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Introduction

For many countries (United States of America, Russia, Europe, Japan, etc.), launch vehicles are
cornerstones of an independent access to space. The space agency strategies for Solar system
exploration, Earth monitoring and observation, human space�ight are developed in accordance
with their launch vehicle capabilities. Launch vehicle designs are long term projects (around 10
years) involving important budgets and requiring an intricate organization. NASA and ESA [Zeitlin
et al., 2012] stress the need to reduce the cost and to improve the e�ectiveness of space missions
and satellite launches. Ameliorating the design process for aerospace vehicles is essential to obtain
low cost, high reliability, and e�ective launch capabilities [Blair et al., 2001]. This design is a
complex multidisciplinary optimization process: the objective is to �nd the vehicle architecture
and characteristics that provide the optimal performance [Jaeger et al., 2013] while satisfying
design requirements and ensuring a certain level of reliability and safety.

The design of launch vehicles involves several disciplines and is customarily decomposed into
interacting submodels for propulsion, aerodynamics, trajectory, mass and structure (Fig. 1). Each
discipline may rely on computing-intensive simulations such as Finite Element analyses for the
structure discipline or Computational Fluid Dynamics analyses for the aerodynamics discipline.
The launch vehicle performance estimation which results from �ight performance, safety, reliability
and cost, demands coupled disciplinary analyses. The di�erent disciplines are a primary source
of trade-o�s due to the antagonist disciplinary e�ects on launcher performance. The classical
engineering design method (Fig. 2) consists of loops between di�erent disciplinary optimizations
(Fig. 2). At each iteration of this loop, each discipline is re-optimized based on the updated data
from the previous discipline optimizations. Due to the possible antagonist discipline objectives,
a di�cult search for a compromise between these con�icting tasks needs to be performed. For
instance, the aerodynamics discipline tends to decrease the diameter of the stages in order to
decrease the drag during atmospheric �ight, whereas the structure discipline tends to increase it
for stability reasons. Such design is di�cult because the couplings between disciplinary analyses
generate large volumes of calculations, many heterogenous design variables need to be controlled
and the compromise between disciplines needs to be formulated.
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A: Propulsion

B: Geometry and
mass budget

C: Structure

D: Aerodynamics

E: Trajectory

F: Performance
criteria

Figure 1: Example of launch vehicle design process
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Figure 3: MDO design process

Consequently, the design of space transportation systems needs dedicated methodologies to
manage the complexity of the problem to solve. It needs to handle the interdisciplinary couplings
between the di�erent disciplines to facilitate the research of compromises and to improve the
e�ciency of the overall design process. A family of adapted techniques, called Multidisciplinary
Design Optimization (MDO), has been developed to help solve this problem. MDO is a set of
engineering methods to handle complex design problems. MDO deals with the global design problem
as a whole unlike classical engineering design methods. It provides an informed decision framework
for system designers. MDOmethods take advantage of the inherent synergies and couplings between
the disciplines involved in the design process (Fig. 3) to decrease the computational cost and/or to
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improve the quality of the global optimal design [Sobieszczanski-Sobieski and Haftka, 1997]. Unlike
the sequential disciplinary optimizations performed with classical design methods, the interactions
between the disciplines are directly incorporated in the MDO methods [Balesdent et al., 2012a].
However, the complexity of the problem is signi�cantly increased by the simultaneous handling
of all the disciplines. To subdue this complexity, various MDO formulations have been developed.
In the 90's, several surveys classed MDO formulations into two general types of architectures:
single-level methods [Cramer et al., 1994; Balling and Sobieszczanski-Sobieski, 1996], and multi-
level methods [Alexandrov, 1997; Kroo, 1997]. Multi-level approaches introduce disciplinary level
optimizers in addition to the system level optimizer present in single-level methods in order to
facilitate the MDO problem convergence.

In the aerospace industry, a new system follows a development process involving several speci�c
phases (Conceptual design, Preliminary design, Detailed design, Manufacturing) [Blair et al., 2001]
(Fig. 4). For a launch vehicle, the conceptual design phase is decisive for the success of the whole
design process. It has been estimated that at least 80% of the life-cycle cost of a vehicle is locked
in by the chosen concept during the conceptual design phase [Blair et al., 2001] (Fig. 5). The
design space at the conceptual phase is large since few characteristics of the system are �xed, and
traditional design approaches lead to freeze some system characteristics to focus only on alternatives
selected by experts [Zang et al., 2002]. MDO techniques are interesting for the conceptual design
phase since they are able to handle large design spaces in a multidisciplinary environment. Martins
et al. [Martins and Lambe, 2013] explains that designers may improve system performance and
decrease design cycle cost and time by using MDO at the early design phases.

MissionE
requirements

ConceptualE
design

Preliminary
design

Detailed
design

Manufacturing,E
systemEintegration

verification

SetEofEoptimalE
designEalternatives

Baseline:
optimalEdesign

DetailedEspecifications
andEdrawings

LowEfidelityEmodels
SimplifiedEphysicalEmodels

EmpiricalEequations

MediumEfidelityEmodels
NewEdisciplinesEandE

constraints

HighEfidelityEmodels

(c)Cnes

(c)Onera

(c)Onera

(c)Onera

Figure 4: Design phases
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80%
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Figure 5: Evolution of the determined life cycle cost [Blair et al., 2001]

The early design phases are characterized by the use of low �delity analyses as well as by the
lack of knowledge about the future system design and performance. The low �delity analyses
are employed due to the non availability of these models in the early design phase and also the
necessity to evaluate a high number of system architectures to explore the entire design space.
This global exploration results in repeated discipline evaluations which is impossible to perform
at an a�ordable computational cost with high �delity models. On the other hand, computers
and algorithms are getting faster, so it is also becoming more and more feasible to use higher
�delity models earlier in the design process. Moreover, to increase the performance of the launch
vehicles and to decrease their costs, space agencies and industries introduce new technologies
(new propellant mixture such as liquid oxygen and methane, reusable rocket engines) and new
architectures (reusable �rst stage for launch vehicles) which present a high level of uncertainty in
the early design phases. Incorporating uncertainties in MDO methodologies for aerospace vehicle
design has thus become a necessity to o�er improvements in terms of [Zang et al., 2002]:

- reduction of design cycle time, cost and risk,

- robustness of launch vehicle design to uncertainty along the development phase,

- increasing system performance while meeting the reliability requirements,

- robustness of the launch vehicle to aleatory events during a �ight (e.g. wind gust).

If uncertainties are not taken into account at the early design phases, the detailed design phase
might reveal that the optimal design previously found violates speci�c requirements and con-
straints. In this case, either the designers go back to the previous design phase to �nd a set of
design alternatives, or they perform design modi�cations at the detailed design phase that could
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result in loss of performance. Both options would result in a loss of time and money due to the
re-run of complex simulations. Moreover, uncertainties are often treated with safety margins dur-
ing the design process of launch vehicles which may result in very conservative designs therefore
an adequate handling of uncertainty is essential [Jaeger et al., 2013]. Uncertainty-based Multidis-
ciplinary Design Optimization (UMDO) aims at solving MDO problems under uncertainty. UMDO

methods are recent and still under development and they have not reached su�cient maturity to
e�ciently estimate the �nal system performance and reliability [Zang et al., 2002; Yao et al., 2011].

Incorporating uncertainty in MDO methodologies raises a number of challenges which need to
be addressed. Being able, in the early design phases, to design a multidisciplinary system taking
into account the interactions between the disciplines and to handle the inherent uncertainties is
often computationally prohibitive. In order to satisfy the designer requirements, it is necessary to
�nd the system architecture which is optimal in terms of system performance while ensuring the
robustness and reliability of the optimal system with respect to uncertainty. Three key challenges
may be distinguished to e�ciently solve UMDO problems.

• Interdisciplinary coupling handling under uncertainty.
Most of the existing UMDO formulations are based on an adaptation of the single-level Multi-
Discipline Feasible (MDF) formulation in the presence of uncertainty [Oakley et al., 1998; Koch
et al., 2002; Jaeger et al., 2013]. In order to ensure the consistency of the interdisciplinary
couplings, these methods involve a MultiDisciplinary Analysis (MDA) at the subsystem-level.
MDA requires loops between the disciplines to converge to consistent couplings and guarantee
multidisciplinary feasibility by �nding the balance between the disciplines. Ensuring mul-
tidisciplinary system consistency is necessary to �nd an optimal solution that is physically
realistic. However, MDA is computationally expensive and its combination with uncertainty
propagation methods results in a computational burden. To avoid MDA loops, decompo-
sition strategies of the design process have been proposed [Du and Chen, 2001; Du et al.,
2008; Ghosh et al., 2014]. Nevertheless, these decompositions are not mature enough to
adequately handle the interdisciplinary couplings in order to ensure the multidisciplinary
feasibility whatever the unexpected event realization. The existing decoupled UMDO strate-
gies only guarantee the multidisciplinary feasibility for some particular event realizations
(e.g. most probable event realization leading to a system failure). However, in order to be
equivalent to coupled design strategies, decoupled approaches must ensure multidisciplinary
feasibility for all the possible unexpected events that may happen during the design and the
system operational life.

Furthermore, in literature all the examples of launch vehicle design under uncertainty consider
a subdivision into disciplines such as propulsion, structure, trajectory, etc. Stage decompo-
sition strategies [Balesdent, 2011] have been proposed to solve deterministic MDO problems
but have not yet been adapted to handle uncertainty. A stage decomposition UMDO formu-
lation for launch vehicle design could bene�t from the same advantages as in deterministic
MDO, that is introducing a multi-level process to facilitate the convergence of the system-level
optimizer while decreasing the number of discipline evaluations by avoiding the disciplinary
loops imposed by MDA-based formulations.

• Reliability analysis for complex systems.
Another important topic induced by solving UMDO problems is to ensure the reliability of
the optimal system with respect to the uncertainty. Reliability assessment consists of the
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analysis of the probability of failure of the system regarding the exisiting uncertainties. It is
used in the design of a system in order to ensure that the probability of failure is under a given
requirement. Reliability assessments are often required in the UMDO constraint evaluation.
This step is the most computationally intensive task in UMDO [Du et al., 2008] because
it requires numerous discipline evaluations. At early design phases one has to cope with
several uncertainties relative to the technology models (epistemic uncertainties) and aleatory
uncertainties inherent to the physical phenomena occurring during the launch vehicle mission
(e.g. wind gusts). These two types of uncertainty have to be considered in order to accurately
estimate the reliability of the vehicle. The combination of both aleatory and epistemic
uncertainties requires dedicated techniques to manage the computational cost induced by
uncertainty propagation. Most of the UMDO reliability analysis methods are based on First
Order Reliability Method (FORM) and Crude Monte Carlo (CMC) to compute a probability
of failure of a system [Du et al., 2005; Du, 2008] which are easy to implement. FORM is
computationally e�cient, however, it is limited to systems presenting a unique zone in the
input space leading to system failure. CMC may handle any type of reliability analysis but
it is computationally expensive especially for low probability of failure (≤ 10−4). Problems
such as the determination of a safety zone for a launch vehicle stage fallout often involve
multiple failure regions, non linear limit states and computationally intensive limit state
function evaluations. Therefore, techniques dedicated to these kind of problems are essential
within the context of launch vehicle design.

• Constrained optimization in the presence of uncertainty with Evolutionary Strategy.
In order to solve UMDO problems, optimization algorithms should have at least two features.
First, they have to be e�cient despite the presence of uncertainty. Secondly, they have to
handle constraints in order to take into account the design requirements. Classical opti-
mization algorithms based on gradient calculation cannot be directly implemented for such
problems and adaptations have been proposed to ensure algorithm convergence [Kiefer et al.,
1952; Gardner, 1984]. Indeed, the presence of uncertainty makes the accurate estimation of
the gradient that determines the search direction to converge to the optimal solution di�cult.
An alternative to the gradient-based optimizers are population-based algorithms. The latter
are based on a set of search candidates for which the objective function is evaluated. Based
on their values, the individuals are ranked and the population is accordingly modi�ed in or-
der to converge to the optimal solution. Population-based algorithms are interesting because
of their ability to handle uncertain environments [Hansen et al., 2003; Jin and Branke, 2005],
however, most of the existing algorithms do not intrinsically manage the constraints. Co-
variance Matrix Adaptation - Evolution Strategy (CMA-ES) is a population-based algorithm
particularly competitive to solve complex optimization problems in the presence of uncer-
tainty as highlighted in several extensive benchmarks [Auger and Hansen, 2009; Hansen,
2009]. However, this algorithm presents some limitations [Collange et al., 2010a] due to
the constraint handling through a penalization approach which is problem dependent and
requires a �ne tuning of parameters.

This thesis is focused on the development of new Multidisciplinary Design Anaysis and Opti-
mization methodologies in the presence of uncertainty enabling the design of complex systems
such as launch vehicle at the early design phases.
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Three contributions may be distinguished.

1. Firstly, two new UMDO formulations with interdisciplinary coupling satisfaction for all the
realizations of the uncertain variables are elaborated. In order to ensure multidisciplinary
feasibility, a new technique is proposed based on a parametric surrogate model (Polynomial
Chaos Expansion) of the input coupling variables and a new interdisciplinary coupling con-
straint to guarantee the satisfaction of the interdisciplinary couplings for all the realizations
of the uncertain variables. This technique enables the system-level optimizer to control the
parameters de�ning the surrogate model of the input coupling variables in addition to the
design variables. Therefore, it enables to decouple the disciplines while ensuring at the UMDO

problem convergence that the functional relations between the disciplines are the same as
if a coupled approach using MDA had been used. The two proposed formulations rely on
this technique to handle interdisciplinary couplings. The �rst formulation is a single-level
approach inspired from Individual Discipline Feasible (IDF) and adapted to the presence of
uncertainty. This approach, called Individual Discipline Feasible - Polynomial Chaos Expan-
sion (IDF-PCE), allows to ensure multidisciplinary feasibility for the optimal solution while
reorganizing the design process through a decomposition strategy. It has been proposed in
one conference and one journal article:

- Decoupled UMDO formulation for interdisciplinary coupling satisfaction under uncer-
tainty, L. Brevault, M. Balesdent, N. Bérend, R. Le Riche, 15th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, Atlanta, GA, USA, June 2014

- Decoupled MDO formulation for interdisciplinary coupling satisfaction under uncer-
tainty, L. Brevault, M. Balesdent, N. Bérend, R. Le Riche, Accepted to AIAA Journal,
(July 2015)

The second formulation is a multi-level approach inspired from the Stage-Wise decomposi-
tion for Optimal Rocket Design (SWORD) method [Balesdent et al., 2012a], which has been
modi�ed to take into account uncertainty and to maintain the equivalence with coupled
approaches in terms of multidisciplinary feasibility. This formulation, named Multi-level Hi-
erarchical Optimization under Uncertainty (MHOU), introduces multi-level optimization of
the disciplines and is particularly adapted for launch vehicle design. It transforms the initial
complex system design into an easier design process through a decomposition with individual
stage optimizations. It has been proposed in a conference article:

- Multi-level hierarchical MDO formulation with functional coupling satisfaction un-
der uncertainty, application to sounding rocket design, L. Brevault, M. Balesdent, N.
Bérend, R. Le Riche, WCSMO-11, Sydney, Australia, June 2015

2. Secondly, two new reliability analysis methods are developed to handle mixed aleatory/epistemic
uncertainties for complex system. To solve this speci�c reliability analysis problem, adapted
sampling-based methods combined with surrogate models and re�nement strategies have
been developed. These two methods di�er in the e�ect of epistemic uncertainty. In the
�rst one, epistemic uncertainty impacts the hyper-parameters of the joint Probability Den-
sity Function (PDF) which describes the aleatory uncertainty (e.g. the expected value of a
Gaussian distribution is known only within an interval). In the second one, the epistemic
uncertainty directly a�ects the limit state separating the failure domains from the safe one.
These methods have been proposed in three journal papers and one conference article:
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- Rare event probability estimation in the presence of epistemic uncertainty on input
probability distribution parameters, M. Balesdent, J. Morio, L. Brevault, Methodology
and Computing in Applied Probability, 2014, DOI 10.1007/s11009-014-9411-x, Springer,

- Kriging based sequential reliability analysis in the presence of mixed aleatory and
epistemic uncertainties, L. Brevault, S. Lacaze, M. Balesdent, S. Missoum, submitted to
Structural Safety (Fev. 2015),

- Probability of failure sensitivity with respect to decision variables, S. Lacaze, L. Bre-
vault, M. Balesdent, S. Missoum, Structural and Multidisciplinary Design Optimization,
DOI 10.1007/s00158-015-1232-1, April 2015, Springer,

- A sampling based RBDO algorithm with local re�nement and e�cient gradient estima-
tion. S. Lacaze, S. Missoum, L. Brevault, M. Balesdent, 12th International Conference
on Applications of Statistics and Probability in Civil Engineering, Vancouver, Canada,
July 2015.

3. Thirdly, a modi�cation of CMA-ES algorithm is proposed to e�ciently solve UMDO problem
while handling constraints in an uncertain environment. This adaptation allows to avoid
the traditional penalization-based methods which are problem dependent and require �ne
tuning. It is based on the modi�cation of the covariance update mechanisms that enables
the generation of a new population through a Gaussian distribution parameterized by the
covariance matrix. The covariance matrix is modi�ed in order to avoid the generation of
individuals that could violate the constraints. This work has been proposed in one journal
article:

- Modi�ed Covariance Matrix Adaptation - Evolution Strategy algorithm for constrained
optimization under uncertainty, application to rocket design, R. Chocat, L. Brevault,
M. Balesdent, S. Defoort, Int. J. Simul. Multisci. Des. Optim., 2015, 6, A1. DOI:
http://dx.doi.org/10.1051/smdo/2015001

In the three contributions, all the proposed approaches are compared to the existing reference
methods on analytical test cases and on launch vehicle analysis or design problems.

This manuscript is organized into four parts according to the three contributions. The �rst
part is devoted to drawing up a panorama of the UMDO methods and their applications to launch
vehicle design. Chapter 1 presents the key concepts used to describe a deterministic MDO problem
and the main formulations to solve it. In chapter 2 several aspects of uncertainty which are
essential to lay the foundations of UMDO methodologies are presented. This chapter includes the
uncertainty de�nition, the di�erent mathematical modelings and the existing methods to propagate
uncertainty into disciplines. Chapter 3 concerns the description of the existing UMDO formulations
and the interdisciplinary coupling satisfaction in the presence of uncertainty. Chapter 4 is devoted
to the presentation of reliability analysis techniques in the presence of mixed aleatory/epistemic
uncertainties. Finally, chapter 5 details the di�erent existing optimization algorithms employed
to solve UMDO problems. In regards to this study, chapter 5 expresses some possible ways of
improvement which will be detailed in parts II, III and IV.

The second part (Part II) of this thesis is related to the description and the analysis of the two
proposed UMDO formulations. To this end, chapter 6 presents the Individual Discipline Feasible
- Polynomial Chaos Expansion (IDF-PCE) formulation. A comparison with the most used UMDO

method on an analytical test case is performed. Chapter 7 introduces the Multi-level Hierarchical
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Optimization under Uncertainty (MHOU) formulation dedicated to launch vehicle design. Chapter
8 compares IDF-PCE and MHOU formulations on two launch vehicle test cases with MDF under
uncertainty.

The third part (Part III) is devoted to reliability analysis for complex system design. Chapter
9 proposes a reliability analysis method to handle epistemic uncertainty in the hyper-parameter
of the probability density function de�ning the input uncertainties. Chapter 10 introduces a new
reliability method in the presence of mixed aleatory/epistemic uncertainty directly a�ecting the
limit state function. Finally, in chapter 11, applications of the proposed methods to launch vehicle
reliability analysis and, more speci�cally, to the determination of a safety zone for stage fallout are
proposed. The methods are compared to the reference techniques.

The last part (Part IV) of this manuscript is devoted to the modi�cation of CMA-ES algorithm
in order to e�ciently handle constraints in an uncertain environment to solve UMDO problem. In
chapter 12, the modi�cation of CMA-ES is described and a comparison of the proposed method
with classical constraint handling techniques is performed on several analytical test cases. Finally,
in chapter 13, an application to UMDO launch vehicle design is proposed and compared to MDF

under uncertainty.
The appendices present the disciplinary models used in the di�erent test cases. The last

appendix consists of an extended abstract of this thesis written in French.
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Chapter 1

Deterministic Multidisciplinary
Design Optimization

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Mathematical formulation of the general deterministic MDO problem 27

1.3 Multidisciplinary coupling satisfaction . . . . . . . . . . . . . . . . . . 30

1.3.1 Coupled approaches (MultiDisciplinary Analysis) . . . . . . . . . . . . . 30

1.3.2 Decoupled approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 MDO formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 Multi Discipline Feasible (MDF) . . . . . . . . . . . . . . . . . . . . . . 34

1.4.2 Individual Discipline Feasible (IDF) . . . . . . . . . . . . . . . . . . . . 36

1.4.3 Bi-Level Integrated System Synthesis (BLISS) . . . . . . . . . . . . . . . 37

1.4.4 Collaborative Optimization (CO) . . . . . . . . . . . . . . . . . . . . . . 39

1.4.5 Deterministic MDO for launch vehicle design . . . . . . . . . . . . . . . 40

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

• Present the principal exisiting deterministic MDO formulations adapted to launch vehicle
design,

• Introduce notations within the MDO context.

Chapter goals

1.1 Introduction

Multidisciplinary Design Optimization (MDO) is a set of engineering methods to handle complex
design problems involving several coupled disciplines. It provides an informed decision framework
for system designers. In the MDO formalism, a system is described as a set of interconnected sub-
systems (called disciplines) in order to model its dynamics and to estimate its performance. MDO
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approaches have been applied to a large panel of case studies in various �elds such as: aircrafts
[Henderson et al., 2012; Nguyen et al., 2013; Kenway et al., 2014], launch vehicles [Braun, 1996;
Balesdent et al., 2012b; Breitkopf and Coelho, 2013], spacecrafts [Hwang et al., 2013; Huang et al.,
2014], automotives [McAllister and Simpson, 2003], ships [Peri and Campana, 2003], buildings
[Choudhary et al., 2005] and o�er methods to solve complex design optimizations which are labo-
rious to handle with the classical design methods [Alexandrov, 1997]. Classical design approaches
(Fig. 1.1) consist of a sequence of discipline optimizations. However, in case of complex system de-
sign, disciplines often present antagonist objectives and classical design approaches have di�culty
in the search for compromise between these con�icting disciplinary objectives [Balesdent et al.,
2012b]. For instance, the aerodynamics discipline tends to decrease the diameter of the stages to
decrease the drag during the atmospheric �ight, whereas the structure discipline tends to increase
it for stability reasons.

Discipline
1

Discipline
2

Discipline
N

Local optimizer Local optimizer

Local optimizer

Traditional design & optimization
of a launch vehicle

Figure 1.1: Classical design approaches

Discipline
1

Optimizer

Discipline
2

Discipline
N

Figure 1.2: Multidisciplinary Design Optimiza-
tion

Unlike the sequential disciplinary optimizations (Fig. 1.1), in MDO, the interactions between
the disciplines are directly incorporated [Balesdent et al., 2012b]. The design of systems involves
diverse �elds of expertise and with the globalization of the industries, complex system design
involve engineers distributed all over the world and data exchange between the teams is a crucial
point to take into account in the design process. MDO approaches aims to facilitate discipline
exchanges in order to faster �nd an optimal solution. MDO formulations take advantage of the
inherent synergies and couplings between the disciplines involved in the design process to decrease
the computational cost and/or to improve the quality of the global optimal design [Sobieszczanski-
Sobieski and Haftka, 1997]. However, the complexity of the problem is signi�cantly increased by the
simultaneous handling of all the disciplines and their interdependence. To subdue the complexity
introduced by MDO, various MDO formulations have been developed.

This chapter introduces the fundamental concepts, notations and methods required to describe
a MDO process without the presence of uncertainty. In section 1.2, the concept of discipline and
the general MDO formulation are introduced in addition to the appropriate notations to establish
the preliminary bases. Section 1.3 details the interdisciplinary coupling handling methods existing
in literature that may be distinguished into two categories: coupled and decoupled approaches.
Section 1.4 presents an overview of the existing MDO formulations in order to describe their keys
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steps and to highlight their main advantages and drawbacks. Moreover, a focus on MDO formula-
tions used to solve launch vehicle design problem is proposed. Eventually, section 1.5 introduces
the changes induced by the presence of uncertainty in MDO problems.

1.2 Mathematical formulation of the general deterministic
MDO problem

In MDO, a discipline i is modeled by a function ci(·) taking design variables and input coupling
variables as inputs and calculating output coupling variables. A discipline i is illustrated in Figure
1.3.

Discipline i

ci.(zi,y.i)

Design variables zi

Input coupling variables y.i

Discipline output

Figure 1.3: Discipline modeling

A general MDO problem can be formulated as follows [Balesdent et al., 2012b]:

min f(z,y,x) (1.1)

w.r.t. z,y,x

s.t. g(z,y,x) ≤ 0 (1.2)

h(z,y,x) = 0 (1.3)

∀(i, j) ∈ {1, ..., N}2 i 6= j, yij = cij(zi,y.i,xi) (1.4)

∀i ∈ {1, ..., N}2, ri(zi,y.i,xi) = 0 (1.5)

zmin ≤ z ≤ zmax (1.6)

All the variables and functions are described in the following sections. Three types of variables
are involved in a deterministic MDO problem:

• z is the design variable vector. The design variables evolve all along the optimization process
in order to �nd their optimal values with respect to the MDO problem (objective function
and constraints). Design variables may be shared between several disciplines (noted zsh) or
speci�c to the discipline i (noted z̄i). We note zi = {zsh, z̄i} the input design variable vector
of the discipline i ∈ {1, ..., N} with N the number of disciplines and z =

⋃N
i=1 zi without

duplication. Typical design variables in a launch vehicle design problem are stage diameters,
pressures in the combustion chambers, propellant masses, etc.

• x is the state variable vector. Unlike z, the state variables are not independent degrees of
freedom but depend on the design variables, the coupling variables y and the state equations
characterized by the residuals r. These variables are often de�ned by implicit relations that
require speci�c numerical methods for solving complex industrial problems. For instance,
the guidance law (modeled for instance by pitch angle interpolation with respect to a set of
way points) in a launch vehicle trajectory discipline has to be determined in order to ensure
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payload injection into orbit. The guidance law is often the result of an optimization problem
minimizing the discrepancy between the target orbit injection and the real orbit injection.
In such modeling, the pitch angle way points are state variables for the trajectory discipline
and r(·) the residual to be minimized in the optimization problem.

Discipline i Discipline j

zi zj

yji

yijcij(zi,yji,xi)

cji(zj,yij,xj)

Figure 1.4: Couplings between the discipline i and the discipline j

• In a multidisciplinary environment, the disciplines exchange coupling variables, y (Fig. 1.4).
The latter link the di�erent disciplines to model the interactions between them. cij(zi,y.i,xi)
is a coupling function used to compute the output coupling variable vector which is calculated
by discipline i and input to discipline j. y.i refers to the vector of all the input coupling
variables of discipline i and yij is the input coupling variable vector which is input to discipline
j and output from discipline i. We note y =

⋃N
i=1 y.i =

⋃N
i=1 yi. without duplication. From

the design variables and the input coupling variables to the discipline i, the output coupling
variables are computed with the coupling function: ci.(zi,y.i,xi) and yi. = (yi1, . . . ,yiN ) is
the vector of the outputs of discipline i and the input coupling variable vector of all the other
disciplines. For example, the sizing discipline computes the launch vehicle dry mass which is
transferred to the trajectory discipline for a simulation of the launch vehicle �ight. Another
example is the classical aero-structure analysis (Fig. 1.5) [Coelho et al., 2009; El Majd et al.,
2010; Kennedy and Martins, 2014; Kenway et al., 2014]. For a launch vehicle, aero-structure
analysis involves coupled analyses between aerodynamics discipline (which requires the launch
vehicle geometry and the deformations) and the structure discipline (which requires the
aerodynamics loads on the launch vehicle structure). For coupled system, it is important to
keep in mind that their design involves goals which are often con�icting with each other, for
instance reducing weight may lead to higher stresses.

Aerodynamics
CFD

Structure
FEA

loads

Induced 
deformation

loads

Induced 
deformation

Figure 1.5: Couplings between aerodynamics and structure disciplines

In order to solve the MDO problem Eqs.(1.1-1.6), we are looking for:
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• Inequality and equality constraint feasibility: the MDO solution has to satisfy the inequality
constraints imposed by g(·) and the equality constraints imposed by h(·). These constraints
translate the requirements for the system in terms of targeted performance, safety, �exibility,
etc. For example, a target orbit altitude for a launch vehicle payload is an equality constraint
to be satis�ed.

• Individual disciplinary feasibility: the MDO solution has to ensure the disciplinary satisfaction
through the equality constraints on the residuals ri(·). The residuals ri(·) quantify the
satisfaction of the state equations in discipline i. The state variables xi are the roots of the
state equations of discipline i. For instance, state equations may translate thermodynamics
equilibrium between the chemical components in rocket engine combustion. In the rest of
the thesis, it is assumed that the satisfaction of the disciplinary feasibility is ensured by the
disciplines, therefore, no more references to state variables and residuals will be done.

• Multidisciplinary feasibility: the MDO solution has to satisfy the interdisciplinary equality
constraint between the input coupling variable vector y and the output coupling variable
vector c(·) resulting from the discipline simulations. The couplings between the disciplines i
and j are said to be satis�ed (also called feasible or consistent) when the following interdis-
ciplinary system of equations is veri�ed:{

yij = cij(zi,y.i)
yji = cji(zj ,y.j)

(1.7)

When all the couplings are satis�ed, i.e. when Eqs.(1.7) are satis�ed for all the couplings
between all the disciplines, the system is said to be multidisciplinary feasible. The satisfaction
of the interdisciplinary couplings is essential as it is a necessary condition for the modeled
system to be physically realistic. Indeed, in the aero-structure example, if the aerodynamics
discipline computes a load of 10MPa it is necessary that the structure discipline uses as input
10MPa and not another value otherwise the aero-structure analysis is not consistent. The
existing method for coupling satisfaction in deterministic MDO are detailed in section 1.3.

• Optimal MDO solution: f is the objective function (also called performance) to be optimized.
Multi-objective function may be used to quantify several performance to be optimized but
is not considered in this thesis. This function characterizes the system and is a measure of
its quality expressed with some metrics (e.g. launch vehicle life cycle cost in euros, Gross
Lift-O� Weight (GLOW) in kg, etc.). In general, the objective function has to be minimized.

To summarize, in order to solve a MDO problem, it is necessary to ensure:

� Requirement feasibility: respect of the requirements asked by the designer,

� Multidisciplinary feasibility: respect of the physical relevance for the obtained design,

� Individual disciplinary feasibility: respect of the disciplinary state equations,

� MDO solution optimality.

The multidisciplinary feasibility is a speci�city of multidisciplinary systems which involve coupled
analyses and require speci�c methodologies to guarantee it. Classical methods to ensure interdis-
ciplinary coupling satisfaction are detailed in the next section.
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Discipline
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MultidisciplinaryhDesignhAnalysis
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...

Couplinghvariableshy

Couplinghvariableshy

Figure 1.6: Multidisciplinary Design Optimiza-
tion, coupled approach
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Figure 1.7: Multidisciplinary Design Optimiza-
tion, decoupled approach

1.3 Multidisciplinary coupling satisfaction

In MDO, two categories of methods to satisfy the interdisciplinary couplings may be distinguished
[Balling and Sobieszczanski-Sobieski, 1996]: the coupled approaches and the decoupled approaches.

1.3.1 Coupled approaches (MultiDisciplinary Analysis)

Coupled approaches (Fig. 1.6) perform a MultiDisciplinary Analysis (MDA) to ensure the interdis-
ciplinary couplings at each iteration of the system-level optimization. MDA is an auxiliary analysis
aiming to �nd an equilibrium between the disciplines by solving the system of interdisciplinary
equations [Coelho et al., 2009]. In other words, MDA consists in �nding the value of the input
coupling variables y satisfying the system of interdisciplinary equations. An iterative scheme is
required to solve the system of equations because of the coupled nature of the disciplines. Two
classical MDA methods are distinguished: either the Fixed Point Iteration (FPI) or an auxiliary op-
timization process minimizing the residuals of the interdisciplinary equations [Coelho et al., 2009;
Breitkopf and Coelho, 2013].

I Fixed Point Iteration. FPI is an iterative procedure involving a loop between the disci-
plines with no control on the coupling variables (excepted for the initialization) which directly
result from the discipline simulations. FPI can be interpreted as a generalized Gauss-Seidel
scheme for multidisciplinary analysis because of its links with the Gauss-Seidel algorithm for
solving linear algebraic equations. It is important to note that FPI may not always converge,
a theoretical analysis of conditions under which convergence can be guaranteed (for instance
if the interdisciplinary set of equations de�nes a contraction mapping) may be found in [Or-
tega, 1973]. In the FPI approach, only one coupling vector is initialized (for instance yij in
Fig. 1.8). A FPI algorithm for scalar coupling variable between two disciplines is described
in Algorithm 1. The algorithm can be generalized to vector couplings with more than two
disciplines.

I Discrepancy minimization. Alternatively, MDA may be solved by minimizing the discrep-
ancy between the input coupling variable vector and the coupling output vector [Tedford and

30



CHAPTER 1. DETERMINISTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION

Discipline i Discipline j

zi zj
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yijcij(zi,yji       )
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Figure 1.8: FPI between the discipline i and the discipline j

Martins, 2006]:

min ‖ y1. − c1.(z,y.1) ‖2 +...+ ‖ yN. − cN.(z,y.N ) ‖2 (1.8)

w.r.t. y

with yi. the input coupling variable vector of all the disciplines linked to the discipline i.
The interdisciplinary coupling system is solved when the optimizer converges such that the
discrepancy is equal to zero. An e�cient auxiliary optimization algorithm often requires fewer
calls to the discipline i than FPI, as the optimization process chooses the steps more freely
than FPI [Sankararaman and Mahadevan, 2012]. Newton-Raphson or staggered solution
approach [Felippa et al., 2001] are examples of root �nding algorithms applied to MDA.
More details on MDA can be found in [Keane and Nair, 2005]. MDO formulations satisfying
the interdisciplinary equations with MDA ensure the system feasibility at each system-level
optimization iteration.

Discipline i Discipline j

zi zj

yij

cij(zi,yji) cji(zj,yij)

yji

min |yji-cji(zj,yij)|+|yij-cij(zi,yji)|

w.r.t. yji yij

2 2

Figure 1.9: Discrepancy minimization for the discipline i and the discipline j

It is worth noting that whatever the numerical scheme employed to solve MDA, it is possible that
the �nal couplings may depend on the initial guess. Indeed, a nonlinear system can have multiple
equilibrium points resulting in several couplings satisfying the multidisciplinary feasibility. Even
though such situations are rarely encountered in launch vehicle design, MDA must be performed
carefully to ensure that the most physically meaningful solution is picked.

31



Contributions to Uncertainty-based Multidisciplinary Design
Optimization, application to launch vehicle design

Algorithm 1 FPI algorithm for scalar coupling between two disciplines

Require: zi, zj , initial coupling guess yguessji , convergence tolerance criterion δref , maximum
number of iterations kmax

1) Initialize k = 0
2) Evaluate discipline i with: cij(zi, y

guess
ji ) = yij

3) Evaluate discipline j with: cji(zj , yij) = ynewji

4) Compute the coupling error: δ = |yguessji − ynewji |
5) k ← k + 1
while δ > δref and k < kmax do
6-1) Set yguessji = ynewji

6-2) Evaluate discipline i with: cij(zi, y
guess
ji ) = yij

6-3) Evaluate discipline j with: cji(zj , yij) = ynewji

6-4) Compute the coupling error: δ = |yguessji − ynewji |
6-5) k ← k + 1

end while
if k < kmax then
return ynewji , yij and k

else
return ′′not converged′′.

end if

1.3.2 Decoupled approaches

Decoupled approaches (Fig. 1.7) aim at removing MDA and to impose equality constraints on
the coupling variables in the MDO formulation at the system-level (Eq.1.4) to ensure the inter-
disciplinary coupling satisfaction only for the optimal design. Instead of solving the system of
interdisciplinary equations at each MDO process iteration in z, equality constraints may be im-
posed between the input and the output coupling variables in the MDO formulation at the same
level as the constraints g(·) and h(·): ∀(i, j) ∈ {1, ..., N}2 ∀i 6= j, yij = cij(zi,y.i). These con-
straints impose to the optimal design the multidisciplinary feasibility. The basic idea is to de�ne
the coupling variables y as optimization variables along with the design variables z. Indeed, in
the decoupled approaches, the system-level optimizer handles both the design variables and the
input coupling variables. Hence, the additional degrees of freedom introduced by expanding the
variables controlled by the system-level optimizer are removed by the coupling equality constraints.
The equality constraints on coupling variables may not be satis�ed at each iteration but guide the
search of optimal design.

The coupled and decoupled approaches to handle the interdisciplinary couplings have been incor-
porated in various MDO formulations that are brie�y presented in the following sections.

1.4 MDO formulations

A lot of MDO formulations have been proposed in literature to e�ciently solve general and speci�c
engineering problems. Some articles [Balling and Sobieszczanski-Sobieski, 1996; Alexandrov, 1997;
Balesdent et al., 2012b; Martins and Lambe, 2013; Breitkopf and Coelho, 2013] provide a review
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of the di�erent methods and compare them qualitatively and numerically on a benchmark of MDO

problems [Yi et al., 2008; Tedford and Martins, 2010].
This section presents the main MDO formulations that will be used in the following. Classical

MDO formulations may be classi�ed in four categories (Fig. 1.10) according to the coupled or
decoupled and to the single or multi-level approaches:

• Single level approaches by application of MDA: e.g. Multi Discipline Feasible (MDF) [Balling
and Sobieszczanski-Sobieski, 1996],

• Multi-level approaches by application of MDA: e.g. Concurrent SubSpace Optimization
(CSSO) [Sobieszczanski-Sobieski, 1988], Bi-Level Integrated System Synthesis (BLISS)[Sobieszczanski-
Sobieski et al., 1998],

• Single level approaches with equality constraints on the coupling variables: e.g. Individual
Discipline Feasible (IDF) [Balling and Sobieszczanski-Sobieski, 1996], All At Once (AAO)
[Balling and Sobieszczanski-Sobieski, 1996],

• Multi-level approaches with equality constraints on the coupling variables: e.g. Collaborative
Optimization (CO) [Braun et al., 1996], Analytical Target Cascading (ATC) [Allison et al.,
2005], Quasiseparable Decomposition (QSD) [Haftka and Watson, 2005].

Coupled-
approaches

Decoupled-
approaches

Single
level

Multi
levels

Multi-
Discipline-

Feasible-(MDF)

Individual
Discipline-

Feasible-(IDF)

All
At

Once-(AAO)

Concurrent
SubSpace

Optimization-(CSSO)

Bi-Level
Integrated-Systems
Synthesis-(BLISS)

Collaborative
Optimization

-(CO)

Analytical-
Target-

Cascading-(ATC)

Figure 1.10: Classi�cation of the main MDO formulations

The single level vs. multi-level formulations are di�erentiated by the number of optimizers.
Single formulations have only one system optimizer to solve the MDO problem whereas in multi-
level formulations, in addition to the system optimizer, discipline optimizers are introduced in order
to distribute the problem complexity over di�erent dedicated discipline optimizations. Among the
formulations relying on MDA, MDF is the most usual [Balesdent et al., 2012b]. MDF is a single
level optimization formulation in which the system performance is evaluated with a disciplinary
iterative process. CSSO and BLISS formulations use MDA to ensure interdisciplinary couplings but
enable decoupled discipline optimizations. IDF, CO, ATC and AAO are fully decoupled formulations
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with satisfaction of the couplings by incorporating additional variables and equality constraints
in the formulations. The decoupled MDO formulations o�er several advantages compared to MDF

[Balesdent et al., 2012b; Martins and Lambe, 2013]:

I The system-level optimization process allows parallel analyses of the disciplines, however load
balancing has to be taken into account when some analyses or optimizations are much more
expensive than others, such as in multi�delity optimization problem [Zadeh and Toropov,
2002], the decoupled approaches su�er because of the inactivity of the processors running the
inexpensive analyses and optimizations which is waiting for updates from other processors.

I The number of calls to the computationally expensive discipline codes may be notably de-
creased by avoiding expensive MDA calculations,

I The multi-level methods facilitate the system optimization by distributing the problem com-
plexity over the di�erent dedicated discipline optimizations, however poor convergence rate
may be observed due to the imbrication of several levels of optimization [DeMiguel and
Murray, 2000; Martins and Lambe, 2013],

I In the multi-level approaches, the discipline optimizers handle local design variables (de-
creasing the system-level design space size) and the system-level optimizer only handles the
shared design variables between several disciplines and the coupling variables.

However, compared to MDF, the decoupled MDO formulations require an appropriate interdisci-
plinary coupling handling and involve an optimization problem with more variables in total (the
design variables plus the coupling variables that can be distributed among the system and the
local disciplinary optimizers in the case of multi-level approaches) and more constraints. In the
next sections, two single level formulations (one coupled and one decoupled) and two multi-level
formulations (one coupled and one decoupled) are presented in order to highlight the coupling
handling approaches in the main MDO formulations. First, the two single level approaches are
introduced.

1.4.1 Multi Discipline Feasible (MDF)

The Multi Discipline Feasible (MDF) formulation (Fig. 1.11) is the most usual MDO method. This
approach is described in [Cramer et al., 1994; Balling and Sobieszczanski-Sobieski, 1996]. MDF is
a single level coupled deterministic approach which uses MDA to ensure interdisciplinary coupling
satisfaction at each iteration of the system-level optimizer. All the subsystems (disciplines) are
coupled in an analysis module which aims to determine the couplings satisfying the interdisciplinary
system of equations ensuring multidisciplinary feasibility. Once the MDA is performed, design
variables and converged couplings are used to compute the objective function and the constraints.
The disciplines are in charge to �nd the state variables satisfying state equations consequently they
do not intervene in the MDF formulation.
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min f (z,y(z)) (1.9)

w.r.t. z

s.t. g (z,y(z)) ≤ 0 (1.10)

h (z,y(z)) = 0 (1.11)

zmin ≤ z ≤ zmax (1.12)

with y(z) the coupling variable vector satisfying the system of interdisciplinary equations (Eqs.1.7).
It is important to notice that, in MDF, due to the repeated calls to MDA, at each iteration, each
found solution is multidisciplinary feasible. The main advantage of MDF is its simplicity of im-
plementation which involves only one system optimizer and handles interdisciplinary couplings
with MDA. Moreover, this formulation is general enough to be easily adapted to all types of
multidisciplinary systems. MDF formulation is often considered as a reference due to its intrin-
sic interdisciplinary coupling satisfaction thanks to MDA. However, MDF presents also important
drawbacks. MDA requires iterative loop between the disciplines and is computationally expensive.
In the presence of computationally expensive disciplines, the repeated calls to MDA in MDF results
in a prohibitive computational cost.
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Figure 1.11: MDF method

For large scale industrial design problems, each subsystem may involve specialists and engi-
neering teams distributed all over the world and performing MDA becomes a complicated task as
it requires [Balesdent, 2011]:

• the de�nition of each subsystem autonomy and domain of action with respect to all the
involved collaborators,

• the management of the exchanges of information and data transmissions between the di�erent
subsystems,

• the traceability of the exchanged information and the evaluated system design.
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Moreover, the subsystem analyses are performed sequentially and each team has to wait for the
previous one in order to perform its tasks (when FPI is used to solve MDA) which can be very time
consuming.

1.4.2 Individual Discipline Feasible (IDF)

Individual Discipline Feasible [Cramer et al., 1994; Balling and Sobieszczanski-Sobieski, 1996] (Fig.
1.12) is a decoupled single level deterministic formulation Eqs.(1.13-1.17). It replaces the computa-
tionally expensive MDA by introducing additional degrees of freedom, the input coupling variables
handled at the system-level, and by adding interdisciplinary coupling constraints in the formula-
tion, Eq.(1.16):

min f (z,y) (1.13)

w.r.t. z,y

s.t. g (z,y) ≤ 0 (1.14)

h (z,y) = 0 (1.15)

∀(i, j) ∈ {1, . . . , N}2i 6= j,yij = cij(zi,y.i) (1.16)

zmin ≤ z ≤ zmax (1.17)
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Figure 1.12: IDF method

This formulation allows to decompose the main problem into several subproblems by removing
MDA. The input coupling variables are controlled by the system-level optimizer allowing to decou-
ple the disciplines and to evaluate them in parallel. The optimizer exchanges coupling information
with all the disciplines to coordinate them to a multidisciplinary feasible solution. In order to
ensure the system consistency for the optimal solution, equality constraints Eq.(1.16) between the
input and the output coupling variables are added compared to MDF formulation. In IDF, the
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multidisciplinary feasibility is ensured only at the MDO problem convergence and the intermediate
optimization solution consistency is not guaranteed. This decomposition approach increases the
number of decision variables controlled by the system-level optimizer but the computational cost
may be improved thanks to the discipline parallelization. Unlike MDF, at each system-level iter-
ation, only one call to the disciplines is performed. For large scale applications, the management
tasks are less restrictive than in MDF because each discipline only dialogues with the optimizer
and does not need to wait the results of the other disciplines.

Multi-level approaches have been proposed in order to ease the system-level optimization by
introducing dedicated subsystem-level optimizers. Bi-Level Integrated Systems Synthesis (BLISS)
and Collaborative Optimization (CO) approaches are respectively coupled and decoupled multi-
level formulations and are detailed in the next sections.

1.4.3 Bi-Level Integrated System Synthesis (BLISS)

Bi-Level Integrated System Synthesis (BLISS) [Sobieszczanski-Sobieski et al., 1998, 2000] is a multi-
level deterministic MDO formulation (Fig. 1.13). It is an iterative method organized with a system-
level optimizer and a set of disciplinary optimizers at the subsystem-level. The basic idea of BLISS
is to create a path in the design space using a series of linear approximations to the original design
problem, with bounds on the design variable steps de�ned by the designer, in order to avoid to
the design point from moving so far away that the approximations are inaccurate. The concept is
similar to trust region optimization algorithms [Conn et al., 2000]. BLISS is based on a gradient
approach and optimizes successively the contributions of the individual design variables (subsystem
optimization problems) and the shared design variables to the objective function (system-level
optimization problem). In order to ensure multidisciplinary feasibility, BLISS relies on MDA as in
MDF which is performed between the system and the subsystem optimization problems.

At the kth iteration, the system-level optimizer solves the following problem:

min f∗k +
∂f∗k
∂zsh

∆zsh (1.18)

w.r.t. ∆zsh

s.t. ∆zshmin
≤ ∆zsh ≤ ∆zshmax (1.19)

The ith subsystem optimization problem is given by:

min f +
∂f

∂z̄i
∆z̄i (1.20)

w.r.t. ∆z̄i

s.t. gi +
∂gi
∂∆z̄i

∆z̄i ≤ 0 (1.21)

hi +
∂hi
∂∆z̄i

∆z̄i = 0 (1.22)

∆z̄imin
≤ ∆z̄i ≤ ∆z̄imax (1.23)

with ∆z the optimization variable increments at the current iteration k. In the system-level op-
timization problem Eqs.(1.18-1.19), the objective function f∗k is a �rst order Taylor series expansion
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Figure 1.13: BLISS method

with the disicpline design variables zi being �xed to their optimal values found at the subsystem-
level. At the subsystem-level, the objective function and the constraints are �rst order Taylor series
expansion with the shared variables being �xed to the optimal values found at the system-level.
BLISS allows one to separate the system-level optimization and the optimizations of the di�erent
disciplines at the subsystem-level. Adapted optimization methods for each discipline is possible
improving the system convergence. The reliance of BLISS on linear approximations may introduce
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di�uculties if the underlying problem is highly nonlinear, the algorithm may converge slowly. The
user-de�ned variable bounds may help the convergence if these bounds are correctly chosen, e.g.,
through a trust-region framework. Variants of BLISS have been developed such as BLISS2000 using
approximate models to replace the original disciplines to decrease the computational cost.

1.4.4 Collaborative Optimization (CO)

Collaborative Optimization (CO) [Braun et al., 1996] is a decoupled bi-level deterministic formula-
tion (Fig. 1.14). This formulation has been developed to o�er more autonomy to the subsystems
to satisfy the interdisciplinary couplings. CO formulation may be resumed as follows:

min f (z,y) (1.24)

w.r.t. z,y

s.t. Ĵi.(ẑi, zi,y) = 0, ∀i ∈ {1, . . . , N} (1.25)

zmin ≤ z ≤ zmax (1.26)

with Ĵi. the optimized objective function of the ith discipline and ẑ the local copies of z controlled
by the subsystem optimizer. The ith subsystem optimization problem is given by:

min Ji. =‖ ẑi − zi ‖22 + ‖ yi. − ci.(y.i, ẑi) ‖22 (1.27)

w.r.t. ẑi

s.t. gi (ẑi,y.i) ≤ 0 (1.28)

hi (ẑi,y.i) = 0 (1.29)

ẑimin
≤ ẑi ≤ ẑimax (1.30)

CO presents important advantages compared to single level MDO formulations. Indeed, CO

allows to employ the most adapted optimization method to each discipline with possible actions of
the disciplinary experts. Moreover, the design process o�ers modularity and �exibility to add or
remove disciplines without modifying the entire design process. However, theoretical and practical
convergence issues with respect to the quadratic constraint formulation have been observed by
some researchers [Alexandrov and Lewis, 2000] due to instabilities at the convergence. Several
adaptations of CO have been proposed in order to overcome this di�culty [DeMiguel and Murray,
2006]. Nevertheless, this approach has been shown to be valid and to provide good results for some
MDO problems [Braun et al., 1996].

For more details on deterministicMDO formulations one can refer to [Balling and Sobieszczanski-
Sobieski, 1996; Alexandrov, 1997; Balesdent et al., 2012b; Martins and Lambe, 2013]. Launch
vehicles are complex systems and their design involve an MDO problem [Braun, 1996; Gang et al.,
2005; Brown and Olds, 2006; Balesdent et al., 2012a; Breitkopf and Coelho, 2013]. In literature,
a large number of papers applied the general deterministic MDO formulations (MDF, IDF, AAO,
CO, BLISS, ATC) to launch vehicle design problems. These formulations are general enough to be
adapted to the design of launch vehicles. Moreover, dedicated deterministic MDO formulations
have been proposed to design launch vehicle to improve the design process e�ciency. In the next
section, a focus on deterministic MDO formulations for the design of launch vehicle is proposed.
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Figure 1.14: CO method

1.4.5 Deterministic MDO for launch vehicle design

Multi-Discipline Feasible (MDF) method appears to be the most used MDO method to design a
launch vehicle [Balesdent et al., 2012a; Breitkopf and Coelho, 2013]. MDF formulation is the
easiest formulation to implement explaining its popularity in the launch vehicle community. Some
articles used other MDO formulations such as IDF [Braun and Kroo, 1995] , AAO [Braun, 1996;
Brown and Olds, 2006], CO [Braun, 1996; Cormier et al., 2000; Gang et al., 2005; Brown and Olds,
2006] and BLISS [Brown and Olds, 2006]. In [Balesdent et al., 2012a] the authors performed a
detailed review on MDO formulations applied to launch vehicle design. These MDO formulations
are �exible enough to be adapted to the design of any complex systems such as launch vehicle.
However, launch vehicle design present particularities, notably the importance of the trajectory
discipline compared to the other disciplines. Exploiting these speci�cities in a MDO formulation
might improve the launch vehicle design process. Dedicated formulations for launch vehicle design
have been proposed such as the Stage Wise decomposition for Optimal Rocket Design (SWORD)
[Balesdent et al., 2012a]. The next paragraph focuses on this dedicated formulation.

Stage Wise decomposition for Optimal Rocket Design 3rd formulation (SWORD). In
literature, the classical approach to design a launch vehicle is to decompose the design process ac-
cording to the involved disciplines (propulsion, aerodynamics, sizing, trajectory, etc.). In SWORD

formulations [Balesdent et al., 2012a], the design process of a launch vehicle is decomposed ac-
cording to the di�erent stages in order to improve the e�ciency of the MDO process. In these
formulations, the subsystems are not the disciplines but instead the di�erent stage optimizations
incorporating all the required disciplines to the stage design. SWORD decompositions are multi-
level decoupled MDO formulations. Four di�erent formulations have been proposed depending on
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the decomposition process and the interdisciplinary coupling constraint handling. According to
their comparison on launch vehicle application cases implemented by Balesdent et al. [Balesdent
et al., 2012a], the third formulation is more e�cient to solve MDO problems (with respect to the
number of discipline evaluations) due to its hierarchical decomposition of the design process and is
detailed in the following. In SWORD, the objective function f(·) is assumed to be decomposed such
as f(·) =

∑n
j=1 fj(·) with n the number of stages. In practice, the Gross Lift-O� Weight (GLOW)

is often minimized in launch vehicle design process [Balesdent et al., 2012b; Castellini, 2012] and
it can be decomposed as the sum of the stage masses plus the fairing and payload masses. The
di�erent stage masses are coupled, a change in the upper stage mass would introduce a modi�ca-
tion of the lower stage masses in order to ensure mission success. Also, the cost of launch vehicle
follows the same decomposition (sum of the stage cost).

The formulation at the system-level is given by:

min f (z,y) (1.31)

w.r.t. zsh,y

s.t. g0(z,y) (1.32)

zmin ≤ z ≤ zmax (1.33)

At the subsystem-level:
i = n
While i > 0
For the ith stage:
Given zsh,y and the optimal masses of the stages i+ 1 to n:

min fi(zsh, z̄i,y) (1.34)

w.r.t. z̄i

s.t. gi (zsh, z̄i,y) ≤ 0 (1.35)

hi (zsh, z̄i,y) = 0 (1.36)

yi. = ci.(zsh, z̄i,y.i) (1.37)

z̄imin
≤ z̄i ≤ z̄imax (1.38)

i← i− 1

where g0(·) are system-level inequality constraints and Eq.(1.36) is only considered for i = n and
Eq.(1.37) for i 6= n. This formulation allows to separately optimize each stage in a hierarchical
process. The last stage is optimized �rst and the �rst stage is optimized last. The result of
the previous optimization is passed to the next launch vehicle stage optimization (Fig. 1.15).
Furthermore, this formulation ensures to the user to have multidisciplinary feasible solution even
if the system-level optimizer has not converged yet. The di�erent optimizations of the stages
cannot be performed in parallel which may be a drawback when parallelization is possible in terms
of computational cost. This formulation has been applied to the design of a three-stage-to-orbit
launch vehicle [Balesdent et al., 2012a] and compared to MDF. The 3rd SWORD formulation appears
to be the best formulation among the SWORD formulations and succeed to reduce the number of
calls to the disciplines compared to MDF. For more details on SWORD see [Balesdent et al., 2012a].
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Figure 1.15: 3rd SWORD formulation

1.5 Conclusion

Several existing deterministic MDO formulations have been presented in this chapter. These formu-
lations might be classi�ed according to the interdisciplinary coupling handling techniques (coupled
or decoupled approaches) and according to the number of level of optimization (single or multi).
Decomposition strategies of the design process can o�er autonomy to the engineering teams of each
discipline but they make the MDO problem to solve more complex. Deterministic MDO methods
have been applied to solve launch vehicle design problem involving mostly the single-level MDF

formulation. More adapted formulations such as SWORD have been developed in order to facilitate
the decomposition of the design process according to the stages of the launch vehicle.

Since the last decade, space agencies such as NASA [Zang et al., 2002] stress upon the need for
the development of design methods allowing launch vehicles to have better performance, higher
reliability at lower cost and risk. To e�ciently address these objectives, designers use modeling,
simulation and optimization methods and include all the relevant aspects of the launch vehicle
life-cycle from the conceptual design to its industrialization. However, in practice, the life-cycle
is a�ected by various uncertainties arising from the launch vehicle itself, its environment or its
operational conditions. These uncertainties may modify or introduce �uctuations in the system
performance or even may cause system failures due to unexpected deviation from nominal expected
conditions. Therefore, taking into account the various uncertainties in the early design phases is
essential to avoid unexpected design failure and to ensure optimal performance. The introduction
of uncertainty in MDO formulations would o�er the possibility to enhance the design of complex
systems by taking into account potential synergistic uncertain phenomena thanks to coupled disci-
pline analysis. Uncertainty-based Multidisciplinary Design Optimization (UMDO) aims at solving
MDO problem under uncertainty.
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Taking into account uncertainties in MDO require a number of new thematics to accurately
treat uncertainty. These new thematics will be introduced in the following chapters.

First, the de�nition of uncertainty, its classi�cation into di�erent types has to be discussed in
order to identify the potential sources of uncertainty (section 2.2.1). Then, an appropriate modeling
of uncertainty is a premise in UMDO. Mathematical representation of the uncertainty modeled
allows to incorporate uncertainty in the MDO framework. Di�erent formalisms of uncertainty exist
and the appropriate choice of modeling is essential as it a�ects all the UMDO process (section
2.2.2). Moreover, the propagation of uncertainty is another essential thematic which involves the
calculation of the measure of uncertainty of the objective function and of the inequality constraints
(section 2.3). The calculation of uncertainty measures for the constraints may involve reliability
assessment for the systems and dedicated methods are needed. The existing methods are presented
in chapter 4. Furthermore, an appropriate handling of the interdisciplinary coupling is required
to ensure the multidisciplinary feasibility of the system. The existing approaches are detailed in
chapter 3. Eventually, optimization algorithms in noisy environment are needed to �nd a robust
and reliable solution while ensuring its optimality (see chapter 5).

Rich literature has been published to cover this large specter of thematics linked to UMDO

methodologies. In the following chapters 2 to 5, the key aspects, methods and formulations existing
in literature are presented in order to provide a comprehensive overview of the UMDO methods.
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2.1 Introduction

The description of several characteristics of uncertainty is essential to lay the foundation of UMDO

methodologies: the de�nition of uncertainty, the identi�cation of sources of uncertainty, their
mathematical representations, their propagation in the disciplines and in the system, etc. The
main goal of this chapter is to review the elementary notions on these subjects which will be used
in the following of the thesis.

In this chapter, in section 2.2.1, the de�nition, taxonomy and classi�cation of uncertainty are
introduced in order to identify di�erent types of uncertainty and their appropriate mathematical
representations (section 2.2.2). Then, in section 2.3, classical methods to propagate uncertainty
through input-output functions are reviewed. The uncertainty propagation methods are essential
to characterize the uncertainty of a system performance and reliability based on input disciplinary
uncertainties. In section 2.4, a particular type of uncertainty propagation is reviewed, the reliability
analysis. For that purpose, the main existing approaches for rare event probability estimation are
introduced. Finally, in section 2.5, surrogate models used for reliability analysis are reviewed. They
allow to decrease the computational cost of rare event probability estimation by approximating
the exact limit state function de�ning the failure domain by a metamodel less computationally
intensive.

2.2 Uncertainty modeling

2.2.1 Uncertainty de�nition and classi�cation

Engineering problems are solved inside the boundaries of a model universe. A model is a rep-
resentation of the reality under speci�c assumptions [Kiureghian and Ditlevsen, 2009]. Due to
simpli�cation hypotheses, lack of knowledge and inherent uncertain phenomena, models represent
reality with uncertainty.

Modern approaches of uncertainty handling have emerged with the Reactor Safety Study
(WASH-1400) in 1974 conducted by Rasmussen [Rasmussen, 1974] and the di�erent extensive
reviews by the risk and safety community [Pate-Cornell, 1986]. Di�erent taxonomies and classi�-
cations of uncertainty have been proposed since the Reactor Safety Study [Krause and Clark, 1993;
Bouchon-Meunier and Nguyen, 1996; Klir, 2005] re�ecting the various visions of uncertainty and
their evolution for the last 20 years. In more recent years, a consensus has been established on two
main categories: aleatory and epistemic uncertainty. Thunnissen [Thunnissen, 2003] presented a
review of uncertainty classi�cation for various �elds (social sciences, physical sciences, engineering,
etc.). Speci�cities for aleatory and epistemic uncertainties exist depending on the �eld of appli-
cation and the granularity of the studied phenomena. For aerospace vehicles at the conceptual
design phase, aleatory and epistemic uncertainties are classically distinguished [Thunnissen, 2003;
Yao et al., 2011] and these two categories are adopted in this thesis. De�nitions and examples of
these two types of uncertainty are detailed in the following.

Aleatory uncertainty.
It corresponds to the inherent variability of a physical system and/or its environment under con-
sideration. Aleatory uncertainty cannot be reduced by collecting more information or data. It is
also referred as variability, stochastic uncertainty, randomness, irreducible uncertainty. Classical
examples of aleatory uncertainties are: the presence, the direction and the amplitude of a wind
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gust during a rocket launch (Fig. 2.1), the exact mass of propellant introduced in the rocket before
the launch, etc.

Epistemic uncertainty.
The epistemic uncertainty arises from any lack of knowledge or simpli�cations about modeled
phenomena and may be reduced by collecting more information. It encompasses the model un-
certainty which is associated to the precision of the chosen simpli�ed mathematical models to
represent the real physical phenomena. It is also referred as ignorance, subjective uncertainty,
reducible uncertainty. For instance, the �ow model built under simpli�cation hypotheses such as
an incompressible, without boundary layer, without turbulence �ow in a rocket nozzle represents
with a low �delity the gas �ow compared to real physical phenomena (Fig. 2.1).

Wind
gust

Nozzle flow
modeling

Aleatory 
uncertainty

Epistemic
uncertainty

(c)Onera

(c)Cnes

Figure 2.1: Examples of aleatory and epistemic uncertainties for launch vehicle design

The distinction between the two types of uncertainty is important because speci�c mathemati-
cal modeling exist for each type of uncertainty. Zhang et al. [Zhang and Huang, 2010] highlighted
that in UMDO, improper modeling of uncertainty could engender greater degree of uncertainty
than those introduced by physical phenomena. In order to propagate uncertainty through sys-
tem models, an adequate representation of the input uncertainty is required in order to have to
meaningful quanti�cation of the uncertainty in the system response. The uncertainty modeling
is a key step in the UMDO problem statement and overlooking could result in non robust solu-
tion to the real uncertainty [Choi et al., 2005]. Probability theory developed by Kolmogorov in
1934 [Kolmogorov, 1950] was the �rst advanced mathematical formalism dealing with uncertainty.
With its important theoretical background, probability theory is traditionally used by engineers
to model aleatory uncertainty. It is due to the possibility to access to large amount of information
to accurately represent uncertainty. However, as pointed out by [Ferson et al., 1996; Helton et al.,
2004; Zhang and Huang, 2010], when there are not enough su�cient data to construct precise
statistical distributions of model inputs due to time, money, etc, the results of the probabilistic
method will be unreliable or risky. Other more adapted formalisms such as interval [Moore et al.,
2009] or Evidence theory [Dempster, 1967; Shafer, 1976] have been developed. In the next section,
an overview of probability theory and interval formalism is presented in order to introduce key
concepts required to solve UMDO problems described in parts II and III. For the sake of conciseness,
other formalisms such as Evidence theory or Fuzzy logic will not be described. For more details,
one can consult [Dempster, 1967; Klir, 2005]
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2.2.2 Elements of probability theory

De�nition 2.2.1. A probability measure P on a measurable set (Ω,A), where Ω is the sample
space with its σ-algebra A, is a mapping from A to [0, 1] such that the two following point are
satis�ed [Kolmogorov, 1950]:

• P(Ω) = 1

• let (Ai)i∈N be a countable collection of disjoint events in A: P
(⋃+∞

i=0 Ai

)
=
∑+∞
i=0 P(Ai)

The triple (Ω,A,P) is called a probability space.

De�nition 2.2.2. Let (Ω,A,P) denote a probability space, a real-valued random variable U is a
measurable application de�ned by:

U :

{
Ω→ R
ω → U(ω)

(2.1)

with w an outcome. For the sake of conciseness, in the rest of the thesis, a realization U(ω) is
noted u.

De�nition 2.2.3. Let (Ω,A,P) denote a probability space, a d-dimensional real-valued random
variable vector U is a measurable application de�ned by:

U :

{
Ω→ Rd
ω → U(ω)

(2.2)

In the same way, a realization U(ω) is noted u. The ith coordinate of the vector U is noted
U (i) and U =

[
U (1), . . . , U (d)

]
. For instance, let's consider the fall-out position of a launcher

stage (i.e. latitude and longitude) which evolves in the 2-dimensional sample space space Ω =
[−90◦, 90◦]× [−180◦, 180◦] (with '×' the Cartesian product between the longitude and the latitude
spaces). 150 trials of launcher stage fall-out positions obtained with a simulator are represented
in Figure 2.2.
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Figure 2.2: 150 trials of launcher stage fall-out position
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De�nition 2.2.4. Let (Ω,A,P) denote a probability space and U a variable that is a real-valued
measurable mapping from (Ω,A) to (R,B(R)) with B(R) the Borel algebra. The variable U is a
continuous random variable if there exists a function φ : Ω→ R such that:

• ∀u ∈ R, φ(u) ≥ 0

• φ is a continuous function almost everywhere on Ω

•
∫ +∞

−∞
φ(u)du = 1

• P(U ∈ A) =

∫
A

φ(u)du, ∀A ∈ B(R)

The function φ(·) is the Probability Density Function (PDF) of the random variable U . In
Figures 2.3 and 2.4, a simple example of PDF φ(·) de�ned on R and some random samples generated
with this PDF are represented.
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Figure 2.3: PDF φ(·)
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Figure 2.4: Corresponding iid random samples
generated with PDF φ(·)

De�nition 2.2.5. Let U be a random variable and φ(·) its PDF. The Cumulative Distribution
Function (CDF) Φ(·) of U is de�ned by:

Φ :

{
R→ [0, 1]
u→ P(U ≤ u)

(2.3)

The CDF may also be de�ned from the PDF by:

∀u ∈ R, Φ(u) =

∫ u

−∞
φ(t)dt (2.4)

The CDF uniquely de�nes the probability law of a random variable. The cumulative distribution
function Φ(·) of the PDF φ(·) proposed in Figure 2.3 is represented in Figure 2.5.
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Figure 2.5: Cumulative distribution function Φ(·) of the PDF φ(·)

De�nition 2.2.6. : Statistical moments
A common way to characterize a random variable is to determine its statistical moments. The �rst
order statistical moment is the mathematical expectation noted E[·] and de�ned by:

E[U ] =

∫
R
u φ(u)du = µU (2.5)

if the integral convergence is ensured.
The centered second order statistical moment is the variance noted V[·] and is de�ned by:

V[U ] =

∫
R

(u− E(U))
2
φ(u)du = E

[
(U − E[U ])

2
]

(2.6)

The standard deviation σ of U is de�ned based on the variance by: σ[U ] =
√

V[U ]. Provided that
the expected value is non null, the coe�cient of variation of U is de�ned as the ratio between the
standard deviation and the expected value: δ(U) = σ[U ]

|E[U ]| . Moreover, the covariance between two
uncertain variables U1 and U2 is de�ned as follows:

Cov(U1, U2) = E [(U1 − µU1)(U2 − µU2)] (2.7)

The p-order centered statistical moment (p ≥ 2) is de�ned by:

Mp(U) =

∫
R

(u− E[U ])
p
φ(u)du = E [(U − E[U ])

p
] (2.8)

if the integral convergence is ensured.
All these statistical moments may be easily generalized for random variable vector.

Theorem 2.2.1. Transport theorem. Let U a continuous d-dimensional random vector with a
joint PDF φ(·) and c : Rd → R a measurable function, the expected value E [c(U)] is given by:

E [c(U)] =

∫
Rd
c(u)φ(u)du (2.9)

50



CHAPTER 2. UNCERTAINTY FORMALISMS AND RELIABILITY ANALYSES

if the integral convergence is ensured. This theorem allows one to de�ne the probabilities of
interest in an industrial context with c(·) an input-output function (also referred as black-box
function) characterizing the studied system. Such function may be only evaluated, for a given
input it provides the corresponding output.

Classical parameterized PDF distributions are often used to model aleatory uncertainties. Among
these distributions, the Gaussian distribution (also called normal distribution) is the most used PDF

to represent uncertainty. The Gaussian distribution is extensively used to represent uncertainty
as it is the distribution that present the maximal entropy (measure of the information content)
among all real-valued distributions with speci�ed expectation µ and variance σ2. The central limit
theorem also justi�es this PDF choice in several domains. A Gaussian variable U is represented by
a PDF noted φN (µ,σ2) with µ its mean value and σ2 its variance. The so-called standard Gaussian
distribution noted φN(0,1)

is obtained for µ = 0 and σ2 = 1 (Fig. 2.6). The PDF of a Gaussian
variable is given by:

φN (µ,σ2)(u) =
1√

2πσ2
exp

(
− (u− µ)

2

2σ2

)
, u ∈ R (2.10)

Figure 2.6: Two dimensional standard Gaussian distribution PDF

Another distribution intensively used is the uniform distribution. A uniform variable U is
represented by a PDF noted φU(a,b) with a the lower bound and b the upper bounds of the distribu-
tion. The uniform distribution assumes that each singleton inside the interval [a, b] has the same
probability to occur:

φU(a,b)(u)

{
1
b−a if u ∈ [a, b]

0 else

Other classical parameterized distributions are Beta distribution, Gamma distribution, Lognormal
distribution, etc.

2.2.3 Elements of interval analysis

Interval data are commonly encountered in practical engineering problems. Ferson et al. [Ferson
et al., 2007] and Du et al. [Du et al., 2005] discussed such situations where interval data are
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present. For instance, in early design phase, often the experts cannot provide a complete PDF of
the uncertain variables U and the only information available is in the form of an expert opinion
expressed through interval data which specify a range of possible values for the variable. Moreover,
it appears that a uniform distribution might not be adapted in some cases because it requires to
know that the samples are distributed with an iso-probability inside the interval to be appropriately
used [Klir, 2005; Ferson et al., 2007]. In the following, a random variable is noted U with a capital
letter whereas an epistemic variable is noted u.

A closed interval for a real valued continuous uncertain variable u is a set de�ned as:

Υ = {u ∈ R|umin ≤ u ≤ umax} (2.11)

with umin and umax respectively the lower and upper bounds of the interval. An interval is de-
noted by its bounds [umin, umax]. For a d-dimensional uncertain variable u =

[
u(1), . . . , u(d)

]
, its

representation by an interval is given by:

Υ = {u ∈ Rd|u(i) ∈
[
u

(i)
min, u

(i)
max

]
∀i ∈ {1, . . . , d}} (2.12)

As intervals are sets, the same arithmetical operations are possible such as intersection, unions,
sums, etc. For more details on interval formalism, one can refer to [Moore et al., 2009].

When epistemic variables are modeled with probability theory, Bayesian theory [Soundappan
et al., 2004; Bernardo and Smith, 2009] may be used to update our knowledge about uncertain
parameters based on new simulations or experiments. It would o�er the possibility to take into
account the evolution of the knowledge about the uncertainty and its modeling along the di�erent
design phases (with the use of increase �delity models). An approach based on Bayesian theory
will be presented in chapter 3. In the rest of the thesis, epistemic uncertainty will be modeled with
interval formalism. For more details about Bayesian theory see [Bernardo and Smith, 2009].

2.3 Uncertainty propagation

The uncertainty propagation consists in determining the impact of the disciplinary input uncer-
tainty on the discipline output. Indeed, due to the presence of uncertainty, the discipline output is
also an uncertain variable that need to be characterized. The output of the discipline is supposed
to be a scalar variable in this chapter (except in section 2.3.1.3).

Discipline

c(u)

Uncertain variable 
sample u

Discipline output y

Figure 2.7: Discipline: input-output function

Let us consider a discipline represented as an input-output function by (Fig. 2.7):

c :

{
Rd → R
u→ y = c(u)

(2.13)

Given input uncertainty U (either represented with the probability or the interval formalisms),
the uncertainty propagation consists in characterizing the uncertain discipline output Y . Several
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methods exist to represent the discipline output depending on the uncertainty formalism and are
introduced in the following sections.

2.3.1 Uncertainty propagation within the probability framework

In this section, input uncertainty U is modeled with the probability theory and de�ned by its
known joint PDF φ : Rd → R (Fig. 2.8). Within the probability formalism, the output Y may be
characterized by:

• Its statistical moments,

• Its PDF.

Another way to characterize the output is to study its distribution with respect to a threshold and
to determine a probability to exceed (or to be underneath) this threshold. This study is called
reliability analysis and will be detailed in section 2.4.

Discipline

c(u)Uncertain variable 
sample u

Discipline output y

Probability formalism

Figure 2.8: Uncertainty propagation with probability formalism

2.3.1.1 Statistical Moment Estimation

The statistical moment calculation of the discipline output consists in computing multidimensional
integrals Eqs.(2.5,2.6,2.8) using the Transport theorem (see Theorem 2.2.1). In practice, analytical
calculation of these integrals is impossible due to the presence of the black-box which can only be
evaluated. These multidimensional integrals have to be numerically approximated. In the following
paragraphs, classical methods to estimate the statistical moments are introduced.

Crude Monte Carlo (CMC)
One way to approximate a multivariate integral is to use CMC. This sampling method is easy to
implement and often used to compute integrals. In CMC,M independent and identically distributed
(iid) samples u(1), . . . ,u(M) are generated according to the joint PDF φ(·) (Fig. 2.9). The discipline
is evaluated on these inputs with the function c(·): c

(
u(1)

)
, . . . , c

(
u(M)

)
. Then, the mathematical

expectation of the discipline output is numerical approximated by:

E[Y ] = E[c(U)] ' 1

M

M∑
k=1

c
(
u(k)

)
= ECMC [Y ] (2.14)
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Figure 2.9: CMC samples input space

The estimator ECMC [·] is a random variable as it is an approximation based on the M iid

selected samples. This estimation converges almost surely to the mathematical expectation as a
consequence of the law of large numbers. ProvidingM is su�ciently large, according to the central
limit theorem, the CMC estimator is unbiased and normally distributed meaning that(

ECMC [Y ]− E[Y ]
)
−→

M→+∞
φN (0,σ2

ECMC [Y ]
) (2.15)

The Relative Error (RE) of the CMC estimator is given by:

RE
(
ECMC [Y ]

)
=
σECMC [Y ]

E[Y ]
=

1√
M

√
E[Y ]− E[Y ]2

E[Y ]
(2.16)

The CMC convergence speed only depends on M and E[Y ] whatever the dimension d of the input
space. The lower RE(·) the greater con�dence in ECMC [·] with respect to the residual error in
the estimation. CMC may reach any level of accuracy if enough samples are generated. Based
on the same idea, p-order centered statistical moments may be approximated by CMC. It can
be easily implemented but, when the discipline is computationally intensive as in case of the
launch vehicle design, this method is computationally prohibitive. Other sampling methods such
as Latin Hypercube Sampling (LHS) [Helton and Davis, 2003] have been developed to decrease the
computational burden by a better sampling scheme.

Quadrature rules
Quadrature rules approximate integrals as a weighted sum of functions evaluated at speci�c points
in the domain of integration [Davis and Rabinowitz, 2007] whereas in CMC the points are randomly
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sampled according to the PDF φ(·). The expected value of the discipline output is approximated
by quadrature rules such that:

E[Y ] = E[c(U)] '
M1∑
i1=1

M2∑
i2=1

· · ·
Md∑
id=1

(
w(i1) ⊗ w(i2) ⊗ · · · ⊗ w(id)

)
c
(
u

(1)
(i1), u

(2)
(i2), . . . , u

(d)
(id)

)
(2.17)

where w are weights and ⊗ is the tensor product operator. The simplest approximation of the
multidimensional integral is done through a tensor product quadrature (Fig. 2.10) withM1, ...,MD

the number of speci�c points in each dimension. The quadrature rules are based on interpolating
function, generally polynomial functions. The interpolation points u(1)

(i1), u
(2)
(i2), . . . , u

(d)
(id) and the

weights wi are selected according to the input variable PDF φ(·). Table 2.12 presents a set of
polynomial families which provide an optimal basis for di�erent PDFs. The optimal basis is derived
from the family of hypergeometric orthogonal polynomials known as the Askey scheme [Askey and
Wilson, 1985]. The optimality of these polynomial basis results from their orthogonality with
respect to weighting functions corresponding to the standard PDFs. The density and weighting
functions di�er by a constant factor because a PDF integral has to be equal to one over the support
range. The selected points in the quadrature rules are the roots of the polynomials which are
orthogonal to the weighting functions of the input variable PDF joint φ [Davis and Rabinowitz,
2007].
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Figure 2.10: Full tensor product 2D
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Figure 2.11: Smolyack sparse grid 2D

Table 2.12: Examples of orthogonal polynomial families [Eldred, 2009]

Distribution Polynomial family Weight function Support range

Normal Hermite e
−u2

2 [−∞,∞]
Uniform Legendre 1 [−1, 1]

Exponential Laguerre e−u [0,∞]
Beta Jacobi (1− u)α(1 + u)β [−1, 1]

The quadrature rules require
∏d
i=1 = Mi discipline evaluations to compute a statistical mo-
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ment of the discipline output. Compared to CMC, the approximation based on tensor product is
e�cient for a small number of input uncertain variables, but the method su�ers from the curse
of dimensionality [Eldred, 2009]. Sparse grid approaches [Smolyak, 1963] can be implemented in
order to decrease the number of function evaluations while preserving the accuracy for high dimen-
sional integrals. An example of two dimensional full tensor product and Smolyak sparse grid based
on Gauss-Legendre interpolation is illustrated in Figures (2.10,2.11). More details on quadrature
rules may be found in [Davis and Rabinowitz, 2007].

Surrogate model
Approximation of the black-box function c(·) may be used to estimate the statistical moments of
the discipline outputs [Vapnik and Vapnik, 1998; Hurtado, 2004a; Basudhar et al., 2012; Hosder,
2012; Balesdent et al., 2013]. In the following two surrogate models to propagate uncertainty
are described as they will be later used in part II. Moreover, surrogate models used within the
framework of reliability analysis will be introduced in section 2.4. The surrogate models o�er the
possibility to compute many discipline output samples cheaply in order to accurately estimate
statistical moments. However, it is necessary to ensure the accuracy of the surrogate model and
they often su�er from the curse of dimensionality.

Taylor series expansion
Taylor series expansion is often used to propagate uncertainty. Taylor series expansion allows one to
locally approximate the function c(·) and the statistical moments of the output. For instance, with
a �rst order Taylor series expansion, the function c(·) is approximated around a local realization
u0 by:

c(u) ' c(u0) +

d∑
k=1

∂c(u0)

∂u(k)

(
u(k) − u

(k)
0

)
(2.18)

Based on this local approximation, the expected value and standard deviation of the discipline
output are estimated by:

E[Y ] = E[c(U)] ' c(u0) (2.19)

V[Y ] = V[c(U)] '
d∑
k=1

(
∂c(u0)

∂u(k)

)2

σ2
U(k) +

d∑
k=1

d∑
j=k+1

(
∂c(u0)

∂u(k)

)(
∂c(u0)

∂u(i)

)
Cov

(
u(k),u(i)

)
(2.20)

where σU(k) is the standard deviation of the kth component of the vector uncertain U. Taylor
series expansion is only valid locally and requires the computation of partial derivatives that can
be di�cult for complex simulation models [Arras, 1998]. The �rst order approximation is only
accurate for nearly linear functions. Higher order expansion may be used for nonlinear models
but requires the computation of the Hessian. The estimation accuracy of the statistical moments
decreases as the coe�cient of variation of the input random variable increases [Arras, 1998].

Polynomial Chaos Expansion
Polynomial Chaos Expansion (PCE) is an polynomial approximation of the function c(·) [Wiener,
1938; Askey and Wilson, 1985; Eldred, 2009]. PCE consists of an expansion of a function c(·) such
as E[c(U2)] < +∞ over a polynomial orthogonal basis [Hosder, 2012]:
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c(U) = a0 +
∞∑
k=1

akP1

(
U

(1)
(k)

)
+
∞∑
i=1

i∑
j=1

ai,jP2

(
U

(1)
(i) , U

(2)
(j)

)
+ ... (2.21)

with {P1, P2, ..., Pr, ...} a basis of orthogonal polynomials, with Pr of degree r and a the vector of
the PCE coe�cients. The choice of the polynomial basis is made consistently with the distribution
of the input random variables in the same way than quadrature rules (see section 2.3.1.1). The
polynomial basis is orthogonal to the weighting function [Askey and Wilson, 1985; Eldred, 2009]
of the input uncertain variable distributions. Classical orthogonal polynmial families are given in
Table 2.12. In practice, the expansion Eq.(2.21) is truncated to a degree d and is reorganized to
have a one-to-one correspondence between the coe�cients and the polynomials:

c(U) '
dPCE∑
j=0

αjΨj(U) ≡ ĉ(U,α) (2.22)

where αj and Ψj correspond to ai,j,...,k and Pr
(
U

(1)
i , U

(2)
j , . . . , U

(r)
k

)
. Two types of truncation may

be distinguished. The total expansion order includes a complete basis of polynomials up to a total
order speci�cation p. The number of PCE coe�cients is given by: dPCE + 1 = (n+p)!

n!p! with n the
number of uncertain variables and p the total order speci�cation. The other approach, the tensor
product expansion, does not bound the total expansion order but only truncates on a per-dimension
basis [Askey and Wilson, 1985; Eldred, 2009]. It allows one to have di�erent truncation orders pi
and therefore enables anisotropy in the polynomial order for each dimension. The number of PCE
coe�cients is given by: dPCE + 1 =

∏n
i=1(pi + 1).

The di�culty in PCE is the estimation of the polynomial coe�cients [Poles and Lovison, 2009].
Intrusive and non intrusive approaches exist to compute the coe�cients. The intrusive approaches
require to modify the simulation code used to compute the function c(·) in order to determine the
PCE coe�cients. As only black-box functions to model the disciplines are considered, we focus
on non intrusive methods. Two main techniques may then be employed: the orthogonal spectral
projection or the regression [Xiong et al., 2011]. The orthogonal spectral projection consists in
projecting the output c(·) on each polynomial basis function using the orthogonality [Eldred, 2009]:

αj =
< c,Ψj >

< Ψ2
j >

=
1

< Ψ2
j >

∫
Ω

c(u)Ψj(u)φ(u)du (2.23)

with < ., . > the inner product on functions, < .2 > the norm squared. The multivariate integral
can be estimated by sampling or by other numerical integration methods [Eldred, 2009]. The
regression method relies on a least squared �tting. Given M sample points {u(1), ...,u(M)}, the
PCE coe�cient vector α = [α0, ..., αdPCE ]T is determined by [Eldred and Burkardt, 2009]:

α = argmin
a∈RdPCE

M∑
i=1

(
c
(
u(i)

)
− ĉ

(
u(i),a

))2
(2.24)

Xiong et al.[Xiong et al., 2011] proposed to use the roots of the orthogonal polynomial basis as
the sample points and to use a weighted least square regression to represent the higher contribution
of sample points in the higher frequency region of the input random variables.
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PCE metamodeling is interesting in the uncertainty context as it provides analytical statistical
moment formula linking the PCE coe�cients to the output statistical moments. For instance the
expected value and the standard deviation of the PCE output are given by:

E [ĉ(U)] = µĉ '
d∑
j=0

αj < Ψj > (2.25)

V [ĉ(U)] = σ2
ĉ '

d∑
j=0

α2
j < Ψ2

j > (2.26)

These analytical statistical moments converge to the real moments as the truncation degree in-
creases. Higher statistical moments also have analytical expressions [Eldred and Burkardt, 2009].

The assessment of the �tting property of a surrogate model is measured with a loss function
[Vapnik, 2000a] L(·), which quanti�es the error between the modeled function and the surrogate
model for a particular u0. Di�erent loss functions exist among which the commonly used square
loss function [Vapnik, 2000a]:

L(u0,α) = [c(u0)− ĉ(u0,α)]
2 (2.27)

Statistical learning theory de�nes the generalization error J to quantify the error of the surrogate
model as the expectation of the loss function [Vapnik, 2000a]:

J = E
[
(c(U)− ŷ(U,α))

2
]

=

∫
Ω

[c(u)− ĉ(u,α)]
2
φ(u)du (2.28)

Surrogate models may also be used instead of the exact function c(·) combined with CMC

or quadrature rules to compute the statistical moments of the discipline output at an a�ordable
computational cost.

A summary of the statistical moment estimation techniques for an output of a model with the
advantages and drawbacks is provided in Table 2.13. CMC, quadrature rules and PCE techniques
to compute statistical moments will be compared in chapters 7 and 8 for the propagation of
uncertainty.

Table 2.13: Advantages and drawbacks of the main surrogate model techniques for reliability
analysis

Advantages Drawbacks

CMC Easy to implement
Computational cost (low

convergence)

Quadrature rules
Low computational cost (Smolyak

grid)
Curse of dimensionality

Taylor expansion
Easy to implement, low
computational cost

Limited linearly approximated
models

PCE Low computational cost Curse of dimensionality
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2.3.1.2 Measure of uncertainty

To characterize a performance or a speci�cation in the presence of uncertainty c(u), uncertainty
measures are required in order to take into account the uncertain nature of the input variable
vector u ∈ Ω. Classically, two types of measure are distinguished [Baudoui, 2012]:

• Robust measures: they involve statistical moments of the quantity of interest, for instance
the expected value E[c(u)] and/or the standard deviation σ[c(u)]. It enables to characterize
the discipline output taking into account the e�ect of uncertainty. In design, the measures of
robustness allows to compare design solution based on the distributions of the performance
and of the constraints. The distributions are parameterized by their statistical moments
which are compared to �nd the optimal solution. Other metrics such as quantile may also
be used as a measure of robustness [Baudoui, 2012].

• Reliability measures: see Sections 2.4 and 3.2.

2.3.1.3 PDF Estimation

Another way to characterize the discipline output is with its PDF. If the discipline output PDF

belongs to a classical parameterized PDF family (e.g. Gaussian, Beta, Uniform), methods such as
Maximum Likelihood Estimation techniques may be used to estimate the parameters that best
�t the output distribution. However, in practice, for complex system models, the PDF of the
discipline output does not belong to the classical parameterized PDF. Non parameterized methods
have been developed such as with Kernel Density Estimation (KDE) [Wand and Jones, 1994] enables
to approximate the output PDF.

2.3.2 Uncertainty propagation within the interval framework

In this section, input uncertainty u is modeled with the interval formalism and is de�ned by its lower
and upper bounds Υ = {u ∈ Rd|u(i) ∈ [u

(i)
min, u

(i)
max] ∀i ∈ {1, . . . , d}}. Within the interval formalism,

the output y may be characterized by its lower and upper bounds {y ∈ R|ymin ≤ y ≤ ymax} (Fig.
2.14). Several methods exist to compute the bounds of the output interval and are detailed in the
following. Interval uncertainty propagation is also referred as Interval Analysis (IA).

Discipline

c(u)Uncertain variables u Discipline output y

Interval formalism

Figure 2.14: Uncertainty propagation with interval formalism

2.3.2.1 Sampling-based approaches

The sampling based approaches [Kreinovich and Ferson, 2004; Swiler et al., 2009] consist in treating
interval with the probability framework to estimate the output interval bounds. First, the input
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uncertainty intervals are substituted with uniform random variables u ∼ U(umin,umax). Then,
using CMC,M iid samples are generated according to the joint uniform distribution. The discipline
is evaluated on these samples with the function c(·) giving {y(1) = c(u(1)), . . . , y(M) = c(u(M))}.
Finally, the probability information are discarded and only the support of the output distribution
is considered to estimate the output interval bounds [ymin, ymax]. An example of interval bounds
estimation by CMC is illustrated in Figure 2.15. ymin = min

i=1,...,M
y(i)

ymax = max
i=1,...,M

y(i)
(2.29)

Other sampling methods such as LHS may be used to sample in the input uncertain space. The

Figure 2.15: Interval bounds estimation by CMC

sampling-based approaches are easy to implement. However, these methods may be very costly and
require a large number of discipline evaluations to precisely estimate the output interval bounds.

2.3.2.2 Optimization based approaches

Another approach to propagate interval uncertainty is to solve an optimization problem [Hansen
and Walster, 2003; Bruns, 2006] to determine each output interval bound. This approach relies on
global optimization techniques and the following optimization problems are solved

{
ymin = min

u∈Υ
c(u)

ymax = max
u∈Υ

c(u)
(2.30)

The optimization methods to propagate interval bounds may be more e�cient than sampling-based
methods to precisely estimate the output interval bounds. However, the optimization problem
might be complex to solve as it can involve a nonlinear and non convex problem.

60



CHAPTER 2. UNCERTAINTY FORMALISMS AND RELIABILITY ANALYSES

−5 0 5
−4

−2

0

2

4

6

U
1

U
2

Limit state
Input uncertainty

Safe domain

Failure domain

U(1)

U
(2

)

Figure 2.16: Example of reliability problem

2.4 Reliability analysis

The propagation of uncertainty is also necessary to estimate the system reliability with respect
to the design constraints. Up to now, the presented uncertainty propagation methods focused on
estimation of the statistical moments of the discipline output Y , the determination of its PDF or
its interval bounds. Reliability analysis focuses on the tail of the discipline output distribution. It
often consists in determining the probability that the output Y is underneath (or above) a given
threshold S. Reliability analysis is also referred as Probability Analysis (PA). In this chapter it
is assumed that S = 0 which can be easily obtain by considering the function c(·) − S. Such
probabilities are also called probabilities of failure in the system safety literature.
In the next sections, only aleatory uncertainty is considered (modeled with the probability theory).
It is assumed that a failure occurs when y = c(u) > 0. A probability of failure is determined by:

Pf = P(Y > 0) = P (c(U) > 0) =

∫
Ωf={u∈Rd|c(u)>0}

φ(u)du (2.31)

=

∫
Rd
1c(u)>0 φ(u)du (2.32)

Ωf is called the failure domain of c(·) and 1(·) the indicator function de�ned as follows:

1c(u)>0 =

{
1 if c(u) > 0
0 if c(u) ≤ 0

(2.33)

The calculation of Eq.(2.31) requires a multidimensional integral calculation. An example of
limit state function for a 2 dimensional reliability problem is illustrated in Figure 2.16. The
uncertain variables are distributed according to a 2 dimensional standard Gaussian distribution.
This problem will be used all along this chapter.
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Several reliability analysis techniques exist to compute rare event probability and the classical
methods are presented in the following sections using the technique descriptions detailed in [Morio
and Balesdent, 2015].

2.4.1 Crude Monte Carlo (CMC)

CMC presented in section 2.3.1.1 may also be used to compute a probability of failure [Silverman,
1986; Sobol, 1994; Kroese and Rubinstein, 2012a]. For that purpose, one generates M iid samples
u(1), . . . ,u(M) with the joint PDF φ(·) of U and computes their outputs c

(
u(1)

)
, . . . , c

(
u(M)

)
(Fig.

2.17). The probability Pf is then assessed by

P̂CMC =
1

M

M∑
i=1

1c(u(i))>0

The implementation of CMC on input-output functions is simple, but CMC requires a signi�cant
simulation budget to accurately estimate a small probability. The required number of samples
M to ensure that a failure probability is estimated with a given Relative Error (RE) dramatically
increases as the probability gets lower. For example, the estimation of a probability of 10−k (with
k > 2) and a 10% coe�cient of variation requires around 10k+2 simulations of c(·). Nevertheless,
CMC is considered as a reference because its precision may be theoretically controlled (by addition
of new samples) and is always compared to more advanced techniques detailed in the next sections.
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Figure 2.17: Exemple of CMC probability estimation

2.4.2 First/second-order reliability methods (FORM/SORM)

First/second-order reliability methods (FORM/SORM) [Madsen, 1986; Bjerager, 1990] are consid-
ered as e�cient computational methods for structural reliability estimation. FORM/SORM rely on
an analytical approximation of the limit state curve {u|c(u) = 0} at the Most Probable Point of
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failure (MPP) in the input space (Figs. 2.18,2.19). The MPP is the point on the limit state func-
tion curve which has the highest probability content. It is assumed that U follows a multivariate
standard normal distribution. If it is not the case, di�erent statistical transformations may be
applied on the input distribution (such as Nataf [Nataf, 1962] or Rosenblatt [Rosenblatt, 1952]
transformations). The MPP u∗, also called most likely failure point, is obtained by solving the
following optimization problem

min ‖u‖ (2.34)

w.r.t. u (2.35)

s.t. c(u) = 0 (2.36)

where ||.|| is the Euclidean norm. The parameter ζ = ‖u∗‖ is the reliability index. The constraint
c(u) = 0 de�nes the limit of failure space for input vector u. Several algorithms have been proposed
to compute u∗ and to solve this optimization problem [Hasofer and Lind, 1974; Rackwitz and
Flessler, 1978; Ditlevsen and Madsen, 1996]. Using Taylor series expansion, the surface {u|c(u) =
0} at the solution u∗ is approximated by an hyperplane in case of FORM. The failure probability
is then estimated by:

P̂FORM = φN0,1
(−ζ)

where φN0,1(·) is the CDF of a standard normal distribution.
Accuracy problems may happen when the limit state function surface is nonlinear due to the over
or under estimation of the failure domain. SORM has been established as an attempt to improve
the accuracy of FORM since SORM approximates the limit of failure space around the MPP by a
quadratic surface. In SORM, the failure probability is given by [Breitung, 1984]

P̂SORM = φN0,1
(−ζ)

d−1∏
i=1

(1− ζκi)−
1
2

where κi denotes the principal curvature of c(u) at the MPP ζ. The term κi is de�ned by:

κi =
∂2c(u)

∂2u(i)

∣∣∣∣
u=u∗
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Figure 2.18: Example of FORM
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Figure 2.19: Example of SORM
Despite the di�erent approximations, FORM and SORM give fairly accurate estimations of the
failure probability when the MPP is unique. However, they may lead to very inaccurate results
when several MPPs are involved. Moreover, another drawback of these approaches is that there is
no control of the error in FORM/SORM compared to the exact probability of failure. For systems
featuring multiple MPPs, Der Kiureghian and Dakessian [Der Kiureghian and Dakessian, 1998]
proposed the restarted iHLRF algorithm. It aims to �nd several failure regions and take them
into account in the calculation of the probability of failure. The method consists in penalizing
previously found MPPs to force the algorithm to �nd a new MPP. Once these points are found,
FORM or SORM surface approximations are constructed. The sought probability is computed as
the probability of the union of the approximated events. However, the restarted approach shows
lack of robustness [Dubourg, 2011b].

Variance reduction techniques aiming at deriving an estimator of the failure probability featuring a
variance of estimation lower than for CMC have been developed. A focus on Importance Sampling
(section 2.4.3) and Subset Simulation (section 2.4.4) is presented in the following sections. The
Importance Sampling concepts are particularly detailed because they will be at the center of the
chapter 9.

2.4.3 Importance Sampling (IS)

Remark 2.4.1. For the sake of clarity, as the main idea of Importance Sampling (IS) is to change
the sampling distribution, this latter is added in the expression of the statistical moments by a sub-
script determining the e�ective sampling distribution. For example Eτ (U) means that the samples
used for the estimation of the mathematical expectation have been generated with the PDF τ(·).
IS [Engelund and Rackwitz, 1993; L'Ecuyer et al., 2009; Kroese and Rubinstein, 2012b] starts
from the premise that, around the threshold, the PDF φ(·) takes value closed to zero. Therefore,
generating samples in the regions closed to the threshold is di�cult with the PDF φ(·). The idea
of IS is to substitute a more adapted PDF to φ(·). IS uses an auxiliary distribution τ(·) to generate
more points u(1), . . . ,u(M) such that c(u) > 0 than the original PDF φ(·). A weight is then
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introduced in the probability estimate to take into account the modi�cation in the PDF generating
the samples. IS takes advantage of the following re-writing:

Pf = Eφ
(
1c(U)>0

)
= Eτ

(
1c(U)>0

φ(U)

τ(U)

)
The IS probability estimate P̂IS is then given by:

P̂IS =
1

M

M∑
i=1

1c(u(i))>0

φ(u(i))

τ(u(i))
(2.37)

where u(i) are iid samples generated with PDF τ(·). For M su�ciently large, the central limit

theorem ensures that P̂IS is an unbiased estimator of the quantity of interest and that:(
P̂IS − Pf

)
−→

M→+∞
φN (0,σ2

IS) (2.38)

P̂IS variance is given by:

Vτ
(
P̂IS

)
=

Vτ
(∑M

i=1 1c(u(i))>0
φ(u(i))

τ(u(i))

)
M2

=
Vτ
(
1c(U)>0w(U)

)
M

(2.39)

with w(U) = φ(U)
τ(U) . The term w(U) is often referred as the Radon-Nykodin di�erence. The

variance may be estimated using classical CMC formula as follows:

V̂τ
(
P̂IS

)
=

1

M

(
1

M

M∑
i=1

1c(u(i))>0w
2(u(i))−

(
P̂IS

)2
)

(2.40)

The variance of P̂IS depends on the selected auxiliary PDF τ(·). The IS estimate may present
a much smaller variance than the CMC estimate if τ(·) is chosen appropriately. IS purpose is to
decrease the probability estimate variance. An optimal IS auxiliary density τopt(·) may be de�ned

as the result of the minimization of the variance Vτ
(
P̂IS

)
. τopt(·) is given by [Bucklew, 2004]

τopt(U) =
1c(U)>0 φ(U)

Pf
(2.41)

Unfortunately, in practice this optimal density is inaccessible because it involves the unknown
quantity of interest Pf . Nevertheless, τopt(·) may be derived to determine an e�cient sampling
PDF. Indeed, an interesting auxiliary sampling PDF τ(·) approaching the density τopt(·) with regard
to a given criterion may be used to estimate the sought probability. Di�erent methods have been
proposed to approach the optimal auxiliary density and may be classi�ed in two categories: the
parametric and the non parametric approaches.

Parametric IS methods Parametric IS methods aim at learning the optimal sampling density
τopt(·) assuming a parameterized auxiliary PDF family (for instance a Gaussian PDF). The ob-
jective is to determine the parameters of the auxiliary PDF τθ(·) that minimize a given criterion.

65



Contributions to Uncertainty-based Multidisciplinary Design
Optimization, application to launch vehicle design

Cross-Entropy (CE) optimization of the IS auxiliary density has been proposed [Rubinstein and
Kroese, 2004]. CE method is an iterative procedure aiming at minimizing the Kullback-Leibler
divergence between the unknown optimal auxiliary PDF and the parameterized PDF with respect
to its parameters θ. Let P and Q be two probability distributions de�ned by their PDF p(·) and
q(·) with support Rd. The Kullback-Leibler divergence between P and Q is de�ned by:

DKL(P,Q) =

∫
Rd

ln

(
p(u)

q(u)

)
p(u)du.

DKL is equal to 0 if and only if P = Q almost everywhere. CE aims at �nding the parameter
vector θopt minimizing the Kullback-Leibler divergence between τθ(·) and τopt(·) [de Mello and
Rubinstein, 2002; Rubinstein and Kroese, 2004]. θopt may be obtained by solving

θopt = argmin
θ∈∆

{DKL(τopt, τθ)} (2.42)

θopt in Eq.(2.42) depends on the unknown PDF τopt(·). However, it may be shown [Rubinstein and
Kroese, 2004] that Eq.(2.42) may be re-written

θopt = argmax
θ∈∆

{
Eφ
[
1c(U)>0 ln (τθ(U))

]}
(2.43)

where the expected value is computed with the PDF φ(·).

Figure 2.20: CE optimal auxiliary PDF iso-
contour

Figure 2.21: CE optimal auxiliary PDF

In practice, instead of directly solving Eq.(2.43), θopt is determined by an iterative process involving
optimization problem solving and a decreasing sequence of thresholds:

S0 > S1 > S2 > · · · > Sk > · · · > 0

chosen adaptively using quantile de�nition. At the iteration [k] of the CE algorithm, the following
optimization problem is solved:

θk = argmax
θ∈∆

{
Eτθk−1

[
1c(U)>Sk ln (τθ(U))

]}
(2.44)
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where the expected value is computed with the intermediate auxiliary PDF τθk−1
(·) and Sk is the

kth intermediate threshold.
CEmethod is a parametric approach to determine a valuable auxiliary IS distribution. Nevertheless,
the choice of a parametric density is not obvious and has to be done carefully a priori to �t the
unknown optimal auxiliary IS distribution. Di�culties might be encountered for systems having
multiple failure regions in the input uncertain space. Indeed, parametric PDF families are not
well suited to take into account di�erent failure modes. An example of CE determination of an
auxiliary optimal PDF is illustrated in Figures 2.20 and 2.21. The auxiliary density is centered
around the principal failure mode allowing to generate more failure samples and to improve the
probability estimation. However, this test case has multiple failure modes and the parameterized
Gaussian auxiliary density does not succeed to catch the three failure modes. For more details
on CE algorithms one may refer to [Rubinstein and Kroese, 2004]. Other parametric methods
for IS such as exponential twisting are described in [Morio and Balesdent, 2015]. Moreover, non
parametric IS methods have been proposed to solve these problems and are brie�y presented in the
next section.

Non parametric IS methods Non parametric adaptive IS methods have also been proposed
with the use of KDE. The objective of Non Parametric Adaptive Importance Sampling (NAIS)
techniques [Zhang, 1996; Neddermeyer, 2009; Morio, 2012] is to approach the IS optimal auxiliary
density given in Eq.(2.41) with kernel density function [Wand and Jones, 1994]. NAIS does not need
a choice of a PDF family and is thus more �exible than the parametric methods. NAIS also relies
on an adaptive principle similar to the CE method with a sequence of intermediate threshold and
optimization problem solving. At each iteration of NAIS a new intermediate threshold is de�ned
based on the generated samples and a quantile. A kernel-based sampling PDF is created based on
the samples above the intermediate thresholds. The parameters of the kernel PDF are optimized
according to the Asymptotic Mean Integrated Square Error between the kernel density of the
samples and the exact density of the samples. Even if the exact density of the samples is not
available, it is possible to derive an asymptotic estimate of this error when M → +∞.

Figure 2.22: NAIS optimal auxiliary PDF iso-
contour

Figure 2.23: NAIS optimal auxiliary PDF
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The use of kernel density function enables to approach various types of optimal auxiliary densities.
NAIS is particularly adapted for systems presenting multiple failure regions. Figures 2.22 and 2.23
illustrate the optimal kernel density which presents three high content probability regions one
around each failure modes. However, NAIS e�ciency decreases with the increase of the input space
dimension (above 10) due to the numerical cost induced by the use of kernel density [Morio, 2012]
which highly su�ers from the curse of dimensionality.

2.4.4 Subset Simulation (SS)

Subset Simulation (SS) [Au and Beck, 2001] (also called importance splitting) proposes to decom-
pose the sought probability (Eq.2.31) into the product of conditional probabilities which are easier
to calculate. The conditional probabilities involve more frequent events than the sought probabil-
ity. Given a failure domain Ωf , let Ωf0 ≡ Ω ⊃ Ωf1 ⊃ · · · ⊃ Ωfm ≡ Ωf be a decreasing sequence
of m + 1 subset failure domains where ∀i = {1, . . . ,m} Ωfi = {u|c(u) > Si}. Si∈{1,...,m} is a
decreasing sequence of intermediate thresholds and Sm = S = 0. The sought probability can be
expressed as:

Pf = P(U ∈ Ωf ) =
m∏
i=1

P
(
U ∈ Ωfi |U ∈ Ωfi−1

)
, (2.45)

with P
(
U ∈ Ωfi |U ∈ Ωfi−1

)
the conditional probability that U ∈ Ωfi knowing that U ∈ Ωfi−1

.
Generating iid samples from the conditional PDFs is required to compute P

(
U ∈ Ωfi |U ∈ Ωfi−1

)
but is in most cases impossible as the conditional PDFs are unknown. In practice, these densities
are built by Markov Chain Monte Carlo (MCMC) method for instance with the modi�ed Metropolis-
Hastings algorithm [Au and Beck, 2001]. MCMC techniques allow to generate samples following
complex densities that do not belong to the classic density families. The method relies on a Markov
process that will be approximately distributed according to the desired conditional PDFs over the
long term, that is when the number of samples generated increases to in�nity. This Markov process
is de�ned with a proposal/refusal method. For more details on MCMC or Metropolis Hastings see
[Metropolis et al., 1953; Hastings, 1970; Au and Beck, 2001]. Therefore, using the failure samples
generated from the previous step (i.e. samples in Ωfi whose values are lower than the threshold Si),
a new set of M samples is created according to Markov chains based on the modi�ed Metropolis
algorithm. The function c(·) is evaluated with the new generated samples and a new intermediate
threshold is selected. In practice, the intermediate thresholds may be chosen in order to have
all the intermediate conditional probabilities close to ρ = 10−1 [Au and Beck, 2001; Balesdent
et al., 2015]. The choice of the intermediate thresholds results from a trade-o� between having
intermediate probabilities involving frequent failure events and having a limited number of steps
in the Subset Simulation algorithm. The conditional probability is evaluated with CMC.
SS is e�cient to estimate rare event probability (i.e. Pf < 10−4) and SS does not highly su�er
from the curse of dimensionality and may be employed for high dimensional systems. The SS

budget is mainly dependent on the magnitude order of the sought probability and also on the ρ-
quantile parameter. An example of SS probability estimation is illustrated in Figures 2.24,2.25,2.26
and 2.27. SS succeeds to capture the multiple failure modes and to generate failure samples to
accurately estimate the probability.
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Figure 2.24: Example SS reliability analysis -
step 1

Figure 2.25: Example SS reliability analysis -
step 2

Figure 2.26: Example SS reliability analysis -
step 3
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Figure 2.27: Example SS reliability analysis -
step 4

Even if, SS or IS methods require less samples than CMC for the same level of accuracy, these
methods still need an important number of calls to the computationally expensive limit state
function c(·). In order to further reduce the number of calls to c(·), several works [Bichon et al.,
2008a; Picheny et al., 2010; Dubourg et al., 2011, 2013] aim at replacing the exact limit state
function by an approximate surrogate model less computationally intensive to evaluate.

A summary of the di�erent reliability analysis techniques with the advantages and drawbacks of
each methods is provided in Table 2.28. In chapter 9 of the thesis, because of the parametric
approach of IS-CE, this estimation technique will be adapted to e�ciently allow the estimation of
the bounds of probability of failure in the presence of both aleatory and epistemic uncertainties. SS
will be used in chapter 10 to estimate probability bounds when the limit state function is impacted
by epistemic uncertainty as the estimation techniques multiple failure regions and coupled with
an appropriate surrogate model it enables a probability of failure estimation at an a�ordable cost.
Moreover, in chapter 10 sensitivities of the probability of failure with respect to decision variables
will be derived based on SS.
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Table 2.28: Advantages and drawbacks of the main reliability analysis techniques

Advantages Drawbacks

CMC Easy to implement Low estimator convergence

Provide a variance of the estimator High computational cost

FORM-SORM Easy to implement Limited to single failure problem

Low computational cost No estimation of the error

IS-CE
Simple optimization for Gaussian

PDF family
Strong in�uence of the initial
parametric density choice

Fast computation Limited to single failure problem

IS-NAIS No choice of parametric density High computational cost

Handle multiple failure problem Inapplicable for dimension higher
than 10

SS Applicable in high dimensions Important simulation budget

Handle multiple failure problem More complex implementation

2.5 Surrogate model for reliability analysis

Complex simulation codes such as the ones used in aerospace are often computationally expensive
and involve a large number of variables. These features markedly hamper the estimation of failure
probabilities. To reduce the computational burden, a surrogate model of the computationally costly
simulation code may be used to perform the probability estimation on this metamodel. Di�erent
surrogate models may be used to replace c(·) such as Response Surface Method [Faravelli, 1989;
Hurtado, 2004a], Neural Network [Hurtado and Alvarez, 2001], Support Vector Machines [Bourinet
et al., 2011a; Basudhar et al., 2012], Kriging [Kaymaz, 2005; Balesdent et al., 2013], etc. In this
section, two main surrogate models are described in the context of reliability analysis: Kriging
model and Support Vector Machine (SVM) as they will be later used in part III. These surrogate
models may also be used in others contexts to replace computational expensive simulations.

2.5.1 Gaussian Process (GP)

Kriging [Matheron, 1963; Sasena, 2002] is a statistical surrogate model that may be used to ap-
proximate the limit state function c(·) on its input space Ω by considering c(·) as a realization of a
Gaussian process denoted by C(·). Kriging requires an initial Design of Experiments (DoE) with
p samples U = {u(1), . . . ,u(p)} ∈ Ω. The exact limit state function c(·) is evaluated on the DoE
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cp(U) = [c(u(1)), . . . , c(u(p))]
T . The Kriging model is a Gaussian process C(·) de�ned as:

C(u) = m(u) + Z(u) (2.46)

wherem(·) is a regression model estimated from the DoE and Z(·) is a zero-mean Gaussian process.
The covariance function cov(·, ·) of Z(·) is unknown and in practice is assumed to be expressed by

cov
(
Z(u(i)), Z(u(j))

)
= σ2

ZCorr
(
u(i),u(j)

)
(2.47)

with σ2
Z the process variance and Corr(., .) a parametric correlation function. A typical choice for

the correlation function is

Corr
(
u(i),u(j)

)
= exp

(
−

d∑
k=1

θk|u(k)
(i) − u

(k)
(j) |

qk

)
(2.48)

where u(k)
(i) is the kth coordinate of the vector u(i), the parameter qk re�ects the smoothness of the

interpolation and θk are scale factors which may be computed by Maximum Likelihood Estimation
[Sasena, 2002]. The Kriging prediction for any u ∈ Ω is given by

ĉ(u,U) = m(u) + r(u,U)TR−1 (U)(cp(U)−mp(U)) (2.49)

where 
r(u,U) =

[
Corr(u,u(1)), . . . ,Corr(uu(p))

]T
,

R|ij(U) = Corr(u(i),u(j))

mp(U) =
[
m(u(1)), . . . ,m(u(p))

]T (2.50)

A con�dence interval on the prediction ĉ(u,U) may be determined as C(·) is a Gaussian process
and the variance of the prediction is given by

σ2(u,U) = σ2
Z

(
1− r(u,U)TR−1(U)r(u,U)

)
(2.51)

This possibility to quantify the surrogate model prediction uncertainty will be further exploited in
section 2.5.1.1 to �nd lower and upper bounds for the probability estimate.
An example of limit state approximation based on Kriging is presented in Figure 2.29. Kriging
method presents some advantages in rare event probability estimation. Indeed, this surrogate
model is based on a Gaussian process, that allows to estimate the variance of the prediction error
and consequently to de�ne a con�dence domain of the surrogate model. This indicator may be
directly used to re�ne the model, i.e., to evaluate the exact function on new chosen points to
improve the accuracy of the model. Kriging has been extensively used with CMC [Echard et al.,
2011], IS [Schueremans and Van Gemert, 2005; Dubourg et al., 2013; Balesdent et al., 2013], or
SS [Vazquez and Bect, 2009; Li et al., 2012; Bect et al., 2012a]. The way to re�ne the Kriging
model is a key point and di�erent strategies have been proposed [Picheny, 2009; Baudoui et al.,
2012; Dubourg et al., 2013]. These techniques exploit the complete probabilistic description given
by the Kriging in order to evaluate the minimal number of points on the exact function. The
main methods are described in the following of this chapter. A numerical comparison of di�erent
Kriging based methods to estimate a probability of failure may be found in [Li et al., 2010a].
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Figure 2.29: Example of Kriging approximation of a limit state function

2.5.1.1 Re�nement strategies

In case of rare event probability estimation, the surrogate model has to be accurate in the zones
of relevance i.e. in the vicinity of the threshold S and in the high probability content regions.
The use of the exact function c(·) and its surrogate ĉ(·) in the probability calculation will lead to
the same result if ∀u ∈ Rd,1c(u)>0 = 1ĉ(u,U)>0. In other words, the surrogate model might not
be representative of the exact function outside the zones of interest as they do not take part of
the probability estimation. From the initial training set U , the Kriging properties (i.e. Gaussian
process, estimation of the predicted error variance) are valuable to determine the additional samples
which have to be evaluated on c(·) to re�ne its surrogate model. Di�erent re�nement strategies
have been developed in the literature and are brie�y described in the following. Two categories
may be distinguished in the methods: the direct and one step look ahead methods. The �rst ones
directly use the Kriging model to determine the sample to be added to the training set whereas
the later estimate the in�uence of the training set candidate sample upon the updated surrogate
model (i.e. kriging model built from the candidate point in addition to past training set samples).
The re�nement stopping criteria used in the di�erent methods are based on the Kriging prediction
error in order to evaluate the accuracy of the surrogate model and its impact on the rare event
probability estimate.

Direct methods
The direct approaches solve an optimization problem to determine the new sample point u to
add to the current training set U based on the exisiting Kriging model. The methods di�er by
the optimization criteria used in the optimization problem and they involve the estimation of
the Kriging prediction variance at the potential candidate point. For instance, the active learning
reliability method combining Kriging and probability estimation method [Echard, 2012] determines
the new sample to be added to the training set minimizing the Kriging prediction distance to the
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threshold multiplied by the inverse of the prediction error.

min
u

|ĉ(u,U)|
σ(u,U)

(2.52)

The E�cient Global Reliability Analysis method [Ranjan et al., 2008; Bichon et al., 2008b] also
solves an optimization problem which involve an integral over the uncertain space in the vicinity of
the threshold in order to �nd the point to add to the training set. EGRA may be associated with
simulation techniques for rare event estimation and has been for instance applied with IS [Bichon
et al., 2008b].

One step look ahead
The one step look ahead methods di�er from the direct methods as they use an estimation of
the e�ect of the updated Kriging model (i.e. based on the training set augmented with the
new candidate sample) to re�ne the surrogate model. For numerical tractability, to estimate the
in�uence of an added sample in the training set, these methods consider that the variance of the
Gaussian process σ2

Z in Eq.(2.51), the kernel parameters and the regression model do not change,
and only the correlation matrix is updated. Classical one step look ahead methods are the Target
Integrated Mean Squares Error [Picheny et al., 2010], the reduction of misclassi�cation uncertainty
for rare event simulation techniques [Balesdent et al., 2013], the Stepwise Uncertainty Reduction
[Bect et al., 2012b] and K-means clustering strategy for Kriging re�nement [Dubourg, 2011a]. The
methods have been coupled with CMC, IS and SS estimation techniques. For more details on the
Kriging re�nement strategies for rare event probability estimation, one can refer to [Morio and
Balesdent, 2015]. The reduction of misclassi�cation uncertainty technique [Balesdent et al., 2013]
will be used and detailed in chapter 9.

2.5.2 Support Vector Machine (SVM)

Support vector machines (SVM) is a machine learning technique [Vapnik and Vapnik, 1998] used in
di�erent domains such as reliability analysis [Basudhar and Missoum, 2008, 2010] or classi�cation
and pattern recognition [Tou and Gonzalez, 1974; Shawe-Taylor and Cristianini, 2004]. An adap-
tation of SVM may be derived as a regression tool and is referred to as support vector machine for
regression [Clarke et al., 2005]. The main advantage of SVM lies in its ability to model complex limit
state functions that optimally separate di�erent classes of data samples. In probability estimation
(e.g. [Hurtado, 2004b; Bourinet et al., 2011b]), SVM may be employed as a surrogate model of c(·)
around the threshold S = 0. This type of surrogate is particularly suited for discontinuous limit
state functions and high dimensional reliability problems. The aim of this section is to provide
a brief overview of the SVM main features. For more details, see [Cristianini and Shawe-Taylor,
2000; Steinwart and Christmann, 2008]. In this section, the classical SVM characteristics are only
presented. Extensions of SVM such as Probabilistic SVM [Platt, 1999; Gao et al., 2002] or Virtual
SVM [Song et al., 2013] have been proposed in the literature but are not considered in this thesis.
In its basic form, SVM is a binary classi�er. In a reliability context, these classes correspond to the
failure domain (referred to as the "−1" class) and the safe domain (referred to as the "+1" class).
SVM may also be extended to multi-class classi�cation problems [Duan and Keerthi, 2005].
Consider a training set U = {u(1), ...,u(p)} of p training samples in a d-dimensional space. One
of the two classes characterized by a value ri = ±1 is associated to the samples depending on the
output of the limit state function position with respect to the threshold S. The objective of the
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SVM construction is to �nd the optimal boundary (limit state function) separating the training
data into the two classes. SVM theory in case of a linearly separable data set is explained in the
following. It is then extended to the case where the data is not linearly separable.

Linear decision function In case the data set is separable with a linear limit state function,
this latter is de�ned by hyperplane such that:

wT .u + b = 0,

where b is the bias and w is hyperplane coe�cient vector. The limit state function lies "half way"
between two hyperplanes (referred to as support hyperplanes) that separate the two classes of
data. This pair of hyperplanes has to pass at least through one of the training samples of each
class (called the support vectors). Moreover, no sample has to be found within the margin. The
two hyperplanes are de�ned by

wT .u + b = +1. (2.53)

and
wT .u + b = −1. (2.54)

For separable data, there is an in�nity of possible limit state functions. The optimal decision
function is de�ned as the limit state function that maximizes the margin separating the support
hyperplanes. The two support hyperplane equations and the fact that no sample should be in the
margin may be combined into a single global constraint:

ri(w
T .u + b)− 1 ≥ 0. (2.55)

The separation distance of the two support hyperplanes is 2
‖w‖ . Therefore, �nding the support

hyperplanes (i.e. determining w and b) may be translated into an optimization problem as follows:

min
w,b

1
2‖w‖

2 (2.56)

s.t. ri(w
T .u(i) + b)− 1 ≥ 0, 1 ≤ i ≤ p

This optimization problem is a quadratic programming problem. It is a convex problem and may be
e�ciently solved with existing optimization algorithms (e.g. SQP algorithm [Schittkowski, 1986]).
The optimal w, b, and the Lagrange multipliers λi may be obtained. The classi�cation of any
point u in the failure or the safe domains is determined by the sign of the following function:

s(u,U) = b+

p∑
i=1

λiriu
T
(i)u. (2.57)

The Karush Kuhn Tucker conditions ensure that only the λi corresponding to the support vectors
are strictly positive while the other ones are equal to zero. In general, only a small fraction of
the total number of samples in U are support vectors . By taking only into account the support
vectors NSV in Eq.(2.57) it becomes:

s(u,U) = b+
NSV∑
i=1

λiriu
T
(i)u. (2.58)

In case the data is non-separable, slack variables are used to solve a relaxed optimization problem
[Vapnik, 2000b]. In case where the limit state function is nonlinear, the method is generalized
through the use of kernels as described below.
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U
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)

U(1)

Figure 2.30: Example of SVM approximation of a limit state function

Nonlinear decision function In case of nonlinear limit state function, the initial set of variables
is projected into a higher dimensional space called the feature space. In this n dimensional space,
the new coordinates of a sample u are given by (ψ1(u), ψ2(u), . . . , ψn(u)) where ψi are the features.
The general idea of SVM for nonlinear limit state function is to formulate a linear classi�cation
problem in the augmented feature space. The SVM classi�cation of a new point u is given by the
sign of

s(u,U) = b+
NSV∑
i=1

λiri < ψ(u(i)),ψ(u) >, (2.59)

where ψ = (ψ1(u), ψ2(u), . . . , ψn(u)) and <,> is the inner product. The inner product forms a
kernel K, so that the limit state function is written

s(u,U) = b+
NSV∑
i=1

λiriK(u(i),u). (2.60)

This approach is referred to as kernel trick. The Gaussian kernel is the most used in the literature
and is de�ned as

K(u(i),u) = exp

(
−
‖u(i) − u‖2

σ2

)
, (2.61)

where σ is the width of the Gaussian kernel.
An example of SVM approximation of a limit state function is illustrated in Figure 2.30.

2.5.2.1 Re�nement strategies

In most applications of SVM, the model is based on a �xed training set which is built on the global
input space [Li et al., 2006] or in speci�c zones such as those relevant to the Most Probable Point
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(e.g. [Wang et al., 2012]). However, adaptive re�nement strategies have been proposed to account
for the input space zones relevant to rare event estimation. These re�nement strategies take into
account the spatial location of the samples in order to determine points to add to the existing
training set.
In [Hurtado and Alvarez, 2010], the authors propose a re�nement technique which consists in
building a series of SVM models in order to approximate {u|c(u) = 0}. For that purpose, a
sequence of optimization problems is solved. The optimization problem is solved with a Particle
Swarm Optimization (PSO) algorithm [Eberhart and Kennedy, 1995]. Once this problem is solved,
the optimal population found by PSO is used as the training set to build the SVM model. The
next optimization problem solving uses the previous optimal PSO population as initialization. A
parameter evolves at each step of the method to iteratively improve the accuracy of the SVM

model, smoothing the curvature of the optimization problem objective function. At each sequence
iteration, an estimation of the rare event probability is performed. Another approach called Subsets
by Support vector Margin Algorithm for Reliability esTimation (2SMART) [Deheeger and Lemaire,
2007; Bourinet et al., 2011b] is dedicated to the use of SS and consists in de�ning one SVM model
at each adaptive SS threshold. For each intermediate threshold, a SVM model is constructed using
a three stage-re�nement approach (localization, stabilization and convergence) which allows to
accurately represent the regions corresponding to the involved thresholds.
In the following section, two techniques to re�ne SVM models are brie�y described because they
will be at the center of the chapter 10.

Adaptive re�nement of SVM using Max-min technique The "Max-min" technique, pro-
posed in [Basudhar and Missoum, 2010] allows to sequentially add new samples to the current
training set in order to re�ne the SVM model. This technique consists in solving the following
optimization problem:

max
u

min
u(i)∈U

‖u(i) − u‖

s.t. ĉ(u) = 0, (2.62)

with u(i), i ∈ {1, . . . , p} the di�erent samples of the current training set. This method allows to
generate a sample located on the approximated iso-value ĉ(u) = 0, and which is at the maximal
distance of the current training set samples. This method has been applied with CMC method
[Basudhar, 2011] but is applicable with any simulation techniques. Moreover, this method is not
dedicated to SVM and may be applied to re�ne other surrogate models, such as Kriging. This
method does not take into account the distribution of the input variables to re�ne the surrogate
model in high probability content regions. To overcome this issue, an improvement of Max-min
technique has been proposed and is described in the following.

Improvement of Max-min technique: Generalized Max-min (GMm) The generalized
"Max-min" technique (GMm), proposed in [Lacaze and Missoum, 2014a] is based on the Max-min
strategy but accounts for the PDF of the input random variables as follows:

max
u

min
u(i)∈U

‖u(i) − u‖φ(u)1/d

s.t. ĉ(u) = 0, (2.63)
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with φ(·) the joint PDF of the input variables and d the dimension of the input space. The main
di�erence between the Max-min and generalized Max-min approaches comes from the weighting
by the input variable joint PDF, which enables to re�ne the surrogate model in relevant regions
to the sought probability estimation. As for the Max-min technique, the GMm approach is not
dedicated to SVM and may be used to re�ne other surrogate models.

PCE presented in section 2.3.1.1 has also been used in reliability analysis and applied on di�erent
problems [Sudret and Der Kiureghian, 2002; Choi et al., 2004; Berveiller et al., 2005, 2006]. The
limit state {u ∈ Ω|c(u) = 0} is modeled by a PCE. The PCE surrogate model may be very e�cient
for parametric reliability studies and in [Sudret, 2007], the author recommends to use in general
a third order expansion for reliability analysis problem. Di�erent adaptive methods to build
sparse PCE have been proposed [Blatman and Sudret, 2008, 2011; Hu and Youn, 2011]. Blatman
et al. developed an adaptive sparse PCE methods based on least angle regression in order to
automatically detect the signi�cant PCE coe�cients and to avoid to compute the non signi�cant
coe�cients [Blatman and Sudret, 2008, 2011]. Hu et al. [Hu and Youn, 2011] also developed
an adaptive sparse PCE approach based on a new projection method using dimension reduc-
tion techniques and also copula methods to handle nonlinear correlation of input random variables.

A summary of the di�erent surrogate modeling methods with the advantages and drawbacks is
provided in Table 2.31. In chapter 8, SVM will be used due to the discontinuous nature of the
limit state function to ensure an accurate and cost e�cient estimation of the probability of not
injecting the payload of a launch vehicle to the target orbit. In chapters 9, 10 and 11, Kriging
surrogate model will be used combined with two new re�nement methods in order to compute
the probability of failure bounds in the presence of aleatory and epistemic uncertainties. Kriging
models are particularly adapted due to the use of prediction error in order to re�ne the surrogate
model in the interesting regions for the probability estimations.

Table 2.31: Advantages and drawbacks of the main surrogate model techniques for reliability
analysis

Advantages Drawbacks

Kriging Provide an estimation of the prediction
error

Limited to low dimensional problems
(<10)

E�cient re�nement techniques Do not handle discontinuous problem

SVM Handle high dimensional problems
Do not provide an estimation of the

prediction error

Handle discontinuous problem SVM is limited to classi�cation

2.6 Conclusion

In this chapter, we have introduced the essential foundations to describe uncertainty and the
main methods to characterize it using uni�ed notations. Firstly, we have detailed the existing
uncertainty de�nitions and classi�cations. Then, two mathematical formalisms to represent uncer-
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tainty have been introduced: the probability and the interval formalisms. For each of formalism,
uncertainty propagation methods have been presented while highlighting their advantages and
drawbacks. The uncertainty propagation methods enable to characterize the uncertainty of a
system performance based on input disciplinary uncertainties. A focus on reliability analysis
methods has been made because guarantying the system reliability is a di�cult task and dedicated
uncertainty propagation techniques are required. In addition, two surrogate models (Kriging and
Support Vector Machine) in the context of reliability analysis have been introduced to decrease
the computational cost of reliability analysis.

In the context of design, reliability analysis methods were mainly limited to FORM and CMC

techniques due to their low computational cost. However, more and more disciplinary design
studies involving sampling-based techniques such as SS and IS coupled with surrogate modeling
re�nement approaches have been performed [Kaymaz, 2005; Bourinet et al., 2011a; Basudhar
et al., 2012; Balesdent et al., 2013]. These approaches o�er the possibility to handle complex
failures (discontinuities, multiple failure regions, etc.) and accurate probability estimation while
limiting the computational cost. However, most of these approaches still su�er from a curse of
dimensionality and in the �eld of reliability analysis, works on high dimensional methods are
expected in the near future.

The next logical steps on the thesis will be to focus on UMDO problems and for that to understand
the di�erences and challenges introduced by uncertainty in MDO problem (see section 3.2). Then,
existing methods for three di�erent thematics of UMDOmethodologies identi�ed in the introduction
will be studied:

• �rst, the existing UMDO formulations and the interdisciplinary coupling handling (chapter
3),

• then, the existing reliability analysis methods for multidisciplinary systems and also mono-
disciplinary systems in the presence of mixed aleatory/epistemic uncertainties (chapter 4),

• �nally, some existing optimization algorithms for constrained UMDO problems (chapter 5).
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Chapter 3

Interdisciplinary coupling handling
in existing UMDO formulations
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• Present the principal existing interdisciplinary coupling handling methods for coupled and
decoupled UMDO formulations,

• Highlight the advantages and drawbacks of each technique.

Chapter goals

3.1 Introduction

This chapter is devoted to the description of Uncertainty-based Multidisciplinary Design Opti-
mization (UMDO) formulations and is focused on the interdisciplinary coupling satisfaction in the
presence of uncertainty. The understanding of the importance of UMDO is spreading fast among
academia and industry, but UMDO methodologies are still in the early stages of development and
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are not mature enough to be applied to complex industrial cases. One of the key challenges in
UMDO problem is the organizational procedures and the collaborative design process. Complex
system design often involves teams spread all around the world and collaborative strategies have
to be developed. UMDO formulations and interdisciplinary coupling handling are research branches
focused on these issues. To understand the existing UMDO approaches, this chapter is organized
as follows. In the second section, the di�erences between deterministic MDO and UMDO are high-
lighted and important notations are introduced. Section 3.3 is focused on the existing coupled
UMDO formulations relying on MDA in the presence of uncertainty. Section 3.4 presents the exist-
ing decoupled UMDO formulations with a focus on the interdisciplinary coupling satisfaction. For
each approach presented, we expose at �rst the principle of the approach, then its mathematical
formulation accompanied by an explanatory scheme and �nally the advantages and drawbacks
relative to coupling satisfaction.

3.2 Di�erences between deterministic MDO and UMDO

In order to simplify the comprehension of the interdisciplinary coupling problem under uncertainty
several hypotheses are made on the considered UMDO problem:

• Besides the interdisciplinary coupling equation Eq.(18.14), only inequality constraints are
considered. In the design of launch vehicle, tolerances are often considered on equality
constraints (such as orbit injection constraints) and therefore equality constraints may be
transformed into inequality constraints involving the tolerances.

• State variables x and state equation residuals r(·) are handled at the discipline-level and
therefore do not appear in the UMDO formulations.

The introduction of uncertainty in a MDO problem leads to a new general UMDO problem [Yao
et al., 2011] formulated as follows:

min Ξ [f(z,θY ,U)] (3.1)

w.r.t. z,θY

s.t. K [g(z,θY ,U)] ≤ 0 (3.2)

∀i 6= j,∀u ∈ Ω, yij(θY ij ,ui) = cij(zi,y.i(θY .i,u.i),ui) (3.3)

zmin ≤ z ≤ zmax (3.4)

Important di�erences exist between the UMDO formulation and the deterministic MDO formulation
presented in chapter 1. UMDO formulations require uncertainty modeling and measures, uncertainty
propagation and optimization under uncertainty. In the following paragraphs, the main di�erences
with deterministic MDO are detailed.

• First, U is the uncertain vector. We note Ui, the input uncertain vector to the discipline
i and U =

⋃N
i=1 Ui without duplication. In this chapter, it is assumed that the uncertain

variables are modeled with the probability theory, and that the input variable distributions
are known. To simplify the notations in the rest of the thesis, for all the uncertain variables,
the realization U(w) is noted u. The kth sample generated for instance by CMC of the
random vector Ui is noted ui(k). The pth coordinate of the kth sample of the random vector
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Ui is noted u
(p)
i(k). As highlighted in section 2.2.2, other uncertainty modelings exist such

as evidence theory [Dempster, 1967], possibility theory [Zadeh, 1978] or interval analysis
[Moore et al., 2009]. Moreover, it is assumed that the design variables z are deterministic
variables, and all the uncertainties are represented by U. We note (Ω, σΩ,P) a probability
space with Ω a sample space for U, σΩ a sigma-algebra, and P a probability measure. We
note φ(·) the joint Probability Density Function (PDF) of the uncertain vector U. If a design
variable is considered as uncertain, then, its contribution is decomposed into two parts: one
deterministic that is controlled by the optimizer and one aleatory that is propagated through
the system. For instance, if the propellant mass m is considered as an uncertain design
variable, therefore, the expected value of the propellant mass µm is the deterministic design
variable controlled by the optimizer and the propellant mass uncertainty around the expected
value is propagated through the system according to the propellant mass PDF.

• Secondly, Ξ denotes the objective function uncertainty measure. The measure Ξ quanti�es
the uncertainty in the objective function to be optimized. Within the probability formalism,
the expected value E [f(z,θY ,U)] or an aggregation of the expected value and the standard
deviation are commonly used to quantify the uncertainty in the objective function [Baudoui,
2012].

Concerning the UMDO constraints, two classical measures of uncertainty exist. In the solv-
ing of UMDO problems, most computations are devoted to constraint evaluations [Du et al.,
2008]. Depending on the choice of the constraint measures, two UMDO problems may be
distinguished, the Robust-based UMDO and the Reliability-based UMDO [Yao et al., 2011].
Di�erent de�nitions have been proposed, we consider in this thesis, that the di�erence be-
tween the two approaches results from the constraint uncertainty measures as illustrated in
the following paragraphs.

Robust based UMDO

Eq.(18.13) is written K [g(z,θY ,U)] = E [g(z,θY ,U)] + ησ [g(z,θY ,U)] where E[g(·)] and
σ[g(·)] are the vector of the expected values and the vector of the standard deviations of the
constraint function vector g(·). The robust formulation is based on the statistical moments
of the inequality function vector to ensure that despite the uncertainty, the system will stay
feasible. η indicates the restriction of the feasible region to η standard deviations away from
the mean value of the constraint function vector. In Robust-based UMDO, the formulation
may be rewritten such as:

min Ξ [f(z,θY ,U)] (3.5)

w.r.t. z,θY

s.t. E [g(z,θY ,U)] + ησ [g(z,θY ,U)] ≤ 0 (3.6)

∀i 6= j,∀u ∈ Ω, yij(θY ij ,ui) = cij(zi,y.i(θY .i,u.i),ui) (3.7)

zmin ≤ z ≤ zmax (3.8)

For instance the approach Multidisciplinary Optimization and Robust Design Approaches
applied to Concurrent Engineering (MORDACE) [Giassi et al., 2004] proposes to solve UMDO

problems with a robust approach through concurrently design of subsystems ensuring e�ective
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design work distribution. The method relies on surface response methods of each discipline
in order to concurrently optimize them and then a compromise strategy (based on Pareto
frontier analysis) in order to identify the potential optimal candidates of the di�erent possible
combination of subsystem optimization results.

Reliability based UMDO

Eq.(18.13) is written K [g(z,θY ,U)] = Λ [g(z,θY ,U) > 0]−Λt where Λ[g(·)] stands for the
measure vector of uncertainty for the inequality constraint function vector. The vector of
the uncertainty measures of the constraints have to be at most equal to Λt [Agarwal et al.,
2004]. The computation of the constraints involves reliability analysis methods such as the
one presented in section 2.4. It re�ects the requirement for the optimized system to lie in
the feasible region with a given reliability despite the uncertainty. As the uncertain variables
are modeled within the probability theory, we have for the ith coordinate of the vector of the
measures of uncertainty:

Ki [gi(z,θY ,U)] = P [gi(z,θY ,U) > 0]− Pti =

∫
Ii
φ(u)du− Pti (3.9)

with gi the ith component of the inequality constraint vector, Ii = {u ∈ Ω|gi(z,θY ,u) > 0}
and Pti the maximal allowed failure probability. In Reliability-based UMDO, the formulation
may be rewritten such as:

min Ξ [f(z,θY ,U)] (3.10)

w.r.t. z,θY

s.t. P [g(z,θY ,U) > 0]− Pt ≤ 0 (3.11)

∀i 6= j,∀u ∈ Ω, yij(θY ij ,ui) = cij(zi,y.i(θY .i,u.i),ui) (3.12)

zmin ≤ z ≤ zmax (3.13)

• Eventually, because of the presence of the uncertain vector U, the coupling variable vector
Y is also an uncertain vector Eq.(18.14). In the decoupled formulations (as in deterministic
MDO), input coupling variables have to be controlled by the optimizer, however in the pres-
ence of uncertainty the optimizer cannot directly control the uncertain coupling variables.
Indeed, as the input coupling variables are functions of U in order to avoid in�nite dimension
optimization problem, the optimizer does not directly control the uncertain coupling vari-
ables but rather deterministic parameters θY modeling the uncertain input coupling vector
Y. These parameters may be some realizations of the uncertain variables, the statistical
moments, the parameters of the PDF, etc.

As in deterministic MDO, in UMDO two types of formulations may be distinguished for the coupling
handing:

- Interdisciplinary coupling satisfaction handled with a coupled approach (with MDA),

- Interdisciplinary coupling satisfaction handled with a decoupled approach.
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In this chapter, the coupled and decoupled existing UMDO formulations are presented in the point
of view of the interdisciplinary couplings in the presence of uncertainty. Several coupled and
decoupled UMDO formulations have been proposed [Oakley et al., 1998; Koch et al., 2002; McAllister
and Simpson, 2003; Liu et al., 2006; Jaeger et al., 2013; Ghosh et al., 2014]. Firstly, the existing
coupled approaches are introduced. Then, in section 3.3 the existing decoupled formulations will
be presented.

3.3 Coupled UMDO formulations

3.3.1 Multi Discipline Feasible under uncertainty

As in deterministic MDO, MDF under uncertainty [Koch et al., 2002] is the most used UMDO

formulation. MDF under uncertainty is a single level coupled formulation. It takes advantages of
the simplicity of the deterministic version and derives it in the presence of uncertainty. The most
straightforward approach to ensure the coupling satisfaction in UMDO is to use Crude Monte Carlo
simulations (CMC) to propagate uncertainty while solving the system of interdisciplinary equations
by MDA for each realization of the CMC sample [Oakley et al., 1998; Koch et al., 2002; Jaeger et al.,
2013] (Fig. 3.1). The MDF under uncertainty formulation is given by:

min Ξ [f(z,Y(z,U),U)] (3.14)

w.r.t. z

s.t. K [g(z,Y(z,U),U)] ≤ 0 (3.15)

zmin ≤ z ≤ zmax (3.16)

Discipline
1

Discipline
2

Discipline
N

MultidisciplinaryfDesignfAnalysis

Couplingfvariables

Couplingfvariables

Designfvariables:fz

Optimizer

Uncertainfvariables:fu

Uncertaintyfsimulation

Ξ[f(z,Y(z,U),U)]
κ[g(z,Y(z,U),U)]

...

Figure 3.1: Multi Discipline Feasible under uncertainty

For a given design variable vector z0, to evaluate the objective function and the constraint functions,
it is necessary to propagate the uncertainty in the entire system (through the di�erent disciplines).
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In the coupled formulations, Y (which some readers might prefer to read as y(z,U) but, for
readability, the uppercase notation denoting random variables to Y is carried except to refer to
realizations) is the coupling variable vector satisfying the following system of interdisciplinary
equations:

∀ u ∈ Ω, ∀(i, j) ∈ {1, ..., N}2 i 6= j, yij = cij(zi,y.i,u) (3.17)

We assume that for a given realization of the uncertain vector u0, there exists a unique set of
coupling variables such that the coupling variables satisfy:

∀ u ∈ Ω, ∀(i, j) ∈ {1, ..., N}2 i 6= j,∃!(yij ,yji)| yij = cij(zi,y.i,u) (3.18)

To compute the uncertainty measure of the performance Ξ[f(z0,Y(z0,U),U)] and the constraints
K [g(z0,Y(z0,U),U)], repeated MDAs are performed for a set of uncertain variable realizations
sampled by CMC.
MDF under uncertainty allows one to ensure interdisciplinary coupling satisfaction for all the real-
izations of the uncertain variables guarantying an appropriate estimation of the system performance
and reliability. Indeed, at each iteration of the system-level optimizer in z, for each realization
of the uncertain variables, the system of interdisciplinary equations Eqs.(3.17) is solved by MDA.
This approach ensures the multidisciplinary feasibility of the optimal design system and also all
along the optimization process.
This formulation is computationally expensive due to the repeated evaluations of the disciplines.
The computational cost of MDA under uncertainty with CMC corresponds to one MDA multiplied by
the number of CMC samples [Mahadevan, 2000]. Therefore, the computational cost of MDF under
uncertainty is ampli�ed by the propagation of uncertainty and becomes intractable for the design
of complex systems [Du et al., 2008]. MDF under uncertainty is considered as the reference UMDO

formulation due to its intrinsic interdisciplinary coupling satisfaction. To reduce its computational
cost, coupled approaches based on surrogate model have been proposed and are explained in the
following section.

3.3.2 System Uncertainty Analysis (SUA) and Concurrent SubSystem
Uncertainty Analysis (CSSUA)

To overcome the computational burden introduced by the repetitive MDAs, Du et al. [Du and
Chen, 2002; Du et al., 2002] proposed a formulation called System Uncertainty Analysis (SUA)
based on MDF in which MDA and the uncertainty propagation by CMC on the exact disciplines are
replaced by a surrogate model approach (Fig. 3.2).

min E
[
f(z, Ŷ(z,U),U)

]
(3.19)

w.r.t. z

s.t. E
[
g(z, Ŷ(z,U),U)

]
+ ησ

[
g(z, Ŷ(z,U),U)

]
≤ 0 (3.20)

zmin ≤ z ≤ zmax (3.21)

The surrogate model of the coupling relations Ŷ(z,U) is obtained by a �rst order Taylor series
expansion and is used to estimate the �rst two statistical moments of the coupling variables. At
the kth system-level iteration for z = z[k], �rstly a classical MDA by Fixed Point Iteration (FPI) for
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Figure 3.2: System Uncertainty Analysis (SUA)

the realization u = µU is performed to compute the corresponding couplings:

∀(i, j) ∈ {1, ..., N}2 i 6= j, yij

(
z

[k]
i ,µU

)
= cij

(
z

[k]
i ,y.i,µU

)
(3.22)

A �rst linear approximation is made by assuming that:

∀(i, j) ∈ {1, ..., N}2 i 6= j, µYij
= yij

(
z

[k]
i ,µU

)
(3.23)

Then, a �rst order Taylor series approximation around µU of the couplings between disciplines i
and j is made:

Yij

(
z[k],Y.i,U

)
= µYij

+
∂Yij

∂U

∣∣∣∣
U=µU

(U− µU) +
∂Yij

∂Y.i

∣∣∣∣
U=µU

(Y.i − µY.i
) (3.24)

Then, by doing it for all the coupling variables between all the disciplines and reorganizing the
system of equations, it is possible to have a �rst order approximation of the coupling variables as
a function of the uncertain variables U around µU in a matrix form:

Ŷij

(
z[k],U

)
= A

(
z[k]
)−1

B
(
z[k]
)

(U− µU) + C
(
z[k]
)

(3.25)

with A
(
z[k]
)
a matrix and B

(
z[k]
)
,C
(
z[k]
)
vectors detailed in [Du and Chen, 2002]. A �rst

order Taylor series expansion of the objective function f(·) and the constraints g(·) is used to
propagate uncertainty and to estimate their �rst two statistical moments. It is possible therefore
to estimate the expected value E [f(·)] and E [g(·)] + ησ [g(·)]. The �rst order Taylor series
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expansion provides a functional model of the coupling dependency with respect to the uncertain
variables. The method enables to �nd the optimal design while ensuring interdisciplinary
couplings for all the uncertain variable realizations. However, the method has several limits:
�rst order Taylor approximation is only valid for functions that can be locally approximated
as linear functions and the method requires to perform a MDA to locally build the surrogate model.

In order to further improve SUA, Du et al. [Du and Chen, 2002; Du et al., 2002] proposed an
amelioration named Concurrent SubSystem Uncertainty Analysis (CSSUA) to avoid the FPI to
locally build the surrogate model (Fig. 3.3). An optimization problem replaces the required FPI

in SUA to �nd the expected value of the coupling variables µYij
formulated as:

min
N∑
i=1

∣∣∣∣∣∣∣∣µYi.
− ci.

(
z

[k]
i ,µY.i

,µU

) ∣∣∣∣∣∣∣∣2
2

(3.26)

w.r.t. µY

As in SUA, a linear approximation of the disciplines is made by assuming that:

∀(i, j) ∈ {1, ..., N}2 i 6= j, µYij
= yij

(
z

[k]
i ,µU

)
(3.27)
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Figure 3.3: Concurrent SubSystem Uncertainty Analysis (CSSUA)

This optimization problem allows one to call the disciplines in parallel, reducing the computational
cost compared to FPI. Once the expected value of the coupling variables are found, the same
uncertainty propagation as in SUA is adopted. CSSUA su�ers from the same drawbacks as SUA. In
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launch vehicle design, some disciplines such as the aerodynamics and the trajectory involve highly
non linear dynamics and the linearization hypothesis would introduce high errors compared to
MDF under uncertainty.
In order to avoid performing MDA under uncertainty, an alternative way is to use the same approach
as in deterministic MDO and to perform UMDO on decoupled multidisciplinary systems in order to
further decrease the number of calls to the disciplines,. It would allow to bene�t from the same
advantages as the deterministic decoupled MDO formulations highlighted in chapter 1. Existing
decoupled UMDO formulations are presented in the following sections.

3.4 Decoupled UMDO formulations

3.4.1 Statistical moment matching methods

In order to remove MDA, decoupled approaches inspired from CO [Braun et al., 1996] have been
proposed [Du and Chen, 2001; McAllister and Simpson, 2003; Liu et al., 2006; Ghosh et al.,
2014]. The idea is to extend CO framework to robust design. In these methods, the uncertain
input coupling vector is replaced by its statistical moments. Therefore, the system-level optimizer
only controls deterministic parameters. For instance Du et al. [Du and Chen, 2001] proposed
the Hierarchical Approach to Collaborative Multidisciplinary Robust Design method in which the
input coupling variables are characterized by their expected values µY and standard deviations
σY . In this formulation, the system-level optimizer controls the design variable vector z, the input
coupling variable expected values µY and standard deviations σY .
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Uncertain)variables:)μU

Uncertainty)simulation

E[f2z,Y2z,UN,UN]
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N
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...

JC

μY σY

Coupling
)variables:

Figure 3.4: Hierarchical Approach to Collaborative Multidisciplinary Robust Design

As in SUA and CSSUA the disciplines, the objective function and the constraints are approximated
by a �rst order Taylor series expansion to estimate their statistical moments. The subsystem-level
objective is to modify its local design variables z∗i in order to �nd an agreement with the other
subsystems regarding to the coupling variables. The subsystem-level objective is a measure of the
relative errors between the discipline outputs and the system-level instructions.
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The formulation proposed by Du et al. [Du and Chen, 2001] (Fig. 3.4) is:

min E
[
f(z, Ŷ(z,U),U)

]
(3.28)

w.r.t. z,µY,σY

s.t. J∗i.(z
∗
i , zi,µY,σY) = 0,∀i ∈ {1, . . . , N} (3.29)

zmin ≤ z ≤ zmax (3.30)

with J∗i. the optimized objective function of the ith discipline and z∗ the local copies of z controlled
by the subsystem optimizer. The ith subsystem optimization problem is given by:

min Ji. =

∣∣∣∣∣∣∣∣z∗i−zi

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣µYi.
−ci.

(
z∗i ,µY.i

,µU

) ∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣σ2
Yi.
−

d∑
l=1

(
∂ci.
∂u(l)

∣∣∣∣
u=µU

)2

σ2
U(l)

∣∣∣∣∣∣∣∣2
2

(3.31)

w.r.t. z∗i

s.t. E
[
g(z, Ŷ(z,U),U)

]
+ ησ

[
g(z, Ŷ(z,U),U)

]
≤ 0 (3.32)

z∗imin ≤ z∗i ≤ z∗imax (3.33)

This formulation relies on SUA and CSSUA approaches and does not involve any MDA o�ering the
possibility for parallel discipline optimizations. The interdisciplinary coupling constraints at the
system-level ensure that the input coupling variables and the output coupling variables have the
same expected values and the same standard deviations. The �rst two statistical moments of the
coupling variables are matched between the di�erent disciplines to ensure the multidisciplinary
feasibility.
This formulation has been extended in [Xiong et al., 2014] to avoid �rst order Taylor series
approximation. CMC replaces Taylor series expansion to propagate uncertainty and to estimate
the coupling variable statistical moments. To further improve the method, Ghosh et al. [Ghosh
et al., 2014] proposed to capture the statistical dependence of the coupling variables by introducing
the covariance matrix to model the correlations between them. The coe�cients of the covariance
matrix in addition to the expected values are controlled by the system-level optimizer. It increases
the number of variables controlled by the system-level optimizer but it enhances the �delity of
the moment matching. Moreover, this approach has been extended to Reliability-based UMDO

[Huang et al., 2010] to enable reliability analysis on the constraints instead of statistical moment
estimations. Furthermore, moment matching approaches have been adapted in other UMDO

formulations such as Probabilistic ATC [Liu et al., 2006] which presents similarities with CO. An
important drawback of these approaches is the necessity for the disciplines to be di�erentiable
with respect to the uncertain variables which might not be the case for complex simulation codes.

The moment matching formulations are interesting since they preserve some disciplinary auton-
omy via parallel sybsystem-level uncertainty propagation and optimizations. However, the inter-
disciplinary couplings is satis�ed only in terms of statistical moments (expected value, standard
deviation or covariance matrix) of the coupling variables.
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3.4.2 Sequential Optimization and Reliability Assessment (SORA)

Du et al. [Du et al., 2008] proposed the Sequential Optimization and Reliability Assessment
(SORA) for UMDO. The main idea is to separate the optimization and the reliability analysis.
Indeed, reliability analysis is computationally expensive especially on multidisciplinary systems.
To avoid to perform reliability analysis at each system-level iteration to compute the constraints,
a sequential approach has been proposed. The UMDO problem is decomposed into a sequence
of deterministic MDO problems and reliability analyses. SORA [Du and Chen, 2004] replaces the
probabilistic reliability constraints by deterministic approximation of the reliability constraints
evaluated at the Most Probable Point (MPP). Reliability analysis is performed by First Order
Reliability Method (FORM) [Rackwitz, 2001] to �nd the MPP (noted u∗). It is assumed here that
the uncertain variables are given in the standard Gaussian space. If it is not the case, di�erent
statistical transformations may be applied on the input distributions (such as Nataf [Nataf, 1962]
or Rosenblatt [Rosenblatt, 1952] transformations).

Deterministic 
MDO

Multidisciplinary
Reliability 
Analysis

Formulate a new
deterministic MDO

Initial
design

Optimal
design

convergenot
converge Check 

convergence

Figure 3.5: SORA procedure for UMDO [Du et al., 2008]

In SORA [Du et al., 2008], four steps are distinguished (Fig. 3.5):

• Step 1: At the kth SORA iteration, deterministic MDO problem is solved with the uncertain
variables �xed at their MPP found at the [k − 1]th iteration.

• Step 2: Reliability analysis is performed to identify the MPP u∗(k) of all the inequality con-

straints by FORM with the design variables �xed at the optimal design z∗[k] found in step
1. The objective function is computed: f

(
z∗[k],y

(
z∗[k],u∗[k]

)
,u∗[k]

)
, with y(·) the coupling

vector satisfying interdisciplinary couplings (see Eq.3.42) at the MPP.

• Step 3: the convergence is checked. If the inequality constraints (P [g(z,Y(z,U),U) > 0]−
Pt ≤ 0) are veri�ed and the objective function becomes stable [Du et al., 2008], the solution
is found.

• Step 4: if the convergence is not reached, or the inequality constraints are violated, a new
deterministic MDO problem is formulated for u = u∗[k], back to step 1.

Deterministic MDO: step 1
The deterministic MDO problem of step 1 may be solved with the classical decoupled MDO methods

89



Contributions to Uncertainty-based Multidisciplinary Design
Optimization, application to launch vehicle design

(IDF, AAO, BLISS, ATC, etc). With the IDFmethod [Du et al., 2008], the deterministic MDO problem
at the SORA kth-cycle, (k ≥ 2), is formulated as follows :

given u∗[k−1] (3.34)

min f
(
z,y,u∗[k−1]

)
(3.35)

w.r.t. z,y

s.t. g
(
z,y,u∗[k−1]

)
≤ 0 (3.36)

∀(i, j) ∈ {1, ..., N}2 i 6= j, yij = cij

(
zi,y.i,u

∗[k−1]
i

)
(3.37)

zmin ≤ z ≤ zmax (3.38)

The interdisciplinary couplings Eq.(3.37) are ensured for one particular realization of the uncertain
variables corresponding to the MPP u∗[(k−1)].

Reliability analysis: step 2
The reliability analysis is performed for the design variables �xed at z∗[k] based on FORM [Chi-
ralaksanakul and Mahadevan, 2007; Du et al., 2008] :

given z∗[k] (3.39)

min ‖ u ‖ (3.40)

w.r.t. u,y

s.t. g
(
z∗[k],y,u

)
= 0 (3.41)

∀(i, j) ∈ {1, ..., N}2 i 6= j, yij = cij

(
z∗[k],y.i,ui

)
(3.42)

This optimization provides the MPP value u∗[k] for the uncertain variables at the SORA kth-cycle.
Reliability analysis is performed on a decoupled multidisciplinary system and the interdisciplinary
couplings are satis�ed at the MPP in Eq.(3.42). By decoupling reliability analysis from the
deterministic MDO, SORA tends to decrease the number of calls to the disciplinary functions
compared to MDF under uncertainty [Du et al., 2008]. SORA has been implemented with various
MDO formulations such as MDF [Chiralaksanakul and Mahadevan, 2007] IDF [Chiralaksanakul and
Mahadevan, 2007], CO [Li et al., 2010b; Zhang and Zhang, 2013a], CSSO [Li et al., 2013; Zhang
and Zhang, 2013b] or BLISS [Ahn and Kwon, 2006] but the coupling satisfaction relies on the same
approach: satisfaction at the MPP of the coupling variables.

The interdisciplinary coupling satisfaction within SORA presents several advantages:

• Possibility to perform disciplinary analysis in parallel,

• Satisfaction of the interdisciplinary couplings at the MPP value for the coupling variables at
the optimum,

• Reduction of the computational cost compared to MDF under uncertainty with CMC.
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However, SORA has also several limitations. Reliability analysis is performed by FORM which locally
linearizes the inequality constraints and may lead to inaccurate estimation of the probability of
failure. FORM also assumes the uniqueness of the MPP which is a limiting hypothesis in practical
applications [Dubourg et al., 2013]. Furthermore, in terms of interdisciplinary coupling satisfaction,
the couplings are ensured only at the MPP which is the most likely failure to happen but another
failure less likely may occur.

3.4.3 Likelihood-based MultiDisciplinary Analysis

The approach presented in this section is not an UMDO formulation but it focuses on decoupled
uncertainty propagation methods for multidisciplinary systems. Sankararaman et al. proposed
to satisfy the interdisciplinary couplings for all the realizations of the uncertain variables by con-
structing the input coupling PDF [Sankararaman and Mahadevan, 2012].
Let consider the system of Figure 3.6 representing a partially decoupled multidisciplinary system.
The couplings from the discipline i to the discipline j are removed. For each realization of the
uncertain vector U and the coupling vector Yij , it is possible to compute: cij(zi,ui, cji(zj ,uj ,yij))
and eij(z,u,yij) = yij − cij(zi,ui, cji(zj ,uj ,yij)). Eij is the error between the input coupling
variables and the corresponding output coupling variables. In this partially decoupled approach,
yji = cji(zj ,uj ,yij) results directly from the simulation of the discipline j. To simplify, we denote
cij(zi,Ui, cji(zj ,Uj ,Yij)) by cij(.).

Discipline 
i

Discipline 
jYji

cij
Eij=Yij-cij

z U Yij

Guess

Yij

(0)

Figure 3.6: Partially decoupled multidisciplinary system [Sankararaman and Mahadevan, 2012]
and related notations

The method is based on likelihood in order to construct the probability distribution the coupling
variable Yij . Then, the samples generated with this PDF are considered as an input uncertain
variables in the same way as the variables U. The uncertainty propagation is therefore carried out
on the partially decoupled system. Considering Figure 3.6, an analysis is carried out on the partially
decoupled system at a given design vector z, with M CMC samples of U generated according to
φU(·) and for a given �xed realization yij(0). Propagation of uncertainty is performed for the M
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CMC samples of U, generating M samples of the variables cji directly passed to discipline j which
generate M samples of cij . Among all the samples of cij , the interdisciplinary coupling is satis�ed
when one sample of cij is equal to the realization yij(0) (i.e. Eij = 0). The likelihood L(·) of
yij(0) to satisfy the interdisciplinary is proportional to P

(
yij(0) = cij

)
. The authors assume that

this probability is equal to P
(
ε ≤ yij(0) − cij ≤ ε

)
for ε small enough

L
(
yij(0)

)
∝ P

(
ε ≤ yij(0) − cij ≤ ε|yij(0)

)
(3.43)

The likelihood of di�erent realizations of Yij is calculated based on the same principle. To sample
Yij a uniform prior distribution is assumed. Based on these likelihoods and Bayes' theorem, an
estimation of the conditional PDF of Yij satisfying the interdisciplinary couplings may be obtained
by [Sankararaman and Mahadevan, 2012]:

φYij |Eij=0(yij) =
L(yij)∫
L(yij)dyij

(3.44)

Then, the conditional PDF φYij |Eij=0(·) is used as an input distribution to propagate uncertainty
on the partially decoupled system.
This approach is interesting because it allows to satisfy the couplings for all the realizations of
the uncertain variables and not just at the MPP or at the expected value. Moreover, this method
allows to propagate uncertainty on a partially decoupled system in order to avoid MDA. However,
this approach has some limits in terms of interdisciplinary coupling satisfaction. First, the func-
tional dependency between the uncertain variables U and the input coupling variables Yij is not
considered in the construction of the input coupling probability density functions, only a statisti-
cal dependency is considered. Normally, Y depends on z and U. This functional dependency is
essential because it ensures that for a particular realization of the uncertain variables there exists
a unique converged value for the coupling variables as with MDA under uncertainty. Secondly, in
Bayes' theorem, a uniform prior distribution for Yij is assumed which may be a non valid assump-
tion and introduce an error in the conditional PDF of the coupling variables. An extension for fully
decoupled systems has been proposed based on the same principles, by constructing the PDF of the
coupling variables by two semi-decoupled processes. However, it su�ers from the same drawbacks
as the semi-decoupled approach.
A summary of the main decoupled UMDO formulations is proposed in Table 3.7 .

Table 3.7: Advantages and drawbacks of the decoupled UMDO formulations

Advantages Drawbacks

Statistical moment matching Easy to implement
Limited to parametric
coupling distributions

SORA

Decoupling of the
optimization from the
reliability analysis

Coupling satisfaction only at
the MPP

Likelihood-based MDA Semi-decoupled approach
Do not ensure functional
coupling satisfaction
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3.5 UMDO methodologies dedicated to launch vehicle design

Most of the formulations presented in this chapter have been applied to analytical test cases and
to some more complex engineering problems. However, in the literature only few papers formulate
a complete UMDO problem for launch vehicle design. Most of the case studies focus on the robust-
ness of the optimal space transportation system design and do not involve reliability assessment.
Moreover, most of the UMDO formulations rely on MDF under uncertainty coupled with CMC to
propagate uncertainty. In [Charania et al., 2002; Bettis et al., 2011], the authors quantify the
uncertainty in the performance of a �xed launch vehicle con�guration but no optimization is per-
formed. Heuristic optimization methods (e.g. Genetic Algorithm, Particle Swarm Optimization)
are compared in [Ra�que et al., 2010] with a deterministic MDF formulation to design a launch ve-
hicle. The robustness of the found deterministic solutions is studied with a probabilistic modeling
of some uncertain parameters and CMC in order to select the most robust solutions.
Analysis of variance based on surrogate models is performed in [Yeniay et al., 2006] to determine
the value of the design variables ensuring the minimal deviations from expected performance in
launch vehicle weight and sizing analysis. MDF under uncertainty is used to optimize a function
of the GLOW of a launch vehicle in [McCormick, 2001] and takes the propulsion, aerodynamics,
sizing and trajectory disciplines into account. In [Zaman and Mahadevan, 2013], the authors used
MDF under uncertainty to optimize the total power consumption of a satellite. Six design variables
and three uncertain parameters are considered in this study. In [Zaman et al., 2011], the upper
stage of a two-stage-to-orbit vehicle is optimized in the presence of uncertainty. The objective is to
minimize a function of the dry mass of the upper stage with MDF. In [King et al., 2012], the weight
of the wing of a reusable launch system is optimized based on MDF in the presence of uncertainty
taking into account aero-elastic analysis.
Yao et al. [Yao et al., 2010, 2012] formulated a reliable and robust UMDO problem to design a
satellite. The robustness is expressed by a weighted aggregation of the mean and the standard
deviation of the satellite mass. In [Yao et al., 2010], the UMDO approach relies on CSSO which
ensures the coupling satisfaction by MDA. The satellite system design is decomposed into di�erent
subsystem optimization problems which correspond to all the disciplines involved in the design
process. The system robustness and reliability are computed with CMC and system performance
is approximated by Taylor series. In [Yao et al., 2012], a MDF-CSSO decomposition is used with
coupling satisfaction byMDA. A �rst optimum is found by a sequence of low �delity surrogate model
re�nements combined with MDF under uncertainty. Then, based on the MDF optimal design, a
local optimization under uncertainty with CSSO and high �delity simulations is performed allowing
disciplinary autonomy.

3.6 Conclusion

In this chapter, UMDO formulations have been described, presenting the main methods and their
mathematical formulations using the uni�ed notations introduced in the previous chapters. First,
the di�erences between deterministic MDO and UMDO have been underlined and new notations
have been presented. Then, the existing UMDO formulations have been introduced with a focus
on the interdisciplinary coupling handling. The existing formulations either rely on computation-
ally expensive MDA to rigorously ensure coupling satisfaction, or deal with incomplete coupling
conditions (coupling in terms of statistical moments, at the MPP, etc.)
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All the existing decoupled UMDO formulations do not allow to ensure the multidisciplinary feasi-
bility for all the realizations of the uncertain variables used to compute the performance or the
constraints. In the design of systems such as launch vehicles, it is necessary to ensure that the de-
coupled UMDO process implemented does not provide unfeasible solutions due to non satisfaction of
the interdisciplinary coupling system of equations. The incomplete coupling condition satisfaction
in the existing approaches motivate us to develop in chapters 6, 7 two new UMDO formulations in
order to ensure multidisciplinary feasibility in the presence of uncertainty.
This chapter is focused on coupling management, however another important aspect in UMDO

methodologies is the reliability assessment for complex systems. This analysis is a di�cult task
that requires dedicated techniques that will be presented in the next chapter. A focus on the
existing methods for reliability analysis in the presence of mixed aleatory/epistemic uncertainties
is proposed.
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• Present the principal existing reliability assessment techniques in the presence of both
aleatory and epistemic uncertainties,

• Highlight the advantages and drawbacks of each technique.

Chapter goals

4.1 Introduction

This chapter is devoted to the presentation of reliability analysis techniques for the design of com-
plex systems within the UMDO framework. In particular, the problematic of the presence of mixed
aleatory/epistemic uncertainties in reliability assessment is essential in the early design phases.
Indeed, in these phases, due to the lack of knowledge and the use of low �delity models, epistemic
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uncertainty arises in addition to aleatory uncertainty which results from the inherent variability
in the system or its environment. In practice, as the design process progresses, the epistemic
uncertainty is reduced, the knowledge is improved and the �delity of the model used is increased.
However, in the early design phases, epistemic uncertainty may induce important deviations from
future nominal conditions and taking into account both types of uncertainties is essential. To
avoid computational burden, the UMDO context imposes to estimate probabilities of failure at a
low computational cost limiting at the maximum the number of discipline evaluations. In this
chapter, existing methods to deal with mixed aleatory and epistemic uncertainties in UMDO are
presented. For each approach, we expose at �rst the principle of the method, then its mathematical
formulation and �nally the advantages and drawbacks.

4.2 Problem description

Consider a reliability-based UMDO formulation based on a coupled approach in the presence of
both aleatory and epistemic uncertainties:

min Ξ [f(z,Y(z,U, e),U, e)] (4.1)

w.r.t. z

s.t. K [g(z,Y(z,U, e),U, e)] ≤ 0 (4.2)

zmin ≤ z ≤ zmax (4.3)

where e = [e(1), . . . , e(w)]T ∈ Rw a parameter vector which su�ers from epistemic uncertainty. The
described methods in this chapter are devoted to the computation of Eq.(5.2). The solving of
this UMDO problem requires reliability analysis to compute the inequality constraints. To focus
on the reliability analysis problem in the presence of mixed uncertainties, a simpli�ed problem is
considered which consists in computing:

K [g(U, e)] ≤ 0

The uncertainty measure K has to handle both aleatory uncertainty (modeled within the prob-
ability formalism) and epistemic uncertainty. In this chapter, we focus on interval formalism to
represent epistemic uncertainty which is easier to work with and to interpret for engineers than
other more recent formalisms such as evidence theory [Dempster, 1967; Shafer, 1976] or imprecise
probability theory [Walley, 1996]. Moreover, the probability formalism is used to represent the
aleatory uncertainty and the probability measure P(·) is used as measure for the failure.
In literature, the impact of epistemic uncertainty on the system may be classi�ed into two cate-
gories:

• Either the hyper-parameters of the joint PDF of the aleatory uncertainty are a�ected by
epistemic uncertainty (e.g. the expected value of a Gaussian PDF is not known exactly but
only within an interval) (section 4.3),

• Either the limit state functions are directly a�ected by epistemic uncertainty (section 4.4).

These two cases are considered in the following sections.
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4.3 Epistemic uncertainty on the hyper-parameters of the
joint input PDF

4.3.1 Problem statement

Let consider a d-dimensional random vector U de�ned on the sample space Ω by a joint PDF φe(·)
indexed by a parameter vector e = [e(1), . . . , e(w)]T ∈ Rw. e su�ers from epistemic uncertainties
and only the variation domains of its components are known Υ = {e ∈ Rw|e(i) ∈ [e

(i)
min, e

(i)
max] ∀i ∈

{1, . . . , w}}. Consider a system characterized by a limit state function g : Ω→ R assumed to be a
deterministic continuous input-output function. g(·) is assumed to be computationally expensive
to evaluate in order to provide the output for a given input. Moreover, due to the complexity of
the physical phenomena involved in the simulation of g(·), it is supposed that g(·) is non linear and
presents multiple failure regions. In the presence of mixed aleatory and epistemic uncertainties
impacting the system, the failure probability is not unique and depends on the values taken by e
(Figs. 4.1,4.2). To characterize the probability of failure, it is possible to determine its domain of
variation by �nding the lower and upper bounds:{ Pmin = min

e∈Υ
Pe(g(U) ≤ 0)

Pmax = max
e∈Υ

Pe(g(U) ≤ 0)
(4.4)

The determination the epistemic values leading to the failure probability bounds requires opti-
mization problem solvings and reliability analyses (i.e. probability estimation) The optimization
problem is also referred as Interval Analysis (IA) and one evaluation of the objective function in
the optimization problems Eqs.(4.4) requires one reliability analysis (also referred as Probability
Analysis - PA).
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Figure 4.1: Reliability analysis with φe1(·)
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4.3.2 Existing methods

Approaches based on sampling [Zhang et al., 2010] or on FORM [Qiu et al., 2008] have been proposed
to solve these optimization problems. A classical engineering approach to solve this problem with
CMC could consist in a double loop. On the outer loop, one generates CMC samples in the epistemic
uncertain space according to a uniform PDF and for each epistemic value, a CMC estimation of the
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probability of failure is performed. The issue with this approach is the computational cost induced
by the double CMC loops.
However, CMC method has been extended [Zhang et al., 2010] to an interval CMC method to
propagate interval parameter uncertainty in reliability assessment. For a given e, CMC estimates
the probability of failure according to:

Pe [g(U) ≤ 0] =

∫
Rd
1g(U)≤0 φ

e(u)du (4.5)

' 1

M

M∑
k=1

1g(u(k)[φe])≤0 (4.6)

with u(k)[φ
e], k ∈ {1, . . . ,M} samples generated with φe(·). The variation of e generates an

ensemble of CDFs (also called p-box [Ferson et al., 2002]) (Fig. 4.3).

1

u

C
D

F

e

α

u u

Figure 4.3: Probability boxes

The interval CMC method assumes that the epistemic variables may take di�erent values depending
on the aleatory uncertainty. In this approach, for each aleatory uncertainty CMC sample, the upper
and lower values of the constraints g(·) are determined by an optimization problem to �nd the
corresponding e. Then, the maximal and minimal values of g(·) for each CMC sample are used to
compute the lower and upper probability bounds by CMC. This method allows to handle interval
uncertainty in the parameters of input joint PDF. However, it aggregates in the probability bounds
calculation aleatory realization sampled from di�erent epistemic parameter values. Moreover, the
computational cost engendered by interval analysis for each CMC sample is large. This method
has been applied with interval Finite Element Method in structural reliability to take advantage
of interval method dedicated to structural responses within Finite Element analyses [Zhang et al.,
2010]. This approach has also been extended to IS [Zhang, 2012] in which the auxiliary density is
centered on the MPP. In order to decrease the computational cost, FORM method has been adapted
to the presence of interval uncertainty in reliability analysis. In [Qiu et al., 2008] the authors
modi�ed FORM based on interval arithmetic to handle interval uncertainty on the expected value
and standard deviation of the input joint PDF. Hurtado [Hurtado, 2013] developed a new method
based on the technique of reliability plot.

98



CHAPTER 4. RELIABILITY ANALYSIS IN THE PRESENCE OF MIXED
ALEATORY/EPISTEMIC UNCERTAINTIES

4.4 Epistemic uncertainty a�ecting the limit state function

4.4.1 Problem statement

Let consider a d-dimensional random vector U de�ned on the sample space Ω by a joint PDF

φ(·) and a w-dimensional vector e = [e(1), . . . , e(w)] ∈ Rw. e represents epistemic uncertainties
de�ned using intervals: e ∈ Υ = {e ∈ Rw| e(i) ∈ [e

(i)
min, e

(i)
max] ∀i ∈ {1, . . . , w}}. g : Ω ×Υ → R

is deterministic a scalar continuous input-output function. The reliability analysis of the system
consists in determining its probability of failure de�ned as P(g(U, e) ≤ 0). To characterize the
probability of failure, it is possible to determine its domain of variation by �nding the lower and
upper bounds: { Pmin = min

e∈Υ
P(g(U, e) ≤ 0)

Pmax = max
e∈Υ

P(g(U, e) ≤ 0)
(4.7)
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Figure 4.4: Limit state a�ected by epistemic uncertainty

This problem is di�erent from the previous one because the epistemic uncertainty does not a�ect
the input joint PDF but it a�ects directly the limit state function g(·) (Fig. 4.4). Dedicated
methods based on sampling approaches or FORM have been proposed and are presented in the
next section.

4.4.2 Existing methods

As in the previous section, reliability assessment in the presence of mixed uncertainties involves
a two layer nested IA and PA processes. Since the solving of Eqs.(4.7) needs many optimization
iterations and each iteration requires several limit state evaluations, the total number of discipline
evaluations is very high [Du et al., 2005]. To avoid this nested process, Du et al. [Du et al., 2005;
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Du, 2008] proposed a sequential approach named FORM-UUA (First Order Reliability Method -
Uni�ed Uncertainty Analysis). The �owchart of FORM-UUA is represented in Figure 4.5. The two
solved optimization problems are:

MPP,search,by,FORM
e*,fixed

Probability,Analysis

Interval,Analysis

u*

e*

max/min,g(u*,e)
e

u*,fixed

Initial,u,e

Converge,?
Yes

No
u*,e*

e*

Figure 4.5: Flowchart of FORM-UUA method [Du, 2008]

Probability Analysis

given e∗ (4.8)

min ‖ u ‖ (4.9)

w.r.t. u

s.t. g (u, e∗) = 0 (4.10)

(4.11)

Interval Analysis

given u∗ (4.12)

max/min g(u∗, e) (4.13)

w.r.t. e ∈ Υ

(4.14)

The sequential approach consists of a sequence of PA with the epistemic uncertainty being �xed
and IA with the aleatory uncertainty �xed at the MPP (Figure 4.5). However, as this approach
relies on FORM for the reliability analysis, it does not handle multiple failure regions or non linear
limit state function. Methods have been developed to locally linearize g(·) by CMC rather than
by a �rst order Taylor series expansion at the MPP [Xiao et al., 2011] or to use a restarted FORM

approach in case of multiple failure regions [Jiang et al., 2012]. FORM-UUA has been extended
[Yao et al., 2013] with general optimization solvers to �nd the MPP.
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A recent method [Yang et al., 2014] based on CMC and Kriging surrogate model has been developed
in case of the presence of aleatory and epistemic uncertainties but not restricted to the hyper-
parameters. It relies on a nested procedure with IA and PA which �rst needs the construction of
a Kriging model to replace the exact limit state function. In order to have an accurate Kriging
surrogate model in the vicinity of the threshold, the authors developed a re�nement strategy
inspired from the Expected Improvement function [Jones et al., 1998]. The re�nement is performed
on the entire epistemic uncertain space. The method allows one to take into account both aleatory
and epistemic uncertainties. However, the de�nition of the probability bounds is di�erent and it
results in a di�erent system of optimization problem.

Pmin = P
(
min
e∈Υ

(g(U, e) ≤ 0)

)
Pmax = P

(
max
e∈Υ

(g(U, e) ≤ 0)

) (4.15)

In this de�nition, it is assumed that the epsitemic variables may take di�erent values depending
on the aleatory uncertainty. This is not the case in the problem that we are considering.

4.5 Conclusion

In this chapter, reliability analysis methods involved in the design of complex systems in the
presence of mixed aleatory/epistemic uncertainties within the UMDO context have been reviewed.
To estimate failure probability in this context, existing techniques based on CMC and FORM have
been described in this chapter. These methods have the advantage to be easily implementable. CMC

is adaptable to any type of failure probability estimation problem but induces a computational cost
that is not tractable for rare events. On the other hand, FORM based methods are computationally
e�cient but are limited to problem in which the limit state involves only one failure region which
can be linearly approximated.
In addition to reliability analysis, to resolve the di�erent UMDO formulations introduced in section
3.2, an optimization algorithm is needed. The latter should be able to optimize functions in
the presence of noise (coming from the approximation of the uncertainty measure in the objective
function or the constraints) under constraints. Several optimization algorithms have been proposed
and have to be described in order to comprehend all the aspects involved in an UMDO problem.
This is the purpose of chapter 5.
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5.1 Introduction

This chapter is dedicated to the presentation of the optimization algorithms used to solve UMDO

problems. In order to �nd the optimal solution, optimization algorithms are required and should
have at least two features. First, they have to be e�cient despite the presence of uncertainty.
Indeed, uncertainty measure estimators (such as CMC, IS, etc.) are needed to compute the objective
function and the constraints. These estimators are often random variables and introduce noise in
the optimization problem. Secondly, UMDO problems often involve constraints to ensure the system
multidisciplinary feasibility and the respect of the designer requirements. UMDO for complex
systems needs nonlinear constrained optimization algorithms. The determination of the optimal
system architecture requires a global exploration of the design space involving repeated evaluations
of computationally expensive black box functions used to model the di�erent disciplines. Let
consider the following UMDO problem:

min Ξ [f(z,θY ,U)] (5.1)

w.r.t. z,θY

s.t. K [g(z,θY ,U) ≤ 0] ≤ 0 (5.2)

∀i 6= j,∀u ∈ Ω, yij(θY ij ,ui) = cij(zi,y.i(θY .i,u.i),ui) (5.3)

zmin ≤ z ≤ zmax (5.4)

Solving this optimization problem is challenging due to the presence of both the uncertainty and
the constraints. An overview of the existing algorithms used to solve this type of problems is
provided in this chapter. In section 5.2, the most commonly used methods to handle noise in
optimization are presented. Deterministic optimization algorithms based on gradient cannot be
directly implement for such problems. Indeed, the presence of uncertainty makes di�cult the ac-
curate estimation of the gradient used to converge to the optimal solutions. Solutions have been
proposed to adapt gradient based algorithms to the presence of noise and are presented in section
5.3. Alternatives in the presence of uncertainty are the population-based algorithms which are
based on a population of individuals for which the objective function is evaluated. Based on their
values, the individuals are ranked and the population is accordingly modi�ed in order to converge
to the optimal solution. Population-based algorithms are interesting because of their ability to
handle uncertain environment [Hansen et al., 2003; Jin and Branke, 2005]. Two population-based
algorithms are presented: the ant colony algorithm (section 5.4) and the Covariance Matrix Adap-
tation - Evolution Strategy algorithm (section 5.5) as they present advantages within the context
of constrained optimization in the presence of noise. Moreover, these two algorithms are detailed
as they will be either used or modi�ed in the following of the thesis.

5.2 Noise handling in optimization algorithms

The presence of noise in the optimization problem results from the estimation of the measures
of uncertainty (Ξ and K). In order to numerically handle the presence of noise in optimization,
several general approaches have been proposed:

- Re-sampling [Branke and Schmidt, 2003; Jin and Branke, 2005]: the re-sampling method
consists of repeated evaluations of the objective and the constraint uncertainty measures for
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the same design variable value z. Then, a statistics of the repeated samples is used instead
of the single evaluation of the objective and the constraint measures to decrease the impact
of noise. The main drawback of this approach is the increase of the computational cost due
to the repeated evaluations of objective and constraint functions.

- Surrogate model [Branke and Schmidt, 2003; Jin, 2005]: surrogate models of the objective
function measure Ξ (and/or the constraint measures K) are built from several evaluations.
In general, surrogates smooth the noisy functions and decrease the impact of uncertainty in
the optimization. A comprehensive review of the use of surrogate model in optimization is
proposed in [Jin, 2005]. The main drawback lies in the di�culty to build accurate surrogate
models in high dimensions and for highly non linear functions.

- Population-based algorithms [Nissen and Propach, 1998; Hansen et al., 2003; Jin and
Branke, 2005]: to address uncertainty, optimization algorithms relying on a population of
candidates allow to increase the size of the population to enlarge its spread and to obtain
more information and smooth the noise. Because in population-based algorithms there are
usually similar solutions in the population, the in�uence of noise in evaluating an individual
is compensated by other similar individuals. This e�ect may be view as an implicit averaging.
For instance, the size of a population for genetic algorithms has been studied in [Rattray and
Shapiro, 1998] and it has been shown that increasing the population size reduces the e�ects
of noise. The main drawback of population-based algorithms is the computational cost in-
duced by the number of function evaluations which is often important with such algorithms
to converge.

Moreover, another way to directly take into account the presence of noise and the constraints in
optimization is to modify the deterministic gradient-based algorithms. Several adaptations have
been proposed and a stochastic gradient algorithm is brie�y presented in the following paragraph.

5.3 Stochastic gradient algorithms

The most used gradient-based algorithm suited for noise handling is the stochastic gradient descent
algorithm [Kiefer et al., 1952; Gardner, 1984]. It is a descent algorithm combined with a Lagrangian
approach to handle the constraints. Descent-based algorithms are e�cient for deterministic convex
optimization problems and are essentially based on the gradient estimation. In the presence of
uncertainty, the estimation of the gradient by �nite di�erence is not accurate enough to be used.
Indeed, the gradients of the objective function or the constraint functions are noisy resulting in
possible erroneous descent directions. An adaptation [Andrieu et al., 2007] of the Arrow-Hurwicz
algorithm [Arrow et al., 1958] has been proposed to optimize an objective function under constraints
in a noisy environment. Instead of computing Ξ[f(·)] and K[g(·)], at each optimization iteration,
the gradient estimation of the objective and the constraint functions is done for only one realization
of the uncertain variables u(k). The iterative equations in z of Arrow-Hurwicz method are modi�ed
to include the presence of uncertainty. The step size ε[k] between two iterations has to follow the
Robbins Monroe [Culioli and Cohen, 1995] conditions to ensure the convergence to the optimum:∑

k∈N
ε[k] = +∞,

∑
k∈N

(
ε[k]
)2

< +∞ (5.5)
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The same conditions have to be imposed for the step size associated to the Lagrangian multipliers.
The Robbins Monroe conditions on the step size ensure that the gradient estimation of the aug-
mented Lagrangian objective using only one realization of the uncertain variable is asymptotically
unbiased. The interest for this algorithm results from its facility of implementation because it
is close to the deterministic version. Moreover, due to the Robbins Monroe conditions, only few
parameters are needed to tune the algorithm. However, this approach requires some hypothesis
such as the capability to project candidate solution on the feasible space which is most of the time
unknown.

Individual

Figure 5.1: Population based algorithm example

Diverse derivative-free algorithms have been proposed in the literature to solve optimization un-
der uncertainty problems [Larson, 2012]. These algorithms may present some interest in MDO

because industrial simulations and disciplines may not have been developed to provide sensitivity
information along with their evaluations. These algorithms handle non di�erentiable functions
whereas gradient-based methods require appropriate di�erentiability and smoothness conditions.
Among the derivative-free algorithms, the population based optimization algorithms (Fig. 5.1)
seem promising [De Melo and Iacca, 2014]. Swarm Intelligence (Particle Swarm Optimization
[Eberhart and Kennedy, 1995], Arti�cial Bee Colonies [Karaboga, 2005], Ant Colony [Dorigo and
Birattari, 2010] etc.), Di�erential Evolution [Price et al., 2006], Evolutionary Algorithms (Genetic
Algorithm [Holland, 1975]), Auto-adaptative Multi-Agent System [Jaeger et al., 2015] or Evolution
Strategies (Covariance Matrix Adaptation - Evolution Strategy [Hansen et al., 2003]) have been
investigated to solve noisy optimization problems. In the next sections, two of them are presented:
the Ant Colony Optimization (ACO) and the Covariance Matrix Adaptation - Evolution Strategy
(CMA-ES) as they will be latter used in the thesis (chapters 8, 12, 13). These two algorithms have
been selected because CMA-ES present good convergence in the presence of noise as illustrated
in several papers [Hansen, 2009; Auger and Hansen, 2009] and it has been used within the con-
text of launch vehicle design [Breitkopf and Coelho, 2013]. Moreover, an academic benchmark of
constrained optimization problem under uncertainty at the beginning of the thesis illustrated the
e�ciency of ACO and CMA-ES) algorithms available at Onera.
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5.4 Ant colony optimization algorithms

Ant Colony Optimization (ACO) [Corne et al., 1999; Dorigo and Birattari, 2010] is inspired from
the food research by biological ants and the pheromone trails used as a communication means.
Biological ants �rst explore randomly the regions around their nest to �nd food. If an ant discovers
a food source, it will come back to the nest laying down a chemical pheromone in order to mark the
followed path. By the means of pheromone, this trail will attract other ants to use it to �nd food
again. If the paths found by the ants are not used, over time the pheromones start to evaporate
reducing the interest of these tracks. On the other hand, the paths frequently used are updated with
new pheromones and remained attractive to the other ants. The most attractive trails are the ones
with the shortest distance between the food and the nest. As a �nal result, a very short path will
be discovered by the ant colony. This biological analogy inspired ACO algorithms. They are based
on indirect communication between a colony of arti�cial ants through arti�cial pheromone trails.
These latter are used to distribute and exchange information between the colony to stochastically
�nd an optimal solution.
Each ant of the colony evolves along a path to �nd the optimal solution. Although each ant is
a simple element, a colony is able to perform complex tasks. Considering the jth ant aj of the
colony, it moves through intermediate solutions. At each algorithm iteration, each ant moves from
an intermediate solution z[k] to z[k+1]. At iteration [k], the ant aj de�nes a set of feasible new
positions Z [j] from z

[k]
aj and goes to one of these according to a certain probability. The probability

P
z
[k]

aj
→z

[k+1]

aj
of moving from z

[k]
aj to z

[k+1]
aj for the ant aj depends on the attractiveness of the

displacement noted τ
z
[k]

aj
→z

[k+1]

aj
and the pheromone deposit π

z
[k]

aj
→z

[k+1]

aj
re�ecting the e�ciency of

this move in the past which corresponds to the amount of pheromone deposited for this transition.
The probability may be calculated by:

P
z
[k]

aj
→z

[k+1]

aj
=

(
τ
z
[k]

aj
→z

[k+1]

aj

)α(
π

z
[k]

aj
→z

[k+1]

aj

)β
∑

z
[k+1]

aj
∈Zj

(
τ
z
[k]

aj
→z

[k+1]

aj

)α(
π

z
[k]

aj
→z

[k+1]

aj

)β (5.6)

where α ≥ 0 and β ≥ 1 are user-de�ned weight parameters and τ
z
[k]

aj
→z

[k+1]

aj
is a function of the

distance between the two positions.
Once all the ants have moved to a new intermediate solution, the trails are updated by:

πz[k]→z[k+1] ← (1− η)πz[k]→z[k+1] +

Nant∑
j=1

∆π
z
[k]

aj
→z

[k+1]

aj
(5.7)

with η the coe�cient of pheromone evaporation and Nant the number of ants in the colony. More
complex expressions of pheromone evaporation or modi�cation (named daemon actions) are pos-
sible [Dorigo and Birattari, 2010]. ∆π

z
[k]

aj
→z

[k+1]

aj
represents the sum of the contributions of all ants

that used the displacement zaj
[k]→ z

[k+1]
aj to construct their intermediate solution:

∆π
z
[k]

aj
→z

[k+1]

aj
=

{
Q
Lj

if the ant aj has used this displacement at iteration [k]

0 otherwise
(5.8)
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where Lj is the length covered by aj and Q is a tuned parameter. ACO algorithms di�er in the
way the pheromone update is implemented [Dorigo and Birattari, 2010]. At the beginning, ACO
has been developed for combinatorial discrete optimization problems but it has been extended to
continuous optimization problems [Socha and Dorigo, 2008].
One of the current issues with the derivative-free algorithms is the constraint handling which relies
mainly on heuristic approaches and is problem dependent [Mezura-Montes and Coello, 2011]. A
comprehensive overview of constraint handling in derivative-free algorithms is presented in the
survey [Mezura-Montes and Coello, 2011]. The most commonly applied methods to handle the
constraints are:

- Death penalty [Schwefel and Rudolph, 1995]: it is the simplest method to handle constraints.
The solution that does not satisfy the constraints is rejected and another potential solution
is re-evaluated until one candidate solution satis�es the constraints. The advantage of the
approach is that it does not modify the optimization algorithm. The method is very expensive
because no information is learned from an unfeasible solution (a solution which does not
satisfy the constraints) to characterize the non feasible space. Furthermore, if the feasible
space is restricted compared to the design space, the computational cost becomes prohibitive
because a high number of samples has to be generated to obtain feasible solutions.

- Penalization [Collange et al., 2010b; De Melo and Iacca, 2014]: this approach consists in
replacing the objective function Ξ [f(·)] by a combination of the objective function and a
penalization function Π such as: Ξ [f(·)] + Π (K [g(·)]). The penalization function may be
�xed or may change as a function of the number of iterations. When a solution violates the
constraints, the objective function is deteriorated by a factor proportional to the penalization
function and the value of the constraints. Despite its simplicity, the main drawback of this
approach lies in the determination of a suitable penalization function which depends on the
objective function and the constraints and is thus problem dependent.

A new penalization, called Oracle Penalization approach [Schlüter and Gerdts, 2010] has been
proposed to be coupled with ACO and stochastic metaheuristics algorithms such as Particle
Swarm Optimization [Eberhart and Kennedy, 1995] or Genetic Algorithms [Holland, 1975].
The method is an advanced approach that only requires one parameter to be tuned. Oracle
penalization transforms the optimization problem by modifying the objective function and
adding a new constraint, |Ξ[f(·)]−Θ| = 0, depending on the objective function and an oracle
parameter Θ. The oracle parameter is supposed to be the optimal objective function value.
Dynamic weight factors balance the penalty function value in respect to the relationship
between the new constraint and original ones. Moreover, in the proposed approach it is not
necessary to know the value of the optimal objective function. Only two conditions have to
be followed by the oracle parameter, it as to be superior or equal to the optimal objective
function value and at least one feasible solution exist.

- Multi-objective [Coello, 2000]: this method transforms the optimization problem into a
multi-objective optimization problem by considering the minimization of the violation of the
constraints as an objective. Dedicated multi-objective optimization algorithms may be used,
however, it often results in an increase of the computational cost [Mezura-Montes and Coello,
2011].

- Surrogate model [Kramer et al., 2009]: this approach builds a surrogate model based on the
unfeasible solutions in order to approximate the non feasible zones. However, this approach
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requires enough unfeasible solutions to construct accurate surrogate models. Moreover, it
may be di�cult to build the surrogates in high dimension or if the constraints are highly non
linear.

A review of the method to handle noisy optimization with ACO is proposed in [Bianchi et al.,
2009]. Re-sampling based methods have been proposed for ACO [Gutjahr, 2003, 2004; Birattari
et al., 2005] in order to numerically handle the presence of a high level of noise. Moreover, due to
the population-based strategy and the aggregation of information from di�erent candidates, the
ACO algorithms are robust to the presence of uncertainty.

Among the derivative-free algorithms, the Covariance Matrix Adaptation - Evolution Strategy
(CMA-ES) [Hansen et al., 2003] is particularly competitive for real-valued black-box functions as
highlighted in several extensive benchmarks [Hansen, 2009; Hansen et al., 2010]. Moreover, a
treatment of uncertainty has been proposed for CMA-ES and has been successfully tested in a
benchmark of optimization under uncertainty problems [Hansen, 2009]. CMA-ES is detailed in the
following section.

5.5 Covariance Matrix Adaptation - Evolution Strategy

5.5.1 CMA-ES(λ, µ) algorithm

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) introduced by Hansen et. al.
[Hansen et al., 2003] belongs to the Evolutionary Strategy algorithm family. A brief overview
of CMA-ES(λ, µ) is provided in this section, for more information on the algorithm see [Hansen
et al., 2003]. CMA-ES(λ, µ) is used to solve unconstrained optimization problems. It relies on a
distribution model of a candidate population (parametrized multivariate normal distribution) in
order to explore the design space. It is based on a selection and an adaptation process of the
candidate population. In CMA-ES(λ, µ), at each generation, λ o�spring candidates are generated
from µ parents. At the next generation, to select the new parents from the o�spring candidates,
a (λ, µ)-selection is used, the µ best o�spring candidates are chosen with respect to their ranking
according to the objective function. The multivariate normal distribution has an in�nite support,
but an iso-probability contour (for instance at ±3 standard deviation of the mean) is characterized
by an ellipsoid delimiting a probable search hypervolume (Fig. 18.8). Throughout the generations,
the search hypervolume is updated in order to converge and to shrink around the global optimum.
CMA-ES(λ, µ) generates the population by sampling a multivariate normal distribution:

z
[k+1]
t ∼m[k] + σ[k]N

(
0,C[k]

)
, for t = 1, ..., λ (5.9)

with z
[k+1]
t ∈ Rn an o�spring candidate generated from a mean vector m[k], a step size σ[k] and a

multivariate normal distributionN (0,C[k]) with zero mean and a covariance matrix C[k] ∈ Rn×Rn.
λ is the size of the population generated at each iteration [k]. The normal distribution is character-
ized by a positive de�nite covariance matrix C[k] in order to allow homothetic transformations and
rotations of the probable search hypervolume (Fig. 18.8). The update of the covariance matrix
incorporates dependence between the past generations and between the µ best candidates from
the previous generation [Hansen et al., 2003]. The mean vector characterizes the center of the
next population and is determined by a combination process through the weighting of the µ best
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candidates: m[k+1] =
∑µ
i=1 wiz

[k+1]
{i} with

∑µ
i=1 wi = 1, w1 > w2 > · · · > wµ > 0 the weighting

coe�cients and (z{1}, ..., z{µ}) the best candidates among the o�spring ranked according to the
objective function value. The weighting coe�cients are determined based on the number of µ best
candidates according to [Hansen et al., 2003]. A simpli�ed version of CMA-ES(λ, µ) is described
in Algorithm 2. A detailed description of the selection and update mechanisms may be found in
[Hansen et al., 2003].
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Figure 5.2: Three ellipsoids, depicting three di�erent normal distributions, where I is the identity
matrix, D is a diagonal matrix, and C is a positive de�nite covariance matrix.

Algorithm 2 CMA-ES(λ, µ) [Hansen et al., 2003]

1) Initialize the covariance matrix C[0] = I, the step size σ[0] and the selection parameters
[Hansen et al., 2003]
2) Initialize the mean vector m[0] to a random candidate, k ← 0
while CMA-ES convergence criterion is not reached do
3-1) Generate λ new o�spring candidates according to: z

[k+1]
t ∼ m[k] + σ[k]N (0,C[k]), t ∈

{1, ..., λ}
3-2) Evaluate candidates and rank them based on the objective function
3-3) Determine the mean vector given the weighting coe�cients of the µ best candidates:
m[k+1] =

∑µ
i=1 wiz

[k+1]
{i}

3-4) Update covariance matrix C[k+1] and the step size σ[k+1] according to [Hansen et al.,
2003], k ← k + 1

end while
4) return best candidate zbest

CMA-ES has already been used to design launch vehicles[Breitkopf and Coelho, 2013] with an
MDF formulation. The convergence criteria may be either based on the maximum number of
iterations (function evaluations), the objective function value, the standard deviation of the current
population smaller than a given tolerance, or the covariance matrix C which becomes numerically
not positive de�nite. ACO and CMA-ES algorithms are able to handle optimization problem with up
to 30 design variables, based on the implemented benchmark used to select the algorithms in this
thesis, but the solving of the optimization problem become complex. Indeed, the convergence rate
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is small for high dimensional problems and they require in the order of ten thousand to hundred
thousand calls to the functions to converge.

5.5.2 CMA-ES(λ, µ) algorithm for optimization under uncertainty

Several features ensure the CMA-ES robustness with respect to the presence of uncertainty in the
objective function: the population-based approach, the weighted averaging in the recombination
process avoiding information for one noisy source, the rank based and the non-elitist selection
which is not based on the best o�spring candidate that could be an outlier. However, if the
noise is too high compared to the objective function (signal to noise ratio too low) it perturbs
the algorithm convergence. An appropriate handling of uncertainty has been proposed by Hansen
et. al. [Hansen et al., 2009] to overcome this issue. Modi�ed selection and update mechanisms
are performed when the noise is above a given threshold. It is based on a re-sampling approach
and involves re-evaluation of the objective function. Because CMA-ES(λ, µ) is only based on the
rank of the candidates, the e�ective noise is evaluated by monitoring changes or stability of the
o�spring candidate ranking. If the o�spring candidate ranking is changed after the re-evaluation
of the objective function, the ranking change of the o�spring candidates is aggregated into a
metric quantifying the uncertainty level [Hansen et al., 2009]. If the noise is higher than a given
uncertainty level threshold, the step size σ is increased. The increase of σ ensures that despite the
noise, su�cient selection information is available [Hansen et al., 2009].
A benchmark of algorithms dealing with optimization under uncertainty has been performed and
the treatment of uncertainty with CMA-ES(λ, µ) allows to obtain accurate results [Hansen, 2009;
Auger and Hansen, 2009]. CMA-ES is an unconstrained optimization algorithm. The test problems
used in the benchmark [Hansen, 2009] to evaluate the performance of CMA-ES are unconstrained
optimization problems and only few studies focus on the application of CMA-ES to constrained
problems [Collange et al., 2010b; Beyer and Finck, 2012; De Melo and Iacca, 2014]. An adaptive
penalty function has been proposed to update the penalty coe�cient as a function of the sum of
the violated constraint values [De Melo and Iacca, 2014]. CMA-ES(λ, µ) algorithm has been used
[Collange et al., 2010a,b] to solve a deterministic MDO problem consisting in the design of a launch
vehicle. CMA-ES(λ, µ) has been combined with a penalization method in this study. The algorithm
presented e�cient results however a feasible solution was not always found depending on the
initialization. CMA-ES is a promising algorithm for UMDO problem solving but its main drawback
concerns the constraint handling strategy. Arnold et. al.[Arnold and Hansen, 2012] proposed a
new approach to handle the constraints for a simpli�ed version of CMA-ES: (1+1)-CMA-ES which
involves one o�spring candidate generated from one parent and is detailed in the next section.

5.5.3 (1+1)-CMA-ES with constraint handling

(1+1)-CMA-ES [Arnold and Hansen, 2012] is a simpli�ed version of CMA-ES(λ, µ) with only one
o�spring generated from one parent, ′′+′′ means that the selection is done between the parent and
the o�spring. As in CMA-ES(λ, µ), the o�spring candidate solution is generated as:

z[k+1] ∼ z[k] + σ[k]N
(

0,C[k]
)

(5.10)

(1+1)-CMA-ES is easier to implement as only one o�spring z[k+1] is generated from one parent z[k] at
each generation and the selection is between the parent and the o�spring. The update mechanisms
for (1+1)-CMA-ES are detailed in [Arnold and Hansen, 2012].
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To incorporate the handling of constraints, Arnold et. al. [Arnold and Hansen, 2012] proposed
to reduce the covariance of the distribution of the o�spring candidate in the approximated di-
rections of the normal vectors of the constraint boundaries in the vicinity of the current parent
candidate solution. For that purpose, the matrix A[k], which is the Cholesky decomposition of
C[k]: A(k)A[k]T = C[k], is updated in case of constraint violations in order to avoid generating
candidates in the next generations that will violate the constraints. A[k] is used as it is easier to
compute its inverse than for C[k]. A vector characterizing the constraints v

[k]
j ∈ Rn is de�ned,

initialized to be zero, and updated according to:

v
[k]
j ← (1− cc)v(k)

j + ccA
[k]z[k] ∀j ∈ {1, ..., κ} (5.11)

where v
[k]
j is an exponentially fading record of steps that have violated the constraints and cc

a parameter characterizing how fast the information present in v
[k]
j fades. In the generations in

which the o�spring candidate is unfeasible, the Cholesky matrix is updated according to:

A[k] ← A[k] − β∑κ
j=1 1gj(z[k])>0

κ∑
j=1

1gj(z[k])>0

v
[k]
j w

[k]T

j

w
[k]T

j w
[k]
j

(5.12)

with w
[k]
j = A[k]−1

v
[k]
j , the indicator function associated to the constraint gj : 1gj(z[k])>0 and β a

parameter controlling the reduction of the covariance of the distribution. For β = 0, the algorithm
is identical to the standard (1+1)-CMA-ES. The update of the matrix A[k] allows one to modify the
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Figure 5.3: The green dot is the parent, the red dot is the generated o�spring. On the left, the
solid line circle is characterized by A[k] de�ning the ellipsoid delimiting an iso-probability search
hypervolume. At the center, the pink ellipsoid represents the update of A[k+1] in order to take
into account the constraint violation by the o�spring. On the right �gure, the o�spring does not
violate the constraint resulting in a standard covariance matrix update.

scale and the orientation of the search hypervolume in order to be tangential to the constraints
and to avoid its violation (Fig. 5.3). Modi�ed (1+1)-CMA-ES for constraint handling is interesting
because it is not problem dependent. Experimental evaluations have been performed highlighting
its e�ciency for unimodal constrained optimization problems. However, as (1+1)-CMA-ES, it
presents di�culties to optimize multimodal functions and becomes ine�cient in high dimensions
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[Arnold and Hansen, 2012].

It is important to notice that, in the presence of uncertainty, deterministic gradient-based al-
gorithms are not adapted, however gradient-free approaches are not adapted to solve large di-
mensional optimization problems (40 variables or more) due to the induced computational cost.
Stochastic-gradient based algorithms might be a good alternative for high dimensional problems.
A summary of the advantages and drawbacks of the di�erent algorithms is presented in Table 5.4.

Table 5.4: Advantages and drawbacks of the main optimization algorithms in the presence of
uncertainty

Advantages Drawbacks

Stochastic gradient Adapted to large scale problems
Convergence and constraint
handling in the presence of

uncertainty

ACO
Robustness to the presence of

uncertainty
Constraint handling methods

(penalization)

(1+1)-CMA-ES Constraint handling technique
Limited to low dimension

problems (<10)

CMA-ES
Robustness to the presence of

uncertainty
Constraint handling methods

(penalization)

5.6 Conclusion

In this chapter we have brie�y described some algorithms used in the UMDO processes. The
presence of uncertainty and of constraints complicate the solving of the optimization problem and
dedicated methods have to be employed. Population-based algorithms such as Covariance Matrix
Adaptation - Evolution Strategy algorithm seem particularly promising for UMDO problem solving
but the constraint handling is not robust.
At the early design phase, launch vehicle design problems only involve macroscopic design variables
(propellant masses, chamber pressures, etc) in dimension under 30. Moreover, these problems often
present multiple optimal regions and deterministic gradient-based algorithms present some limits to
�nd global optimum as illustrated in [Balesdent, 2011]. CMA-ES has been used to deterministically
design launch vehicles in previous studies [Breitkopf and Coelho, 2013] and its e�ciency in the
presence of noise has been illustrated over several benchmarks [Hansen, 2009; Auger and Hansen,
2009], that is why, this algorithm is a good candidate for further investigations to solve UMDO

problems in the presence of constraints and uncertainty.
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5.7 General conclusion of part I and ways of improvement

In the light of this state-of-the-art presented in chapters 1 to 5, we may identify several ways
of improvement relating to the use of UMDO methods. These ways of improvement instigate the
proposed methods in the rest of the thesis to solve some of the current limitations highlighted in
the state-of-the-art on the three main topics.

5.7.1 UMDO formulations and interdisciplinary coupling handling

Almost all the examples of launch vehicle designs with UMDO methods in literature rely on cou-
pled approaches to ensure interdisciplinary coupling satisfaction. Decomposition strategies have
been proposed, but the introduction of uncertainties require an adequate treatment of the coupling
variables. The existing formulations either rely on computationally expensive MDA to rigorously
ensure coupling satisfaction, or deal with incomplete coupling conditions (coupling in terms of sta-
tistical moments, at the MPP, etc.). To maintain the mathematical equivalence between coupled
and decoupled strategies, it is necessary to ensure the interdisciplinary coupling satisfaction for
all the realizations of the uncertain variables in the UMDO formulation. This kind of decomposi-
tion method could ensure the system multidisciplinary consistency whatever the uncertain event.
Surrogate model of the functional coupling relations could be constructed during the optimization
process in order to represent, at the UMDO problem convergence, the coupling relations as would
do MDA.
Moreover, all the examples of the launch vehicle design problem under uncertainty in literature
consider a subdivision into the disciplines such as propulsion, structure, trajectory, etc. Stage
decomposition strategies have been proposed to solve deterministic MDO problem but are not
adapted to handle uncertainty. A stage decomposition UMDO formulation for launch vehicle design
could bene�t from the same advantages as in deterministic MDO, that is introducing multi-level
processes to facilitate the convergence of the system-level optimizer while decreasing the number
of discipline evaluations by avoiding the disciplinary loops imposed by MDA-based formulations.
The proposed methods related to these thematics will be developed in Part II.

5.7.2 Reliability analysis for complex systems

Reliability analysis is one of the most important tasks in the solving of an UMDO problem and
almost all the proposed approaches in literature are based on CMC or FORM which present some
limitations for the design of complex systems. In particular the problematic of the presence of
mixed aleatory/epistemic uncertainties seems interesting in the context of early design phases where
modeling uncertainties are present. In order to handle both aleatory and epistemic uncertainties,
dedicated reliability assessment methods are needed. Epistemic uncertainty may a�ect the aleatory
uncertainty modeling or directly the limit state function. Moreover, launch vehicle design involves
complex reliability analysis problem such as the determination of a safety zone for a stage fallout
which often involves multiple failure regions and non linear limit states. To perform this type of
reliability analysis in the presence of both uncertainties it appears essential to use methods more
e�cient than CMC in terms of computational cost and more adapted to complex failure regions
than FORM. Sampling methods such as Subset Sampling based on surrogate models combined with
a dedicated re�nement strategy may be an interesting alternative to solve this problem. Surrogate
models would allow to decrease the number of calls the the limit state function and the sampling
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method would enable to handle multiple MPPs.
The proposed methods related to these thematics will be developed in Part III.

5.7.3 Constraint handling for Evolution Strategy algorithms in the pres-
ence of noise

In order to have a robust and reliable optimal UMDO solution, e�cient optimization algorithms
are required. Evolution Strategy algorithms such as Covariance Matrix Adaptation - Evolution
Strategy have dedicated techniques to handle the noise in the optimization process. Moreover,
the e�ciency of CMA-ES(λ, µ) has been illustrated on several benchmarks in noisy environments
[Auger and Hansen, 2009]. However, this algorithm does not intrinsically manage constraints and
all the applications in literature use penalization methods [Collange et al., 2010a]. The penaliza-
tion approach requires a �ne tuning process which is problem dependent and may result in non
convergence to the optimal solution. An adaptation of CMA-ES(λ, µ) algorithm to e�ciently handle
the constraints in the presence of noise could be an improvement to solve UMDO problems.
The proposed methods related to these thematics will be developed in Part IV.
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• Formulate the conditions to ensure mathematical equivalence between coupled and decou-
pled UMDO strategies,

• Develop a single-level UMDO formulation ensuring interdisciplinary coupling satisfaction
for all the realizations of the uncertain variables,

• Apply and compare the proposed approach to MultiDisciplinary Feasible formulation on
an analytical test case.

Chapter goals
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6.1 Introduction

This part of the thesis is devoted to the multidisciplinary feasibility in the presence of uncertainty
for decoupled formulations. One of the main concluding remarks of the previous part concerns
the UMDO process organization and the handling of interdisciplinary couplings in the presence of
uncertainty. Indeed, it emerges from the analysis of the existing UMDO methods that ensuring
multidisciplinary feasibility of the optimal design is a challenging task. One of the major require-
ments is to ensure the system consistency whatever the unexpected event realization. Decoupled
strategies under uncertainty could bene�t from the same advantages as in the deterministic case,
however it must not be to the detriment of the multidisciplinary feasibility. In order to main-
tain the mathematical equivalence between the classical coupled approaches and the decoupled
formulations, interdisciplinary couplings have to be satisfy for all the realizations of the uncer-
tain variables. The existing decoupled UMDO formulations ensure coupling satisfaction for some
particular values such as the expected value of the coupling variables or the MPP [Du and Chen,
2001; Liu et al., 2006; Du et al., 2008]. Surrogate models have been used to represent the coupling
variables either in coupled approach (Taylor series [Du and Chen, 2002; Du et al., 2002]) or in
decoupled approach to compute the coupling variables statistical moments (Taylor series [Du and
Chen, 2001; Liu et al., 2006], Polynomial Chaos Expansion [Xiong et al., 2012]). However, the
use of the surrogate was limited to an e�cient statistical moment computation. Surrogate models
used to represent the interdisciplinary coupling mappings at the UMDO convergence could o�er the
possibility to organize the design process with a decomposition strategy while guaranteeing the
multidisciplinary consistency of the optimal system.
This part is organized in three chapters. In the �rst chapter (chapter 6), we present a single-level
formulation called Individual Discipline Feasible - Polynomial Chaos Expansion (IDF-PCE) derived
from IDF. This chapter is based on an iterative construction along the UMDO process of surrogate
models (PCE) of the coupling functional relations. At the optimum, the surrogate models have to
represent these mappings as would an MDA under uncertainty do. In the proposed UMDO processes,
the disciplines are decoupled and the system-level optimizer handles both the design variables and
the surrogate model parameters. Three approaches are proposed to propagate uncertainty in
IDF-PCE leading to the three variants. Eventually, the latter are applied on an analytical test case
and compared to MDF under uncertainty.
In the second chapter, a Multi-level Hierarchical MDO formulation under Uncertainty (MHOU) is
proposed. This formulation is derived from the stage-wise decomposition formulations [Balesdent
et al., 2012a] to take into account uncertainties while ensuring coupling satisfaction. The proposed
approach is a semi-decoupled formulation which removes the feedback couplings while guaran-
teeing the multidisciplinary feasibility. This approach is particularly adapted for launch vehicle
design. Indeed, instead of classically decomposing the process into the disciplines propulsion, aero-
dynamics, trajectory, etc., the process is decomposed into the di�erent launch vehicle stages. The
subsystem-level optimizers are in charge of the design and optimization of the di�erent stages. The
system-level optimizer manages the optimization of the entire vehicle and the satisfaction of the
interdisciplinary couplings.
In the third chapter, both single and multi-level formulations are applied to two di�erent launch
vehicle test cases and compared to a reference approach. This work has been performed in collab-
oration with Mathieu Balesdent (Onera), N. Bérend (Onera) and R. Le Riche (EMSE, CNRS).
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6.2 Foundations for decoupled and consistent UMDO formu-
lations

In order to avoid the repeated MDA used in MDF under uncertainty, decoupled approaches aim at
propagating uncertainty on decoupled disciplines allowing one to evaluate them in parallel and to
ensure coupling satisfaction by introducing equality constraint in the UMDO formulation. However,
two main challenges are faced to decouple the design process:

• Uncertain input coupling variable vector Y has to be controlled by the system-level optimizer.
Uncertain variables are function and in�nite-dimensional problem are complex to solve and
dedicated methods have to be used.

• Equality constraints between the input coupling variables Y and the output coupling vari-
ables computed by c(·), which are two uncertain variables, have to be imposed. Equality
between two uncertain variables corresponds to an equality between two functions which is
di�cult to implement.

In order to understand these two challenges and the proposed approaches, a focus on decoupled
deterministic MDO formulation is necessary. Consider two disciplines i and j and one scalar feedfor-

Discipline i Discipline j

zi zj

yji

yijcij(zi,yji)

cji(zj,yij)

Discipline i Discipline j

zi zjyij

cij(zi,yji)

cji(zj,yij)

cij(zi,yji)yij=

yji cji(zj,yij)

Figure 6.1: Two discipline coupling handling approaches

ward coupling yij and one scalar feedback coupling yji as illustrated in Figure 6.1. In deterministic
decoupled MDO approach, to remove the feedforward coupling, there is only one equality constraint
that has to be imposed at the system-level in the optimization formulation, Eq.(6.1), between the
input coupling variable yij and the output coupling variable cij(zi, yji) :

yij = cij(zi, yji) (6.1)

However, in the presence of uncertainty, coupling satisfaction involves an equality constraint be-
tween two uncertain variables. An uncertain variable is a function (see section 2.2.2). Two
uncertain variables are equals, if and only if the two corresponding functions have the same initial
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and �nal sets and the same mappings. To ensure coupling satisfaction in realizations, an in�-
nite number of equality constraints, Eq.(6.2), have to be imposed, one for each realization of the
uncertain variables used to compute the objective and constraint functions:

∀u ∈ Ω, yij = cij(zi, yji,ui) (6.2)

where cij(·) is a function of the uncertain variable realizations u. However, it is important to
notice that even if the coupling variables are random variables, for one realization u0 there is
in general only one converged coupling realization that satis�es yij0 = cij(zi, yji0 ,u0) ensuring
multidisciplinary feasibility. Indeed, the disciplines are modeled with deterministic functions, all
the uncertainties arise in the discipline inputs.
Solving an optimization problem with an in�nite number of constraints is a challenging task. To
overcome this issue, considering an UMDO problem of N disciplines, we propose to introduce a new
integral form for the interdisciplinary coupling constraint:

∀(i, j) ∈ {1, ..., N}2, i 6= j, Jij =

∫
Ω

[cij(zi,y.i,ui)− yij ]
2
φ(u)du = 0 (6.3)

In order to have the integrals in Eq.(6.3) equal to zero, the input coupling variables must be
equal to the output coupling variables for each realization of the uncertain variables almost surely
(except maybe over null measure sets). The interdisciplinary coupling constraints Jij may be
viewed as the integration of a loss function (the di�erence between the input and the output
coupling variables) over the entire sample space (see section 2.3.1.1). If the new interdisciplinary
coupling constraints Eq.(6.3) are satis�ed, therefore a mathematical equivalence is maintained
with the coupled approach because, as by using MDA, the couplings verify the following system of
equations:

∀ u ∈ Ω, ∀(i, j) ∈ {1, ..., N}2, i 6= j, yij = cij(zi,y.i,ui) (6.4)

Nevertheless, to decouple the disciplines, the uncertain input coupling variables Y have to be
controlled by the optimizer. Uncertain variables are functions and �nding a function that is a
solution to an in�nite-dimensional optimization problem is a complex task. Several methods focus
on these types of problems such as calculus of variations [Noton, 2013], optimal control [Zhou
et al., 1996] and shape optimization [Sokolowski and Zolesio, 1992]. To avoid to directly solve an
in�nite-dimensional problem, most of the time the function is discretized and the discretization
points are controlled by the optimizer [Devolder et al., 2010]. The discretization strategy has to be
done in concordance with the optimization problem. In the proposed formulations, the considered
scalar coupling variable yij is replaced by a surrogate model representing the coupling functional
relations:

yij → ŷij

(
u,α(ij)

)
(6.5)

The surrogate model, written ŷij
(
u,α(ij)

)
, provides a functional representation of the dependency

between the uncertain variables U and the input coupling variables with α(ij) the metamodel pa-
rameters. This approach ensures that the functional dependency between the uncertain variables
and the coupling variables is taken into account. In the proposed formulations, each coupling that
is removed is replaced by a surrogate model. The surrogate models are also functions, represented
by parameters that may be used to decouple the UMDO problem by letting the system-level opti-
mizer having the control on the surrogate model coe�cients. Therefore, the in�nite-dimensional
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optimization problem is transformed into a q-dimensional optimization problem with q the number
of coe�cients required to model all the removed coupling variables.
We propose to model the coupling functional relations with Polynomial Chaos Expansion (PCE)
because this surrogate model presents advantages in terms of uncertainty analysis and propagation
[Eldred, 2009]. PCE are particularly adapted to represent the input coupling variables as they are
dedicated to model functions that take as input uncertain variables as illustrated in section 2.3.1.1.
The scalar coupling yij is modeled by:

ŷij

(
u,α(ij)

)
=

dPCE∑
k=1

α
(ij)
(k) Ψk(u) (6.6)

where q = dPCE is the degree of PCE decomposition and Ψk is the basis of orthogonal polynomials
chosen in accordance to the input uncertainty distributions.
Note that, in order to keep ŷij(·) simple, the dependency between ŷij(·) and z is not present here:
ŷij(·) is not a function of z, it is learned for the speci�c z∗ where the optimization converges. Inter-
disciplinary coupling satisfaction ensured for all the realizations of the uncertain variables enables
to guaranty that the system is multidisciplinary feasible. Furthermore, the proposed technique
transforms the complex original in�nite-dimensional problem into a �nite-dimensional problem,
allowing to solve it in practice while guarantying the mathematical equivalence between coupled
and decoupled formulations in terms of coupling satisfaction.
The proposed methods rely on the iterative construction of the PCE models of the coupling func-
tional relations along with the system-level UMDO optimization. At the UMDO optimum, the
metamodels of the coupling functional relations simulate these mappings as would MDA under
uncertainty do (Fig. 6.2). Moreover, the proposed approaches do not require any MDA, allowing to
reduce the number of calls to the computationally expensive disciplines. First, in the next section,
a single-level formulation is proposed and applied to an analytical test case. Then, in chapter 7 a
multi-level formulation is proposed based on the same coupling handling strategy.

6.3 Proposed single-level formulation: Individual Discipline
Feasible - Polynomial Chaos Expansion (IDF-PCE)

IDF-PCE is a single-level decoupled UMDO formulation relying on a functional representation of the
coupling variables. IDF-PCE is formulated as follows:

min Ξ [f(z,α,U)] (6.7)

w.r.t. z,α

s.t. K [g(z,α,U)] ≤ 0 (6.8)

∀(i, j) ∈ {1, ..., N}2, i 6= j,

Jij =

∫
Ω

[
cij

(
zi, ŷ.i

(
u,α(.i)

)
,ui

)
− ŷij

(
u,α(ij)

)]2
φ(u)du = 0 (6.9)

zmin ≤ z ≤ zmax (6.10)

with Jij the interdisciplinary constraint vector for the couplings from the discipline i to the dis-
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Figure 6.2: IDF-PCE with the surrogate models of the coupling functional relations

cipline j and ŷ.i
(
u,α(.i)

)
the PCEs of all the input coupling variables of the discipline i. In this

formulation, the system-level optimizer handles the design variables z and the PCE coe�cients
of the coupling variables α. The handling of the PCE coe�cients at the system-level allows to
decouple the disciplines and to evaluate them in parallel (Fig. 6.2). In comparison to the coupled
formulations, the dimension of the design space is therefore increased by the number of parameters
α. To ensure the multidisciplinary feasibility at the optimum, equality constraints involving the
generalization error are imposed Eq.(6.9). These constraints involve the input coupling variables
modeled by PCE and the output coupling variables resulting from the discipline simulations. The
constraints have an integral form to ensure the coupling satisfaction for all the possible realizations
of the uncertain variables. If we have: ∀(i, j) ∈ {1, ..., N}2 ∀i 6= j, Jij = 0, then the couplings are
satis�ed for all the realizations u ∈ Ω almost surely.
The vector J(·) stands for the distances with respect to the MDA coupling satisfaction. Indeed, in
the MDA approach, J(z) = 0,∀z ∈ [zmin, zmax]. In IDF-PCE, J(z) = 0, has to be satis�ed only at the
UMDO optimum z = z∗. The interdisciplinary feasibility is not ensured all along the optimization.
In IDF-PCE, either the Robust-based UMDO or the Reliability-based UMDO problem may be consid-
ered (see section 3.2). The measures of uncertainty for the inequality constraint functions Eq.(6.8)
may be distinguished by:

K [g(z,α,U)] = E [g(z,α,U)] + kσ [g(z,α,U)] ≤ 0 (6.11)

K [g(z,α,U)] = Pg(z,α,U)≤0 − Pt ≤ 0 (6.12)

with Pt the admissible target probability. The �rst measure, Eq.(6.11), is based on the statistical
moments of the inequality constraint functions and the second Eq.(6.12) is based on the probability
of failure, i.e., the probability for the inequality constraint function to be underneath a threshold.
In practice, the multidimensional integrals associated to the statistical moments (expectations,
standard deviations), to the coupling constraints J or to the probability of failure are di�cult to
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compute. We use three techniques to estimate the statistical moments and the coupling constraints
(CMC, quadrature rules and decomposition of the output coupling variables over a PCE) and one to
estimate the probability of failure by Subset Sampling using Support Vector Machines. Depending
on the technique used to propagate uncertainty, this lead to three variants of IDF-PCE detailed in
the following sections. These propagation techniques will be compared on an academic test cases
to highlight their impacts on IDF-PCE formulation.

6.3.1 Uncertainty propagation by Crude Monte Carlo

CMC approximation of multidimensional integrals such that Eq.(6.9) relies on repeated sampling
in the input uncertain space Ω (Fig. 6.3). The integral in Eq.(6.9) is approximated by:

Jij ' JCMC
ij =

1

M

M∑
k=1

[
cij

(
zi, ŷ.i

(
u(k),α

(.i)
)
,ui(k)

)
− ŷij

(
u(k),α

(ij)
)]2

(6.13)

with M the number of CMC samples. Similar estimations are carried out for the expectations and
standard deviations in Eqs.(6.7) and (6.8). JCMC

ij is called the empirical error [Vapnik, 2000a] and
is related to the Root Mean Squared Error (RMSE) metric by:

RMSE =
√

JCMC
ij (6.14)

The smaller the RMSE, the better the interdisciplinary couplings are satis�ed. The uncertain
variables are sampled at the system-level and are propagated in the decoupled subsystems (ŷ(·)
and c(·)). CMC is easy to implement and it can reach any level of accuracy if enough samples are
calculated. The convergence of CMC to the integral value is in order of 1√

M
. The convergence

is slow and if the disciplines are computationally expensive, CMC becomes intractable. However,
CMC does not su�er from the curse of dimensionality.
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Figure 6.3: IDF-PCE with CMC propagation method
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6.3.2 Uncertainty propagation by Quadrature rules

Quadrature rules approximate integrals as a weighted sum of functions evaluated at speci�ed
points within the domain of integration [Davis and Rabinowitz, 2007]. For a surrogate model
ŷij : Ω × A → R of the scalar coupling yij , with dim(Ω) = d and A the PCE coe�cient set,
instead of sampling randomly as with CMC, a set of speci�c points is used to approximate the
multivariate integral:∫

Ω

ŷij(u,α
(ij))φ(u)du '

M1∑
k1=1

M2∑
k2=1

...

Md∑
kd=1

(w(k1) ⊗ w(k2)...⊗ w(kd))ŷij(u(k1), u(k2), ..., u(kd),α
(ij))

(6.15)
where w are weights and ⊗ is the tensor product operator. Although the proposed formulation
stands for any uncertainty measure Ξ[·], an example is given for the expected value of the objective
function Ξ [f(z,α,U)] = E [f(z,α,U)]. The approximation of the objective function and the
interdisciplinary coupling constraints with quadrature rules are given by:

E [f(z,α,U)] =

∫
Ω

f (z,α,u)φ(u)du (6.16)

'
M1∑
k1=1

...

Md∑
kd=1

(w(k1) ⊗ ...⊗ w(kd))×

f
(
z, ŷ

(
[u(k1), ..., u(kd)],α

)
, [u(k1), ..., u(kd)]

)
(6.17)

Jij =

∫
Ω

[
cij

(
zi, ŷ.i

(
u,α(.i)

)
,ui

)
− ŷij

(
u,α(ij)

)]2
φ(u)du (6.18)

'
M1∑
k1=1

...

Md∑
kd=1

(w(k1) ⊗ ...⊗ w(kd))
[
cij

(
zi, ŷ.i

(
[u(k1), ..., u(kd)],α

(.i)
)
, [u(k1), ..., u(kd)]i

)
− ŷij

(
[u(k1), ..., u(kd)],α

(ij)
)]2

(6.19)

The quadrature rule requires
∏d
i=1Mi discipline evaluations to propagate the uncertainty.

Compared to CMC, the approximation based on tensor product is e�cient for a small number
of input uncertain variables, but the method su�ers from the curse of dimensionality [Eldred,
2009]. Sparse grid approaches may be used to decrease the number of function evaluations while
preserving the accuracy for high dimension integrals (see section 2.3.1.1).

6.3.3 Uncertainty propagation by Polynomial Chaos Expansion of the
output coupling variables

In this approach, the quadrature rules are used to compute the statistical moments involved in
the objective function or the constraints, however, the coupling constraint expression is modi�ed.
Another way to impose coupling constraints and to bene�t from the PCE uncertainty propagation
is to decompose the output coupling variables with another PCE with respect to U (Fig. 6.4).
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As at the UMDO problem convergence the input coupling variables must be equal to the output
coupling variables, it is possible to decompose them over the same polynomial basis. We denote by
input PCE, ŷ.i

(
u,α(.i)

)
, the PCEs of the coupling variables whose coe�cients are controlled by the

system-level optimizer. We also denote by output PCE, the PCE of the output coupling variables
cij
(
zi, ŷ.i

(
u,α(.i)

)
,ui
)
whose coe�cients are calculated by orthogonal spectral projection. Two

further assumptions allow to simplify the expression of the output PCE: like the input PCE, the
e�ect of the design variables z is not present (so the output PCE is valid only for the converged
design variables); Y.i is approximated by the input PCE, ŷ.i

(
u,α(.i)

)
. Therefore, once α are

chosen, the output PCE c̃ij

(
u, α̃(ij)

)
is only a function of the uncertainties and its own coe�cients

α̃(ij). For one scalar coupling between the disciplines i and j:

cij

(
zi, ŷ.i

(
u,α(.i)

)
,ui

)
'
dPCE∑
k=0

α̃
(ij)
(k) Ψk(u) = c̃ij

(
u, α̃(ij)

)
(6.20)

The output PCE coe�cients α̃(ij) are computed by orthogonal spectral projection:

α̃
(ij)
(k) =

< cij ,Ψk >

< Ψ2
k >

=
1

< Ψ2
k >

∫
Ω

cij

(
zi, ŷ.i

(
u,α(.i)

)
,ui

)
Ψk(u)φ(u)du (6.21)

Eq.(6.9) may be approximated by:

Jij =

∫
Ω

[
cij

(
zi, ŷ.i

(
u,α(.i)

)
,ui

)
− ŷij

(
u,α(ij)

)]2
φ(u)du (6.22)

'
∫

Ω

[
c̃ij

(
u, α̃(ij)

)
− ŷij

(
u,α(ij)

)]2
φ(u)du (6.23)

'
∫

Ω

[
d∑
k=0

(
α̃

(ij)
(k) − α

(ij)
(k)

)
Ψk(u)

]2

φ(u)du (6.24)

To ensure the coupling satisfaction at the optimum between the disciplines i and j for all the
uncertain variable realizations and to avoid the calculation of the multivariate integral, Eq.(6.24)
is replaced by:

∀(i, j) ∈ {1, ..., N}2, i 6= j, ‖ α(ij) − α̃(ij) ‖2= 0 (6.25)

If Eq.(6.25) is satis�ed then the integral (6.24) is equal to zero and Eq.(6.9) is quasi satis�ed.
Indeed, if the input and output PCE coe�cients are equals, therefore the sum in the integral
of Eq.(6.24) is composed of terms equal to zero. The constraints on the input and output PCE

coe�cients ensure the coupling satisfaction between the disciplines i and j for each uncertainty
realization at the UMDO optimum under two conditions:

Condition 1 : ∀ u ∈ Ω, ‖ cij
(
z∗,ui, ŷ.i

(
u,α(.i)

))
−c̃ij

(
u, α̃(ij)

)
‖< ε, with ε a tolerance and

u a realization of the uncertain variables (accurate approximation of the coupling variables
by the output PCE),

Condition 2 : Eq. (6.25) is veri�ed.
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Figure 6.4: IDF-PCE with the numerical evaluation of the generalization errors by PCE

In this case, as the two uncertain functions c̃ij(·) and ŷij(·) have the same polynomial chaos
expansion, for any uncertainty realization: c̃ij(·) ' ŷij(·) ' cij(·). The statistical moments of
the objective function and the constraint functions are calculated by quadrature rules as in the
previous section with the discipline outputs.

The important di�erence of IDF-PCE-PCE with IDF-PCE (quadrature) lies in the expression of the
coupling constraints Eq.(6.25) which only involve the PCE coe�cients and could facilitate the
optimizer convergence. This technique allows to avoid the propagation of the uncertainty for a
large number of uncertain variable realizations as in CMC, and to decrease the number of calls to
the disciplines. A numerical comparison of these three methods is performed in Section 6.4.

6.3.4 Reliability analysis with Subset Sampling and Support Vector Ma-
chine

Within the framework of Robust-based UMDO, CMC, quadrature rules or output couplings PCE

decomposition may be used to approximate the multidimensional integrals involved in the calcu-
lation of the statistical moments of the constraints. Within the framework of Reliability-based
UMDO, the measure of uncertainty for the inequality constraint functions in Eq.(6.8) involves a
probability of failure as in Eq.(6.12). As highlighted in section 2.5, its computation requires spe-
ci�c methods. Indeed, CMC estimator of the probability of failure is asymptotically unbiased and
converges to the exact value according to the law of large number, however the convergence is
slow. CMC estimation technique is intractable for real world engineering problems for which the
limit state functions involve expensive black-box functions. Dedicated methods such as FORM
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(First Order Reliability Method) [Kuschel and Rackwitz, 1997], SORM (Second Order Reliability
Method) [Kuschel and Rackwitz, 1997], Importance Sampling [Melchers, 1989], Subset Sampling
[Au and Beck, 2001], etc., have been developed in order to reduce the number of function evalua-
tions required to compute the failure probability while decreasing the variance of the probability
estimator. Moreover, these approaches have been combined with surrogate models [Dubourg et al.,
2013] (PCE, Kriging, SVM) to replace the expensive functions by surrogate models which are less
expensive to evaluate (section 2.5). In IDF-PCE formulation, any of these approaches may be used
to compute the inequality constraints.
However, in case of launch vehicle design, the limit state functions often involve a launcher trajec-
tory optimization code which is expensive to run. In order to limit the computational cost of the
failure probability estimation, a sampling-based method (Subset Simulation, section 2.4.4) com-
bined with an adaptive re�nement strategy (Generalized Max-min [Lacaze and Missoum, 2014b],
section 2.5.2.1) of a surrogate model (SVM) is implemented. The construction and re�nement of
the SVM ĝ(·) is implemented in order to be representative around the failure zones of the limit
state functions g(·). Subset Sampling is used to compute the probability of failure combined with
the surrogate model. For one scalar constraint function g(·):

Pg(z,α,U)≤0 ' Pĝ(z,α,U)≤0 = P(U ∈ Ωf ) =
m∏
i=1

P
(
U ∈ Ωfi |U ∈ Ωfi−1

)
(6.26)

where ∀i = {1, . . . ,m} Ωfi = {u|ĝ(u) ≤ Si} is a decreasing sequence of intermediate subset
failure domains and Sm = S = 0. SVM is used due to the complexity of the limit state functions
(non linearity, possible discontinuities and multiple failure regions). In launch vehicle design
problems, due to the presence of multiple failure regions and non linear limit state functions,
Subset Simulation is adapted to estimate the probability of failure. Moreover, due to the presence
of discontinuities in the limit state function (output of optimization trajectory which may present
several optima), SVM are adapted to model discontinuous limit state function. Other approaches
may be used to e�ciently compute the probability of failure, for more details see [Dubourg et al.,
2013]. The adopted approach has been proposed in [Lacaze and Missoum, 2014b] and consists in
adding a selected number of sample points in the SVM training set according to the GMm sample
selection.

The di�erent steps of the IDF-PCE algorithm are summarized in Figure 6.5. Note that the proposed
formulation is developed for deterministic design variables and all the uncertainty is assumed to be
represented by U. However, the proposed approach could be extended to uncertain design variables
by letting the optimizer controlling the expected value of the design variables and propagating the
uncertainty through the system as done in [Liu et al., 2006; Lin and Gea, 2013]. For instance the
propellant mass could be considered as an uncertain design variable and the expected value of the
propellant mass could be controlled by the optimizer while propagation the uncertainty through
the system (according to the propellant mass uncertainty modeling). Moreover, PCE surrogate
model is used to represent the functional relations between the coupling variables at the UMDO
problem convergence because PCE are dedicated to model functions which take as input uncertain
variables. However, the approach to handle interdisciplinary couplings could be extended to any
parametric surrogate model. These parameters would have to be controlled by the system-level
optimizer in addition with the design variables.
In conclusion, IDF-PCE presents several advantages. IDF-PCE solves a �nite-dimensional problem
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Figure 6.5: Steps of the IDF-PCE algorithm

which is manageable in practice compared to in�nite-dimensional problems which are hard to han-
dle. One of the principal advantages is that this formulation ensures the coupling satisfaction at
the UMDO optimum for each uncertain variable realization. In that purpose, it models the func-
tional dependency between the uncertain variables, the design variables and the coupling variables,
which may be useful beyond optimization, e.g. for a post-optimality sensitivity analysis. IDF-PCE
is a decoupled single-level UMDO formulation allowing to decompose the UMDO problem and to
simulate in parallel the disciplines and it does not require any complete MDA. This decomposition
of the UMDO process allows to reduce the management tasks compared to coupled formulations
because each discipline just converses with the system-level and not more interdisciplinary infor-
mation exchange are required during the subsystem-level uncertainty propagation. The di�erent
engineering teams do not have to wait the results from the other teams to start the analyses and
the uncertainty propagation. Furthermore, the quadrature and the decomposition of the disci-
pline outputs overs PCE allow to propagate uncertainty more e�ciently (using less calls to the
disciplines) compared to CMC.
However, this formulation presents some drawbacks as in deterministic IDF. Indeed, it increases the
number of variables controlled by the system-level optimizer (design variables plus PCE coe�cients).
The increase in the design space makes more complex the UMDO problem to be solved. Moreover,
PCE decomposition order has to be chosen a priori based on the coupling linearity knowledge (see
section 6.5). The increase in PCE decomposition order may highly increase the size of the design
space. Furthermore, IDF-PCE increases the number of equality constraints at the system-level in
the optimization formulation which also makes more complex the optimization problem solving.
In the next paragraph, in order to assess the e�ciency of IDF-PCE, it is applied to an analytical
test case composed of two coupled disciplines and compared to MDF under uncertainty.
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6.4 Application on an analytical test case

Numerical comparisons between the reference MDF under uncertainty (using MDA and CMC) and
the proposed single level formulation are provided for an analytical test problem. First the mathe-
matical problem is presented, then the coupled and the three variant decoupled UMDO formulations
are described and �nally the results are analyzed.
The mathematical UMDO problem presented in Figure 6.6 is a constrained optimization problem
composed of:

� discipline 1: y12 = c12(z,u) = c13(z,u) = −z0.2
sh + ush + 0.25× u0.2

1 + z1 + y0.58
21 + u0.4

1 × y0.47
21

� discipline 2: y21 = c21(z,u) = c23(z,u) = −zsh + u0.1
sh − z0.1

2 + 3 × y0.47
12 + u0.33

2 + y0.16
12 ×

u0.05
2 + y0.6

12 × u0.13
2 + 100

� calculation of f and g:

f =
1

5

[
(zsh − 5)2 + (z1 − 3)2 + (z2 − 7)2 + (y21 + z1 × z2)0.6 + (ush + 9)2

]
g = 150 + exp(−0.01× u2

1)× zsh × z1 − 0.02× z3
2 × u5

2 + 0.01× y2.5
12 × z2 × exp(−0.1ush)

� 3 design variables: z1 ∈ [0, 1], z2 ∈ [0, 1] and the shared variable zsh ∈ [0, 1], we note:
z = [zsh, z1, z2],

� 3 uncertain variables: U1 = U(−1, 1), U2 = N(0,1) and the shared uncertain variable Ush =
N(0,1), we note: U = [Ush, U1, U2],

� 2 coupling variables: Y = [Y12, Y21],

� 1 objective function: Ξ[f(z,Y,U)] = E[f(z,Y,U)], the expected value of the function f ,

� 1 constraint function: K[g(z,Y,U)] = E[g(z,Y,U))] + 3σ[g(z,Y,U))] ≤ 0

This analytical UMDO problem has been created and implemented because the disciplines are non
linear and provide non gaussian coupling variable distributions in order to illustrate non linear
problems. Moreover, it has been numerically veri�ed for all z and u values tried that this problem
is such that the MDA converges (it is a contraction mapping by FPI), and it converges to a unique
coupling value.
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Figure 6.6: Analytical test case of a multidisciplinary coupled system

6.4.0.1 MDF under uncertainty

The MDF under uncertainty approach is formulated as follows:

min E[f (z,Y(z,U),U)] (6.27)

w.r.t. z

s.t. E[g(z,Y(z,U),U))] + 3σ[g(z,Y(z,U),U)] ≤ εg (6.28)

z ∈ [0, 1]
3 (6.29)

The dimension of the design space is 3. Uncertainties are propagated with CMC on MDA for
each realization of the uncertain variables with a sample size M = 150000 in order to have an
error lower than 10−3 on the estimation of the statistical moments. Because the means and
the standard deviations are estimated by CMC, the objective function is noisy, therefore gradient
based optimizers are not appropriate for this test case. Diverse derivative-free algorithms have been
proposed in the literature, such as population based algorithms to handle such problems [Larson,
2012]. To compare the three proposed methods to MDF an Ant Colony optimizer (ACOmi) from
the Matlab DOTcvp toolbox [Hirmajer et al., 2008] is used, as it is a population based algorithm
that handles constraints with a penalization method [Schlüter and Gerdts, 2010]. Optimizations
are stopped if there is no progress in 50 consecutive objective function evaluations with a tolerance
of 10−3 on the objective function and the constraint. The MDA convergence criterion for the Fixed
Point Iteration has been set to 10−4 as it corresponds to a variation in the objective and constraint
functions smaller than 10−3. Based on the numerical experimentation, 5 iterations are in general
necessary to converge under the tolerance with the FPI methods. εg = −0.004 is a conservative
tolerance due to the estimation of the mean and the standard deviation of the constraint by CMC

to ensure that the constraint is inferior or equal to 0.
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6.4.0.2 IDF-PCE formulation

The general proposed IDF-PCE formulation (Fig 6.7) is given by

min E [f (z,α,U)] (6.30)

w.r.t. z,α(12),α(21)

s.t. E[g(z,α,U)] + 3σ[g(z,α,U)] ≤ εg (6.31)

J12 =

∫
Ω

[
c12

(
zsh, z1, ush, u1, ŷ21

(
u,α(21)

))
− ŷ12

(
u,α(12)

)]2
φ(u)du ≤ ε (6.32)

J21 =

∫
Ω

[
c21

(
zsh, z2, ush, u2, ŷ12

(
u,α(12)

))
− ŷ21

(
u,α(21)

)]2
φ(u)du ≤ ε (6.33)

z ∈ [0, 1]
3 (6.34)

Discipline3
1

Discipline3
2

Calculation
f,3g

z1 zsh z2

Y12Y21

u1 ush u2

Optimizer

E[f(z,Y(U,α),U)]
κ[g(z,Y(U,α),U)]

c23c13

Uncertainty3simulation

Surrogate3model3
of3the3couplings

^ ^

α
(12)

α
(21)

c12 c21

J12 J21

Figure 6.7: IDF-PCE design process

The system-level coupling variables are decomposed according to: ŷij(U,α
(ij)) =

∑19
k=0 α

(ij)
k

Ψk(U), with Ψk(·) the product of Hermite and Legendre polynomials with a total expansion
order of degree 3 in order to take into account the non linearity of the problem (see section 6.5
for a study of the PCE decomposition order). These polynomial bases are orthogonal to the input
density distributions (Gaussian and uniform). As there are three uncertain variables for the de-
composition, dim

(
α(12)

)
= dim

(
α(21)

)
= (3+3)!

3!3! = 20. The design space is of dimension 43. The
methods to compute the multivariate integrals are detailed in the next paragraph.
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IDF-PCE (CMC) formulation. In IDF-PCE with CMC, the interdisciplinary constraints are com-
puted with:

Jij '
1

M

M∑
k=1

[
cij

(
zsh, z1, ush(k), u1(k), ŷ.i

(
u(k),α

(.i)
))
− ŷij

(
u(k),α

(ij)
)]2

(6.35)

The mean of the objective function and the mean and the standard deviation of the constraint g
are computed by CMC. The uncertainties are propagated with CMC on the decoupled system with
a sample size of M = 150000. The interdisciplinary constraints on the couplings are such that
ε = 10−3 in order to have on average a coupling error under ε. Another alternative to avoid a
�xed ε value set by the designer is to convert the equality constraint of Jij = 0 into an inequality
constraint Jij ≤ ε where ε is a small positive real number, and use an additional dynamic slack
variable to carry out the optimization process in order to minimize the value of ε to be as close as
possible to 0.

IDF-PCE (quadrature) formulation. In the proposed decoupled formulation IDF-PCE with
quadrature rules, the coupling constraints are computed as follows:

Jij =

Msh∑
k=1

M1∑
l=1

M2∑
m=1

(wsh(k) ⊗ w1(l) ⊗ w2(m))
[
cij

(
zsh, z1, ush(k), u1(l), ŷ.i

(
ush(k), u1(l), u2(m),α

(.i)
))

−ŷij
(
ush(k), u1(l), u2(m),α

(ij)
)]2

(6.36)

The expected value of f(·) and the mean and the standard deviation of the constraint g(·) are
computed as explained in the quadrature rules paragraph (section 2.3.1.1). The quadrature rules
used to compute the multidimensional integrals correspond to the tensor product of the one di-
mensional Gauss-Hermite and Gauss-Legendre quadratures. The number of sampling points in
each direction is: Msh = M2 = 8 and M1 = 10, resulting in a tensor product of 640 discipline
evaluations to compute the multivariate integrals. This number of quadrature points is selected
in order to have an error less than 10−3 compared to a CMC computation of the integrals with 1
000 000 points. The decomposition of the coupling variables is the same as in IDF-PCE with CMC

formulation.

IDF-PCE (PCE) formulation. In this approach, the output PCE coe�cients α̃(ij) are com-
puted by orthogonal spectral projection based on Eq.(6.21) in which the multivariate integrals are
computed by quadrature rules. The interdisciplinary constraints J12 and J21 are replaced by:

‖ α(12) − α̃(12) ‖2≤ εα (6.37)

‖ α(21) − α̃(21) ‖2≤ εα (6.38)

To compute the output PCE coe�cients, we use the same quadrature rules as in IDF-PCE (quadra-
ture) formulation: Msh = M2 = 8 and M1 = 10. The constraints on the couplings are such that
εα = 0.5 as it generates an error on average smaller than 10−3 compared to CMC approximation
of the integral. The main di�erence with IDF-PCE quadrature formulation is in the coupling con-
straints to ensure the interdisciplinary couplings in realizations. In IDF-PCE (PCE) the quadratic
constraints only involve the PCE coe�cients and could facilitate the optimizer convergence.
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6.4.0.3 Results

Due to the presence of uncertainty and the use of a stochastic optimizer, each optimization is
repeated 10 times and the results given in Table 6.10 are the averages of the 10 optimizations. The
ratio of the standard deviation over the expected value of the results is added in parenthesis in
order to quantify the robustness of the results.
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Figure 6.8: Distribution of the performance f(·) (left column) and the coupling variable Y12 (right
column) estimated from 150000 U samples with MDF and IDF-PCE (CMC)
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Figure 6.9: Distribution of the performance f(·) (left column) and the coupling variable Y12 (right
column) estimated from 150000 U samples with IDF-PCE (quadrature) and IDF-PCE (PCE)
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Table 6.10: Analytical test case results for the di�erent proposed IDF-PCE formulations. In paren-
thesis, standard deviation over average of each result.
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Figure 6.11: Distribution of the coupling errors J. Left column, estimations of J12 , right column,
estimations of J21, from 150000 U samples.

In order to highlight the importance of incorporating uncertainty in MDO problems, a deter-
ministic MDF optimization with the uncertain variables set to their mean values is performed.
The optimal objective value is 0.466, the set of optimal design variables is: zsh = 0.504,
z1 = 0.452, z2 = 0.682 and the constraint is saturated. A propagation of uncertainty based on the
found deterministic optimum z∗ results in a violation of the constraint E[g(z∗,Y(z∗,U),U))] +
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3σ[g(z∗,Y(z∗,U),U)] = 2.73 > 0 and the performance is decreased compare to the deterministic
value E[f(z∗,Y(z∗,U),U))] = 0.831. For this analytical test case, the presence of uncertainty
modi�es both the optimal objective and the set of optimal design variables, but it results in a non
robust deterministic solution.
The MDF under uncertainty formulation is considered as the reference for interdisciplinary coupling
satisfaction as the couplings are satis�ed for each uncertain variable realization. MDF and the
proposed formulations converge to the same design variable z with errors inferior to 2.04% in
terms of distance to MDF results. IDF-PCE (quadrature) provides the smaller error. The higher
error stems from IDF-PCE (PCE) due to the approximations introduced by the output coupling
PCEs c̃(·). In terms of objective values, the relative error compared to MDF is of 0.21% for IDF-PCE
(CMC) and IDF-PCE (quadrature) and 1.5% for IDF-PCE (PCE). The design space dimension is 3
in the MDF approach whereas it is 43 in the proposed formulations. The number of constraints is
1 in MDF whereas it is 3 in the proposed formulations. The increase in number of design variables
and constraints leads to more optimization iterations. The number of calls to each discipline is
1512× 106 for MDF. It is divided by 1.80 for IDF-PCE (CMC) formulation. Compared to MDF, the
number of calls to each discipline decreases by a factor of 430 in IDF-PCE (quadrature) and by 449
in IDF-PCE (PCE). The reduction of the number of calls to the disciplines is due to the absence of
complete MDA and the uncertainty propagation technique (quadrature and PCE) instead of CMC.
While the absence of MDA decreases the number of calls to the disciplines, it generates higher errors
in the interdisciplinary coupling satisfaction: the couplings are satis�ed with a precision of 10−4 in
MDF for all the realizations of the uncertain variables and with a precision of 6.7×10−4 on average
in IDF-PCE (CMC). The replacement of CMC in IDF-PCE enables to decrease the number of calls
to the disciplines while ensuring coupling satisfaction with a precision of 7.4 × 10−4 on average.
The distribution of the performance values given by MDF and by the proposed approaches are
similar (Figs. 6.8,6.9). The distributions of the coupling variable Y12 have the same tendencies
for MDF and the decoupled approaches. Moreover, it can be noted that the proposed approaches
succeed to handle multimodal probability density for the coupling variables. However, di�erences
may be noted in the distribution tails (Figs. 6.8,6.9). This is due to the error introduced by the
PCE metamodeling of the coupling relations. All the distributions of the coupling errors J for the
proposed formulation are given Figure 6.11. The distributions have a small dispersion around 0,
and the higher dispersion arises for IDF-PCE (PCE).
It is important to note that derivatives of the interdisciplinary coupling constraints could be used
to ensure multidisciplinary feasibility. In practice, in numerical implementations, we use:

Jij =

∫
Ω

[
cij

(
zi, ŷ.i

(
u,α(.i)

)
,ui

)
− ŷij

(
u,α(ij)

)]2
φ(u)du ≤ ε (6.39)

For conciseness, we note
[
cij
(
zi, ŷ.i

(
u,α(.i)

)
,ui
)
− ŷij

(
u,α(ij)

)]2
= jij

(
zi,α

(ij),α(.i),u
)
. An-

other way to ensure multidisciplinary feasibility could be to use:

• a robust approach:

Jij =

∫
Ω

jij

(
zi,α

(ij),α(.i),u
)
φ(u)du

+η

(∫
Ω

[
jij

(
zi,α

(ij),α(.i),u
)
− E

[
jij

(
zi,α

(ij),α(.i),u
)]]2

φ(u)du

) 1
2

≤ ε
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with η indicating the restriction of the feasible region to η standard deviations away from
the expected value.

• a reliability approach:

Jij =

∫
Ω

1[
jij(zi,α

(ij),α(.i),u)
cij(zi,ŷ.i(u,α(.i)),ui)

2

]
>k

φ(u)du ≤ Pt (6.40)

where Pt is a maximal target probability of failure and k is a scalar value. The reliability
constraint ensures that the probability that the relative error between the input coupling
variables and the output coupling variables to be superior to k% is lower than Pt.

However, in practice, Eq.(6.40) and Eq.(6.40) require an important computational e�ort compared
to Eq.(6.39) and further investigations are needed to reduce the computational cost in order to use
them.

6.5 In�uence of the PCE degree decomposition

One of the di�culties with the proposed approach is to choose a priori the degree of decomposition
of the PCE used to represent the coupling relations. Depending on the degree of truncation, PCE
may model very di�erent dynamics. In Figure 6.12, the �rst �ve Hermite based PCE for a one
dimensional function are plotted. The zero order PCE may model constant dynamics whereas the
�rst order models linear functions and the second order represent quadratic dynamics, and higher
order more complex mappings.
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Figure 6.12: The �rst �ve Hermite polynomials for one dimensional function

The decomposition order in�uences the interdisciplinary coupling modeling at the convergence
of the UMDO problem. Higher degrees of decomposition may capture more complex coupling
relations however it comes to a cost, the increase in the number of PCE coe�cients that have to
be controlled by the system-level optimizer. A trade-o� has to be made between the accuracy of
the coupling modeling (increase in the PCE degree decomposition improves the accuracy of the
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coupling modeling) and the complexity of the IDF-PCE solving (higher dimensional problem to
solve).
For the previous analytical problem, we study the in�uence of the PCE degree decomposition by
�xing the design variables to the optimum found in the previous section: z∗ = [0.520, 0.340, 0.658]T

and by evaluating the coupling error J12 for di�erent PCE degrees of decomposition.
Figure 6.13 presents the distribution of the coupling Y12 for di�erent PCE decomposition order.
With a degree of 1, the coupling distribution is similar to a Gaussian distribution. The mean value
of Ŷ12 is close to the one resulting from a coupled analysis (µY12

= 48.07), however the coupling
error is large between 0% and 12% and the distribution of Ŷ12 does not present the two modes
around ŷ12 = 46 and ŷ12 = 52 as in the coupled approach. The number of PCE coe�cients are
dim

(
α(12)

)
= (3+1)!

3!1! = 4. With a decomposition degree of 2, the coupling variable distribution is
non Gaussian and present one mode around ŷ12 = 46 but not around 52. The coupling error is still
large but now around 0% and 8% with more samples between 0% and 2% compared to the order
1. The number of PCE coe�cients are dim

(
α(12)

)
= (3+2)!

3!2! = 10. The decomposition order of 3
provide accurate results compared to coupled approaches with a coupling relative error between
0% and 2%, however it requires 20 PCE coe�cients. A decomposition order of 3 seems appropriate
to model the coupling functional relation of Y12.
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Figure 6.13: PCE decomposition order and coupling error. Left column, distribution of Y12, right
column, coupling relative error, from 150000 U samples.
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In order to e�ciently use IDF-PCE, the designer in collaboration with the discipline experts has
to know for some design architectures, the degree of linearity of the coupling relations in order
to correctly choose the PCE orders. If, based on a decomposition order assumption, at the UMDO

convergence, the interdisciplinary couplings are not satis�ed according to the requirements, a new
problem may be solved with a higher degree of decomposition to capture more complex mappings
between the disciplines. Moreover, adapted degree of decomposition for the couplings could be
assessed based on information provided by MDA if such coupled analyses are a�ordable for some
design variable values. Other alternatives in terms of degree of decomposition of PCE could be to
use Least Angle Regression [Efron et al., 2004] method or to use Sparse PCE approaches [Blatman
and Sudret, 2011]. However, in order to use Sparse PCE technique, it is necessary to run the exact
function (in our case a MDA) which is not the philosophy of the proposed approach. However,
future investigations should explore that possibility.

6.6 Conclusion

A new single-level decoupled UMDO formulation has been detailed in this chapter. The proposed
Individual Discipline Feasible - Polynomial Chaos Expansion formulation ensures the system mul-
tidisciplinary feasibility for all the realizations of the uncertain variables. The satisfaction of the
interdisciplinary couplings in realizations is important to ensure the physical relevance of the ob-
tained designs and makes the proposed decoupled approach equivalent to a coupled formulation.
IDF-PCE is based on the iterative construction of surrogate models (Polynomial Chaos Expan-
sion) of the functional coupling relations. The PCE coe�cients are controlled by the system-level
optimizer and integral coupling constraints are imposed to ensure the interdisciplinary coupling
satisfaction. This method allows to decompose the design process and to let engineering teams
spread all over the world work in parallel. Three techniques have been used to compute the multi-
dimensional integrals involved in the statistical moment calculations and the coupling constraints:
CMC, quadrature rules and output coupling decomposition over PCE. Numerical comparisons be-
tween the reference MDF formulation and the proposed formulations have been performed on an
analytical test case. It shows a decrease in the number of calls to the disciplines for the same accu-
racy of the optimal design. Moreover, for a same degree of numerical accuracy, IDF-PCE-PCE and
and IDF-PCE (quadrature) enable to decrease by a factor of 400 the computational cost compared
to MDF. Moreover, the numerical integration by quadrature and the discipline output decomposi-
tion over a PCE decrease by a factor of 240 the number of calls to the disciplines compared to CMC

for the same level of accuracy.
In the following chapter 7, a new multi-level hierarchical UMDO formulation is proposed and derived
from SWORD formulation [Balesdent et al., 2012a] in order to facilitate the design process of
the system-level optimizer. The future work will naturally consists in applying the proposed
formulations on a launch vehicle design test case. This is the purpose of chapter 8.
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Chapter 7

Multi-level Hierarchical MDO
formulation with functional coupling
satisfaction under Uncertainty
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• Develop a multi-level UMDO formulation ensuring interdisciplinary coupling satisfaction for
all the realizations of the uncertain variables,

• Develop a UMDO formulation adapted to launch vehicle design process.

Chapter goals

7.1 Introduction

This chapter is devoted to the description of a new UMDO formulation called Multi-level Hier-
archical Optimization under Uncertainty (MHOU) ensuring the coupling satisfaction for all the
realizations of the uncertain variables. The proposed approach relies on two levels of optimization
and on surrogate models in order to ensure, at the convergence of the system optimization prob-
lem, the coupling functional relations between the disciplines. The formulation is inspired from
SWORD (Stage-Wise decomposition for Optimal Rocket Design) which is a formulation dedicated
to launch vehicle design. Traditionally, in literature the design process of a launch vehicle is de-
composed according to the di�erent involved disciplinary analyses (e.g. propulsion, aerodynamics,
etc.). Balesdent et al. [Balesdent et al., 2012a] proposed a new deterministic MDO formulation that
decomposes the design problem according to the di�erent stages of the rocket. This decomposition
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has been compared to MDF and numerical comparisons showed it improves the e�ciency of the
MDO process. The authors proposed four variants of SWORD depending on the handling of the
coupling variables. This chapter is focused on the generalization of one of the variant to the design
of any system in the presence of uncertainty. It is a semi-decoupled formulation which removes
the feedback couplings of a multidisciplinary design process while ensuring the multidisciplinary
feasibility. It relies on the same idea as for the single-level IDF-PCE formulation for the interdis-
ciplinary coupling handling but it introduces several levels of optimization. In section 7.2, MHOU

is detailed with the design process. The mathematical formulation and explanatory scheme are
provided. In Chapter 8, MHOU formulation will be applied to a launch vehicle design test case.

7.2 Proposed multi-level formulation: Multi-level Hierarchi-
cal Optimization under Uncertainty (MHOU)

The aim of MHOU is to ease the system-level optimizer by introducing a susbsystem-level optimiza-
tion (Fig. 7.1). It is based on the same interdisciplinary coupling handling method as IDF-PCE.
MHOU is a semi-decoupled hierarchical method that removes all the feedback interdisciplinary
couplings in order to avoid the expensive disciplinary loops through MDA. Due to the curse of
dimensionality of the surrogate model-based decoupling technique proposed in IDF-PCE (≤ 5 un-
certain variables and ≤ 5 coupling variables), only the feedback couplings are removed in MHOU.
It allows a hierarchical design process without any loops between the subsystems. This type of
decomposition is proposed in the context of launch vehicle design, but it may be generalized to a
set of problems. Indeed, the formulation assumes that the system-level objective Ξ[f(·)] is decom-
posable into a sum of subsystem contributions Ξ[f(·)] =

∑N
k=1 Ξ[fk(·)] where Ξ[fk(·)] is the kth

subsystem objective function. For instance, the Gross Lift-O� Weight (GLOW) of a launch vehicle
is decomposable as the sum of the stage masses. Other systems may also be decomposed according
to the contribution of the subsystems (contributions of the subsystem costs, of the subsystem sizes,
etc.).

Discipline
N

Shared]design
]variables:]zsh

Optimizer
Ξ[fKzsh,z*,yKα,u),u)]

Uncertain]variables:]u

Uncertainty]simulation

...

Subsystem]N

Optimizer

Surrogate]models]of]
the]functional]

feedback]couplings

α

Discipline
N-1

Subsystem]N-1

Optimizer

Discipline
1

Subsystem]1

Optimizer

zN

zN-1

z1

ŷ

K[gKzsh,z*,yKα,u),u)]

^

^

Figure 7.1: Multi-level Hierarchical Optimization under Uncertainty (MHOU)
In MHOU, the system-level and subsystem-level formulations are given by:
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• System-level:

min
N∑
k=1

Ξ [fk(zsh, z
∗
k,α,U)] (7.1)

w.r.t. zsh ∈ Zsh,α
s.t. K [g(zsh, z

∗
k,α,U)] ≤ 0 (7.2)

∀(k, j) ∈ {1, ..., N}2, j 6= k Jkj(zsh, z
∗
k,α) = 0 (7.3)

∀k ∈ {1, ..., N}, K [gk(zsh, z
∗
k,α,U)] ≤ 0 (7.4)

• Subsystem-level:

k = N

While k > 0

Given yNk, . . . ,y(k+1)k

For the kth subsystem

min Ξ [fk(zsh, zk,α,U)] (7.5)

w.r.t. zk ∈ Zk
s.t. K [gk(zsh, zk,α,U)] ≤ 0 (7.6)

∀j ∈ {1, ..., N}, j 6= k Jkj =∫
Ω

[
ckj

(
zsh, zk, ŷ.k

(
u,α(.k)

)
,uk

)
− ŷkj

(
u,α(kj)

)]2
φ(u)du = 0 (7.7)

k ← k − 1

zk is the local design variable vector of discipline k and it belongs to the set Zk and zsh is the shared
design variable vector between several disciplines. z∗k is the optimal design variables found by the
subsystem-level optimizer. This formulation allows one to optimize each subsystem separately
in a hierarchical process. The system-level optimizer handles zsh and the PCE coe�cients α of
the feedback coupling variables. The handling of PCE coe�cients at the system-level allows one to
remove the feedback couplings and to optimize the subsystems in sequence. The surrogate models of
the functional feedback couplings provide the required input couplings to the di�erent subsystems.
The kth subsystem-level optimizer handles zk and the corresponding problem aims at minimizing
the subsystem contribution to the system objective while satisfying the subsystem-level constraints
K [gk(·)]. The interdisciplinary coupling constraint Eq.(7.7) guarantees the couplings whatever the
realization of the uncertain variables. In MHOU formulation, Eq.(7.7) is only considered for k 6= N .
This formulation is particularly suited for launch vehicle in order to decompose the design process
into the di�erent stage optimizations. The decreasing order of the discipline optimization, from N
to 1 is more convenient for a launch vehicle (the last stage is optimized �rst, then the intermediate
stages and the �rst one is optimized last), however, in general case any order may be adopted. In
practice, the disciplines are organized to have the minimal number of feedback coupling variables
in order to decrease the number of coupling variables controlled at the system-level and therefore
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the complexity of the optimization problem. For the launch vehicle design problems, with SWORD

and MHOU, the feedforward coupling variables are the masses of the di�erent stages (the mass
is passed from stage i to stage i − 1) and the feedback couplings are the separation conditions
(altitude, velocity, �ight path angle) and trajectory loads.

7.3 Conclusion

MHOU is a semi-decoupled, multi-level, hierarchical UMDO approach. MHOU is not limited to launch
vehicle system but to any system whose system-level objective may be decomposed according to
subsystem contributions. The proposed formulation is derived from SWORD formulations [Bales-
dent et al., 2012a] and based on the same interdisciplinary coupling handling approach as IDF-PCE.
It o�ers an autonomy to engineering teams to optimize their own subsystem in coordination with
a system-level designer. The surrogate models provide a representation of the feedback coupling
mappings at the convergence of the UMDO problem as would MDA do. In the next chapter, both
IDF-PCE and MHOU formulations will be applied to launch vehicle design problems.
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• Apply the developed formulations in chapters 6 and 7 to launch vehicle test cases,

• Compare the results with respect to classical Multi Disciplinary Feasible formulation.
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8.1 Introduction

This chapter is devoted to the comparison of IDF-PCE and MHOU formulations with respect to the
classical MDF under uncertainty. MDF is the reference formulation to evaluate the e�ciency of
the proposed methods as it is the most commonly used formulation for launch vehicle design as
highlighted in section 3.5. Two design problems are considered. Section 8.2 focuses on the design
of a launch vehicle composed of two stages aiming at injecting a payload into a Geostationary
Transfer Orbit. MDF and IDF-PCE formulations are compared on this test case. Then, section 8.3
focuses on the design of a two stage sounding rocket for experimental purposes with a required
minimal apogee altitude. MDF, IDF-PCE and MHOU formulations are compared on this second test
case.

8.2 IDF-PCE for launch vehicle design

This launch vehicle test case consists in designing a launch vehicle composed of two stages to inject
a payload of 4000kg into a Geostationary Transfer Orbit (GTO) from Kourou (French Guyana).
The target orbit is 250 × 35786 km. At the early design phase, to comply with the request in
payload mass, it is necessary to take into account the uncertainties due to the disciplinary models
and the physical phenomena that are not well known at the beginning of the design e�ort. In
this test case, we are interested in designing a two stage launch vehicle with UMDO methodologies
and in comparing MDF and the proposed IDF-PCE formulations. Four disciplines are involved:
propulsion, mass budget and geometry design, aerodynamics and trajectory (Fig. 8.1).

8.2.1 Design and uncertain variables

The objective of the UMDO problem is to minimize the expected value of the Gross Lift-O� Weight
(GLOW) of the launch vehicle. The problem has seven design variables (Table 8.5). The opti-
mization problem is initialized at an existing baseline (Table 8.5) that has to be optimized. The
problem also incorporates three aleatory uncertain variables modeled according to typical level of
uncertainty in early design phases [Gordon and McBride, 1996; Castellini, 2012]:

• 1st stage speci�c impulse error: Ispv1 ∼ Ispv10 +N (0, 0.6) (Fig. 8.2),

• 2nd stage dry mass error: Me ∼Me0 +N (0, 100) (Fig. 8.3),

• 2nd stage thrust error: T2 ∼ T20 +N (0, 600) (Fig. 8.4).

These errors are additional terms to the nominal value of speci�c impulse (Ispv10), of dry
mass (Me0) and thrust (T20). We note: z = [D1,Mp1, T1, OF1, D2,Mp2, Der]

T and U =

[Ispv1, T2,Me]
T.
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Figure 8.4: Distribution of the thrust uncertainty

Table 8.5: Design variables for the two stage launch vehicle

Variables Symbol Domain of de�nition Baseline

1st stage diameter D1 [2.5, 5.5] (m) 4.3m

1st stage propellant mass Mp1 [100000, 150000] (kg) 125000kg

1st stage thrust T1 [2500, 3400] (kN) 3000kN

1st stage mixture ratio OF1 [2.7, 6.5] 4.2

2nd stage diameter D2 [2.5, 5.5] (m) 3.5m

2nd stage propellant mass Mp2 [20000, 35000] (kg) 30000kg

2nd stage engine derating Der [92, 100]% 97%

The UMDO problem includes one inequality constraint which is the probability of failure of the
mission (incorporating the altitude h, velocity v and �ight path angle γ of the injection point) that
has to be inferior to 5× 10−2.
For the injection into orbit, a failure occurs when the payload is injected outside a closed ball
around the target injection point de�ned in the rotating frame by: ht = 250km, vt = 9.713km/s
and γt = 0◦. The radius of the ball corresponds to the injection tolerances and is set to be at 1%
of the target altitude, at 0.5% of the target velocity and at 0.4◦ of the target �ight path angle. To
be feasible, the launch vehicle must have at least a probability of 95% to reach the target injection
point (within the tolerances). In the next sections the involved disciplines are brie�y detailed. For
more information on the discipline models see the appendices.

8.2.2 Disciplinary models

8.2.2.1 Propulsion

In this test case, all the stages use liquid oxygen (LOx) and liquid hydrogen (LH2) cryogenic
propulsion. The propulsion discipline is based on the NASA computer program CEA (Chemical
Equilibrium with Applications [Gordon and McBride, 1996]) which computes chemical equilibrium
compositions and properties of complex mixtures but also the dynamics of the expansion of gases
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through the engine nozzle. The aim of the propulsion discipline is to compute the speci�c impulse
in vacuum Ispv(s) based on mixture ratio between LOx and LH2 and thermochemical data [Sutton
and Biblarz, 2010]. For that, CEA computes the characteristic velocity (c∗) and the coe�cient of
thrust (cτ ) with shifting equilibrium until the nozzle throat and frozen expansion after. Ispv and
thrust T are coupling variables for the trajectory and mass budget disciplines.

8.2.2.2 Mass budget and geometry design

The mass budget and geometry design discipline aims at estimating the mass of the launcher
and its geometry. The 1st and the 2nd stages are LOx/LH2 stages with common bulkhead. The
dry mass of the stages (Mdi for stage i) is the sum of the masses of the tanks, turbopumps,
combustion chamber, nozzle, pressurization system, structural masses and avionics. The mass
and geometry models are derived from the engineering models for the conceptual design of launch
vehicle developed by Castellini [Castellini, 2012]. Interdisciplinary coupling between the mass
budget and geometry design discipline and the trajectory is required to model the dependencies
between the dry mass and the loads undergone during the �ight. The maximal axial load factor
Naxmax is the feedback coupling variable (Fig. 8.1).

8.2.2.3 Aerodynamics

The aerodynamics discipline consists in computing the aerodynamics coe�cients such as the drag
and lift coe�cients required to compute the aerodynamics loads during the rocket atmospheric
�ight. A zero-lift model is used. The calculations of the drag coe�cients are based on the US
Air Force computer program MissileDATCOM [Blake, 1998] which relies on an experimental data
base to determine the aerodynamics forces and coe�cients of complex rocket geometries. A drag
coe�cient table as a function of the Mach is directly given to the trajectory discipline allowing to
remove the feedback loop between the trajectory and the aerodynamics. This model is generally
su�cient in the early design studies.

8.2.2.4 Trajectory

A three dimensional model with rotating round Earth (radius 6371km) is used. The trajectory
discipline consists in solving an optimization problem. The objective of trajectory optimization
is to minimize the distance between the injection point and the given target. In order to take
the uncertainties into account, trajectory optimization is performed for each realization of the
uncertain variables involved in the computation of the objective or the constraints. First, an
optimization problem solving (using a pattern search algorithm [Audet and Dennis Jr, 2002])
yields a nominal feasible trajectory where the uncertain variables are set to their expected values.
Then, for the uncertainty propagation, local trajectory optimizations (using a SQP algorithm) are
performed for each realization of the uncertain variables. The trajectory optimization consists
in de�ning crossing points (in dimension 13) for the pitch angle and modifying them to satisfy
the speci�cations of the mission. The pitch angle is calculated by piecewise linear functions.
The trajectory discipline computes the load cNaxmax required to simulate the mass budget and
geometry design discipline.

All the models have been integrated inside a Matlab environment. CEA and MissileDATCOM have
been reuse with some adaptations for interfaces with Matlab. Mass budget and geometry design
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and the trajectory discipline have been completely redeveloped based on the given references. The
test case has been performed with a desktop computer with 4 processors Intel Xeon CPU E5-1603
2.80GHz. A single run of MDA is in the order of few minutes. The parallel computing Matlab
toolbox has been used in order to propagate uncertainty in parallel over all the processors.

8.2.3 Application of MDF under uncertainty

MDF is the reference formulation as the interdisciplinary system of equations is solved for each
uncertain variable realization. The system is solved by FPI with a convergence criterion |cNaxmax −
yNaxmax |

2 ≤ 10−4m2s−4 between the input coupling variable yNaxmax and the output coupling
variable cNaxmax . Based on the numerical experimentation, 3 iterations are in general necessary to
converge under the tolerance with the FPI methods. The uncertainty is propagated with CMC to
estimate the objective function withMs = 100 samples in order to have at most an error of 250kg in
the GLOW expected value approximation. The probability of failure is computed by the approach
described in section 6.3. The initial DoE is based on a Latin Hypercube Sampling of 100 samples.
The GMm re�nement strategy adds 96 new samples in order to accurately represent the limit state
function in high probability density regions. A pattern search optimization algorithm [Audet and
Dennis Jr, 2002] is used to solve both MDF and IDF-PCE (CMC) problems in order to uniquely
compare the advantages of the formulation independently from the optimization algorithm. The
MDF formulation is given by:

min E [GLOW (z,U)] (8.1)

w.r.t. z = [D1,Mp1, T1, OF1, D2,Mp2, Der]
T

s.t. Pf (z,U) ≤ 5× 10−2 (8.2)

zmin ≤ z ≤ zmax (8.3)

with: Pf (z,U) = 1− P [(247.5 ≤ ht ≤ 252.5) ∩ (9.703 ≤ vt ≤ 9.723) ∩ (−0.4 ≤ γt ≤ 0.4)].

8.2.4 Application of IDF-PCE (CMC)

In order to compare the formulations with the same uncertainty propagation method, IDF-PCE
(CMC) is implemented. The objective function is computed with the same approach as MDF

and the interdisciplinary coupling constraint is computed by CMC with the same samples as the
objective function. The interdisciplinary coupling satisfaction criterion ε is set to 10−4m2s−4. The
feedback loop is decoupled to avoidMDA and loops between the disciplines. The load factor coupling
variable is decomposed according to a product of Hermite polynomials with a total expansion order
of degree 2 resulting in dim(α) = (3+2)!

3!2! = 10. IDF-PCE (CMC) formulation is given by:

min E [GLOW (z,U)] (8.4)

w.r.t. z = [D1,Mp1, T1, OF1, D2,Mp2, Der]
T,α

s.t. Pf (z,U) ≤ 5× 10−2 (8.5)

JCMC =

Ms∑
k=1

[
cNaxmax

(
z, ŷNaxmax

(
u(k),α

))
− ŷNaxmax

(
u(k),α

)]2 ≤ ε (8.6)

zmin ≤ z ≤ zmax (8.7)
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8.2.5 Results and conclusion

The results are presented in Table 8.21. MDF and IDF-PCE (CMC) converge to the same optimum
in terms of design variable and objective function values. The expected value of the optimal launch
vehicle GLOW is approximately 163.7t. The mission constraints in the two approaches are satis�ed
with a probability of failure under 5%. The interdisciplinary coupling constraint JCMC is satis�ed
in IDF-PCE (CMC) and the expected value of the error between the input and the output load factors
is of 0.1% (Fig. 8.20). The distributions of GLOW and the load factor for MDF and IDF-PCE (CMC)
are similar (Figs. 8.16 - 8.19). The proposed approach converges faster (∼ 11 times) than MDF to
the optimum as it does not require loops between the disciplines (Figs. 8.6, 8.7). For the optimal
launch vehicle, the results of uncertainty propagation for trajectory altitude, velocity and �ight
path angle are represented in Figures 8.10 to 8.15. A three dimensional representation of some
of these trajectories with injection into GTO orbit is illustrated in Figure 8.25. These trajectories
correspond to the result of the optimization for each realization of the uncertain variables in order
to inject the payload into the targeted orbit. The optimal IDF-PCE launch vehicle geometry is
represented in Figures 8.23 and 8.24. To conclude, the proposed approach allows to �nd the same
optimal launch vehicle as the coupled approach while decreasing by a factor 11 the number of calls
to the expensive disciplines, especially the trajectory which involves an optimization problem.
In order to highlight the importance of taking into account the uncertainties in the early design
phase, the deterministic MDO problem is solved considering the uncertainties �xed to their mean
values and an optimal GLOW of 158.21t is found. For the deterministic optimal launch vehicle, a
propagation of uncertainty is performed by CMC and MDA with the same uncertainties as in the
UMDO problem. In Figure 8.8, the nominal trajectory altitude which injects the payload at 250km
is represented. In Figure 8.9, the trajectory altitude is represented for CMC uncertain variable
realizations. The deterministic optimal launch vehicle is not robust to the presence of uncertainty
as the injection altitude is scattered between 250km and 200km due the lack of propellant to reach
the injection point. The Figure 8.10 highlights the robustness of the found solution compared
to the deterministic one. The deterministic MDF and the MDF under uncertainty optimal launch
vehicle dimensions are represented in Figure 8.22. MDF under uncertainty solution has a larger �rst
stage diameter to carry more propellant however it is less higher than the deterministic solution.
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Table 8.21: Two stage rocket design results for MDF and IDF-PCE (CMC) formulations

Results MDF IDF-PCE (CMC)

E[GLOW] 163.74t 163.78t

Design D1 = 3.957m D1 = 3.914m
variables Mp1 = 115274kg Mp1 = 115234kg

T1 = 2730.3kN T1 = 2726.1kN
OF1 = 3.46 OF1 = 3.37
D2 = 3.263m D2 = 3.337m
Mp2 = 2507kg Mp2 = 2514kg
Der = 95.5% Der = 95.9%

Coupling con-
straints

|cNaxmax − yNaxmax |
2 ≤ 10−4m2s−4 JNaxmax = 9.7× 10−5m2s−4

Mission con-
straint Pf

4.95× 10−2 4.93× 10−2

Design space
dimension

7 17

Calls to each
discipline

Nd = 6.49× 105 Nd = 5.91× 104

Computational
reduction
factor

1 (ref) 11
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Figure 8.25: Visualization of 3 dimensional trajectories under uncertainty

8.3 MHOU for sounding rocket design

This launch vehicle design test case consists in designing a sounding rocket with two solid stages to
launch a payload of 800kg from Kourou that has to reach at least an altitude of 300km. Sounding
rockets carry scienti�c experiments into space along a parabolic trajectory. Their overall time in
space is brief and the cost factor makes sounding rockets an interesting alternative to heavier launch
vehicles as they are sometimes more appropriate to successfully carry out a scienti�c mission and are
less complex to design. Four disciplines are involved in the considered test case, the propulsion, the
mass budget and geometry design, the aerodynamics and the trajectory (Fig. 8.26). The sounding
rocket design is decomposed into two subsystems, one for each stage. MHOU formulation enables
a hierarchical design process decomposed into two teams, one for each sounding rocket stage.

8.3.1 Design and uncertain variables

The objective of the UMDO problem is to minimize a function of the GLOW of the sounding rocket.
The kth subsystem objective is to minimize a function of the stage mass E[Mk(·)] + 2 × σ[Mk(·)]
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(with σ the standard deviation) and Mk the stage mass. The system-level objective is to minimize
the contribution to the GLOW of the two stages. The problem has ten design variables summarized
in Table 8.27. The uncertainty measure for the constraints gk(·) is the probability measure P[·].
The required feedback couplings for the 2nd stage design are y12 = [hf1, vf1]T which are the
separation altitude hf1 and velocity vf1 between the 1st and 2nd stages (Fig. 8.26). The design
constraints for the ith stage are gi = [Pei, hfi, Nfi]

T which involve:

• the avoidance of the breakaway of the jet in the divergent skirt (Pei ≤ 0.4Pa(h), Summer�eld
criterion [Summer�eld, 1951]) which ensures that the jet will stay along the nozzle to avoid
turbulence �ow and chocs in the nozzle. Pe is the pressure at the nozzle exit and Pa is the
atmospheric pressure at the altitude h,

• the apogee altitude (hfi ≥ 300km) for the 2nd stage,

• the maximal axial load factor (Nfi ≤ 15g).

The apogee altitude constraint is not considered for the 1st stage.

Solid
propulsion

MassObudgetO-
GeometryO

design

Aerodynamics

Trajectory

SolidO
propulsion

MassObudgetO-
GeometryO

design

Aerodynamics

Trajectory

stageO1

stageO2

Md2

hf1
vf1

GLOW

Figure 8.26: Design Structure Matrix for the two stage sounding rocket
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Table 8.27: Design variables for the two stage sounding rocket.

Variables Symbol Domain of de�nition

1st stage diameter D1 [0.5, 1.0] (m)

1st stage propellant mass Mp1 [1000, 3000] (kg)

1st stage nozzle expansion ratio ε1 [1, 20]

1st stage grain relative length RL1 [30, 80] (%)

1st stage combustion depth W1 [30, 80] (%)

2nd stage diameter D2 [0.5, 1.0] (m)

2nd stage propellant mass Mp2 [1000, 3000] (kg)

2nd stage nozzle expansion ratio ε2 [1, 20]

2nd stage grain relative length RL2 [30, 80] (%)

2nd stage combustion depth W2 [30, 80] (%)

Figure 8.28: 2nd stage dry mass uncertainty Figure 8.29: 1st stage regression rate coe�-
cient uncertainty for the baseline

The uncertain variables taken into account are the 1st stage combustion regression rate coe�cient
N (3.99, 0.05) in cm/s/MPa0.3 and the 2nd stage dry mass error N (0, 50) in kg. The uncertainty
on the combustion model through the combustion regression rate results in uncertainty on the
1st stage thrust for the baseline sounding rocket (Fig. 8.30). The mission has to ensure that the
payload reaches at least an altitude of 300km (with a probability of failure of 3 × 10−2). In the
next sections, the involved disciplines are brie�y detailed. For more information on the discipline
models see the appendices.
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Figure 8.30: 1st stage thrust uncertainty

8.3.2 Disciplinary models

8.3.2.1 Propulsion

In this test case, all the stages use solid propellant TP-H-3340 composed of 18% of Aluminum, 71%
of Ammonium Perchlorate (AP) and 11% of Hydroxyl-terminated Polybutadiene (HTPB). The
propulsion discipline is based on CEA. Moreover, the simulations are based on a geometrical model
of the solid propellant grain (circular or star grains). The dynamics of combustion coupled with
the evolution of the combustion surface are derived from [Ricciardi, 1992]. A shifting equilibrium
is assumed in the combustion chamber and up to the nozzle throat and a frozen equilibrium after
the throat. Figures 8.31 and 8.32 illustrate the dynamics of the combustion surface for a circle and
a star grain. The iso-combustion depth curves are represented.

Figure 8.31: Curves of iso-combustion depth
for the circle grain

Figure 8.32: Curves of iso-combustion depth
for the star grain
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8.3.2.2 Mass budget and geometry design

The mass budget and geometry design discipline aims at estimating the mass of the sounding
rocket and its geometry. The two stages are solid propellant stages. The dry mass of the stages
(Mdi for stage i) is the sum of the masses of the case, the nozzle, the thermal protection and the
igniter. The mass and geometry models are derived from the engineering models for the conceptual
design of launch vehicle [Castellini, 2012]. A solid rocket motor is mainly designed based on the
maximal chamber pressure and the trajectory loads are not critical as in the case of liquid rocket.
However, the maximal axial load factor is considered as a constraint to ensure the comfort of the
payload during the �ight. Each stage is composed of two grains, one circular and one star. The
ratio of the two grains (RL) and the combustion depth (W ) are design variables.

8.3.2.3 Aerodynamics

The same models as in IDF-PCE test case are used for the aerodynamics (see section 8.2.2.3).

8.3.2.4 Trajectory

A three dimensional model with rotating round Earth (radius 6371km) is used. The trajectory
discipline consists of the simulation of a vertical launch and a pitch maneuver in order to reach
an altitude of 300km. No control of the sounding rocket is o�ered. The simulation is stopped at
the apogee of the trajectory (when the vertical velocity is equal to zero) which is compared to the
requirement.
All the models have been integrated inside a Matlab environment. CEA and MissileDATCOM have
been reuse with some adaptations for interfaces with Matlab. Mass budget and geometry design,
solid propellant model and the trajectory discipline have been completely redeveloped based on
the given references. The test case has been performed with a desktop computer with 4 processors
Intel Xeon CPU E5-1603 2.80GHz. A single run of MDA is in the order of few minutes. The parallel
computing Matlab toolbox has been used in order to propagate uncertainty in parallel over all the
processors.
In the following, the proposed multi-level decoupled MHOU formulation, IDF-PCE and MDF under
uncertainty are compared on this sounding rocket test case.
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8.3.3 Application of MDF under uncertainty

MDF is the reference approach as the interdisciplinary system of equations is solved for each uncer-
tain variable realization. The system is solved by FPI with a convergence criterion resulting in a
relative error between the input and the output coupling variables of 1%. Based on the numerical
experimentation, 4 iterations are in general necessary to converge under the tolerance with the FPI
methods. The uncertainty is propagated with CMC to estimate Ξ[·] and P[·] based on a �xed set of
103 random samples. The uncertain samples are considered as �xed in order to be compared to the
multi-level approach which requires a �xed uncertain set. Gradient based optimizer (Sequential
Quadratic Programming) is used at the system-level in both formulations as no noise is present in
the optimization problem. Both system-level optimizers are stopped when 5.6× 106 evaluations of
the disciplines is reached. The MDF formulation is given by:

min E [GLOW (z,U)] + 2σ [GLOW (z,U)] (8.8)

w.r.t. z = [D1,Mp1, ε1, RL1,W1, D2,Mp2, ε2, RL2,W2]T

s.t. P[−hf2(z,U) > −300] ≤ 3× 10−2 (8.9)

P[Pe2(z,U)− 0.4Pa(h) > 0] ≤ 3× 10−2 (8.10)

P[Nf2(z,U) > 15] ≤ 3× 10−2 (8.11)

P[Pe1(z,U)− 0.4Pa(h) > 0] ≤ 3× 10−2 (8.12)

P[Nf1(z,U) > 15] ≤ 3× 10−2 (8.13)

zmin ≤ z ≤ zmax (8.14)
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8.3.4 Application of MHOU

The MHOU formulation is:

• System-level

min
2∑
k=1

Ξ [Mk(zsh, z
∗
k,α,U)] + 2× σ [Mk(zsh, z

∗
1, z
∗
2,α,U)] (8.15)

w.r.t. zsh ∈ Zsh,α
s.t. J∗hf1(zsh, z

∗
1,α) ≤ ε (8.16)

J∗vf1(zsh, z
∗
1,α) ≤ ε (8.17)

P[−hf2(zsh, z
∗
2,U) > −300] ≤ 3× 10−2 (8.18)

P[Pe2(zsh, z
∗
2,U)− 0.4Pa(h) > 0] ≤ 3× 10−2 (8.19)

P[Nf2(zsh, z
∗
2,U) > 15] ≤ 3× 10−2 (8.20)

P[Pe1(zsh, z
∗
1,U)− 0.4Pa(h) > 0] ≤ 3× 10−2 (8.21)

P[Nf1(zsh, z
∗
1,U) > 15] ≤ 3× 10−2 (8.22)

• Subsystem-level

For the 2nd stage

min Ξ [M2(zsh, z2,α,U)] + 2× σ [M2(zsh, z2,α,U)] (8.23)

w.r.t. z2 = [Mp2, ε2, RL2,W2]T ∈ Z2

s.t. P [g2(zsh, z2,α,U)] ≤ 3× 10−2 (8.24)

(8.25)

Given y21

For the 1st stage

min Ξ [M1(zsh, z1,α,U)] + 2× σ [M1(zsh, z1,α,U)] (8.26)

w.r.t. z1 = [D1,Mp1, ε1, RL1,W1]T ∈ Z1

s.t. P [g1(zsh, z1,α,U)] ≤ 3× 10−2 (8.27)

Jhf1 =∫
Ω

[
hf1 (zsh, z1,y21,u1)− ĥf1

(
u,α(12)

)]2
φ(u)du ≤ ε (8.28)

Jvf1 =∫
Ω

[
vf1 (zsh, z1,y21,u1)− v̂f1

(
u,α(12)

)]2
φ(u)du ≤ ε (8.29)
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where zsh = D2 is the 2nd stage diameter, g2(·) = [Pe2(·), hf2(·), Nf2(·)]T and g1(·) =
[Pe1(·), Nf1(·)]T. The set of the 2nd stage mass realizations for the optimal solution of the 2nd

stage optimization problem is the feedforward coupling y21 of the 1st stage optimization. In order
to hierarchically optimize the second stage and then the �rst stage, the feedforward coupling has to
be passed from stage 2 to stage 1. In order to keep the consistency between the two optimizations,
a �xed set of uncertain variable realizations has been used all along the optimization process. The
set has also been used for MDF for consistent comparison. The altitude and the velocity at the
moment of separation between the two stages are the feedback coupling variables from stage 1 to
stage 2 that are decoupled. These variables are decomposed according to a product of Hermite
polynomials with a total expansion order of degree 2 resulting in dim(α) = (2+2)!

2!2! = 6. Therefore,
the design space dimension is 13 at the system-level, 4 for the 2nd stage and 5 for the 1st stage.
The interdisciplinary coupling constraint Jhf1 and Jvf1 have to be inferior to ε = 1% in order to
ensure interdisciplinary coupling satisfaction as in MDF.

8.3.5 Application of IDF-PCE

The IDF-PCE formulation is similar to MHOU in terms of interdisciplinary coupling handling (same
degree of decomposition, same feedback couplings) but it is a single-level formulation given by:

min E [GLOW (z,α,U)] + 2σ [GLOW (z,α,U)] (8.30)

w.r.t. z,α

s.t. Jhf1(z,α) ≤ ε (8.31)

Jvf1(z,α) ≤ ε (8.32)

P[−hf2(z,U) > −300] ≤ 3× 10−2 (8.33)

P[Pe2(z,U)− 0.4Pa(h) > 0] ≤ 3× 10−2 (8.34)

P[Nf2(z,U) > 15] ≤ 3× 10−2 (8.35)

P[Pe1(z,U)− 0.4Pa(h) > 0] ≤ 3× 10−2 (8.36)

P[Nf1(z,U) > 15] ≤ 3× 10−2 (8.37)

zmin ≤ z ≤ zmax (8.38)

All the design variables z for the two stages are controlled by the system design variables in addition
with the PCE coe�cients α.

8.3.6 Results

CMA-ES optimization algorithm is used at the subsystem-level for MHOU formulation. The three
problems start from the same feasible baseline to be optimized. The baseline corresponds to the
deterministic optimal solution of the two stage sounding rocket problem (Fig. 8.35) found by a
deterministic MDF approach. However, as illustrated in Figure 8.37, this solution is not robust to
the presence of uncertainty. Indeed, the deterministic optimal solution does not succeed to reach
with a probability of failure lower than 3 × 10−2 an altitude of 300km, the failure rate is around
70%.
Based on this baseline, MDF under uncertainty, IDF-PCE and MHOU are implemented. The results
of the sounding rocket problem are summarized in Table 8.33. MHOU (6.68t) and IDF-PCE (6.88t)
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Table 8.33: Two stage sounding rocket design results for MDF, MHOU and IDF-PCE formulations

Results MDF MHOU IDF-PCE

E[GLOW] +
2σ[GLOW]

7.07t 6.68t 6.88t

Design D1 = 0.75m D1 = 0.79m D1 = 0.72m
variables Mp1 = 2850kg Mp1 = 2659kg Mp1 = 2729kg

ε1 = 4.4 ε1 = 9.24 ε1 = 12.7
RL1 = 69.4% RL1 = 30.7% RL1 = 42.3%
W1 = 66.0% W1 = 43.5% W1 = 41.8%

D2 = 0.76m D2 = 0.75m D2 = 0.79m
Mp2 = 2395kg Mp2 = 2287kg Mp2 = 2402kg
ε2 = 9.97 ε2 = 17.4 ε2 = 12.3
RL2 = 69.5 % RL2 = 41.0 % RL2 = 40.5 %
W2 = 65.9 % W2 = 63.9 % W2 = 61.1 %

Coupling |chf1 − yhf1|/chf1 ≤ 1% Jhf1 = 0.31% Jhf1 = 0.42%
constraints |cvf1 − yvf1|/cvf1 ≤ 1% Jvf1 = 0.24% Jvf1 = 0.19%

Mission con-
straint Pf

2.8× 10−2 2.9× 10−2 2.9× 10−2

Design space
dimension

10 22(13 + 4 + 5) 22

presents better characteristics in terms of quality of objective function than MDF (7.07t) for a �xed
discipline evaluation budget (Fig. 8.34). MDF, IDF-PCE and MHOU solutions satisfy the constraints
especially the apogee altitude of 300km as illustrated in Figure 8.36 for MDF and MHOU. Only
2.9% of the trajectories do not reach the required apogee altitude. Moreover, MHOU ensures
interdisciplinary coupling satisfaction for the feedback couplings as illustrated by the comparison
of the couplings found respectively by the coupled approach and the decoupled approach for the
optimal solution found by MHOU. The same coupling satisfaction are found for IDF-PCE. The
separation altitude and velocity distributions for the optimal MHOU found solution are similar
by using MDA or MHOU (Fig. 8.38-8.41). Moreover, the interdisciplinary coupling error for the
separation altitude and velocity are represented in Figures 8.42 and 8.43. The coupling error
is always lower than 2% and concentrated around 0%-0.5%. The design space dimension for
the system-level is increased from 10 for MDF to 13 for MHOU, however it enables multi-level
optimization where each stage subsystem handles its local design variables. For IDF-PCE, the
dimension of the system-level design space is 22. Thanks to the two levels of optimization, MHOU

allows a convergence to a better optimum than IDF-PCE in this test case while enabling decoupled
design strategy and autonomy to each engineering team working on each stage. 3 dimensional
trajectories with MHOU results are illustrated in Figure 8.44.

168



CHAPTER 8. APPLICATIONS OF THE PROPOSED UMDO FORMULATIONS TO
LAUNCH VEHICLE DESIGN

0 1 2 3 4 5 6

x 10
6

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

Number of calls to the disciplines

E
(G

LO
W

)+
2σ

(G
LO

W
) 

 (
t)

Convergence curves (feasible designs)

 

 

MDF under uncertainty
MHOU
IDF−PCE

Figure 8.34: Convergence curves with the
points satisfying the constraints

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

Time (s)

A
lti

tu
de

 (
km

)

Sounding rocket altitude − deterministic solution

Figure 8.35: Optimal sounding rocket alti-
tude without uncertainty
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Figure 8.36: Optimal sounding rocket alti-
tude
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Figure 8.37: Deterministic optimal sounding
rocket altitude in the presence of uncertainty
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Figure 8.38: Distribution of the separation
altitude for the optimal MHOU solution - by
MDA
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Figure 8.39: Distribution of the separation
altitude for the optimal MHOU solution
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Figure 8.40: Distribution of the separation
velocity for the optimal MHOU solution - by
MDA
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Figure 8.41: Distribution of the separation
velocity for the optimal MHOU solution
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Figure 8.42: Distribution of the altitude cou-
pling error MHOU
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Figure 8.43: Distribution of the velocity cou-
pling error MHOU
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Figure 8.44: Visualization of 3 dimensional trajectories under uncertainty for the optimal sounding
rocket

8.4 Limitations of the numerical comparisons

For the two test cases, the achieved numerical comparisons (in a Matlab environment) are based on
local approaches initialized at a baseline. The computational cost induced by the repeated disci-
pline simulations, the uncertainty propagation and the optimization results in limited comparison
capability. For instance, the trajectory discipline for the test case of IDF-PCE which involved an
auxiliary optimization problem to �nd the optimal trajectory resulted in a very computationally
expensive discipline in the context of UMDO. Using a computer with 2.80GHz CPU (4 cores) and
8Go memory with all the cores in parallel (with the Matlab toolbox), the IDF-PCE comparison
lasted 432 hours and the MHOU comparison lasted 617 hours. With a higher computation capa-
bility a global analysis with several initializations for IDF-PCE and MHOU would be interesting but
could not be performed in the framework of this study. Moreover, an extended comparison of the
two proposed approaches over other launch vehicle design test cases could be performed to further
illustrate the interest of multi-level formulations.

8.5 Conclusion of part II

In this part, based on the reasoning on interdisciplinary coupling handling in the presence of
uncertainty, we have proposed one single-level decoupled formulation named IDF-PCE and one
multi-level formulation called MHOU. Both formulations are based on a surrogate model construc-
tion of the interdisciplinary coupling relations all along the UMDO process in order to represent
at the convergence the functional coupling relations as would MDA do. The surrogate models
are based on Polynomial Chaos Expansion as they are particularly adapted to functions a�ected
by uncertainty and o�er tools to e�ciently propagate uncertainty. Ensuring multidisciplinary
feasibility in the presence of uncertainty is essential to ensure the physical relevance of the
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obtained design. The test cases illustrate that the proposed decoupled formulations numerically
ensure an identical level of accuracy of the interdisciplinary couplings compared to the coupled
strategies. Decomposition-based design processes allow to o�er autonomy to engineering team and
to decouple the design process according to disciplines or to subsystems. In practice, industrial
companies in charge of the design of launch vehicles are often divided according to di�erent
department highlighting various �elds of competence (propulsion, aerodynamics, structure, etc.).
Therefore, a decomposition design strategy is particularly adapted to the actual con�guration of
these companies. Moreover, decoupled strategies enables to avoid loops between the disciplines
through MDA reducing the computational cost. Several uncertainty propagation techniques have
been adapted within IDF-PCE framework to overcome the computational burden of CMC. The
multi-level MHOU formulation is particularly adapted to launch vehicle design as it decomposes
the design process according to each stage of the rocket.

The numerical comparisons have highlighted the e�ciency of the proposed formulations with
respect to MDF. The analytical test case has highlighted the capability of PCE to model complex
interdisciplinary coupling relations if an appropriate decomposition degree is chosen. Moreover,
uncertainty propagation with quadrature rules or the decomposition of the discipline output over
another PCE is very e�cient in terms of number discipline evaluations. Indeed, these approaches
decrease by a factor of 400 the number of discipline evaluations compared to CMC for the same
level of accuracy. The numerical study with IDF-PCE for the design of a launch vehicle highlighted
the interest of a decomposition strategy to reduce the computation cost compared to a coupled
MDF approach while maintaining an equivalence in terms of interdisciplinary coupling satisfaction.
IDF-PCE allowed to reduce by a factor of 11 the number of discipline evaluations on this test case.
The comparative study with MHOU has showed the advantages of the stage-wise decomposition
formulation that improve the design process with respect to MDF which is the most commonly used
method in literature. The design process strategy considering the decomposition according to the
stages instead of traditional disciplines presents the same advantages as in deterministic SWORD

and o�ers the possibility to faster �nd optimal launch vehicle architecture. This decomposition is
in accordance with the importance of the trajectory discipline in the design of a launch vehicle.

Two main ideas have to be retained:

• The importance of taking into account the uncertainty in the design of a launch vehicle
at the early design phases. As highlighted in the two test cases, the deterministic optimal
launch vehicle con�guration is not robust to the presence of uncertainties. Once this optimal
system is subjected to uncertainty, it does not succeed to ful�ll the requirements imposed
by the designer. However, taking into account the uncertainty from the beginning of the
design allows to �nd an optimal launch vehicle which is robust and reliable to the presence
of uncertainty.

• The importance of interdisciplinary coupling handling in MDO in the presence of uncertainty.
Due to the coupled nature of the disciplines, strategies either coupled or decoupled have to
be used to solve the system of interdisciplinary coupling equations. These strategies have to
be adapted to the presence of uncertainty. Decoupled approaches are interesting to decrease
the computational cost but the e�ciency of these approaches must not be to the detriment of
the interdisciplinary coupling satisfaction. Maintaining a mathematical equivalence between
coupled and decoupled strategies in terms of multidisciplinary feasibility is essential.
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As highlighted in the two design test cases, evaluating the reliability of the optimal system is a
complex task but essential to ensure the satisfaction of the designer requirements. In the context
of launch vehicle it may consist to guarantee the precision of the orbit injection or the stage fallout
in a safe zone. As highlighted in section 4, for complex systems, existing reliability assessment
methods present some drawbacks and ways of improvement have been outlined (see section 5).
Dedicated reliability analysis techniques for multidisciplinary system in the presence of aleatory
and mixed aleatory/epistemic uncertainties are developed in the next Part III.

• Context:

� Interdisciplinary coupling handling in UMDO formulation,

� Decomposition strategy of the design process,

� State-of-the-art decoupled UMDO methods only deal with incomplete coupling condi-
tions.

• Contributions:

� Development of a new single level UMDO formulation inspired from Individual Disci-
pline Feasible formulation with interdisciplinary coupling satisfaction for all the real-
izations of the uncertain variables,

� Development of a new multi-level UMDO formulation inspired from Stage-Wise De-
composition for Optimal Rocket Design with interdisciplinary coupling satisfaction
for all the realizations of the uncertain variables,

� Maintaining of the mathematical equivalence between coupled and decoupled strate-
gies in the presence of uncertainty,

� Application of the proposed formulations to the design of launch vehicles, highlighting
the importance of taking into account uncertainty in MDO process in early design
phases to ensure the robustness and reliability of the system.

• Actionable information:

� Appropriate for problems that have to be solved with a decomposition strategy in-
volving di�erent engineering teams to o�er autonomy,

� Useful to perform uncertainty propagation in parallel over multiple processors,

� Ensure system design consistency and reliability with an integrated process,

� Other applications: conceptual design of aircraft, ships, automobiles, etc.

• Perspectives:

� Develop a method to appropriately determine a-priori the surrogate model decompo-
sition degree for the modeling of the functional coupling relations,

� Further reduce the computational cost induced by the number of calls to the disciplines
(surrogate models of the disciplines, other formulations, etc.),

� Perform test cases with increased dimension and complexity design problems.
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9.1 Introduction

In the previous part II, a focus on the interdisciplinary coupling handling in UMDO problem has
been made, highlighting the importance of dedicated techniques to coordinate the design process
when decomposition strategies are adopted. Another important task in designing of a complex
system is the assessment of its reliability. Estimating failure probabilities is important for systems
involving safety issues. In the presence of mixed aleatory and epistemic uncertainties impacting
the system, the failure probability is not unique and depends on the values taken by epistemic
uncertainty. One way to characterize the probability of failure is to determine its domain of
variation in order to have an estimation of the rare event probability variation domain (see chapter
4). The determination of the probability bounds induces intricate problem optimization solving
and numerous probability estimations in order to determine the upper and lower bounds of the
probability estimate. Moreover, reliability analysis often involves system simulations which are
supposed to require a considerable computational e�ort. Complex systems may present multiple
failure regions and non linear limit state functions. The existing methods reviewed in chapter 4
are not suited for launch vehicle design problems as they mostly rely on CMC or FORM resulting
in intractable or restrained applications.
Let us consider a model of the system de�ning a limit state. This model allows to determine
if the system is in a failure state or a safe state depending on uncertain inputs. The reliability
analysis consists in estimating the probability for the system to be in a failure state considering
aleatory input uncertainty a�ecting the system. In literature, two categories of problems exist for
the impact of epistemic uncertainty in reliability analysis:

• epistemic uncertainty a�ects the hyper-parameters de�ning the PDF of the aleatory uncer-
tainty (for instance the expected value of the PDF is only known in an interval),

• epistemic uncertainty directly a�ects the disciplinary models impacting the limit state.

These two types of problems are di�erent and require dedicated techniques. The part III of the
thesis is devoted to the presentation of two methods dedicated to reliability analysis for complex
systems in the presence of both aleatory and epistemic uncertainties. Chapter 9 presents a method
developed in collaboration with Mathieu Balesdent (Onera) and Jerome Morio (Onera) to han-
dle epistemic uncertainty on the hyper-parameters of the aleatory uncertainty PDF. The method
proposes to estimate the bounds of the rare event probability using Kriging-based adaptive Impor-
tance Sampling. It relies on an improvement of Cross Entropy algorithm (section 2.4.3) used in
Importance Sampling coupled with a Kriging model [Matheron, 1963] of the limit state function,
a re�nement strategy of the surrogate model and CMA-ES optimization algorithm to account for
epistemic uncertainty and to avoid expensive limit state function evaluations.
Chapter 10 describes a method developed in collaboration with Mathieu Balesdent (Onera), Sylvain
Lacaze (University of Arizona) and Samy Missoum (University of Arizona) to handle epistemic
uncertainty directly a�ecting the system failure state. To compute the bounds of the failure
probability, a sequential approach is proposed. Because an estimation of a probability of failure
involving rare events cannot be estimated by a classical method such as CMC due to the numerical
cost induced, Subset Simulation is used. Subset Simulation is e�cient to estimate rare event
probability [Au and Beck, 2001] and is able to handle multiple failure regions and non linear limit
state function. Moreover, it is assumed that the limit state function is computationally expensive
to evaluate, hence in order to further reduce the number of calls to the simulation codes, a Kriging
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surrogate model is used. A dedicated re�nement strategy of the Kriging model is proposed to
ensure the accuracy of the probability bound estimation while limiting the number of calls to the
expensive limit state function.
In chapter 11, the two proposed reliability analysis methods are applied on two launch vehicle
stage fallout problems. The launch vehicle designers have to take into account the non controlled
re-entry of the launch vehicle �rst stages (booster, �rst and sometimes second stages) and to
ensure that the fallout does not present risk for the populations. The estimation of the probability
for a stage to fall at a certain distance of the nominal impact point is an essential study that as
to be taken into account as early as possible. If this study is performed too late in the design
process and it appears that the stage falls into an inadequate region, it will force the designers to
modify the launch vehicle ascent trajectory which may degrade its performance.

The current chapter describes the method for estimating the probability of failure using Kriging-
based adaptive Importance Sampling in the presence of epistemic uncertainty on the input param-
eter distributions and is organized as follows. In section 9.2, the rare event probability estimation
problem is presented and the adaptive Importance Sampling (IS) is brie�y reviewed to introduce
the subsequent notations. Section 9.3 describes the proposed method and details the di�erent
steps of the algorithm. Finally, in section 9.4, the approach is applied and compared to reference
techniques on two analytical test cases to demonstrate its e�ectiveness.

9.2 Formulation of the uncertainty propagation problem and
description of adaptive Importance Sampling

9.2.1 Problem description

Consider a d-dimensional random vector U de�ned on the sampling space Ω by a joint PDF

φe(·) which depends on a parameter vector e =
[
e(1), . . . , e(w)

]T ∈ Rw. e su�ers from epistemic
uncertainties and only the variation domains of its components are known Υ = {e ∈ Rw|e(i) ∈
[e

(i)
min, e

(i)
max] ∀i ∈ {1, . . . , w}}. Consider a system characterized by a limit state function g : Ω→ R

assumed to be a deterministic continuous input-output function. Moreover, due to the complexity
of the physical phenomena involved in the simulation of g(·), it is supposed that g(·) is non linear.
In the presence of mixed aleatory and epistemic uncertainties impacting the system, the failure
probability is not unique and depends on the values taken by e (Figs. 4.1,4.2). To characterize
the probability of failure, it is possible to determine its domain of variation by �nding the lower
and upper bounds: { Pmin = min

e∈Υ
Pe(g(U) > 0)

Pmax = max
e∈Υ

Pe(g(U) > 0)
(9.1)

g(·) is a function that may be calculated through a complex industrial system simulation, so is
supposed to require a considerable computational e�ort to provide the output for a given input.
For a given e, a classical method to estimate the probability of interest is to perform CMC sim-
ulations (section 2.4.1) [Niederreiter and Spanier, 2000]. In that way, one generates independent
and identically distributed samples u(1)[φ

e], . . . ,u(M)[φ
e] according to φe(·) and estimates the
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probability in the following manner:

PCMC
e =

1

M

M∑
k=1

1g(u(k)[φe])>0 (9.2)

Concerning the estimation of rare events in an industrial context (e.g. estimation of a probability
of failure, determination of safety zone, etc.), it is well known that the use of classical methods
such as CMC is unadapted. Di�erent methods have been proposed to accurately estimate the
probability of rare events, such as Importance Sampling, Importance Splitting, etc. (see section
2.4). In this chapter, we focus on Importance Sampling and propose a method to propagate
the epistemic uncertainty on the input parameter distributions e to the Importance Sampling
probability estimate.

9.2.2 Adaptive Importance Sampling by Cross-Entropy

In this section, we brie�y recall the Cross-Entropy (CE) algorithm [Rubinstein and Kroese, 2004] for
estimating the probability of rare events with an initial �xed PDF (section 2.4.3). Let us consider
e0, a given parameter vector de�ning the input density φe0(·) (e.g. the expected value if φe0(·) is
modeled by a Gaussian law). CE consists in introducing a parametric density τe0

θ (·), with θ ∈ Θ a
parameter vector which is optimized in order to minimize the Kullback-Leibler divergence between
the unknown optimal auxiliary density τopt(·) and τe0

θ (·) in order to minimize the variance of the
probability estimate (section 2.4.3).
The adaptive CE algorithm for the IS probability estimation is [Rubinstein and Kroese, 2004]:

1. k = 1, de�ne τe0

θ0
(·) = φe0(·) and set ρ ∈]0, 1[

2. Generate the samples u(1)[τ
e0

θk−1
], . . . ,u(M)[τ

e0

θk−1
] according to the PDF τe0

θk−1
(·) and apply

the function g(·) in order to have υ(1) = g
(
u(1)[τ

e0

θk−1
]
)
, . . . , υ(M) = g

(
u(M)[τ

e0

θk−1
]
)

3. Compute the empirical ρ-quantile qk = min(0, υbρMc), where bzc denotes the largest integer
that is smaller than or equal to z

4. Optimize the parameter vector θ of the auxiliary PDF family as :

θk = argmax
θ∈Θ

{
1

M

M∑
i=1

[
1g(u(i)[τ

e0
θk−1

])>qk

τe0

θ0
(u(i)[τ

e0

θk−1
])

τe0

θk−1
(u(i)[τ

e0

θk−1
])

ln
[
τe0

θ (u(i)[τ
e0

θk−1
])
]]}

5. If qk ≤ 0, k ← k + 1, go to Step 2

6. Estimate the probability

PCEe0
(g(U) > 0) =

1

M

M∑
i=1

1g(u(i)[τ
e0
θk

])>0

τe0

θ0
(u(i)[τ

e0

θk
])

τe0

θk
(u(i)[τ

e0

θk
])

ρ is a parameter which is used to de�ne the intermediary thresholds and has to be chosen carefully.
Typical values for this parameter are given in [Boer et al., 2005].
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9.3 Kriging-based adaptive Importance Sampling in the pres-
ence of epistemic uncertainty on input probability distri-
butions

The uncertain parameters e(i), i = 1, . . . , w of the input PDF φe(·) are described using intervals:

e(i) ∈
[
e

(i)
min, e

(i)
max

]
. In order to propagate this uncertainty to the probability of interest, one has

to determine the probability bounds de�ned in Eqs.(9.1). Unfortunately, these optimizations are
numerically expensive because they induce nested optimization and probability calculation steps,
involving the input-output function g(·) which is also computationally expensive to evaluate. In
order to tackle this problem, two techniques to perform fast CE probability calculations during
the optimization process have been developed. The �rst one (section 9.3.1) aims to estimate a
new probability due to a change of e, based on preceding IS estimations, in order to reduce the
number of samples that have to be generated to determine the probabilities of interest during the
optimization. The second approach (section 9.3.2) aims at reducing the number of samples that
have to be evaluated on the exact function g(·) by building a metamodel dedicated to adaptive IS,
as proposed in [Balesdent et al., 2013]. Moreover, as the probability estimate is a random variable,
the optimization process has to be robust to noisy objective functions. As described hereinafter,
CMA-ES algorithm (section 5.5) is used to perform the optimization because it is able to e�ciently
handle noisy functions, as illustrated in several benchmarks [Hansen, 2009] (see chapter 5). An
alternative gradient-based technique to optimize the bounds of the probability of failure based on
its sensitivities will be proposed in the next chapter 10.

9.3.1 Method for estimating a new probability based on preceding Im-
portance Sampling estimations

9.3.1.1 Description of the approach

In this section, we present the proposed method for estimating a new probability based on the
preceding IS estimations. Let us consider the model described in the previous section, with the PDF
of the input variables depending on a �xed parameter vector e. Let us assume that an estimation of
the probability of interest has been computed for a "nominal value" e0 of the uncertain parameter
vector PCEe0 (g(U) > 0). The problem to address is the evaluation of this probability when the
input distribution parameters vary PCEe (g(U) > 0), without having to carry out a complete CE

estimation from the beginning, in order to reduce the computational cost.
The CE algorithm performed for the estimation of PCEe0 (g(U) > 0) provides the CE optimal auxiliary
density at the �nal iteration k: τe0

θk
(·) and the corresponding samples: u(1),...,(M)[τ

e0

θk
] for the initial

vector e0. These samples and this density may be used as the initialization of the CE algorithm
for estimating the probability of interest considering a new e: PCEe (g(U) > 0), in order to speed
up the convergence of CE. Indeed, considering the de�nition of the IS probability estimate (Eq.
2.37), the density τe0

θk
(·) is able, whatever e, to generate samples over the threshold which are

relevant to estimate the probability of interest. Consequently, knowing τe0

θk
(·) for the estimation

of PCEe0 (g(U) > 0), we may propose τeθ0
= τe0

θk
as the initialization of the CE algorithm in order to

estimate more quickly PCEe (g(U) > 0). This distribution will be then recon�gured using the CE

mechanisms in order to provide the optimal CE density for the considered e until the termination
criterion of the algorithm is reached (estimation of the relative standard deviation of the probability
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estimate under a given threshold Λ).

9.3.1.2 Proposed algorithm

Let us consider the density distribution τe0

θk
(·) and the corresponding samples u(1),...,(M)[τ

e0

θk
](·).

The proposed algorithm considers τe0

θk
as the initialization of CE and performs the classical CE

algorithm considering as the termination criterion not the quantile ρ but the convergence of the
probability estimate:

1. De�ne e the new value of the input distribution parameter vector, set j = 1, de�ne the value
of the termination criterion Λ, and consider τe0

θk
(·), u(1),...,(M)[τ

e0

θk
] from the previous CE �nal

iteration

2. Set τe
θ0

= τe0

θk
, u(1),...,(M)[τ

e
θ0

] = u(1),...,(M)[τ
e0

θk
]

3. Find the optimal parameter θj according to the CE optimization process:

θj = argmax
θ∈Θ

{
1

M

M∑
i=1

[
1g(u(i)[τ

e
θj−1

])>0

τeθ0
(u(i)[τ

e
θj−1

])

τeθj−1
(u(i)[τ

e
θj−1

])
ln
[
τeθ (u(i)[τ

e
θj−1

])
]]}

4. Generate the population u(1)[τ
e
θj

], . . . ,u(M)[τ
e
θj

] according to the PDF τeθj (·) and apply the
function g(·) in order to have υ(1) = g(u(1)[τ

e
θj

]), . . . , υ(M) = g(u(M)[τ
e
θj

])

5. Compute the CE probability estimate

PCEj =
1

M

M∑
i=1

1g(u(i)[τ
e
θj

])>0

τeθ0
(u(i)[τ

e
θj

])

τeθj (u(i)[τ
e
θj

])

6. Estimate V(PCEj ) according to Eq.(2.40). If
√

V(PCEj )

PCEj
> Λ, set j ← j + 1 and go to Step 3

7. Estimate the probability PCEe (g(U) > 0) = 1
M

M∑
i=1

1g(u(i)[τ
e
θj

])>0

τeθ0
(u(i)[τ

e
θj

])

τeθj (u(i)[τ
e
θj

])

In this section, a method to limit the number of iterations of CE and consequently the number of
samples of U that have to be generated to estimate the probability of interest has been developed.
In the following section, we describe an approach to reduce the number of points that have to be
physically simulated on g(·) at Step 4 of the described algorithm.

9.3.2 Kriging-based adaptive Cross Entropy

9.3.2.1 Description

In this section, a Kriging-based method to the adaptive IS is described. The main idea of this
method is to build the surrogate model only in the area of interest i.e. in the vicinity of the
threshold and in high probability content regions. Indeed, let ĝ(·) be the surrogate model of g(·),
the estimated probability is the same using g(·) or ĝ(·) if the two indicator functions 1g(·)>0 and
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1ĝ(·)>0 take the same values over the input variable variation domain.
Kriging surrogate modeling [Matheron, 1963; Sasena, 2002] is based on Gaussian process. It
allows to estimate the variance of the surrogate prediction (section 2.5.1). This entity may be
used to select the points to evaluate on g(·) to improve the accuracy of the surrogate model. The
way to update the model is the critical point in Kriging-based modeling and di�erent strategies
may be applied (see section 2.5.1.1). In the following, a method developed in [Balesdent et al.,
2013] to update the surrogate model dedicated to the adaptive IS is presented and will be used in
the proposed method.

Let us brie�y describe the Kriging model used to approximate g(·) on its input space Rd. Let
X = {x(1), . . . ,x(p)}, X ∈ Ωp be an initial training set composed of p samples for which g(·)
has been evaluated gp(X ) =

[
g
(
x(1)

)
, . . . , g

(
x(p)

)]T
. Kriging model is a Gaussian process G(·),

expressed for any input vector u ∈ Rd, as:

G(u) = m(u) + Z(u), (9.3)

withm(·) a regression model estimated from available data and Z(·) a zero-mean Gaussian process.
As presented in section 2.5.1, the Kriging predictor at any u ∈ Rd is de�ned as:

ĝ(u,X ) = m(u) + r (u,X )
T

R−1(X )
(
gp(X )−mp(X )

)
(9.4)

A con�dence interval of the prediction may be computed through the variance of the Kriging
prediction given by:

σ̂2(u,X ) = σ2
Z

(
1− r(u,X )TR−1(X )r(u,X )

)
. (9.5)

9.3.2.2 Method used to update the Kriging model

In this section, we describe the method used to update the Kriging model depending on the current
iteration (l) of CE and the value of the ρ-quantile ql. The method has been proposed in [Balesdent
et al., 2013] and is dedicated to the re�nement of Kriging model for IS. At the lth iteration of CE,
let X = {x(1), . . . ,x(p)} be the current design of experiments, Ul the population generated by the
auxiliary PDF (for conciseness, we do not mention the sampling distribution in the notation of this
section : Ul = {u(1)[τ

e
θl

], . . . ,u(M)[τ
e
θl

]}. Let Ũl be the points that may be potentially misclassi�ed
(i.e. their predictions by Kriging model are above the current threshold ql while the true values
g(Ũl) are below and conversely). Using the Kriging properties, Ũl is de�ned as:

Ũl = {u(i) ∈ Ul, i = 1, . . . ,M |ĝ(u(i),X )− ησ̂(u(i),X ) < ql < ĝ(u(i)X ) + ησ̂(u(i),X )}, (9.6)

where η is a parameter that de�nes the con�dence level of the Kriging model (e.g. ηS = 1.96
de�nes a con�dence level of 95%). Only these samples (and not the total population Ul) have to
be precisely determined in order to compute the auxiliary density (intermediate iterations of CE)
of the probability estimate (�nal iteration). This is performed by appending new sampled points in
the current training set according to a criterion in order to improve the accuracy of the surrogate
model.
Since CE is an adaptive IS method, the surrogate model has to be de�ned not only for the �nal
threshold S = 0 but also for each of the intermediary thresholds ql. De�ning the Kriging model with
the same accuracy (ηS) at all of the IS intermediate thresholds is not an e�cient strategy because
it requires to compute g(·) on many points which do not intervene directly in the probability
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estimation (points that de�ne the intermediate thresholds but that are not involved directly in the
probability computation). In order to adjust the accuracy of the surrogate model to the adaptive
IS, η is de�ned for each iteration as a function of the current ρ−quantile ql and the �nal threshold
S = 0, in such a way that at the lth iteration of the adaptive IS method, we have:

ηl = ηS

(
1

ql + 1

)
(9.7)

The new point which has to be added to the current design of experiments at this iteration [l]

should be the one that best reduces the uncertainty on Ũl. Let AN(X ,x, Ũl) be the criterion
quantifying the improvement of the global uncertainty of Ũl by adding x to the current training
set X :

x∗ = argmax
x∈supp(Ωd)

(AN(X ,x, Ũl)) = argmax
x∈supp(Ωd)


Card(Ũl)∑
i=1

|σ̂(ũ(i),X )− σ̂(ũ(i),X ,x)|

 (9.8)

with

• σ̂(ũ,X ) the standard deviation of the prediction at ũ related to the Kriging model built from
the current training set X ,

• σ̂(ũ,X ,x) the standard deviation of the prediction at ũ related to the Kriging model built
from the extended training set {X ,x}[Balesdent et al., 2013]. We have:

σ̂2
(
ũ,X ,x) = σ2

Z′(1− r′(ũ,X ,x)TR
′−1(X ,x)r′(ũ,X ,x)

)
(9.9)

with
r′(ũ,X ,x) = [r′(ũ,X )T,Corr(ũ,x)]T (9.10)

and

R′(X ,x) =


Corr(x(1),x(1)) · · · Corr(x(1),x(p)) Corr(x(1),x)

...
. . .

...
...

Corr(x(p),x(1)) · · · Corr(x(p),x(p)) Corr(x(p),x)
Corr(x,x(1)) · · · Corr(x,x(p)) Corr(x,x)

 . (9.11)

Since g(·) is unknown, σ2
Z′ is approximated by σ2

Z which is the estimated process standard deviation
for the training set X . This approximation may induce an error which is expected to be small when
Card(X ) is large enough. This standard deviation may also be assumed to be known and kept
constant [Cornford et al., 2005]. The optimization of the criterion AN enables to �nd the sample
points with the biggest in�uence on the total standard deviation of the uncertain set. CMA-ES

algorithm is used to optimize the re�nement criterion, since this latter may be multimodal and
present local minima. This optimization strategy has also been exploited in a similar context in
[Picheny, 2009; Janusevskis and Le Riche, 2013; Balesdent et al., 2013].
This re�nement process is included in the initial CE algorithm for IS probability estimation (the step
2 of "classical CE") and in the step 4 of the proposed algorithm (section 9.3.1.2) for re-estimating
the probability with a change in input parameter distribution value):
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1. Construct a Kriging surrogate model of the limit state function g(·) from the current training
set X ,

2. Predict ĝ(u(1),X ), . . . , ĝ(u(M),X ) using the metamodel, compute the con�dence domain and
determine Ũ,

3. While Card(Ũ) 6= 0

(a) Optimize the criterion AN with CMA-ES to determine x∗,

(b) Evaluate g(x∗) and add it to the current training set, M ←M + 1,

(c) Re-estimate the parameters of the Kriging model from the new training set,

(d) Predict ĝ(u(1),X ), . . . , ĝ(u(M),X ) using the surrogate model, compute the con�dence
domain and determine Ũ.

This approach allows to reduce the number of points to evaluate on g(·) at the intermediary
iterations and to have an accuracy of ηS = 1.96 (95%) for the probability estimation at the �nal
iteration of the CE algorithm. The relative part of the IS estimator variance due to the use of
the Kriging surrogate model may be determined by deriving the probability of misclassi�cation
of a sample as described in [Balesdent et al., 2013]. To distinguish the probability estimated
with the exact function g(·) and with the surrogate model, the following notation is adopted:
P̂max = max

e∈Υ
PCEe (ĝ(U,X ) > 0) (same for P̂min).

Since the rare event probability estimation calculated by IS is a multivariate integral estimation, it
is a random variable. Therefore, the optimization process to compute the probability bounds has
to be able to handle noisy objective functions. Optimization of noisy functions is a key problem
as illustrated in chapter 5. Moreover, to our knowledge, no derivation of the sensitivity of the
probability of failure computed by IS-CE has been derived with respect to epistemic uncertainty
variables. Therefore, in this part, CMA-ES algorithm is used to �nd the probability bounds at it
is an unconstrained noisy optimization problem. The di�erent steps of the proposed approach to
�nd the bounds on the probability estimate are illustrated in Figure 9.2.
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Figure 9.1: Proposed approach to propagate the epistemic uncertainty on input distribution pa-
rameters to the rare event probability estimate with a reduced computational cost

9.4 Analytical application cases

In order to evaluate the e�ciency of the proposed method, the current one has been compared with
two "classical engineering methods" on two test-cases of di�erent complexities (one analytical toy
case, one academic analytical test case). The classical methods used for determining the probability
bounds Pmax and Pmin are the following:

• use of Crude Monte Carlo (CMC) simulations for both probability estimations and probability
bound calculation (CMC-CMC) with the exact function g(·),

• use of classical IS for probability estimation (without Kriging) and CMC for probability bound
determination (CMC-IS) with the exact function g(·).

For that purpose, a hundred samples of e have been generated with CMC for each bound determi-
nation using a uniform distribution U in Υ. For each sample, the corresponding probability P(·)
has been computed by using a huge CMC estimation in the �rst case and by using classical IS in
the second case. Pmax (and respectively Pmin) is then de�ned as the maximum (respectively the
minimum) of the obtained set of probability estimates. Pmax is the bound on the probability that
is the most interesting to design a complex system as it is in general a requirement to respect.
In order to compare the di�erent methods, the optimization process by CMA-ES of the proposed
method has been stopped at the 100th iteration to perform the comparison with the same compu-
tational budget for the probability bound determination process in terms of number of probability
estimations (of course, the computational budgets involved to perform the probability estimations
are not the same and depend on the methods). The parameter Λ of the probability estimation
algorithm has been chosen in such a way that the standard deviation of the probability estimate
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is below 10%.

9.4.1 Ackley test case

9.4.1.1 Description

The input-output function of the toy case corresponds to an Ackley-like modi�ed function. The
traditional Ackley function [Ackley, 1987] has been modi�ed in order to be consistent with the
level of probability of failure (Fig. 9.2). This function is a classical multimodal non linear and
non convex optimization benchmark function and is relevant to evaluate the e�ciency of algorithm
to �nd e that maximizes or minimizes the probability estimate. The expression of the limit
state function is given in Eq.(9.14). The considered uncertain parameters are the means of the
multivariate Gaussian input distribution. The covariance matrix is �xed and is equal to identity.
The probability of failure calculated with the classical CE for the reference value of e is 6.3×10−5.

S = 0 (9.12)

U ∼ N (e, I2) (9.13)

g :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R2 → R

x→ −10 +
1

y

−a exp
−b

√√√√√√
2∑
i=1

(u(i) − κ)2

l

− exp

(
b

l
cos

(
c

2∑
i=1

(u(i) − κ)2)
))

+ d


(9.14)
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Figure 9.2: Aclkey function, threshold and initial PDF

with a = 20, b = 0.2, c = 2π, d = a + exp(1) + 5.7, y = 0.8, κ = 2.5 and l = 2. The bounds
on the input distribution parameters are: emin = [−1,−1]T and emax = [4, 4]T . The bounds on
these parameters are very large and non realistic in practice. These variation domains have been
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arbitrary chosen large in order to test the ability of the proposed algorithm to �nd the lower and
upper bounds on the probability estimate in critical conditions. The maximum of the function is
located at (2.5, 2.5).

9.4.1.2 Results

The results obtained for this test case are illustrated in Figures 9.3-9.9 and summarized in Table 9.5.
The estimated bounds on the probability interval are P̂min = 1.65× 10−7 and P̂max = 3.14× 10−2,
and correspond to e = [−1.00,−1.00]T and e = [2.48, 2.49]T , that is consistent with the reality
(Fig. 9.3-9.9). Indeed, the parameters that give the lower bound are located at the opposite of
the maximum of the Ackley function and at the bounds of the input parameter variation domain.
On the other hand, the input parameters that provide the maximal probability are located near
the coordinates of the maximum of the transfer function. In that way, the combination of these
parameters allows to sample a maximum of points over the threshold and consequently allows to
maximize the failure probability.

U(1)

U
(2

)

Figure 9.3: Initial PDF and limit state func-
tion
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Figure 9.4: Initial PDF in 3D and limit state
function
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Table 9.5: Synthesis of the Ackley test case
Proposed method CMC-CMC CMC-IS

Number of samples required by
CE for estimating the probability 1.20× 104 106 1.20× 104

with reference e0

Number of samples evaluated on 290 / /
g(·) for estimating the probability
with reference e0 using Kriging

Estimation of P̂e0 (g(U) > 0) 6.32× 10−5 6.35× 10−5 6.33× 10−5

Std deviation of the probability 2.29% 12.5% 4.43%
estimate for reference e0

P̂max 3.14× 10−2 2.85× 10−2 2.88× 10−2

e corresponding to P̂max [2.48, 2.49]T [2.44, 2.20]T [2.29, 2.17]T

Number of points evaluated on g(·) to 274 108 1.20× 106

�nd P̂max

Std deviation of Pmax 2.17% 0.58% 4.29%

P̂min 1.65× 10−7 5.00× 10−6 1.67× 10−6

e corresponding to P̂min [−1.00,−1.00]T [−0.42,−0.60]T [−0.49,−0.80]T

Number of points evaluated on g(·) 201 108 1.20× 106

to �nd P̂min

Std deviation of P̂min 2.03% 45% 4.88%

Average number of points
evaluated on g(·) to
provide an estimation of P 2.37 106 1.20× 104

during the probability
bound calculation
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Figure 9.6: Optimal PDF with e =
[2.48, 2.49]T leading to P̂max
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Figure 9.7: Optimal PDF in 3D with e =
[2.48, 2.49]T leading to P̂max
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Figure 9.8: Optimal CE auxiliary PDF used
to compute leading to P̂max
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Figure 9.9: Optimal CE auxiliary PDF in 3D
used to compute leading to P̂max

In this test-case, the Ackley function is relatively smooth and low dimensional. The Kriging
surrogate performs well to model the function and only a few number of reevaluations of g(·) are
required for re-estimating the probability with a change in e.
In order to evaluate the e�ciency of the proposed method, estimations of Pmax and Pmin have
been performed using "classical methods", i.e. using CMC for both probability estimations and
probability bound calculation (CMC-CMC), and classical IS for probability estimation and CMC for
probability bound determination (CMC-IS). For that purpose, a hundred samples of θ have been
generated with CMC, and for each of them,
In order to evaluate the e�ciency of the proposed method, the estimations of Pmax and Pmin have
been performed with the two classical methods. For this case, the simulation budget of the prob-
ability estimation by CMC-CMC has been �xed to 106. The results obtained with CMC-CMC and
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CMC-IS are summarized in Table 9.5. Concerning the estimation of the probability for the reference
e0, all the methods provide the same estimation of the probability but the standard deviation of
proposed and classical IS are much lower that CMC, that points out a better accuracy of the esti-
mation. Since the simulation budget for each CMC probability estimation is 106, the probabilities
lower than 10−6 are not a�ordable with this technique (and the probabilities lower than 10−5 are
very imprecise), consequently the lower bound on the probability estimate cannot be estimated
using a total simulation budget of 108. The proposed method requires 765 (=290+274+201) evalu-
ations of g(·) to determine the probability bounds. CMC-IS requires 1.20× 106 samples to estimate
the bounds, but the lower bound cannot be determined accurately because the simulation budget
of 100 probability estimations is not su�cient in this case. As we can see, the proposed approach
clearly outperforms CMC based procedures, in terms of calculation cost and quality of the found
results. In this case, the average number of points really evaluated on the input-output function
to provide an estimation of the probability during the optimization process is very low and less
than 3.
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9.4.2 Non-linear oscillator

9.4.2.1 Description

The second analytical test case is a one-degree-of-freedom non-linear oscillator. This example is
used in [Rajashekhar and Ellingwood, 1993; Gomes and Awruch, 2004] but has been modi�ed in
such a way that the failure corresponds to a rare event. The dimension of the input space is 6 and
the di�erent variables are distributed according to 6 Gaussian distributions. The means of c1, c2,
r and m, and the standard deviations of t1 and F1 are supposed to be uncertain.

S = 0 (9.15)

U = [c1, c2, r,m, t1, F1]
T ∼

[
N (e

(1)
, 0.1

2
),N (e

(2)
, 0.01

2
),N (e

(3)
, 0.05

2
),N (e

(4)
, 0.05

2
),N

(
1, e

(5)2
)
,N
(

1, e
(6)2

)]T
(9.16)

g :

∣∣∣∣∣∣∣∣
R6 → R

u = [c1, c2, r,m, t1, F1]
T → −1− 3r −

∣∣∣∣∣ 2F1

c1 + c2
sin

(√
c1 + c2

m

t1

2

)∣∣∣∣∣ (9.17)

The means (respectively variances) are supposed to vary by 2% (respectively 10%) around their
reference value (Table 9.10). The probability of failure calculated with the classical CE for the
reference value of e is 3.32× 10−6.

Table 9.10: Variation domain of the uncertain parameters

Parameter Variation domain

E(c1) [0.98, 1.02]

E(c2) [0.098,0.102]

E(m) [0.98,1.02]

E(r) [0.49,0.51]

σ(t1) [0.18,0.22]

σ(F1) [0.18,0.22]

9.4.2.2 Results

The results obtained for the oscillator test-case are given in Table 9.11.
The proposed method requires approximately 1755 evaluations of the exact limit state function in
order to determine the two bounds of the probability estimate interval, that represents approxi-
mately 7 evaluations of the function per probability estimation during the optimization process,
which is very low. The estimated bounds on the probability correspond to the bounds of the

192



CHAPTER 9. RELIABILITY ANALYSIS IN THE PRESENCE OF EPISTEMIC
UNCERTAINTY ON THE HYPER-PARAMETERS OF PDF DISTRIBUTIONS

uncertain parameter variation domain e.
Concerning CMC-CMC, since the dimension of the input-parameter variation domain is 6, the
method consisting in performing a huge CMC of the parameters to estimate the bounds is clearly
not a�ordable here. Indeed, with a total simulation budget of 109 for the input-output function
evaluations, only 100 combinations of the parameters can be evaluated if 107 samples per parameter
combination are used for estimating the probability by the CMC at lower level. As in the previous
example, the proposed method outperforms CMC-CMC and CMC-IS in terms of quality of the results
and number of evaluations of the input-output function. One can notice here that CMC-CMC and
CMC-IS provide quite di�erent estimations of P̂min for quasi-identical e. This is due to the rareness
of the considered event corresponding to the simulation budget used in CMC-CMC, that implies
very inaccurate results for such range of probability (very high variance of the estimation). The
accuracies of the probability estimates P̂e0 , P̂min and P̂max(illustrated by the standard deviation)
are in the same order of magnitude (around 5%) for the proposed and CMC-IS methods. This is
due to the use of IS which performs well to estimate the considered probabilities. However, the
di�erence in terms of probability value of P̂min (2.68× 10−7 vs. 4.96× 10−7) may be explained by
the found values of e corresponding to P̂min, which are di�erent for the two methods. The deter-
mination by optimization (proposed method) is more e�cient to �nd the optimal e corresponding
to P̂min, than CMC. An analog reasoning may be used to explain the di�erence in the P̂max values.

9.5 Limitations of the proposed approach

The proposed approach presents several limits. Due to the use of CE to solve reliability analysis
problems, multiple failure regions are not intrinsically taken into account. Several techniques have
been proposed to extend CE to multiple failure zones [Kurtz and Song, 2013]. An alternative to CE

could be to use NAIS to perform IS (section 2.4.3). Moreover, due to the use of Kriging surrogate
model, the reliability analysis problem that may be solved are limited to low dimensional problem as
Kriging present some computational cost and accuracy issues in high dimensions [Shan and Wang,
2010]. The proposed method decreases the computational cost compared to classical techniques,
however, it presents a higher level of complexity in terms of implementation and tuning compared
to CMC classically used in UMDO which may complicate its use within this framework. Further
investigations are required to incorporate the proposed technique within UMDO.
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Table 9.11: Synthesis of the oscillator test-case using proposed method, CMC-CMC and CMC-IS
Proposed method CMC-CMC CMC-IS

Number of samples required by
CE for estimating the probability 1.40× 104 107 1.40× 104

with reference e0

Number of samples evaluated on
g(·) for estimating the probability 341 / /
with reference e0 using Kriging

Estimation of P̂e0 (g(U) > 0) 3.33× 10−6 3.37× 10−6 3.32× 10−6

Std deviation of the probability 5.34% 17.8% 5.45%
estimate for reference e0

P̂max 2.22× 10−5 1.45× 10−5 1.38× 10−5

e corresponding to P̂max [0.98, 0.10, 0.98, [0.99, 0.10, 1.00, [0.99, 0.10, 1.00,
0.49, 0.22, 0.21]T 0.49, 0.21, 0.21]T 0.49, 0.21, 0.21]T

Number of points evaluated on g(·) 662 109 1.40× 106

to �nd P̂max

Std deviation of the P̂max estimate 4.39% 8.30% 5.30%

P̂min 2.68× 10−7 4.00× 10−7 4.96× 10−7

e corresponding to P̂min [1.02, 0.10, 1.02, [1.00, 0.10, 0.99 [1.01, 0.10, 1.00,
0.51, 0.18, 0.18]T 0.50, 0.18, 0.19]T 0.50, 0.18, 0.18]T

Number of points evaluated on g(·) 752 109 1.40× 106

to �nd P̂min

Std deviation of the P̂min estimate 6.04% 50.0% 6.10%

Average number of points
evaluated on g(·) to
provide an estimation of P 7.07 107 1.40× 104

during the probability
bound calculation

9.6 Conclusion

In this chapter, a method for propagating parameter uncertainty on the input distributions to the
rare event probability estimation has been proposed. To this end, an approach to reevaluate the
IS estimation due to a change in the input distribution parameters has been developed. It allows
to reduce the computational cost of the probability evaluations. The proposed method involves a
surrogate model with controlled error, adapted to IS, in order to reduce the number of the exact
function evaluations. A parametric IS method is adopted with an accelerated version of CE in
which the auxiliary density is initialized in accordance to the previous CE estimation for another
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epistemic uncertainty value decreasing the computational cost. Moreover, a dedicated optimization
algorithm (CMA-ES) is used in order to estimate the probability bounds in the presence of noise
inherent to the use of IS. The proposed approach has been compared with two engineering methods
involving CMC and classical IS on two analytical test cases. The developed method requires fewer
calls to the exact limit state function and provides better estimation of the probability bounds. In
chapter 11 this approach will be applied on a launch vehicle analysis problem involving a safety
zone determination for a stage fallout.
In the next chapter, another reliability analysis method is proposed to handle epistemic uncer-
tainty directly a�ecting the limit state function.

• Context:

� Reliability analysis in the presence of mixed aleatory/epistemic uncertainties,

� Epistemic uncertainty on the hyper-parameters of the aleatory distributions,

� State-of-the-art methods are either computationally expensive (CMC) or limited to
simple problem (FORM), see chapter 4.

• Contributions:

� Development of a new reliability analysis method based on an accelerated version of
CE combined with an adapted Kriging model to IS and a dedicated re�nement strategy.

� Application and comparison of the proposed approach on two analytical test cases,
highlighting its e�ciency to propagate epistemic uncertainty to failure probability.

• Actionable information:

� Useful for problems that present modeling uncertainty in the hyper-parameters of the
aleatory distributions,

� Essential to ensure system design reliability based on our present uncertain modeling
knowledge,

� Accurate reliability estimation could be used to re-optimize the safety margins.

• Perspectives:

� Extend the approach to handle multiple failure regions,

� Extend the technique to solve high dimensional problems (>10),

� Incorporate the method within the UMDO context.
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• Develop a reliability analysis method in the presence of epistemic uncertainty a�ecting the
system limit state function,

• Apply and compare the proposed approach to reference techniques on an analytical test
case.

Chapter goals

197



Contributions to Uncertainty-based Multidisciplinary Design
Optimization, application to launch vehicle design

10.1 Introduction and problem statement

In the previous chapter, a technique has been presented to take into account epistemic uncertainty
a�ecting the hyper-parameters of PDF distributions in reliability assessment problems. This chap-
ter is devoted to the presentation of a reliability analysis method dedicated to the presence of
epistemic uncertainty modifying the limit state of the system. Lack of knowledge or simpli�cation
assumptions may introduce model uncertainties that have to be taken into account to accurately
estimate the reliability of a system. These uncertainties directly a�ect the modeling of the sys-
tem dynamics and therefore the limit state function delimiting safe from failure regions. When
these epistemic uncertainties are modeled with interval formalism, dedicated techniques have to
be employed. Indeed, the failure probability is not unique and depends on the values taken by
epistemic uncertainty . To characterize the probability of failure, it is possible to determine its
domain of variation. The proposed approach to solve this type of problem consists of a two steps
sequential loop. Firstly, an Interval Analysis (IA) which includes Probability Analysis (PA) based
on Subset Simulation combined with a Kriging surrogate model of the limit state function is per-
formed. Secondly, the metamodel re�nement is performed to ensure e�cient probability bound
estimations. This surrogate model is constructed in the joint aleatory/epistemic uncertain space
in order to accurately represent the limit state function in the area of interest i.e. in the vicinity of
the threshold, in high probability content regions and around the epistemic variable values leading
to the minimal and maximal failure probabilities. The Kriging model does not need to be accurate
in the whole epistemic uncertain space or in low probability content regions but just around the
optimal epistemic variable values, i.e. the values leading to the probability bounds. The Kriging
prediction variance enables to control the surrogate model error and to re�ne it. The re�nement
strategy is based on a modi�cation of the Generalized Max-min [Lacaze and Missoum, 2014b] to
take into account the presence of epistemic uncertainty.
Consider a d-dimensional random vector U de�ned on the sampling space Ω by a jointPDF φ(·)
and a w-dimensional vector e = [e(1), . . . , e(w)]. e represents epistemic uncertainties de�ned using

intervals: e ∈ Υ = {e ∈ Rw| e(i) ∈
[
e

(i)
min, e

(i)
max]

]
∀i ∈ {1, . . . , w}}. Consider a system characterized

by a limit state function g : Ω ×Υ → R assumed to be a deterministic continuous input-output
function. The reliability analysis of the system consists in determining its probability of failure
de�ned as P(g(U, e) > S) with S = 0 the threshold. Due to the complexity of the physical
phenomena involved in the simulation of g(·), it is supposed that g(·) is non linear and presents
multiple failure regions. In the presence of mixed aleatory and epistemic uncertainties impacting
the system, the failure probability is not unique and depends on the values taken by e. To
characterize the probability of failure, it is possible to determine its domain of variation by �nding
the lower and upper bounds: { Pmin = min

e∈Υ
P(g(U, e) > 0)

Pmax = max
e∈Υ

P(g(U, e) > 0)
(10.1)

The determination of the probability bounds requires an optimization problem solving. In this
chapter, gradient-based optimization techniques are favored due to their fast convergence proper-
ties and their scalability when gradients are available. In order to use gradient-based optimization
algorithms, a sensitivity estimation of the probability of failure with respect to epistemic uncertain
variables e is proposed in the �rst section of this chapter. The sensitivity will be latter used in
IA to �nd the bounds on the probability of failure. For this purpose, an analytical derivation
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based on the properties of the indicator function 1(·) is proposed (section 10.2). Estimators for
the sensitivity using CMC simulation and Subset Simulation are subsequently derived. In addition,
the numerical implementation of the proposed sensitivities requires the approximation of a Dirac
distribution (section 10.2.2). In section 10.2.3, the sensitivity estimates are compared to a case
where the exact sensitivities are available. This section also discusses the choice of a parameter
involved in the approximation of the Dirac distribution. Then, in section 10.3, using these sensi-
tivities, the proposed sequential method and the di�erent steps to estimate the failure probability
bounds with reduced computational cost is detailed. Finally, in section 10.4 the proposed reliabil-
ity assessment technique is compared to a reference approach which consists in an analytical test
case to demonstrate the e�ectiveness of the proposed approach.

10.2 Sensitivity of the probability of failure with respect to
decision variables

In this section the sensitivities are derived for a decision variable vector z (which may be for
instance deterministic design variables or epistemic uncertain variables). In the next sections, the
considered decision variables in IA will be the epistemic uncertain variable vector e. In its most
general form, a probability of failure is de�ned as:

P(z,θ) =

∫
Ωf (z)

φθ(u)du (10.2)

where z ∈ Rn are decision variables (e.g. design variables) and θ ∈ Rp are hyper-parameters of the
PDF φθ(·) of the random variables U ∈ Ω, with Ω the sampling space. Ωf stands for the failure
domain. Note that θ only in�uences the joint distribution while z only in�uences the de�nition of
the failure domain Ωf . Beyond reliability assessment, such a probability of failure also appears in
Reliability-based Design Optimization (RDBO) [Youn et al., 2004; Aoues and Chateauneuf, 2010]
or in UMDO problems. When gradient-based techniques are used to solve UMDO problems, the
sensitivities of P(·) with respect to the decision variables are needed [Zou and Mahadevan, 2006;
Lee et al., 2011]. Sensitivities of P(·) with respect to θ have been derived for various reliability
analysis techniques [Zou and Mahadevan, 2006; Song et al., 2009; Dubourg et al., 2011]. However,
to our knowledge, there are no existing derivations of sensitivities with respect to decision variables,
such as deterministic design variables or epistemic uncertain variables.
The di�culty stems from the dependence of the failure domain on the decision variables. In many
approaches, probabilities of failure are calculated based on a �xed failure domain. For methods
involving the estimation of the gradient of the probability of failure, this has con�ned current UMDO

and RDBO techniques to problems that exclude deterministic design variables or gradient-based
optimization algorithms. Sensitivities of the probability of failure with respect to deterministic
variables would therefore substantially extend previous gradient-based RDBO techniques and o�er
new perspectives in UMDO.
The objective of this section is to propose a formulation of the sensitivity of the failure probability
with respect to the decision variable vector z. For this purpose, an analytical derivation based
on the properties of the indicator function 1(·) is proposed (section 10.2). Estimators for the
sensitivity using CMC simulation and Subset Simulation (section 10.2.1) are subsequently derived.
In addition, the numerical implementation of the proposed formulation requires the approximation
of a Dirac distribution (section 10.2.2). In section 10.2.3, the sensitivity estimates are compared
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to a case where the exact sensitivities are available. This section also discusses the choice of a
parameter involved in the approximation of the Dirac distribution.
In most applications, the failure domain is expressed as:

Ωf (z) = {u ∈ Ω| g(u, z) > 0} (10.3)

which depends on random variable vector U and decision variable vector z. This leads to another
well known expression of the probability of failure:

P(z) =

∫
Ω

1g(u,z)>0φ(u)du (10.4)

For the sake of clarity and without loss of generality, θ was omitted. According to the di�erentiation
rules under the integral symbol using the theory of distributions [Schwartz, 1957; Jones, 1982], the
sensitivity of P(·) with respect to the variable z(k), kth coordinate of z reads:

∂P
∂z(k)

∣∣∣∣
z

=
∂

∂z(k)

∫
Ω

1g(u,z)>0φ(u)du

=

∫
Ω

∂

∂z(k)
1g(u,z)>0φ(u)du (10.5)

From the theory of distributions, the derivative of the indicator function is:

d1y≥0

dy
= −d1y≤0

dy
= δy =

{
+∞ if y = 0

0 otherwise
(10.6)

where δ is the Dirac distribution. Hence, Eq.(10.5) becomes:

∂P
∂z(k)

∣∣∣∣
z

=

∫
Ω

∂g

∂z(k)

∣∣∣∣
u,z

δg(u,z)φ(u)du (10.7)

Note that Eq.(10.7) involves the derivative of g(·). Such derivatives are always available if g(·) is
replaced by an approximation ĝ(·) such as an adequate metamodel.

10.2.1 Sensitivity estimators

In practice, the integrals involved in Eq.(10.4) and Eq.(10.7) are intractable. In order to evaluate
the integral in Eq.(10.4), sampling-based techniques are typically used. The CMC estimator is
de�ned as:

P(z) ≈ 1

M

M∑
i=1

1g(u(i),z)>0 (10.8)

where U =
{
u(1), . . . ,u(M)

}
is a CMC sample of size M distributed according to φ(·). From

Eq.(10.7), the CMC estimator of ∂P
∂z(k)

is:

∂P
∂z(k)

∣∣∣∣
z

≈ 1

M

M∑
i=1

∂g

∂z(k)

∣∣∣∣
u(i),z

δg(u(i),z) (10.9)
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However, in the case of a rare event probability estimation, CMC simulations are intractable. For
this reason, a wide variety of variance reduction techniques have been introduced over the years
[Rubinstein and Kroese, 2011]. Among them, the Subset Simulation (SS) [Au and Beck, 2001;
Song et al., 2009] derives a small probability of failure as a product of larger conditional ones.
Speci�cally, given a failure domain Ωf , let Ωf0 ≡ Ω ⊃ Ωf1 ⊃ · · · ⊃ Ωfλ ≡ Ωf be a decreasing
sequence of λ+ 1 failure domains where:

Ωfi(z) = {u| gi(u, z) > 0} ∀i = {1, . . . , λ} (10.10)

Eq.(10.4) can be expressed as:

P(z) =
λ∏
i=1

Pi(z) (10.11)

where:

P1(z) =

∫
Ω

1g1(u,z)>0φ(u)du (10.12)

and for ∀i = {2, . . . , λ}:

Pi(z) =

∫
Ω

1gi(u,z)>0τi−1

(
u|Ωfi−1

(z)
)

du (10.13)

with τi−1

(
u|Ωfi−1(z)

)
the conditional auxiliary PDF associated to the failure domain Ωfi(z) de�ned

as [Song et al., 2009].

τi−1

(
u|Ωfi−1

(z)
)

=
1gi−1(u,z)>0∏i−1
j=1 Pj(z)

φ(u) (10.14)

Therefore:

Pi(z) =

∫
Ω

1gi(u,z)>0

1gi−1(u,z)>0∏i−1
j=1 Pj(z)

φ(u)du

=

∫
Ω

1gi(u,z)>0∏i−1
j=1 Pj(z)

φ(u)du ∀i = {2, . . . , λ} (10.15)

Based on SS, the sensitivity of P(·) is:

∂P
∂z(k)

∣∣∣∣
z

= P(z)
λ∑
i=1

1

Pi(z)

∂Pi
∂z(k)

∣∣∣∣
z

(10.16)

For the �rst SS sub-domain, we have:

∂P1

∂z(k)

∣∣∣∣
z

=

∫
Ω

∂g1

∂z(k)

∣∣∣∣
u,z

δg1(u,z)φ(u)du (10.17)
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and for any subsequent step i > 1:

∂Pi
∂z(k)

∣∣∣∣
z

=

∫
Ω

∂

∂z(k)

[
1gi(u,z)>0∏i−1
j=1 Pj(z)

]
φ(u)du

=

∫
Ω

∂gi
∂z(k)

∣∣∣∣
u,z

δgi(u,z)∏i−1
j=1 Pj(z)

φ(u)du

+

∂
∂z(k)

[∏i−1
j=1 Pj(z)

]
∏i−1
j=1 P2

j (z)

∫
Ω

1gi(u,z)>0φ(u)du (10.18)

Noting the three following relations:∫
Ω

1gi(u,z)>0φ(u)du =
i∏

j=1

Pj(z) (10.19)

∂

∂z(k)

i−1∏
j=1

Pj(z)

 =

i−1∏
j=1

Pj(z)

i−1∑
j=1

1

Pj(z)

∂Pj
∂z(k)

∣∣∣∣
z

(10.20)

φ(u) =

∏i−1
j=1 Pj(z)

1gi−1(u,z)>0
τi−1

(
u|Ωfi−1

(z)
)
∀u ∈ Ωfi−1

(z) , (10.21)

where φ(·) is de�ned only on Ωfi−1
(z) and that the support of τi−1

(
·|Ωfi−1

(z)
)
is Ωfi−1

(z), the ith

intermediate sensitivity is:

∂Pi
∂z(k)

∣∣∣∣
z

=

∫
Ω

∂gi
∂z(k)

∣∣∣∣
u,z

δgi(u,z)τi−1

(
u|Ωfi−1

(z)
)

du

+ Pi(z)
i−1∑
j=1

1

Pj(z)

∂Pj
∂z(k)

∣∣∣∣
z

(10.22)

Each of these derivatives may be estimated using the result of a SS. Given U a SS sample de�ned
as U =

{
u{1}, . . . ,u{λ}

}
such that:

u{1} ∼ τ0 (·|Ωf0(z)) ≡ φ(·) (10.23)

u{i} ∼ τi−1

(
·|Ωfi−1

(z)
)

∀i = {2, . . . , λ} , (10.24)

the estimators of the sensitivities Eq.(10.17) and Eq.(10.22) are:

∂P1

∂z(k)

∣∣∣∣
z

≈ 1

M1

M1∑
l=1

∂g1

∂z(k)

∣∣∣∣
u
{1}
(l)

,z

δ
g1
(
u
{1}
(l)

,z
) (10.25)

∂Pi
∂z(k)

∣∣∣∣
z

≈ 1

Mi

Mi∑
l=1

∂gi
∂z(k)

∣∣∣∣
u
{i}
(l)
,z

δ
gi
(
u
{i}
(l)
,z
)+

Pi(z)

i−1∑
j=1

1

Pj(z)

∂Pj
∂z(k)

∣∣∣∣
z

(10.26)
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Combining all the intermediate sensitivities, we �nally get:

∂P
∂z(k)

∣∣∣∣
z

= P(z)
λ∑
i=1

{
1

Pi(z)
.

[
1

Mi

Mi∑
l=1

∂gi
∂z(k)

∣∣∣∣∣
u
{i}
(l)
,z

δ
gi
(
u
{i}
(l)
,z
)

+Pi(z)
i−1∑
j=1

1

Pj(z)

∂Pj
∂z(k)

∣∣∣∣
z

 (10.27)

10.2.2 Approximation of the Dirac distribution

The presence of a Dirac distribution in Eq. 10.27 makes the numerical computation of the sensitiv-
ities intractable. To overcome this hurdle, the Dirac distribution is approximated using a smooth
function δ̂ such that lim

σ→0
δ̂y(σ) = δy. This approach has been widely used in the past, e.g. for

Gaussian approximation [Yoo and Lee, 2014]. Five candidates are considered in this work:

Gaussian δ̂y(σ) = 1
σ
√

2π
exp−

y2

2σ2 = 1
σφN

(
y
σ

)
Truncated Gaussian δ̂y(σ) =

1
σφN ( yσ )

ΦN (1)−ΦN (−1)1−σ≤y≤σ

Sinc δ̂y(σ) =
sin( yσ )
yπ

Bump δ̂y(σ) = 1
Aσ exp

− 1

1−( yσ )
2

1−σ≤y≤σ

A =
∫ 1

−1
exp
− 1

1−y2 dy

Poisson δ̂y(σ) = σ
π(σ2+y2)

φN (·) and ΦN (·) the PDF and CDF of the Gaussian distribution. All these functions include a
scalar parameter σ which de�nes the �width" of the Dirac approximation. The choice of the
approximation as well as σ is of prime importance. Ideally, one would like σ to tend to zero.
However, because we are using sampling-based methods, only a �nite amount of information is
available. For this reason, an �optimal" value of σ needs to be chosen.

10.2.3 Numerical experiments. Selection of the shape parameter.

The optimal value of σ and the choice of Dirac approximation might be problem dependent.
Statistically, the optimal choice is the one that minimizes the error between the actual and the
estimated sensitivity. Knowing the true sensitivity, traditional performance metrics of an estimator
may be computed, such as normalized bias (Bias), standard deviation (Std) and root mean square
error (RMSE):

Bias (%) = 100×

∣∣∣E [ψ̃]− ψ∣∣∣
ψ

(10.28)

Std (%) = 100×

√
E
[
ψ̃2
]
− E

[
ψ̃
]2

ψ
(10.29)
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RMSE (%) = 100×

√
E
[(
ψ̃ − ψ

)2
]

ψ
(10.30)

where ψ is the actual sensitivity as de�ned in Eq.(10.35) and ψ̃ is an estimator of ψ, as de�ned in
Eq.(10.9). At this point, it is important to recall that the estimator of the sensitivity encompasses
two levels of approximation:

∂P
∂z(k)

∣∣∣∣
z

=

∫
Ω

∂g

∂z(k)

∣∣∣∣
u,z

δg(u,z)φ(u)du

≈
∫

Ω

∂g

∂z(k)

∣∣∣∣
u,z

δ̂g(u,z)φ(u)du (10.31)

≈ 1

M

M∑
i=1

∂g

∂z(k)

∣∣∣∣
u(i),z

δ̂g(u(i),z) (10.32)

Because CMC estimators are unbiased, Eq.10.32 only introduces variance in the estimator. On the
other hand, Eq.10.31 is an analytical approximation, and only introduces bias on the estimator.
Although the variance could be estimated using the standard error, the bias is not strictly speaking
statistical. Therefore it cannot be quanti�ed statistically, such as with leave one out approaches.
The �optimal" σ is obtained through experiments. Although not optimal for any problem, this
educated guess of σ would lead to better results than an arbitrary one. As a demonstrative case,
consider the following linear analytical limit state, for which analytical sensitivities may be derived:

g(u, z) = u+ z − d > 0 (10.33)

where U ∼ N (0, 1). Because the limit state function is linear, the probability of failure and its
derivative may be obtained exactly:

P(z) = 1− ΦN (d− z) (10.34)

dP
dz

∣∣∣∣
z

= φN (d− z) (10.35)

The number of CMC samples (M) is de�ned to ensure a 5% coe�cient of variation on the probability
of failure:

M(z) =


( √

1− P(z)√
P(z)× 0.05

)2
 (10.36)

where P(·) is de�ned by Eq.(10.34) and d·e the ceiling function.
σ is a function of the number of samples (i.e. the amount of information) available, which is in turn
in�uenced by the value of P(·). For this reason, a parameter α is introduced to de�ne a fraction
Mr of the available samples so thatMr = dP(z)×M × αe, where P(·) is estimated using Eq. 10.8.
Because the optimal value of σ is also dependent on the variation domain of g(·), the following
quantities are de�ned. Let υ be the vector of responses such that υ(i) = g

(
u(i), z

)
, |υ| the vector

of absolute values of υ and the rank operator such that υ[1] = min(υ(i)) and υ[M ] = max(υ(i)), i ∈
{1, . . . ,M}. σ is therefore de�ned as υ[Mr] so that only the Mr closest points from the limit
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Table 10.1: Normalized bias (Bias), standard error (Std) and root mean square error (RMSE) at
α = αopt and α = 0.5. Gaussian approximation.

P(·) 10−1 10−2 10−3 10−4

αopt|α 0.94|0.50 0.59|0.50 0.53|0.50 0.50|0.50
Bias(αopt)|Bias(α) 2.52|1.54 2.62|1.94 2.30|2.03 2.55|2.55
Std(αopt)|Std(α) 3.40|5.15 4.74|5.18 4.89|5.04 5.22|5.22
RMSE(αopt)|RMSE(α) 4.23|5.36 5.41|5.52 5.40|5.43 5.80|5.80

state have function value within ±σ. These points are the most relevant to the calculation of the
sensitivity of P(·) because they will potentially lead to a variation of 1g(u,z)≤0.
The experiments is reproduced for four values of d such that P(·) equals 10−1, 10−2, 10−3, and 10−4.
For SS, each probability step (here, 10−1) is estimated using CMC (w.r.t a conditional distribution).
Figure 12.10 shows the plots of normalized bias Eq.10.28, standard error Eq.10.29 and root mean
square error Eq.10.30 for the example introduced in Eq.10.33. Expectations in Eqs.(10.28-10.30)
are calculated out of 300 repetitions. The experiment is repeated for 4 levels of probability. Two
immediate conclusions arise:

• The Poisson approximation shows a poor performance compared to the other approximations,

• The Sinc approximation provides inconsistent results.

Out of the three remaining approximations, the Gaussian one has the lowest variance across the
experiments. Note that this is a very favorable feature for optimization. In gradient-based op-
timization, the variance in the sensitivities will impair the convergence properties more than the
bias. For these reasons, the Gaussian approximation is elected.
From the results in Figure 12.10, in the case of a Gaussian approximation, a graphical inspection
shows that a value of α = 0.5 is a satisfactory choice for the minimization of RMSE. This value
can be compared to the solution of the following optimization problem:

αopt = arg min
α

RMSE(α) (10.37)

Table 10.1 shows normalized bias Eq.10.28, standard error Eq.10.29 and root mean square error
Eq.10.30 for α = αopt and α = 0.5. Except for the case P(·) = 10−1, α = 0.5 yields similar results
to α = αopt. For P(·) = 10−1 it yields to an increase in the RMSE of about 1%.
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Figure 10.2: Normalized bias (Bias), standard error (Std) and root mean square error (RMSE)
for 4 level of probability of failure.
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10.3 Proposed method for mixed aleatory/epistemic reliabil-
ity analysis

The sensitivity of the probability of failure with respect to decision variables will be used to solve IA
where the decision variables are the epistemic uncertain variables. In this section, instead of solving
both equations in Eqs.(10.1), we focus on the computation of the maximum probability of failure
Pmax as it may be used to evaluate the system safety. The same analysis may be derived for Pmin.
In order to compute the maximal probability of failure, a sequential approach (Fig. 10.3) of IA and
surrogate model re�nement is proposed. Subset Simulation is used to evaluate the probability of
failure as it is e�cient to estimate rare event probability [Au and Beck, 2001] and is able to handle
multiple failure regions and non linear limit state function. Kriging surrogate model of the limit
state function is used in order to decrease the number of calls to the expensive code. To take into
account the presence of mixed aleatory and epistemic uncertainties, the Kriging surrogate model
is constructed in the joint aleatory-espistemic uncertain space Ω×Υ and a dedicated re�nement
method is derived from the Generalized Max-min [Lacaze and Missoum, 2014b]. The sequential
approach enables to re�ne the Kriging model only around the epistemic variable values, in high
probability content regions leading to Pmax and not on the entire epistemic and aleatory uncertain
spaces, limiting the number of evaluations of g(·). The proposed approach is detailed in the
following sections.

Initial DoE

Kriging model
 construction

Interval Analysis Kriging adaptive
refinement

Converged ?

Pmax

Sequential loop

Figure 10.3: Flowchart of the proposed process for reliability analysis in the presence of mixed
aleatory/epistemic uncertainties

10.3.1 Training set and Kriging construction

The �rst step of the proposed approach is to construct an initial training set composed of p samples
X = {(u(1), e(1)), . . . , (u(p), e(p))} ∈ Ω ×Υ and to build a Kriging surrogate model in the joint
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aleatory/epistemic uncertain space Ω×Υ based on the DoE. The exact limit state function g(·) is
evaluated on the DoE gp(X ) =

[
g(u(1), e(1)), . . . , g(u(p), e(p))

]T
. Then, a Kriging surrogate model

is built based on the training set and its parameters are determined by Maximum Likelihood
Estimation. The Kriging prediction for any (u, e) ∈ Ω×Υ is given by

ĝ(u, e,X ) = m(u, e) + r(u, e,X )TR−1
(
X )(gp(X )−mp(X )

)
, (10.38)

and the associated prediction variance

σ2(u, e,X ) = σ2
Z

(
1− r(u, e,X )TR−1(X )r(u, e,X )

)
. (10.39)

The Kriging surrogate model built in the joint aleatory/epistemic uncertain space is used instead
of the exact limit state function to compute the probability of failure. Based on the prediction
variance, the Kriging model is re�ned in the joint uncertain space in order to ensure an accurate
probability estimation (low variance) for the epistemic variable values leading to a maximal failure
probability. The interval analysis step is detailed in section 10.3.2.

10.3.2 Interval analysis and probability estimation

IA consists in solving an optimization problem in order to �nd the epistemic variable value leading
to the maximal failure probability Pmax = max

e∈Υ
P(g(U, e) > 0). Instead of computing the

probability with the real limit state function, the problem is reformulated such that P̂max =
max
e∈Υ

P(ĝ(U, e,X ) > 0). The surrogate model used for IA is the Kriging model constructed from

the DoE at the �rst sequential loop iteration (t = 1) or the re�ned Kriging model at the next
iterations (t ≥ 2).
At the jth IA iteration, the probability of failure for an epistemic variable value e[j] is given by:

P
(
e[j]
)

= P(g(U, e[j]) > 0) =

∫
{u|g(u,e[j])>0}

φ(u)du (10.40)

=

∫
Ω

1g(u,e[j])>0φ(u)du ' P̂
(
e[j]
)

(10.41)

P̂
(
e[j]
)

=

∫
Ω

1ĝ(u,e[j],X )>0φ(u)du (10.42)

Eq.(10.42) approximates the failure probability P
(
e[j]
)
due to the use of the Kriging surrogate

model. Eq.(10.42) is computed by Subset Simulation (see Section 2.4.4)

P̂
(
e[j]
)

=

∫
Ω

1ĝ(u,e[j],X )>0φ(u)du, (10.43)

=
λ∏
i=1

P
(
U ∈ Ω̂fi

(
e[j]
)
|U ∈ Ω̂fi−1

(
e[j]
))

, (10.44)

with Ω̂fi(e
[j]) = {u|ĝ(u, e[j],X ) > Si} ∀i ∈ {1, . . . , λ} the failure domain associated to the

Kriging model and Si the intermediate thresholds.
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Finally, using Subset Simulation and Kriging, IA consists in solving the following optimization
problem:

max
λ∏
i=1

P
(
U ∈ Ω̂fi(e)|U ∈ Ω̂fi−1(e)

)
(10.45)

w.r.t. e ∈ Υ (10.46)

The optimal failure probability is noted P̂max. An important point is to estimate the error in-
troduced by the use of a surrogate model instead of the exact limit state function. By using the
Kriging prediction variance it is possible to determine pseudo-con�dence bounds [Deheeger and
Lemaire, 2007; Dubourg et al., 2011] on the estimated failure probability:

P̂+
max(e) = P [ĝ(U, e,X )− ησ(U, e,X ) > 0] (10.47)

P̂−max(e) = P [ĝ(U, e,X ) + ησ(U, e,X ) > 0] (10.48)

with η a parameter de�ning the con�dence level of the Kriging model (for instance ηS = 1.96
de�nes a con�dence level of 95%).
To conclude, at the iteration [t] of the sequential loop, IA provides the epistemic variable value e∗[t]

leading to the maximization of the failure probability P̂max = P̂
(
e∗[t]

)
. Moreover, it is possible to

determine pseudo-con�dence bounds on P̂max ∈
[
P̂−max

(
e∗[t]

)
, P̂+

max

(
e∗[t]

)]
. In order to ensure an

accurate estimation of P̂max, it is necessary to re�ne the Kriging model constructed from the initial
training set. The re�nement strategy must be adapted to the estimation of the sought P̂max. It
must focus on the regions around the epistemic vector value leading to P̂max, in the vicinity of the
limit state boundaries and in high probability content regions. The re�nement strategy is detailed
in the section 10.3.3.

10.3.3 Re�nement strategy of the Kriging surrogate model

The second step of the sequential loop is the Kriging model re�nement strategy. This strategy
is used to update the Kriging constructed in the joint aleatory-epistemic uncertain space and is
based on the Generalized Max-min (GMm) method developed for Reliability Analysis [Lacaze and
Missoum, 2014b]. The original GMm takes into account the joint PDF of the aleatory variables
to generate samples in regions with high probability content on the limit state boundaries while
populating sparse regions of the space. In order to consider the presence of aleatory and epistemic
uncertainties, a modi�cation of the original GMm is proposed. The re�nement strategy has to reduce
the Kriging prediction variance around the epistemic vector values leading to P̂max while reducing
the Kriging prediction variance in regions with high probability content around the predicted limit
state boundaries. The Kriging model does not need to be accurate in regions in which the epistemic
variable values lead to low failure probability. The Kriging prediction variance allows to ensure
that despite the Kriging error for some epistemic variable values, they do not lead to P̂max. The
re�nement strategy at the iteration [t] of the sequential loop consists of the following optimization
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problem:

max
u,e

(φ(u)φU (e))
1

d+w min
i=1,...,Ms

‖ (u(i), e(i))− (u, e) ‖ (10.49)

s.t. ĝ(u, e,X ) = 0 (10.50)

P̂(e) ≥ P̂−max

(
e∗[t]

)
(10.51)

e ∈ Υ (10.52)

u ∈ Ω (10.53)

This optimization formulation allows one to sample on the approximated limit state boundaries
Eq.(18.51) following the joint PDF φ(·) for the aleatory variables and according to a uniform PDF

φU (·) for the epistemic variables while exploring sparse regions. Eq.(18.52) forces the generation
of a new sample in the epistemic regions such that the failure probability P̂(e) is at least equal to
the inferior bound of the maximum probability found in IA P̂−max

(
e∗[t]

)
at the iteration [t]. P̂(e) is

estimated by Subset Sampling as in IA. At the �rst iterations of the sequential loop, the uncertainty
on the Kriging model is high due to the limited sample size in the training set resulting in a
large prediction variance σ2(u, e,X ). The pseudo-con�dence bounds are function of the prediction
variance, if the prediction variance is large therefore the bounds around P̂max are large enabling to
sample in the whole epistemic space Eq.(18.52). The re�nement of the Kriging leads to a reduction
of prediction variance in the vicinity of the threshold Eq.(18.51), in high probability content regions
Eq.(18.50) and in regions of the epistemic space corresponding to P̂max Eq.(18.52). Therefore,
during the successive sequential loops the solving of the re�nement optimization problem results
in adding samples in the epistemic region leading to the maximal probability of failure and not on
the entire epistemic space. Once a new re�nement sample (u, e)mGMm is found by the modi�ed
GMm (mGMm), the exact limit state function g(·) is evaluated g ((u, e)mGMm) and added to the
existing DoE gMs

(X ). The Kriging model is re-constructed based on the new augmented DoE.
After a new sample has been added, the sequential process goes back to the IA. The sequential
loop stopping criteria are detailed in section 10.3.4.

10.3.4 Convergence criteria

The sequential loop at iteration [t] is stopped if the three following termination criteria are simul-
taneously satis�ed:

• A =‖ e∗[t+n−1] − e∗[t+n] ‖≤ εe ∀n ∈ {1, . . . , q},

• B =
∣∣∣β̂ (e∗[t+n−1]

)
− β̂

(
e∗[t+n]

)∣∣∣ ≤ εβ ∀n ∈ {1, . . . , q},
• cv = log10

(
P̂+
max

(e∗[t])

P̂−max(e∗[t])

)
≤ ε,

with β the reliability index which is linked to the failure probability by: P = ΦN (0,1)(−β) where
ΦN (0,1)(·) is the CDF of a standard normal distribution. For numerical reasons, all the optimizations
are performed using the reliability index β. The �rst criterion ensures that q times in a row the
same epistemic realization is given by the IA with an εe tolerance. The second criterion ensures that
the probability of failure is stabilized q times in a row and the last criterion controls the bounds
on the maximal probability of failure due to the Kriging error. ε = 1 is a minimum requirement to
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ensure that the failure probability estimation with Kriging surrogate model is at least in the order
of magnitude of the exact result. The proposed sequential loop is summarized in the Algorithm 3.

Algorithm 3 Proposed sequential reliability analysis process

1) Set t = 1, set q for the convergence criteria, set εe, εβ , ε, set n = 0, perform an initial DoE
with p samples and construct a Kriging surrogate model.
while A > εe and B > εβ and cv > ε and n < q do

2-1) Perform an IA by solving Eq.(10.46) to determine P̂max. Compute the pseudo con�dence
bounds Eqs.(10.47-10.48)
2-2) Perform a Kriging surrogate model re�nement by solving the modi�ed GMm, Eqs.(18.50-
18.54)
2-3) Evalutate the exact limit state function g(·) on the sample determined by the re�nement
strategy. Add the point to the existing DoE

if A ≤ εe and B ≤ εβ and cv ≤ ε then
n← n+ 1

else
n = 0

end if
t← t+ 1

end while
4) return P̂max, e∗ and the pseudo con�dence bounds.

10.4 Analytical test case

In order to evaluate the e�ciency of the proposed method, a comparison with FORM-UUA [Du
et al., 2005; Du, 2008] (section 4.4.2) is performed on an analytical problem. The optimization
solving involved in the IA and the PA for FORM-UUA method are solved with a Sequential Quadratic
Programming (SQP) algorithm with a convergence tolerance of 10−3 on the objective function and
the constraints. A multi-start approach (10 di�erent initialization) is used to avoid the risk of
local convergence. A multi-start SQP is also used to solve the Kriging re�nement strategy. In the
proposed approach, the sensitivity of the probability of failure with respect to decision variables
required by SQP is estimated according to the method developed in the previous section [Lacaze
et al., 2015]. The initial DoE for the Kriging model is performed using Latin Hypercube Sampling.
The analytical problem involves two independent aleatory variables U ∼ N (0, I) and one epistemic
variable e ∈ [0, 5]. The limit state function g(·) is de�ned as follows:

p(e) = − 1
8e

2 + 3.22
r(e) = − 1

40e
2 + 3.5

g(u, e) = u(1)2 − 4p(e)(u(2) − r(e))
(10.54)

The failure boundary (Fig. 10.5) is de�ned by {(u, e) ∈ Ω×Υ|g(u, e) = 0} in which the parabola
parameters p and r are impacted by the epistemic uncertainty. In the aleatory/epistemic uncertain
space, theMPP coordinates are [0.0, 2.88, 5.0]T. The maximum failure probability arises for e = 4.72
as identi�ed by performing an IA with the exact limit state function. The initial DoE is constituted
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of 15 samples in the joint aleatory/epistemic uncertain space (Fig. 10.9). The Subset Simulation
is performed with 90000 samples per step on ĝ(·). The proposed sequential loop is stopped when
q = 3 iterations in a row, A ≤ εe, B ≤ εβ and cv ≤ ε are simultaneously satis�ed with εe = 10−3,
εβ = 10−2 and ε = 0.25.

Table 10.4: Uncertain input variables for the analytical problem

Uncertain variables Type De�nition

U (1) Aleatory N (0, 1)

U (2) Aleatory N (0, 1)

e Epistemic [0, 5]
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Figure 10.5: Limit state boundary as a function of aleatory/epistemic uncertainties

The solving of the problem with the proposed method and FORM-UUA is repeated 10 times with
di�erent initializations. The results of the reliability analysis for the analytical problem are sum-
marized in Table 10.6. The epistemic variable value leading to a maximum probability e∗ is 4.72
(Fig. 10.8) for the proposed method and e∗ = 5.00 for FORM-UUA (Fig. 10.13). As expected,
the FORM-UUA method identi�es the MPP in the joint aleatory/epistemic uncertain space (Figs.
10.13,10.14) but due to the non linearity of the limit state function, it does not identify the
epistemic realization leading to a maximal probability. Moreover, FORM-UUA over-estimates the
probability of failure by locally linearizing g(·). In the proposed approach, at �rst the Kriging
model does not represent correctly the limit state function (cv = 1.5) (Fig. 10.9) and the IA iden-
ti�es e∗ = 5.00 as the epistemic variable value leading to Pmax (Fig. 10.8). After the successive
surrogate model re�nements, IA identi�es e∗ = 4.72 as the optimal epistemic variable value and the
kriging model accurately represent the exact limit state function in the region (Fig. 10.10). The
optimal reliability index is β̂max(e∗) = 3.175 which corresponds to a maximal probability of failure
of P̂max(e∗) = 7.49×10−4. Subset Simulation succeeds to capture the non linearity of the limit state
function (Fig. 10.12). The pseudo con�dence bounds around P̂max(e∗) are [7.39×10−4, 7.62×10−4]
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Table 10.6: Analytical problem results (average over 10 repetitions, in parenthesis the Relative
Standard Deviation (RSD) - σ(P̂max)/E(P̂max))

Proposed Method FORM-UUA

e∗ 4.720 (3.1%) 5.000 (4.4%)

β̂max(e
∗) 3.175 (5.3%) 2.875 (4.4%)

P̂max(e∗) 7.49× 10−4 (5.3%) 2.00 × 10−3

(4.4%)

[β̂−
95%(e∗), β̂+

95%(e∗)] [3.170, 3.179] (5.6%) −
[P̂−
max95%

(e∗), P̂+
max95%

(e∗)] [7.39× 10−4, 7.62× 10−4] (5.6%) −
cv 0.014 (4.8%) −
Ng−calls 15+13=28 (3.3%) 114 (6.8%)

Nseq−loop 13 (3.3%) 7 (6.8%)

(Fig. 10.7) which corresponds to a ratio of cv = 0.014 (Fig. 10.11). The number of calls to the
exact limit state function Ng−calls is 28 for the proposed approach (15 for the initial DoE and 13 for
the re�nement strategy) whereas FORM-UUA requires 114 calls to g(·). The number of sequential
loop Nseq−loop is 13 for the proposed approach and 7 for FORM-UUA.
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Figure 10.8: Optimal epistemic realiza-
tion leading to Pmax
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Figure 10.9: Initial training set, exact limit
state and kriging approximation

Figure 10.10: Final training set, exact limit
state and kriging approximation

Figure 10.11: Convergence criterion cv

Figure 10.12: Subset Sampling samples for e∗ =
4.72
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Figure 10.13: IA results, FORM-UUA

method
Figure 10.14: PA results, FORM-UUA

method

10.5 Limitations of the proposed approach

The proposed approach presents several limits. As in the previous chapter, the reliability analysis
problems that may be solved with the proposed technique are limited to low dimensional problems
due to the Kriging (under 15 variables). Moreover, the complexity and the computational cost
may limit its use within the UMDO framework. Further investigations are required to incorporate
the proposed technique within the UMDO context. The derivation of the sensitivity of P(·) enables
to use gradient-based approaches to propagate epistemic uncertainty and to �nd the bounds of
the probability of failure. However, further investigations have to be performed to ensure the
robustness of the Dirac distribution approximation and gradient estimations for various test cases.

10.6 Conclusion

In this chapter, �rstly an expression of the sensitivity of probability of failure with respect to deci-
sion variables has been derived. Estimators have been proposed based on CMC and SS. Numerical
concerns regarding the approximation of the Dirac distribution have been addressed. Experiments
seem to show that Gaussian approximation should be favored with a value of α = 0.5. However,
this result might not always be true and an automatic tuning algorithm to �nd the optimal α
(i.e., σ) as in [Morio et al., 2013] might be investigated. Then, in a second time, a new method
to perform reliability analysis in the presence of epistemic uncertainty a�ecting the limit state
function has been developed. The approach allows one to estimate failure probability involving
multiple failure regions and non linear limit state functions. For this purpose, a sequential strategy
has been proposed in order to determine the probability bounds based on Subset Simulation and
Kriging surrogate model to reduce the number of calls to the computationally expensive function.
The proposed sequential loop consists of two steps: the Interval Analysis with Probability Analysis
with the use of the surrogate model and the re�nement of the Kriging model. The surrogate model
is constructed in the joint aleatory/epistemic uncertain space in order to accurately represent the
limit state function only in the areas of interest, i.e. in the vicinity of the threshold, in high prob-
ability content regions and around the epistemic vector values leading to the failure probability
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bounds. A modi�cation of the original Generalized Max-min is proposed for the Kriging re�nement
strategy to take into account the epistemic uncertainty. The proposed method has been compared
to FORM-UUA on an analytical problem illustrating its e�ciency in terms of number of calls to the
exact function and the determination of the probability maximal bound.
In the next chapter, this method is applied to a reliability analysis problem concerning a launch
vehicle stage fallout.

• Context:

� Reliability analysis in the presence of mixed aleatory/epistemic uncertainties,

� Epistemic uncertainty directly a�ecting the limit state function,

� State-of-the-art methods are either computationally expensive (CMC) or limited to
simple problem (FORM), see chapter 4.

• Contributions:

� Development of a new reliability analysis method involving a sequential loop of failure
probability bound estimation and surrogate model re�nement. It is based on Subset
Simulation combined with Kriging model and a dedicated re�nement strategy based
on GMm.

� Development of sensitivity of the failure probability with respect to decision variables
with CMC and SS techniques.

� Application and comparison of the proposed approach with respect to FORM-UUA on
one analytical test case, highlighting its e�ciency to propagate epistemic uncertainty
to failure probability.

• Actionable information:

� Useful for problems that present modeling uncertainty of the failure domains,

� Essential to ensure system design reliability based on our present uncertainty modeling
knowledge,

� Accurate reliability analysis could be used to re-optimize the safety margins.

• Perspectives:

� Extend the technique to solve high dimensional problems,

� Needs further investigation on the in�uence of the sensitivities of P(·) on the optimizer
convergence,

� Incorporate the method within the UMDO context.
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Chapter 11

Application of reliability analysis
methods to launch vehicle trajectory
analysis

Contents
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11.2 Reliability analysis in the presence of epistemic uncertainty on the
hyper-parameters of PDF . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.3 Reliability analysis in the presence of epistemic uncertainty a�ect-
ing the limit state function . . . . . . . . . . . . . . . . . . . . . . . . . 222
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11.5 Conclusion of part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

• Apply the developed reliability analysis methods in the presence of mixed
aleatory/epistemic uncertainties on two launch vehicle test cases,

• Compare the results with reference techniques.

Chapter goals

11.1 Introduction

All the launches operated from Kourou (French Guyana) have to comply with the French Space
Operation Act which sets up regime of authorization and veri�cation of space operations in order to
protect people, properties, public health and environment. The stage fall back operation on Earth
has to comply with requirements for the protection of life and infrastructures. During the design
of a launch vehicle, constraints have to be imposed during trajectory optimization for a speci�c
mission to ensure the stage fallout in safe conditions and in an adequate zone. The estimation of
launch vehicle fallout safety zone is a crucial problem in aerospace because it potentially involves
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dramatic repercussions on the population and the environment. For that purpose, an e�cient
estimation of the probability that a launch vehicle stage falls at a distance greater than a given
safety limit is strategic for the quali�cation of such vehicles. In the following, two test cases of
stage fallout are considered:

• The �rst problem considers the fallout of a �rst solid propulsion stage with epistemic uncer-
tainty on the hyper-parameters of the PDF de�ning aleatory uncertainty (section 11.2).

• The second problem considers the fallout of a second solid propulsion stage with epistemic
uncertainty a�ecting directly the system dynamics in addition to the aleatory uncertainty
(section 11.3).

11.2 Reliability analysis in the presence of epistemic uncer-
tainty on the hyper-parameters of PDF

This test case focuses on the fallout of a �rst solid propulsion stage of a launch vehicle which lifts
o� from the Kourou spaceport (French Guyana). Its mass at its separation is about 35 tons. The
jettison conditions are an altitude of 112 kilometers and a �ight path angle of 15 degrees. At the
end of its mission, the solid stage falls into the sea at some distance of a predicted position. This
position is determined from the nominal fallout conditions when no perturbation of the re-entry
appears.
The launch vehicle stage fall-back is modeled as an input-output function g(·) with an input
uncertain vector U of dimension 4 characterized by φe(·) and one output Y = g(U), representing
the orthodromic distance between the estimated launch stage fall-back position and the predicted
one. The probability that the distance to the predicted impact position exceeds 0.65km is predicted:
P(g(U) > 0.65) = P(g(U)− 0.65 > 0). The di�erent components of U are:

• meteorological condition (1 input: Mc). The variation of the considered meteorological
conditions is the wind variation during the fall-back which in�uences the impact position,

• the error in the orientation estimation (1 input: Eo) of the launcher stage that in�uences
the ballistic fallout of the stage,

• launch vehicle mass (1 input: m). The mass of the di�erent parts of the launch vehicle is
also slightly random during the fall-back, because the propellant may not be totally burnt
during the powered �ight,

• the �ight path angle between the vertical axis and the velocity vector (1 input: γ). This
angle characterizes the orientation of the stage with respect to the velocity vector at the
stage separation and thus in�uences its ballistic fall-back phase and consequently the impact
position.

A 3 dimensional model with rotating round Earth is used. The dynamics of the launch vehicle
stage re-entry is detailed in appendix 17. All the input parameters are distributed according to
independent Gaussian laws φe(·). The means of the meteorogical condition, the error of orientation,
the launch vehicle mass and slope angle are supposed to be uncertain, their variances are being
�xed. The domain of variation of the uncertain parameters is +/- 10% around their reference
values (the values of Table 11.1 are nondimensionalized). The probability of reference calculated
by CE for e0 which is the baseline of PDF uncertain parameters is equal to 1.98× 10−5.
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Table 11.1: Variation domains of the uncertain parameters

Parameter Variation domain

E(Mc) [−1.1,−0.9]

E(Eo) [0.9,1.1]

E(m) [0.45,0.55]

E(γ) [−2.2,−1.8]

Impact points - 10  CMC samples 

threshold

7

Figure 11.2: Stage fallout zone, threshold and impact points, 107 CMC samples
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11.2.0.1 Results

In comparison with the two analytical test cases, the input-output function involved in this test-
case is non smoothed and non-linear, that explains the more important number of points required
to approximate this function by Kriging model and consequently the greater number of samples
evaluated on g(·) to estimate the probability with reference e0 using CE.

Table 11.3: Synthesis of the launch vehicle fall-back problem
Proposed method CMC-CMC CMC-IS

Number of samples required by
CE for estimating the probability 2.80× 104 106 2.80× 104

with reference e0

Number of samples evaluated on
g(·) for estimating the probability 1196 / /
with reference e0 using Kriging

Estimation of P̂e0 (g(U) > 0) 1.96× 10−5 1.95× 10−5 1.98× 10−5

Std deviation of the probability 4.91% 22.6% 4.80%
estimate for reference e0

P̂max 7.47× 10−5 6.50× 10−5 6.22× 10−5

e corresponding to P̂max [−1.10, 1.10, [−1.06, 1.09, [−0.96, 1.10,
0.55,−1.80]T 0.54,−2.10]T 0.55,−2.06]T

Number of points evaluated on g(·) 7089 108 2.8.106

to �nd P̂max

Std deviation of P̂max 5.00% 12.4% 5.03%

Pmin 3.14× 10−6 7.00× 10−6 5.69× 10−6

e corresponding to P̂min [−0.90, 0.90, [−1.02, 0.92, [−0.97, 0.92,
0.45,−2.20]T 0.48,−2.10]T 0.46,−2.04]T

Number of points evaluated on g(·) 6791 108 2.80× 106

to �nd P̂min

Std deviation of P̂min 5.59 % 37.80% 5.82%

Average number of points
evaluated on g(·) to
provide an estimation of P̂ 69.4 106 2.80× 104

during the probability
bound calculation

The conclusions of this test case are similar to the analytical cases. Figures 11.4 and 11.5 illustrate
the di�culty to accurately estimate the probability of failure with CMC. CE succeeds to identify
the failure regions and to center the auxiliary optimal PDF at the center of the failure zone in order
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Booster fallout zone, theshold and impact points

Figure 11.4: Impact points of the launch vehicle stage, CMC and optimal auxiliary CE densities for
P̂max

CE PDF

CMC PDF

threshold

Figure 11.5: CMC and optimal auxiliary CE densities for P̂max
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to e�ciently estimate the probability of failure. The proposed method �nds a better optimum
than CMC-CMC and CMC-IS in terms of computation cost and quality of the results. Indeed, the
proposed method provides more optimal bounds (higher maximum and lower minimum) on the
probability estimate with 15076 (= 1196 + 7089 + 6791) evaluations of g(·), that represents in
average 69.4 evaluations of g(·) per probability estimation during the optimization process instead
of 2.80 × 104 required by using classical IS. Moreover, because the range of probability of P̂min

and the simulation budget used in CMC-CMC are not compatible, this method fails to �nd the
probability and its results are very imprecise, due to the high standard deviation of this estimator
for evaluating such low probabilities.
In the next section, another test case of launch vehicle stage fallout is considered but with epistemic
uncertainty directly a�ecting the launch vehicle dynamics model.

11.3 Reliability analysis in the presence of epistemic uncer-
tainty a�ecting the limit state function

For this test case, a launch vehicle of approximatively 150t is considered. It lifts o� from the
Kourou spaceport and aims at delivering a payload (1.5t) in polar orbit (circular at 700km). It is
composed of three solid propulsion stages. The �rst and the second stages fall back into the Atlantic
Ocean (Fig. 11.8) and the third stage is injected into orbit with the payload. The fall-back zone
of the second stage is considered in this test case. The second stage separation dynamics occurs
approximately at an altitude of 164 km and a velocity of 3.7 km/s. A three degree of freedom model
is used and the second stage state is characterized by the altitude h(m), the velocity v(km/s), the
�ight path angle γ(rad), the longitude λ(rad), the latitude φ(rad), the azimuth ψ(rad) and the
mass m(kg). The 2nd stage dry mass is about 2660 kg and the nominal state of the 2nd stage at
the separation is given by [h, v, γ, λ, φ, ψ,m] = [164420, 3687.5, 0.332,−0.922, 0.133,−0.027, 2660].
At the end of its mission, the rocket stage falls into the ocean at some orthodromic distance of a
predicted position (which is the position in nominal conditions).
The launch vehicle stage fallout is modeled as an input-output function g(·) with an aleatory
vector U of �ve independent Gaussian inputs φ(·) and one epistemic variable e (Fig. 11.8). The
output of g(·) represents the orthodromic distance between the predicted position and the exact
launch stage fallout one. In this case study, we aim at estimating the probability that the distance
to the predicted impact position exceeds 20 km. The disciplines involved in this test case are
represented in Figure 11.7. The propulsion discipline provides the engine characteristics (thrust,
speci�c impulse, etc.) for the propulsive ascent phase. The sizing discipline provides the masses and
geometries of the di�erent stages. The aerodynamics provides the aerodynamics coe�cients used
to compute the forces during the ascent and the fallout phases. Eventually, the ascent trajectory
corresponds to the trajectory from Kourou to the orbit while the fallout trajectory discipline is the
uncontrolled 2nd stage fallout.
The aleatory uncertainties impact the separation state of the 2nd stage (Table 11.6). The level and
modeling of uncertainty for this test case have been de�ned with expert at Onera on the launch
vehicle separation and re-entry. The stage separation altitude U (1) and velocity U (2) are perturbed
depending on weather conditions during the ascent atmospheric �ight. The �ight path angle U (3)

and the azimuth U (4) characterize the orientation of the stage with respect to the velocity vector
at the stage separation in�uencing its ballistic re-entry and consequently its impact position. The
mass of the stage U (5) is also random during the fallout due to the residual propellant mass not
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Table 11.6: Uncertain variables for the stage fallout problem

Uncertain variables Type De�nition

Separation altitude error (m) Aleatory N (0, 0.01)

Separation velocity error (km/s) Aleatory N (0, 0.01)

Flight path angle separation error (rad) Aleatory N (0, 0.03)

Azimuth separation error (rad) Aleatory N (0, 0.00175)

Stage dry mass error (kg) Aleatory N (0, 70)

1st stage propulsion mass �ow rate pa-
rameter error

Epistemic [0, 1]

consumed during the �ight. The epistemic uncertainty impacts the mass �ow rate pro�le during
the combustion of the 1st stage (Fig. 11.9). The uncertainty associated to the mass �ow rate of
a solid propulsion motor is very di�cult to characterize and the tail of the mass �ow rate pro�le
depends on the nozzle erosion, combustion instabilities, surface combustion rate, etc. All these
physical phenomena are not well understood and the existing models are limited due to this lack of
knowledge [Kuo et al., 1984]. The mass �ow rate tail uncertainty models only provide bounds on
the mass �ow rate tail. This latter is parameterized by a dimensionless coe�cient representing the
epistemic uncertainty u ∈ [0, 1] (Fig. 11.9). The uncertainty on the mass �ow rate tail in�uences
the propulsion phase, the stage separation state and therefore the stage impact point.
In the proposed approach, the initial training set is constituted of 60 samples in the joint
aleatory/epistemic uncertain space. The Subset Simulation is performed with 90000 samples per
step on ĝ(·). The proposed sequential loop is stopped when 3 iterations in a row, A ≤ εe, B ≤ εβ
and cv ≤ ε are simultaneously !ed with εe = 10−2, εβ = 10−2 and ε = 0.37. The solving of the
problem is repeated 10 times.
For comparison, the maximal probability of failure computed with the exact limit state function
function using SS of 90000 samples per step (quantile at 10%) and SQP algorithm is 2.90×10−4 and is
reached for the epistemic realization e∗ = 0.490. The results of the reliability analysis for the stage
fallout problem are summarized in Table 11.10. SS distributions with the epistemic uncertainty
�xed to its optimal value e∗ (Figs. 11.19-11.23) illustrate the presence of multiple regions leading to
the threshold exceedance, in particular on the velocity (Fig. 11.20) and the �ight path angle (Fig.
11.19) input spaces. The proposed sequential loop requires 72 iterations in order to converge. The
presence of multiple regions make the problem more complex than the analytical problem as the
surrogate model has to be accurate in di�erent regions of the input aleatory space. The maximal
probability of failure computed with the proposed approach is 2.91× 10−4 and is reached for the
epistemic realization e∗ = 0.494. The pseudo con�dence interval of the maximal probability is
[2.42×10−4, 5.57×10−4]. Due to the presence of multiple regions, FORM-UUA identi�es a maximal
probability of 6.41 × 10−5 (Fig. 11.15) and the associated epistemic realization e∗FORM = 0.450
(Fig. 11.14) which under estimates the potential risk. FORM-UUA algorithm has been initialized
at di�erent epistemic uncertain variable values. In comparison, a Subset Sampling at the optimal
epistemic value e = e∗ with the exact limit state function g(·) instead of the Kriging model provides
a probability of failure of 2.93 × 10−4. The optimization problem to estimate P̂max results in a
number of exact limit state function evaluations of 1114 for FORM-UUA as opposed to 72 for the
proposed approach. CMC method is not adapted to estimate the stage fallout probability in this
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Figure 11.7: Disciplines involved in the stage fallout reliability problem
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Figure 11.8: 2nd stage separation and impact point in nominal conditions
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Table 11.10: Stage fallout results (average over 10 repetitions, in parenthesis the Relative Standard
Deviation (RSD) - σ/E)

Proposed Method FORM-UUA

e∗ 0.494 (6.5%) 0.450 (20.7%)

β̂max(e
∗) 3.44 (10.1%) 3.83 (20.7%)

P̂max(e∗) 2.91× 10−4 (10.1%) 6.41 × 10−5

(20.7%)

[β̂−
95%(e∗), β̂+

95%(e∗)] [3.26, 3.49] (9.4%) −
[P̂−
max95%

(e∗), P̂+
max95%

(e∗)] [2.42× 10−4, 5.57× 10−4] (5.6%) −
cv 0.363 (8.8%) −
Ng−calls 60+72=78 (8.7%) 1114 (31.1%)

Nseq−loop 72 (8.7%) 7 (14.3%)

test case. Indeed, CMC does not succeed to sample in high probability content regions around the
limit state function (threshold) as illustrated in Figure 11.16 whereas Subset Sampling does. The
latitude and longitude impact point joint PDF obtained with CMC to estimate the probability of
failure is monomodal centered on the nominal impact point (Fig. 11.17) whereas it is multiple
with Subset Simulation (Fig. 11.18) centered on the threshold in the two high probability content
regions.
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Figure 11.22: Histogram of the sample
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Figure 11.23: Histogram of the sample points used for dry mass dimension in SS

11.4 Conclusion of the chapter

In this chapter, two launch vehicle test cases have been presented to illustrate the developed
methods to handle both epistemic and aleatory uncertainties. These test cases are representative
of design constraints that have to be considered during the design of a launch vehicle. In
the �rst problem, epistemic uncertainty on the hyper-parameters of the aleatory uncertainty
(meteorological conditions, stage orientation, stage mass and �ight path angle) are investigated.
In the second problem, epistemic uncertainty directly impacting the launch vehicle dynamics is
investigated (during the propulsive phase, uncertainty on the mass �ow rate tail). The estimation
of the probability bounds require less calls to the limit state function with the proposed methods
than with the reference approaches.

This chapter highlights the di�culty to accurately estimate probability of failure in the presence of
both aleatory and epistemic uncertainties at an a�ordable cost. Dedicated approaches have to be
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developed and involve several methodologies: sampling techniques, surrogate modeling, re�nement
strategies, optimization. The accurate estimation of system reliability is essential in the conceptual
design phase as it will drive the designer toward di�erent solutions according to their reliability
and performance. However, at this design phase, the uncertainty modeling is often not perfectly
known and taking it into account is essential to guarantee the adequacy between the estimation of
the failure probability and the present uncertainty knowledge. Moreover, accurate estimation of
the reliability may be used to reoptimize the safety factors and margins used to prevent failure in
order to avoid conservative design which decrease the system performance.
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11.5 Conclusion of part III

In this part III of the thesis, two new methods to perform reliability analysis for complex systems in
the presence of aleatory and epistemic uncertainties have been proposed. To be able to deal with
mixed aleatory/epistemic uncertainties, the methods combine rare event estimation techniques
(either IS or SS) with surrogate model (Kriging) and dedicated re�nement techniques.

• To handle epistemic uncertainty in the hyper-parameters of PDF, an accelerated IS probability
estimator based on CE is combined with a Kriging model dedicated to IS and a re�nement
strategy. CMA-ES algorithm is used to solve the optimization problems to �nd the bounds
of the failure probability. The acceleration of the IS estimation results from the re-use of
failure samples generated for another epistemic uncertainty value avoiding to restart the CE

algorithm from the beginning.

• To handle epistemic uncertainty directly a�ecting the system dynamics, a sequential approach
is implemented with SS combined with a Kriging model dedicated to SS and a re�nement
strategy. The surrogate model is constructed in the joint aleatory/epistemic uncertain space
in order to accurately represent the limit state function only in the area of interest, i.e. in the
vicinity of the threshold, in high probability content regions and around the epistemic vector
values leading to the failure probability bounds. A gradient-based algorithm combined with
a proposed method to estimate the sensitivity of P(·) with respect to decision variables is
used to solve the optimization problems.

Both probability estimation techniques allow to handle non linear limit state function. In addition,
SS technique enables to handle multiple failure regions which may occur in reliability analysis
problem as illustrated in section 11.3.
When performing reliability analysis, the information about the input aleatory uncertainty and
the limit state function delimiting safe for failure domains are essential. The probability of failure
directly results from these information. However, in practice in the industry, these information
are often limited and not perfectly known due to the di�culty to collect the information. The
proposed reliability analysis methods allow to take into account the potential uncertainty in
the input aleatory variable modeling or in the limit state function. It allows to ensure that
the estimated probability of failure account for the modeling uncertainty based on our present
uncertainty knowledge. This accurate reliability analyses could be used to re-optimize the
safety margins that are used to design systems accounting for all the unknown uncertainty in
order to �nd the safety margins that ensure the system reliability and non over conservative design.

However, several limits have to be pointed out. First, even if the proposed methods reduce the
number of calls to the limit state function compared to classical techniques used in UMDO (CMC, IS)
or extend the domains of application (multiple failure regions impossible with FORM), the compu-
tational cost is still high (∼ 15 hours for the launch vehicle test cases). Using these methods in an
UMDO problem solving seems complicated considering the induced computational cost (repeated
calls to reliability analysis techniques). Moreover, the proposed methods by combining several
tools (surrogate model, optimization algorithm, rare event estimation) increase the complexity of
the probability estimation compared to the classical approaches. Incorporating them in UMDO

would require knowledge on all these aspects to ensure the accurate estimation of the constraints
and the respect of the requirements.
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• Context:

� Reliability analysis in the presence of mixed aleatory/epistemic uncertainties,

� Rare event probability estimation.

• Contributions:

� Development of a new reliability assessment technique to handle epistemic uncertainty
on the hyper-parameters of PDF,

� Development of a new reliability analysis method to handle epistemic uncertainty
a�ecting the system dynamics,

� Combination of rare event estimation techniques (IS and SS) with Kriging model of
the limit state and dedicated re�nement strategies,

� Development of sensitivity estimators of the failure probability with respect to decision
variables with CMC and SS techniques,

� Application of the proposed methods on two test cases involving the fallout of a launch
vehicle stage.

• Actionable information:

� Appropriate for problems that present uncertainty on the modeling of the input PDF
or the system dynamics which in�uences the probability of failure,

� Essential to ensure system design reliability based on our present uncertainty modeling
knowledge,

� Accurate reliability analysis could be used to re-optimize the safety margins.

232



Part IV

Evolutionary strategy for constraint
handling in a noisy environment,

applications to launch vehicle design

233





Chapter 12

Adaptation of CMA-ES algorithm
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• Develop a constraint handling method for evolutionary algorithm CMA-ES,

• Apply and compare the proposed approach to reference techniques on analytical test cases.

Chapter goals

12.1 Introduction

In the two previous parts II and III interdisciplinary coupling handling method and reliability
assessment techniques in the presence of mixed aleatory/epistemic uncertainty have been proposed.
The design of a complex system with UMDO methodologies requires to solve an optimization
problem in the presence of uncertainty and constraints. In this part, only aleatory uncertainty is
considered. As highlighted in chapter 5, dedicated optimization algorithms have been developed
to solve these complex optimization problems. Population-based algorithms present advantages to
optimize functions in the presence of uncertainty. The population-based optimization algorithms
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are less dependent on the quality of candidate solutions and the impact of uncertainty. They
move from one set of solutions to the next one and consequently are not so much a�ected
when an outlier solution receives a particularly good objective function value through stochastic
in�uence. Among the population-based algorithms, Evolution strategy approaches such as
Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) have demonstrated e�cient
optimization capacities in the presence of uncertainty [Nissen and Propach, 1998; Hansen et al.,
2003; Hansen, 2009]. However, as outlined in chapter 5, although CMA-ES e�ciently solves
optimization problem in the presence of uncertainty, the handling of constraints presents some
issues. Classical handling contraint methods rely on penalization (death penalty [Schwefel and
Rudolph, 1995], weighted penalization [Collange et al., 2010b; De Melo and Iacca, 2014]) are prob-
lem dependent techniques which require tuning parameters for the weighted penalization approach.

In this chapter, a modi�cation of CMA-ES algorithm is proposed in order to incorporate the con-
straint handling directly in the generation mechanisms of the population of candidates. The
proposed technique is adapted from the modi�cation of (1+1)-CMA-ES [Arnold and Hansen, 2012]
to handle the constraints. The update mechanisms of the parameterized sampling distribution
used to generate the candidate solutions are modi�ed. CMA-ES algorithm generates candidates ac-
cording to a Gaussian distribution parameterized by a covariance matrix. This covariance matrix
represent an iso-probable hypervolume of search in the design space in which the candidates may
be sampled. The proposed constraint handling method allows to reduce the semi-principal axes of
the probable search hypervolume in the directions violating the constraints in accordance with the
information provided by the candidates.
In section 12.2, the proposed constraint handling method is developed explaining the search hyper-
volume update mechanisms. Moreover, several adjustments of the parameters update mechanisms
are detailed in order to take into account possible speci�c situations during the optimization. In
section 12.3, the proposed approach is compared to existing constraint handling techniques (death
penalty, penalized CMA-ES and modi�ed (1+1)-CMA-ES) on three analytical optimization problems
to highlight the e�ciency and the robustness of the algorithm.
In chapter 13, the proposed handling constraint method is used to design a two stage solid propul-
sion launch vehicle.
This work has been performed in collaboration with R. Chocat (Institut Francais de Mécanique
Avancée), Mathieu Balesdent (Onera) and Sebastien Defoort (Onera).

12.2 Adaptation of CMA-ES(λ, µ) for constraint handling

Let us consider the following UMDO problem:

min Ξ [f(z,Y(z,U),U)] (12.1)

w.r.t. z

s.t. K [g(z,Y(z,U),U)] ≤ 0 (12.2)

zmin ≤ z ≤ zmax (12.3)

A coupled approach is used to focus on the optimization algorithm and not on the interdisciplinary
coupling satisfaction. To solve this UMDO problem, the optimization algorithm has to take into
account the presence of uncertainty and the constraints. Noise in the optimization results from
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the numerical approximation of the measure of uncertainty Ξ[·] and K[·] by sampling techniques
(CMC, IS, SS, etc.).
In this part of the thesis, we propose to solve this UMDO problem with a modi�ed version of CMA-ES

algorithm. The proposed approach of CMA-ES(λ, µ) for constraint handling is based on the same
approach as modi�ed (1+1)-CMA-ES (section 5.5.3). However, it is necessary to adapt it to take into
account the speci�cities of CMA-ES(λ, µ). Indeed, CMA-ES(λ, µ) generates a population instead of
a single o�spring candidate. Thus, each o�spring candidate may potentially violate one or several
constraints. Moreover, the selection of the µ best candidates is based on the rank of the objective
function. However, these best candidates may also violate the constraints. Depending on whether
the µ best candidates are feasible or not, or if only a fraction of them is feasible, or on the number
of violated constraints, the covariance matrix used to generate the o�spring candidates has to be
modi�ed in order to avoid the future generation of unfeasible o�spring candidates.
As explained in chapter 5, CMA-ES(λ, µ) generates the population at iteration [k + 1] by sampling
a multivariate normal distribution:

z
[k+1]
t ∼m[k] + σ[k]N

(
0,C[k]

)
, for t = 1, ..., λ (12.4)

with z
[k+1]
t ∈ Rn an o�spring candidate generated from a mean vector m[k], a step size σ[k] and a

multivariate normal distributionN (0,C[k]) with zero mean and a covariance matrix C[k] ∈ Rn×Rn.
λ is the size of the population generated at each iteration [k]. The normal distribution is charac-
terized by a positive de�nite covariance matrix C[k] in order to allow homothetic transformations
and rotations of the probable search hypervolume. The search hypervolume engendered by an
iso-probability contour of the multivariate normal distribution N (0,C) may be represented by a
n-dimensional ellipsoid (Fig. 12.1).

Figure 12.1: Di�erent ellipsoids in dimension 3 de�ning the probable search hypervolume depending
on the covariance matrix Ci at an iso-probability level of 95%.

The hyper-volumes represented in Figure 12.1 represent the volume in which the o�spring candi-
dates will be generated with an iso-probability contour of 95%. This volume is parameterized by
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the covariance matrix C. In the proposed approach, the constraint handling method allows to re-
duce the semi-principal axes of the search ellipsoid in the directions violating the constraints. The
eigenvalues of the covariance matrix C control the length of the semi-principal axes. The decrease
of the eigenvalues reduces the semi-principal axis lengths. The direction of the eigenvectors are
not modi�ed in order to keep the direction of search and to adapt it to the presence of constraints.
The covariance matrix, which is symmetric positive de�nite, may be decomposed according to:

C = PDDPT = PD2PT (12.5)

where P is an orthogonal matrix such that: PPT = PTP = I. The columns of P form an
orthogonal basis of eigenvectors of C. D = diag(

√
vp1, ...,

√
vpn) is a diagonal matrix with the

square roots of eigenvalues of C. As illustrated in Figure 12.2, the square roots of the covariance
matrix eigenvalues

√
vpi are proportional to the semi-principal axis lengths of the ellipsoid de�ning

the sampling hypervolume.
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Figure 12.2: Parametrization of the ellipsoid de�ning the probable search hypervolume.

At the generation [k], if any of the τ constraints is violated by any of the µ best o�spring candidates,
the covariance matrix is modi�ed according to Algorithm 4.
with: √

ṽp[k]
i =

√vp[k]
i

τ∑
j=1

∑µ
l=1 1gj(z

[k]

(l)
)>0

wljProj~ei

[
z

[k]
(l) −m[k]

]
∑µ
t=1 1gj(z

[k]

(t)
)>0

wtj

 (12.9)

The covariance matrix is diagonalized Eq.(12.6) and the eigenvalues vp[k]
i of the covariance matrix

C[k] are modi�ed. The new eigenvalues are the former eigenvalues minus a term ṽp[k]
i taking into

account the violation of the constraints.
√
ṽp[k]

i , Eq.(12.9), is a function of the former eigenvalues√
vp[k]

i , of the indicator function of the constraint 1
gj(z

[k]

(l)
)>0

, of the weighting coe�cients wij and
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Algorithm 4 Proposed CMA-ES(λ, µ) covariance matrix modi�ciation

3.3.1) Diagonalize C[k]such that PD[k]2PT = C[k] (12.6)

3.3.2) S[k] ← PD[k]2PT − γPdiag

(√
ṽp[k]

1 , ...,

√
ṽp[k]

n

)2

PT (12.7)

3.3.3) C[k] ←
[
det(C[k])

det(S[k])

]1/n

S[k] (12.8)

of the projection Proj~ei

[
z

[k]
(l) −m[k]

]
of the distance between an ordered candidate violating the

constraints z
[k]
(l) and the mean point m[k] in the direction of the eigenvector ~ei corresponding to the

eigenvalue vp[k]
i . γ is a parameter similar to β in (1+1)-CMA-ES. For γ = 0 the proposed algorithm

is similar to the classical CMA-ES(λ, µ). For each constraint gj , the µcj candidates among the
µ best candidates that violate the constraint are ranked according to the constraint value. The
weighting coe�cients wij for each constraint gj are de�ned according to the same rule as for the
recombination process for the calculation of m[k]:

wij =
ln(µcj + 1)− ln(i)

µcj ln(µcj + 1)−
∑n
k=1 ln(k)

(12.10)

and
∑µ
i=1 wij = 1 where: w1j ≥ · · · ≥ wµj ≥ 0. w1j is associated to the candidate that violates

the most the constraint gj and w1µc with the candidate that violates the less the constraint. For
the candidates among the µ best that do not violate the constraint, the indicator function is equal
to zero and therefore these candidates do not participate in the modi�cation of the covariance
matrix. The projection of the violation distance along the eigenvector (Fig. 12.3) allows to reduce
the covariance matrix in the direction orthogonal to the constraint boundaries.
Eq.(12.8) allows to keep the hypervolume of the ellipsoid constant before and after the modi�cation
of the covariance matrix in order to avoid premature convergence. The volume of the ellipsoid is
reduced in the direction orthogonal to the constraints but is increased in the direction tangential
to the constraints (Fig. 12.4). The modi�ed CMA-ES(λ, µ) algorithm for constraint handling is
detailed in Algorithm 5.
In order to illustrate the e�ect of the modi�ed algorithm, if one of the µ best candidates violates
a constraint, the evolution of the ellipsoid between the generations [k] and [k + 1] is illustrated
in Figure 12.4. The modi�cation of C[k] allows homothetic transformations in order to avoid to
generate candidates in the non feasible zone.
Several adjusments have been made in order to take into account speci�c situations/

• If the mean vector m[k] after the combination process is not feasible, instead of reducing the
covariance matrix, the ellipsoid hypervolume is increased in order to generate candidates in
the feasible zone. Therefore, the ellipsoid hypervolume is increased according to:

S[k] ← PD[k]2PT + γPdiag

(√
ṽp[k]

1 , ...,

√
ṽp[k]

n

)2

PT (12.11)

The mean vector is displaced to the best feasible candidate generated at the next generation.
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Figure 12.3: Violation of the constraint and projection over the eigenvectors, blue=feasible,
red=unfeasible candidates.
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Figure 12.4: Evolution of the covariance matrix due to the constraint violation, blue=feasible,
red=unfeasible candidates.

• To avoid stagnation and non exploration of the algorithm when the µ best candidates are all
generated in the non feasible space nµ times in a row, the algorithm does not select the µ
best candidates according to the objective function but the µ best candidates in the feasible
space in order to update the algorithm parameters (m, C and σ) and to continue the design
space exploration and convergence to the optimum.
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Algorithm 5 Proposed modi�ed CMA-ES(λ, µ) for constraint handling

1) Initialize the covariance matrix C[0] = I, the step size σ[0] and the selection parameters
[Hansen et al., 2003]
2) Initialize the mean vector m[0] to a random candidate, k ← 0
while CMA-ES convergence criterion is not reached do
3-1) Generate λ new o�spring candidates according to: z

[k+1]
t ∼ m[k] + σ[k]N (0,C[k]), t ∈

{1, ..., λ}
3-2) Evaluate candidates and sort them based on the objective function
if all the µ best candidates are infeasible then
Modify the covariance matrix according to Algorithm 4. Return to step 3.1)

else
if all the µ best candidates are feasible
Determine the mean vector given the weightings of the µ best candidates: m[k+1] =∑µ
i=1 wiz

[k+1]
(i)

Update covariance matrix C[k+1] according to [Hansen et al., 2003] end if
else
if at least one of the µ best candidates is infeasible and at least one is feasible
Modify the covariance matrix according to Algorithm 4.
Use the feasible candidates to determine the mean vector m[k+1]

Use the feasible candidates to update covariance matrix C[k+1] according to [Hansen et al.,
2003] end if

end if
3-3) Update the step size σ[k+1] according to [Hansen et al., 2003], k ← k + 1

end while
4) return best candidate zbest

• CMA-ES may sometimes converge to a local solution. To overcome this issue, a bi-population
based approach has been adopted in CMA-ES [Hansen, 2009] to start the algorithm with a
higher size population and after several iteration, the λ default size population is used. The
population is increased for the kipop �rst iterations in order to su�ciently explore the design
space and learn about the objective function before going to the λ default size.

The modi�ed CMA-ES(λ, µ) allows to take into account the constraints without degrading the ob-
jective function by penalization and avoids to tune the penalization parameters. Moreover, the pro-
posed algorithm relies on the same update and selection mechanisms of the original CMA-ES(λ, µ)
and it keeps the invariance and unbiased design principles of CMA-ES(λ, µ) [Hansen et al., 2003].
In the next sections, the proposed algorithm is tested on a benchmark of analytical functions and
on the design of a two stage rocket in order to evaluate its performances.
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Figure 12.5: Modi�cation of the covariance matrix due to the mean vector constraint violation,
blue=feasible, red=unfeasible candidates.

12.3 Benchmark on analytical optimization problems

The proposed modi�ed CMA-ES(λ, µ) is tested and compared to a penalized version of CMA-ES(λ, µ)
with a constant penalization function, to the death penalty applied to CMA-ES(λ, µ) and to the
modi�ed (1+1)-CMA-ES on a benchmark of three analytical functions. The benchmark consists of
a modi�ed Six Hump Camel problem in 2 dimensions, the G04 optimization problem [Hansen,
2009] in 5 dimensions and a modi�ed Rosenbrock problem in 20 dimensions. These optimization
problems are used in order to evaluate the proposed algorithm e�ciency for di�erent design space
dimensions and di�erent types of and numbers of inequality constraints (linear, non linear). In the
following, the benchmark problems are introduced with the results. A discussion and a synthesis
of the results for all the tests is provided in section 4.4.
In the three problem formulations, the expected value is computed by CMC method. A sam-
ple of 1000 points is used to estimate the expected value of the objective function. For each
method (Modi�ed CMA-ES(λ, µ), Death Penalty CMA-ES(λ, µ), Penalization CMA-ES(λ, µ), Modi-
�ed (1+1)-CMA-ES) the optimization is repeated 50 times. The initialization is chosen randomly in
the design space and the same initialization and the same random number seed are used for the
four optimization algorithms. The same stopping criterion is used for all the algorithms: the dis-
tance in the design space between the mean vector and the best point found ‖m[k] − z∗ ‖2< 10−3

must be lower than a tolerance 20 times in a row.
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12.3.1 Modi�ed Six Hump Camel problem

A modi�ed version of the Six Hump Camel problem is used in order to introduce uncertainty and
three inequality constraints. The formulation of the problem is the following:

min E
[
f6−hump(z

(1), z(2)) + f6−hump

(
z(1)cos(u) + z(2)sin(u)− z(1)sin(u)

+z(2)cos(u)
)]

(12.12)

w.r.t. z = [z(1), z(2)]

s.t. g1(z(1), z(2)) = z(1) + z(2)/4− 0.52 ≤ 0 (12.13)

g2(z(1), z(2)) = z(1) + 0.01z(2) − 0.7 + 0.30cos(60z(1)2/6) ≤ 0 (12.14)

g3(z(1), z(2)) = z(1) − z(2)/4− 0.45 ≤ 0 (12.15)

zmin ≤ z ≤ zmax (12.16)

with z ∈ [−3, 3]× [−2, 2], f6−hump(z1, z2) = (4−2.1z2
1 +z4

1/3)+z1z2 +(4z2
2−4)z2

2 and U a random
variable distributed according to a normal distribution U ∼ N (0, 0.05).

Table 12.6: Results of modi�ed Six Hump Camel problem. Average over 50 optimizations (in
parenthesis the Relative Standard Deviation (RSD) - σ/E)

Results Modi�ed
CMA-ES(λ, µ)

Death Penalty
CMA-ES(λ, µ)

Penalization
CMA-ES(λ, µ)

Modi�ed
(1+1)-CMA-ES

Objective func-
tion (global
optimum 1)

−1.875(0.80%) −1.875(0.89%) −1.874(0.88%) −1.865(0.88%)

Objective func-
tion (local opti-
mum 2)

−0.347(0.75%) −0.347(0.84%) −0.347(0.79%) −0.348(0.85%)

Constraint func-
tions

−4.72×10−4 (96%) −2.57×10−4 (75%) −6.43×10−4 (68%) −4.86 × 10−4

(127%)

Number of ob-
jective function
+constraint
evaluations

1211(13%) 1395(12%) 1618(12%) 781(16%)

Percentage of
convergence
to the global
minimum

37% 22% 33% 48%

Percentage of
convergence to
the local mini-
mum

63% 78% 67% 52%

1Statistics based on the optimizations that converged to the global optimum.
2Statistics based on the optimizations that converged to the local optimum.
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Representations of the function and the constraints are provided in Figure 12.8. The problem has
one local optimum and one global optimum. The results are presented in Table (12.6) and the
convergence curves for one optimization are given in Figure (12.9).

Figure 12.7: Modi�ed Six Hump Camel 3D function.

Feasible
region Non feasible

region

global optimum

Figure 12.8: Iso-contour of the expected value of Modi�ed Six Hump Camel function, constraints
and global optimum.
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Figure 12.9: Convergence curves of the Six Hump Camel problem in 2 dimensions, based on one
optimization run.
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Figure 12.10: Six hump camel optimization, iso-probability search volume in green, µ best can-
didate in blue, mean point in red, other candidates in pink, a plot every 18 modi�ed CMA-ES

iterations.
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12.3.2 G04 optimization problem

The G04 optimization problem [Hansen, 2009] involves 6 inequality constraints and is de�ned as
follows:

min G04(z) = 5.3578547× z(3)2 + 0.8356891× z(1) ∗ z(5) + 37.293239× z(1)

−40792.141 (12.17)

w.r.t. z = [z(1), z(2), z(3), z(4), z(5)]

s.t. g1(z) = u(z)− 92 ≤ 0 (12.18)

g2(z) = −u(z) ≤ 0 (12.19)

g3(z) = v(z)− 110 ≤ 0 (12.20)

g4(z) = −v(z) + 90 ≤ 0 (12.21)

g5(z) = w(z)− 25 ≤ 0 (12.22)

g6(z) = −w(z) + 20 ≤ 0 (12.23)

zmin ≤ z ≤ zmax (12.24)

with z ∈ R5, zmin = [78, 33, 27, 27, 27], zmax = [102, 45, 45, 45, 45] and:

u(z) = 85.334407 + 0.0056858× z(2) × z(5) + 0.0006262× z(1) × z(4)

−0.0022053× z(3) × z(5) (12.25)

v(z) = 80.51249 + 0.0071317× z(2) × z(5) + 0.0029955× z(1) × z(2)

+0.0021813× z(3)2 (12.26)

w(z) = 9.300961 + 0.0047026× z(3) × z(5) + 0.0012547× z(1) × z(3)

+0.0019085× z(3) × z(4) (12.27)

Table 12.11: Results of G04 optimization problem. Average over 50 optimizations (in parenthesis
the RSD - σ/E).

Results Modi�ed
CMA-ES(λ, µ)

Death Penalty
CMA-ES(λ, µ)

Penalization
CMA-ES(λ, µ)

Modi�ed
(1+1)-CMA-ES

Objective
function

−30487(0.48%) −28105(6.10%) −28758(12%) −30452(0.46%)

Number of
objective
function
+constraint
evaluations

1618(33%) 9120(40%) 13139(107%) 7048(93%)

The results are presented in Table (12.11) and the convergence curves for one optimization are
given in Figure 12.12.
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Figure 12.12: Convergence curves of the G04 optimization problem, based on one optimization
run.

12.3.3 Modi�ed Rosenbrock problem

The Rosenbrock optimization problem has been modi�ed in order to incorporate uncertainty and
an inequality constraint. The problem is formulated as following:

min E

[
100

n−1∑
i=1

(
z(i+1) − z(i)2

)2

+
n−1∑
i=1

(
1− z(i)

)2

+ U

]
(12.28)

w.r.t. z =
[
z(1), ..., z(20)

]
s.t. g(z) = 2−

n∏
i=1

z(i) ≤ 0 (12.29)

(12.30)

with n=20, z ∈ R20 and U a random variable distributed according to U ∼ U(−0.1, 0.0) a uniform
distribution.
The results are presented in Table (12.15) and the convergence curves for one optimization are
given in Figure 12.14.
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Figure 12.13: Expected value of modi�ed Rosenbrock function and the constraints in 2 dimensions.

Figure 12.14: Convergence curves of the modi�ed Rosenbrock problem in 20 dimensions, based on
one optimization run.

12.3.4 Results and synthesis

The analytical test cases involve di�erent dimensions (2, 5 and 20) and di�erent number of con-
straints (1, 3 and 6) in order to evaluate the e�ciency of the proposed Modi�ed CMA-ES(λ, µ) on
various optimization problems. A qualitative synthesis of the obtained results is given in Figure
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Table 12.15: Results of constrained Rosenbrock problem. Average over 50 optimizations (in paren-
thesis the RSD - σ/E).

Results Modi�ed
CMA-ES(λ, µ)

Death Penalty
CMA-ES(λ, µ)

Penalization
CMA-ES(λ, µ)

Modi�ed
(1+1)-CMA-ES

Objective
function

0.046(0.12%) 0.109(42.77%) 0.096(26%) 0.0841(53.85%)

Constraint
functions

−5.05 ∗ 10−4(96%) −0.74(75%) 1.45(68%) −0.4294(127%)

Number of
objective
function
+constraint
evaluations

12798(11%) 2708(33%) 2689(49%) 3481(28%)

12.16. For all the three criteria (number of evaluations, robustness to initialization and value of
the optimum), the lower value the better the quality of the method for the given criterion.
The Six Hump Camel problem has one local optimum and one global optimum. All the optimization
algorithms converge either to the local or the global optimum. It illustrates the robustness property
of the algorithms with respect to the initialization (relative standard deviation ∼ 0.85% for all the
algorithms). The found optima are all feasible. Modi�ed (1+1)-CMA-ES converges in 48% of the
optimization runs to the global optimum and the proposed Modi�ed CMA-ES (λ, µ) in 37% of the
cases. The penalization and the death penality approaches converge only in 33% and 22% of the
optimization runs to the global optimum. The number of calls to the objective function and the
constraints is in increasing order: Modi�ed (1+1)-CMA-ES (781), Modi�ed CMA-ES(λ, µ) (1211),
Death Penalty CMA-ES(λ, µ) (1395) and Penalization CMA-ES(λ, µ) (1618). Modi�ed (1+1)-CMA-ES

is more e�cient in this test case due to the low dimension and the simplicity of the optimization
problem. The proposed Modi�ed CMA-ES(λ, µ) provides better results than the penalization and
the death penalty approaches.
In the G04 problem, only the proposed Modi�ed CMA-ES(λ, µ) and the Modi�ed (1+1)-CMA-ES

converge to the global minimum (with su�cient robustness with respect to the initialization). The
number of calls to the objective function and the constraints is lower in the proposed algorithm
(1618) compared to Modi�ed (1+1)-CMA-ES (7048) and the relative standard deviation is lower
in the proposed approach. Moreover, the proposed approach converges e�ciently to the global
optimum. The Death Penalty and the penalization approaches do not succeed to reach the global
optimum and are not robust to the initialization.
In the modi�ed Rosenbrock problem, only the proposed Modi�ed CMA-ES(λ, µ) reaches the global
optimum (with su�cient robustness (RSD : 0.12%) to the initialization). All the other algorithms
are not robust to the initialization and do not converge to the global optimum. The number of calls
to the objective function and the constraints is larger for the proposed approach (12798) compared
the other algorithms.
Consequently, from the benchmark, in small dimensions (< 8), the Modi�ed (1+1)-CMA-ES provides
good results in terms of convergence to the global optimum and robustness with respect to the
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initialization, however, as expected, in large dimensions, it presents issues to converge to the global
optimum. The proposed Modi�ed CMA-ES(λ, µ) succeeds in small and large dimensions (up to 20)
to �nd the global optimum. Moreover, this algorithm appears as robust to the initialization. In
the next section, the proposed algorithm is used to design a two stage solid rocket and is compared
to the existing CMA-ES based optimization algorithms.

Nb of evaluations Robustness to initialization Value of optimum

Qualitative comparison for modified six camel problem

 

 
Modified CMA-ES(λ, µ)

Death Penalty CMA-ES(λ, µ)

Penalization CMA-ES(λ, µ)

Modified (1+1) CMA-ES
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Qualitative comparison for G04 problem
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Qualitative comparison for modified Rosenbrock 20D problem
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Figure 12.16: Qualitative results obtained for the di�erent test cases (the smaller the better).
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12.4 Conclusion

The design of complex systems often induces a constrained optimization problem under uncer-
tainty. Dedicated optimization algorithms are required to solve these types of problems. In this
chapter, an adaptation of the optimization algorithm CMA-ES(λ, µ) which is based on Evolutionary
Strategy has been proposed in order to e�ciently handle the constraints. CMA-ES(λ, µ) generates
the candidate population according to the sampling of a parameterized Gaussian distribution
N (0,C) where C is a covariance matrix. In this chapter, the search hypervolume engendered by
an iso-probability contour of the multivariate normal distribution used to generate the candidate
population is modi�ed. The constraint handling method allows to reduce the semi-principal axes
of the iso-probable search ellipsoid in the directions violating the constraints by decreasing the
eigenvalues of the covariance matrix C. The proposed approach has been tested and compared
to three CMA-ES methods with three analytical optimization problems highlighting the e�ciency
of the algorithm and the robustness with respect to the initialization. A better optimum has
been found with the proposed approach with respect to the existing CMA-ES based optimization
algorithms.

252



Chapter 13

Modi�ed CMA-ES - launch vehicle
application
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• Apply and compare the proposed approach to reference techniques on a launch vehicle
design test case.

Chapter goals

13.1 Introduction

In the previous chapter 12, a modi�cation of CMA-ES algorithm has been proposed in order to
incorporate the constraint handling and to generate a probable research taking into account the
constraint violation in accordance with the information provided by the candidates. The proposed
technique has been compared to classical penalization methods of CMA-ES(λ, µ) and to the modi�ed
version of (1+1)-CMA-ES, outlining the robustness and e�ciency of the proposed approach. In this
chapter, the proposed handling constraint method is used to design a two stage solid propulsion
launch vehicle. The modeling of the launch vehicle is di�erent from chapter 8 in order to use
less computationally intensive models and therefore enables numerical comparison between the
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di�erent optimization algorithms. For instance, the trajectory simulation is replaced by a measure
corresponding to the propulsive speed increment characterizing the vehicle performance. The
models used here are still representative of the vehicle dynamics but with a lower degree of �delity.

13.2 Two stage solid propulsion rocket design

A multidisciplinary design problem consisting in maximizing the propulsive velocity increment ∆V
provided by a two stage rocket under geometrical and physical feasibility constraints is solved. The
propulsive speed increment is one of the important performance metrics of a launch vehicle and
is similar to the range for an aircraft. The conceptual design models use simpli�ed analysis of a
two stage cylindrical solid propellant rocket motor. The multidisciplinary analysis involves four
disciplines: the propulsion, the mass and sizing, the structure and the performance and constraint
assessment (Fig. 13.1). At the early design phase, model uncertainties exist and have to be taken
into account. Two uncertainties are considered: the density of the propellant ρ and the ultimate
strength σ for the rocket case material.

Propulsion

Mass[and
sizing

Structure

c*

ΔV

Performance[
&[Constraints

T
cT

md

g1 g2 g3

U=[ρ

z=[Dt1,Ds1,Pc1,Mp1,Dt2,Ds2,Pc2,Mp2]

m
.

md

Ap

t

,σ]

Figure 13.1: Design Structure Matrix for the two stage solid rocket.

The problem is formulated as follows:
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max E [∆V (z,U)] (13.1)

w.r.t. z = [Dt1, Ds1, Pc1,Mp1, Dt2, Ds2, Pc2,Mp2]

s.t. Pf [g1(z,U) ≥ 0] ≤ 10−2 (13.2)

Pf [g2(z,U) ≥ 0] ≤ 10−2 (13.3)

Pf [g3(z,U) ≥ 0] ≤ 10−2 (13.4)

zmin ≤ z ≤ zmax (13.5)

with: U = [U (1), U (2)] with U (1) ∼ N (1, 0.02) the uncertainty of the density of the propellant
(ρ) and U (2) ∼ N (1, 0.05) the uncertainty of the ultimate strength limit (σ) for the rocket case
material. The design variables are described in Table 13.2. An overview of the disciplines is
provided in the next sections.

Table 13.2: Design variables for the two-stage rocket.

Variables Symbol Domain of de�nition Baseline

1st stage nozzle throat diameter Dt1 [0.05, 1] m 0.75m

2nd stage nozzle throat diameter Dt2 [0.05, 1] m 0.75m

1st stage nozzle exit diameter Ds1 [0.5, 1.4] m 1m

2nd stage nozzle exit diameter Ds2 [0.5, 1.4] m 1m

1st stage combustion pressure Pc1 [1, 500] bar 100bar

2nd stage combustion pressure Pc2 [1, 500] bar 100bar

1st stage propellant mass Mp1 [2000, 15000] kg 8000kg

2nd stage propellant mass Mp1 [2000, 15000] kg 8000kg

13.2.1 Disciplinary models

13.2.1.1 Propulsion

The propulsion discipline computes for a given set of propellant characteristics (density ρ, com-
bustion speed, �ame temperature Tc, heat capacity ratio γ), the thrust T , the mass �ow rate ṁ,
the thrust coe�cient cτ , the characteristic velocity c∗ and the speci�c impulse Isp. Moreover, it is
assumed that the �ow through the nozzle is isentropic with a perfect gas and steady. The thrust
coe�cient cτ depends entirely on the nozzle characteristics Dt, Ds and the heat capacity ratio γ:

cτ =

[
2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

[
1−

(
Pe
Pc

) γ−1
γ

]] 1
2

+
(Pe − Pa)×Ae

At × Pc
(13.6)

where Pc is the combustion chamber pressure, Pe is the nozzle exit pressure, Pa is the local
atmospheric pressure, Ae is the nozzle exit area and At is the nozzle throat area. Moreover, the
characteristic velocity c∗ depends on the �ame temperature according to:

c∗ =

√
γ ×R× Tc

γ
(

2
γ+1

) γ+1
2(γ−1)

(13.7)
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with R = 8314/Mc the gas constant. The speci�c impulse is derived from cτ and c∗:

Isp =
c∗ × cτ
g0

(13.8)

and furthermore, we have the thrust of the solid rocket motor given by:

T = g0 × q × Isp (13.9)

with q the mass �ow rate. The discipline takes nozzle shape Dt, Ds and combustion pressure Pc
as inputs. The used propellant is the butargols with polybutadiene binder without aluminium
additive. See the appendices for more details on the models.

13.2.1.2 Mass and Sizing

The mass and sizing discipline computes the dry mass md and the geometry of the two stage solid
propulsion rocket. The dry mass involves the mass of the rocket case, the mass of the nozzle and
the pyrotechnic igniter. The rocket geometry consists of the initial combustion area, the packaging
ratio and the size of the central channel. The mass models used are derived from conceptual design
phases models developed by Castellini [Castellini, 2012]. See the appendices for more details on
the models.

13.2.1.3 Structure

The structure discipline computes the tank wall thickness (t) which are sized under the combustion
pressure based on the material characteristics (density, ultimate tensile strength limit) and rocket
geometry to be used by the mass discipline. Moreover, it computes the stress in the rocket case.
The motorcase thickness t is given by:

t =
Pb ×Rc
Ftu

(13.10)

where Pb is the burst pressure determined based on the maximum expected operating pressure
[Humble et al., 1995], Rc is the case radius and Ftu is the ultimate tensile strength of case material.
The material used for the motorcase is the 4130 steel alloy (ρc = 7830 kg/m3, Ftu = 0.862 GPa).

13.2.1.4 Performance and constraints

The performance metric is the propulsive speed increment ∆V and the expected value of ∆V is the
objective function to be maximized. CMC based on 1000 samples is used to compute the expected
value of the propulsive velocity increment. The propulsive velocity increment is given by:

∆V = g0Ispln

(
mi

mf

)
(13.11)

with mi the initial mass and mf the �nal mass of the launch vehicle.
Three constraints are considered for each stage:

• g1(·) which ensures packaging ratio (Propellant volume / Available volume) that has to be
inferior to 87%,
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• g2(·) which ensures that central channel diameter is 30% greater than the nozzle throat
diameter,

• g3(·) which ensures that combustion area is greater than the minimum feasible (area of central
channel walls).

The probabilities of failure for the three constraints have to be inferior to 1%. The probabilities of
failure are computed with a CMC of 104 samples, numerically corresponding to a relative standard
error (σ/E) of the probability estimation in the order of 5%. See the appendices for more details
on the models.

13.2.2 Results

The optimization process for each algorithm is repeated 10 times. All the optimizations start from
the same baseline given in Table 13.2. The same stopping criterion is used for all the optimization
algorithms: the distance in the design space between the mean vector and the best point found
‖m(k)−zbest ‖2< 10−3 must be under a tolerance 20 times in a row. The convergence curves of the
algorithms are given in Figure 13.5. The dimension of the launch vehicle design problem is 8 with
6 constraints. The di�erent algorithms do not converge exactly to the same optimum. Modi�ed
CMA-ES (λ, µ) provides a better optimum in terms of propulsive speed increment: 6234.1m/s
with a better robustness to the repetition of the optimization process. Modi�ed CMA-ES (λ, µ)
and Penalization CMA-ES (λ, µ) share a close optimum. The di�erence in terms of propulsive
increment is due to the higher chamber pressure, the di�erent distributions of propellant masses
between the two stages and a di�erent nozzle geometry for the �rst stage in the Modi�ed CMA-ES

(λ, µ). The sensitivity of the propulsive increment to the chamber pressure, the mass of propellant
and the nozzle geometry is important resulting into a di�erence into the optimization results.
The proposed algorithm converges on the average with 1127 discipline evaluations. The other
optimization algorithms converge with the same order of number of discipline evaluations (∼
1750). Four constraints are active at the optimum which constrained the design and make complex
the optimization. The better optimum found by the proposed approach is essential as it has a
better propulsive speed increment which could be used to increase the payload mass. Figure 13.3
illustrates the di�erence between the optimal solutions found by the di�erent algorithms. The
grain geometry and the optimal rocket found by modi�ed CMA-ES are represented in Figure 13.6.
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Figure 13.3: Optimal launch vehicle design for the four optimizers.
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Table 13.4: Results of the two stage rocket optimization. Average over 10 optimizations (in
parenthesis the RSD - σ/E).

Results Modi�ed
CMA-ES(λ, µ)

Death Penalty
CMA-ES(λ, µ)

Penalization
CMA-ES(λ, µ)

Modi�ed
(1+1)-CMA-ES

Design
Variables

[0.321, 0.9081,
205.46, 12428.1,
0.637, 1.288,
21.08, 7911.2]

[0.449, 1.240,
64.12, 10781.4,
0.535, 1.112,
32.85, 9726.6]

[0.283, 0.7131,
181.83, 12462.5,

0.571, 1.39,
26.20, 9316.9]

[0.3558, 0.9961,
199.87, 11750.2,
0.5476, 1.314,
31.78, 9723.6]

Objective
function

6234.1 (0.95%) 6093.2 (1.55%) 6097.4 (1.43%) 6080.1 (1.19%)

Constraint
functions

[−0.01,−0.0023,
−0.0014,−0.01,
−0.0023,−0.0032]

[−0.01,−0.025,
−0.01,−0.01,
−0.01,−0.0037]

[−0.01,−0.0079
−0.0053,−0.01,
−0.0054,−0.0067]

[−0.01,−0.0086,
−0.0037,−0.01,
−0.0028,−0.0046]

Number of
discipline
evalua-
tions

1127 (0.73%) 1758 (0.88%) 1813 (1.54%) 1675 (0.94%)
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Figure 13.6: Optimal two stage booster design with modi�ed CMA-ES(λ, µ) and solid grain propel-
lant con�guration.
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13.3 Conclusion

This chapter deals with the design of a two stage solid rocket with the proposed modi�cations of
CMA-ES(λ, µ). A multidisciplinary optimization problem is solved in the presence of uncertainty
and constraints. The design problem involves four disciplines: the propulsion, the sizing and mass,
the structure and the launch vehicle performance. The solving of the associated UMDO problem
has been performed with the proposed modi�ed CMA-ES(λ, µ), death penalty CMA-ES(λ, µ),
penalized CMA-ES(λ, µ) and modi�ed (1+1)-CMA-ES. A better optimum has been found with the
proposed approach with respect to the existing CMA-ES based optimization algorithms resulting
in a potential increase in the payload mass. The robustness of the proposed constraint handling
is highlighted over the repetitions of the problem solving both in terms of objective function
value and number of calls to the disciplines. However, CMA-ES may present local convergence
[Hansen et al., 2003] as illustrated in the Rosenbrock, G04 and launch vehicle design problems,
and the current approaches to avoid that is a restart procedure. Further investigations on local
convergence issues have to be performed in order to ensure algorithm global convergence.

Modi�ed CMA-ES(λ, µ) has been proposed in order to make robust the constraint handling approach
and to avoid the existing problem dependent methods. The proposed approach does not dependent
on the type of problem to be solved, it only modi�es the covariance matrix update mechanism in
order to take into account the constraint violations by the candidates. This approach is interesting
for the optimization of complex system which may present local minima and nonlinear dynamics
with a non-gradient-based algorithm. In practice, CMA-ES requires a large number of function
evaluation (> 103) compared to gradient-based algorithms but its robustness to the presence of
uncertainty make this algorithm interesting to solve UMDO problems in the early design phases
when the disciplines involve low �delity analysis models. Moreover, CMA-ES has been extended
in order to include discrete variable handling which is an interesting capability in the context of
launch vehicle design. Indeed, in the proposed test cases, design variables such as number of stages,
number of boosters, number of engines etc. have been �xed a priori but further investigations to
include the control of this type of variable in a MDO framework is primordial to discriminate launch
vehicles with di�erent architectures.
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• Context:

� Constrained optimization problem solving in the presence of uncertainty,

� Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES),

� State-of-the-art methods are problem dependent techniques.

• Contributions:

� Development of a new update mechanism of the covariance matrix used to generate
the candidate population to take into account the presence of the constraints,

� Application and comparison of the proposed approach on three analytical test cases,
highlighting its e�ciency solve constrained optimization problems in the presence of
uncertainty,

� Application and comparison on a launch vehicle design problem emphasizing its ro-
bustness in solving constrained UMDO problems.

• Actionable information:

� Useful for constrained UMDO problem solving which present local minima and non-
linear dynamics,

� Does not require problem dependent parameter setting,

� Might be extended to handle discrete variables for MDO problems.

• Perspectives:

� Develop a method to avoid CMA-ES local convergence,

� Compare to other UMDO optimization algorithms such as Multi-Agents Systems
[Jaeger et al., 2015] or stochastic gradient [Andrieu et al., 2007].

� Extend the approach to problems involving mixed continuous and discrete variables.
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Conclusion and perspectives

This thesis is focused on the development of methodologies for Multidisciplinary Design Analysis
and Optimization in the presence of uncertainty enabling the design of complex systems such as
launch vehicles at the early design phases. The contributions of this work are related to three
important topics in UMDO.

13.4 Interdisciplinary coupling

Firstly, the thesis focused on interdisciplinary coupling satisfaction in the presence of uncertainty.
From the analysis of the di�erent existing UMDO formulations and their handling of interdis-
ciplinary couplings, a new approach has been proposed. The method allows to decouple the
disciplines in order to avoid computationally expensive MDA at each iteration while ensuring mul-
tidisciplinary feasibility for the optimal systems for all the simulated realizations of the uncertain
variables (corresponding to uncertain events). To this end, a surrogate model-based method has
been developed. The metamodels represent at the convergence of the UMDO process, the func-
tional relationships between the disciplines as would do MultiDisciplinary Analysis (MDA) under
uncertainty. This approach enables decomposition strategies for the design process. Based on this
technique, two UMDO formulations have been proposed. The �rst one is a single-level UMDO formu-
lation derived from Individual Discipline Feasible (IDF) formulation named IDF-PCE. Polynomial
Chaos Expansions (PCE) of the interdisciplinary coupling mappings are built all along the system-
level optimization. The PCE coe�cients are controlled by the system-level optimizer in addition
with the design variables characterizing the system architecture. The coupling constraints are ex-
pressed through an integral form and are added to the system-level optimization problem in order
to guarantee multidisciplinary feasibility for all the simulated realizations of the uncertain variables
for the optimal system at the UMDO process convergence. Three techniques (Crude Monte Carlo,
quadrature, PCE) have been proposed to estimate the multidimensional interdisciplinary coupling
constraints. The proposed approaches transform the original complex in�nite-dimensional problem
into a �nite-dimensional problem while ensuring a numerically equivalence in terms of coupling
satisfaction between coupled and decoupled design strategies.
The second proposed formulation is a multi-level UMDO approach derived from the Stage-Wise
decomposition for Optimal Rocket Design (SWORD) exploiting a transverse decomposition of the
design process of launch vehicles according to the di�erent �ight phases instead of the classical
disciplinary decomposition according to the disciplines. The proposed method named Multi-level
Hierarchical Optimization under Uncertainty (MHOU) is a semi-decoupled hierarchical method that
removes all the feedback interdisciplinary couplings in order to avoid expensive disciplinary loops
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through MDA. The formulation relies on two levels of optimization and the surrogate model-based
technique to ensure the multidisciplinary feasibility at the convergence of the UMDO processes.
These two formulations have been tested and compared with MDF on an analytical test case and
on two launch vehicle design problems. These test cases illustrated the e�ciency of the proposed
approach (especially MHOU) compared to MDF for the design of launch vehicles. Moreover, they
highlighted the bene�t of taking account uncertainty at the early design phases in order to ensure
the robustness and reliability of the optimal launch vehicles with respect to uncertain events.
Nevertheless, these studies have shown that the use of decoupled design strategies in the presence of
uncertainty make the solving of the optimization problem more complex compared to deterministic
decoupled MDO strategies.
These approaches are useful for designing a complex system with a decomposed design process
involving engineering teams of di�erent �elds. In practice, industrial companies are organized
according to the di�erent competence (propulsion, aerodynamics, etc.) which are sometimes even
not at the same location. Decomposed design procedure allows to o�er engineering team autonomy
while ensuring system design consistency at the end of the design process. One of the main
constraints in terms of system design consistency is the interdisciplinary coupling satisfaction
which guarantees that the di�erent teams performed analyses with the same shared characteristics
(diameters, thrusts, pressures, temperatures, etc.). The proposed approaches maintain the system
design consistency in the presence of uncertainty which is a novelty compared to the state-of-the-art
methods.

13.5 Reliability analysis

Secondly, the thesis focused on reliability analysis in the presence of mixed aleatory and epistemic
uncertainties. From the analysis of the di�erent existing reliability analysis methods in the presence
of mixed aleatory and epistemic uncertainties, two new reliability assessment techniques have been
proposed. In the early design phases, in addition to the aleatory uncertainty modeled with the
probability formalism, epistemic uncertainty is present due to lack of knowledge, simpli�cation
hypotheses and low �delity simulation models. Epistemic uncertainty is often modeled with interval
formalism. Two types of problems have been considered: epistemic uncertainty on the hyper-
parameters of the PDF de�ning the aleatory uncertainty and epistemic uncertainty directly a�ecting
the system failure limit state function.
The proposed method to solve the �rst problem combines Importance Sampling (IS) using Cross
Entropy (CE) with an adaptive Kriging model used to replace the expensive limit state function,
and an optimization algorithm (CMA-ES) aiming at determining the bounds of the probability of
failure. This approach allows to handle rare event probability calculations and possible non linear
limit state. Moreover, CE algorithm has been modi�ed in order to accelerate the calculation of a
probability of failure for a new epistemic uncertain variable value based on a previous calculation.
Furthermore, a dedicated re�nement strategy of the Kriging model has been used in order to ensure
an accurate estimation of the probability bounds and the precision of the Kriging model in high
probability content regions around the failure threshold.
The proposed methodology to solve the second problem is based on an iterative sequential loop
which combines Subset Simulation with an adaptive Kriging model and an optimization algorithm.
The �rst step of the process involves an interval analysis including the probability estimation using
the Kriging model of the limit state function. The second step consists of a re�nement strategy for

266



Conclusion and perspectives

the metamodel adapted to the presence of epistemic uncertainty. The re�nement strategy ensures
the accuracy of the Kriging model in the regions of high probability content around the failure
threshold and around the epistemic variable values leading to the probability bounds. In order
to determine the bounds of the failure probability with a gradient-based algorithm, an approach
has been developed to compute the sensitivity of the probability of failure with respect to the
epistemic variables that directly a�ect the limit state function. An analytical derivation based
on the properties of the indicator function has been proposed. Estimators for the sensitivity
using Crude Monte Carlo and Subset Simulation have been derived in addition to the numerical
implementation.
The developed reliability analysis methods have been tested and compared to reference approaches
on analytical test cases and on launch vehicle analysis problems. During the design of a launch
vehicle, constraints have to be imposed during the trajectory optimization to ensure the stage
fallout in safe conditions in an adequate zone. The launch vehicle analysis problem consists in
estimating the probability that a stage falls at a distance greater than a given safety margin to
a nominal impact point. Both the analytical test cases and the launch vehicle problems have
illustrated the e�ciency of the proposed techniques compared to the existing methods. However,
due to the complexity of the proposed approach and the induced computational cost, a direct
implementation in a design problem such as in a UMDO process requires further investigations.
Reliability analysis is an essential study to be performed during the design of a new system. The
result of reliability analysis directly depends on the modeling of input aleatory uncertainty and
the limit state function. In practice, at the early design phases, the uncertainty modeling and
the limit state function su�er from epistemic uncertainty, industrial companies have di�culties
in getting, aggregating and analyzing uncertainties in order to use these data for future system
design. Therefore, the knowledge about uncertainty is often limited and taking into account
these limitations is essential in order to accurately assess the probability of failure of the system.
The proposed approaches are useful for this type of problem because they allows to account for
that potential lack of knowledge into the failure probability estimation and therefore make the
calculation only based on the known information.

13.6 Optimization with evolutionary strategy

Thirdly, the thesis focused on evolutionary strategy optimization algorithms (and more particularly
CMA-ES) in the presence of constraints and uncertainty. An UMDO problem requires to solve a
constrained optimization problem in the presence of uncertainty. The analysis of the di�erent
existing optimization algorithms adapted to UMDO problems outlined the e�ciency of CMA-ES but
also its di�culties to handle constraints. The classical techniques based on penalization require
�ne tuning and are problem dependent. A new method modifying the mechanism used to generate
the population of candidates has been proposed in order to account for the presence of constraints.
The proposed technique modi�es the update mechanism of the covariance matrix in order to
take into account the violation of the constraints and to reduce the search hypervolume in the
directions where unfeasible candidates have been found. The proposed approach has been tested
and compared to reference methods on three analytical optimization problems and one launch
vehicle design problem highlighting the e�ciency of the new algorithm compared to the classical
constraint handling techniques for CMA-ES.
The e�ciency of solving of UMDO problems directly results from the optimizer algorithm capability
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to converge quickly to an optimum. In practice, the presence of uncertainty and constraints make
more complex the optimization solving and deterministic algorithms are not adapted to these
problems. The proposed approach is useful to solve constrained UMDO problems without requiring
tuning of problem dependent parameters. The state-of-the-art CMA-ES techniques are problem
dependent and the proposed methods modify the covariance matrix update mechanism which is
independent of the type of problem solved.

13.7 Perspectives

In order to further improve the proposed UMDO methods presented in this thesis, some extensions
may be proposed. In this thesis, contributions in terms of problem formulation and coupling
handling, in terms of reliability analysis and in terms of optimization algorithms dedicated to UMDO

have been proposed. An important extension could be to combine all the developed methods into
a new UMDO process. It would be interesting to design a new launch vehicle with a decomposition
strategy and to incorporate stage fallout constraint estimation with the developed techniques while
using the modi�ed CMA-ES. However, the computational cost would make the solving of this design
problem di�cult. Further improvements are required to mature UMDO methodologies:

Interdisciplinary coupling satisfaction
In this thesis, no MultiDisciplinary Analysis has been performed in the proposed decomposition
design strategies. However, the developed method to handle interdisciplinary couplings has shown
limitations in the case of the increase of the number of uncertain variables. An hybrid formulation
propagating uncertainties with a decoupled approach while authorizing MDA to ensure multidis-
ciplinary feasibility could be an intermediate solution between coupled and decoupled strategies.
The propagation of uncertainty would allow to evaluate the disciplines in parallel. It would al-
low to avoid expensive discipline loops during uncertainty propagation. Moreover, MDA would be
used to ensure multidisciplinary feasibility as some semi-decoupled approaches do for deterministic
MDO (for instance CSSO or BLISS). Moreover, in this thesis, IDF-PCE and MHOU formulations only
manage uncertainty that is modeled with the probability formalism. An extension of the proposed
UMDO to other uncertain formalisms such as Evidence theory or Possibility theory would be very
interesting but requires an adequate handling of interdisciplinary couplings which has to be devel-
oped. Moreover, a comparison of UMDO methods and results with safety factor-based approaches
could be interesting to either re-set the value of the safety factors or to con�rm the historical
choices.

Reliability analysis
Additionally, improvements of the proposed reliability analysis methods to further reduce their
computational costs could be interesting in order to incorporate them in UMDO formulations. The
proposed methods are able to handle low dimensional problems, but it would be valuable to improve
the techniques for high dimensional problems. The main di�culties are due to the surrogate models
which present accuracy and computational cost issues in high dimensions. More adapted surrogate
models such as Support Vector Regression could be investigated for high dimensional problems.
Performing sensitivity analysis of the probability of failure could also be an interesting way of
improvement in order to determine the most in�uential parameters for the probability of failure
and to decrease the problem dimension by �xing the non in�uential ones. Moreover, a work on
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uncertainty modeling to �nd the most appropriate formalism among the existing ones based on the
available information for each uncertain parameters could be interesting to improve the �delity of
the reliability analysis results with respect to the uncertainty information knowledge.

Optimization algorithms
Finally, the proposed UMDO formulations have been tested on the design of classical launch ve-
hicles involving only continuous design variables. It would be very interesting to incorporate the
handling of discrete variables (such as the number of boosters, the number of stages, etc.) and
categorical variables (the type of propellant solid, liquid or hybrid, the type of material, etc.).
Moreover, developing some optimization techniques to handle variable-size design space problems
would be very bene�cial within the context of launch vehicle design. It would allow to extend the
types of launch vehicle architecture studied by allowing the introduction of new design variables
and constraints during the optimization process and therefore enhance the decision maker choice.
Moreover, only single objective problems have been treated in this thesis. It would be interesting to
extend the proposed methods to multi-objective problems (for instance minimization of the launch
vehicle cost while maximizing the payload mass). This would o�er the possibility to design a family
of launch vehicles dedicated to di�erent missions (low Earth orbit, Geostationary Transfer Orbit,
etc.). Eventually, integrating multi-�delity approaches in order to control and reduce the impact
of epistemic uncertainty in the optimization process could be investigated within the context of
UMDO.
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Chapter 14

Appendix A - Dry mass sizing
module

The dry mass module aims at estimating the mass of the di�erent parts of the launch vehicle
to calculate the Gross Lift-O� Weight (GLOW). All the mass models used in this thesis are
derived from engineering models for the conceptual design of launch vehicles developed by Castellini
[Castellini, 2012].
Three inputs from other disciplines are required to compute the GLOW:

• Propulsion outputs: thrust, speci�c impulse, solid propellant grain geometry, chamber pres-
sure, etc.

• Sizing outputs: geometry of all the di�erent parts of the launch vehicle (tank volume, stage
length, launcher surface, engine size, etc.)

• Trajectory outputs: the maximal axial load subjected by the launch vehicle during the �ight.

Figure 14.1 presents the mass tree of all the involved components to compute the launch vehicle
GLOW. In the following, only the input variables and the parameters of the launch vehicle main
components are given. For the detailed engineering models please refer to [Castellini, 2012].
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Figure 14.1: GLOW computations with all the involved components

14.1 Liquid propulsion system masses

For a liquid propellant stage, the dry mass of the stage is the sum of the following elements:

• tanks,

• liquid engine (turbo-pumps, valves, piping, thrust chamber, igniter, pressuring systems, in-
jector, pre-combustor, etc.) depending on the type of engine cycle,

• thrust vector control,

• intertank (if no common bulkhead),

• thrust frame,

• nozzle,

All the models are detailed in [Castellini, 2012], only the di�erent module and parameters are given
in the following.
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14.1.1 Tanks

- Selected material: Aluminum alloy (density ρ = 2800kg.m−3, ultimate strength σr =
400MPa),

- Structural safety margin: 1.25,

- Propellant densities: ρLOx = 1141kg.m−3, ρLH2 = 71kg.m−3.

Tanks
Vt,St,Pt,nax,Qdyn Mtanks

Figure 14.2: Tank mass module

Table 14.3: Tank mass input variables.

Symbol Input variables

Vt Propellant volume (m3)

St Tank surface (m2)

Pt Tank pressure (bar)

nax Maximal axial load (m2/s)

Qdyn Maximal dynamic pressure (Pa)

Unused propellants are considered for several reasons: propellant trapped in pipes, valves, wetting
tank walls (linear model from 0.8%-0.4% for 0 to 500t of propellants) unbalance in mixture ratio,
cryogenics boil-o�, and due to propellant �ight reserves. According to [Castellini, 2012] the pro-
pellant �ight reserves are in the order of 0.5% for lower stages and 1.5% for upper stages. These
�ight reserves may be consumed in the presence of uncertainty to try to inject the payload into
the appropriate orbit.

14.1.2 Liquid engine

In the liquid engine mass depending on the cycle type, the following elements are included:

- Stage combustion:

� Pre-combustors

� Turbopumps

� Valves and piping

� Injector and igniter

� Thrust chamber
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- Expander cycle:

� Turbopumps

� Valves and piping

� Injector and igniter

� Thrust chamber

- Gas generator:

� Gas generators

� Turbopumps

� Valves and piping

� Injector and igniter

� Thrust chamber

Liquid engine
T, tc ML_engine

Figure 14.4: Liquid engine module

Table 14.5: Liquid input variables.

Symbol Input variables

T Thrust (N)

tc Type of cycle

The liquid engine mass models are based on mass regressions from more than 30 existing engines
(for instance Vulain-2, Merlin-1C, SSME, RD-180, Vinci, HM-7B, etc.) of di�erent cycle types and
di�erent couples of propellants (cryo-storable, cryo-cryo, storable-storable).

14.1.3 Thrust vector control

Two possible types of thrust vector control are considered: either hydraulic actuation or electro-
mechanic actuation system. In both type, the thrust vector control mass may be approximated
considering a function of the vacuum thrust of the engine. The thrust vector control models are
applicable to both liquid and solid propellant stages.
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Thrust vector 
control

T, ta MTCV

Figure 14.6: Liquid engine module

Table 14.7: Thrust vector control variables.

Symbol Input variables

T Thrust (N)

ta Type of actuation

14.1.4 Intertank

If the oxidizer and the fuel tanks do not have a common bulkhead, the following model is used for
the intertank mass:

Intertank
D,S,ti Mintertank

Figure 14.8: Intertank module

Table 14.9: Intertank variables.

Symbol Input variables

D Stage diameter (m)

S Lateral surface (m2)

ti Type of intertank

Depending if the intertank is for a lower or an upper stage, a di�erent mass model is used. An
identical model (with di�erent coe�cients) is used for interstage and pad interface mass calculation.
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14.1.5 Thrust frame

The thrust frame structure is the structure where the liquid engine is �xed.

Thrust frame
T,Meng,nax MTframe

Figure 14.10: Thrust frame module

Table 14.11: Thrust frame variables.

Symbol Input variables

T Engine thrust (N)

ML−engine Engine mass (kg)

nax Maximal axial load (m2/s)

14.1.6 Nozzle

A conical nozzle with a constant thickness is considered in the model used. The half angle is �xed
to a value of 15◦. Nickel-based materials are used for the nozzle with a density of 8000kg.m−3 and
the ultimate strength of σr = 310MPa.

Nozzle
T,Pc,ε,At Mnozzle

Figure 14.12: Nozzle module

Table 14.13: Nozzle variables.

Symbol Input variables

T Engine thrust (N)

Pc Chamber pressure (bar)

ε Nozzle expansion ratio

At Throat area (m2)

This model is also developed in [Humble et al., 1995].
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14.2 Solid motor

The main di�erences with the liquid propulsion stage is the motor case and the igniter module.
Spherical domes for the solid grain are assumed for the solid case. Moreover, another important
di�erence comes from the fact that the main structural mass of solid propellant stage is determined
by the chamber pressure and no couplings is taken into consideration with the trajectory through
�ight loads. In the used models, these loads are neglected, implying that compression stresses may
be sustained by the solid case which is sized by the chamber pressure.

14.2.1 Solid case

The Al-7075 alloy (ρ = 2730kg.m−3, σr = 505MPa) is used for the solid case material.

Solid case
Pc,D,L Mcase

Figure 14.14: Solid case module

Table 14.15: Solid case variables.

Symbol Input variables

Pc Chamber pressure (bar)

D Solid case diameter (m)

L Solid case length (m)

14.2.2 Igniter

The igniter mass is a function of the cavity volume inside the solid case with the grain propellant.
The mass of the igniter is given by [Castellini, 2012]:

Migniter = 20.62V 0.7368
cav

This model is derived from available data for Solid Rocket Motor of Ariane 5 and Vega launchers.

14.3 Launch vehicle

Finally several components such as avionics or Electrical Power Systems (EPS) mass estimation
are based on the surface of the whole launch vehicle Stot [Castellini, 2012]:

Mavionics = KRL × 0.25× (246.76 + 1.3183× Stot)
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and
MEPS = KRL × 0.82×Mavionics

where KRL accounts for the redundancy level in the avionics systems: no redundancy (KRL = 0.7),
critical components only (KRL = 1.0) or fully redundant (KRL = 1.3).
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Appendix B - Propulsion module

15.1 Liquid propulsion

The liquid propulsion discipline is based on Chemical Equilibrium with Applications (CEA) which
is a thermochemical simulation software developed by NASA [Gordon and McBride, 1996]. In
particular, CEA has a rocket mode to simulate the combustion of gas in a combustion chamber and
the gas expansion in a nozzle. CEA computes chemical equilibrium compositions and properties
of complex mixtures such as in rocket combustion. It includes databases of more than 2000
species with their transport and thermodynamic properties. The conditions for chemical reaction
equilibrium are stated in terms of minimization of Gibbs or Helmholtz energy or the maximization
of the entropy. In the di�erent test cases, temperature and pressure are used to characterize the
thermodynamics state therefore, Gibbs energy is minimized as temperature and pressure are its
natural variables. The condition for chemical equilibrium is the minimization of free energy since
each species may be treated independently without speci�cation of a set of reaction a priori. The
system of equations to solve the equilibrium and to obtain the chemical composition are non linear
and iterative methods (such as descent Newton-Raphson algorithm) are used.
CEA involves theoretical performance of rocket engine calculations adapted to conceptual and
preliminary design phases and the following assumptions are made:

• Ideal gas and homogeneous mixture without interactions between the species,

• Isentropic expansion in the nozzle,

• Adiabatic and complete combustion,

• Zero velocity at the combustion chamber entrance,

• Constant area of the cross section in the combustion chamber,

• Non isentropic, irreversible combustion process,

• Finite Area Combustor or In�nite Area Combustor.

CEA simulation requires three inputs to compute the characteristics of the liquid rocket engine
(Table 15.1):
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• Chamber pressure Pc,

• Nozzle expansion ratio ε = Ae
At
, the ratio between the nozzle exit area and the nozzle throat

area,

• Mixture ratio O/F = qox
qf

, the ratio between the mass �ow rate of the oxidizer and the mass
�ow rate of the fuel.

Table 15.1: CEA Input variables.

Symbol Input variables

Pc Chamber pressure (bar)

ε Nozzle expansion ratio

O/F Mixture ratio

Moreover, to simulate the gas combustion in the chamber and its expansion in the nozzle, CEA
takes as input several parameters:

• Storage temperature of the propellants,

• Reactant chemical composition,

• Frozen composition expansion or shifting chemical equilibrium through the nozzle.

The outputs of CEA simulations enable to compute several rocket engine characteristics:

• Characteristic velocity c∗ = PcAt
q with q the mass �ow rate at the throat area,

• Thrust coe�cient cτ = T
PcAt

with T the nominal thrust,

• Speci�c impulse Isp = c∗cτ
g0

,

• Nozzle exhaust gas speci�c heats ratio γe, gas temperature Te, pressure Pe.

From the following outputs, the rocket engine thrust may be easily derived. To correct the theoret-
ical results provided by CEA, e�ciency factors are considered: ηcomb the combustion e�ciency and
ηnoz the nozzle e�ciency. Typical values for these e�ciencies may be found in [Castellini, 2012].

15.2 Solid propulsion

For solid rocket motor, the propellant display in the motor case has an impact on all the macroscopic
characteristics of the motor (speci�c impulse, thrust, chamber pressure etc.). Therefore, dedicated
models have to be developed to set up the geometry of the solid grain section. Thomas Coquet
(Onera), based on the work of [Ricciardi, 1989] and [Hart�eld et al., 2003], developed a grain
geometry analysis model coupled with CEA to compute the solid motor characteristics based on
several parameters. A large number of con�gurations for the grain geometry are available (Fig.
15.2).
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Figure 15.2: Curves of iso-combustion depth for di�erent grain con�gurations

In practice, two classical con�gurations have been used in the thesis, the cylindrical and the star
grain con�gurations (Figs. 15.3,15.4).

Figure 15.3: Curves of iso-combustion depth
for the circle grain

Figure 15.4: Curves of iso-combustion depth
for the star grain

A general star model has been developed by A. Ricciardi [Ricciardi, 1989] and modi�ed by T.
Coquet. Seven parameters are required to de�ne the star geometry (Table 15.5).
The half branch of the star is divided into 14 zones depending on the depth of combustion and
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Table 15.5: Grain geometry parameters.

Symbol Variables ad parameters

R grain radius (m)

Wc depth of combustion (m)

N number of branch

r1 radius of curvature superior (m)

r2 radius of curvature inferior (m)

ξ angle for non circular part (rad)

η half angle between the branch (rad)

the initial parameters. Then, a series of zone con�gurations are de�ned depending on the initial
parameters of the star. For instance, in Figure 15.6 the di�erent zones associated to this particular
con�guration are illustrated: zone 10, 13 14 and 4.

Figure 15.6: Example of star geometry con�guration

To simulate the solid propellant combustion, two assumptions are used in addition to the CEA
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hypotheses:

• Stationary regime, no propellant accumulation in the combustion chamber,

• 2D model.

Table 15.7: Solid propellant combustion variables.

Symbol Variables

ηcomb combustion e�ciency

ηnoz nozzle e�ciency

At throat area (m2)

Wc depth of combustion (m)

vr regression rate (m/s)

Pc chamber pressure (bar)

m propellant mass (m)

c∗ characteristic exhaust velocity
(m/s)

cτ thrust coe�cient

Ab burn area (m2)

Me Mach nozzle exit

vr0,th throat erosion velocity (m/s)

Pe nozzle exit pressure (bar)

γ ratio of speci�c heats

ε nozzle expansion ratio

a burn rate coe�cient (cm/s)

n burn rate exponent

The parameters involved in the modeling of the solid propellant combustion are summarized in
Table 15.7. The di�erential system of equations modeling the combustion dynamics of the solid
propellant grain is discretized according to a �rst order Euler method. The following system of
di�erential equations models the propellant combustion:

dWc

dt
= vr (15.1)

dm

dt
= −ρAbvr (15.2)

dAt
dt

= −2
√
πAt

(
vr0,th

√
At,i
At

)0.2(
Pc
Pc,i

)0.8

(15.3)

(15.4)

Some parameters are interpolated from CEA simulation results:

c∗ = ηcombc
∗
CEA(Pc) (15.5)

γ = γCEA(Pc) (15.6)

(15.7)
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Moreover, the following relations are used:

Pc =

(
aρc∗Ab
At

) 1
1−n

(15.8)

vr = aPnc (15.9)

ε = εi
At,i
At

(15.10)

(15.11)

If we note Pb the perimeter of the combustion area and Ap the port area, we have the following
relation:

Pb =
dAp
dWc

Eventually, the output characteristics of the solid motor are interpolated from CEA simulation
results:

cτ = cτCEA(Pc, ε) (15.12)

Pe = PeCEA(Pc, ε) (15.13)

Me = MeCEA(Pc, ε) (15.14)

Isp = IspCEA(Pc, ε) (15.15)

(15.16)

The solid propellant used the di�erent solid motor test cases is the TP-H-3340 constituted of 18% of
Aluminum, 71% of Ammonium Perchlorate (AP) and 11% of Hydroxyl-terminated Polybutadiene
(HTPB).
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Appendix C - Aerodynamics module

The aerodynamics module involves Missile DATCOM [Blake, 1998] developed for the USAF by
McDonnell Douglas. Missile DATCOM is a preliminary design and analysis computer program of
missile and launch vehicle aerodynamics based on their geometry and �ight conditions. It is based
on analytical and semi-empirical methods encompassing a wide range of geometries, con�gurations
and �ight conditions. Missile DATCOM is used to compute the aerodynamics coe�cients (drag
CD and lift CL coe�cients) for di�erent launch vehicle geometries and di�erent Mach and angle of
attack conditions. Three inputs are required to compute the aerodynamics coe�cients by Missile
DATCOM:

• A vector of Mach and angle of attack values. These values are used in the trajectory discipline
to interpolate the aerodynamics coe�cients. During the ODE integration, from the current
position and velocity of the launcher, the aerodynamics coe�cients are interpolated from the
Missile DATCOM simulations in order to estimate the aerodynamics forces.

• Boundary layer information, which is assumed to be turbulent with a Roughness Height
Rating of 250 commonly used in aerospace surfaces [Castellini, 2012].

• The geometry of the axi-symetric launch vehicle.

Missile DATCOM presents some limitations for launch vehicles with boosters [Castellini, 2012].
All the considered launch vehicles in this thesis are without boosters. Missile DATCOM validation
has been performed on Ariane 5 and Vega launch vehicle. In the following, the geometry (Fig.
16.1) and the drag coe�cient (16.2) for Vega are provided and compared to an actual pro�le given
in [Castellini, 2012] with an angle of attack of 0◦.
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(dimensions in m)

Figure 16.1: Geometry of Vega launch vehicle
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Figure 16.2: Reference [Castellini, 2012] and Missile DATCOM drag coe�cients for Vega launch
vehicle
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Appendix D - Trajectory module

The trajectory model used in this thesis are derived from a three dimensional model with rotating
round Earth (radius 6371km). The trajectory model used the following 3D dynamics equations,
written in an Earth-centered, rotating Earth referential.

ṙ = V sin(γ) (17.1)

V̇ =
T cos(θ − γ)−D

m
− g(r) sin(γ) + ω2

Er cos(φ)(sin(γ) cos(φ) (17.2)

− cos(γ) sin(φ) cos(ψ))

γ̇ =
[L+ T sin(θ − γ)] cos(µ)

mV
+

(
V

r
− g(r)

V

)
cos(γ) + 2ωE sin(ψ) cos(φ) (17.3)

+
ω2
Er cos(φ)(cos(γ) cos(φ) + sin(γ) sin(φ) cos(ψ))

V

λ̇ =
V cos(γ) sin(ψ)

r cos(φ)
(17.4)

φ̇ =
V cos(γ) cos(ψ)

r
(17.5)

ψ̇ =
[L+ T sin(θ − γ)] sin(µ)

mV cos(γ)
+
V cos(γ) sin(ψ) tan(φ)

r
+ 2ωE(sin(φ) (17.6)

− cos(ψ) cos(φ) tan(γ)) +
ω2
Er sin(φ) cos(φ) sin(ψ)

V cos(γ)

ṁ = −q (17.7)

The sequence of the trajectory is illustrated in Figure 17.3. The sequence is composed of a vertical
�ight to leave the launch area protecting the installations, a pitch-over maneuver corresponding
to optimum orientation of the launcher in the trajectory plane, a �ight at zero incidence angle
(the thrust is in the direction of the velocity, also called gravity turn phase) and a controlled
exo-atmospheric �ight to reach the injection orbit.
The used referential is given in Figure 17.2 and the Table 17.1 explains the notations used. The
trajectory discipline consists of an optimization problem. The optimal control is performed with a
direct method [Betts, 1998]. The objective of trajectory optimization is to minimize the distance
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Table 17.1: Trajectory variables and parameters.

Symbol Variables ad parameters

r radius (m)

V norm of the velocity vector (m.s−1)

γ �ight path angle (rad)

φ latitude (rad)

λ longitude (rad)

ψ �ight path heading (rad)

µ bank angle (rad)

θ pitch angle (rad)

ωE angular velocity of the Earth
(rad/s)

T thrust (N)

D drag (N)

L lift (N)

g(r) gravity acceleration at r (m/s2)

m launch vehicle mass (kg)

q mass �ow rate (kg/s)

Figure 17.2: Earth-centered, Earth-�xed reference frame

between the real injection point and the given target injection point. The trajectory optimization
consists to de�ne crossing points for the pitch angle θ and to modify them to satisfy the speci�ca-
tions of the mission. In order to reduce the computation volume, the pitch angle is calculated by
piecewise linear functions. The trajectory discipline computes the loads (axial load factor, dynamic
pressure) required to simulate the mass budget and geometry design discipline. A zero lift model
is used for the aerodynamics and the trajectory.
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Vertical flight

Lift-off

Zero incidence 
angle flight

Pitch-over 
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Exo-atmospheric
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Atmospheric
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Range

Figure 17.3: Trajectory sequence

The dynamic pressure Pdyn during the �ight is given by:

Pdyn =
1

2
ρ(r)V 2

with ρ(r) the air density as a function of the altitude. Using a spherical Earth, the density of the
air is given by:

ρ(r) = ρ0 exp(−r −RE
href

)

with:

• ρ0 = 1.22557kg.m3

• href = 7254.24m

Moreover, the axial load factor nf is given by:

nf =
g0.q.Isp(r)− 1

2ρ(r).Sref .V
2.CD. cos(θ − γ)

m.g0

with:

• Sref : the aerodynamic reference surface,

• CD: the drag coe�cient

Eventually, during the �ight, the fairing is jetisoned when the aerothermal �ux gets below
1135W/m2. The aerothermal �ux is determined by the following relationship:

φA =
1

2
ρ(r)V 3

291



Contributions to Uncertainty-based Multidisciplinary Design
Optimization, application to launch vehicle design

The ODE dynamics equations are numerically integrated with a 4th order Runge Kutta solver.

For the stage fallout dynamics, in the system of di�erential equations, the thrust T and the mass
�ow rate q are both equal to zero. The orthodromic distance used to compute the distance between
the nominal impact point characterized by (φN , λN ) and the exact impact (φI , λI) is given by:

dorthodromic = RE × arcos(sin(φN ) sin(φI) + cos(λN ) cos(λI) cos(∆λ))

where ∆λ is the absolute di�erence between the two points on Earth and RE the Earth radius.
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Introduction

Les lanceurs sont des éléments clés pour garantir un accès indépendant à l'espace pour de nombreux
pays tels que les États-Unis, la Russie, l'Europe, etc. Les agences spatiales développent leurs
stratégies en fonction des capacités de leurs lanceurs dans les domaines d'exploration spatiale,
d'observation de la Terre ou de vols habités. La conception de lanceurs est un projet au long terme
impliquant des budgets importants et un processus organisationnel complexe. Les agences spatiales
telles que la NASA et l'ESA qui �nancent en partie de tels projets insistent sur la nécessité de réduire
les coûts de développement et d'utilisation ainsi que l'importance d'améliorer les performances des
lanceurs [Zeitlin et al., 2012]. Améliorer le processus de conception des systèmes aérospatiaux
est essentiel pour obtenir des capacités de lancement e�caces à bas coût et à haute �abilité. La
conception d'un tel système est un processus multidisciplinaire complexe: l'objectif est de trouver
l'architecture et les caractéristiques du lanceur qui fournissent une performance optimale tout en
assurant ainsi un niveau minimum de �abilité [Jaeger et al., 2013].
La conception de lanceurs implique de nombreuses disciplines et fait classiquement intervenir des
modèles de propulsion, d'aérodynamique, de trajectoire, de dimensionnement, de structure, etc.
L'évaluation de la performance d'un lanceur résulte d'une analyse couplée des disciplines qui im-
plique de faire des compromis entre des objectifs disciplinaires antagonistes a�n d'atteindre un
équilibre optimal entre la �abilité, la sécurité, le coût et la performance du système. Les approches
classiques de conception de lanceurs consistent en une boucle d'optimisation disciplinaire où, à
chaque itération, chaque discipline est ré-optimisée à partir des nouvelles données fournies par les
disciplines optimisées précédemment. Cependant, en raison de possibles objectifs disciplinaires
antagonistes, il est di�cile de rechercher des compromis entre ces disciplines. Par exemple, la
discipline aérodynamique va chercher à diminuer la trainée lors du vol endo-atmosphérique en
diminuant le diamètre de l'étage, alors que la discipline structure va chercher à augmenter ce
diamètre pour des raisons de stabilité et de résistance aux e�orts.
En conséquence, la conception de lanceurs requiert des méthodologies dédiées pour gérer la com-
plexité du problème à résoudre. L'optimisation multidisciplinaire (MDO pour Multidisciplinary De-
sign Optimization) est un domaine de recherche visant à développer des méthodologies d'ingénierie
de conception dédiées à la résolution de problèmes multidisciplinaires complexes [Sobieszczanski-
Sobieski and Haftka, 1997]. La MDO gère le problème de conception dans son intégralité en incluant
la gestion des interactions entre les disciplines contrairement aux approches classiques. Les méth-
odes de MDO tirent avantage des synergies et des couplages entre les disciplines impliquées dans
le processus de conception pour diminuer le coût de calcul et/ou améliorer la performance du sys-
tème optimal [Balesdent et al., 2012a]. Cependant, la complexité des problèmes d'optimisation à
résoudre se trouve signi�cativement augmentée à cause de la gestion simultanée de toutes les disci-
plines. Pour maîtriser cette complexité, plusieurs formulations MDO ont été développées [Cramer
et al., 1994; Balling and Sobieszczanski-Sobieski, 1996; Alexandrov, 1997; Kroo, 1997].
Dans l'industrie aérospatiale, le développement d'un nouveau système suit di�érentes phases de
conception (phase d'avant-projet, phase préliminaire, phase détaillée, phase de fabrication). Pour
un lanceur, il a été établi que la phase d'avant-projet est décisive pour le succès du processus
de conception dans son ensemble et qu'au moins 80% des coûts de développement sont �gés lors
de cette phase. En phase d'avant-projet, le domaine de recherche pour le lanceur optimal est
étendu car peu de caractéristiques du lanceur sont �gées [Zang et al., 2002]. Les approches par
MDO sont intéressantes car elles permettent de gérer des espaces étendus de conception dans un
environnement multidisciplinaire. Martins et al. [Martins and Lambe, 2013] expliquent que les
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ingénieurs, en utilisant la MDO dans les phases d'avant-projet, pourraient améliorer la performance
du système et diminuer le temps de développement, et ce en évitant de possibles re-conceptions
durant les phases ultérieures. Lors des phases avant-projet, des modèles basse �délité sont prin-
cipalement utilisés et de nombreuses méconnaissances existent. Ces modèles basse �délité sont
employés à cause du grand nombre d'architectures du système qui doivent être évaluées pour ex-
plorer l'espace de recherche. Cette exploration requiert une simulation répétée des disciplines qui
serait impossible à e�ectuer avec des modèles hautes �délités pour des raisons de coût de cal-
culs. De plus, a�n d'augmenter la performance des systèmes de lancement et de diminuer leurs
coûts, de nouvelles technologies (nouveaux types d'ergols comme le mélange oxygène et méthane,
nouveaux moteurs réallumables) et de nouvelles architectures (réutilisabilité du premier étage des
lanceurs) sont étudiées. Cependant, notamment en raison de la maturité des ces technologies et
de l'utilisation de modèles basse �délité, un haut niveau d'incertitudes est présent lors des phases
d'avant-projet. Ainsi, incorporer la gestion des incertitudes en MDO en phase d'avant-projet est
essentiel pour o�rir les améliorations suivantes [Zang et al., 2002]:

• réduire la durée du processus de conception, les coûts de développement et les risques associés,

• augmenter la robustesse du lanceur vis-à-vis des incertitudes durant les phases de développe-
ment (e.g. simpli�cation des phénomènes physiques pris en compte) et des incertitudes
durant les lancements (e.g. rafales de vent),

• améliorer les performances du système tout en respectant les contraintes de �abilité.

La prise en compte des incertitudes se fait souvent au travers de marges de sécurité qui peuvent
mener à des systèmes très conservatifs avec des performances diminuées. L'optimisation multidisci-
plinaire sous incertitudes (UMDO pour Uncertainty-based Multidisciplinary Design Optimization)
vise à résoudre des problèmes MDO en présence d'incertitudes. Les méthodes UMDO sont récentes
et toujours en développement car elles n'ont pas encore atteint la maturité nécéssaire pour iden-
ti�er le système optimal et estimer de façon e�cace ses performances et sa �abilité [Zang et al.,
2002].
Incorporer la gestion des incertitudes dans les approches de MDO introduit de nombreux dé�s.
Dans les phases d'avant-projet, être capable de concevoir un système en prenant en compte les
interactions interdisciplinaires et les incertitudes est di�cile en raison des coûts de calculs pro-
hibitifs associés. Trois dé�s complémentaires peuvent être identi�és comme clefs pour résoudre
e�cacement les problèmes UMDO.

• La gestion des couplages interdisciplinaires en présence d'incertitudes.
La plupart des formulations UMDO existantes sont dérivées de la formulation MultiDisci-
pline Feasible (MDF) et utilisent des analyses multidisciplinaires (MDA pour MultiDisciplinary
Analysis) pour assurer la faisabilité multidisciplinaire. Pour garantir la cohérence multidis-
ciplinaire du système, un système couplé d'équations doit être résolu. Les approches basées
sur des MDA impliquent des boucles entre les disciplines a�n d'identi�er les variables de
couplage satisfaisant le système d'équations. La combinaison de MDA avec la propagation
d'incertitudes résulte en une explosion du coût de calcul. Pour contourner les appels répétés
aux disciplines imposées par les MDA, des stratégies de décomposition du processus de concep-
tion ont été proposées [Du and Chen, 2001; Du et al., 2008; Ghosh et al., 2014] visant à évaluer
en parallèle les disciplines et non de façon consécutive. Cependant, la gestion des couplages
entre les disciplines pose alors problème. En e�et, les approches existantes dans la littérature
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[Du and Chen, 2001; Du et al., 2008; Ghosh et al., 2014] ne garantissent pas la satisfaction
des couplages pour tous les événements incertains qui pourraient se produire. Elles assurent
la satisfaction des couplages uniquement pour quelques instantiations particulières (par ex-
emple au point le plus probable de défaillance). Cependant, a�n de maintenir l'équivalence
entre les approches classiques (dites couplées) et les approches découplées (visant à éliminer
les boucles entre les disciplines) il est nécéssaire d'assurer la faisabilité multidisciplinaire quel
que soit l'événement incertain qui pourrait se produire durant la conception (e.g. erreur de
modélisation) ou l'exploitation du système (e.g. rafales de vent). De plus, dans la littéra-
ture, tous les processus de conception de lanceurs en présence d'incertitudes considèrent une
décomposition du processus selon les disciplines impliquées telles que la propulsion, la tra-
jectoire, l'aérodynamique, etc. Des stratégies de décomposition selon les étages du lanceur
ont été proposées a�n de résoudre des problèmes MDO déterministes [Balesdent et al., 2012a].
Cependant, ces approches n'ont pas été étendues à la présence d'incertitudes. Une décom-
position par étage du processus de conception a�n de résoudre des problèmes de UMDO pour
les lanceurs pourrait béné�cier des mêmes avantages que l'approche déterministe. Cette ap-
proche repose sur un processus multi-niveaux pour faciliter la convergence de l'optimiseur du
niveau système tout en évitant les boucles disciplinaires imposées par l'utilisation de MDA.

• L'analyse de �abilité pour des systèmes complexes.
Un autre dé� important lors de la résolution d'un problème UMDO est d'assurer la �abilité
du système optimal vis-à-vis des incertitudes. L'analyse de �abilité consiste à estimer la
probabilité de défaillance du système au vu des incertitudes considérées. La probabilité de
défaillance du système optimal ne doit pas dépasser un certain seuil dé�ni par le cahier des
charges. En phase d'avant-projet, deux types d'incertitudes sont existent: les incertitudes
aléatoires et épistémiques [Thunnissen, 2003]. La combinaison des incertitudes aléatoires et
épistemiques nécessite des méthodes d'analyse de �abilité dédiées. La plupart des approches
existantes sont basées sur Crude Monte Carlo (CMC) [Rubinstein and Kroese, 2011] ou bien
sur First Order Reliability Method (FORM) [Madsen, 1986; Bjerager, 1990] qui sont facilement
utilisables mais dont le champ d'utilisation est limité. En e�et, FORM n'est e�cace que si
la fonction de défaillance est linéarisable et CMC induit des coûts de calcul prohibitifs pour
des défaillances rares (< 10−4). La détermination de zones de sureté de retombée d'étage de
lanceurs est essentiel lors de leur conception et implique un problème d'analyse de �abilité non
linéarisable avec des événements rares. Ainsi, pour résoudre ce type de problème, d'autres
approches sont nécessaires.

• L'optimisation sous contraintes en présence d'incertitudes avec des approches évolutionnaires.
A�n de résoudre les problèmes UMDO, des algorithmes d'optimisation sont nécessaires. Ils
doivent avoir au moins deux caractéristiques. Tout d'abord, ils doivent être e�caces malgré
la présence d'incertitudes. Ensuite, ils doivent gérer la présence de contraintes a�n d'assurer
la satisfaction des spéci�cations du cahier des charges pour le système optimal. Les ap-
proches classiques basées sur le gradient peuvent présenter des di�cultés à converger à cause
des erreurs possibles sur l'estimation des gradients dues aux incertitudes. Les algorithmes
basés sur des populations d'individus [Hansen et al., 2003; Jin and Branke, 2005] sont intéres-
sants grâce à leurs capacités à gérer des environnements incertains. Cependant, la plupart
de ces algorithmes utilisent des techniques de pénalisation de la fonction objectif par les
contraintes qui requièrent le réglage de paramètres et qui sont dépendants du problème. Co-
variance Matrix Adaptation - Evolution Strategy (CMA-ES) est un algorithme évolutionnaire
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qui se démarque en présence d'incertitudes comme illustré dans de nombreux parangonnages
[Auger and Hansen, 2009; Hansen, 2009] mais dont la gestion des contraintes par pénalisation
introduit des limitations [Collange et al., 2010a].

Cette thèse est centrée sur l'élaboration de nouvelles méthodes d'analyse et d'optimisation multi-
disciplinaire en présence d'incertitudes permettant la conception de systèmes complexes en phase
d'avant-projet tels que des lanceurs.

Trois contributions sont à distinguer dans cette thèse.

1. Tout d'abord, deux nouvelles formulations UMDO avec satisfaction des couplages interdisci-
plinaires pour toutes les réalisations des variables incertaines ont été élaborées. Pour cela,
une nouvelle technique basée sur un métamodèle paramétrique (polynôme du chaos) des rela-
tions de couplage, dont les paramètres sont contrôlés au niveau système par l'optimiseur a été
développée. Grâce à une nouvelle contrainte de satisfaction des couplages interdisciplinaires,
à la convergence du problème d'optimisation, les métamodèles représentent les relations de
couplage comme le ferait une analyse multidisciplinaire, assurant donc la faisabilité multi-
disciplinaire. Cette technique permet la décomposition du processus de conception et ainsi
l'évaluation en parallèle des disciplines. Cette approche a été utilisée pour les deux formula-
tions UMDO proposées. La première est une formulation mono-niveau inspirée de l'Individual
Discipline Feasible (IDF) et adaptée à la présence d'incertitudes. Cette approche, intitulée
Individual Discipline Feasible - Polynomial Chaos Expansion (IDF-PCE) permet d'assurer la
faisabilité multidisciplinaire pour le système optimal tout en utilisant une stratégie découplée
au niveau du processus de conception.

La deuxième formulation est une approche multi-niveaux inspirée de SWORD (pour Stage-
Wise decomposition for Optimal Rocket Design [Balesdent et al., 2012a]) adaptée à la
présence d'incertitudes et qui maintient l'équivalence mathématique avec les approches cou-
plées en terme de faisabilité multidisciplinaire. Cette formulation intitulée Multi-Hierarchical
Optimization under Uncertainty (MHOU) repose sur une optimisation multi-niveaux des disci-
plines et est particulièrement adaptée à la conception de lanceurs. Cette approche transforme
le problème initial de conception de lanceurs en un problème plus simple au travers d'une
décomposition par étages qui sont optimisés hiérarchiquement.

2. Ensuite, deux approches d'analyse de �abilité ont été développées pour gérer la présence
d'incertitudes à la fois aléatoires et épistemiques. Pour réaliser ce type d'analyse spéci�que,
deux approches combinant de l'échantillonnage adaptatif avec un modèle de substitution
et une stratégie de ra�nement ont été développées. Ces deux techniques sont di�éren-
ciées par l'impact des incertitudes épistémiques. Dans le premier problème, les incertitudes
épistémiques portent sur les hyper-paramètres de lois des densités de probabilité des vari-
ables aléatoires (e.g. la moyenne d'une variable distribuée selon une Gaussienne est seulement
connue dans un intervalle). Dans le deuxième problème, les incertitudes épistémiques in�u-
encent directement l'état du système et donc l'état limite qui constitue la séparation entre
le domaine de défaillance et de non défaillance. Les approches proposées utilisent un modèle
par Krigeage de l'état limite a�n de limiter le nombre d'évaluations de la fonction exacte et
une stratégie de ra�nement pour garantir une estimation précise et �able de la probabilité
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de défaillance. Par ailleurs, les méthodes d'échantillonnage adaptatif (Importance Sampling,
Subset Sampling) permettent de réduire la variance de l'estimateur de la probabilité.

3. En�n, une modi�cation de l'algorithme CMA-ES a été développée pour gérer e�cacement
les contraintes dans les problèmes UMDO. Cette adaptation permet d'éviter l'utilisation de
techniques fondées sur la pénalisation de la fonction objectif. Cette méthode introduit une
modi�cation des mécanismes de mise à jour de la matrice de covariance qui paramétrise une
distribution Gaussienne. Cette distribution est utilisée pour la génération d'une population
d'individus et sa mise à jour permet de modi�er l'espace de recherche et de converger vers
la solution optimale. La modi�cation de CMA-ES permet de tenir compte de la violation des
contraintes par certaines solutions candidates pour modi�er la matrice de covariance a�n de
ne plus générer de solutions candidates dans les zones non faisables.

Pour ces trois contributions, chaque nouvelle méthode proposée est comparée aux approches de
références existantes dans la littérature sur des cas tests analytiques et des applications de concep-
tion et d'analyse de lanceurs.
Le manuscrit est organisé en quatre parties.
La première partie dresse un panorama des méthodes utilisées en UMDO et leurs applications à
la conception de lanceurs. Le chapitre 1 présente les concepts clefs en MDO déterministe et les
principales formulations existantes pour résoudre ces problèmes. Dans le chapitre 2, plusieurs car-
actéristiques essentielles concernant le traitement des incertitudes sont introduites a�n de poser les
bases essentielles des méthodologies UMDO. Ce chapitre inclut la dé�nition des incertitudes, les dif-
férents formalismes mathématiques existants ainsi que les méthodes de propagation d'incertitudes
associées. Le chapitre 3 concerne la présentation des méthodes UMDO existantes et plus partic-
ulièrement la gestion des couplages interdisciplinaires en présence d'incertitudes. Le chapitre 4 est
dévolu à la présentation des techniques d'analyse de �abilité en présence d'incertitudes mixtes à la
fois aléatoires et épistémiques. En�n, le chapitre 5 détaille les di�érents algorithmes d'optimisation
existants pour résoudre des problèmes UMDO sous contraintes. Au regard de cette étude de la lit-
térature, le chapitre 5 présente quelques voies possibles d'amélioration des méthodologies UMDO

existantes qui seront détaillées dans les parties II, III et IV.
La seconde partie de la thèse se concentre sur le développement et l'analyse de deux formula-
tions d'UMDO. Le chapitre 6 présente la formulation Individual Discipline Feasible - Polynomial
Chaos Expansion (IDF-PCE). Une méthode de gestion des couplages interdisciplinaires en présence
d'incertitudes est introduite a�n de permettre une stratégie de conception par un processus dé-
couplé pour les disciplines. Une comparaison avec l'approche MDF classiquement utilisée pour
résoudre des problèmes UMDO est également réalisée pour un cas test analytique. Dans le chapitre
7, une formulation multi-niveaux nommée Multi-level Hierarchical Optimization under Uncertainty
(MHOU) est introduite. Cette formulation est particulièrement adaptée aux lanceurs et décompose
le processus de conception selon les étages du lanceur. En�n, dans le chapitre 8, deux cas tests de
conception de lanceurs sont réalisés pour comparer les formulations développées avec l'approche
MDF.
La troisième partie de la thèse se concentre sur l'analyse de �abilité de systèmes en présence
d'incertitudes aléatoires et épistémiques. Le chapitre 9 présente une méthode d'analyse de �abilité
permettant de propager les incertitudes épistémiques a�ectant les hyper-paramètres de lois qui
dé�nissent les densités de probabilité des incertitudes aléatoires, à la probabilité de défaillance du
système. Le chapitre 10 présente une méthode d'analyse de �abilité en présence d'incertitudes
aléatoires et épistémiques a�ectant directement l'état limite de défaillance. En�n, dans le chapitre
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11, les méthodes d'analyse de �abilité développées sont testées sur deux cas tests de rentrée d'étage
de lanceurs.
La dernière partie de ce manuscrit est dévolue à la modi�cation de l'algorithme CMA-ES a�n de
tenir compte de la présence de contraintes dans la résolution des problèmes UMDO. Dans le chapitre
12, l'adaptation de CMA-ES pour la gestion des contraintes est présentée. Une comparaison de la
méthode proposée avec des approches classiques de gestion des contraintes est également réalisée
sur plusieurs cas tests analytiques. En�n, dans le chapitre 13, la méthode proposée est comparée
à des approches classiques sur un cas test de conception d'un lanceur.
Les annexes présentent les modèles disciplinaires utilisés dans les di�érents cas tests.

18.1 Panorama des méthodes UMDO

18.1.1 MDO déterministe

Cette section a pour but de présenter les di�érents concepts et méthodes utilisé en UMDO. Pour
cela, les approches MDO déterministes existantes sont présentées puis dans un second temps
les di�érences dues à la prise en compte des incertitudes en MDO seront détaillées. Ensuite,
brièvement, les techniques UMDO existantes de gestion des couplages seront introduites, puis les
méthodes d'analyse de �abilité en présence d'incertitudes mixtes aléatoires et épistémiques et
en�n les algorithmes d'optimisation en présence de contraintes et d'incertitudes.

La formulation générale d'un problème MDO déterministe impliquant N disciplines est la suivante
[Balesdent et al., 2012b]:

min f(z,y,x) (18.1)

p.r.à z,y,x

s.à g(z,y,x) ≤ 0 (18.2)

h(z,y,x) = 0 (18.3)

∀(i, j) ∈ {1, ..., N}2 i 6= j, yij = cij(zi,y.i,xi) (18.4)

∀i ∈ {1, ..., N}2, ri(zi,y.i,xi) = 0 (18.5)

zmin ≤ z ≤ zmax (18.6)

avec:

• z: le vecteur des variables de conception (e.g. masses, diamètre),

• x: le vecteur des variables d'état évoluant durant les analyses disciplinaires a�n de trouver
un équilibre pour satisfaire les équations d'état,

• y: le vecteur des variables de couplage en entrée des disciplines (e.g. impulsion spéci�que),
utilisées pour relier les di�érentes disciplines,

• f(·): fonction objectif. Dans la conception de lanceurs, la fonction objectif est souvent un
critère de masse (e.g. minimisation de la masse totale au décollage) ou un critère de coût,

• g(·): la fonction de contraintes d'inégalité (e.g. contrainte de pression de combustion),
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• h(·): les fonctions de contrainte d'égalité (e.g. altitude d'injection sur orbite),

• c: les fonctions de couplage, servant à calculer les variables de couplage sortant des di�érentes
disciplines,

• r(·): les fonctions de résidus, servant à évaluer la satisfaction des équations d'état.

A�n de résoudre un problème MDO, il est nécessaire de satisfaire:

• le cahier des charges, c'est-à-dire respecter la satisfaction des contraintes imposées par les
fonctions g(·) et h(·),

• la faisabilité disciplinaire, c'est-à-dire la satisfaction du système d'équations d'état Eqs.(18.5)
en trouvant les valeurs des variables d'état x telles que les équations soient satisfaites. Dans
la suite, on supposera qu'une analyse interne aux disciplines gère la faisabilité disciplinaire,
ainsi il ne sera plus fait référence aux variables et équations d'état,

• la faisabilité multidisciplinaire, c'est-à-dire la satisfaction du système d'équations Eqs.(18.4)
en déterminant les valeurs des variables de couplage d'entrée des disciplines telles que le
système d'équations soit satisfait Eqs.(18.7).

La satisfaction de la faisabilité multidisciplinaire est un point essentiel des approches MDO. Deux
types d'approches existent pour la satisfaction des couplages interdisciplinaires.

• Approches couplées:
Une analyse multidisciplinaire (MDA pour MultiDisciplinary Analysis) est réalisée à chaque
itération de l'optimiseur système a�n de satisfaire le système d'équations suivant:{

yij = cij(zi,y.i)
yji = cji(zj ,y.j)

(18.7)

Le système d'équations est classiquement résolu par point �xe ou par une optimisation auxil-
iaire [Coelho et al., 2009]. Ainsi, la formulation Multi Discipline Feasible (MDF) [Balling and
Sobieszczanski-Sobieski, 1996] utilise cette approche à chaque itération du niveau système
(Fig. 18.1):

min f (z,y(z)) (18.8)

p.r.à z

s.à g (z,y(z)) ≤ 0 (18.9)

h (z,y(z)) = 0 (18.10)

zmin ≤ z ≤ zmax (18.11)

L'optimiseur contrôle les variables de conception z et à chaque itération, une analyse mul-
tidisciplinaire est utilisée pour trouver les variables de couplage satisfaisant Eqs.(18.7). La
formulation MDF est simple à mettre en ÷uvre mais, en raison des boucles entre les dis-
ciplines nécessaires aux MDA, le temps de calcul est important. Cette formulation est la
formulation MDO la plus utilisée. D'autres formulations telles que Concurrent SubSpace Op-
timization (CSSO) [Sobieszczanski-Sobieski, 1988] ou Bi-Level Intregrated System Synthesis
(BLISS) [Sobieszczanski-Sobieski et al., 1998] utilisent également des MDA pour satisfaire les
couplages interdisciplinaires.
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• Approches découplées:
Cette approche vise à supprimer les boucles disciplinaires imposées par la MDA et à intro-
duire des contraintes d'égalité Eq.(18.4) sur les variables de couplage entre les entrées et
les sorties des disciplines au niveau système. L'optimiseur système, en plus de contrôler
les variables de conception z, gère également les variables de couplage d'entrée des disci-
plines y (Fig. 18.2). Des formulations comme Individual Discipline Feasible (IDF) [Balling
and Sobieszczanski-Sobieski, 1996], All At Once (AAO) [Balling and Sobieszczanski-Sobieski,
1996] ou Collaborative Optimization (CO) [Braun et al., 1996] reposent sur ce principe. Ces
formulations ont été introduites a�n de concevoir un système complexe par une stratégie
découplée et ainsi diminuer les coûts de calcul en évitant les boucles disciplinaires et en in-
troduisant potentiellement plusieurs niveaux d'optimisation. En revanche, ces formulations
sont plus complexes à mettre en oeuvre.

Discipline
1

Designhvariables:hz

Optimizer

Discipline
2

Discipline
N

MultidisciplinaryhDesignhAnalysis

f(z,y(z))
g(z,y(z))
h(z,y(z))

...

Couplinghvariableshy

Couplinghvariableshy

Figure 18.1: Multidisciplinary Design Opti-
mization, approche couplée
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c1. c2. cN.

f(z,y)
g(z,y)
h(z,y)
y..=c..(z,y..)

Calculationuofuf,g,h

Couplinguvariables:uy

...

Figure 18.2: Multidisciplinary Design Opti-
mization, approche découplée

Les formulations évoquées jusqu'à présent sont su�samment générales pour être adaptables à
n'importe quel problème de conception. Cependant, la conception de lanceurs présente des par-
ticularités comme la prédominance de la discipline trajectoire dans le processus de conception.
L'exploitation de cette particularité a été proposée au travers des formulations Stage Wise de-
composition for Optimal Rocket Design (SWORD) [Balesdent et al., 2012a]. Dans ces approches,
la conception de lanceurs est décomposée par rapport à l'étagement et non plus classiquement
selon les disciplines (propulsion, trajectoire, etc.). Ainsi les sous-systèmes considérés sont le pre-
mier étage, le deuxième étage, etc. Ces formulations ont été comparées à la formulation MDF et
présentent de meilleures caractéristiques de convergence et de qualité d'optimum.

18.1.2 Introduction d'incertitudes en MDO

Dans la littérature, deux types d'incertitudes sont distingués [Thunnissen, 2003]:

• les incertitudes aléatoires: elles correspondent à la variabilité inhérente du système physique
considéré et/ou de son environnement. Les incertitudes aléatoires ne peuvent pas être réduites
par la collecte de plus d'informations ou de données. Les incertitudes aléatoires sont aussi
appelées incertitudes stochastiques ou incertitudes irréductibles. Un exemple d'incertitudes
aléatoires est la présence, la direction et l'amplitude d'une rafale de vent.
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• les incertitudes épistémiques: elles correspondent à des méconnaissances, des simpli�ca-
tions de modélisation et peuvent être réduites par la collecte de plus d'informations. Les
incertitudes épistémiques sont aussi appelées incertitudes de modélisation ou incertitudes
réductibles. Par exemple, un modèle d'écoulement d'un �uide construit sous certaines hy-
pothèses simpli�catrices telles que l'incompressibilité du �uide, l'absence de couches limites,
l'absence de turbulence pour modéliser un écoulement dans une tuyère représente avec une
basse �délité la réalité physique de l'écoulement.

La distinction entre ces deux types d'incertitudes est essentielle car des formalismes mathématiques
adaptés à chaque type existent. Les incertitudes aléatoires sont traditionnellement modélisées par
le formalisme des probabilités. D'autres formalismes existent pour représenter les incertitudes
épistémiques tels que la théorie de l'évidence [Dempster, 1967; Shafer, 1976] ou le formalisme
des intervalles [Moore et al., 2009] qui sont parfois plus adaptés pour représenter �dèlement
les informations disponibles. En e�et, les ingénieurs ne disposent souvent que de domaines de
variation pour les paramètres incertains. Ainsi, le formalisme des intervalles est particulièrement
adapté car aucune hypothèse sur la distribution des incertitudes à l'intérieur de l'intervalle n'est
nécessaire (contrairement à une distribution uniforme).

L'introduction d'incertitudes dans les problèmes MDO mène à une nouvelle formulation générale
dite UMDO (pour Uncertainty-based Multidisciplinary Design Optimization). On se place pour
le moment dans le cadre d'incertitudes uniquement aléatoires modélisées avec le formalisme des
probabilités. La formulation générale d'un problème UMDO est donnée par [Yao et al., 2011]:

min Ξ [f(z,θY ,U)] (18.12)

p.r.à z,θY

s.à K [g(z,θY ,U)] ≤ 0 (18.13)

∀i 6= j,∀u ∈ Ω, yij(θY ij ,ui) = cij(zi,y.i(θY .i,u.i),ui) (18.14)

zmin ≤ z ≤ zmax (18.15)

D'importantes di�érences existent entre les formulations déterministes et sous incertitudes:

• U est le vecteur d'incertitudes d'entrée du système. On note Ui le vecteur incertain d'entrée
de la discipline i. La kème réalisation générée par Crude Monte Carlo (CMC) du vecteur
aléatoire U est notée u(k). On note φ(·) la densité de probabilité (PDF) jointe du vecteur
incertain U.

• Ξ est la mesure d'incertitudes de la fonction objectif (e.g. l'espérance mathématique).

• K est la mesure d'incertitudes pour le vecteur des fonctions de contraintes d'inégalité. On
distingue deux types de mesure pour les contraintes:

� Mesure de robustesse: K [g(z,θY ,U)] = E [g(z,θY ,U)] + ησ [g(z,θY ,U)] avec E[·]
l'espérance mathématique, σ[·] l'écart type et η ∈ R+ un paramètre de restriction de
l'espace faisable.

� Mesure de �abilité: pour la ième composante du vecteur g(·), avec P la mesure de
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probabilité,

Ki [gi(z,θY ,U)] = P [gi(z,θY ,U) > 0]− Pti =

∫
Ii
φ(u)du− Pti

avec Ii = {u ∈ Ω|gi(z,θY ,u) > 0} et Pti le seuil maximal pour la probabilité de
défaillance.

Par ailleurs, on ne considère que des contraintes d'inégalité g(·). Pour la conception de
lanceurs, les contraintes d'égalité en présence d'incertitudes sont usuellement transformées
en contraintes d'inégalité grâce à des tolérances (e.g. tolérances à l'injection sur orbite).

• Y est le vecteur des variables de couplage d'entrée des disciplines. En raison de la présence
des variables incertaines U, les variables de couplage sont elles-mêmes incertaines. Dans
les formulations UMDO découplées, les variables de couplage d'entrée des disciplines doivent
être gérées par l'optimiseur. Cependant, Y est un vecteur aléatoire, il s'agit d'un vecteur
de fonctions. A�n d'éviter les problèmes d'optimisation en dimension in�nie, l'optimiseur ne
contrôle pas directement les variables de couplage mais plutôt des paramètres déterministes
θY modélisant les variables de couplage d'entrée des disciplines. Ces paramètres peuvent
être des réalisations, des moments statistiques, des paramètres de PDF, etc.

Comme pour les formulations MDO déterministes, deux types de formulation UMDO peuvent être
distingués pour la gestion des couplages:

- Satisfaction des couplages interdisciplinaires par une approche couplée (avec MDA),

- Satisfaction des couplages interdisciplinaires par une approche découplée.

Dans les sections suivantes, les méthodes de gestion des couplages dans les formulations UMDO

sont brièvement décrites.

18.1.2.1 Approches couplées

Comme en approche déterministe, la formulation MDF en présence d'incertitudes est la formulation
UMDO la plus utilisée. Les couplages interdisciplinaires sont gérés par des simulations CMC pour
propager les incertitudes et, pour chaque échantillon, le système d'équations de satisfaction des
couplages est résolu par MDA [Oakley et al., 1998; Koch et al., 2002; Jaeger et al., 2013]. La
formulation MDF en présence d'incertitudes est donnée par (Fig. 18.3):

min Ξ [f(z,Y(z,U),U)] (18.16)

p.r.à z

s.à K [g(z,Y(z,U),U)] ≤ 0 (18.17)

zmin ≤ z ≤ zmax (18.18)

Pour chaque échantillon CMC, le système d'équations suivant est résolu par MDA:

∀ u ∈ Ω, ∀(i, j) ∈ {1, ..., N}2 i 6= j, yij = cij(zi,y.i,u) (18.19)
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Figure 18.3: Multi Discipline Feasible en présence d'incertitudes

MDF en présence d'incertitudes permet d'assurer la faisabilité multidisciplinaire pour toutes les
réalisations des variables incertaines garantissant ainsi une estimation précise de la performance
et des contraintes du système. Cependant, la combinaison de l'optimisation, de la propagation
d'incertitudes et des analyses multidisciplinaires induit un coût de calcul prohibitif. MDF en
présence d'incertitudes est considérée comme la formulation de référence dû à la satisfaction intrin-
sèque des couplages interdisciplinaires. A�n de réduire les coûts de calcul, des méthodes couplées
(System Uncertainty Analysis et Concurrent SubSystem Uncertainty Analysis [Du and Chen, 2002;
Du et al., 2002]) fondées sur des métamodèles des relations de couplage ont été proposées.
A�n de réduire le nombre d'appels aux disciplines, des formulations UMDO découplées ont été
proposées en espérant d'obtenir les mêmes avantages que pour les formulations MDO déterministes.

18.1.2.2 Approches découplées

Deux types de gestion des couplages ont été proposés pour des formulations UMDO découplées:

• Égalité des moments statistiques. Des approches découplées inspirées de CO ont été proposées
[Du and Chen, 2001; McAllister and Simpson, 2003; Liu et al., 2006; Ghosh et al., 2014] dans
lesquelles la satisfaction des couplages interdisciplinaires s'e�ectue grâce à des contraintes
d'égalité au niveau système entre les moments statistiques calculés pour les variables de
couplage d'entrée des disciplines et les moments statistiques des variables de couplage de
sortie des disciplines. Par exemple, Du et al. ont proposé la formulation Hierarchical Ap-
proach to Collaborative Multidisciplinary Robust Design [Du and Chen, 2001] dans laquelle
l'optimiseur système gère l'espérance mathématique µY et l'écart type σY des variables de
couplage d'entrée Y. L'avantage de ces approches est de ne pas avoir recours aux MDA et
d'être similaire aux formulations MDO déterministes découplées. En revanche, la satisfaction
des couplages interdisciplinaires n'est assurée que pour les deux premiers moments statis-
tiques des variables de couplage et non pour toutes les réalisations des variables incertaines
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comme pour MDF en présence d'incertitudes.

• Sequential Optimization and Reliability Assessment (SORA). SORA repose sur une approche
séquentielle pour résoudre les problèmes UMDO a�n de décomposer la phase d'optimisation
du système de la phase d'analyse de �abilité. En e�et, l'analyse de �abilité est particulière-
ment coûteuse dans le processus UMDO. A�n d'en limiter le nombre, l'approche séquentielle
repose sur deux étapes principales: une optimisation MDO déterministe du système avec
les incertitudes �xées au point le plus probable de défaillance u∗ et une deuxième étape
d'analyse de �abilité (Fig. 18.4). L'analyse de �abilité est réalisée à l'optimum trouvé
par l'optimisation déterministe en utilisant FORM (First Order Reliability Method), a�n
d'identi�er dans l'espace incertain le point le plus probable de défaillance (MPP). Si le sys-
tème optimal trouvé ne satisfait pas les contraintes de défaillance, un nouveau problème
d'optimisation déterministe est formulé tenant compte du nouveau point le plus probable de
défaillance. Dans cette approche, la satisfaction des couplages interdisciplinaires s'e�ectue
au point le plus probable de défaillance. Les variables de couplage d'entrée et de sortie des
disciplines doivent avoir la même valeur au MPP. SORA permet de découpler les disciplines
et de réduire le coût de calcul par rapport à la formulation MDF. En revanche, elle ne permet
pas d'assurer la satisfaction des couplages interdisciplinaires pour toutes les réalisations des
variables incertaines comme avec MDF.

Deterministic 
MDO

Multidisciplinary
Reliability 
Analysis

Formulate a new
deterministic MDO

Initial
design

Optimal
design

convergenot
converge Check 

convergence

Figure 18.4: Procédure SORA pour résoudre un problème UMDO [Du et al., 2008]

Outre la gestion des couplages interdisciplinaires, l'analyse de �abilité est un point important dans
les formulations UMDO. Des méthodes d'analyse de �abilité en présence d'incertitudes aléatoires
ont été proposées telles que CMC, FORM [Madsen, 1986; Bjerager, 1990], IS (Importance Sampling)
[Engelund and Rackwitz, 1993; L'Ecuyer et al., 2009; Kroese and Rubinstein, 2012b], SS (Subset
Sampling) [Au and Beck, 2001] , etc. Les techniques d'IS et de SS ont été développées dans
le cadre de calcul de probabilités de défaillance impliquant des évènements rares. Par ailleurs,
ces techniques ont été couplées avec des modèles de substitution et des stratégies de ra�nement
[Schueremans and Van Gemert, 2005; Picheny, 2009; Vazquez and Bect, 2009; Echard et al., 2011;
Li et al., 2012; Bect et al., 2012a; Baudoui et al., 2012; Balesdent et al., 2013; Dubourg et al., 2013]
a�n de réduire les coûts de calcul. Cependant, en phase d'avant-projet, la présence d'incertitudes
à la fois aléatoires et épistémiques requiert des méthodes d'analyse de �abilité adaptées. Dans la
section suivante, les approches existantes sont brièvement présentées.
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18.1.3 Analyse de �abilité en présence d'incertitudes aléatoires et
épistémiques

Dans la littérature, l'impact des incertitudes épistémiques est classé en deux catégories:

• les hyper-paramètres de loi des densités de probabilité sont a�ectés par des incertitudes
épistémiques (e.g. la moyenne d'une distribution Gaussienne n'est pas connue exactement
mais uniquement sur un intervalle),

• l'état limite délimitant le domaine de défaillance est directement a�ecté par des incertitudes
épistémiques.

18.1.3.1 Incertitudes épistémiques sur les hyper-paramètres de lois des variables
incertaines

On considère un vecteur aléatoire U de dimension d dé�ni sur l'espace Ω par une PDF jointe φe(·)
indexée par un vecteur paramètre e = [e(1), . . . , e(w)]T ∈ Rw. e est a�ecté par des incertitudes
épistémiques et seul le domaine de variation de ses composantes est connu Υ = {e ∈ Rw|e(i) ∈
[e

(i)
min, e

(i)
max] ∀i ∈ {1, . . . , w}}. On considère un système caractérisé par une fonction état limite g :

Ω→ R supposée continue, étant une boîte noire et coûteuse à évaluer. En présence d'incertitudes
aléatoires et épistémiques, la probabilité de défaillance du système n'est pas unique et dépend de la
valeur prise par e (Figs. 18.5,18.6). A�n de caractériser la probabilité de défaillance, il est possible
de déterminer ses bornes de variation:{ Pmin = min

e∈Υ
Pe(g(U) ≤ 0)

Pmax = max
e∈Υ

Pe(g(U) ≤ 0)
(18.20)

La détermination des valeurs des variables épistémiques menant aux bornes de la probabilité de dé-
faillance implique la résolution de problèmes d'optimisation et des analyses de �abilité Eqs.(18.20).
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Figure 18.5: Analyse de �abilité avec φe1(·)
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Figure 18.6: analyse de �abilité avec φe2(·)
Des approches basées sur CMC [Zhang et al., 2010] ou FORM [Qiu et al., 2008] ont été proposées pour
résoudre ce type de problèmes au travers d'une double boucle. À chaque itération de l'optimiseur,
une analyse de �abilité par CMC ou FORM est réalisée. Cependant, le coût de calcul engendré
par ce type d'approche est prohibitif. A�n d'éviter ces deux niveaux de calcul, CMC ainsi que IS

ont été étendus à la prise en compte directe d'intervalles. Néanmoins, ces méthodes permettent
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aux variables épistémiques de prendre di�érentes valeurs en fonction des réalisations des variables
aléatoires, ce qui n'est pas possible dans le problème considéré. Par ailleurs, des méthodes basées
sur FORM ont été développées pour prendre en compte directement les variables décrites par un
intervalle. Cependant, comme FORM repose sur une linéarisation locale de la fonction objectif et
l'hypothèse de l'unicité de la zone de défaillance, le type de problèmes traités est limité. Dans le
cas des lanceurs, les contraintes de �abilité sur la retombée des étages n'entrent pas dans ce cadre.

18.1.3.2 Incertitudes épistémiques a�ectant l'état limite de défaillance

On considère le même cadre qu'au paragraphe précédent avec cette fois un système caractérisé
par une fonction état limite g : Ω ×Υ → R supposée continue, étant une boîte noire et coûteuse
à évaluer. Ce problème est di�érent du précédent car les incertitudes épistémiques e n'a�ectent
pas les densités de probabilité des variables aléatoires mais directement l'état limite de défaillance
(Fig.18.7), ici la fonction g(·) dépend directement de e. A�n de caractériser la probabilité de
défaillance, il est nécessaire de déterminer ses bornes de variation:{ Pmin = min

e∈Υ
P(g(U, e) ≤ 0)

Pmax = max
e∈Υ

P(g(U, e) ≤ 0)
(18.21)
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Figure 18.7: État limite a�ecté par des incertitudes épistémiques

Pour ce type de problèmes, des approches basées sur CMC [Yang et al., 2014] ou FORM [Du, 2008;
Du et al., 2005] ont été proposées. Cependant, elles sou�rent des mêmes limitations que celles
exposées précédemment.

A�n de résoudre un problème UMDO, des algorithmes d'optimisation maîtrisant à la fois la présence
d'incertitudes et de contraintes sont nécessaires. Plusieurs algorithmes ont été développés à ces
�ns et sont brièvement décrits dans la section suivante.
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18.1.4 Optimisation numérique en présence de contraintes et
d'incertitudes

De nombreux algorithmes et techniques ont été proposés a�n de gérer les incertitudes et les
contraintes dans les problèmes d'optimisation. Ainsi, pour maîtriser la présence d'incertitudes
plusieurs approches ont été développées:

• Ré-échantillonage [Branke and Schmidt, 2003; Jin and Branke, 2005]: cette approche consiste
à ré-evaluer la fonction objectif et les contraintes pour une même valeur des variables de
conception z et à utiliser une mesure statistique pour la valeur de la fonction objectif et des
contraintes (e.g. l'espérance mathématique).

• Modèle de substitution [Branke and Schmidt, 2003; Jin, 2005]: des métamodèles de la fonction
objectif et des contraintes sont construits. De façon générale, les métamodèles lissent les
fonctions modélisées atténuant ainsi le bruit et diminuant l'impact des incertitudes.

• Algorithmes à base de population d'individus [Nissen and Propach, 1998; Hansen et al., 2003;
Jin and Branke, 2005]: ces algorithmes reposent sur une population d'individus pour trouver
l'optimum de la fonction. Ils peuvent modi�er la taille de la population a�n de couvrir
des zones plus importantes pour obtenir plus d'information et ainsi diminuer l'impact des
incertitudes. Comme ces algorithmes ne reposent pas sur un seul candidat, ils sont moins
a�ectés par les incertitudes.

Les algorithmes à base de population (Particle Swarm Optimization [Eberhart and Kennedy,
1995], Ant Colony [Dorigo and Birattari, 2010], Genetic Algorithm [Holland, 1975], etc.) sont
particulièrement intéressants pour résoudre des problèmes UMDO qui sont souvent non linéaires,
non convexes avec de multiples optima locaux et en présence d'incertitudes. Parmi les algorithmes
à base de population, l'algorithme Covariance Matrix Adaptation - Evolutionary Strategy
(CMA-ES) [Hansen et al., 2003] est particulièrement e�cace pour les problèmes d'optimisation en
présence d'incertitudes comme illustré dans plusieurs parangonnages [Hansen, 2009; Hansen et al.,
2010].

CMA-ES est un algorithme développé pour résoudre les problèmes non contraints. Il repose sur un
modèle paramétrique de distribution de la population (une densité multivariée paramétrique) a�n
d'explorer l'espace de conception. Avec CMA-ES(λ, µ), à chaque itération, λ candidats sont générés
à partir de µ parents. À la génération suivante, les nouveaux µ parents sont sélectionnés parmi
les λ enfants par rapport à leurs classements vis-à-vis de la fonction objectif. Ainsi à l'itération
[k + 1], les enfants sont générés selon:

z
[k+1]
t ∼m[k] + σ[k]N

(
0,C[k]

)
, pour t = 1, ..., λ (18.22)

avec z
[k+1]
t ∈ Rn un candidat enfant généré à partir du vecteur moyen m[k], du pas σ[k] et d'une

distribution normale N
(
0,C[k]

)
paramétrée par une matrice de covariance C[k]. Cette matrice

de covariance permet d'e�ectuer des transformations homothétiques et des rotations de l'espace
de recherche (Fig. 18.8). La mise à jour de la matrice de covariance tient compte des itérations
passées et des µ meilleurs candidats de la génération actuelle. Le vecteur moyen caractérise le
centre de la prochaine distribution et est déterminé par une pondération des µ meilleurs candidats.
Les mécanismes de mise à jour sont détaillés dans [Hansen et al., 2003].
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Figure 18.8: Espace de recherche pour di�érentes matrices de covariance

CMA-ES a été étendu pour la prise en compte d'incertitudes [Hansen et al., 2009]. De nombreux
mécanismes assurent la robustesse de l'algorithme face à la présence d'incertitudes: la population,
la combinaison pondérée des candidats, l'utilisation d'un classement plutôt que la valeur de la
fonction objectif d'un candidat, etc. Cependant, si les incertitudes sont trop importantes elles
peuvent perturber la convergence. Lorsque le bruit est trop élevé, les mécanismes de sélection et
de mise à jour des paramètres sont modi�és. Les candidats sont ré-évalués et suivant la modi�cation
de leur rang, l'espace de recherche est agrandi ou rétréci a�n d'assurer la collecte d'une quantité
su�sante d'information malgré la présence d'incertitudes.
Le principal inconvénient de CMA-ES est qu'il ne prend pas en compte les contraintes. Comme la
plupart des heuristiques évolutionnaires, le traitement des contraintes dans l'algorithme CMA-ES

peut s'e�ectuer avec des méthodes basées sur la pénalisation de la fonction objectif [Collange et al.,
2010b; Beyer and Finck, 2012; De Melo and Iacca, 2014] ou sur des métamodèles des fonctions de
contraintes [Kramer et al., 2009]. Cependant, ces techniques requièrent un réglage �n qui dépend
du problème traité. Une approche alternative a été proposée pour (1+1)-CMA-ES [Arnold and
Hansen, 2012] qui est une version simpli�ée de CMA-ES(λ, µ) avec un unique enfant et la sélection
s'e�ectue uniquement entre le parent et l'enfant. La mise à jour de la matrice de covariance a été
modi�ée a�n de tenir compte de la violation des contraintes et ainsi changer l'espace de recherche
pour l'itération suivante a�n de limiter la génération possible d'un enfant dans l'espace non faisable
(Fig. 18.9).
(1+1)-CMA-ES est e�cace pour les problèmes unimodaux mais présente des di�cultés pour les
problèmes multimodaux et en grande dimension [Arnold and Hansen, 2012].

18.1.5 Conclusion et voies d'amélioration

Au regard du bref état de l'art réalisé des méthodes UMDO existantes, nous pouvons identi�er
plusieurs voies d'amélioration possibles. Trois pistes seront explorées dans la suite de cette thèse
a�n de résoudre quelques limitations évoquées dans l'état de l'art:

1. Le développement d'une approche permettant la gestion des couplages interdisciplinaires dans
les formulations UMDO découplées a�n de garantir la faisabilité multidisciplinaire quelle que
soit la réalisation des variables incertaines. Pour maintenir l'équivalence mathématique entre
les approches couplées et découplées, il est nécessaire d'assurer un couplage fonctionnel entre
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Figure 18.9: Le point vert est le parent et le point rouge l'enfant généré. Sur la gauche, le cercle
trait plein représente l'espace de recherche paramétré par A[k]. Au centre, l'ellipse rose représente
la mise à jour de la matrice de covariance A[k+1] en tenant compte de la violation de la contrainte
par l'enfant. À droite, l'enfant ne violant pas la contrainte, la matrice de covariance est mise à
jour classiquement.

les disciplines. De plus, adapter les formulations SWORD a�n de prendre en compte la gestion
d'incertitudes permettrait de béné�cier des mêmes avantages qu'en approche déterministe.

2. Le développement de méthodes d'analyse de �abilité tenant compte de la présence à la fois
d'incertitudes aléatoires et épistémiques a�n de pouvoir traiter des problèmes avec des états
limites non linéaires et plusieurs zones de défaillance. Par ailleurs, ces méthodes doivent être
adaptées aux calculs de probabilité impliquant des évènements rares comme par exemple
pour l'analyse de retombée d'un étage de lanceur en dehors de sa zone nominale.

3. Le développement d'une technique permettant la gestion des contraintes pour l'algorithme
CMA-ES a�n de ne pas utiliser les approches par pénalisation dont le réglage dépend du
problème à résoudre.

Dans la suite, ces trois points seront détaillés respectivement dans les sections 18.2, 18.3 et 18.4.

18.2 Formulations UMDO avec satisfaction fonctionnelle des
couplages interdisciplinaires

Dans cette section, nous présentons une méthode permettant la satisfaction des couplages in-
terdisciplinaires pour toutes les réalisations des variables incertaines. Deux formulations UMDO

découplées sont proposées, une mono-niveau Individual Discipline Feasible - Polynomial Chaos
Expansion (IDF-PCE) et une multi-niveaux Multi-level Hierarchical Optimization under Uncer-
tainty. Dans cette section on considère que toutes les incertitudes sont modélisées par des variables
aléatoires avec le formalisme des probabilités.
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18.2.1 Satisfaction des couplages interdisciplinaires

A�n de supprimer l'utilisation de MDA, les processus de conception décomposés visent à découpler
les disciplines. Pour garantir la faisabilité multidisciplinaire, deux dé�s doivent être résolus:

• Les variables de couplage d'entrée des disciplines Y doivent être gérées par l'optimiseur
système. Les variables de couplage sont des fonctions et les problèmes d'optimisation en
dimension in�nie sont di�ciles à résoudre.

• Des contraintes d'égalité doivent être imposées entre les variables de couplage d'entrée des
disciplines et celles de sortie des disciplines au niveau système. L'égalité entre deux variables
aléatoires correspond à une égalité entre deux fonctions ce qui est di�cile à gérer dans un
problème UMDO.

Discipline i Discipline j

zi zj

yji

yijcij(zi,yji)

cji(zj,yij)

Discipline i Discipline j

zi zjyij

cij(zi,yji)

cji(zj,yij)

cij(zi,yji)yij=

yji cji(zj,yij)

Figure 18.10: Couplage entre deux disciplines i et j

En MDO déterministe, a�n de garantir la faisabilité multidisciplinaire pour une formulation dé-
couplée, une contrainte d'égalité doit être imposée au niveau système. En considérant le couplage
scalaire entre les disciplines i et j comme représenté sur la Figure 18.10, la contrainte suivante est
imposée au niveau système a�n d'assurer la faisabilité multidisciplinaire:

yij = cij(zi, yji)

Cependant, en présence d'incertitudes, la contrainte d'égalité doit être imposée entre deux variables
aléatoires. Deux variables aléatoires sont égales si et seulement si les fonctions correspondantes
possèdent les mêmes espaces de départ et d'arrivée et si chaque aléa possède la même image. Ainsi,
assurer la satisfaction des couplages pour toutes les réalisations des variables incertaines revient à
imposer un nombre in�ni de contraintes d'égalité. Par exemple, pour le même couplage en présence
d'incertitudes:

∀u ∈ Ω, yij = cij(zi, yji,ui)

A�n de ne pas résoudre un problème d'optimisation avec un nombre in�ni de contraintes, on pro-
pose d'introduire une nouvelle forme de contrainte interdisciplinaire, pour un problème possédant
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N disciplines:

∀(i, j) ∈ {1, ..., N}2 i 6= j, Jij =

∫
Ω

[cij(zi,y.i,ui)− yij ]
2
φ(u)du = 0 (18.23)

A�n de satisfaire Eq.(18.23), les variables de couplage d'entrée des disciplines doivent être égales
aux variables de couplage de sortie des disciplines pour toutes les réalisations des variables in-
certaines (sauf éventuellement sur un espace de mesure nulle). Si cette contrainte d'égalité est
satisfaite, alors l'équivalence mathématique avec les approches couplées est maintenue.
Néanmoins, a�n de découpler les disciplines, les variables de couplage d'entrée Y doivent être
gérées par l'optimiseur au niveau système. A�n de permettre à l'optimiseur de gérer un nombre
�ni de variables, chaque variable de couplage est remplacée par un métamodèle représentant les
relations fonctionnelles entre les disciplines:

yij → ŷij

(
u,α(ij)

)
(18.24)

avec α(ij) des paramètres du métamodèle. Ces paramètres sont contrôlés par l'optimiseur système
en plus des variables de conception z. Dans les formulations proposées par la suite, chaque variable
de couplage qui est découplée est remplacée par un métamodèle dont les paramètres sont gérés par
l'optimiseur système et une contrainte d'égalité sous forme intégrale est imposée. Les métamod-
èles fournissent une représentation fonctionnelle de la dépendance entre les variables de couplage
d'entrée des disciplines et les variables incertaines. Ainsi, le problème d'optimisation en dimen-
sion in�nie est transformé en un problème d'optimisation en dimension �nie, dont la dimension
correspond au nombre de paramètres des métamodèles plus le nombre de variables de conception.
On se propose de représenter les relations fonctionnelles de couplage par des polynômes du chaos
(PCE pour Polynomial Chaos Expansion) [Eldred, 2009] car ces métamodèles présentent de nom-
breux avantages pour l'analyse et la propagation d'incertitudes. En e�et, les PCE sont des modèles
réduits dédiés à la représentation de fonctions qui dépendent de variables aléatoires. Un PCE utilisé
pour modéliser une fonction yij : Ω→ R telle que E[yij(U

2)] < +∞ est une approximation poly-
nomiale qui consiste à décomposer la fonction yij sur une base polynomiale orthogonale [Eldred,
2009; Hosder, 2012]:

ŷij

(
u,α(ij)

)
=

dPCE∑
k=1

α
(ij)
(k) Ψk(u) (18.25)

avec dPCE le degré de décomposition du PCE et Ψk(·) un polynôme de la base orthogonale choisie
en fonction de la distribution des variables incertaines d'entrée [Eldred, 2009]. A�n de conserver
un métamodèle simple, la dépendance en z n'est pas présente, les coe�cients des PCE sont appris
pour un z spéci�que correspondant à l'optimum du problème UMDO.
Les formulations proposées dans la suite reposent sur cette technique pour la gestion des couplages
interdisciplinaires. En même temps que l'optimiseur système gère les variables de conception, il
contrôle également les coe�cients des PCE modélisant les variables de couplage d'entrée des dis-
ciplines a�n de ne pas faire intervenir de MDA. De plus, les contraintes intégrales permettent
d'assurer la faisabilité multidisciplinaire à l'optimum du problème d'UMDO. En e�et, à l'optimum,
les métamodèles des relations de couplage représentent les relations fonctionnelles entre les dis-
ciplines comme le ferait une analyse multidisciplinaire en présence d'incertitudes. La technique
proposée permet d'éviter de faire des MDA à chaque itération.

312



CHAPTER 18. APPENDIX E - RÉSUMÉ ÉTENDU DE LA THÈSE

18.2.2 Individual Discipline Feasible - Polynomial Chaos Expansion

La première formulation proposée est dérivée de la formulation IDF déterministe. Il s'agit d'une
formulation mono-niveau découplée (Fig. 18.11):

min Ξ [f(z,α,U)] (18.26)

p.r.à z,α

s.t. K [g(z,α,U)] ≤ 0 (18.27)

∀(i, j) ∈ {1, ..., N}2, i 6= j,

Jij =

∫
Ω

[
cij

(
zi, ŷ.i

(
u,α(.i)

)
,ui

)
− ŷij

(
u,α(ij)

)]2
φ(u)du = 0 (18.28)

zmin ≤ z ≤ zmax (18.29)
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Design
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Figure 18.11: IDF-PCE avec les métamodèles des relations fonctionnelles de couplage

avec Jij la contrainte interdisciplinaire des couplages de la discipline i vers la discipline j et
ŷ.i
(
u,α(.i)

)
les PCE de toutes les variables de couplage d'entrée de la discipline i. La �gure

18.11 illustre le processus d'IDF-PCE. L'optimiseur système gère les variables de conception z et
les coe�cients des PCE α. L'approche proposée permet de simuler les disciplines en parallèle
et ainsi de décomposer le processus de conception. La contrainte Eq.(18.28) permet d'assurer
à la convergence du problème UMDO la faisabilité multidisciplinaire du système pour toutes les
réalisations des variables incertaines.
A�n de calculer les intégrales multidimensionnelles nécessaires à l'évaluation de la fonction objectif
(la mesure Ξ[·] peut-être par exemple l'espérance mathématique E[·]), des contraintes K[·] (robustes
ou �ables) et des contraintes de couplage interdisciplinaire, quatre techniques sont utilisées:

• Approximation par CMC,
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• Approximation par quadrature,

• Décomposition des variables de couplage de sortie des disciplines à l'aide d'une deuxième
série de PCEs,

• Subset Simulation (SS) couplée avec des Support Vector Machines (SVM) pour le calcul des
contraintes faisant intervenir des calculs de �abilité.

Pour plus de détails se référer au chapitre 6. La formulation IDF-PCE a été comparée à la formu-
lation MDF sur un cas test analytique présenté au chapitre 6.

18.2.3 Multi-level Hierarchical Optimization under Uncertainty

La deuxième formulation proposée est dérivée de la formulation SWORD déterministe dédiée à la
conception de lanceurs. La formulation a été généralisée pour la conception de n'importe quel
système et adaptée à la prise en compte d'incertitudes. Il s'agit d'une formulation multi-niveaux
découplée de façon hiérarchique (Fig. 18.2.3). Seules les variables de couplage de retour (feedback
coupling variables) sont supprimées. La formulation présuppose que la fonction objectif Ξ[f(·)]
est décomposable comme la somme de contributions de sous-systèmes Ξ[f(·)] =

∑N
k=1 Ξ[fk(·)]

avec Ξ[fk(·)] la fonction objectif du kème sous-système. Par exemple, la masse totale du lanceur au
décollage (GLOW pour Gross Lift-O� Weight) est décomposable comme la somme de la masse totale
de chaque étage. De nombreux systèmes peuvent être décomposés selon ce principe (contributions
des sous-systèmes au coût total du système, à la masse totale, aux dimensions totales, etc.). La
formulation MHOU est donnée par:
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• Niveau système:

min
N∑
k=1

Ξ [fk(zsh, z
∗
k,α,U)] (18.30)

p.r.à zsh ∈ Zsh,α
s.à K [g(zsh, z

∗
k,α,U)] ≤ 0 (18.31)

∀(k, j) ∈ {1, ..., N}2, j 6= k Jkj(zsh, z
∗
k,α) = 0 (18.32)

∀k ∈ {1, ..., N}, K [gk(zsh, z
∗
k,α,U)] ≤ 0 (18.33)

• Niveau sous-système:

k = N

tant que k > 0

étant donné yNk, . . . ,y(k+1)k

Pour le kème sous-système

min Ξ [fk(zsh, zk,α,U)] (18.34)

p.r.à zk ∈ Zk
s.à K [gk(zsh, zk,α,U)] ≤ 0 (18.35)

∀j ∈ {1, ..., N}, j 6= k Jkj =∫
Ω

[
ckj

(
zsh, zk, ŷ.k

(
u,α(.k)

)
,uk

)
− ŷkj

(
u,α(kj)

)]2
φ(u)du = 0 (18.36)

k ← k − 1
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Figure 18.12: Multi-level Hierarchical Optimization under Uncertainty (MHOU)
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où zk est le vecteur des variables de conception relatif au sous-système k et zsh est le vecteur des
variables de conception partagé par plusieurs sous-systèmes. L'optimiseur du sous-système k gère
uniquement les variables de conception zk. L'optimiseur système contrôle le vecteur des variables
de conception partagées et les coe�cients des PCE. Les contraintes de couplages interdisciplinaires
permettent d'assurer la faisabilité multidisciplinaire du système optimal. Cette formulation est par-
ticulièrement adaptée à la conception de lanceurs constitués de plusieurs étages. L'étage supérieur
est tout d'abord optimisé en tenant compte de toutes les disciplines impliquées dans sa conception,
ensuite les étages intermédiaires et en�n le premier étage. Les variables de couplage découplées
correspondent à l'état du lanceur à la séparation des étages (e.g. altitude, vitesse, pente).

18.2.4 Applications à la conception de lanceurs

Ces deux formulations ont été appliquées à deux cas tests de conception de lanceurs. Le cas
test pour la méthode IDF-PCE est brièvement décrit dans la suite. Pour plus de concision, le cas
test lanceur pour la formulation MHOU ainsi qu'une comparaison avec IDF-PCE n'est pas présenté
ici et est décrit chapitre 8. Le cas test IDF-PCE est décrit ici car il illustre la prédominance de
la discipline trajectoire et l'impact des incertitudes sur l'injection de la charge utile. Le cas test
IDF-PCE consiste à concevoir un lanceur bi-étage à propulsion liquide a�n de placer une charge utile
de 4000kg sur une orbite de transfert géostationnaire depuis Kourou (injection au périgée à 250 km).
Quatre disciplines sont prises en compte: la propulsion, le dimensionnement, l'aérodynamique et
la trajectoire (Fig. 18.13). Les modèles utilisés sont des modèles simpli�és, classiquement utilisés
en phase d'avant-projet. Les variables de conception sont le diamètre du 1er étage D1, la masse
d'ergol du 1er étage Mp1, la poussée du 1er étage T1, le rapport de mélange du 1er étage OF1, le
diamètre du 2ème étage D2, la masse d'ergol du 2ème étage Mp2 et en�n le coe�cient de détarage
du moteur du 2ème étage Der.
Les trois incertitudes considérées dans ce cas test portent sur l'impulsion spéci�que du 1er étage,
sur la masse sèche du 2ème étage et sur la poussée du 2ème étage. La formulation du problème de
MDF est la suivante:

min E [GLOW (z,U)] (18.37)

w.r.t. [D1,Mp1, T1, OF1, D2,Mp2, Der]
T

s.t. Pf (z,U) ≤ 5× 10−2 (18.38)

zmin ≤ z ≤ zmax (18.39)

avec Pf (z,U) = 1 − P [(247.5 ≤ Ht ≤ 252.5) ∩ (9.703 ≤ Vt ≤ 9.723) ∩ (−0.4 ≤ γt ≤ 0.4)] avec Ht,
Vt et γt l'altitude, la vitesse et la pente de l'orbite visée. Cette probabilité de défaillance correspond
à la probabilité de ne pas réussir la mission en injectant sur une mauvaise orbite. Elle est calculée
par SS couplée avec un métamodèle SVM de l'état limite.
La formulation IDF-PCE est la suivante:
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Figure 18.13: Conception d'un lanceur bi-étage

min E [GLOW (z,U)] (18.40)

w.r.t. [D1,Mp1, T1, OF1, D2,Mp2, Der]
T,α

s.t. Pf (z,U) ≤ 5× 10−2 (18.41)

JCMC =

Ms∑
k=1

[
cNaxmax

(
z, ŷNaxmax

(
u(k),α

)
,u
)
− ŷNaxmax

(
u(k),α

)]2 ≤ ε (18.42)
zmin ≤ z ≤ zmax (18.43)

avec un calcul des intégrales multidimensionnelles par CMC. Le couplage de retour entre la disci-
pline trajectoire et la discipline dimensionnement correspond au facteur de charge axial maximal
et est supprimé a�n de ne pas avoir à réaliser de boucles entre les disciplines. Le facteur de charge
est décomposé selon un produit de polynômes d'Hermite d'ordre total d'expansion de degré 2
correspondant à 10 coe�cients PCE.

Résultats Les deux méthodes convergent vers le même optimum à la fois en terme de variables
de conception que de valeur de la fonction objectif et de la contrainte de défaillance. En revanche,
l'approche proposée permet de réduire par 11 le nombre d'appels aux di�érentes disciplines en
évitant l'utilisation de MDA (Figs. 18.14,18.15). De plus, ce cas test illustre l'importance de la
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prise en compte des incertitudes en phase d'avant-projet comme illustré sur les Figures 18.16 à
18.19.
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Figure 18.16: Trajectoire pour un lanceur
optimal avec MDF déterministe
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Figure 18.17: Analyse de robustesse pour le
lanceur déterministe trouvé
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Figure 18.18: Altitude du lanceur optimal -
MDF en présence d'incertitudes
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Lorsque le lanceur est conçu par une approche MDF sans prise en compte des incertitudes on
obtient un lanceur qui injecte sur la bonne orbite (Fig.18.16). En revanche, lorsque l'on soumet ce
lanceur aux incertitudes considérées on constate qu'il n'est pas robuste et l'injection sur une orbite
à 250km n'est pas précis (Fig. 18.17). Cependant, si l'on prend en compte les incertitudes dès le
début de la phase de conception, alors plus d'ergol est prévu pour le lancement a�n de pouvoir
assurer une injection robuste sur l'orbite voulue (Figs. 18.18-18.19)
De plus, l'approche proposée assure la faisabilité multidisciplinaire du lanceur optimal pour toutes
les réalisations des variables incertaines comme le fait la formulation MDF. Par exemple la Figure
18.20 présente la distribution de l'erreur de couplage entre le facteur de charge d'entrée de la
discipline dimensionnement et le facteur de charge simulé en sortie de la discipline trajectoire.
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Figure 18.20: Distribution de l'erreur de couplage pour le facteur de charge axial maximal

18.2.5 Conclusion

La méthode de gestion des couplages interdisciplinaires proposée permet d'assurer numériquement
une satisfaction des couplages similaire entre les approches couplées et découplées. Cette technique
repose sur le remplacement des variables de couplage d'entrée des disciplines par un métamodèle
(Polynôme du chaos) dont les coe�cients qui le paramétrisent sont gérés par l'optimiseur système
avec les variables de conception. Le degrée de décomposition des PCE �xe le degrée de précision
de la satisfaciton des couplages. Une nouvelle contrainte de satisfaction des couplages permet de
garantir la faisabilité multidisciplinaire pour toutes les réalisations des variables incertaines. Deux
formulations ont été développées à l'aide de cette technique de gestion des couplages: une mono-
niveau (Individual Discipline Feasible - Polynomial Chaos Expansion) permettant l'évaluation en
parallèle des disciplines et la suppression d'analyse multidisciplinaire et une multi-niveaux (Multi-
level Hierarchical Optimization under Uncertainty) particulièrement adaptée à la conception de
lanceurs. Ces deux formulations ont été comparées à la formulation de référenceMDF sur un cas test
analytique et des cas tests lanceurs et permettent de diminuer le nombre d'appels aux disciplines
et ainsi le temps de calcul. Par ailleurs, ces formulations permettent d'assurer la robustesse du
lanceur aux incertitudes vis-à-vis de l'injection sur orbite de la charge utile.
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Outre la gestion des couplages interdisciplinaires, l'analyse de �abilité est une tâche importante
des processus UMDO. Dans la section suivante, deux techniques d'analyse de �abilité en présence
d'incertitudes à la fois aléatoires et épistémiques sont proposées.

18.3 Méthodes d'analyse de �abilité en présence
d'incertitudes aléatoires et épistémiques

Assurer la �abilité du système optimal obtenu est essentiel dans la conception de systèmes com-
plexes. On se place dans le cadre de la présence d'incertitudes à la fois aléatoires et épistémiques.
On s'intéresse aux deux cas de �gure existant dans la littérature:

• Incertitudes épistémiques sur les hyper-paramètres des PDF caractérisant les variables aléa-
toires,

• Incertitudes épistémiques a�ectant directement l'état limite de défaillance.

18.3.1 Incertitudes épistémiques sur les hyper-paramètres des PDF

On considère le problème posé en section 18.1.3.1. L'objectif est de calculer les bornes supérieures
et inférieures du domaine de variation de la probabilité de défaillance Eqs.(18.44).{ Pmin = min

e∈Υ
Pe(g(U) ≤ 0)

Pmax = max
e∈Υ

Pe(g(U) ≤ 0)
(18.44)

Par ailleurs, on considère que le calcul de la probabilité de défaillance fait intervenir des évènements
rares. A�n de limiter le nombre d'appels à la fonction état limite g(·), on propose d'utiliser une
méthode d'échantillonnage préférentiel (Importance Sampling avec l'algorithme de Cross Entropy
[Rubinstein and Kroese, 2004]) avec un modèle de substitution de g(·) (par Krigeage [Matheron,
1963; Sasena, 2002]).
A�n d'avoir une estimation précise de la probabilité de défaillance, l'estimation de probabilité par
Importance Sampling (IS) vise à remplacer la densité φe(·) par une densité auxiliaire plus adaptée
pour générer des échantillons dans les zones de défaillance. Une probabilité de défaillance calculée
par IS pour une valeur e des variables épistémiques est estimée de la façon suivante:

P̂ISe =
1

M

M∑
i=1

1g(u(i))>0

φe(u(i))

τ(u(i))
(18.45)

avecM le nombre d'échantillons, 1g(u(i))>0 la fonction indicatrice, φe(·) la densité de tirage initiale
et τ(·) la densité de tirage auxiliaire. L'algorithme de Cross Entropy (CE) est un processus adaptatif
visant à déterminer la densité auxiliaire qui se rapproche le plus de la densité auxiliaire optimale
(qui minimise la variance de l'estimateur IS mais est inaccessible en pratique). Pour cela, CE est
fondé sur l'optimisation d'une densité auxiliaire paramétrique a�n de déterminer la valeur des
paramètres θ qui permet de minimiser la distance de Kullback-Leibler avec la densité auxiliaire
optimale. Ce processus de détermination des paramètres est adaptatif et fait intervenir des seuils
de défaillance intermédiaires avec la résolution d'un problème d'optimisation à chaque seuil pour
trouver la densité auxiliaire optimale jusqu'à atteindre le seuil de défaillance �nal.
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A�n de calculer les bornes Eqs.(18.44), il est nécessaire d'estimer de façon e�cace la probabilité
de défaillance un grand nombre de fois (pour chaque valeur des variables épistémiques e proposée
par l'optimiseur). Pour cela, on se propose de modi�er l'initialisation de l'algorithme CE et
d'utiliser les estimations des probabilités de défaillance précédentes. On considère qu'une itération
complète de l'algorithme CE a été réalisée pour une valeur e0 des variables épistémiques partant
de la densité φe0(·) pour trouver la densité auxilaire optimale. A la convergence de CE, on
dispose ainsi de la densité auxiliaire optimale τθ∗(·) pour e0. Cette densité permet de générer
des échantillons dans la zone de défaillance et ainsi d'estimer de façon précise la probabilité de
défaillance. Lorsque l'optimiseur fournit une nouvelle valeur e pour les variables épistémiques,
on propose d'utiliser cette densité optimale ainsi que les échantillons générés précédemment
pour initialiser CE. On dispose ainsi directement d'une densité générant des échantillons
dans la zone de défaillance. L'algorithme CE est alors utilisé pour trouver la densité optimale
pour la valeur e à moindre coût de calcul par rapport à une initialisation de l'algorithme avec φe(·).

De plus, a�n de réduire de façon signi�cative le nombre d'appels à la fonction état limite g(·), un
modèle de substitution ĝ(·) de cette fonction est construit et amélioré à l'aide d'une stratégie de
ra�nement [Balesdent et al., 2013].
En�n, a�n de résoudre les deux problèmes d'optimisation pour trouver les bornes de la probabilité
de défaillance, CMA-ES est utilisé car la fonction objectif est bruitée (estimation par IS) et il n'existe
pas à notre connaissance de dérivation du gradient de la probabilité de défaillance calculé par CE
par rapport aux variables épistémiques.
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Figure 18.21: Approche proposée pour le calcul des bornes de la probabilité de défaillance avec des
incertitudes épistémiques a�ectant les PDF des variables aléatoires avec un coût de calcul réduit

La méthode proposée est illustrée Figure 18.21 et permet de réduire le nombre d'appels à la fonction
état limite exacte tout en assurant une estimation précise de la probabilité de défaillance. Cette
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approche a été testée sur deux cas tests analytiques par rapport à deux méthodes de référence
et est plus e�cace que ces approches tant sur la qualité de l'optimum que sur la précision (faible
variance de l'estimée de la probabilité de défaillance). Cette méthode a été testée sur un cas test
lanceur (voir chapitre 11).

18.3.2 Incertitudes épistémiques a�ectant directement l'état limite

On considère le problème posé en section 18.1.3.2. L'objectif est de calculer les bornes supérieures
et inférieures du domaine de variation de la probabilité de défaillance:{ Pmin = min

e∈Υ
P(g(U, e) ≤ 0)

Pmax = max
e∈Υ

P(g(U, e) ≤ 0)
(18.46)

Dans ce problème l'état limite de défaillance est directement impacté par la présence d'incertitudes
épistémiques. On considère par la suite uniquement le calcul de la borne supérieure du domaine
de variation de la probabilité de défaillance car c'est cette valeur qui est déterminante dans la
conception d'un système (respect du cahier des charges). Néanmoins, l'approche proposée est
adaptable au calcul de la borne inférieure. Par ailleurs, on considère que le calcul de la probabilité
de défaillance fait intervenir des évènements rares. A�n de limiter le nombre d'appels à la fonction
état limite g(·), on propose d'utiliser une méthode d'échantillonnage adaptatif (Subset Sampling)
avec un modèle de substitution de g(·) (par Krigeage). Le Subset Sampling (SS) est utilisé car cette
technique d'estimation d'évènements rares permet de tenir compte de plusieurs zones de défaillance
pour des états limites non linéaires.
La méthode proposée repose sur une approche séquentielle avec une phase d'estimation de la borne
de probabilité de défaillance maximale à l'aide d'un métamodèle et d'une phase de ra�nement du
modèle de substitution (Fig. 18.22).
Pour déterminer la borne maximale de la probabilité de défaillance, on se propose d'utiliser un
algorithme par gradient pour leur rapidité de convergence. Pour cela, une technique permettant
l'estimation du gradient de la probabilité de défaillance par rapport aux variables épistémiques e
a été dérivée. La probabilité de défaillance s'exprime par:

P(e) =

∫
Ωf (e)

φ(u)du (18.47)

avec le domaine de défaillance Ωf (e) = {u ∈ Ω| g(u, e) ≤ 0} qui dépend des variables épistémiques.
La probabilité peut se réécrire avec la fonction indicatrice:

P(e) =

∫
Ω

1g(u,e)≤0φ(u)du (18.48)

Ainsi, pour pouvoir utiliser un algorithme d'optimisation à base de gradient, il est nécessaire de
calculer:

∂P
∂e(k)

∣∣∣∣
e

=
∂

∂e(k)

∫
Ω

1g(u,e)≤0φ(u)du

=

∫
Ω

∂

∂e(k)
1g(u,e)≤0φ(u)du (18.49)
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Figure 18.22: Processus de détermination de la borne supérieure de la probabilité de défaillance
en présence d'incertitudes épistémiques a�ectant directement l'état limite

Pour cela, deux techniques sont proposées: calcul de l'Eq.(18.49) par CMC ou par SS. Le calcul du
gradient de la probabilité de défaillance fait intervenir la distribution de Dirac qu'il est nécessaire
d'approximer. Pour cela, plusieurs approches ont été comparées et une technique fondée sur une
distribution Gaussienne avec le réglage d'un paramètre σ est proposée. L'estimation du gradient
de la probabilité de défaillance est utilisée par l'algorithme d'optimisation a�n de trouver la borne
maximale de défaillance.

Par ailleurs, pour l'estimation de la probabilité de défaillance, on se propose de construire le modèle
de Krigeage dans l'espace joint incertain aléatoire/épistémique. Pour chaque valeur des variables
épistémiques, une estimation de la probabilité de défaillance par SS est réalisée avec le Krigeage.
A�n d'assurer une estimation précise de la probabilité de défaillance, un ra�nement du métamod-
èle, qui a été construit à partir d'un plan d'expérience, est nécessaire. Pour cela, un problème
d'optimisation a été mis en place a�n de trouver le points dans l'espace joint aléatoire/épistémique
permettant de réduire l'incertitude du modèle de substitution. Ce problème d'optimisation est
dérivé du Generalized Max-min [Lacaze and Missoum, 2014a] et adapté à la prise en compte
d'incertitudes épistémiques. La résolution du problème d'optimisation à l'itération [t] de la boucle
séquentielle permet de trouver un point tel qu'il soit :

• proche du seuil de défaillance grâce à la contrainte ĝ(u, e,X ) = 0 avec X le plan d'expérience
du Krigeage,

• dans les régions à haut niveau de PDF (φ(u)φU (e))
1

d+w avec φ(·) la densité jointe des variables
aléatoires, φU (·) la densité uniforme pour les variables épistémiques, d la dimension du vecteur
de variables aléatoires et w celle du vecteur des variables épistémiques,

• autour de la valeur des variables épistémiques menant à la probabilité de défaillance maximale
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P̂(e) ≥ P̂−max

(
e∗[t]

)
avec P̂(e) la probabilité de défaillance pour le vecteur e et P̂−max

(
e∗[t]

)
la borne inférieure de la probabilité de défaillance maximale pour la valeur des variables
épistémiques menant à la probabilité de défaillance maximale trouvée lors de l'Interval Anal-
ysis. Cette borne inférieure tient compte de l'incertitude du métamodèle,

• su�samment éloigné desMs points existants dans le plan d'expérience min
i=1,...,Ms

‖ (u(i), e(i))−

(u, e) ‖.
Le problème d'optimisation trouve des solutions qui ne ra�nent pas dans tout l'espace épistémique
mais uniquement dans les zones d'intérêt pour le calcul des bornes de probabilité de défaillance.
L'estimation de la variance de la prédiction par Krigeage permet de contrôler l'erreur de ce dernier
et son impact sur l'estimée de la probabilité de défaillance. Le problème d'optimisation pour le
ra�nement du Krigeage est donné par:

max
u,e

(φ(u)φU (e))
1

d+w min
i=1,...,Ms

‖ (u(i), e(i))− (u, e) ‖ (18.50)

s.t. ĝ(u, e,X ) = 0 (18.51)

P̂(e) ≥ P̂−max

(
e∗[t]

)
(18.52)

e ∈ Υ (18.53)

u ∈ Ω (18.54)

La méthode proposée (Fig.18.22) permet de réduire le nombre d'appels à la fonction état limite
exacte tout en assurant une estimation précise de la probabilité de défaillance. Cette approche a
été testée sur un cas test analytique par rapport à une méthode de référence (FORM-UUA) et est
plus e�cace que cette dernière tant sur la qualité de l'optimum que sur la précision (faible variance
de l'estimée de la probabilité de défaillance). Par ailleurs, cette méthode a été testée sur un cas
test lanceur présenté à la section 18.3.3.

18.3.3 Application à l'analyse de lanceurs

Dans cette section, le cas test lanceur est présenté avec des variables épistémiques impactant
l'état limite de défaillance. Pour plus de concision, le cas test lanceur impliquant des variables
épistémiques a�ectant les hyper-paramètres de loi des variables aléatoires n'est pas présenté ici et
est décrit chapitre 11.
On considère un lanceur composé de plusieurs étages à propulsion solide et on s'intéresse à la
retombée du deuxième étage dans l'océan. On souhaite déterminer la probabilité pour l'étage de
retomber à une distance de plus de 20km du point de retombée nominal. Les variables incertaines
considérées sont présentées dans le tableau 18.23.
Le débit massique du pro�le de la queue de poussée d'un étage à propulsion solide est di�cile à
modéliser et des incertitudes de modélisation existent. En e�et, le pro�le de la queue de poussée
d'un étage solide dépend de l'érosion de la tuyère, des instabilités de combustion, du taux de
combustion de la surface d'ergol solide, etc. En pratique, ces phénomènes physiques sont complexes
et en phase d'avant-projet, les modèles utilisés ne permettent de fournir qu'un domaine de variation
possible pour le pro�le de la queue de poussée de l'étage.
A�n de simuler la phase ascensionnelle et la retombée du lanceur, les disciplines de propulsion, de
dimensionnement, d'aérodynamique, de trajectoire montée et descente sont impliquées (Fig.18.24)
dans le calcul de la distance orthodromique d'impact de l'étage au point nominal.
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Table 18.23: Variables incertaines pour le problème de retombée de l'étage

Variables incertaines Type Dé�nition

Erreur altitude séparation (m) Aléatoire N (0, 0.01)

Erreur vitesse séparation (km/s) Aléatoire N (0, 0.01)

Erreur pente séparation (rad) Aléatoire N (0, 0.03)

Erreur azimuth séparation (rad) Aléatoire N (0, 0.00175)

Erreur masse sèche (kg) Aléatoire N (0, 70)

Erreur débit massique 1er étage Epistémique [0, 1]

Propulsion

MassEbudgetE-
GeometryE

design

Aerodynamics

AscentE
Trajectory

Fallout
Trajectory

AleatoryEuncertainty:
-EaltitudeEseparationEerror
-EvelocityEseparationEerror
-EflightEpathEangleEseparationEerror
-EazimuthEseparationEerror
-EstageEdryEmassEerror

EpistemicEuncertaintyEon:
-EfirstEstageEmassEflowErateE

OrthodromicEdistanceEto
EnominalEimpactEpoint

stageE
separation

state

Figure 18.24: Disciplines impliquées dans le calcul de probabilités de défaillance

L'approche proposée permet de calculer les bornes de la probabilité de défaillance en raison de
l'incertitude de modélisation sur la queue de poussée du premier étage. Elle permet de faire moins
d'appels à la fonction état limite (impliquant toutes les disciplines) que l'approche de référence
(dérivée de FORM) et permet de trouver une meilleure valeur pour la borne supérieure. Par ailleurs,
l'importance de l'utilisation du Subset Sampling est illustrée par la �gure 18.26. En e�et, deux
zones de défaillances principales existent et CMC ne parvient pas à générer des points dans l'espace
de défaillance alors que l'approche utilisant le Subset Sampling permet une estimation précise de
la probabilité de défaillance. L'utilisation du modèle de Krigeage permet de réduire le coût de
calcul en appelant le moins de fois possible les disciplines.
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Figure 18.25: Séparation et point d'impact nominal du 2ème étage
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Figure 18.26: Points d'impact du 2ème étage du lanceur
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18.3.4 Conclusion

Dans cette section, deux méthodes d'analyse de �abilité en présence d'incertitudes à la fois aléa-
toires et épistémiques ont été proposées. Ces méthodes reposent sur l'utilisation d'une technique
d'estimation de probabilité impliquant des évènements rares (Importance Sampling ou Subset
Sampling) combinée à l'utilisation d'un métamodèle de la fonction état limite (Krigeage) et d'une
stratégie de ra�nement a�n d'être précis uniquement dans les zones désirées. Ces approches ont été
comparées à des méthodes de référence sur des cas tests analytiques et sur des cas tests d'analyse de
retombée d'étage de lanceurs. Les approches proposées permettent d'obtenir de meilleurs bornes
sur les probabilités de défaillance avec un nombre plus faible d'appels à la fonction état limite
exacte.
Outre la gestion des couplages interdisciplinaires et l'analyse de �abilité, un autre élément impor-
tant a�n de résoudre un problème UMDO est l'optimisation. La section suivante se focalise sur
l'adaptation de l'algorithme CMA-ES à la prise en compte de contraintes.

18.4 Gestion des contraintes pour CMA-ES

18.4.1 Modi�cation de la mise à jour de la matrice de covariance

Comme expliqué dans la section 18.1.4, l'algorithme CMA-ES [Hansen et al., 2003] n'est pas adapté
à la prise en compte de contraintes. Seules des techniques par pénalisation de la fonction objectif
existent et sont à régler pour chaque problème d'optimisation.
Dans cette section, on se propose de modi�er l'algorithme CMA-ES à partir de la méthode dévelop-
pée pour (1+1)-CMA-ES [Arnold and Hansen, 2012]. La particularité de CMA-ES est qu'il dé�nit
un volume de recherche dans lequel il génère une population d'individus à l'aide d'une loi Gaussi-
enne paramétrée par une matrice de covariance C. Cette matrice de covariance peut générer
di�érents hyper-volumes et, par des homothéties et des rotations, privilégier des zones de l'espace
de recherche a�n de converger vers l'optimum.
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Figure 18.27: Paramétrage de l'ellipsoïde de recherche de candidats dé�nie par une matrice de
covariance.

Pour tenir compte de la génération de candidats enfreignant les contraintes, une technique modi-
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�ant la mise à jour de la matrice de covariance est proposée. En e�et, la matrice de covariance est
caractérisée par ses valeurs propres et ses vecteurs propres. L'hyper-volume de recherche et la zone
de génération de candidats sont donc fonction des valeurs propres de la matrice C (Fig.18.27).
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Figure 18.28: Violation de la contrainte et projection sur les vecteurs propres, candidats
bleu=faisables, rouge=non faisables.

Lorsqu'un candidat enfreint une ou plusieurs contraintes, à l'aide de projections de la distance
entre le candidat et le point moyen m sur les vecteurs propres, les valeurs propres de la matrice
de covariance sont modi�ées a�n de réduire la possibilité de générer des futurs candidats dans
ces directions (Fig.18.28). En réduisant les valeurs propres de la matrice de covariance selon les
directions adéquates, on réduit l'espace de recherche dans les zones enfreignant les contraintes et
ainsi la possibilité de générer des candidats dans ces espaces (Fig.18.29).
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Figure 18.29: Évolution de la matrice de covariance dûe à la violation de la contrainte entre deux
itérations, candidats bleu=faisables, rouge=non faisables.
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18.4.2 Applications: cas tests analytiques et conception de lanceur

Cette technique a été utilisée et comparée à des méthodes de référence (death penalty, penalization,
modi�ed (1+1)-CMA-ES) sur trois cas tests analytiques:

• Modi�ed Six Hump Camel,

• G04 optimization problem,

• Modi�ed Rosenbrock problem.

La Figure 18.30 illustre la convergence de l'algorithme proposé vers l'optimum pour le problème
Modi�ed Six Hump Camel. On constate que l'algorithme converge bien vers l'optimum global,
sature des contraintes et que la matrice de covariance s'adapte à la présence des contraintes.
La Figure 18.31 illustre un bilan qualitatif des résultats sur les trois cas tests analytiques (nombre
d'évaluations des fonctions, robustesse à l'initialisation, valeur de l'optimum).
Par ailleurs, CMA-ES modi�é a été utilisé pour l'optimisation d'un lanceur à propulsion solide bi-
étage a�n de maximiser l'incrément de poussée fourni par le lanceur. En comparaison des méthodes
de références, CMA-ES modi�é permet d'obtenir un meilleur incrément de vitesse avec un nombre
restreint d'appels aux fonctions objectif et contraintes (voir chapitre 13 pour plus de détails).
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Figure 18.30: Optimisation du problème Modi�ed Six Hump Camel avec l'algorithme proposé, la
représentation du volume de recherche paramètré par la matrice de covariance en vert, µ meilleurs
candidats en bleu, point moyen en rouge, autres candidats en rose, une �gure toutes les 18 itéra-
tions.
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Nb of evaluations Robustness to initialization Value of optimum

Qualitative comparison for modified six camel problem
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Qualitative comparison for G04 problem
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Qualitative comparison for modified Rosenbrock 20D problem
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Figure 18.31: Comparaison qualitative pour les cas tests analytiques. Plus la valeur est faible, plus
la méthode est performante.

18.5 Conclusion et perspectives

Cette thèse est centrée sur le développement de méthodes MDO en présence d'incertitudes en
phase d'avant-projet permettant la conception de systèmes complexes tels que les lanceurs. Les
contributions de cette thèse portent sur trois thématiques importantes en UMDO:

1. Tout d'abord, nous avons travaillé sur la satisfaction des couplages interdisciplinaires en
présence d'incertitudes pour les formulations UMDO découplées. Les disciplines sont décou-
plées a�n de supprimer les analyses multidisciplinaires (MDA) qui requièrent des simulations
répétées des disciplines. D'après l'étude des formulations UMDO existantes et leurs gestions
des couplages, une nouvelle technique a été proposée a�n de satisfaire les couplages quelle
que soit la réalisation des variables incertaines. Pour cela, une approche fondée sur un mé-
tamodèle paramétrique (polynôme du chaos) des relations de couplage, dont les paramètres
sont contrôlés au niveau système par l'optimiseur, a été développée. Le métamodèle est con-
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struit tout au long de l'optimisation du système. Grâce à une contrainte de satisfaction des
couplages interdisciplinaires, à la convergence du problème d'optimisation, les métamodèles
représentent les relations de couplage comme le ferait une analyse multidisciplinaire (MDA)
assurant ainsi la faisabilité multidisciplinaire. Cette technique permet la décomposition du
processus de conception et ainsi l'évaluation en parallèle des disciplines. Cette approche a
été utilisée pour deux formulations UMDO développées: une mono-niveau Individual Dis-
cipline Feasible - Polynomial Chaos Expansion (IDF-PCE) et une multi-niveaux Multi-level
Hierarchical Optimization under Uncertainty (MHOU). Quatre techniques pour calculer les
intégrales multidimensionnelles ont été utilisées: Crude Monte Carlo, les quadratures, les PCE
et le Subset Sampling couplé à des Support Vector Machines pour le calcul de probabilités
de défaillance.

MHOU est une formulation dérivée de la formulation Stage-Wise decomposition for Opti-
mal Rocket Design exploitant une décomposition transverse du processus de conception des
lanceurs en décomposant selon les phases de vol plutôt que par une décomposition par dis-
cipline. MHOU est une formulation UMDO permettant une décomposition hiérarchique du
problème de conception a�n de supprimer les couplages de retour et ainsi les boucles disci-
plinaires. Cette formulation repose sur un niveau d'optimisation sous-système et d'un niveau
d'optimisation système chargé de coordonner le processus de conception et d'assurer la fais-
abilité multidisciplinaire.

Les deux formulations proposées ont été appliquées et comparées sur des cas tests analytiques
et des cas tests de conception de lanceurs. Les approches proposées ont permis d'illustrer
leur e�cacité par rapport à la méthode de référence MDF. Par ailleurs, les cas test ont
mis en avant l'importance de la prise en compte des incertitudes en phase d'avant-projet.
Cependant, les études e�ectuées ont montré que l'utilisation de stratégies découplées pour la
conception en présence d'incertitudes rend très complexe la résolution de tels problèmes en
comparaison avec les approches déterministes.

2. Dans la seconde partie de cette thèse, deux méthodes d'analyse de �abilité en présence
d'incertitudes aléatoires et épistémiques ont été proposées. En phase d'avant-projet, la
présence d'incertitudes épistémiques résulte des méconnaissances, des hypothèses simpli�-
catrices et de l'utilisation de modèles de basse �délité. Deux types de problèmes ont été
considérés: des incertitudes épistémiques sur les hyper-paramètres des PDF caractérisant les
incertitudes aléatoires et des incertitudes épistémiques a�ectant directement l'état limite.

La première technique combine l'Importance Sampling utilisant la Cross Entropy avec un
Krigeage et une stratégie de ra�nement du métamodèle. Cette approche permet de calculer
les bornes de la probabilité de défaillance impliquant des évènements rares. L'estimation par
Cross Entropy a été modi�ée a�n d'accélérer le calcul de probabilités de défaillance pour
une nouvelle valeur des variables épistémiques à partir des calculs précédents. De plus, a�n
d'assurer l'estimation des bornes de la probabilité de défaillance, une stratégie de ra�nement
pour avoir un Krigeage précis dans les zones proches du seuil de défaillance et dans les hautes
densités de probabilité a été utilisée.

Pour le deuxième problème, une méthode combinant Subset Simulation, Krigeage et une
stratégie de ra�nement a été proposée. A�n de tenir compte de la présence à la fois
d'incertitudes aléatoires et épistémiques, le Krigeage est construit et ra�né dans l'espace
joint incertain pour assurer une estimation précise de la probabilité de défaillance. Par
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ailleurs, pour trouver les bornes du domaine de variation de la probabilité de défaillance, un
algorithme par gradient a été utilisé et une technique d'estimation du gradient de la probabil-
ité de défaillance par rapport à des variables de décision (comme les variables épistémiques)
a été développée. Une expression analytique fondée sur des propriétés de la fonction indi-
catrice a été proposée avec son implémentation numérique à l'aide de Crude Monte Carlo
et Subset Sampling pour estimer le gradient de la probabilité de défaillance. Les deux tech-
niques d'analyse de �abilité ont été testées sur des cas tests analytiques et deux cas tests de
retombée d'étage de lanceurs. Les méthodes proposées ont présenté de meilleurs résultats
que les approches de référence (Crude Monte Carlo, FORM). Cependant, en raison de la com-
plexité de mise en ÷uvre, une implémentation directe pour résoudre des problèmes UMDO

nécessite de plus amples investigations.

3. Dans la troisième partie de cette thèse, une modi�cation de l'algorithme d'optimisation évo-
lutionnaire CMA-ES a été proposée a�n de gérer les contraintes. Pour résoudre les problèmes
de UMDO, les algorithmes d'optimisation doivent pouvoir gérer la présence d'incertitudes et
de contraintes. CMA-ES est un algorithme d'optimisation pour des problèmes non contraints
et des techniques de pénalisation de la fonction objectif par les contraintes sont souvent
utilisées. Une nouvelle approche inspirée d'une méthode pour (1+1)-CMA-ES a été proposée
visant à modi�er la mise à jour de la matrice de covariance qui paramétrise une distribution
Gaussienne utilisée pour générer une population de candidats. Les mécanismes de mise à jour
ont été modi�és a�n de tenir compte de la violation par certains candidats des contraintes
et ainsi de réduire le volume de recherche de solution dans les directions où les candidats
violent les contraintes. Cette approche a été testée sur plusieurs cas tests analytiques et sur
un cas test de conception de lanceur à propulsion solide illustrant l'e�cacité de la méthode
de gestion des contraintes proposée par rapport aux approches de référence.

A�n d'améliorer les méthodes UMDO proposées dans cette thèse, plusieurs extensions des travaux
peuvent être proposées. Dans cette thèse, des méthodes pour la gestion des couplages interdisci-
plinaires, pour l'analyse de �abilité et pour l'optimisation ont été proposées. Il serait utile de les
combiner a�n de développer une nouvelle formulation UMDO. Cela permettrait de concevoir un
lanceur par une stratégie de conception décomposée tout en incluant l'estimation de la probabilité
de défaillance pour la retombée d'étages avec les techniques proposées et en optimisant le système
avec l'algorithme CMA-ES modi�é. Cependant, le coût calculatoire qui serait induit semble trop
important à l'heure actuelle et des améliorations des méthodes sont nécessaires pour perfectionner
les méthodologies UMDO.

Gestion des couplages interdisciplinaires
Dans cette thèse, aucune MDA n'a été réalisée dans les formulations découplées proposées. Cepen-
dant, les méthodes pour gérer les couplages interdisciplinaires ont montré des limitations dans le
cas où le nombre de variables incertaines augmente. Une approche hybride permettant la propa-
gation des incertitudes par une approche découplée a�n de paralléliser l'évaluation des disciplines
et l'utilisation de MDA pour satisfaire le système d'équations interdisciplinaires pourrait être une
alternative intéressante. Cela permettrait d'éviter les boucles disciplinaires pour la propagation
des incertitudes mais faciliterait la gestion des couplages comme le font certaines formulations MDO

déterministes telles que CSSO ou BLISS. De plus, dans cette thèse, les formulations proposées ne
permettent que de modéliser les incertitudes à l'aide du formalisme des probabilités. Une extension
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a�n de gérer d'autres formalismes d'incertitudes (comme la théorie de l'évidence) serait utile pour
modéliser les incertitudes avec les informations disponibles.

Analyse de �abilité
Les techniques proposées sont e�caces en faible dimension mais des di�cultés apparaissent en
grande dimension. Ainsi, les métamodèles (comme le Krigeage) sont peu performants en grande
dimension. Un travail sur des métamodèles et des stratégies de ra�nement en grande dimension
pour de l'analyse de �abilité serait intéressant. L'utilisation d'autres métamodèles plus adaptés aux
grandes dimensions tels que les Support Vector Regression pourrait être une piste à explorer. Par
ailleurs, utiliser des techniques d'analyse de sensibilité des probabilités de défaillance permettrait
d'identi�er les paramètres les plus in�uents a�n de réduire la dimension du problème d'estimation
de probabilité de défaillance. De plus, des travaux sur les formalismes et la modélisation des
incertitudes semblent essentiels a�n de réaliser des analyses de �abilité qui soient les plus �dèles
possible aux informations disponibles sur les incertitudes.

Optimisation numérique
En�n, les formulations proposées ont été testées sur des problèmes de conception classiques im-
pliquant des lanceurs consommables sans boosters avec des variables de conception continues. Il
serait intéressant d'étendre les techniques existantes à la gestion de variables discrètes (nombre
de boosters, nombre d'étages, etc.) et catégorielles (type d'ergol, solide, liquide, hybride, type de
matériaux, etc.). Cela permettrait d'enrichir le type d'architecture de lanceur analysée dans une
même étude. De plus, seuls des cas tests avec des problèmes mono-objectifs ont été étudiés. Il
serait utile d'élargir les méthodes a�n de résoudre des problèmes multi-objectifs (e.g. maximisation
de la masse de la charge utile tout en minimisant le coût de lancement). Cela o�rirait la possibilité
d'étudier des familles de lanceurs dédiées à di�érentes missions (orbites basse, géostationnaire,
etc.). En�n, l'utilisation de stratégies multi-�délité pour contrôler les incertitudes épistémiques
introduites lors des phases avant-projet semble être une piste d'exploration intéressante pour ré-
soudre des problèmes UMDO.
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Abstract :
Launch vehicle design is a Multidisciplinary Design Optimization problem whose objective is to �nd the launch
vehicle architecture providing the optimal performance while ensuring the required reliability. In order to
obtain an optimal solution, the early design phases are essential for the design process and are characterized
by the presence of uncertainty due to the involved physical phenomena and the lack of knowledge on the
used models. This thesis is focused on methodologies for multidisciplinary analysis and optimization under
uncertainty for launch vehicle design. Three complementary topics are tackled. First, two new formulations
have been developed in order to ensure adequate interdisciplinary coupling handling. Then, two new reliability
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surrogate models and e�cient sampling methods. Eventually, a new approach of constraint handling for
optimization algorithm �Covariance Matrix Adaptation - Evolutionary Strategy� has been developed to ensure
the feasibility of the optimal solution. All the proposed methods have been compared to existing techniques
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solution.



École Nationale Supérieure des Mines de Saint-Étienne

NNT: 2015 EMSE 0792

Loïc Brevault

Contributions à l'optimisation multidisciplinaire sous incer-
titudes, application à la conception de lanceurs

Spécialité: Mathématiques appliquées

Mots Clefs: Optimisation Multidisciplinaire, Incertitudes, Lanceurs, Conception, Analyse
de �abilié, Métamodèle

Résumé:
La conception de lanceurs est un problème d'optimisation multidisciplinaire dont l'objectif est de trouver
l'architecture du lanceur qui garantit une performance optimale tout en assurant un niveau de �abilité requis.
En vue de l'obtention de la solution optimale, les phases d'avant-projet sont cruciales pour le processus de
conception et se caractérisent par la présence d'incertitudes dues aux phénomènes physiques impliqués et
aux méconnaissances existantes sur les modèles employés. Cette thèse s'intéresse aux méthodes d'analyse
et d'optimisation multidisciplinaire en présence d'incertitudes a�n d'améliorer le processus de conception de
lanceurs. Trois sujets complémentaires sont abordés. Tout d'abord, deux nouvelles formulations du problème
de conception ont été proposées a�n d'améliorer la prise en compte des interactions disciplinaires. Ensuite,
deux nouvelles méthodes d'analyse de �abilité, permettant de tenir compte d'incertitudes de natures variées,
ont été proposées, impliquant des techniques d'échantillonnage préférentiel et des modèles de substitution.
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d'améliorer l'e�cacité du processus d'optimisation et la �abilité de la solution obtenue.
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