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Résumé étendu en francais

Chapitre 1 Introduction

Dans ce chapitre introductif on présente les motivations et les principales contri-
butions des activités de recherche menées pendant cette thése.

Dans un premier paragraphe on présence briévement 1’évolution des télécommu-
nications sans fil a partir du 19e siécle.

Le deuxiéme paragraphe présente les objectifs et les motivations de I’étude. On
indique d’abord les avantages des techniques MIMO: augmentation de la capacité
du canal de transmission et de la robustesse des liaisons radio, grace a la diversité
d’espace. On introduit ensuite les deux types des systémes MIMO, selon la con-
naissance (ou non) de I’état du canal de propagation (angl. CSI = Channel State
Information). Si I’état du canal de propagation doit étre connu (cas des systémes
MIMO dits «cohérentsy ), des signaux connus doivent étre envoyés périodiquement
pour l'estimation de la matrice de canal. Néanmoins, si le nombre des antennes
augmente ou si le canal de propagation varie rapidement, 1’estimation de la matrice
de canal d’est plus trés efficace. En plus, comme ce sondage périodique de canal
nécessite un certain temps, la durée de la transmission des données utile plus au
moins réduite et le débit utile des systémes MIMO cohérent est diminué. Par con-
séquent, certains chercheurs (Marzetta, ensuite Hochwald et Sweldens) ont étudié
des systémes MIMO différentiels qui ne nécessitent pas la connaissance du canal de

propagation. Pour ces systémes, les colonnes des matrices transmises doivent étre



unitaires. Ainsi, ils ont introduit les schémas DUSTM (Differential Unitary Space-
Time Modulation). Il est également possible de combiner un code temps-espace
avec un code correcteur d’erreurs pour des systémes MIMO cohérents ou différen-
tiel. C’est le cas des systémes MIMO analysés par El Arab qui utilisent les matrices
unitaires du groupe de Weyl de taille 2x2 et la technique MCM (Matrix Coded
Modulation).

Dans le troisiéme paragraphe on décrit briévement les principales contributions

de la thése:

1. En utilisant les matrices de taille 2x2 du groupe de Weyl on propose des sys-
temes MIMO différentiels avec 2, 4 et 8 antennes d’émission. Pour les systémes
MIMO avec 4 et 8 antennes d’émission, les groups de matrices unitaires sont
obtenus en effectuant des produits de Kronecker des matrices du groupe de

Weyl.

2. L’amélioration des performances des systémes proposés est effectuée par la
sélection des ensembles de matrices de transmission séparées par les plus
grandes distances. Plus précisément, le critére de sélection des matrices est la

distance minimale entre les matrices qui doit étre maximisée.

3. Un autre critére utilisé pour I’amélioration des performances est la correspon-
dance optimale entre les vecteurs binaires d’information et les matrices trans-
mises. En effet, la hiérarchie entre les vecteurs binaires d’information établie
selon la distance de Hamming doit correspondre a la hiérarchie entre les ma-

trices de transmission.

4. Pour une évaluation réaliste des performances des systémes proposés on con-
sidére une version améliorée du modele de canal de propagation utilisé pour
la simulation. D’habitude, les coefficients du canal de propagation suivent
une loi de Rayleigh mais ils restent constants pendant un certain temps qui
dépend du temps de cohérence du canal, donc de la vitesse de variation des
conditions de propagation. Par contre, cette hypothése ne correspond pas a
la réalité. En plus, le passage d'une matrice de canal a la matrice de canal

suivante impose une réinitialisation du systéme différentiel, situation qui ne



correspond non plus a la réalité. Afin d’éviter ces inconvénients et obtenir des
estimations réalistes des performances, on accepte la variation des coefficients
de la matrice de canal. Les valeurs intermédiaires des coefficients de canal
entre 2 tirages aléatoires selon la loi de Rayleigh sont obtenues en utilisant le
théoréme d’échantillonnage. Les simulations effectuées montrent une certaine
dégradation des performances des systémes analysées par rapport aux perfor-
mances obtenues en utilisant le modéle simple de canal considérant des valeurs
constantes pendant un certain intervalle de temps. Cette dégradation est plus
importante pour les canaux variant rapidement dans le temps (faible valeur

du temps de cohérence normalisé par la durée d’un symbole émis).

Le quatriéme paragraphe décrit le contenu de chaque chapitre de la thése, tandis

que le dernier paragraphe indique la liste des publications.

Chapitre 2 Systémes MIMO

Dans ce chapitre on présente le schéma général d’un systéme de communications
MIMO. Aprés une bréve description des activités de recherche dédiées a 1’étude des
systemes MIMO on rappelle les formules de calcul de capacité pour les systémes
MIMO cohérent et non-cohérent. Finalement, les performances des codes temps-
espace sont analysées est quelques critéres de qualité sont rappelés.

Le premier sous-chapitre rappelle la représentation en bande de base des signaux
a bande limitée, ainsi que la relation entre le signal émis et le signal recu dans le
cas d'un canal de propagation variant dans le temps. La représentation des sig-
naux a bande limitée dans un espace vectoriel N-dimensionnel est aussi rappelée.
Quelques parameétres importants d’un canal de propagation sont aussi présentés:
réponse impulsionnelle, trajets multiples, écart-type des retards (angl. RMS delay
spread), évanouissements plats ou sélectifs en fréquence, décalage Doppler, temps de
cohérence ou encore temps de cohérence par rapport a la durée d’un symbole émis.
Dans le cas d’un canal de propagation avec un grand nombre de trajets, on dé-
montre que la fonction d’autocorrélation statistique du signal recu peut s’exprimer

en fonction de la fonction de Bessel du premier ordre et du premier type et que



I’enveloppe du signal recu suit une loi de Rayleigh en absence du trajet direct et une
loi de Rice si ce trajet direct est présent. Le premier sous-chapitre se termine avec la
représentation du bruit Gaussien pour les systémes a bande limitée. Dans ’espace
des signaux a bande limitée, en utilisant une base orthonormée d’ordre N, le bruit

est représenté comme une variable aléatoire Gaussienne vectorielle de longueur N.

Le deuxiéme sous-chapitre présente une courte évolution des systémes MIMO a
partir des travaux de C. E. Shannon (1948). Au début, les systémes MIMO étaient
utilisés pour des applications sonar, radar ou sismiques. Leur utilisation pour les
télécommunications a débuter dans les années 1970. Au niveau d’une station de base,
les réseaux d’antennes assurent une diversité spatiale qui permet de lutter contre
les effets de la propagation multi-trajet. On rappelle les contributions ce certains
chercheurs a I'étude des systémes MIMO: Winters (1987) qui a analysé la capacité du
canal MIMO et a obtenu certains résultats intéressants, Teletar et Foschini (1995-
1996) qui ont étudié la capacité du canal MIMO si le canal de propagation est
connu par le récepteur, la technique BLAST (1996), Tarock (1998) qui a obtenu
les critéres de performance pour les codes temps-espace, Jafarkhani (2001) qui a
introduit les codes les codes temps-espace en bloc super-orthogonaux (QO-STBC),
etc. Les systéemes MIMO coopératifs et la nouvelle technique «massive MIMO »sont
également rappelés et leurs avantages mentionnés. En méme temps, 'utilisation
des systemes MIMO avec un grand nombre d’antennes diminue le débit utile et
rend la connaissance en temps réel du canal plus difficile, surtout si le canal varie
rapidement dans le temps. Par conséquent, des techniques MIMO qui ne nécessitent
pas la connaissance du canal de propagation peuvent s’avérer intéressantes. On
discute le modéle de canal ZMSW (zero mean spatially white) analysé par Zheng et
Tse (2002) qui montrent que la capacité de canal peut étre obtenue avec un nombre
limité d’antennes. Les contributions de Lapidoth et Moser (2003) sont évoquées,

ainsi que celles de Jafar et Goldsmith (2005).

Basés sur I'analyse de la capacité des systémes MIMO avec le modéle ZMSW,
Hochwald et Marzetta ont introduit en 2000 les schémas USTM (unitary space-time
modulation) qui n’ont pas besoin de la connaissance du canal de propagation. Par

contre, le probléme a résoudre est la détermination des constellations de grande



taille qui assurent une faible probabilité d’erreur et une complexité de démodulation
raisonnable. Il est possible de mentionner les contributions de Hochwald (2000),
Tarokh (2002), Leus (2004) et Kim (2010) pour la génération des constellations plus
simples & décoder tout en garantissant une faible probabilité d’erreur.

Enfin, pour les schémas MIMO différentiels on rappelle les schémas DUSTM
proposés par Hochwald et Sweldens en (2000), les schémas DSTBC de Tarokh et
Jafarkhani (2000-2001) qui généralisent le schéma d’Alamouti (1998) ou les schémas
DSTM de Hughes (2000) utilisant des signaux PSK.

Enfin, on mentionne la modulation matricielle codée proposée par El Arab et
Carlach (2011) utilisant des matrices unitaires du groupe de Weyl pour les systémes
MIMO de taille 2x2.

Le paragraphe suivant présente le modéle général d’un systéeme MIMO, précise le
modele de canal de propagation utilisé et obtient la description matricielle relient le
vecteur des signaux recus du vecteur des symboles émis en présence du bruit blanc,
additif, Gaussien. L’expression du rapport signal a bruit est aussi obtenue.

Le paragraphe 2.4 rappelle les notions d’information mutuelle moyenne et ca-
pacité pour un canal de transmission bruité. On donne la formule de calcul de la
capacité pour un canal Gaussien.

Le paragraphe suivant donne les formule de calcul de capacité d’abord pour les
systemes MIMO cohérents, ensuite non-cohérents. Pour les systémes MIMO co-
hérents on en déduit les critéres du rang et du déterminant pour améliorer leur per-
formance (diminuer la probabilité d’erreur). Pour les systémes MIMO non-cohérents
on indique le critére utilisé en réception pour minimiser la probabilité d’erreur (PEP

= pair-wise error probability).

Chapitre 3 Codage temps-espace non-cohérent

Le codage temps-espace non-cohérent concerne les systémes MIMO sans connais-
sance de la matrice de canal au niveau du récepteur. Parmi ces systémes MIMO on
peut citer ceux utilisant la modulation temps-espace unitaire (USTM), la modulation

différentielle temps-espace unitaire (DUSTM), le codage différentiel temps-espace en
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bloc (DSTBC), la modulation différentielle temps-espace (DSTM) et la modulation
matricielle codée (MCM). L’idée utilisée par DUSTM et DSTM est la méme.

Modulation unitaire espace-temps

Lors de 'analyse de la capacité des systémes MIMO sans connaissance de la
matrice de canal au niveau du récepteur Marzetta et Hochwald ont trouvé [25] que
les matrices transmises doivent avoir une structure particuliére: elles doivent étre
unitaires, d’ou le terme de modulation unitaire espace-temps (USTM = Unitary

Space-Time Modulation).

Schéma d’émission

Marzetta et Hochwald ont montré [25] que les matrices émises doivent avoir la
structure X = A0, ou A est une matrice diagonale de taille M x M et © une matrice
de taille M x T. Les colonnes de la matrice © doivent étre orthogonales entre elles

0617 = I,;. Quand le temps de cohérence normalisé du canal est largement
supérieur au nombre des antennes d’émission ou si 7' > M, avec un choix approprié

des valeurs ay(k = 1,2,..., M) il est possible d’atteindre la capacité du canal.

Schéma de détection de détermination des constellations USTM

A partir du vecteur Y recu, le récepteur détermine la matrice ©, qui maximise

la probabilité p(Y|Oy):

O =arg  max  p(Y[O)

O4E{O1,....0k }

=ar max Tr[YOHsoe,yH]. 3.1
8 cax | YO, 0,Y"] (3.1)

La probabilité d’erreur (PEP = pairwise error probability) est :

P, Z%P (Try o0, Y] > Tr[YO;/0,Y 7]|6y)

+ %P (TrYele, "] > Tr[yele, Yo, (3.2)
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A partir de la borne supérieure de cette probabilité d’erreur (Chernoff upper bound),
il est possible d’identifier deux critéres pour la détermination des constellations

USTM. Le premier critére doit minimiser:

0= 0,08 = 3.4
1<£2k'<1< VM 19Ol = 1<k<k’<K (3-4)
ot dygs 1, - - -, drr v sont les valeurs singuliéres du produit @k@g.
Un deuxiéme critére repose sur la maximisation du produit de diversité :
2
Copr = Z dkk’ +O( dkk’, )=1- _H@k@ || + O(dkk’,m)' (3.5)

Modulation DUST

A partir de la modulation DPSK et des schémas USTM, Hochwald et Sweldens
ont proposé [27] la modulation USTM différentielle, nommée DUSTM.

On explique d’abord la modulation PSK différentielle, ensuite, par analogie, on
présente la modulation UST différentielle. Dans les deux cas, la condition principale
est de pouvoir considérer le canal pratiquement invariant lors de la transmission de
deux symboles successifs.

Pour la modulation DPSK, la relation utilisée en réception lors du décodage est:
Prr1 = atg, min [yeer = Q. (3.13)

Pour la modulation DUSTM, la relation utilisée en réception lors du décodage

est:

V, = arg  min 1Y = Y1 Vil

VkE{Vl,...,Vk}
- in  Te{(Y; = Vi Vi) (Y; — Vi Vi)
arnge{I\%{?.,Vk} r{(Y: =Y Vi) (Vi = Yia Vi) 7'}
= R{Tr[Y,_ VY7
arnge{r\nfff{.,Vk} { r[ t—1VELy ]}
—arg  max R{Tr[V7Y,_Vi]}. (3.17)

Viee{Vi,...,Vi}
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ou Y; et Y;_1 sont les matrices recues aux instants ¢, respectivement ¢t — 1 et V; 'une
des matrices d’'information. La matrice recherchée est donc la matrice qui minimise
la norme de la matrice de la relation (3.17).

On démontre par la suite les deux critéres qu’on peut utiliser pour identifier
de bons ensembles de matrices d’information. Le premier critére impose la max-
imisation de la distance minimale entre deux matrices quelconques mais distinctes
choisies dans I’ensemble des matrices d’information. Le deuxiéme critére impose la
minimalisation du produit de diversité:

(== min Gw== min |det(Vy — Vi)|7. (3.25)

1 !
2 1<k<k/ <K 2 1<k<k' <K

Dans leurs travaux [27|, Hochwald et Sweldens ont proposé un groupe cyclique
de matrices ol la matrice génératrice V' est la racine d’ordre K de la matrice unité
Iy : VE = I,;. Les matrices d’information utilisées sont donc Vj, = Vlk, avec
k=0,..,K—1. Pour M =1,2,...,5 et pour R = 1,2, Hochwald et Sweldens ont
déterminé par recherche exhaustive les meilleures matrices a utiliser pour obtenir
les performances optimales. Les résultats sont donnés dans le Tableau 3.1. Les
performances obtenues avec ces ensembles de matrices sont indiquées dans la Figure

3.1 (pour R = 1) et dans la Figure 3.2 (pour R = 2).

Code temps espace en bloc différentiel

En se basant sur le schéma d’Alamouti [18], Tarkh et Jafarkhani [28, 29| ont
proposé un schéma différentiel pour les codes temps-espace en bloc (STBC = Space

Time Block Codes).

Transmission différentielle avec le schéma STBC d’Alamouti

Aprés avoir présenté le schéma classique d’Alamouti, on décrit le fonctionnement
du schéma différentiel basé sur le schéma d’Alamouti. En utilisant les modula-
tions MDP2 (BPSK) et MDP4 (4PSK), on simule les performances des systémes
d’Alamouti et différentiels pour M = 2 et M = 4. Les résultats sont indiqués a la

Figure 3.3. Pour les schémas différentiels on met en évidence (comme attendu) une



13

dégradation des performances de 3 dB.

Modulation Codée Matricielle

La modulation codée matricielle, proposée par A. El Arab, J-C Carlach et M.
Hélard [30, 31| combine le codage de canal, la modulation et le codage temps-
espace dans une unique fonction appliquée principalement aux systémes MIMO
non-cohérents. Le codage de canal est appliqué au plus des données binaires a
transmettre. Si, par exemple, on utilise un code de Hamming H(8, 4, 4), on divise
d’abord le flux binaire en vecteurs d’information de 4 bits qui sont codés. Apreés
codage, pour chaque vecteur de 4 bits d’information on obtient un vecteur de 4 bits
de controle. Ces 2 flux de données (d’information et de controle) sont appliqués a
des entre-laceurs m, et 7, et codés par la suite dans des paires de matrices inversibles
(Va, Vi) de taille 2 x 2. Ces deux matrices sont ensuite transmise par M = 2 an-
tennes d’émission: X; =V, et X;1; = V. Les matrices V,, et V3 appartiennent a
des cosets C), et C, différents du groupe de matrices de Weyl. Le choix des couples
(mp, my) et (Cp, Cy) n'est pas indifférent. En effet, pour chaque couple (V,, V3) du
produit cartésien C), x Cy, le couple (V,,V4) du méme produit cartésien vérifiant la
relation

VoV =Vl =0

doit étre unique. A la réception, en utilisant les matrices regues on vérifie cette
relation pour la détection des matrices transmises.

Cette modulation a été utilisée seulement pour les systémes MIMO de taille 2 x 2
a cause de la taille des matrices du groupe de Weyl. La structure de ce groupe uni-
taire de matrices est expliquée en précisant le mode de construction du sous-groupe
Cy et des autres cosets. Pour N = 2 antennes de réception on décrit la construc-
tion des mots de code pour le code correcteur d’'une erreur et détecteur d’erreurs
doubles H(8,4,4). On indique aussi la paire des permutations (m,, m,) utilisées pour
I'entrelacement et le choix du couple de cosets (C,, C,) a utiliser pour vérifier la
relation matricielle ci-dessus. La formule permettant le décodage est aussi obtenue.

L’analyse du groupe de matrices de Weyl nous a suggéré leur utilisation pour les
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modulations temps-espace unitaires différentielles. Ces modulations différentielles
seront présentées pour différentes valeurs de l'efficacité spectrale. Dans cette thése
les performances des systémes MIMO différentiels seront analysées pour M = 2,4
et 8 antennes d’émission sans l'utilisation des codes correcteurs d’erreurs. Pour-
tant le rajout d’un code correcteur d’erreur reste possible. Il pourrait s’appliquer
directement au flux de données binaires avant le codage temps-espace différentiel.
Au niveau du récepteur, le décodage correcteur d’erreurs devrait se faire aprés le
décodage temps-espace différentiel. Pour M =4 et 8 (et, en général, pour M = 2k
antennes d’émission, ou k > 2 est un nombre entier), il suffit d’effectuer des pro-
duits de Kronecker des matrices du groupe de Weyl, comme il sera expliqué dans les

chapitres suivants.

Chapitre 4 Nouvelle modulation temps-espace dif-

férentielle avec 2 antennes d’émission

Dans ce chapitre on propose la nouvelle modulation temps-espace différentielle
pour les systéemes MIMO avec 2 antennes d’émission. Les matrices d’information
associées aux vecteurs binaires sont des éléments du groupe de Weyl. Afin de réduire
le taux d’erreur binaire (TEB), on utilise one correspondance (angl. mapping) de
type Gray entre les vecteurs binaires et les matrices d’information. Le TEB peut étre
encore ameélioré en utilisant, selon 'efficacité spectrale souhaitée, des ensembles de
matrices d'information ayant le meilleur spectre de distances (des matrices séparées
par les plus grandes distances). Un deuxiéme critére pour déterminer les meilleurs
ensembles de matrices est le produit de diversité (angl. diversity product). Une
comparaison avec les performances d’autres systémes DSTBC et DUSTM montre

les avantages des schémas proposés.
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Modéle général d’un systéme & modulation temps-espace dif-

férentielle

Ce modele est basé sur I'équation différentielle (2.59) du chapitre 2 :
Y=HX+W

Dans le cas général, la matrice X transmise est de taille M x M, M étant le nombre
d’antennes d’émission. Le flux des données binaires a transmettre est «coupé »en
vecteurs binaires d’une certaine longueur et a chaque vecteur binaire on met en
correspondance bijective une matrice d’information V sélectionnée dans un ensemble
P. Au début, ’émetteur transmet une matrice de référence Xog = V; a I'instant 75. Au
. - ,- . . . ,. .
premier vecteur binaire d’information on associe une matrice d’information V., au
second vecteur binaire d’information une matrice d’information V,, etc. La relation

fondamentale de la transmission différentielle est:

Xrp =XV, o, 7=0,1,... (4.1)
Les N antennes du récepteur regoivent le flux de matrices Yy, ..., Y, Y 11, ...
Selon la relation (2.59) on peut écrire:
Y, =H. X, + W, (4.2)
et
Y =H 1 Xop + W (4.3)

Dans I’hypothése que le canal de propagation peut étre considéré invariant pen-

dant I’émission de 2 matrices successives (donc, pendant 1’émission de 2M symboles
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de la constellation), on en déduit:

Yoy =HX 0+ W = HX;V, |+ Wep

- (YT - WT)‘/iT+1 + WT+1 - YTV;Z.,—H + WT+1 - WTV;Z.,—H

=YV, W (4.4)

T+1

ol VVT/Jrl = Wy — WV, .. Cette relation conduit a la relation utilisée par le

récepteur pour la prise de décision:

Vi = argmin|[Yo, — Y V||

= arg I‘;HIP} Tr{(YT—i-l - YTV)H(Y:r-i-l - Y:rv)}
S

_ H
= arg I&lg;)(Tr{Re(YTHYTV)}. (4.5)

La constellation pour les systémes MIMO avec 2 antennes
d’émission

Pour les systémes MIMO avec 2 antennes d’émission, les matrices utilisées sont
des éléments du groupe de Weyl. Il s’agit d’un groupe de 192 matrices unitaires
complexes. Le maximum de Defficacité spectrale est R = 3,5 bit/s/Hz. Ce groupe
contient un sous-groupe Cy de 16 matrices. Ce sous-groupe permet d’effectuer une
partition du groupe de Weyl (noté par la suite G,,) en 12 cosets, le premier coset
étant Cy. On peut vérifier que toute matrice V' de Cj est a une distance de 2 de 14
autres matrices de Cy et & une distance de 2v/2 = 2.8284 de —V. Afin d’identifier les
meilleurs sous-ensembles de matrices a utiliser pour différentes valeurs de Defficacité
spectrale, le spectre des distances a été calculé pour les matrices du G,,. On a pu
vérifier que chaque matrice de GG, a le méme spectre des distances par rapport aux

autres matrices de GG,,. Ce spectre des distances est indiqué dans le tableau 4.1.

Efficacité spectrale R = 2 bit/s/Hz

Dans ce cas, les vecteurs binaires d’informations contiennent 4 bits. On peut avoir

2% = 16 vecteurs d’information, donc il est nécessaire d’utiliser 16 matrices. Il a été
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vérifie que Cy est le sous-ensemble de G, qui a le meilleur spectre de distances (la
plus grande distance minimale entre 2 matrices distinctes de Cp). Par conséquent, les
matrices de Cj sont utilisées. Pour ces matrices, la constellation utilisée est 4PSK
U {0}. Ceci revient a dire que pendant la durée Ty de I’émission d’'un symbole,
seulement une antenne émet un signal de la constellation 4PSK avec la puissance
normalisée égale a 1.

Le Tableau 4.2. indique la correspondance utilisée initialement entre les vecteurs
binaires d’information et les matrices du sous-groupe Cj. Les distances entre les
matrices du sous-groupe Cj sont données dans la Tableau 4.3.

Le résultat de simulation pour ce schéma différentiel est indiqué a la figure 4.3.

Ciiiiiiiiiioo )l — 5 Tarokh DSTBC

- S R R AR R RRTEEURRRRL Y % New DSTM (coset CO) ]

BER

0 5 10 15 20
SNR (dB)

Figure 4.3.

Pour comparaison, on indique également la variation du TEB en fonction du
SNR (dB) pour les schémas DSTBC [28] et DUSTM [27|. Par rapport au schéma
DSTBC proposé par Tarokh, le résultat du schéma proposé est moins bon car aucune

méthode de prétraitement n’est utilisée. Par contre, pour SNR inférieur a 14 dB,
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le schéma proposé a des performances légérement meilleures par rapport au schéma
DUSTM. En effet, ce schéma DUSTM a été proposé pour des valeurs SNR élevées,

selon le deuxiéme critére.

Codage de Gray

La correspondance entre les vecteurs binaires et les matrices du sous-groupe C)
peut étre améliorée en utilisant la méme idée utilisée lors du codage de Gray. Plus
précisément, on calcule la distance de Hamming entre les vecteurs binaires et on
tient compte des distances entre les matrices de Cy données dans le Tableau 4.3.
Aux vecteurs séparés par une faible distance de Hamming on utilise des matrices
de Cy séparées par une faible distance, pour des vecteurs binaires séparés par une
grande distance de Hamming on utilise des matrices de () séparées par une grande
distance. La nouvelle correspondance est donnée dans le Tableau 4.4, tandis que le
résultat de la simulation avec cette nouvelle correspondance est donné a la Fig. 4.5.

Par rapport au premier cas on observe une légére amélioration.

Le critére basé sur la distance

Dans ce paragraphe on décrit une étude qui permet de comparer les performances
des 2 systémes MIMO avec R = 2 bit/s/Hz. Le premier systéme utilise le sous-
groupe Cj. Dans ce sous-groupe, chaque matrice est séparée par la matrice opposée
par une distance 2v/2 = 2.8284, tandis que par rapport aux autres matrices de C,
elle a une distance de 2. Pour ’ensemble S considéré comme possible contra-candidat
de (Y, la distance maximale entre une matrice et sa matrice opposée est toujours 2,
par contre, par rapport aux autres matrices on a des distances de v/2 = 1.4142 < 2
et des distances de v6 = 2.4495 > 2. Le résultat de simulation est donné a la
figure 4.6 pour les deux ensembles utilisés Cy et S. On constate que 'utilisation de
I’ensemble S donne un résultat 1égérement moins bon, ce qui prouve que la distance
minimale /2 = 1.4142 compte plus que la distance maximale v/6 = 2.4495. On
retrouve le fait que le critére a utiliser est de maximiser la plus faible distance entre

2 matrices de 'ensemble considéré.
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Le critére basé sur le produit de diversité

Suivant ce critére on construit un sous-ensemble de matrices Sy qui a un produit
de diversité plus grand, de 0.5, valeur plus grande que la valeur 0.3826 utilisée pour
le schéma DUSTM [27]. On compare dans la Fig. 4.7 les courbes BER en fonction
du SNR pour le nouveau schéma utilisant les sous-ensembles de matrices Sy et Cj,
ainsi que le schéma DUSTM. Le meilleur résultat est obtenu avec le sous-ensemble
Sd. En effet, pour BER = 1073, le SNR du nouveau schéma réalisé avec le sous-
ensemble de matrices Sd est 2 dB plus faible par rapport au schéma USTM et 3 dB

plus faible par rapport au schéma DSTM utilisant le sous-ensemble Cj.

Efficacité spectrale R = 1 et 3 bit/s/Hz

R =1 bit/s/Hz

Dans ce cas, les vecteurs binaires ont seulement 2 bits et 4 matrices sont utilisées.
Selon le critére de distance, on utilise la matrice unitaire M, et la matrice opposée
M, = —Mj et on cherche on couple de matrices (M;,—M,;) qui, avec le couple
(Mo, —My) va donner les plus grandes distances. On constate que si la distance
D(My, My) > 2, alors D(My, M;) < 2. Par conséquent, on doit choisir la matrice M,
tel que D(My, M;) = 2 et D(My, M;) = 2. Selon la Tableau 4.1 on dispose de 102
matrices M; (51 couples) pour lesquelles on a D(My, M;) = D(My, M;) = 2. Avec
le deuxiéme critere, il est possible de sélectionner parmi ces 51 couples de matrices
ceux qui maximisent le produit de diversité. On trouve 10 couples qui donnent
avec (M, My) le produit de diversité maximum 1/2/2. Une solution possible est
Iensemble { My, My, Mg, My5}. Dans le Tableau 4.6 on indique la correspondance
«générale »ou «naturelle »entre les vecteurs binaires et les 4 matrices retenues mais
aussi la correspondance de type Gray. Les résultats de simulation donnés a la Fig.
4.8 montrent que la correspondance de type Gray permet d’obtenir un meilleur
résultat.

R =3 bit/s/Hz

Pour R — 3 bit/s/Hz, les vecteurs d’information ont 6 bits et on utilise 26 = 64

matrices. En utilisant les premiéres 64 matrices du groupe de Weyl, la simulation
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effectuée permet ’évaluation des performances de ce systéme.

Chapitre 5 Nouvelle DSTM avec 4 et 8 antennes
d’émission

Dans ce chapitre on étend les schémas obtenus dans le chapitre précédent aux
systemes MIMO avec 4 et 8 antennes d’émission. L’'idée est des générer des groupes
de matrices de taille 4 x4 et 8 x8 en effectuant des produits de Kronecker des matrices
de taille 2 x 2 du groupe de Weyl. Une fois ces groupes de matrices déterminés, la

démarche est similaire a celle utilisée dans le chapitre 4.

Systémes MIMO différentiels avec 4 antennes d’émission

Dans un premier temps on définit le produit de Kronecker de deux matrices
complexes de taille quelconque et on rappelle ses principales propriétés. On énonce
et on démontre 2 théorémes reliant la distance entre les matrices et le produit de
Kronecker. Le deuxiéme théoréme est d’une grande utilité. En effet, si dans le
groupe de Weyl on a identifié un sous-ensemble S,, de n matrices ayant le meilleur
spectre de distances, comme || M|| = /2 pour toute matrice du groupe de Weyl, on
en déduit aisément que le produit de Kronecker entre une matrice M quelconque de
G, et les matrices de S, va générer un ensemble >, de matrices de G4 ayant aussi le
meilleur spectre des distances. De méme, le produit de Kronecker entre une matrice
M quelconque de G,, et les matrices de ¥,, va générer un ensemble de matrices de
Gug ayant aussi le meilleur spectre des distances. Ainsi, 'identification des sous-
ensembles de matrices ayant le meilleur spectre des distances devient trés simple, le
travail effectué pour les meilleurs sous-ensembles de G, pouvant étre utilisé par la
suite.

Le produit de Kronecker entre les 192 matrices de G,, devrait donner 1922 ma-
trices de taille 4 x 4. En réalité, seulement K = 4608 matrices sont distinctes.
On en déduit que pour M = 4 antennes d’émission on a une efficacité spectrale de

maximum 3 bit/s/Hz.
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Efficacité spectrale R = 1 bit/s/Hz

2BM — 16 matrices distinctes. Comme dans Gw

Dans ce cas on doit disposer de
nous avons identifié Cy comme étant le sous-ensemble avec le meilleur spectre de
distances, le produit de Kronecker entre M, (matrice unité) et Cy permet d’obtenir
facilement un sous-ensemble Cyg de G4 ayant aussi le meilleur spectre de distances.
Grace au premier théoréme, le spectre des distances des matrices de Cyy s’obtient
facilement en multipliant par |M]|| = +/2 les distances entre les matrices de Cj
données au Tableau 4.3. Les résultats sont donnés au Tableau 5.1. Il est aussi
intéressant de remarquer que le produit de Kronecker conserve pour chaque antenne
d’émission la constellation utilisée par les systémes MIMO avec 2 antennes d’émission
: 4PSK U {0}. Comme pour les systémes & 2 antennes d’émission, en utilisant les
matrices du sous-ensemble Cyy, a chaque instant, seulement une antenne Tx va
émettre. Dans le tableau 5.2 on indique une correspondance «naturelle» entre les
16 vecteurs d’'information de 4 bits et les 16 matrices du groupe G,4. Avec cette
correspondance, le résultat de la simulation pour une antenne de réception donné a
la figure 5.1 montre que les performances du systéme sont moins bonnes que celles
des systémes DUSTM et DSTBC avec modulation BPSK. On étudie ensuite la
possibilité de déterminer le sous-ensemble de matrices de GG,4 en utilisant le critére

du produit de diversité. On arrive a ’ensemble Sy;,, indiqué par la relation:

Saiv =Mo @ { Mo, My, M3, M7, My, My3, Mg, Mia}

U My @ { M3, M7, Msy, Mg, My, Myg, Mys, My7}. (5.11)

1
Le produit de diversité pour cet ensemble est ¢ = %minogkklglﬁ |det(V, — Vi )| =

0.5946, Vi € Sgi. Le résultat de la simulation est indiqué dans la figure 5.2.

On constate que cette fois le schéma DSTM proposé permet d’obtenir de meilleures
performances par rapport aux schémas DSTBC [29] et DUSTM [27]. En effet, pour,

le schéma propose assure un BER = 1073,
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—<— DUSTM M4N1R1
—5— DSTM M4N1R1 Sdiv

—©— DSTBC M4N1R1 BPSK |3

BER

SNR (dB)

Figure 5.2 Comparison of DSTBC [29], DUSTM [27] and new DSTM scheme with
set Sgiy (M=4, N=1, R=1)

DSTM pour 4 antennes d’émission avec nouvelle correspondance

Comme pour les systémes a 2 antennes d’émission, il est possible d’optimiser la
correspondance entre les 16 vecteurs de 4 bits et les matrices d’information de taille
4 x 4 de Cyy. L’idée est la méme : aux vecteurs binaires séparés par la plus grande
distance de Hamming on met en correspondance les matrices séparées par la plus
grande distance Euclidienne, c’est-a-dire 4. Pour les vecteurs binaires séparés par
une distance de Hamming plus faible on met en correspondance les matrices séparées
par une plus faible distance Euclidienne, c¢’est-a-dire, c¢’est-a-dire 2v/2. Le résultat
de simulation donné a la figure 5.3 indique une légére amélioration des performances,

car seulement 2 distances Euclidiennes sont possibles pour les 16 matrices de Cyg.



23

DSTM pour 4 antennes d’émission et efficacité spectrale plus
grande (R = 2 et R = 3)

Pour R = 2 bit/s/Hz, les vecteurs d’information ont 8 bits, donc 2° = 256
matrices doivent étre utilisées. Le choix simple serait de sélectionner les premiéres
256 matrices de Gy.

Pour R = 3 bit/s/Hz, les vecteurs d’information ont 12 bits, donc 2'? = 4096
matrices doivent étre utilisées. Le choix simple serait de sélectionner dans ce cas les
premiéres 4096 matrices de G4.

Les performances des systéemes MIMO ainsi obtenus sont données dans la Figure
5.4.

Afin d’améliorer les performances des systémes congus pour R = 2 bit/s/Hz, on
utilise les deux critéres: distance Euclidienne et produit de diversité. Pour le premier
critére, on vérifie d’abord que la distance minimale qui sépare deux matrices de G4
est de 1.5307. On identifie ainsi ’ensemble S5 qui a 256 matrices et d,;, = 2. La
Figure 5.5 permet de remarquer ’amélioration des performances par rapport au cas
précédent qui utilisait 'ensemble S; de matrices. Par rapport au schéma DUSTM
[27|, le schéma proposé a aussi des performances meilleures.

Concernant le critére du produit de diversité, pour tous les ensembles de 256
matrices on obtient ce produit nul, donc il n’est pas possible d’utiliser ce critére.

Pour R = 3 bit/s/Hz, dans la référence [27| on ne peut pas trouver un schéma,

donc on n’a pas la possibilité de comparer les performances du systéme proposeé.

Systémes MIMO différentiels avec 8 antennes d’émission

Pour ces systémes a 8 antennes d’émission il faut d’abord créer le groupe de
matrices unitaires en effectuant le produit de Kronecker entre G, et GG,,4. On obtient
884736 matrices de taille 8 x 8 mais seulement 110592 matrices sont distinctes. On
obtient une efficacité spectrale maximale R,,,, = 2 bit/s/Hz.

Pour R = 0.5 bit/s/Hz on utilise 16 vecteurs de 4 bits, donc 16 matrices de
taille 8 x 8. Ces matrices sont des éléments de l'ensemble Sy = My x (Mg x Cp)

séparées par la plus grande distance minimale: d,,;,, = 4. Selon le critére de la
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distance Euclidienne, ’ensemble Spgg est optimal. Par contre, cet ensemble a le
produit de diversité nul. Pour améliorer encore les performances du systéme on
utilise Sgio = My X Sz, comme un nouveau ensemble de matrices qui a le produit de
diversité de 0.1487. Les résultats de simulation des systémes utilisant ces ensembles
de matrices sont donnés a la Figure 5.6. On constate I’amélioration des performances
du systéme lors de 'utilisation de 'ensemble Sgy;0.

Pour R — 1 bit/s/Hz on utilise des vecteurs de 8 bits, donc 256 matrices. Dans
un premier temps on utilise le sous-ensemble S,,8.14 = My x Si. Ensuite, afin
d’augmenter la plus faible valeur des distances séparant 2 matrices on utilise le
sous-ensemble S,,8.1, = My x Ss. Ces sous-ensembles ont d,,in = 2.1648, respec-
tivement 2.8284. Finalement, on identifie le sous-ensemble Sm8rlc de 256 matrices
avec dpin = 4.

Les résultats de simulation pour ces 3 cas sont représentés a la Figure 5.7.

Pour R = 1.5 bit/s/Hz on utilise les premiéres 4096 matrices de Coqp, tandis que
pour R — 2 bit/s/Hz on utilise les premiéres 65536 matrices de Gs. Les résultats

de simulation pour ces deux cas sont donnés a la Figure 5.8.

Chapitre 6 Nouveau modéle de canal pour modula-

tion temps-espace différentielle

Dans ce chapitre on propose un nouveau modéle de canal pour la simulation des
systémes MIMO proposés pour 2, 4 et 8 antennes d’émission.

En effet, dans la littérature, la simulation des systémes MIMO se fait souvent
|28, 106, 107| en utilisant des canaux de propagation supposés invariants dans le
temps pendant I’émission d’'un certain nombre L de symboles qui dépend du temps
de cohérence du canal, donc de sa vitesse de variation. Ceci revient a dire que
lors de I’émission de L symboles successives on utilise la méme matrice de canal.
Pour les L symboles successifs suivant on utilise une autre matrice de canal obtenue
par tirage aléatoire indépendant des tirages précédents. Bien que cette facon de

procéder soit simple, elle ne correspond pas a la réalité, car le canal varie dans le
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temps en permanence. En plus, pour les systémes différentiels, ce changement brutal
de la matrice de canal impose une réinitialisation du systéme, donc I’émission d’une
matrice de référence (la matrice identité de taille M x M). Cette réinitialisation ne

correspond non plus a la réalité.

Dans [26, 27| pour la simulation des performances des systémes MIMO considérés
on utilise le modeéle de Jakes. Ce modele considere les coefficients de la matrice de
canal indépendants spatialement mais corrélés dans le temps avec la fonction d’auto-
corrélation Jo (27 f4t), ou Jo(z) est la fonction de Bessel d’ordre zéro du premier
type et fy la fréquence Doppler maximale. Le modéle de Jakes considére la réponse
impulsionnelle d'un canal SISO comme une somme de sinusoides. C’est une version

simplifiée du modeéle de Clarke [108] utilisé pour la simulation d’un canal de Rayleigh.

Nouveau modéle de canal amélioré

Comme le modeéle de canal de Rayleigh constant pendant un intervalle de temps
déterminé par le temps de cohérence est trop simple pour étre réaliste, on préfére
s’approcher du cas réel en considérant que la matrice de canal peut étre différente
pour chaque matrice de transmission. Dans un premier temps on accepte que cette
matrice de canal reste constante pendant 1’émission d’une matrice de transmission
mais elle peut étre différente lors de I’émission de la matrice de transmission suivante.
Plus précisément, on utilise des matrices de canal Ry donc les coefficients sont des
variables de Rayleigh indépendantes. Sur ’axe du temps, I’écart entre deux matrices
successives Ry et Ry 1 est déterminé par le temps de cohérence du canal, donc par
sa vitesse de variation. Ces matrices peuvent étre considérées comme des échantillons
de la matrice du canal MIMO qui varie dans le temps. En respectant le théoréme
de I’échantillonnage, des valeurs intermédiaires de la matrice de canal peuvent étre
déterminées. Le nombre N,, des matrices de transmission de taille M x M émises

entre Ry et Ry .y doit vérifier I'inégalité

N, MT, <Tj
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ou M = nombre des antennes d’émission, T = durée d’un symbole émis et Ty = 1/ fo,
fo étant la fréquence d’échantillonnage qui doit vérifier la condition fy > 2f,;. La
premiére matrice de transmission sera affectée par la matrice de canal Ry, les autres
N,,—1 matrices de transmission seront affectées par les matrices intermédiaires H (i),
avec 1 < 7 < Npue — 1. Les matrices RK doivent se retrouver sur ’axe du temps
aussi bien avant et aprés les matrices de canal H(7) intermédiaires, placées entre Ry

et Rxy1, comme indiqué dans la Figure 6.4:

HD) HWN, -1

l

1 1 1 | | 1 1

Figure 6.4 : Illustration de 'interpolation des matrices de canal H (),
1 <4< Ny — 1.

Selon le théoréme d’échantillonnage, le nombre des matrices Ry a utiliser pour
le calcul des matrices de canal intermédiaires devrait étre infini. On doit donc
déterminer un nombre maximum Kmax et utiliser pour 'interpolation K,,,, matrices
Ry placées avant les matrices H (i) intermédiaires et K., matrices Ry placées apreés
les matrices H(i). Le nombre K., est déterminé pour avoir une erreur relative
acceptable. Pour une erreur relative maximale inférieure a 10%, on démontre qu'’il

suffit de prendre K,,,, = 30.

En effectuant la simulation des systemes MIMO différentiels avec 2, 4 et 8 an-
tennes d’émission pour une efficacité spectrale R = 2 bit/s/Hz, il est possible de
remarquer a la Figure 6.9 une dégradation supplémentaire des performances en util-

isant ce nouveau modéle de canal.

Il est aussi intéressant de remarquer que cette dégradation des performances est
accentuée pour les canaux de propagation variant rapidement dans le temps, donc
caractérisés par un temps de cohérence réduit. La Figure 6.10 permet de mettre en
évidence cette dégradation des performances pour différentes valeurs du temps de

cohérence normalisé.
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Modéle de canal MIMO A variation continue

Il est possible de s’approcher plus du cas réel si on considére des matrices de
canal différentes pour chaque colonne d’'une matrice de transmission. Le principe
d’interpolation reste le méme, sauf qu’il faut calculer séparément les colonnes de la
matrice regue et ensuite appliquer la méme méthode de détection. Dans ce cas, deux
matrices successives de canal sont séparées seulement par 75 et pas par M7Ts comme
c’était le cas avec le modele constant par bloc. Elles sont donc plus proches. Les
simulations effectuées avec ce nouveau modeéle de canal a variation continue sont
donnés dans la Figure 6.12 pour R — 1 bit/s/Hz et dans la Figure 6.13 pour R —
2 bit/s/Hz. On peut constater que les performances déterminées avec ce nouveau
modéle de canal sont presque aussi bonnes que celles obtenues avec le modéle simple
de canal constant par trame mais bien meilleurs par rapports aux performances des

mémes systémes déterminées avec le modéle de canal constant pas bloc.



Introduction

In this chapter, we present the motivations and main contributions of our re-
search. Wireless communication has experienced remarkable evolution since its ap-
pearance at the end of the 19th century. Especially from the 1970s when the cellular
systems were proposed and deployed, wireless and mobile communications under-
went explosive growth for the services of voice, data access to Internet, video and so
on. The ultimate goal of wireless communications is to communicate with anybody

from anywhere at anytime. Huge amounts of work need to do to reach this objective.

1.1 Brief history of the wireless and mobile commu-

nications

Telecommunication is communication at a distance by technological means, par-
ticularly through electrical signals or electromagnetic waves.

In the 18th and 19th centuries, more and more properties of electricity (especially
the relations between magnetism and electricity) were discovered. People begun to
consider transmitting information taking advantage of this new technique. Electrical
telegraphs were studied and applied at the beginning of the 19th century. In the
second half of the 19th century, telephone was invented and improved by several re-
searchers. With the theory of electromagnetic radiation formulated by James Clerk
Maxwell in 1865 [1], communicate through free space with electromagnetic waves

became possible. Heinrich Hertz verified and demonstrated the wireless propagation
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in 1880 and 1887 respectively. Guglielmo Marconi built the first complete, commer-
cially successful wireless telegraphy system based on radio transmission in 1894 2]
and patented a complete wireless system in 1897. During the following one hundred

years, wireless communication systems have experienced impressive developments.

The invention of the diode by John Ambrose Fleming in 1904 and the triode
by Lee de Forest in 1906 made possible rapid development of radio telephony. The
invention of the transistor in 1947 by Bardeen, Braittain and Shockley, which later
led to the development of integrated circuits, paved the way for miniaturisation of

electronic systems.

After years of research and experimental developments, the first analog cellular
system (which is called the ‘first generation’ of mobile communication systems)
was deployed by NTT (Nippon Telegraph and Telephone) in Tokyo in 1979. The
other well known cellular systems in this period are the Advanced Mobile Phone
System (AMPS) in North America and Nodic Mobile Telephone (NMT) in the Nodic
countries. These systems supplied mainly voice service and the quality was often
inconsistent with "cross-talk" between users being a common problem. The number

of subscribers of these systems was limited due to the technique and the cost.

During the 1980s, digital communication was widely researched and this new
technique resulted the ‘second generation’ (2G) mobile communication systems in
the 1990s. There were mainly two mobile communication systems in the global
market: Europe developed GSM (originally Groupe Spécial Mobile and later Global
System for Mobile Communications) standard and U.S.A. developed CDMA (Code-
Division Multiple Access) standard. The GSM standard was based on Time-Division
Multiple Access (TDMA). These systems differed from the previous generation by
using digital instead of analog transmission. The second generation introduced a new
variant of communication called SMS (Short Message Service) or text messaging.
The 2G systems also supplied circuit-switched data service such as email and other
data applications, initially at a modest peak data rate of 9.6 kbps. During the
second half of the 1990s, packet data over cellular systems became a reality with
General Packet Radio Services (GPRS) introduced in GSM. Although the data rate

was fairly low (56 - 114 kbps), there was a great potential for applications over
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packet data in mobile systems.

To meet the growing demand for data (such as email and access to browse the
internet), the industry began to work on the next generation of technology known
as 3G (the third generation), which supplies broadband services. Work on the third-
generation communication system started in I'TU (International Telecommunication
Union) under the label IMT-2000 [3] and now the main IMT-2000 recommendation
is ITU-R M.1457 [4]. In 1998, the Third Generation Partnership Project (3GPP)
was formed by standards-developing organizations from all regions of the world to
avoid parallel development. From then on, 3GPP has been playing a main role in the
standardization of the 3G cellular communication systems and the wireless networks
have experienced rapid evolution in terms of data rates. Meanwhile, the number of
mobile subscribers increased tremendously from 2000 to 2010 with the first billion
landmark in 2002 and the fifth billion in the middle of 2010. This growth has been

fueled by low-cost mobile phones and efficient network coverage and capacity.

By 2009, there was a trend that 3G networks would be overwhelmed by the
growth of bandwidth-intensive applications like streaming media. ITU proposed
the concept IMT-Advanced for mobile systems with capacity beyond IMT-2000 in
2008 [5]. The system aims to supply 100 Mbps for high and 1 Gbps for low mobility.
Two candidate proposals (LTE-Advanced from 3GPP and 802.16m from IEEE) were
submitted to [TU in 2009. The mainly used techniques are orthogonal frequency
division multiplex access (OFDMA) to improve the spectrum efficiency and multiple-
input multiple-output (MIMO) to enlarge the channel capacity. Here, the term
multiple-input multiple-output refers to the use of an array of antennas for both the
transmitter end and receiver end. The peak data rate of LTE-Advanced are 1 Gbps
and 500 Mbps for down-link (base station to user end) and up-link (user end to base
station) respectively.

Recently, researchers have been trying to study new technologies to fulfil the
demands of future wireless communications. For example, device-to-device commu-
nications [6], millimeter wave (mmWave) [7,8], massive MIMO 9, 10], etc.

The concept massive MIMO is originally developed by Marzetta [11]. The base

station end can be equipped with hundreds of antennas while the remote end which
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is limited in size and cost can be with only a single antenna. This scheme have some
extraordinary advantages compared with point-to-point MIMO systems. Under line-
of-sight propagation conditions (i.e., Rician channel), the multiplexing effect will
reduce dramatically in point-to-point MIMO systems while retained in the multiuser
MIMO systems [12]. As the number of antennas at the base station grows to infinity,
the effects of uncorrelated noise and small-scale fading can be ignored, the number
of users per cell are independent of the size of the cell, and the required transmitted
energy per bit vanishes. Furthermore, simple linear signal processing approaches can
be used in massive MIMO systems to achieve these advantages [10]. However, the
acquisition of channel state information and the phenomenon of pilot contamination

impose fundamental limitations on massive MIMO systems.

1.2 Objectives and motivations

The way to the ultimate goal of wireless communication is still long to run. The
bottlenecks are the data rate and robustness of wireless communication systems.
Multiple-antenna technique which can supply space diversity and multiplexing is
believed to be a necessity for the future wireless communication systems from its
appearance. On one hand, the theoretical capacity of MIMO system is attractive
[13-17]. However the methods/schemes to get this capacity are still under research,
due to the difficulties of application. On the other hand, diversity effect can be
obtained by multiple transmit antennas [18| and /or multiple receive antennas. Our
research focuses on the MIMO systems.

The channel capacity gain of multiple antennas techniques is due to the multi-
plexing effect while the space diversity can improve the robustness of communication
systems significantly. Basically, if the path gains between each transmit-receive an-
tenna pairs fade independently, the channel matrix will have full rank with high
probability, in which case multiple parallel spatial channels are created. By trans-
mitting independent information streams in parallel through the spatial channels,
the data rate can be increased. This effect is called spatial multiplexing [19]. In

another way, with high non-correlation between the paths of each transmit-receive
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pairs, the probability of all paths suffering deep fading simultaneously will be ex-
tremely low. The error performance of the system can be improved with all the
transmit antennas sending the same signal and each receive antenna receive mul-
tiple copies of the signal simultaneously. This technique is called space diversity.

There is a tradeoff between multiplexing and diversity [20].

Generally, MIMO systems can be divided into two types according to whether
the receiver needs the precise channel state information (CSI). The first one is repre-
sented by the coherent MIMO systems which need to estimate the CSI at the receive
side. References [13], [14] analyzed the capacity and the error performance of such
systems with Gaussian noise. Several coding schemes have been proposed based on
this assumption such as space-time block codes (STBC) [18, 21|, space-time trellis
codes (STTC) [22], Bell Labs layered space-time codes (BLAST) [23], etc.

Actually, the CSI is often obtained by training. Known signals are periodically
transmitted to the receiver in order to estimate the channel coefficients. However,
when many antennas are used or when the propagation channel changes rapidly,
the training based scheme doesn’t work effectively. For MIMO systems, the number
of channel coefficients to be estimated is equal to the product of the number of
transmit antennas by the number of receive antennas. In addition, given the number
of transmit antennas, the number of receive antennas and the coherence time, the
minimum length of the training symbols that guarantees meaningful estimates of
the channel matrix is increasing with the number of transmit antennas |24, which
results in the reduction of the overall system throughput. Therefore, MIMO systems
that do not require to estimate the channel coefficients are very attractive in such

cases, especially when the number of transmit and receive antennas is very large.

In [25], Marzetta and Hochwald analyzed the capacity of the MIMO systems
without CSI. They found that the rows of transmission matrices (the symbol vec-
tors of each transmit antenna) should be orthogonal to each other to achieve capac-
ity. They called the code scheme with such particular structure unitary space-time
modulation (USTM) [26]. In succession, Hochwald and Sweldens proposed the differ-
ential unitary space-time modulation (DUSTM) scheme [27]. There are no general

systematic design criteria for these two schemes, i.e., their schemes are not opti-
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mal. Meanwhile, based on Alamouti’s transmit diversity scheme [18], Tarokh and
Jafarkhani proposed a differential space-time block coding (DSTBC) scheme [28] for
MIMO systems with 2 transmit antennas and expanded this scheme to systems with
4 transmit antennas in [29]. The demodulation of this scheme has a linear struc-
ture which leads the complexity quite low. However, the spectral efficiency of this
scheme for 4 transmit antennas is limited to 1 bps/Hz and it is difficult to expand to
MIMO systems with more transmit antennas while maintaining the low complexity
of demodulation.

In [30,31], El Arab et al. proposed a new space-time scheme for 2x2 MIMO
systems in which channel error-correcting code and space-time code are combined
and can be used in coherent and non-coherent MIMO systems. This technique
is called "Matrix Coded Modulation" (MCM). The information bits are coded by
error-correcting code which generates a stream of codewords. Each codeword of
this scheme maps to a pair of transmitted matrices selected from the Weyl group.
The pair of matrices have a specific relation which can avoid the computing of the
channel matrix. Furthermore, if convolutional codes are used, the channel matrix
can be estimated by iteration. However, this technique was considered only for
MIMO systems with 2 transmit antennas.

In addition, in our research group of IETR in INSA-Rennes, we have studied the
Space-Time Trellis Codes (STTC) schemes used for MIMO systems with CSI [32-43].
Based on this discussion, we focus on researching MIMO systems with large number
of transmit antennas without the channel state information and differential schemes

are the main considerations.

1.3 Overview of the thesis

This thesis focuses on the design of differential space-time modulation schemes
for MIMO systems. The main contributions of this thesis can be summarized as

follows:

1. Based on the Weyl group, we design a new differential space-time modulation

scheme which could be expanded to MIMO systems with 2" transmit anten-
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nas. We consider MIMO systems with 2, 4 and 8 transmit antennas in our
documents. For MIMO systems with 4 and 8 transmit antennas, the groups
of unitary matrices are obtained by the Kronecker product of matrices of the
Weyl group.

2. The performance of this new scheme can be improved by selecting the trans-
mission set of matrices separated by the greatest distances. In fact, maximizing

the minimum distance of the matrices can be seen as a design criterion.

3. Optional mapping between the sets of transmitted matrices and the informa-

tion vectors is also a design criterion.

4. A new channel model which is suitable for differential space-time modulation
scheme is also proposed. Conventionally, the channel coefficients are supposed
to be constant during a fixed time interval. However, this situation does not
correspond to the real world where Doppler effect makes the channel change
continuously. Therefore, a channel model based on the Nyquist sampling the-
ory is proposed and evaluated. Simulation results show the reasonableness of

this new model.

1.4 The structure and outline

The contents of the thesis are structured as 6 parts:

— Chapter 1 here is the introduction of our document, which gives the motivation
and main contributions of our research.

— Chapter 2 gives the general wireless communication model, followed by the
research backgrounds of MIMO systems and fundamental MIMO theories in-
cluding capacity and error performance of space-time codes.

— Some existing non-coherent space-time coding schemes, i.e., unitary space-time
modulation (USTM), differential unitary space-time modulation (DUSTM),
differential space-time block codes (DSTBC) and matrix-coded modulation
(MCM) are presented in Chapter 3.

— In Chapter 4, we propose our new differential space-time modulation scheme

which can be used for MIMO systems with 2 transmit antennas.
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— We expand our designed DSTM scheme to MIMO systems with 4 and 8 trans-
mit antennas in Chapter 5.

— In order to better simulate our proposed scheme, we design a new time selective
channel model in Chapter 6. We evaluate the performance and the robustness
of DSTM schemes with 2, 4 and 8 transmit antennas over this time selective
channel.

— Finally, Chapter 7 concludes this document.

1.5 List of published papers
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— Hui Ji, Gheorghe Zaharia and Jean-Francois Hélard, "A New Differential
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tennas", the 20th International Conference on Telecommunications (ICT 2013),
Casablanca, Maroc, 6-8 May 2013.

— Hui Ji, Gheorghe Zaharia and Jean-Francois Hélard, "A New Differential
Space-Time Modulation Scheme based on Weyl Group", the 11-th Interna-
tional Symposium on Signals, Circuits and Systems (ISSCS 2013), Iasi, Ro-
mania, 11-12 July 2013.

— Hui Ji, Gheorghe Zaharia and Jean-Francois Hélard, "A new DSTM scheme
based on Weyl group for MIMO systems with 2, 4 and 8 transmit antennas",
VTC 2014 Spring, Seoul, South Korea, 18-21 May 2014.

— Hui Ji, Gheorghe Zaharia and Jean-Francois Hélard, "Performance of DSTM
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MIMO Systems in Continuously Changing Rayleigh Channel", the 12-th In-
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Romania, 8-10 July 2015.
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In this chapter, we present the background of MIMO communication systems.
First, the general wireless communication model and MIMO system model are pre-
sented. Second, we briefly present the research history of modern MIMO systems.
Third, the channel capacities of coherent and noncoherent MIMO systems are ex-
amined respectively. The capacity of coherent MIMO systems has been studied ma-
turely while it is difficult to get the capacity of noncoherent MIMO systems. Finally,
the error performance of space-time codes are studied for coherent and noncoherent

MIMO systems and some design criteria are represented.

2.1 General model of a wireless communication sys-

tem

Typically, a simplified point-to-point digital communication system can be re-
presented as shown in Fig. 2.1. The sequence of source bits b; are grouped into
sequential vectors of m bits, and each binary vector is mapped onto one of 2™
baseband signals u;(t) (i = 0,1,...,2™ — 1) according to some modulation scheme
(e.g. QPSK). The waveform of u(t) can be a rectangular pulse shape or a raised
cosine pulse |44]. u(t) is then converted to passband signal z(¢) which has a bandpass
spectrum that is concentrated at & f. where f. is selected so that x(t) will propagate

across the communication channel.

The transmitted and received signals of digital communication system with one
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Figure 2.1: A general point-to-point communication system model.

transmit antenna and one receive antenna have the relation as follows:

y(t) = g(t, 7) x x(t) + w(t)
= i g(t, T)x(t — 7)dT + w(t) (2.1)

r(t) + w(t).

where x(t) is the transmitted signal, g(¢, 7) is the channel impulse response, * denotes
convolution, w(t) is the additive white Gaussian noise and y(t) is the signal detected
by the receiver. y(t) is then demodulated to baseband signal @ (¢) and sampled to
get z(T). The detector converts z(7T) to a constellation point and then maps the
point onto the corresponding binary vector.

The instantaneous power of an electrical signal with voltage v(t) or current i(t)

across a resistor R is define by

p(t) = =i*(t)R. (2.2)

In communication systems, power is often normalized by assuming R to be 1 €.

Regardless of whether the signal z(¢) is a voltage or current waveform, we express
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the instantaneous power as:

p(t) = z*(t). (2.3)

The energy dissipated by the signal z(¢) during the infinite time interval (—oo, c0)
is:

E, = lim |x(t)|2dt:/oo |lz(t)[2dt, (2.4)

T—oo [_p

—00
and the average power is:

1" )
Px_Tlg%Oﬁ/_Tu(m dt. (2.5)

For a communication system, people mainly concern its capacity or data rate and
robustness (the probability of making an error). Capacity is an intrinsic property of
a channel and the robustness is determined by the coding scheme of a system. The
aim of the development of modern communication systems is to make the data rate

approach the capacity with less error probability and less transmit power.

2.1.1 Baseband representation of bandpass signals

In fact, the transmitted signal z(¢) is a real-valued continuous-time function. It
is known that the Fourier transform X (f) of a real-valued signal z(¢) has conjugate
symmetry, i.e. X(—f) = X*(f). The transmitted bandpass signal z(¢) can be

written as:

x(t) = A(t) cos(2m fot + ¢ (1))
= A(t) cos ¢(t) cos(2m f.t) — A(t) sin ¢(t) sin (27 f.t) (2.6)

= x7(t) cos(2m fet) — xg(t) sin(27 fet),

where A(t) is the amplitude, f. is the carrier frequency and ¢(t¢) is the phase.
xr(t) = A(t) cos ¢(t) is called the in-phase part of the transmitted signal and z¢(t) =
A(t) sin ¢(t) is called the quadrature-phase part of z(¢). In fact, the useful informa-
tion is contained in A(t) or ¢(t). Therefore, for simplicity, we model the bandpass
signal z(t) into a complex baseband representation w(¢). Normally, the bandwidth

B of x(t) is much smaller than the carrier frequency f.. This assumption is reason-
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able while the carrier frequency of modern communication systems is of the order

of magnitude GHz and the signal bandwidth is up to hundreds of MHz.

The baseband representation u(t) only contains the useful part A(t) and ¢(t),

and it is written as a complex function called the complex envelope of z(t):

ult) = A(t)(cos p(t) + jsin o(t)) = w1(t) + jzg(t) = A(t)e’*?, (2.7)
where j = /—1.

In another way, the complex envelope can be expressed as below:
ult) = [x(t) + ja(t)]e 7>, (2.8)

where #(t) = L «(t) is the Hilbert transform of the signal z(¢). When A(t) has no
frequency content above the carrier frequency f., by Bedrosian’s theorem [45] the

Hilbert transform of x(t) can be written as:
2(t) = A(t) sin(2m fot + ¢(t)) = 21 (t) sin(2m fot) + x(t) cos(2m fet). (2.9)

Introducing this relation to (2.8), we can get the same result as (2.7). In this way,

the transmitted signal has the form:

z(t) =R {u(t)eﬂ”fct} : (2.10)

Using properties of the Fourier transform we can show that

X(f) = 51U~ )+ U~ £} (2.11)

The spectrum of an arbitrary bandpass signal and the spectrum of its baseband

representation are shown in Fig. 2.2.

It is easy to show that the average power of the transmitted signal x(t) is P, =

P,/2. Thus, to keep the power of u(t) the same as that of z(t), the factor 1/v/2 is
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added to u(t) which results:

u(t) = %A(t) [cos 6(t) + jsin 6(t)] = %[ﬁ(t) Fino),  (212)
and (2.8) becomes:
w(t) = —=[a(t) + j(t))e 7>, (2.13)

V2

In digital computer simulations of bandpass signals, the sampling rate used in the
simulation can be minimized by working with the complex envelope, u(t), instead
of with the bandpass signal, z(t), because u(t) is the baseband equivalent of the

bandpass signal.

£-B/2 -f. -f+B/2 f-B/2 £ f+B/2

Vv
\

-B/2 B2

(b)

Figure 2.2: Spectrum of (a) bandpass and (b) complex baseband representation of
the same signal.
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2.1.2 Vector space representations

As mentioned before, u(t) is a complex-enveloped baseband waveform selected
from a finite set of M = 2™ finite energy waveforms {ug(t), ..., up—1(t)}. We now

examine vector space in order to represent and analyse signals.

An N-dimensional complex vector space is defined by the set of complex or-

thonormal basis functions {¢o(t), ¢1(t), ..., on_1(t)}, where

/_ " bit)6 (tdt = 6, (2.14)

and

0, otherwise.

All of the vectors in the N-dimensional vector space can be written as a linear
combination of the basis functions. For example, the baseband waveforms u;(t) can

be written as:

N-1
wit) =Y 85, 0a(t), i=0,..,M—1, (2.16)
n=0

where

[e.e]

Therefor, the baseband signal u;(¢) can be represented by a complex vector
S, = (SiO,SZ‘l,...,SZ’Nil), ZZO,,M— 1, (218)

and this vector is called the signal constellation point corresponding to the signal
u;(t). There is a one-to-one correspondence between the transmitted signal w;(t)
and its constellation point s;.

We can see that the energy of the signal w;(¢) in (2.16) is:

.

where we used the orthonormal property of the basis function in (2.14) and|[s;||* =

= sill?, (2.19)

N-1 2 N-1
Z Szn¢n(t) dt = Z |Sin
n=0 n=0
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ZnNz_Ol s? is the squared Euclidean norm of the vector s;. Note that the squared
norm of the vector s; have the dimension of an energy.

For example, with quadrature phase-shift-keying (QPSK), the constellation is
shown in Fig. 2.3. The signal constellation is a plot of the permitted values for the
complex envelope u(t) and each constellation point is called a symbol. Each symbol

is transmitted in a time duration T,. The QPSK waveforms that are transmitted at

each symbol time duration have complex envelopes

where s; is the constellation point of QPSK and ¢ () is the baseband pulse-shaping
filter which satisfies (2.14).

The complex envelope of the QPSK signal is

ui(t) = R{sito(t) + j3{si}do(t) = %[éﬂz(t) +Jrot)], (2.21)

where z;(t) = £V2E¢(t) and zg(t) = £V2E¢y(t). The pulse modulator reads in
two bits of data at a time from the serial binary input stream, and maps the first of

the two bits to x;(t) and the second bit to z¢(?).

2.1.3 Channel model

For the modelization of the channel parameters of g(¢, 7) [46-49|, there are many
different methods. In wireless communication systems, the impulse response of a
SISO channel g(t,7) is caused by path loss, shadowing and multipath. The path
loss and shadowing determine the large-scale fading, while the multipath effect de-
termines the small-scale fading. In our study, we do not take into account the
large-scale fading while just the small-scale multipath fading is considered.

If the transmitter sends a pulse, a series of pulses with different amplitudes and
time delays will be received at the receiver. The first received pulse corresponds to
the LOS (line of sight) component (if there is) and the other pulses correspond to a

large number of reflectors.
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Figure 2.3: QPSK signal constellation.

An important characteristic of a multipath channel is the time delay spread that
causes to the received signal. This delay spread (T;) equals the time delay between
the arrival of the first received signal component (LOS or multipath) and the last
received signal component associated with a single transmitted pulse. The inverse
of the root mean square (RMS) delay spread 7rass is an estimation of the coherence
bandwidth (B.) of the channel. For example, a typical delay spread is 5 us (5x 1076
s) in cellular urban environments. If the delay spread is far less than the inverse of
the signal bandwidth B, the time delay spread have little influence to the received
signal, and we call this kind of channel flat fading channel. The channel impulse
response ¢(¢,7) can be simplified to be g(t) and y(t) = g(¢)x(t) + w(t).

However, when the delay spread is relatively large, there is significant time
spreading of the received signal which can lead to substantial signal distortion. Un-
der this condition, the received signal taking into account the multipath propagation
is [50]:

y(t) = /OO x(t — 7)g(t, 7)dr + w(t), (2.22)
0

where ¢(t,7) is the impulse response of the time-variant channel which can be in-
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terpreted as the channel response at time ¢ due to an impulse applied at time ¢t — 7.
Since a physical channel cannot have an output before an input applied, therefore
g(t,7) = 0 for 7 < 0. This kind of channel is called frequency selective fading

channel.

Normally, for mobile communication systems, the channel is time-varying due to
the movement of the transmitter or receiver. Furthermore, the locations of reflectors
in the transmission path, which give rise to multipath, also change over time. Thus,
if we repeatedly transmit pulses from a moving transmitter, we will observe changes
in the amplitudes, delays, and the number of multipath components corresponding
to each transmitted pulse. These changes will cause another important characteristic

of wireless channel — the Doppler shift.

The maximum Doppler shift is also called Doppler spread which is defined as
fa= %, where V' is the relative velocity between the transmitter and receiver, and
A is the signal wavelength. The coherence time T, which means during this time
interval the channel characteristics do not change significantly corresponds to the

Doppler spread. Clearly, a slow-changing channel has a large coherence time.

There is no exact relationship between coherence time and Doppler spread. A

9

popular definition of T¢ is: Tc = | /157
d

= 0;}% [48]. In practice, for simplicity,
people usually use it as T, ~ 0.5/ f;. We define L equal to the normalized coherence
time T./Ts, where Ty is the symbol duration. For example, with velocity V = 120
km/h, and carrier frequency f = 900 MHz, the Doppler spread is approximately
100 Hz and the coherence time is approximately 5 ms. For a symbol rate of 30
kHz, during the transmission of L = 150 symbols, the channel can be considered
quasi time-invariant. For high speed vehicular V' = 350 km/h channels [5|, and
carrier frequency f = 1.8 GHz, the Doppler spread is approximately 583 Hz and the
coherence time is approximately 0.7 ms. For a symbol rate of 30 kHz, during the

transmission of L = 21 symbols, the channel can be considered quasi time-invariant.

With these conditions, consider a general time-variant channel, the received sig-



46 Chapter 2. MIMO systems

nal can be written as follows:
y(t) = r(t) +w(t)

Np
— % {Z Oénu(t _ Tn)ej[27r(fc+fd,n)(t_7'n)] } + U)(t) (223)

n=1
Np
=R { [Z e IO Wy (t — Tn)] ejzwfct} +w(t),
n=1

where NV, is the number of multipath, 0 < «,, < 1 is the attenuation of the nth path,
the length of each path component is [, and 7, = [,,/c is the corresponding delay,
fan = facost, is Doppler frequency shift, 0, is the angle of incidence between the
nth plane wave with the speed vector of the mobile, «,, is amplitude based on the

path loss and shadowing and ¢,(t) = 27 fo7, + 27 fu0 (7 — 1).

As mentioned before, for flat fading channel or narrowband channel, the delay
spread is far less than the inverse of the signal bandwidth B, i.e. T; < B~!. The
symbol duration is far greater than the delay spread which means that u(t — 7,,) ~

u(t),Vn. The received signal can be rewritten as:

y(t) =R {u(t)eﬂ“fct (Z ane_j¢"(t)) } + w(t)

= R {h(t)u(t)e’>™ '} + w(t).

(2.24)

If the transmitted signal is an unmodulated constant signal (which means quite
narrow, in fact it is a 0 function, in frequency domain), i.e. z(t) = R {1 X ejzwfct},

the received signal becomes:

y(t) =R {ejz’rfct <Z ane_jd’"(t)) } + w(t)

= r(t) cos2m fot + ro(t) sin 2w ft + w(t),

(2.25)

where

ri(t) = Zan cos ¢n(t), (2.26)
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ro(t) = ansin gy (t), (2.27)

and

Gn(t) = 27 feTo + 27 fun(Tn — ). (2.28)

We assume that the number of path is large and there is not a LOS component, if «,
and ¢, (t) are stationary and ergodic, according to the Central Limit Theorem, r;(t)
and rg(t) are jointly Gaussian random processes. With the reasonable assumption
that ¢,(t) is uniformly distributed on [—m, 7|, we can see that the expectation of
rr(t) is 0. Similarly, E[rg(¢)] = 0. The variance of r;(¢) and rg(t) are also the same:
02 =05 Ela2]. Therefore the variance of r(t) = r;(t) cos 2m f.t + ro(t) sin 27 f.t
is E[r?(t)] = 02 = 0.5, E[a2]. The autocorrelation of r(t) is

R.(1) =E[r(t)r(t + 7)]
= E[r;(t)r1(t + 7)] cos(2m feT) — [rq(t)r (t + 7)] sin(27 fe7) (2.29)

= R, (1) cos(27m feT) — Ryor, (7) sin(27 f.7),

where

In fact

R, (1) = E[r;(t)r;(t + 7)] = 02Ky, [cOs 27 1 nT]

(2.30)
= 0°Eyg|cos 277 f, cos b).
Similarly, the cross-correlation R, is
Ry = 02 Fg[sin 277 ;4 cos 0]. (2.31)

Assume that the 2-D plane waves arrive at the mobile from all directions with equal
probability, i.e., p(f) = 1/(27), 0 € [—m,w]. With 2-D isotropic scattering and an
isotropic receiver antenna with gain G(6) = 1, the expectation in (2.30) and (2.31)
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become
R, (1) = o? /7r cos(27T fq cos0)p(0)G(6)db
= 03% /0 ' cos(277 f, cos 0)d6. (2.32)
= 02 Jo(2m f7)
and
Ry pro(T) =0} /7r sin(277 fqcos 0)p(0)G(6)db = 0, (2.33)

where Jy(z) is the zero-order Bessel function of the first kind. Therefore the auto-

correlation of the received signal r(t) is
R.(7) = E[r(t)r(t + 7)] = 02 cos(2m f.7) Jo (27 faT). (2.34)
The autocorrelation of the received complex envelope h(t) = r(t) + jro(t) is

Ru(t) = E[R*(t)h(t + 7)] = 2[R, (T) + j Ry 0o (T)] = 202 Jo (27 fa7). (2.35)

For any two independent Gaussian random variables X and Y, both with mean
zero and equal variance, it is shown that Z = v/ X2 + Y? is Rayleigh-distributed.
Thus the received signal envelope z(t) = |h(t)] = /r7(t) +r5(t) is Rayleigh-
distributed with distribution:

pz(z) = %exp[—% /(202)], 2 > 0. (2.36)

z

The average received signal power is P, = E[|h|?] = Y E[a2] = 202. In our research,
we assume that P, = E[|h|?] = > E[a?] = 1, which means that the average received
signal power is equal to the transmitted signal power. Thus |r/(t)| and |rg(t)| are
N(0,0.5) distributed respectively, where A(u, 0%) denotes the Gaussian distribution
with expectation p and variance o2. This narrowband Rayleigh channel model is
used through our research. For wide-band channels, OFDM technique is supposed

to be used and the sub-channel is considered to be narrowband.
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However, if there is a LOS path between the transmitter and the receiver, the
distribution of the envelope of the received signal becomes Rician:

24 D2 D
ps(2) = % exp <_L) I (U—f) ,2>0,D>0, (2.37)

2
202 2

where D is the peak amplitude of the LOS signal and Iy(-) is the modified zero-
order Bessel function of the first kind. Obviously, the Ricean distribution converges
to Rayleigh distribution when the LOS signal disappears, i.e. D = 0, as expected.

In our study, we don’t consider this situation.

The additive noise w(t) is modeled as zero-mean Gaussian wide-sense stationary
random process. A Gaussian process w(t) is a random function whose value w at
any arbitrary time t is statistically characterized by the Gaussian probability density

function:

1 1 7w\?2
plw) = —— exp [—5 () } | (2.38)
where o2 is the variance of w.

The power spectral density is P,(f) = No/2 (W/Hz) for all f, where the factor
of 2 indicates that P,(f) is a two-sided power spectral density. When the noise
has such a uniform spectral density we refer to it as white noise. Furthermore, the
noise is assumed to be ergodic in the mean and the autocorrelation function. The
autocorrelation function of the noise is given by the inverse Fourier transform of the

noise power spectral density, denoted as follows:

T/2
Ru(7) =Efuw(t)w(t +7)] = Jim 1/T / w(tyw(t +7)dt
. 12 (2.39)
=P, = o).

The average power P, of white noise is infinite because its bandwidth is infinite:

P —E [w2(t)] = R,(0) = /_OO %df = 0. (2.40)

[e.e]

However, in practice, the signal we deal with is bandpass and thus the corre-

sponding noise is seen as bandpass noise with bandwidth B (B << f, as before).
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Figure 2.4: Power spectral density of AWGN. (a) The original AWGN. (b) Bandpass
AWGN. (c) Baseband representation of bandpass AWGN.

The power spectral density of bandpass AWGN w(t) is nonzero only in the pass-
band, as shown in Fig. 2.4. Generally the system is analyzed in equivalent complex

baseband. In this case, the baseband representation n(t) and w(t) have the relation:
w(t) = R{n(t)e>™ "} = w;(t) cos 27 fut — we(t) sin 27 f.t, (2.41)

where n(t) = —|w;(t) + jwg(t)]. To obtain the power spectrum B,(f) of n(t),

V(@)

we need to analyse the corresponding autocorrelation function R,(7) which is the

Fourier transform of P, (f). The autocorrelation function of w;(t) and wg(t) is given
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by [51]
Ry, (1) = Elwr(t)wi(t + 7)) = Ry (1) cos(2m fe1) + wa(T) sin(27 f,7) (2.42)

Ry (7) = Elwg(t)wo(t + 7)] = Ry(7) cos(2m f.7) + wa(T) sin(27 f,7) (2.43)

Taking Fourier transform of both sides of (2.42), the power spectral density for wy(t)

and wg(t) is obtained as:

Po(f+ fo) + Pu(f = fo), |fI< fe No, |fl < B/2
Py, (f) = Pug(f) = _
0, otherwise. 0, otherwise.
(2.44)

The cross-spectral density of w;(t) and wg(t) is given by

.Pw c _Pw — Jc)ls = Jc
B et TV

0, otherwise

Under this condition, Ry, = 0, implying that w;(t) and wq(t) are uncorrelated.
Further, because w(t) is Gaussian, w;(t) and wg(t) are independent processes. The

autocorrelation function of n(t) is

R”(T) = E[n* (t)n(t + 7—)] = ij (T) - RwQ (T)
= o Noe?? I df = Nosm—(BW)_ (2.46)
—B/2 T

Thus n(t) is a complex AWGN random process with real and imaginary parts inde-

pendent, the power spectral density is

No, < B/2
Pu(f) = JI=b (2.47)

0, otherwise.
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In this case,the variance (i.e. power) of n(t) is:

0® = E{[n(t) — En(t)]"[n(t) — En(t)]}] = E[|n(t)[*]

o (2.48)
=m@=/ Po(f)df = NoB.

—00

Now, we analyze the vector space representation of the additive white Gaussian
noise. When the bandwidth B of the signals is high enough, the autocorrelation

function of the noise in (2.46) can be seen as
R, (1) = 6(T). (2.49)

With this assumption and the same basis function used in (2.16) and (2.17), we get

the noise vector

n-= (’)’LQ,?’Ll,...,TLN_l), (250)
where
n; = / n(t)¢; (t)dt, i=0,..,N—1. (2.51)
It is clear that
E[n;] =0, (2.52)
and

Thus, the elements of the noise vector are identically independent Gaussian dis-
tributed with mean zero and variance o> = N,. The probability density function
of complex n; is given by:

1

) = —e Il 2.54
p(ni) = —e : (2.54)

and the probability density function of the noise vector n is given by:

p(n) = (10?)~N exp {—“:2“} . (2.55)

We say the elements of the noise vector are circularly symmetric and n; ~ CN(0, 0?),

n ~ CN(0,0%Iy). Appendix A gives more details of Gaussian random variables,
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vectors and matrices.

2.2 Brief presentation of the history of MIMO sys-

tems

It is accepted that modern electrical information theory is established by Shannon
in the famous paper [52] in 1948, where the information was quantized and analyzed
in strict mathematics and channel capacity for single-antenna system was defined.
Multiple antennas are originally called antenna arrays which are mainly used in the
fields of sonar [53|, radar [54], and seismic |55] signal processing. The concept of
multiple-input and multiple-output (MIMO) was raised in 1970s, which was used
for multipair telephone cable or multiple-terminal systems to mitigate inter-symbol

interference or inter-channel interference, such as [56-60).

With the first generation of mobile communication systems entered the com-
mercial market around the 1980s, where multiple antennas can be installed at the
base station, the concept of adaptive antennas which had been successfully used in
radar technology was introduced to cellular systems [61]. Adaptive antennas are
used to obtain space diversity [62] in cellular systems. Antennas arrays at the base
station provide receive diversity to combat the effect of multipath fading [63,64] and
later transmit diversity technique was studied [65,66]. Meanwhile, the beamforming
technique was brought in [67,68|.

Winters analysed the channel capacity of MIMO systems in 1987 [69] and get
some interesting results. However, with the limitations of the capability of compu-

tation, MIMO systems didn’t attract much attention until the late 1990s.

In 1995 and 1996, Telatar [13] and Foschini [14] evaluated the channel capacity
and error performance of multiple-antenna wireless communication systems with the
assumption that the channel coefficients are perfectly estimated in the receiver end.
They found that the channel capacity increases almost linearly with the minimum
of the number of transmit antennas and the number of receive antennas. Foschini

indicated that, at a 12-dB SNR (signal-to-noise power ratio) and with the numbers of
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antenna elements 8 or 12, capacity about 21 and 32 bps/Hz is available respectively
[23]. This result displayed the great advantage of multiple-antenna systems and

ignited magnificent interest in this division.

From then on, much work has been done on generalizing and improving their
results on the capacity of MIMO systems. First, more realistic channel models are
considered. For example, instead of assuming that the channels have rich scattering,
so that the propagation coefficients between transmit and receive antennas are in-
dependent, it was assumed that correlation can exist between the channels [70-72].
The cochannel interference is also considered in [73|. Moreover, the line of sight
(LOS) component which makes the channel to be Rician is also considered in [12,74].
Second, with the background of cellular systems, the capacity of multi-user MIMO
systems is studied [75-77|. And third, recently, theoretic capacity results with very
low SNR have been obtained due to the research of green systems which consume

much less power |78-80.

These results indicate that multiple-antenna systems have much higher Shannon
capacity than single-antenna ones. However, since Shannon capacity can only be
achieved by codes with unbounded complexity and delay, the above results do not
reflect the performance of real transmission systems. A possible method is proposed
by Foschini in 1996 [23] which is later called BLAST (Bell Labs layered space-
time) [81,82]. Although the throughput is pretty high, this scheme does not use
transmit diversity and the error performance without using error correcting codes
is not sufficient to apply. The schemes that can improve the error performance of

BLAST have been widely studied since then [83-86].

The techniques that exploit the space diversity at the transmitter end are widely
investigated since 1998 when Alamouti presented his initiative work in [18]. Later,
Tarokh et al. expanded the transmit diversity scheme to MIMO systems with any
number of transmit antennas and named this kind of coding as space-time block
codes (STBC) [21]. Since then, the coding techniques which are appropriate to
multiple transmit antennas are called space-time coding. Space-time coding is a
method used in multiple antenna systems to not only increase the reliability of

the communication link, but also increase their throughput. This is accomplished
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by encoding multiple streams of data across the spatial domain (i.e., antennas) and
across the time domain. Tarokh et al. derived the design criteria of space-time codes
in the sense of minimizing the upper bound of average probability of error in [22]
and proposed a code scheme using the so called space-time trellis code (STTC). The
number of states in the trellis codes grows exponentially with either the rate or the
number of transmit antennas which limit it to expand to MIMO systems with large
number of transmit or receive antennas. Alamouti’s scheme is also called orthogonal
space-time block code (O-STBC) due to the structure of the transmission matrix
and can achieve full rate and full diversity gain for two transmit antennas. However,
when the number of the antenna exceeds 2, the system cannot achieve full rate with
this structure. Jafarkhani proposed QO-STBC (quasi-orthogonal space-time block
code) scheme [87| to achieve full rate with the sacrificing of the maximum diversity
gain. A lot of other improved space-time block codes are proposed such as (linear
dispersion) LD-STBC 88|, STBC from division algebras [89], the so-called perfect
STBC |90| and so on.

The above systems are also called point-to-point MIMO systems because two
devices with multiple antennas communicate with each other. In wireless or cellu-
lar systems, it is difficult to install multiple antennas at the user device due to the
size, cost or hardware limitations, which can not sufficiently exert the advantages
of MIMO techniques. Thus, Sendonaris et al. proposed a new cooperative commu-
nication scheme |91, 92| for cellular systems where the in-cell users can share their
antennas. Extensive work have been done in this background [93-97|. This kind of
scheme is also called virtual or distributed MIMO. Recently, Marzetta proposed a
noncooperative large-scale antenna systems or so called Massive MIMO systems |11|
where the base station is equipped with hundreds of antennas while the remote end
which is limited in size and cost can have only one antenna. This scheme have
some extraordinary advantages compared with point-to-point MIMO systems. Un-
der line-of-sight propagation conditions (i.e., Rician channel), the multiplexing effect
will reduce dramatically in point-to-point MIMO systems while retained in the mul-
tiuser MIMO systems [12]. As the number of antennas at the base station grows

to infinity, the effects of uncorrelated noise and small-scale fading can be ignored,
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the number of users per cell are independent of the size of the cell, and the required
transmitted energy per bit vanishes. Furthermore, simple linear signal processing

approaches can be used in massive MIMO systems to achieve these advantages [10].

While massive MIMO renders many traditional research problems irrelevant, it
uncovers entirely new problems that urgently need attention: the challenge of making
many low-cost low-precision components that work effectively together, acquisition
and synchronization for newly joined terminals, the exploitation of extra degrees of
freedom provided by the excess of service antennas, reducing internal power con-
sumption to achieve total energy efficiency reduction, and finding new deployment

scenarios |9)].

However, all of the above systems require the receiver or transmitter end have
perfect estimation of the channel coefficients. The CSI is difficult to obtain when
the number of antennas is large. In fact, the number of channel coefficients to
be estimated by the receiver is equal to the product of the number of transmit
antennas by the number of receive antennas. In massive MIMO systems, there
are hundreds of antennas at the base station and tens of subscribers, which makes
the estimation of channel coefficients complicated. Furthermore, the length of the
training sequences is proportional to the number of transmit antennas 24|, which
reduces the overall system throughput. When the channel state changes rapidly, the
estimation of channel coefficients is even not achievable before they change to other
values. Since outdoor wireless systems strive to accommodate higher user mobility
and indoor wireless communication systems such as BlueTooth rely on frequency
hopping spread spectrum technology, these issues necessitate further research into
MIMO systems in the absence of CSI. Therefore, MIMO systems that do not need

CSI are attractive.

Marzetta and Hochwald analysed the channel capacity of MIMO systems without
perfect channel coefficients in [25]. In fact, they assumed that the channel distri-
bution information (CDI) is known by both the transmitter and the receiver, the
channel mean is zero and the channel coefficient of each pair of transmit antenna
and receive antenna are assumed to be i.i.d. random variables. This kind of channel

model in |25] is called zero-mean spatially white (ZMSW) channel in [75]. Under
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the zero-mean spatially white (ZMSW) model, the channel mean is zero and the
channel covariance is modeled as white, i.e., the channel elements are assumed to be
i.i.d. random variables. They found that, under this channel assumption, in order to
achieve the channel capacity, the transmission symbol vectors of different antennas
should be orthogonal to each other. There is no help for increasing the channel ca-
pacity to install more transmit antennas than the normalized coherence time. Zheng
and Tse also analysed the channel capacity for ZMSW channel in [98]. They showed
that at high SNRs capacity is achieved using no more than M* = min{M, N, |T'/2]},
where M, N and T are the number of transmitter antennas, the number of receiver
antennas and the normalized coherence time respectively. Lapidoth and Moser indi-
cated that at high SNR without the block fading assumption, the channel capacity
grows only double-logarithmically with the SNR, [99]. Jafar and Goldsmith made an
extended assumption of the ZMSW model, they considered that the channel coeffi-
cients were spatially correlated and the correlations between the channel coefficients
are assumed to be known at the transmitter and the receiver. They indicated that
channel capacity increases surely with the number of transmit antennas when the

transmit antenna fades are spatially correlated [100].

Based on the analysis of channel capacity with ZMSW model, Hochwald and
Marzetta introduced the unitary space-time modulation (USTM) scheme which
does not need CSI in [26]. However, the problem of how to design constellations
systematically that have low probability of error and low demodulation complexity
remains open. Hochwald et al. proposed a possible systematic design based on dis-
crete Fourier transform (DFT) in [101] and provided some transmission schemes for
M =1,2,3 transmitter antennas and data rate R = 1 bps/Hz. This scheme requires
a complicated brute force maximum-likelihood (ML) decoder at the receiver, making
it difficult to implement for large constellation sizes. Tarokh et al. designed specific
unitary space-time constellations that are simple to decode in [102], however the
error performance is worse than [101]. Leus et al. proposed a space-time frequency-
shift keying (ST-FSK) scheme in [103] based on the orthogonal design in 21| and this
scheme is easier to design compared to [101] while they have a comparable perfor-

mance. Kim et al. designed a novel class of unitary space-time constellations in [104]
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based on the quaternary quasi-orthogonal sequence (QOS) [105] which is used for
designing the Walsh sequences in code-division multiple-access (CDMA) systems.
This scheme has less decode complexity than ST-FSK [103] and has slightly better
error performance.

Another class of space-time code/modulation schemes that do not need CSI
are differential schemes. Hochwald and Sweldens presented the differential unitary
space-time modulation (DUSTM) scheme [27] which is directly designed from the
USTM scheme. Tarokh and Jafarkhani proposed the differential space-time block
coding (DSTBC) scheme |28, 29| based on Alamouti’s transmit diversity scheme
[18]. Hughes introduced a differential space-time modulation in |[106] where the
information matrices are selected from a group designed from phase-shift keying
(PSK) signals.

In [30,31], the authors invented a new kind of non-coherent space-time modula-
tion scheme-matrix coded modulation (MCM) based on Weyl group for 2x2 MIMO
systems. This scheme combines the error-correcting coding and space-time signal

design together.

2.3 MIMO system model

In our study, we express signals in signal space, i.e., signals are represented
by complex symbols. We consider narrowband MIMO systems with M transmit
antennas and N receive antennas. At a general time ¢, the antenna n detects the

symbol:

M
yn:Zhnmxm+wn,n:1,...,N (2.56)
m=1

where h,,, is the path gain of the quasi-static channel from the transmit antenna m to
the receive antenna n. The channel coefficients h,,,, are independent and identically
distributed (iid), they are Gaussian distributed, i.e., hy,, ~ CN(0,1). For a narrow-
band MIMO channel, corresponding to low data rate wireless systems |107] or for
each sub-channel of OFDM (Orthogonal Frequency Division Multiplexing) MIMO

systems [108|, the frequency response of the propagation channel can be considered
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Figure 2.5: A general MIMO system model.
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constant within the frequency bandwidth of the system, i.e., the channel is frequency
non-selective or flat fading. Therefore, the coefficients h,,, of the channel matrix
are usually considered constant over the frequency bandwidth but time-variant due
to Doppler shift. x,, is the symbol transmitted from antenna m at time ¢. w,, is the
additive white Gaussian noise at the receive antenna n at time ¢, w, ~ CN(0,0?)
and o2 is also the power of the noise. This system model is shown in Fig. 2.5.

If we define the vector of the transmitted signals as x = [z, 7,..., 7|7, the
vector of the received signals as y = [y, ¥, ..., yn]?, the vector of noises as w =

[wy, w3, ..., wy]T and the channel matrix as:

hll h12 Tt th
h21 h'22 e h2M

H = , (2.57)
th hN2 Tt hNM

the system equation can be written in vector form as

y=Hx+w. (2.58)
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Moreover, if the coherence time 7T, is much greater than the symbol period T}
(i.e., the Doppler shift effect can be ignored during the transmission of L = T,/T;
symbols), we can use the matrix form to analyze a MIMO system. Therefore, the

system can be expressed in matrix form as:
Y=HX+W (2.59)

where Y is the N x T received matrix, 1" denotes the number of symbols of each
matrix for each transmit antenna and 7' < L. H is the channel matrix and its size
is N x M asin (2.57). X is the M x T transmission matrix and W is the N x T
additive white Gaussian noise matrix.

Furthermore, the expectation of the total power over M transmit antennas at

each transmit time is set to be 1:

M
> Ellzml]=Lt=1,... T (2.60)

m=1
As analysed before, the squared discrete symbols have the dimension of an energy.
Therefore, people usually indicate the above equation as power constraint conven-

tionally.

For each receive antenna, the SNR is defined as follows:

| B[ o]

EHynt - wnt|2
SNR = =
El[unel?] E [wrel?] 26
M 2 M 2
2_:11@ thmxmt‘ ] Z_:lE met‘ ] 1

where E[-] denotes the mathematical expectation.

2.4 Fundamentals of information theory

In this section, the terms concerning the channel capacity are shown. They are

entropy and mutual information.
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The entropy of H(x) of a continuous random variable z is defined as [109]:

H(z) = —/p(x) log p(z)dz, (2.62)

where p(z) is the probability density function of z. We can see that this parameter
measures the uncertainty of a random variable. The entropy of a typical circu-
larly symmetric complex Gaussian random vector z ~ CN (u, Q) with mean u and
covariance @) is:

H(z) = E[—log p(z)] = log det(meQ) (2.63)

The joint entropy H(x,y) of a pair of continuous random variables (x, y) is defined

as:

. / / p(z, y) log p(z, y)dady, (2.64)

where p(x,y) is the joint probability density function of x and y.

The conditional entropy #H(y|z) is defined as:

H(ylz) = // ,y) log p(y|z)dxzdy, (2.65)

where p(y|z) is the probability density function of y conditioned on x.

The mutual information Z(z,y) between two continuous random variables is

I(z;y) // () log - )]’)())da:dy

= H(x) - <x|y> (2.66)

= H(y) — H(y|z).

given by:

The capacity of a noisy channel is defined as the maximum mutual information

of input x and output y over all possible values of input distribution p(x):

C' = maxZ(x;y). (2.67)

p(z)

For example, consider the communication system with one transmit antenna and
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one receive antenna in the presence of AWGN narrowband fading channel y = hz+n.
Assume that the fading coefficient h is constant (non-fading Gaussian channel), the
capacity of is given by [52]:

C = maxZ(x;y) = max H(y) — H(y|z)

p(x) p(z)

(2.68)
= maxH(y) — H(n),

p(z)

From (2.63), we can get H(n) = log(reo?). To maximize Z(z;y), we should maxi-
mize H(y). It is proved that [52] for a continuous distributed random variable, the
Gaussian distribution with mean zero maximize the entropy. Thus E [y] = 0 which

indicates E [z] = 0 and the variance of y
E [y?] = E [(hz +n)?] = h°E [2?] +E [n?] = h>P + 0, (2.69)

where P is the average power constraint on the transmitted signal and with our power
constraint (2.60), it is P = 1. Thus the maximized entropy H(y) = log[re(h* +o?)].

Finally, we get the channel capacity of SISO system:
C=1 h? + o)) —1 %) =log (1 i 2.70
= log[me(h” 4 07)] — log(mec) =log | 1 + pel R (2.70)

When the fading coefficient h is a random variable, then the capacity above becomes

o = fle (1] o

2.5 Capacity of MIMO communication channels

The channel capacity of multiple-antenna communication systems is analyzed
by many researchers [13,14,25|. The theoretical results show that the communica-
tion systems with multiple antennas can enlarge the channel capacity significantly
compared to SISO systems.

Generally, people call the capacity obtained with the assumption of perfect

knowledge of fading coefficients H at the receiver end as the coherent capacity of
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the multiple-antenna channel, while the channel capacity obtained with no prior

knowledge of H is called non-coherent capacity [98].

2.5.1 H i1s known to the receiver

Like the procedure to get the channel capacity of SISO system in (2.71), the
channel capacity for MIMO system is given by [13,25]:

C=maxZ(X;Y)
p(X)

~T.E [log det (I ]\/[102 )} (2.72)

=T -E |logdet(I HH™)|.

[Og € ( N+ Mo2 ):|
Here we use the matrix form of the MIMO system as in (2.59). This capacity is
achieved with transmitted signal matrix X whose elements are independent and
CN(0,1) distributed. This means that the transmit power is divided equally among
all the transmit antennas and independent symbols are sent over different antennas.

In |13], Telatar evaluated the expectation in the equation (2.72). The capacity

is obtained as:

oo [Tunlies

where K = min{M, N}, J = max{M, N} and L’ are the associated Laguerre poly-

)Z ]Hf ol (LKA KeMan (2.73)

nomials:

1 o d"”
Li(x) = —e®x™" d

Fig. 2.6 and Fig. 2.7 show that for fixed SNR, the coherent capacity increases

almost linearly with K, i.e., the minimum of M and N.

2.5.2 H i1s unknown to the receiver

When both transmitter and receiver haven’t the channel coefficients matrix H,

Marzetta and Hochwald evaluated the channel capacity in [25] with the assumption
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Figure 2.6: The normalized capacity C'/T with independent Rayleigh fading, H is
known to the receiver. The SNR is fixed to 0, 10, 20 and 30 dB respectively.

that the elements of H are zero-mean spatially white (ZMSW). Zheng and Tse also
analysed the channel capacity under this kind of channel model in [98| and got some

useful results for special cases.

Lapidoth and Moser indicated that at high SNR, without the block fading as-
sumption, the channel capacity grows only double-logarithmically with the SNR, [99],
which makes communication at high SNR power inefficient. Jafar and Goldsmith
made an extended assumption of the ZMSW model. They considered that the chan-
nel coefficients were spatially correlated and the correlations between the channel
coefficients are assumed to be known at the transmitter and the receiver. They indi-
cated that channel capacity increases surely with the number of transmit antennas

when the transmit antenna fades are spatially correlated [100].

We know that the mutual information between the transmitted matrix (X) and
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Figure 2.7: The normalized capacity C'/T with independent Rayleigh fading, H is
known to the receiver. The numbers of transmit antennas and receive antennas are
fixed to 1, 2, 4 and 8 respectively.

the received matrix (Y = HX + W) is:

) = o PXY)
I(X;Y) = / / p(X, V)1 800 X)p(y)dXdY

_ p(Y[X)
—//p(Y|X)p(X)log oY) dXdy.

(2.75)

We now examine the properties of the function p(Y'|X). With the assumption that
the channel coefficients are independent identically distributed: h,, ~ CN(0,1)
and the additive white Gaussian noise obeys: w,; ~ CN(0,0?), the probability
distribution function (PDF) of the received matrix ¥ conditioned on the transmit

matrix X is also Gaussian. We have

E[Y|X] = E[HX + W|X] =0, (2.76)
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and

EYHY|X] =EXPHYEX + WHW |X] = XP X + 0?1 (2.77)

Thus the PDF of Y conditioned on X can be written as:

p(Y[X) = exp{—Tr[A'YHY]}, (2.78)

7N det™ (A)

where A = X% X +02[7. It is clear that for any M x M unitary matrix ®, p(Y[®X) =

p(Y]X). In mathematics, a complex square matrix ® is unitary if
PP = ool =T,

where I is the identity matrix and ®¥ is the conjugate transpose of ®.

Marzetta and Hochwald proved [25] that for any 7" and any number of receiver
antennas N, the capacity obtained with M > T transmitter antennas is the same
as the capacity obtained with M = T transmitter antennas.

They also proved that the signal matrix that achieves capacity can be written as
X =VVU, where V is an M x T real diagonal matrix and W is an 7' x T" isotropically
distributed unitary matrix. Moreover, ¥ and V are independent of each other.

An usotropically distributed unitary matrix has a probability density that is un-

changed when the matrix is multiplied by any deterministic unitary matrix. We

denote the M real diagonal elements of V' as vy,..., vy, and it is proved that
T
E[vZ] = —. 2.
3] = 1 (2.79)

We rewrite the signal matrix in an equivalent form, that is:

X = Ae. (2.80)

where A is an M x M diagonal matrix with the M diagonal elements a; = vy, ..., ay =
vy and O is an M xT matrix with the M row vectors equal to the first M row vectors
of the matrix W. The row vectors of © are orthogonal to each other (0" = I,).

The ith row 0; of © represents the direction of the transmitted signal from antenna
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i, i.e., 0; = x;/||z;||. The ith diagonal entry of A, a; = ||z;||, represents the norm of

that signal.

Marzetta and Hochwald obtained a lower bound of the channel capacity as T —
oo with a; = -++ = ayy = /T /M. The exact noncoherent channel capacity seems

unattainable by now.

Zheng and Tse [98| gave some results with special cases. They showed that
at high SNRs capacity is achieved using no more than M* = min{M, N, |T/2|}
transmit antennas. They also indicated that for large MIMO systems, where both
M = N and T increase to infinity and M /T is fixed, the channel capacity increases
linearly with the number of antennas M. However, for noncoherent channel at high
SNR, having more transmit antennas than receive antennas takes no benefit to the

channel capacity.

2.6 Error performance of MIMO systems

In communication systems, the error occurs when the receiver recovers a signal

that is not sent by the transmitter.

The pair-wise error probability (PEP) conditioned on H is the probability that
the decoder selects the estimated matrix X as the transmitted matrix while in fact
the transmitted matrix is X. We examine the PEP performances of MIMO systems

and hereby get some design criteria for space-time codes.

2.6.1 H is known to the receiver

With the assumption that the elements of the noise matrix W are independent
identically Gaussian distributed, i.e. w,; ~ CN (0, Ny), when the channel coefficients

are correctly estimated by the receiver, the maximum likelihood detection is:

X = argn;(inD(Y, HX)), (2.81)
l
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where D(Y, HX;) is the distance between the received matrix ¥ and HX;. The

distance between two matrices A and B is defined as follows:
D(A,B) =[A-B|, (2.82)
and ||| denotes the Frobinius norm of a matrix, i.e.,

1Al =, /Z jag|* = V/Tr {AFA} = /Tr {AATT}. (2.83)

If the transmitted matrix is X, the pair-wise error occurs when:

D(Y,HX) > D(Y,HX), (2.84)

where X is any other possible transmission matrix.
When the receiver estimates the channel state information perfectly, the PEP of

this case can be written as [22,110]:

P(X,X|H)=Q (, /%D(XH, XH)) : (2.85)
0
where

1 o
Qx) = EL e dy, (2.86)

and Ny is the complex noise variance. The signal-to-noise power ratio (SNR) is
v = 1/Ny in this case.

We can see that ) function is a monotonically decreasing function, thus, to make
the pair-wise error probability as less as possible, we should make D as larger as

possible. The () function has an upper bound:

e2 x>0, (2.87)

which is shown in Fig. 2.8. This upper bound is the Chernoff bound of the tail of
Gaussian PDF [49].
Obviously, ﬁD(XH, XH) > 0, therefore, the upper bound of the pairwise
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Figure 2.8: The upper bound of Q function.

error probability is:

A 1 1 A
P(X,X|H) < —exp |-——D*(XH,XH)|. (2.88)
2 4Ny

Now we analyse the inequality above and get some design criteria for space-time
codes. Define A(X,X) = (X — X)(X — X)”. We can see that Tr{A(X,X)} =
D%*(X,X). The eigenvalues of A(X,X) are denoted by A\, m = 1,2,..., M and
A1 > A2 > ... > Ay > 0. Using the singular value decomposition (SVD) theorem,
we have

AX,X) = VAV, (2.89)

where A = diag(A1, \g, ..., A\ys) and V' is a unitary matrix. Therefore

D*(XH,XH) = Tr{HA(X, X)H"} = Te{ HVAVH H"}. (2.90)
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Denote the (n, m)th element of HV as f,,,, then

N M
D*(XH,XH) =Y AulBuml” (2.91)
n=1m=1
Attention that u
D’(X,X) =) An. (2.92)
m=1

As B,m is a linear combination of Gaussian random variables, it is also Gaussian

distributed and its magnitude |5,,,| is Rayleigh distributed:

p(IBaml) = 2[Bnm] exp(—|6nm|2). (2.93)

The expected value of PEP can then be evaluated as:

M
P(X,X) =E[P(X, X)[H] < [J1+ (vAn/9)]" (2.94)
m=1
If the matrix A(X, X) has rank r < M, i.e., \,y1 = ... = A\jyy = 0, then, at high

SNR, the above inequality can be written as:
P(X,X) < 7mNgrN H AN (2.95)

where the component 1 in (2.94) is neglected due to high SNR. We know that the

diversity gain is defined as:

log(P.)

Ca=— . log(y)

(2.96)

Thus the diversity gain of space-time code is rN. Therefore, a good design criterion
to guarantee full diversity is to make sure that for all possible codewords X; and Xj,
i # j, the matrix A(X;, X;) has full rank M, i.e., (X; — X;) has full rank Vi, j with
i F# .

If the space-time code has full diversity gain M N, next we should maximize the

minimum value of Hi‘;‘;l Am in (2.95) which is the determinant of A(X;, X;). This
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criterion set is referred to as rank & determinant criterion.
Furthermore, as mentioned before, the transmitted signals have a power con-
straint (2.60). Therefore, we have:

E|X|*=E

D [tmel”

m,t

=T. (2.97)

For simplicity, as a special case, we set || X || = 7. In this case D*(X, X) < (|| X| +
X)) = 4T, ie., M N\, <AT. In fact, if X = —X, D*(X, X) = 4T.

The design criteria for other channel models such as Rician channels and rapid
fading channels can be found in [22]. The exact value of P(X,X) is also evaluated
in [26,111-113].

In order to better understand the pair-wise error probability of coherent space-
time codes, we show some Chernoff bounds (2.94) for special cases in Fig. 2.9 and
Fig. 2.10.

Fig. 2.9 is obtained with A = A\; = ... = A\jy = 1 and 1 receive antenna. The num-
ber of transmit antennas is 2, 4 and 8 respectively. This figure shows that increase
the number of transmit antennas can significantly improve the PEP performance.
Fig. 2.10 shows the PEP as a function of A (A = Ay = ... = Ay/). It is obtained with
4 transmit antennas and 1 receive antenna, and SNR = 0, 10, 20 dB respectively.
This figure show that, increase the distance between any pair of the transmission
matrices can also improve the PEP performance especially for large SNR which leads

people to design good space-time codes.

2.6.2 H i1s unknown to the receiver

If H is unknown to the receiver, the maximum likelihood detector has to select

the matrix that maximizes the conditioned probability:

exp{—Tr[A"Y Y]}
7N detV(A)

X = argmax p(Y'| X)) = arg max (2.98)
Xl Xl

where A = X X, + o%I7.

In this case (without CSI), the transmitted matrices have specific structure, as
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Figure 2.9: The Chernoff bound of PEP of coherent space-time codes. Number of
transmit antennas M = 2,4, 8 respectively and the number of receive antenna is 1.
Am=1,m=1,., M.

discussed in Section 2.5.2. The transmission matrix can be written as X = AO.
Marzetta and Hochwald [25,26] proved that when the duration of the coherence
interval is significantly greater than the number of transmit antennas (7" > M)
or SNR is high and T" > M, setting a; = ... = ay = \/W attains capacity.
Thus, we fix the transmission matrix as X = \/W © and this kind of scheme
is called unitary space-time modulation (USTM) in [26] because the rows of O are

orthonormal, i.e., OO = I);. With this structure, the detector in (2.98) becomes:

exp{—Tr[A"'YHY]}

, 2.99
77N det™ (A) (2:99)

O = argmax p(Y|0;) = arg max
@l el

where A = XX, + 0?Iy = O[O, + 0*Ir = 0*(520' 0, + Ir). With the matrix
formulas

det(I + AB) = det(I + BA)
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Figure 2.10: The Chernoff bound of PEP for coherent space-time codes. Number of
transmit antennas M = 4 and number of receive antenna is 1.

and

(A+ BCD) ' =A"1'—A'B(C™' + DA™'B)"'DA™?,
(2.99) can be further simplified as:

H
exp{~Tr[& (Ir — i) YV}

TTNG2NT[] + T /(Mo?)|NT (2.100)

O, = argmax p(Y|0,;) = arg max
6y 6y

= argmax Tr[y e/ e,y
1

Now we examine the pair-wise error probability when the transmitter sends ©; and

the receiver detected ©, incorrectly. We denote the probability as:
P(04,0,) = P{Tx[Y (00, — 670,)Y"] > 06, } . (2.101)

Hochwald and Marzetta gave an exact expression of PEP with the help of char-
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acteristic function and Chernoff upper bound is given by:

(2.102)

><1—d2>] -
o

| M

P(61,02) < 5 H1 [
where 1 > dy > ... > dj; > 0 are the singular values of the M x M matrix @1(951.
0,0 can be seen as the correlation between the matrices ©; and ©,. The less
correlation between ©; and ©,, the better the MIMO system performs. Obviously,
when ©,04 = 0, i.e., di = ... = dyy = 0, the Chernoff bound is minimized. It
seems that we should make the transmission matrices ©; orthogonal to each other.
However, as T' is limited, the number of vectors that are orthogonal to each other
in the 7" dimension vector space is limited to 7, which in turn makes the number of
matrices that are orthogonal to each other limited to |7//M |. Nevertheless, it is still

a criterion to make the correlation of each pair of the matrices as small as possible.

Furthermore, when the SNR is pretty high, i.e., 0> < 1, the Chernoff bound can

be written as:

Peven <y () TLO-@)7, (210)

m=1

which is similar to (2.95). The exact pair-wise error probability of USTM is also
studied in [114].

Fig. 2.11 displays the Chernoff bound of PEP (2.102) as a function of SNR for
different numbers of transmit antennas. This figure is obtained with d; = ... =
dy = 0.8, T"= 2M and 1 receive antenna. The number of transmit antennas are
M = 2, 4 and 8 respectively. We can see that with these values of d,,,, noncoherent
space-time codes have comparable PEP performance as coherent space-time codes.
However, the time duration of the transmission matrices in this figure is 7' = 2M,
which reduces the overall throughput of the systems. Fig. 2.12 shows the Chernoff
bound of PEP (2.102) as a function of d for different values of SNR. The number of
transmit antennas is 4 and the number of receive antennas is 1. The time duration
of each transmission matrix is 7' = 2M = 8. We can see that reducing d below 0.4

approximately does not reduce the error by much.
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Figure 2.11: The Chernoff bound of PEP of noncoherent space-time codes. Number
of transmit antennas M = 2,4, 8 respectively and the number of receive antenna is
1. d,, =0.8.

2.7 Conclusion

In this chapter, we presented the general model of modern wireless digital com-
munication systems which includes the baseband representation of bandpass signals
and further the vector space representation of signals. The channel model was also
presented in this section. The history of MIMO communication systems were briefly
reviewed. MIMO systems have been widely studied from the late 1990s. Space-time
coding or modulation schemes for point-to-point MIMO systems are studied to en-
large the spectrum efficiency and to improve the communication robust. Recently,
multi-user MIMO systems have been analyzed to further improve the spectrum effi-
ciency. Then, we gave the MIMO system model which was used through our research.
Finally, the channel capacities of MIMO systems with or without CSI were analyzed

and the error performance of MIMO systems were also examined.
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Figure 2.12: The Chernoff bound of PEP for noncoherent space-time codes. Number
of transmit antennas M = 4 and number of receive antenna is 1 N = 1. SNR = 0,
10, 20 dB respectively.



Non-coherent space-time coding

In this chapter, we present some existing non-coherent space-time coding schemes.
A non coherent communication system is a communication system where Channel
State Information (CSI) is not known at the receiver end.

Some well-known space-time coding schemes are unitary space-time modulation
(USTM) scheme [25,26], differential unitary space-time modulation (DUSTM) [27],
differential space-time block coding (DSTBC) [28,29], differential space-time modu-
lation (DSTM) [106] and matrix coded modulation (MCM) [30,31]. In fact, the basic
idea behind DSTM and DUSTM is the same. Therefore, without special statement,
DSTM and DUSTM are equivalents. The transmit and receive principles of each

scheme are presented briefly.

3.1 Unitary space-time modulation

During the analysis of the capacity of MIMO systems without CSI [25]|, Marzetta
and Hochwald found that the transmitted matrices must have special structure to
achieve the capacity. They called the MIMO schemes with this special structure uni-
tary space-time modulation (USTM) [26]. The structure of this scheme is obtained
in Chapter 2, Section 2.5.2.

3.1.1 Transmission scheme

Hochwald and Marzetta proved the transmission matrix has the structure X =

AO where A is an M x M diagonal matrix and © is an M X T matrix. The row
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vectors of © are orthogonal one to each other (0 = I);). When the duration of the
normalized coherence interval is significantly greater than the number of transmitter
antennas (7" > M) or for any fixed T" > M as p — o0, setting a1 = ag = -+ =
ay = \/% attains capacity. In this case, the transmit matrix becomes X = \/%@
and © is an M x T isotropically distributed matrix. Furthermore, in this scheme,
setting ' = M results XX = ©76© = I,;. The conditional probability will be
p(Y|X) = p(Y), which leads the mutual information Z(X;Y) to be zero and the

channel capacity is zero.

The information matrix is selected by a bit stream with RM bits from a set
containing K = 2ME matrices, i.e., © € {04, ..., O}, where R is spectral efficiency

with unit bps/Hz or bits/(channel use).

3.1.2 Detection scheme and design criteria of USTM constel-

lations

At the receiver end, Y = H X+W of dimension N x T is detected by the antennas.
As presented in Chapter 2, Section 2.6.2, the maximum likelihood detector of this
scheme must to determine the matrix that maximizes the conditional probability.

That is

@m = ar max Y|©
l % oreionn, @K}p( 19:) (3.1)

=ar max Tr[yeZe,yH].
® orc(Ornor) YO 0¥

With this ML detector, the pairwise error probability (PEP) between © and ©),

is:

1
P =3P (Tl 050, Y "] > Try 6/, "]|6))

+ %P (Tr[ye/e,Y"] > Tr[yo 0. Y"]|ey),

where ©; and O are assumed to be transmitted with equal probability.
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It is proved that the Chernoff upper bound of the above PEP is 26, 106|:

—-N

M T \2 2
1 (5752)" (1 = djr 1)
Po<c [ |1+ e ’ , .
= L ) 83)

where dygr 1, . . ., dggr s are singular values of ©,01.

To minimize the pairwise error probability, we should make the singular values
of the products ©,0% as small as possible. The probability of error (and Chernoff
bound) is lowest when dgx 1 = -+ = dgw s = 0 and highest when dypy = -+ =
diw s = 1. As analyzed in Sec. 2.6.2, dipn = -+ = dpw . = 0 indicates that
0,0 = 0. However, as T is limited, the number of vectors that are orthogonal to
each other in the 7" dimension vector space is limited to 7', which in turn makes the

number of matrices that are orthogonal to each other limited to |T/M |.

There are mainly two different criteria for designing USTM constellations. The
first one is to minimize the maximum sum of squares of the singular values. For a

given constellation, we define

1 H
0= 1§£2%?{§K VM 19xOk [ = 13122%21{

1 M
37 2 B (3.4)
m=1

where the factor ﬁ is used to ensure 0 < 9 < 1. Then the design of USTM

constellations is to find K matrices that minimize 6.

The second design criterion is obtained directly from the Chernoff upper bound
of PEP(3.3). For high SNR, i.e., 0> < 1, the Chernoff upper bound depends mainly

on the product
M

H (1 - dik’,m)'

m=1
As shown in [115|, we can think of djy ,, as the cosine of the principal angle ¢
between the subspaces spanned by the columns of ©, and ©,.. The above expression
can therefore be interpreted as the product of the squares of the sines of the m

principal angles. To obtain a quantity that can be compared for different M, we
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define (i as the geometric mean of the sines of the principal angles

M /M M 77
Crir = [H Sin(cbkkf,m)] - [H (1— dzk’,m)] : (3.5)

m=1

Because 0 < dik,’m <1, we have 0 < (v < 1, and if ( is large, the PEP is small.
Thus, we need to maximize the diversity product defined as

1<k<k'<K

In particular, any constellation with nonzero diversity product is said to have full

transmitter diversity. For small dys/ ,,

Thus, (? ~ 1 — 62 and small § implies large C.

However, there is no special way to minimize these singular values dy ,,,, and the
properties of a good signal constellation are not obvious. Hochwald and Marzetta
analyzed the special case where M =1, R=1,T=5and M =2, R=1,T =5
in |26]. However the transmission matrices are not given in the paper. In [101], a
Fourier-based construction is proposed. This scheme is easy to realize, but it is not
proved whether it is optimal. A USTM scheme via Cayley transform is presented
in [116].

3.2 Differential unitary space-time modulation

Motivated by differential phase-shift keying (DPSK) scheme and based on uni-
tary space-time modulation, Hochwald and Sweldens proposed Differential Unitary

Space-Time Modulation (DUSTM) in [27|.
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3.2.1 Classical differential phase-shift keying

DPSK [46,49] is a technique used for single antenna communication system where
the receiver end does not need to estimate the carrier phase. PSK modulation
requires coherent demodulation, i.e., the phase of the receiver must match to the
phase of the transmitted carrier. Techniques for phase recovery typically require
more complexity and cost in the receiver and they are also susceptible to phase drift

of the carrier.

DPSK is traditionally used when the channel changes the phase of the symbol
in an unknown, but consistent or slowly varying way. The data information is sent
in the difference of the phases of two consecutive symbols. For a date rate of R
bits/(channel use) (R € N), the transmitted signal is selected from a constellation

containing K = 2% signals. Normally, the constellation is:
A= {2 =0,1,... 2% —1}. (3.8)

In differential modulation scheme, we must transmit a reference signal first, for
example, ro = 1. Suppose we want to send R bits and they are mapped to a symbol
@; in the constellation. By differential transmission, the transmitted signal should
be:

T =0, t=1,2,... (3.9)

At the receiver end, the detected signals will be:
yt:hta?t+wt, t:O,l,Q,..., (310)

where h; is the fading coefficient which varies slowly with ¢ and w; is the additive
white Gaussian noise. The symbol ¢, carries information and we use differential

detection to recover the information bits. The signal received at time ¢ + 1 is:

Yir1 = M1 Teg1 + W1 = 1010 + Wigr. (3.11)

With the approximation h;; ~ h;, and the relation (3.10), the above equation can
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be further simplified as:
Y1 = Pry1¥e + (Wep1 — @ep1W0y). (3.12)

Thus, the maximum likelihood demodulation is:

Pre1 = arg min Y1 — PrYe- (3.13)
Differentially encoded PSK can be demodulated coherently or noncoherently.
Moreover, the noncoherent receiver has a simple form and performs within 3 dB of

the coherent receiver on Rayleigh fading channels

Differential modulation is less sensitive to a random drift in the carrier phase.
However, if the channel has a nonzero Doppler frequency, the signal phase can
decorrelate between two successive symbols, making the previous symbol a very
noisy phase reference. This decorrelation gives rise to an irreducible error floor
for differential modulation over time-varying wireless channels which introduces a

Doppler shift to the carrier frequency.

3.2.2 Multiple-antenna differential modulation

Hochwald and Sweldens [27] expanded the DPSK scheme to multiple-antenna

system.

As we know, the transmitted signal of USTM scheme is a matrix with the rows
orthogonal to each other, i.e., the vector of T signals transmitted by one antenna
is orthogonal to the vector of T signals corresponding to another transmit antenna.
The signals of DUSTM also constrain this rule. In order to fit the differential
transmission scheme, the signals have some new properties.

Like DPSK, at time ¢t = 0, a reference matrix, e.g., Xo = [, is transmitted.
Suppose at time t — 1, X, 1 is transmitted. At time ¢, RM information bits are
mapped to an M x M unitary matrix V; selected from the set {Vi, ..., Vi }, K = 28M,

The transmission matrix at time ¢ is differentially obtained as: X; = X;_1V;. At the
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receiver end, the received matrices corresponding to time £ — 1 and ¢ are:

Yii=H 1 X1+ Wiy (3.14)

and

With the assumption that the channel is approximately constant during the trans-
mission of two matrices, i.e., H; 1 ~ H;, the received matrices at time ¢ (Y;) can be

represented by the received matrix at time ¢t — 1 (Y;_):

Yi=H X Vi+ Wy = (Yo — W) Vi + W,

(3.16)
=YV, + V2w
Thus, V; can be demodulated by the maximum likelihood detector:
Vi=arg  min ||V, = Y Vi
Vke{vl ----- Vk}
- in  Tr{(Y; = Vi Vi) (Y; — Vi Vi)
arg min v{(Y; = Y Vi) (Y; — Yo Vi) T}
(3.17)
- R{Tr[Y, VY,
argvke{mvfivk} {Te[Yi VY, )
= R{Tr[VHY,_, Vi]}.
e v vy (T [V, Y1 Vi)

As Hochwald and Swelden indicated, this scheme can be seen as a special case

of USTM. In fact, the transmission matrices can be written as:

T T 1
for USTM, where ©; = % [Inr, V). We can see that the coherence interval here is

T = 2M and the factor v/2 ensures @t(@f{ = 1Iy.
At the receiver end, at time ¢, the detected matrix is:

Ty = Hy [In, Vi] + Ny = [Ya, Yol (3.19)
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The maximum likelihood detector in (3.1) becomes:
Viu =arg  max  Tr[Y,070,TF]
Vie€{Va,....Vic }

= arg @ke{m\/ﬁ}.(.,VK} Tr[(Yi + Yo Vi) (Y + Y Vi) (3.20)

= arg max éR{Tr[%VkKé{]}a

Viee{Vi,...,Vi}

which is the same as (3.17). Here we can see that the effect of the first half part Y},
of T; can be seen as a not so perfect estimation of the channel coefficients matrix

H with a noise NV;; which is the first half part of N.

Therefore, the differential scheme is a special case of USTM where the first half
part of the transmission matrix is a reference. (3.16) is the fundamental differential
receiver equation where Y;_; can be seen as the channel response at time ¢ which is
known to the receiver. The sacrifice is that the noise has twice the variance which
makes the error performance slightly worse. This corresponds to the well-known re-
sult that standard single-antenna differential modulation suffers from approximately
a 3-dB performance loss in effective SNR when the channel is unknown versus when

it is known.

Now we analyse the pair-wise error probability of DUSTM and get the design
criteria. From (3.3), we know that the PEP performance of USTM depends on the

singular values of ©;,0 and here O = % [Ty, Vi]. Then
g1 o

We denote the mth singular value of a matrix A as 0,,(A) and the mth eigenvalue of

matrix A as \,,(A). We know that 02 (A) = \,,,(AA"). Then we have the relation

1
02 (0,05 = Zgzn(lM + Vi ViE
1
= ZAm(sz + ViV + Vi V.

(3.21)
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The term (1 — dj,, ) in (3.3) can be written as:

1
1= diym=1- ZAm(ziM + ViViE + Vi v

1

— Z)\m(2]M — VI - Vi viH) (3.22)
1 1

= Zafn(IM — VI = Zo—;(vk — V).

This equation says that minimizing the singular values of the correlations of the
unknown-channel signals is equivalent to maximizing the singular values of the dif-

ferences of the known channel signals.

From this analysis, we can see that there are also two design criteria for DUSTM.
The first one is to maximize the sum of the square singular values of the differences

of V,, and Vj,. We define

M M
1 1 1
0w = \| 77 m§:1: (= Bm) = \| 37 m§:103~b(Vk — Vi) = —\/WHVk — Vil (3.23)

Thus the first design criterion is to maximize the minimum value of 0y for all k.
This criterion can be interpreted by maximizing the the minimum Frobinius distance

between any two matrices Vj, and V).

The second design criterion is derived from (3.5) which is suitable for high SNRs.
For DUSTM, (i in (3.5) becomes:

M 5hr . M ES
gkk, - [H (1 - dzk",m)] = 35 [H Um(vk - Vk/)
" 2 L (3.24)
1
= 5 ldet(Vi - Vi) |7 .
The diversity product for differential modulation can now be written as
1 : 1 in [det(V; V)W 3.25)
‘= 2 1<hak< K G = 2 1<homer |V E T VR .

Therefore, this design criterion is to maximize ¢ of the constellation.

Hochwald and Sweldens proposed a cyclic group structure of the constellation
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K| ¢ (U1, Usg, ..., Upg]

211 |1](standard DBPSK)
407071 | [1, 1

8| 0.5134 | [1, 1, 3]

16 | 0.5453 | [1, 3, 5, 7]

32 | 0.4095 | [1, 5, 7, 9, 11]

41 0.7071 | [1] (standard DQPSK)
16 | 0.3826 | [1, 7]

64 | 0.2765 | |1, 11, 27|

256 | 0.2208 | [1, 25, 97, 107]
1024 | 0.1999 | [1, 157, 283, 415, 487]

M
1
2
3
4
5
1
2
3
4
5

R R N S R e i ey

Table 3.1: DUSTM constellations [27| for M = 1,2,3,4,5 transmit antennas and
spectral efficiency R = 1,2 bps/Hz. The number of signals in the constellation is
K = 28M,

where V}, has the form

Vi=VF, k=0,.,K—1
where the generator matrix V; is a Kth root of the unity, i.e., VX = I};. The matrix
V) is diagonal and can be written as

Vi = diag[ef @™/ eiCr/ K] -y e f0,. K —1}; m=1,.., M.

At any time, only one transmitter antenna is active and transmitting a phase-shifted
symbol. When M = 1, the signals reduce to standard DPSK. Now consider the

design of {uy,...,up}. People should try to find {uy, ..., up/} that maximizes (:

1 . 1 ) 1
C = 5 ogkgli’lgf(—l |det(Vk — Vk’)|M = 5 Oggiljrgl_l |det(Vk _ ]M)‘ M
M A (3.26)
=, Jun 1__[1 sin(mumk/K)

Hochwald and Sweldens got the {uq,...,up}s for M = 1,2,3,4,5 and R = 1,2

respectively with exhaustive computer searches and we show them in Table 3.1.

We present the bit error rate (BER) performance of this scheme in Fig. 3.1 and
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Fig. 3.2 for R = 1 and R = 2 respectively with the number of transmit antenna
M = 1,2,3,4,5 and the number of receive antenna N = 1. The Rayleigh channel
is assumed to be block-constant. In these simulations, the channel H is constant
during the transmission of one block of 100 matrices and changes to other values
randomly for the next block. From Fig. 3.1 we can see that for R = 1 systems,
using multiple transmit antennas can significantly improve the error performance.
However, in low SNR regime, the benefits of using multiple antennas more than 2
are not so clear. This phenomenon can also be seen for R = 2 systems, as shown in
Fig. 3.2. This is because the scheme of Hochwald and Sweldens [27] is designed for
high SNR.

. ASSEEEEEE SN SRR R ~—O—-M1N11bps/Hzf§
Ao L .i....................|—<— M2N11bps/Hz|]
R R R B M3N11bpS/HZ .

4 T L L " —4— MA4N1 1bps/Hz |-

BER

0 5 10 15 20 25 30
SNR (dB)

Figure 3.1: BER performance of DUSTM [27], R = 1.
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oo f?ffffffEffff?fffffffffffffffffffff~—O—-M1N12bps/Hzf§
'.""::::::"::::::::::::::::::::::: —<— M2N1 2bps/Hz |
............ N B M3N12bpS/HZ.

| —#4— M4N1 2bps/Hz |5

BER

0 5 10 15 20 25 30
SNR (dB)

Figure 3.2: BER performance of DUSTM [27], R = 2.

3.3 Differential space-time block code

In [28,29], Tarokh and Jafarkhani proposed a differential scheme (DSTBC) for
STBC based on Alamouti’s scheme [18]. This scheme is designed directly from
Alamouti’s STBC scheme and is easy to apply. In this scheme, the channel is

assumed to be constant during two successive transmission matrices as in DPSK.

3.3.1 Alamouti’s STBC scheme

Consider a MIMO system with 2 transmit antennas and 1 receive antenna. The

channel coefficients are perfectly estimated by the receiver. The transmission matrix
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of Alamouti’s scheme is:

T11 T2 S1 —S5

X = = : (3.27)

3
To1 T22 S22 5

and the received matrix is:

Y = (y11,912) = HX + W

S1 —35 (328)
= (h11, h2) + (w1 wia),

*

where s; is the signal selected from a signal set, for example, PSK signal set according
to the incoming information bits. Due to the orthogonal structure of transmission
matrix, if the channel coefficients are perfectly obtained by the receiver, the esti-

mated signal of (s1, s2) are:

s N T
(81, 82) = (yn, y12)

h12 _hll (3 29)

=((1h11]* + |h12]?)s1 + B3 wn + hiswiy,

(‘h11‘2 -+ ‘h12‘2)82 — hanQ -+ hkwu).

When the estimated signals above are obtained, the transmitted signal can be re-

covered as in the SISO communication systems, which is pretty simple.

3.3.2 Differential transmission of Alamouti’s STBC scheme

Now we consider the differential transmission of Alamouti’s scheme. Any two

dimensions vector S = (s3, s4) can be uniquely represented by the orthonormal basis
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given by Alamouti’s scheme:

S3 S1 =8, Y4
=XP= , (3.30)
S4 CIH P2
wkj b
where s; are PSK signals selected from the set A = {62 :75/2 k=0,1,..,2" - 1}
and b is the number of bits that each signal can represent. P = (pl,pg)T is the

coefficients vector. In this case, the transmission matrix X of Alamouti’s scheme is

unitary matrix, i.e., X' = X and

P 53 S S5 S3
P _ xH [ " . (3.31)

P2 S4 —S2 81 S4
Let (s1,892) = %(1, 1) and given all the possible combinations of (s3, s4), the set P
that contains all column vectors P can be determined. The set P has 2% column
vectors and 2b information bits are mapped onto P. Suppose that at time 7 — 1,

X, _1 is transmitted. Then at time 7, 2b information bits are mapped onto P, and

the signals to be transmitted are determined by (3.30), i.e.:

Sor+1 S2r—1 —53 Pir
= XT—1PT = ! ) (332)
S27+2 S2r 83,1 Dar
and
82741 83712 Pir =D,
XT - - XT—l (333)

* >k
S2r+2  Sorq D2r  Dir
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At the receiver side, with 2 transmit antennas and 1 receive antenna, we have the

relation:

Y: = <y27+1 y27+2) = HX- +W;

ES
Sor+1 TS2r42
=\ hi1 hie + Wor41 Wor42 | -

*
S2r4+2 Sorp

This relation can be rewritten in the forms as followed:

* hll T2 *
(y27+1 y27+2) = (82741, S2r42) + (w27+17w2T+2)7
hiz —hiy
hi hi, .
Yor y;T—l = (827—17 327’) + (w27—17 w27—>7
hiz —hiy

and

hir - hiy .
Yor _yST—l - _SST 857’—1 +(U127—_1,w27_).

*
hia —hy,
From (3.32), we know that:
H
%
Pir Sor—1 —Sor S2741
E3
Dar Sor  Sar—q S27+42
* *
Sor—1 Sor S2741

—S2r  S2r—1 52742

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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Combine the above four relations, we get the estimation of P, as

*
~ Yor 1 Yor Yor+1

* *
Yor  —Yor_1 Yorio

(3.39)

* *
S9r_182r+1 T 89,52742

= (|h11]? + haaf?) + W,

—S89r4182r + Sor4282r-1

where W’ is the noise component. The closest vector of P to IBT is believed to
be the information vector and the inverse mapping let us obtain the information
bits. Jafarkhani and Tarokh expanded the scheme above to MIMO systems with 4
transmit antennas in |29 and the transmit and receive procedure is similar.

The bit error rate (BER) performances of DSTBC and STBC are shown in
Fig. 3.3.

Bit Error Rate

—©— Alamouti M2N1 BPSK({. . .
—<o— DSTBC M2N1 BPSK
[ | —©— Alamouti M2N1 4PSK
-5| | —<%— DSTBC M2N1 4PSK

10 "k
—©&— STBC M4N1 BPSK
DSTBC M4N1 BPSK
10_6 1 1
0 5 10 15 20 25

SNR (dB)

Figure 3.3: BER performance of STBC and DSTBC.
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The fading is assumed to be constant over each frame and vary from one frame to
another. We can see from this figure that the BER performance of differential space-
time coding scheme is about 3 dB worse than the corresponding coherent detection
STBC scheme. Furthermore, the STBC and DSTBC schemes in the figure achieve
full diversity gain which is represented by the slope of the BER curve.

DSTBC schemes are suitable for MIMO systems with up to 4 transmit antennas.

3.4 Matrix coded modulation

Matrix coded modulation or MCM is a kind of MIMO system that proposed by
A. El Arab, J-C. Carlach and M. Hélard [30,31|. This scheme combines channel
coding, modulation and space-time coding into one function, and it is dedicated to
non-coherent systems.

Fig. 3.4 shows a general model of the MCM scheme.

—»

Information bits | Channel error- | Encoded Matrix Transmit

— ™| correcting code bits mapping (MjM;,,) | antennas
>

Figure 3.4: MIMO-MCM system model.

Information bits are encoded with a channel error-correcting code and then di-
vided into streams to be mapped directly onto matrices of complex symbols. Take
2 x 2 non-coherent MIMO-MCM scheme as an example. Information bits, by_s,
are coded by an error correcting code (H(8,4,4) Hamming code) and generates two
streams of coded bits c¢y_3 and c4_7, where ¢y_3 = by_3 are the information bits and
c4_7 are 4 control bits.

These two bit-streams are interleaved with (m,, ;) and mapped directly into a
pair of invertible matrices (V,, V3) of size M x M. These two matrices are consecu-
tively transmitted over the M antennas by X, = V,, and X;;; = V3. The invertible

matrices should be chosen from a multiplicative group G such that: (V,,V3) €
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(Cp, Cy) where (C,,C,) are two different cosets of G. The choice of (m,,m,) and
(C,, C,) is not arbitrary. In fact, for a given pair (V,, Vjs), the couple (V,,V}) €

(Cp, C,) which verify the equation
VoVl =Vt =0

must be unique. At the receiver end, this relation will be used to detect the trans-

mitted matrices.

3.4.1 The transmission group of MCM

The transmitted matrices are selected from the Weyl group G,, [117]. The Weyl
group G, is a set that contains 12 cosets (Cy, C, ..., C11). Each coset contains 16

invertible matrices. The first coset is defined as:

Co =« ; : , (3.40)

with a € {1, —1,4,—i}. The 12 cosets of G, are derived from Cj as follows:

Cr=ACo, k=0,1,..., 11, (3.41)
where the matrices A,, kK =0,1,...,5 are respectively:
10 10 1 |1 1
AO - aAl - 7A2 = = )
01 0 1 V2 1 -1
1 1 1 1 1 1 1 1
A — JA — VA = — ,
3 V2 — 4 V2 1 — 5 V2 1

and the matrices Ag, k= 6,7,...,11 are given by:

Apys = Ay, with n=(1414)/vV2, k=0,1,...,5. (3.42)
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3.4.2 MCM with Hamming block coding

Consider a MCM system with M = 2 transmit antennas and N = 2 (also, we
can set N = 1,3,...) receive antennas, and each transmit matrix is sent during
T = M = 2 symbols. The systematic Hamming code H(8,4,4) is used to encode
the information bits. The code rate is 7 = 1/2 and its minimum Hamming distance
is dypin = 4. The generation equation of Hamming code is: ¢ = bG, where ¢ is the
generated codeword (cg,cy,...,c7), b is a block of 4 information bits and G is the

generation matrix. For this special scheme, the generation matrix is:

The codeword (¢, ¢1, ..., ¢7) is mapped onto 2 M x M matrices (V,,, V). The mapping

rule is defined as follows:

1. With the encoded bits (cg, c1, ..., ¢7), the first 4 information bits (¢, ¢1, ¢2, ¢3)
are permuted with my: (0,1,2,3) — (0,1,2,3), i.e., (co, 1, o, c3) — (co, €1, Co, C3)
and then mapped to a matrix V,, in the coset Cy. The other 4 redundant bits
(¢4, 5, Cg, ¢7) are permuted with mo: (0,1,2,3) — (1,0, 3,2), i.e., (¢4, ¢5, 5, C7) —

(¢5, ¢4, C7,C6) and then mapped to a matrix Vj in the coset Cs.

2. The choice of the 2 permutations (my,m2) and the 2 cosets (Cp, Cs) is not
arbitrary. In fact, they are obtained by exhaustive search. With the matrices

(Va, V) generated above, there must be a unique solution to the equation:
VoVt = VeV, =0,

where (V,,,V;) € (C,, C,).

In fact, there are A} = 24 different kinds of permutations for my and m re-

spectively, and 24 x 24 pairs of (mg, m2). But the pairs which satisfy the solution
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of the equation above are rare. For my: (0,1,2,3) — (0,1,2,3), there are only 3
permutations 7, which satisfy the condition. They are: (0,1,2,3) — (1,0,3,2),
(0,1,2,3) — (1,2,3,0) and (0,1,2,3) — (3,2,1,0).

For example, four information bits 0001 feed into the encoder, according to the
generation matrix, the codeword is 00011101. With the permutation (0,1,2,3) —
(0,1,2,3), we compute the label (ig, i3) of the matrices (V,, V3) in the cosets Cp and
CQZ

i0=0-2240-2240-2'+1-2°=1

ip=1-2241-2241-2'4+0-2° = 14.

The pair of matrices (X, X¢i11) = (Va, Vs) = (Vi,, Vi,) is transmitted successively
during 4 time slots on the two transmit antennas. The 2 M x M matrices (X;, Xyy1) =

(Va, Vi) are received successively by the N transmit antennas:

Yi=HX; + W,

Yiii=HXi 1+ Wi

According to the mapping rule (the solution to the equation V.V, ! — Vng_l =0is

unique), we get the decoding algorithm as follows:

~ ~

Vo, Vi) = i Y,V Y, V.
(Vo Vi) =arg | min YV = ViV

With the estimated matrices and the bijective mapping rule, the 4 information bits

are recovered.

In the study of this scheme, we found that the matrices of the Weyl group
are perfectly suitable for the differential transmission scheme. Therefore we study
the performance of Weyl group in the differential MIMO systems and get some

interesting results.
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3.5 Conclusion

In this chapter, we presented the non-coherent space-time coding/modulation
schemes which are related to our research. Marzetta and Hochwald proposed USTM
scheme [26] when they tried to analyze the capacity of MIMO systems without CSI
[25]. Then they expanded this scheme to differential unitary space-time modulation
|27|. However, how to generate good performing constellations of unitary matrices
for both of these two schemes is not clear, especially for systems with large number
of transmit antennas. Tarokh and Jafarkhani proposed DSTBC schemes in [28§|
based on Alamouti’s STBC scheme for MIMO systems with 2 transmit antennas and
expanded the differential scheme to MIMO systems with 4 transmit antennas in [29].
This scheme is suitable for MIMO systems with less than 4 transmit antennas. A.
El Arab, J-C. Carlach and M. Hélard [30, 31| presented a new kind of modulation
scheme (MCM) for MIMO systems without using CSI. This scheme is just suitable
for MIMO systems with 2 transmit antennas. The expansion of this scheme to
MIMO systems with more than 2 transmit antennas is not clear and the spectral
efficiency is limited. In the study of MCM, we found that the Weyl group can be
used in DSTM schemes.
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New differential space-time modulation with 2

transmit antennas

In this chapter, we propose our new differential space-time modulation scheme
based on the Weyl group and the simulation results are analyzed. This scheme can
be used for MIMO systems with 2", n = 1,2, ... transmit antennas. We present here
DSTM schemes with 2 transmit antennas in this chapter. For MIMO systems with
2 transmit antennas, the information matrices are elements of the Weyl group which
is a special case of Lie group with finite order. Gray mapping is used to improve the
BER performance. Furthermore, the BER performance can be improved by selecting
the set with the best distance spectrum, which is a design criterion of DSTM schemes.
The second design criterion which is based on the diversity product is also analysed.
We compare our schemes with DSTBC in [28,29] and DUSTM schemes in [27] and

show the advantages of our schemes.

4.1 General Model of Differential Space-Time Mo-

dulation System

The differential MIMO system model is based on the fundamental equation (2.59)
discussed in Chapter 2 and the scheme discussed in Section 3.2. In the differential
space-time modulation systems, one vector of information bits is mapped onto a
matrix V' in the candidate set P according to a mapping rule. The dimension of the

transmitted matrix X is M x T'. For simplicity, we assume that T'= M. Of course,
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this scheme can be extended to MIMO systems with 7" > M or T" < M. However,
this extension introduces some complications and we will not discuss this situation
here. For example, the transmitter sends a reference matrix Xy = 1} at time 7. The
first vector of the information bits is mapped onto the information matrix V,, and
the second block is mapped onto V,, etc. The fundamental differential transmission
relation is:

X, = X,V r=0,1,... (4.1)

7417

Therefore, at the transmitter end, the sequence of transmitted matrices is:

XO = ‘/07
X1 =XoVi, = WV,
X2 - Xl‘/iz - ‘/E)‘/;l‘/;za

Xq— :XT—I‘/Z'T = ‘/0‘/21 ‘/Z

T

At the receiver side, the N antennas receive a matrix stream Yp, ..., Y, Y, .q,....
We know that
YT - H‘I‘X‘I‘ + WT (42)

and

Yipn=H 1 Xop +Woy (4.3)

Based on the differential transmission equation (4.1) and with the assumption that
the fading coefficients are constant during the transmission of two successive matri-

ces,j.e., H- = H. 1 = H, we get

K’—l—l = HXT+1 + WT+1 = HXT‘/Z + WT+1

T+1

- (Yr - WT)VZ'TH + W'r-i-l - YTV;TH + WT+1 - WT‘/;TH (4'4)

- YT‘/7;T+1 + W;——i-l?

where VVT’Jrl =W, — W,V

T+1°
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Therefore, to estimate the information matrix, the maximum likelihood demo-

dulator is

Viey = argmin[|Yr, — Y2 V||

= arg min Tr{(Yr4, — Y V) (Ve = Y;V)} (4.5)

_ H
= argax Tr{Re(Y7,Y;V)}.

Once the information matrix is obtained, the information bits can be recovered by

the inverse mapping rule.

4.2 The constellation for MIMO systems with 2 trans-

mit antennas

In our scheme, the information matrices are derived from the Weyl group used
in [30,31]. The Weyl group G,, is a set that contains 12 cosets (CO, Cy, .. .,CH).

Each coset contains 16 invertible matrices. The first coset is defined as:

Co=a{ M= My = , My = Mz = )

with a € {1, —1,4,—i}. The 12 cosets of G,, are derived from Cj as follows:

Cr=ACo, k=0,1,...,11, (4.7)
where the matrices Ay, k =0,1,...,5 are respectively:
10 10 1 |1 1
Ay = A= Ay = —= ;
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and the matrices A,k =6,7,...,11 are given by:
Aprs =nAp,  with n=04+14)/vV2,Yk=0,1,...,5. (4.8)

There are 192 matrices in this group, and we number the matrices as My, My,

...,Mlgli

Myry = =My, Myig = 1My, Myy12 = —tMy, k=0,...,3. (49)
MlGH—j = Al X Mj, l= 0, ceey 11. ] = 0, ceey 16.

Furthermore, they are all unitary matrices, i.e., the inverse of the matrix is equal
to the conjugate transpose of the matrix and the matrix obeys the power constraint
(2.60).

The matrices of the Weyl Group can be seen as 192 points distributed in the
complex matrices sphere.

We define the distance between two matrices M, and M, as in (2.82):
D(M,, M) = || M, — M,||. (4.10)

We can see that D(M,, M) = D(M,, M,). Therefore, there are 191 x 192/2 = 18336
values D(M,, M,) with 0 < a < b < 191. However, for any value a, the distribution
of the 191 values D(M,, M) with b # a is the same, as shown in Fig. 4.1 and
Table 4.1. For Cj, this distribution is given in Fig. 4.2.

Remark If A is an n X n unitary matrix, i.e., AA? = A#A = I, the Frobinous
norm of A, ||All = \/Tr(AAT) = /Tr(AFA) = \/n. ¥ M,, M, € Cy, |M, — My|| =
VIr[(M, — My)H (M, — M,)]. Since all the cosets are generated from Cy by multi-

plying special unitary matrices Ay, the distance between A, M, and A M, is || Ay M,—
AMy|| = /Te[(M, — My)TAFAL(M, — My)] = /Te[(M, — My)" (M, — M,)] =

|M, — M,||. Therefore, the distance spectrum of each coset of the Weyl group

is exactly the same as the spectrum of Cj.

Consider a MIMO system with M = 2 transmit antennas and N = 2 receive

antennas. Each transmit matrix is sent during 7' = 2 symbol durations. The
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Distance OCCU.I'I'GIICGS
V4 —2v2 8
V2 20
NI 16
2 102
VAa++/2 16
V6 20
VAa+2v2 8
2V2 1

Table 4.1: The distance spectrum for an arbitrary matrix in G,,.
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102
100 ] . i
80 : ] : - b
60 ] : :
40 : e ] :
20 | ) 20 ) -
Y I 16 16 I
0 1
1 1.5 2 25 3
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Figure 4.1: Distance spectrum of Weyl group.

number of receive antennas is arbitrary, i.e. we can set N = 1,2,3,.... As there
are K = 192 matrices in the Weyl group G,,, for MIMO systems with 2 transmit
antennas, the maximum spectral efficiency we can get is R = ﬁLlog2 K| =35
bps/Hz. We present the DSTM MIMO systems with R = 2 bps/Hz and R = 1, 3
bps/Hz respectively.
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14

12

10

occurencies

2.2 2.4 2.6 2.8 3
distance

Figure 4.2: Distance spectrum of coset Cj

4.3 Spectral efficiency R =2 bps/Hz

With the number of transmit antennas M = 2 and T" = M = 2, for spectral
efficiency R = 2 bps/Hz, each transmission matrix should carry RT = 4 bits and
a set with 27 = 16 matrices are needed. We select the set with the maximized
minimum distance to map the information bits. Consider a group with A matrices
Vi, ..., Vi, the minimum distance of the group is defined as:

0= min ||Vp — Vil (4.11)

1<k<k/'<K

The best group should have the maximized 0. We can see that the minimum distance
of the matrices in Cj is 2 which is maximized for all possible sets with 16 matrices in
Weyl group. We say that Cj is the best set. Since the other 11 cosets have exactly

the same distance spectrum as C, they are also the best sets.

Furthermore, we can see that the constellation of the cosets Cy, Cy is 4PSK | J{0}
and the constellation of Cy and C7 is 4PSK with a phase shift 7/4 | J{0}. At each
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transmission time, only one of the antenna is active and transmit a symbol with
energy 1. When the cosets Cs,...,C5 and Csg, ...,C; are used, the energy of the
transmitted symbol is half of the energy of the transmitted symbol selected from
the cosets Cy, C, Cg and C7. At each transmission time, both antennas are active.
Therefore, in real systems, we prefer to use the cosets C,...,C5 and Cy,...,C; as
the information group so that the amplifier will work efficiently with low-power level

signal.

In our research, for simplicity we use Cj as the candidate information set. We
use a general mapping rule from the information bits to the transmit matrices, as

shown is Table 4.2. The distances between each of the matrix in Cj are shown in

Table. 4.3.

Information bits | Matrix in coset Cjy
0000 Mo=(}9)
0001 My =(§9)
0010 My =(9})
0011 Mz= (%)
0100 My=(3"%)
0101 Ms=(3")
0110 Ms= (%3
0111 M;= (V4
1000 Mg =(}9)
1001 My =(}§2)
1010 M= (9})
1011 My =(9%)
1100 M= (3%)
1101 Mz =(9)
1110 M= (%)
1111 Mis = (9,9

Table 4.2: The general mapping rule from the information bits to coset Cj.
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Notice that:

{M47 M57 M67 M?} = _{M07 M17 M27 M3}
{ Mg, My, My, M1} =i {Mo, My, My, M3} (4.12)

{ Mg, M3, My, Mys} = —i { Mo, My, My, M3}.

At time 7 = 0, we transmit a reference matrix Xo = My = ({9).

Suppose that at time 7, X is transmitted. At time 741, a vector of 4 information

bits arrives. These bits are mapped onto one of the matrices M; ., = M, of the
coset Cp, and then
X7—+1 - )(7—]\41'7_Jrl (413)
is transmitted.
The maximum likelihood demodulator is
M;,, = arg min ||V, — Y- M||
Meco (4.14)

— H
= arg max Tr{Re(Y:}, Y- M)}.

as shown in the Section. 4.1.

We compare the performance of our new scheme with those of DSTBC 28] and
DUSTM [27]. The simulation results are shown in Fig. 4.3. In these simulations, as
in 28], the step channel model is used. In this model, the channel matrix is constant
during the transmission of L (L = T../T) symbols, and change randomly to another

constant channel matrix for the next L symbols.

We find that for MIMO systems with 2 transmit antennas, our new scheme
performs worse than Tarokh’s DSTBC scheme [28|. This is because the decoding
method of our scheme is a general maximum likelihood decoding without any pre-
process, while the variable used to decode in [28] is linearly scaled by the channel
coefficients due to some pre-process. However, our new scheme performs better than
the corresponding DUSTM scheme |27] when SNR is less than 14 dB. This is because
the DUSTM scheme is designed for large SNR environments according to the second
design criterion defined in (3.25).
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M

M14

My

M12

Mll

My

My

Ms

M

Mg

M;

M,

Ms

M,

M,

My

Distances

M

M,

M,

Ms

M,

M;

Mg

My

Ms

My

Mg

Mll

M12

M13

M14

M15

Table 4.3: The distances between the matrices in Cj.
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[ —=— Tarokh DSTBC
—— New DSTM (coset C) y

BER

0 5 10 15 20
SNR (dB)

Figure 4.3: Comparison of performances of MIMO systems with 2 transmit antennas
and 2 receive antennas. These three scheme are DSTBC [28| with 4PSK, our new
DSTM with coset Cj (general mapping rule) and DUSTM [27].

4.3.1 Gray mapping

In fact, according to our measure rule (Frobenius distance), the matrices of the
Weyl group can be seen as the points distributed on the surface of a high dimension
sphere. The distance between M and M, is the largest (the diameter of the sphere,
i.e., 21/2), as shown in Fig.4.4. The distances between M, and all other 14 matrices

in coset C are equal, that is 2, as shown in Fig. 4.2 and Table 4.3.

We suppose to use a mapping rule like Gray mapping to improve the BER perfor-
mance. As shown in Table 4.3 and (4.12), for each matrix, there is only 1 maximum
distance and the others are the same. We map the pair of matrices with maximum
distance to the pair of bit vectors that have the largest Hamming distance. The new
mapping rule is shown in Table 4.4. The simulation result of this new mapping is

shown in Fig. 4.5. We can see that the BER performance can be slightly improved
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My

M,

Figure 4.4: Position of the matrices My and M, on the surface of a sphere.

“'| —=— Coset C0 (general mapping)
—o— Coset C0 (Gray mapping)

BER

SNR (dB)

Figure 4.5: Simulation results of DSTM with coset Cj (new mapping rule).

by Gray mapping.
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Information bits | Matrix in coset Cy
0000 M,
0001 My
0011 My
0010 M
1111 M,
1110 M;
1100 Ms
1101 M~
0110 M
0100 Moy
0101 Mo
0111 My,
1001 Mo
1011 M
1010 My
1000 M5

Table 4.4: Gray mapping rule from the information bits onto the matrices in coset

Co.

4.3.2 Justification of the design criterion
4.3.2.1 The design criterion based on distance

In order to further investigate the effect of distance spectrum to the performance
of DSTM MIMO systems, we construct a new set S = Cj U A;Cy as an alternative
to Cp. The set Cf contains the 8 real matrices of Cy and A;Cj is the set obtained
by multiplying A; with the matrices of CJ. As the set Cj, the set S contains 8
couples (M,, My) with D(M,, M) = ||M, — My|| = 2v/2, the greatest distance be-
tween 2 matrices of Gyy. If we consider 2 couples (M, M) and (M., My) of Cy, with
D(M,, M) = D(M,, M) = 2v/2, we have D(M,, M,) = D(M,, My) = D(M,, M,) =
D(M,, My) = 2, while for the set S, if D(M,, M) = D(M., M) = 2v/2 with
M,, M, € C§ and M., M, € A,C{, then [D(M,, M.) D(My, My) D(My, M.) D(M,, M)] =
[v/2 v/2 v/6 +/6]. The distance table is shown in Table 4.5. We can see that the
minimum distance of this set is v/2 which is less than the minimum distance of the
set Cy. As shown in Fig.4.6, the results obtained for S is slightly worse than that of

Cp. This simulation justifies our first design criterion based on distance. Therefore,
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Differential Space—Time Modulation M2N2 2bps/Hz

BER

SNR (dB)

Figure 4.6: Comparison of differential space-time scheme for 2 transmit antennas
and 2 receive antennas R = 2 with different set.

for M =2 and R = 2 bps/Hz MIMO systems, we select one of the 12 cosets of Weyl

group as the information group.

4.3.2.2 The design criterion based on diversity product

We know that there is a second design criterion called maximizing the diversity
product as in (3.25). We select a set which has the maximized diversity product in

the Weyl Group. The selected set S, is:

{MO> M4> M3a M?a M9> Ml?n M10> M14, M144a M148a M147a M151a M153a M157a M154a M158}-

The diversity product of this set is 0.5 which is greater than the corresponding
diversity product 0.3826 in DUSTM scheme [27]. We compare the BER performances
of this set, Cy and the DUSTM scheme. The simulation product is shown in Fig. 4.7.
We can see that the BER performance with this new set Sy is better than the other
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AlMO
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Table 4.5: The distances between the matrices in S.
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two schemes. At the BER level of 1073, it is 2 dB better than the corresponding
DUSTM scheme and 3 dB better than the DSTM scheme with set Cy.

—5— DUSTM M2N2R2 |
— o DSTM set Sd

—A— DSTM set CO

BER

0 5 10 15 20
SNR (dB)

Figure 4.7: Comparison of DSTM for different sets from different design criteria. 2
transmit antennas, 2 receive antenna and R = 2 bps/Hz.

4.4 Spectral efficiency R =1 and 3 bps/Hz

4.4.1 R=1bps/Hz

Now, we consider the group used for R = 1 bps/Hz. With the number of transmit
antennas M = 2, T' = M, RT = 2 bits are transmitted during 2 symbols time-
durations and 277 = 4 matrices are needed. According to the maximizing the
minimum distance design criterion, we select the pair My = () and My, = —M,
which has the maximun distance as the first two matrices. Then we try to select the
other two matrices that have the maximized minimum distance with My and M;.

We suppose the two matrices are M; and —M; (in our definition here, M;, 4 = —M,)
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which has the maximun distance 2v/2. We find that, for a general matrix A, if the
distance between M, and M, is greater than 2, the distance between M, and M,
is less than 2. Therefore we should select the matrices that have distance 2 with
My and My. From the distance spectrum of G, such as Table 4.1, we know that
there are 102 matrices (51 pairs) that have distance 2 with M, and M,. Then we
use the second design criterion (3.25), i.e. maximize the diversity product, to select
the pair of matrices from the 51 pairs. We find 10 pairs of matrices in the 51 pairs
that have the maximized diversity product g with My and M. They are (Ms, M),
(Mg, Mia), (Mg, My3), (Mo, M1s), (Mao, Mas), (Maz, Myz), (Mss, Mgr), (Msg, My3),
(M114, M118) and (M123, M127)-

Based on the analysis above, we select the set {My, My, Mg, M2} as the infor-
mation group for the spectrum R = 1 bps/Hz. This group is exactly the same as the
group used in DUSTM scheme in Table 3.1. We compare the BER performances for
different mapping rule, i.e., general mapping and Gray mapping. The two mapping

rules are shown in Table 4.6. The BER performances for different mapping rules are

Information bits | Gray mapping | general mapping
00 My M,
01 Mg M,
11 M, Mia
10 Mo My

Table 4.6: Mapping rules from the information bits onto the matrices in group
{M07 M47 M87 MIQ}'

shown in Fig. 4.8. We can see that with Gray mapping the BER performance can
be about 0.5 dB improved.

4.4.2 R =3 bps/Hz

For DSTM scheme with M = 2 transmit antennas and spectral efficiency R = 3
bps/Hz, the information set should have 28 = 64 matrices. We select the first
64 matrices in the Weyl group as the information group and the simulation result
is shown in Fig. 4.9. For all possible sets with 64 matrices selected from G, the

minimum diversity product is 0 and the minimum distance is v/4 — 2v/2 = 1.0824.
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Figure 4.8: Comparison of DSTM for general mapping and Gray mapping. 2 trans-
mit antennas, 1 receive antenna and R = 1 bps/Hz.

Therefore, all the sets with 64 matrices selected from G, are best sets according the

two design criteria.

4.5 Conclusion

In this chapter, we presented a new DSTM scheme based on the Weyl group.
MIMO systems with 2 transmit antennas are considered.

For spectrum efficiency R = 2 bps/Hz, all of the the 12 cosets (C’o, Ci, ..., C’H)
of the Weyl group are the best sets if the first design criterion is considered. In real
systems, we prefer to use the cosets Cs, ..., C5 and C, ..., C; as the information group
so that the amplifier will work efficiently with low-power level signal. Our scheme
performs better than the corresponding DUSTM scheme with SNR less than 14 dB.

We also examined this new scheme with Gray mapping and the simulation results
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BER

0 5 10 15 20
SNR (dB)

Figure 4.9: DSTM with 2 transmit antennas, 2 receive antenna and R = 3 bps/Hz.

show that the improvement for BER performance is negligible. Considering the
second design criterion, we select a new best information set and simulation result
shows that this set performs better than the best set selected from the first design
criterion.

We aslo give the best sets for spectrum efficiencies R = 1 and R = 3 bps/Hz.



New DSTM with 4 and 8 transmit antennas

In this chapter, we expand our new DSTM scheme to MIMO systems with 4 and
8 transmit antennas. In fact, with Kronecker product, our scheme can be expanded
to MIMO systems with 2" (n = 2,3, ...) transmit antennas. The BER, performance

for MIMO systems with 4 and 8 transmit antennas is shown in this chapter.

5.1 Differential MIMO systems with 4 transmit an-

tennas

To design a MIMO system with 4 transmit antennas, the Kronecker product is

used to expand the Weyl group.

The Kronecker product of two arbitrary matrices A and B is defined as:
allB s alnB
A® B = : . : (5.1)
1B -+ amn B
where A is an m X n matrix, B is a p X ¢ matrix and the resulting matrix is an

mp X ng matrix. In general, A ® B # B ® A. The Kronecker product has the

properties:
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1. A® B is invertible if and only if A and B are invertible:

(A B)'=A"'@ B! (5.2)

2. The operation of transposition is distributive over the Kronecker product:

(Ao B)' = A" @ BT (5.3)

3. The Kronecker product is linear and associative:

A® (aB+BC)=aA® B+ BA®C,

(5.4)
(A B)@C=A® (B ()
4. The Kronecker product is not commutative:
AR B#B®A (5.5)

If we combine the Kronecker product and the distance between two matrices,

two theorems are stated and proved.

Theorem 5.1.1. Consider the compler matrices A, B of size pxq and M a complex

matriz of size m X n. If | M|| is the Frobenius norm of the matriz M, i.e.,

m n
1M = D0 mamy

i=1 j=1

and D(A, B) = ||A — BY||, then:

D(M ® A, M @ B) = ||M]| - D(A, B). (5.6)
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Proof. We have:

DIM@AM®B)=||M®A-M®B| =|Mo(A- B)|

= Z Z[mij(akl — bkl)][mm (akl - bkl)]*

) \/Z mimi > [(ax — bp)][(am — bu))*

= [[M]| - |A = B|| = |[M]| - D(A, B).

Theorem 5.1.2. If M is a non-null complex matriz of size m x n and A, B, C, D

are complex matrices of size p X q, then

D(A,B) < D(C,D) = D(M® A,M & B) < D(M & C, M & D). (5.7)

Proof. 1If D(A, B) < D(C, D) and ||M]| > 0, using the first theorem, we have:

D(M®C,M & D)~ D(M®A,M @ B) = M| D(C, D) ~ |M] - D(A, B)
= [M|(D(C, D) — D(A, B)) > 0.

With the assumption M = T, for MIMO systems with 4 transmit antennas, 4 x 4

transmit matrices should be used.

Using the Kronecker product between each couple of 2 x 2 matrices of the Weyl
group, 4 x 4 matrices are obtained. There are 192x192 matrices in this set among
which only K = 4608 matrices are distinct. They are denoted Ny, Ny, ..., Nygo7-
The set of these matrices is also a group denoted by G.4. We have the definition
Gups = G, ® G,. The maximum spectral efficiency we can get with such 4 transmit

antennas systems is then R = +-|log, K| = 1|log, 4608 = 3 bps/Hz.
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5.1.1 Spectral efficiency R =1 bps/Hz

To design a scheme for R = 1 bps/Hz, we need an information set with 2% = 16
matrices. We consider the first design criterion. We know that coset Cj is one of
the best sets for MIMO systems with 2 transmit antennas. We make the Kronecker
products between the first matrix My = (V) of Cy and all the matrices in Cy to
get a set Cpyp. According to the Theorem 5.1.2, Cy is a best set for MIMO systems

with 4 transmit antennas because Cy is the best set of 16 matrices in G,,.

Co(] = M() X C(). (58)

That is,

COO = Oé{ 5 )

0100 0 1 0 O
100 0 -1 0 0 0 \
0 001 | 0 0 0 1
0010 0 0 -1 0

where o € {1, 1,4, —i}. The minimum distance of the matrices in Cy is 2v/2 and

the distance spectrum of Cy is shown in Table 5.1.

Remark We have |M;| = V2, YM € G, (Weyl group). Therefore, using My =
[4 9] in order to create Cpy C G4 generate a set of matrices having the same distance
spectrum like any other matrix M € G,. Hence, using M, is as good as using any

other matrix of GG,,.



Distances | No | Ny | No | Ns | Ny | Ns | Ng¢ | N7 | Ng | Ny | Nig | Niv | Niz | Nis | Nug | Nis
No 0 [2v2|2v2[2v2 | 4 [2v2 | 2v2 | 2vV2 | 2vV2 | 2v2 | 2V2 | 2v2 | 2V2 | 2v2 | 2v2 | 2V2
N, 221 0 [2vV2[2vV2 [ 2vV2 | 4 [ 2vV2 [ 2vV2 [ 2v2 | 2v2 [ 2v2 | 2v2 | 2v2 | 2v2 | 2v2 | 2V/2
N, 22 12v2 | 0 [2V2[2vV2 | 2v2 | 4 [ 2vV2 | 2vV2 [ 2V2 | 2vV2 | 2v2 | 2vV2 | 2v2 | 2v2 | 2V2
N, 2V2 1 2v2 1 2v2 1 0 [ 2vV2 | 2vV2 |1 2vV2 ] 4 |22 [2V2 | 2vV2 | 2v2 | 2vV2 | 2v2 | 2v2 | 2V2
N, 4 12V212vV212v2 1 0 [ 2vV2 | 2vV2 | 2V2 | 2vV2 | 2v2 | 2V2 | 2vV2 | 2v2 | 22 | 2v2 | 22
N; 221 4 | 2v212Vv2 1 2vV2 ] 0 |2V2 ] 2vV2 | 2vV2 [ 2V2 | 2vV2 | 2v2 | 2vV2 | 2v2 | 2v2 | 2V2
N 2V2 1 2v2 | 4 |2V2 1 2vV2 | 2v2 ] 0 | 2vV2 | 2vV2 [ 2V2 | 2vV2 | 2vV2 | 2vV2 | 2v2 | 2v2 | 2V2
Ny, 22 1 2v2 1 2v2 | 4 | 2vV2 1 2V2 [ 2vV2 | 0 | 2v2 [ 2vV2 | 2V2 | 2v2 | 2V2 | 2v2 | 2v2 | 2V2
Ng 22 | 2v2 | 2v2 [ 22 | 2v2 | 22 | 2v2 [ 2v2 | 0 [2v2 | 2V2 | 2vV2 | 4 | 2V2|2V2 | 2V2
Ny 22 | 2v2 | 2v2 [ 22 | 2v2 | 22 | 2v2 [ 2v2 | 2v2 | 0 | 2V2 | 2vV2 |2V2 | 4 |2V2]|2V2
Nio 22 | 2v2 | 2v2 | 22 | 2v2 | 22 | 2vV2 [ 2v2 | 2V2 [ 2v2 | O |2vV2 |2V2 | 2V2 | 4 | 2V2
Ni 2v2 [ 2v2 [ 2v2 [ 2v2 [ 2v2 [ 2v2 [ 2v2 [ 2v2 | 2v2 | 2v2 [ 2v2 | 0 | 2vV2|2vV2|2V2 | 4
Nio V2 [ 22 [ 2v2 [ 2v2 [ 2v2 [ 2v2 [ 2v2 [ 2v2 | 4 [ 2vV2 [ 2vV2 [ 2vV2 | 0 | 2vV2|2V2 | 2V2
Ni3 2V2 1 2v2 | 2v2 | 2vV2 [ 2vV2 | 2v2 | 2v2 [ 2v2 | 2v2 | 4 [ 2v2 | 2v2|2V2 | 0O | 2v2|2V2
Ni4 2V2 1 2v2 | 2v2 | 2v2 [ 2vV2 | 2v2 | 2vV2 | 2vV2 | 2v2 [ 2vV2 | 4 | 2v2|2vV2 | 2v2| O |2V2
Nis 2V2 1 2v2 | 2v2 | 2v2 [ 2vV2 | 2v2 | 2vV2 | 2vV2 | 2v2 [ 2vV2 | 2v2 | 4 [2V2 | 2v2 | 2v2 | O

Table 5.1: The distances between the matrices in Cyy.

SEUUIJUR JTWSURIY F [IIM SWIISAS OJN[IN [BIIUSIYI( “T°C

Tt



122 Chapter 5. New DSTM with 4 and 8 transmit antennas

Four information bits are viewed as an information vector. The vector is mapped
to one of the 16 matrices in Cyy as an information matrix and the mapping rule is
shown in Table 5.2. Once the matrix is obtained, it is used to differentially modulate

the previous transmitted matrix to get the current transmission matrix.

Information bits | Matrix in coset Cyg
1000

0000 N0:<8(1)(1)8)
0001
1000

0001 N1=(8‘o“f8)
00 0-1
0100

0010 Ny = {3339}
0010

0100

0011 Ny = (‘018 0 ?)
0 0-10

-1 0 0 O

0100 N4:<8‘01_018)
0 0 0 -1

—-10 0 0

0101 N5:(8(1)_018
000 1

0 -10 0

0110 N6:<‘018 3_01)
0 0 -1 20
0-10 0

0111 N7 = (5 0 8_01)
0010
i000

1000 N8:<3398)
0004
i 000

1001 Ngz(?)??%)
00 0—3
0i00

1010 Nyg = (5339)
0020

0i 00

1011 Ny = (5@8 0 ‘3)
0 0—-20

- 0 0 0

1100 N12:<8‘0’_0i8)
0 0 0 —3

—i0 00

1101 Nyg = (8 628)
0 00 2

0 —i 0 0

1110 N14:<—Olg 8_%)
0 0 =2 0
0-i0 0

1111 Nis = (3 0 g_oi>
0030

Table 5.2: The general mapping rule from the information bits to subset Cpg.
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The constellation of the modulation of this scheme (i.e., the possible value of the
matrices’ elements) is {41, £i, 0} which corresponds to Q PSK U0, and the spectral
efficiency is 1 bps/Hz. The simulation result is shown in Fig.5.1.

The simulation parameters are similar to the parameters used for DSTM schemes
with 2 transmit antennas. The channel matrix which is constant during the trans-
mission of L (L = T, /Ts) symbols, and change randomly to another constant channel
matrix for the next L symbols is used. For comparison, the 4 x 1 DSTBC scheme [29|
with modulation BPSK has the same spectral efficiency. The DUSTM scheme with
4 transmit antennas, 1 receive antenna and spectral efficiency R = 1 bps/Hz is also
shown here. We can see that similar to the schemes shown in Fig. 4.3, our new

scheme with the first design criterion is not better than the other two schemes.

Lol +DUSTMM4N1R1

B — 5 DSTM M4NIR1 C

_15 ----- _e_DS-I—BC:I\/I4N].IQ:I.B|38}<E

BER

0 5 10 15 20
SNR (dB)

Figure 5.1: Comparison of DSTBC [29], DUSTM [27]| and our new DSTM scheme
(M=4, N=1, R=1).

Now, we analyze the second design criterion: maximizing the diversity product.

The diversity product is defined based on the determinent of the difference of the
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information matrices. Consider the complex matrices A, B of size p X p and M of

size ¢ X ¢q. The determinent of M ® A is
det(M @ A) = [det(M)]P x [det(A)]. (5.9)

We know that
|det(M;)] =1, VM; € G,. (5.10)

Thus, for all the matrices in the Weyl group, we have:
|det(M; ® (A — B))| = |det(M;)|? x |det(A — B)|? = | det(A — B)|*. (5.11)
We select a set which has a maximized diversity product from G, by hand. It
is:

Saiv =Mo @ { My, My, Ms, M7, My, M3, My, M} (5.12)
U My @ {Msg, M7, Msy, Mg, My, Mys, Mys, My7}.

S

1
2

The diversity product of this new set is ¢ = 5 ming<gep<ig|det(Vy — V)| =
0.5946, Vi, € Sgwn. The minimum distance of this new set is also 2v/2. The sim-
ulation result is shown in Fig. 5.2. We can see that the DSTM scheme with set Sy,
performs about 1 dB better than the DUSTM scheme at the BER level 1072 and

slightly better than DSTBC scheme when SNR is greater than 10 dB.

5.1.2 DSTM for 4 transmit antennas with new mapping rule

Like the mapping rule used for 2 two transmit antennas, we can use the similar

mapping rule for this scheme. For the first 16 matrices, there are also the relations:

{N4aN5>N67N7} - _{NOaNbNQaN?)}
{Ns, Ny, N1g, N11} =@ {No, N1, N2, N3} (5.13)

{Ni2, N13, N14, N15} = —i { Ny, N1, N2, N3}
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Figure 5.2: Comparison of DSTBC [29], DUSTM |27| and new DSTM scheme with
set Sgiy (M=4, N=1, R=1).

We can see that the pairs of matrices in the first and the third rows have the maximun
distances. Gray mapping rule can be used for this scheme. Like the mapping rule
used in Table 4.2 and Table 4.4, we show Gray mapping rules Table 5.3. We use
this mapping rule considering that, the binary vectors with the greatest Hamming
distance, i.e., 4, corresponding to the matrices that have the greatest FEuclidean
distance, i.e., 4. The bit blocks with Hamming distance less than 4, corresponding

to the matrices that have the smallest Euclidean distance, i.e., 2v/2.

We get the BER performance for 4 transmit antennas with Gray mapping. The
simulation result is shown in Fig. 5.3. We can see that with this new mapping rule,
the BER performance can be slightly improved. However, the improvement is limit.

This is because there are only 2 different distances in the distance spectrum.
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Information bits | Matrix in coset Cyg
0000 Ny
0001 Ny
0011 Ny
0010 N3
1111 Ny
1110 N5
1100 Ng
1101 Ny
0110 Ng
0100 Ny
0101 Nio
0111 N
1001 Nio
1011 Ni3
1010 Ny
1000 Nis

Table 5.3: The Gray mapping rule from the information bits to set Cyg.

5.1.3 DSTM for 4 transmit antennas with higher spectral
efficiencies (R=2 and R=3)

Furthermore, there are K = 4608 distinct matrices in the group G,4. The
maximum spectral efficiency we can get is R = +-|log, K| = 1|log,4608] = 3
bps/Hz.

For the spectral efficiency R = 2 bps/Hz, RM = 8 bits should be transmitted in
4 symbol duration times. The information bits are mapped onto one of the 28 = 256
matrices. We select the first 256 matrices from G4 as the candidate transmission

set S].

For R = 3 bps/Hz, we should transmit 12 bits in 4 symbol duration times. Simi-
larly, we select the first 2'2 = 4096 matrices from G,,4 as the candidate transmission
set. The selection of the matrices is arbitrary. The simulation results with differ-
ent spectral efficiencies are shown in Fig.5.4. As for R = 3 bps/Hz, the DUSTM

scheme [27| didn’t give us a scheme for it and we didn’t make a comparison here.
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Figure 5.3: Comparison of different mapping rule for DSTM (M=4, N=1, R=1)
with set C()O.

We then try to improve the BER performance for R = 2 bps/Hz with the two
design criteria. First, we resort to the distance spectrum design criterion to improve
the BER performance. The minimum distance of the first 256 matrices of group G4
is 1.5307. We then try to maximize the minimun distance. We select a set which
has minimun distance 2. It is Sy = {Ny, ..., N31, Niag, ..., Nooz, Naag, ..., Nya7}. We
compare this scheme with the first set S; and DUSTM.

The simulation results are shown in Fig. 5.5. We can see that, consider the
distance spectrum, the new set performs better than the original one. Our scheme
is also better than the DUSTM scheme [|27]. We also try to improve the BER
performance by selecting the set with the maximum diversity product. We find
that, the diversity product of all possible sets with 256 matrices is 0. There is no

space to design a best set based on the second design criterion.
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Figure 5.4: Simulation results of the new differential space-time scheme for 4 trans-
mit antennas and 1 receive antenna with spectral efficiency 1, 2 and 3 bps/Hz re-
spectively.

5.2 Differential MIMO systems with 8 transmit an-
tennas

As the scheme used for 4 transmit antennas MIMO systems, we can expand the
new scheme to 8 transmit antennas with Kronecker product.

The generated matrices should be with dimension 8 x 8. Obviously, the set is
from G, @ G @ Gy = Gy @ Gusa. There are 192 x 4608 = 884736 matrices in
the set G, ® G4. However, only 110592 matrices are distinct, we denote this set
of distinct 8 x 8 matrices Gs. The maximum spectral efficiency we can get is
R = +:|log, K| = £|log, 110592 = 2 bps/Hz.

For R = 0.5 bps/Hz, we use the 16 matrices of the set Spo = My @ (Mo & Cp).
As stated by theorem 5.1.2, the set Spgg has the highest value of d,,;, = 4. Then, to

improve the BER performance, we use Sy, = My ® Sy, as a new information set
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Figure 5.5: Comparison of different differential space-time scheme for 4 transmit
antennas and 1 receive antennas R = 2 bps/Hz with different set.

which has the best diversity product 0.5946. The diversity product of Sy is 0. The
simulation results are shown in Fig. 5.6. We can see that the MIMO scheme with

Saiva 18 better than the scheme with Sygg.

For R = 1 bps/Hz, first, we use the 256 matrices of the set S,,5,14 = Mo®S;. As
for MIMO systems with 4 transmit antennas, S,,s.1, = My ® S5 is used to improve
the BER performance. The minimum distances of the set S,,814 and S,.g.1, are
2.1648 and 2.8284 respectively. The simulation results are shown in Fig. 5.7. We

can see that the scheme with set S,,g,15 is better than the scheme with set S,,.8714-

Then we construct a new set S,,s,1. with the best distance spectrum: first, we get
a 4 x 4 set Cyy with 16 matrices use Kronecker product between the first 4 matrices
of Gy (My, My, My, and Mj). Second, the Kronecker product between Cy and Cyy
produces a 8 x 8 set 5,81, With 256 matrices. The minimum distance of this new

set is 4. However, simulation result in Fig. 5.7 shows that the BER performance
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Figure 5.6: DSTM schemes for set Spoo and Sg2. 8 transmit antennas, 1 receive
antenna and spectral efficiency R = 0.5 bps/Hz.

with the set S,.sq1c is similar to the BER performance with the set S,.s,.1, and a
little worse when SNR is greater than 12 dB.

For R = 1.5 bps/Hz, we use the first 4096 matrices of the set Co, = My @ Gpa.

For R = 2, we select the first 65536 matrices in G5 as the candidate transmission
set. The simulation results are shown in Fig. 5.8.

The maximum spectral efficiency of the new differential scheme for 8 x 8 MIMO
systems is 2, which is quite low. Thus new schemes that can be expanded to large

spectral efficiencies are supposed to be designed in the future.

5.3 Conclusion

In this chapter, we designed DSTM schemes used for MIMO systems with 4 and

8 transmit antennas. Kronecker product is used to expand the information group
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Figure 5.7: DSTM schemes for set Syusr1a, Smsrip and Spgrie. (8 transmit antennas,
1 receive antenna and spectral efficiency R = 1 bps/Hz).
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Figure 5.8: Simulation results of the new differential space-time scheme for 8 trans-
mit antennas and 1 receive antennas with spectral efficiency 1.5 and 2 bps/Hz re-

spectively.
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(Weyl group).

For MIMO systems with 4 transmit antennas and R = 1 bps/Hz, our scheme with
the best set Sy, is better than the corresponding DSTBC and DUSTM schemes.
For R = 2 bps/Hz, our scheme with general set S; and the best set Sy are both
better than the corresponding DUSTM scheme.

For MIMO systems with 8 transmit antennas, we give the best set used for

R =10.5,1,1.5 and 2 bps/Hz.



New time-selective channel model

In this chapter, we propose a new model to simulate the time selective channel
due to Doppler effect. Then we evaluate the performance and the robustness of
DSTM schemes with two, four and eight transmit antennas over this time selective

channel model.

6.1 Usual channel model for differential MIMO sys-

tems

As mentioned before, the channel model used in [28,118,119] is constant during
one frame and changes randomly for the next frame. For example, with the norma-
lized coherence interval L = 200, for M transmit antennas and N receive antennas,
during the transmission of the first frame of 200 symbols, the same channel matrix
H. is used for simulation. The next channel matrix H,; is randomly generated to
be used for the next 200 symbols. However, this is not the real case. In reality, the
channel changes continuously. Furthermore, at the beginning of the new frame, the
reference matrix V[ has to be transmitted again which is not the real situation. This
reduces the overall simulation efficiency.

In |26, 27|, Jakes” model [63] is used. Each of the channel coefficients hyn,
is assumed to be spatially independent but time correlated with autocorrelation
function Jo(27 f4t) where Jo(+) is the zero-order Bessel function of the first kind and

fa is the maximum Doppler frequency. In fact, Jakes’ simulator is a kind of sum-
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of-sinusoids based fading channel simulator where the received signal is represented
as a superposition of a finite number of waves. It is a simplified model of Clarke’s

Rayleigh fading model. Clarke’s model is given by [120]:

h(t) = Zan explj (27 fat cos O, + &n)], (6.1)

n=1

where NV is the number of propagation paths, 0 < «,, < 1 is the attenuation of the
nth path, f;is the maximum Doppler frequency and 6,, and ¢,, are, respectively, the
angle of arrival and random phase of the n'* propagation path. Both 6,, and ¢,, are
uniformly distributed over [—7, ) for all n and they are mutually independent.

Jakes approximates Clarke’s model by setting equal strength multipath compo-
nents, i.e., a,, = \/—% and choosing the N components to be uniformly distributed in
angle, i.e.,

0,=——, n=12,..N. (6.2)

The normalized low-pass fading process of this model is given by [63]

No
h(t) _ 1 {\/ﬁz [ej(27rfdtc059n+¢n) _I_e—j(27rfdt0059n+d>7n)}
\/N n=1
(6.3)
it 4 pmiCairow) o LN )
2\ 2
where ¢, is given by
nmw
¢N:¢—N:07 ¢n: N _'_1, n:O,l,...,N(]. (64)
0

6.2 New and improved channel model

Instead of assuming that the channel is constant during a fixed long time, we
assume that the channel changes continuously. The narrow-band channel impulse
response h(t) is a random process. We consider the flat fading channel. In this
case, for a SISO system, the received signal is y(t) = h(t)z(t) + w(t). From the
analysis in Chapter 2, we know that h(t) = h;(t) + jho(t), where h;(t) and hg(t)
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are jointly Gaussian random processes. The envelope of h(t) is Rayleigh distributed.
If we try to obtain intermediate h(t) values between two succesive Rayleigh samples,
we should sample h(t) with certain high frequency. From the Nyquist’s sampling
theorem, we know that if we sample the channel with sufficient large frequency, the
impulse response of a SISO channel could by reconstructed by the sampled points.

Our new channel model is based on this idea.

Using the well-known Nyquist’s sampling theorem, a band-limited signal z(t)

can be reconstructed from its samples z(kTj) as follows:

. o= Sil'l f(]ﬂ'(t — ]{ZT())
#lt) = k;ooz(kTO) for(t — KTo)

B <3 sin7(fot — k)
= 2 S

k=—o00

if the sampling frequency fo = 1/Ty > 2fy, where f); is the maximum frequency of

the signal.

With Clarke’s model, the channel impulse response h(t) has autocorrelation:
Ry, (1) = 20%Jy(27 fuT), (6.6)

where Jy(+) is the zero-order Bessel function of the first kind and 0? = 0.5 Ela2].
Conventionally, people assume that > FE[a2] = 1 to ensure that the received signal
power equal to the transmitted signal power which results Ry, (7) = Jo(27 fy7). As
shown in Fig. 6.1, we know that the function Jy(x) has its first zero-point at = ~
2.4048. It is reasonable to suppose that the channel coefficients separated by 7 =
2.4048/ (27 f4) ~ 0.3827/f4 are independent. It clear that the function of h(t) in
(6.1) has the maximum frequency f;. If we try to reconstruct h(t), the sampling
frequency should be fy > 2f; and the sample period Ty < 0.5/f;. Therefore it
is possible to reconstruct channel response with independently generated Rayleigh

distributed random variables.
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Zero-order Bessel functions of the first kind

Bessel Jo(x)

Figure 6.1: The zero-order Bessel function of the first kind Jy(z) =
L [ cos(z cos 0)do.

6.2.1 Time selective channel model

In this section, we present the generation of time selective channel model with
random variables . = gi, + jgr; Where gi, and gy; are Gaussian distributed random
variables with mean zero and variance 0.5. In this case the module of 7 is Rayleigh
distributed. As discussed before, we assume that the samples 7, (k = 1,2,..., K)
are separated by 7o = 2.4048/(27 f4) ~ 0.3827/ f4. According to (6.5), with these K

randomly generated points, h(t) is constructed by

=

-1

r(/fTO)Sin forr(t — KTp)

foﬂ'(t — k’TQ)

h(t)

T
|
= o

sin7(fot — k)
m(fot — k)

’f’(k’TQ)

Ed

=0

where Ty = 79 = 2.4048 /(27 f4) ~ 0.3827/f4 and fo = 1/Ty ~ f3/0.3827. In fact,
with K points, the total time that the channel can cover is Ty, = K1y and the channel
impulse response can only be reconstructed in this time duration. For example, with

fa =10 Hz, T, = K19 =~ 38.27K ms. We illustrate the procedure in Fig. 6.2 and
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Fig. 6.3. The maximum Doppler shifts are f; = 1 Hz and 10 Hz respectively. We
select K' = 200 for both of these two figures. In simualtions, K is set according to
the real situation. The sample periods are Ty =~ 0.3827/f; = 0.3827 s and 38.27 ms
respectively. We can see that the channel with f; = 1 Hz changes more slowly than

the channel with f; = 10 Hz.
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Figure 6.2: Channel reconstruction with f; =1 Hz, K = 200.
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Figure 6.3: Channel reconstruction with f; = 10 Hz, K = 200.

6.2.2 Block-constant MIMO channel model

We first examine the BER performance of DSTM schemes over block-constant

MIMO channel [121|. The channel is assumed to be constant during the transmission
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of one matrix. With M transmit antennas and N receive antennas, during the
coherence interval L, N,, = L/T = L/M transmit matrices will be sent. Thus
N,, channel matrices are needed to multiply the transmit matrices. We interpolate
N,, — 1 channel matrices H(1),..., H(N,, — 1) between two successive randomly
generated channel matrices Rx and Ry, instead of one constant channel matrix
Ryg. The N,, — 1 interpolated channel matrices are related to the passed channel
matrices and also to the future channel matrices.

The interpolated channel sequence H (1), H(2), ..., H(N,, — 1) is generated as

follows:

1. A fix number 2K of Rayleigh distributed matrices are randomly generated,
i.e., Rl; ceay RK, RK—i—l; ceey RQK.

2. With the Nyquist’s sampling theorem, the channel sequence between Ry and

Ry 1 is generated by sinc interpolation.

H{1) HN, -1

|

Figure 6.4: Illustration of the interpolation of the channel matrix H.

In our case, the Rayleigh random matrices R, can be considered as samples of the
continuous channel matrix H separated by the coherence interval, so Ty =T, = LTj.
With 2K randomly generated matrices, we get the N,, — 1 interpolated channel

matrices between the matrices Rx and Ry q:

& sing[fo(KLT, +iMT,) — k]
H(i) =) Ry T fo(K LT, + iMT,) — k]

k=1
_ Z2K sin(K +i/Nyu — k) (6.8)
- k . ;

(K + /Ny, — k)

For example, with 2K = 10 randomly generated Rayleigh channel matrices Ry,
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Figure 6.5: Comparison of the two channel models considering one channel coefficient
hnm, interpolated with the passed and future random variables.

..., R5, Rg, ..., Ry, the number of transmit antennas M = 4, and the normalized
coherence interval L = 160, we get N,, — 1 = 39 interpolated channel matrices H (7)

between Rs and Rg. This procedure is illustrated in Fig 6.4.

The module of one channel coefficient h,,, obtained by interpolation between
the corresponding elements of Ry and Ry, is shown in Fig. 6.5. A complete figure
of the generated channel coefficient h,,, compared with the randomly generated

Rayleigh values is given in Fig. 6.6.

We can see that the channel generated by this method changes slightly for each

two successive transmit matrices as expected.

However, there is still the problem of the selection of the number K. Here, we
resort to the relative error to select appropriate K. As discussed before, with 2 x K
Rayleigh distributed channel matrices, we get N,,, — 1 interpolated channel matrices.
We select a very large number, for example K,,,, = 4000 to get a set of interpolated
reference channel matrices. We estimate that K., = 4000 is large enough to obtain
accurate channel matrices by interpolation. With K decreasing to 1, we get other

Kinar — 1 sets of interpolated channel matrices. Compared with the reference set,
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Figure 6.6: Time variation of the module of one channel coefficient h,,,.
each set has different variations. The sets of interpolated channel matrices are:

{H*(1), H*2),-- ,H*(N,, =D} k=1, , Kpnao- (6.9)

We define the mean relative error as:

Np—1
[ e (i) — HE ()|
€k = , k=12, K. (6.10)
S o1
As the matrices Ry, ..., Rg, Riy1, ..., Rog are generated randomly, the curve

of the relative error is very rough. To smooth the curve, we calculate the relative
error 100 times and get the mean as the final relative error. The curve of relative
error is shown in Fig. 6.7 with K,,,, = 4000 and N,, = 10,50 respectively. We
get the table of relative error versus K in Table 6.1 with N,, = 50 and N,, = 10
respectively. On the basis of these data, we set K = 30 in our simulations. In this

case, the relative error is below 10%.

The performance of the differential MIMO systems are evaluated over the frame
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Figure 6.7: The relative error versus different numbers of k£ with NV,, = 10 and
N, = 50 respectively.

constant channel (step channel) and over the proposed time selective channel (block-

constant channel). We set L = 200, which means that for 2, 4 and 8 transmit

antennas, NV, = 100, 50 and 25 respectively.

Fig. 6.8 shows that for R = 1 bps/Hz, the M8NS scheme offers for BER = 107* a

SNR gain of about 5.5 dB compared to the M4N4 scheme and 17 dB compared to the

M2N2 scheme on the step channel. Over the new continuous channel, similar gains

are obtained with the M8NS8 scheme compared to the M4N4 and M2N2 schemes.

Furthermore, using the continuous channel leads to a degradation compared to the

N, =50 N,, =10
Relative error | K | Relative error | K
2% 389 2% 548
3% 201 3% 229
5% 62 5% 105
9.725% 22 9.678% 21
10.23% 21 10.18% 20

Table 6.1: The values of K for different relative errors with K,,,, = 4000.
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step channel which is about 1 dB for a BER = 10~* with the M8NS8 scheme and
0.6 dB with M2N2 scheme. Similar relative results for R = 2 bps/Hz M8N8, M4N4
and M2N2 schemes are obtained in Fig. 6.9. As expected, the M8NS8 scheme is more
sensitive than the M4N4 and M2N2 schemes to the time selectivity of the channel.

Bit Error Rate

]

—6— MB8NB8RL1 block—constant channel
—O— M8NB8R1 step channel
——H— M4N4R1 block-constant channel
—B— M4N4R1, step channel
—&— M2N2R1 block—constant channel
—&— M2N2R1, step channel

10 15 20
SNR (dB)

Figure 6.8: Performances of differential space-time schemes with R = 1 bps/Hz over
different channel models.

Fig. 6.10 presents the performance of M4N4 DSTM scheme with R = 1 bps/Hz
over the step channel and over the new continuous channel with different normalized
coherence time L. As already mentioned, the faster the channel changes, the smaller
the value of L. Consistent with our supposition, there is a trend that as L grows
the BER performance becomes better. However, for step channel model as used

in [28,29|, the BER performances with different Ls are the same.

6.2.3 Continuously changing MIMO channel model

The channel model used in the previous subsection is still constant during the
transmission of one matrix. Now we apply continuous channel model to our dif-
ferential space-time modulation schemes. The relations among the step channel,

the block-constant channel and the continuous channel are shown in Fig. 6.11. The
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Figure 6.9: Performances of differential space-time schemes with R = 2 bps/Hz over
different channel models.
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Figure 6.10: Performance of the DSTM M4N4R1 scheme with different L.
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Figure 6.11: Channel interpolation with f; = 100 Hz, T, = 25 ps.

number of transmit antennas is M = 8, the maximum Doppler frequency f; = 100

Hz, Ty = 25pus and L = T,./T, = 200.

In this new channel model, the channel coefficients used for two successive
columns of each transmission matrix are slightly changing. With step channel model,

the MIMO system model can be written as:

Y, = HX, + W, (6.11)

where the channel matrix H is constant for different transmission matrices. With

block-constant channel model, the MIMO system model can be written as:

}/; — HtXt ‘l— Wt7 (612)

where the channel matrix H; is changing for different transmission matrices but
constant for different columns within the same transmission matrix. With our new
continuously changing channel model, the channel matrix H; is different for each

column within the same transmission matrix and the MIMO system model should
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Figure 6.12: Performances of differential space-time schemes with R = 1 bps/Hz
over different channel models. The normalized coherence time is L = 200.

be represent in vector form:

ye = Hix + wy, (6.13)

where y;, x; and w; are column vectors from received matrix, transmission matrix

and noise matrix respectively.

The performance of the differential MIMO systems are evaluated over these three
channel models. We set L = 200, i.e., T./Ts = 200, that means for f; = 100 Hz,
Ts = 25 ps and symbol rate fs = 40 KHz.

Fig. 6.12 shows that for R = 1 bps/Hz, with the normalized coherence time
L = 200, DSTM scheme over continuous channel performes similar to those over step
channel. However, DSTM schemes perform better than those over block-constant
channel, which is resulted from the less value of discontinuity of the channel coeffi-
cients for two successively transmitted symbols compared to step channel. Similar
relative results for R = 2 bps/Hz, M8N8, M4N4 and M2N2 schemes are obtained in
Fig. 6.13.

Fig. 6.14 presents the performance of MAN1 DSTM scheme with R = 1 bps/Hz
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Figure 6.13: Performances of differential space-time schemes with R = 2 bps/Hz
over different channel models. The normalized coherence time is L = 200.

over the step channel and the continuous channel with different normalized coherence
time L. The simulation results show that the smaller the coherence time interval is,

which means the fading rate is high, the worse the BER performance will be.

6.3 Conclusion

In this chapter we proposed a simple and more realistic time-selective propagation
channel in order to obtain more reliable estimations of the performance of DSTM
MIMO systems with 2, 4 and 8 transmit antennas. This model is based as usual
on random Rayleigh channel matrices but is completed with intermediate channel
matrices obtained by sinc-interpolation. During the transmission of two successive
matrices, the propagation channel may change, which determines a degradation
of the performance of the differential system. This degradation is evaluated by
simulation for DSTM MIMO systems using 2, 4 and 8 transmit antennas and for two

values of the spectral efficiency. As expected, the degradation is more important for
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Figure 6.14: Performance of the DSTM M4N4R1 scheme with different L over con-
tinuously changing channel model.

MIMO systems using more antennas. Moreover, the degradation is more important
if the normalized coherence time is reduced. Thus, the proposed channel model does
not make a difference between slow and fast Rayleigh channels, the only parameter

making the difference being the normalized coherence time.
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Conclusion and prospect

(General conclusion

At present, the study of multi-antenna systems MIMO (Multiple Input Multi-
ple Output) is developed in many cases to intensively increase the number of base
station antennas ("massive MIMO", "large-scale MIMO" ), particularly in order
to increase the transmission capacity, reduce energy consumed per bit transmitted,
exploit the spatial dimension of the propagation channel, reduce the influence of
fading, etc. For MIMO systems with narrowband spectrum or those using OFDM
technique (Orthogonal Frequency Division Multiplex), the propagation channel (or
the sub-channels corresponding to each sub-carrier of an OFDM system) are sub-
stantially flat (frequency non-selective). In this case the frequency response of each
SISO channel is invariant with respect to frequency, but variant in time. Further-
more, the MIMO propagation channel can be characterized in baseband by a matrix
whose coefficients are complex numbers. Coherent MIMO systems need to have the
knowledge of the channel matrix to demodulate the received signal. Therefore, peri-
odic pilot should be transmitted and received to estimate the channel matrix in real
time. The increase of the number of antennas and the change of the propagation
channel over time, sometimes quite fast, makes the channel estimation quite difficult
or impossible. It is therefore interesting to study differential MIMO systems that do
not need to know the channel matrix. For appropriate operation of these systems,

the only constraint is that the channel matrix varies slightly during the transmission
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of two successive information matrices.

The subject of this thesis is the study and analysis of new differential MIMO
systems. We consider systems with 2, 4 and 8 transmit antennas, but the method
can be extended to MIMO systems with 2" transmit antennas, the number of receive

antennas can be any positive integer.

For MIMO systems with two transmit antennas that were studied in this thesis,
information matrices are elements of the Weyl group. For systems with 2" (n > 2)
transmit antennas, the matrices used are obtained by performing the Kronecker
product of the unitary matrices in Weyl group.

For each number of transmit antennas, we first identify the number of available
matrices and the maximum value of the spectral efficiency. For each value of the
spectral efficiency, we then determine the best subsets of the information matrices
to be used (depending on the spectrum of the distances or the diversity product
criterion). Then we optimize the correspondence or mapping between binary vectors
and information matrices. Finally, the performance of differential MIMO systems
are obtained by simulation and compared with those of existing similar systems.

For simulation of the proposed system, we first selected a simple Rayleigh channel
model, which is widely used in the literature. In this channel model, the channel
matrix is constant for a time interval of a certain length determined by the coherence
time of the propagation channel. Each new channel matrix is obtained by a random
draw, independent from previous draws. This channel model is impractical and, for
the differential systems, need to simulate a periodic reset of the system, whenever
using another channel matrix. To evaluate the performance of the new proposed
systems in more realistic conditions and escape the periodic reset of the analyzed
system, we introduced a variation of the channel matrix between two successive
random draws by using the sampling theorem. However, in the first approach, the
channel matrix is considered to be constant during the transmission of an information
matrix. Simulations with this new channel model made it possible to spotlight
some performance degradation due to the channel characteristic, especially when
the normalized coherence time with respect to the duration of a transmitted symbol

is small and therefore, when the propagation channel varies rapidly.
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Finally, we considered the second even closer approach to reality, where the
channel matrix remains constant during the transmission of only a symbol. In this

case there is a further performance degradation.

Prospects

Our research can be further exploited in four directions. Firstly,we can use error-
correcting codes before the DSTM schemes. In order to improve the performance
of DUSTM schemes, especially for larger values of the spectral efficiency, an error
correcting code can be used, as in the case of SISO systems. Depending on the prop-
agation channel, it is possible to use a simple error-correcting code like Hamming’s
code or more powerful codes as the Reed-Solomon code RS(255,239).

Secondly, the spectral efficiencies of our proposed systems are limit. For exam-
ple, the maximum spectral efficiencies for MIMO systems with 2, 4 and 8 transmit
antennas are 3.5, 3 and 2 bps/Hz respectively. Therefore, expanded groups should
be designed for MIMO systems with large spectral efficiencies.

Thirdly, the proposed schemes are suitable for MIMO systems with 2" trans-
mit antennas. According to some exiting method [37,41,42|, our schemes can be
expanded to systems with any number of transmit antennas.

Finally, our proposed systems are suitable for point-to-point wireless communi-
cations. New methods could be studied to expand our schemes to MIMO systems

with multiple users, for example, "large-scale MIMO" or "massive MIMO".
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Gaussian random variables, vectors and matrices

Gaussian random variables are widely used in the research of wireless communi-
cations. In this appendix, we present the definition of Gaussian random variables,

vectors and matrices. We also give the entropy for each case.

A.1 Gaussian random variables

If x is real Gaussian random variable with mean g and variance o2, i.e., its pdf

1s
1 2 2
— —(z=p)*/(20%)
p(x) = 27T026 . (A.1)

We write x ~ N (11, 02). The entropy of the random variable x is:

H(z) = —Ellog p(z)] = %log(%az) + (log )E[(z — p)?]/(20%)
(A.2)

1
=3 log(2mea?).

If the real and imaginary parts of the complex random variable z = x + jy are
independent with the same variance "2—2, and p = E(z) € C, then we say that z is
circularly symmetric, and we write z ~ CN (u, 0?). Its pdf is the product of its real

and imaginary part:

1 a2 /02
p(z) = 3 lz=nl*/o”, (A.3)

In fact, by definition, z is circularly symmetric if e*¥z has the same probability
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distribution as z for all real . The entropy of the random variable z is:

H(z) = —Ellog p(2)] = log 70? + (log ¢)E[|= — u[?] /o

= log(mea?)

A.2 Gaussian random vectors

T

A real random vector x = (x1,...,x,)" is called Gaussian if its components are

jointly Gaussian, that is, if their joint pdf is

1 1 T p-1
x) = expl—=(x — pux) Ry (x — px
P) = (e e P 06 ) R o )
1 1 1 , (A.5)
= exp{—=Tr|R_ " (X — tx) (X — Lix )
e e P TR G ) = )]
Where Ry is a nonnegative definite n X n matrix, the covariance matrix of x:
Ry = Bl(x — pix) (x — p1x)"] = E[xx"] — prcpiy- (A.6)

The probability density function of a circularly symmetric complex Gaussian

random vector z is given by

p(z) = det(nR,) " exp{—(z — j1z) " R, (z — 1)}

= det(7R,) " exp{—Te[R, " (z — p1,)(z — 1) "]}.

where

R, =E[(z — p1,)(z — ,UZ)H] = E[ZZH] - :uzluf- (A.8)

A.3 Gaussian random matrices
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Résumé

Actuellement, I'étude des systémes multi-antennaires MIMO (Multiple
Input Multiple Output) est orientée dans beaucoup de cas vers
I'augmentation considérable du nombre d’antennes de la station de base
(« massive  MIMO », «large-scale MIMO »), afin notamment
d’augmenter la capacité de transmission, réduire I'énergie consommée
par bit transmis, exploiter la dimension spatiale du canal de propagation,
diminuer l'influence des évanouissements, etc. Pour les systemes MIMO
a bande étroite ou ceux utilisant la technigue OFDM (Orthogonal
Frequency Division Multiplex), le canal de propagation (ou les
sous-canaux correspondants a chaque sous-porteuse d’un systeme
OFDM) sont pratiguement plats (non-sélectifs en fréquence), ce qui
revient a considérer la réponse fréquentielle de chaque canal SISO
invariante par rapport a la fréquence mais variante dans le temps. Ainsi,
le canal de propagation MIMO peut étre caractérisé en bande de base
par une matrice dont les coefficients sont des nombres complexes. Les
systemes MIMO cohérents nécessitent pour pouvoir démoduler le signal
en réception de disposer de la connaissance de cette matrice de canal,
donc le sondage périodique, en temps réel, du canal de propagation.
L’augmentation du nombre d’antennes et la variation dans le temps,
parfois assez rapide, du canal de propagation, rend ce sondage de
canal difficile, voire impossible. Il est donc intéressant d’étudier des
systemes MIMO différentiels qui n'ont pas besoin de connaitre la
matrice de canal. Pour un bon fonctionnement de ces systémes, la seule
contrainte est que la matrice de canal varie peu pendant la transmission
de deux matrices d’information successives.

Le sujet de cette these concerne I'étude et I'analyse de nouveaux
systemes MIMO différentiels. On considére des systémes a 2, 4 et 8
antennes d’émission, mais la méthode utilisée peut étre étendue a des
systémes MIMO avec 2" antennes d’émission, le nombre d’antennes de
réception étant quelconque.

Pour les systémes MIMO avec 2 antennes d’émission qui ont été étudiés
dans le cadre de cette thése, les matrices d’information sont des
¢éléments du groupe de Weyl. Pour les systémes avec 2" antennes
d’émission, (n = 2), les matrices utilisées sont obtenues en effectuant
des produits de Kronecker des matrices unitaires du groupe de Weyl.
Pour chaque nombre d’antennes d’émission on identifie d’abord le
nombre de matrices disponibles et on détermine la valeur maximale de
I'efficacité spectrale. Pour chaque valeur de l'efficacité spectrale on
détermine les meilleurs sous-ensembles de matrices d’information a
utiliser (selon le spectre des distances ou le critere du produit de
diversité). On optimise ensuite la correspondance ou mapping entre les
vecteurs binaires et les matrices d’information. Enfin, on détermine par
simulation les performances des systemes MIMO différentiels ainsi
obtenus et on les compare avec celles des systemes similaires
existants.

Pour la simulation des systémes proposés, on a d’abord sélectionné un
modele simple de canal de Rayleigh, largement utilisé dans la littérature,
en considérant la matrice de canal constante pendant un intervalle de
temps d’une certaine durée déterminée par le temps de cohérence du
canal de propagation. Chaque nouvelle matrice de canal s’obtient par un
tirage aléatoire, indépendant des tirages précédents. Ce modéle de
canal est peu réaliste et, pour les systemes différentiels, impose pour la
simulation une réinitialisation périodique du systéme, chaque fois qu'on
utilise une autre matrice de canal. Afin de déterminer les performances
des nouveaux systémes proposés dans des conditions plus réalistes et
échapper a la réinitialisation périodique du systeme analysé, nous avons
intégré une variation de la matrice de canal entre deux tirages aléatoires
successifs en utilisant le théoréme de I'échantillonnage. Cependant,
dans cette premiére approche, la matrice de canal est considérée
comme constante durant I'émission d’'une matrice. Les simulations
effectuées avec ce nouveau modéle de canal ont permis de mettre en
évidence une certaine dégradation des performances, surtout quand le
temps de cohérence normalisé par rapport a la durée d’'un symbole émis
est réduit et donc, quand le canal de propagation varie rapidement.
Dans un second temps, nous avons considéré une seconde approche
encore plus proche de la réalité, pour laquelle la matrice de canal reste
constante durant uniquement I'’émission d’'un symbole. On observe dans
ce cas une dégradation supplémentaire des performances.
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Abstract

At present, the study of multi-antenna systems MIMO (Multiple Input
Multiple Output) is developed in many cases to intensively increase the
number of base station antennas ("massive MIMO", "large-scale
MIMO" ), particularly in order to increase the transmission capacity,
reduce energy consumed per bit transmitted, exploit the spatial
dimension of the propagation channel, reduce the influence of fading,
etc. For MIMO systems with narrowband or those using OFDM
technique (Orthogonal Frequency Division Multiplex), the propagation
channel (or the sub-channels corresponding to each sub-carrier of an
OFDM system) are substantially flat (frequency non-selective). In this
case the frequency response of each SISO channel is invariant with
respect to frequency, but variant in time. Furthermore, the MIMO
propagation channel can be characterized in baseband by a matrix
whose coefficients are complex numbers. Coherent MIMO systems
need to have the knowledge of the channel matrix to be able to
demodulate the received signal. Therefore, periodic pilot should be
transmitted and received to estimate the channel matrix in real time. The
increase of the number of antennas and the change of the propagation
channel over time, sometimes quite fast, makes the channel estimation
quite difficult or impossible. It is therefore interesting to study differential
MIMO systems that do not need to know the channel matrix. For proper
operation of these systems, the only constraint is that the channel matrix
varies slightly during the transmission of two successive information
matrices.

The subject of this thesis is the study and analysis of new differential
MIMO systems. We consider systems with 2, 4 and 8 transmit antennas,
but the method can be extended to MIMO systems with 2" transmit
antennas, the number of receive antennas can be any positive integer.

For MIMO systems with two transmit antennas that were studied in this
thesis, information matrices are elements of the Weyl group. For
systems with 2" (n = 2) transmit antennas, the matrices used are
obtained by performing the Kronecker product of the unitary matrices in
Weyl group.

For each number of transmit antennas, we first identify the number of
available matrices and the maximum value of the spectral efficiency. For
each value of the spectral efficiency, we then determine the best subsets
of information matrix to use (depending on the spectrum of the distances
or the diversity product criterion). Then we optimize the correspondence
or mapping between binary vectors and matrices of information. Finally,
the performance of differential MIMO systems are obtained by
simulation and compared with those of existing similar systems.

For simulation of the proposed system, we first selected a simple
Rayleigh channel model, which is widely used in the literature. In this
channel model, the channel matrix is constant for a time interval of a
certain length determined by the coherence time of the propagation
channel. Each new channel matrix is obtained by a random draw,
independent from previous draws. This channel model is impractical
and, for the differential systems, need to simulate a periodic reset of the
system, whenever using another channel matrix. To evaluate the
performance of the new proposed systems in more realistic conditions
and escape the periodic reset of the analyzed system, we integrated a
variation of the channel matrix between two successive random draws
by using the sampling theorem. However, in the first approach, the
channel matrix is considered to be constant during the transmission of a
matrix. Simulations with this new channel model made it possible to
spotlight some performance degradation due to the channel
characteristic, especially when the normalized coherence time with
respect to the duration of a transmitted symbol is reduced and therefore,
when the propagation channel varies rapidly .

Finally, we considered the second even closer approach to reality,
where the channel matrix remains constant during the transmission of
only a symbol. In this case there is a further performance degradation.
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