
HAL Id: tel-01229884
https://hal.science/tel-01229884

Submitted on 17 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

A Model-Driven Approach for Designing Multi-platform
User Interface Dialogues

Efrem Mbaki

To cite this version:
Efrem Mbaki. A Model-Driven Approach for Designing Multi-platform User Interface Dialogues.
Ubiquitous Computing. Université catholique de Louvain, 2013. English. �NNT : �. �tel-01229884�

https://hal.science/tel-01229884
https://hal.archives-ouvertes.fr

A Model-Driven Approach for
Designing Multi-platform
User Interface Dialogues

By Efrem MBAKI LUZAYISU

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Computer Science

of the Ecole Polytechnique de Louvain,

Université catholique de Louvain

Examination committee:

Prof. François BODART, Facultés Univ. Notre-Dame de la Paix, Reader

Prof. Manuel KOLP, Université catholique de Louvain, Reader
Prof. Christophe KOLSKI, Université de Valenciennes, France, Examiner

Prof. Jean VANDERDONCKT, Université catholique de Louvain, Advisor

Prof. Christophe De VLEESCHOUWER, Université catholique de Louvain, President

Prof. Marco WINCKLER, Université Paul Sabatier, France, Examiner

March 2013

 ii

 iii

Acknowledgements

I would like to express my thanks to:

− My advisor, Prof. Jean Vanderdonckt, for his constant support and enthusiasm

regarding my work.

− Professors François Bodart, Christophe Kolski, Manuel Kolp, Christophe De

Vleeschouwer and Marco Winckler for accepting to participate to the jury of this

thesis and for their constructive comments brought to earlier versions of this

manuscript.

− My colleagues from the Louvain Interaction Laboratory (Lilab) at Université

catholique de Louvain and from Orfival SA.

− My family and friends.

This thesis has been achieved thanks to the support of:

− Pole of Research on Information and Services Management and Engineering

(PRISME) at LSM.

− The SIMILAR network of excellence supported by the 6th Framework Program of the

European Commission, under contract FP6-IST1-2003-507609 (www.similar.cc).

− The UsiXML Project supported by the ITEA2 Call 3 Program of the European

Commission, under contract 2008026 (www.UsiXML.org).

− The SERENOA Project supported by the 7th Framework Program of the European

Commission, under contract FP7-ICT5-258030 (www.serenoa-fp7.eu)

https://lilab.isys.ucl.ac.be/
http://www.orfival.be/
http://www.similar.cc/

 1

Table of Contents

TABLE OF CONTENTS ... 1

TABLE OF FIGURES .. 5

TABLE OF TABLES .. 7

TABLE OF ABBREVIATIONS ... 8

CHAPTER 1 INTRODUCTION .. 10

1.1 Motivations .. 10
1.1.1 Challenge of Modelling Dialogues ... 10
1.1.2 Complexity of dialogue .. 10

1.1.3 Designing dialogue ... 11

1.2 What is dialogue or Behaviour .. 12
1.2.1 Generic definition ... 12
1.2.2 Particularity .. 12

1.3 Illustrations ... 13
1.3.1 Disney Humanoid Robot .. 13
1.3.2 Ticket machine ... 14

1.3.3 Surgery robot .. 14

1.3.4 Wii gameplay ... 15

1.4 Dialogue aspects .. 16
1.4.1 Cognitive Aspects ... 16
1.4.2 Conceptual Aspects .. 17
1.4.3 Implementation Aspects ... 17
1.4.4 Handling Aspects ... 18

1.5 Thesis ... 18
1.5.1 Thesis statement ... 18
1.5.2 Some Definitions .. 22

1.6 Reading Map ... 24

CHAPTER 2 STATE OF THE ART .. 26

2.1 Abstract Machines .. 27
2.1.1 Backus-Naur Form (BNF) grammars ... 27
2.1.2 State transition diagram .. 29

 2

2.1.3 Statecharts .. 30
2.1.4 And-Or graphs .. 30

2.1.5 Event-Response Languages .. 31
2.1.6 Petri Nets .. 32

2.2 Model-Driven Engineering .. 33
2.2.1 Introduction .. 33

2.2.2 MDE objective ... 34
2.2.3 MDE Basic Principles .. 35

2.3 User Interface Description Languages (UIDLs) .. 36
2.3.1 Extensible Interface Markup Language (XIML) .. 37
2.3.2 Hypertext Markup Language (HTML) ... 38
2.3.3 Wireless Markup Language (WML) .. 38
2.3.4 Voice Extensible Markup Language (VoiceXML) .. 39

2.4 UsiXML ... 39
2.4.1 Data Structure ... 40
2.4.2 Task Model ... 43

2.4.3 Domain Model .. 43

2.4.4 AUI Model ... 44
2.4.5 CUI Model .. 47
2.4.6 Dialogue Model .. 49

2.5 Conclusion ... 49
2.5.1 Overview .. 49

2.5.2 Concerns ... 55

CHAPTER 3 MODEL-DRIVEN ENGINEERING OF BEHAVIOURS 56

3.1 Methodology .. 57
3.1.1 Preliminary ... 57
3.1.2 Cameleon Reference Framework ... 59

3.1.3 Model-Driven Engineering ... 60
3.1.4 Applying the methodology ... 64

3.2 Conceptual Model ... 66
3.2.1 Dialogue granularity ... 66
3.2.2 Interactive object .. 67
3.2.3 Behaviour Model .. 68

3.3 Implementation ... 77
3.3.1 Software architecture .. 78
3.3.2 Programming .. 79

3.3.3 Script Editor ... 82
3.3.4 Mapping Editor ... 84

3.4 Conclusion ... 89

 3

CHAPTER 4 APPLICATIONS OF SOFTWARE SUPPORT 90

4.1 Basic samples .. 90
4.1.1 Statement .. 90
4.1.2 Dialogue granularity ... 91

4.2 Connection Sample ... 92
4.2.1 Project editing ... 92

4.2.2 Project transforming ... 93
4.2.3 Code generating .. 93
4.2.4 Conclusion .. 94

4.3 CTI Application .. 94
4.3.1 Software components ... 94
4.3.2 Transaction Order data structure .. 97
4.3.3 Using Dialog Editor .. 97

4.4 Conclusion ... 101

CHAPTER 5 QUALITY CHARACTERISTICS OF DIALOG EDITOR 102

5.1 The Interviews .. 103
5.1.1 The questionnaire ... 103

5.1.2 Demographic data ... 105
5.1.3 Analysis of replies .. 107

5.2 Satisfaction survey .. 110
5.2.1 Methodology .. 112
5.2.2 Results and discussions .. 112

5.3 Applying ISO/IEC 9126 Sofware Engineering .. 117
5.3.1 Functionality ... 117

5.3.2 Reliability ... 118
5.3.3 Usability ... 119
5.3.4 Efficiency ... 121
5.3.5 Maintainability ... 121
5.3.6 Portability ... 122

5.3.7 Conclusion .. 122

5.4 Conclusion ... 122

CHAPTER 6 CONCLUSION .. 123

6.1 Global view .. 123

6.2 Summary of results .. 125
6.2.1 Theoretical and conceptual contributions ... 125

6.2.2 Methodological contribution .. 126

 4

6.2.3 Tools developed ... 126

6.3 Future work in prospect .. 129

REFERENCES .. 130

ANNEX A. PASSWORD EVALUATION ... 141

 5

Table of Figures
Figure 1. Disney’s Humanoid Robot learns to Play ... 13
Figure 2. Tokyo train ticket machine. .. 14

Figure 3. Surgery robot. ... 15
Figure 4. Playing golf with Wii. ... 16

Figure 5. Methodological Approach... 20
Figure 6. Reading Map. .. 24
Figure 7. Sample of BNF Rule. .. 28
Figure 8. Connection Sample; using BNF Rule. .. 29
Figure 9. Connec tion Sample, State transition diagram. ... 29

Figure 10. Connection Sample; Statechart diagram. .. 30
Figure 11. Sample Connection, And-OR Graph. ... 31
Figure 12. Sample Connection, Event-Response Diagram. ... 31
Figure 13. Sample Connection, Petri net. ... 32

Figure 14: Model complexity as a function of their expressiveness. 33
Figure 15. MDE Equation. ... 33

Figure 16. Object technology & Model engineering. ... 35
Figure 17. Constituent models in UsiXML. ... 40

Figure 18. Meta-model of the UsiXML task model. .. 42
Figure 19. UsiXML Task Model. ... 43
Figure 20. Meta-model of the UsiXML domain model. .. 44

Figure 21. Meta-model of the UsiXML Abstract User Interface. 46
Figure 22. Concrete Interaction Objects in UsiXML: upper part of the hierarchy. 47

Figure 23. Method frame in Methodological diagram. .. 56
Figure 24. Models frame in Methodological diagram. ... 57
Figure 25. Software frame in Methodological diagram. .. 57
Figure 26. Application of CFR in our research. ... 60

Figure 27. Applying MDE with Toolkits. .. 61
Figure 28. Three types of engineering in Contexte of Use. ... 62

Figure 29. Extended Context of Use .. 63
Figure 30. Methodology steps. ... 64
Figure 31. Project Editing Algorithm. .. 65
Figure 32. The hierarchy of interactive objects classes. ... 68
Figure 33. Internal and external representation of Toolkits. .. 69

Figure 34. Conceptual modelling of behaviours for model-driven engineering. 70
Figure 35. Internal and external representation of mappings. .. 72
Figure 36. Example of a mapping for reverse engineering. ... 73
Figure 37. Example of "one-to-many" mapping. ... 74

Figure 38. Example of mapping for lateral engineering... 74
Figure 39. Dialogue script of an interactive object. ... 75
Figure 40. Script of Connection Class In Dialog Editor. ... 76

Figure 41. Recovering a previously saved history. .. 77
Figure 42. Dialog Editor Architecture. ... 78
Figure 43. Dialog Editor functional overview. ... 79

 6

Figure 44. Project main window in Dialog Editor. .. 79
Figure 45. Video demonstrations of the Dialog Editor. ... 80

Figure 46. A Recordset for native objects. ... 81
Figure 47. XML file corresponding to a UI Project. .. 82
Figure 48. Script Editor. ... 83
Figure 49. Objects Mapping. .. 85
Figure 50. Transformation rule... 85

Figure 51. Mapping interface. .. 88
Figure 52. Dialogue granularity. .. 91

Figure 53. Final User Interfaces of Login & Password. ... 92
Figure 54. Global view of CTI Application. .. 94
Figure 55. CTI application components. .. 95
Figure 56. CTI Configuration UI.. 95
Figure 57. CTI Transaction UI. .. 95

Figure 58. CTI network agencies. .. 96
Figure 59. CTI Order by UML data model. ... 97

Figure 60. Open questionnaire used for interviews .. 104
Figure 61. Respondents Gender ... 105

Figure 62. Respondents Ages ... 106
Figure 63. Respondents Studies ... 106

Figure 64. Respondents Occupation ... 107
Figure 65. CSUQ questionnaire used for the satisfaction survey 111

Figure 66. CSUQ Parameters for Dialog Editor ... 112
Figure 67. Queries' cumulative assessments .. 114
Figure 68. Queries' standard deviation ... 115

Figure 69. The six quality characteristics of a software. .. 117
Figure 70. Dialog Scripting Interface ... 120

Figure 71. Global architecture. ... 142
Figure 72. Dialogue Automata. .. 142

Figure 73. VB6 Password Interface.. 143
Figure 74. Visual Basic 6 IDE. ... 144
Figure 75. Adding Form in VB6 IDE. .. 145

Figure 76. VB6 IDE, adding Component. .. 146
Figure 77. Dialog Editor, adding items. ... 147

Figure 78. Dialog Editor, resizing item. ... 148
Figure 79. Dialog Editor, Choosing Mapping. ... 149
Figure 80. VB6 code of cMachine class. .. 151
Figure 81. VB6 code of Controller script. .. 152
Figure 82. VB6 of cBehaviour class. ... 153

Figure 83. VB6 code of Initialization Module. .. 154

Figure 84. VB6 Project Explorer. ... 155

Figure 85. Opening Project. ... 156
Figure 86. Project objects tree. ... 157
Figure 87. Fixing Properties. .. 157

 7

Table of tables

Table 1. Dialogues Properties .. 50

Table 2: Dialogue Formalisms Vs. Dialogue properties .. 52
Table 3. Interactive objects of the login & password example. 92
Table 4. Mapping from Abstract to Concrete .. 93
Table 5. Mappings from Concrete to Final User Interface. ... 93

Table 6. Tasks time distribution... 98
Table 7. Spent time for CTI Application. .. 99
Table 8. Code lines number for CTI Application. ... 100
Table 9. Analysis and Design Survey Feedback .. 108

Table 10. Modeling Survey Feedbacks .. 108
Table 11. Code Generation Survey Feedback.. 109
Table 12. Cumulative responses assessments by query ... 113
Table 13. Per question statistics ... 115

Table 14: Current State of Dialog Editor ... 127
Table 15: Comparison user interface ... 149

Table 16. Comparison behaviour. .. 158

 8

Table of Abbreviations

ABBREVIATION FULL NAME

AC Abstract Container

ADO ActiveX Data Object

AGG Attributed Graph Grammar

AIC Abstract Individual Components

AIO Abstract Interaction Objects

AUI Abstract User Interface

BNF Backus-Naur Form

CIM Computing-Independent Model

CIO Concrete Interaction Objects

CRF Cameleon Reference Framework

CSS Cascading Style Sheets

CTI Congo Transfer International

CTT ConcurTaskTree

CUI Concrete User Interface

CUI Concrete User Interface

CUSQ Computer Usability Satisfaction Questionnaires

DBMS Data Base Management Systems

DSL Domain-Specific Language

DSM Domain-Specific Model

ECA Event-Condition-Action

FUI Final User Interface

GUI Graphical User Interface

HCI Human-Computer Interaction

HTA HTML for Applications

HTML HyperText Markup Language

IDE Integrated Development Environment

InfoQual Information Quality

IntQual Interface Quality

IOG Interaction Object Graph

IOG Interactive Objects

IS Information System

KBE Knowledge-Based Engineering

M2C Model-to-Code

M2M Model-to-Model

MDA Model-Driven Architecture

 9

MDE Model-Driven Engineering

MIPIM Multimodal Interface Presentation and Interaction Model

PC Personal Computer

PSM Platform-Specific Model

SysUse System Usefulness

TA Transformation Atom

TAG Task-Action Grammar

TM Transformation Mapping

TR Transformation Rule

UI User Interface

UIDL User Interface Description Language

UIML User Interface Markup Language

USIXML USer Interface eXtensible Markup Language

VB Visual Basic

VBA Visual Basic for Applications

VoiceXML Voice Extensible Markup Language

WAP Wireless Application Protocol

WML Wireless Markup Language

XIML eXtensible Interface Markup Language

1. Introduction

 10

Chapter 1 Introduction

1.1 Motivations

As a first step, we analyze the reasons for our interest in the design of dialogues; we
examine the challenge of working on or modelling interactive dialogues, the complexity
of dialogues for interactive applications and the sophistication of designing dialogues.

1.1.1 Challenge of Modelling Dialogues

Natural language is at the heart of human dialogue, probably the most frequently used

communication channel ever. Information Systems (ISs) do not escape from this

observation: probably the most important part of an IS today lies in its capabilities to

communicate information quickly, precisely and in a reliable way. More particularly, the

User Interface (UI) of this IS is also concerned as it is considered to be the primary way

of communicating with end users, who do not necessarily speak the IS’s language but

their own language with their own dialogue.

Many aspects may influence the dialogue between a UI and its end users in any context

of use [Cal03]: aspects related to the end user (e.g. native language, cultural background),

aspects related to the computing platform (e.g. application type, operating systems, Integrated

Development Environment (IDE) used, technical requirements) and aspects related to the

environment in which the end user is carrying out her/his task with the IS (e.g. the

location, the organization, the human factors of the corporate environment). Because of

this diversity, designing any dialogue between a system and its end users remains a

permanent challenge.

1.1.2 Complexity of dialogue

As known, computer applications progress constantly in term of complexity [Gat08,

Han03]. In parallel, users’ needs become vary increasingly in interactive application.

Indisputably, human-computer interaction becomes sophisticated, multimodal and multi

device. This reality can be justified by the fact that computers today reach unimaginable

levels of performance in calculation and memory.

Computers used to work in milliseconds, then moved up to microseconds and now are

approaching nanoseconds for logic operations and picoseconds for the switches and

gates in chips. Currently, NASA scientists are working to solve the need for computer

speed using light itself to accelerate calculations and increase data bandwidth. What they

are accomplishing in the lab today will result in the development of super-fast, super-

miniaturized, super-lightweight and lower-cost optical computing and optical

communication devices and systems.

1. Introduction

 11

Human-Computer Interaction (HCI) is one of the fields most affected by the aforementioned

evolution. Before continuing, let us recall that HCI is a discipline concerned with the

design, evaluation and implementation of interactive computing systems for human use

and with the study of major phenomena surrounding them. Certainly, we note that the

power of the computer never ceases to inspire HCI’ researchers. For example, a team of

researchers has lately developed a system that uses computer vision to replace standard

computer mouse functions with hand gestures [Car98, Duc07]. The system is designed to

enable noncontact HCI, so that surgeons will be able to make more effective use of

computers during surgery.

1.1.3 Designing dialogue

Interactive applications implemented in context described above must be well-designed

with the aim of facilitating application correction (i.e. to correcting errors/bugs in the

application) or extension (i.e. adding new functionalities or modifying existing tasks). In

short, developer (designer, analyst or programmer) needs to have powerful tools which

can enable him to have a total control of its application. In others words:

 The developer must have a good requirements specification which defines ‘the best

vision’: the target to aim at for throughout project. Skipping the specification phase,

or not covering the details sufficiently, can lead to the same kind of

misunderstanding between parties that can occur with an oral contract. Thus, having

a good initial specification helps advance the subsequent design and implementation

phases to successful conclusion. A good specification gives a well-defined target to

aim for but it does not guarantee that the target will not move.

 Once the specification is written, the developer must design his/her projects by

partitioning the system into individual parts; defining and documenting the interfaces

between the individual parts; deciding on and documenting the architecture of

his/her solution, and deciding on and documenting the toolbox, libraries or

components to be used.

In the development process, user interface design is so essential because in the opinion

of many developers, over half of the development time is spent on the user interface

portion. Indeed, apart from the characteristics of the computers to be used, the choice is

not always easy for good language/toolbox/libraries for a good user interface relative to

an interactive application. Also, a good part of the code is related to user interface.

In addition, with the advent of the Internet, a series of unique challenges are posed for

user interface design and development. New applications with innovative user interfaces

are emerging (e.g. an e-commerce application with multiple user interfaces for personal

digital assistants, Web, mobile telephone, etc.). For these applications, the developer does

not necessarily know users’ needs and stereotypes and/or cannot sit down with them and

walk them through the system. Therefore, adaptation and customization are now parts of

the software developer's job. It is already true that people find that about 80% of

1. Introduction

 12

software maintenance costs result from the problems users have with what the system

does (usability), rather than from technical bugs.

User-centred design and usability testing are cost-effective solutions to this problem. So,

easy to use (usability) oriented software development enhances human productivity and

performance, reduces training time and costs, increases employee autonomy and

performance, guarantees job quality due to uniform work practices as well as facilitates

knowledge capitalization.

Before continuing, let us look in more deep at the notion of dialogue which constitutes

our main theme.

1.2 What is dialogue or Behaviour

Now, let's understand what we mean by the term dialogue and fix the particularity of
dialogues that we aim.

1.2.1 Generic definition

According to the Larousse dictionary, to communicate is to make common, to share or

to transmit. Vivier [Viv96] states that the dialogue is a particular case of communication.

Indeed, during a dialogue two or several entities interact together, often with the

objective of producing an agreement. Thus, a dialogue supposes at least:

 A transmitter: the activated entity at a given moment of the dialogue. The entity who

engages, who acts, at a certain moment of communication;

 A receiver: the non-activated entity at a given moment of the dialogue. The

participating entities regularly exchange the roles of receiver and transmitter;

 A message: the unity of the emitted data or information;

 A code: the language and/or the jargon used as channel to pass the message;

 An objective: the goal of the message.

1.2.2 Particularity

Our research is focused particularly on dialogues whose entities for communication are respectively a

human being and a machine. Thus, to avoid confusion with the concept of conversation,

dialogue, that is more generic, we adopt the term behaviour in this thesis. Indeed, we are

interested in behaviour, more precisely in the specification of actions and/or information

exchange, of human and/or machine actors during the execution process of an

interactive task (e.g. pushing on a remote control to change television channel, seeking

information on the Internet with a web navigator, transcribing orally a text via a program

of voice recognition, etc.).

It is easy to continue this list because of, firstly, the constant progress of communication

and information technologies, and, secondly, the type of the application which required

more and more data flow.

1. Introduction

 13

Moreover, the modern world is characterized by a remarkably rich evolution with regard

to interaction technologies: on the one hand, traditional interaction technologies by

graphical interface (windows, buttons, mouse, keyboards, sensors with wire or embarked,

etc.), and, on the other hand, remote interaction, or sensitive interaction, which uses

technologies containing sensors (distance, presence, displacement, sound, colour,

temperature, etc.) of system of recognition per camera and computer, linked to systems

of real-time analyses. Let us consider four examples that support our observations:

1.3 Illustrations

To fix ideas, let us consider four examples to illustrate the dialogue in interactive
systems. These illustrations have the advantage of showing the diversity and the
complexity of human-machine dialogues.

1.3.1 Disney Humanoid Robot

Disney aims to bring more physical interactions between visitors and its attractions
machines. Disney Research Center have developed [Yam09, Yam10] a humanoid robot
which has the capability of playing catch and juggling while still maintaining a safe
distance between itself and participants - responding to entertainment robots in theme
park environments which typically do not allow for physical interaction and contact with
guests. An external camera system (ASUS Xtion PRO LIVE) is used to locate balls and
a Kalman filter to predict ball destination and timing.

Figure 1. Disney’s Humanoid Robot learns to Play

The robot’s hand and joint-space are calibrated to the vision coordinate system using a
least-squares technique, such that the hand can be positioned to the predicted location.

1. Introduction

 14

1.3.2 Ticket machine

The touch screens for the purchase of transport documents, train tickets for example, are

characterized by a simple and easily communication in appearance. But, in-depth this

machine offers a powerful functionality. Indeed, in the case of cash payment, the

machine is able to recognize money, to compute (addition, subtraction or multiplication),

to print the difference between the price of the requested transport document and the

money received. In the case of bank card payment, the machine is able to start a banking

order to request in real-time the debit of the client account. Any transaction error

between the customer and the machine can have unfortunate consequences. For

example, traveller may not have his/her ticket and thus miss his/her transport, or, the

company could lose money because the machine debits insufficient funds.

Figure 2. Tokyo train ticket machine.

1.3.3 Surgery robot

In surgery, computers assist surgeons in the realization of a diagnosis or the most

precise and least invasive therapeutic gestures possible.

1. Introduction

 15

Figure 3. Surgery robot.

In such an environment, the interface introduced between the surgeon and the

patient revolutionizes many aspects. As we can see in the images Figure 3, one of the

robots used in surgery is composed of a console of surgery with stereo viewer with

three-dimensional display incorporated, a carriage of surgery with arms of

instrumentation and a carriage of imagery. The surgeon operates using two

manipulators. On the screen of posting, the ends of the instruments are aligned with

the manipulators to ensure the natural and foreseeable movements of the

instruments.

1.3.4 Wii gameplay

The Wii gameplay revolutionizes human-machine interaction in video games. Its

interface makes it possible to play golf by making real gestures, the swing for

example. It is also possible to fight with genuine punches in the air. In terms of

interface, there is a clear rupture compared to the other plays with the console or the

screen only. Wii allows the combination of several widgets simultaneously. Indeed,

the real revolution in this system is its controller, called the Wii Remote. Shaped like

a TV remote, it has been designed to be used easily by beginners and pros alike.

Sensors determine the Wii Remote's position in 3-D space, which means that racing-

1. Introduction

 16

game steering and a tennis swing, for example, are done through movements of the

player’s hand/arm rather than by just his thumbs.

Figure 4. Playing golf with Wii.

1.4 Dialogue aspects

Among all models involved in Model-Driven Engineering (MDE) of User Interfaces

(UIs) of any interactive application in general, or for a web application in particular, the

dialogue model is probably one of the most challenging remaining problems for several

reasons that we can be organized in four categories described below.

1.4.1 Cognitive Aspects

 Lack of ontological definition: different terms, e.g. dialogue, navigation, behaviour,

dynamics, conversation, the “feel”, are inconsistently used to refer to the dynamic

aspects of a UI, as opposed to the presentation, which refers to as the static aspects

of a UI, e.g. its layout. We hereby define a dialogue model as the model that captures all

dynamic aspects of user interface behaviour. This therefore includes dynamics at any

level of any object that may appear in a user interface. This definition will lead us to

define five particular levels later on.

 Lack of actors: a dialogue implies an exchange in real-time between two actors. That

requires a good comprehension of each actor throughout the conversation. The great

question is whether we can use this semantics of the dialogue when one of the actors

1. Introduction

 17

is a machine. In this context, the dialogue can be seen as a functionality by which a

human operator can interact, handle, supervise or lead an automated system. The

problem becomes complicated when the exchange relates to two machines. Within

the framework of our research, we will see a dialogue like a network of nodes. Each

exchange between actors must correspond to a passage from a node to another

(possibly the same one). Then, dialogue scenarii would be the various possible

courses in this network.

1.4.2 Conceptual Aspects

 Lack of precise abstraction: in principle, MDA suggests three levels of abstraction (i.e.

computing independent model, platform-independent model and platform-specific

model)[Rai04]. These three levels are rarely observed in the area of dialogue

modelling where the platform-specific level remains predominant.

 Lack of continuity: when two levels of abstractions are covered, it is not always obvious to see

how model-to-model mappings (whether achieved through transformations or not)

are assured to establish and maintain continuity between them.

 Lack of expressiveness: the demand for more sophisticated dialogues calls for a dialogue

model capable of accommodating the description of desired dynamic aspects, such as

animations, transitions, the two traditional forms of adaptation (i.e. adaptability and

adaptivity). A modern dialogue model should be expressive enough to model recent

dynamic aspects.

 Risk for modelling complexity: it is likely that a more expressive model would tend to be

more complex to define and therefore to use in general. The question would be to

find the best abstraction: a modelling which can make it possible to graduate

complexity, allowing the analyst to better understand and thus better control the

problem.

1.4.3 Implementation Aspects

 Lack of techniques combining genericity and flexibility: developers lack techniques that would

allow them to specify a user interface at an abstract, generic level, suitable for several

platforms and contexts, while providing flexible, configurable adaptation to the

specific target platforms.

 Lack of performance: how to reach information quickly when the size of the database

exceeds hundreds of gigabytes. Database performance tuning has become a very

important activity. The goal is to minimize the response time of queries and to make

the best use of server resources by minimizing network traffic, disk Input/output

and CPU time.

1. Introduction

 18

 Lack of security: it is essential for the developer to make safeguard his application;

significant data must be protected. For the Web applications in particular, the

encryption techniques are more than necessary.

1.4.4 Handling Aspects

 Lack of advanced user interface support: the ideal is that the representation to be made is as

near as possible to reality. For example, playing tennis match with a Wii game, a ball

cannot be represented by a bird. In the same way, for a weather chart an animation

relating to a storm must be realistic. Thus, the user can very quickly interpret the

danger without losing several minutes in the reading of the statistical data.

 Lack of widget coverage: the choice of the graphic components is very important.

According to the type of an application and the context of its use, it is invaluable that

the interactive be as real as possible. If not, the user cognitive effort will be too great

which could entail errors that can have fatal consequences in critical applications.

 Lack of user profile consideration: It is known that for a given interface, a beginner user

does not have the same behaviour as an expert. While working with a training

application for example, user progression must be taken into account. Progressively

as the user knowledge evolves, the system presents him with more advanced

concepts.

1.5 Thesis

1.5.1 Thesis statement

Our objective is to build a methodology of designing and specifying User Interface (UI)

behaviour. The aforementioned methodology must be at the same time structured,

reproducible and independent of platform. It must also provide effective traceability for

history management and its results will be reliable and demonstrable.

Firstly, we will remember that to specify a problem means to build methodically its

statement as clearly as possible reducing to the maximum: ambiguities (words/terms with

several meanings), contradictions (assertions being excluded one from the other), silences

(absence or insufficiency of capital information), and the noises (amplification or

exaggeration relative to not very useful information).

Methods of formal specification have the advantage of having a well-defined semantics.

That makes it possible to work in a rigorous way and especially, valorisation (checking)

supports end results compared to initial waiting [Pal94, Pat94]. It is partly true to believe

that only the critical interfaces require a formal specification. As far as possible, it is

always advised to specify any interface. Indeed, it rather often happens that developers

spend much time when adding a simple button to an existing graphical window because

the person at the origin of the interface is not present or if nobody knows which

information is attached to which object. The situation becomes complicated when it is

1. Introduction

 19

necessary for an application to evolve to another programming language and/or

platform. In these cases, the existence of a specification is not superfluous.

Secondly, we hereby refer to presentation as being the static part of a UI such as the

description of all windows, dialogue boxes, widgets and their associated properties. In

contrast, we hereby refer to behaviour as being the dynamic part of a UI such as the

physical and temporal arrangement of widgets in their respective containers. The

behaviour has also been referred to as dialogue, navigation, or feels (as opposed to look

for presentation). Here are some typical examples of behaviours: when a language is

selected in a list box, the rest of a dialogue box is updated accordingly; when a particular

value has been entered in an edit field, other edit fields are deactivated because they are

no longer needed; when a validation button is pressed, the currently opened window is

closed and another one is opened to pursue the dialogue.

Indeed, for many years, the hardest part in conceptual modelling of User Interfaces has

been its dynamic part. All other aspects, such as presentation, help, tutorial, etc. have

received considerable attention and results, especially in model-based approaches and

model-driven engineering.

The behaviour received limited attention for many reasons: declarative languages that

have been typically used for modelling presentation are hard to use for modelling

behaviour. Procedural languages could be used instead, but then induce a mixed-model-

based approach that is complex to implement. Languages used for the final behaviour are

very diverse (mark-up or imperative), hold different levels of refinement (ranging from

simple properties to sophisticated behaviours), are hard to abstract into one single level

of abstraction (especially for different platforms), are hard to implement for model

transformation.

There is no consensus about what type of model should be used: some models exhibit a

reasonable level of expressiveness but prevent the designer from specifying advanced

behaviours, while other languages benefit from more expressiveness but are more

complex to handle, especially for non-trained designers. Which appropriate modelling

approach to take is also open: taking the greatest common denominator across languages

(with the risk of limited expressiveness) or more (with the risk of non-support), especially

because many different implementations exist based on code templates and skeletons,

deterministic algorithms, graph transformation, etc.

Finally, we are unaware of any existing approach that consistently applies model-driven

engineering principles for UI behaviour from the highest level (computing-independent

model) to the lowest level (platform-specific model). Existing approaches only address

some parts of some levels.

1. Introduction

 20

As the diagram below shows perfectly, the method we propose is based on a series of

models. We will present each model in isolation before presenting the overall conceptual

model of the methodology. Moreover, this model will be used to implement a software

solution. The conceptual architecture and algorithms to exploit this software will be

presented later.

Figure 5. Methodological Approach.

We emphasize that this was no way to present a software solution for production. Our

goal was to demonstrate the usefulness of different concepts and how to combine them

to design and specify the behaviour of an interactive application.

Admittedly, there exist several solutions or attempts at solutions concerning behaviour

specification. But their answer to the problem is often only partial. Within the framework

of our research, we wish to propose a transform approach whose four elements

constitute its characteristics:

1. It is based primarily on the concept of interface objects. The user has the choice

between creating his/her own objects, used existing interactive objects and making

both. However, it’s important to determine which attributes, methods and events are

necessary in dialogue script;

2. it gives a freedom concerning the level of specification. The user can choose to

specify his interface at the abstract, concrete or final level;

3. it provides functionalities of passage intra and inter levels. The user could, for

example, use the same abstract specification to provide two or several different

concrete specifications. In the same way, it could start from a concrete specification to

lead to another concrete specification by skews of the mappings;

4. it manages dialogue scripts traceability. It is possible to know who did what, which

day and at what time. Also, if necessary, it is possible to cancel recent modifications,

or simply to carry out an old version of a given script.

In order to address these objectives, we apply Model Driven Engineering (MDE) paradigm.

The main characteristic is that each exploited model is a toolkit; a box of objects whose

syntactic and semantic properties furnish dialogue scripts. Toolkits are classified

1. Introduction

 21

according to the levels of abstraction of the Cameleon Reference Framework: task and

domain, abstract user interface, concrete user interface and final user interface. The

dialogue modelled at the abstract user interface level can be reified to the concrete user

interface level by model-to-model transformation that can in turn lead to code by model-

to-code generation. Definite concepts are generals but in order to validate results, we

limited ourselves to support three programming languages: Visual Basic, HTML

Applications (HTA) and Microsoft Visual Basic for Applications (VBA). Two computing

platforms are addressed: Microsoft Windows and Mac OS X. In this way, the approach

demonstrates the capabilities of the abstractions in order to cover multiple programming

paradigms and computing platforms. Five levels of behaviour granularity are exemplified

throughout the methodology that is supported by a dialogue editor, a model transformer

and a code generator integrated into one single authoring environment called Dialog

Editor or Behaviour Editor.

The translation into UsiXML (USer Interface eXtensible Markup Language) dialogue

scripts built in to this authoring environment produces an effective solution for

describing user interfaces and their behaviour with various levels of details and

abstractions without limit of device, platform, modality and context.

Therefore, we will defend the following thesis:

Apply Model-Driving Engineering paradigm to build an approach for designing multi-platform

user interfaces dialogue.

This methodology is model-based and is supported by a Dialog Editor, a model

transformer and a code generator integrated into one single authoring environment.

Also, regardless of the level specification, the developer has a single scripting language to

manage the behaviour of an interface.

This way, scripts translation can constantly be done into UsiXML. As known, UsiXML

describes user interfaces with various levels of detail and abstractions, depending on the

context of use. UsiXML supports a family of user interfaces such as, but not limited to:

device-independent, platform-independent, modality independent and ultimately context-

independent. UsiXML allows the specifying of multiple models involved in user interface

design such as: task, domain, presentation, dialogue and context of use, which is in turn

broken down into user, platform and environment. Adding dialogue description from the

above-mentioned authoring environment, UsiXML enriches a dialogue model.

The concepts introduced above are reviewed and defined in the next section.

1. Introduction

 22

1.5.2 Some Definitions

1.2.2.a Human-Machine design methodology

HCI becomes increasingly varied and complex. In this context, design methods in this

field aim at putting together, in a harmonious way, theories and techniques, to help with

the assisted design of a better user interface. As we will see, in the state of art there exist

today several approaches in the design of the HMI. Fortunately, in one field or another,

each approach offers additional advantages to the Designer. It is advisable to say that the

most interesting design methods are those which are at the same time simple to use and

completely in agreement with the experiment and the user's needs.

1.2.2.b Concrete User Interface

A Concrete User Interface (CUI) is defined as the abstraction of any Final User Interface

(FUI) with respect to computing platforms, but with the interaction modality given.

According to MDE, it is a platform-specific model (PSM). A CUI is made up of

Concrete Interaction Objects (CIO), which are abstractions of widgets found in those

platforms. Any CIO may be associated with any number of Behaviours. Behaviour is the

description of an Event-Condition-Action (ECA) mechanism that results in a system

state change. The specification of behaviour may be broken down into three types of

elements: an event, a condition and an action. An event is a description of a run-time

occurrence that triggers an action. The general format of an ECA rule is: (ON Event, IF

Condition, THEN Action). The event specifies when the rule should be fired, the

condition specifies the logical condition when it should be fired and the action precises

what methods should be executed for this purpose. In other terms, we can say that a

Concrete User Interface (CUI) abstracts an FUI into a UI definition that is independent

of any computing platform. Although a CUI makes explicit the final look and feel of an

FUI. CUI can also be considered as a reification of an AUI at the upper level and an

abstraction of the FUI with respect to the platform.

1.2.2.c Abstract User Interface

An Abstract User Interface (AUI) is defined as the abstraction of any CUI with respect

to interaction modality. According to MDE, it is a platform independent model (PIM).

An AUI is made up of Abstract Interaction Objects (AIOs), which are abstractions of

CIOs found in existing interaction modalities and linked through abstract relationships.

Therefore, an AUI only specifies interaction between a user and a system in totally

independent terms. Only later on, once the interaction modalities are selected and once

the target computing platform is elicited, this AUI will be turned into CIOs and final

widgets, respectively. Abstract Interaction Object (AIO) may be of two types Abstract

Individual Components (AIC) and Abstract Containers (AC). An Abstract Individual

Component (AIC) is an abstraction that allows the description of interaction objects in a

way that is independent of the modality in which it will be rendered in the physical world.

An AIC may be composed of multiple facets. Each facet describes a particular function

an AIC may endorse in the physical world order to conciliate computer-support and

human control. In others terms, an Abstract User Interface (AUI) abstracts a CUI into a

1. Introduction

 23

UI definition that is independent of any modality of interaction (e.g. graphical

interaction, vocal interaction, speech synthesis and recognition, video-based interaction,

virtual, augmented or mixed reality). An AUI can also be considered as a canonical

expression of the rendering of the domain concepts and tasks in a way that is

independent from any modality of interaction.

1.2.2.d UsiXML -User Interface eXtensible Markup Language

UsiXML (USer Interface eXtensible Markup Language), a User Interface Description

Language aimed at describing user interfaces with various levels of details and

abstractions, depending on the context of use. UsiXML supports a family of user

interfaces such as, but not limited to: device-independent, platform-independent,

modality independent and ultimately context-independent. UsiXML allows the

specification of multiple models involved in user interface design such as: task, domain,

presentation, dialogue and context of use, which is in turn broken down into user,

platform and environment.

 UsiXML is precisely structured into four levels of abstraction that do not all need

to be specified to obtain a UI.

 UsiXML can be used to specify a platform-independent, a context-independent

and a modality-independent UI. For instance, a UI that is defined at the AUI

level is assumed to be independent of any modality and platform. Therefore, it

can be reified into different situations. Conversely, a UI that is defined at the CUI

level can be abstracted into the AUI level so as to be transformed for another

context of use.

 UsiXML allows the simultaneous specification of multiple facets for each AIO,

independently of any modality.

 UsiXML encompasses a detailed model for specifying the dynamic aspects of UI

based on productions (right-hand side, left-hand side and negative conditions)

and graph transformations. These aspects are considered as the basic blocks of a

dialogue model that is directly attached to the CIOs of interest.

 Thanks to these dynamic aspects, virtually any type of adaptation can be explicitly

specified. In particular, a transformation model consisting of a series of

adaptation rules can be specified equally in an integrated way with the rest of the

UI.

 UsiXML contains a simplified abstraction for navigation based on windows

transitions that is compatible with dynamics.

 UsiXML is based on Allen relationships for specifying constraints in time and

space at the AUI level that can in turn be mapped onto more precise

relationships at the CUI level. These relationships are applicable to graphical UIs,

vocal UIs, multimodal UIs and virtual reality UIs.

 Similarly, a progressively more precise specification of the CIO layout can be

introduced locally to concretize the Allen constraints imposed at the AUI level.

1. Introduction

 24

 UsiXML defines a wide range of CIOs in different modalities of use so as not to

be limited only to graphical CIOs.

 UsiXML already introduced a catalogue of predefined, canonical inter-model

mapping that can be expanded and taxonomy of task types that facilitate the

identification and selection of concepts at both the AUI and CUI levels.

1.2.2.e Task Model

A task model describes the various tasks to be carried out by a user in interaction with an
interactive system. After a comparison of several task modelling techniques, an extended
version of ConcurTaskTree (CTT) has been chosen to represent the user’s tasks and
their logical and temporal ordering in the context of UsiXML. A task model is therefore
composed of tasks and task relationships.

1.6 Reading Map

The remainder of this thesis is structured as follows:

Figure 6. Reading Map.

1. Introduction

 25

Chapter 2, State of the art, recalls and presents a global view of methods, models, technical

and tools which are used in dialogue specification. Particular emphasis is placed on

abstract machines, user interface description language and UsiXML. The main Chapter 3,

Model-Driven Engineering of behaviour, exploits the basic concepts of Chapter 2 to build our

methodology. It will present the overall conceptual model and the generic algorithm to

be applied to achieve the behaviour of a given interactive task. This chapter discusses

method, models and software branches of methodology approach. Chapter 4, Application

of software support, is the most practical of all. It presents two examples in which Dialog

Editor was used; a simple and a more complex cases. Chapter 5, Quality characteristics of

Dialog Editor, is based on ISO/IEC 9126 to examine technical, functional and interactive

characteristics of the software that we implemented. Chapter 6, Conclusion, will summarize

our contributions and explore some avenues for future work.

2. State of the Art

 26

Chapter 2 State of the Art

The model concept is often used to abstract a technique, a method, an algorithm or
simply a heuristics. In general, dimensions of models are reduced in order to facilitate
their comprehension and their application.

Dialogue models enable reasoning about UI behaviour. Consequently, dialogue models
are often considered as a continuation of task model concepts. This explains why the
task model has been extensively used to derive a dialogue model, for instance, in an
algorithmic way [Luy03] or in a logical way supported by model-to-model
transformations [Sch07] and graph grammars [Goe96, Lim04]. We hereafter give a brief
survey of dialogue modelling methods that percolated into the field of Human-Computer
Interaction (HCI) development methods [Gre86, Lim04, Mba02, Van98, and Van03].

A very wide spectrum of conceptual modelling and computer science techniques has
been used over the years to model a dialogue [Ari88, Bas99, Boo07, Bre09, Cac07, Car94,
Cow95, Dit04, Elw96, Gre87, Har87, Jac86, W3C08, Mba00a, Mba00b, Mba99], some of
them with some persistence over time, such as, but not limited to: Backus-Naur Form
(BNF) grammars [Elw96, Jac86], state-transition diagrams in very different forms (e.g.
dialogue charts [Ari88], dialogue flows [Boo07], abstract data views [Cow95], dialogue
nets [Cle06], windows transitions [Van03]), state charts [Har87] and its refinement for
web applications [Cac07], and-or graphs coming from Artificial Intelligence (e.g. function
chaining graphs [Mba08]), event response languages and Petri nets [Bas99]. Some
algorithms [Luy03] have also been dedicated to support the dialogue design through
models, such as the Enabled Task Set [Pat09].

Rigorously comparing these models represents a contribution that is yet to appear. Green
[Cle06] compared three dialogue models to conclude that some models share the same
expressivity, but not the same complexity. Cachero et al. examine how to model the
navigation of a web application [Cac07]. In [Cle06], the context model drives a dialogue
model at different steps of the UI development life cycle.

So far, few attempts have been made to structure the conceptual modelling of dialogues
in the same way as has been done for presentation, the notable exception being applying
StateWebCharts [Win03] with Cascading style sheets [Win08] in order to factor out
common parts of dialogues and to keep specific parts locally.

The DIAMODL runtime [Tra08] models the dataflow dialogue as Face Data Binding
and includes extensions for binding EMF data to SWT widgets in order to link domain
and dialogue models. Statechart logic is implemented by means of the Apache SCXML
engine [W3W08], while GUI execution utilizes an XML format and renderer for SWT.

2. State of the Art

 27

The Multimodal Interface Presentation and Interaction Model (MIPIM) [Sch05] could
even model complex dialogues of a multimodal user interface together with an advanced
control model, which can either be used for direct modelling by an interface designer or
in conjunction with higher level models. Van den Bergh & Coninx [Van07] established a
semantic mapping between a task model with temporal relationships expressed according
to ConcurTaskTrees notation and UML state machines as a compact way to model the
dialogue, resulting in a UML profile. Figure 14 graphically depicts some dialogue models
in families of models.

Each family exhibits a certain degree of model expressiveness (i.e. the capability of the
model to express advanced enough dialogues), but at the price of a certain model
complexity (i.e. the easiness with which the dialogue could be modelled in terms specified
by the meta-model).

We organize the rest of this chapter into three sections. The first deals with the
modelling of dialogues by the use of abstract machines. The second explains dialogue
management using UIDL (User Interface Description Languages) and the third gives
some details on the characteristics of UsiXML.

2.1 Abstract Machines

Abstract machines, also known as mathematical models are used in the specification of
dialogues since the pioneering work of Green [Gre86]. If we find it difficult to give an
exhaustive list of these models, we intend to recall some definitions and basic concepts.
This exercise will be useful because some of these models will be used in the
methodology that we propose.

To illustrate the different abstract tools that we outline in this chapter, we use the
example of a connection system that requires a login and a password. As in many
systems, we assume that the user can make up to three attempts. This becomes
interesting in the sense that each tool gives us the opportunity to emphasize one or more
aspects of this problem of connection.

2.1.1 Backus-Naur Form (BNF) grammars

Backus-Naur Form, or BNF for short, is a notation used to describe context free
grammars. The notation breaks down the grammar into a series of rules which are used
to describe how the programming languages tokens form different logical units In
computer science, BNF is a metasyntax used to express context-free grammars: that is, a
formal way to describe formal languages. John Backus and Peter Naur developed a
context free grammar to define the syntax of a programming language by using two sets
of rules: i.e. lexical rules and syntactic rules.

BNF is widely used as a notation for the grammars of computer programming languages,
instruction sets and communication protocols, as well as a notation for representing parts

2. State of the Art

 28

of natural language grammars. Many textbooks for programming language theory and/or
semantics document the programming language in BNF. There are many extensions and
variants of BNF, including Extended and Augmented Backus–Naur Forms (EBNF and
ABNF).

They are typically used to specify command languages [Gre86, Jac86]. Command
languages express commands that modify the state of the UI at the user’s initiative.
Grammars are particularly good in detecting inconsistencies within command sets. An
inconsistent UI may contain unordered or unpredictable interaction. Inconsistency
renders the UI error prone and hard to learn. Reisner proposed an action grammar to
describe Graphical UIs [Rei81]. Payne extended this grammar with their Task-Action
Grammar (TAG) by covering three levels of inconsistency [Pay86]: lexical, syntactic and
semantic. These established TAGs accuracy in predicting. Grammars are both efficient
and effective for expressing sequential commands or users actions in general, but
become complex for multimodality.

The actual reserved words and recognized symbol categories in the grammar represent
"terminals". Usually, terminals are left without special formatting or are delimited by single
or double quotes. Examples include: if, while, '=' and identifier.

In Backus-Naur Form, rules are represented with a "nonterminal" - which are structure
names. Typically, nonterminals are delimited by angle-brackets, but this is not always the
case. Examples include <statement> and <exp>. Both terminals and nonterminals are
referred to generically as "symbols". Each nonterminal is defined using a series of one or
more rules (also called productions). They have the following format:

 A rule consists of one or more productions;

 The production starts with a single nonterminal, which is the name of the rule
being defined;

 This nonterminal is followed by a ::= symbol which means “as defined as”. The
::= symbol is often used interchangeably with the symbol. They both have the
same meaning.

 The symbol is followed by a series of terminals and non-terminals.

Figure 7. Sample of BNF Rule.

2. State of the Art

 29

To return to the connection example, we can define a login as a string of lowercase
alphabetic characters whose length does not exceed height. And, the password, a string
that contains at least one lowercase letter, one uppercase letter, one number and one
special character. Using regular expressions, we obtain:

Figure 8. Connection Sample; using BNF Rule.

2.1.2 State transition diagram

State transition diagrams are finite state machine representation that consists of a graph

of nodes linked by edges [Gre86]. Each node represents a particular state of the system.

Each edge species the input (i.e. event) required to go from one state to another. State

transition diagrams have been subject to several extensions [Was85] and specializations,

like Statecharts [Har87] that provide a means for specifying the dynamic behaviour of the

interface. State transition diagrams present several drawbacks for modelling the UI.

Indeed, today's UI tend to be modeless where one state can lead to many states.

Furthermore this can be done using many different widgets of the UI. These two

requirements match the quality criteria of reachability and device multiplicity.

Figure 9. Connec tion Sample, State transition diagram.

In consequence, state transition diagrams are prone to a combinatorial explosion and

tend to replace nodes by screen prints. In [Van03], the transition space is restricted to

events and transitions that are triggered by window managers in graphical state transition

diagrams, thus supporting only simple windows transitions [Mba02]. Many other forms

of dedicated state transition diagrams have been extensively for dialogue modelling

without knowing which one is superior to another: dialogue charts [Ari88], dialogue

flows [Boo04,Boo05a,Boo05b], hierarchical dialogue flows [Boo08], interaction object

2. State of the Art

 30

graph [Car94], Abstract Data Views [Cow95], dialogue nets [Jan93], models

[Sch07,Sch05].

2.1.3 Statecharts

As for state transition diagrams, statecharts are supported by a graphical representation

of dynamic aspects of systems [Har87]. There exists research which specifically addresses

the modelling of UI behaviour with statecharts [Oli01,Pau99]. Statecharts represent state

variables with rounded rectangles called states. State-changing mechanisms are

represented with edges between states. State-changing is triggered by events and can be

further conditioned. Statecharts facilitate the representation of state nesting, state history,

concurrency and external interruptions. Statecharts [Har87] propose solutions to the

shortcomings of state transition diagrams: statecharts have representational capacities for

modularity and abstraction. The number of states with respect to the complexity of the

modelled system increases more slowly with statecharts than with state transition

diagrams. Statecharts avoid the problem of duplicating states and transitions. States in

statecharts are hierarchical and capable of representing different levels of abstraction.

Statecharts are more convenient for multimodal interfaces as they provide nesting

facilities, external interrupt specification and concurrency representation. Statecharts

have also been specialized for specifying the dialogue of web interfaces through

StateWebCharts [Win03], that can be edited via a SWCEditor [Win05].

Figure 10. Connection Sample; Statechart diagram.

2.1.4 And-Or graphs

Borrowed from Artificial Intelligence, AND-OR graphs have been used to branch to

various sub-dialogues depending on conditions, for instance in the EDGE system

[Kle88]. And-or graphs have been expanded towards function chaining graphs [Bod95]

by combining them with data flow diagrams [Van98].

2. State of the Art

 31

Figure 11. Sample Connection, And-OR Graph.

2.1.5 Event-Response Languages

Event-Response Languages treat input stream as a set of events [Hil86]. Events are

addressed to event handlers. Each handler responds to a specific type of event when

activated.

Figure 12. Sample Connection, Event-Response Diagram.

This type is specified in a condition clause. The body of the event generates another

event, changes the internal state of the system or calls an application procedure. Several

2. State of the Art

 32

formalisms are suited for event-response specification. They can be distinguished

following their capacity to manage dialogue state variables and concurrency control.

Production rules and pushdown automata [Ols84] are often used to describe event-

response specifications.

2.1.6 Petri Nets

Petri nets are a graphical formalism associated with a formal notation. Petri nets are best

suited to represent concurrency aspects in software systems. Petri nets represent systems

with state variables called places (depicted as circles) and state-changing operators called

transitions (depicted as rectangles). Connections between places and transitions are called

arcs (represented by edges). States contain items called tokens (represented by black solid

dots distributed among places). State change is the consequence of a mechanism called

firing. A transition is red when all of its input places contain tokens. Firing involves the

redistribution of tokens in the net, i.e. input tokens are withdrawn from input places and

output tokens are added in output places. Like State Charts, Petri nets hold mechanisms

to represent additional conditions and nested states. Petri nets have the advantage of

being entirely formal. Thus, model checking of interest properties of the dialogue model

could be applied [Pal94].

Figure 13. Sample Connection, Petri net.

Figure 14 graphically depicts most of these dialogue models in families of models. Each

family exhibits a certain degree of model expressiveness (i.e. the capability of the model

to express advanced enough dialogues), but at the price of a certain model complexity

(i.e. the easiness with which the dialogue could be modelled in terms specified by the

meta-model). At the left of Figure 14 relay BNF and EBNF grammars since they are

probably the simplest dialogue models ever but they do not support many dialogue

aspects. We can find respectively State Transitions Networks and their derivatives, then

2. State of the Art

 33

Event-Response Systems. Petri nets are probably the most expressive models that can be

used to model dialogues, but they are also the most complex to achieve. Therefore, we

believe that we should not be as expressive and complex as Petri nets, but a little bit

below. This is why we have selected Event-Condition-Action systems, one example

being the DISL language [Sch05].

Figure 14: Model complexity as a function of their expressiveness.

2.2 Model-Driven Engineering

2.2.1 Introduction

The Model Driven Engineering, MDE for short, is a software engineering paradigm
where models play a key role in all engineering activities (forward engineering, reverse
engineering, software evolution…). In other words, MDE is a software design approach
based on the concept of models and their transformation from one abstraction level to
another or from one workspace to another [Bez04a, Bez04b]. The basic principle of
MDE is "everything is a model", compared to the basic principle of object orientation
"everything is an object".

Figure 15. MDE Equation.

2. State of the Art

 34

According to this definition, experts have revisited and transformed Niklaus Wirth's
famous equation [Wir92] as shown in the Figure 15.

Before continuing this review, the main question is to fix what a “model” is. Indeed, in
short, a model is an abstract representation of a system for some certain purpose and a
meta-model is an abstract description of a model. The abstraction helps to neglect the
less important aspects of a system, while concentrating on favourable parts that are
desired to a specific study.

A model can come in many shapes, sizes, and styles. It is important to emphasize that a
model is not the real world but merely a human construct to help us better understand
real world systems. In general all models have an information input, an information
processor, and an output of expected results.

A “model” can be seen as a measure, rule, pattern, example to be followed. In his book
“Allgemeine Modelltheorie” (General Model Theory) [Sta73] Herbert Stachowiak describes
the fundamental properties that make a Model:

 Mapping: Models are always models of something, i.e. mappings from,
representations of natural or artificial originals that can be models themselves.

 Reduction: Models in general capture not all attributes of the original represented
by them, but rather only those seeming relevant to their model creators and/ or
model users.

 Pragmatism: Models are not uniquely assigned to their originals per se. They fulfil
their replacement function a) for particular – cognitive and/ or acting, model
using subjects, b) within particular time intervals and c) restricted to particular
mental or actual operations.

Finally, among the numerous publications that we found on Model-Driven Engineering
(MDE), we adopt the description given in [Bro11]. Indeed, the MDE approach to
application design is an approach that makes use of several conceptual models so that
each model manages one or more well-defined part(s) of the application. Because of the
conceptual nature of such models, they would not have to address the technological
problems associated with the final application handled by the users [Sch06, Bro09].

2.2.2 MDE objective

MDE is an open and integrative approach that embraces many other Technological
Spaces in a uniform way. A technological space is a working context with a set of
associated concepts, body of knowledge, tools, required skills, and possibilities. Examples
of technological spaces are Programming languages concrete and abstract syntax,
Ontology engineering, XML-based languages, Data Base Management Systems (DBMS),
Model-Driven Architecture (MDA), etc.

The goal of MDE is to increase both the short-term productivity, e.g. the amount of
functionality delivered by a software artefact, and the long-term productivity, e.g.
reducing the software artefacts' sensitivity for changes in personnel, requirements,

2. State of the Art

 35

development platforms and deployment platforms [Bez05, Bro07, Omg05, Omg08,
Sol00].

Therefore, MDE aims at defining models, methods and tools suitable for the precise and
efficient representation of and reasoning concerning, software-intensive systems. MDE
aims to encompass the entire life-cycle of a system, according to various dimensions such
as system requirements, functionalities, data, processing, dependencies, architecture and
infrastructure.

2.2.3 MDE Basic Principles

The idea promoted by MDE is to use models at different levels of abstraction for
developing systems, thereby raising the level of abstraction in program specification. An
increase of automation in program development is reached by using executable model
transformations. Higher-level models are transformed into lower level models until the
model can be made executable using either code generation or model interpretation.

Indeed, in the beginning of object technology, what was important was that an object
could be an instance of a class and a class could inherit from another class. This may be
seen as a minimal definition in support of object-oriented principle. We call the two
corresponding basic relations instanceOf and inherit.

Very differently, what now seems to be important is that a particular view of a system
can be captured by a model and that each model is written in the language of its meta-
model. This may be seen as a minimal definition in support of MDA principle. We call
the two basic relations representedBy and conformantTo.

Figure 16. Object technology & Model engineering.

A model is specified in some model notation or model language. Since model languages
are mostly tailored to a certain domain, such a language is often called a Domain-Specific

2. State of the Art

 36

Language (DSL). A DSL can be visual or textual. A sound language description contains
an abstract syntax, one or more concrete syntax descriptions, mappings between abstract
and concrete syntax, and a description of the semantics. The abstract syntax of a
language is often defined using a meta-model. The semantics can also be defined using a
meta-model, but in most cases in practice the semantics aren't explicitly defined, they
have to be derived from the runtime behaviour.

A model specified using a DSL is called a Domain-Specific Model (DSM). A complex
system is usually described using multiple DSMs specified in different DSLs. These
models refer to each other and have to be combined when executing them. Because
complex systems ask for a lot of DSMs to model them, it is important to structure the
modelling space.

As in each software engineering approach quality is an important aspect of MDE.
Quality in MDE can be checked, or ensured, with three different techniques: model
validation, model checking, and model-based testing.

In the construction of a dialogue specification methodology, we have chosen to operate
MDE as one of the fundamental assumptions. We will show in the third Chapter how
this hypothesis has been useful.

2.3 User Interface Description Languages (UIDLs)

A User Interface Description Language (UIDL) is a formal meta-language used in

Human-Computer Interaction (HCI) in order to describe a particular User Interface (UI)

independently of any implementation of this user interface.

Indeed, we indicated above, new classes of devices for accessing information have

emerged along with an increased connectivity. In parallel to the proliferation of these

devices, new interaction styles have been explored. Among these new styles are virtual

reality, mixed reality, 3D interaction, tangible user interfaces, context-aware interfaces

and recognition-based interfaces. As a result of this increasing diversity of devices and

interaction styles, developers of next generation interfaces experience difficulties such as

the lack of appropriate interaction abstractions, the need to create different design

variations of a single user interface and the integration of novel hardware. As part of the

user interface software research community effort to address these difficulties, the

concept of UIDL, which has its foundations in user interface management systems and

model-based authoring, has remerged as a promising approach. UIDLs allow user

interface designers to specify a user interface, using high-level constructs, which abstract

away implementation details [Abr99, Jac06, Mye00, Mor04, Sha07, The04].

Describing a UI via a UIDL does not assume that a particular implementation

technology (e.g. programming language, markup language, dynamic programming, multi-

paradigm programming) is required. As such, the UI does not assume the involvement of

2. State of the Art

 37

only one interaction modality (e.g. graphical, vocal, tactile, haptic, multimodal) or

interaction technique (e.g. drag and drop) or interaction style (e.g. direct manipulation,

form fillings, virtual reality). A UIDL can be used during:

 Requirements analysis: in order to gather and elicit requirements pertaining to a

UI of interest.

 Systems analysis: in order to express specifications that address the

aforementioned requirements pertaining to a UI of interest.

 System design: in order to refine specifications depending on the context of use

 Run-time: in order to execute a UI via a rendering engine

A common fundamental assumption of most UIDLs is that UIs are modelled as

algebraic or model-theoretic structures that include a collection of sets of interaction

objects together with behaviours over those sets. This level of abstraction is

commensurate with the view that the correctness of the UI presentation and behaviour

takes precedence over all its other properties. UIDL specifications can be automatically

or semi automatically converted into concrete user interfaces or user interface

implementations.

A UIDL is more general than a User Interface Markup Language (UIML) that is often

defined as [http://en.wikipedia.org/wiki/User_interface_markup_language]:

"A user interface markup language is a markup language that renders and describes

graphical user interfaces and controls. Many of these markup languages are dialects of

XML and are dependent upon a pre-existing scripting language engine, usually a

JavaScript engine, for rendering of controls and extra scriptability."

As opposed to a UIML, a UIDL is not necessarily a markup language (albeit most

UIDLs are) and does not necessarily describe a graphical user interface (albeit most

UIDLs abstract only graphical user interfaces). A UIDL should necessarily be expressed

as an XML dialect or bound to a particular scripting language.

There are today many UIDLs that could serve for modelling the behaviour of GUIs.

Below is a list of some languages

2.3.1 Extensible Interface Markup Language (XIML)

XIML is an XML-based language that enables a framework for the definition and
Interrelation of interaction data items. As such, XIML can provide a standard
mechanism for applications and tools to interchange interaction data and to interoperate
within integrated user-interface engineering processes, from design, to operation, to
evaluation [Eise01, Puer02].

2. State of the Art

 38

The XIML language is mainly composed of four types of components: models, elements,
attributes and relations between the elements. We can distinguish two types of model,
the interface model and the model components. The first is the root of any XIML
document and contains the various sub-models (model components) available in XIML.
The model components (task, domain, user, presentation, dialogue, platform, preferences
and the general model) contain information specific to a dimension of the interface.
Each model is composed of elements. Each model or element can possess features
(composed of attributes or relations) or definitions (attribute or relation definitions).

2.3.2 Hypertext Markup Language (HTML)

HTML is the main markup language for displaying web pages and other information that
can be displayed in a web browser. It is written in the form of HTML elements
consisting of tags enclosed in angle brackets (like <html>), within the web page content.

HTML tags most commonly come in pairs like <h1> and </h1>, although some tags,
known as empty elements, are unpaired, for example . The first tag in a pair is the
start tag, the second tag is the end tag (they are also called opening tags and closing tags).
In between these tags web designers can add text, tags, comments and other types of
text-based content. The purpose of a web browser is to read HTML documents and
compose them into visible or audible web pages. The browser does not display the
HTML tags, but uses the tags to interpret the content of the page.

HTML elements form the building blocks of all websites. HTML allows images and
objects to be embedded and can be used to create interactive forms. It provides a means
to create structured documents by denoting structural semantics for text such as
headings, paragraphs, lists, links, quotes and other items. It can embed scripts in
languages such as JavaScript which affect the behavior of HTML webpages. Web
browsers can also refer to Cascading Style Sheets (CSS) to define the appearance and
layout of text and other material. The W3C, maintainer of both the HTML and the CSS
standards, encourages the use of CSS over explicitly presentational HTML markup
[Hako10].

There are five categories of elements for the HTML meta-model: elements specific to the
head section (meta, script…), containers, (such as forms, tables…) that define hierarchy
of elements, formatting tags (such as b, i, p…), lists (dl, ul…) and atomic tags that cannot
contain other tags (img, object, button…) [Sten03].

2.3.3 Wireless Markup Language (WML)

Based on XML, WML is a markup language intended for devices that implement the
Wireless Application Protocol (WAP) specification, such as mobile phones. It provides
navigational support, data input, hyperlinks, text and image presentation, and forms,
much like HTML (HyperText Markup Language). It preceded the use of other markup
languages now used with WAP, such as HTML itself, and XHTML (which are gaining in
popularity as processing power in mobile devices increases).

2. State of the Art

 39

The root element of the model is a wml element, which can contain a meta, template or
card node. The UI is contained in card elements and can be composed of navigation
elements (+navelements), timer, paragraphs (p) or fields (+fields). Fields are broken
down into several input elements (select, input…) and flow elements (+flow) that
represent formatting tags for the text of the UI, such as b or i(for bold or italic text),
tables, links(a) and images (img).

2.3.4 Voice Extensible Markup Language (VoiceXML)

VoiceXML's main goal is to bring the full power of Web development and content
delivery to voice response applications, and to free the authors of such applications from
low-level programming and resource management. It enables integration of voice
services with data services using the familiar client-server paradigm. A voice service is
viewed as a sequence of interaction dialogs between a user and an implementation
platform. The dialogs are provided by document servers, which may be external to the
implementation platform. Document servers maintain overall service logic, perform
database and legacy system operations, and produce dialogs. A VoiceXML document
specifies each interaction dialog to be conducted by a VoiceXML interpreter. User input
affects dialog interpretation and is collected into requests submitted to a document
server. The document server replies with another VoiceXML document to continue the
user's session with other dialogs[McGl04].

The root of the meta-model of VoiceXML is a vxml element, which can contain meta
information (meta and metadata), link, property, events handlers (+event handler),
containers and input (+container) or executable content (+executable content). The
VoiceXML UI is embedded in node belonging to the containers class. This superclass
(preceded by a + symbol) groups logical containers (block, initial) and form-input
elements (field, record, …) as they share common attributes and properties. The event
handler superclass contains several predefined events (help, no input…) such as user-
defined catchers (catch). Finally, executable content is the class for the rest of UI
components. It contains tags allowing the modification of control flow (if, then, else,
return…). such as output nodes (prompt, audio). Executable contents and event handlers
are characterized by the fact that these elements cannot embed another element of the
same class, contrary to containers.

2.4 UsiXML

The method that we propose to design and/or to specify user interfaces for multiple

platforms is model-based. Therefore, it requires the use of a user interface description

language (hereafter UIDL). This method is also transformational, as it consists of

specifying a source UI, designed for the least constrained platform and then applying

transformation rules to it to produce specific UIs targeted to more constrained

platforms. These transformation rules will process different layers of the specification,

according to the abstraction levels defined in the Unified Reference Framework

described above. For this reason, the UIDL we will use needs to be structured in several

layers. Until now, only a few UIDLs meet this requirement: XIML [Puer02], the last

2. State of the Art

 40

versions of UIML [Ali03] and UsiXML. This section presents UsiXML and the

conceptual content of this language. We focus on the UML diagrams used in UsiXML.

Firstly, let us examine the data structure of the rich and complex language UsiXML,

before developing each of its models.

2.4.1 Data Structure

The user interface description language UsiXML ([Limb04]) allows designers to describe
various aspects of a user interface, while using the same language. Depending on the
needs, a designer can adopt distinct viewpoints on the same user interface. In the early
stages of design, he/she might choose to specify only high level functionalities (tasks) or
domain objects. Later, the developer might want to give a very detailed description of the
dialogue and presentation. These views on a user interface, called models in UsiXML, are
organized in abstraction layers, following the Unified Reference Framework.

Figure 17. Constituent models in UsiXML.

A UsiXML specification is thus a combination of models. None of these models is
mandatory and every combination of models is allowed. UsiXML is equipped with eight
main types of model, as illustrated on Figure 17: a task model, a domain model, an AUI
model, a CUI model, a mapping model, a context model, a resource model and a
transformation model.

The task and domain models both belong to the Tasks and Concepts level of the Unified

Reference Framework. The task model is a description of the tasks carried out by a user

2. State of the Art

 41

in interaction with the system, while the domain model is a description of the objects and

classes viewed or manipulated by the user.

The AUI model (Abstract User Interface) lies at the next abstraction level in the Reference

Framework. It is used to specify which group of tasks and domain concepts will be

presented together (for example, in the same window or card).

The CUI model (Concrete User Interface) is a detailed specification of the appearance and

behaviour of the UI's elements.

The mapping model serves to establish relationships between models or elements of models

(for example, between a task belonging to the task model and the widget of the CUI that

permits the execution of this task).

The context model consists of three sub models: a user model, an environment model and a

platform model:

 The user model decomposes the user population into user stereotypes, described by

attributes such as the experience with the system or with the task, the motivation, etc.

 The environment model describes any property of interest of the global environment

where the interaction takes place. The properties may be physical (e.g. lighting or

noise conditions) or psychological (e.g. level of stress).

 The platform model captures relevant attributes related to the combination of hardware

and software where the user interface is intended to be deployed.

The resource model contains elements (title, tooltip, mnemonic...) specific to a given context

(for example, the user's language). Resources are linked to objects of the CUI or AUI

model.

Finally, the transformation model permits the specification of transformation rules under
the form of graph transformation rules, taking advantage of the underlying graph
structure of UsiXML. A graph transformation is expressed as a pair {LHS, RHS}, where
LHS is the Left Hand Side of the rule and RHS is the Right Hand Side of a rule. LHS
expresses a graph pattern that, if it matches the host graph, will be modified to result in
another graph called resultant graph, according to what is specified in RHS [Limb04b].
This formalism supports different types of transformation: abstraction (e.g.; recovering
an AUI model starting from a CUI model), reification (e.g., generating a CUI from a task
model and a domain model) and translation (e.g., adapting a CUI designed for one
specific context of use to another context of use). We will not rely on this formalism in
this thesis, for two reasons:

 Some GD rules are inherently difficult to express using graph transformations. For

example, it is far easier and more intuitive to express layout transformations by

describing the algorithms used to generate the results than by giving a precise

description of the pre- and post-conditions of the rule as patterns defined on a graph.

In particular, the difficulty in ordering the sub-steps of a given rule is a serious

obstacle both for layout transformation rules and for the splitting rules.

2. State of the Art

 42

 Even for simple transformations, such as modifying fonts size for example, relying

on graph transformations has a negative impact on performance, because the process

requires the collaboration of different tools, the use of several internal formalisms

and several steps:

1. Firstly, models are built using a graphical editor. These editors (IdealXML

[Mont05], GrafiXML) possess an internal representation of the model and export

it in UsiXML

2. The UsiXML models are imported within AGG (Attributed Graph Grammar

tool [Ehri99]), a graphical environment for specifying and executing graph

transformations where the rules are applied to the graph structure

3. The resulting models are exported from AGG to UsiXML.

Figure 18. Meta-model of the UsiXML task model.

The next sections will be dedicated to a precise definition of the conceptual content of

the models that are relevant in the framework of Graceful Degradation: task, domain,

AUI, CUI, platform, interactor and mappings. The interactor model is a separate model

that is not part of UsiXML. It permits the production of meta-descriptions of the

2. State of the Art

 43

toolkits available on a given platform. We will not make use of the other UsiXML

models.

2.4.2 Task Model

A task model, as defined above, is a description of the tasks that a user will be able to

accomplish in interaction with the system. This description is a hierarchical

decomposition of a global task, with constraints expressed on and between the subtasks.

The task model of UsiXML (see Figure 19) is an (slightly) extended version of

ConcurTaskTree (CTT) [Pate00]: a hierarchical task structure, with temporal

relationships specified between sibling tasks.

Figure 19. UsiXML Task Model.

2.4.3 Domain Model

UsiXML relies on UML class diagrams and objects diagrams [Rati97] for its domain

model. The main concepts in a UsiXML class diagram, as represented on the meta-model

on Figure 20, are classes, objects, attributes, methods and relationships.

2. State of the Art

 44

Figure 20. Meta-model of the UsiXML domain model.

2.4.4 AUI Model

An AUI model is an expression of the rendering of the domain concepts and tasks in a

way that is independent from any modality of interaction. In UsiXML, the AUI (see

meta-model on Figure 21) is populated by Abstract Interaction Objects and AIO

Relationships.

Abstract Interaction Objects (AIO’s) are elements populating the AUI. They may be of two

types: Abstract Containers (ACs) and Abstract Individual Components (AICs).

Abstract Containers (ACs), also named interaction spaces or presentation units, define the

grouping of tasks that have to be presented together, in the same window or page for

example. An abstract container contains other AIO’s. It may be reified into graphical

containers like windows or dialogue boxes.

Abstract Individual Components (AICs) are individual elements populating an abstract

container. AICs are an abstraction of widgets found in most toolkits (for example

windows, buttons or a vocal output widget in auditory interface).

An AIC may be composed of multiple facets describing the type of interactive tasks it is

able to support. Each facet describes a particular function an AIO may assume. Four

main facets have been identified:

1. An input facet describes the type of input that may be accepted by an AIO.

2. An output facet describes what data may be presented to the user by an AIO.

2. State of the Art

 45

3. A navigation facet describes the possible container transition a particular AIO may

enable.

4. A control facet describes possible methods of the domain model that may be

triggered from an AIO.

Some AIO’s may assume several facets at the same time (for instance, an AIO may

display an output while accepting an input from a user).

AIO relationships are abstract relationships between two distinct AIO’s. Our description of

these relationships is more precise and complete than what can be found in the current

UsiXML specification (introduction of new constraints, of new types of relationships).

These proposals are intended to be included in the next UsiXML release.

AIO relationships indicate the existence of some spatio-temporal or logical setting

among AIO’s. A given pair of source and target AIO’s can be linked by several AIO

relationships. The operators between the abstract interaction objects in the TERESA

tool [Pate02] or the abstract constraints expressed between components in some

constraint-based automated layout systems [Lok01] are examples of the use of AIO

relationships in the literature. Different types of AIO relationships can be defined:

 Decomposition relationships allow the specification of a hierarchical structure of

abstract containers.

 Spatio-temporal relationships are modality-independent constraints between AIO’s,

using the temporal relationships defined by Allen [Alle83]. When UsiXML is

used for specifying GUIs, they are redundant with the graphical relationships

defined at the Concrete User Interface level: for this reason, we will not make use

of Allen relationships in the context of this thesis.

 Abstract grouping is an abstract relationship between two or more AIO’s of the

same abstract container that need to be grouped together, regardless of the actual

layout that will be defined at the Concrete User Interface level.

 Conversely, abstract separation is an abstract relationship between two AIO’s of the

same abstract container that need to be separated from each other (for example,

by a blank space or a separation line in graphical user interfaces, by a beep in

auditory user interfaces...)

2. State of the Art

 46

Figure 21. Meta-model of the UsiXML Abstract User Interface.

 Differentiation is an abstract relationship between two AIO’s that should be

differentiated from each other. For example, an “erase all” button could be

differentiated from its neighbours, in order to avoid confusions.

 Is-title-of is an abstract relationship between one output AIO that represents a title

and the AIO it describes.

 Hierarchy is an abstract relationship between two or more AIO’s that form a

hierarchy. For example, a series of titles in a document could be linked with a

hierarchy relationship.

 Abstract adjacency is an abstract relationship between two AIO’s that have to be

adjacent (which is not possible to specify using Allen relationships).

 The Order relationship specifies some kind of ordering between two or more

AIO’s

 Dialogue control relationship allows a specification of a flow of control between the
abstract interaction objects in terms of LOTOS operators.

2. State of the Art

 47

2.4.5 CUI Model

A CUI Model represents a concretization of an AUI Model. A CUI is populated by

Concrete Interaction Objects and Concrete User Interface relationships between them.

Concrete Interaction Objects (CIO’s) are the building blocks of the CUI. They are an

abstraction of widgets sets found in popular toolkits such as Java AWT/Swing or

HTML4.0. UsiXML distinguishes between graphical CIO’s and auditory CIO’s. In the

context of this thesis, we will only consider graphical CIO’s. UsiXML further classifies

graphical CIO’s in two categories: graphical containers and graphical individual components

(Figure 22).

A graphical container is a graphical CIO that can contain other CIO’s, including other

containers. UsiXML's metamodel contains a list of 11 types of containers: dialogue box,

menu bar, menu pop-up, tabbed dialogue box and tabbed item, table and cell, tool bar,

status bar, window and box.

Figure 22. Concrete Interaction Objects in UsiXML: upper part of the hierarchy.

A graphical individual component is a CIO that permits the observation or the manipulation

of domain objects, or the calling of domain methods. Graphical individual components

are a direct abstraction of widgets found in popular toolkits. For example, UsiXML's

checkBox component corresponds to <INPUT TYPE = CHECKBOX> in HTML 4,

JCheckBox in Java Swing or Checkbutton in Tcl/Tk. The list of graphical individual

2. State of the Art

 48

components in UsiXML includes text component, video component, image component, button,

toggle button, radio button, checkbox, combobox, listbox, spin, menu items drawing canvas, colour

picker, date picker, file picker, hour picker, progression bar and slider.

Concrete Interaction objects are linked by Concrete User Interface relationships. Again,

they are divided into auditory relationships and graphical relationships. Dialogue control relationship

can be defined between both types of interaction objects.

Graphical relationships express different types of constraints between a source graphical

CIO and a target graphical CIO:

 Relative positioning constraints specify a positioning relationship between two

components. Most of these constraints are a concretization of Allen relationships

for graphical UI's: insertion, left-of, right-of, superiority, inferiority. Other

constraints were impossible to express at the AUI level: left-indentation, right-

indentation, horizontal adjacency and vertical adjacency.

 Graphical transitions specify a transition between two containers. Transition types

are open, close, minimize, maximize, suspend/resume.

 Alignment relationships specify a relationship between two components and a guide

extending their edges (vertical alignment, horizontal alignment) or crossing their

centre either horizontally (horizontal centred alignment) or vertically (vertical

centred alignment). With the exception of centred alignment, these relationships

have direct correspondences at the AUI level (i.e.; they can be expressed in terms

of Allen relationships).

 Adjacency relationships indicate that there is no interpolated component between

two graphical CIO’s, either in the horizontal direction (horizontal adjacency) or

in the vertical direction (vertical adjacency).

Dialogue control relationships allow a specification of a flow of control between the concrete

interaction objects, independently from the task model, using LOTOS operators.

Dialogue control relationships at the CUI level are a refinement of the dialogue control

relationships defined at the AUI level.

Relative positioning constraints (e.g.; left-of, inferior-to...) between two components can

also be specified by the type of box that contains the CIO’s. Boxes are the basic layout

mechanism in UsiXML. A box can contain other boxes or graphical individual

components. Boxes are characterized by:

 Their type: horizontal, vertical, grid.

 Their relative width and height with respect to their parent container.

 Information on their resizability and their minimum width and height.

 Optional balance constraints.

 A “splittable” attribute that indicates whether the box may be redistributed between

several abstract containers.

2. State of the Art

 49

UsiXML's Concrete User Interface is a hybrid model that contains at the same time

information on the presentation of the UI and on its behaviour. At the CUI, each CIO

can be linked to a behaviour. A behaviour is the set of reactions of the user interfaces to

events such as user interactions, changes in the system state, period of time elapsed...

These events trigger actions, such as a method call or a transition to a target container,

provided that certain conditions are met.

2.4.6 Dialogue Model

UsiXML’s dialogue model is the ultimate goal of research conducted in the context of

this PhD investigation.

Indeed, the main chapter 3 describes a model-driven engineering approach for

specifying, designing, and generating consistent behaviours in graphical user interfaces in

multiple contexts of use, i.e. different users using different computing platforms in

different physical environments. This methodological approach is structured according

to the levels of abstraction of the Cameleon Reference Framework: task and domain,

abstract user interface, concrete user interface, and final user interface. A behaviour

model captures the abstractions of the behaviour in terms of abstract events and abstract

behaviour primitives in the same way a traditional presentation model may capture the

abstraction of the visual components of a user interface. The behaviour modelled at the

abstract level is reified into a concrete user interface by model-to-model transformation.

The concrete user interface leads to the final user interface running thanks to code by

model-to-code generation.

2.5 Conclusion

2.5.1 Overview

It is true that the list we offer on the state of the art is not exhaustive but this list has the
advantage of reflecting the evolution of our research.

Indeed, firsly, the initial objective was to propose a methodology that is demonstrable,
generic and reproductive. Under these conditions, the mathematical models described
above are best placed to help us to achieve these goals. The results related to Windows
Graphical Notation[Mba02] confirm these initial choices.

Secondly, insofar as we want a methodology that can help move from one level of
abstraction to another without losing information, it was obvious that we exploit the
model-driven engineering to express built concepts and models. We summarize the
benefits of operating MDE in the following table:

Thirdly, to better manage scripts dialogues, especially the passage of a script from one

level of abstraction to another level, we need to construct a description language. This

reflects our interest in the interface description languages in order to better understand

2. State of the Art

 50

the functioning and the peculiarity of each of them. We are limited to considering only

four examples to cover a broad scope.

Finally, our research is conducted within the context of the project UsiMXL. the ultimate

goal is to integrate the results of the methodology to build in UsiXML environment.

Thus, our work has been carried out so as to better understand UsiXML.

In the following table, we recall some interesting properties concerning the dialogues.

Then, we will discuss how some formalisms support these properties.

Table 1. Dialogues Properties

PROPERTY DESCRIPTION
COMPLEXITY Human, machine or data resources needed for interacting with the

computer to accomplish the task.

REUSABILITY The ability to reuse relies in an essential way or the ability to build

larger things from smaller parts, and being able to identi-

fy commonalities among those parts

COMPLETENESS Ability to take into account all the possibilities of interaction. For ex-

ample, in the context of abstract machine and; looking at each state, is

there an arc coming from each state for each possible user action? If

not, what is the effect on the system if the user performs this action?

DETERMINISM Is the behaviour uniquely defined for each user action? In a simple

abstract machine this corresponds to checking that there is at most

one arc labelled with each user action from a particular state.

CONSISTENCY Does the same user action have a similar effect in different states? If

not are these dialogue modes visibly different?

REACHABILITY Can anywhere from be reached from anywhere else? For example,

you are at a particular dialogue state and you want to get to a different

state to reach. Is there a sequence of user actions which is guaranteed

to get you there? In addition, we may want to ask just how complicat-

ed and long that sequence is.

REVERSIBILITY The ability to cancel an interactive action. Imagine you have just car-

ried out an action, but wish you had not. This is a special case of

reachability, but one which we expect to be especially easy — we all

make mistakes. Note this is not Undo — returning to a previous dia-

logue state does not in general reverse the semantic effect.

ADAPTABILITY Ability of a dialogue to adapt itself efficiently and fast to changed cir-

cumstances. The objective is to determine if there are technical and /

http://en.wikipedia.org/wiki/Commonality
http://en.wikipedia.org/wiki/System

2. State of the Art

 51

or functions to transform a dialogue from one environment to anoth-

er or from one abstraction level to another without losing infor-

mation and interaction.

SCABILITY Ability of a system, network or software to adapt to handle an in-

creasing volume of work or data.

Now, without being exhaustive, let us enumerate some formalisms used in the specifica-
tion and/or the design of dialogues with the objective of fixing the level with which they
handle the properties listed above. To achieve this goal, we use the five indicators:

Very Good
Good

Medium
Bad

Very Bad

2. State of the Art

 52

Table 2: Dialogue Formalisms Vs. Dialogue properties

FORMALISM FOR
BEHAVIOUR

BRIEF DESCRIPTION

DIALOGUES PROPERTIES

C
O

M
P

L
E

X
IT

Y

R
E

U
S

A
B

IL
IT

Y

C
O

N
S

IS
T

E
N

C
Y

S
C

A
L

A
B

IL
IT

Y

C
O

M
P

L
E

T
E

N
E

S
S

D
E

T
E

R
M

IN
IS

M

R
E

A
C

H
A

B
IL

IT
Y

R
E

V
E

R
S

IB
IL

IT
Y

A
D

A
P

T
A

B
IL

IT
Y

ABSTRACT

MACHINES

Backus-Naur
Form (BNF)

grammars

BNF is a family meta-syntax notations used for expressing context-
free grammars. The BNF uses the symbols (<, >, |, ::=) for itself,
but does not include quotes around terminal strings. This prevents
these characters from being used in the languages, and requires a
special symbol for the empty string

Bad

Good

Good

Good

Bad

Very
Good

Medi-
um

Bad

Bad

State transition
diagram

State transition diagrams are used in modelling systems which can
be described as a collection of discrete states. The machine receives
events from the outside world, and each event can cause transition
from one state to another. Traditional state machine modelling is
based on sequential transitions from one state to the next. With this
limitation, concurrent systems cannot be modelled.

Bad

Bad

Good

Good

Bad

Very
Good

Very
Good

Very
Good

Good

Statecharts

Statecharts are a graphical language to describe the behaviour of a
discrete-state system. They are based on the exchange of messages,
or events, between the system and its environment. Statecharts can
model hierarchy and concurrency systems. The difficulty of using
statechart is proportional to the number of states.

Medi-
um

Bad Good Good
Medi-

um
Very
Good

Very
Good

Very
Good

Bad

Event-
Response
Diagram

Event-Response Diagrams are used to specify sensors and interac-
tions. These diagrams are used to show the relationships between
events and tasks and how the events affect each other.

Bad Bad Medium Medium Bad Good
Medi-

um
Bad Bad

Petri Nets

A Petri net is a directed bipartite graph, in which the nodes repre-
sent transitions (i.e. events that may occur, signified by bars) and
places (i.e. conditions, signified by circles). Petri nets techniques can
be used to examine the behaviour of the process and to calculate its
performance measures.

Good Bad Good Good Good
Very
Good

Very
Good

Very
Good

Bad

2. State of the Art

 53

FORMALISM FOR
BEHAVIOUR

BRIEF DESCRIPTION

DIALOGUES PROPERTIES

C
O

M
P

L
E

X
IT

Y

R
E

U
S

A
B

IL
IT

Y

C
O

N
S

IS
T

E
N

C
Y

S
C

A
L

A
B

IL
IT

Y

C
O

M
P

L
E

T
E

N
E

S
S

D
E

T
E

R
M

IN
IS

M

R
E

A
C

H
A

B
IL

IT
Y

R
E

V
E

R
S

IB
IL

IT
Y

A
D

A
P

T
A

B
IL

IT
Y

FORMAL

METHODS

Model

based(Z,VDM)

Systems are modelled using sets and relations between sets or
set theory. Vienna Development Method (VDM) and Z nota-
tion are the most widely used notations for developing mod-

el-based specifications [JON80, JON86, HAY86, SPI92].

Medium
Very

Good
Good Good Good Good Medium

Very

Good
Bad

Algebraic

(OBJ, Larch,

ACT-ONE)

An algebraic specification does not try to build up a picture
of the components of an object, but merely describes what
the object is like from the outside. For an interface specifica-
tion this sounds like a good thing, as we want to talk about
the behaviour of a system from the user's viewpoint, not the
way it is built. There are a wide number of algebraic specifica-
tion notations including OBJ, Larch and ACT-ONE

[DIX98].

Medium
Very

Good
Good Good Medium Good Medium

Very

Good
Bad

MODEL-
DRIVEN

APPROACH

Model-Driven

Engeneering

Model Driven Engineering, aims to use models at different
levels of abstraction for developing systems, thereby raising
the level of abstraction in program specification. An increase
of automation in program development is reached by using
executable model transformations. Higher-level models are
transformed into lower level models until the model can be
made executable using either code generation or model inter-
pretation

Good Good Bad Good Good Medium Bad Bad
Very

Good

Model-Driven

Architecture

Model-Driven Architecture approach defines system func-
tionality using a platform-independent model (PIM) using an
appropriate domain-specific language (DSL). The PIM is
translated to one or more platform-specific models (PSMs)
that computer can run. This requires mappings and transfor-
mations and should be modelled too.[OMG00]

Good Good Bad Good Good Medium Bad Bad
Very

Good

2. State of the Art

 54

FORMALISM FOR
BEHAVIOUR

BRIEF DESCRIPTION

DIALOGUES PROPERTIES

C
O

M
P

L
E

X
IT

Y

R
E

U
S

A
B

IL
IT

Y

C
O

N
S

IS
T

E
N

C
Y

S
C

A
L

A
B

IL
IT

Y

C
O

M
P

L
E

T
E

N
E

S
S

D
E

T
E

R
M

IN
IS

M

R
E

A
C

H
A

B
IL

IT
Y

R
E

V
E

R
S

IB
IL

IT
Y

A
D

A
P

T
A

B
IL

IT
Y

UI
DESCRIPTION

LANGUAGE

XIML (eXten-

sible Interface

Markup Lan-

guage)

XIML is a simple markup language enabling functionality previ-
ously available only with complex programmed applications. It is a
universal technology well suited for building full featured websites,
mini-sites, widgets, web/mobile/PDA applications, GUI in desk-
top applications, touchscreens, etc.

Medium Good Medium Good Bad Bad Bad Bad Bad

HTML(Hyper

Text Mark-Up

Language)

HTML is what is known as a "mark-up language" whose role is to
prepare written documents using formatting tags. The tags indicate
how the document is presented and how it links to other docu-
ments.

Medium Good Medium Good Bad Bad Bad Bad Bad

WML (Wire-

less Markup

Language)

WML is a markup language intended for devices that implement
the Wireless Application Protocol (WAP) specification, such as
mobile phones. It provides navigational support, data input, hyper-
links, text and image presentation, and forms, much like HTML

Medium Good Medium Good Bad Bad Bad Bad Bad

Voice XML

(Voice

Extensible

Markup

Language)

VoiceXML is an application of the Extensible Markup Language
(XML) which, when combined with voice recognition technology,
enables interactive access to the Web through the telephone or a
voice-driven browser. An individual session works through a com-
bination of voice recognition and keypad entry.

Medium Good Medium Good Bad Bad Bad Bad Bad

UsiXML (User

Interface eX-

tensible

Markup Lan-

guage)

UsiXML is a formal Domain-Specific Language (DSL) used in
Human-Computer Interaction and Software Engineering in order
to describe any user interface of any interactive application inde-
pendently of any implementation technology. A user interface may
involve variations depending on: the context of use (in which the
user is carrying out her interactive task), the device or the compu-
ting platform (on which the user
is working), the language (used by the user), the organization (to
which the user belongs), the user profile, the interaction modalities
(e.g., graphical, vocal, tactile, haptics).

Medium Good Medium Good Bad Bad Medium Bad
Very

Good

2. State of the Art

 55

2.5.2 Concerns

Information gathered above on the state of the art regarding interactive dialogues

highlight the following shortcomings:

Concern#1: Lack of methodology

Behaviour is often left out for the profit of the presentation. Indeed, if there is a lot of

work on the presentation, it is sorely lacking techniques or methods for construires

interactive dialogues.

Concern#2: Lack of managing complexity

The unceasing advance of computer media is proportional to the increasing complexity

of interactive applications. It is important that research be conducted to provide

techniques for managing this complexity.

Concern#3: Lack of modelling

Behaviour is often programmed, not frequently modeled nor represented. When

behaviour is represented, many different techniques exist.

Concern#4: Lack of computing-independent

Behaviour is hard to abstract from computing platform and from interaction modality.

Indeed, behaviour is hard to generate in a way that remains independent from any

technology. We are unaware of any existing approach building behaviour from the

highest level (computing-independent model) to the lowest level (platform-specific

model). Existing approaches only address some parts of some levels.

Concern#5: Lack of multiple platform managing

With the proliferation of platforms and accessories, it is not a luxury to use the same

specification to develop an application usable in various environments. In other words,

the need for generalization goes well with the need of specialization dialogue over several

platform. Provide an environment that can manage multiple platforms is a challegence.

In this thesis, the challenge is to provide some answers that can help to alleviate these

five shortcomings. Indeed, based on three pillars model, method and tool, we apply the

paradigm of Model-Driven Engineering, MDE in short, to provide an integrated

methodology of developping interactive dialogues. An assisted modelling approach in

the specification, editing and / or generating code of an interactive application is offered

to developers (designers, analysts, designers and / or programmers). According to

Cameleon Framework Reference (CFR) i.e. whatever the level of abstraction (abstract,

concrete or final), the methodology aims to provide concepts to achieve interactive

dialogues with a model transformational approach.

To support the overall conceptual model of the methodology and prove its feasibility, we

have implemented a graphical editor called Dialog Editor

3. Model-Driven Engineering of Behaviours

 56

Chapter 3 Model-Driven
Engineering of Behaviours

We would have to insist from the beginning of this main chapter that our research
describes a model-driven engineering of interactive dialogues in graphical user interfaces
that is structured according to the three lowest levels of abstraction of the Cameleon
Reference Framework: abstract, concrete and final user interface.

A dialogue model captures an abstraction of the dialogue as opposed to a traditional
presentation model that captures the abstraction of the visual components of a user
interface. The dialogue modelled at the abstract user interface level can be reified to the
concrete user interface level by model-to-model transformation, which in turn leads to
code by model-to-code generation.

This chapter is aimed at addressing the aforementioned challenges by applying MDE
principles to designing a dialogue for GUIs belonging to different computing platforms.
The remainder of this chapter is structured into three sections.

Section 1 describes our methodological approach. Initially, it sets the context by recalling
some basic concepts. Afterwards, it treats MDE before showing how we integrate into
our research these two notions. This section concludes with the presentation of the
flowchart defining the algorithm to be followed while applying our methodology. This
section concerns the Method branch in our methodological approach.

Figure 23. Method frame in Methodological diagram.

Section 2 examines the conceptual model. After listing and defining the useful elements

in the dialogue specification, it establishes the links between these elements in the UML

diagram of all object classes needed. According to the methodological approach, this

chapter concerns the method pavement as shown in Figure 23.

3. Model-Driven Engineering of Behaviours

 57

Figure 24. Models frame in Methodological diagram.

Section 3 focuses on software support in the Dialog Editor description. It motivates our
software implementation with multi-level dialogue model editing, model-to-model
transformation and model-to-code generation. It gives its technical characteristics and its
conceptual and functional architecture. Here, we complete the methodological approach
diagram by treating the practical aspects of our research.

Figure 25. Software frame in Methodological diagram.

3.1 Methodology

By harnessing the principles and structure of Cameleon Framework Reference (CFR), the
methodology we build is based on the Model Driven Engineering (MDE) approach. After
the preliminaries of our research, this section aims to emphasize the fundamental
concepts on CFR and MDE. Then it will describe our methodology using its flowchart.

3.1.1 Preliminary

We hereby refer to behaviour as being the dynamic part of a Graphical User Interface
(GUI) such as the physical and temporal arrangement of widgets in their respective
containers and their evolution over time depending on the user’s task. Behaviour
regulates the ordering of these widgets so as to reflect the constraints imposed by the
user’s task.

The dialogue has also been referred to as behaviour, navigation or feels (as opposed to

3. Model-Driven Engineering of Behaviours

 58

look for presentation) [Ari88, Bas99, Elw96]. Here are some typical examples of
dialogues: when the end user selected her/his native language in a list box, a dialogue box
is translated accordingly; when a particular value has been entered in an edit field, other
edit fields are deactivated because they are no longer needed; when a validation button is
pressed, the window currently open is closed and another one is opened to pursue the
dialogue. Conceptual modelling [Ari88], model-based design [Bre09] or model-driven
engineering [Mei09a] of the dialogue was already introduced since years ago[Elw96] in
order to be derived from a task model [Dit04,Luy03,Rei08,Van98,Van03], perhaps
combined with a domain model [Tra03] or a service model [Bre09], to derive its software
architecture from its model [PlI05], to analyze its properties [Cac07,Van99], to foster
component re-use [Cow95], to check some dialogue or usability properties [Van99], to
support adaptation [Men03], to automatically keep trace of interactions and analyze them
afterwards [Rei08]. Dialogue models have been used in several domains of applications,
such as web engineering [Boo07,Czc07], information systems [Mba03], multi-device
environments [Sch07], multimedia applications [PlM05,PlI05], multimodal applications
[Sch06] and workflow systems [Tra03,Tra08].

Dialogue modelling has however often been considered harmful for several reasons
which may impedie further research and development in this area:

1. Choosing the modelling language paradigm is a dilemma: an imperative or procedural
language is often more suitable and convenient to represent a GUI dialogue than a
declarative language. The one could introduce a verbose representation of something
that could be expressed in a straightforward way in the other. The current trend goes
in favour of scripting languages.

2. Abstracting the right concepts is complex: finding the aspects of a dialogue that
should lead to abstraction is not straightforward and turning them into an abstraction
that is expressive enough without being verbose is difficult. A dialogue model may
only have a limited level of expressiveness, but will prevent the designer from
specifying complex dialogues while another dialogue model may exhibit more
expressiveness, but is considered complex to use. Which modelling approach to use
is also an open question: taking the greatest common denominator across languages
(with the risk of limited expressiveness) or more (with the risk of non-support).

3. Heterogeneity of computing platforms is difficult to handle: Integrated Development
Environments (IDEs) are often targeted to a particular programming language or
markup language that is dedicated to a particular operating system or platform. Some
IDEs exist (e.g. Nokia QT (http://qt.nokia.com/products, QtK) that address multi-
platform GUIs, but they remain at the code level or their usage is still complex.

4. Model-driven engineering of dialogue is more challenging than model-based design.
Model-based GUI design only assumes that one or many models are used to design
parts or whole of a GUI, while Model-Driven Engineering (MDE) [Mei09] imposes
at least one User Interface Description Language (UIDL) [Can10] that should be
rigorously defined by a meta-model (preferably expressed in terms of MOF language,
but not necessarily). Model-based GUI design may invoke virtually any technique,
while model-driven engineering imposes the need for everything to be rigorously
defined in terms of model transformations, which are in turn based on a metamodel.

3. Model-Driven Engineering of Behaviours

 59

We said above that the Methodology we propose is based on the Cameleon Framework.
Before going any further, let us pause in the next section to analyse the founding
principles of this environment.

3.1.2 Cameleon Reference Framework

Several UIDLs [Can10] are structured according to the four steps of the Cameleon
Reference Framework (CRF) [Cal03], that are now recommended for consideration by
W3C [Can10]:

 Task & Concepts (T&C): describe the various users’ tasks to be carried out and the
domain-oriented concepts required by these tasks to be performed.

 Abstract UI (AUI): defines abstract containers (AC) and individual components
(AIC), two forms of Abstract Interaction Objects (AIO) by grouping subtasks
according to various criteria (e.g. task model structural patterns, cognitive load
analysis and semantic relationships identification). As in Guilet Dialogue Model
[Rüc08] which enables flexible development with no restrictions on presentation and
application layer and without any implementation-technology. The dialog model
supports GUI designers and developers in understanding the behaviour of the GUI.
One of the main keys is the independence to any interaction modality. The AUI is
said to be independent of any interaction modality.

 Concrete UI (CUI): concretizes an abstract UI for a given context of use into Concrete
Interaction Objects (CIOs) so as to define widgets layout and interface navigation. It
abstracts a final UI into a UI definition that is independent of any computing
platform. A CUI assumes that a chosen interaction modality, but the CUI remains
independent of any platform.

 Final UI (FUI): is the operational UI i.e. any UI running on a particular computing
platform either by interpretation (e.g. through a Web browser) or by execution (e.g.
after compilation of code in an IDE).

As noted already, our research refers to CFR. As the Figure 26 shows, we use the Moskitt
XML schema and some UsiXML models. At the Final level, we aim for two
environments Mac OSX and Windows for five programming languages; HTML V4.0,
HTML for Applications (HTA), Microsoft Visual Basic for Applications V6.0 (VBA) and
DotNet V3.5 framework

3. Model-Driven Engineering of Behaviours

 60

Figure 26. Application of CFR in our research.

3.1.3 Model-Driven Engineering

With the aim of proposing a methodology for specifying dialogues, we consider an
interaction software applications as real things; things in real world. The real stuff is the
code or the user interface objects, which are a collection of binary, text, graphical or
formal documents the once put in a platform may run.

In this context, a model at final level of abstraction contains all required information
regarding a specific platform that developers may use to implement the executable code.
A concrete model describes the behaviour and structure of the application regardless of
the implementation platform. An abstract model is the most abstract model which
represents the context and purpose of the model without any computational
complexities.

3. Model-Driven Engineering of Behaviours

 61

Figure 27. Applying MDE with Toolkits.

We have to insist on this confirmation, the main characteristic is that each exploited
model is a toolkit; a box of objects whose syntactic and semantic properties furnish
dialogue scripts. As shown is the Figure 27, Toolkits are classified according to the levels
of abstraction of the Cameleon Reference Framework: task and domain, abstract user
interface, concrete user interface and final user interface. The dialogue modelled at the
abstract user interface level can be reified to the concrete user interface level by model-
to-model transformation that can in turn lead to code by model-to-code generation.

The passage from a conceptual model to an actual application is accomplished through a
succession of model transformations based on a Model-Driven Architecture (MDA). We
applied these model transformations using Mappings from the point of view of Human–
Computer Interaction (HCI).

Before continuing, we will insist that the Cameleon Reference Framework [Cal05]
enables multiple development paths and not just forward engineering. In forward
engineering, transformations are supposed to transform elements of a model into
elements belonging to another model whose level of abstraction is inferior (this process
is referred to as reification). In reverse engineering, transformations are supposed to transform
elements of a model into elements belonging to another model whose level of
abstraction is superior (this process is referred to as abstraction). In lateral engineering,
transformations are applied on models belonging to the same level of abstraction,
possibly the same one.

We recall once again, for our research, that five target markup and programming
languages are supported: HTML V4.0, HTML for Applications (HTA), Microsoft Visual
Basic for Applications V6.0 (VBA) and DotNet V3.5 framework. Two computing
platforms support these languages: Microsoft Windows and Mac OS X. Five levels of
dialogue granularity are considered: object-level (dialogue of a particular widget), low-
level container (dialogue of any group box), intermediary-level container (dialogue at any
non-terminal level of decomposition such as a dialogue box or a web page), intra-
application level (application level dialogue) and inter-application level (dialogue across
different interactive applications). The methodology we propose allows these three types
of engineering:

3. Model-Driven Engineering of Behaviours

 62

(i) Forward engineering, where mappings transform successively the AUI model into a CUI
model that, in turn, is transformed into a FUI for the fours following targets: HTML
V4.0, HTML for Applications (HTA), Microsoft Visual Basic for ApplicationsV6.0
(VBA) and DotNet V3.5 framework. HTML V4.0 and HTA are running on both MS
Windows and Mac OS X platforms.

(ii) Reverse engineering, where mappings transform something concrete into something
abstract. Mapping for reverse engineering Visual Basic V6.0 code directly into an
AUI model by establishing a correspondence between native objects and their
corresponding user objects, two sub-classes of interactive objects.

(iii) Lateral engineering, where mappings transform model elements belonging to a same

level of abstraction, but for another context of use. Before continuing, we must
emphasize that our conceptual and technical choices are guided by a desire to easily
integrate our results into the UsiXML environment. Indeed, conceptual model of
dialogues has been implemented as UML V2.0 class diagram in Moskitt
(www.moskitt.org) that gave rise to an XML Schema.

Figure 28. Three types of engineering in Contexte of Use.

As we can see in the Figure 28, it is very important to note that in this example, the
reverse engineering does not need necessarily to work between two subsequent levels.
Mapping can go from FUI directly to AUI without passing by the intermediary CUI
level. This type of mapping is called cross-cutting as it represents a shortcut between two
non-consecutive levels of abstraction. For example, a mapping for forward engineering
from an AUI model directly to Visual Basic V6.0 code.

Referring to Knowledge-Based Engineering (KBE), we would like to add a useful extension.
Indeed, a pool of knowledge or a database is added to the context of use. Such a
database will aim to reduce time and cost of product development, which is primarily

http://www.moskitt.org/

3. Model-Driven Engineering of Behaviours

 63

achieved through automation of repetitive design tasks while capturing, retaining and re-
using design knowledge[Ver12].

Therefore, developers will have to consult the online documentation for the models,
features and all other concepts of the methodology. In addition, good practice scenarios
will be added to support developers. They will find complete examples where each step
will be described, and also simple illustrations as decisions support.

We have some regret not having formally treated this extension in the present state of
our research. However, we have a series of video sequences, in French and English,
illustrating the theoretical and practical elements of the methodology.

In addition, two documented examples are available. A small example of password
management and a complete example of a CTI company. These two points are discussed
later in the fourth chapter. In this way, the context of use can be represented by Figure
29 below.

Figure 29. Extended Context of Use

3. Model-Driven Engineering of Behaviours

 64

Considering, firstly, the notion of model as a black box, the following section provides
flowchart, the algorithm, of the methodology that we propose.

3.1.4 Applying the methodology

Based on the explanations of the previous section allow the Figure 30 gives the step-by-
step instructions for applying the methodology that we propose. Indeed, the designer has
to choose his/her own model and his initial level, following which he can create a new
project or edit an existing project. After, by using mappings, he can move from one
model to another. There are no limits, either for the model or for the level. That is one
feature of this methodology. Additionally, if its model is final, he can choose to generate
the code to be an executable.

Figure 30. Methodology steps.

3. Model-Driven Engineering of Behaviours

 65

Figure 31. Project Editing Algorithm.

Take a second flowchart (Figure 31) that better illustrates some aspects of the
methodology, in particular, the difference between creating a project and opening an
existing project. Also, this new diagram emphasizes the addition or deletion of interactive
objects in a given project. It is very interesting to note that a project created or specified
in the context <n1,tk1> i.e. at the level n1 and the toolkit tk1, can be transferred in the
context <n2,tk2> to be changed. The methodology allows multiple transformations
before generating project codes from in a context <nm,tkm> where nm is the final level.
The preceding remarks highlight the importance of clearly defining the mappings.

3. Model-Driven Engineering of Behaviours

 66

Indeed, if two mappings are very different, their applications to the same project can lead
to different projects.

Now, open the black box to describe the more specific conceptual model of the
methodology. This is the subject of the next section.

3.2 Conceptual Model

In order to apply MDE techniques, we need to define a dialogue model that is expressive
enough to accommodate advanced dialogues at different levels of granularity and
different levels of abstraction, while allowing some structured design and development of
corresponding dialogue. The Dialog Editor described in this thesis will rely on this
conceptual model. For this purpose, our conceptual modelling consists of expanding
ECA rules towards dialogue scripting (or behaviour scripting) in a way that is
independent of any platform.

3.2.1 Dialogue granularity

This dialogue scripting is structured according to a meta-model that is reproduced in
Figure 32 that enables the definition of a dialogue at five levels of granularity:

1. Object-level dialogue modelling: this level models the dialogue at the level of any particular

object, such as a CIO or an AIO. In most cases, UI toolkits and IDEs come with
their own widget set with built-in, predefined dialogue that can be only be modified
by overwriting the methods that define this dialogue. Only low-level toolkits allow
the developer to redefine an entirely new dialogue for a particular widget, which is
complex.

2. Low-level container dialogue modelling: this level models the dialogue at the level of any

container of other objects that is a leaf node in the decomposition. Typically, this
could be a terminal AC at the AUI level or a group box at the CUI level in case of a
graphical interaction modality.

3. Intermediary-level container dialogue modelling: this level models the dialogue at the level of

any nonterminal container of objects that is any container that is not a leaf node in
the container decomposition. If the UI is graphical, this could be a dialogue box or
the various tabs of a tabbed dialogue box.

4. Intra-application dialogue modelling: this level models the dialogue at the level of top
containers within a same interactive application such as a web application or a web
site. It therefore regulates the navigation between the various containers of a same
application. For instance, the Open-Close pattern means that when a web page is
closed, the next page in the transition is opened.

3. Model-Driven Engineering of Behaviours

 67

5. Inter-applications dialogue modelling: since the action term of an ECA rule could be either
a method call or an application execution, it is possible to specify a same dialogue
across several applications by calling an external program. Once the external program
has been launched, the dialogue that is internal to this program (within-application

dialogue) can be executed.

3.2.2 Interactive object

The current subsection introduces the concepts used towards the conceptual modelling
of dialogues that could be structured according to the five aforementioned levels of
granularity. These concepts are defined and motivated in the next sub-sections.

1. Interactive Object. An interactive object is the core component of the conceptual model

as it consists of any object perceivable by the end user who could act on it.
Interactive objects are further sub-divided into three levels of abstraction depending
on the CRF [Cal03]: abstract, concrete and final (Figure 32 shows how this hierarchy
is implemented in the Dialog Editor respectively at the three levels);

2. Abstract Interactive Objects. They describe interactive objects at the Abstract User

Interface (AUI) level of the CRF. In the Dialog Editor, they are implemented as
abstract classes compliant with Morfeo’s Abstract UI model (http://forge.morfeo-
project.org/wiki_en/index.php/Abstract_User_Interface_Model) which has been
selected for the following reasons: Morfeo’s AUI is one of the most recent efforts to
define AUI that has been successfully implemented in the Morfeo project and has
therefore been recommended as a reference model for the European NESSI
platform (www.nessi.eu) through the FP7 Nexof-RA project (www.nexofra.eu) which
promotes a reference software architecture for interactive systems, including the GUI
part. Morfeo’s AUI model holds two object types: an interactor manipulates data
such as input, output, or both, through simple interaction mechanism (e.g. a
selection) or through complex ones (e.g. a vector, a hierarchy); a container could
contain interactors and/or other containers. Figure 32 details the definition of the
abstract class implemented for the Free object that serves for general-purpose
input/output;

3. Concrete Interactive Objects. They describe interactive objects at the Concrete User
Interface (CUI) level of the CRF. Such concrete interactive objects may range from a
simple widget such as a push button, a slider, a knob to more complex ones such as a
group box, dialogue box, tabbed dialogue box.

If we abstract an interactive object from its various physical representations that
belong to the various computing platforms and window managers, any interactive
object is characterized by its attributes and dialogue. An object may react to the end
user’s actions by handling events generated by this object.

Therefore, a class could introduce an abstraction of object characteristics, including
its attributes (fields or properties), its methods (through which a concrete interactive

3. Model-Driven Engineering of Behaviours

 68

object could be manipulated) and its events (that could be generated by, or received
by, a concrete interactive object).

A class is hereby considered as a model of interactive objects of the same type. For
example, a TextBox of a GUI consists of a rectangular widget for the entering of
text, characterized by attributes including width, height, backgroundColor, maxLength or
the currentText.

Figure 32. The hierarchy of interactive objects classes.

Textbox operators are also associated such as appendText, giveFocus, selectAll or
clearEntry. A textbox generates events such as textBoxSelected when the textbox has
been selected by any means (e.g. by clicking in it, by moving the tabulation until
reaching the object) or textBoxEnter when the GUI pointer enters in the object (e.g.
by moving the mouse-cursor into it or by touching it);

To fix ideas, let us make a forward reference to show how objects are organized in the
editor. It should be emphasized that a section for a description of the editor is planned in
the future.

3.2.3 Behaviour Model

This section is one of the most important of this thesis. Indeed, it describes the various
objects of dialogue and data models between them. Our goal is to examine each of these
objects under the microscope in order to understand what it brings to the specification
of the dialogue. Based on the diagram below, let us define each entity:

3. Model-Driven Engineering of Behaviours

 69

1. Final Interactive Objects. They describe interactive objects at the Final User

Interface (FUI) level of the CRF. In the Dialog Editor, they are implemented as
real classes corresponding to the various toolkits supported (Figure 33 shows
the four toolkits that are currently supported with the hierarchy expanded for
Visual Basic V6.0). For each interactive object, only the common native
dialogue is factored out and rendered as a sub-class of the toolkit. This is why
final interactive objects are represented as native objects in Figure 33, while
abstract and concrete interactive objects are represented as user-defined classes
in Figure 33. We hereby assume that the native dialogue of any final interactive
object is preserved. For defining non-native dialogues of a final interactive
object, dedicated methods exist, such as the Interaction Object Graph (IOG)
[Car06]. Since defining custom dialogue at the control level requires complex
and dedicated programming, it is not supported unless such a dialogue can be
characterized as an interactive object.

Figure 33. Internal and external representation of Toolkits.

3. Model-Driven Engineering of Behaviours

 70

Figure 34. Conceptual modelling of behaviours for model-driven engineering.

3. Model-Driven Engineering of Behaviours

 71

Now that these five levels have been defined, we introduce the concepts used towards
the conceptual modelling of behaviours that could be structured according to the five
aforementioned levels of granularity. Figure 34 depicts the global structuring of these
concepts:

 Toolkit: In order to support GUIs for multiple computing platforms, each
supported toolkit of a particular platform is characterized by its name, its level
(e.g. a version), its extensions and a series of templates describing how this toolkit
implements particular dialogues. Three values are accepted depending on
abstraction level: abstracted (AUI), concrete (CUI) or final (FUI). Figure 34
shows the correspondence of the external representation of a toolkit that is
visible to the end user and the representation inside Dialog Editor.

 Library: A library gathers a series of particular interactive objects at any level so
as to refer to them as a whole, which is helpful for keeping the same definitions
for one target computing platform, typically a toolkit. For the moment, HTML
V4.0 is one of the toolkits supported by its corresponding library. Any newer
version of HTML, e.g. V5.0, requires implementing a new library for this toolkit.

 Instance: An instance is any individual object created as an instance of any
interactive object class. While a class defines the type of an interactive object, any
actual usage of this class is called "instance". Each class instance possesses
different values for its attributes. At any time, the instance state is defined by the
set of its attributes values. By respecting the encapsulation i.e. the process of
hiding all the attributes of an object from any outside direct modification, object
methods can be used to change an instance state. In order to have a
login+password, two instances should be created that share the same definition,
but with different instance states.

 User Interface: A User Interface (UI) as it is considered in this conceptual
model may consist of any UI at any level of abstract (i.e. abstract, concrete, or

final). Therefore, such a UI consists of a set of instances each belonging to the

corresponding level of abstraction.

 Project:: A project is considered as a set of UIs for a same case study for a
particular toolkit. In a same project, one can typically find one AUI, one CUI and
one FUI. Of course, for the same AUI, different CUIs could be created that, in
turn, lead to their corresponding FUIs. Actually, a project could hold as many
CUIs and FUIs as model-driven engineering has been applied to the same AUI.
This is achieved through the mechanism of mapping.

 Mapping: In order to support model-driven engineering, a mapping is hereby
referred to as any set of transformation rules from one source toolkit to a target
toolkit. Note that source and target toolkits could be identical. A transformation
rule is written as a PERL regular expression applied from a source class of
interactive objects to a target class of interactive objects. In order to support
Model-to-Model (M2M) transformation, a transformation rule may be applied

3. Model-Driven Engineering of Behaviours

 72

from one or many classes of abstract interactive objects to one or many classes of
concrete interactive objects. For Model-to-Code (M2C) generation, a
transformation rule is applied from one or many classes of concrete interactive
objects to one or many classes of final interactive objects (so-called native
objects). Let us consider again the login and the password example. At the
abstract level, two instances of entry fields are created to be mapped onto objects
belonging to a particular toolkit. In HTML, both fields are transformed into
Input objects, respectively of type Text and Password. In VB6, they are
transformed into two text boxes. For the password, IsPassword is set to True.

Figure 35. Internal and external representation of mappings.

Figure 35 shows both, the external representation of a mapping that is visible to the end
user and its internal representation inside the Dialog Editor. Note that the Cameleon
Reference Framework [Cal03] enables multiple development paths and not just forward
engineering. In forward engineering, transformations are supposed to transform elements
of a model into elements belonging to another model whose level of abstraction is
inferior (this process is referred to as reification). In reverse engineering, transformations
are supposed to transform elements of a model into elements belonging to another
model whose level of abstraction is superior (this process is referred to as abstraction). In
lateral engineering, transformations are applied on models belonging to the same level of
abstraction, possibly the same one. Mappings as supported by the Dialog Editor support
the three types of engineering:

(1) Forward engineering, where mappings transform successively the AUI model into a

CUI model that, in turn, is transformed into an FUI for the four following targets:
HTML V4.0, HTML for Applications (HTA), Microsoft Visual Basic for

3. Model-Driven Engineering of Behaviours

 73

Applications V6.0 (VBA) and DotNet V3.5 framework. HTML V4.0 and HTA are
running on both MS Windows and Mac OS X platforms.

(2) Reverse engineering, where mappings transform something concrete into something

abstract. Figure 36 depicts a mapping for reverse engineering Visual Basic V6.0 code
directly into an AUI model by establishing a correspondence between native objects
and their corresponding user objects, two sub-classes of interactive objects.

(3) Lateral engineering, where mappings transform model elements belonging to a same

level of abstraction, but for another context of use. Before continuing, we must
emphasize that our conceptual and technical choices are guided by a desire to easily
integrate our results into the UsiXML environment. Indeed, the conceptual model of
dialogues has been implemented as UML V2.0 class diagram in Moskitt

(www.moskitt.org) (Figure 36) that gave rise to a XML Schema.

Figure 36. Example of a mapping for reverse engineering.

Note also that in this example, the reverse engineering does not necessarily need to work
between two subsequent levels. The mapping depicted in Figure 36 goes from FUI
directly to AUI without passing by the intermediary CUI level. This type of mapping is
called cross-cutting as it represents a shortcut between two non-consecutive levels of
abstraction. For example, Figure 37 depicts a mapping for forward engineering from an
AUI model directly to Visual Basic V6.0 code.

http://www.moskitt.org/

3. Model-Driven Engineering of Behaviours

 74

Figure 37. Example of "one-to-many" mapping.

In the Cameleon Reference Framework, multi-target is also described in terms of
different contexts of use. Therefore, any mapping that goes from one context of use to
another one is referred to as lateral engineering. The Dialog Editor also supports this
through mappings at the same level of abstraction, but across two different contexts of
use, such as between VB6 and HTML V4.0 (Figure 38).

Figure 38. Example of mapping for lateral engineering.

3. Model-Driven Engineering of Behaviours

 75

 Dialogue Script: A dialogue script (or behaviour script) is a sequential text
expressing the logical and conditional elements. It describes the actions to be
achieved according to a given interaction scenario. An action can be the change
of an attribute value, the call of a semantic function belonging to the functional
core, or the opening or the closing of another user interface. Three levels of
script are possible:

1. Elementary dialogue scripts. These scripts are related to instances found in a

given project. Often, these scripts are systematically generated accordingly to
a template-based approach. They can come from:

 A change of an attribute value: for example, a read-only field implies
automatic database requests in its dialogue script ;

 A layout positioning: for example, two interactive objects may be laid out
in their parent according to an adaptation mechanism.

2. User interface Scripts. These scripts relate to the implicit or explicit data

exchanges between two or several interactive components having a common
interactive ancestor. For example, an interactive object is activated or
deactivated depending on the state of another object. The verification of a
login+password can be initiated only after both fields are properly filled in.

3. Project scripts. These scripts express the data exchanges between two or

more interactive objects that are independent as they do not share any parent.

Figure 39. Dialogue script of an interactive object.

Any dialogue script is structured into three parts (Figure 39): a condition of realization,
the event to consider and a list of actions to be undertaken when the event is fired and
the condition is satisfied. A single script language has been defined in common for all

3. Model-Driven Engineering of Behaviours

 76

three types of dialogue scripts. These scripts use in harmony three models of dialogue;
transition networks, grammars and events [Gre86]. Scripts of dialogues at the abstract
and concrete levels are written using a generic language that we described using a BNF
grammar. At final level, the code generator translates from generic scripting to specific
language relative to a target model. It should be noted that some of these scripts are
automatically deducted through some attribute values. A simple example is to associate
the exit of an interactive task with the click of a button. Such a script is generated
automatically. As in useML editor [Mei09], other scripts are derived semi-automatically.
Indeed, by combining the event of an interactive object to a function call, the developer
will have to make the links between the function parameters (input and output) with the
attributes of interactive objects. Then, the editor automatically builds the script.

Figure 40. Script of Connection Class In Dialog Editor.

 History: A history consists of a set of time-stamped operations applied to
dialogue scripts over time in order to preserve the design history. In this way,

3. Model-Driven Engineering of Behaviours

 77

some traceability of dialogue scripts (i.e. who created, retrieved, updated, deleted
which dialogue script over time in the same project) and some reusability (i.e.
copy/paste an already existing dialogue script) are ensured (Figure 40). Any
dialogue script definition can be validated for a particular toolkit.

Figure 41. Recovering a previously saved history.

3.3 Implementation

To support the model and process described in the previous sections, we implement a
graphic Dialog Editor in which Models are organized in three levels (abstract, concrete and
final) according to CFR and, whose process respects the MDE approach.

The purpose of this section is to describe this behaviour Editor and present the technical
choices we made. We should clarify that this is not a production tool. As part of our
research, the purpose of this tool is twofold;

1. show the harmonic relationship between theoretical concepts and;
2. illustrate the feasibility of the methodology and the proposed algorithm.

As shown in the flowchart of Figure 30, the global algorithm processes by steps and
respects mapping to move from model to another.

3. Model-Driven Engineering of Behaviours

 78

3.3.1 Software architecture

In order to achieve the goal of Model-Driven Engineering of dialogues for multi-
platform GUIs based on the conceptual model of Figure 34, the process of the flowchart
of Figure 30 and Figure 31 is decomposed into four main phases (Figure 42):

(i) Project editing which includes all facilities required to create, retrieve, update
and delete any UI project during the development life cycle;

(ii) Project transforming which is aimed at supporting the creation of new
mappings between levels and applying them via a mapping editor;

(iii) Scripting which is aimed at specifying any desired dialogue script at any time,
before or after transformation;

(iv) Code generating which calls the mappings corresponding to the target

platform for which the code of the FUI should be produced.

Figure 42. Dialog Editor Architecture.

3. Model-Driven Engineering of Behaviours

 79

Functionally, Dialog Editor offers all the services of project management; creation, editing

or deleting. The Control mapping is one of the major modules of the tools. Code

generation requires that the project be in final level. Otherwise, it is mandatory to use a

mapping whose target level is final. Figure 43 provides a functional overview of the tool.

Figure 43. Dialog Editor functional overview.

3.3.2 Programming

The Behaviour Editor has been entirely programmed with Visual Studio 6 (VB6) and
Visual Basic for Applications (VBA).

 Figure 44. Project main window in Dialog Editor.

3. Model-Driven Engineering of Behaviours

 80

To standardize the presentation (look) and the dialogue exchange (feel), an ActiveX
control has been developed. We have put in this ocx component known objects such as
plain text (textbox), the simple list (combox), check (checkbox) or editable grid to manage
tables.

Description URL

Global View http://www.youtube.com/watch?v=x3CtCj47iZQ

Architecture http://www.youtube.com/watch?v=Nx3d-w19Oug

Project

Editing

http://www.youtube.com/watch?v=GRKWwq5cQzU

Mappings http://www.youtube.com/watch?v=gVQ8bz9wEXY

Scripting http://www.youtube.com/watch?v=EZGtL7fXtlE

Code

Generation

http://www.youtube.com/watch?v=n7YlgpDihtY

Figure 45. Video demonstrations of the Dialog Editor.

The table above (Figure 45) gives some references to videos we have made and published
on YouTube to illustrate the use of the Dialog Editor. Each of these videos shows one
of the modules of the architecture presented above.

In VB6, ActiveX Data Object (ADO) Recordset object is used to hold a set of records
from a database table. Recordset object consists of records and columns (fields). As
shown in Figure 46, we choise to use Recordsets for the internal organization of all
components handled in the editor.

Moreover, VB6 offers a function used in saving a Recordset as an XML file. There exists
also a function which opens a Recordset from an XML file. The Recordset's save method
writes extended schema information to the XML file; this information is required to
open an XML file into a recordset. Figure 47 shows an example of a saved file.

http://www.youtube.com/watch?v=x3CtCj47iZQ
http://www.youtube.com/watch?v=Nx3d-w19Oug
http://www.youtube.com/watch?v=GRKWwq5cQzU
http://www.youtube.com/watch?v=gVQ8bz9wEXY
http://www.youtube.com/watch?v=EZGtL7fXtlE
http://www.youtube.com/watch?v=n7YlgpDihtY

3. Model-Driven Engineering of Behaviours

 81

Figure 46. A Recordset for native objects.

Thus, we confirm that UIDL which is maintained by the Dialog Editor is therefore based
on XML Schema. Therefore, any project created in the editor is compliant with the XML
Schema.

3. Model-Driven Engineering of Behaviours

 82

Figure 47. XML file corresponding to a UI Project.

3.3.3 Script Editor

The Dialog Editor that we implemented includes a powerful module, Script Editor, in which
the developer specifies the object’s properties and/or script. For “Projet1”, Figure 48
shows the tree of its objects and the characteristics of “command1”, one of its objects.

We notice that the script of an interactive object consists of three parts:

1. Properties:

Depending on requirements, a list of properties of the current object is proposed. The
developer can fill some of these properties with respect to its interface or to the dialogue
he wants.

For example, for the object "command1" in Figure 48, we fill the label "quit" and we say
that the object is associated with the action Exit. Also, we specify that this object should
have the main focus among the offspring of its parent.

We will see in the third part, the impact each of these properties impact on the dialogue
script of the object.

3. Model-Driven Engineering of Behaviours

 83

2. Listening objects:

In this section we fix the list of objects that could send an event to the current object.
The objective is to provide treatment at the reception of any other event. In the example
above, the object command1, will not listen.

Figure 48. Script Editor.

3. Events process:

This is the part of the script itself. The developer will describe the instructions to be
executed upon the occurrence of an event. Thus, each treatment begins with
OnEvent_Name.

For the example above, we are in VB6 and we handle a GUI. The click of command1
evokes the exit function. This call corresponds to the value assigned to the property
'action'. Moreover, this script is automatically generated.

Here, the developer has the freedom to use its library functions. For that it should
predict the translation of these functions into the target language.

3. Model-Driven Engineering of Behaviours

 84

We limited ourselves to defining the overall structure of the syntactic components
without going into details. In other terms, we use a kind of pseudo language without
semantics.

3.3.4 Mapping Editor

Mapping is one of the fundamental concepts of our research. We are constantly writing

since the beginning of the document that our methodology is cross-platform and, to pass

from one platform to another, we use a Mapping.

Indeed, cross-platform software has the advantage of being operational in several

platforms i.e. they are compatibles for several couples binding computer and operating

system. Nevertheless, for technical and/or ergonomic reasons, it frequently happens that

the passage from one platform to another imposes certain transformations, particularly

for the user interface (UI).

A platform describes architecture and framework that allows software to run. In detail,

typical platforms include a computer's architecture, operating system, programming

languages and related user interface (runtime libraries or graphical user interface

computing). Each platform has its own characteristics such as the device's form factor,

the appropriate interaction metaphors and the supported user interface toolkit.

A Transformation Rule (TR) is a mechanism which defines methods to replace one

interactive object by another. Let us recall that Interactive Objects (IO) are particular

objects used in the design and/or the implementation of User Interface (UI). Like any

other object, an IO is characterized by its own properties, methods and events. For

finalized objects, this includes forms and controls. Properties can be thought of as the

attributes of an object, methods as its actions and events as its responses.

That being so, independently of the platform, to transform an object supposes the taking

into account, at least, of source properties, methods and events versus target properties,

methods and events.

TRs are an effective means of exceeding the differences between platforms by offering

alternatives which project an image of a given UI from one platform to another. A TR

receives an IO as an Input. Each IO is described by its attributes, its methods and its

events. As output, a TR produces another IO, possibly the same one, which is an

"image" of the input IO.

3. Model-Driven Engineering of Behaviours

 85

Figure 49. Objects Mapping.

In this context, a TR can be viewed as a “laboratory”, as a black box or as a subsystem,

of object transformation.

Figure 50. Transformation rule.

It can happen that an IO is associated to zero, one or many IOs. However, it should be
insisted that the application of a TR provides a maximum of one IO. In the case of many
choices, the first one is taken.

In each toolkit, a special object will be indicated. Under these conditions, it will be the
object that will be chosen by default if the application of a TR finds no element.
Therefore, a TR becomes a one-to-one relation.

Defining a Transformation Atom (TA) as a sextuplet <Env,AT,Tk,Oc,Oi,s> where :

1. Env: the environment, the platform or the model referenced by the user interface
conception and/or the development. Let us recall that, in final level, a platform is
a kind of foundation on which application programs can be written, read,
executed and/or used. In general, a platform is composed of material, an
operating system and software tools. At abstract and/or concrete level, a
platform consists of models, tools and operators with which it can be possible to
act on objects and/or transform them;

2. AT: the Application Type. We will see in the continuation that the type of

application can influence the transformation of interactive objects. Using a

3. Model-Driven Engineering of Behaviours

 86

Personal Computer (PC) under Windows operating system, we count at least four
types : Executable (Exe), Within Component (ActiveX DLL), Executable
Component (ActiveX Exe) and Graphical Component (Ocx);

3. Tk: the Toolkit used to build the interface. A toolkit is a set of interactive objects.

According to its objects, a toolkit can be abstract, concrete or final;

4. Oc: the concerned interactive object class. It is important to know the set of
attributes which define the state of an interactive object before transforming it. It
is also important to analyse methods which act on its behaviour;

5. Oi: the concerned interactive object instance. Each object is single. Two objects

of the same class can lead to two different transformations. For example, in
visual BASIC, the age and the name of the customer can be visualized by Text
Boxes. A transformation can change the name into Text object and the age into
Updown object.

6. S: is the set of dialogue scripts within Oi. To complete a transformation. It is

necessary, to transport the object behaviour via its properties and scripts.

Thus, Transformation Rule (TR) can be seen as a kind of Many-to-Many relationship
between Transformation Atoms in which semantic and functional values are the same
both for the source and the target Atom i.e.

Transformation Rule Definition

TA=<Env,AT,Tk,Oc,Oi,s> TA’=<Env’,AT’,Tk’,Oc’,Oi’,s’>*
Where :

{
 () () ()

 () () ()

Finally, A Transformation Mapping (TM) is a set of Couples of Transformation Atoms

Mapping Definition

{(TAi,TAj): TAj the image of TAi i.e TAj TAj }

Equations (i) and (ii) ensure mappings consistency. Indeed, the pseudo equation (i)
guarantees the stability of the machine functional. the same input must produce the same
results as in the source or target environment.

In addition, the pseudo equation (ii) requires a expressiveness continuity, also known as
the syntactic consistency. The target environment should have at least the same
expressive power as the source environment. Whether for the objects, the object
properties or scripts, no information should be lost during mapping processing.

3. Model-Driven Engineering of Behaviours

 87

We insist on the fact that these two pseudo equations remain valid regardless of the type
of mapping. For lateral mapping, models of the various views need to be syntactically
and Semantically consistent with Each Other (horizontal consistency).

Similarly, for a forward or reverse mapping, a model must be consistent Semantically
respectively with its specialization or its generalization (vertical consistency).

Respect of equations (i) and (ii) also guarantees the completeness of mappings. A
complete specification in a source environment should be complete in the target
environment. Thus, the following theorem is justified.

Completeness Theorem

If TA=<Env,AT,Tk,Oc,Oi,s> TA’=<Env’,AT’,Tk’,Oc’,Oi’,s’>* and TA is complete
then TA’ is complete.

Demonstration

Suppose that TA’ is the result of a mapping application on TA. And, assume that TA is
complete but TA’ is incomplete. In this case, there would be :

 An ontological problem: there would exist statements whose meanings are
inappropriate or absent in the target domain. This would be a contraduction of
equation (i) which confirms that TA and TA’ have similar semantic functions.

 A linguistic problem: there would be indescribable expressions in the target
environment. In other words, the target language is poor compared to the source
language. This would be a contradiction with equation (ii) confirming that the
two languages have the same expressive power.

 A Modelling problem: the source would be more detailed than the target or vice
versa. Therefore, equations (i) and (ii) would be violated, a contradiction of
mapping definition.

In the Behaviour Editor, mappings are implemented very simply as shown in Figure 51
below. Indeed, the global properties of a mapping are: its name, its departure and arrival
levels, its origin and arrival toolkits, the "cardinal" i.e. the maximum number of potential
target objects associated with an object and its ratio which describes the numerical ratio,
the scale, between source and target measurement units.

In the case of processing multiple situations where an object has two or more potential
targets, regular expressions are used to avoid ambiguities or blockages.

3. Model-Driven Engineering of Behaviours

 88

Figure 51. Mapping interface.

3. Model-Driven Engineering of Behaviours

 89

3.4 Conclusion

In this chapter, we have described a model-driven engineering of behaviours, essentially,

in graphical user interfaces that is structured according to the levels of abstraction of the

Cameleon Reference Framework. In fact, a dialogue model captures the abstractions of

the behaviour as opposed to a traditional presentation model that captures the

abstraction of the visual components of a user interface. The dialogue modelled at the

abstract user interface level can be reified to the concrete user interface level by model-

to-model transformation that can in turn lead to code by model-to-code generation.

Three target markup and programming languages are supported: HTML, HTML

Applications (HTA) and Microsoft Visual Basic for Applications (VBA). Two computing

platforms are addressed: Microsoft Windows and Mac OS X. In this way, the approach

demonstrates the capabilities of the abstractions in order to cover multiple programming

paradigms and computing platforms.

Five levels of behaviour granularity are considered: object-level (behaviour of a particular

widget), low-level container (behaviour of any group box), intermediary-level container

(behaviour at any non-terminal level of decomposition such as a dialogue box or a web

page), intra-application level (application behaviour) and inter-application level

(behaviour across different interactive applications). Intra-container and inter-container

behaviours are exemplified throughout a step-by-step methodology that is supported by a

Dialog Editor, a model transformer and a code generator integrated into one single

authoring environment. By translating into UsiXML (USer Interface eXtensible Markup

Language) dialogue scripts built in this authoring environment, we obtain an effective

solution of describing user interfaces and its behaviour with various levels of detail and

abstraction and without limit about device, platform, modality and context.

4. Applications of software support

 90

Chapter 4 Applications of
software support

For the validation, we use the Dialog Editor to develop software intended to cover the
activities of Congo Transfer International (CTI) Company which is specialized in the
international transfer of money and import express worldwide services. However, before
addressing this complex example in the third subsection, the second section gives a
complete presentation of tasks.

However, to better understand these two examples, we dedicate the first section to
describing some basic concepts such as used by the script editor built into the Dialog
Editor.

4.1 Basic samples

Here, we take the opportunity to illustrate basic examples related to five dialogue
granularities described above. Let us specify the dialogues of a small application that
evaluates a password. Appendix A provides a detailed description of this example. It
manages interface and behaviour both in manual and automatic with the Dialog Editor.

4.1.1 Statement

Let us imagine a new user wants to connect to a system. For this, he/her must provide
his name and also propose a login and password. Assume that the system provides a
utility for the password evaluation. We confirm that this small example highlights the five
granularities mentioned above.

Intuitively, the graphical interface of such a task would require three containers. In the
first container, we will find input fields for the name, the login and the password. This
container must also include three command objects which will be used respectively to
save information, to solicit password evaluation or to exit the system. In the second
container, we expect to find an input field, a graduate component that would indicate the
security level of the password, an evaluation function of the password, two command
objects to accept the changed password or to cancel the process. The third container is a
query box which is activated when the user decides to leave the system. He is obliged to
confirm before exiting. The five granularities are illustrated in this example as shown in
the Figure 52 below.

4. Applications of software support

 91

Figure 52. Dialogue granularity.

4.1.2 Dialogue granularity

1. Object-level dialogue: Each of the objects in these three containers has its own behaviour

and therefore its dialogue script. We do not put the legend everywhere to avoid
overloading the figure 52. Look in particularly at the password field in the second
container. Indeed, any character addition or key change triggers the evaluation of the
current password.

2. Low-level container dialogue: In the second container, the password behaviour influences

the dynamic of graduated object. Indeed, the cursor is placed correctly in the
graduated object according to the result of the evaluation of the password. Moreover,
in a first container, the command object save is inactive as the name, the login or
password is not filled in.

3. Intermediary-level container dialogue: If by error, or deliberately, the user chooses to leave
container 1, a confirmation question is asked using the third container. A negative
response will result in the normal pursuit of dialogue by container1.

4. Intra-application dialogue: if the user accepts the evaluated password, it becomes the

current password. Otherwise, the password before the assessment remains valid.

5. Inter-applications dialogue: During third container interaction, if the user answers yes, he

closes the system and goes to another task

4. Applications of software support

 92

4.2 Connection Sample

It should be recalled that the task is to enter a login and password. Two versions, in VB6
and HTML, of the expected and generated interface are given in Figure 53.

Figure 53. Final User Interfaces of Login & Password.

4.2.1 Project editing

Table 3 explains the main first steps for creating a new UI Project in the Dialog Editor,
which basically consists of choosing the starting level of abstraction (typically, the AUI),
the ending level (typically, one FUI), the toolkit, possibly with some extension and the
library of mappings to be used. Note that one can start also at any other level such as FUI
or CUI since multiple types of mappings are supported. For the login&password
example, we limit ourselves to using five properties: two properties (i.e. left and top)
determine the location of each interactive object, two other properties (i.e. height and
width) specify the dimensions of each interactive object, and a fifth property (i.e. label)
gives the object label text. The values of these attributes are taken into account during
future transformations. Therefore, the resulting UI project holds the login&password
with a quintuplet <Label, Left, Top, Height, Width> for each interactive object (Figure 53).

Table 3. Interactive objects of the login & password example.

IO Name Parent Description Type Properties

frmExist Main Form Contener <3615,60,450,6360,Connection>

fraIdent frmExist Secondary
Form

Container <2295,120,240,6135>

lbLogin fraIdent Login
invitation

Free <300, 480,480,1000,Login>

txtLogin fraIdent Login
contain

Free <300, 1200,480,2535>

lbPwd fraIdent Password
invitation

Free <300, 480,1200,1000,Password>

txtPwd fraIdent Password Free <300, 1200,1200,2535>

4. Applications of software support

 93

contain

btnConnect fraIdent Validation
Trigger

Command <300, 3000,2880,1455,Connect>

btnCancel frmExist Cancel
Trigger

Command <300,4800,2880,1455,Cancel>

4.2.2 Project transforming

Let us assume that we want to apply Model-to-Model transformation (M2M) from AUI
to CUI. For this purpose, Figure 53 lists some mappings that have been implemented for
this purpose, here for a vocal UI and a GUI, both appearing at the CUI level: Container
is translated to questionnaire/Form if its name begins with frm or
SubQuestionnaire/SubForm if its name begins with fra. Free object change to
Request/Label if its name begins with lb or to Answer/Text Box if its name begins by
txt.

The command object is expressed as verbal validation or a button depending on the
interaction modality. By applying the mappings for a GUI, we obtain a CUI with a
graphical modality.

4.2.3 Code generating

In order to transform this CUI into a FUI (say here that we want both the VB6 and
HTA GUIs), Table 4 and Table 5 list some mappings that have been implemented.

Table 4. Mapping from Abstract to Concrete

Abstract UI Vocal UI Graphical UI

Container Frm* Vocal Quiz

Fra* Sub Vocal Quiz

Frm* Form

Fra* Sub Form

Free Lb* Request

Txt* Answer

Lb* Label

Txt* Text

Command Validation Button

Table 5. Mappings from Concrete to Final User Interface.

Graphical UI Visual Basic UI HTA UI

Form / Sub Form Frm* Form

Fra* Frame

Frm* Form/Page

Fra* FieldSet

Label / Text Lb* Label

Txt* Textbox

Lb* Input (Text)

Txt* Input (text or
password)

Button CommandButton Button

Ratio 1 0.05

4. Applications of software support

 94

4.2.4 Conclusion

This small example relative to system connection has been of great benefit. Indeed, it has
allowed to map and to implement the various concepts that we present in this thesis. The
values presented above were introduced in the editor and produced the expected results.

4.3 CTI Application

With Dialog Editor, we developed software intended to cover the activities of a company
which is specialized in the international transfer of money and import express worldwide
services. We needed an application based on a real case. But, we also needed an End-
User oriented dialogue application. For these two reasons, we asked the employers of
CTI Company, whose head office is located in Liege in Belgium, to participate in the
analysis and the validation of this software. Insofar as the employees of CTI Company
speak only French, interfaces are in French in order to allow better communication. In
this context, commercial transaction is defined by: a Shipper (the customer which
deposits the money or the object), a Sender (the person for whom the money or the
object is intended) and An Order (the details of the transaction contents).

Figure 54. Global view of CTI Application.

4.3.1 Software components

The objective of this subsection is to present the software components of the CTI
application. Indeed, the architecture has four primary component parts, as shown in the
Figures 55, 56 and 57 : Administration, Data, Transaction and Reporting.

4. Applications of software support

 95

Figure 55. CTI application components.

Figure 56. CTI Configuration UI.

Figure 57. CTI Transaction UI.

4. Applications of software support

 96

The entrance point is the Administration Module. It should be pointed out that mailing is
the communication chosen for information exchanges in this application. As shown in
the Figure 58, each CTI agency is identified by an address email. The Administration
module offers the functionalities for encoding and checking the correction of SMTP and
POP server addresses.

Figure 58. CTI network agencies.

Only the administrators have the right to create/modify these properties. Once saved,
inserted data and/or modifications are disseminated to all the agencies. In addition to the
technical aspects, the administrators can also create/modify operators and attribute rights
to each agency. This module is dependent on Administration module for the simple
reason that only administrators have the right to add or modify these data.

The Data module offers the functionalities to manage benchmark data such as
currencies, countries, product types, cities, weights or types of identity cards. However, it
also makes it possible to recover market data such as exchange rates or weight
equivalences.

The Transaction module is controlled by the operators. It proposes functions to manage
financial transactions. A transaction requires four pieces of information shown in the
Figure 58:

1. Order: which product? How much to deliver? And where?
2. Transmitter: who orders? Who buys?
3. Beneficiary: who receives the order?
4. Delivering: who, when and where for the delivering

4. Applications of software support

 97

The CTI application has a powerful Reporting module. Indeed, according to the different
scenarios in use, this software offers the operators the possibility to export some data to
Ms Word, Html or Pdf documents.

Moreover, administrators are able to make remote requests, in real time, for the current
daily or periodical financial statement of any agency.

4.3.2 Transaction Order data structure

To record a transaction order, an operator needs the following information: Firstly, he
must fix the type of product desired by the Customer. Possible values are Express
services, Air freight, Ocean freight or Money Transfer. Secondly, the CTI Operator must
ask to customer to fix the quantity or amount concerned. According to the type of
product and the quantity, the system determines the applicable tariff and thus, the
reference unit (currency) and the tariff price of service. If the delivery unit (currency) is
different from the reference unit, the system provides the conversion rate automatically
and adapts the tariff price upon request, prices of services of follow-up (email, text-
message, telephone call), intermediate total, the tax to be paid (21%) and then the total
price.

To finish the transaction, the operator must ask the customer for the town of delivery
and, if required, the question to be asked during the delivery and the corresponding
answer. We can summarize this information via the following UML diagram UML,
Figure 59.

Figure 59. CTI Order by UML data model.

4.3.3 Using Dialog Editor

By implementing the software "CTI Application", we had to use the Dialog Editor to
generate part of the code by the means of specification. To get an idea of what we have

4. Applications of software support

 98

lost or gained by choosing to work with the editor dialogs, we set out to observe two
parameters, the time spent and the number of lines in the code.

In fact, we have worked 181.5 man-days to implement CTI software by exploiting
partially the Dialog Editor. The first table below gives a temporary outline of the tasks
carried out and, expressed as a percentage, indicating the parts carried out manually and
those generated automatically.

Table 6. Tasks time distribution.

Task Timing Manuel Automatic

Interactive Objects
library implementation

25% 100% 0%

Shipper, Sender and
Order Management

65% 20% 80%

Reporting
Management

10% 50% 50%

If I had to work manually, my long experience as a developer would help to finish the
implementation of this software for, approximately, 181.5 main-days. Clearly, there is a
huge waste of time. The rigor of Dialog Editor requires a significant effort in the
specification of each item in the presentation and/or the dialog module. Although
expected, this loss can be relativized if the software could be re-written from one
environment to another. Moreover, the gain is real concerning the number of code lines.
Dialog Editor offers facilities in specifying in “two clicks”, possibly, with a few number
of words a large number of instructions. The best quality of the Editor Dialog interpreter
is to be be able understand short sentences to generate the appropriate code. The
following two tables provide details on what we have received respectively about the the
number of code lines and spent time.

4. Applications of software support

 99

Table 7. Spent time for CTI Application.

File
SPENT TIME

Manual
Programming

Automatic Programming

Type Number Specified part Programmed part
License 3 1 1.5 0

Database 1 5 0 0

User Interface (UI) 40 40*2=80 40*2.5=100

Dialogue

Script

Business object 14

56

56*1.5=84 56*1=56 56*0.5=28

UI Control 40

Data access 1

Technical 1

Project 5 5*0.2=1 5*1=5 0

User control 10 10*1=10 0 10*2=20

Total 115 Files 181 man-days 162.5 man-days 48 man-days

Percentage 100% 90% 26%

Loss 0% -16%

4. Applications of software support

 100

Table 8. Code lines number for CTI Application.

File
CODE LINES

Manual
Programming

Automatic Programming

Type Number Specified part Programmed part
License 3 35 3 0

Database 1 0 0 0

User Interface (UI) 40 40*50=2000 40*40=160

Dialogue

Script

Business object 14

56

56*60=3360 56*30=1680 56*20=1120

UI Control 40

Data access 1

Technical 1

Project 5 5*5=25 5*4=20 0

User control 10 10*70=700 10*30=300 10*100=1000

Total 115 Files 6120 Lines 2163 Lines 2120 Lines

Percentage 100% 35% 35%

Benefit 0% 30%

4. Applications of software support

 101

Table 2 is more explicit. It establishes clearly the statistical elements by comparing the
number of files and the numbers of VB code lines of the by working manually and by
using Dialog Editor. Table 2 provides clear evidence of a 30% benefit when number of
files and code lines are compared.

4.4 Conclusion

The example of connection explained at the beginning of the chapter has highlighted five
dialogue granularities. In continuation of this example, we gave important information
about the operation of the Dialog Editor for specifying the exchange.

The subsection relative to CTI Application illustrated some important concepts in the
specification and design of an interactive task such as software architecture and the
dialog automata. Moreover, we exhibited some advantages and disadvantages when
working manually or getting help from the Dialog Editor.

If current chapter was interested in aspects of performance, the next chapter will analyse
the ergonomic aspects of the Dialog Editor.

5. Quality characteristics of Dialog Editor

 102

Chapter 5 Quality characteristics
of Dialog Editor

The main objective of this fifth chapter is consideration of the usefulness and usability of

Dialog Editor. In effect, the third chapter uses the UML language to describe in detail the

conceptual model and defines all its objects. In the same way, it provides the flux dia-

gram of the methodology, while at the same time specifying the consistency and com-

pleteness properties of the transformation model. The last section of this major chapter

is devoted to the description of Dialog Editor, the software that we have used in the

framework of our research.

Furthermore, the fourth chapter illustrates the use of Dialog Editor through a simple ex-

ample (connection to an interactive system with a login and a password) and another

more complex example (CTI Application, relative to CTI Company, intended to cover the

activities of a company which is specialized in the international transfer of money and

import express worldwide services). These two examples of use have revealed strong

points of Dialog Editor, as well as certain gaps.

To pursue this approach, the current chapter focuses on the evaluation of the results

proposed in the third chapter. To that end, we have opted for a qualitative approach.

Our assessment plan is structured in three phases, each of which is the subject of a sec-

tion of this chapter.

In the first instance, in the form of an interview we presented an open questionnaire to

the potential users, in order to have feedback of a more or less general nature. Then, we

organised a satisfaction survey by making use of the IBM Computer Usability Satisfaction

Questionnaires (CSUQ) [Lew95], a closed and fairly structured questionnaire. It is worth re-

calling that the CUSQ proposes a validated empirical approach. It has a correlation factor

of 0.89 as far as usability of an interface is concerned. Moreover, it aggregates four met-

rics, the study of which will allow the extrapolation of certain explanations as to the utili-

ty and usability of Dialog Editor. Finally, to conclude this assessment, we have applied the

respondents' comments to the ISO / CEI 9126 norm criteria to have a clearer vision of

the useful and usable characteristics of Dialog Editor.

5. Quality characteristics of Dialog Editor

 103

5.1 The Interviews

With the help of a short and entirely open questionnaire, the idea has been to observe the

behaviour of a fairly representative group of users and to draw conclusions based solely

on those observations.

More precisely, we sought to measure user satisfaction as concerns the use of Dialog

Editor, so as to reveal some of its strengths and weaknesses. However, we should em-

phasise the fact that Dialog Editor is not a commercial product but a prototype created to

show the feasibility and methodology that we are proposing.

Depending on the setting for the interview, we were able to allow the respondent to use

the software and then ask questions or first explain how Dialog Editor works and then

proceed to a question-answer session. However, in order to set the framework for the

discussion in the best possible way, each interview began by a brief explanation of the

methodology. We then proceeded, in an entirely random way, to use one of the three

types of interview:

1. Free: the respondent comments freely on the tool, without any need to be asked

questions ;

2. Guided: a list of questions is put to the respondent who replies once he/she has

used the software, and

3. Semi-structured: a mix of free and guided interview.

Furthermore, it is important to note that we interviewed some people in groups and

some individually. In the first instance, we turned to our professional colleagues and

those in the laboratory. We interviewed former university friends from the University of

Namur or other people presented to us. Altogether, we had around 20 respondents.

The rest of this section is organised into four parts, the first of which presents the ques-

tionnaire used, the second describes the demographic data of the respondents, the third

analyses the replies given by those taking part and the fourth concludes the experiment.

5.1.1 The questionnaire

As it was never our intention to formalise a subjective assessment, we limited ourselves

to preparing a questionnaire which was both simple and short, so as to reduce to a mini-

mum the time needed to answer, thereby privileging conviviality during the discussion.

Thus, the basic questionnaire contained four questions concerning respectively respond-

ent data, his/her opinion as to the usefulness of the tool, her/his opinion as to its usabil-

ity and the list of possible extensions he/she proposed for Dialog Editor.

5. Quality characteristics of Dialog Editor

 104

Figure 60. Open questionnaire used for interviews

5. Quality characteristics of Dialog Editor

 105

5.1.2 Demographic data

During these interviews, we had the privilege to solicit personal information from re-

spondents to classify their profiles. The objective of this section is to present the various

graphs showing respondents according to gender, age, field of activity, profession or level

of studies.

Figure 61. Respondents Gender

Figure 61 shows that 55% of respondents were women and 45% of them were men. It is
also established that the average age of respondents was 34.35 years old (Figure 62).

According to Figure 63, despite our efforts, 80% of interviewees have university degree.
This is understandable insofar use the Dialog Editor requires a significant background in
programming or in the use of interactive applications.

Referring to Figure 64 which describes the occupations of respondents, we note that the
majority of them worked in the financial field (Employee 40% and Executive 15%) or are
researchers (Students 30%). Among them, we have to meet people with a long practical
experience. They were so practical that it was difficult to explain theoretical concepts
such as the abstract interface. We were also pleasantly surprised by the importance of a
good explanation. We were pleasantly surprised by the intuition of some respondents. In
fact, by intuition and by the structure of Dialog Editor interface, they understood beyond
our explanation.

5. Quality characteristics of Dialog Editor

 106

Figure 62. Respondents Ages

Figure 63. Respondents Studies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Age 31 34 32 42 26 28 30 34 29 22 39 45 41 52 27 40 39 29 34 33

0

10

20

30

40

50

60

Respondents Ages

5. Quality characteristics of Dialog Editor

 107

Figure 64. Respondents Occupation

5.1.3 Analysis of replies

The replies provided by those taking part were analysed according to the three main as-

pects which emerged during the interviews, i.e. the analysis and design of Dialog Editor,

the models used in Dialog Editor and the code generation proposed by Dialog Editor.

1. Analysis and design

It is established that Dialog Editor is for a single user profile. Nevertheless, those people

interviewed were not deterred by this fact. In fact, this weakness is lessened, on the one

hand, by the proposed traceability management in the software and, on the other hand,

by the possibility to work at abstract, concrete or final level. However, one respondent

suggested the implementation of a system to block script when validated, so as to stop

anyone else from changing it subsequently.

5. Quality characteristics of Dialog Editor

 108

Furthermore over, four major steps in the methodology were clearly identified by the

persons interviewed. They unanimously approved the clarity of the approach and the

succession of models, even if certain expressed doubts about the script editor which, it

should be said, has not been entirely finished.

To sum up, as the table below shows, twelve persons interviewed adopted the methodol-

ogy elements, as well as Dialog Editor. One person approved the tool but expressed

doubts as to the effectiveness of the proposed models. Four people declined to make any

comment and three people approved the theoretical aspects but found the software to be

inoperable for complex tasks. It should be noted that this last group of people had diffi-

culty integrating the concept of an abstract interface.

Table 9. Analysis and Design Survey Feedback

Acceptance 60%

Doubt 5%

No comment 20%

Refusal 15%

2. The modelisation

We should point out here that we have integrated into the editor database, amongst other
things, the abstract model proposed by the Moskitt Group. With this abstract model, the
interviewees visualised the methodological approach, but, due to their training and long
practical experience, they experienced difficulty imagining an abstract interface. Conse-
quently, it was difficult for them to understand the concept of the abstract interface.

Therefore, in order to take full advantage of the comments and suggestions made by
those questioned, we chose to centre discussion at the final level. In fact, the statistics
show that fifteen people gave their approval to the modeling, one person disapproved
and four people made no comment.

Table 10. Modeling Survey Feedbacks

Acceptance 75%

Disapproval 5%

Without comment 20%

3. Code generation

The majority of people that we interviewed are developers. As such, they were very inter-
ested in the code generation module. In fact, Dialog Editor generates code according to
the choice of the user. In addition, the code generated respects the separation of three
parts: the interface, the operating machine and the dialogue controller.
Those interviewed had the opportunity to point out the difficulty of saving modifications
made manually. In effect, at the time of generation, everything is cleared before being au-
tomatically reconstructed. It is therefore impossible to quarantine codes manually, with a
view to inserting them in the correct place at a later stage. Moreover, all persons inter-

5. Quality characteristics of Dialog Editor

 109

viewed regretted the fact that the specification is principally textual, and particularly re-
gretted this aspect when it came to the placement of interactive objects.
Eighty per cent of respondents approved the functionalities proposed by the code gener-
ator. Better still, they even noticed a reduction in the number of lines of code as com-
pared to manual programming.

 Table 11. Code Generation Survey Feedback

Acceptance 80%

Disapproval 20%

It should be said that four persons had serious doubts. They believed that this tool would
not operate for complex applications.

4. Conclusion

Although the method used is empirical, the results of the inquiry do confirm the useful-
ness and the usability of Dialog Editor. Indeed, the models are intuitive and easy to use.
However, a teaching effort is required to better explain the abstraction of interfaces. The
methodology of Dialog Editor is integrated in a transparent way into the four modules. Its
code generator increases productivity while at the same time reducing errors to a mini-
mum. Certain functions have been proposed with a view to possible extensions. We will
proceed to list them in the general conclusion. Some weaknesses as to the ease of use of
Dialog Editor have also been revealed, particularly with regard to the placement of interac-
tive objects.

5. Quality characteristics of Dialog Editor

 110

5.2 Satisfaction survey

The satisfaction survey has an important place in quality management. Taking account of
client satisfaction is one of the major preoccupations today for most businesses. It is at
the heart of the new ISO 9000 (2000) norms. For Human-Machine interfaces, we talk
about usability tests which consist of an empirical assessment based solely on the experi-
ence of users to « measure » effectiveness, learning rate, risk of error or many other vari-
ables.

The aim of the survey carried out is to measure user satisfaction concerning usefulness
and usability. The different measures were obtained from replies to the Computer Usability
Satisfaction Questionnaires (CSUQ) [Lew95] designed by IBM. We should insist on the fact
that these replies to the CSUQ have been expressed using a Likert 7-point scale where 1
represents the worst perceived rating (strongly in disagreement), and 7 represents the
best perceived rating (strongly in agreement) [Lik32].

The CSUQ is essentially made up of 19 questions, structured in four parts, as follows:

1. The first 8 questions deal with the usefulness of the system (System Usefulness,
SysUse). The interviewee replies give an indication of the presence or absence of
expected services, as experienced by the users ;

2. Questions 9 to 15 concern the quality of information (Information Quality,
InfoQual). Here it is hoped to have an insight into the pertinence of the
information proposed about the interfaces ;

3. Questions 16, 17 and 18 concern the quality of the interface (Interface Quality,

IntQual). The interviewees' replies allow us to assess satisfaction as far as
presentation of the interactive system under evaluation is concerned ;

4. The last question concerns the global view (OVERALL) which takes into

account all indicators, so as to summarise overall interviewee satisfaction.

CSUQ also contains open fields to list at most three extremely positive aspects or three
extremely negative aspects of the system under assessment. We extended the CSUQ
questionnaire to other factual questions, such as gender, age, field of activity, profession
or level of studies of the interviewees.

We organised the rest of this sub-section under three points : the first deals with
interview modalities. The second presents the results obtained and launches a discussion
on the elements of reply, and we finish with a conclusion.

5. Quality characteristics of Dialog Editor

 111

Figure 65. CSUQ questionnaire used for the satisfaction survey

5. Quality characteristics of Dialog Editor

 112

5.2.1 Methodology

We drew up the CSUQ questionnaire with the logos of the Université Catholique de
Louvain and the LiLab Laboratory before sending it to the interviewees by e-mail. An
explanatory video was made available to them, able to be downloaded from the UCL
server. As far as possible, we met with certain interviewees for a demonstration and/or a
theoretical discussion. Three weeks later, around 20 duly-completed questions were
returned to us by e-mail. We then proceeded to encode this data in an Excel file, from
which we extrapolated the statistical formulae and tables in the section that follows.

We insist on the fact that negative and positive comments made by respondents are not
very significant. In other words, no major point seems to attract the attention of
respondents in the positive or in the negative. Nevertheless, we integrate these remarks
in the argument of the next section regarding the application of the criteria of ISO/IEC
9126, specially in the usability evaluation.

5.2.2 Results and discussions

1. Global parameters

The table of data shows a relative dispersion among the users, whether it be for the
usefulness of the functionalities, the quality of the information or even the quality of the
interface. Thus, looking vertically at the table below, we can see quite a gap between the
lowest score, the highest and the average or mean. On the other hand, looking at it
horizontally, the values remain more or less stable, whatever the variable being measured.
In short, by looking at the averages or means below, the overall perception of those
interviewed is slightly higher than 4 out of 7.

Figure 66. CSUQ Parameters for Dialog Editor

5. Quality characteristics of Dialog Editor

 113

Out of four general parameters, Sysuse is the one obtaining the best score (6.09).
However, there is a gap of 1.42 when compared to the average. This means that opinions
are divided as far as the usefulness of Dialog Editor is concerned. Nevertheless, with an
average of 4.67 (out of 7) we can conclude that the interviews approved the
functionalities of Dialog Editor.
The Interqual parameter is that which obtains the least good score (5.42). It is even
sanctioned by a minimum score of 2.84. Via this rating, the message is conveyed that
work is needed to improve the quality of the interface.

Furthermore, despite a higher score of 5.65 (lower by 1.25 when compared to SysUse),
the global parameter OVERALL scores well showing a gap of 1.15 as compared to the
average. This shows a slight compromise as to the overall satisfaction of interviewees on
the functionalities of Dialog Editor as a whole.

2. Statistics by question

At the outset, it should be pointed out that an overview of the replies to the questions
presents a certain disparity because, for practical reasons, the respondents replied N/A as
a rating for certain questions in order to express an ability to decide.

Table 12. Cumulative responses assessments by query

Question I strongly
disagree

I disagree I am so-so I agree I strongly
agree

Q1 0 2 5 9 4
Q2 0 5 5 4 3

Q3 6 8 2 2 1

Q4 2 6 4 4 3

Q5 2 5 8 2 0

Q6 3 4 7 0 4

Q7 9 4 2 0 1
Q8 3 11 2 3 0

Q9 4 6 5 1 2

Q10 3 5 2 3 2

Q11 2 8 1 1 4

Q12 3 8 5 1 2

Q13 2 5 6 0 2

Q14 3 8 3 3 1

Q15 6 4 0 2 5

Q16 4 10 3 1 1

Q17 3 8 5 1 1

Q18 5 2 3 4 1

Q19 0 1 4 12 3

The analysis of the replies question by question (cfr Table 12) reveals a poor score for
question 7 where 13 respondents clearly disagree. In other terms, the respondents are
expressing certain difficulties understanding or using some concepts of Dialog Editor.

5. Quality characteristics of Dialog Editor

 114

These poor scores serve to underline the need for, and importance of a basic level of
knowledge to assist the users of Dialog Editor.

Figure 67. Queries' cumulative assessments

On the other hand, the best score is for the first question where only two people did not
give approval to Dialog Editor, the others approving it particularly for its functionalities,
such as code generation.

This score converges with the results obtained with the interviews. In fact, the code
generation module that is more successful. Indeed, the gain is directly observable by
users for whom the encoding of programs would be replaced by the specification via the
editor scripts. Unfortunately, this task raises concerns. It is indispensable that the
knowledge base plays its role to dispel doubt and encourages users to learn scripting

5. Quality characteristics of Dialog Editor

 115

language. Suggestions and recommendations for extensions to implement the dialog
editor to make attractive are listed in the general conclusion.

Table 13. Per question statistics

Query Mean Median Average of
deviations

Standard
deviation

Q1 5,75 6 0,72 0,91

Q2 5,29 5 0,93 1,10

Q3 4 4 0,94 1,37

Q4 4,89 5 1,17 1,52

Q5 4,58 5 0,71 0,87

Q6 4,66 5 1,29 1,78

Q7 3,56 3 1,00 1,36

Q8 4,21 4 0,73 1,03

Q9 4,44 4 1,04 1,33

Q10 4,53 4 1,37 1,72

Q11 4,75 4 1,31 1,57

Q12 4,42 4 1,01 1,34

Q13 4,6 5 0,96 1,29

Q14 4,5 4 0,94 1,15

Q15 4,58 4 1,75 1,97

Q16 4,10 4 0,79 1,19

Q17 4,33 4 0,85 1,14

Q18 4,46 5 1,37 1,60

Q19 5,85 6 0,56 0,75

Statistics by questions presented in the Table13 confirm the analysis made previously.
Overall, respondents are in agreement about the usefulness and usability of the Dialog
Editor. However, we note a certain dispersion of views on certain questions. The Figure
68 below illustrates this fact better.

Figure 68. Queries' standard deviation

5. Quality characteristics of Dialog Editor

 116

Question 15 has a high enough standard deviation (1.98). Let us note that 10 users
disagree Dialog Editor quality information while 9 respondents approve this parameter.
The explanation for this difference lies in the profiles of the respondents. Indeed, people
who have a weak background in programming attach more importance to Dialog Editor
content. Conversely, programmers are interested in its functions.

3. Conclusion

As we said in the Introduction, the Dialog Editor is at the prototype stage. It is in use
with a single objective: to demonstrate the feasibility of the proposed methodology.
However, although not completed, analysis of the satisfaction survey, via the CSUQ,
shows that it is acceptable and that improvements will render it more useful and
pleasanter to use.

5. Quality characteristics of Dialog Editor

 117

5.3 Applying ISO/IEC 9126 Sofware Engineering

The purpose of this subsection is to examine the usefulness and the usability of the

Dialog Editor by applying essentially criteria of the ISO/IEC 9126 software engineering.

It should be noted that the ISO/IEC 9126 does not provide requirements for software.
However, it provides a framework for the evaluation of software quality. In other words,
this standard defines a quality model which is applicable to every kind of software.

Let us specify that the model of the ISO/IEC 9126 classifies software quality in a
structured set of six characteristics as shown in Figure 69.

Figure 69. The six quality characteristics of a software.

We organize the rest of this chapter by drawing on the structure of the ISO9126. We will
visit the Dialog Editor based on (sub-) characteristics identified in the ISO 9126 model. It
should be noted that the editor that we will examine / critique is designed with an
explorative aim to show, by implementation, the practical face of our conceptual model.
Currently, many elements are missing or incomplete in order to make the Dialog Editor a
production tool. Objectively, we will comment on each (sub) characteristic relative to the
ISO9126 Model

5.3.1 Functionality

We confirmed previously that the implemented Dialog Editor is not a production tool.
Nevertheless, we have planned, if not introduced, all necessary functions for the
treatment of the methodology that we have built.

5. Quality characteristics of Dialog Editor

 118

Nevertheless, we had to test the software extensively during the development of the CTI
application. Admittedly, it still lacks some features but interestingly ever in its current
state, it can already serve many purposes.

Suitability
Whether for project management, handling of mapping, the edition of dialogue scripts or
code generation, the Editor offers the developer the functionality needed to carry out its
task of specifying dialogues. Each function in the Dialog Editor engine contributes to
implement one or more steps of the methodology algorithm.

Accuracy
There is a problem of accuracy with the scripting language. Indeed, as we do not define
precisely the syntax and semantics of the generic language, the choice is left to the
developer to clarify his instructions. The generic language implementation will be a
challenge for the extension of this research.

Interoperability
The Editor is programmed with VB6 then, with Installshield software, we have prepared
an installation file that runs perfectly under Mac OSX and Windows 32 bits. However,
this file must be adapted to run under 64 bit.

Security
Taking into account the sensitivity of dialogue scripts, the Editor records scripts
automatically every time the developer move from a tree node to another. For future
work, it would not be luxury to extend this functionality to other tasks.

Functionality Compliance
We are not aware of a standard governing the functionality development of this type of
software. Nevertheless, we relied on our long experience as a developer in the choice of
icons; functions and user interface behaviour so that everything is intuitive for the
designer.

5.3.2 Reliability

The few tests we have done can confirm the reliability of the Dialog Editor. For example,
we had no crash during the implementation of case studies. Similarly, interviews were
conducted without major problem during Dialog Editor demonstrations.

Maturity
It would be pretentious to affirm that the tool is mature, given that we are the only ones
who exploit it extensively. With the note below, this software will reach maturity when, on
the one hand, it will be fully programmed and, secondly, it will be extensively tested by
users of different profiles.

Fault Tolerance
Despite many tests, no loss of information is to be reported due to a handling error.
Admittedly, the source code was used directly. Under these conditions, any errors

5. Quality characteristics of Dialog Editor

 119

occurring caused an interruption in the program, offering the possibility for correction
and continuing.

Recoverability
We use XML files to keep information about objects, scripts and projects. There is no
problem to recover data after an error.

Reliability Compliance
Taking into account the multiple examples we have achieved and, in particular, the big
development that we have to implement CTI, enormous efforts have been made in error
handling. Thus, we can definitely guarantee that the software is clearly well-qualified to
pass the reliability test.

5.3.3 Usability

To make video clips that we posted on YouTube, we need voice of Valerie Bryce, an
Englishwoman living in Belgium. Certainly, she uses a computer in her work but she has
no background in programming or in user interface design.

During the working sessions we had with her, we were pleasantly surprised by her ability
to understand concepts of the Dialog Editor. Without any doubt, her skills in the
adaptation of new materials contributed significantly. But we also believe that the
simplicity of Dialog Editor and logical connections between different concepts of the
methodology facilitated her understanding.

With the example of Valerie and the reaction of different people who attended a
demonstration of the Dialog Editor, we are more than convinced that the language and
the logic of the Dialog Editor are not complicated to understand.

Otherwise, interviews and satisfaction surveys confirm that Dialog Editor is acceptable
and that improvements will render it more useful and pleasanter to use. Indeed, let us
remember and repeat that out of four general parameters of IBM CSUQ, Sysuse is the one
obtaining the best score (6.09). However, there is a gap of 1.42 when compared to the
average. This means that opinions are divided as far as the usefulness of Dialog Editor is
concerned. Nevertheless, with an average of 4.67 (out of 7) we can conclude that the
interviews approved the functionalities of Dialog Editor. The Interqual parameter is that
which obtains the least good score (5.42). It is even sanctioned by a minimum score of
2.84. Via this rating, the message is conveyed that work is needed to improve the quality
of the interface. Furthermore, despite a higher score of 5.65 (lower by 1.25 when
compared to SysUse), the global parameter OVERALL scores well showing a gap of 1.15
as compared to the average. This shows a slight compromise as to the overall satisfaction
of interviewees on the functionalities of Dialog Editor as a whole.

Similarly, the attempt of applying some early usability evaluation metrics proposed in
[Pan08] on the main interface of dialogue scripting leads to the same observations. The
last column of the table below lists a few remarks on the usability of the main scripting
interface of Dialog Editor.

5. Quality characteristics of Dialog Editor

 120

METRIC SCORE INDICATOR REMARK

Title Length 12 Very Bad
This title is too long; it shows both
the software and the user the current
module.

Number of Font Style Used 3 Medium
There are three styles in the
RichTextBox containing dialogue script

Word Number 10 Very Good
The few information messages or
confirmation is very short and does
not exceed 10 words.

Minimal Action 3 Good
Select a tree node, Edit interactive
object Properties or Edit Script

Navigational Breadth

Tree of
Objects

5 Good

Maximum Length: VB Projects

Group VB Project VB Form

VB Object Type VB Instance
Object

grid of
properties

2 Very Good
The grid is described by two columns;
property name and the corresponding
value.

Figure 70. Dialog Scripting Interface

5. Quality characteristics of Dialog Editor

 121

5.3.4 Efficiency

Our tool would not be interesting for one-shot software. Indeed, we should need to
specify the interface, the mapping and the script before generating a code with high-level
language, resulting in lost time and resources on things that may never re-used.

Let us consider that we are assuming the application to be processed is likely to evolve
and operate in different contexts. Once the specification is complete, the developer will
program any code or, if necessary, very few lines of codes. Indeed, the generator function
will provide the executable program in the desired language. Although this is not the
goal, ideally, an apprentice can manage an interactive project if he learns to use
interactive editor.

Time Behaviour
Time lost in the specification is quickly gained during successive evolutions of the
system. The project editor offers useful features for the efficient management of task
extensions.
Currently, the only weakness of the editor is that the localization properties of
geographic objects are set manually. In the future, these properties will be determined
systematically using drag and drop.

Resource Utilisation
The Dialog Editor is very light. In addition, we chose to work with record sets and save
the information in xml files. Even for large CTI application, the resources were barely
noticeable.

5.3.5 Maintainability

Let us recall that the software architecture is organized in four modules completely
independent of each other.

In addition, each module is structured in three parts: its interface, its functional machine
and its dialogues controller. Under these conditions, it is easy to locate and correct errors.
Similarly, extensions are easily implemented in the sense that the impact to other
modules is minimal.

Analyzability
Analysis of conceptual objects is made by the algorithm of the methodology and the
semantic functions are deduced systematically from the flow diagram that supports the
method.

Changeability
At the risk of repeating myself, the technical choices make programming changes easy,
without having to be concerned about other modules that are not affected by the
updates.

5. Quality characteristics of Dialog Editor

 122

Stability
We do not notice any signs of instability. The different examples treated show a
convergence of functions developed. The size of the project has no negative effect on
the Dialog Editor.

Testability
The tests are done module by module. Following the methodology, we test the crossing
of such a step at any other stage. Each difficulty or blocking requires corrections in the
software.

5.3.6 Portability

We noted above that the software runs on Windows 32-bit and Mac OSX. We find
errors when using this software under Windows 64-bit. It would be a challenge for future
changes

5.3.7 Conclusion

Overall, the qualities of the Dialog Editor meet the criteria of "ISO / IEC 9126 Software".
This will significantly improve if we can complete its implementation.

We notice that the Dialog Editor offers a series of facilities in the interface design and
behaviour of an interactive task. Also, we have highlighted features that are missing and
those that must be completed.

5.4 Conclusion

The main objective of this fifth chapter was consideration of the usefulness and usability
of Dialog Editor. To achieve this goal, we used a qualitative approach with three levels an
evaluation plan:
 (1) interviews with an open questionnaire
 (2) satisfaction survey with IBM Computer Usability Satisfaction Questionnaire
 (3) a discussion of the evaluation based on the standard ISO /IEC 9126

Information from these three analyzes highlight some qualities of Dialog Editor and
expected improvements. With a good score, users agree Dialog Editor usefulness.
However, they are critical about quality of Dialog Editor. The next chapter, the general
conclusion, proposes improvements to address concerns and / or comments from users.

 Conclusion

 123

Chapter 6 Conclusion

Before beginning this chapter, it is important to remember that the statement of our
thesis is the application of Model-Driven approach for designing the behaviour of multi-
platform user interfaces.

We should recall that the structure of this thesis is organized into five main chapters. Let
us make a summary aimed at highlight the fundamental elements and results. We will
achieve this activity in three stages: firstly, we will make an overall summary of the
results; secondly, we will highlight future work before, thirdly, concluding with some final
remarks.

6.1 Global view

Initially, we explored the literature to establish the definitions and general concepts. In
this way, we state the purpose of our thesis as clearly as possible in Chapter 1. It was also
dealt with the interest of addressing this subject and we defined its limitations. A
document plan was proposed in the aimed at clearly showing the interconnections
between the different chapters.

In a second step, in Chapter 2, we identified and discussed research and / or results for
dialogues in the field of human-machine interaction. Indeed, several techniques and
methods are used to specify the dialogue but it is still an open subject because no method
covers all areas of activity. Particular interest was placed on abstract machines, on
specification languages and UsiXML. The advantages and limitations of these three tools
were highlighted.

Having in mind our objective, a comprehensive review of the literature led us to impose
two assumptions:

(1) Firstly, we exploited levels of distribution of Cameleon Reference Framework
(CRF). Indeed, at the Abstract level, there is no representation at all: it is a purely
theoretical level. This level describes potential user interfaces independently of
any interaction modality and any implementation technology. At the Concrete
level, we needed to fix the context of use and interaction modalities. This level
describes a potential user interface after a particular interaction modality has been
selected. The Final User Interface is reached when the code of a user interface is
produced from the previous levels. This code could be either interpreted or
compiled.

 Conclusion

 124

(2) Secondly, we used Model Driven Architecture (MDA). This choice is justified by
a desire to separate the functional constraints from the technical constraints.
MDA is a kind of machine used to create a model and refine it until, ideally,
achieving the product, such as source code. With MDA, we define the system
functionality in a model independent from the platform using a specification
language. The resulting specification is translated into a specific model to a
platform to finally generate the code compiled for the platform.

Based on these two assumptions, Chapter 3 described the core of our thesis. Indeed, to
achieve our objective, we opted for a methodological approach with three branches:

(1) The method: we constructed a systematic approach, an algorithm, to achieve
dialogues for the interactive task. Operating with the hypothesis of CFR, each
point in this algorithm is in one of three levels of specification. With the MDA
hypothesis, each of these points is a model. We built an algorithm which
manipulates models and with functions/operators that make it possible to move
from one model to another while remaining at an abstract, concrete or final level.
So, the dialogue modelled at the abstract user interface level can be reified to the
concrete user interface level by model-to-model transformation that can in turn
lead to code by model-to-code generation

(2) The model: to support the above algorithm, we proposed a model-based
conceptual model in which each exploited model is a toolkit; a kind of box of
objects whose syntactic and semantic properties furnish dialogue scripts. Toolkits
are classified according to the levels of abstraction of the CRF: task and domain,
abstract user interface, concrete user interface and final user interface.

(3) The Implementation: to support the method and model described above, we
implement graphical software called Dialog Editor. Indeed, definite concepts are
general but in order to validate results, we limited ourselves to supporting three
programming languages: Visual Basic, HTML Applications (HTA) and Microsoft
Visual Basic for Applications (VBA). Two computing platforms are addressed:
Microsoft Windows and Mac OS X. In this way, the approach demonstrates the
capabilities of the abstractions in order to cover multiple programming paradigms
and computing platforms. Five levels of behaviour granularity are exemplified
through a step-by-step methodology that is supported by a project editor, a
mapping editor, a script editor and a code generator integrated into a single
authoring environment called, we noted, Dialog Editor.

The ideal would have been to implement completely the Dialog Editor. However,
because of its complexity, we feared to exceeding the scope of our research. So, we
limited ourselves to specifying a global view and implementing some modules in order to
show its feasibility.

In Chapter 4, using Dialog Editor we carried out the exercise of applying the methodology
on simple examples in which we tried to emphasize the five dialogue granularities.

 Conclusion

 125

Moreover, we made investment of implementing fully a complex application, named CTI
Application, intended to cover the activities of a company which is specialized in the
international transfer of money and import express worldwide services, CTI application.
If for some simple examples we had no worries, we soon were limited while
programming the CTI application. Finally, we were forced to develop some modules
manually. It would be different if the Dialog Editor was completely finished.

The last chapter before this conclusion, Chapter 5, serves as a mirror. Indeed, it focuses
on the evaluation of the results proposed in the third chapter. To that end, we have opt-
ed for a qualitative approach. Our assessment plan was structured in three phases: inter-
views, satisfaction survey and the application of ISO/IEC 9126 with the aim of
examining the characteristics of Dialog Editor. It was an opportunity to explain our
technical choices. It was also a way to demonstrate the limits of Dialog Editor. This
exercise has shown the interest in completing Dialog Editor programming in order to
improve its score on the six criteria of ISO/IEC 9126.

6.2 Summary of results

6.2.1 Theoretical and conceptual contributions

The conceptual model appears in section 3.2.3 and is our main theoretical contribution.
Entities in this scheme are the source of our theory (Reference to Concern#3, lack of
modelling).

Indeed, in order to apply MDE techniques, we need to define a dialog model that is
expressive enough to accommodate advanced dialogues at different levels of granularity
and different levels of abstraction, while allowing some structured design and
development of corresponding dialogue. The Dialogue Editor described in this thesis will
rely on this conceptual model. For this purpose, our conceptual modelling consists of
expanding ECA rules towards dialogue scripting (or behaviour scripting) in a way that is
independent of any platform (Reference to Concern#5, lack of multiple platform managing). This
dialogue scripting is structured according to a meta-model that is reproduced in Figure 34
that enables defining a dialogue at five levels of granularity (Reference to Concern#2, lack of
managing complexity):

1. Object-level dialogue modelling: this level models the dialogue at the level of any
particular object, such as a CIO or a AIO. In most cases, UI toolkits and IDEs
come up with their own widget set with built-in, predefined dialogue that can be
only modified by overwriting the methods that define this dialogue. Only low-
level toolkits allow the developer to redefine an entirely new dialogue for a
particular widget, which is complex;

2. Low-level container dialogue modelling: this level models the dialogue at the level
of any container of other objects that is a leaf node in the decomposition.
Typically, this could be a terminal AC at the AUI level or a group box at the CUI
level in case of a graphical interaction modality;

 Conclusion

 126

3. Intermediary-level container dialogue modelling: this level models the dialogue at
the level of any nonterminal container of objects that is any container that is not
a leaf node in the container decomposition. If the UI is graphical, this could be a
dialog box or the various tabs of a tabbed dialog box;

4. Intra-application dialogue modelling: this level models the dialogue at the level of
top containers within a same interactive application such as a web application or
a web site. It therefore regulates the navigation between the various containers of
a same application. For instance, the Open-Close pattern means that when a web
page is closed, the next page in the transition is opened;

5. Inter-applications dialogue modelling: since the action term of an ECA rule could
be either a method call or an application execution, it is possible to specify a same
dialogue across several applications by calling an external program. Once the
external program has been launched, the dialogue that is internal to this program
(within-application dialog) can be executed.

6.2.2 Methodological contribution

Flow diagrams set out in Section 3.1.4 correspond to the model above and define the
methodology that we propose to specify the interface and dialogues of an interactive task
(Refence to Concern#1, lack of methodology). This algorithm operates on three levels of CFR
and is fully independent of platform at abstract and concrete levels (Reference to Concern#4,
lack of computing-independent).

This thesis introduced an approach for conducting Model-Driven Engineering of
dialogues for multi-platform GUIs that are compliant with the CRF. For this purpose, a
Dialog Editor has been implemented that ultimately automatically generate code for four
different targets (i.e., HTML V4.0, HTA, VBA V6.0, and DotNet V3.5) for two different
computing platforms (Windows 7 and MacOS X) as a proof-of-concept. The main
originality of this editor relies in its capability to always maintain a correspondence
between native objects (belonging to the targets) and user objects (at AUI and CUI
levels) and to support four types of mappings (i.e., forward, reverse, lateral, adaptation)
possibly between two consecutive levels or not (cross-cutting). The Dialog Editor
however only holds mappings for GUIs only, although interactive objects have been
introduced for addressing Vocal User Interfaces (Reference to Concern#4, lack of computing-
independent). Future work will be dedicated towards this goal and to integrate the
conceptual model of dialogue into UsiXML V2.0 in an adequate way

6.2.3 Tools developed

We noted in the previous section we implemented of a software called Dialog Editor
which is described in Section 3.3. Examples of the use of this tool are presented in
Chapter 4. The criticism of this tool relative to interviews, IBM CSUQ and ISO/IEC
9126 criteria is described in Chapter 5.

The table below briefly describes the different modules of the dialog editor indicating its
advantages and disadvantages. With five levels (1 the lowest and 5 the highest), we used
three indicators (functional coverage, the index of complexity and stability of the code),
to mention the current state of the editor of dialogue.

 Conclusion

 127

Table 14: Current State of Dialog Editor

MODULE DESCRIPTION (DIS)ADVANTAGES MAIN IM-

PROVEMENTS
INDICATORS

Project
Management

The Project
Editor module
includes all
facilities required
to create, retrieve,
update and delete
any UI project
during the
development life
cycle.
The Project Edi-
tor serves as the
liaison between
theoretical and
practical scripts.
The Project
Editor may be
assigned other
tasks as necessary.

Advantages
There is a single inter-
face that provides all
features for editing a
project.

Disadvantage
The lack of sophistica-
tion, such as the posi-
tioning of objects in a
container, significantly
increases the difficulty
of learning to use this
tool.

1. Currently, we
manage the
opening of VB6,
VBA and HTML
files (projects) to
enumerate all
components
(graphical or
not). This mod-
ule should be
supplemented
with the aim of
supporting .NET
files and others.

2. Integrate other
models (abstract,
concrete or fi-
nal). For exam-
ple, UsiXML
models.

3. Implement a sys-
tem that would
automatically de-
tect the geo-
graphic objects.
For example, an
interface where
objects would be
manipulated by
dragging or past-
ing.

Functional
Coverage

Complexity Index

Code Stability

Script
Editor

Script Editor is a
text editor is
specifically de-
signed for devel-
opers to write the
dialogue script of
an interactive ap-
plication or a pro-
gram. This mod-
ule is responsible
for all services re-
lated to dialogue
scripting. Scripts
of some struc-
tured dialogues
are automatically
generated. In gen-

Advantages
If knowledge of the
scripting language is as-
sumed, script editor is
intuitively easy to use.
In addition, without
strict rules, the designer
has complete freedom
in managing dialog
scripts. Also, some dia-
logue scripts are auto-
matically generated
from the properties of
interactive objects

Disadvantage
Knowledge of the

1. Define the lexi-
con, the syntax
and the seman-
tics of the script-
ing language.

2. Objects and their
properties are set
in xml structures.
Extending the
Editor to allow
dynamic proper-
ty encoding;

3. Adding useful
features, which
may include col-
our syntax high-
lighting, auto in-

Functional
Coverage

Complexity Index

 Conclusion

 128

eral, the designer
has complete con-
trol over the op-
eration of script-
ing. She/he can
change the prop-
erties of the ob-
ject dialogue in
order to deduce
partially or fully
the behaviour of
the object. Simi-
larly, according to
his will, he could
manually write
each line of code
to set the behav-
iour of the current
object.

scripting language is
mandatory. In addition,
the fact that the editor
is not WYSIWYG
could lead to difficulties
in intuitively represent-
ing its objectives.

dentation, auto
complete, brack-
et matching, syn-
tax check,
plugins, etc., to
effectively sup-
port the users
during coding,
debugging and
testing.

Code Stability

Mapping
Editor

This module is
responsible for
coordinating the
transfer of a
dialogue script
from one abstract
level to another as
well as the
controlling of
schedules,
transmitting
proof,
maintaining
dialogue
properties, status
reports, etc.
The Mapping Ed-
itor supports
three types of
mappings (i.e.,
forward, reverse,
lateral) with the
possibility to
cross between
two consecutive
levels (cross-
cutting).
It uses the power
of regular expres-
sions to manage
the relationship
one-to-many

Advantages
This tool allows the ex-
port of a project from
one abstraction level to
another, from one plat-
form to another and
from one model to an-
other. It helps, for ex-
ample, to finalize an in-
teractive application
with little programming
knowledge.

Disadvantages
Mapping Editor pro-
ceeds object by object.
And for a given object,
it works with proper-
ties. Under such condi-
tions, the volume may
be difficult to manage.
Supporting the com-
plexity is not a strong
point of this tool.

Conceptually, this
module is finished. It
still needs to be ex-
tended by including
new models, objects
and properties. In
practice, it should
support the mapping
script dialogues. In-
deed, the transfor-
mation of interactive
objects is done.

Functional
Coverage

Complexity Index

Code Stability

 Conclusion

 129

Code
Generator

At final level, the
code generator
translates from
generic scripting
to specific lan-
guage relative to a
target model. For
objects whose
properties exist in
the system, the
code generation is
programmed in
VBA, VB6 and
HTA.

Advantages
It should be noted that
some of these scripts
are automatically de-
duced through some at-
tribute values. Other
scripts are derived
semi-automatically. In-
deed, by combining the
event of an interactive
object to a function
call, the developer will
need to make the links
between the function
parameters (input and
output) with the attrib-
utes of interactive ob-
jects. Then, the Editor
automatically builds the
script.

Disadvantages
As the majority of dia-
logue scripts are not
generated automatically,
it is necessary for the
designer to have a good
knowledge of the
scripting language.

1. The
completeness of
interactive
objects
properties will
allow the
implementation
of missing
functions and
the support of
other toolkits
and/or
programming
languages.

2. Construct a
series of
examples that
could serve as
patterns for best
learning of the
code generator
module

Functional
Coverage

Complexity Index

Code Stability

6.3 Future work in prospect

In the near future, two extensions can be made to the results of this thesis, the first is

theoretical and the second practical.

Indeed, firstly, it would be useful to apply programming language theory in order to

define precisely the language of dialogue specification. The lexicon, the syntax and the

semantics of this language are to be described. Then, it will follow the implementation of

the interpreter of this language and its integration into the Dialog Editor.

In a second step, we will take the time to complete the programming of Dialog Editor.

While respecting its architecture, functions will be taken one after the other to complete

all the modules. Depending on need, we will consider the possibility of adding one or

two targets platforms in the actual list.

In the medium term, we will consider investigating opportunities to develop mechanisms

and gateways between UsiXML and the language of Dialog Editor. The table 8 above

summarizes what is done and what remains to be done for the Dialog Editor.

 References

 130

References

A

[Acc96]

Accot, J., Chatty, S., and Palanque, P., A formal Description of low level interaction and its application to
multimodal interactive systems, in Proc. of Eurographics Workshop on Design, Specification and Veri-
fication of Interactive Systems DSV-IS’96 (Namur, June 1996), Springer, Berlin, 1996, pp. 92-104.

[Abr99]

Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S., and Shuster, J., UIML: An Appliance-
Independent XML User Interface Language, in A. Mendelzon (ed.), Proceedings of 8th International
World-Wide Web Conference WWW'8 (Toronto, May 11-14, 1999), Elsevier Science Publishers,
Amsterdam, 1999. Accessible at http://www8.org/w8-papers/5b-hypertext-
media/uiml/uiml.html.

[Ari88]

Ariav, G. and Calloway, L.-J., Designing conceptual models of dialogue: A case for dialogue charts, SIGCHI
Bulletin, vol. 20, no. 2, 1988, pp. 23–27.

B

 [Bas99]

Bastide R. and Palanque P., A Visual and Formal Glue Between Application and Interaction, Journal of

Visual Language and Computing, 10(5), October 1999, pp. 481–507.

[Ber01]

Berstel, J., Reghizzi S.C., Roussel G. and Pietro P.S., A scalable formal method for design and automatic

checking of user interfaces, Proc. of 23rd Intl. Conf. on Software Engineering ICSE 2001 (Toronto,

12-19 May 2001), IEEE Computer Society, Los Alamitos, 2001, pp. 453–462.

[Bez04a]

Bézivin J., In Search of a Basic Principle for Model Driven Engineering, UPGRADE the European

Journal for the Informatics Professional, Vol. V, No. 2, April 2004

[Bez04b]

Bézivin J., Model Engineering for Software Modernization, The 11th IEEE Working Conference on

Reverse Engineering, Delft, November 8th-12th 2004.

[Bez05]

Bézivin J., On the unification power of models, Software and Systems Modeling 4(2): 171–188,

May 2005.

[Bod95]

Bodart F., Hennebert A.-M., Leheureux J.-M., Provot I., Vanderdonckt J. and Zucchinetti G., Key

Activities for a Development Methodology of Interactive Applications, Chapter 7, in Benyon, D., Palanque,

Ph. (Eds.), “Critical Issues in User Interface Systems Engineering”, Springer-Verlag, Berlin, 1995,

pp. 109-134.

[Bod00]

Bodart, F., Leheureux, J.-M., Mbaki, E., Vanderdonckt, J.,Windows Transitions: A Graphical

Notation for Specifying Mid-Level Dialogue Models, Informal Proc. of 7th Int. Eurographics Workshop

on Design, Specification, Verification of Interactive Systems DSV-IS’2000 (Limerick, 5-6 June

 References

 131

2000), Ph. Palanque, F. Paternò (eds.), 2000.

[Boo04]

Book M. and Gruhn V., Modeling web-based dialogue flows for automatic dialogue control, Proc. of 19th

IEEE Intl. Conf. on Automated Software Engineering ASE’2004 (Linz, 20-25 September 2004),

IEEE Computer Society, Los Alamitos, 2004, pp. 100–109.

[Boo05a]

Book M. and Gruhn V., Experiences with a dialogue-driven process model for web application development,

Proc. of 29th Annual Intl. Computer Software and Applications Conf. COMPSAC’2005

(Edinburgh, 25-28 July 2008), IEEE Computer Society, Los Alamitos, 2005, pp. 173–178.

[Boo05b]

Book M., Gruhn V. and Mirbach N. A Meta-Model for the Dialogue Flow Notation, Proc. of the 1st

Intl. Conf. on Web Information Systems and Technologies WE-BIST’2005 (Miami, 26-28 May

2005), INSTICC Press, 2005, pp. 64–71.

[Boo06a]

Book M. and Gruhn V., Efficient Modeling of Hierarchical Dialogue Flows for Multi-Channel Web

Applications, Proc. of 30th Annual Intl. Computer Software and Applications Conf.

COMP¬SAC’2006 (Chicago, 17-21 September 2006), IEEE Computer Society, Los Alamitos,

2008, pp. 161–168.

[Boo06b]

Book M. and Gruhn V and Lehmann M., Automatic dialogue mask generation for device-independent web

applications, Proc. of 6th Intl. Conf. on Web Engineering ICWE 2006 (Palo Alto, 11-14 July 2006),

ACM Press, New York, 2006, pp. 209–216.

[Boo07]

Book M. and Gruhn V. and Richter J., Fine-grained specification and control of data flows in web-based user

interfaces, Proc. of 7th Intl. Conf. on Web Engineering ICWE’2007 (Como, 16-20 July 2007),

Lecture Notes in Computer Science, Vol. 4607, Springer-Verlag, Berlin, 2007, pp. 167–181.

[Boo08]

Book M. and Gruhn V, Efficient Modeling of Hierarchical Dialogue Flows for Multi-Channel Web

Applications, Proc. of 30th Annual Intl. Computer Software and Applications Conf.

COMP¬SAC’2006 (Chicago, 17-21 September 2006), IEEE Computer Society, Los Alamitos,

2008, pp. 161–168.

[Bre09]

Breiner, K., Maschino, O., Görlich, D., Meixner, G. Towards automatically interfacing application services

integrated in a automated model based user interface generation process. In Proc. Of MDDAUI'2009 at at

http://ceur-ws.org/Vol-439/paper5.pdf, Sanibel Island, Florida, USA, febuary 2009

[Bri87]

Britts S., Dialogue management in interactive systems: a comparative survey, SIGCHI Bulletin, 18(3), 1987,

pp. 30–42.

http://ceur-ws.org/Vol-439/paper5.pdf

 References

 132

[Bro07]

Brossard A., Abed M., Kolski C. Modélisation conceptuelle des IHM. Une approche globale s'appuyant sur

les processus métier. Ingénierie des Systèmes d'Information 12(5): 69-108 (2007)

[Bro09]

Brossard A., Abed M., Kolski C. and Uster G. User modelling: the consideration of the experience of time

during journeys in public transportation. Mobility Conference 2009, Proceedings of the 6th International

Conference on Mobility Technology, Applications and Systems (2-4 september, 2009, Nice),

ACM Press

[Bro11]

Brossard A., Abed M., Kolski C., Taking context into account in conceptual models using a Model Driven

Engineering approach, Information and Software Technology, volume 53, pp. 1349–1369, 2011

C

[Cac03]

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vanderdonckt, J. A Unifying

Reference Framework for Multi-Target User Interfaces. Interacting with Computers 15, 3 (2003) 289–308.

[Cac07]

Cachero C., Melia S., Poels G. and Calero C. , Towards improving the navigability of Web Applications: a

model-driven approach, European Journal of Informations Systems, 16, 2007, pp. 420–447.

[Cal05]

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. A Unifying

Reference Framework for Multi-Target User Interfaces. Interacting with Computer 15,3 (2003) 289–308.

[Can05]

Cantera, J.M., González Calleros, J.M., Meixner, G., Paternò, F., Pullmann, J., Raggett, D.,

Schwabe, D., Vanderdonckt, J. Model-Based UI XG Final Report. W3C Incubator Group Report, 4 May

2010. Available at: http://www.w3. org/2005/Incubator/model-basedui/XGR-mbui/8. Carr, D.

Specification of interface interaction objects.In Proc. of CHI’94. ACM Press, New York, 1994.

[Car94]

Carr D.A., Specification of interface interaction objects, Proc. of ACM Conf. on Human Aspects in

Computing Systems CHI’94 (Boston, 24-28 April 1994), ACM Press, New York, 1994, pp. 372–

378.

[Car98]

Carpenter, R. H. S., & Robson, J. G. (Eds.). (1998). Vision research: A practical Guide to Laboratory

Methods. Oxford, England: Oxford University Press.

[Cle06]

Clerckx, T., Van den Bergh, J. and Coninx, K. Modeling Multi-Level Context Influence on the User

Interface. In Proc. of PERCOMW'2006. IEEE Press, 2006, pp. 57–61.

[Cow95]

Cowan D. and Pereira de Lucena C., C. Abstract Data Views: An Interface Specification Concept to

Enhance Design for Reuse, IEEE Transactions on Software Engineering, 21(3), 1995, pp. 229-243.

 References

 133

[Dit04]

Dittmar, A. and Forbrig, P. The Influence of Improved Task Models on Dialogues. In Proc. of

CADUI’2004, pp. 1–14, Kluwer Academic Publishers, 2005, Netherlands

[Dix98]

Alan J. Dix, Janet E. Finlay, Gregory D. Abowd, Russell Beale, Human Computer Interaction, Pren-

tice Hall, 01/12/1998

[Duc07]

Duchowski, A. T. (Ed.). (2007). Eye Tracking Methodology: Theory and Practice (2nd ed.). New

York: Springer-Verlag.

E

[Eise01]

Eisenstein, J., Vanderdonckt, J. and Puerta, A., Applying Model-Based Techniques to the Development of

UIs for Mobile Computers. In IUI01: 2001 International Conference on Intelligent User Interfaces.

pp. 69-76, Santa Fe, NW.

[Elw96]

Elwert, T. Continuous and Explicit Dialogue Modelling. In Proc. of EA-CHI'96. 265 - 266 ACM, 1996,
New York, USA

G

[Gat08]

Gates B., Bill Gates Keynote: Microsoft Tech-Ed. 2008 – Developers. <http://www.microsoft.com/

presspass/exec/billg/speeches/2008/06-03teched.mspx>.

[Goe96]

Goedicke M. and Sucrow B.E., Towards a formal specification method for graphical user interfaces using

modularized graph grammars, Proc. of the 8th Intl. Workshop on Software Specification and Design

IWSSD’96 (Washington, DC, 1996), IEEE Computer Society, Los Alamitos, 1996.

[Gom01]

Gomez J., Cachero C., Pastor O., Conceptual Modeling of Device-Independent Web Applications, IEEE

Multimedia, 8(2), 2001, pp. 26-39.

[Gre86]

Green M., A survey of three dialogue models. ACM Trans. on Graphics, 5(3), Juy 1986, pp. 244–275.

H

[Hako10]

Håkon Wium L and Bert B., Cascading style sheets: designing for the Web. Addison Wesley Longman. p.

263. Retrieved 9 June 2010.

[Han06]

Han M. and Hofmeister C., Modeling and verification of adaptive navigation in web applications. Proc. of

6th Intl. Conf. on Web Engineering ICWE 2006 (Palo Alto, 11-14 July 2006), ACM Press, New

York, 2006, pp. 329–336.

 References

 134

[Han03]

Hansmann U., Merk L., Nicklous M., Stober T., Pervasive Computing: The Mobile World, second ed.,

Springer Professional Computing, 2003.

[Har87]

Harel D., Statecharts: A visual formalism for complex systems, Science of Computer Programming, 8,

1987, pp. 231–274.

[Hay86]

Hayes Ian J. Using mathematics to specify software In Proceedings of the 1st Australian Software Engi-

neering Conference, ASWEC-86., May 1986, pp. 67–71.

[Hel09]

Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A., Vanderdonckt, J.

Human-Centered Engineering with the User Interface Markup Language. In “Human-Centered Software

Engineering”, Chapter 7, HCI Series, Springer, London, 2009, pp. 141–173.

[Hil86]

Hill R.D., Supporting Concurrency, Communication and Synchronization in Human-Computer Interaction - The

Sassafras UIMS, ACM Transactions on Graphics, 5(3), 1986, pp. 179-210.

[Hus99]

Hussey A. & Carrington D. Model-Based Design of User-Interfaces using object-Z. In CADUI’99

Computer-Aided Design of User Interfaces II by Vanderdonck J & Puerta A., Kluwer Academic

Publishers, pp. 43-53. ACM Press, 1999.

I

[Iso01]

ISO/IEC 9126-1:2001 Software engineering — Product quality — Part 1: Quality model

 [Iso11]

ISO/IEC 25010:2011, Systems and software engineering -- Systems and software Quality Requirements and

Evaluation (SQuaRE) -- System and software quality models

J

[Jac86]

Jacob, R.J.K. A specification language for direct manipulation user interfaces. ACM Transactions on

Graphics, 5, 4 (1986) 283–317.

 [Jan93]

Janssen C., Weisbecker A. and Ziegler J., Generating user interfaces from data models and dialogue net

specifications, Proc. of ACM Conf. on Human Aspects in Computing Systems InterCHI’93

(Amsterdam, 24-29 April 1993), ACM Press, New York, 1993, pp. 418–423.

[Jon80]

Jones Cliff B. Software Development: A Rigorous Approach. Prentice Hall International., 1980, ISBN

0-13-821884-6.(VDM)

 References

 135

[Jon86]

Jones Cliff B. Systematic Software Development using VDM. Prentice Hall International, 1986, ISBN

0-13-880717-5.

K

[Kle88]

Kleyn M.F. and Chakravarty I., Edge - a graph based tool for specifying interaction, Proc. of 1st Annual

ACM Symposium on User Interface Software and Technology UIST’88 (Alberta, 17-19 October

1988), ACM Press, New York, 1988, pp. 1–14.

L

 [Lew95]

Lewis J.R., IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use.

International Journal of Human-Computer Interaction, 1995, 7 (1), 57-78

[Lik32]

Likert. R., A technique for the measurement of attitudes. Archives of Psychology, 22(140):1–55, 1932.

[Lim04]

Limbourg Q. and Vanderdonckt J., Addressing the Mapping Problem in User Interface Design with

UsiXML, Proc. of 3rd Int. Workshop on Task Models and Diagrams for user interface design

TAMODIA’2004 (Prague, November 15-16, 2004), ACM Press, New York, 2004, pp. 155–163.

[Luy03]

Luyten K., Clerckx T., Coninx K. and Vanderdonckt J., Derivation of a Dialogue Model from a Task

Model by Activity Chain Extraction, Proc. of 10th Int. Conf. on Design, Specification and

Verification of Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in

Computer Science, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 203–217.

M

[Mba00a]

Mbaki, E., Towards a Library of Generic Guidelines for Specifying Multi-Threaded Dialogs. In,

Vanderdonckt, J., Farenc, Ch. (Eds.), Tools for Working with Guidelines, Proc. of the Int.

Workshop on Tools for Working with Guidelines TFWWG’2000 Group (Biarritz, 7-8 October

2000), Springer-Verlag, London, 2000. , pp. 217-224.

[Mba00b]

Mbaki Luzayisu E., Utilisation des automates à pile pour la spécification de dialogues et la gestion de

l'historique. Actes de p.47-52, Actes des Rencontre de Jeunes Chercheurs en Interface Homme-

Machine, RJC-IHM'2000, 3-5 mai 2000, Ile de Berder, Golfe du Morbillan, France,http://www-

valoria.univubs. fr/RJCIHM/Actes/actes.htm

 References

 136

[Mba02]

Mbaki E. and Vanderdonckt J., Window Transitions: A Graphical Notation for Specifying Mid-level

Dialogue In Proc. of 1st Int. Workshop on Task Models and Diagrams for user interface design

Tamodia’2002 (Bucharest, 18-19 July 2002), Academy of Economic Studies of Bucharest,

INFOREC Printing House, Bucharest, 2002, pp. 55–63.

[Mba08]

Mbaki, E., Vanderdonckt, J., Guerrero, J. and Winckler, M. Multi-level Dialogue Modeling in Highly

Interactive Web Interfaces. In Proc. of IWWOST’2008, CEUR Workshop Proc., Vol. 445, 2008, pp.

38–43.

[Mba11a]

Mbaki, E., Vanderdonckt, J., Model-Driven Engineering of Behaviors for User Interfaces in Multiple Contexts

of Use. In Proc. of IADIS Int. Conf. on Interfaces and Human-Computer Interaction IHCI’2011

(Rome, 24-26 July 2011), IADIS Press, Rome, 2011, pp. 273-282

[Mba11b]

Mbaki, E., Vanderdonckt, J., Winckler, M., Model-Driven Engineering of Dialogues for Multi-platform

Graphical User Interfaces. In Proc. of 2nd Int. Workshop on User Interface Extensible Markup

Language UsiXML’2011 (Lisbon, 6 September 2011), Thales Research and Technology France,

Paris, 2011, pp. 169-180

[Mba99]

Mbaki Luzayisu E., Modélisation et spécification des dialogues relatifs à des applications de gestion, Tome II,

Actes de IHM’99, du 23 au 26 novembre 1999, Montpellier, France

[Mei09a]

Meixner, G., Görlich, D., Breiner, K., Hußmann, H.,Pleuß, A., Sauer, S., Van den Bergh, J. S

Selecting the Right Task Model for Model-based User Interface Development. In Proc. of 4th Int. workshop

on model driven development of advanced user interfaces. MDDAUI'2009. In Proc. of IUI 2009,

pp. 503–504.

 [Men03]

Menkhaus, G. and Fischmeister, S. Dialogue Model Clustering for User Interface Adaptation. In Proc. of

ICWE'2003. LNCS, Vol. 2722, Springer-Verlag, Oviedo, Spain, 2003, pp. 194–203.

 [Mon05]

Montero F., López-Jaquero V., Vanderdonckt J., Gonzalez P., Lozano M.D. and Limbourg Q.,

Solving the Mapping Problem in User Interface Design by Seamless Integration in IdealXML, Proc. of 12th

Intl. Workshop on Design, Specification and Verification of Interactive Systems DSV-IS’2005

(Newcastle upon Tyne, 13-15 July 2005), S.W. Gilroy, M.D. Harrison (eds.), Lecture Notes in

Computer Science, Vol. 3941, Springer-Verlag, Berlin, 2005, pp. 161-172.

[Mor04]

Mori G., Paternò F. and Santoro C., Design and Development of Multidevice User Interfaces through

Multiple Logical Descriptions, IEEE Transactions On Software Engineering, Vol. 30, No. 8, August

2004, pp. 507-520

 References

 137

O

[Oli01]

Oliveira (de) M.C.F., Turine M.A.S. and Masiero P. C., A statechart-based model for hypermedia

applications, ACM Transactions on Information Systems, 19(1), 2001, pp. 28–52.

[Ols84]

Olsen D., Pushdown automata for user interface management, ACM Transactions on Graphics, 3(3),

1984, pp. 177–203.

[Omg00]

Object Management Group and R. Soley. Model-Driven Architecture, 2000. OMG document

available at www.omg.org.

[Omg05]

OMG, QVT Final Adopted Spec. , www.omg.org/docs/ptc/05-11-01.pdf, November 2005

[Omg08]

OMG, QVT 2.0 Transformation Spec., http://www.omg.org/spec/QVT/1.0/PDF/, Avril 2008

P

[Pal94]

Palanque P. and Bastide R., Petri net based design of user-driven interfaces using interactive cooperative object

formalism, Proc. of 1st Eurographics Workshop on Design, Specification and Verification of

Interactive Systems DSV-IS’94 (Bocca di Magra, June 1994), Springer Verlag, Vienna, 1994.

[Pat08]

Jose Ignacio Panach, Nelly Condori-Fernández, Francisco Valverde, Nathalie Aquino, Oscar Pas-

tor, Towards an Early Usability Evaluation for Web Applications, Software Process and Product Meas-

urement, Lecture Notes in Computer Science Volume 4895, 2008, pp 32-45

 [Pat09]

Paternò, F., Santoro, C. and Spano, L.C. MARIA: A universal, declarative, multiple abstraction-level

language for service-oriented applications in ubiquitous environments. ACM Transactions on Computer-

Human Interaction 16, 4 (November 2009), Article 19.

[Pat94]

Paternò F & Leonardi A, a semantic-based approach for the design and implementation of interaction objects,

Computer Graphics Forum 13(3), 1994, pp.195-204.

[Pau99]

Paulo F.B., Masiero P.C. and de Oliveira M.C.F., Hypercharts: Extended statecharts to support

hypermedia specification, IEEE Transactions on Software Engineering, 25(1), 1999, pp. 33–49.

[Pay86]

Payne and T.R.J Green, Task-action grammars: A model of the mental representation of task languages,

Human-Computer Interaction, 2(2), 1986, pp. 93–133.

 References

 138

[Ple05a]

Pleuß, A. Modeling the User Interface of Multimedia applications. In Proc. of MoDELS 2005, pp. 676–

690. ontego Bay, Jamaica

[Ple05b]

Pleuß, A. MML: A Language for Modeling Interactive Multimedia Applications. In Proc. of ISM'2005, pp.

465–473, Irvine (CA), USA

R

[Rai04]

Raistrick C.; Colin C., Paul F.; Ian W.; John Wright. Model Driven Architecture with Executable UML.

Cambridge University Press, 2004.

 [Rei08]

Reichart, D., Dittmar, A., Forbrig, P. and Wurdel, M.Tool Support for Representing Task Models,

Dialogue Models and User-Interface Specifications. In Proc. of DSV-IS’2008. LNCS, Vol. 5136,

Springer, Berlin, 2008, pp. 92–95.

 [Rei81]

Reisner P., Formal grammar and human factors design of interactive graphics systems, IEEE Transactions on

Software Engineering, 7, 1981, pp. 229–240.

[Rüc08]

Rückert, J. and Paech, B. The Guilet Dialogue Model and Dialogue Core for Graphical User Interfaces. In

Proc. of EIS'2008. LNCS, Vol. 5247, Springer, 2008, pp. 197–204.

S

[Sch06]

Schmidt D.C, Guest Editor's Introduction: Model-Driven Engineering, Computer 39 (2006), pp. 25-31.

 [Sch07]

Schaefer R., Bleul S., Müller W., Dialogue Modeling for Multiple Devices and Multiple Interaction

Modalities, Proc. of 5th Int. Workshop on Task Models and Diagrams for User Interface Design

TAMODIA’2006 (Hasselt, 23-24 October 2006), K. Coninx, K. Luyten, K. Schneider (eds.),

Lecture Notes in Computer Science, Vol. 4385, Springer-Verlag, Berlin, 2007, pp. 39–53.

[Sch95]

Schneiher K. & Ander Repenning A. Deceived by Ease of Use. In DIS’95 Symposium on Designing

Interactive Systems: Processes, Practices, Methods an Techniques, pp. 177-188. ACM Press, 1995.

[Sch04]

Schaefer R., Bleul S., Müller W., A Novel Dialogue Model for the Design of Multimodal User Interfaces,

Proc. of 9th IFIP Working Conference on Engineering for Human-Computer Interaction jointly

with 11th Int. Work-shop on Design, Specification and Verification of Interactive Systems EHCI-

DSVIS’2004 (Hamburg, July 11-13, 2004), Lecture Notes in Computer Science, Vol. 3425,

Springer-Verlag, Berlin, 2005, pp. 221–223.

 References

 139

[Sch07]

Schaefer, R., Bleul, S. and Müller, W. Dialogue Modeling for Multiple Devices and Multiple Interaction

Modalities. In Proc. of TAMODIA’2006. Lecture Notes in Computer Science, Vol. 4385, Springer-

Verlag, Berlin, 2007, pp. 39–53.

[Sol00]

Soley R. and the OMG staff. Model Driven Architecture. November 2000,

ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf

[Spi92]

Spivey J. Michael. The Z Notation: A reference manual (2nd edition ed.). Prentice Hall International Se-

ries in Computer Science, 1992. ISBN 0-13-978529-9.(Z)

[Sta73]

Stachowiak H., Allgemeine Modelltheorie, Springer-Verlag edition, in German, 1973

[Sta07]

State Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C Working Draft, 21

February 2007, http://www.w3.org/TR/scxml/

[Tra03]

Traetteberg, H. Dialogue modelling with interactors and UML Statecharts. In Proc. of DSV-IS’2003.

LNCS, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 346–361.

[Tra08]

Traetteberg, H. Integrating Dialogue Modeling and Domain Modeling – the Case of DIAMODL and the

Eclipse Modeling Framework. Journal of Universal Computer Science 14, 19 (2008), pp 3265–3278.

V

 [Van03]

Vanderdonckt J., Limbourg Q., Florins M., Deriving the Navigational Structure of a User Interface, Proc.

of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction Interact’2003 (Zurich, 1-5

September 2003), M. Rauterberg, M. Menozzi, J. Wesson (eds.), IOS Press, Amsterdam, 2003, pp.

455–462.

[Van07]

Van den Bergh, J. and Coninx, K. From Task to Dialogue model in the UML. In Proc. of

Tamodia’2007, pp. 98–111, Springer-Verlag Berlin, 2007

[Van98]

Vanderdonckt J., Tarby J.-Cl. and Derycke A., Using Data Flow Diagrams for Supporting Task Models,

Supplementary. Proc. of 5th Int. Eurographics Workshop on Design, Specification, Verification of

Interactive Systems DSV-IS’98 (Abingdon, 3-5 June 1998), P. Markopoulos, P. Johnson (eds.),

Eurographics Association, Aire-la-Ville, 1998, pp. 1–16.

[Van99]

Van Welie, M., van der Veer, G.M.C. and Eliëns, A. Usability Properties in Dialogue Models. In Proc.

ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf
http://www.w3.org/TR/scxml/

 References

 140

of DSV-IS’99, Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999.

[Ver12]

Verhagena Wim J.C., Bermell-Garciab Pablo, Van Dijkc Reinier E.C., Curran Richard, In Ad-

vanced Engineering Informatics archive, Volume 26 Issue 1, January, 2012, Pages 5-15

[Vev96]

Vivier J., Introduction : la psycholinguistique au secours de l’informatique. In: Langages, 35e année, n°144,

2001. pp. 3-19, Paris, 1996.

W

[W3C08]

W3C State Chart XML (SCXML), State Machine Notation for Control Abstraction, Working Draft, 16

May 2008. Accessible at http://www.w3.org/TR/ SCXML.

[Was85]

Wasserman A., Extending State Transition Diagrams for the Specification of Human-Computer Interaction,

IEEE Transactions on Software Engineering, 11(8), 1985, pp. 699–713.

[Win03]

Winckler M. and Palanque P.. StateWebCharts: A formal description technique dedicated to navigation

modelling of web applications. Proc. of 10th Int. Conf. on Design, Specification and Verification of

Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in Computer Science,

Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 61-76.

[Win04]

Winckler M., Barboni E., Farenc C., Palanque P., SWCEditor: a Model-Based Tool for Interactive

Modelling of Web Navigation. In Proc. of 4th Int. Conf. on Computer-Aided Design of User

Interfaces CADUI’2004 (Funchal, 14-16 January 2004), Kluwer Academic Publishers, Dordrecht,

2005, pp. 55–66.

[Win08]

Winckler M., Trindade F., Vanderdonckt J., Cascading Dialogue Modeling with UsiXML, Proc. of 15th

Int. Work-shop on Design, Specification and Verification of Interactive Systems DSV-IS’2008

(Kingston, July 16-18, 2008), Lecture Notes in Computer Science, Springer, Berlin, 2008.

[Wir92]

Wirth N. and Gutknecht J., Project Oberon- The design of an Operating System and Compiler, Addison-

Wesley, Reading, Mass. 1992

[Yam09]

Yamane K. and Hodgins J.K.: Simultaneous Tracking and Balancing of Humanoid Robots for Imitating

Human Motion Capture Data, Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 2510-2517, 2009

[Yam10]

Yamane K. and Hodgins J.K.: Control-Aware Mapping of Human Motion Data with Stepping for
Humanoid Robots, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 726-733, 2010

Annex A Password Evaluation

 141

Annex A. Password Evaluation

By exploiting a simple example: evaluating a password, the purpose of this annex is
twofold. At first, it illustrates some important concepts in the specification and design of
an interactive task such as software architecture and the dialogue automata. Moreover,
these lines are also of interest to show the advantages and disadvantages of working
manually or getting help from the Dialog Editor

A.1. Statement

In this example, we try to evaluate a password. The formula that we decide to apply is
very simple. Indeed, a password is better if, at the same time:

1. its length is between 6 and 15 characters. Shorter would be too easy to identify

and, more length, more difficult to retain ;

2. it contains at least one lowercase letter;

3. it contains at least one uppercase letter;

4. it contains at least one numerical digit and

5. it contains at least a special character such as comma, semicolon,…

We suggest that the user has two modes of interaction. By using a command button, he/
can choose to view his password (to read a word such as it is) or to hide his password (to
replace all the characters by *)

Each time the user modifies his password, an evaluation will be made. The result
expressed as a percentage will be posted. In parallel, the user will see measures on a slide
object at the right position. Lastly, the user has another command button which enables
him to leave the interface.

A.2. Architecture and behaviour automata

As shown in the Figure 70, we propose a simple architecture with three components: the
use interface, the functional machine function and the controller that manages
information exchanges. The module initialization involves the preparation of useful
resources for working.

For a better understanding, let us use automata (Figure 71) to illustrate the behaviour of
our application. It is important to note that our machine needs to keep its internal state.
For example, to return to hide or view state after the evaluation, the automata must
remember the internal state of his departure. Otherwise, the behaviour we describe will
not match the requested dialogue.

Annex A Password Evaluation

 142

Figure 71. Global architecture.

Figure 72. Dialogue Automata.

A.3. User interface

A.3.1. Global view

In Visual Basic 6, a User Interface answering the above specification could be built in the
following way.

Annex A Password Evaluation

 143

Figure 73. VB6 Password Interface.

The main Form is named frmMain. It contains two command buttons. The first one
labelled “Exit”, is used to leave the application. The second, labelled here “View”, can
have its caption changed to “Hide” with a click by a user. This command button helps
the user to view/hide its password. The value of the Slide object indicates the evaluation
result which is also marked by a label

A.3.2 Manual User Interface (with visual basic editor)

Manual building for this interface requires the launching of Microsoft Visual Basic 6.0
where we choose to create an exe application.

Annex A Password Evaluation

 144

Figure 74. Visual Basic 6 IDE.

Automatically, the system offers a new empty window where we drag-and-drop general
objects; two command buttons, two labels and a textbox. The developer could fix object
properties with the mouse pointer and arrow keys or by typing values in the properties
table shown in the Figure 73.

Annex A Password Evaluation

 145

Figure 75. Adding Form in VB6 IDE.

The slider is not a common/basis object in visual basic environment. To add this object
in the project toolbox, the developer must reference on additional library; “Microsoft
Windows Common controls 6.0”. As shown in the Figure 74, to achieve this task, the
developer must click on the item “Component” of the project menu. In the list, he will
check on the library and press the Apply command. Thus, the toolbox will be extended
by new objects, including the Slider. To complete the user interface, the developer has to
drag-and-drop an instance of the slider object.

Annex A Password Evaluation

 146

Figure 76. VB6 IDE, adding Component.

As shown in Figure 74, with Dialog Editor, a designer needs to open project manager
tool. Afterwards, he must choose the specification level (Finalize) and a Toolkit (Visual
basic 6.0). Thus, the list of available objects becomes accessible in the main table.

Here, developer inserts seven rows for a Form, two command buttons, two labels, a textbox
and a slider. We must point out that there is no difference between common objects and
additional objects. All objects are in the same list.
To resize objects and determine their locations, the developer must fill in the property
values manually as shown in the Figure 75.

Annex A Password Evaluation

 147

A.3.3 Semi-manual interface

Figure 77. Dialog Editor, adding items.

Annex A Password Evaluation

 148

Figure 78. Dialog Editor, resizing item.

To the extent that he works at the final level, the developer has the choice of generating a
code or changing the project in another Toolkit. In one click, the interface can be
obtained in VBA, HTML or VB.Net. Similarly, without any programming knowledge and
with a small command, a code for the specified interface can be generated. To achieve
this task, he needs to fix the target level, the target toolkit and transforming mapping.

Annex A Password Evaluation

 149

Figure 79. Dialog Editor, Choosing Mapping.

A.3.4. Comparison

Table 15: Comparison user interface

PROPERTY MANUAL DESIGN USING EDITOR

Base knowledge Learn about Visual Basic
Editor

Learn about Dialog Editor

Placing objects By drag-and-drop, very easy
to do

Filling geographic properties
list, not easy to fix

Resizing objects Using mouse and arrow keys,
very easy to do

Filling size properties, not
easy to imagine

Objects relationship Visual, by drag-and-drop By filling parent relationship
using parent column

Complexity Design form by form Possibility of developing
many forms at once.

Visualization What you see is what you get Without viewing the result
interface, there exist the risk
of having restart several times

Annex A Password Evaluation

 150

Choice of Objects Easy for common/basis
objects. More complicated for
advanced libraries objects

Easy to do; a simple list for all
objects

Reuse Almost impossible.
Otherwise, create an ocx
library to be used in another
project that supports COM
technology.

Several possible applications
exploiting mappings. In
addition, ability to switch to
another level and / or toolkit
without any line of code

A.4. Dialogue Programming

A.4.1. Dialogue Programming in visual basic

Although very simple, this example enables us to illustrate and implement certain very
useful concepts. We can enumerate:

 Functional Machine which contains all semantics functions. Here, we use a class
module named cMachine (Figure 79). The only function we need is the Validate
function.

 The user interface is completely managed by a specific controller; the class module

cInterface (Figure 80) captures events on the user interface and announces any

exchange to the behaviour controller. Each event is characterized by three

elements: its source, its nature and its parameters. It should be noticed that we

do not mention the sender. Indeed, the same event can be captured by two or

more senders.

Annex A Password Evaluation

 151

Figure 80. VB6 code of cMachine class.

Annex A Password Evaluation

 152

Figure 81. VB6 code of Controller script.

 the use of the behaviour controller which manages exchanges between the

functional machine and the user interface. We notice that this class uses two

objects a controller of user interface and the functional machine. But also, two

parameters;

1. a Boolean (bView) which changes according to whether the password is

visible or not. As we will see later, this Boolean represents two states of

dialogue automat.

2. a chain of the characters (sPwd) containing the current password running.

To exploit an automat, we will need a pile to record the evolution of this

word

Annex A Password Evaluation

 153

Figure 82. VB6 of cBehaviour class.

The initialization unit which prepares the necessary resources to start the application. In

the project explorer below, this unit is implemented as a module named mInit.bas;

Annex A Password Evaluation

 154

Figure 83. VB6 code of Initialization Module.

In summary, the visual basic project explorer below shows clearly how these components
are integrated. We can list, one form, one module and three classes.

Annex A Password Evaluation

 155

Figure 84. VB6 Project Explorer.

A.4.3. Dialogue specification with Dialog Editor

We hypothesize that the specified project is registered under vbp format i.e. as vb6
project. We want to open this project with the objective of specifying the dialogue. Let us
open this project as shown in the Figure 83.

Annex A Password Evaluation

 156

Figure 85. Opening Project.

As a result, the Dialog Editor presents a tree which lists all project components and/or
objects. In addition, by clicking on each leaf of the tree, the editor offers a page where
the developer can encode the script's dialogue node. Also, for some objects, there is a
series of properties whose value choices can help to deduce certain characteristics of the
dialogue. The following picture illustrates what we are saying.

Annex A Password Evaluation

 157

Figure 86. Project objects tree.

While programming the evaluation function requires several lines of code in the editor,
this can be summarized in a few clicks as illustrated in Figure 86 below.

Figure 87. Fixing Properties.

In fact, we still have a few lines of code to specify the behaviour of the object. The big
advantage here is that the script is written in a generic language. The best would be to
increase the power of language tokens semantic in order to shorten these scripts. The

Annex A Password Evaluation

 158

secret lies in the continuing effort to find a way to specify complex behaviours in two or
three clicks.

Table 16. Comparison behaviour.

PROPERTY MANUAL

PROGRAMMING

USING EDITOR

Base knowledge Visual Basic Programming Learn about Dialog Editor

Event Script to program fully Specify using editor interface

Function Script to program fully Specify using editor interface;

which parameter for which

function; which parameter is

attached to which interactive

object

complexity Complicated for complex

function and/or Event script

Simplified by the power of

semantic of language item.

Visualization What you see is what you get Without viewing of the result

Interface, error-trying risk

with many loop

Reuse Almost impossible.

Otherwise, create a DLL

library to be used in another

project that supports COM

technology.

Several possible applications

exploiting mappings. In

addition, ability to switch to

another level and / or toolkit

without any line of code

