terms of

the signal recovery. It is possible, however, that the performance can be improved by applying

non-convex heuristics, such as reweighted ℓ1 minimization proposed in [256].

Finally, one method that does not rely on the sparse synthesis model was proposed by Harvilla

et al. in [124]. The approach is based on the assumption that the second order derivative of the

estimated signal should vanish. This, in turn, produces a genuinely smooth estimate, which

may be an acceptable approximation of the audio signal for high sampling rates. However, the

approach is sensitive to noise, in which case it is outperformed by Consistent IHT.

2.3 The SPADE algorithms

Interestingly, none of the presented approaches considers the sparse analysis data model.

While overseen before, cosparsity may be well-adapted for the declipping scenario, where the

estimate is heavily constrained by Ξ in its native domain. Therefore, and given the current

state-of-the-art, we set three goals:

1. Competitive declipping performance,

2. Computational efficiency,

3. Versatility: use sparse synthesis or sparse analysis prior on an equal footing.

We previously mentioned that, for the declipping inverse problem, the empirical evidence

is not in favor of ℓ1 convex relaxation. Hence, the goal is to build an algorithmic framework

based on non-convex heuristics, that can be straightforwardly parametrized for use in both

the synthesis and the analysis setting. To allow for possible real-time implementation, the

algorithms need to support block-based processing.
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Chapter 2. Audio inpainting

Inspired by simplicity and computational efficiency of Consistent IHT, it would be inter-

esting to exploit the same idea in the cosparse setting. Unfortunately, while the synthesis

ℓ0-projection corresponds to simple hard-thresholding, the cosparse ℓ0-projection

PΣ(v) = argmin
x∈Σ

‖x−v‖2, Σ= {x | ‖Ax‖0 = k}

is proven to be NP-hard [237]. Therefore, we take another route, and seek the estimates which

are only approximatelly sparse or cosparse. The heuristics should approximate the solution of

the following synthesis- and analysis-regularized inverse problems2:

minimize
x,z

‖z‖0 +χΞ (x)+χℓ2≤ε (x−Dz) (2.5)

minimize
x,z

‖z‖0 +χΞ (x)+χℓ2≤ε (Ax−z) . (2.6)

The characteristic function χΞ of the constraint set Ξ forces the estimate x to satisfy (2.2). The

additional penalty χℓ2≤ε is a coupling functional. Its role is to enable the end-user to explicitly

bound the distance between the estimate and its sparse approximation. These are difficult

optimization problems: besides inherited NP-hardness, the two problems are also non-convex

and non-smooth.

We can represent (2.5) and (2.6) in an equivalent form, using the characteristic function on

the cardinality of z and an integer-valued unknown k:

minimize
x,z,k

χℓ0≤k (z)+χΞ (x)+ fc (x,z) (2.7)

where fc (x,z) is the appropriate coupling functional. For a fixed k, problem (2.7) can be seen

as a variant of the regressor selection problem, which is (locally) solvable by ADMM [39]:

Synthesis version

z̄(i+1) =Hk(ẑ(i) +u(i))

ẑ(i+1) =argmin
z

‖z− z̄(i+1) +u(i)‖2
2

subject to Dz ∈Ξ

u(i+1) =u(i) + ẑ(i+1) − z̄(i+1)

Analysis version

z̄(i+1) =Hk(Ax̂(i) +u(i))

x̂(i+1) =argmin
x

‖Ax− z̄(i+1) +u(i)‖2
2

subject to x ∈Ξ

u(i+1) =u(i) +Ax̂(i+1) − z̄(i+1).

(2.8)

Unlike the standard regressor selection algorithm, for which the ADMM multiplier [39] needs

to be carefully chosen to avoid divergence, the above formulation is independent of its value.

In practice, it is difficult to guess the optimal value of k beforehand. An adaptive estimation

strategy is to periodically increase k (starting from some small value), perform several runs of

(2.8) for a given k and repeat the procedure until the constraint embodied by fc is satisfied.

This corresponds to sparsity relaxation: as k gets larger, the estimated z becomes less sparse -

the same principle as the one applied in Consistent IHT.

2Observe that if D and A are unitary matrices, the two problems become identical.
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2.3. The SPADE algorithms

The proposed algorithm, dubbed SParse Audio DEclipper (SPADE), comes in two flavors. The

pseudocodes for the synthesis version (“S-SPADE”) and for the analysis version (“A-SPADE”)

are given in Algorithm 1 and Algorithm 2.

Algorithm 1 S-SPADE

Require: D,y,Mr,M+
c ,M-

c,g,r,ε

1: ẑ(0) = DHy,u(0) = 0, i= 1,k= g

2: z̄(i) =Hk

(

ẑ(i−1) +u(i−1)
)

3: ẑ(i) = argmin z ‖z− z̄(i) +u(i−1)‖2
2

s.t. x = Dz ∈Ξ

4: if ‖D
(

ẑ(i) − z̄(i)
)

‖2 ≤ ε then

5: terminate

6: else

7: u(i) = u(i−1) + ẑ(i) − z̄(i)

8: i← i+1

9: if i mod r= 0 then

10: k← k+g

11: end if

12: go to 2

13: end if

14: return x̂ = Dẑ(i)

Algorithm 2 A-SPADE

Require: A,y,Mr,M+
c ,M-

c,g,r,ε

1: x̂(0) = y,u(0) = 0, i= 1,k= g

2: z̄(i) =Hk

(

Ax̂(i−1) +u(i−1)
)

3: x̂(i) = argmin x ‖Ax− z̄(i) +u(i−1)‖2
2

s.t. x ∈Ξ

4: if ‖Ax̂(i) − z̄(i)‖2 ≤ ε then

5: terminate

6: else

7: u(i) = u(i−1) +Ax̂(i) − z̄(i)

8: i← i+1

9: if i mod r= 0 then

10: k← k+g

11: end if

12: go to 2

13: end if

14: return x̂ = x̂(i)

The relaxation rate and the “greediness” (relaxation stepsize) are controlled by the integer-

valued parameters r> 0 and g> 0, while the parameter ε> 0 is the stopping threshold.

Lemma 1. The SPADE algorithms terminate in no more than i= ⌈nr/g+1⌉ iterations.

Proof. Once k≥ n, the hard thresholding operation Hk becomes an identity mapping. Then,

the minimizer of the constrained least squares step 3 is ẑ(i−1) (respectively, x̂(i−1)) and the

distance measure in the step 4 is equal to ‖u(i−1)‖2. But, in the subsequent iteration, u(i−1) = 0

and the algorithm terminates.

This bound is quite pessimistic: in practice, we observed that the algorithm terminates much

sooner, which suggest that there might be a sharper upper bound on the iteration count.

2.3.1 Computational aspects

The general form of the SPADE algorithms does not impose restrictions on the choice of the

dictionary nor the analysis operator. From a practical perspective, however, it is important

that the complexity per iteration is kept low. The dominant cost of SPADE is in the evaluation

of the linearly constrained least squares minimizer step, whose computational complexity can

be generally high. Fortunately, for some choices of D and A this cost is dramatically reduced.
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Namely, if the matrix AH forms a tight frame (AHA = ζI, ‖Av‖2 = ζ‖v‖2), it is easy to verify that

the step 3 of A-SPADE reduces to:

x(i) = PΞ

(
1

ζ
AH(z̄(i) −u(i−1))

)

, where:

Ξ=
{

x |
[
−M+

c
M-

c

]

x ≤
[
−M+

c
M-

c

]

y and Mr x = Mr y
}

. (2.9)

The projection PΞ(·) is straightforward and corresponds to component-wise mappings3, as

mentioned in subsection A.3. Thus, the per iteration cost of the algorithm is reduced to the

cost of evaluating matrix-vector products.

Unfortunately, for S-SPADE this simplification is not possible and the constrained minimiza-

tion in step 3 needs to be computed iteratively. However, by exploiting the tight frame property

of D = AH and the Woodbury matrix identity, one can build an efficient algorithm that solves

this optimization problem with low complexity. For instance, another ADMM can be nested

inside S-SPADE, as follows:

ẑ(j+1) =
(

I−
γ

1+ζγ
DHD

)(

z̄(i) −u(i−1) +γDH
(

w(j) −u
(j)
w

))

w(j+1) = PΞ

(

Dẑ(j+1) +u
(j)
w

)

,

u
(j+1)
w = u

(j)
w +Dẑ(j+1) −w(j+1), (2.10)

where γ, w and uw are the inner ADMM multiplier, auxiliary and dual variable, respectively.

The per-iteration complexity of this nested algorithm is again reduced to the cost of several

matrix-vector products, but the overall complexity of S-SPADE can still be significantly higher

than of the A-SPADE algorithm.

Finally, the computational complexity can be further reduced if the matrix-vector products

with D and A can be computed with less than quadratic cost. Some transforms that sup-

port both tight frame property and fast product computation are also favorable in our audio

(co)sparse context. Such well-known transforms are Discrete Fourier Transform (DFT), (Mod-

ified) Discrete Cosine Transform (M)DCT, (Modified) Discrete Sine Transform (M)DST and

Discrete Wavelet Transform (DWT), for instance.

2.3.2 Complex transforms

Precaution should be taken when complex transforms (such as DFT) are used for the dic-

tionary / the analysis operator. The reason is obvious - we are estimating real signals and

the algorithms should be aware of it. Formally, this requirement is embodied into Ξ, but the

numerical procedure for the least squares minimization needs to be accordingly adapted.

3Since the matrices Mr, M+
c and M-

c are restriction operators.

22



2.4. Experiments

Explicitly, in the synthesis case, we would solve the following optimization problem:

minimize
z

‖z− z̄(i) +u(i−1)‖2
2 s.t. x = Dz ∈Ξ, ℜ(D)ℑ(z) =−ℑ(D)ℜ(z), (2.11)

where ℜ(·) and ℑ(·) denote the real and the imaginary part of the argument, respectively.

In the analysis case, the optimization problem writes as follows:

minimize
x

‖ℜ(A)x−ℜ(z̄(i) +u(i−1))‖2
2 +‖ℑ(A)x−ℑ(z̄(i) +u(i−1))‖2

2 s.t. x ∈Ξ. (2.12)

Both problems can be straightforwardly solved by proximal splitting, and the tight frame

structure can still be exploited.

2.4 Experiments

The experiments are aimed to highlight differences in audio enhancement performance

between S-SPADE and A-SPADE, and implicitly, the sparse and cosparse data models. It is

noteworthy that in the formally equivalent setting (A = D−1), the two algorithms become

identical. As a sanity-check, we include this setting in the experiments. The relaxation

parameters are set to r = 1 and g = 1, and the stopping threshold is ε = 0.1. Additionally,

we include Consistent IHT and social sparsity declipping algorithms as representatives of

state-of-the-art. The former is known to be very computationally efficient, while the latter

should exhibit good declipping performance.

As mentioned before, this work is not aimed towards investigating the appropriateness of

various time-frequency transforms in the context of audio recovery, which is why we choose

traditional Short Time Fourier Transform (STFT) for all experiments. We use sliding square-

rooted Hamming window of size 1024 samples with 75% overlap. The redundancy level of the

involved frames (corresponding to per-chunk inverse DFT for the dictionary and forward DFT

for the analysis operator) is 1 (no redundancy), 2 and 4. The social sparsity declipper, based

on Gabor dictionary, requires batch processing of the whole signal. We adjusted the temporal

shift, the window and the number of frequency bins in accordance with previously mentioned

STFT settings 4.

2.4.1 Numerical performance

Here we investigate the numerical performance of the concerned algorithms. Audio examples

consist of 10 music excerpts taken from RWC database [115], with different tonal and vocal

content. The excerpts are of approximately similar duration (∼ 10s), and are sampled at 16kHz

with 16bit encoding. The inputs are generated by artificially clipping the audio excerpts at five

levels, ranging from severe (SDRy = 1dB) towards mild (SDRy = 10dB).

4We use the implementation kindly provided by the authors.
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Figure 2.2 – Declipping performance of the four algorithms in terms of the SDR improvement.

Signal recovery As a recovery performance measure in these experiments, we use a simple

difference between Signal-to-Distortion Ratios (SDR) of clipped (SDRy) and processed (SDRx̂)

signals:

SDRy = 20log10

‖
[M+

c
M-

c

]

x‖2

‖
[M+

c
M-

c

]

x−
[M+

c
M-

c

]

y‖2

, SDRx̂ = 20log10

‖
[M+

c
M-

c

]

x‖2

‖
[M+

c
M-

c

]

x−
[M+

c
M-

c

]

x̂‖2

.

Hence, only the samples corresponding to clipped indices are taken into account. Concerning

SPADE, this choice makes no difference, since the remainder of the estimate x̂ perfectly fits the

observations. However, it may favor the other two algorithms that do not share this feature.

According to the results presented in figures 2.2 and 2.3, the SPADE algorithms yield highest

improvement in SDR among the four considered approaches, mostly pronounced when

clipping is severe. As assumed, S-SPADE and A-SPADE achieve similar results in a non-

redundant setting, but when the overcomplete frames are considered, the synthesis version

performs somewhat better. Moreover, S-SPADE is the only algorithm whose performance

consistently improves with redundancy. Interestingly, the overall best results for the analysis

version are obtained for the twice-redundant frame, while the performance slightly drops

for the redundancy four. This is probably due to the absolute choice of the parameter ε, and

suggests that in the analysis setting, this value should be replaced by a relative threshold.
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Figure 2.3 – SDR improvement vs redundancy for all algorithms.

Processing time We decided not to present all processing time results, due to the way social

sparsity declipper is implemented: first, its stopping criterion is based on the iteration count,

and second, for its heavy computations, it uses a time-frequency toolbox whose backend is

coded in C programming language (and compiled), as opposed to the other algorithms which

are fully implemented in Matlabr. We may only remark that even this accelerated version

of the code was still somewhat slower than A-SPADE and Consistent IHT, which require (on

the average) 3min and 7min, respectively, to declip the audio in the non-redundant case,

compared to about 10min for the social sparsity algorithm in the same setting.

However, we are interested in the computational costs of A-SPADE and S-SPADE, as these two

algorithms are our proxies for the analysis and synthesis data models. Table 2.1 shows a huge

difference in processing time between the two algorithms, with S-SPADE being extremely

costly, due to the nested iterative minimization procedure (2.10). This is not very surprising,

since the synthesis version usually needs to perform orders of magnitude more matrix-vector

multiplications (in total) than the analysis one. Although there might be a more resourceful

way to implement the costly S-SPADE projection step, it cannot be as efficient as the closed

form solution implemented in A-SPADE. On the other hand, the computational cost of A-

SPADE grows faster than the cost of S-SPADE, with respect to the redundancy parameter

(although their absolute difference is still highly in favor of the analysis algorithm). This might

be another indicator that A-SPADE should take into account the redundancy factor, in order

to avoid wasteful iterations and, possibly, improve signal recovery performance.

Redundancy Data model 1dB 3dB 5dB 7dB 10dB

1
Analysis 1 3 4 4 5
Synthesis 265 471 641 746 783

2
Analysis 5 8 9 11 11
Synthesis 328 539 698 796 864

4
Analysis 16 26 32 35 37
Synthesis 502 786 961 1067 1125

Table 2.1 – Processing times in minutes for the A-SPADE (analysis) and S-SPADE (synthesis) algorithms.
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Figure 2.4 – Perceptual evaluation results based on the MUSHRA test method.

2.4.2 Perceptual evaluation

In this series of experiments we are interested in the perceptual quality performance, evaluated

by human listeners. For this purpose, we use the MUltiple Stimuli with Hidden Reference

and Anchor (MUSHRA) evaluation framework with a web-based interface (i.e. BeaqleJS [149]).

As noted in [247], MUSHRA provides relevant results when the reference (original) audio

can be reliably identified from the processed (in our case, declipped) signals. Therefore, we

restrict the evaluation to severe clipping only (SDRy = 3dB), and choose, for each algorithm,

the setting in which it achieves highest numerical recovery performance (i.e. 4-redundant for

S-SPADE, 2-redundant for A-SPADE and social sparsity, and non-redundant for Consistent

IHT). In total, the evaluation group consist of 14 expert and non-expert listeners, who were

asked to grade the quality of an audio track on a scale from 0 (“bad”) to 100 (“excellent”). Each

participant evaluates five audio tracks, chosen randomly from the set of ten tracks we used for

numerical evaluation. In addition to the output of each algorithm, included are the hidden

reference and clipped tracks, as well as the audio processed by a professional audio restoration

software.

The evaluation results are presented in figure 2.4. The social sparsity declipper obtains the

highest median score, followed by S -SPADE, while A-SPADE and Consistent IHT share the

third place. The score difference among these four algorithms is small, i.e. about 10 between

the first and the fourth in ranking. On the other hand, the commercial software’s output is

graded worse than the clipped signal itself. The good listening test performance of the social

sparsity algorithm verifies that accounting for the refined structure in the time-frequency

plane improves perceptual quality, thus serving as a good prior model for audio signals.
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2.5 Summary and contributions

This chapter was about the declipping inverse problem, addressed by the sparse synthesis and

sparse analysis regularizations. We presented a novel and flexible declipping algorithm, that

can easily accommodate sparse (S-SPADE) or cosparse (A-SPADE) prior, and as such has been

used to compare the recovery performance of the two data models.

The empirical results are slightly in favor of the sparse synthesis data model. However, the

analysis version does not fall far behind, which makes it attractive for practical applications.

Indeed, due to the natural way of imposing clipping consistency constraints, it can be im-

plemented in an extremely efficient way, even allowing for real-time signal processing. We

envision that the performance of A-SPADE can be enhanced by more appropriate choice of

stopping criteria and parameterization. Numerical benchmark and perceptual evaluation

of real audio verify that the two versions perform competitively against considered state-of-

the-art algorithms in the field, but may be further improved by incorporating structured (e.g.

social) (co)sparsity priors.

In the next chapter we will discuss a class of inverse problems inspired and dictated by physics,

where the synthesis and analysis model become nominally equivalent. Despite the model

equivalence, as we have seen in the non-redundant setting for the declipping inverse problem,

computational complexity of the two sparse and cosparse approaches can be very different.

We will discuss this algorithmic aspect in greater detail in the following material.
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3 Physics-driven inverse problems

We started this thesis by introducing inverse problems illustrated by some physical examples.

Indeed, this type of inverse problems is of a very large scope and very often encountered

in practice. At the same time, many of these problems are quite challenging due to their

ill-posed nature. In a real-world setting, this behavior is closely linked with the fact that there

are physical and practical limitations in terms of the amount of measurements we can take.

In other words, we are capable of obtaining only discrete observations. On the other hand,

physical phenomena are essentially continuous and inherently infinite-dimensional. In turn,

the measurement operators will not fulfill injectivity and/or stability criterions necessary to

ensure well-posedness. Therefore, if there is any hope of finding solutions, such problems

call for regularization. Fortunately, there is usually a side information that may be used to

devise a correctness class. This chapter concerns certain inverse problems arising in physical

context, for which the correctness class can be interpreted in terms of a set of maximally

sparse or cosparse solutions (possibly with additional constraints). Since these problems are

directly related to physical laws and phenomena, we term this class physics-driven inverse

problems. The nominally equivalent sparse analysis and sparse synthesis regularizations

applied to problems of this class are encompassed in the physics-driven (co)sparse, or shorter,

the physics-driven framework.

Physics-driven inverse problems should be recognized as an instance of array signal processing

problems, which we recall in the first section, along with the main contributions of this chapter.

The second section is a brief introduction to linear partial differential equations and the

associated Green’s functions. In the same section we turn our attention to Poisson’s equation,

which is essential for the EEG inverse problem, but also lays foundation to more involved

equations. One of these is the wave equation, which is discussed in the remainder of the

section. In the third section of the chapter, we draw connections between such physical

models and the sparse analysis/synthesis regularizations. The fourth section is about a

practical method to solve the optimization problems arising from these regularizations. The

final, fifth section is dedicated to discussion on computational complexities of the analysis

and synthesis regularizations in the physics-driven context.
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3.1 Array signal processing

Array signal processing is concerned with treatment of (usually electromagnetic or acoustic)

data acquired from more than one spatially distributed sensors. It has found numerous uses

in radar applications, radio astronomy, navigation, wireless communications, biomedical

and sonar signal processing, to name a few. The advantages of this approach over single

channel signal processing come from the natural observation that the wave-like physical

phenomena exist in up to three spatial and one temporal dimension. When only one fixed

sensor is available, we are “sensing” only the temporal evolution of a signal at a given sensor

location. As a consequence, in order to infer some information from the signal, one usually

needs to impose stronger prior assumptions on the signal model. Contrary, the sensor array

measurements also allow for observing the spatial character of the signal, which may help in

building more accurate signal models.

However, this additional data comes at a cost - first in terms of the physical equipment (a

network of sensors - an “array”), but also in terms of the complexity of applied algorithms.

One obvious cause of complexity is the increased amount of data that has to be processed, but

this is not the only reason. Extending standard single-channel methods to signal processing

on arrays is not straightforward, due to the spatial sampling constraints. Indeed, sampling in

spatial domain is much cruder than in the temporal domain, and standard signal processing

theory warns us that naive treatment of this data leads to spatial aliasing. These factors impose

difficulties in designing algorithms for array signal processing, but the prize is given as the

potential to address inverse problems which are extremely challenging, if not impossible, to

solve using only one sensor.

If we adopt Occam’s reasoning, and assume that Nature indeed prefers economic descriptions,

the low-complexity regularization may prevent the spatial aliasing phenomenon. Inspired by

this principle, we provide an intuitive framework that puts under the same umbrella certain

physical problems ruled by linear partial differential equations and the sparse regularization

concept.

3.1.1 Contributions

This chapter is largely based on the framework paper [139], which aims at unifying physics-

driven inverse problems regularized by the sparse and cosparse data models. More than

that, we highlight that the two regularizations are equivalent in the physics-driven case, but

that the optimization problems generated by these two are different from computational

point of view. Indeed, provided that the continuous domain problems are discretized using

locally supported methods (such as finite differences or finite element methods), we will

see that the sparse analysis regularization is a preferable choice in practice. Additionally,

we introduce Weighted SDMM, a simple ADMM-based optimization algorithm for solving

convex-regularized physics-driven inverse problems.
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3.2. Linear partial differential equations and the Green’s functions

3.2 Linear partial differential equations and the Green’s functions

Signals of our interest are physical quantities obeying certain known physical laws. As men-

tioned, these represent a huge class: for example, sound propagates according to the acoustic

wave equation, Magnetic Resonance Imaging (MRI) is based on Bloch’s equations, Maxwell’s

equations are at the foundation of wireless communications etc. We limit our scope to sig-

nals which can be modeled by linear Partial Differential Equations (PDEs). In the context of

ill-posed inverse problems, the knowledge that a signal satisfies a linear PDE is a strong prior

information that could be useful to perform regularization.

Linear PDEs take the following form:

∑

|d|≤ζ
ad(ω)Ddx(ω) = z(ω), ω ∈Ω (3.1)

where ad, x and z are functionals of the parameter ω (e.g., space and/or time) in the domain

Ω, and d is the multi-index variable with |d| = d1 + . . .+dl, and di ∈N0. Note that, in general,

Ω is not a vector space, but rather a differentiable manifold - a topological space that only

locally behaves as a Euclidean space. Therefore, the domain variable ω is simply a tuple of

coordinates in Ω. However, for our purposes, even the domain Ω is simplified to a set of a

vector space.

For a given d = (d1, . . . ,dl), Dkx(ω) denotes the dth partial differential of x with respect to ω,

defined as:

Ddx(ω) =
∂|k|x

∂ω
d1
1
∂ω

d2
2

. . .∂ωdl
l

.

3.2.1 Boundary conditions

In order to satisfy Hadamard’s well-posedness requirements, a PDE is accompanied with

appropriate boundary and/or initial conditions. These depend on the type of PDE, and the

physical problem we aim at modeling. Boundary conditions dictate how should the solution

behave at the boundaries ∂Ω of the domain. The most common ones are:

Dirichlet : assigns a value at the boundary, i.e. ∀ω ∈ ∂Ω : x(ω) = bD (ω), where bD (ω) is

known.

Neumann : assigns a flux at the boundary, i.e. ∀ω ∈ ∂Ω : ∇x(ω) ·n(ω) = bN (ω), where bN (ω)

is known and n is an outward normal vector to the boundary ∂Ω.

Mixed : a subset of the boundary ∂Ω is modeled by Dirichlet, and the complementary

subset is modeled by Neumann condition.

Robin : assigns a linear combination of Dirichlet and Neumann conditions at each
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point of the boundary, i.e. ∀ω ∈ ∂Ω : b1(ω)x(ω)+b2(ω)∇x(ω) ·n(ω) = bR (ω), where

bR (ω),b1(ω) and b2(ω) are all known.

Cauchy : imposes both Dirichlet and Neumann data at the boundary.

Periodic : for some geometries, these conditions enforce x(ωi) = x(ωj), where ωi ∈ ∂Ωi,

ωj ∈ ∂Ωj, such that
{

∂Ωi,∂Ωj

}

⊆ ∂Ω.

A partial differential equation with associated boundary conditions is commonly known as

boundary value problem. It is noteworthy that for an arbitrary combination of ak, z and

boundary conditions, the solution x of (3.1) is not guaranteed to exist, or to be unique (these

questions are still subject of active research in the field of partial differential equations). Even

if a unique solution exists, it may not be possible to derive it analytically.

However, if PDE is modeling a time-dependent quantity x(ω) = x(r, t), on the product domain

Ω= Γ×[0,τ], the Cauchy-Kovalevskaya theorem [99] states that the initial conditions suffice to

ensure uniqueness of the solution1. The initial conditions can be seen as one-sided (at t= 0)

Dirichlet conditions for the first |k|−1 derivatives of a PDE:

∂kt x(r,0) = ikt (r),∀(r ∈ r,k≤ |k|−1). (3.2)

This is called an inital value problem. In the same way, if both boundary and initial conditions

are prescribed, we have an initial boundary value problem. Hereafter, we will use the fact that

t is just another domain variable, and informally address initial (boundary) value problems as

a subtype of boundary value problems.

3.2.2 Operator form

Differentiation is a linear operation, therefore we can represent (3.1) compactly in the linear

operator form:

Lx = z, (3.3)

where L =
∑

|k|≤ζ ak(ω)Dk·, x := x(ω) and z := z(ω).

Boundary conditions we mentioned earlier are also linear with respect to x, therefore we can

equip L with appropriate boundary conditions B x∂Ω = z∂Ω such that the newly generated

operator A := (L,B) defines a well-posed problem:

Ax = z ⇔ Lx = z, B x∂Ω = z∂Ω, (3.4)

where x and z on the left side, by abuse of notation2, also encompass x∂Ω and z∂Ω.

1Valid when all ak(ω) are real analytic functions [160].
2We will occasionally use x and z defined only on the interior of the domain, which is always indicated in the

text.
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3.2. Linear partial differential equations and the Green’s functions

Now, we restrict our attention to self-adjoint operators A. This means that, for any u, v ∈
dom(A), the following holds:

〈Au, v〉 = 〈u, Av〉, (3.5)

i.e. the adjoint operator A∗ is identical to the operator A. Bearing in mind that A incorporates

boundary conditions, the adjoint A∗ is equal to A if and only if their domains and boundary

conditions are the same. If the two operators differ only in boundary terms, the operator A

is called formally self adjoint. In this thesis we consider only self-adjoint operators, however,

generalization towards formally self-adjoint operators is possible, provided that we have

sufficient boundary information.

An “inverse” operation to differentiation is integration. Assuming that there exists a function

g (ω,w) such that the following holds:

x(ω) =
∫

Ω

z(w)g (ω,w)dw+boundary terms 3, (3.6)

we have the integral representation of the solution x(ω) of (3.4). The function g (ω,w) is

known as the Green’s function or the fundamental solution of a PDE. The Green’s functions are

constructed by solving the following boundary value problem:

Lg (ω,w) = δ(ω−w), w ∈Ω\∂Ω, (3.7)

B g (ω,w) = 0, w ∈ ∂Ω.

Here δ(·) denotes Dirac delta distribution:

δ(ω0) =







∞ when ω=ω0,

0 otherwise.
(3.8)

In signal processing language, the Green’s functions correspond to impulse responses of a lin-

ear operator L with imposed homogeneous boundary conditions. There are some ambiguities

in the literature concerning the terminology: in some cases, boundary/initial conditions are

omitted, hence g (ω) are fundamental solutions of a linear PDE (3.1) alone, and therefore not

unique. In this work, we consider “the” fundamental solutions, which are uniquely defined by

the problem (3.7).

Since integration is again a linear operation, we compactly represent the integral (3.6) in

operator form, as follows:

x = Dz. (3.9)

3The “boundary terms” depend on the particular problem and for self-adjoint A they vanish.
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Provided that A = (L,B) is self-adjoint, the operators D and A can be seen as the inverses of

each other. This is due to:

x(ω) =
∫

Ω

x(w)δ(ω−w)dw =
∫

Ω

x(w)Ag (ω,w)dw =
∫

Ω

Ax(w)g (ω,w)dw =
∫

Ω

z(w)g (ω,w)dw, (3.10)

where the third equality is the consequence of self-adjointness of A. Extending this approach

to linear operators which are formally self-adjoint is possible by accounting for the boundary

terms. In the case where the operator is not even formally self-adjoint, defining the integral

representation may be more difficult.

In the following two subsections we give a brief introduction to two PDEs of our interest:

Poisson’s and the linear wave equation.

3.2.3 Poisson’s equation

Poisson’s equation is one of the most common partial differential equations in physics and

engineering. It is widely used in electrostatics, mechanics and thermodynamics, where it

models steady-state phenomena. For any ω ∈Ω\∂Ω it is defined as:

△x(ω) = z(ω), (3.11)

where L =△ is known as the Laplace operator (when defined on a Riemannian manifold4, it is

known as the Laplace-Beltrami operator). For simplicity, we assume that Ω⊆R
d, dim(Ω) = d,

which yields:

△x(ω) =△ωx =∇·∇x =
∂2x

∂ω2
1

+
∂2x

∂ω2
2

+ . . .+
∂2x

∂ω2
d

, (3.12)

i.e. Laplace operator is the divergence of the gradient acting on x.

The Laplace operator is formally self-adjoint, and when accompanied with appropriate bound-

ary conditions B it becomes a “fully” self-adjoint operator (yielding the operator A). Particu-

larly, when homogeneous Dirichlet, Neumann or mixed boundary conditions are imposed,

the operator A is self-adjoint. This is easily observed by exploiting Green’s second identity:

∫

Ω

(u△v − v △u)dω=
∫

∂Ω
(u∇v − v∇u) ·ndω (3.13)

where ω is an integration variable over ∂Ω and n is the outward normal vector to the boundary

∂Ω. For those three boundary conditions, the right hand side vanishes, and the operator A is

self-adjoint. Hence, if the solution of (3.7) is available, we can “invert” Poisson’s equation. An

4A Riemannian manifold is a differentiable manifold whose tangent spaces are endowed with an inner product
[158].
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3.2. Linear partial differential equations and the Green’s functions

explicit solution of the Green’s function for Poisson’s equation is available in certain settings,

as we will see later.

For z(ω) = 0, the expression (3.11) is known as Laplace’s equation. Therefore, its solutions

constitute the null space of Poisson’s equation - these are trivial only if certain boundary

conditions are imposed. Uniqueness results for homogeneous Dirichlet, Neumann and mixed

boundary conditions are well-known and easy to derive. Assume, for instance, that x1 and x2

are both solving the boundary value problem induced by (3.11) and B . Then, their difference

x̃ = x1 −x2 is a solution of Laplace’s equation:

△x̃ =△ (x1 −x2) = z − z = 0. (3.14)

Green’s first identity states:

∫

Ω

(x̃△x̃ +∇x̃ ·∇x̃)dω=
∫

∂Ω
x̃∇x̃ ·ndω.

Hence, if either of the three boundary conditions is present, the right side of this equality is

zero. Moreover, the first term on the left side vanishes due to (3.14), meaning that ∇x̃ = 0, i.e.

x1 −x2 = const everywhere in Ω. In the homogeneous Dirichlet (and mixed boundary) setting,

this implies x1 = x2. In the “pure” Neumann case, the solution is unique up to an additive

constant.

3.2.4 The wave equation

The wave equation is another fundamental linear partial differential equation, arising in

fields such as electromagnetics, fluid dynamics and relativity theory, where it is used to

model certain dynamic phenomena. Here, we define it on the spacetime product space

ω := (r, t) ∈Ω= Γ× (t1, t2) (possibly, t1 =−∞, t2 =∞), as follows:

�ωx =△rx(r, t)−
1

c(r, t)2

∂2x(r, t)

∂t2
= z(r, t), (3.15)

where c(r, t) denotes the speed of propagation. The domain Ω is generally represented by a

so-called Lorentzian manifold5. Again, for simplicity, we assume more restricted space, where

Ω= Γ×R, Γ⊆R
d, dim(Γ) = d (thus, dim(Ω) = d+1). The operator L =� is known as D’Alembert

operator, and is also formally self-adjoint.

Since this is an initial value problem, it is necessary to impose appropriate Cauchy conditions

to ensure uniqueness:

x(r, t1) = i (r),
∂x(r, t1)

∂t
= it(r). (3.16)

5A generalization of Riemannian manifold, for which the metric tensor is not positive definite, since the
temporal and spatial dimensions have opposite signs [158]

35



Chapter 3. Physics-driven inverse problems

Additionally, one may have boundary conditions B x(r, t), for r ∈ ∂r , which are compatible

with the initial ones at (r, t1). In our case, initial and boundary conditions are homogeneous:

i (r) = it(r) = B x(r, t) = 0.

For several interesting homogeneous initial and boundary conditions, the encompassing

operator A is self-adjoint. To illustrate this, we simplify matters by assuming that c(r,t) = c > 0

is constant throughout the domain Ω. By applying the change of variables ω̃ =
(

r, it
c

)

∈ Ω̃,

where i2 =−1, we can identify �ω with △ω̃. Then, we can again use second Green’s identity

(3.13) which gives:

∫

∂Ω̃
(u∇v − v∇u) ·ndω̃= lim

t→t1

∫

∂r

(

u

(

r,
it

c

)

∇v

(

r,
it

c

)

− v

(

r,
it

c

)

∇u

(

r,
it

c

))

·ndr

+ lim
t→t2

∫

∂r

(

u

(

r,
it

c

)

∇v

(

r,
it

c

)

− v

(

r,
it

c

)

∇u

(

r,
it

c

))

·ndr. (3.17)

Again, with the homogeneous Dirichlet, Neumann and mixed boundary conditions, the

expression is equal to zero and A is self-adjoint.

In addition, we will sometimes use the so-called Mur’s absorbing boundary condition, which is

stated as follows:

∂x

∂t
+ cξ∇x ·n = 0, (3.18)

where ξ denotes the “specific impedance” coefficient. For large cξ, this condition approxi-

mates homogeneous Neumann boundary condition, whereas for the small values it yields

x(r, t) ≈ x(r, t+ t′). Since the initial conditions are also homogeneous, this implies that the

equation (3.17) is again approximately equal to zero. Hence, in all these cases there exist an

inverse integral operator to (3.15), defined by (3.7).

An important feature of the wave equation is finite speed of propagation, embodied in the

coefficient c(r, t). An illustrative example is the so-called Cauchy problem, for which the initial

data is prescribed by (3.16), Γ= R
d and z = 0. The explicit solutions are well-known for the

case where c(r, t) = c is constant. For instance, when d= 3, the solution is

x(r, t) =
1

4π

∂

∂t

(

t
∫

‖µ‖2=1
i (r+ctµ)dσ(µ)

)

+
t

4π

∫

‖µ‖2=1
it(r+ctµ)dσ(µ), (3.19)

where σ(·) is a spherical measure6. This shows that the information travels from the initial

conditions to x(r, t) at the speed c. Moreover, the solution only depends on the data on the

sphere of radius ct, which is known as Huygens principle. Intuitively, information propagates

as a sharp wave front, leaving no trace behind. This holds true for any odd spatial dimension d

- for even dimensions, the information still propagates at speed c, but the solution will depend

6Informally, spherical measure can be seen as the ratio between the area of the part of the sphere and the total
area of the sphere.
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on the “ball” of radius ct (the wave front has a “tail” 7).

Finally, if solutions of the wave equation are harmonic, i.e. they can be written in the form

x(r, t) = ℜ(xr(r)e−iωt), where ω denotes the angular frequency, the wave equation can be

reduced to time-independent form:

△xr(r)−
ω2

c2
xr(r) = zr, (3.20)

also known as the Helmholtz equation. The Helmholtz equation can be easily derived by

applying Fourier transform to the wave equation (hence, the time-domain solution is obtained

by applying the inverse Fourier transform to the solution of the Helmholtz equation). In this

work, however, we consider only the standard linear wave equation in time, given by (3.15).

3.3 Regularization of physics-driven inverse problems

Let us now formally define a physics-driven inverse problem. Assume that we are measuring a

physical quantity x(ω) only in a part of its domain Ω. We know that x (approximately) satisfies

a partial differential equation (3.4) with prescribed boundary conditions, however we do not

know the forcing term z. Moreover, x has an integral representation (3.6) provided by the

associated Green’s functions (3.7) (assuming that we have somehow computed the Green’s

functions already). Our goal is to recover, or estimate x on the entire domain Ω such that the

solution complies with the measurements. Likewise, we may recover, or estimate, the forcing

term z and evaluate x using (3.6). Without additional information, this abstract problem is,

generally, severely ill-posed. This is simply a consequence of the fact that the number of

degrees of freedom in the problem is too large (theoretically, infinite).

The crucial fact that we aim at exploiting is that the z(ω)-term is usually sparse in some

physical dimension(s), i.e. Ax(ω) is mostly equal to zero within Ω. The subdomain Ω ⊂Ω

for which z is non-zero is usually a source, sink or some other type of singularity. In other

words the volume occupied by singularities is considerably smaller than the overall volume of

the domain. This can be interpreted as continuous-domain sparsity of z(ω) or cosparsity of

x(ω). Furthermore, the integral operator D in (3.9) is reminiscent of the synthesis dictionary,

while the differential operator A in (3.4) resembles the analysis operator. Thereby we term this

concept a physics-driven regularization.

The linear observation operator M is usually dictated by the measuring device, hence only

partially under our control. For the physics-driven problems we consider here, the instruments

directly measure the physical quantity x, i.e. M x = y , where the functional y is a realization of

the random variable Y, defined as follows:

7Actually, Huygens principle approximately holds in even dimensions, due to different integral kernel.
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Y(ω) =







x(ω)+E for ω ∈Υ⊂Ω\Ω,

0 otherwise.

Here, E represents a random variable, modeling the measurement error. The error is due to, e.g.

lowpass filtering, aliasing and the instrumentation noise. The set Υ is assumed to be known

beforehand (for instance, set of electrode positions in EEG).

Since the aim is to exploit low-complexity regularizations, which are commonly defined in a

discrete setting, we need to discretize all the involved quantities. There are many discretization

techniques to achieve this, with different advantages and drawbacks (in appendices B.1 and

B.2 we provide two examples of discretization using the Finite Difference Method (FDM)). First,

the continuous domain Ω is replaced by a set of discrete coordinates of dimension n (for the

sake of simplicity, we also denote the discretized domain by Ω). The discretized differential

and integral operators, A and D, are represented in matrix forms as A ∈ R
n×n and D ∈ R

n×n,

respectively. Regardless of the employed discretization method, we expect that D ≈ A−1. This

should be no surprise, since the Green’s functions embodied in D are obtained by discretizing

the impulse responses of the operator A. The discrete observation data y → y ∈R
m is obtained

by downsampling a discretized signal x → x ∈R
n by means of a row-reduced identity matrix

M ∈R
m×n. An additive noise model is still assumed. Likewise, the right hand side z of (3.4) is

discretized into z ∈R
n, and Ax = z (analogously, Dz = x) holds.

Cosparse regularization (implicitly encouraging homogeneous boundary/initial conditions)

reads as follows:

minimize
x

‖Ax‖0 + fd (Mx−y). (3.21)

Here, fd (·) denotes a measure of data-fidelity in the discrete context (e.g. the sum of square

differences). The goal of analogous sparse regularization is to recover the discretized right

hand side z by solving the optimization problem

minimize
z

‖z‖0 + fd (MDz−y), (3.22)

where fd (·) is the same penalty functional as in (3.21).

As mentioned in Chapter 1, subsection 1.2.2, minimization of the ℓ0 “norm” is intractable.

Because of that, we are relaxing the two problems noted above, in the sense that ℓ0 is replaced

by a convex sparsity promoting penalty fr (such as the ℓ1 norm). The choice of fd is also

problem-dependent - for example, it can be the characteristic function of an affine set:

χ{v|Mv=y} (v) =







0, if Mv = y,

+∞, otherwise.
(3.23)
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Note that, due to simple structure of the matrix M, one could easily build a (sparse) null space

basis null(M) = I−MTM, i.e. its columns are the “missing” rows of the row-reduced identity

matrix M. Thus, the null space method, mentioned in section A.3, can be exploited.

In many settings, properties of a part of the region Ω1 ⊂ {Ω \Ω} are known beforehand (e.g.

Ω1 = ∂Ω with homogeneous boundary conditions). Consequently, the rows of the discretized

analysis operator A can be split into AΩ1 and AΩ
c
1
. Taking this into account one can envision

a separable problem of the form fr (AΩ1 x)+ fc (AΩ
c
1
x). The fc (·) penalty can be, for instance,

another characteristic function χAΩ
c
1

x=0. Accordingly, in the synthesis context, this leads to an

equivalent problem of the form fr (zΩ1 )+ fc (zΩc
1
), where zΩ1 and zΩc

1
denote the corresponding

subvectors of z.

Other variants can be envisioned to encode other types of prior knowledge at different levels

of precision. In the same manner, the framework can be extended to account for multiple

constraints, by taking fc to be the sum of convex functionals fc =
∑f

i=1 fci . However, we assume

that there exist a feasible point x̂ (accordingly, ẑ), such that all imposed constraints are satisfied.

Once equipped with penalties that reflect available prior knowledge, the optimization prob-

lems corresponding to sparse analysis and sparse synthesis regularization read as:

minimize
x

fr (Ax)+ fd (Mx−y)+ fc (Cx−c). (3.24)

minimize
z

fr (z)+ fd (MDz−y)+ fc (CDz−c), (3.25)

Here fr is an objective, while fd and fc are the (extended-valued8) penalty functionals for the

measurements and additional problem constraints, respectively. Since Ax = z, and D = A−1,

the two problems are nominally equivalent, and one can straightforwardly use the solution

of one of them to recover the solution of another. Finally, since all penalty functionals are

convex, and the feasible set is assumed non-empty, it is theoretically possible to find global

minimizers of the two optimization problems.

3.4 SDMM for physics-driven (co)sparse inverse problems

Now we discuss one way to practically address convex optimization problems (3.24) and (3.25)

arising from the physics-driven framework. Namely, we will apply the modified SDMM [67]

algorithm, introduced in section A.2 of appendix A, to these problems. SDMM is a first-order

optimization algorithm for solving convex problems of the form

minimize
x,zi

f∑

i=1
fi(zi) subject to Hix−hi = zi, (3.26)

by iterating the update steps given in (A.11).

8Allowed to take +∞ values to encode hard constraints.
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This formulation makes the algorithm suitable for solving the regularized physics-driven

problems (3.24) and (3.25). For the analysis-regularized problem (3.24), we set

• H1 = A (physics: encoding PDE),

• H2 = M (measurement),

• H3 = C (additional constraints).

For the synthesis version (3.25), the problem is parametrized by

• H1 = I (the estimate is sparse9),

• H2 = MD (physics and measurement: subsampled Green’s function basis),

• H3 = CD (additional constraints).

In both cases we have h1 = 0, h2 = y and h3 = c, and the functionals fi are replaced by fr, fd

and fc. The matrix C usually encodes constraints in diffuse or sparse domain (in the latter

case the product CD would be a row-reduced identity matrix).

3.4.1 Weighted SDMM

The functionals fi encode both an objective and constraints. However, the least squares step

treats all zi equally, meaning that x is not guaranteed to satisfy the constraints. Moreover, in

practice, x is often far from being feasible. To alleviate this problem, an intuitive solution is

to set different weights to different blocks
[

Hix+u(k)
i

−z(k+1)
i

]

of the sum of squares in (A.11).

This weighting can be seen as choosing different SDMM multipliers ρi for different functionals

fi(·):

z(k+1)
i

= prox 1
ρi

fi

(

Hix
(k) −hi+u(k)

i

)

, (3.27)

x(k+1) = argmin
x

f∑

i=1

ρi

2
‖Hix−hi+u(k)

i
−z(k+1)

i
‖2

2, (3.28)

u(k+1)
i

= u(k)
i

+Hix
(k+1) −hi−z(k+1)

i
. (3.29)

To derive this, consider the following splitting (with ρ = 1):

minimize
x,zi

f∑

i=1
fi

(
1

p
ρi

zi

)

, (3.30)

subject to
p
ρi (Hix−hi) = zi.

9I denotes the identity matrix.
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3.4. SDMM for physics-driven (co)sparse inverse problems

Then, the SDMM iterates are defined as follows:

z(k+1)
i

= argmin
zi

(

fi

(
1

p
ρi

zi

)

+
1

2
‖pρi

(

Hix
(k) −hi

)

−zi+u(k)
i
‖2

2

)

,

x(k+1) = argmin
x

f∑

i=1

1

2
‖pρi (Hix−hi)+u(k)

i
−z(k+1)

i
‖2

2, (3.31)

u(k+1)
i

= u(k)
i

+p
ρi

(

Hix
(k+1) −hi

)

−z(k+1)
i

.

By abuse of notation zi := 1p
ρi

zi, z(k)
i

:= 1p
ρi

z(k)
i

and u(k)
i

:= 1p
ρi

u(k)
i

, we arrive at the expressions

(3.27) - (3.29).

Empirically, to quickly attain a feasible point and preserve convergence speed, it seems

appropriate to adjust the multipliers ρ1, ρ2 and ρ3 relative to the penalty parameters. Our

strategy is to first fix the value ρ1 = ρ, and then set i) ρ2 = max(ρ,ρ/ε) and ρ3 = max(ρ,ρ/σ)

if f2 and f3 are the indicator functions bounding a norm of their arguments by ε and σ,

respectively; or ii) ρ2 = max(ρ,ρ
p
ε) and ρ3 = max(ρ,ρ

p
σ) if f2 and f3 are norm-squared

penalties weighted by ε and σ, respectively. Other types of penalties are allowed, but may

require different weighting heuristics.

3.4.2 The linear least squares update

For problems of modest scale, the least squares minimization step in (3.28) can (and should)

be performed exactly, by means of a direct method, i.e. matrix inversion. For computational

efficiency, this requires relying on matrix factorization such as the Cholesky decomposition.

An important observation is that Cholesky decomposition is band-preserving, meaning that,

if all Hi are banded, the Cholesky factor of the coefficient matrix will be also banded [29,

Theorem 1.5.1]. Further, a desirable property is to obtain Cholesky factors essentially as sparse

as the factorized matrix. Many efficient algorithms heuristically achieve this goal (such as

the sparse Cholesky decomposition [63] used in our computations). However, the number

of non-zero elements of the factorized matrix is a lower bound on the number of non-zero

elements of its Cholesky decomposition [74, Theorem 4.2], and only sparse matrices would

benefit from this factorization.

For large scale problems one needs to resort to iterative algorithms and approximate the

solution of (3.28). An important advantage of ADMM is that it ensures convergence even

with inexact computations of intermediate steps, as long as the accumulated error is finite

[90]. Moreover, these algorithms can be usually initialized (warm-started) using the estimate

from the previous ADMM iteration, which can have a huge influence on the overall speed

of convergence. The downside of the weighted SDMM is that conditioning of the weighted

matrix H is usually worse than in the unweighted setting, which is why applying the standard

conjugate gradient method to the normal equations HTHx = HT
(

z(k+1) +h−u(k)
)

should be

avoided. Instead, we suggest using the Least Squares Minimal Residual (LSMR) method [104],

41



Chapter 3. Physics-driven inverse problems

which is less sensitive to matrix conditioning. Assuming no a priori knowledge on the structure

of H, one may use diagonal (right) preconditioner (recommended by the authors), whose

elements are reciprocal to the ℓ2-norms of the columns of H. Even though there exist more

efficient preconditioners (such as incomplete Cholesky / LU factorizations), two advantages

are provided by this diagonal preconditioner: i), there are no issues with stability, as with the

incomplete preconditioners, and ii), it can be efficiently computed in the function handle

implementation of the synthesis problem (for which only MD exists in the matrix form).

3.5 Computational complexity

Having Ax = z, it can be easily shown that the above-described SDMM algorithm yields numer-

ically identical solutions for the synthesis and the analysis problems, as long as all evaluations

in (3.27), (3.28) and (3.29) are exact (this corresponds to the usage of direct methods, de-

scribed in the previous subsection). However, as detailed below, the overall cost of the analysis

minimization is driven by that of the multiplication with A and its transpose, which is O(n)

thanks to the sparsity of the analysis operator A (or O(bn), where b is the band of A, for direct

computation of (3.28)). This is in stark contrast with synthesis minimization, whose cost is

dominated by much heavier O(mn) multiplications with the dense matrix MD and its trans-

pose (analogously, O(n2) if the direct methods are used). The density of the dictionary D is not

surprising - it stems from the fact that the physical quantity modeled by x is spreading in the

domain of interest (otherwise, we would not be able to obtain remote measurements). As a

result, and as will be confirmed experimentally in chapters 4 and 6, the analysis minimization

is computationally much more efficient.

3.5.1 Initialization costs

Generating the analysis operator A ∈R
n×n in matrix form is problem dependent, but usually

of moderate cost. The cost of building the transfer matrix M is negligible, since it often

corresponds to simple acquisition models (e.g. the row-reduced identity). To efficiently

compute the reduced dictionary G = MD ∈ R
m×n, which satisfies A⊤G⊤ = M⊤, one needs to

solve m linear systems ATgj = mj of order n, where gTj and mT
j ∈R

n are the rows of G and M,

respectively. Thus, it adds at least10 O(mn) operations on the price of computing A and M,

unless an analytical expression of Green’s functions is available.

If the direct method is used to solve the linear least squares step, classical algebraic manipula-

tions show that we first need to compute the coefficient matrix HA = ρ1ATA+ρ2MTM, in the

analysis case, or HS = ρ1I+ρ2(MD)TMD, in the synthesis case. Due to the sparse structure of A

and M, the former can be computed in O(n), while the latter requires O(n2m2) operations. The

Cholesky factorization requires O(n3) operations in general, but this is significantly reduced

for sparse matrices [74]. However, it is known [263] that the minimum fill-in problem –finding

10Assuming the favorable scenario where the linear system can be solved in O(n) operations.
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the best sparsity-preserving permutation– is an NP-complete problem, thus all available al-

gorithms are (usually very efficient) heuristics. Therefore, it is very difficult to derive tight

bounds on initialization complexity.

3.5.2 Iteration costs

Each iteration of SDMM involves three types of operations.

Component-wise scalar operations: evaluation of proximal operators and update of scaled

Lagrangian multipliers ui given Hi x(k) and Hi x(k+1). These have O(n) complexity with respect

to the problem size n, since they involve only component-wise thresholding and vector norm

computations (see section A.3).

Matrix-vector products: computation of Hi x(j). For analysis, the matrices H1 and H2 are

both sparse with O(n) nonzero entries, hence these matrix-vector products also have an O(n)

complexity. This is also the case for H3 in the considered scenarios. In contrast, for synthesis,

the matrix H2 = MD is dense, reflecting the discretized Green’s functions. The matrix-vector

product with this matrix is of O(mn), and it dominates the cost of all other matrix-vector

products.

Least squares: the solution of problem (3.28). When an iterative solver is used to address

the least squares step, we assume that a properly preconditioned and warm-started iterative

method would terminate to sufficient accuracy in considerably less than n iterations. The

overall computational complexity is governed by the cost of matrix-vector products Hi v and

(Hi )Tw for some intermediate vectors v, w, which, as just seen, have very different complexities

in the analysis and synthesis settings.

When a direct method is used to evaluate the linear least squares step the complexity analysis

is more delicate. Since the matrix HA is usually banded for both acoustic and EEG problems,

we know that regular Cholesky decomposition will usually produce factors, which are much

sparser in the analysis than in the synthesis case. However, due to the mentioned NP-hardness

of the minimum fill-in problem, it is impossible to exactly evaluate the sparsity of the yielded

sparse Cholesky factorization PTHAP (P is a permutation matrix), and estimate the computa-

tional complexity. Yet, it is reasonable to assume that the permuted coefficient matrix would

yield even sparser Cholesky factor than LA. Therefore, one may expect the analysis model to

be computationally much more efficient. This result was checked through simulations.

3.5.3 Memory aspects

Another view on computational scalability is through memory requirements. For the synthesis

model, assuming the general case where the analytical expression of the Green functions is

not available, the least requirement is storing the (m×n) matrix MD in memory (to avoid com-

putational overhead, it is usually necessary to also store (MD)T). Hence, the minimum storage
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requirement for the synthesis case is O(mn). This cost can quickly become prohibitive, even

for modern computers with large amounts of RAM. On the other hand, memory requirement

for storing the analysis operator is O(n).

Evaluating the storage requirements of sparse Cholesky factorization is not viable, due to the

NP-hardness of the fill-in problem. It is, however, presumed (and experimentally checked in

chapter 4) that it requires substantially less than O(n2) memory units, which is the requirement

for the regular (synthesis) Cholesky factor.

3.5.4 Structured matrices

In some cases, a special matrix structure can be exploited in order to further reduce storage

size and computational effort. Our goal in this work is not to exploit such matrix structures,

but to emphasize that in the analysis case, one can “naively” manipulate the matrix (as long

as the discretization has local support) and still gain in terms of computational and storage

resources. This is not necessarily the case with the synthesis approach, and even if possible,

requires specialized techniques in order to exploit particular matrix structure. For example,

in the case where D ∈ R
n×n is a Toeplitz matrix, this means first embedding it in a circulant

form, and then applying Fast Fourier Transform at cost O(n logn) [111] (even in this case the

analysis approach is cheaper, since it requires O(n) calculations).

Finally, note that while such specific matrix structures in A and D may be useful when iterative

algorithms are used to solve the least squares step in SDMM, these become useless for the

direct computation of linear systems with matrices HA and HS (since forming the normal

equations usually disturbs the structure). For all these reasons, in the subsequent experiments,

we disregard any additional structures of the involved matrices except their sparsity patterns.

3.5.5 Conditioning

Additionally, for the proposed weighting scheme, the matrix HA is usually better conditioned

than HS. The rationale comes from the fact that the applied multipliers ρ1 ≤ ρ2 usually assign

a large weight to the diagonal elements of the matrix HA. And since HA = ATHSA, one can see

this as preconditioned synthesis approach.

Moreover, in the analysis case and common constraints, such as when fd is a characteristic

function of an affine or the ℓ2 norm-constrained set (Mx = y or ‖Mx−y‖2 ≤ ε), one can replace

H2 = M with H2 = I and still maintain a simple evaluation11 of (3.27). However, the problem

(3.28) is now much better conditioned, since H2 = I acts as Tikhonov regularization, and the

proposed weighting often yields a diagonally dominant coefficient matrix HA. In principle, the

same “trick” could be used in the synthesis variant as well, provided that the matrix H2 = MD

forms a tight frame (which is always the case for H2 = M for the analysis approach).

11Notice that in this case the linear mapping M is incorporated within the proximal operator.
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3.6. Summary

3.6 Summary

In this chapter we introduced the general framework for sparse regularizations of physics-

driven inverse problems.

We have discussed the physical phenomena modeled by either linear partial differential equa-

tions, or the integral equations through the appropriate Green’s functions. It was emphasized

that when a PDE is expressed by a self-adjoint operator, the corresponding Green’s functions

are unique and the integral form can be seen as the inverse operator of the concerned PDE.

Two important cases were discussed: Poisson’s equation and the linear wave equation, both of

which are self-adjoint systems when accompanied with common homogeneous boundary

conditions.

Furthermore, when there is a side knowledge in terms of a low number of field-generating

singularities, a natural connection between the two (differential and integral) representations

and sparse regularizations can be established. Models defined by linear PDEs are linked to

the sparse analysis data model, whilst models defined by the Green’s functions are related

to the sparse synthesis data model. Since the representations are equivalent, the two data

models are also equivalent, but their numerical properties are different. Due to the inherited

sparsity of the discretized PDE (embodied in the analysis operator), the analysis approach

scales much more favorably than the equivalent problem regularized by the sparse synthesis

model. Finally, we have presented a first order optimization algorithm for solving the problems

yielded by the according convex relaxations. This ADMM variant, termed Weighted SDMM,

can be straightforwardly applied to both analysis- and synthesis-regularized problems.

In the upcoming chapters we will see how the physics-driven framework can be applied to

concrete problems, namely acoustic and brain source localization. The Weighted SDMM

algorithm will be used for the numerical verification of predicted numerical differences

between the analysis and synthesis regularizations.
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4 (Co)sparse acoustic source

localization

Acoustic or sound source localization is the problem of determining the position of one or

more sources of sound based solely on microphone recordings. The knowledge of sound

source locations is a very valuable piece of information, that can be exploited in multiple

contexts. In speech and sound enhancement, a source position estimate is used to perform

noise reduction, by means of beamforming techniques [264, 107, 64, 23, 245]. The noise, in

this case, is considered as any unwanted source of sound (for example, degradations attributed

to reverberation). Another application of acoustic localization is tracking of sound sources

[3, 252, 174, 65], which may be used to automatize camera steering when accompanied with

other signal modalities [250]. Robotics is another area of engineering that exploits sound

source localization techniques [243, 184, 185, 76], as well as seismic [177, 62] and medical

[233, 213] imaging, among many others.

The acoustic localization problem we are interested in is the following:

Given an array of m omnidirectional microphones, with a known geometry, determine

locations of k point monopole sound sources, within an enclosed spatial environment.

For various reasons, acoustic source localization is a challenging task, and, as such, has

provoked significant research efforts. There exist a plethora of methods that address this

problem more or less successfully. In this Chapter, we propose a new one, based on physics-

driven regularization, and argue its advantages and shortcomings.

The content of the chapter is as follows: in the first section we briefly recall the physics of

idealized sound propagation in air. The second Section discusses some well-known and widely

used algorithmic approaches to solve the acoustic localization problem. In the third Section,

we formulate the problem as an ill-posed physics-driven inverse problem stabilized by sparse

regularizations. In the fourth, final Section, we provide comprehensive experimental results

based on numerical simulations. The written material is partially based on publications

[140, 139].
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Chapter 4. (Co)sparse acoustic source localization

4.1 Physical model of sound propagation

In this section, we provide a very brief and simplified introduction to some fundamental

concepts of air acoustics, based on these references: [152, 153, 43, 100, 211].

4.1.1 The acoustic wave equation

Sound is produced by the vibration of small “volume particles” of the propagating medium.

A volume particle is composed of sufficiently many infinitesimal particles (e.g. molecules),

such that their individual, irregular thermal-induced motions are somewhat averaged-out

(this includes, e.g. Brownian motion). Sound waves are categorized into transversal (which are

orthogonal to the direction of propagation) and longitudinal (parallel to the direction of prop-

agation), such as presented in figure 4.1. However, in gases (which are the only propagating

medium of interest in this work), the transversal component of sound waves is negligible, at

least away from the boundary. Therefore, the physical model of sound propagation in air is a

special case of more general sound propagation models.

Sound wave amplitude in fluids is usually expressed through particle displacement s, particle

velocity v, sound pressure p and density ρ. They are all functions of position r and time t

(therefore, their domain variable is ω ∈ Γ×R⊂R
n×R). These quantities are mutually related,

Figure 4.1 – Transverse and longitudinal sound waves1.

1Image downloaded from www.dreamstime.com.
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4.1. Physical model of sound propagation

such that:

v =
∂s

∂t
(4.1)

∇rp =−ρ0
∂v

∂t
(4.2)

ρ0∇·v =−
∂ρ

∂t
, (4.3)

where equation (4.2) is known as conservation of linear momentum, while equation (4.3) is

known as conservation of mass.

The quantity ρ0 represents the medium density in the equilibrium state - when the field is not

excited. This value is computed from the Equation of state of ideal gas:

p0 = ρ0RT0, (4.4)

where p0 represents the pressure at temperature T0, while the factor R is equal to 287Jkg−1 K−1

in air. For example, at T0 = 273K and p0 = 100kPa, the reference temperature and the reference

pressure, respectively, ρ0 ≈ 1.2754kg/m3. This equation also indicates the connection among

the variations of temperature, pressure and density (the increase in temperature increases

pressure, and vice-versa).

Unless the acoustic event is extremely strong (e.g. explosions), the absolute change in acous-

tic pressure and density is small compared to their equilibrium values (|pt −p0| = |p̃|≪ p0,

|ρt −ρ0| = |ρ̃|≪ ρ0). With some other approximations and linearizations, one arrives at the

expression for sound pressure:

p =
(

d pt

dρt

)

ρ0

ρ = c2ρ, (4.5)

where c2 is assumed constant as long as the magnitude of the acoustic event is not too high. We

assume that c(r, t) is a slowly varying function of space and/or time, therefore, the isotropic2

condition still approximately holds. This assumption is physically relevant - for instance, the

air-conditioning and heating devices introduce temperature gradients, and thus, the spatio-

temporal change in sound speed, due to (4.4) and diffusion. If assumed constant, it can be

estimated by the following formula:

c = (331.3+0.606 T)m/s, (4.6)

where T is the temperature in Celsius. Given the relation (4.5), one can substitute ρ in

(4.3) yielding ρ0∇·v =− 1
c2

∂p
∂t . From conservation of momentum, we obtain ∇·∇rp =△p =

− ∂
∂t

(

ρ0∇·v
)

. Since we already have the expression under parenthesis in terms of pressure, we

2c(r, t) = c is a constant.
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Figure 4.2 – The pulsating sphere (a(t) ≪ r).

arrive at the homogeneous acoustic wave equation:

△p −
1

c2

∂2p

∂t2
= 0. (4.7)

It models the sound pressure, which is a physically measurable quantity.

Equation (4.7) is, of course, identical to (3.15) with x := p, for which we have shown3 that c is

indeed the propagating speed, i.e. the speed of sound, in this case.

The same derivation4 can be applied in the case when a sound source is present in the medium,

by incorporating additional terms in the conservation of momentum and mass equations.

Generally, this leads to the following inhomogeneous acoustic wave equation:

△p −
1

c2

∂2p

∂t2
= z +∇· f, (4.8)

where z := z(r, t) is either z =−∂2m(r,t)
∂2t (m(r, t)) is a function of injected (or removed) mass per

unit volume) or z =−ρ0
∂q(r,t)

∂t (q(r, t) is the function of velocity of volume displacement per

unit volume). The term f is an external force per unit volume.

There are various types of sound sources, approximated by different mathematical models.

For our purposes, we constrain the choice on a simple kind: the point monopole source. This

type of sound source is modeled by z(r, t) = zr0 (t)δ(r0 − r) (no external forces f are present).

For a hypothetical direct-radiation5 monopole loudspeaker, zr0 (t) is a function of volume

displacement. When zr0 (t) term is a function of mass injection (or removal), a monopole

source can model e.g., a combustion process. The source acts as an infinitesimal singularity in

space - it can be seen as the limit case of the pulsating spherical source (figure 4.2), for r → 0.

Monopole and spherical sources radiate equally in all spatial directions, and their induced

sound wave fronts are spherical (in odd dimensions), or ball-like (in even dimensions).

3for the Γ=R
n.

4Except for turbulent flow sources, which depend on non-linearities [100].
5Without an acoustic horn.
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4.1. Physical model of sound propagation

4.1.2 Boundary conditions

The wave equation, or D’Alembert operator, constitutes a well posed problem if accompanied

with Cauchy initial conditions, as noted in the previous chapter (subsection 3.2.4). In the

practical setting the system is also causal, i.e. the time axis starts at 0, hence our temporal

domain is t ∈ [0,+∞). Furthermore, as a convenient simplification, we will assume that the

field was initially at rest, thus the compound operator A is self-adjoint. In other words:

p(r,0) = 0 and
∂p(r, t)

∂t

∣
∣
∣
∣
t=0

= 0. (4.9)

Finally, we are concerned with sound propagation in enclosures, thus boundary conditions

have to be imposed. We envision Dirichlet, Neumann, Robin, mixed or Mur’s absorbing

boundary condition, defined in section 3.2, p31. They are all considered homogeneous, to

ensure self-adjointness of A. The physical interpretation of these conditions is as follows:

Dirichlet: setting p(r, t) = 0, for r ∈ ∂Γ, corresponds to soft wall approximation. The

reflected wave has the same amplitude as the incident wave, but the opposite phase.

Neumann: setting ∇rp(r, t) ·n = 0, for r ∈ ∂Γ, corresponds to hard wall approximation.

The reflected wave has the same amplitude and phase as the incident wave.

Mixed: depending on the imposed boundary condition at the point, this corre-

sponds to either soft or hard wall approximation.

Robin: setting p(r, t)+α∇rp(r, t) ·n = 0 makes the phase of the reflected wave de-

pendent on the impedance coefficient α.

Mur’s absorbing: the parameter ξ in (3.18) is termed specific acoustic impedance and controls

the reflection coefficient, as follows [147]:

R(θ) =
ξcosθ−1

ξcosθ+1
, (4.10)

where θ is the incidence angle. This implies that for the large values of ξ, the reflected

wave is almost identical to the incident wave (Neumann condition), while for the values

of ξ close to 1 this condition models the absorbing boundary for the normal incidence

waves6. For ξ= 0, Mur’s boundary condition is equivalent to constant Dirichlet’s bound-

ary condition, which is equal to zero given the initial conditions (hence, it approximates

soft wall). In general, coefficient ξ is frequency-dependent, but, for the sake of simplicity,

we take it to be constant along frequencies.

6This condition is, therefore, perfect absorber in one-dimensional space. However, it is not a good approxima-
tion of e.g. anechoic chambers.
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4.2 Traditional sound source localization methods

After this condensed recall of the physics of sound propagation, we return to sound source

localization problem. Widely used approaches to tackle this problem can be roughly divided

into two groups: “TDOA-based” and “beamforming” methods. We briefly describe both con-

cepts in the text to follow. In the acoustic source localization case, the number of microphones

is denoted by m, while the number of sound sources is denoted by k, to avoid introducing new

notation. However, these do not correspond to the number of measurements (which is mt)

nor the sparsity level in this case.

4.2.1 TDOA-based methods

TDOA is an acronym for Time Difference of Arrival, which is the offset between source signal

arrival times for a pair of microphones in an array.

Note first that, for some applications, the acoustic localization problem can be substantially

relaxed: instead of looking for the actual coordinates, we ask only for the direction of the

source. This corresponds to estimating the azimuth (in 2D space) and the elevation angle

(in 3D), as presented in figure 4.3a. In that case the microphones are assumed to be in the

far-field region7, meaning that the sound waves reach microphones in the form of a planar

wave front, as shown in the figure. Then, by knowing the sound speed c and exploiting TDOA,

one can easily estimate the source direction using two microphones, modulo ambiguities (e.g.

the side of arrival).

Sometimes it is also necessary to estimate the distance, and completely characterize the

location of the source (e.g. for robot navigation). This is possible only if the microphone array is

within the near-field of the source (figure 4.3b). Standard approach is based on multilateration.

Theoretically, for a known speed of sound c and a given geometry of the (minimum) m= d+1

microphone array8, it is sufficient to determine TDOAs between a reference and d other

microphones, to estimate all other parameters [22]. The simplified 2D case, presented in

figure 4.3b, is based on solving the following system of equations (τ12 and τ13 are TDOAs

between microphones 1 and 2, and microphones 1 and 3, respectively):

r2 − r1 = cτ12 r2
2 = r1

2 +d2 +2r1dcosθ1

r3 − r1 = cτ13 r3
2 = r1

2 +4d2 +4r1dcosθ1,

where the distances d between the microphones are assumed equal, for simplicity. This

is easily derived by applying trigonometric rules to the geometry of the problem, and it

straightforwardly generalizes to three dimensions and more microphones/sources.

7In practice, the far-field assumption holds if the distance between sources and a microphone array is much
larger than the array aperture.

8Here d represents the number of spatial dimensions.
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4.2. Traditional sound source localization methods

(a) Far-field case. (b) Near-field case.

Figure 4.3 – Source position relative to the microphone array.

Generally, knowledge of array geometry and range differences (e.g. ri−rj) is sufficient to recover

source location. The problem is well-understood and there are closed form formulations that

can be used to approximate the solution with high accuracy ([229] and references therein).

Therefore, in both far-field and near-field cases, the problem simplifies to estimating TDOAs

for the microphone pairs. Unfortunately, this is a non-trivial task due to the presence of noise,

reverberation and/or masking (unwanted) sound sources.

Standard way of estimating TDOAs is by maximizing the cross correlation of microphone pairs,

e.g. for pressure signals recorded on microphones 1 and 2:

maximize
τ

r12(τ) = maximize
τ

∫∞

−∞
p1(t)p2(t+τ)dt. (4.11)

However, this estimate is highly sensitive to noise and reverberation. To deal with these

problems, Generalized Cross Correlation (GCC) is used instead. GCC is computed as a weighted

cross correlation of signals in frequency domain. The estimate is then computed by means of

inverse Fourier transform:

r GCC
12 (τ) =

1

2π

∫∞

−∞
w(ω)φ12(ω)exp(jωτ)dω, (4.12)

where φ12(ω) is the cross spectrum, which is the Fourier transform of r12(τ). In practice, the

integrals are approximated by finite sums, i.e. by the (inverse) Discrete Fourier Transform.

The choice of weighting function w(ω) is of crucial importance. For instance, if the main

source of degradation is the additive Gaussian noise, an SNR-weighted version of GCC can

be used [145]. However, in practice, the highest degradation is due to reverberation, and

the weighting that ameliorates its effect is so-called GCC-PHAT (from PHAse Transform [22,

80, 145]). The GCC-PHAT simply uses w(ω) = 1
|φ12(ω)| , which deemphasizes contributions of

individual frequency components. This choice of weighting makes the method more robust
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with respect to reverberation, but at the expense of increased sensitivity to noise (since all

frequencies equally contribute to estimation).

In the case where k > 1 sources are active, a straightforward way to estimate TDOAs of all

of them is observing the k largest peaks of GCC-PHAT. However, as the number of sources

increases, the estimation quality decreases, since one source can be interpreted as noise when

estimating TDOA of another [22]. The performance is further worsened if the source signals

are correlated. Still, a large-scale experimental evaluation [30] of several TDOA estimation

methods has shown that variants of GCC-PHAT are competitive or outperform other common

methods in the multisource, two-microphone setting.

When more than two microphones are available, they can be used to improve the TDOA

estimate. This is done by (explicitly or implicitly) exploiting the mutual relations among delay

variables (for instance, in the example problem in figure ... , τ13 = τ12 +τ23). Based on this

observation, several approaches have been proposed [21, 137, 80, 120]. Most of these methods

assume free space propagation model. Having this assumption, one can conclude that signal

reaching any microphone in an array will be the sum of delayed and attenuated versions of

source signals zi(t) := z(ri, t), possibly with an additive noise. Now, the time delay τ is defined

as TDOA between a reference microphone and another microphone in the array (call it the

reference pair). Then, one can define a function fj(τ), based on the array geometry, that maps

τ to the actual TDOA between the reference and the jth microphone:

pj(t) =
s∑

i=1
ai,jzi

(

t−τ0,j− fj(τ)
)

+Ej(t). (4.13)

Here ai,j is the attenuation coefficient between the ith source and jth microphone, τ0,i is the

delay between the reference microphone and the ith source, and Ej(t) is the additive noise at

jth microphone.

This formulation allows for building a spatial correlation matrix, parametrized by τ, which

lies at the heart of these methods. For instance, Multichannel Cross-Correlation Coefficient

(MCCC) algorithm [21] is based on the spatial correlation matrix defined as

R(τ) = Et

[

ppT
]

where p(t,τ) =
[

p1(t) p2(t+ f2(τ)) p3(t+ f3(τ)) . . . pm(t+ f2(τ))
]T . (4.14)

The goal of MCCC algorithm is to maximize the MCCC value, which can be seen as general-

ization of cross-correlation coefficient to multichannel case [61, 22]. It can be shown that the

estimate that maximizes MCCC is found by solving:

τ̂= argmin
τ

det(R(τ)), (4.15)

where det(R) denotes the determinant of the positive semidefinite matrix R. Whitening the

signal, before cost computation, is analogous to PHAT weighting for the GCC method [61].

Likewise, the approach can be easily extended to multisource scenario.
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Another group of direct methods that exploits spatial correlation matrices is the family of

eigenvector-based techniques (often called high resolution methods). Among these, the most

prominent members are the adaptations of MUltiple SIgnal Classification (MUSIC) [223] and

Estimation of Signal Parameters via Rotation Invariance Techniques (ESPRIT) [214] algorithms.

Unfortunately, they are very sensitive to reverberation effects and cannot be straightforwardly

extended to multiple source setting [80, 22], thus they are not interesting for our indoor sound

source localization problem. However, they can be useful in the brain source localization

problem, and we will get back to them in chapter 6.

The common trait of all mentioned approaches is that they essentially assume the free field

propagation model. Therefore, even though their performance may be improved by applying

a convenient weighting method (e.g. PHAT), they are, by their nature, not well adapted to

sound source localization in reverberant rooms. An algorithm termed Adaptive Eigenvalue

Decomposition (AED) [20] was designed with this issue in mind. It attempts to blindly estimate

channel impulse responses for the two microphone array, by exploiting the fact that the vector

of impulse responses is in the null space of a certain correlation matrix. The extension to more

than two microphones is possible [128], although it is not straightforward. The multichannel

version is more robust since it alleviates the issue when channel filters share common zeros,

and generally performs better than GCC/MCCC approaches in reverberant environments.

Unfortunately, the algorithm cannot be easily applied to multisource setting, and because of

that, it is not considered in this work. Some current research efforts are devoted to generalizing

the approach to multisource scenario, e.g. an ICA-based method proposed in [44].

4.2.2 Beamforming methods

A beamformer is a multisensor array system that assigns temporal delays to signals, before

combining them into output, in order to focus on some specific location in space. Beamform-

ing methods are often used in combination with TDOA techniques, to improve SNR of the

input signals (thus, they take the temporal delay estimate as an input). However, they can be

also used independently, where they browse the predefined search space (i.e. the energy map)

for the location(s) of maximal radiated energy.

In that sense, they are still closely related to TDOA methods, since they need to estimate

temporal delays by maximizing the observed energy (or the Steered Response Power (SRP) [80]).

These approaches can be seen as variants of delay-and-sum beamformer, which simply delays

the input signals in order to compensate for propagation delays to each sensor:

br(t) =
m∑

i=1
wipi

(

t+ fi(r)
)

. (4.16)

Here the steering function fi(r) maps the location r to the delay of the ith microphone, while

the weights wi are only used to shape the beam and are omitted in the remaining discussion.
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Maximizing SRP corresponds to:

maximize
r

E[b2
r ] =

m∑

i=1

m∑

j=1
E[pi(t+ fi(r))pj(t+ fj(r))] =

m∑

i=1

m∑

j=1
ri,j( fj(r))− fi(r))]). (4.17)

The correlations rj,k are computed in the frequency domain, which strongly resembles GCC

approaches. Indeed, before evaluating correlations, one can apply frequency weighting to

robustify estimation in adverse environments. Despite some initial attempts (e.g. [255]), the

optimization (4.17) is usually not performed directly, due to the pronounced non-convexity

of the cost function. Instead, the search space is discretized and the correlations ri,j are

computed for all discrete locations r. In the second stage, the cost function is evaluated for

every r, yielding the estimated location. The approach is easily extendable to multisource case,

by declaring k highest-energy locations to be the source location estimates.

The most successful beamforming method uses PHAT frequency weighting, and is termed

SRP-PHAT or Global Coherence Field (GCF) [195, 80]. In the case of m= 2 microphones, SRP-

PHAT is equivalent to GCC-PHAT method. For an array with more than two sensors, SRP-PHAT

accounts for all pairwise cross-correlations, but in a different manner than MCCC algorithm.

Empirical studies [82] have shown that the two approaches are competitive, but with SRP-

PHAT being more robust to highly reverberant environments and microphone calibration

errors. Lastly, computational complexity of SRP-PHAT is lower than that of MCCC, due to

the necessity to evaluate matrix determinants (4.15) in the latter approach [197]. Several

improvements of the SRP-PHAT algorithm, in terms of reducing its computational complexity,

have been suggested in [84, 83, 66].

4.3 Sound source localization by wavefield extrapolation

We have seen that indoor localization is challenging, particularly when significant reverbera-

tion and noise is present. Thus, different approaches have been proposed to somehow mitigate

these issues, but their performance is usually a trade-off between accuracy, sensitivity to noise

and sensitivity to reverberation. A preferable algorithm should be able to accurately localize

multiple sound sources, maintain robustness to reverberation (i.e. the acoustic multipath)

and benefit from the multichannel recordings.

The traditional “reverberation-aware” approaches aim at reducing reverberation effects: PHAT-

based by suppressing the “reverberation noise”, and AED by improving the estimation of

a direct path component of the signal. Thus, reverberation is traditionally considered as

unwanted phenomenon. On the other hand, knowledge of the propagation channel is success-

fully exploited in wireless communications. The famous rake receiver [36] exploits multipath

propagation to increase SNR by applying matched filter to several intentionally delayed copies

of the received signal. Matched filter simply correlates an input signal with an estimate of the

channel impulse response, which is analogous to time-reversal [103] filtering. By delaying the

input signal, rake targets individual multipath components in the mixture, which are later
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constructively combined in order to improve the estimate of the original signal. Recent work,

presented in [85], is one example of exploiting the rake concept for acoustic multipath.

Recognizing that reverberation is not necessarily an enemy, new localization methods based

on somewhat extravagant idea arose: determine sound source locations by estimating the

acoustic pressure field they produced. Since the field is known at only few measurement

locations, the goal is to extrapolate the sound at the remaining space, or, equivalently, to

recover the source term inducing this field. This becomes the acoustic inverse source problem.

For the purpose of plain sound source localization, recovering the entire field may seem overly

demanding. Yet, there are several advantages to this approach, which we preview, for now:

1. Signal model incorporates realistic acoustic channels between sources and micro-

phones, and is thus robust to reverberation.

2. The model is not directly dependent on the strength of the direct component in the

impulse response, which enables interesting applications (more on this in chapter 5).

3. Provided that the estimation is successful, localization should be highly accurate.

4. The “byproduct” is the acoustic field estimate for all discrete spatio-temporal coordi-

nates, which is a distinct feature in its own right.

4.3.1 Prior art

Acoustic wavefield estimation has been exhaustively investigated in the field of acoustic

tomography. For example, in seismic signal processing it is known as wavefield inversion [167,

79]. The goal there is to infer the underlying anisotropic structure of an object, by estimation

of the attenuation, sound speed or scattering properties in different subsurface layers. The

idea is to radiate a sound at some position on the surface and then measure the echo signal

induced by this action. This problem is complementary to the inverse source problem, which

is the topic of our interest, where we assume that the domain is given beforehand, but the

sound sources are unknown.

Sound source localization through wavefield extrapolation and low-complexity regularization

was first introduced by Malioutov et al. in [172]. They assumed a free-field propagation model,

which allowed them to explicitly compute the associated Green’s functions. The narrowband

sound sources were estimated by applying sparse synthesis or low-rank regularizations. A

wideband extension was proposed in [171], which is, however, a two-stage approach that

implicitly depends on solving the narrowband problem.

“Indoor” localization9 was first performed by Dokmanić and Vetterli [87, 86] in frequency

domain. They used the Green’s functions dictionary numerically computed by solving the

Helmholtz equation with Neumann boundary conditions, by the Finite Element Method

9By “indoor” we mean a non-free space setting, even though all approaches consider 2D localization.
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(FEM). The wideband scenario was tackled as jointly sparse problem, to which, in order to

reduce computational cost, a modification of the OMP algorithm was applied. However, as

argued in [58], this approach is critically dependent on the choice of frequencies, and can

fail if modal frequencies are used. Le Roux et al. [156] proposed the CoSaMP algorithm for

solving the sparse synthesis problem in the same spirit. In his doctorate thesis [86], Dokmanić

remarks that convex relaxation performs better than the proposed greedy approach, but the

computational complexity of the sparse synthesis regularization prohibits its use.

Building upon their result [57, 55] on approximating solutions of Helmholtz equation by

plane waves, Chardon et al. proposed a narrowband sparse synthesis method to localize

sound sources without explicit knowledge of boundary conditions [56]. Sound sources need

to be within a space enclosed by convex hull of sensors, and the method requires more

measurements compared to the case where the boundary is known beforehand.

All these methods are based on the sparse synthesis prior. The first approach that exploited

cosparsity was proposed by Nam et al. in [188], where the analysis operator was derived by

discretizing the acoustic wave equation in time domain. Then, a greedy algorithm was used

to estimate source positions corresponding to jointly sparse vectors. The authors speculated

possible numerical advantages of the analysis approach compared to synthesis, due to the

inherited sparsity of the analysis operator.

4.3.2 Contributions

In the conference paper [140] we propose convex relaxation for solving the acoustic inverse

source problem, for the purpose of localizing sources, using the sparse analysis prior. It

was shown empirically that convex relaxation outperforms the greedy approach proposed

in [188] (later on, although without explicit reference to cosparsity, Antonello et al. revisited

convexity in their own work [10]). In the framework paper [139], significant space is devoted

to computational unevenness of the sparse synthesis and sparse analysis regularization of the

acoustic wave equation in practice. Indeed, using the sparse analysis approach we managed

to simulate the problem in three spatial dimensions (whilst all other approaches are limited

to 2D), in the physically realistic setting. Furthermore, the robustness of the physics-driven

regularization for sound source localization was discussed. The remainder of the present

chapter elaborates and extends this work by including comprehensive numerical experiments

for various problem parameterizations.

4.3.3 Physics-driven (co)sparse acoustic source localization

To fit the problem in the physics-driven framework, we use the regularization procedure

presented in chapter 3. Recall that the necessary ingredients to apply the physics-driven

approach are the physical model, the existence of sparse singularities and the measurement

system that measures the diffuse physical quantity implicitly related to sparse singularities.
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Figure 4.4 – Example of discretized 2D pressure field: p =
[

. . . pT
t1

. . . pT
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. . . pT
t3

. . .
]T
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The physical model

Modeling the sound wave propagation in air has been discussed in subsection 4.1.1. It is given

in the form of the inhomogeneous acoustic wave equation (4.8), along with the homogeneous

initial and boundary conditions:

△p −
1

c2

∂2p

∂t2
= z, for (r, t) ∈ {Γ\∂Γ}× (0,τ)

p = 0,
∂p

∂t
= 0, for ∀r, t = 0 (4.18)

B(p) = 0, for r ∈ ∂Γ, ∀t.

Here B(p) denotes the applied boundary conditions, modeled by Robin or Mur’s absorbing

condition described in subsection 4.1.2, for the sake of generality (we can recover Dirichlet,

Neumann or mixed conditions by setting appropriate values to α and ξ). The functional

z := z(r, t) is defined as follows:

z(r, t) =
k∑

j=1
zj(t)δ(r− rj) =

k∑

j=1
−
∂2mj(t)

∂t2
δ(r− rj), (4.19)

where mj(t) is the mass injection function described in (4.8). We assume that the temporal

mean of z(r, t) is zero, i.e.:

∫T

0
z(r, t)dt = 0, (4.20)

in order to be able to correctly model so-called soft sources [226] (explained in appendix B.1).

This way we formulated a well-posed problem, which is, as now usual, compactly represented

by the forward operator A(p) = z. In fact, some strong assumptions are made here: in the

room acoustic context, we assume that the geometry, the boundary (e.g. wall) structure, and

the propagation speed are known beforehand. We will see in chapter 5 that some of these

assumptions can be relaxed.

Moving into discrete setting, we now apply the Finite Difference Time Domain (FDTD) Stan-

dard Leap Frog (SLF) method [159], which corresponds to second-order centered finite differ-
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Figure 4.5 – Structures of the matrices S (top) and M (bottom).

ences in space and time (described in appendix B.1). Let s be the number of points used for

discretizing space and t the number of temporal discretization points (time samples). This

yields a non-singular system of difference equations of the form

Ap = z, (4.21)

with the square invertible coefficient matrix A ∈ R
st×st. Analogously, the discretized spatio-

temporal pressure field p ∈R
st and the discretized spatio-temporal source component z ∈R

st

are built by vectorization and sequential concatenation of t corresponding s-dimensional

vector fields (as illustrated in figure 4.4 for the vector p). The matrix operator A is a banded

lower triangular matrix. Moreover, the matrix A is very sparse, as it can have only a very limited

number of non-zeros per row (e.g. maximum seven in the 2D case).

The Green’s functions associated with the forward model (4.18) are obtained by setting

z = δ(r)δ(t). In the discrete case, this corresponds to solving the linear system Ag = i, where i

is a column of the identity matrix I ∈R
st×st. In other words, we can build the Green’s functions

dictionary by computing the inverse D = A−1. It is important to note that one cannot derive an

analytical expression of the Green’s functions in the general case of arbitrary combination of

initial and boundary conditions10. Thus, in many cases, the solutions are indeed approximated

by a numerical method.

The measurement system

The observation data is collected by measuring the sound pressure, which is nothing else but

recording sound by m microphones. Assuming that the analogue signal was processed by a

10Not to be confused with the well-posedness of the forward PDE problem (4.18) itself.
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Figure 4.6 – Structure of the matrix A for a demonstrative 1D problem with homogeneous Dirichlet
boundary conditions: the zoomed region represents the last s rows.

built-in low-pass filter, the measurement system simplifies to a spatio-temporal subsampling

matrix M ∈R
mt×st, as illustrated in figure 4.5. The matrix M is block-diagonal, with each block

being a spatial subsampling (restriction) operator, i.e. a row-reduced identity matrix S ∈R
m×s.

Spatial sparsity

Finally, the last requirement is fulfilled by assuming that the sound sources are spatially sparse.

In the discrete setting, this means that the number of point sources k is much smaller than the

“size” s of a discretized spatial domain. Now, the question is whether, given the measurements,

the sparsity assumption alone is sufficient to perfectly recover the underlying signal.

The analysis and synthesis problems are equivalent in our framework, therefore it is sufficient

to discuss only one approach. Since the structure of the matrices A and M in FDTD-SLF

discretization is predictable, it is easier to discuss the sparse analysis setting. Concerning

the matrix A given in figure 4.6, a spatial reconfiguration would only induce the change in

position of the rows corresponding to boundary conditions (assuming the boundary type is

fixed). Regarding the measurement matrix M, microphone positions are directly mapped to

the rows of the identity matrix, as presented in figure 4.5. The matrix M is constrained by

the fact that we cannot sample the boundary nor the source positions. Further, if there are k

fixed sound sources in space, the easiest way to formulate spatio-temporal source support is

by considering the matrix Z ∈R
s×t, whose k rows can contain non-zero elements. Then, the

support is defined as the indices of non-zero elements of sequentially concatenated columns

of the matrix Z. Obviously, the support of each source will appear periodically, with period

s. Again, there is a natural constraint on the support set: sources cannot be placed on the

boundary, nor in the microphone positions.

Recalling the necessary uniqueness condition for the sparse analysis recovery (1.15), in chap-

ter 1, we know that the concatenated matrix
[

AΛ

M

]

needs to be of full column rank. Let us

check if this is indeed the fact. Since A ∈R
n×n is square-invertible, any row-reduced submatrix

AΛ ∈ R
(n−kt)×n will not be a full column rank matrix, by the fundamental theorem of linear
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algebra. In order to stabilize the linear system, rows of the matrix M need to cover the null-

space of AΛ, i.e. to complement the basis vectors consisting of rows of AΛ. We focus on the

last s rows of the matrix A, illustrated as the zoomed region in figure 4.6. Some of these rows

correspond to source positions - let Υ denote the index set of these rows within A (naturally,

|Υ| = k). Since these do not belong to the cosupport, they will not appear in the matrix AΛ.

Now, consider the matrix Nτ formed by extracting rows indexed by Υ from the identity matrix

I ∈ R
n×n. By inspecting the structure of the analysis operator in figure 4.6, it becomes clear

that each row of Nτ is orthogonal to any other11 row of A, and therefore, to any row of AΛ

(i.e. NT
τ ⊂ null(AΛ)). Since Nτ is a row-reduced identity matrix, it is easy to compare it with

the measurement matrix M. Unfortunately, it becomes obvious that NT
τ ⊂ null(M), since

these matrices are formed by complementary rows of I, due to the problem constraints (we

are not allowed to place microphones at source positions). This means that we cannot hope

to recover the source signal at t = τ (in discrete domain, this corresponds to time instant t),

unless additional information is assumed. It is expected, and only a consequence of the finite

propagation speed prescribed by the wave equation: the information sent by sources cannot

reach microphones instantaneously. We term this phenomenon the acoustic event horizon.

Therefore, in addition to the initial and boundary conditions, we need to impose the terminal

condition, i.e. we need to characterize the solution at t = τ beforehand. We do this by assuming

that the terminal conditions are also homogeneous, i.e. the acoustic sources are turned off

before the end of data acquisition (another possibility is to completely disregard an estimate

at t = τ). While the terminal condition is a necessary requirement for the accurate wavefield

recovery, for the source localization, as we will see later, this assumption can be dropped.

Unfortunately, the inverse source problem is proven to be ill-posed, in general [78, 31]. That is,

the boundary, initial and terminal conditions, along with measurements, are not sufficient

to achieve perfect signal recovery. It has been proven that certain, so-called non-radiating

sources can produce a field which is supported only within the source region, i.e. they radiate

no energy outside the spacetime occupied by themselves. This also holds for the inverse

scattering problems, where these pathological singularities are known as non-scattering po-

tentials. However, even though non-radiating sources can be easily “created” by any function

znr ∈ H2(Ω) supported in a compact region, but otherwise arbitrary [78], there has been no

evidence to date of their physical existence [79]. Moreover, we never observed this behavior

during our empirical investigation. Nevertheless, this suggests that inferring positive theo-

retical results, based on the compressed sensing theory, is not straightforward, and that one

needs to assume a more restricted class of signals than only spatially sparse.

Localization

Given p̂, an estimate of the pressure field, or equivalently, ẑ, an estimate of the source term,

the localization task becomes straightforward. After identifying {ẑ1, ẑ2 . . . ẑj . . . ẑs}, the t-long

11“Any other” = not corresponding to the same row index.
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subvectors of ẑ corresponding to each discrete spatial location in Γ, source locations are

retrieved by setting a threshold on the minimum energy of ẑj. Consequently, any spatial

location j ∈ [1,s] with ‖ẑj‖2 higher than the threshold, is declared a sound source location. If

the number of sound sources k is known beforehand, estimating the threshold can be avoided.

Instead, one would consider k highest in magnitude spatial locations j to be sound source

positions.

4.3.4 Convex regularization

To estimate p̂ and ẑ, we need to solve one of the following two regularized physics-driven

inverse problems:

p̂ = argmin
p

fr (Ap)+ fd (Mp−y)+ fc1 (A0p)+ fc2 (Aτp)+ fc3 (A∂Γp) (4.22)

ẑ = argmin
z

fr (z)+ fd (MDz−y)+ fc1 (z0)+ fc2 (zτ)+ fc3 (z∂Γ), (4.23)

where the matrices A0, Aτ and A∂Γ are formed by extracting rows of A corresponding to initial,

terminal and boundary conditions, respectively. Analogously, the vectors z0, zτ, z∂Γ are formed

by extracting corresponding elements of z.

The choice of convex penalties fr , fd , fc1 , fc2 and fc3 should reflect the particular problem

setting. To simplify matters, we will only use one type of functional for all penalties fd , fci -

the indicator function of the ℓ2 norm of a vector:

χℓ2≤ε (v) :=







0 ‖v‖2 ≤ ε,

+∞ otherwise.
(4.24)

This allows us to use the linear equality constraint, by setting ε to a very low value. The choice

of functional is generally suboptimal, as it promotes isotropic distribution of the residual

vector entries. Hence, the assumption is not entirely correct, e.g. due to correlations between

the true signal and the finite difference approximation error embedded into the residual

Mp−y. The associated proxℓ2≤ε (·) operator admits a closed form, given in appendix A.3.

The ℓ1 norm Concerning the penalty fr , the most common convex relaxation of the non-

convex ℓ0 objective is the ℓ1-norm,

‖z‖1 =
∑

i
|zi| (4.25)

which is known to promote sparse solutions, as discussed in chapter 1.

Group ℓ2,1 norms In addition to the ℓ1 norm, we will also consider the group ℓ2,1 norm,

which is defined as the ℓ1 norm of a vector
[

z1 z2 . . . zg
]T, where zi denotes the ℓ2 norm of ith
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group of elements of z. Therefore, this type of norm is more general, as it includes the standard

ℓ1 norm as a special case (the “groups” are just singletons). It encodes the known structure

in the signal estimate, and should therefore provide more accurate results. The proximal

operators associated with some types of these norms admit closed-form expressions, such as

the ones we describe below (their proximal operators are given in appendix A.3).

The joint ℓ2,1 norm If local spatial stationarity of the sources is assumed (say, for sufficiently

short acquisition time), the sources retain fixed positions in space. Then we favor solutions for

which all temporal slices of the sparse estimate have the same support (also known as jointly

sparse vectors). This is promoted via the joint12 ℓ2,1-norm:

‖z‖2,1 =
∑

i

√
∑

j
|zi,j|2, (4.26)

where zi,j denotes the (i, j)th element obtained by transforming the vector z into a matrix Z

whose columns are jointly sparse subvectors.

Hierarchical ℓ2,1 norms An attractive class of (overlapping) group ℓ2,1 norms are hierarchi-

cal ℓ2,1 norms [132, 14]. The easiest way to visualize this hierarchy is as a tree-like structure.

Whenever a “parent” (the group which is higher in hierarchy) is not selected, a “child” (the

group lower in hierarchy) is also not selected. For our purposes, an interesting case is a spe-

cial type of hierarchal ℓ2,1-norms where groups are either singletons or disjoint subsets of

elements [132]. This objective function should encourage solutions with a small number of

active disjoint groups and which are overall sparse. In our case, where the disjoint groups are

defined as temporally jointly sparse vectors (as in (4.26)), it is evaluated as a sum ‖z‖2,1 +‖z‖1.

This norm may perform well in realistic settings, for instance, if a source emits speech signal,

which usually contains silent intervals. When placed into the objective function it should

promote solutions which are spatially and temporally sparse.

4.3.5 Computational complexity of the cosparse vs sparse regularization

In section 3.5 we argued that computational complexity of the analysis regularization should

be considerably lower than in the synthesis case, provided that discretization method is locally

supported. This is especially pronounced in models of time-dependent phenomena, such as

the wave equation. For the FDTD-SLF discretization, given the sparse and banded structure

of the matrix A, our intuition tells us that the corresponding inverse is rarely a sparse matrix

(generally, for A−1 to be also banded, occurs only if both matrices can be factorized into a

product of block diagonal matrices [230]). Indeed, this is true: even though it is also a lower

triangular matrix, the dictionary D cannot be sparse - it becomes obvious if one rewrites the

12Joint indicates that individual groups (“columns”) would have identical support, but the groups themselves
are actually disjoint (there are no common elements).

64



4.4. Simulations

Problem size s× t (19×19)×61 (30×30)×97 (48×48)×155 (76×76)×246 (95×95)×307
Synthesis (GB) 0.1 0.6 4.1 26 63

Analysis (GB) 0.001 0.005 0.02 0.07 0.2

Table 4.1 – Memory requirements relative to the problem size, with m= 10 microphones.

discretization provided in appendix B.1 in the causal (explicit) form. Then, the columns of the

dictionary D are simply the truncated impulse responses of an infinite impulse response filter.

The cost of matrix-vector products in the analysis case is of order O(n) = O(st), as opposed

to O(mst2) in the synthesis case. Further, factorization of the coefficient matrices HA and

HS, used in the linear least squares update (3.28) can be compared. Since the bandwidth13

of the matrix A is of O(s), when Cholesky factorization is used for solving the least squares

step of Weighted SDMM, we have HA = LALT
A with nnz(LA) = O(s2t). In the synthesis case, the

coefficient matrix is not banded, thus HS = LSLT
S , with nnz(LS) = O(s2t2). Sparsity of the sparse

Cholesky factors cannot be predicted beforehand, as discussed before.

The computational complexity of the synthesis method is unreasonably high for regularizing

the acoustics physics-driven inverse problem, which is experimentally verified in the following

Section. Moreover, the memory requirements presented in table 4.1, for the example setting

with m = 10 microphones, indicate that the storage cost for the synthesis regularization

increases fast with the problem dimension, and can, therefore, become extremely high when

realistic physical domains are considered.

4.4 Simulations

The experiments are divided into six groups, in order to investigate different aspects of the

acoustics physics-driven problem:

1. First, we test the fundamental hypothesis that sparse analysis and sparse synthesis indeed

achieve identical solutions.

2. Secondly, we provide comparison with the greedy approach proposed in [188].

3. In the third group, we drop the terminal condition and verify that the localization

performance is not affected.

4. Fourth group is dedicated to investigation of scaling capabilities of the two synthesis

and analysis approaches, by varying the problem size and number of microphones.

5. The fifth subsection is aimed at comprehensive performance evaluation under various

forward model parameterizations.

13The bandwidth of the matrix A is the number b such that Ai,j = 0 for all |i− j| > b.
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Chapter 4. (Co)sparse acoustic source localization

6. All previous experiments are purely numerical, and we postpone experiments with a

more physical interpretation to final, sixth group of experiments, where we test the

robustness of the localization approach with respect to modeling errors.

Algorithm parameterization. Unless otherwise specified, the constraint parameter of (4.24)

is set to ε= 0, to enforce equality constraints. For the stopping criteria, we use (A.12), with

the relative accuracy µ= 10−2 in (A.13), or the maximum number of SDMM iterations (5000).

The SDMM multiplier ρ1 is set to ρ1 = ρ = 10 and the remaining ones are computed using

the heuristics explained in Subsection 3.4.1. In the experiments where the LSMR algorithm

is used to estimate the solution, we set its stopping criterion to ‖HT(Hv−h)‖2/‖h‖2 ≤ 10−4µ

(given a least squares problem v∗ = argmin v ‖Hv−h‖2
2).

Data simulation and processing. The sampling model simulates recordings taken by fixed,

but randomly placed microphones. The point sources are also randomly distributed in space,

and their number is always lower than the number of microphones. This, along with random-

ization, is to ensure that the occurrence of localization ambiguities14 is highly unlikely.

Assuming that the number of sound sources k is given, we determine the set of the sound

source location estimates from z = Ax (the analysis case) or directly from z (the synthesis

case). Namely, we index the elements of z by (r, t), and then we simply declare the locations

corresponding to the k highest values of ‖zr,:‖2 to be the estimated positions. Note that the

knowledge of the number of sound sources in assumed for simplicity, otherwise a magnitude

threshold could be estimated by standard precision/recall method.

Performance measures. The quality of localization is presented as an estimated error per

source. It is computed as the Root Mean Square Error (RMSE) between pairs (r̂i, r̃i), where r̂i

and r̃i denote the estimated and the true position of the ith source, respectively. The pairs are

chosen such that the overall error is minimal, by means of the Hungarian algorithm [151]. The

quality of signal recovery is presented in terms of SNRs with respect to the estimation error:

SNRp̂ = 20log10
‖p‖2

‖p− p̂‖2
SNRẑ = 20log10

‖z‖2

‖z− ẑ‖2
,

where p̂ and ẑ are the estimated pressure and source signal, respectively.

The simulation results are averaged over 50 realizations. Note that we resampled the sources

and their location between these 50 experiments. The experiments were run on Intel® Xeon®

2.4GHz cores, equipped with 8GB RAM, in single-core/single-thread mode.

14For example: a microphone array placed on an axis of symmetry of a room.
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4.4.1 Equivalence of the analysis and synthesis regularization

A first set of source localization experiments provides empirical evidence of the equivalence

of the analysis and synthesis models for the physics-driven inverse problems. In particular,

we compare their respective performance as a function of the number of microphones and

white noise sources, while using the three chosen convex functionals fr (the ℓ1, joint ℓ2,1 and

hierarchical ℓ2,1 norms).

To avoid a potential bias in the results if iterative methods are used to solve the least squares

step of SDMM, we restrict the experiments to a small scale problem for which direct methods

are still applicable. The domain is an artificial two dimensional spatial grid of size 15×15,

simulated through 50 time samples. Boundary conditions are modeled by Robin condition,

tuned by setting α= 100 to approximate Neumann boundary condition. The results (figures

4.7, 4.8, 4.9 and 4.10) are given in the form of phase transition graphs, in terms of SNRp̂, SNRẑ

and the frequency (empirical probability) of perfect localization (error per source is zero).

The simulations concern cases when the emission time te of the sources is comparatively

long (te = 45 time samples), short (te = 20) and very short (te = 5). In all these settings,

when the same objective fr is used, figures 4.7, 4.8 and 4.9 verify point-to-point that both

the analysis and synthesis approach provide numerically identical results. Regarding the

emission duration, its effect is mostly pronounced in the last scenario (te ≪ τ, figure 4.9),

when the performance is adversely affected. Finally, we remark that the structured norms

outperform classical ℓ1 minimization, as predicted.

Therefore, we will use only the structured norms in the remaining experiments.

4.4.2 Comparison with GRASP

Now the GReedy Analysis Structured Pursuit (GRASP) algorithm [188]15 is tested on the same

localization problems as in the previous subsection. Its performance for different emission

durations is presented in figures 4.10a, 4.10b and 4.10c.

It is evident that convex approaches outperform the GRASP algorithm in terms of source

localization, except perhaps the ℓ1 minimization for the very short emission setting. The

results in terms of SNR values are deceptive, as GRASP performs least-squares fitting to the

estimated cosupport in each iteration. This means that, provided it has detected the correct

spatial support (i.e. the localization is successful), its estimate will have high SNR. But the same

technique can be applied to any convex approach, after completing the source localization

step. Concerning the emission duration, performance of GRASP is stable with respect to

changes of te, due to its structure-aware cosupport estimation.

15The pseudocode of GRASP is provided in appendix D.
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Chapter 4. (Co)sparse acoustic source localization

(a) The ℓ1 norm: localization probability (left) and estimation SNR (right).

(b) The joint ℓ2,1 norm: localization probability (left) and estimation SNR (right).

(c) The hierarchical joint ℓ2,1 norm: localization probability (left) and estimation SNR (right).

Figure 4.7 – Long source emission time (te = 45).
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(a) The ℓ1 norm: localization probability (left) and estimation SNR (right).

(b) The joint ℓ2,1 norm: localization probability (left) and estimation SNR (right).

(c) The hierarchical joint ℓ2,1 norm: localization probability (left) and estimation SNR (right).

Figure 4.8 – Short source emission time (te = 20).
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(a) The ℓ1 norm: localization probability (left) and estimation SNR (right).

(b) The joint ℓ2,1 norm: localization probability (left) and estimation SNR (right).

(c) The hierarchical joint ℓ2,1 norm: localization probability (left) and estimation SNR (right).

Figure 4.9 – Very short source emission time (te = 5).
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(a) Localization probability (left) and estimation SNR (right) for te = 45 (long, compare with fig. 4.7).

(b) Localization probability (left) and estimation SNR (right) for te = 20 (short, compare with fig. 4.8).

(c) Localization probability (left) and estimation SNR (right) for te = 5 (very short, compare with fig. 4.9).

Figure 4.10 – GRASP performance for different emission durations.
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4.4.3 Dropping the terminal condition

The terminal condition is quite a strong assumption for practical applications. Even though

it is necessary if the aim is accurate recovery of the field, it might be relaxed if our primary

goal is source localization. To test this setting, we simply drop the functional fc2 (Aτp), and

allow sources to emit beyond the acquisition time limit (te > τ= 0.425s). Note that one cannot

discard the initial conditions in the same way, since, in that case, even the forward model

(4.21) becomes ill-posed.

The phase-transition graphs, given in figure 4.11 (experimental setting is equivalent as for fig-

ure 4.7), indicate that source localization is possible, despite violating the terminal condition

requirement. Encouraged by this result, in the subsequent experiments, the terminal condi-

tion is not assumed any more. We do notice certain decrease in signal recovery performance

compared to results in figure 4.7, in terms of source signal estimation (SNRz). Counterintu-

itively, we notice slight improvement in source localization performance (the far left region of

the first graph in figure 4.11).

Figure 4.11 – Localization probability (left) and SNR (right) without terminal condition.

4.4.4 Scalability

A second series of source localization experiments compares the scalability potential of the

two models for the acoustic source localization. Here we are interested in studying the

computational cost as a function of both the problem size and the number of measurements.

Using the results obtained by the experiments in the previous Subsection, we restrict the

experimental setup to the regime where perfect localization is highly probable. The objective

function is the hierarchical joint ℓ2,1 norm defined in subsection 4.3.4 and sound sources are

modeled by white noise. Boundary condition is again the approximated Neumann condition,

as in the previous Subsection.

In both analysis and synthesis case, we use the LSMR iterative method to approximately solve

the least squares problem (3.28). This is necessary to avoid building and storing a fully dense

coefficient matrix for the synthesis model (its storage cost would be of the order of 1011 bytes
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Figure 4.12 – Computation time relative to the problem size.

in double-precision floating point format). In order to ensure there is no bias towards any of

the two models (the primal/dual residuals (A.13), defined in appendix A.2, may be influenced

by norms of the involved matrices), an oracle stopping criterion is used: iterations stop when

the objective function fr (z(k)) falls below β · fr (z) with β= 1.1 and z the ground truth signal.

Influence of the problem size We vary the number of time samples of the problem to verify

that the two approaches scale differently with respect to temporal dimension, by considering

20 different values of t from 50 to 1455. The results on figure 4.12a confirm our predictions: the

computational cost per iteration for the cosparse optimization problem grows linearly with t,

while the cost of its synthesis counterpart is nearly quadratic. Moreover, the difference between

the two models becomes striking when the total computation time is considered (figure 4.12b),

since the synthesis-based problem exhibits cubic growth. Finally, we are unable to scale

the synthesis problem above t = 203, due to significantly increased memory requirements

(Table 4.1) and computation time.
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Figure 4.13 – Computational cost vs number of microphones m.
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Influence of the number of measurements Keeping the number of variables n fixed, we

now vary the number of measurements in the acoustic scenario. Given the complexity analysis

in section 3.5 and subsection 4.3.5, we expect the per-iteration complexity of the analysis

model to be approximately independent of the number of microphones m, while the cost of

the synthesis model should grow linearly with m.

The results shown on figures 4.13a and 4.13b confirm this behavior in terms of computational

cost per inner iteration: in the synthesis case, it grows at almost linear rate, while being

practically independent of m in the analysis case. However, the number of (outer) SDMM

iterations decreases with m for both models. Overall, the total computation time increases

in the synthesis case, but it decreases with the number of microphones in the analysis case.

While perhaps a surprise, this is in line with recent theoretical studies [225] suggesting that

the availability of more data may enable the acceleration of certain machine learning tasks.

Here the acceleration is only revealed when adopting the analysis viewpoint rather than the

synthesis one.

Scaling to 3D The optimization problems generated by the sparse analysis regularization

scale much more favorably than in the case of the synthesis regularization, which allows

us to test the approach in three-dimensional setting. Therefore, the spatial domain Γ is

now modeled as a shoebox room of dimensions 2.5m× 2.5m× 2.5m, discretized by cubic

voxels of dimension 0.25m×0.25m×0.25m, as shown in figure 4.14 (left). The acquisition

time is set to t = 5s, and the sampling frequency is set to fs ≈ 2.4kHz such that it ensures

marginal stability of SLF scheme (with speed of sound c = 343m/s). This discretization yields

an optimization problem with roughly 1.2×107 variables, which is clearly out of reach for the

synthesis approach. The number of microphones is set fixed to m= 20 and the number of

sources is varied from k= 1 to k= 10. The emission duration of the sources is set to te = 4s,

and the joint ℓ2,1 norm is used as objective.

In terms of source localization, we obtained 100% accuracy for the given problem setup.
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Figure 4.14 – 3D spatial discretization (left) and source recovery performance vs k (right).
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Hence, we confirm that the localization approach is applicable, at least in this simplified three

dimensional setting. The results presented in figure 4.14 (right) show the expected decrease in

SNRẑ when the number of sources increase. Finally, we remark that the computational time

in this case is considerably high, indicating that more refined optimization approaches are

needed when the number of variables is this large.

4.4.5 Model parameterization

After verifying that the synthesis and analysis model are indeed equivalent, but that only the

latter is scalable to realistic dimensions, we no longer consider sparse synthesis regularization.

In this subsection, we investigate the source localization performance as a function of model

parameters. For this purpose, the experiments are performed in two-dimensional space of size

4.25m×4.25m, and the acquisition time is set to 0.425s. With spatial discretization stepsize

of 0.25m×0.25m, and standard sound speed c = 343m/s, we end up with the modest scale

problem involving ∼ 250000 variables (for which sparse Cholesky factorization is still a viable

least squares solver). All experiments are performed with the joint ℓ2,1 norm objective.

Absorption Neumann boundary condition is a valid approximation for good acoustic reflec-

tors, such as walls or glass windows. However, in more realistic room acoustics, one needs

to consider the absorption effects of the materials, such as soft floors (e.g. carpets) and tile

ceilings. To investigate the performance as a function of absorption, we use Mur’s bound-

ary condition (3.18), and vary the specific acoustic impedance coefficient ξ between 0.01

(approximate Dirichlet condition, highly reverberant) and 10 (approximate Neumann, also

highly reverberant). In between these, as mentioned in Subsection 4.1.2, when ξ is close to 1,

the absorption of the scheme is the highest. In that case, the reflection coefficient in (4.10)

becomes close to zero for normal incidence waves.

The results are presented in figure 4.15a. We used the same number of microphones (m= 20)

for all experiments, while the number of white noise sources k is varied from 1 to 10. The

results suggest that absorption has negative effect on localization performance. While this is

perhaps counterintuitive from traditional point of view, where less reverberations are welcome,

in physics-driven acoustic localization it is not the case. On contrary, since reverberation is

implicitly embedded in the physical model, the approach actually benefits from redundant

information obtained from this acoustic multipath.

Frequency A bandlimited signal model is a usual assumption in digital signal processing.

To that end, we investigate localization performance as a function of source cutoff frequency.

The sources are generated by lowpass filtered white noise, with normalized cutoff frequency

ranging from 0.01 to 0.5 (i.e. no low-pass filtering applied). Again, the number of microphones

is kept fixed to m= 20, and the number of sources k is varied. The boundaries are modeled by

approximate Neumann condition.
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Chapter 4. (Co)sparse acoustic source localization

(a) Specific acoustic impedance ξ. (b) Upper bound on source frequency fcutoff.

Figure 4.15 – Effects of model parameters on (empirical) perfect localization probability.

The performance graph, given in figure 4.15b, shows a dependency of perfect localization

probability and localization error, with regards to the cutoff frequency and the number of

sound sources k. The results lead to the conclusion that previous results, without source

signal filtering, are unrealistically accurate (this is again observed by the abrupt “jump” in

performance for fcutoff = 0.5). This is related to so-called inverse crime phenomenon, discussed

in the following subsection. Considering bandlimited sources, the performance seems to be

stable with respect to cutoff frequency.

4.4.6 Robustness

In order to verify the robustness of an algorithm by numerical simulations, one should avoid

committing the so-called inverse crime [135]. This is the scenario in which the measurement

data (namely, the y vector in our case) is generated using the same numerical forward model

which is later used to solve the inverse problem. That is, some modeling error should be

introduced to simulate real-world conditions. Bear in mind that the additive noise is not

sufficient - ideally, the algorithm should be robust to model imperfections and noise at the

same time.

To avoid the inverse crime, we now consider an acoustic 2D setting where the simulated data

is first generated on a fine grid of size 121×121×6121, before solving the inverse problem on

a coarse grid of size 25×25×1225 (both grids simulate a virtual 2D space of size 5×5m2 with

recording and emission times set to 5s). Microphone positions correspond to the nodes of

the crude grid, while white noise sources are arbitrarily distributed at the nodes of the fine

grid. Before downsampling, the fine model data is temporally low-pass filtered to reduce

the aliasing effects. The product16 Ax̃ is now only approximately sparse, and to account for

16x̃ is the crude version of the “fine” data vector x.
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Figure 4.16 – Experiments with model error included.

this model error we increased the data fidelity parameter ε to 0.1. The results shown in the

figure 4.16a imply that we are able to localize up to two sources with an error on the order of

the crude grid’s spatial step size.

It is noteworthy that automatic localization, based on the ℓ2 norm of a spatial group ẑj, is now

a non-trivial task. This is due to the spatial aliasing effect, which makes actual source positions

contained within “blurry zones”, as opposed to distinct points in space in the inverse crime

setting. Thus, it is possible that the naive clustering procedure we use to determine source

locations has a significant impact on localization performance and presented results.

In the last series we consider the case with only one sound source and m= 10 microphones,

in a 3D spatial domain. The number of sources is restricted in order to compare localization

performance against a state-of-the-art algorithm [84], based on SRP-PHAT, that supports

only the single source scenario. The “physical” settings are the same as for the previously

conducted 3D experiments in the inverse crime setting (cubic room of size 2.5m×2.5m×2.5m,

acquisition time τ= 5s, fs ≈ 2.4kHz), except that now different grids are used for generating

data and solving the inverse problem (fine grid consisting of 0.125m×0.125m×0.125m voxels,

and crude grid with voxels of size 0.25m×0.25m×0.25m). Boundary conditions are modeling a

hard wall structure, therefore reverberation is significant. As in the 2D case, the measurement

data is low-pass filtered before processing by the algorithms.

The results in figure 4.16b reveal that cosparse acoustic localization, in this setting, performs

significantly better than the SRP-PHAT algorithm. The median localization error of our method

is only slightly higher than the tolerance threshold, suggesting that the estimated locations are

close to the ground truth positions. On the other hand, the localization error of SRP-PHAT

is on the order of half the room size, which means that it does not perform better than the

uniformly random location selection. We remark that this is a highly unfavorable setting for
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SRP-PHAT, due to very high reverberation times. Additionally, we feel that the simulations

may be biased towards the cosparse approach, which uses the analysis operator based on

the crude grid, but otherwise accurate (whereas SRP-PHAT is completely unaware of the

environment). Therefore, more exhaustive experiments are needed, using the data generated

by a fundamentally different model, such as the image source model [8].

4.5 Summary

This chapter was concerned with sound source localization in the physics-driven context.

After discussing physics of sound propagation, along with state-of-the-art in source local-

ization, we proceeded to development of the localization method based on physics-driven

framework. This was done by the “recipe”: the physical model of sound propagation was used

to formulate an optimization problem regularized by the (structured) sparse analysis or sparse

synthesis data model.

The equivalence of the two models in the physics-driven setting, as well as the predicted

numerical advantage of the analysis approach, have been experimentally verified. Additionally,

we observed that the analysis-based optimization benefits from the increased amount of

observation data, whereas the synthesis-based one exhibits an increase in computational

complexity, resulting in orders of magnitude gain in processing time for the analysis versus

synthesis approach. Favorable scaling capability of the analysis approach allowed us to

formulate and solve the regularized inverse problem in three spatial dimensions and realistic

recording time. This required solving a huge scale convex optimization problem, which was

addressed by the Weighted SDMM algorithm.

We investigated the effects of various model parameters on the source localization perfor-

mance. It has been observed that the increased boundary absorption has a negative impact on

the accuracy of source localization, confirming our claim that the major benefit of this physics-

driven approach comes from the acoustic multipath diversity. Finally, the robustness of the

approach was exercised using different discretization for the generative and inverse models.

In this simplified setting, the cosparse approach outperformed state-of-the-art SRP-PHAT

source localization algorithm.

The following chapter extends the cosparse sound source localization concept to more chal-

lenging scenarios, where some physical parameters of the environment are unknown be-

forehand, and have to estimated simultaneously with localization. In addition, we discuss

application of the physics-driven approach to an interesting hearing behind walls localization

problem.
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5 Extended scenarios in cosparse

acoustic source localization

In the previous chapter we applied the physics-driven framework to develop a sound source

localization approach. By exploiting the acoustic multipath and scaling capabilities of the

cosparse regularization, we proposed a method that offers competitive and robust perfor-

mance in indoor source localization. However, it is based on rather strong assumptions,

regarding the accurate knowledge of domain geometry, propagation medium and boundary

conditions. Such information is rarely available in practice, which may seriously limit the

usefulness of the approach in real applications. Therefore, in this chapter, we aim at weakening

some of these assumptions, by learning physical parameters directly from measurement data.

The methods developed for this purpose can be seen as (semi) blind analysis operator learning

algorithms. In fact, the last decade has seen major breakthroughs in addressing the related,

so-called dictionary learning problems [239, 92, 169, 4, 150] for the sparse synthesis data

model. These are even more difficult than standard sparse recovery inverse problems, as in

this case even the dictionary D is not known in advance. On the other hand, as demonstrated

on several occasions [168, 216, 260, 93, 4], even if general-purpose dictionary is available for a

certain class of signals, learning (or improving) it adaptively may offer substantial performance

gains. As for the cosparse analysis data model in general, learning the analysis operators (or

the “analysis dictionaries”) is a recent and fruitful research axis [224, 258, 215, 261]. In our

case, we would not learn the operator from scratch, but rather adapt it to the observed data,

by learning some of its parameters.

More particularly, we address the problem of blind sound speed estimation in the first section

of the chapter. In the second section, we challenge the problem of blind specific acoustic

impedance learning, i.e. learning the absorption properties of the boundaries. The third

section, is different: here we do not discuss the analysis operator learning problem, but

instead provide a glimpse of potential applications enabled by the physics-driven framework.

It is dedicated to an application we label hearing behind walls. In the final, fourth section we

provide the summary and note the contributions. The material in this chapter is mostly based

on publications [26, 25, 142].
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5.1 Blind estimation of sound speed

It was already mentioned, in subsection 4.1.1, that the speed of sound is considered only

approximately constant, i.e. the propagating medium is only approximately isotropic. In

reality, however, the speed of sound is a slowly varying function of position and time, e.g.

due to differences in temperature in different regions of the spatial domain Γ. Even if we

assume that the sound speed is indeed constant, its exact value might be unknown (it could

be estimated from (4.6) if the temperature information is available). If the speed of sound

estimate is very inaccurate, the physical model embedded in the analysis operator will be

wrong. The effects of such model inaccuracies have been exhaustively investigated [126, 50],

and are known to significantly alter regularization performance.

Therefore, our goal here is to simultaneously recover the pressure signal (more precisely,

to localize the sound sources) and estimate the slowly varying sound speed c(r, t). We are

particularly interested in this scenario for practical reasons. Imagine a room equipped with an

air-conditioner or a radiator that are turned on during the recording process. The induced

temperature gradient slowly changes in space and time due to the diffusion process.

5.1.1 The BLESS algorithm

Let us first formally define the inverse problem. Consider the FDTD-SLF discretization

scheme in appendix B.1 (we use 2D for clarity, but this easily extends to 3D case). In-

stead of a fixed sound speed c, we now have varying c(r, t) = ct
i,j. By denoting q = c−2 =

[

c11,1 c12,1 . . . ct
i,j . . .

]T−2

∈R
n, we can represent the analysis operator A as follows:

A = A1 +diag
(

q
)

A2, (5.1)

where the singular matrices A1 and A2 are obtained after factorizing q in (B.1). This leads to

the optimization problem involving both the pressure p and the unknown inverse of squared

sound speed q (here we use fd =λ fq from (1.5) for the data fidelity term):

minimize
p,q

fr (Ap)+λ‖Mp−y‖2
2 +χℓ2=0

([
A0

A∂Γ

]

p
)

s.t. A = A1 +diag
(

q
)

A2. (5.2)

Recall that A0 and A∂Γ are row-reduced matrices of A, corresponding to initial and boundary

conditions, and that the terminal condition (t = τ) has been abandoned as of subsection 4.4.3.

For clarity, we will denote B =
[

A0
A∂Γ

]

, and, since this is only a submatrix of A, it can be also

represented as a sum

B = B1 +diag
(

q0,∂Γ

)

B2 (5.3)

where diag
(

q0,∂Γ

)

denotes the corresponding submatrix of diag
(

q
)

. The regularizer fr is

again the joint ℓ2,1 norm (4.26).
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5.1. Blind estimation of sound speed

(a) r= 1 (b) r= 2 (c) r= 3 (d) r= 4

Figure 5.1 – Shape of q = F[r]
null

a for different values of r.

Due to the presence of the bilinear form diag
(

q
)

A2p, the problem (5.2) is non-convex. How-

ever, it is biconvex, i.e. it is convex in each variable (but not jointly!). This allows for simple

alternating minimization with respect to p and q, which is locally convergent1, by definition:

p(i+1) = argmin
p

fr (A(i)p)+λ‖Mp−y‖2
2 +χℓ2=0

(

B(i)p
)

q(i+1) = argmin
q

fr

(

A1p(i+1) +diag
(

A2p(i+1)
)

q
)

+χℓ2=0

(

B1p(i+1) +diag
(

B2p(i+1)
)

q0,∂Γ

)

A(i+1) = A1 +diag
(

q(i+1)
)

A2, B(i+1) =
[

A(i+1)
0

A(i+1)
∂Γ

]

. (5.4)

Unfortunately, iterating this scheme reveals that there are points p̂ and q̂ which yield very low

objective value fr , but do not recover the original signals. If we inspect the iterates, it becomes

clear why this is the case. Since the matrix A1 is singular, for the squared inverse speed of

sound estimate q̂ = 0, the corresponding pressure field estimate is p̂ ∈ null
([

A1
M

])

(there is

always a non-trivial intersection between the null spaces of the two matrices2). Obviously,

these are not the estimates we are looking for, and to avoid this behavior, we need to bound the

estimate q̂. Fortunately, one can easily devise lower and upper bounds for the speed of sound

in practice: for instance, the upper bound may be given by the maximal allowed propagation

speed prescribed by the CFL condition (appendix B.1), while the lower bound can be based on

the lowest considered temperature of the environment (using the formula (4.6)).

Moreover, the intrinsic degrees of freedom in the structure of a real world medium are often

much smaller. Recalling the assumption of a slowly-varying speed of sound (analogously,

a slowly varying q), we may decide to promote some level of smoothness in the estimate q̂.

One way to do it, is to assume that the rth derivative approximation of the field q along each

spatiotemporal dimension is close to zero, i.e.

F[r]q = 0 ⇔ q = F[r]
null

a (5.5)

where F[r]
null

is a null space basis of the rth order finite difference matrix F[r]. This is actually the

space of sampled polynomials of order r−1, as illustrated in figure 5.1. Given the assumption

1In terms of the objective value [114].
2The last s columns of the matrix A1 are all-zero, as well as most of the corresponding columns of M.
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Chapter 5. Extended scenarios in cosparse acoustic source localization

(5.5), the number of degrees of freedom is dramatically reduced (since the dimension of

null
(

F[r]
)

is only rd, where d is the number of dimensions).

By usual variable splitting, the optimization problem is now modified to

minimize
p,z,a

fr (z)+λ‖Mp−y‖2
2 +χℓ2=0

(

z0,∂Γ
)

+χαmin¹·¹αmax

(

F[r]
null

a
)

s.t. z =
[

A1 +diag
(

F[r]
null

a
)

A2

]

p. (5.6)

We could apply alternating minimization in order to find a local optimum of the optimization

problem (5.6). However, we will instead use a biconvex version of ADMM, which is known

to exhibit better empirical performance [39, 1, 253, 232]. Following the formulation of aug-

mented Lagrangian (A.2), the development is straightforward. We term the algorithm Blind

Localization and Estimation of Sound Speed (BLESS) (the pseudocode is given in Algorithm 3).

Algorithm 3 BLESS

Require: y, M, A1, A2, F[r], λ, αmin, αmax, µ1, µ2

1: p(0) = MTy, a(0) = 1 ·0.5(αmax−αmin), w(0) = 0, u(0)
1 = 0, u(0)

2 = 0

2: z(i+1) = PΦ

(

prox1/λ f

(

A(i)p(i) +u(i)
1

))

3: p(i+1) = argmin p
µ1

2 ‖A(i)p−z(i+1) +u(i)
1 ‖2

2 +
µ2

2 ‖Mp−y+u(i)
2 ‖2

2

4: a(i+1) = argmin a ‖diag
(

A2p(i+1)
)

F[r]a−z(i+1) +A1p(i+1) +u(i)
1 ‖2

2
subject to αmin ¹ F[r]a ¹αmax

5: A(i+1) = A1 +diag
(

F[r]a(i+1)
)

A2

6: u(i+1)
1 = u(i)

1 +A(i+1)p(i+1) −z(i+1)

7: u(i+1)
2 = u(i)

2 +Mp(i+1) −y

8: if convergence then

9: terminate
10: else

11: i← i+1
12: go to 2
13: end if

14: return p̂ = p(i+1), ẑ = z(i+1), ĉ =
[

F[r]a(i+1)
]−1/2

PΦ(·) is the projection operator on the constraint set Φ=
{

z | z0,∂Γ = 0
}

, while fr is the joint ℓ2,1

norm, as mentioned before. The z(i+1) update is closed form evaluation of prox1/λℓ2,1+χΦ
(·).

5.1.2 Simulations

In order to demonstrate the joint estimation performance of the proposed approach, a rectan-

gular 15×15 grid is simulated by placing 1 ≤ k≤ 18 white noise sources uniformly at random

in space. Sources emit random frequencies for a duration of 100 time samples, which is equal

to the experiment duration (acquisition time τ). The boundaries are modeled by Neumann

boundary condition, and the field q is generated by randomly selecting the vector ã and then
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5.1. Blind estimation of sound speed

Figure 5.2 – The original sound speed (left) c and the estimate (right) ĉ (the diamond markers indicate
the source spatial positions).

solving the optimization problem

q = F[r]
null

·argmin
a

‖a− ã‖2
2 s.t. αmin ¹ F[r]

null
a ¹αmax

with parameter r set to 1, 2, 3 and 4. The pressure field is measured by 3 ≤m≤ 90 randomly

located noiseless microphones and the field parameters a and p are estimated by means of the

BLESS algorithm. In current implementation, we enforce only spatial smoothness, meaning

that the finite difference matrix F[r] applies differentiation exclusively along spatial dimensions

(the speed of sound is constant over time). In each setting we conduct 50 experiments, and

after every simulation, k positions with highest energy are chosen as estimates of the source

locations. When localization is successful, the parameter field is often perfectly recovered,

as demonstrated in figure 5.2. However, the degrees of freedom within q increase with r

and, therefore, the performance is expected to decrease, which is confirmed experimentally

in figure 5.3. Overall, the results are promising, but the experiments with spatiotemporally

varying speed of sound have not been conducted, and will be the subject of future work.

Figure 5.3 – Empirical localization probability with known (top) and estimated (bottom) sound speed.
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Chapter 5. Extended scenarios in cosparse acoustic source localization

5.2 Blind estimation of specific acoustic impedance

Fortunately, while estimating the sound speed in air is important, in many cases the initial

guess can be accurate enough (for instance, if the temperature of the room is in approximately

steady-state, calculating c from (4.6) is sufficient). On the other hand, guessing the specific

acoustic impedance ξ in (4.10) is much more difficult. In practice, one may consult standard-

ized tables of absorption properties of different structures (e.g. from construction engineering

literature), but this is very inflexible and may be inaccurate (in practice, we need to be certain

about the type of material the boundaries consist of). Another way is to physically measure

the acoustic impedance (e.g. [190, 70, 71]) of the concerned room and use this information

to build the analysis operator. Unfortunately, this requires specific hardware setup and cali-

bration, which makes it also inflexible when considering different acoustic environments. A

less demanding approach is to use only a microphone array and a known sound source, as

presented in [11]. This way one would parametrize the analysis operator for later use with

unknown sources.

Our goal is to go a step beyond aforementioned approaches: we want a method that can

simultaneously estimate the specific impedance ξ and the acoustic pressure/sound source

component (thus also perform source localization). Hence, we are not given any new source

field information, except spatial sparsity assumed earlier. Again, this approach is practically

motivated - the goal is to develop a flexible method, which may be used later on in the real

physical environment where the wall (ceiling, floor etc) structure is not given in advance. We

will see that the problem shares some similarities with the speed of sound estimation problem.

However, there are some notable differences, the most distinct one coming from the natural

observation that boundaries do not change through time (if we exclude opening doors and

similar actions). This assumption will help us reduce the dimensionality of the problem, which

is, otherwise, very ill-posed.

5.2.1 The CALAIS algorithm

The development of the approach begins in a similar fashion as in the speed of sound es-

timation case (same as before, we will discuss the 2D case, but the main principles can be

straightforwardly extended to 3D setting). Again, the FDTD-SLF discretization in appendix B.1

is considered, but we are now interested in discretization of the boundary terms (B.3) and (B.4).

By grouping coefficients involving ξ−1
·,· in these expressions, we can represent the boundary

part A∂Γ of the analysis operator as the sum of the following two component matrices:

A∂Γ =









Ã∂Γ1

Ã∂Γ1

. . .

Ã∂Γ1









︸ ︷︷ ︸

A∂Γ1∈Rbt×n

+ diag (Sb)









Ã∂Γ2

Ã∂Γ2

. . .

Ã∂Γ2









︸ ︷︷ ︸

A∂Γ2∈Rbt×n

. (5.7)
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5.2. Blind estimation of specific acoustic impedance

The vector b =
[

ξ1,1 ξ2,1 . . . ξi,j . . .
]−T ∈R

b̃ contains inverse acoustic impedances, i.e. specific

acoustic admittances. The number of elements in b is equal to b̃= b+ (d−2)e+ (d−1)c, where

b is the number of spatial elements corresponding to discretized boundary, e is the number

of edges, c the number of corner nodes and d is the number of spatial dimensions (i.e. d= 2

for 2D)3. The blocks Ã∂Γ1 and Ã∂Γ2 contain fixed coefficients of A∂Γ, while the matrix S ∈R
bt×b̃

is a row-wise concatenation of blocks S̃ ∈R
b×b̃. Each individual block S̃ is almost an identity

matrix, except for the edge and corner nodes, such as in (B.4). We also define the matrix AΓ\∂Γ,

which is the analysis operator A without the boundary rows.

Before proceeding to formulation of an optimization problem, we will discuss the nature of

the admittance vector b. First, its elements are always positive, since ξ> 0 (in practice, we

observed that the positivity constraint χRb+ (b) does not have an influential role). Second,

they are parametrizing enclosure boundaries, which, for rooms, may be composed of walls,

floor, ceiling, windows etc. One immediately realizes that, at least on macroscopic scale, these

structures are approximately homogeneous. For instance, if a side of the room is occupied

by a concrete wall, all admittances corresponding to this part of the boundary should have

very similar values. Hence, b admits even stronger piecewise constant model (of course, one

would need to take care of the ordering of elements within b). This is a weak assumption, and

it usually holds in practice unless the discretization is very crude.

Now, having introduced the involved matrices and assumptions, we proceed to formulating

the optimization problem:

minimize
p,b

fr (AΓ\∂Γp)+χℓ2=0
(

A0p
)

+χℓ2≤ε
(

Mp−y
)

+‖b‖TV +χRb+ (b)+λ‖A∂Γp‖2
2

s.t. A∂Γ = A∂Γ1 +diag (Sb)A∂Γ2 , (5.8)

where ‖·‖TV denotes the total variation norm (1.10), mentioned in chapter 1. By approximating

the gradient with, e.g. the previously defined F[1] matrix operator, this penalty simply writes

as ‖b‖TV = ‖F[1]b‖1. It is known to promote piecewise constant solutions. We remark that,

in principle, the cost (5.8) could be straightforwardly extended to account for the unknown

sound speed, in an attempt to jointly estimate the two parameters. In this work, however, we

assume simplified scenario where the sound speed is known beforehand.

Again, there is a bilinear form embedded into product A∂Γp, and thus, (5.8) is another biconvex

problem. Same as before, we will apply the biconvex ADMM heuristics. The conceptual

pseudocode is given in Algorithm 4, and we term it Cosparse Acoustic Localization, Acoustic

Impedance estimation and Signal recovery (CALAIS). Note that evaluating the minimizers of

the intermediate convex problems (steps 2 and 3) is left to black-box approaches, e.g. we used

the Weighted SDMM algorithm. To accelerate computation, it is warm-started by the estimate

obtained in the preceding CALAIS iteration.

3This corresponds to the number of impedance coefficients needed to model different parts of the boundary,
as explained in appendix B.1.

85



Chapter 5. Extended scenarios in cosparse acoustic source localization

Algorithm 4 CALAIS

Require: y, M, A∂Γ1 , A∂Γ2 , A0, AΓ\∂Γ, b(0), S, ε, λ
1: u(0) = 0, A(0)

∂Γ
= A∂Γ1 +diag

(

Sb(0))A∂Γ2

2: p(i+1) = argmin p fr (AΓ\∂Γp)+λ‖A(i)
∂Γ

p+u(i)‖2
2 s.t. A0p = 0, ‖Mp−y‖2 ≤ ε

3: b(i+1) = argmin b ‖b‖TV +λ‖diag
(

A∂Γ2 p(i+1)
)

Sb+A∂Γ1 p(i+1) +u(i)‖2
2 s.t. b º 0

4: A(i+1)
∂Γ

= A∂Γ1 +diag
(

Sb(i+1))A∂Γ2

5: u(i+1) = u(i) +diag
(

A∂Γ2 p(i+1)
)

Sb(i+1) +A∂Γ1 p(i+1)

6: if convergence then

7: terminate
8: else

9: i← i+1
10: go to 2
11: end if

12: return p̂ = p(i+1), b̂ = b(i+1), Â∂Γ = A(i+1)
∂Γ

5.2.2 Simulations

Experimental setup All experiments are conducted in the simulated two dimensional (rect-

angular) room of size 15 × 15m, with acquisition time set to t = 1s and speed of sound

c = 343m/s. With spatial step size of 1m×1m, this corresponds to ∼ 110000 discrete points in

space and time. For the experiments where we avoid the inverse crime, different grid is used

for generating data: in this case, the spatial step size is 0.5m×0.5m, which yields a discrete

model of size ∼ 450000. The specific acoustic impedance parameters are set to ξ1 and ξ2, for

each pair of opposite “walls”. The number of microphones m and number of sources k are

varied, and the final results are averages over 20 realizations. White noise sound sources emit

during the whole acquisition period (0,τ], except for t = 0, due to the homogeneous initial

conditions. Four series of experiments are performed:

1. In the first series, we assume idealized (inverse crime) conditions: noiseless measure-

ments and an accurate geometric model. The impedance values are ξ1 = 100 (hard wall)

and ξ2 = 0.3 (soft wall).

2. In the second series, we still consider inverse crime conditions, but with ξ1 = 100 (hard

wall) and ξ2 = 0.9 (absorbing) values. We recall the results of subsection 4.4.5, stating

that the absorbing conditions decrease localization performance. However, this is a

somewhat different setting, since not all boundaries are absorbent.

3. In the third series, we preserve the previous setup, but use different generative and

inversion discretization grids, to avoid the inverse crime. We remark that the sources

are allowed to take positions anywhere in the generative (finer) grid.

4. In the fourth series, the setup is further adversed: we add white Gaussian measurement

noise, such that per-sample SNR is around 20dB, and the piecewise constant model is

compromised by corrupting the vector ξ with AWGN, distributed as N (0,0.01).
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5.2. Blind estimation of specific acoustic impedance

(a) Empirical localization probability.

(b) Signal-to-(estimation) noise ratio corresponding to the acoustic pressure estimation (SNRp̂).

Figure 5.4 – From left to right: i) inverse crime, ξ2 = 0.3; ii) inverse crime, ξ2 = 0.9; iii) grid model error,
ξ2 = 0.9, noiseless; iv) grid and impedance model errors, ξ2 = 0.9, SNR = 20dB.

In each experiment, we first compute the minimal localization RMSE. In the inverse crime

setting, localization is considered successful when this error is zero. In the non-inverse

crime setting, an error on the order of crude grid’s stepsize is tolerated. Having defined

the successfulness criterion, we can calculate the empirical probability of accurate source

localization (RMSE lower than the tolerance). Additionally, we compute the signal estimation

error, in terms of signal-to-noise ratio SNRp̂ = 20log ‖p‖2

‖p−p̂‖2
.

In all experiments, we use λ= 0.1 and the initial estimate b(0) = 1 (the vector of all ones). The

stopping criterion is based on the relative distance between the objective function (5.8) values

(denoted here by f(i)) at two successive iterations:

|f(i) − f(i−1)|
min

(

f(i), f(i−1)
) ≤ 10−4.

The data fidelity parameter ε is set to 0, in all experiments. Thus, the noise variance is assumed

unknown beforehand.

Results According to phase transition graphs in figure 5.4, in the inverse crime setting, the

algorithm achieves high localization accuracy and signal recovery, and is almost unaffected

by the change of impedance value ξ2 (admittance estimate accuracy is demonstrated in

figure 5.5 - left). This suggest that, as long as there is any multipath diversity in the system, the

physics-driven approach will be able to exploit it. Moreover, the CALAIS algorithm achieves

almost identical results as our standard physics-driven localization (comparable to results in

figure 4.7), despite the fact that the impedance parameters are unknown.
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Chapter 5. Extended scenarios in cosparse acoustic source localization

Figure 5.5 – Original and estimated acoustic admittances in the inverse crime (left) and non-inverse
crime (right, the ground truth admittance has been downsampled for better visualization) settings.

When the models are inaccurate, the localization performance deteriorates, as shown in

the two top right diagrams in figure 5.4. Model error affects signal recovery performance

to a lesser extent (bottom row of figure 5.4), which again4 suggests that location estimation

probably needs to be more sophisticated in realistic conditions. The CALAIS algorithm seems

robust to moderate additive noise and reduced accuracy of the piecewise constant model

(fig. 5.4, far right column). Moreover, a high SNRp̂ implies accurate admittance estimation,

as presented in fig. 5.5. Figure 5.6 shows the RMSE statistics when the number of sources

is fixed to k ∈ {1, 2, 3, 4} and the number of microphones is varied (3 ≤m≤ 90), for the most

adverse experimental setting (4). These figures (based on the same series of experiments) give

a different picture than the phase transition diagrams in fig. 5.4. Observing the median results

in fig. 5.6, we conclude that localization is successful provided that k≤ 2 and m> 12. Moreover,

even though the RMSE is above the tolerance for k> 2, it is lower than twice the crude grid’s

stepsize, suggesting that the sources are localized in their immediate neighborhoods.

Figure 5.6 – Non-inverse crime setting (top: k= 1 and k= 2; bottom: k= 3 (left), k= 4).

4We advocated this in subsection 4.4.6 of the previous chapter.
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Figure 5.7 – Prototype “split room” in 2D (left) and the discretized example (right). White pixels: sources,
black pixels: sensors, light gray: “walls”, dark gray: propagation medium.

5.3 Hearing Behind Walls

Equipped with algorithmic tools that can help us learn some physical parameters charac-

terizing the environment, we turn our attention to potential applications. It was already

demonstrated, in chapter 4, that the physics-driven approach is a viable candidate for sound

source localization, particularly in reverberant spaces. On the other hand, its high computa-

tional cost compared to some traditional localization methods may still seem unjust. In this

section, we will demonstrate an application in which the traditional methods necessarily fail,

but the physics-driven localization is possible. Namely, we are interested in the localization

problem where the sources and microphones are separated by a soundproof obstacle, as

illustrated in figure 5.7 (notice that “the wall” does not completely divide the room). We term

the localization problems of this type “hearing behind walls” problems5. These problems are

reminiscent of through-the-wall radar imaging problems (see [9] and the references therein).

The difference is that the latter are based on active techniques (i.e. sending the probe signal

through a semi-penetrable wall to the target), whereas we operate in passive mode and instead

aim at localizing uncontrolled active targets (sound sources).

If the spatial domain Γ includes an obstacle between the microphones and sources, the prob-

lem is insolvable by traditional goniometric methods based on TDOA estimation (subsection

4.2.1 in the previous chapter). The problem is that, for TDOA estimation, the direct propa-

gation path is assumed. The estimation usually involves computing the cross-correlations

between the recorded signals, and then using this information for computing the positions

of the sources. For the spatial domain proposed here, however, cross-correlation between

microphones is not informative, which can be seen on Figure 5.8 (the highest peaks on the

right graph correspond to the reflections). The same can be said for the beamforming meth-

ods discussed in subsection 4.2.2, which, we recall, localize sources by “browsing” the spatial

5“Hearing around walls” may be more accurate.
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Figure 5.8 – The cross-correlations of the impulse responses in a reverberant 2D “room”.

domain for the locations of highest radiated energy. Unfortunately, from the point of observer

(microphone positions), most energy actually comes from the small “gap” between the two

separated areas in the figure 5.7.

However, the physics-driven approach does not impose any explicit restrictions on the shape

of the spatial domain, as long as we can parametrize it by the analysis operator or the synthesis

dictionary. In fact, the problem was already tackled in [87] and approached by the synthesis

regularization, but we abandon this approach due to scalability and computational issues, as

discussed in previous chapters. Moreover, in the previous two sections we developed methods,

with the analysis regularization in mind, that can be used to relax the assumptions on the

knowledge of the physical domain. Therefore, we again discretize Γ to generate the analysis

operator A, which is now assumed known beforehand. Moreover, for demonstration purpose,

we consider the noiseless case. On the other hand, we do not explicitly enforce constraints

on the initial and boundary conditions. Instead, we leave everything to the objective, hop-

ing that the regularizer is strong enough to identify these homogeneous conditions. Thus,

the optimization problem is now formulated as a simple linearly constrained minimization

(‖Mp−y‖2 = ε= 0):

p̂ = arg minp fr (Ap) s.t. y = Mp. (5.9)

The problem is solved by our standard tool, the Weighted SDMM algorithm.

5.3.1 Simulations

Experimental setup in 2D Experiments in two dimensions have been conducted in a sim-

ulated “split room” environment (a1 = 30)× (a2 = 30) presented on Figure 5.7. The number

of sensors is set constant to m = 10 and they have been randomly distributed in the right

bottom quarter of the room. The acquisition time is set to t= 400 and the source emitting

duration is set to te = 10. Increasing the emission time is not an issue, as demonstrated in the

experiments in subsection 4.4.1, as long as the appropriate regularizer is used. In the following
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Figure 5.9 – Precision/recall diagrams for k= 4 (left) and k= 10 (right) sources.

experiments, we actually use the ℓ1 norm instead of more appropriate structured norms, but

we expect good performance since the acquisition time is considerably long.

For each experiment, we place 1 ≤ k≤m wideband sources (modeled as white Gaussian noise

emitters with the amplitude distribution N (0,1)) randomly in the left bottom quarter of the

room. Then, for a given free space distance w between the obstacle and the opposite wall

(from w= 1 - only one pixel wide, to w= 28 - no obstacle), we compute the ground truth signal

p using the standard FDTD-SLF explicit scheme. Finally, the numerical solution p̂ of (5.9) is

computed using the Weighted SDMM algorithm and the experiment is repeated 20 times.

As discussed in subsection 4.3.3, the most likely locations (i, j) are the ones having the highest

temporal ℓ2 norm ẑi,j =
√

∑t
t̃=1

(

ẑt̃
i,j

)2
. If the number of sources in not known in advance, the

detection of source locations is done by applying some threshold λ. In this case, standard

precision Pλ and recall Rλ measures are used to evaluate the localization performance. If we

term the number of correctly identified sources by k̄(λ) and the total number of identified

sources by k̂(λ), these values are equal to Pλ = k̄(λ)/k̂(λ) and Rλ = k̄(λ)/k. In addition, we

compute the empirical probability of accurate source localization given the total number of

sources: Pk = k̄/k. Here k̄ represents the number of correctly identified sources from the set

of locations (i, j) obtained by keeping k highest in magnitude sums Ẑi,j. For measuring the

localization performance, we still maintain the total accuracy principle: to compute k̄(λ) and

k̄ we classify as correctly identified only those locations (i, j) which exactly correspond to the

ground truth position of the sources. In addition, we evaluate the wavefield signal-to-noise

ratio SNRp = 20log10 ‖p‖2/‖p− p̂‖2.

Results in 2D Figure 5.9 shows precision and recall graphs for the cases of k= 4 and k= 10

sources in space, and different widths w. The presented results indicate that already a small

width (w= 5) is sufficient to localize the sources with high accuracy, even when their number

is high. Figure 5.10 (left) presents the empirical probability Pk for varying k and w parameters.

We can see that the localization probability is high, even in those cases where the door width

is considerably small. As expected, the performance is lower for higher number of sources
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Figure 5.10 – Probability of accurate source localization given k (left) and wavefield SNR (right).

(i.e. lower cosparsity) and smaller door width. Figure 5.10 (right) depicts the estimated SNRp,

for the same range of k and w. It seems that these results are correlated with the source

localization probability, although there are some surprises, namely the fact that SNRp is not

the highest for the signals having the highest cosparsity (left side of the SNR graph).

The obtained results are in accordance with physics of propagation. The well-known Huygens-

Fresnel principle6 suggests that there is a minimal door width w̃ beyond which it will be

impossible to detect the sources in the other half of the room: it will always appear as if they

are located at the gap position. This is exactly what happens for very small values of w in our

experiments.

Experiments in 3D As an additional outlook to the scaling capabilities we also conduct two

illustrative experiments in three dimensions.

In the first experiment, we concentrate on a single setup (fixing k= 3 and w= 10) in a simu-

lated space of size (a1 = 20)× (a2 = 20)× (a3 = 20) with duration t= 400, whose results were

obtained by averaging the outcome of 10 consecutive experiments. Figure 5.11 (left) is the

precision/recall graph for this three-dimensional setup. For conveniently chosen range of

thresholds, it was possible to accurately localize the sources in 9 out of 10 experiments. The

computational time per experiment was approximately 2 to 3 times higher than needed for

the 2D experiments presented before.

In the second, more physically relevant experiment, sound propagation is simulated in a

virtual 3D space of size 2.5×2.5×2.5m3, with a separating wall of length 1.5m. The recording

time is set to τ= 5s and the white noise sources emit during the entire acquisition period. The

spatial domain step size is 0.25×0.25×0.25m3 and the sampling frequency is fs ≈ 2.38kHz. In

this case we assumed that the number of sources is known and the experiment is repeated 50

times. The median results presented in figure 5.11 (right), indicate that we are able to perfectly

localize up to three sources.

6Fresnel extended Huygens’s ideas on wave propagation (section 3.2.4) to include interference principles and
diffraction effects.
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Figure 5.11 – Localization performance for the hearing behind walls 3D problems.

5.4 Summary and contributions

In this chapter we addressed some major obstacles on our path to apply physics-driven

sound localization in practice. Additionally, we discussed a localization scenario, generally

unsolvable by traditional methods, that can be addressed by our approach.

By assuming spatiotemporal smoothness of the speed of sound function, we argued that, in

some cases, one may simultaneously perform source localization, signal recovery and speed

of sound estimation. Concerning the blind estimation of specific acoustic impedance, we

have shown that, as long as the piecewise constant model approximately holds, this parameter

can be also estimated in parallel to localization and recovery. To the best of the author’s

knowledge, there have been no attempts so far to perform blind estimation of these physical

parameters, by exploiting spatial sparsity of sound sources. Furthermore, we feel that it is

possible to combine these data models in a joint optimization problem, which would lead to

simultaneous estimation of all parameters and source locations.

Concerning the “hearing behind walls” scenario, we have shown that the absence of direct

propagation path does not render source localization impossible. Indeed, the physics-driven

approach does not depend on convexity of the spatial domain, nor on the existence of direct

propagation path. In an idealized case, the method is able to accurately localize sources

even if the gap connecting the two enclosures is relatively small. With respect to other works

based on the same idea, we are the first to actually demonstrate the effectiveness of spatial

sparsity regularization in three spatial dimensions (thanks to sparse analysis regularization)

and without strong prior assumption on the source frequency band.

Now that we are convinced in the potential of our approach for various real-world acoustic

scenarios, we are also interested in its generalization capability to other physics-driven inverse

problems. Thus, in the forthcoming chapter we shift away from sound and consider a different

source localization problem: localization of cortical sources responsible for epileptic seizures.
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6 (Co)sparse brain source localization

ElectroEncephaloGraphy (EEG) represents a group of methods used for diagnosing physio-

logical abnormalities of the brain. It is based on recordings of brain electrical activity, either

in invasive (i.e. intracranial EEG [154]) or non-invasive manner (i.e. scalp EEG, or only EEG).

It is assumed that the brain electric activity of the human fetus starts between the 17th and

23rd week of pregnancy and continues throughout entire life. These signals can be related

to electrical potentials measured by a sensor array placed at the surface of the head (in the

case of non-invasive EEG), or surface of the brain (in the case of intracranial EEG). The EEG

measurements have been used for variety of clinical applications: monitoring alertness, coma

and brain death, locating damaged brain areas, controlling anesthesia depth, testing drugs for

convulsive effects, diagnosing sleep disorders and investigation of epilepsy and seizure origin

localization (the reader is referred to [235] and the references therein).

Nowadays, EEG is most often exploited for diagnosing and examination of epilepsy. The

“roots” of this irregular brain activity lie in sudden abnormal electric bursts, called paroxysmal

discharges [19]. If an epileptic patient is not responding to drug treatment, a surgical removal

of the epileptic region is an option. Naturally, a prerequisite is that the sources of epileptic

activity are localized by means of EEG, which is the problem formulated as follows:

Given an array of m electrodes, placed on the surface of the head (with a known geometry),

determine locations of k epileptic sources in the brain cortex (the outer layer of the brain).

This challenging inverse problem has been investigated by many researches and approached

from different angles. As the reader might expect, in this chapter we will address the problem

using the physics-driven (co)sparse framework.

The first section briefly introduces the physical model of brain electrical activity in the EEG

context. In the second section, we discuss some methods in brain source localization. The

third section is dedicated to proposed physics-driven localization, whose performance is

exercised through simulations, in the fourth section. In the fifth section we summarize the

chapter and note our contributions. For the greater part, the material in this part of the thesis

is based on publications [7, 139].
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Chapter 6. (Co)sparse brain source localization

Figure 6.1 – The forward and inverse EEG problem 1.

6.1 EEG basics

The forward and inverse EEG problems are illustrated in figure 6.1. The forward problem con-

sists of determining the measured electric potentials on the head surface given the distribution

of “brain sources”, whose origin we elaborate in the following text.

The brain tissue is composed of nerve cells or neurons, depicted in figure 6.2 (left). The

simplified structure comprises the base (or soma), equipped with short, branched projections

called dendrites, and the long projection called axon (or nerve fibre) ending with synapses.

Neurons “communicate” by exchanging specific chemicals, known as neurotransmitters, which

are released by synapses and absorbed by dendrites [19, 217]. For a neuron to release the

neurotransmitter substance, it is necessary that so-called action potential exists, which causes

an electric current to flow through axon. When a sufficiently large group of nerve cells “fires”

simultaneously, the cumulative activity can be detected by measuring electric potentials on

the scalp. It is presumed that this type of activity mostly originates from so-called pyramidal

cells, which are oriented perpendicular to the cortical surface [122]. Therefore, the “brain

sources” represent synchronous activity of a group of pyramidal cells.

Since the cells within each group are approximately parallel, their somas and synapses form

groups of current sources and sinks often modeled as current dipoles. The dipole model,

consisting of the pair of monopoles with the same magnitudes and opposite signs, is often

applied in EEG signal processing. However, it is not the only one: the blurred dipole [45], the

quadrupole [122], irrotational current density source model [209] etc are also used.

In order to be able to interpret the EEG measurements, we need to establish a mathematical

model relating sources to scalp potentials, which is the subject of the following subsection.

1Image by courtesy of [19].
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6.1. EEG basics

6.1.1 Physical model

The head is considered to be a volume conductor with a nonuniform anisotropic conductivity

functional σ(r) and a magnetic permeability2 of free space µ=µ0. Electromagnetic fields are

governed by the well-known Maxwell’s equations (to be consistent with usual physics notation,

here we use the vector symbol~· to denote a physical vector field):

∇·~E =
ρ

ǫ0
(6.1)

∇×~E =−
∂~B

∂t
(6.2)

∇·~B = 0 (6.3)

∇×~B =µ0

(

~J+ǫ0
∂~E

∂t

)

, (6.4)

where “×” denotes the curl operator3. The symbols~E and ~B denote electric and magnetic

fields, respectively, ρ is electric charge density and~J is current density. Informally, electric and

magnetic fields are vector fields defined with regards to electric, respectively magnetic, force

that would be induced on a test particle of unit charge. Electric charge density measures the

amount of electric charge per unit volume, while current density measures the electric current

per cross section of the volume. Precise definition of all these concepts can be found in any

relevant textbook on electromagnetism (e.g. [193], in the context of EEG).

In addition, charge conservation, or continuity equation of electromagnetism, states that

electric charge can neither be created nor destroyed, i.e. the net quantity of positive and

negative charges is the same. Mathematically:

∂ρ

∂t
+∇·~J = 0. (6.5)

Fortunately, when brain sources are considered, one may adopt a simplified quasi-static

approximation of the previous laws. Indeed, usual frequencies in neuromagnetism, i.e. elec-

tromagnetic phenomena related to brain activity, are well below 100Hz [265, 136]. This means

that, if we assume a relatively high sampling rate, the temporal derivatives in the previous

expressions almost vanish: ∇×~E ≈ 0, ∇×~B ≈µ0~J and ∇·~J ≈ 0.

Another common approximation is Ohm’s law, stating that current density is directly propor-

tional to electric field. In terms of EEG, a convenient modification of Ohm’s law [193, 248, 265]

is to represent total current density as a sum of so-called impressed or primary current density

2Conductivity and permeability are intrinsic electromagnetic properties of the medium.
3Curl is the infinitesimal rotation of a 3D vector field ~F. It is implicitly defined by means of a certain

line integral, however the most common definition is given with regards to Cartesian coordinate system:

∇×~F =
(
∂Fz
∂y − ∂Fy

∂z

)

ex +
(
∂Fx
∂z − ∂Fz

∂x

)

ey +
(
∂Fx
∂y − ∂Fy

∂x

)

ez, where ex, ey and ez are the unit coordinate vectors.
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Figure 6.2 – Structure of the multipolar neuron (left) and its electric currents (right) 4.

~Jp =σ~E, and return or secondary current density~Js, shown in figure 6.2 (right):

~J =σ~E+~Js, (6.6)

where σ, as noted before, represents conductivity.

Substituting (6.6) into the quasi-static charge conservation law (6.5), we have ∇·
(

σ~E+~Js
)

= 0.

Finally, due to vanishing curl (6.2), the electric field ~E can be represented by the gradient

of some scalar potential~E = −∇u. This provides us with the final relation between current

density and the induced electric potentials:

∇· (σ∇u) =∇·~Js. (6.7)

Recalling the dipole model of brain sources, this equation can be translated into [122]:

∇· (σ∇u) =
k∑

j=1
z(rj)(δ(r− r−j )−δ(r− r+j ))/d := z, (6.8)

where zj is the magnitude of the jth brain source, d is the distance between two composing

monopoles (i.e. somas and synapses) and r+
j

and r−
j

are their respective locations.

We have actually recovered the familiar Poisson equation (3.11), this time applied to elec-

tric potentials and dipole sources. From subsection 3.2.3, we know that when appropriate

boundary conditions are met, the problem is well-posed, and can be represented compactly

as Au = z (with A being the system composed of (6.8) and the boundary conditions). Then,

the unique integral form (3.6) exists, and expresses surface potentials as a linear function of

current densities: u = Dz. The linear operator D is the Green’s functions basis. The measure-

ments y = Mu are obtained by sampling the potential field u at a finite number of points on

the head surface, by appropriate arrangement of measuring electrodes (e.g. [196]). Therefore,

4Images by courtesy of https://en.wikipedia.org/wiki/Neuron and [19].
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6.1. EEG basics

the measurement operator MD : z 7→ y (in EEG terminology, often called lead field) is also

linear.

6.1.2 Boundary conditions

To define a well-posed forward model dictated by a linear PDE, we need to impose certain

boundary conditions. In EEG, two types of boundary conditions are defined, depending on

the considered spatial position [122]:

• Boundary between two compartments in the head is modeled by (non-homogeneous)

Neumann or Dirichlet boundary condition, e.g.:

~Js1 ·~n =~Js2 ·~n,

where~Js1 and~Js2 represent current densities within compartments 1 and 2.

• Surface boundary (head-to-air boundary) is modeled by homogeneous Neumann con-

dition:

~Js ·~n = 0,

which is more relevant for us, since it (straightforwardly) fulfills the self-adjointness

criterion discussed in subsection 3.2.3.

When all boundaries are modeled by Neumann boundary condition, one needs to impose

additional condition to ensure uniqueness (recall that all-Neumann condition leads to an

additive constant ambiguity). To remedy this non-uniqueness, a reference electrode is chosen

(equivalent to imposing Dirichlet boundary condition at one point of the model), or the

potentials u are assumed to have zero mean [248].

6.1.3 Epilepsy

About one percent of the entire population is affected by epilepsy, making it one of the most

common neuronal diseases, second only to stroke [219]. As mentioned, it arises due to

paroxysmal discharges, that can occur either in the whole cortex (generalized epilepsy), or

they can be localized in the limited brain regions called epileptogenic zones. In the latter

case, use of EEG and MEG (MagnetoEncephaloGraphy) source localization can help identify

epileptogenic zones, which may be then surgically removed. The electroencephalogram

during seizures contains prominent interictal spikes, known to be related to epileptic sources

[193, 219]. Epileptic source localization is especially challenging due to background activity,

which can be seen as “biological noise” - these are the non-epileptic brain sources (e.g. due

to muscle activation) and non-cortical activity (e.g. cardiac). In addition, the measurement

(instrumental) noise is always present.
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6.2 Brain source localization methods

Given the well-posed forward model, we turn our attention to the EEG localization, which

is an inverse source problem. Localization methods can be applied to a single “snapshot”

of observation data (measurements collected at one time instant), or to a temporal block of

measurements (collected during several consecutive time instances). For snapshot methods,

one usually considers time instants corresponding to interictal spikes, as this data usually has

highest SNR with respect to the background activity [19].

However, even in the unrealistic setting where all surface potentials are known, it has been

proven that the EEG inverse source problem (without additional constraints) is ill-posed [73]

(namely, non-unique). Therefore, some form of regularization is always required. Based on

applied hypothesis and techniques, localization methods in EEG can be roughly divided in

two groups [118], briefly discussed in the rest of this section.

6.2.1 Parametric methods

Parametric models generally assume that only few dipoles (brain sources), with unknown

locations and orientations, are responsible for the observed surface potentials. This form of

spatial sparsity is known as equivalent dipole model. Sources are defined by six-dimensional

vectors pj consisting of three spatial coordinates rj (center of the jth dipole), two angles

indicating dipole orientation θj and the magnitude zj. These parameters appear non-linearly

in (6.8), hence the optimization problems in this category are nonlinear and non-convex.

Non-linear least squares There are several methods that directly attempt to minimize

‖y−MDẑ(p1,p2 . . .pk)‖2
2, where ẑ is the (parametrized) estimate of the right hand side of

(6.8). Since the problem is non-linear, methods based on Gauss-Newton [221], Nelder-Mead

[69], simulated annealing [175] and genetic algorithms [194] have been proposed. When used

in a “snapshot” measurement regime, these methods are known as “moving dipole models”,

since the dipole positions are unconstrained, whereas in the block measurement case the

dipole positions can be fixed over the entire interval [15].

Besides uncertainty in the quality of an estimate, due to non-convexity, an obvious downside

of these methods is that the number of dipoles k is required a priori. This is difficult to

estimate automatically, and, in practice, analysts parametrize the problem with different k

until the result is physiologically plausible. However, increasing k makes the problem more

ill-posed, ultimately leading to non-uniqueness. Additionally, it increases the search space

and therefore, the computational cost (which can be significant for simulated annealing and

similar approaches).

Beamforming In the context of EEG, the output of standard beamformer can be seen as a

linear spatial filter applied to the electrode measurements Y ∈R
m×t at time t̃:

wTyt̃ = wT
(

MDzt̃+e
)

, (6.9)
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where yt̃ is the t̃th column of the matrix Y, zt̃ are the brain current densities at time t̃ and e is

the additive noise.

Same as in the acoustic case, the goal is to browse the search space for the high-energy

locations. Therefore, the filter weights wT ∈R
1×m, parametrized by the target vector r, should

suppress all brain sources but the one at the position r. In practice, only a finite number

of locations r is searched, which is equivalent to a discrete source grid zt̃ ∈ R
s. Moreover,

to compute filter weights, the lead field operator MD is required - usually, it is numerically

computed and stored as in a matrix form MD ∈ R
m×s. The discrete version M ∈ R

m×s of the

subsampling operator M , is simply a row-reduced identity matrix, while the Green’s functions

basis D is discretized into a dictionary D ∈R
s×s.

Usually, some minimization criterion is chosen for the filter weights, e.g. the ℓ2 norm. Beam-

formers designed this way are data-independent. An alternative is to exploit the statistics of

the recorded data, to build an adaptive beamformer. One well-known example is the Linearly

Constrained Minimum Variance (LCMV) beamformer, where the idea is to use the minimum

variance estimate, constrained by the unit response at location r [118, 244]:

minimize
w

wT
E(yt̃y

T
t̃

)w s. t. wTMdr = 1, (6.10)

where dr is the column of D coinciding with the unit dipole source at r (i.e. the corresponding

Green’s function). The covariance matrix E(yt̃y
T
t̃

) is usually estimated from the data, and

possibly badly conditioned. Solution of (6.10) requires inverting this matrix, which is done by

applying Tikhonov regularization and/or using iterative methods. The major drawbacks of

LCMV beamformer are sensitivity to noise and correlation between targeted and interfering

sources, which may cause mutual cancellation [72].

MUSIC We already mentioned MUltiple SIgnal Classification (MUSIC) [223] algorithm in

chapter 4, subsection 4.2.1, in the acoustic context. In contrast to its ineffectiveness in indoor

sound source localization, it is widely used in EEG source localization. In a way, MUSIC can

also be seen as a beamforming approach, but with the preprocessing step that is used to

identify signal and noise subspaces. First, the measurement matrix Y is factorized by the

Singular Value Decomposition (SVD), i.e. Y = UΣVT and p largest singular values are identified

(ideally, p= k, but the number of sources is unknown beforehand). The corresponding p left

singular vectors Us = U1:p represent the signal subspace, whereas the remaining ones are

considered to form the noise subspace.

In the second step, scanning is performed, by comparing the signal subspace with the columns

of the lead field matrix MD (more precisely, the Green’s functions for all dipole positions r and

orientations θ). The goal is to find global maximums of subspace correlation, i.e.:

subcorr (d(r,θ),Us) =
‖UT

s d(r,θ)‖2

‖d(r,θ)‖2
, (6.11)

which requires exhaustive search over (discrete) parameter space (r,θ). To reduce computa-
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tional cost, quasi-linear approximation is commonly undertaken - the dipole’s Greens function

is assumed to be separable: d(r,θ) = d(r)θ. Then, search can be done sequentially, by maxi-

mizing subspace correlation for the position r only, keeping p locations that exhibited highest

subspace correation, and then improving these values by tuning their angle vectors θ.

Problems arise if the signal subspace is inaccurately estimated: then, only the first location

can be easily identified during the search. In that case local maxima may compromise the

search for the remaining p−1 global estimators, and some sort of peak-picking routine may

be used. An alternative is the Recursively Applied and Projected (RAP) MUSIC algorithm [181],

where the sources are iteratively localized, by removing their contribution before the new

source is estimated (this way local maxima around the old sources is also removed).

The number of resolvable sources, for MUSIC-like algorithms, is upper-bounded by the

number of microphones: k<m. Since these algorithms are based on correlations, they are

inherently sensitive to synchronized sources. However, for high SNRs, they are more robust

compared to the LCMV beamformer, and can tolerate partially correlated sources [15]. This

means that partially correlated sources whose second moments are statistically independent

can still be resolved. An improvement in this direction was proposed in [6], termed 4th-order

Deflation MUSIC (4-D MUSIC), which further relaxes the partial correlation assumption by

requiring statistical independence of the fourth-order cumulants.

6.2.2 Non-parametric methods

In addition to equivalent dipole model, non-parametric methods also consider so-called

distributed source models. The assumption is that dipole sources with fixed locations and

possibly fixed orientations are distributed in the whole brain volume or cortical surface. Thus,

only the amplitudes and directions need to be estimated. Furthermore, it is usually not

necessary to consider the entire head volume (grid), since it is widely believed that sources of

primary interest are restricted to the cortex. This constraint is usually inferred from Magnetic

Resonance Imaging (MRI) data, where image segmentation techniques are used to determine

the cortical surface of interest.

Bayesian framework If the (discrete) source signal is represented in spatiotemporal matrix

form Z ∈R
s×t, where each column is the dipole distribution at time instant t̃, the measurement

data can be expressed as:

Y = MDZ+E, (6.12)

where E is the additive noise matrix.

In the Bayesian framework, the variables Y, Z and E are considered to be random variables,

denoted here by Y, Z and E. The goal is to yield a posterior point estimate Ẑ, usually in a

form of Maximum A Posteriori (MAP) or conditional mean. The latter, even though argued as

more accurate [16, 135], is usually difficult to compute, due to necessity of evaluating high-
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dimensional posterior integrals. Indeed, for general distributions, evaluating expectations

cannot be done by analytically. Therefore, use of techniques that approximate expectations,

such as Markov Chain Monte Carlo method, is often unavoidable.

MAP is defined as the source signal that maximizes the mode of a posterior distribution:

Ẑ = argmax
Z

p(Y = Y | Z = Z)p(Z = Z) = argmin
Z

− ln p(Y = Y | Z = Z)− ln p(Z = Z), (6.13)

where p(Y = Y | Z = Z) is the conditional probability density function (pdf) related to probability

of observing the measurements Y given the dipole arrangement Z, while p(Z = Z) is the

evaluated prior pdf of the source random variable Z.

A common choice for the log likelihood term ln p(Y = Y | Z = Z) is given by assuming Gaussian

distribution of the noise E:

p(Y = Y | Z = Z) ∝ exp

(

−
1

2σ2
‖Y−MDZ‖2

2

)

, (6.14)

which leads to the MAP estimator:

Ẑ = argmin
Z

1

2σ2
‖Y−MDZ‖2

2 − ln p(Z = Z). (6.15)

When the prior pdf is also Gaussian, the MAP estimate is equivalent to the minimum mean

square error estimate, or Wiener solution [135]. In addition to Gaussian prior pdf, many other

prior distributions have been proposed, such as the ones generated from hierarchical Bayesian

framework / Markov random field models [113, 209].

Penalized least squares This group of methods has been introduced, in broader context, in

subsection 1.2.1 on Variational regularization. The general problem is to find an estimate of

the source term Ẑ by solving the following problem:

minimize
Z

‖Y−MDZ‖2
2 +λ fr (Z), (6.16)

where fr is, as usual, a variational prior functional, and λ is a user-defined scalar parameter.

As mentioned earlier, in some cases the problems generated by the Bayesian and variational

frameworks are identical: e.g. MAP estimation (6.15) with Gaussian prior coincides with

Tikhonov regularization ( fr = ‖LZ‖2
2), for L = I and an appropriate choice of λ. However,

interpretation of one framework through another may be misleading, as pointed out in [119].

In EEG, specific Tikhonov regularization methods are known as Minimum Norm Estimates

(MNE) [19]. Particularly, chooosing L = F[2]diag (w), where F[2] is the discrete Laplacian and

w ≻ 0, leads to popular LOw Resolution Electrical Tomography Algorithm (LORETA) [203] and its

variants [202, 249]. As expected, MNE regularization is known to produce only low-resolution

solutions [15], which is why different priors have been considered. Minimum Current Estimate
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(MCE) [241], on the other hand, is based on fr = ‖diag (w)Z‖1, i.e. it encourages sparsity of

the weighted source term. Note that, in the approaches where the dipole model is assumed,

a particular structure is imposed on the optimization variable Z (otherwise, Z corresponds

to monopole sources). Some approaches assume additional regularity, e.g. a spatiotemporal

structured sparsity, promoted by the joint ℓ2,1 norm [81].

The aforementioned sparsity-promoting penalized least squares are based on the sparse

synthesis data model, due to the explicit use of the lead field matrix. The reader may presume

that all these approaches fit into our physics-driven regularization framework. We recall

that this is true only when an analogous sparse analysis approach can be derived, which

is not always the case. In the following section we will apply the physics-driven (co)sparse

framework of chapter 3, to develop a brain source localization method, and compare it to the

synthesis-based one (i.e. an MCE variant) that does not have an exact cosparse analog.

Perhaps unsurprisingly, the literature on the sparse analysis regularization in EEG is extremely

scarce. The author is aware of only few references, e.g. [178, 170, 164], which are, however,

very recent and not directly related to our work.

6.3 Physics-driven (co)sparse brain source localization

One of our goals is to demonstrate that the physics-driven framework, along with the sparse

analysis regularization, can be employed in the EEG context. As a proof of concept, we will

apply our prescribed procedure to construct a simple “snapshot” signal estimator.

First, let us state the main assumptions:

(A1) Potentials u are recorded by electrodes placed at locations ri, with i= [1,m].

(A2) Out of the total number of point sources q, only k<m are active.

(A3) Sources are located in the cortex Σ and their orientation is known.

(A4) Each current dipole is represented by two monopoles with opposite amplitudes.

The relation between potentials and dipole sources is given by the equation (6.8), with bound-

ary conditions noted in subsection 6.1.2. The reference electrode’s potential is set to 0V. Thus,

we have satisfied the three requirements for the physics-driven approach: existence of the well-

posed physical model, measurement system and sparse singularities. Now, the continuous

domain model needs to be discretized to yield the usual system Au = z.

6.3.1 Discretization and the dipole model embedding

For the left hand side of (6.8) we use a finite difference method proposed by Witwer et al.

[257], described in appendix B.2. This method implicitly assumes all-Neumann homogeneous
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6.3. Physics-driven (co)sparse brain source localization

Figure 6.3 – The dipole model: physiological origin (left), orientation (center) and location (right).5

boundary conditions, thus the difference system it generates is ill-posed. Fortunately, given

the zero reference electrode, the system is easy to stabilize: one simply has to remove the row

and column corresponding to the reference electrode’s position in discretized space Γ. This is

legal because the current density at this location is also equal to zero (by the assumption (A3)).

Since the problem setting is time-independent, we have n := |Γ|−1 = s−1 (due to variable

removal), and the generated analysis operator is A ∈ R
n×n. Furthermore, Z := z ∈ R

n, u ∈ R
n,

M ∈R
n×m and Y := y ∈R

m.

To model the right hand side of (6.8), we impose certain structure onto the vector z = Au. If

the dipole model is assumed, we can think of z as composed of q pairs6 of components with

equal magnitude and opposite sign, and the remaining zeros. Moreover, the non-zeros of z

are restricted by the support set Σ, and their orientations, i.e. positions of the positive and

negative monopoles, are known (illustrated in figure 6.3). This knowledge can be encoded

through a sparse matrix B. Let u− and u+ index the elements of z giving the amplitude of the

monopoles located at positions r− and r+, respectively. Knowing the geometry of the cortex, it

is possible to build a set of q different couples (u−
j

,u+
j

) indexing the q dipoles of Σ. Indeed, by

covering the surface of the gray matter with q monopoles indexed by the integers u−
j

, we can

deduce the q corresponding integers u+
j

such that each dipole is oriented orthogonally to the

surface of Σ, as the pyramidal cells it represents. We can thus express the vector z as z = B z̃,

where B = (bu1,u2 ) is an (n×n) sparse matrix with entries

bu1,u2 =







1 if u1 = u2

−1 if u1 = u+j and u2 = u−
j

0 otherwise,

. (6.17)

and z̃ is an n-dimensional k-sparse vector with n−q known zero elements (the uth element of z̃

is zero if u 6= u−
j

for j ∈ {1, . . . ,q}). Non-zero elements of z̃ represent the amplitude of monopoles

5Image by courtesy of [5].
6Due to finite resolution of the discrete grid, some pairs might share their elements.

105



Chapter 6. (Co)sparse brain source localization

restricted to the cortical surface.

To summarize, the model

Au = z = Bz̃ (6.18)

can be rewritten as

Ãu = z̃, (6.19)

with Ã := B−1 A.

By construction, B is invertible, and the cost of computing some matrix-vector product B−1v

is O(n) if one employs the forward substitution algorithm [111]. Indeed, it can be shown that

there is a permutation of rows and columns of B that yields a lower triangular matrix with ones

on the main diagonal. Since the sparse structure of a matrix is preserved by permutations,

the forward substitution has only linear complexity. In practice, we observed that B−1 is also

sparse, as well as the matrix Ã which is the product of the two sparse matrices.

6.3.2 The analysis vs synthesis regularization

As in the acoustic context, the Green’s functions dictionary D can be computed as the inverse of

the analysis operator A. It is clear from previous discussions, that the equivalent representation

of (6.20) is given by the synthesis model:

u = DBz̃ = D̃z̃, (6.20)

where D = A−1 and D̃ = Ã
−1. The two models are equivalent, but, unlike the matrix A, the

dictionary D is not sparse, and neither is the matrix D̃. The physical interpretation is that

Poisson’s equation models a non-zero steady-state electrical field on the domain given a source

distribution. This can be mathematically verified for the spherical head model where the

analytical solution of the forward problem is available [6].

Support constraints Let Γ1 be the set of possible locations of monopoles at the surface of the

gray matter Σ. The rows of the analysis operator Ã can then be accordingly split into ÃΓ1 and

ÃΓ2 , where ÃΓ1 is the (q×n) submatrix of Ã obtained by extracting the rows corresponding to

the support set Γ1, and ÃΓ2 corresponds to the rows indexed by the complementary set Γ2.

Convex relaxation Signal estimation is performed by solving either the analysis sparse

minimize
u

fr (Ãu)+ fd (Mu−y)+ fc (ÃΓ2 u), (6.21)

or, the synthesis sparse problem

minimize
z̃

fr (z̃)+ fd (MD̃z̃−y)+ fc (z̃Γ2 ), (6.22)
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from which the dipole estimate ẑ = Bz̃ = Au is easily deduced. The reader may observe that the

boundary term is again excluded, but the homogeneous boundary conditions are promoted

through the objective functional fr . Particularly, we used standard convex relaxation by the

ℓ1 norm, since the sources are assumed sparse and the dipole structure is already embedded

into the modified analysis operator/synthesis dictionary. As a measure of data-fidelity, we

again use the characteristic function χℓ2≤ε (·), while for the fc penalty, we used either the

characteristic function χℓ2≤σ (·), with σ= ε, or the weighted sum-of-squares term λ‖ ·‖2
2.

Localization The brain sources can then be detected either by thresholding, or by keeping k

highest in magnitude dipoles ẑ = Bz̃, given the estimate of z̃.

Minimum Current Estimate Another way of encoding knowledge about the source support

set Γ1 is to factorize z̃ = R s, where R = (ru1,u2 ) is an (n×q) expanding sparse matrix defined by:

ru1,u2 =







1 if u1 = u−
j

and u2 = j,

0 otherwise.
. (6.23)

for j ∈ {1, . . . ,q}.

Using the expanding matrix R (6.23), a second synthesis sparse problem can be solved in

order to localize brain sources. It consists in solving (3.22) with the dictionary D̄ = A−1 R.

In section 6.4, the corresponding optimization algorithm will be named Minimum Current

Estimate (MCE) to refer to a similar approach proposed in [241]. Note that, in this case, an

equivalent cosparse optimization problem cannot be readily designed, since the matrix D̄ is

not invertible.

6.4 Simulations

The experiments conducted here are not as exhaustive as the ones performed in the sound

source localization chapter. Instead, we targeted computational complexity issue of the sparse

vs cosparse approaches, recognized also in the acoustic case. Nevertheless, we included the

MCE algorithm in all simulations. Moreover, in the experiments investigating the robustness,

we compare the physics-driven (co)sparse localization against several other state-of-the-art

methods.

6.4.1 Settings

In all experiments, k= 3 distant epileptic dipoles are placed in the gray matter of the superior

cortex. A physiologically-relevant stochastic model [130] is used to generate the spike-like

interictal epileptic activity. It is noteworthy that this activity is the same for the three epileptic

dipoles, leading to synchronous epileptic sources. On the other hand, the background activity,

i.e., the activity of non-epileptic dipoles of the gray matter, is generated as Gaussian and as
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Chapter 6. (Co)sparse brain source localization

(a) The example time series of a single EEG sensor electrode. (b) The spherical head model.

Figure 6.4 – An example measurements and the head model.7

temporally and spatially white. Its power is controlled by a multiplicative coefficient in order

to get different Signal to Noise Ratio (SNR) values. Recall that we decided to work in “snapshot”

regime, as explained in section 6.3, where the selected electrode measurement matches the

time sample where the highest signal amplitude is observed, corresponding to the top of the

interictal spike (illustrated in figure 6.4a). The electrodes were placed on the scalp sphere using

the 10−5 system [196]. For the head model, we used three nested concentric spheres (figure

6.4b) with radius (cm) equal to 7, 8, 9.2, and piecewise constant conductivities (siemens/cm)

equal to 1, 0.0667, 1, 10−10.

Concerning the sparsity- and cosparsity-based approaches, we used our standard convex

optimization tool, the Weighted SDMM algorithm. The stopping criterion is parametrized by

the relative accuracy (µ= 0.01) and the iteration count (104). The data-fidelity parameter ε

set to 0, i.e. enforcing the equality constraint (thus. we make no assumptions on the noise

variance). Due to the moderate scale of the EEG problem, we are able to use a direct solver

(Cholesky factorization) for the evaluation of the least squares minimizer in (3.28).

The quality of localization is presented in the form of RMSE ‖r̂−r̄‖2, per source (with r̂ and r̄ the

estimated and true source location, respectively). We did 50 realizations of each experiment,

all run on Intel® Xeon® 4-Core 2.8GHz, equipped with 32GB RAM.

6.4.2 Scalability

Analogously to the acoustic case in subsection 4.4.4, we first investigate how the analysis

and synthesis regularizations compare in terms of scalability. The number of measurement

electrodes is kept fixed at m= 128. We vary the discretization at 11 different scales, yielding

uniform grids with a number of nodes ranging between s= 4169 and s= 33401. We recall that

the number of optimization variables is equal to s−1 for the synthesis/analysis approaches,

and equal to q≪ s for the MCE-like approach. Therefore, the results are presented with respect

to the number s of voxels in the head, which is the same for all methods. In these experiments,

7Images by courtesy of [5].
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Figure 6.5 – Computational and performance effects with regards to the problem size.

the source locations are chosen randomly for each realization, and the non-cortex support

was suppressed by the linear constraints fc .

First, as for the acoustic case, the computational cost of the synthesis approach is higher and

grows faster than that of if its analysis counterpart (figure 6.5a). Interestingly, the latter and the

MCE-like approach show a similar behavior. In fact, the direct computation of the proximal

operators and the SDMM involved in the MCE-like approach require a slightly lower cost,

but the additional cost due to the initial computation of the dictionary slightly increases the

MCE-like technique’s total cost ; the impact of this additional cost is not negligible, since the

dictionary has to be recomputed for each patient in clinical practice.

Second, the localization error increases with spatial resolution (figure 6.5b), which is expected

due to the fixed number of electrodes. Furthermore, it can be confirmed that the analysis

and synthesis models are also equivalent in the EEG context. Since the analysis approach has

better scaling capabilities, we no longer investigate the sparse synthesis regularization given

in (6.22). However, the MCE approach does not have a sparse analysis analog, thus we still

keep it the forthcoming series.

6.4.3 Robustness

A common type of model error encountered in the biomedical context is due to the presence

of background activity in non-epileptic regions of the gray matter. Non-epileptic dipoles of

the gray matter also have a non-zero amplitude, even if it should be ideally lower than that

of epileptic dipoles. Consequently, the n-dimensional vector Au is not really k-sparse, but it

should have k dominant components. We conduct two experiments to evaluate the influence

of such model errors, in which we included state-of-the-art approaches RapMUSIC [181] and

4-D-MUSIC [6] (discussed in subsection 6.2.1). Three synchronous epileptic dipoles were

109



Chapter 6. (Co)sparse brain source localization

SNR
-40 -30 -20 -10 0 10

R
M

S
E

 (
c
m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4-D-MUSIC

2-RapMUSIC

MCE

Analysis

(a) RMSE vs SNR.

Number of electrodes
0 50 100

R
M

S
E

 (
c
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MCE

2-RapMUSIC

4-D-MUSIC

Analysis

(b) RMSE vs m, for SNR=−6dB.

Figure 6.6 – Robustness to (background activity) noise.

placed at fixed positions, but the background noise is regenerated for each realization. For

these experiments, the weighted square ℓ2 norm has been used in place of the fc penalty in

(6.21).

Figure 6.6a presents the simulation results as a function of the SNR value, with the same

number of sensors (m= 128), as in the previous series. This is representative of localization

problems with synchronous and focal epileptic sources, which are challenging for existing

techniques. The analysis approach exhibits a remarkable robustness with respect to back-

ground activity and manages to perfectly localize epileptic sources even for a very low SNR

value. This is, however, not the case for other approaches, which either do not succeed in

achieving the same performance (4-D-MUSIC, RapMUSIC), or require significantly higher

SNR (MCE).

Figure 6.6b displays the RMSE criterion at the output of the four algorithms as a function of the

number m of electrodes for an SNR value of −6dB. The physics-driven approach requires at

least 64 electrodes to achieve a perfect result for such an SNR value while the other algorithms

do not manage to perfectly localize the three synchronous epileptic dipoles regardless of the

available number of electrodes. Given all these results, along with the results from the previous

subsection, among the considered algorithms, the analysis approach is a clear winner in terms

of both localization performance and computational cost.
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6.5 Summary and contributions

In this chapter, we applied the physics-driven framework to the ill-posed inverse problem of

epileptic source localization in electroencephalography.

After discussing the physical model governed by Poisson’s equation and dipole sources, we

briefly presented some state-of-the-art localization methods in EEG. We argued that some of

these approaches, based on the sparse synthesis regularization, can fit into our physics-driven

(co)sparse context. However, some of them (e.g. MCE), cannot be interpreted through this

framework, even though they use the lead field matrix, i.e. the Green’s functions.

We proceeded by developing a physics-driven (co)sparse source localization method, that

exploits the dipole structure and the cortical spatial constraints and can be naturally formu-

lated in the sparse analysis and sparse synthesis context. The experiments on simulated, but

physically-relevant data, have demonstrated that the two versions perform equally in terms

of localization accuracy. However, as expected, the analysis version is computationally more

efficient, due the inherited sparsity of the analysis operator matrix. Moreover, the localization

method is more robust with respect to background (non-epileptic) brain source activity than

several state-of-the-art algorithms in the field, including the MCE approach.

Experiments on the real data with realistic head models are required to confirm the usefulness

of the approach for clinical applications. Envisioned improvements are going beyond the

“snapshot” regime and incorporating structured (co)sparsity priors, in order to exploit spa-

tiotemporal correlation of the epileptic sources. Additionally, one could reduce the physical

prior information and learn some parameters (e.g. conductivities) from the data, in similar

fashion as it was done in the acoustic case.
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7 Conclusions and perspectives

The central theme of this work was the interplay between cosparse and sparse regularizations

with an emphasis on physics-driven linear inverse problems. We discussed three applications:

audio declipping (desaturation), acoustic source localization and mapping of epileptic sources

in EEG imaging. In the remaining text we will note the principal contributions and propose

several directions for future research on the subject.

7.1 Conclusions

Chapter 2 was the prologue of a main subject. It concerned the audio declipping inverse

problem, addressed by sparse analysis and sparse synthesis regularizations. To avoid biasing

the results using different algorithms, but at the same time insisting on competitive declip-

ping performance, we developed a versatile non-convex approach that can straightforwardly

accommodate either the analysis or the synthesis prior. Moreover, when the analysis operator

forms a tight frame, the analysis-based algorithm has a very low computational complexity

per iteration, equivalent to the cost of two matrix-vector products. The experimental results

indicate that, while the synthesis version is slightly advantageous in terms of audio recovery,

the analysis one is significantly more efficient in terms of processing time. Moreover, both

methods perform highly competitive against state-of-the-art declipping algorithms, especially

when the saturation is severe (confirmed numerically and by MUSHRA perceptual evaluation).

This work has lead to industrial collaboration with a leading professional audio restoration

company.

In Chapter 3 we introduced the physical problems of our interest and proposed a general

regularization framework termed the physics-driven (co)sparse regularization. This class of

problems is governed by physical laws expressed by linear partial differential equations or,

equivalently, in integral form through the Green’s functions basis. Analogously, the sparse

analysis regularization is based on discretization of the coupled system, formed by the partial

differential equation and the appropriate initial/boundary conditions. The sparse synthesis

regularization is based on discretization of the Green’s functions, or the system’s impulse
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response, leading to a nominally equivalent representation. Nevertheless, we argued that

the inherited sparsity of the analysis operator yields computationally much more scalable

optimization problems, provided that the employed discretization is locally supported. Ad-

ditionally, we developed a version of Alternating Direction Method of Multiplier algorithm,

termed Weighted SDMM, tailored for solving large scale convex optimization problems gener-

ated by the two regularization approaches, and used throughout our work.

Chapter 4 was devoted to a particular physics-driven inverse problem: sound source local-

ization in reverberant rooms. After discussing current issues with state-of-the-art methods

in this context, we showed how the physics-driven (co)sparse framework can be applied to

the localization problem. We assumed (approximate) knowledge of the room geometry and

structure, and suggested full wavefield interpolation technique, by exploiting the inhomo-

geneous wave equation in the time domain. This way, making strong assumptions on the

source frequency band is avoided, and a signal estimate for every spatiotemporal coordinate

of the discretized domain is obtained (as a “byproduct”). The computational complexity of the

analysis- and synthesis-based regularization was discussed, and later on empirically validated.

It was argued that, for problems of this scale, only the analysis-based regularization is a viable

choice. Indeed, to the best of our knowledge, this is the first time that full (inverse) wavefield

interpolation was performed on a regular laptop, in a physically relevant three-dimensional

simulation setting. Additionally, we investigated how the performance is affected by various

model parameterizations, which confirmed our intuition that, for this technique, the rever-

beration is a welcome phenomenon that actually improves localization performance. Finally,

physics-driven cosparse localization was confronted to a stochastic version of state-of-the-art

SRP-PHAT algorithm, which it outperformed in a given experimental setting.

In chapter 5 we continued the discussion on physics-driven cosparse acoustic localization,

and investigated the possibility of relaxing the physical prior knowledge. First, we explore the

scenario with unknown, but smoothly varying speed of sound in a room. The smoothness

assumption enables significant reduction of degrees of freedom, which was exploited to design

a biconvex optimization algorithm that blindly estimates the speed, and the pressure signal

at the same time (thereby, performing source localization). Obtained results are promising,

although the current implementation exploits only the spatial smoothness of sound speed.

We then moved to the problem of blind estimation of specific acoustic impedance, i.e. the

absorption parameters of the boundaries. The physically justified piecewise constant model

was assumed, and an ADMM-based, biconvex algorithm was developed. The empirical results

show that the algorithm performs almost identically as physics-driven localization in the

accurate setting (where the boundary parameters are perfectly known). Moreover, it exhibits

robustness to moderate model error and additive noise. This part is concluded by demon-

strating the ability of physics-driven (co)sparse localization to detect sources in a scenario

where a direct propagation path does not exist, and where TDOA-based and classical beam-

forming methods necessarily fail. By exploiting only echoes, the method shows remarkable

performance even when the obstructing wall is quite large relative to the room size (both in

two- and three-dimensional setting).
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A last physics-driven inverse problem was addressed in chapter 6 - epileptic brain source

localization in electroencephalography. We argued that some state-of-the-art methods in

this field fit into our framework, and proceeded by developing a new one, by exploiting Pois-

son’s equation and the dipole source model. The numerical efficiency of the sparse analysis

compared to the sparse synthesis approach was again verified. Numerical simulations, with

physiologically-relevant source signal generator, were used for comparison of our method

against several state-of-the-art algorithms outside the physics-driven regularization frame-

work. It was demonstrated that the proposed approach requires the least number of electrodes

for accurate localization, and is the most robust with respect to biological noise (non-epileptic

brain activity).

7.2 Perspectives

We envision several possibilities for future research, both theoretical and practical, for each of

the problems previously discussed.

7.2.1 Declipping

Theoretical aspects

There are no results to date on the theory behind a declipping inverse problem. Although

declipping algorithms seem to work in practice, theoretical understanding of the problem

may help us estimate performance bounds achievable by these methods. Recent studies on

generalized RIP conditions [37] could be a good direction.

Deriving a convergence proof for the SPADE algorithms is equally important. Recent theoreti-

cal advances on non-convex proximal algorithms and ADMM [34, 127] may be a good starting

point. We also predict existing connections with Dykstra’s projection algorithm [41].

Practical aspects

From the experience with social sparsity algorithm, we expect that applying structured

(co)sparsity priors could substantially improve perceptual quality of a declipped estimate.

Moreover, one can imagine incorporating psychoacoustic information, to further improve

audible performance.

In our work, we considered only the single channel setting. Parallel declipping of a multichan-

nel recording is a possibility for extending the approach.

Finally, more difficult problems could be investigated, such as simultaneous declipping and

source separation, or declipping a signal that was convolved by an acoustic path filter.
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7.2.2 Physics-driven cosparse acoustic localization

Theoretical aspects

We already know that the inverse source problem is generally ill-posed, even with spatial

(co)sparsity regularization. Difficulty of the problem is illustrated by the existence of the non-

radiating source phenomenon [79, 78]. Nevertheless, our problem is even more complex, due

to the fact that i) the acoustic pressure field is heavily subsampled and, ii) the discretization

alters the underlying physical model.

Related to the latter issue, we predict connections between our work and the so-called sparse

spikes deconvolution problem [89]. In that work, the authors argue that there are fundamental

performance limits for discrete regularization of a genuinely continuous domain problem

(whatever is the “resolution” of a grid). A challenging research axis is constructing a method

that avoids discretization all together, in the spirit of super-resolution [48].

Concerning BLESS (section 5.1) and CALAIS (section 5.2), we suspect that adapting the theory

of non-convex ADMM, presented in [127], could lead to convergence proofs for these two

algorithms. An alternative to biconvex optimization may be a lifting scheme, which has been

successfully exploited in, e.g. phase retrieval problems [17, 47, 162, 28].

Practical aspects

Even though the optimization problems generated by physics-driven cosparse regularization

scale gracefully, non-smooth convex optimization involving tens of millions (and easily, much

more) variables is a challenging task, certainly not well-suited for practical implementation.

We envision several possibilities:

Multilevel approach Instead of performing, in a way “brute force” convex optimization, one

can envision a hierarchy of models at different scales, e.g. controlled by the finesse of the

discretization grid. Apart from dimensionality reduction, benefit would also come from

the improved conditioning of the linear problems at coarse grids. One way to exploit

multilevel idea is to accelerate the Weighted SDMM algorithm, by employing algebraic

multigrid [101, 218] as a solver or preconditioner for the normal equations (3.28). An-

other possibility is to directly apply some of the recently proposed multilevel convex

optimization algorithms, e.g. [240, 200]. One can also think of multilevel source localiza-

tion, where the cosupport is iteratively refined: first, estimation at a lower scale (coarser

grid) would be performed, and then used as a cosupport constraint for estimation at a

higher scale (finer grid). The cosupport constraints could be interpreted as additional

observations, hence there is a possibility of acceleration noted in subsection 4.4.4 and

illustrated in Figure 4.13. With regards to this time-data tradeoff, a technique called

aggressive smoothing [42] could be used as well.
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Helmholtz domain Moving into the frequency domain is tempting, as it would immediately

lead to significant dimension reduction. However, there is a compromise: as mentioned,

assumptions need to be made on the frequency range where sources emit. Perhaps

more worrying is the result from [58], mentioned in subsection 4.3.1, demonstrating the

sensitivity of the sparse synthesis method [87] with regards to modal frequencies. On

the other hand, the approach taken in [87] is based on the OMP algorithm, thus convex

regularization might be more stable. Lastly, due to oscillatory behavior, the discretized

Helmholtz equation becomes increasingly difficult to solve at large wavenumbers [98],

which may influence the stability of the inverse problem.

Implicit discretizations The CFL condition is upper bounding the temporal stepsize in ex-

plicit discretization schemes (appendix B.1). Implicit discretizations, however, are

unconditionally stable, and thus allow for arbitrary large stepsizes. The caveat is that

the stepsize is inversely proportional to the discretization accuracy, hence larger steps

lead to larger errors. A way to partially remedy this problem is to use higher order

schemes, which may, in turn, increase the computational complexity (fortunately, only

by a constant).

Robustness to inevitable modeling error should be further investigated. We observed a de-

crease in localization performance for the non-inverse crime scenario, attributed to spatial

aliasing - thus, localization criteria probably needs to be adjusted. There is a possibility that the

robustness may be improved by exploiting temporal source models, such as time-frequency

(co)sparsity used for audio declipping in the second chapter.

Concerning the physical parameter estimation, we foresee using different parameter mod-

els, depending on the environment - or even user-defined (e.g. piecewise smooth instead

of spatiotemporally smooth sound speed, to account for the interfaces between different

propagation media). As a long term objective, we envision learning the geometry from data,

possibly using more flexible discretizations, such as FEM. The ultimate goal is to develop a

fully-blind algorithm, i.e. one that simultaneously estimates the geometry, parameters and

pressure field (thus, source locations), using only the measurements and weak data models

(such as the ones exploited for sound speed and acoustic impedance learning).

7.2.3 Physics-driven cosparse brain source localization

Theoretical aspects

The lack of recovery guarantees makes the approach, despite its empirical success, somewhat

less convincing. To begin, one may consider analytic solutions of Poisson’s equation available

for the spherical head model and isotropic conductivities.
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Practical aspects

Incorporating realistic head models (i.e. FEM templates inferred from MRI or Computed

Tomography (CT) scans) and using non-simulated data is necessary. As an alternative to

MRI/CT templates, a blind estimation method, similar to the ones used for parameter learning

in the acoustic case, could be designed in order to estimate conductivities of different head

compartments.

The “snapshot” regime which we used for simplicity does not exploit the temporal support,

which may be necessary for successful regularization of high-dimensional problems generated

by FEM discretization. In this case, too, refined time-frequency source models could be used.

Concerning the spatial source model, clustered dipoles are physiologically more relevant

than the point dipole model we used in our work. To accomplish this task, a tailored group

(co)sparse regularization should be used. Namely, we envision that applying the newly pro-

posed Ordered Weighted ℓ1 regularization [102] to this problem could exploit spatial and

magnitude correlations of epileptic sources.
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A Alternating Direction Method of

Multipliers

Convex optimization is one of the main tools in sparse (and cosparse) signal recovery. Usually,

convex programs generated by these problems are non-smooth, i.e. they do not admit a unique

differential at every point of their domain (think of the ℓ1 norm minimization, for instance).

Moreover, the physics-driven (co)sparse regularized problems, introduced in chapter 3 and to

which most of the thesis is devoted, are usually of a very large scale. These problems are diffi-

cult to solve using second order optimization algorithms, such as the interior-point method

[40]. As opposed to first order algorithms, which require the functional and gradient oracle,

second order algorithms additionally need the Hessian matrix (the nonsmoothness here is

dealt by reformulating the original problem into a smooth, but usually higher-dimensional

variant). Instead, first order algorithms, particularly the ones from proximal splitting frame-

work [67, 199] are more applicable.

The aim of this appendix is not to be an exhaustive review of proximal splitting methods, for

what the reader may consult the literature cited above, and the references therein. Instead, we

will briefly introduce a specific proximal splitting algorithm known as Alternating Direction

Method of Multipliers (ADMM) [90, 39], whose adapted version was introduced in section 3.4,

and used throughout our work to address physics-driven (co)sparse problems. Moreover,

we also used ADMM (like many other practitioners) as a heuristic non-convex optimization

algorithm. Some theoretical guarantees for ADMM applied in the non-convex setting have

been recently provided by different authors.

The emphasis is on the intuition and practical issues, without an in-depth discussion on the

convex analysis principles behind the algorithm. In the first section, we introduce ADMM

through augmented Lagrangian framework. In the second section, we discuss an ADMM

variant tailored for minimization of separable objectives, which is followed by noting the

proximal operator frequently used in our work, in the third section. In the last, fourth section,

we discuss the ADMM algorithm as a non-convex heuristics.
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Appendix A. Alternating Direction Method of Multipliers

A.1 Origins of ADMM

In its canonical form (adopted from [39]), ADMM can be used to solve problems in the

following form:

minimize
x,z

f1(x)+ f2(z) subject to Ax−Bz = h. (A.1)

where A ∈R
p×n, B ∈R

p×m and h ∈R
p (these are generic matrices and vectors).

To address this problem, consider the augmented Lagrangian [192] relaxation:

Lρ(x, z, w) = f1(x)+ f2(z)+wT (Ax+Bz−h)+
ρ

2
‖Ax+Bz−h‖2

2, (A.2)

where ρ is a positive constant. By variable substitution u = 1
ρ w, an equivalent expression is

called scaled Lagrangian form:

Lρ(x, z, u) = f1(x)+ f2(z)+
ρ

2
‖Ax+Bz−h+u‖2

2 −
ρ

2
‖u‖2

2. (A.3)

Then, the dual problem [40, 192] writes as

maximize
u

(

minimize
x,z

Lρ(x, z, u)

)

, (A.4)

for which the standard dual ascent or augmented Lagrangian method [39, 91] may be applied:

(x(i+1),z(i+1)) = argmin
x,z

Lρ(x, z, u(i))

u(i+1) = u(i) +Ax(i+1) +Bz(i+1) −h.

The issue with the scheme above is that the minimization in the first step has to be performed

jointly over (x,z). The advantage of ADMM is that this joint optimization is decoupled into

two sequential steps (independent minimization over x and z):

x(i+1) = argmin
x

Lρ(x, z(i), u(i)) = argmin
x

f1(x)+
ρ

2
‖Ax+Bz(i) −h+u(i)‖2

2

z(i+1) = argmin
x

Lρ(x(i+1), z, u(i)) = argmin
z

f2(z)+
ρ

2
‖Ax(i+1) +Bz−h+u(i)‖2

2

u(i+1) = u(i) +Ax(i+1) +Bz(i+1) −h. (A.5)

Proving convergence of ADMM is not trivial, and has been erroneously interpreted as perform-

ing one pass of nonlinear Gauss-Seidel method to the joint optimization step of augmented

Lagrangian [91]. However, the method does converge asymptotically to a stationary point of

the original convex optimization problem, which can be proven through operator splitting

theory and composition of so-called nonexpansive mappings [91]. More precisely, ADMM can

be interpreted as Douglas-Rachford splitting [163] applied to the standard (non-augmented)

Lagrangian dual problem of (A.1) [90].
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A.2. Simultaneous Direction Method of Multipliers

A.2 Simultaneous Direction Method of Multipliers

When the optimization problem is the sum of more than two functionals, it can be solved by

Simultaneous Direction Method of Multipliers (SDMM) [67]. Consider the following problem

minimize
x,zi

f∑

i=1
fi(zi) subject to Hix−hi = zi. (A.6)

Actually, the above is easily reformulated as an ADMM problem (hence, its convergence is

guaranteed through ADMM framework). Define:

g1(z) =
f∑

i=1
fi(zi), where z =

[

zT1 zT2 . . . zT
f

]T
. (A.7)

By choosing g2(x) = 0, we can recover the express ADMM problem as follows:

minimize
x,z

g1(z)+ g2(x) subject to Hx−h = z, (A.8)

where H =
[

HT
1 HT

2 . . . HT
f

]T
and h =

[

hT
1 hT

2 . . . hT
f

]T
.

The iterates, given in (A.5), are now expressed as follows:

z(j+1) = prox 1
ρ

g1

(

Hx(j) −h+u(j)
)

,

x(j+1) = argmin
x

ρ

2
‖Hx−h+u(j) −z(j+1)‖2

2, (A.9)

u(j+1) = u(j) +Hx(j+1) −h−z(j+1),

where prox 1
ρ

g1
(v) denotes the famous proximal operator [179, 199, 67] of the function 1

ρ g1

applied to some vector v:

prox 1
ρ

g1
(v) = argmin

z
g1(z)+

ρ

2
‖z−v‖2

2. (A.10)

Since g1(z) in (A.7) is block-separable, so is the proximal operator prox 1
ρ

g1
(·) [67] (the least

squares step and the u-updates are trivially separable as well). Finally, we can recover the

SDMM iterates:

z
(j+1)
i

= prox 1
ρ

fi

(

Hix
(j) −hi+u

(j)
i

)

,

x(j+1) = argmin
x

f∑

i=1

ρ

2
‖Hix−hi+u

(j)
i −z

(j+1)
i

‖2
2, (A.11)

u
(j+1)
i

= u
(j)
i
+Hix

(j+1) −hi−z
(j+1)
i

.

Note that the SDMM algorithm is straightforwardly applicable to distributed computing, due

to the decoupled minimization in the zi update step.
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Appendix A. Alternating Direction Method of Multipliers

Although asymptotically convergent, in practice, the SDMM algorithm often terminates to

infeasible point (e.g. due to an iteration threshold). Therefore, in section 3.4 we propose a

modified Weighted SDMM, which reaches feasibility in far fewer iterations (empirically).

Stopping criterion Following [39], the SDMM stopping criterion is based on primal and

dual residuals r
(j)
prim and r

(j)
dual, which are defined as:

r
(j)
prim = Hx(j) −h−z(j)

r
(j)
dual = H

(

x(j) −x(j−1)
)

. (A.12)

We stop iterating once their norms fall below the thresholds:

q(j)
prim =µmin

{

‖Hx(j) −h‖2,‖z(j)‖2

}

q(j)
dual =µ

∥
∥
∥
∥
∥
∥





p
ρ1u

(j)
1

...p
ρfu

(j)
f





∥
∥
∥
∥
∥
∥

2

, (A.13)

where µ denotes the relative accuracy.

A.3 Proximal operators

Efficient evaluation of proximal operators is of crucial importance for the computational

efficiency of proximal algorithms. Fortunately, many interesting functionals admit computa-

tionally cheap, even explicit solutions (these are well-known results by now, available in the

references). Here we state some of them frequently used throughout the thesis.

The ℓ1 norm: (proxλℓ1
(v))i = vi

(

1− λ
|(vi|

)

+
.

The joint ℓ2,1 norm: (proxλℓ2,1
(v))i = vi

(

1− λ
‖vΥ‖2

)

+
.

The hierarchical ℓ2,1 norm1 prox 1
ρ

(ℓ2,1+ℓ1) (v) = prox 1
ρ
ℓ2,1

(

prox 1
ρ
ℓ1

(v)
)

.

The operator (·)+ denotes component-wise positive thresholding: (v)+ := {∀i | max(vi,0)}, and

vΥ denotes a vector composed by the elements of a vector v indexed by the indice-set Υ.

Instead of constraining, one may choose to add a penalty term λ‖v‖2
2. Then, the proximal

operator associated with this function is easily obtained, since it is the minimizer of a sum of

quadratic forms:

proxλℓ2
2

(v) =
v

2λ+1
. (A.14)

1Denotes the hierarchical ℓ2,1 norm for joint groups of variables (similar to the standard joint ℓ2,1 norm) and
singletons, together.

122



A.3. Proximal operators

Proximal operator of the characteristic function χΞ (v)

χΞ (v) =







0, v ∈Ξ,

+∞ otherwise,
(A.15)

corresponds to the orthogonal projection PΞ(v) to a set Ξ. A common case is the characteristic

function χℓ2≤µ (·), which bounds the ℓ2 norm of v by some noise level (‖v‖2 ≤µ). The proximal

operator is the projection of the vector to the ℓ2-ball of radius µ:

proxℓ2≤µ (v) =







v, if ‖v‖2 ≤µ

µ v
‖v‖2

, otherwise.
(A.16)

Projection to the ℓ∞ ball amounts to constraining the absolute magnitude of a signal:

(proxℓ∞≤µ (v))i =







vi, |vi| ≤µ

sgn (vi)µ, otherwise.
(A.17)

A generalization of the previous functional are the component-wise magnitude constraints.

The projection is similar to (A.17), except that the bound µ and the constraint sign (“≤” or “=”)

are specified per element of an input vector.

Another simple, but useful penalty is an inequality constraint χ≤c (v). The projection is

straightforward:

(prox·≤c (v))i =







vi, vi ≤ ci

ci, otherwise.
(A.18)

For the end of this short review, we left probably the most obvious case: the affine equality

constraints. Standard way of accounting for these constraints in an SDMM program, is by

introducing a new auxiliary variable zi and a characteristic function of an affine set. Note,

however, that the x(i+1) update step in (A.11) is a simple unconstrained linear least squares

minimization, i.e. its minimizer is obtained by (approximately) solving the normal equations

[40]. Now, one can straightforwardly incorporate linear constraints and ensure that every

iterate of the algorithm is feasible. This can be done by transforming the normal equations

into another linear system, for instance by means of the null-space method, or by exploiting

Karush-Kuhn-Tucker (KKT) conditions [192]. The former method leads to a lower-dimensional

positive definite system, but requires a null space basis. In the section 3.3, we saw that the

physics-driven cosparse regularization often yields convex problems with very simple linear

equality constraints, whose null space basis is sparse and easily constructed.

Finally, we remark that there are many other useful proximal operators which may be efficiently

computed, even if they do not admit closed-form solutions [67].
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Appendix A. Alternating Direction Method of Multipliers

A.4 ADMM for non-convex problems

Many engineering applications give rise to non-convex optimization problems. In this case,

global optimum is rarely theoretically guaranteed, but practitioners often obtain good results

even though the computed local minimizers may be suboptimal. The ADMM algorithm

has been exhaustively used as a non-convex optimization heuristics [39, 1, 253, 232, 60, 59],

despite the lack of general theoretical justification in this setting.

This popularity is partially motivated by the fact that proximal operators of some useful non-

convex functionals are very easy to compute. A well-known case is the ℓ0 constraint, i.e. the

characteristic function of the k-sparse set. The associated projection is done by applying

the hard thresholding operator to the input vector, which preserves k highest in magnitude

coefficients and sets the rest to zero. A related case is rank-k matrix constraint: the orthogonal

projection corresponds to keeping k largest singular values of the associated Singular Value

Decomposition (SVD). Another class are biconvex problems [114], i.e. the problems which are

genuinely (jointly) nonconvex, but become convex when considering only one variable (the

other is kept fixed). Therefore, iterative steps in (A.5) are usually tractable in this case.

A very recent theoretical work [127] is one of the first that provided some theoretical evidence

of local convergence for ADMM applied to non-convex problems. This work, however, makes

two strong assumptions: first, the non-convex functionals need to be smooth (therefore, char-

acteristic functions of non-convex sets are not included), and second, the ADMM multiplier ρ

needs to be chosen sufficiently high such that the associated proximal operator is a resolvent of

a strongly convex function. Although very restrictive, the theory still holds in some interesting

cases, such as for certain biconvex problems involving bilinear forms.

General convergence proof for non-convex ADMMs is still an open problem, but recent ad-

vances [251] show that the research is going in good direction. Encouraged by these results, in

this thesis, we developed and used several algorithms based on non-convex ADMM, although

their convergence is not yet fully supported by theory.
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B Discretization

B.1 Finite Difference Time Domain - Standard Leapfrog Method

For demonstration purpose, we consider Standard Leapfrog Method (SLF) discretization

of the isotropic1 acoustic wave-equation (4.7), in two dimensions (extension to 3D follows

straightforwardly).

Pressure inside the discrete spatial domain Γ\∂Γ (excluding the boundary), and corresponding

to time samples t> 2, is discretized using the 7-point stencil in figure B.1, as follows:

∂2pt
i,j

∂x2
+
∂2pt

i,j

∂y2
−

1

c2

∂2pt
i,j

∂t 2
=

pt
i−1,j−2pt

i,j+pt
i+1,j

d2
x

+
pt
i,j−1−2pt

i,j+pt
i,j+1

d2
y

−
1

c2

pt+1
i,j −2pt

i,j+pt−1
i,j

d2
t

+O(max(dx,dy,dt)
2) (B.1)

where dx,dy and dt denote the discretized spatial and temporal step sizes, respectively. Ne-

glecting the O(·) term yields a convenient explicit scheme [231] to compute pt+1
i,j using pressure

values at the previous two discrete time instances (pt
(·,·) and pt−1

(·,·) ).

Figure B.1 – SLF stencil for the 2D wave
equation.

For all nodes (including the boundary) at t= 1 and

t= 2, the pressure values are prescribed by initial con-

ditions. Alternatively, pressure values and the first

derivative2 could be assigned at t = 1, from which

the values at t= 2 can be calculated.

Formulas for boundary nodes are obtained by

substituting a non-existent spatial point in the

scheme (B.1) by the expressions obtained from dis-

cretized boundary conditions. For the frequency-

independent acoustic absorbing boundary condition

1The speed of sound c(r, t ) = c = 343m/s is uniform in all directions.
2Approximated, e.g. by the forward Euler scheme.
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Appendix B. Discretization

(4.10), proposed in [147], e.g. the missing point be-

hind the right “wall” is evaluated as:

pt
i+1,j = pt

i−1,j+
dx

cdtξi,j

(

pt−1
i,j −pt+1

i,j

)

, (B.2)

which leads to a modified explicit expression:

pt+1
i,j =

[

2(1−2λ2)pt
i,j+λ2(pt

i,j+1+pt
i,j−1)+2λ2pt

i−1,j−
(

1−
λ

ξi,j

)

pt−1
i,j

]/(

1+
λ

ξi,j

)

, (B.3)

where λ= cdt/dx = cdt/dy = cdt/dz, assuming uniform spatial discretization, for simplicity.

When corners (and edges in 3D) are considered, the condition (4.10) is applied to all directions

where the stencil points are missing. Generally, each part of the boundary (i.e. the missing

node) is characterized by its own specific acoustic impedance coefficient, therefore their total

number is higher than the number of boundary elements. For instance, bottom right corner

in 2D requires two impedances, ξx
i,j and ξ

y
i,j, representing the two intersecting walls:

pt+1
i,j =

[

2(1−2λ2)pt
i,j+2λ2(pt

i−1,j+pt
i,j−1)−

(

1−
λ

ξx
i,j

−
λ

ξ
y
i,j

)

pt−1
i,j

]/(

1+
λ

ξx
i,j

+
λ

ξ
y
i,j

)

. (B.4)

Finally, to ensure stability of the scheme, spatial and temporal step sizes are bound to respect

the Courant-Friedrich-Lewy (CFL) condition [231]: cdt/min(dx,dy) ≤ 1/
p

2.

Concatenating these difference equations for the entire spatio-temporal dimension s× t yields

a full rank / square-invertible matrix operator A ∈R
st×st.

Discretization of sound sources There are three ways of incorporating a sound source [226]

in the FDTD-SLF scheme:

Hard source The pressure value pt
i,j, at the source location (i, j,t), is replaced by a source signal

sample at time t.

Soft source The expression (B.1) is enriched by adding a source signal sample at time t.

Transparent source Equivalent to soft source with additional negative term, introduced to

compensate for the grid impulse response.

Hard sources are easy to implement, but suffer from serious scattering effects (hence, their

name) and low-frequency artifacts. Soft sources do not scatter the waves, but change the

source signal which is affected by the impulse response of the scheme. Transparent sources

compensate for these effects, but require knowing the impulse response beforehand. We use

soft sources, for simplicity, but ensure that the mean of a sound source signal is zero, to satisfy

physical constraints noted in [226].

126



B.2. Witwer’s Finite Difference Method for Poisson’s equation

B.2 Witwer’s Finite Difference Method for Poisson’s equation

Witwer’s FDM is derived by applying Kirchhoff’s current law at each node [257]. Using this

scheme, the total current flow value, zi,j,k, at voxel3 (i, j,k) is given by [122]:

∇·
(

σ∇ui,j,k
)

≈ zi,j,k = gi,j,kui,j,k−w(1,0,0)
i,j,k ui+1,j,k−w(−1,0,0)

i,j,k ui−1,j,k−w(0,1,0)
i,j,k ui,j+1,k−

w(0,−1,0)
i,j,k ui,j−1,k−w(0,0,1)

i,j,k ui,j,k+1 −w(0,0,−1)
i,j,k ui,j,k−1 (B.5)

with:

w(m1,m2,m3)
i,j,k =

2ασ(α[i, j,k]T)σ(α[i+m1, j+m2,k+m3]T)

σ(α[i, j,k]T)+σ(α[i+m1, j+m2,k+m3]T)

gi,j,k = w(1,0,0)
i,j,k +w(−1,0,0)

i,j,k +w(0,1,0)
i,j,k +w(0,−1,0)

i,j,k +w(0,0,1)
i,j,k +w(0,0,−1)

i,j,k

zi,j,k =







z(r)/d if r− =α [i, j,k]T

−z(r)/d if r+ =α [i, j,k]T

0 otherwise,

.

where α denotes the spatial sampling stepsize and d is the distance between two monopoles.

Note that considering (ui,j,k), (w(m1,m2,m3)
i,j,k ) and (gi,j,k) as third order arrays, and the Hadamard

product between multi-way arrays, it is easy to implement the right hand side of equation

(B.5) using matrix programming languages such as Matlab®.

3Here, the integer k represents the coordinate of the third grid axis and m· is an integer offset.
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C Social sparsity declipper

Social sparsity declipper [227] is a sparse synthesis-based algorithm that shares some simi-

larities with Consistent IHT (subsection 2.2). Both algorithms can be interpreted as sparsity-

promoting, iterative shrinkages, applied to a squared hinge functional h2 (recall the definitions

of restriction operators Mr and Mc ):

h2 = ‖Mr y−Mr x‖2
2 +‖

(

Mc y−Mc x
)

+ ‖
2
2, (C.1)

where (·)+ is component-wise positive thresholding. The gradient of (C.1), along with a

shrinkage operator, is used to simultaneously promote (structured) sparse solutions and

maintain clipping consistency constraints. However, while Consistent IHT uses block-based

processing, social sparsity declipper requires all data at once, in order to operate directly

on time-frequency coefficients xt,f . Consistent IHT features (progressive) hard thresholding,

while social sparsity declipper uses so-called Persistent Empirical Wiener (PEW) shrinkage:

S
PEW
λ (xt,f ) = xt,f

(

1−λ2/
∑

t̃∈Υ
x2
t̃,f

)

+
, (C.2)

where Υ indicates the temporal neighborhood of the point (t, f). The associated optimization

problem is not clearly defined, and presumed non-convex [148]. The authors propose relaxed

Iterative Soft Thresholding Algorithm (ISTA) [88] heuristics, presented in Algorithm 5.

Algorithm 5 Social sparsity declipper

Require: y, Mr , Mc , D, z̃(0), λ, γ, δ= ‖D‖2
2, i= 0

repeat

g1 = DH Mr
T

(

Mr Dz(i) −Mr y
)

g2 = DHMT
c

(

Mc Dz(i) −MCy
)

+
z̃(i+1) =Sλ/δ

(

z(i) − 1
δ (g1 +g2)

)

z(i+1) = z̃(i+1) +γ
(

z̃(i+1) − z̃(i)
)

i← i+1
until convergence
return x̂ = Dz(i+1)
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D GReedy Analysis Structured Pursuit

The GReedy Analysis Structured Pursuit (GRASP) algorithm [188] is an extension of Greedy

Analysis Pursuit (GAP) [186], tailored to group cosparse signals1. In the context of acoustic

source localization, group cosparsity is modeled as joint cosparsity2. The pseudocode of

GRASP is given in Algorithm 6.

Algorithm 6 GRASP

Require: y ∈R
m, m ∈R

m×n, A ∈R
d×n, {Ψg}g∈Φ, σ, ǫ, h

Ensure: i= 0, Λ̂= [1,d], Φ(0) =Φ

repeat

x̂ = argmin x ‖A
Λ̂

x‖2
2 s.t. ‖Mx−y‖2 ≤σ

g̃= argmaxg∈Φ(i) ‖AΨg
x̂‖2

Φ
(i+1) =Φ

(i) \ g̃
Λ̂← Λ̂\Ψg̃

i← i+1

until ‖A
Λ̂

x̂‖∞ ≤ ǫ or i= h

return x̂

Here, the set Ψg contains indices of the gth group, such that ∪g∈ΦΨg = [1,d], where d is the

number of rows of the analysis operator A.

Evaluating the minimizer of the constrained linear least squares problem in the first itera-

tive step is computationally the most expensive operation of GRASP (essentially, a nested

optimization problem - may be solved by Weighted SDMM, for example).

1By group cosparse (w.r.t. the analysis operator A), we denote a class of signals whose cosupport is represented
by a union of row groups of the matrix A. Hence, “usual” cosparsity is a special case of group cosparsity where the
groups are individual rows of the analysis operator.

2If we express a vector x ∈ R
gp as concatenation of p vectors of size g, i.e. x =

[

xT1 , xT2 , . . .xTp

]T
, then

supp(Ax1) = supp(Ax2) = . . . = supp(Axp), where supp(v) denotes the support of the vector v.
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