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Avant-propos

Dans ce document je décris mon activité scientifique depuis la fin de ma thése soutenue en
octobre 2002. Il est constitué de deux parties. La premiére est une synthése de mon travail et la
seconde un recueil de mes articles les plus représentatifs en rapport avec les travaux décrits en
premiére partie[l]

La partie synthése est constituée de deux chapitres. Le premier regroupe mes travaux les plus ré-
cents, depuis fin 2007, sur la thématique de la simulation numérique et des problémes inverses pour
les plasmas de Tokamak. Le second regroupe des travaux plus anciens concernant la modélisation
et I’assimilation variationnelle de données en écologie marine ainsi que deux autres travaux isolés.
Les liens avec les articles contenus dans la seconde partie du document sont faits au fil du texte. Les
thématiques abordées dans ces deux chapitres étant relativement variées ils ne contiennent pas de
bibliographie exhaustive ni trop de détails techniques. Pour une information plus détaillée je référe
le lecteur aux articles collectés dans la deuxiéme partie. Enfin cette partie synthése se termine
par une liste de mes publications numérotées de [1] & [35], suivie de la bibliographie générale du
document commengcant donc & la référence [36].

1. Dans la version courte du document ce recueil d’articles est simplement constitué des liens de téléchargement
de ces articles. La version longue inclut les articles eux-mémes
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Chapitre 1

Simulation numérique et problémes

inverses en physique des plasmas de
Tokamak

Ce chapitre synthétise mon travail depuis mon arrivée en septembre 2007 au Laboratoire J.A.
Dieudonné comme ingénieur de recherche CNRS. Cette activité est centrée sur le calcul scientifique
pour la fusion par confinement magnétique. Mes collaborateurs nigois proches sont J. Blum, C.
Boulbe et H. Heumann. A travers le LRC (Laboratoire de Recherche Conventionné entre le CEA,
I’Université de Nice Sophia Antipolis et le CNRS) dirigé par J. Blum et la thématique modélisation
et controle des plasmas de fusion dans le cadre du projet ITER (International Thermonuclear
Experimental Reactor) nous sommes membres de la Fédération de Recherche sur la Fusion par
Confinement Magnétique - ITER (FR-FCM) et participons & des projets européens du programme
EUROFUSION et en particulier dans le Work Package Code Development (WPCD). Nous sommes
aussi membres de I’équipe INRTA-LJAD CASTOR créée en 2012 et également dirigée par J. Blum.

Le chapitre est organisé de la maniére suivante. Dans la section [I.1] on rappelle succintement
la problématique de la modélisation de 1’équilibre quasi-statique du plasma dans un Tokamak.
La section traite du probléme inverse de la reconstruction de 1’équilibre & partir de mesures
expérimentales. Enfin la section aborde le probléme du couplage entre équilibre et diffusion
résistive dans le plasma.

1.1 Modélisation de I’équilibre quasi-statique du plasma

Au cours d’une expérience de fusion dans un tokamak un champ magnétique est utilisé pour
confiner le plasma dans une chambre & vide toroidale. Ce champ magnétique est généré par des
bobines externes entourant la chambre & vide et par un courant circulant dans le plasma lui
méme. Les équations utilisées pour la modélisation de 1’évolution de 1’équilibre quasi-statique du
plasma dans un tokamak sont celles de la magnétohydrodynamique (MHD). Cette modélisation
est rappelée ci-dessous et les références pour cette section sont nombreuses. On pourra noter en
particuler parmis les articles de références [80, |57, [54] et parmis les ouvrages plus récents [43] |85,
63].

On note j la densité de courant, B le champ magnétique et p la pression. L’équation du mou-
vement dans le plasma s’écrit

0
p(£+uVu)+Vp:j x B (1.1)

ou u est la vitesse du fluide et p la densité de masse. Pour un plasma de fusion magnétique

7



8 Chapitre 1. Simulation numérique et problémes inverses pour les plasmas de Tokamak

. T N 2 2. .
dans un tokamak le nombre de Lundquist S = —R, ou 7gr est I’échelle de temps caractéristique
T,

de la diffusion résistive du courant et de la chaleur dans le plasma et 74 est ’échelle de temps
d’Alfven caractérisant les instabilités de déplacement du plasma, est de l'ordre de 10° a 10'2.
Aprés adimentionalisation de le terme d’inertie apparait comme un terme d’ordre S~2 et les
autres comme des termes d’ordre S°. A ’échelle de temps de la diffusion ce terme d’inertie est

donc négligeable et ’équation du mouvement devient la relation d’équilibre
Vp=jxB (1.2)

A chaque instant les forces de Laplace et de pression se compensent et le plasma est & I’équilibre.
On ajoute les équations de Maxwell (théoréme d’Ampére et conservation du champ magnétique)
valables dans tout ’espace

B
J=Vx (). etV B=0 (1.3)

ol u représente la perméabilité magnétique.
Sous I'hypothése d’axisymétrie, dans un systéme de coordonnées cylindriques (e,,e4,€;), on

introduit le flux poloidal
1 T
Y(r,z) = —/ Bds = / B,rdr
27T D 0

ou D est le disque dont la circonférence est donnée par le cercle centré sur I'axe Oz et passant
par le point (r,z). On introduit également la fonction diamagnétique définie par f = rBy. Les
équations ([1.3) permettent de décomposer le champ magnétique et la densité de courant en une
composante poloidale dans le plan (r, z) et une composante toroidale

B=B,+B,

: i=d+io

B, = [ [Ve xeg] ot i =2 1V(L) x ey (1.4)
o

B¢ = {e(z, j¢ = —A/*ﬂ/}e¢

o 0,10 0,10
o= 87(787.) + a*(*a*')-
r - ur Or zur 0z

La perméabilité magnétique est partout celle, constante, du vide po et 'opérateur A} = est
linéaire, excepté dans les structures ferromagnétiques présentes dans certains tokamaks (comme le
JET, Joint European Torus & Culham en Angleterre, ou ToreSupra et sa future extension WEST
au CEA Cadarache) ou elle est fonction du champ magnétique, u = p(B3), et opérateur A
devient non-linéaire.

Dans le plasma ’équation d’équilibre montre que les lignes de champ magnétique et de
courant sont portées par les surfaces isobares. On les appelle surfaces magnétiques. Elles forment
une famille de tores emboités qui dégénére au centre du plasma en une courbe que ’on appelle axe
magnétique. D’autre part la décomposition permet de voir que ces surfaces sont également
des iso-¢ et des iso-f. On peut donc considérer p et f comme des fonctions de . Enfin (1.2)
conduit & I’équation de Grad-Shafranov

. . Op 1 af?
At o S a0

Les équations (|1.2) et ([1.3]) se réduisent ainsi & une équation posée en 2 dimension d’espace
dans le plan poloidal (r, z) € Qs = (0,00) X (—00,00) pour le flux poloidal % :

— A% = (1.6)

(%) (1.5)
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FI1GURE 1.1 — Gauche : représentation schématique du plan poloidal d’un tokamak. Q, est le
domaine du plasma, €y, est le domaine du limiteur accessible au plasma, )., représentent les
bobines de champ poloidal, €2, les structures passives et ()¢ les structures ferromagnétiques. Droite :
exemple de plasma dont la frontiére est définie par le contact avec le limiteur ou par la présence

d’un point X.

La composante toroidale de la densité de courant j4 est nulle partout en dehors du domaine du
plasma et des bobines. Les différents sous-domaines du plan poloidal d’un tokamak (voir la figure

u gauche) sont rappelés ci-dessous :
e (1, est le domaine accessible au plasma. Sa frontiére est le limiteur 0€)r..

e ), est le domaine du plasma. C’est une inconnue, Q, = Q,(1), le probléme est a frontiére
libre. Ce domaine est défini par sa frontiére qui est le plus grand iso-contour de 1 fermé et
entiérement contenu dans le limiteur Qp,. Le plasma peut étre soit limité si cet iso-contour
est tangent au limiteur €y, soit défini par la présence d’un point selle appelé point-X (voir
la figure droite)
Dans le domaine plasma (2, ¥ satisfait I’équation de Grad-Shafranov .
Q¢ représente les structures ferromagnétiques. Elles ne portent pas de courant, j, = 0 mais
la perméabilité magnétique p n’y est pas constante
Les domaines (), représentent les bobines de champ poloidal. Elles sont parcourues par des
courants I;. Il y a deux possibilités de modélisation :
— On peut considérer que ces courants sont des données du probléme (ils sont par exemple
mesurés) auquel cas
Jo = 1;/S;
ou S; est la section de la bobine. Le probléme est alors statique au sens ot aucune dérivée
en temps n’apparait
— On peut considérer que la donnée est la tension V; appliquée aux bornes des circuits,
supposés ici indépendants, de chaque bobine de champ poloidal auquel cas en utilisant
en plus les lois de Faraday et d’Ohm on obtient
2
o= s~ Rt
i i0; Jac,

ol n; est le nombre de tours de conducteur dans la bobine, R; la résistance et w est la
dérivée temporelle de ¢ au point (r, z). Le probléme est alors dynamique.
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o (., représente les structures passives. De méme ici dans le cas d'une modélisation statique
on a

Jp =0
alors que dans le cas dynamique on prend en compte les courants induits et

. g -
J¢——;w

ol o est la conductivité.
Enfin pour terminer de poser le probléme, les conditions limites naturelles sont

¥(0,2) =0 et im  Y(r,z) =0
Il (r:2)[| =00
A . Op or?, .
Avec cette modélisation les fonctions %(W et %(1/)) intervenant dans le second membre de

I’équation de Grad-Shafranov ne sont ni connues, ni des inconnues du modéle d’équilibre quasi-
statique. Le modéle est incomplet. Au cours d’une décharge dans un Tokamak 1’évolution du plasma
se fait par une succession d’équilibres reliés entre eux par la dynamique électromagnétique externe
des bobines qui est modélisée ici dans le cas du probléme dynamique, mais également par celle
interne non modélisée ici. Cette dynamique électromagnétique interne est décrite par les équations
dites de transport dans le plasma (diffusion résistive du flux magnétique, transport des particules
et de la chaleur) qui permettent de calculer I’évolution de la densité de courant. La simulation
d’une décharge compléte nécessite de coupler de maniére consistante le modéle de I’évolution de
I’équilibre quasi-statique du plasma avec le modéle de transport. Réussir une telle simulation est
un des challenges actuels que nous abordons succintement & la section [I.3]

Néanmoins la modélisation de I’équilibre est déja une fin en soi. Elle permet de traiter la
question de la reconstruction de la frontiére plasma et de la densité de courant au cours de la
décharge a partir de mesures expérimentales. La section [1.2] synthétise les travaux sur ce sujet.

La modélisation de 1’équilibre est également essentielle pour les études de scénario, de di-
mensionnement ou pour tester les algorithmes de controle du plasma. Dans la section [I.3] sont
rapidement présentées les méthodes de simulation numérique directe d’équilibres et de résolution
des problémes inverses associés.

1.2 Reconstruction de I’équilibre a partir de mesures expéri-
mentales

J’ai commencé & travailler sur cette thématique & mon arrivée & Nice en septembre 2007 avec
Jacques Blum et Cédric Boulbe. Cédric était tout d’abord ATER (2007-2008) puis post-doc (2008-
2010) et est maintenant Maitre de conférence a I’Université de Nice Sophia Antipolis depuis 2010.

Nous avons en particulier développé le code de calcul EQUINOX qui permet de reconstruire
I’équilibre en temps réel au cours d’une décharge. Grace & notre trés bonne collaboration avec
des collégues du CEA le code a pu étre testé et validé avec des mesures des Tokamaks ToreSupra
(Cadarache) et JET (Culham, UK). Avec Cédric nous avons effectué plusieurs s¢jours de travail
d’une & deux semaines au JET. Le travail sur ce théme est synthétisé dans la section [I.2.1]

J’ai également travaillé sur le probléme de la reconstruction de la frontiére plasma seule i.e sans
identification de la densité de courant. Ceci est synthétisé dans la section Avec Amel Ben
Abda (Prof. Ecole d’ingénieur de Tunis) nous avons étudié une méthode basée sur la minimisation
d’un fonctionnelle de type “Kohn-Vogelius”. Plus tard je me suis intéressé & I'utilisation des harmo-
niques toroidales pour l'interpolation 2D des mesures magnétiques. Ce probléme d’interpolation
est fortement lié & celui de la reconstruction de la frontiére plasma. La motivation pour ce travail
est double. D’une part le nouveau tokamak WEST au CEA Cadarache nécessite le développement
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d’une méthode de reconstruction de la frontiére pour le controle de la position du plasma. Et
d’autre part Iinterpolation des mesures magnétiques permet de fournir des conditions limites au
code EQUINOX de maniére générique et donc de l'intégrer a la plateforme européenne ITMEI pour
pouvoir étre utilisé sur n’importe quel Tokamak. Dans le cadre de ’approche élargie ITER et de
la collaboration avec la Chine, le code EQUINOX a récemment été choisi pour étre utilisé sur le
Tokamak JT60.

1.2.1 Identification de la densité de courant

> Articles disponibles dans la partie recueil d’articles : Article A [4], Article B [28§]

> Autres publications associées : |10} [24] |27} [29] [25] |23]

> Collaborateurs : Jacques Blum (Université de Nice), Cédric Boulbe (Université de Nice),
Sylvain Brémond (CEA), Didier Mazon (CEA), Philippe Moreau (CEA), Eric Nardon
(CEA), Francois Saint-Laurent (CEA)

L’objectif de la reconstruction d’équilibre est double. Il s’agit d’une part de trouver la frontiére

plasma et d’autre part d’identifier la densité de courant, & savoir le second membre de ’équation
2

19)
de Grad-Shafranov, les fonctions £ et % ne pouvant pas étre mesurées directement. Dans les

tokamaks actuels seule la frontiére plasma (ou méme uniquement quelques points de cette frontiére)
est utilisée pour le controle du plasma en temps réel au cours d’une décharge. Le profil de courant
pourrait & terme étre controlé aprés avoir été identifié avec une méthode du type de celle présentée
ci-dessous.

Mesures expérimentales

e Les mesures expérimentales essentielles permettant la reconstruction d’équilibre sont les
mesures magnétiques externes. Des bobines mesurent le champ magnétique poloidal et des
boucles de flux mesurent le flux poloidal en différents points autour de la chambre & vide.
Considérons ici que I'on est capable d’obtenir aprés un prétraitement des données magné-
tiques des données de Cauchy a savoir, la valeur du flux ¢ = g et de sa dérivée normale

10y

——— = h en tout point d’un contour I'y définissant le domaine de calcul Q (02 =T'y et

ST) egt la chambre a vide par exemple). Ce prétraitement peut étre une simple interpolation
linéaire des mesures si cela est possible, ou bien le résultat d’'un code de reconstruction de
frontiére qui calcule ¥ & l'extérieur du plasma satisfaisant A*y) = 0 sous la contrainte des
données magnétiques. Nous revenons sur ce point a la section[I.2:2] Les mesures magnétiques
permettent également d’obtenir une mesure du courant plasma I, = fﬂp Jedx

e D’autres mesures, internes, apportent une information importante pour l'identification du
profil de courant. Il s’agit en premier lieu des mesures d’interférométrie et de polarimétrie.
Les premiéres fournissent les valeurs des intégrales le long de cordes C; traversant le plasma
de la densité électronique n. (1) considérée comme constante sur les isoflux :

= /C ne() di

i

1. Le projet ITM, Integrated Tokamak Modeling [62|, fait maintenant partie du programme EUROFUSION. Il
a pour ambition de regrouper les codes de calculs européens liés a la fusion dans un environnement informatique
unifié afin qu’ils puissent étre utilisés par différents laboratoires, comparés entre-eux et couplés dans le but de créer
un véritable simulateur pour ITER
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Les secondes fournissent les intégrales

o ne(w)aﬂ
o = /07 dl

r on

0
sur les mémes cordes. % est la dérivée normale de 1 le long de C;. Des mesures de MSE

(motional Stark effect) pguvent également étre utilisées. Elles apportent une information sur
la valeur du champ magnétique en certains points du plasma. La possibilité d’utiliser ces
mesures est implémentée dans le code de calcul EQUINOX mais elles ne sont pas utilisées
de maniére routiniére.

Probléme direct

Comme déja dit, le probléme de I’équilibre du plasma est un probléme a frontiére libre. Le
domaine du plasma est défini par

Qp(¥) = {(r,2) € A ,P(r,2) > Yo}

ou la valeur du flux & la frontiére du plasma est

wbzmax( max $(r,z), max w<rx,zX>)

(r,2)€09Q, (rx,zx )€

et (rx, zx) est un éventuel point-X de ¥(r, z). On note également 1, la valeur de ¢ a ’axe magné-

tique i.e le maximum de ¢ dans Q. On introduit alors le flux normalisé ¢y = ﬁ € [0,1]
b~ Va
pour tout point de €2, et les fonctions sans dimension définies sur [0, 1]

ro Op 1 Of?

AWYn) = ;%(w) et B(yn) = m%(w

oll A est un facteur de normalisation et ry une constante.
En imposant des conditions de Dirichlet au bord le probléme direct s’écrit

_AMp = A[%A(wN)+%B(¢N)]XQP(¢) dans €2 (1.7)

P = g surl'y
L’aspect frontiére libre du probléme apparait comme une non-linéarité particuliére & travers la
fonction caractéristique xq,. Le paramétre de normalisation A\ permet de s’assurer que la valeur
donnée du courant plasma I, est bien vérifiée dans le modéle.

Probléme inverse

Le probléme inverse consiste en l'identification des fonctions A and B & partir des mesures
disponibles. Il est formulé comme un probléme aux moindres carrés dans lequel on cherche a
minimiser une fonction coit J définie comme

J(A,B,ne):Jo—f—Jl-i-Jg—‘rJE

Jo mesure I'écart aux données de la composante tangentielle de By,
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ot N est le nombre de points My, de la frontiére 02 ou les mesures sont données.

N,
1 olar ne(wN) 31/)
J == wP? 2/7 dl — ag)?
! 2;( e ) Ch r on k)
et
1
Ja= 3 @[ el - )

N, est le nombre de cordes pour lesquelles les mesures d’interférométrie et polarimétrie sont
données. Les poids w donnent 'importance relative des différentes mesures. Enfin le probléme
inverse d’identification étant mal-posé un terme de régularisation de Tikhonov J. est introduit

€

J=3 / A" ) 2 + / [B" (@) da + 5= / [ () dc

ol ¢ et ,, sont les parameétres de régularisation.

Si les mesures magnétiques sont utilisées seules alors seulement A et B apparaissent comme
variables de controle et les termes J; et .Jo ne sont pas utiles. Si les mesures de polarimétrie et
d’interférométrie sont utilisées alors la densité n.(¢y) doit également étre identifiee méme si elle
n’apparait pas dans le modéle direct .

Meéthodes numériques

Un des objectifs de ce travail étant la reconstruction d’équilibres en temps réel au cours d’une
décharge les méthodes numériques que nous proposons sont simples mais efficaces. Le probléme
direct est discrétisé par éléments finis P1 et les non-linéarités traitées par une méthode de type
point fixe. Les fonctions A, B et éventuellement n. & identifier sont décomposées dans une base
(®;)i=1,...,m de fonctions définies sur [0,1] (fonctions linéaires par morceaux, splines cubiques,
Bsplines, ...)

Az) = Zaicpi(x) et B(x) = Zbiqn(x).

Notons u = (@i, ..., @m, b1, ..., byn) € R?™ le vecteur des composantes des fonctions A and B dans
la base (®;). Apreés discrétisation le probléme direct ([1.7) peut s’écrire

Ky =YW )u+g (1.8)

ou v représente ici les valeurs du flux aux noeuds du maillage et 1* représente les valeurs connues
de litération précédente, K est la matrice de masse, Y (*)u est le second membre linéaire en
u, non-linéaire en 1, et g représente les conditions limites de Dirichlet. La fonction cott discréte
s’écrit )
J(w) = SIC@) —dl}, + Su"Au
On peut faire apparaitre explicitement la dépendance en u en approchant v par ¢* dans la matrice
C' et en injectant pour remplacer le ¥ restant. On obtient alors une fonctionnelle quadratique
en u
1 2 &7
J(u) = §||Eu— fllo + FU Au
avec £ = C(*)K~1Y (¢*) and f = —C(¢*)K ~'g +d, que I'on minimise directement en résolvant
I’équation normale.
Ainsi les problémes direct et inverse sont résolus simultanément par une méthode de type point
fixe dans laquelle le vecteur u est mis & jour a chaque itération.
Cette méthode est particuliérement bien adaptée aux applications temps réel. Toutes les 100
ms environ on reconstruit I’équilibre en prenant comme état initial ’équilibre reconstruit au pas
de temps précédant. L’algorithme converge en quelques itérations.
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Quelques résultats numériques

La figure montre deux exemples de reconstuction d’équilibre avec le code EQUINOX. Dans
Varticle [4] différentes expériences numériques sont menées avec des données simulées afin de tester
et valider ’algorithme. On y étudie notamment 'influence du paramétre de régularisation sur la
reconstruction. Il apparait que si la qualité de I'identification des fonctions A et B dépend beaucoup
de la valeur de ce paramétre, en revanche la qualité de la reconstruction du profil de courant
<Jo/T >
<1/r>
large gamme de valeurs du paramétre de régularisation €, méme si A et B ne sont pas parfaitement
reconstruits, le profil de courant moyenné lui est trés bon. Ceci explique que la méthode L-curve
[60] pour le choix de la valeur du paramétre de régularisation fonctionne mal.

Le code a été testé, réglé et validé sur plus d’une centaine de décharges du JET et de ToreSupra.
Pour ces deux tokamaks les données de Cauchy au bord du domaine de calcul sont fournies par les
codes de reconstruction du flux dans le vide XLOC pour JET [73} 78] et APOLO pour ToreSupra
|77]. L article |28] relate en partie ce travail de validation. Un résultat intéressant est le bon accord
trouvé entre les sorties du code et des données indépendantes issues d’études MHD donnant la
position des surface ¢ = 3/2 (voir fig. [L.3).

moyenné et du facteur de sécurité g en est beaucoup moins dépendante. Pour une

2. Moyenne sur les surfaces magnétiques : la moyenne < A > d’une quantité quelconque A sur la surface
magnétique Sy, correspondant & une valeur ¢ du flux poloidal dans le plasma [55, |56} 43| est définie comme < A >=

i/
v Jv
<A>=

AdV ou V est le volume contenu dans Sy. Cette moyenne a la propriété suivante utilisée dans les calculs

Adl dl 1
—— oit Cy, est le contour isoflux fermé et B, = —||V||
r

Cy By Cy By
3. Le facteur de sécurité ¢ tire son nom du role qu’il joue dans les études stabilité MHD [85]|. On peut le voir

comme la variation d’angle toroidal obtenue lorsqu’une ligne de champ effectue un tour poloidal complet, ¢ = g—f
Le facteur de sécurité est constant sur les surfaces de flux et est calculé de la maniére suivante ¢(¢) = QL Je B g1
I w TBp

ot By = i est la composante toroidale du champ magnétique
T
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#36182 at 20.-407686s

0.035
.0z8  0.012,0-0670.030

#77601 at 44.500000s

FIGURE 1.2 — Equilibres reconstruits. ToreSupra en haut et JET en bas. Le maillage du domaine
apparait 1a ou le plasma en couleur n’est pas présent. Dans le plasma les isoflux sont représentées
depuis ’axe magnétique jusqu’a la frontiére. Les cordes des mesures d’interférométrie et polari-
métrie sont représentées en jaune. Les graphes sur la gauche permettent de visualiser différents
profils comme les fonctions p’ et ff’ identifiées, la densité de courant toroidal fonction de r sur
I’axe magnétique z = z,, la pression, le facteur de sécurité ¢ et la densité électronique identifiée.
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JET Pulse 74828, 9=1.5

32r

rim)

2‘2 1 1 1 1 1 1 ]
44 4 43 59 52 54 5& 53
Time (s}
FIiGURE 1.3 — Comparaison de la position des surfaces magnétiques ¢ = 3/2 au cours d’une

décharge JET. En rouge et bleu sorties d’EQUINOX coté fort et faible champ. En vert position
trouvée par analyse MHD indépendente basée sur des mesures ECE (electron cyclotron emission).

1.2.2 Reconstruction de la frontiére du plasma seule

> Articles disponibles dans la partie recueil d’articles : Article C |7], Article D [6]

> Autres publications associées : [26] [35]

> Collaborateurs : Jacques Blum (Université de Nice), Cédric Boulbe (Université de Nice),
Sylvain Brémond (CEA), Didier Mazon (CEA), Philippe Moreau (CEA), Eric Nardon
(CEA), Francois Saint-Laurent (CEA), Amel Ben Abda (Ecole d’ingénieur de Tunis)

Dans cette section on traite uniquement de la reconstruction du flux poloidal dans le vide
entourant le plasma et de la frontiére du plasma. C’est-a-dire que I'on ne cherche pas & résoudre
I’équation de Grad-Shafranov dans le plasma comme précédemment.

Minimisation d’une fonctionnelle de Kohn-Vogelius

Comme dans la section précédente on considére ici que ’on dispose d’un jeu complet de données

10
de Cauchy g = v et h = ;8—w sur I'yy. Le probléme de l’identification de la frontiére plasma se

n
présente alors comme un probléme de Cauchy que I'on résout par minimisation d’une fonctionnelle
de type “‘Kohn-Vogelius”.

Notons x le sous domaine de la chambre & vide Qy ou le plasma n’est pas présent (voir Fig.
[L.4). Le flux poloidal satisfait



Chapitre 1. Simulation numérique et problémes inverses pour les plasmas de Tokamak 17

FIGURE 1.4 — Le domaine €y de fontiére I'y est la réunion du domaine Qx et du domaine plasma
Q,, dont la frontiére I',, est ici définie par un point-X. I'; est le contour fictif.

Ly =0 dans Qx

Y=g surl'y

1
fa—w =h surly
r on

=1y surl'p

ot L = ppA*. Ici le domaine Qx = Qx(¢) est inconnu car la frontiére plasma I', I’est. De plus ce
probléme est mal posé en raison des deux conditions limites données sur I'y .

Afin de calculer le flux dans le vide et de trouver la frontiére plasma, on commence par définir un
probléme approché, posé sur un domaine annulaire fixe 2 de fontiére extérieure I'yy et de frontiére
intérieure un contour fictif I'; fixe contenu dans le plasma (voir Fig. [1.4).

La seconde étape est alors de découper le probléme en deux sous-problémes bien posés. Dans
le premier on ne considére que la donnée de Dirichlet f sur I'yy et une donnée de Dirichlet v sur I';y

Liyp =0 dans Q
Yp=g surly (1.10)

Yp =wv sur 'y

et dans le deuxiéme on ne retient que la condition de Neumann

LYy =0 dans Q2

19N =h surl'y (L.11)
r on

Yy =v surly

En notant ¢p (v, f) et ¥ (v, g) les solutions des deux problémes ((1.10) et (1.11), on cherche &
trouver la condition limite u. € U = H'/?(I';) qui minimise la fonctionnelle

L) = 5 [ HIVen(u.g) = Ven(umlPde+ 5 [ SIVepalPds  (112)
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optimal solution

L-curve

regularization Ry

residu J t:_\\\

FI1GURE 1.5 — Reconstruction du flux poloidal dans le vide pour la géométrie ITER. Gauche :
L-curve donnant € = 5 x 10~%. Droite : Reconstruction de 1 dans le domaine €2

Le premier terme mesure 1’écart entre les solutions des deux problémes de Dirichlet et Neumann
et le second est un terme de régularisation. On montre dans [6] que ce probléme de minimisation
admet une unique solution. La condition d’optimalité du premier ordre la caractérisant est la simple
égalité variationnelle suivante

(JL(ue),v) = esp(uec,v) + sp(ue,v) — sn(ue,v) —l(v) =0 Yvel (1.13)

ou sp et sy sont des formes bilinéaires et [ une forme linéaire. De plus la solution est stable par
rapport aux données g et h.

Cette méthode donne de bons résultats illustrés par les expériences numériques de 'article
|7] et par la Fig. pour la géométrie ITER avec données de Cauchy simulées. On utilise une
discrétisation en éléments finis P1. La méthode est trés rapide, la condition d’optimalité revenant
& résoudre un systéme linéaire Su = 1 de taille Nr, le nombre de noeuds du contour I';. La matrice
S ne dépend que de la géométrie fixe du probléme et n’a pas a étre recalculée pour chaque nouveau
jeu de données. Le paramétre de régularisation peut étre choisi par la méthode de la L-curve comme
montré sur la Fig.

Cette premiére méthode de reconstruction du flux poloidal dans le vide et donc d’identification
de la frontiére plasma est élégante et efficace. Néanmoins, comme c’est le cas pour la méthode
d’identification de la densité de courant avec le code EQUINOX présenté a la section précédente,
elle présente un défaut lié & 'hypothése selon laquelle on dispose de données de Cauchy sur I'y .
L’obtention de données de Cauchy sur un contour a partir des véritables mesures discrétes n’est
généralement pas aisé. Comme déja dit si les capteurs sont placés sur un contour et suffisamment
proches les uns des autres, une simple interpolation peut étre envisagée. Cette méthode n’est néan-
moins pas robuste en cas de capteur défaillant. De plus dans les Tokamaks actuels comme le JET
les capteurs sont répartis dans une région annulaire autour de la chambre & vide et pas forcément
le long d’un unique contour. Pour ces raisons j’ai travaillé sur une méthode d’interpolation 2D des
données magnétiques présentée dans le paragraphe suivant.

IspValue
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Méthode des harmoniques toroidales

Les harmoniques toroidales sont des solutions explicites de I’équation A*y = 0 [46]. Elles sont
obtenues en utilisant une méthode de quasi-séparation de variable pour la recherche de solutions
de cette équation sur un domaine annulaire D dans un systéme de coordonnées toroidales (voir
par exemple [50] pour le détails des calculs). Ces coordonnées (¢,n) € R} x [0, 27], aussi appelées
coordonnées bipolaires lorsque comme ici on omet ’angle toroidal sont reliées aux coordonnées
cylindriques (r, z) par

To sinh( T sin n

et z — 29 =

~ cosh( —cosp cosh ( — cosn

ol Fy = (rg,20) avec ro > 0 est le pole du systéme de coordonnées. En supposant que ce pole se
trouve dans le domaine entouré par la couronne D la solution du probléme

A*¢p = 0 dans D
{ Y = g sur 0D (1.14)
peut étre décomposé de maniére unique sous la forme
Y= et + T/Jint
T 1o sinh ¢ o
vcosh( — cosn
[ @ 1ya(cosh¢) cos(n) + Y 0Q;,  (cosh () sin(nr)]
n=0 n=1 (115)
inh ¢
bimp = —— QS
v/cosh ( — cosn
[Y aiPa_yja(cosh ) cos(nm) + Y b, Py_y p(cosh ¢) sin(nn)]
n=0 n=1

ol P;_l /2 et Q}l_l /2 sont les fonctions de Legendre associées de premiére et deuxiéme espéce, de
degré 1 et d’ordre demi entier [36]. Elles sont aussi appelées harmoniques toroidales lorsqu’elles
sont évaluées au point cosh (. Les fonctions P;_l /2 présentent une singularité lorsque ( — oo i.e
au point Fy et 1, represente le flux généré par des courants qui circuleraient dans le domaine
entouré par la couronne D. Ce dernier doit donc contenir le pole Fy car ¢ est réguliére dans D.
Au contraire les fonctions erlq /2 sont singuliéres en ( — 0 i.e sur 'axe 7 = 0 et 1., represente le
flux généré par des courants qui circuleraient & ’extérieur de D.

Dans ’article |7] on utilise un développement tronqué en harmoniques toroidales pour représen-
ter le flux dans un domaine annulaire fictif D incluant tous les capteurs magnétiques. Le probléme
d’interpolation 2D des données magnétiques est formulé comme le probléme de minimisation d’une
fonction cotit J(u) dépendant des coefficients du développement

u = (aga"'aiev i""bieva’év"'a;p i’bih)

et mesurant l’écart au sens des moindres carrés entre les mesures et les valeurs données par le
développement. Cette fonction cotit est quadratique et est minimisée directement en résolvant
I’équation normale. On montre que I'on peut utiliser en plus, méme en présence de structures
ferromagnétiques, une modélisation a ’aide de fonctions de Green du flux généré par les courants
circulant dans les bobines de champ poloidal. Ceci peut étre important si ces bobines sont trés
proches des points de mesures, comme les bobines de divertor permettant de créer le point-X. Cela
consiste simplement en une soustraction de la contribution de ces bobines aux mesures et permet
de réduire le nombre d’harmoniques extérieures utilisées dans le développement.

On obtient au final une représentation explicite du flux dans le domaine D que ’on peut évaluer
(ainsi que sa dérivée) sur n’importe quelle contour I de D afin d’obtenir des conditions de Cauchy
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sur ce contour et fournir ainsi des conditions limites au code de reconstruction EQUINOX déja
présenté a la section [[.2.1]

On obtient en fait plus que cela. En effet si le contour interne du domaine fictif D ne peut pas
étre dans le plasma ou A*ip = 0 n’est plus vérifiée, il peut par contre étre donné par la frontiére
plasma. Le développement en harmoniques toroidales est valable jusqu’a la frontiére plasma et peut
donc permettre de la reconstruire. Ainsi le probléme de l'interpolation 2D des mesures magnétiques
est intimement lié & celui de la reconstruction de la frontiére plasma. Le caractére mal posé de ce
probléme de reconstruction se manisfeste par la singularité au pole Fy des harmoniques P’r}—l /o €t
donc de la solution intérieure 1;,;. Cette solution intérieure ne dépend que du choix du pole et du
nombre d’harmoniques utilisées.

Différentes expériences numeériques sont menées dans I’article [7] pour la configuration du to-
kamak WEST (voir Fig. . Le code d’équilibre CEDRES++, présenté a la section suivante
est utilisé pour créer des mesures expérimentales synthétiques pour différentes configurations de
frontiére plasma. Les résultats numériques montrent qu’un bon choix pour le poéle est celui de I'axe
magnétique du plasma qui peut étre facilement approché par des moments de la densité de courant
dans le plasma. Ils montrent également qu’un faible nombre d’harmoniques permet d’obtenir une
excellente approximation du flux tout en permettant de reconstruire une frontiére plasma réguliére.
Prendre des harmoniques d’ordre 4 (i.e 9 fonctions de base pour 1;,; et 9 pour ¥,;) est optimal
au sens ou en prendre plus ne permet pas de diminuer significativement ’écart aux données et
prendre plus d’harmoniques intérieures peut par contre dégrader la qualité de la reconstruction de
la frontiére car la “zone d’explosion” de la solution intérieure peut s’étendre jusqu’a la frontiére du
plasma (Fig. gauche). Ce phénomeéne disparait lorsque ’équilibre est reconstruit en utilisant le
code EQUINOX et l'interpolation des mesures par la méthode des harmoniques toroidales (Fig.
droite). Ceci n’est pas surprenant étant donné que le caractére mal-posé du probléme inverse traité
par EQUINOX porte sur l'identification des termes sources de la densité de courant, le caractére
frontiére libre du probléme étant lui réduit & une non-linéarité particuliére du modéle.

Les résultats numériques démontrent également une trés bonne stabilité de la méthode notam-
ment pour 'identification du point-X. Elle est peu sensible & une valeur erronnée d’un capteur. Elle
est également générique au sens ou elle peut étre utilisée facilement pour n’importe quel Tokamak
contrairement aux codes XLOC spécifique au JET et APOLO spécifique a ToreSupra. Enfin elle
est peu colteuse en temps de calcul et il est actuellement envisagé de 'utiliser dans le systéme
temps réel de controle pour le tokamak WEST.
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FIGURE 1.6 — Section poloidale du tokamak WEST. Deux frontiéres plasma différentes calculées
a partir du code CEDRES-++ sont représentées. Les bobines de mesures du champ poloidal sont
représentées par des fleches et numérotées de 0 & 103. Les boucles de flux sont représentées par
des cercles et numérotées de 0 & 9. Les quatres bobines basses du divertor et les quatres bobines
hautes sont représentées. Le contour du limiteur est également représenté ainsi que son enveloppe
convexe (en tirets) qui est utilisé comme contour I'y i.e la frontiére du domaine de calcul pour le
code EQUINOX.
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FI1GURE 1.7 — Frontiéres plasma reconstruites. Gauche : & partir des harmoniques toroidales seules.
Les frontiéres calculées avec (n® = 4,n' = 4) ou (n® = 9,n* = 4) et (n® = 30,n’ = 4) sans prendre
en compte les bobines de champ poloidal (no c.) sont presque superposées avec la frontiére de
référence calculée avec le code CEDRES++. La frontiére calculée avec (n® = 4,n' = 9) présente
des irrégularités. Droite : mémes frontiéres calculées avec EQUINOX et interpolation des données
sur le contour I'yy de la Fig.



22 Chapitre 1. Simulation numérique et problémes inverses pour les plasmas de Tokamak

1.3 Calculs d’équilibres et couplage avec la diffusion résistive
dans le plasma

> Article disponibles dans la partie recueil d’articles : Article E [9], Article F [5]

> Autre publication associée : [§|

> Collaborateurs : Jacques Blum (Université de Nice), Cédric Boulbe (Université de Nice),
Holger Heumann (Université de Nice - INRIA), Gael Selig (Université de Nice), Jean-Marc
Ané (CEA), Jean-Francois Artaud (CEA), Vincent Basiuk (CEA), Sylvain Brémond (CEA),
Patrick Hertout (CEA), Philippe Huynh (CEA), Philippe Moreau (CEA), Eric Nardon
(CEA)

Un des challenges actuels dans la communauté de la fusion et notamment du programme eu-
ropéen EUROFUSION (WPCD ITM) est de réussir & simuler une décharge compléte dans un
Tokamak & 1’échelle de temps de la diffusion résistive. L’objectif est la mise au point de scénarios
de décharge qui pourraient ainsi étre testés numériquement pour la machine ITER.

La premiére brique fondamentale pour ce type de simulation est un code permettant le calcul
de I’évolution de I’équilibre quasi-statique du plasma. Pour cette raison je commence par présenter
le code CEDRES++ [9] ci-dessous avant d’aborder la question de son couplage avec 1’équation de
diffusion résistive dans le plasma.

Calculs directs et inverses d’équilibres avec le code CEDRES--+

On s’intéresse ici en premier lieu & la simulation numérique directe de I’équilibre quasi-statique
du plasma i.e avec les équations de la section rappelées ci-dessous (pour le cas du modéle
statique avec un courant plasma I, non fixé).

o 2

On considére que les fonctions £ et 290 sont données sous la forme de deux fonctions définies
pour ¥y € [0,1], Sp(¢n) et Sy (¢n). Les variables d’entrée du modeéle direct ou variables de
controle pour le probléme inverse que nous allons décrire ensuite sont les courants dans les bobines
de champs poloidal I = (I3, ...Ix). Le probléme direct est alors le suivant. Trouver ¢ dans Q. tel
que

1
Sy (Yn) + msff' (¢n) dans Q,(4);
—ALY = L dans €, ;
S; ! (1.16)
0 ailleurs ,
¥(0,2) =0; lim  ¢(r,z) =0;
Il (r,2) || —+o00

Le probléme inverse associé consiste a définir une frontiére plasma désirée I'yes; et & chercher
les courants dans les bobines qui permettent de I'obtenir. Ceci est formulé comme un probléme
de controle optimal dans lequel on cherche & minimiser la fonction coit définie ci-dessous. On

considére Ngesi + 1 points : (Fdesi, Zdesi) € Ldesi €6 (T1,21),« -+ (TNgewss ZNaow; ) € Ldesi €t la fonction
cotit
1 Nesi ) 1 N
J<I> = § i (w(ria Z’L) - w(rdesia Zdesi)) + 5 Zzzlwzlf

ou 1 est relié a I par . Le premier terme s’annule si I'geg; est une iso-1 et le second est un
terme de régularisation.

On peut définir trois autres variantes de ces problémes directe et inverse. Une premiére concerne
toujours le cas statique mais on cherche également & imposer le courant plasma I,. On suppose
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que S, et Sy ne sont connues qu’a un facteur scalaire A prés. On ajoute alors une inconnue, le
facteur A vérifiant

1
Ip = )\/Qp(w) <7"sz (n(r, 2)) + mef’ (N (7, z))) drdz. (1.17)

Les deux autres variantes correspondent & la version dynamique de la modélisation directe dans
laquelle les fonctions Sy (¢¥n,t) et Syy/ (1w, t) sont données pour tout ¢ et les variables de controle
sont les tensions dans les bobines. Pour le probléme inverse on cherche les tensions fonctions du
temps permettant d’obtenir une évolution de la frontiére plasma désirée [45]

Les difficultées pour traiter ces problémes sont dues d’une part au domaine infini Q, et d’autre
part aux non-linéarités qui apparaissent dans la description de la frontiére plasma Q,(1)), dans la
densité de courant plasma avec Sy (¥n) et Sy (¥n) et dans les structures ferromagnétiques avec
().
Le code de calcul CEDRES++ au développement duquel nous participons permet aujourd’hui
de traiter ces quatre problémes directes et inverses et l’article [9] se veut étre la référence sur
les méthodes numériques utilisées et en contient une description précise. La premiére version de
CEDRES-++ date de 1999 [58]. C’est un code écrit en C++ qui reprend les méthodes développées
dans les codes d’équilibre SCED [44] et PROTEUS [37, 138]. Cette version d’origine traite le cas
d’une modélisation statique de I’équilibre avec I, fixé en utilisant une discrétisation spatiale par
éléments finis P1, une méthode de Newton pour résoudre les non-linéarités et une méthode d’élé-
ments frontiéres pour ramener le domaine infini & un demi disque. Le probléme inverse est traité
par une méthode séquentielle quadratique.

En collaboration avec nos collégues du CEA & Cadarache nous avons récupéré et développé
ce code a partir de 2009 et aujourd’hui CEDRES++ est un code performant et mature. Il est
utilisé au niveau européen grace a la plateforme de 'ITTM [5] et c’est un outil de modélisation
numérique important utilise au CEA pour la préparation de WEST (fig. et [1.9) comme le
montrent différents exemples de simulation dans [9] ainsi que [72].
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FIGURE 1.8 — Exemple de calcul d’équilibre pour le tokamak WEST représentant les isoflux dans le
plan poloidal. Gauche : vue d’ensemble. Droite : zoom sur la chambre & vide. Le fer est représenté en
bleu clair, les bobines de champ poloidal en orange et les structures passives en gris clair (chambre
a ide et éléments de stabilisation verticale). La courbe noire est le limiteur. La courbe rouge est la
frontiére du plasma calculée. L’axe magnétique est également représenté en rouge.

FI1GURE 1.9 — Iso-¢ calculées par CEDRES++ en mode inverse statique. Les points noirs repré-
sentent la frontiére désirée et la courbe rouge la frontiére calculée.
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Couplage entre équilibre et diffusion résistive dans le plasma

Au paragraphe précédant j’ai introduit le code de calcul d’équilibre CEDRES++ qui constitue
le premier élément du probléme de couplage. Il s’agit donc pour cette premiére brique de résoudre
le systéme évolutif

1
Sy (Yn,t) + rsff/(wzv,t) dans (1)) ;
or
n; Vi (t) 2mn;
—ATyp = RS, RSQ/ Y drdz dans Q. ;
—*1/) dans €2y ; (1.18)
0 ailleurs,
¥(0,2,t) = 0; lim — ¢(r, z,t) = 0;
[[(r,2) | =00
1#(7“, 2, 0) = wO(r7 Z) )

Les fonctions

0 18 2
SR ot Sy, ) = 5 5

ne sont pas connues ici et contrairement aux calculs du paragraphe précédant on ne les impose pas
mais on cherche & les calculer.

Spr(¥n,t) = ((t))

Le terme de pression ne représente pas le noeud du probléme. La pression est calculée par les
codes de transport comme CRONOS [39] au CEA ou ETS [47] dans 'TTM. Ces codes résolvent les
équations d’évolution des densités et températures dans le plasma. A 1’échelle de temps & laquelle
on se place ces quantités sont constantes sur les surfaces de flux et les équations sont 1D. La
dimension d’espace est un label des surfaces de flux. Différents choix sont possibles et celui fait

dans ces codes est celui du label p = 4/ % défini & partir du flux toroidal ¢ = / Byds ou Dy,
T Do

est le domaine intérieur a l'iso-contour Cy,. La dérivation des équations 1D de transport fait appel

a la technique des moyennes sur les surfaces magnétiques [55, 56]. Dans la suite de cette section

nous utilisons les quantités géométriques moyennes [43] :

|Vl pl2
r?

1
02=V< > et C3 = V/<*>

\%
avec V! = —, V étant le volume du plasma. Ces quantités sont calculées & chaque pas de temps par

dp
le code d’équilibre résolvant ([1.18]). Les coefficients géométriques étant donnés le code de transport

fournit la pression p(p,t). Nous la considérons ici comme connue.
2

19
La difficulté provient du calcul de I’évolution du terme diamagnétique 5%(1&(75)) Celui-ci

doit étre obtenu & partir des équations qui n’ont pas encore été utilisées a savoir la loi de Faraday
-B=VxE

et la loi d’Ohm dans le plasma
E+uxB=nj

dans laquelle 7 est le tenseur de résistivité du plasma et ’on omet les termes sources de courants
non-inductifs. Lorsque le label indexant les surfaces de flux est choisi comme étant p, il est montré
dans [43] que la composante toroidale de la loi de Faraday combinée & la loi d’Ohm projetée sur B
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et moyennée sur les surfaces de flux donne une équation de diffusion 1D pour le flux poloidal vu
comme une fonction de p
o nlp 9 CoCs 0y

ot wC3dp  p Ip

) (1.19)

0 . . . . .
ol o désigne la dérivée temporelle & p fixé et la quantité scalaire nll que 'on considére donnée

également est la composante du tenseur de résistivité qui est paralléle aux lignes de champs.
L’équation ([1.19) donne I’évolution du profil ¢(p,t). On peut en déduire I’évolution du terme

0
9P ot enfin grace a ’équation de Grad-Shafranov moyennée

oY
0 oY ,0p O3 0f?
- (Cy=m) = — 4 2L 1.2
8p(026p) roa¢+ 2 o0 (1.20)
. . , . 10f?
il est possible de calculer I’évolution du terme 5%

Les difficultés du couplage équilibre & frontiére libre - diffusion résistive dans le plasma viennent
en partie du fait qu’il faut garantir au cours de lintégration numérique du systéeme (L.18),(1.19)
et la consistance entre le flux poloidal vu comme une fonctions de ’espace v (r,z) dans
le code d’équilibre et vu comme comme une fonction 1 (p) dans I’équation de diffusion résistive.
A ceci s’ajoutent différentes difficultés numériques comme par exemple le calcul des coefficients
géométriques en sortie de (1.18) et leur interpolation pour pouvoir étre utilisés dans et
, le calculs de dérivées et les valeurs aux bords non connues pour les 3 termes de ’équation
de Grad-Shafranov moyennée (T.20]).

Les conditions aux limites pour (1.19) sont a—ql}(O,t) = 0 sur l’axe magnétique et au bord du

dp

plasma
oY 2mpoIp(t)

- (Pmaz,t) = — 1.21
ap (p ) Colpmanit) (1.21)

ou I, est le courant plasma total.

Au cours du calcul d'un pas de temps [t",#"T1], les coefficients géométriques au temps t" étant
10) 10f2
donnés, on commence par avancer (|1.19) et (1.20) et calculer £ et 5% au temps t"*! avant

de calculer un nouvel équilibre avec (1.18). Le courant I, doit étre pris implicite au temps ¢"*!
dans la condition limite mais évidemment cette valeur n’est pas connue étant donné quelle
est calculée par le code d’équilibre qui intervient dans un second temps. On peut par un
processus itératif ou par une méthode de prédictieur-correcteur ([43] que nous avions reprise dans
la thése de Gael Selig [79]) assurer que le I'*! fourni dans la condition limite (1.21) en entrée
de I'équation de diffusion soit trés proche de la valeur calculée par le code d’équilibre & la fin du
pas de temps. Malheureusement les différentes expériences numériques menées avec les collégues
du CEA et différentes méthodes et codes ont montré que ceci n’était pas suffisant pour assurer la
consistance du couplage. Une divergence numérique peut apparaitre entre la valeur du flux au bord
du plasma ) calculée par le code d’équilibre d’une part et ’équation de diffusion d’autre part.
Pour assurer la consistance du flux au bord nous utilisons dans [5] (section 4.3 et idée originale de
Jean Francois Artaud (CEA)) une condition au bord du type

Voo — Vg

+1 _
a,E ¢b,E

)
ot les indices D et E renvoient a la diffusion (1.19) et & I’équilibre ([1.18)) respectivement. Condition

sur laquelle il est éventuellement possible d’itérer en faisant & nouveaux les calculs pour le méme
pas de temps. Cette méthode fonctionne relativement bien et permet d’obtenir des simulations
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dans lesquelles les erreurs e; = |I,, p — I g| et ey, = |¥p,0 — V5 £| sont petites. On peut également
obtenir le méme type de résultats, mais pour un cott de calcul plus élevé, en cherchant & chaque
pas de temps I, p minimisant la fonctionnelle

J(I) = (I = L)’ + 5 (Wnp — )

Dans [5] (sec. 4.3) la simulation d’un VDE pour le tokamak ITER est donnée comme premier
exemple de ce type de simulation. Beaucoup de travail reste néanmoins & faire avant de pouvoir
obtenir de vraies simulations de scenarios de décharges. De nombreux problémes numériques de-
meurent comme notamment le fait que les erreurs ey et ey, ont tendance & croitre au cours du
temps jusqu’a larrét de la simulation. Ajouté a cela il est vraissemblablement nécessaire d’utiliser
dans ces simulations directes un algorithme de controle en boucle fermée pour calculer les tensions
dans les bobines de champ poloidal permettant de stabiliser la position du plasma et d’éviter le
VDE. Nous travaillons actuellement & ceci dans le cadre du WPCD EUROFUSION.
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1.4 Conclusion

Dans ce chapitre j’ai donné un tour d’horizon de mon activité scientifique actuelle concernant
la simulation numérique et les problémes inverses en physique des plasmas de tokamak.

En ce qui concerne la reconstruction du flux poloidal dans le vide & partir des mesures magné-
tiques, la méthode des harmoniques toroidales apporte une bonne solution. Le code VacTH qui
implémente cette méthode pour la reconstruction de la frontiére plasma va bientdt entrer dans une
période de tests intensifs au CEA avant d’étre éventuellement un jour utilisé dans le systéme de
controle temps réel du tokamak WEST. Dans le futur j’aimerai regarder la méthode des équations
intégrales de frontiére qui pourrait également apporter une réponse complémentaire a ce probléme
[65]. La présence de fer dans WEST risque néanmoins d’étre problématique.

Concernant la reconstruction compléte de ’équilibre, j’ai présenté la méthode implémentée dans
le code EQUINOX. Ce dernier est un code mature qui a aujourd’hui été testé sur différents tokamaks
avec succés notamment depuis son implantation dans la structure de I'TTM grace & la méthode des
harmoniques toroidales qui permet de calculer des conditions de Cauchy sur le bord du domaine de
calcul [32]. Tl est possible aujourd’hui avec EQUINOX, en plus des données magnétiques, d’utiliser
des données d’interférométrie, polarimétrie et MSE. Il sera intéressant dans le futur de regarder la
possibilité d’utiliser des données complémentaires liées & ’effet Cotton-Mouton sur la polarimétrie
|74]. En effet ceci risque d’étre important dans le tokamak ITER.

Enfin le challenge a relever est celui de la simulation de scénario a ’aide d’un modéle couplé
équilibre & frontiére libre - diffusion résistive dans le plasma.



Chapitre 2

Modélisation, assimilation
variationnelle de données en écologie
marine et autres travaux isolés.

Ce chapitre synthétise mon activité de recherche principalement pendant la période allant de
la fin de ma thése en octobre 2002 jusqu’a mon arrivée a Nice fin 2007.

Jai effectué deux périodes de travail & 'IRD au sein de 'UR THETIS (Thons tropicaux et
Ecosystémes pélagiques : Taxies, Interactions et Stratégie d’exploitation). Une premiére de 16
mois comme post-doc de novembre 2003 & octobre 2005 et la seconde d’'un an comme chargé de
recherche d’octobre 2006 & septembre 2007. Pendant ces deux périodes j’ai travaillé sur des sujets
connexes a celui de mon travail de thése “Assimilation variationnelle de données dans un modéle
couplé océan-biogéochimie” |1}, 13, |2]. Mon principal collaborateur a été Olivier Maury, modélisateur
spécialiste d’écologie halieutique & I'TRD. Nous avons travaillé ensemble et en paralléle, lui sur un
modéle de flux d’énergie dans les écosystémes marins qui est aujourd’hui devenu APECOSM [18,
19, |71] et moi sur un modéle plus destiné & étre confronté directement aux données de péche
pour lestimation de ses parameétres. Ce modéle est devenu le modéle APECOSM-E |11} [12] sur
lequel nous avons également travaillé avec Sybille Dueri qui était post-doc & 'TRD. Cette aventure
IRDienne a donné lieu aux articles |15} (14} |16} 11} |12} |18} [19] briévement synthétisés dans les trois
premiéres sections de ce chapitre.

Gréce a un court séjour post-doctoral dans I’équipe INRTA COMORE fin 2003, j’ai pu prolonger
directement mon travail de thése en collaboration avec Olivier Bernard (INRIA), Antoine Sciandra
(CNRS) et Marina Lévy (CNRS). Ceci a donné lieu a Darticle [13].

Pendant I’année scolaire 2002-2003 j’étais ATER & 'INSA de Lyon ol j’ai travaillé avec Jérome
Pousin. Nous avons écrit deux articles |21}, 20] présentés dans la derniére section du chapitre. Un
troisiéme article isolé [22] que je ne présente pas ici a été écrit en collaboration avec Clément
Faugeras (CNRS).

2.1 Généralités sur ’'identification de paramétres par assimi-
lation variationnelle de données

Construire un modéle exige de synthétiser la somme des connaissances accessibles & un moment
donné sur un systéme, de sélectionner les processus important pour décrire un phénomeéne ainsi que

les paramétrisations adéquates pour le quantifier. En écologie marine les modéles ne reposent sur
aucune loi exacte et les erreurs de prévision peuvent s’expliquer en grande partie par une mauvaise

29
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paramétrisation des processus ou par un mauvais choix des valeurs des paramétres. Ces derniers
sont, généralement nombreux et leurs valeurs sont mal connues. En effet ils ne représentent souvent
rien de mesurable. Tout modéle de simulation en écologie est destiné & évoluer assez rapidement. De
nouvelles expériences ou données vont mettre en évidence certains défauts et conduire & proposer
un nouveau modéle. Ceci motive fortement la mise en place de méthodes numériques permettant
d’ajuster les valeurs de ces paramétres pour que les modéles rendent compte le mieux possible des
observations que I’on peut avoir sur le systéme modélisé. Ceci est typiquement un probléme inverse
d’estimation de paramétres et les méthodes d’assimilation variationnelle de données permettent de
le résoudre. Le probléme inverse est formulé comme un probléme de minimisation d’une fonction
cotit mesurant 1’écart du modéle aux données et dépendant des paramétres du modéle. La mini-
misation est effectuée par un algorithme de descente type gradient et une difficultée est le calcul
de ce gradient & chaque pas de descente. La méthode adjointe venant de la théorie du controle
optimal des équations aux dérivées partielles [68] et les techniques de différentiation automatique
permettent de la surmonter.

Modéle direct et probléme inverse

Afin d’introduire formellement le principe de I’estimation de paramétres par assimilation va-
riationnelle de données, prenons un modéle générique. Celui-ci est pris comme c’est généralement
I'usage pour simplifier comme un systéme différentiel non linéaire en dimension N provenant de la
discrétisation en espace d’un modéle en équations aux dérivées partielles. Le modéle direct s’écrit :

ar (2.1)

dx
F(z,a), 0<t<T
z(0) =u

L’application F est non-linéaire et dépend d’un vecteur a € RNe représentant les paramétres du
modéle. Le vecteur u représente les conditions initiales. La construction de modéles qui a constitué
une partie importante de mon travail a 'IRD fait 'objet de la section [2.2] suivante.

Supposons que 'on dispose d’observations y; = H;(z(t;)) + ¢; de I'état. H; est 'opérateur
non-linéaire d’observation & des instants ¢;, ¢ = 1, ---m et &; représente l’erreur d’observation.

Le probléme inverse est alors formulé comme un probléme de minimisation pour la fonction
cotut

1 — 1 1
J(u,a) = 2> |[Hi(z(t:)) — il iy, + 51w —wollfy, + =lla — aollfy, (2.2)
2 2 2
=1

ou ||z||3, = (Wz,z) et les matrices W;, W, et W, sont des matrices symétriques, définies
positives de pondération. Le premier terme est le terme d’écart aux données et les deux seconds
des termes de pénalisation (ou d’ébauche) mesurant I’écart & des valeurs de référence ug et ag. Ces
termes permettent d’une part d’inclure 'information a priori des ces valeurs de références dans la
fonction cott et d’autre part de régulariser le probléme inverse étant donné son caractére mal-posé
si on considére uniquement le terme d’écart aux observations.

Calcul du gradient, modéles tangent linéaire et adjoint

La minimisation se fait par un algorithme de descente qui nécessite le calcul du gradient de J.
Ce calcul présente une difficulté technique qui est levée par I'introduction de 1’état adjoint venant
de la théorie du controle optimal [68, 66].

La dérivée de J au point (u,a) dans la direction (h, k) s’exprime en fonction de celle de = (on
note ces dérivées J et 2)

J = Z(Wi(Hi(r(tm — i), Hj(z(t:))2(t:) + (Wulu —uo), h) + (Wa(a — ag), k) (2.3)
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La quantité & est solution du modéle tangent linéaire

dz F F
{ —x—a—(x,a);i+a— z,a)k, 0<t<T

dgﬁo)__ahx Oda ( (2.4)

On est alors amené & introduire la variable adjointe ¢ définie comme solution de 1’équation
rétrograde du modéle adjoint :

T m
|G| o= L HT WG~ T2iz0
9(T) =0

Ceci permet d’exhiber la linéarité en (h, k) de J et d’exprimer le gradient de J en fonction de ¢ et

o 4(0) + Wi (u — ug)

VJ(u,a) = ( §Z§§Zi Z; ) - /O ’ [?}Z(x,a)}qut—I-Wa(a—ao) (26)

A chaque itération de I’algorithme de descente le calcul du gradient peut donc s’effectuer aprés
une intégration du modéle direct et une intégration rétrograde du modéle adjoint.

Cette méthodologie est bien établie mais sa mise en pratique reste délicate. Numériquement
les calculs de gradient se font en utilisant les codes dérivés tangent linéaire et adjoint du code
direct. Ceci permet de s’assurer que le gradient obtenu est bien celui de la fonction cotit numérique
discréte. Ces codes dérivés peuvent s’obtenir par des outils de différentiation automatique comme
le logiciel TAPENADE [61] développé & 'INRIA. Malheureusement les codes directs sont souvent
extrémement complexes et n’ont pas été pensés pour étre différentiés ce qui rend souvent la tache
relativement ardue et ingrate.

Contrairement & la météorologie ou a ’océanographie physique, en écologie marine généralement
I’identification de la condition initiale n’est pas d’un grand intérét, les erreurs s’expliquant plus
par de mauvaises valeurs des paramétres du modéle. On considére alors une fonction coit J(a)
dépendant uniquement des paramétres. Si le nombre N, de paramétres n’est pas trop élevé, un
calcul de gradient effectué a partir du modéle tangent linéaire peut étre envisagé car ce calcul est
facilement parallélisable, les appels au code tangent étant tous indépendants les uns des autres.

Analyse de sensibilité locale apriori, matrice hessienne et identifiabilité
des paramétres

Dans le cadre d’un probléme d’estimation de paramétres I'objectif de ’analyse de sensibilité est
de déterminer les paramétres dont les variations ont le plus d’impact sur la valeur de la fonction
colt. En d’autres termes il s’agit de déterminer les parameétres qui vont ou non pouvoir étre
déterminés précisément en résolvant un probléme inverse numériquement bien posé.

Considérons que le modéle direct est représenté par une application ¢ qui a un jeu de para-
métres a associe I’équivalent numeérique des observations ¢(a) et que la fonction cott, uniquement
constituée du terme d’écart aux observations, s’écrit

1 2
T(@) = 3l6() — oIl
Une premiére approche consiste simplement & calculer et comparer entre elles les composantes

normalisées du gradient au point de référence ag,

8J( ) Qap;
8a; " T (ao)
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La valeur de ces sensibilités est d’autant plus importante que la fonction coiit est sensible aux
parameétres correspondants.

Une autre maniére de faire est de se placer dans le cas de données simulées & partir du modéle
en utilisant le jeu de parameétres de références ag. Le développement de la fonction cott a l'ordre
2 peut s’écrire

Tlag +h) = J(a0) + (VT a0), h) + L (W (ao) (b, ). (6(a0) 1)) + 5(&/(a0)" W (a)h h)

et ag étant ici le minimum les 3 premiers termes du membre de droite sont nuls. On a donc
I’expression exacte dans ce cas de la matrice hessienne au minimum

H = ¢/(ag)"W¢'(ag)

qui peut étre facilement calculée & partir du modéle tangent linéaire. La matrice hessienne permet
d’obtenir des indications sur la convergence et les incertitudes du probléme d’optimisation [82]. Le
conditionnement de la matrice (rapport de la plus grande valeur propre sur la plus petite) carac-
térise le degré de singularité du probléme et détermine le taux de convergence de ’algorithme de
minimisation. Aux plus petites valeurs propres correspondent une grande incertitude dans 1’identi-
fication des paramétres correspondants aux composantes principales des vecteurs propres associés.
Ainsi ’étude de la matrice hessienne permet de détecter les parameétres les plus difficilement iden-
tifiables.

2.2 Modélisation

Dans la section précédente j’ai rappelé la méthodologie de résolution d’un probléme d’estimation
de paramétres par assimilation variationnelle de données. Au cours de ma thése j’avais déja mis
au point ce type de méthode pour un modéle de biogéochimie océanique. Il s’agissait d’un modéle
NNPZD-DOM (pour nitrate NO3, ammonium N H4, phytoplancton P, zooplancton Z, détritus
D, matiére organique dissoute DOM) maintenant devenu le modéle LOBSTER [67] qui nous
avait été fourni par Marina Lévy (CNRS) et Laurent Mémery (CNRS). C’était un systéme couplé
d’équations d’advection-diffusion-réaction. L’estimation de paramétres avait entre autre permis de
montrer que si I’on donnait & I'un des paramétres du modéle, le rapport Carbone-Chlorophylle,
la possibilité de varier avec la profondeur on réduisait fortement ’écart aux données. Par la suite
avec Olivier Bernard nous avions prolongé ce travail en complexifiant le modéle pour lui donner
une représentation mécaniste de I’évolution du rapport Carbone-Chlorophylle. Cela a donné lieu a
Particle [13] et ¢’était pour moi le premier travail d’écriture d’'un modéle destiné & étre confronté
a des données réelles. Par la suite & 'IRD j’ai participé a plusieurs travaux de modélisation pour
les écosystémes marins résumés ci-dessous.

Les écosystémes marins sont soumis aujourd’hui & deux perturbations importantes : une péche
croissante d’une part et des variations climatiques d’autre part. Dans ce contexte la mise au point
d’outils numeériques d’évaluation et de prévision fiables des stocks halieutiques revét une importance
particuliére. Les logiciels de référence pour 1’évaluation des stocks, comme MULTIFAN-CL [51],
sont basés sur un modéle discret de population structurée en classes d’age que 'on appelle les
équations de capture (catch equations).

A partir de ce modéle et des données classiques en halieutique :

— données de capture (masse cumulée de poissons péchés)

— données de fréquences de taille (taille des poissons échantillonnées dans les captures)

il est possible d’estimer un certain nombre de quantités importantes pour la gestion des péches
comme la mortalité, le taux de croissance ou la biomasse totale.

Pour ce qui concerne les pécheries de thons tropicaux, espéces cibles de 'UR THETIS 4 'IRD, ce
type de modéle présente un certain nombre d’insuffisances. Un premier point est que ces pécheries
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sont trés hétérogeénes en espace et en temps et d’importantes migrations d’individus ont lieu a
différentes échelles. De plus la croissance des individus est également potentiellement variable en
espace et temps. Des poissons du méme age peuvent avoir des tailles sensiblement différentes selon
leur histoire. Ainsi il parait important de représenter explicitement les mouvements et la variabilité
de la croissance & ’aide de modéles spatialisés. Un second point est que les données de fréquences
de taille ne sont pas immédiatement utilisable avec des modéles structurés en age. Une relation
age-taille doit étre utilisée afin de pouvoir prendre en compte ces données. Malheureusement cela
peut engendrer des biais dans les estimations des taux de croissance et de mortalité. Il semble donc
nécessaire de proposer des modéles structurés en taille. C’est ce que nous avons fait en proposant
une modélisation mécaniste de la dynamique de populations de thons incorporant un maximum de
connaissances écologiques et physiologiques.
Le travail de modélisation effectué s’est fait en plusieurs étapes retracées ci-dessous.

2.2.1 Modélisation pour les pécheries de thons tropicaux

> Articles disponibles dans la partie recueil d’articles : Article G [15], Article H [16],
Article I [11]

> Autres publications associées : 14} |17]

> Collaborateurs : Olivier Maury (IRD), Sibylle Dueri (IRD)

Un premier modéle |17, (14]

Le projet originel lorsque je suis arrivé & I'IRD était de mettre au point une méthode d’assimila-
tion variationnelle de données pour identifier les paramétres d’un modeéle qu’Olivier Maury (IRD)
avait commencé a développer [17]. Dans ce modéle I'océan (’espace 2D) est découpé en grandes
régions et les équations décrivent la dynamique d’une population structurée en age et en taille et
pour laquelle les mouvements d’une région de l’espace a une autre sont représentés par des taux de
migration. La population est représentée par des densités de nombre d’individus p;(t, a, s) mesu-
rant pour chaque région i le nombre d’individus par classe d’age a et de taille s. Ces densités sont
solutions d’un systéme d’équations d’advection-diffusion-réaction. Un terme de diffusion en taille
permet de rendre compte de la variabilité des tailles dans une méme classe d’age. Une non-linéarité
non-locale apparait dans la condition limite qui repésente les entrées d’individus dans le modéle et
qui est formulée a I’aide d’une relation stock-recrutement de Beverton et Holt [42|. La particularité
de ce systéme réside dans cette non-linéarité et dans le fait que les équations sont constituées d’une
partie hyperbolique en age et parabolique en taille. Dans [14] nous introduisons une formulation
variationnelle pour ce modéle et prouvons ’existence, I'unicité et la positivité d’une solution faible.
La non-linéarité est traitée par une méthode de point fixe. Nous prouvons également un résultat
de comparaison : si la mortalité par péche augmente dans une région alors la population décroit
globalement.

Le travail sur ’assimilation de données de péche dans ce modéle n’a jamais été finalisé pour
deux raisons principales. La premiére est que ce modéle permet difficilement de rendre compte du
forcage océanique sur la dynamique de la population et assez rapidement j’ai été tenté par une
approche continue de la représentation de ’espace. La deuxiéme, moins noble, est que le code avait
commence a étre développé avec le logiciel Automatic Differentiation Model Builder (ADMB [52]).
Ce logiciel est une surcouche de C++ permettant de faire de la différentiation automatique de code
de maniére transparente par surcharge d’opérateurs. Ce genre d’approche est trés performante pour
des modéles de petite dimension. Malheureusement, elle ne supporte que difficilement les grandes
dimensions, particuliérement pour le mode adjoint. Le probléme s’est posé pour ce modéle, et
faire de l’assimilation variationnelle de données avec ADMB paraissait difficile. Ainsi nous nous
sommes lancés dans I’écriture d’un nouveau modéle, dans lequel I’espace est représenté de maniére
continue. La stratégie informatique suivie dans un second temps a été d’écrire le code en Fortran
et de bien penser 'organisation du programme de maniére & pouvoir utiliser directement le logiciel
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de différentiation automatique “source to source” Tapenade [61]. Cette approche “source to source”
permet plus facilement de retravailler le code différentié en mode adjoint afin de gérer les problémes
de mémoire.

Un deuxiéme modéle : APECOSM-E - version 1 [15]

La dynamique de population de poissons est maintenant décrite au travers d’une fonction
densité du nombre d’individus p(z, y, s, t), ou la position (z,y) € Q le domaine representant ’océan,
s représente la taille et ¢ le temps. La densité de population obéit & une équation d’advection-
diffusion-réaction en espace et en taille

Sans rentrer dans les détails donnés dans [15] la paramétrisation des mouvements repose sur une
séparation en composante physique (les courants calculés par un modéle de circulation océanique)
et composante biologique de la vitesse et de la diffusion. Les composantes biologiques dépendent
d’une fonction donnée h(zx,y,t) (pour habitat suitability index) mesurant la qualité de I’habitat et
calculée a partir de la température T'(x,y,t) provenant du méme modéle de circulation océanique
et d’une fonction de fourrage F(x,y,t) (représentant les proies) qui peut soit étre extrapolée a
partir de la variable zooplancton d’'un modéle de biogéochimie marine soit provenir du modéle
de flux d’énergie présenté a la section suivante. Le terme de recrutement présente le méme type
de non-linéarité que dans le modéle précédant. D’autre part avec cette modélisation le taux de
croissance est une simple fonction de la taille et ne présente pas de variabilité en espace et en
temps. Ainsi comme dans le premier modéle nous introduisons un terme de diffusion en taille. Du
point de vue de mathématique dans [15] on introduit une formulation variationnelle et on prouve
I'existence d’une unique solution positive.

Ce modeéle, pas encore tout a fait abouti au niveau de la représentation des différents processus
n’a jamais été confronté & des données réelles contrairement a la version du paragraphe suivant |11}
12|. Il a par contre servi de base pour le développement du code et permis de tester la résolution
numérique du probléme inverse d’estimation de paramétres grace a des expériences d’assimilation
de données synthétiques qui sont également présentées dans [15].

La derniére version du modéle : APECOSM-E - version 2 [11]

Dans cette derniére version la modélisation est enrichie sur plusieurs aspects :

Les procéssus physiologiques Tous les processus, en particulier la croissance, la mortalité natu-
relle et la reproduction, varient en temps, en espace, et en taille. Ils sont fonction de ’environnement
(courants, température, oxygeéne dissous et fourrage). Cela permet de s’affranchir du terme de dif-
fusion en taille et de la non-linéarité dans le terme de recrutement qui n’a plus a étre saturé par
une relation du type Berverton et Holt. La variable de taille structurant la population n’est plus
la longueur mais le volume structural des individus. Cela permet d’utiliser plus facilement qu’avec
la longueur la théorie DEB (Dynamic Energy Budget [64]) pour la paramétrisation des processus
de reproduction, de croissance et de mortalité.

La troisiéme dimension d’espace z i.e la profondeur a été rajoutée. Cela permet de prendre
en compte les mouvements verticaux ainsi que la selectivité sur la profondeur de la mortalité par
péche. Ainsi la population est représentée par une densité p(z,y, z,v,t) ou la position (z,y,z) €
D =Qx(0,7) est le domaine representant ’océan, la taille ou volume structural v € (Vp, V1) avec
Vo le volume structural & la naissance et ¢t € (0,7).

Comme précédemment la densité de population obéit & un processus d’advection-diffusion en
espace. Notons v le champ de vitesse horizontale, v, la vitesse verticale, D la matrice de diffusion
horizontale et d, la diffusion verticale. La croissance des individus est représentée par un processus
d’advection en v avec un taux de croissance g. On note m et f les taux de mortalité naturelle et
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par péche. La densité p satisfait :
Op = div(DVp — vp) + 0.(d.0.p — v.p) — Ou(gp) — (m+ f)p, sur D x (Vo, V1) x (0,T), (2.7)

ou V et div sont les opérateurs différentiels sur 2. Cette équation est complétée par des conditions
initiales, des conditions aux limites de Neumann homogeéne en espace et de la condition de Dirichlet
non-locale représentant la reproduction

Vi
gp(x,y, 2, Vo, t) :/ bpdv, V(z,y,z,t) € D x (0,T), (2.8)
Vo

Mouvements horizontaux A nouveau la représentation des mouvements repose sur une sépa-
ration en composante physique (les courants) et biologique. La paramétrisation de la composante
biologique fait I’objet d’une publication [16]. Dans ce travail on commence par considérer une des-
cription des mouvements 2D a I’échelle des individus. On formule une modélisation type “random
walk” dans laquelle la vitesse de chaque individu a une composante deterministe et une compo-
sante stochastique. Toutes deux dépendent d’une fonction de favorabilité de I’habitat h et de son
gradient. A I'aide de développements de Taylor en espace et en temps, combinés et tronqués on
obtient une équation d’advection-diffusion approchant le modéle originel. Le procédé d’approxima-
tion permet d’obtenir explicitement I’expression des coefficients de diffusion et d’advection. Ce sont
eux qui sont utilisés dans le modeéle APECOSM-E. L’advection et la diffusion sont liées : une forte
advection va avec une faible diffusion donnant un mouvement dirigé des individus vers un habitat
plus favorable, au contraire une faible advection va avec une forte diffusion ce qui correspond & un
comportement de recherche de nourriture. Dans [16] des expériences numériques sont également
réalisées et montrent que I’équation aux dérivées partielles est une bonne approximation du modeéle
individu centré.

Mouvements verticaux et réduction du modéle On peut faire I’hypothése que les mou-
vements verticaux sont des processus beaucoup plus rapides que les mouvements horizontaux, la
reproduction, la croissance et la mortalité. Ceci permet de réduire la dimension verticale du modéle
et de passer d’une équation posée en 4 dimensions d’espace & 3 dimensions. En adimensionnalisant
le modéle, des dynamiques rapides et lentes caractérisées par un petit parameétre ¢ apparaissent. Le
modéle réduit est déduit en prenant la limite € = 0. Dans cette limite le terme d’advection-diffusion
en z doit étre nul. Ceci donne une équation différentielle en z qui peut s’intégrer analytiquement.
On peut alors définir pour chaque processus une moyenne selon un profil vertical et se ramener & un
modéle réduit approché posé sur Q. Ceci est détaillé dans une annexe du papier [11] et c’est ce mo-
déle réduit qui est utilisé dans les simulations. La figure donne une représentation schématique
du modéle.

2.2.2 Modélisation du flux d’énergie dans les écosystémes marins

> Article disponible dans la partie recueil d’articles : Article K [1§]

> Publication associée : [19]

> Collaborateurs : Olivier Maury (IRD), Yunne Shin (IRD), Francis Marsac (IRD), Tamara
Ben Ari (doctorante IRD a I’époque), Jean-Christophe Poggiale (Université de Marseille)

Dans ce travail nous proposons un modéle original du flux d’énergie dans les écosystémes
marins. Le modéle décrit Pévolution d’une variable d’état £(w, t) représentant la densité d’énergie
par classe de taille (w la masse des individus est reliée a la taille par une fonction allométrique
w = as®) et par unité de volume d’eau. Les flux d’énergie dans les écosystémes marins sont, controlés
par la prédation et le modéle se focalise particuliérement sur les organismes dits consommateurs
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FIGURE 2.1 — Schéma de synthése présentant les forcages, les processus affectant la dynamique de
population et les sorties du modéle APECOSM-E

(organismes hétérotrophes comprenant un grand nombre de groupes de zooplancton et les poissons)
qui gagnent de ’énergie uniquement par prédation. Ces organismes se reproduisent et leurs oeufs
sont supposés avoir une masse wy.

Les processus modélisés sont la prédation, la mortalité, ’assimilation et I'utilisation de ’énergie
pour la maintenance, la croissance et la reproduction. L’équation utilisée pour modéliser les flux
d’énergie a travers les tailles des organismes fait intervenir un terme de transport représentant la
croissance et trois termes de mortalité pour la mortalité par prédation, la mortalité due a la famine
et la mortalité due & d’autres causes. Le modéle s’écrit alors

€ = —0u(9E) — (A +m+2)E, sur (wo, Weo)
9E(t,wo) = r(€)
£(0,w) = E%w)

A nouveau toute la sophistication du modéle vient des paramétrisations utilisées pour les taux
de croissance g, de mortalité A\, m et z, et pour la reproduction r. Je ne les détaille pas ici et
référe & notre papier . Tous ces coeflicients sont des fonctions non-linéaires et non-locales de
£. 1ls sont obtenus en suivant le principe de conservation de 1’énergie. La prédation correspond
& une perte d’énergie pour les proies et & un gain pour les prédateurs. Elle n’est controlée que
par une fonction de sélectivité dépendant du rapport entre la taille du prédateur et de la proie.
Ainsi tous les organismes peuvent étre a la fois proie et prédateur. La prédation est supposée étre
opportuniste et les proies d'une certaine taille sont mangées proportionnellement au rapport de
leur biomasse sur la biomasse de toutes les proies possibles.
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Une partie de I’énergie ingérée est utilisée pour la croissance et la maintenance et ’autre pour
la reproduction et la maintenance des gonades. La croissance et la reproduction ne peuvent étre
négatives ainsi quand le cotlit énergétique de la maintenance est plus important que ’énergie assimi-
lée, la croissance et la reproduction s’annulent et la mortalité due & la famine devient au contraire
active.

Enfin les différents taux de croissance, de mortalité et de reproduction sont également modulés
par un facteur de correction dépendant de la température.

Les organismes plus petits (0 < w < wy), producteurs primaires (organismes autotrophes
composés majoritairement de phytoplancton) qui convertissent I’énergie solaire et les nutriments
minéraux en biomasse, ne sont pas modélisés trés finement dans ce travail. Néanmoins la densité
d’énergie qu’ils représentent intervient dans les calculs de prédation.

De nombreuses simulations numériques ont été effectuées avec ce modéle [19] pour un intervalle
de taille allant de 1mm a 2m. Avec des conditions environnementales stables (production primaire
et température) la solution évolue vers un état stationnaire correspondant & un spectre de taille
log-log linéaire. Ce spectre de taille est peu sensible aux valeurs des paramétres du modéle. Une
version spatialisée du modéle existe aujourd’hui |71] et permet de fournir des champs de fourage
au modéle APECOSM-E.
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2.3 Identification de paramétres par assimilation variation-
nelle de données de péche

> Articles disponibles dans la partie recueil d’articles : Article J [12], Article I [11]
Article G [15]
> Collaborateurs : Olivier Maury (IRD), Sibylle Dueri (IRD)

Le modéle numérique direct

Nous disposons maintenant d’un modéle pour la dynamique de population de thons dans ’océan
décrit & la section 22,11

Op = div(DVp — vp) Ov(gp) — (m+ flp, sur Q x (Vo, V1) x (0,T),

p(x,y,v,0) = p°( Ty, v ), V(z,y,v) € Qx (Vo, V1),
gp(z,y, Vo, t) / bpdv, V(x,y,t) € Qx (0,7T), (2.9)
Vp(z,y,v,t) -n(x,y) =0, sur I, V(v,t) € (Vo, V1) x (0,7,

dans lequel les coefficients D, v, g, m, f et b sont des fonctions de (z,y,v,t) et d’un vecteur de
paramétres a € RVa.

Le modéle est discrétisé par une méthode classique de différences finies. Une grille de 1° par 1°
est utilisée et couvre I’Océan Indien. Les tailles des organismes considérés dans le modéle vont de
1mm & 1m. Les simulations sont faites avec un pas de temps journalier pour la période 1958-2001.
L’exploitation des pécheries industrielles débute en 1984 et les 15 premiéres années de la simulation
représentent une phase de “spin-up” du modéle. Les conditions environnementales déterminant
I’habitat des thons sont fournies par des champs 3D de température, oxygéne, mésozooplancton
et courants marins générés par le modéle couplé physique-biogéochimie NEMO-PISCES [40|. Le
modéle nécessite également des données d’effort de péche. Pour simplifier je ne considére ici qu’'une
seule flotille mais dans [11, [12] 4 flotilles différentes sont considérées et les données d’effort de
péche sont issues de la base de données de 'TOTC (Indian Ocean Tuna Commission). Les flotilles
considérées représentent les pécheries principales de thons Listao de ’Océan Indien pour lesquelles
on dispose de séries temporelles de données de péche depuis 1984. L’effort de péche est constant
sur des domaines espace-temps € x [t} ] pour k = 1... Ny et I = 1... N;. Dans la suite pour
simplifier les notations on n’utilise qu'un seul indice pour repérer ces domalnes =Q X [tld7 t f]
avec i = k+ (I — 1) X Ny.

Le modéle contient 48 paramétres : 18 sont associés a la mortalité par péche et définissent
les sélectivités en taille et profondeur du matériel de péche, la capturabilité et I'accroissement
de la puissance de péche di aux développements technologiques, 8 sont des paramétres DEB
décrivant la croissance, la reproduction et la mortalité naturelle, et enfin 22 sont des paramétres
écologiques décrivant les interactions entre environnement et population. Un jeu de référence pour
ces parameétres est obtenu & partir de la littérature et d’un réglage manuel du modeéle.

Dans [11] un certain nombre de résultats numériques sont présentés permettant de tester la
capacité du modéle a représenter la dynamique spatiale de la biomasse de thons avec des condi-
tions environnementales variables, la variabilité de la croissance ainsi que pour tester I'impact de
I’exploitation industrielle des pécheries sur la population. La Fig. donne un exemple de sorties
du modéle (voir [11] pour plus de détails).
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FIGURE 2.2 — Population exploitable de thons Listao calculée versus captures observées (cercles)
dans I'océan Indien. Avril 1993, fevrier 1998 et avril 1998
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Le probléme inverse

Nous disposons de données de péche (captures et fréquences de tailles). L’équivalent des m
données de capture C? est calculé dans le modéle comme

T W
C; 2/ / / 1p, fpw(v)dzdydvdt
0 Vo Q

ot w(v) est la masse des individus de taille v et 1p, est la fonction caractéristique des domaines
espace-temps D; de sommation des captures.
En définissant

T
Ci(v) = / / 1p, fpw(v)dxdydt
o Ja
'équivalent des données de fréquences de taille QY (v) est calculé comme
Qi(v) = Ci(v)/C;

Le probléme inverse d’estimation de paramétre peut étre formulé comme un probléme de mi-
nimisation pour la fonction cortit

m

m N,
_ b o2 1 /V1 02 ~ 1 e
'](a) = E 20_% (Ol G ) + ;:1 2022 Ve (QL Qz) dv + ;:1 20_12 (az ai)

=1

= Jc(a) + Jg(a) + J,(a)

Les termes J¢ et Jg sont les termes d’écart aux observations et J. est un terme de pénalisation.
Son role est double, il permet d’une part d’inclure de 'information apriori avec le jeu de paramétres
de référence a et les variances o; et il joue d’autre part un role régularisant.

La minimisation de J se fait par un algorithme de descente nécessitant le calcul du gradient.
Ce calcul se fait en introduisant le modéle adjoint. Pour simplifier la présentation on considére que
J ne contient qu’un terme d’écart aux données de capture

m

Ta) = 3 3 (Ci - OO

i=1

Je donne ci-dessous un exemple de calcul du gradient par le modéle adjoint. La dérivée de J au
point a dans la direction h s’écrit

m

7 0\ A < 0 T Vi N 7
J= Y- =3 o) /O /V 0 /Q 1p, (ff+ Fo)w(v)dedydvdt

i=1
La quantité p est solution du modéle tangent linéaire :

0,p = div(DVp — vp) — 0,(gp) — (m + f)p + div(DVp — ¥p) — 0, (3p) — (m + f)p,

p(z,y,v,0) =0,

Vi
(. Vost) = [ o+ 1) — gy, Vo, )
1%
V(x,y,v,t) ~n(:v70y) =0

(2.10)

On multiplie alors le modéle tangent linéaire par la variable adjointe gq. Aprés une intégration par
partie et des manipulations permettant d’exhiber la linéarité en h de J on est amené a définir ¢
comme solution de ’équation rétrograde du modéle adjoint :
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FIGURE 2.3 — Variations des paramétres en fonction des itérations de minimisation. Les valeurs
sont normalisées par les valeurs optimales.

—0vq — div(DVq) — vVq — gduq + (m + f)g — bg(Vo) = > _(Ci — C))1p, fw,

q(z,y,v,T) =0, (2.11)
q(x,y,Vi,t) =0,
Vq(%,y,’l),t) : Tl(l’,y) =0

et I’on peut conclure que le gradient de J s’exprime en fonction de p et ¢ :

VJ(a) / / / > ((Ci = € = q)plp,(Vaf)w

+(div((V,D) Vp (Vav)p) — 05((Vag)p) — (Vam)p)q (2.12)

+(Vab = ——<Vag(Vo))pa(Vo)|dzdydvdt

9(Vo)

ou V, indique la dérivation par rapport aux paramétres a. Le calcul du gradient peut donc s’effec-
tuer aprés une intégration du modéle direct et une intégration rétrograde du modéle adjoint. La
formule déja complexe dans ce cas simplifié a peu d’intérét si ce n’est de mettre en avant
le fait que pour un tel modéle il est quasiment impossible de faire tous les calculs & la main sans
erreur et donc que les logiciels de différentiation automatique comme TAPENADE sont essentiels
dans ce type de probléme.

L’optimisation ne faisant intervenir que des données de péche dans nous n’incluons dans la
fonction cotit que 19 paramétres directement liés a la mortalité par péche. L’analyse de la matrice
hessienne indique que principalement 2 de ces paramétres sont liés aux 2 valeurs propres les plus
petites. Il ne sont donc pas optimisés. La minimisation porte ainsi sur 17 paramétres (Fig. et
est effectuée a l'aide de l’algorithme de quasi-Newton implémenté dans le code M1QN3 .

Je renvoie a 'article pour une analyse détaillée des résultats (Fig. et [2.5) et conclus
simplement en exprimant le fait que cet exercice d’assimilation de données réelles de péche a
permis de mettre en évidence que d’une part ce type de modéle, nouveau, donne des résultats
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tout a fait satisfaisants et que les données de péche permettent d’en optimiser certains parameétres
mais que d’autre part certains phénoménes en particulier I’aggrégation des thons sous les FAD
(fish aggregation devices) sont visibles dans les données mais pour l'instant ne sont pas modélisés
dans les équations du modéle. Malheureusement ce phénoméne d’attraction n’est pas encore bien
compris par les spécialistes.
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2.4 Travaux isolés

2.4.1 Un schéma numérique précis pour l’intégration en temps d’un sys-
téme d’équations de diffusion - dissolution / précipitation

> Article disponible dans la partie recueil d’articles : Article L [21]
> Collaborateurs : Jérome Pousin (INSA de Lyon), Franck Fontvielle (doctorant & PINSA
de Lyon & I’époque)

L’objectif de ce travail est de mettre au point un schéma numérique précis (c’est-a-dire ici
d’ordre 2) et numériquement peu cotteux pour l'intégration temporelle de systémes d’équations
de diffusion-dissolution /précipitation du type :

8,0 = AC +f(S,C), (2.13)
0,8 = —£(8,C) (2.14)

ou f est une fonction non linéaire vérifiant,

Ces équations modélisent le stockage de déchets dans des matrices en béton [69] et sont dans cette
référence intégrées par un schéma peu précis. La résolution numérique de tels systémes présente
deux types de difficultés.

La premiére est celle de I'intégration de ’équation . Le schéma numérique le plus simple pour
résoudre une équation de réaction-diffusion,

8,C = AC + f(C),

est le schéma d’Euler explicite, mais avec cette méthode le pas de temps At est limité par O(Az?).
Pour s’affranchir de cette condition contraignante on peut utiliser le schéma d’Euler implicite,
inconditionnellement stable, mais alors un grand systéme non linéaire doit étre résolu & chaque
pas de temps. Une méthode de résolution bien adaptée a ce type d’équations est celle du splitting
d’opérateur qui consiste a résoudre séparément et successivement les équations,

8,0 = AC,
8,C = ().

La formule du splitting de Strang [81} |70] permet d’obtenir un schéma d’ordre 2 [41].

La deuxiéme difficulté, moins classique, tient & la forme de la fonction f(.S, C). En effet les instants,
taq, auxquels ¢(S) change de signe ne sont pas connus par avance et doivent étre détectés au cours
de 'intégration.

Pour résoudre numériquement ce systéme , nous proposons un schéma construit a partir du splitting
de Strang, et d’un algorithme de détection des instants ¢4, auxquels g(5) change de signe, basé sur
une formule de “dense output” [59]. En effectuant une analyse des erreurs locales on montre que le
schéma, proposé est d’ordre 2 en temps.
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FIGURE 2.6 — —log(Erreur) versus — log(At). Courbes de convergence pour le schéma de splitting

classique & gauche, et pour le schéma d’ordre 2 proposé a droite.

Ce résultat, illustré sur un cas test (Figure [2.6), est di au fait que les instants ¢4, auxquels
Pexpression des termes de réaction f(5,C) change, sont détectés de maniére suffisamment précise
pour ne pas dégrader 'ordre du schéma de Strang malgré le peu de régularité de f.

2.4.2 Analyse asymptotique d’un modéle élastique 3D pour la segmen-
tation d’images du coeur

> Article disponible dans la partie recueil d’articles : Article M
> Collaborateurs : Jérome Pousin (INSA de Lyon)

Afin d’améliorer les algorithmes de segmentation automatique d’images médicales du coeur (i.e.

la détection automatique des contours du coeur dans I'image permettant aux modéles de s’adapter
a chaque patient) il a été proposé d’utiliser un modéle élastique du coeur 75]. La stratégie
est la suivante : un objet a priori, représentant le coeur, est immergé dans 'image-donnée et est
soumis & un champ de forces qui déforme ses frontiéres vers les contours de I'image.
Notre contribution est la suivante. En partant d’un modéle a trois couches composé d’une couche
intérieure homogéne et isotrope entourée de deux couches fines de fibres myocardiaques, nous
avons obtenu un modéle asymptotique en montrant rigoureusement que lorsque l’épaisseur des
fines couches externes tend vers 0, elles peuvent étre remplacées par des conditions aux limites
particuliéres sur la couche interne. Ces conditions aux limites ont un effet régularisant et permettent
d’améliorer la qualité de la segmentation (Figure .

FIGURE 2.7 — Impact de la régularisation sur les résultats de segmentation d’une image transversale
du coeur : sans (gauche) et avec (droite) les conditions limites obtenues (d’apreés [76]).
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Pour la démonstration on se place dans un cadre simplifié et ’on considére un modeéle de coque
mince élastique & deux couches représentant la paroi du coeur (cf. Figure : une couche interne,
Q™ |, qui suit les lois de élasticité linéaire classique pour un matériau homogeéne et isotrope, et
une couche externe, QF, d’épaisseur ¢, modélisant un matériau constitué de fibres. Pour ce type
de matériau la loi constitutive liant le tenseur des contraintes au tenseur des déplacements fait
intervenir explicitement, d, le vecteur 3D d’orientation des fibres.

FIGURE 2.8 — Le domaine Q. = Q- U Q7.

Le champ de déplacement pour chaque point matériel en coordonnées cartésiennes est noté u, e(u)
représente le tenseur des déformations de Green-Lagrange linéarisé sous I’hypothése des petites
déformations, et o représente le tenseur des contraintes. A et u, et . sont des constantes, I est le
tenseur identité, et le corps élastique est soumis & un champ de forces f.

A T’équilibre on a :

diviec(u))+£f=0 dans Q,

o(u) = Mrace(e(u))I + 2pe(u) dans Q~,

o(u) = (d.e(u)d)d ® d + 2u.ce(u) dans QF,

u= sur - U UL,
on =20 sur '} _,

u" =utetocn=0n sur S,

ol n est le vecteur normal unitaire.
On montre que lorsque I'épaisseur de la couche externe, ¢, tend vers 0 le modéle asymptotique est
donné par :

div(o(u)) +£f=0 dans 07,
o(u) = Atrace(e(u))I + 2ue(u) dans Q~,
u=20 sur ' UT,
on = —2U.UyN — Uy sur .S,

ol u,n est la composante de u normale & la surface S et up est la composante tangentielle. La
condition limite obtenue sur S ne dépend plus de d le vecteur d’orientation des fibres.
La preuve de ce résultat donnée dans [20] repose sur
— une formulation variationnelle mixte du probléme en coordonnées curvilignes généralisées,
— un changement d’échelle permettant de se ramener & un domaine €2 indépendant de ¢,
— différentes estimations a priori qui permettent de justifier le passage a la limite lorsque
e —0.
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2.5 Conclusion

Je ne travaille plus aujourd’hui sur les sujets abordés au chapitre 2. Néanmoins grace & Google
Scholar (et tout de méme quelques échanges de mail avec Olivier Maury) je suis de loin le devenir
des modéles APECOSM et APECOSM-E que nous avions commencé & développer ensemble. En
particulier Olivier et Sibylle Dueri ont continué & utiliser le modéle APECOSM-E dans 2 études
récentes. La premiére concerne 'impact sur la population de thons Listao de 'océan Indien de la
création de zones marines protégées [49] et la seconde concerne les conséquences du changement
climatique sur cette méme population [48]. Un travail sur I’assimilation de données de marquage-
recapture qui pourraient permettre de mieux calibrer les paramétres liés aux mouvements et a la
croissance est également engagé.
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1. Introduction

In fusion experiments a magnetic field is used to confine a plasma in the toroidal vacuum vessel of a Tokamak [1]. The
magnetic field is produced by external coils surrounding the vacuum vessel and also by a current circulating in the plasma
itself. The resulting magnetic field is helicoidal.

Let us denote by j the current density in the plasma, by B the magnetic field and by p the kinetic pressure. The momentum
equation for the plasma is

du

Pt

where u represents the mean velocity of particles and p the mass density. At the slow resistive diffusion time scale [2] the
term p 4 can be neglected compared to Vp and the equilibrium equation for the plasma simplifies to

jxB=Vp

+Vp=jxB,

meaning that at each instant in time the plasma is at equilibrium and the Lorentz force j x B balances the force Vp due to
kinetic pressure. Taking into account the magnetostatic Maxwell equations which are satisfied in the whole space (including
the plasma) the equilibrium of the plasma in presence of a magnetic field is described by

Hoi = V x B, (1)
V-B=0, )
jxB=Vp, 3)

* Corresponding author.
E-mail address: Blaise.Faugeras@unice.fr (B. Faugeras).
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where Lo is the magnetic permeability of the vacuum. Ampere’s theorem is expressed by Eq. (1) and Eq. (2) represents the
conservation of magnetic induction. From the equilibrium equation (3) it is clear that

B-Vp=0 and j-Vp=0.

Therefore field lines and current lines lie on isobaric surfaces. These isosurfaces form a family of nested tori called magnetic
surfaces which enable to define the magnetic axis and the plasma boundary. On the one hand the innermost magnetic sur-
face degenerates into a closed curve and is called magnetic axis and on the other hand the plasma boundary corresponds to
the surface in contact with a limiter or to a magnetic separatrix (hyperbolic line with an X-point).

The Grad-Shafranov equation [3-5] is a rewriting of Egs. (1)-(3) under the axisymmetric assumption. Consider the cylin-
drical coordinate system (e,, e, e,). The magnetic field B is supposed to be independent of the toroidal angle ¢. Let us decom-
pose it in a poloidal field B, = B;e, + B,e, and a toroidal field B, = B,e, (see Fig. 1).

Let us also introduce the poloidal flux

‘l r
n//(r,z):ﬁ/DBds:/O B,rdr

where D is the disc having as circumference the circle centered on the Oz axis and passing through a point (r,z) in a poloidal
section. From Eq. (2) one deduces that B, = 1[Vy x e,]. Therefore B - Vi = 0 meaning that i is a constant on each magnetic
surface and that p = p(i).

The same poloidal-toroidal decomposition can be applied to j. From Eq. (1) it is clear that V - j=0. As for B, it is shown
that there exists a function f, called the diamagnetic function, such that j, =1 [V (%) X e¢}. Sincej-Vp=0then Vfx Vp=0
and f is constant on the magnetic surfaces, f=f(i/).

From Eq. (1) one also deduces that B, ={e¢ and j, = (—A*)e, where

Ao (L oy o1 0
or\Yr or) 0z \r 0z)°

To sum up
B:BP+B¢, j:jp +j¢7
BP :%[le X e¢]7 and jp = % [V(”LU) X ed’}
B, :fFe¢ j¢ = —Aye,.

From Eq. (3) one deduces that
. 1 .1
(3, +ises) x (By +Byey) = *deﬁf +iy =V =Vp
0

and since

Vp=p'(y)Vy and Vf=Ff)Vy

Fig. 1. Toroidal geometry.
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the Grad-Shafranov equation valid in the plasma reads
* / 1 /
Ay =)+ — ()W) (4)
KT

Thus under the axisymmetric assumption, the three dimensional equilibrium equations (1)-(3) reduce to a two dimen-
sional non linear problem. Note that the right-hand side of Eq. (4) represents the toroidal component j, of the current density
in the plasma which is determined by the unknown functions p’ and ff. In the vacuum there is no current and the poloidal
flux satisfies

—A" =0.

In this paper, we are interested in the numerical reconstruction of the equilibrium, i.e. of the poloidal flux ¢/ and in the
identification of the unknown plasma current density [6-8]. In a control perspective this reconstruction has to be achieved in
real time from experimental measurements. The main difficulty consists in identifying the functions p’ and ff in the non lin-
ear right-hand side source term in Eq. (4). An iterative strategy involving a finite element method for the resolution of the
direct problem and a least square optimization procedure for the identification of the non linearity using a decomposition
basis is proposed.

Let us give a brief historical background of this problem of the reconstruction of the plasma current density from exper-
imental measurements. In large aspect ratio Tokamaks with circular cross-sections, it was established in [9,10] that the
quantities that can be identified from magnetic measurements are the total plasma current I, and a sum involving the poloi-
dal beta and the internal inductance: 8, + I;/2 (see Appendix C). A large number of papers proved the possibility of separating
Bp from [; as soon as the plasma is no longer circular with high-aspect ratio [11-14]. The fact of adding supplementary exper-
imental diagnostics, such as line integrated electronic density and Faraday rotation measurements, has considerably im-
proved the identification of the current density profile [15,6,7]. The knowledge of the flux lines (from density or
temperature measurements) enables in principle [16] to determine fully the two functions p’ and ff in the toroidal plasma
current density, except in a particular case pointed out by [17] and studied by [18] and referred to as minimum-B equilibria.
The difficulty in the reconstruction of the current profile, especially when only magnetic measurements are used, has been
pointed out in [19] and is inherent to the ill-posedness of this inverse problem. The theory of variances in equilibrium recon-
struction [20] enables to determine by statistical methods what kind of plasma functions can be reconstructed in a robust
way. The equilibrium reconstruction problem in the case of anisotropic pressure is treated in [21].

A certain number of mathematical results on the identifiability of the right-hand-side of the Grad-Shafranov equation
from Cauchy boundary conditions on the plasma frontier exist and seem unknown from the physical community. They
are first dealing with the cylindrical case where the equilibrium equation becomes —Ay = p'({/) and where only one non-
linearity has to be identified. It is clear that, if the plasma boundary is circular, then the magnetic field is constant on the
plasma boundary and there is an infinity of non-linearities giving this value and the only information coming from the poloi-
dal field on the plasma boundary is the total plasma current. In [22] it was proved that if p’ is a real-analytic function, then in
a domain with a corner there is only one non-linearity p’ corresponding to a given poloidal field on the plasma boundary.
Some angles in the proof were excluded but in [23] the proof was given for corners with arbitrary angles (including the
90° X-point case). Curiously the case where the plasma boundary is smooth is mathematically more difficult and it has been
proved in [24] that, if the plasma is non-circular and if p’ is affine in terms of i/ then there exists at most a finite number of
affine functions corresponding to the Cauchy boundary conditions. The link with the Schiffer and Pompeiu conjectures which
is clearly pointed out in this paper is particularly interesting. In [25] results of unicity for a class of affine functions or for
exponential functions are given for special smooth boundaries and results of non-unicity for doublet-type configurations.
Finally in [26] identifiability results are given for the full Grad-Shafranov equation in a domain with a corner, with some
exceptions for the angle. Of course, in spite of all these identifiability results, the ill-posedness of the reconstruction of
the non-linearities from the Cauchy boundary measurements remains and has to be tackled very cautiously.

Section 2 is devoted to the statement of the mathematical problem and to the description of the experimental measure-
ments available. The proposed algorithm is described in Section 3. This methodology has been implemented in a software
called Equinox and numerical results using synthetic and real measurements are presented in Section 4.

2. Setting of the direct and inverse problems
2.1. Experimental measurements

Although the unknown functions p’(y/) and (ff )(1) cannot be directly measured in a Tokamak several measurements are
available:

e Magnetic measurements: they represent the basic information on which any equilibrium reconstruction relies. Flux loops
provide measurements of iy and magnetic probes provide measurements of the poloidal field B, at several points around
the vacuum vessel. Let €2 be the domain representing the vacuum vessel and 9 its boundary. In what follows we assume
that we are able to obtain the Dirichlet boundary conditions v = g, and the Neumann boundary conditions %% =gy at
any points of the contour 9Q thanks to a preprocessing of the magnetic measurements. This preprocessing can either
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be a simple interpolation between real measurements or be the result of some boundary reconstruction algorithm which
computes s outside the plasma satisfying A*yy = 0 under the constraint of the measurements [27-29].

A second set of measurements which can be used as a complement to magnetic measurements are internal
measurements:

o Interferometric measurements: they give the values of the integrals along a family of chords C; of the electronic density
ne(y) which is approximately constant on each flux line Je, ne()dl =y,
e Polarimetric measurements: they give the value of the integrals

| P s
C:

r on

% is the normal derivative of y along the chord C,.

Even when using magnetic measurements only for the equilibrium reconstruction the numerical algorithm presented in
this paper also uses:

o Current measurement: it gives the value of the total plasma current I, defined by
I = j,dx.
@

Ampere’s theorem shows that this quantity can be deduced from magnetic measurements.
e Toroidal field measurement: it gives the value By of the toroidal component of the field in the vacuum at the point (Ro,0)
where Ry is the major radius of the Tokamak. This is used for the integration of ff into f and for the computation of the
safety factor g (see Appendix B).

2.2. Direct problem

The equilibrium of a plasma in a Tokamak is a free boundary problem. The plasma boundary is determined either as being
the last flux line in a limiter L or as being a magnetic separatrix with an X-point (hyperbolic point). The region €, c Q con-
taining the plasma is defined by

Qp={X€Q, YX) = Y},
where /, = max;} in the limiter configuration or i, = /(X) when an X-point exists.
In the vacuum region, the right-hand side of Eq. (4) vanishes and the equilibrium equation reads
Ay =0 inQ\ Q.
Let us introduce the normalized flux y = /=% ¢ [0, 1] in €, with y, = maxo, ¥, A() = %p'(y) and B(y)) = Tieg; F) (). This is

introduced so that the non dimensional and unknown functlons A and B are defined and identified on the fixed interval [0,1].
Imposing Dirichlet boundary conditions the final equilibrium equation is expressed as the boundary value problem:

{ AW = 2 AW + BB 1o, In 2
Y =gp onoQ

(5)

The free boundary aspect of the problem reduces to the particular non linearity appearing through Lo, the characteristic
function of ©,. The parameter / is a scaling factor used to ensure that the given total current value I, is satisfied

I, = 2 /Q p {RLA@) +Rr° B(lp)} dx. (6)

0

2.3. Inverse problem

The inverse problem consists in the identification of functions A and B from the measurements available. It is formulated
as a least-square minimization problem
{Find A", B*, n; such that:

JA' B, ;) = inf J(AB.n). 7

If magnetic measurements only are used the formulation only needs the A and B variables and the J; and J, terms in Eq. (8)
below are not needed. When polarimetric and interferometric measurements are used, the electronic density n.(i) also has
to be identified even if it does not appear in Eq. (5). The cost function J is defined by

JAB,ne) =Jo +J1 + 15+ (8)



964 J. Blum et al./Journal of Computational Physics 231 (2012) 960-980

Jo describes the misfit between computed and measured tangential component of B,
1 2 (10y 2
Jo= ) ;(Wk) (; %(Mk) _gN(Mk)> )

where N is the number of points My of the boundary 92 where the magnetic measurements are given.

. 2
- ([ M )

k=1

and

1 - inter n ’
=g 3o ([ mar ).

N, is the number of chords over which interferometry and polarimetry measurements are given. The weights w give the
relative importance of the different measurements used. The influence of the choice of the weights on the results of the iden-
tification was extensively studied in [7]. As a consequence of the ill-posedness of the identification of A, B and n,, a Tikhonov
regularization term J; is introduced [30] where

1 1 !
]8:87/\/0 [ //(X)}de+%A [B,,(X)}de+%A [ng(x)]2dx

and &,4, ¢ and ¢, are the regularization parameters.

The values of the different weights and parameters introduced in the cost function are discussed in Section 4.

It should be noticed here that magnetic measurements provide Dirichlet and Neumann boundary conditions. The choice
was made to use the Dirichlet boundary conditions in the resolution of direct problem and to include the Neumann boundary
conditions in the cost function formulated to solve the inverse problem. This is arbitrary and another solution could have
been chosen.

3. Algorithm and numerical resolution
3.1. Overview of the algorithm

The aim of the method is to reconstruct the equilibrium and the toroidal current density in real time. At each time
step determined by the availability of new measurements during a discharge, the algorithm consists in constructing a
sequence (y", Q7 A" B", ") converging to the solution vector (y,€,,A,B,4). The unknown function n, may be added
too if interferometry and polarimetry measurements are used. The sequence is obtained through the following iterative
loop:

o Starting guess: y°, Q% A% B® and /° known from the previous time step solution.
e Step 1 - Optimisation step: compute /™! satisfying (6)

plas _1,,//" {R—ZA”@/}"H%B"(@")} dx

then compute A" (y") and B""' (") using the least square procedure detailed in Section 3.2.2.
e Step 2 - Direct problem step: compute ™! solution to

SAYM = M AT ) BB () gy 0 €2,

9)
Y"1 =g, onaQ
and the new plasma domain Q;”.
e n: = n + 1. If the process has not converged return to Step 1 else (y, 2,,A,B, 2) = (¢", 25, A" B", i"). The process is supposed

+1_yn

to have converged when the relative residu W is small enough.

At each iteration of the algorithm, an inverse problem corresponding to the optimization step and an approximated direct
Grad-Shafranov problem have to be solved successively. In Eq. (9), " is known and since the right-hand side does not de-
pend on y™! the boundary value problem (9) is linear.

In the next section the numerical methods used to solve the two problems corresponding to steps 1 and 2 are detailed.
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3.2. Numerical resolution

3.2.1. The finite element method for the direct problem
The resolution of the direct problem is based on a classical P! finite element method [31]. Let us consider the family of
triangulation 7, of , and V,, the finite dimensional subspace of H'(Q) defined by

Vi ={vy € H(Q), vyr € PY(T), VT € 1}

and introduce V}, = V;, N Hy(). The discrete variational formulation of the boundary value problem (9) reads
{Find vy, € Vy with , = g5 on 62 such that

YopeVy, [, ;%orv‘/’h Vopdx = [, ).[%A(lﬂ*) + R B(y") | wpdx, (10)
where 1/* represents the known value of  at the previous iteration. Numerically the Dirichlet boundary conditions are im-
posed using the method consisting in computing the stiffness matrix K of the Neumann problem and modifying it. Consider
(v) a basis of Vj, then K;; = Jo Hl—r Vv;Vv;dx. The modifications consist in replacing the rows corresponding to each boundary
node setting 1 on the diagonalf terms and O elsewhere. At each iteration only the right-hand side of the linear system in
which the Dirichlet boundary conditions appear has to be modified. The linear system corresponding to Eq. (10) can be writ-
ten in the form

K-Y=y+g, (11)

where K is the n x n modified stiffness matrix, ¥ is the unknown vector of size n (the number of nodes of the finite elements
mesh), y is the vector associated with the modified right-hand side of Eq. (10) and g is the vector corresponding to the Dirich-
let boundary conditions.

The matrix K is sparse and let LU be its decomposition. The inverse matrix K~! is not sparse. The linear system (11) is
inverted using the LU decomposition since it is computationally cheaper than using the full inverse matrix K~! which is nev-
ertheless needed for the optimization step of the algorithm in Eq. (15) below.

The vector y depends on functions A and B which are determined in the optimization step. Functions A, B and n, are
decomposed on a finite dimensional basis (®;);-1, . ,0f functions defined on [0,1]

m m

A(x) = Zm:ai(bi(x), B(x) =) bi®i(x) and n.(x) = > c®i(x).

i i

The vector y reads

y=Y@y")u, (12)

where u = (ay,...,an, b, ..., bn) € R*™ is the vector of the components of functions A and B in the basis (®;). The matrix Y of
size n x 2m is defined as follows. Each row i of Y is decomposed as

j;zp%mj(f)v,-dx if 1<j<m,

Y,(7)
) Jo, AR O (@) widx if m+1<j<2m.

3.2.2. Detailed numerical algorithm

One equilibrium computation corresponds to one instant in time during a pulse. The quasi-static approximation consists
in considering that at each instant the Grad-Shafranov equation is satisfied. During a pulse successive equilibrium config-
urations are computed with a time resolution At corresponding to the acquisition time of measurements:

o Initialization before the discharge: the modified stiffness matrix K, its LU decomposition as well its inverse K~! are com-
puted once for all and stored.

e Consider that the equilibrium at time t — At is known and that a new set of measurements is acquired at time t.

e Computation of the new equilibrium at time t through the iterative loop briefly described in the previous section and
detailed below:

The equilibrium from the previous time step is used as a first guess in the iterative loop.
Step 1 - Optimization step During the optimization step, n, is first estimated from interferometric measurements and A and
B are computed in a second time.

e Compute the electronic density n, based on the equilibrium of the previous iteration y* using a least square formulation
for the minimum of J, with Tikhonov regularization and solving the associated normal equation: The flux y* is given
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e = Y )
p=

The interferometric measurements fori=1,...,n. are

e [ ne )= S [ o= > v
The cost functional reads

J(0) = 5 37 (W3 Byoy )+ o7 A = S ID 2By )| 4+ o7 A,

i j

where D'/? = diag(wi"r) and the regularization matrix A is defined by

1
Ay = /0 @] (1)@ (X)dx

and @] is the second order derivative of the basis function ®@;.
It is minimized solving the associated normal equation

(a2(D'?B)"(D'?B) + &A)» = a(D'*B)"D'/?y. (13)

Since 11, ~ 10' m~3 an adimensionalizing parameter « = 10'® m~3, such that » = a, is introduced in order to precondition
the linear system which is inverted using LU decomposition, as well as a reasonable prescribed value for the non dimensional
regularization parameter & = o%e.

o Compute /™! satisfying Eq. (6). In the right-hand side y, A appears in the product /u. In order to avoid any divergence issue
due to the non uniqueness of 4 (for all o, 2u = (1) (%)) the degrees of freedom (dofs) u are scaled by m = max(|a), u is
replaced by Lu and / by mA.

e Compute A and B. In order to approximate A and B, suppose n. is known and consider the discrete approximated inverse
problem

(14)

Find u minimizing :
Jw) =31Cy") ¥ —d||p + 5u" Au.

where C(1*) is the observation operator and d the vector of experimental measurements. The first term in J is the discrete
version of Jo + J;. The second one corresponds to the first two terms of the Tikhonov regularization J. with ¢4 = ¢g = ¢ which
will always be assumed in order for functions A and B to play a symmetric role.

Let us denote by | the number of measurements available (I = N + N, if magnetic and polarimetric measurements are used)
and by D the diagonal matrix made of the weights w, and w®”, the norm |||p is defined by Vx e R'|x|} =
(Dx,Xx) = (D'*x,D'?x).

C(y*) is a sparse matrix of size | x n and can be viewed as a vector composed of two blocks Cy of size N x n and indepen-
dent of y* and C;(¥/*) of size N, x n corresponding respectively to Jo and J;. That is to say that multiplication of the kth row of
Co by  gives the kth Neumann boundary condition approximation

(Con = (3 G ) (M)

T on

The block C;(1*) depends on y* through the n.(y*) function. The multiplication of the kth row of C;(y*) by ¥ gives the kth
polarimetric measurements approximation

(CHU)), Y =~ / ne(¥) Z_ﬁ dl.

Cx r

The matrix A is of size 2m x 2m and is block diagonal composed of two blocks A, and A, of size m x m, with

1
(A1) = (A2); = /0 @/ (x) P} (x)dx.

Using Egs. (11) and (12) problem (14) becomes

1 ; & 1 TR o e 1 e
JW) =51 - dji5 + EUTAU =5 ICWIK 'Y )u+ (CYHK g —d)llp + j“TAu =5 ||Eu —fli5 + QUTAU,
where E = C(y*)K'Y (%) and f= —C(yy*)K 'h + d. Setting E = D'/E, problem (14) reduces to solve the normal equation
(E'E + eA)u = E'f (15)

whose solution is denoted by u*.
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Step 2 - Direct problem step. Update the dofs u and update the flux y/ by solving the linear system

Ky =YW )u +g (16)
using the LU decomposition of matrix K. Update €2, possibly computing the position of the X-point if the plasma is not in a
limiter configuration.

Finally it should be noticed that this algorithm is particularly well adapted to real-time applications. Indeed during the
computations the expensive operations are the updates of matrices C and Y as well as the computation of products CK~! and
CK~'Y which appear in Eq. (15). In order to reduce computation time the K~! matrix is precomputed and only the ys-depen-
dent part of Cis dealt with. The resolution of the direct problem, Eq. (16), is cheap since the LU decomposition of the K matrix
is also precomputed.

4. Numerical results
4.1. Twin experiment with noise free magnetic measurements

In this section we assume that the poloidal flux corresponding to an equilibrium configuration y/ is given on the boundary
I'. These Dirichlet boundary conditions can either be real measurements or can be the output from some equilibrium sim-
ulation code. In a first step we also assume to know functions p’ and ff (or A and B). In what follows these reference functions
are given point by point. It is then possible to run a direct simulation to compute i on  (see Fig. 2) and thus 1 22 on I" which
can then be used as measurements in an inverse problem resolution.

In this first experiment the magnetic measurements are free of noise. The identification algorithm is initialized using the
first guess functions are A(x) = B(x) = 1 — x and / = 1. The poloidal flux i/ is initially a constant on Q. The weights in the misfit
part of the cost function J, related to magnetic measurements are defined by w, = ﬁ Since the error on magnetic measure-
ments are of about one percent we define ¢ = 0.01B,, where B, is a mean magnetic field value which thanks to Ampere’s
theorem can be defined as B, = %

The functions A and B are decomposed in a function basis defined on the interval [0, 1]. Several basis have been tested
(piecewise affine functions, polynomials, B-splines and wavelets) in order to verify that the result of the identification does
not depend on the decomposition basis. This is the case as long as the dimension of the basis is large enough. In the remain-
ing part of this paper each function is decomposed in the same basis of 8 B-splines [32]. The boundary condition
A(1)=B(1)=0 is imposed.

The computations are carried out for several values of the regularization parameters ¢ ranging from 1071° to 1. We are
interested in the ability of the method to recover functions A and B and thus the current density profile averaged over
the magnetic surfaces (see Appendix A):

Ro("C0Y — o)+ 83 (1 B
and the safety factor q (see Appendix B).

As can be seen from Fig. 3 the optimal choice for ¢ is of about 107> for which functions A and B are well recovered. For
smaller values some oscillations appear because the regularization is not strong enough and on the contrary greater values
lead to less precision in the recovery of the unknown functions since regularization is too strong. In the second column the
relative errors on the identified functions are plotted.

Fig. 4 shows an important point. Almost whatever the chosen value of ¢ is, i.e. whatever the quality of the identification of
A and B is, the identified averaged current density Ry f“%’) as well as the safety factor g are always well recovered and the
relative errors are one order of magnitude smaller than for functions A and B. The same kind of observation was made in [8]
where the identified functions A and B seemed to be rather sensitive to perturbations whereas the averaged current density
was very stable.

In Table 1, the evolution of the relative residu on s, A, B and / versus the number of iterations is given. It demonstrates
numerically the convergence of the algorithm in this case where a value of 10~° is used as stop condition. The algorithm
needs 10 iterations to converge. It is interesting to notice that even though the first guess is not particularly well chosen
the relative residu on s at the second iteration has already fallen to 4%. In real applications when simulating a whole pulse
the first guess for the computation of the equilibrium at t is the equilibrium computed at t — At and two iterations are en-
ough to ensure a good convergence of the algorithm.

4.2. Twin experiment with noisy magnetic measurements

Figs. 5 and 6 show the results of the same type of numerical experiment but with noisy measurements. Each magnetic
input, m representing either y or 1 g—ﬁ at a point of the domain boundary I, is perturbed with a one percent noise normally
distributed, m; = m + n with # ~ N(m,0.01m). For each chosen value of the regularization parameter the algorithm is run 200
times with measurements randomly perturbed as above. Then for each function /A, R (%)B,Ro <@> and ¢, a mean function

and a standard deviation function are computed.
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Jo025

1175

Fig. 2. An equilibrium configuration for the Tokamak JET from which twin experiments are performed. The domain © and its boundary I" (external blue
line) are shown. Isoflux are plotted from i = 0 (magnetic axis) to y = 1 (plasma boundary represented by the thick blue line running through the X-point
(2.5, —1.4)) by step of Ay = 0.1 Interferometry and polarimetry chords appear in green. (For interpretation of the references in colour in this figure legend,
the reader is referred to the web version of this article.)

In comparison with the noise free case the regularization parameter needs to be significantly increased to values of at
least ¢ = 1072 and for a safer convergence of the algorithm to £ = 10", For smaller values the algorithm either does not con-
verge or gives very oscillating identified functions.

The mean error on the reconstructed functions is always smaller in the interval € [0.5, 1] than in the interval [0,0.5].
This is due to the fact that magnetic measurements are external to the plasma and do not provide enough information to
properly reconstruct the functions in the innermost part of the plasma.

As ¢ increases the variability or the standard deviation on the identified functions decreases. With small ¢ the algorithm
can find very different functions depending on the perturbations of the measurements. With ¢ = 1072 the variability in the
identified functions A and B is strong however the mean identified functions are close to the exact reference ones. On the
other hand with ¢ = 1 the variability of the identified functions is strongly reduced but they are quite different from the exact
reference functions in the interval [0,0.5]. )

It is worth noticing that in all cases the resulting safety factor g and averaged current density Ry @ are well recovered.
The remark of the preceding section on the identifiability of the averaged current density still holds: it is quite well recovered
even if functions A and B taken separately are not well identified. The mean error on the current density profile is almost
always smaller than the mean errors on functions A and B. Moreover this error does not change very much between the dif-
ferent cases and particularly between the £ =10"" and the £ =1 cases. This implies that for a large interval of ¢ the value of
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Fig. 3. Twin experiment with noise free measurements and different regularization parameters ¢ ranging from 10~'° to 1. Left column: identified functions

JA(J) and zRé (£)B(y) for each different ¢ value, and the known reference functions (almost superimposed with the ¢ = 1072 curve). Right column: relative
errors.

the part of the cost function related to magnetic measurements J is almost constant. Therefore it is difficult to find an opti-
mal value for the regularization parameter. For example the L-curve method [33] for the determination of the regularization
parameter can hardly be used and gives some results which are not very reliable since the L-curves are not well behaved and
the location of the corner is not clear. The “L” is an almost vertical line. This is due to the fact that, in a large interval of ¢
values, an increase in ¢ implies a important decrease in the regularization term 1 (u*(¢))" Au*(¢) but does not lead to a signi-
ficative increase in the misfit term Jo(u*(¢)).

4.3. Twin experiment with noisy magnetic, interferometric and polarimetric measurements

In this last twin experiment, interferometric and polarimetric measurements are also used. At first a reference density
profile, n,(x) is prescribed point by point on [0,1], as well as the same reference A and B functions as in the previous twin
experiments. Then similar to the preceding section the equilibrium is computed from given Dirichlet boundary condition.
A set of artificial magnetic, interferometric and polarimetric measurements is generated. Finally several twin experiments
with a 1% noise are performed and some statistics are computed. The weights related to interferometric and polarimetric
measurements in the cost function are defined as

o WP — 1 with ¢?% = 10" rad.
/N gpolar
o witter — __1__ with ¢™" =10 m3.

/N ginter’
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Fig. 4. Twin experiment with noise free measurements and different regularization parameters ¢ ranging from 10~'° to 1. Left column: resulting identified
averaged current density Ry <@> safety factor q for each ¢ value and the corresponding known reference values. Right column: relative errors.

Table 1
Numerical convergence of the algorithm.
Iteration n Tt =y JA™ A [B*1—B"|| Jamoan
T A" IB"| 127
1 2.64809 6.07599 5.3509 0.100127
2 0.0408642 1.19473 1.42619 9.24968
3 0.0733385 1.83005 1.47338 0.563235
4 0.0404254 0.884617 1.0359 0.108107
5 0.00539736 4.79091 4.37571 0.826455
6 0.000349811 0.127626 0.180449 0.0889022
7 1.58606e—05 0.0262942 0.0246657 0.0263
8 5.67036e—06 0.00294791 0.0024952 0.00315952
9 1.4533e-06 0.000339986 0.000273055 0.000362224
10 6.19066e—07 6.41923e-05 6.51076e—-05 6.29838e—-05

The determination of the regularization parameter for the density function n, is far less a problem than for functions A
and B since for example the L-curve method works quite well in this case (see Fig. 10 in the next section) and the n, function
is well recovered as shown in Fig. 9. The regularization parameter for the density function is set to &, = 1072,

The statistical results of the twin experiments are shown in Figs. 7 and 8 for three different values of . The use of inter-
ferometric and polarimetric measurements adds supplementary constraints on the A and B functions. The variability in the
recovered functions is less important than in the case where only magnetics are used particularly for i € [0, 0.5]. This is not
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Fig. 5. Statistical results of the identification experiments with noisy magnetic measurements. Row 1: ¢ =102, row 2: ¢=10"", row 3: ¢=1. Column 1:
function 2A(y) and column 2: ).Ré(%)B(J/), For each function the reference value from which the unperturbed measurements were computed is given in
black and the mean identified function in red. The mean * standard deviation functions are shown in dashed red. (For interpretation of the references in
colour in this figure legend, the reader is referred to the web version of this article.)

surprising since the new measurements are internal and bring some information contained inside the plasma domain. Nev-
ertheless it is not enough to perfectly reconstruct independently the A and B functions. This does not prevent an excellent
recovery of the averaged current density profile and of the safety factor g. This phenomenon already observed in the mag-
netics case is emphasized here where the variability of the recovered profiles has decreased.
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Fig. 6. Statistical results of the identification experiments with noisy magnetic measurements. Row 1: ¢=10"2, row 2: ¢=10"", row 3: ¢=1. Column 1:
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4.4. A real pulse

The algorithm detailed in this paper has been implemented in a C++ software called Equinox developed in collaboration
with the Fusion Department at Cadarache for Tore Supra and JET. Equinox can be used on the one hand for precise studies in
which the computing time is not a limiting factor and on the other hand in a real-time framework to reconstruct the suc-
cessive plasma equilibrium configurations during a whole pulse. For the time being it is used on JET and ToreSupra pulses,
it has also been tested on the Tokamak TCV and can potentially be used on any Tokamak.

During the real time analysis of a whole pulse an equilibrium is reconstructed from new measurements with a time step
of At =100 ms. For each equilibrium reconstruction the number of iterations of the algorithm is set to 2. This enables fast
enough computations while a very good precision is achieved since the initial guess for an equilibrium computation at time
t is the equilibrium computed at time t — At. After 1 iteration a typical value for the relative residu on v is of 1072 and it is of
103 after two iterations. Table 2 gives the size of the finite elements mesh used at ToreSupra and at JET as well as typical
computation times on a laptop computer.

The choice of the regularization parameters is crucial since it determines the balance between the fit to the data and the
regularity of the identified functions. It is also difficult as is shown in the preceding section. Ideally they should be deter-
mined for each equilibrium reconstruction. However this is not possible in a real-time application and the regularization
parameters have to be set a priori to a constant value. From the twin experiments presented in the preceding sections it
is quite clear that a good value for the regularization parameter ¢ is in the range [1072,1]. By trial and error on different
pulses using magnetics, interferometry and polarimetry, it appeared that a value of ¢ =5 - 102 gave good results.

As for the identification of functions A and B the choice of a good regularization parameter for the identification of n, is
crucial. However in this case the L-curve method works quite well and it was used to determine the regularization param-
eters ¢, a priori on a number of equilibria for a few shots. The obtained values showed little variation and the choice of a
mean value ¢ = 0.01 proved to be efficient. Fig. 10 shows an example of an L-curve computed for the identification of n..

Concerning real pulses at JET we refer to [34,35] in which a validation of Equinox is performed using many different
pulses. This validation includes a posteriori comparison of the position of rational q surfaces computed from Equinox and
deduced from soft X-rays measurements. The validation is satisfactory and shows again that when solving the inverse prob-
lem the use of interferometry, polarimetry and even Motional Stark Effect measurements at JET improves the location of ra-
tional q surfaces.

Here we only present an example of the output from Equinox on a ToreSupra pulse. Fig. 11 shows the equilibrium com-
puted at time 20.408 s for ToreSupra pulse number 36,182 using magnetic measurements as well as interferometric and

Table 2
Typical mesh size and computation time for ToreSupra and JET.
ToreSupra JET
Finite element mesh
Number of triangles 1382 2871
Number of nodes 722 1470
Computation time (1.80 GHz)
One equilibrium 20 ms 60 ms
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Fig. 9. Statistical results for the identification of the density function n, with noisy interferometric measurements.
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Fig. 10. Typical L-curve for the determination of ¢,. It is a plot of the parametric curve x(g,)=log G D2 (Bv" (e,,) — }')||2),
Y(&n,) = log é(v*(s"c))r/lv*(s,,ﬁ)) where v*(g,,) is the solution to Eq. (13). Hansen’s algorithm [33] locates a corner at ¢,, = 0.01.

P1l:
#36182 at 20-407686s

0.035 .
0.028 0.017,0-0670.030

Fig. 11. Graphical output from Equinox. Reconstructed equilibrium at time 20.408 s for ToreSupra pulse number 36,182. Magnetic, interferometry and
polarimetry measurements are used. See text for more details.
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Table 3
Bp and I; computed by Equinox and by Apolo for ToreSupra shot 36,182 at t = 20.408 s.
Bp L By +14
Equinox 0.62 1.66 1.45
Apolo 0.70 1.55 1.47

polarimetric measurements. One can observe the position of the plasma in the vacuum vessel. Isoflux lines are displayed
from the magnetic axis to the boundary. The interferometry and polarimetry chords are displayed. For each chord the error
between computed and measured interferometry is given in purple. These errors are about 1% for the active chords. The
polarimetry absolute errors are given in yellow. Different graphs are plotted on the left hand side of the display. On the first
row the identified function A, and corresponding functions p’ and p. On the second row the identified function B and corre-
sponding function ff. The third row gives the toroidal current density j, in the equatorial plane and the fourth one shows the
safety factor g. Finally on the fifth row the identified n, function is plotted.

It is of importance to compute the kinetic energy poloidal $, parameter and the internal inductance ;. In Equinox these
equilibrium parameters are computed following the equations of Appendix C. For ToreSupra they are computed in the code
Apolo [28] from the Shafranov integrals and from the toroidal plasma flux. The agreement between the two methods is good
as shown in Table 3. The relative errors on f$, and [; are about 10% while it is of about 1% on the sum f, + Ij

Finally it should be noticed that at ToreSupra or JET there does not exist reliable enough pressure measurements to be
used in an inverse equilibrium reconstruction. The electron pressure p, can be reasonably estimated from interferometry
for the density n. and Thomson scattering and Electron Cyclotron Emission for the temperature T,. On the contrary very large
uncertainties on the ion quantities n; and T; make the ion pressure p; and thus the total pressure p = p. + p; unusable in a real-
time identification algorithm such as the one presented here. Moreover the quantity really important in order to constrain
the identification of the p’ term would be the pressure gradient on which the error bars are even larger.

5. Conclusion

We have presented an algorithm for the identification of the current density profile in the Grad-Shafranov equation and
the equilibrium reconstruction from experimental measurements in real time. We have shown thanks to several twin exper-
iments that even though the unknown functions A and B (or p’ and ff) taken separately might not be always exactly iden-
tified the resulting averaged current density and safety factor seem to be always well identified. We have also shown that the
use of internal polarimetric measurements improves the quality of the identification but is still not enough to perfectly iden-
tify both A and B. Finally we have introduced the software Equinox in which this methodology is developed. This work con-
stitutes a step towards the real-time control of the safety factor and of the averaged current density profile in a Tokamak
plasma which will be essential in nuclear fusion reactors.
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Appendix A. Average over magnetic surfaces

The method of averaging over the magnetic surfaces is detailed in [14, p. 242]. The average (A) of an arbitrary quantity A
on a magnetic surface S is defined as

o r
A =— [ AdV
& =5y [ Aav.
where V is the volume inside S. This notion of average has the following property:
4
Jo &

where C; is a closed contour y = cte € (0,1) and B, = 1| Vy/||.

(A)
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Appendix B. Safety factor q

The safety factor is so called because of the role it plays in determining stability [1, p. 111]. It can be seen as the ratio of
the variation of the toroidal angle needed for one magnetic field line to perform one poloidal turn

_Ad
Q—E~

Since g is the same for all magnetic field lines on a magnetic surface it is a function of Y (or ). The expression of q used for
computations is the following

| B,
Q(‘P)—E/Cw E‘ﬂ

where C; is a closed contour y = cte € (0,1), B, =§ and

v
fy) = \/(BOR0)2 + , (f)'(y)dy.

Appendix C. Poloidal g, and Internal inductance I;

The full 3D plasma domain is denoted by D. The plasma domain in the poloidal section by €, and its boundary 892, = I'}..
Let us define Ry = J (Riet + Rrigne)-
Surface and perimeter of a poloidal section. Let us define S, = fszp ds and L, = frp dl. For a circular plasma of radius a:

L,=2ma, S, = na®and S, = %. Even for non-circular plasma the following quantity is used:

2
L
P4

Plasma volume

27
Vp:/dv:/ / rd¢ds:2ﬂ:/ rds. (18)
D 0 Q Q

The following approximation can be used:

(17)

~ ~

Vp = 27R,S,. (19)
Poloidal p,. The ratio f = ﬁ represents the efficiency of the confinement of the plasma pressure by the magnetic field. The
0
poloidal beta is defined as the ratio of the mean kinetic pressure of the plasma to its magnetic pressure [1, p. 116]:
p
Bp=—"— (20)
" Ba/2M
where
d prds
ﬁ:pod”:f% . 21)
hdv [y, rds
and
I Bedl_ ol (22)

By, =
frp dl L,
Let us define the internal kinetic energy

3
W:Z/Dpdv.

We have

3. 3B,
W= ijp =3 Z—,uovpﬁp

and from Egs. (22), (19) and (17) follows that [1, p. 504]

3
W= g.uoRgI;z;ﬁb-
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Then p, can be approximated by
HA4)
2
%ﬂoRng
which the default g, computed by Equinox.

ﬂp:

Internal inductance I;

The internal inductance [; of the plasma characterizes the current density profile [1, p. 120,14, p. 44]:
R2
B
2 )
By,

!

where
2
B I Bydv
b Jpdv -
In Equinox the computation of ; is done as follows:
_BY,
Blz)avp

li
Using Eqgs. (22), (19) and (17) leads to
_BY

T L
TRng

li

which is the default computation of [; in Equinox.
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1. Introduction

The shape of the plasma current density profile, direct output of an equilibrium
reconstruction, is known to play a leading role in triggering and sustaining high
performance regimes. In the perspective of improving the control of these regimes,
the objective is thus to develop real-time methods and algorithms that reconstruct the
magnetic equilibrium in the perspective to use their outputs for feedback purposes.
The real time equilibrium reconstruction code EQUINOX, which solves the Grad
Shafranov equation, has been recently rewritten and installed in both JET and Tore
Supra (TS) real time control systems. This new version provides much more flexibility
in terms of parameters tuning and constraints. Indeed in addition to the magnetic
measurements it may consider as internal constraints MSE, polarimetry, and
potentially others such as Soft X-rays measurements and/or plasma pressure profiles
for magnetic axis determination. The calculation time, when internal constraints are
included, is about 50ms on both machines, which is short enough to allow feed back
control on the plasma current on medium and large devices.
2. Overview of the used RT resolution techniques

The problem of the equilibrium of a plasma in a Tokamak is a free boundary
problem in which the plasma boundary is defined as the last closed magnetic flux
surface. Inside the plasma, the equilibrium equation in an axisymmetric configuration

is the Grad-Shafranov equation:

SNy =@y (@) wih o :"’[ 1 "’Jw’( 1 f’j ()
J7% or \ f,r or 0z\ f,r 0z
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Where [ is the magnetic permeability of the vacuum, ¢(r,z) the poloidal flux, r, z the
Cartesian coordinates. The right hand side of this equation is a non-linear source
which represents the toroidal component of the plasma current density. The goal of a
real-time equilibrium code is to identify not only the plasma boundary but also the flux
surface geometry outside and inside the plasma, the current density profile and
derive the safety factor ‘q" and other important parameters from the obtained
equilibrium. In order to meet the real-time requirements, a new version of the
EQUINOX [1] code has been designed and implemented in C++ using a finite
element method, a non linear fixed point algorithm associated to a least square
optimization procedure. Tokamak specific softwares like FELIX/XLOC [2] (or APOLO
[3] at Tore Supra) provide to the EQUINOX code the boundary conditions (discrete
poloidal flux values on the first wall of the vacuum vessel) in real-time. By means of
least-square minimization of the difference between measurements and the
simulated ones the code identifies the source term of the non linear Grad-Shafranov
equation. The experimental measurements that enable the identification are the
magnetics at the vacuum vessel, the interferometric and polarimetric measurements
on several chords and the motional Stark effect measurements (only at JET). The
finite element solver uses triangles interpolation, the calculation being limited to the
vacuum chamber. A careful implementation inside the MARTe framework [4] at JET
leads to execution time less than 50ms per iteration on a 2GHz PC, complemented
with excellent robustness and very good precision (+/- 1cm compared to FELIX-
XLOC code) of plasma boundary for an equilibrium code. Examples of reconstructed

equilibria at Tore Supra and JET are provided in Fig.1:

W 3907 ot 6. 400135

Fig.1: Examples
of Equilibrium
reconstruction:
left Tore Supra
case (#33922 at
6.4s) right JET
case (#70199 at
51.4s).

3. Code validation at JET
Using a validated database of 150 pulses (shots with or without the new ITER Like

Wall) well representative of JET operational space (1.12<I,<3.09MA, 1.68<B7<3.42T,
0.06<06<0.51), EQUINOX has been first fully and carefully benchmarked against the
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online plasma boundary shape reconstruction code XLOC, the off line equilibrium
code EFIT [5] and MHD signatures. Statistical analysis confirmed the relevance of

the EQUINOX reconstruction (Fig 2) for the reconstruction of global parameters.
Fig.2 Statistical
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Validation has also been performed on specific shots to check the dynamical
response of the code but also to validate the accuracy of the reconstruction when

internal measurements are used (Fig.3).
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Fig 3 Comparison between EQUINOX and EFIT of q Fig 4 Comparison between MHD markers and location
profile magnetic only (dotted lines), polarimetry and of g=1.5 (low and high field side) obtained in real time
MSE (green plain lines) #77601, Ip=1.7MA BT=2.6T, from EQUINOX (constrained with polarimetry),
3MW LHCD (Lower Hybrid Current Drive), 6MW ICRH  (#74826, 19MW NBI, 1,=1.6MA, B1=2T)

(lon Cyclotron Resonance Heating), 20 MW NBI.

Independent analysis of the database provides identification of MHD mode and their

location. Fig. 4 shows the perfect agreement between EQUINOX and mode location
(g=1.5) identified from Electron Cyclotron Emission (ECE) and magnetic

measurements.
4. Code validation at Tore Supra

The validation of Equinox on Tore Supra has started and will follow the same
methodology as JET. The new version of Equinox takes into account the polarimetry
data. Indeed, this diagnostic is of crucial importance at Tore Supra where shots can
last several minutes, these durations being presently much too large for continuous
MSE measurements. Equinox input parameters have been tuned by calculating
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plasma equilibria for some typical shots of the last campaign, and compared with
EFIT and with the current diffusion code CRONOS calculations. They have also been
compared with results from APOLO code that controls the plasma position in real
time, taking information from the poloidal generators and the magnetic diagnostics.
Figure 5.a shows an example of q profiles obtained by EQUINOX, EFIT and
CRONOS for a sawtooth discharge with 5SMW of lon Cyclotron Radiofrequency
Heating. EQUINOX and EFIT both using polarimetry are in a very good agreement,
whereas slight differences can be seen with CRONOS, but the difference looks
reasonable since these codes are based on different principles. Figure 5.b shows the
evolution of the rational q surfaces position with time for the 3 calculations, still in
good agreement. When possible the comparison with MHD information is performed.
For instance in this figure, the sawtooth inversion radius derived from the ECE
diagnostic is indicated. The tuning of EQUINOX now needs to be tested on a larger
database of shots, and this code will be available for the next campaign, the new q
profile control algorithm tools being developed in parallel.

T545439. q profiles @ 9s T545439. Evolution of rational q surfaces

32 equinox cronos: Riny sawteeth
g= 4

equinox

cronos

Ip=1.2MA

e ICRH=SMW

%.4 256 26 27 28 29 3 5 10
R (m) time (s)

Fig 5.a Comparison of q profiles obtained by Fig 5.b Comparison of rational g surfaces evolution
EQUINOX, EFIT, and the current diffusion code with time for EQUINOX, EFIT and CRONOS. The
CRONOS sawtooth inversion radius is indicated.

5. Conclusions and perspectives

The EQUINOX code is now available in real time in both JET and Tore Supra
tokamaks and will be used for q profile feedback control experiments. The full
validation of the real time reconstruction provides now a good base for real-time
control but more generally systematic physics analysis. This code is also available
inside the Integrated Tokamak Modelling platform which makes EQUINOX a
potentially very powerful tool to predict equilibrium and current profile evolution in
ITER or DEMO.
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Abstract

We present a method based on the use of toroidal harmonics and on a modelization of the
poloidal field coils and divertor coils for the 2D interpolation and extrapolation of discrete
magnetic measurements in a tokamak. The method is generic and can be used to provide the
Cauchy boundary conditions needed as input by a fixed domain equilibrium reconstruction
code like Equinox (Blum et al 2012 J. Comput. Phys. 231 960-80). It can also be used to
extrapolate the magnetic measurements in order to compute the plasma boundary itself. The
proposed method and algorithm are detailed in this paper and results from numerous numerical
experiments are presented. The method is foreseen to be used in the real-time plasma control
loop on the WEST tokamak (Bucalossi ef al 2011 Fusion Eng. Des. 86 684-8).

Keywords: tokamak, plasma equilibrium, plasma boundary, toroidal harmonics,

magnetic measurements, inverse problem

(Some figures may appear in colour only in the online journal)

1. Introduction

Equilibrium reconstruction codes are fundamental for the
analysis and the control of fusion experiments in a tokamak
[3]. The state variable of interest in the modelization of
such an equilibrium under the usual axisymmetric assumption
is the poloidal flux ¥ (r, z), which is related to the poloidal
magnetic field by the relation B = (1/r)(—d,¥, d,v) in the
cylindrical coordinate system (r, ¢, z). The basic inputs used
to achieve the numerical reconstruction of the equilibrium are
magnetic measurements taken at several locations surrounding
the vacuum vessel.

Basically equilibrium codes can be of two types. The
first one is the full domain type in which the reconstruction is
performed in the whole right-half plane (» > 0) and relies on
the use of Green’s functions. A drawback of this method is
that nonlinear ferromagnetic structures, which can be present

0741-3335/14/114010+11$33.00

in certain tokamaks, are complicated to deal with. An iron
model has to be introduced [4] and these codes can hardly
run in real time. The second type of code is the bounded
domain one in which computations are performed in a fixed
domain containing the plasma but restricted to a limited region.
A difficulty is that Cauchy boundary conditions (g = V¥,
h = 09,v¥) have to be provided on a fixed closed contour
defining the boundary of the computation domain (this contour,
called I in the remaining part of this paper, can link some of
the B probes, for example). These boundary conditions have
to be computed from the discrete magnetic measurements.
If these measurements are numerous enough and regularly
located on a smooth contour, a direct linear interpolation can
be considered [5,6]. However, this method is not robust in
case of defective sensors. Morevover, it cannot be used in
today’s machines like JET, in which the measurement points

© 2014 I0P Publishing Ltd  Printed in the UK
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are scattered in some annular region surrounding the vacuum
vessel. Another approach that can be considered is to use the
plasma boundary identification code of a particular machine
if it exists. Such a code will, in fact, compute the poloidal
flux v in the vacuum surrounding the plasma and can be
used to evaluate v and its normal derivative on any given
fixed closed contour I'. This is the approach followed until
now for the equilibrium reconstruction code Equinox [1]. The
computations rely on the boundary conditions g and / provided
by the plasma boundary reconstruction codes Xloc at JET [7, 8]
and the Apolo code at Tore Supra [9]. The main drawback of
this approach is that these two boundary reconstruction codes
are extremely machine dependent and are not transportable to a
generic platform such as the ITM [10]. Moreover, concerning
the particular case of Tore Supra, a new numerical method has
to be developed since the machine is going to be upgraded to
WEST [2].

The aim of this paper is to investigate the possibility
of using toroidal harmonics to perform the 2D interpolation
and extrapolation of magnetic measurements in an annular
domain surrounding the plasma to compute Cauchy boundary
conditions on a given fixed closed contour I" in order to be
able to run in a second step an equilibrium reconstruction
code such as Equinox in the bounded domain limited by
I'. In fact, at a given instant in time, the fictitious inner
boundary of the annular domain could be defined as being
the plasma boundary itself, and the data interpolation problem
is very closely connected to the ill-posed inverse problem
of the identification of the plasma boundary. The latter is
a Cauchy problem for the elliptic equation A*y» = 0, and
various solution methods have been proposed to solve it, to
compute ¥ in the vacuum surrounding the plasma and to
identify the plasma boundary (see [11] for a review). The
ill-posed nature of the problem usually imposes the use of
a regularization technique and an a priori representation of
plasma current density and the flux it generates, called the
internal solution, for example using filaments of current or
a fictitious current sheet, or also a decomposition in toroidal
harmonics. The latter seems particularly attractive since these
functions provide explicit solutions to the equation A*yr = 0.
Toroidal harmonics [12, 13] were used in a number of papers
in the plasma physics literature in the 1980s and 1990s [14-20]
and more recently in [21].

Apart from [16, 21], authors using toroidal harmonics do
not use any regularization procedure. Our point of view is
that the small number of harmonics needed to represent the
flux in the vacuum is in itself a regularizing procedure. Our
numerical experiments confirm this point. In fact the number
of toroidal harmonics used to represent the internal solution
in some way can be seen as the regularization parameter. A
too small number might lead to a smooth solution that possibly
does not fit the data very well and does not give a very accurate
plasma boundary, whereas a too large number might lead to an
irregular solution that fits the data well but gives an irregular
plasma boundary.

Another ingredient of the method to which the solution
is quite sensitive is the location of the pole of the toroidal
coordinates system. In fact, together with the number of

internal toroidal harmonics it is the only parameter of the
internal solution that can be tuned, and curiously it is generally
kept fixed in the literature apart from in [19], in which an
optimization method is proposed to identify a proper location
of the pole. In this paper we propose two simple methods to
do so.

Finally, in order to represent the flux i in the vacuum,
some authors use a pure decomposition in toroidal harmonics
[14-16,20] whereas others add a term coming from the
modelization of the flux generated by the poloidal field coils
[17,19]. In this paper, we discuss this point together with the
impact of the presence of nonlinear ferromagnetic material.
Our numerical experiments show that it is important to take
into account the divertor coils.

The paper is organized as follows. In the next section we
introduce notations for a number of domains and contours that
are needed. Section 3 deals with the decomposition of the flux
in toroidal harmonics. In section 4, the proposed numerical
algorithm is presented, and in the last section a number of
numerical results are presented.

2. Mathematical setting

In order to get into the details of this work we first need
to briefly recall the equilibrium reconstruction problem and
introduce a number of contours and domains. Therefore,
a schematic representation of a poloidal cross-section of a
tokamak is shown in figure 1 and is described below.

The unknown plasma free boundary domain is noted £2,,.
The plasma boundary is the isoflux line whose value is defined
either by the contact with the limiter or as a magnetic separatrix
(a hyperbolic line with an X-point represented by the dashed
line inside the limiter contour in figure 1). Poloidal field coils
and divertor coils are denoted as Q¢,. Poloidal field probes
measure the local value of the poloidal magnetic field, and flux
loops and saddle loops measure the local value of the flux .
Flux and saddle loops, represented by triangles, and B probes,
represented by cross-circles, are shown surrounding the limiter
contour. All these measurement points can be included in a
fictitious annular domain D, which neither contains the coils
nor the plasma. The inner boundary of D can, for example, be
chosen to be the limiter contour. The presence of divertor coils
can impose the choice of a somehow tortured outer boundary
(the dashed line labelled 0<2). The outer boundary of D also
defines a domain 2 including D, €2, and the vacuum region
lying between the plasma and D. Eventually all these different
domains will be included in the larger domain €2, outside of
which nonlinear magnetic material like iron might be present.
Its boundary is noted 2.

Depending on the domain, the poloidal flux satisfies the
partial differential equation

— A" =0 inD (1)

or
— A = j,(¥. ) xe, in 2 2

or

— A =j,(Y.1)xe, + Y JaXe, R (3)
k
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Figure 1. Schematic representation of a poloidal cross-section of a
tokamak. See the text for details.

where the differential operator

A*_H 1 0 +8 1 0
T or ot Or 9z \uor 9z /)’

is linear, the right-hand side represents the toroidal component
of the local current density and y is the indicator function. If
iron is present outside €2¢ (like for JET and Tore Supra), i is
no longer a constant but a function of | B| and the operator A*
becomes nonlinear. This is why we restrict ourselves to 2
where A* is linear. In Q0 \ {€2, | €2¢,}, the current is null. In
the coils Q¢,, the densities jc, are measured and known. In
the plasma €2, the current density is unknown but according
to the Grad—Shafranov equation takes the form

1
Jp(Wr) =rp' () + —(ffH (W) “4)
Hor

in which p’ and ff” are unknown functions to be identified by
an equilibrium reconstruction code.

As explained in the introduction, one of our goals is to
compute Cauchy conditions (g = v, h = 9,%) on the contour
I" in order to provide inputs to the reconstruction code Equinox.
Indeed, let us recall that this code solves the following problem:

find functions A and B defined on [0, 1] which minimize
the following regularized cost function

J(A, B) = /(anw — h)*ds
r

1
te < f (A"(0))? + (B (x))? dx)
0
where y satisfies
r - ro 7 -
—A*Y = A (—A(I//) + —B(w)> X2, in Dr
ro r
V=g

onl.

Here A is a scaling factor, ry is a constant, A and B are
related to p’ and ff’, ¥ is a normalized flux and Dr is
the domain contained inside I'. Equinox implements a
finite element discretization method and identifies the full
equilibrium (plasma boundary and current density) in the
fixed domain Dr. This computation completely relies on
the boundary conditions g and & deduced from the magnetic
measurements.

3. Decomposition of the poloidal flux > in the
annular domain D

In this section we recall the principle of the decomposition of
the flux in toroidal harmonics in the region D. Moreover,
we show that the nonlinearity induced by the presence
of iron outside €2y does not restrict the possibility of
using a modelization of the flux generated by the different
coils.

3.1. Toroidal harmonics

The toroidal coordinates system [13, 22] or bipolar coordinates

system (if we ignore the angular toroidal variable) (¢, 7n) €

R} x [0, 2] about the pole Fy = (ro, 2o) is related to the

cylindrical coordinates system (r, z) by
ro sinh &

F= ———— and
cosh¢ —cosn

rosinmn
cT= cosh¢ —cosn’
In what follows, we assume that Fj lies inside the region
surrounded by the annular domain D and more precisely
inside the plasma domain where the homogeneous equation,
—A*yr = 0, is not satisfied. In the domain D, this equation is
satisfied. It is known that explicit solutions to this equation in
an annular domain can be found in toroidal coordinates using a
quasi separation of variables technique (see [23, 24] for details
on the computations). Moreover the family of solutions found
is complete [21,24]. That is to say that, given any regular
enough Dirichlet boundary condition u on d D, the solution to
the boundary value problem

—A*Y =0 in D
{1/f =u ondD ©®)
can be uniquely decomposed as
W = wext + 1aﬁint
ro sinh
Vext = __fosmh&
J/cosh¢ —cosn
oo
X [ Z a; Q,llfl/z(cosh £) cos(nn)
oon:O
+Y b0,y y(cosh ) sin(nn)}
n=I (6)

ro sinh ¢

J/cosh¢ —cosn
oo
X [ Z a Pnl_l/z(cosh ¢) cos(nn)

n=0

+Y byP) y(cosh) Sin(nn)}

n=1

Ipint =
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where P, | ,and Q) , , are the associated Legendre functions
of first and second kind, of degree one and half integer order
[25], also called toroidal harmonics when evaluated at point
cosh ¢. Functions Pn{l P have a singularity when { — o0;
that is to say at point Fy and therefore 1, represents the
flux generated by currents flowing inside D. On the contrary,
functions Q}lil Jp are singular when ¢ — 0, that is to say on
the axis r = 0, and therefore .4 represents the flux generated
by currents flowing outside D.

3.2. Including information from the knowledge of the currents
in the coils

Let us denote by x = (r, z) a point in the poloidal plane. For
any scalar fields ¥ and ¢ on €2, two integrations by parts of the
quantity ¢ A*y lead to the so called Green’s second identity
(or Green’s theorem)
— —¢ ) ds.
on ¢)

. . 1 Lo}
/(‘PA Y —YA q))dx:[ —(—Eﬁ
Q aQ Mor \ 0n
@)

Letx € D and G(x, x) be the free space Green’s function
which satisfies —A*G(x, x) = §(x — x) in the whole half
plane » > 0 and G(x, x) — O when [x| = coorr — 0.

The important point here is that even if the region
external to €2y contains nonlinear materials such as iron, the
restriction of G to €2 can still be used as the function ¢ in
equation (7). If ¢ is chosen to be the solution to equation (2),
one gets

1#(J?)Z/ Jp((x), r)G(x, X)dx

2

Yy

+/ 1 (E(x,)z)l/,(x) - %(x)G(x,i)> ds
aQ Mol on on
®)

and this leads again to a decomposition of the type ¢ =
Vint + Vext With

Vini(X) = Jo Jp(W(x), )G (x, ¥) dx

_ 1 /oG _ oy -
Vext (X) =/ —(—(x,x)lﬂ(x) - —(x)G(x,X)> ds
aq Mol \ on on
©)

Yine 1S another expression for the flux generated by currents
running inside D and /., for those running outside. Moreover
Green’s theorem can also be applied in €2 (the region including
the plasma and the coils). One then gets the following
expression for ¢ in D: ¥ = Yip + Yexe + Y With

Vint(X) = pr Jp((x), r)G(x, x)dx

_ 1 [0G _ oy _

Veut) = [ —(—(x,xwr(x) - %mG(x,x)) ds

3

Q, Mot \ On
I/fc(i)=Zf je,G(x, %) dx
kv C
(10)

where ¢ represents the contribution of the coils to the total
flux. In the annular domain D, ¥ = V¥ — Y¢ = Yin + Yext

still satisfies
{tA V=0 in D (11
Y =Ylop — Yclop on dD

and can thus be decomposed in toroidal harmonics.

This shows that the knowledge of the currents j¢, in the
coils can be used in the representation of the flux in the region
D in the presence or absence of iron outside €. In fact, if
the coils are located very close to the measurement points such
as the divertor coils, it is necessary to modelize them. Their
contribution to the flux in D can theoretically be written as
a series of toroidal harmonics, but many of them are needed
in practice. This can be critical compared to the number of
measurements, and the numerical resolution of the problem
might become difficult.

4. Numerical method

Let us now present the numerical method which we
implemented. At each discrete time step during a discharge,
the magnetic measurements available are of three types:

f

i

e Flux loops provide N, flux measurements at points x
such that 1" ~ 1//(xif );

e Saddle loops provide N, flux variation measurements
between two points such that §; Y™ & yr(x}) — ¥ (x?);

e B probes provide Np measurements of the poloidal field
at points xiB and directions d; such that B"** ~ B(xiB ).d;.

The first step of the algorithm consists in subtracting
from the measurements a numerical approximation of the
contribution from the coils.

P =y — Je]). fori=1....N;

S;meas — §,ymeas _ (wc(xil) - ¢C(x?))’
fori = 1,...NS

Bﬁ';neas — Bl_meas _ éc(xiB).di,

(12)
fori =1,...Np

Here the contribution from each coil Cy, is computed as follows.
The known current density is given as jc, = I/ Sk, where I
is the total current in the coil and Sy its surface. The coil is
divided into n, subcoils Cy; of equal surface Si/ny and center
c,; on which the integrals are numerically evaluated as

I I
/ LG, ) dx ~ LGy, 5. (13)
Cri s

k

This in fact consists of considering the contribution of the coils
as a sum of the contributions from filaments of current

o 1,
o) = ZZ%G@H,%). (14)
k !
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The second step consists of truncating the toroidal
harmonics expansion of i to approximate it by
Y = Yext + Vit
A ro sinh ¢
I/ICXt B e
J/cosh¢ —cosn

X [ Z a; Q,ll_]/z(cosh £) cos(nn)
n=0
+ Z b; Q,Lm(cosh 2) sin(nn)]
n=1

vfint =

ro sinh ¢

J/cosh¢ —cosn

X [ Z a’ Pnlf]/z(cosh ¢) cos(nn)

_n:O

p
+) byPy(cosh ) Sin(’”])]

n=1

and to evaluate each of the terms in the expansion of ¥ and of
the associated field B at the different measurement points in
order to form a least squares cost function

Ny o+ < easn2 N ~ = 2
(Wi () — ¢™*) (Sih (u) — &™)
Jw =3 ) z
i=1 o i=1 95
s (Bi(w) — Bres)?
) (16)
i=1 O-B
depending on
U= (ay, - e, 1’,...,bn2,a0,...,an;, 1""’bn"b)

the unknown coefficients of the expansion in toroidal
harmonics. The weights o/, oy and op correspond to the
assumed measurement errors. J is quadratic in u and is
minimized by solving the associated normal equation to find
the optimal set of coefficients uqp.

In these computations the expressions for V¢ and Bc are
explicit [26]. The expression for B is also explicit. The
numerical evaluation of half-integer order associated Legendre
functions is not straightforward. We use the algorithm and
the computer routine DTORHI1 provided with [27]. This
code enables an accurate and fast evaluation of the set
P,:'Ll/z(x), QZ’fl/z(x) for real x > 1, integers m > 0 and
n=20,...N.

Once up is computed, an approximation of the flux can
be obtained at any point of the vacuum surrounding the plasma
by ¥ (x) = &(x) + tﬁc (x). In particular, one can evaluate
and its normal derivative on a fixed closed contour I" in order
to provide Cauchy boundary conditions to a fixed bounded
domain equilibrium reconstruction code. Of course one can
also identify the plasma boundary as the largest closed flux
surface inside the limiter contour.

Such a procedure provides meaningful results if the pole
Fp lies inside the unknown plasma region and not too close to
the boundary. The most natural choice is to put the pole at the
location of the magnetic axis, but as the plasma boundary it
is unknown, we propose the following procedure. At the first

3.2 3.4 3.6

Figure 2. Poloidal section of the WEST tokamak. The two plasma
boundaries correspond to case 1 (large plasma) and case 2 (smaller
plasma). The B probes represented by arrows are numbered from 0
to 103 and the flux loops represented by small circles are numbered
from 0 to 9. The four bottom divertor coils are shown as well as the
top ones. The limiter contour is also plotted as well as its convex
hull (dashed line), which will be used as the contour I', that is to say
the boundary of the computation domain for the equilibrium
reconstruction code Equinox.

time step, the pole is located at (rg, 0) where ry is the major
radius of the tokamak. Then at time step #"*!, the pole is located
at the position of the magnetic axis computed at the previous
time step t”". This magnetic axis position is computed exactly if
an equilibrium reconstruction code like Equinox is run at each
time step. If this is not the case and one is only interested in the
plasma boundary identification problem, or by an equilibrium
reconstruction at a given instant in time, it can be approximated
by the current center (7, z.) defined as moments of the plasma
current density [11,28]. These quantities can be precisely
computed as integrals on the contour I at every point of which
the flux ¢ and the field B can be evaluated:
1
— B, ds,

1 :=/ Jpdx =
’ Dl-p r Mo

1
zdp = / Zjpdx = / —(—rlogrB, +zB;)ds,
Dr r Mo

2 2. 1 2
relp = rojpdx = | —Q2rzB, +r°By)ds.
Dr r Ko

5. Numerical results

5.1. Twin experiments for WEST

In view of the upgrade of the tokamak Tore Supra to WEST,
we have conducted several numerical experiments to test the
method. The code Cedres++ [29] is run to simulate four WEST
equilibria. In the first case the X-point position is very close to
the limiter whereas in the second one the plasma is smaller.
Configurations 3 and 4 are limiter configurations. From
these simulations the equivalent of magnetic measurements
are extracted: 10 flux loops measurements and 104 Bprobes
measurements (see figure 2). The reconstruction of the plasma
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Figure 3. Contour and scatter plot of log(J (uep)) as a function of
the maximum order of the associated Legendre functions of first
kind n' and second kind n¢ used for the representation of the flux.

boundary and the equilibrium can then be performed using
these measurements as inputs, as well as the currents running
in the coils. Using the notations of equation (16), we take
Ny =10,07 =107 (32) and Ny = 104, 55 = 1073 (T).

Letus first concentrate on the reconstruction of the flux in a
vacuum for case 1 with the algorithm using toroidal harmonics
(TH). Unless specified, we always take into account the values
of the currents in the coils. Here we want to reconstruct a
single equilibrium and thus do not have a priori at our disposal
the knowledge of the magnetic axis position. As described in
section 4, we proceed in two steps. First, we run TH setting the
pole of the toroidal coordinate system to Py = (ry, 0), compute
the current center P; = (r,, z.) and re-run TH setting the pole
to these new coordinates. This mimics the fact that during a
whole pulse reconstruction the current center at the previous
time step would play the role of Py, and if P, is too far from
Py then the pole of the coordinate system is modified.

A first natural question which has to be answered is how
many toroidal harmonics should be used to represent the flux
¥ in the vacuum. In all the computations we choose the
maximum order of the toroidal harmonics used in equation (15)
to be n¢ := n® = n¢ and n’ := n!, = ni. From figure 3
it appears that the value of the cost function at the optimal
point, which is an indicator of the quality of the fit to the
measurements, decreases very rapidly as we increase the
maximum order from n¢ = n’ = 1 to 4. Above this value,
the benefit of adding new degrees of freedom is much less
significant and the plot shows an almost flat region for orders
greater than 4.

As a consequence we make the choice n¢ = n’ = 4. This
corresponds to the minimum number of degrees of freedom
needed to obtain a good fit to the measurements. Numerical
values for the optimal cost and corresponding root mean square
(rms) errors are given for different choices of n¢ and n' in
table 1. The corresponding computed plasma boundaries
are also shown in figure 4. As already mentioned, adding
interior functions (column (4, 9)) or exterior functions (column

Table 1. Minimization results for the default choice

(n® = 4,n' =4), as well as choices (4,9), (9, 4) and (30, 4)
without using any representation of the flux generated by the
divertor and poloidal field coils (no c).

(n,n") 4, 4) 4.9 (CR) (30,4)noc
cost J(uop)  2.783e +02 1.666e +02 2.004e +02 3.352¢ +02
rms B (T) 1.614e—03 1.233e—03 1.343e—03 1.624e—03

rms Flux (g’b) 5.814e—04 6.663e—04 7.832e—04 1.657e—03

T

(9, 4)) does not significantly modify the rms. However, in the
first case it deteriorates the plasma boundary reconstruction
(figure 4). This is due to the fact that interior functions are
involved with the ill-posed character of the inverse boundary
reconstruction problem. The only regularization mechanism
lies in the small number of toroidal harmonics used to represent
the flux. The blow up of the interior harmonics accentuates
with their order and the zone where the computed solution is not
relevant spreads around the pole of the coordinate system, even
reaching the plasma boundary in this case. This phenomenon
disappears in the plasma boundaries computed by Equinox
in all cases (see figure 5) which is due to the fact that the
reconstruction of the boundary is not an ill-posed inverse
problem in Equinox in which the equation for v is solved also
in the plasma and the free boundary problem is a particular
nonlinearity of the model.

The last column of table 1 shows the interest of using a
modelization of the flux generated by the divertor and poloidal
field coils. If we do not use this information in this particular
case, a value of n¢ of at least 30 has to be taken to achieve a fit
to the measurements comparable to the one obtained with the
choice (4, 4).

Figure 6 shows the fit to the measurements for the choice
n¢ = n' = 4. It appears that the largest errors on the B
probes measurements happen for those in the range 32-40
and 84-92, which correspond to the ones located close to the
X-point. These numerical experiments therefore suggest that
if some sensors could be added to the design of WEST, it would
desirable to put them, if possible, in the region of the divertor.

From table 2 it can be seen that the reconstruction of the
X-point position is quite accurate (up to a few mm) with the
default choice (n° = 4, n' = 4). More interestingly, it is also
accurate with the choice (4,9) where the plasma boundary
shows some oscillations. This is still true for many other
choices of (n¢, n') and is thus satisfying because it makes the
determination of the X-point only very slightly dependant on
the tuning of the TH algorithm. Table 2 also shows that the
magnetic axis computed by Equinox is very close to the one
given by Cedres, and that the computed pole for the toroidal
coordinate system is also a good approximation of the magnetic
axis position.

Finally, in order to get some insight into the impact of
a noisy sensor on the reconstruction of the X-point position
with the TH algorithm, we have conducted 104 + 10 numerical
reconstructions, each time applying an offset on a different
sensor. The results are displayed in figure 7. Adding an offset
of 10 mT on a B-coil or of 200 mWb on a flux loop perturbates
the X-point position by about a maximum of 1 mm. Again,

e
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Figure 4. Left: plasma boundaries. Boundaries computed with (n¢ =4, n’ = 4) or (n°* =9, n’ =4) and (n° = 30, n’ = 4) without any PF
coils modelization (no c) are almost superimposed with the reference boundary computed with Cedres. The boundary computed with
(n® =4, n' =9) shows some irregularity. Right: corresponding relative deviation from the Cedres++ boundary, 100(0 — pcedres)/ PCedres aS @

function of the poloidal angle . The center of the polar coordinate system (p, 0) is the magnetic axis from Cedres++ (shown in the
left-hand figure).
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Figure 5. Left: plasma boundaries. Boundaries computed by Equinox (EQX) with (n* = 4, n'=4)or (n¢ =9,n" =4)and
(n® =30, n' = 4) without any PF coils modelization (no c) are almost superimposed with the reference boundary computed with Cedres++.
The boundary computed with Equinox (n° = 4, n' = 9) does not show any irregularities. Right: corresponding relative deviation from the

Cedres++ boundary, 100(p — Pcedres)/ Pcedres S @ function of the poloidal angle 8. The center of the polar coordinate system (p, ) is the
magnetic axis from Cedres++ (shown in the left-hand figure).
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Figure 6. Comparison between measured and reconstructed values for WEST case 1 using (n° = 4, n’ = 4).



Plasma Phys. Control. Fusion 56 (2014) 114010

B Faugeras et al

r Xpoint error. noise=10mT
T T T

error (mm)

150 . . . .
0

z Xpoint error. noise=10mT
T T T T

error (mm)

. .
50 100
#Bcoil

40 60 70 80 920

r Xpoint error. noise=200mWb
3 T T T T

_o5L I I I I
0 40

.
50
#Bcoil

60 70

z Xpoint error. noise=200mWb

error (mm)

0.5

o

error (mm)

4 5
#Flux loop

Figure 7. Error introduced on the X-point position reconstruction by
offset on a single flux-loop measurement.

naturally the X-point position is more dependent on sensors
that are in the divertor region than on others.

The numerical results for case 2 (the smaller plasma) are
very similar to those presented above for case 1. It should be
mentioned, however, that the plasma boundary reconstructed
by the TH algorithm with the default (n® = 4,n' = 4)
choice presents a small concavity on the high field side.
Nevertheless it is small (a distance of maximum 2 cm from the
Cedres boundary) and again disappears in the plasma boundary
computed by Equinox (see figure 8). In cases 3 and 4 with a
limiter configuration, the plasma boundary reconstructions are
accurate (see figure 8).

5.2. Computing time

In view of the possible use of this method for the real-time
control of the plasma position and shape in the WEST tokamak,
it is important to evaluate the computing time for one boundary
reconstruction. Each evaluation of the flux or the field at a
given point has a cost in terms of computing time because
the evaluation of the toroidal harmonics as well as the elliptic
integrals involved in the expression of the flux generated
by a filament of current have one. Therefore, in order to
have an efficient code, all these functions are precomputed
and stored in tables. The evaluation of a function then

#Flux loop

adding a 10 mT offset on a single B-coil measurement or a 200 mWb

Table 2. Rows 1 and 2: distance between the X-point given by
Cedres and the one computed by the Toroidal Harmonics algorithm
(TH) or the one re-computed by Equinox (EQX). Row 3: distance
between the current center used as the pole of the toroidal
coordinate system in TH and the magnetic axis given by Cedres.
Row 4: distance between the magnetic axis given by Cedres and
computed by Equinox.

(¢, n') 4,4 4,9 9,49 (30,4 noc
| Xplyy — XPleares|| (mm) 67 86 74 178
IXPtegx — XPleaell (MM) 5.4 54 54 54
|Crh — Mageue || (mm) 185 183 185 193
IMaggox — Mageees|| (mm) 4.4 3.6 45 40

just involves a linear interpolation between two entries of a
table. A second point concerns parallelism. Many loops in
the code (matrix assembly, integrals computations, boundary
points computation, ...) can be parallelized. We have used
OpenMP to do so. The program is tested on a laptop with two
quadcore processors running at 2.4 GHz. With this material
configuration, the code takes about 2ms for one boundary
reconstruction as shown in table 3. Although this is already in
the range of computing time needed for the real-time control of
the plasma on WEST, this result could still be improved using
more threads or even GPU as proposed in [30].
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Figure 8. Row 1: case 2. Left: Cedres++ reference and boundaries reconstructed with toroidal harmonics (TH) and Equinox (EQX). The
Cedres++ and Equinox magnetic axis as well as the computed plasma center taken as the pole of the toroidal coordinate system (circle) are
also shown. Right: corresponding relative deviation from the Cedres++ boundary, 100(0 — Pcedres)/ Pcedres @S a function of the poloidal
angle 0. The center of the polar coordinate system (p, €) is the magnetic axis from Cedres++ (shown in the left-hand figure). Row 2: the

same for case 3. Row 3: the same for case 4.

5.3. Equinox on the ITM platform

The method presented in this paper has also been tested on
data provided in the ITM database. The aim is to be able to
run the equilibrium reconstruction code Equinox directly from
the discrete magnetic measurements.

During a first initialization phase all the geometric inputs
are read from the database: the limiter contour, the PF-coils
geometry and location, the B-probes orientation and location,

and the flux and saddle loops location. The convex hull of the
limiter contour is computed. This is the I" contour which is the
boundary of the computation domain for the finite element part
of Equinox. From this contour, a mesh is generated. Of course
many other contours could be used as the boundary, and if
desired one can define one’s own, point by point. However the
convex hull of the limiter has the advantage of being computed
automatically.



Plasma Phys. Control. Fusion 56 (2014) 114010

B Faugeras et al

Table 3. Wall-clock computing time. One boundary point
corresponds to the following operations: update the normal equation
matrix as the pole of the toroidal coordinate system changes, solve
the normal equation, compute the new current center (to be given to
the next time step), and compute the point defining the boundary
isoflux value ¥, (either limiter point or X-point). Then add to this
the computation of 9, 19, 29 or 59 boundary points for the next
columns.

Nbr of bnd pts

1
1.09

10 20 30 60

Comp. time (ms) 123 144 154 1.98

Then comes the time stepping. Each time step is made of
two stages. In the first one at the discrete time ¢”, the pole of the
toroidal coordinate system is set to the magnetic axis location
computed at time t"~!. The contribution of the different PF
coils to the flux is computed and subtracted from the magnetic
measurements. The residuals are then fitted to a truncated
series of toroidal harmonics.

Once this is done, the flux can be evaluated at any point
of an unknown annular domain surrounding the plasma and
therefore clearly on the contour I'. We are thus able to
compute Cauchy boundary conditions on I'. Note that even
if it is possible in principle, we do not compute the plasma
boundary at this stage. Indeed, we want to run the finite
element method of Equinox on a fixed domain which does not
need to be re-meshed at each time step. The plasma boundary
is thus computed during this second stage, along with all the
parameters which characterize a plasma equilibrium (including
the magnetic axis, which will be used at the next time step),
which are then copied to the ITM database.

6. Conclusion

We have presented in this paper a method based on the use of
toroidal harmonics and on a modelization of the poloidal field
coils and divertor coils for the 2D interpolation of discrete
magnetic measurements.

The method completely relies on the classical assumptions
that the equilibrium is axisymmetric and that a negligible
amount of the total current density flows in the plasma existing
in the region of the sensors (i.e. A*y = 0 holds in this region).
If the first assumption was to be defaulted with non-negligible
3D effects [31-35], the method might be destabilized. The
same conclusion holds if the second assumption was to fail
since the decomposition of the flux in a series of toroidal
harmonics with constant coefficients is not exact anymore.

However under these assumptions our numerical results
show that the method is quite stable even though it does not
involve a classical regularization procedure. This is due to
the fact that the ill-posed part of the method, that is to say
the computation of the internal solution, only relies on the
choice of the pole of the toroidal coordinate system and on the
number of internal toroidal harmonics used to approximate the
flux. Our numerical experiments show that the magnetic axis
is a good and easy-to-compute choice for the first point, and,
concerning the second point, that only a few toroidal harmonics
are needed to accurately approximate the flux.

The method is generic and can be used to provide
Cauchy boundary conditions needed as the input by a fixed
domain equilibrium reconstruction code like Equinox. This
is implemented in the ITM version of Equinox. The method
can also be used to extrapolate the magnetic measurements to
compute the X-point position and the plasma boundary. It is
foreseen to be used in the real-time plasma control loop on the
WEST tokamak.
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1. Introduction

In order to be able to control the plasma during a fusion experiment in a Tokamak it
is mandatory to know its position in the vacuum vessel. This latter is deduced from the
knowledge of the poloidal flux which itself relies on measurements of the magnetic field.
In this paper we investigate a numerical method for the computation of the poloidal flux
in the vacuum. Let us first briefly recall the equations modelizing the equilibrium of a
plasma in a Tokamak [32].

Assuming an axisymmetric configuration one considers a 2D poloidal cross section
of the vacuum vessély in the (r, z) system of coordinates (Fig. 1). In this setting the

poloidal flux ¢ (r, z) is related to the magnetic field through the relatid®., B,) =

1, 0y 0 : : - :
—(—i, —w) and, as there is no toroidal current density in the vacuum outside the

”
plasma, satisfies the following equation

L =0in Qx (1)
whereL denotes the elliptic operator

0 ,10. 0 10.
L=-l5Ga) 55
and

QX:Q\/—QP

denotes the vacuum region surrounding the domain of the pl&snwd boundany p (see

Fig. 2). Inside the plasma Eg. (1) is not valid anymore and the poloidal flux satisfies the
Grad-Shafranov equation [30, 16] which describes the equilibrium of a plasma confined
by a magnetic field

Lap = poj(r, ) in Qp 2

wherepy is the magnetic permeability of the vacuum gifd ) is the unknown toroidal
current density function inside the plasma. Since the plasma bouigaiy unknown

the equilibrium of a plasma in a Tokamak is a free boundary problem described by a
particular non-linearity of the model. The boundary is an iso-flux line determined either
as being a magnetic separatrix (hyperbolic line with an X-point as on the left hand side of
Fig. 2) or by the contact with a limiter (Fig. 2 right hand side). In other words the plasma
boundary is determined from the equatio(r, z) = ¢ p, 1)p being the value of the flux

at the X-point or the value of the flux for the outermost flux line inside a limiter.

In order to compute an approximation ¢fin the vacuum and to find the plasma
boundary without knowing the current densjtyin the plasma and thus without using
the Grad-Shafranov equation (2) the strategy which is routinely used in operational codes

ARIMA
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Figure 1. Cross section of the vacuum vessel : the domain Qv its boundary T'y. Coils
providing measurements of the components of the magnetic field tangent and normal to
T'y are represented surrounding the vacuum vessel.

Figure 2. The plasma domain Q2p and the vacuum region Qx. The plasma boundary is
determined by an X-point configuration (left) or a limiter configuration (right). The fictitious
contour I'; is represented inside the plasma.

ARIMA
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mainly consists in choosing an a priori expansion methodfsuch as for example trun-
cated Taylor and Fourier expansions for the code Apolo on the Tokamak ToreSupra [28]
or piecewise polynomial expansions for the code Xloc on the Tokamak JET [26, 29].
The fluxy can also be expanded in toroidal harmonics involving Legendre functions or
expressed by using Green functions in the filament method ([23, 13], [9] and the refe-
rences therein). In all cases the coefficients of the expansion are then computed through
a fit to the measurements of the magnetic field. Indeed several magnetic probes and flux
loops surround the boundafy, of the vacuum vessel and measure the magnetic field
and the flux (see Fig. 1). It should also be noted that very similar problems are studied in
[18, 8, 14, 15]

In this paper we investigate a numerical method based on the resolution of a Cauchy
problem introduced in ([6], Chapter 5) which we recall here below. The proposed ap-
proach uses the fact that after a preprocessing of these measurements (interpolation and
possibly integration on a contour) one can have access to a complete set of Cauchy data,

f=vonTyandg = 199 onTy.
r on

The poloidal flux satisfies
Lw =0 in QX

Y=f only
10vy (3)

In this formulation the domaiftx = Qx () is unknown since the free plasma boun-
daryI'p as well as the flux)p on the boundary are unknown. Moreover the problem
is ill-posed in the sense of Hadamard [12] since there are two Cauchy conditions on the
boundany .

In order to compute the flux in the vacuum and to find the plasma boundary we are
going to define a new problem as in [6] which is an approximation of the original one.
Let us define a fictitious boundaly fixed inside the plasma (see Fig. 2). We are going to
seek an approximation of the poloidal flyxsatisfyingL:» = 0 in the domain contained
between the fixed boundariEg andl';. The problem becomes one formulated on a fixed
domain(? :

Lyp=0 inQ

'(/):f ODFV (4)
13_1/) =g only

r on
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Let us insist here on the fact that this problem is an approximation to the original one
since in the domain betwedty andIl';, ¢ should satisfy the Grad-Shafranov equation.
The relevance of this approximating model is consolidated by the Cauchy-Kowalewska
theorem [12]. Fol'p» smooth enough the functiofi can be extended in the sense of
L+ = 0in a neighborhood of p inside the plasma. Hence the problem formulated on
a fixed domain with a fictitious boundakly; not "too far" fromI'p is an approximation
of the free boundary problem. As mentioned in [6]'if were identical withl"p then by

. - . 1
the virtual shell principle [31] the quantity = ;g—:ih, would represent the surface

. 1 : L .
current density (up to a factor) on I'p» for which the magnetic field created outside

0
the plasma by the current sheet is identical to the field created by the real current density
spread throughout the plasma.

However no boundary condition is known @n. One way to deal with this second
issue and to solve such a problem is to formulate it as an optimal control one. Only the
Dirichlet condition onI'y is retained to solve the boundary value problem and a least
square error functional measuring the distance between measured and computed normal
derivative and depending on the unknown boundary conditiohi ,0is minimized. Due
to the illposedness of the considered Cauchy problem a regularization term is needed
to avoid erratic behaviour on the boundary where the data is missing. A drawback of this
method developed in [6] is that Dirichlet and Neumann boundary conditiofig @re not
used in a symmetric way. One is used as a boundary condition for the partial differential
equation,Ly = 0, whereas the other is used in the functional to be minimized.

Freezing the domain 1@ by introducing the fictitious boundafy; enables to remove
the nonlinearity of the problem. The plasma boundasycan still be computed as an iso-
flux line and thus is an output of our computations. We are going to compute a fugiction
such that the Dirichlet boundary conditian= v onT'; is such that the Cauchy conditions
onT'y are satisfied as nearly as possible in the sense of the error functional defined in the
next Section.

The originality of the approach proposed in this paper relies on the use of an error
functional having a physical meaning : an energy error functional or constitutive law er-
ror functional. Up to our knowledge this misfit functional has been introduced in [24]
in the context of a posteriori estimator in the finite element method. In this context, the
minimization of the constitutive law error functional allows to detect the reliability of the
mesh without knowing the exact solution. Within the inverse problem community this
functional has been introduced in [21, 22, 20] in the context of parameter identification. It
has been widely exploited in the same contextin [7]. It has also been used for Robin type
boundary condition recovering [10] and in the context of geometrical flaws identification
(see [4] and references therein). For lacking boundary data recovering (i.e. Cauchy pro-
blem resolution) in the context of Laplace operator, the energy error functional has been
introduced in [2, 1]. A study of similar techniques can be found in [5, 3] and the analysis
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found in these papers uses elements taken from the domain decomposition framework
[27].

The paper is organized as follows. In Section 2 we give the formulation of the problem
we are interested in and provide an analysis of its well posedness. Section 3 describes the
numerical method used. Several numerical experiments are conducted to validate it. The
final experiment shows the reconstruction of the poloidal flux and the localization of the
plasma boundary for an ITER configuration.

2. Formulation and analysis of the method

2.1. Problem formulation

As described in the Introduction the starting point is the free boundary problem (3).
We first proceed as in [6] and in a first step consider the fictitious coitpfixed in the
plasma and the fixed domafi contained betweeh, andI';. Problem (3) is approxi-
mated by the Cauchy problem (4). The boundafigsandI'; are assumed to be chosen
smooth enough in order not to refrain any of the developments which follow in the paper.

In a second step the problem is separated into two different ones. In the first one we
retain the Dirichlet boundary condition @iy, only, assume is given onl'; and seek the
solutiony p of the well-posed boundary value problem :

LwD =0 inQ
’ng:f ODFV (5)

Yvp=v onlg

The solutiony, can be decomposed in a part linearly depending@and a part
depending orf only. We have the following decomposition :

¥p =¥p(v, f) =¥p(©,0) +9¥p(0, f) :=1¥p(v) + ¥p(f) (6)

whereyp(v) andyp (f) satisfy :

Lyp(v) =0 inQ Lyp(f)=0 inQ
Yp(v) =0 onTy Up(f)=f onTy )
¢p(v)=v onTy dp(f) =0 onTy
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In the second problem we retain the Neumann boundary condition only and look for
1 satisfying the well-posed boundary value problem :

Ly =0 inQ
law—N =g only (8)
r on

in which can be decomposed in a part linearly dependingamd a part depending
on g only. We have the following decomposition :

Yy = Un(v,9) = Un(v,0) + ¥n (0, 9) = Y (v) + n(g) ()]
where
Lyn(v) =0 inQ LYn(g) =0 inQ
10 )
;%@):0 onTI'y %%ﬁ_;bvzg onT'y (10)
Yy(v) =v only Yy =0 only

In order to solve problem (4)f € H'/?(T'y) andg € H~'/%(T'y) being given,
we would like to findu € U = H'Y?(T'r) such thaty = ¢p(u, f) = ¥n(u,g). To
achieve this we are in fact going to seekuch that/(u) = inzf/](v) whereJ is the error

ve
functional defined by

T =5 [ 21900 £) = Vin ()] P a1

measuring a misfit between the Dirichlet solution and the Neumann solution.
2.2. Analysis of the method
In order to minimizeJ one can compute its derivative and express the first order

optimality condition. When doing so the two symmetric bilinear fowpsands as well

as the linear fornm defined below appear naturally and in a first step it is convenient to
give a new expression of functional (11) using these forms.

Letu,v € H'/2(I';) and define

sD(u,v):/Q%Vd)D(u)VwD(v)dm (12)
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Applying Green'’s formula and noticing that, (v) = v onT'; andyp(v) = 0onT'y we
obtain

sp(u,v) :/8 1 nwD(u)wD(v)da—/Q V(%pr(u))wp(v)dx = /FI %3nwp(u)vda

QT
(13)
where the integrals on the boundary are to be understood as duality pairings. In Eq. (13)
one can replacep (v) by any extensiofR (v) in H3(Q,T'v) = {¢ € H'(Q),¢r, =0}
ofv € H'/2(Ty).
Hencesp can be represented by

sD(u,v):/ %pr(u)V’R(v)dm (14)
Q
Equivalentlysy is defined by

saw0) = [ 90w () Vin(0)ds (15)

. 1
Sinceyy (v) =vonT'; and ;anN(u) = 0 onT'y we have that

1 1 1
swwo) = [ So.um(pin (o= [ VETuxt)en()ds = [ (s

(16)
andsy can also be represented by

sN(u,v):/Qéva(u)VR(v)dm a7

whereR (v) is any extension it ' (Q) of v € HY/?(T;).
Let us now introduce

Flu.0) = 5 [ 1(Ven(u. ) = Von(w.0)(Top(o. f) = Vin(v.a)de  (18)

such that/(v) = F'(v, v) and the linear forni defined by

1) = = [ 1(Vin(f) = Vix (@) Vi (o)dz a9)

which can also be computed as

1) = = [ £(Vn(f) = Vix(9) VR(0)da (20)
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It can then be shown that
1
F(u,v) = 5(sp(u,v) = sn(u,v) = l(u) = Uv)) +c (21)

where the constantis given by

1 1 ~ ~
c=3 [ HIV9n(H) - Vin(o)|Pda 22)
Q T
Hence functionall can be rewritten as
J(v) = %(SD(v,v)—sN(v,v))—l(v)—f—c (23)

Following the analysis provided in [5] it can be proved that in the favorable case
of compatible Cauchy datgf, g) the Cauchy problem admits a solution. There exists a
uniqueu € U such that)p(u, f) = ¥n(u, g). The minimum ofJ is also uniquely rea-
ched at this point/(u) = 0. This solution is given by the first order optimality condition
which reads

(J'(u),v) = sp(u,v) — sy(u,v) —l(v) =0 YvelU (24)

Equation (24) has an interpretation in terms of the normal derivativeond on
the boundary. From Egs. (13) and (16) and from

1) = = [ 1(Vin() = Vin(@)Vip(o)ds = = [ ~@.0n(f) = duix(a))ude

Iy
(25)
we deduce that the optimality condition can be rewritten as
1 1
/1“ [(;anwp(u,f) - hUN(u, g))|vdeo =0 Yveld (26)

which can be understood as the equality of the normal derivativés.on

Hence the first optimality condition when minimizingamounts to solve an interfa-
cial equation
(Sp — Sn)(v) =X,
whereSp andSy are the Dirichlet-to-Neumann operators associated to the bilinear forms
and defined by :

Sp : HY*>T;) — H YTy
18%(11)' (27)

r Oon

v
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Sy : HY*(y) — HY*Ty)
10¢n(v) (28)

v
r On

andy = _1%ép + 19w onl’.
r on r on
SinceSp andSy have the same eigenvectors and have asymptotically the same eigen-
values, the interfacial operatSr= Sp — Sy is almost singular [5]. This point together
with the fact that the set of incompatible Cauchy data is known to be dense in the set of
compatible data (and thus numerical Cauchy data can hardly by compatible) make this
inverse problem severely ill-posed.

Some regularization process has to be used. One way to regularize the problem is to
directly deal with the resolution of the underlying quasi-singular linear system using for
example a relaxed gradient method [2, 1]. In this paper we have chosen a regularization
method of the Tikhonov type. It consists in shifting the spectrurfi bfy adding a term

(Sp — Sn) +eSp.

wheree is a small regularization parameter. This regularization method is quite natural
since the ill-posedness of the inverse problem and the lack of stability in the identification
of u by the minimization of/ is strongly linked to the fact that is not coercive (see [5]

and below). We are thus going to minimize the regularized cost function :

Je(v) = J(v) + eRp(v)
with )
Ro() = 5 /Q Ve () P

This brings us to the framework described in [25]. We want to solve the following

ProblemP. :  findu. € U such that/.(u.) = /iIelZf/‘ljg(v)

and the following result holds.

Proposition 1 1) ProblemP. admits a unique solution. € U/ characterized by
the first order optimality condition

(JL(ue),v) = espluec,v) + sp(ue,v) — sn(ue,v) —l(v) =0 Yvel (29)

2) For a fixedz the solution is stable with respect to the dgtandg.
If 1, f2 € H'/2(T'y) andg', g> € H=/?(Ty) it holds that

C
—(

lut — ullgzey < =1 = Pllaezeyy + 19t = 8 lla-12@yy)  (30)
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3) If there existsu € U such thatyp (u, f) = Y (u,g) thenu, — win U when
e —0.

Elements of the proof are given in Appendix.

3. Numerical method and experiments

3.1. Finite element discretization

The resolution of the boundary value problems (7) and (10) is based on a cld%sical
finite element method [11].

Let us consider the family of triangulation, of 2, andV}, the finite dimensional
subspace of7 () defined by

Vi = {¢h € Hl(Q)vwh\T € Pl(T), VT € Th}.
Let us also introduce the finite element spacd'on

Dy, = {vh = Ynlr;, ¥n € Vi}.

Consider(¢; );=1,...n a basis oft;, and assume that the firdf-, mesh nodes (and basis
functions) correspond to the ones situated'gnA function, € V}, is decomposed as

vn =SV a6, and its trace off ; asvy, = Pilr, = St aidilr,.
Given boundary conditions, onT'; and f, g, onI'y one can compute the approxi-
mationsyp »(vs), ¥n.n(vn), Yo, (fr) @andn n(gn) with the finite element method.

In order to minimize the discrete regularized error functiodal, (u;) we have to
solve the discrete optimality condition which reads

esp,n(un,vn) + sp,n(wh, vn) — snp(un, vn) —l(vy) =0 Yo, € D, (31)
which is equivalent to look for the vectarsolution to the linear system
Su=1 (32)

where theVt, x Nr, matrix S representing the bilinear form), = esp n +sp,n — snn
is defined by

Sij = 5h(¢ia ¢j) (33)
andl is the vector(l,(¢:))i=1,...Nr, -
In order to lighten the computations the matrices are evaluated by

p(60:09) = [ TV00n(6)VR(,)ds (34)
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and

swi(60:09) = [ TVUNAGIVR(,)dz (35)

whereR(¢;) is the trivial extension which coincides withy onI'; and vanishes elsew-
here.

In the same way the right hand sitlis evaluated by
1 - -
() == | H(TTpalf) = Tixalan) VR0 da (36)

It should be noticed here that mat$xdepends on the geometry of the problem only
and not on the input Cauchy data. Therefore it can be computed once for all (as well as
its LU decomposition for exemple if this is the method used to invert the system) and be
used for the resolution of successive problems with varying input data as it is the case
during a plasma shot in a Tokamak. Only the right hand ks to be recomputed. This
enables very fast computation times.

All the numerical results presented in the remaining part of this paper were obtained
using the software FreeFem++ (http ://www.freefem.org/ff++/). We are concerned with
the geometry of ITER and the mesh used for the computations is shown on Fig. 3. It is
composed of 1804 triangles and 977 nodes 150 of which are boundary nodes divided into
120 nodes o'y and 3G= Nr, onI';. The shape of ; is chosen empirically.

NV
SO
?'v‘é"'“‘

\vA'
V)

vy
xZ
2

Figure 3. The mesh used for the ITER configuration in FreeFem++
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3.2. Twin experiments

Numerical experiments with simulated input Cauchy data are conducted in order to
validate the algorithm. Assume we are provided with a Neumann boundary condition
function g on I'y,. We generate the associated Dirichlet functjoon I'y, assuming a
reference Dirichlet function,.. s is known onI';. We thus solve the following boundary
value problem :

LwN,ref(uref,g) =0 inQ

1
;aan,ref(urefa 9) =g only (37)
wNA,ref(uref»g) = Uref OHF[

and setf = Y ref(Uref, 9)|ry -
We have considered two test cases. In the first one (TC1)

Upes(r, 2) = 50sin(r)? +50 onT; (38)
and in the second one (TC#).; is simply a constant

Uref(r,2) =40 onTy (39)

The numerical experiments consist in minimizing the regularized error functibnal
defined thanks tg andg. The obtained optimal solution,,; and the associateg,,:
are then compared to,.r and,. which should ideally be recovered. Three cases are
considered : the noise free casd %anoise onf andg and a5% noise.

When the noise orf andg is small and the recovery af is excellent there is very
little difference between the Dirichlet solutiofp (e, f) and the Neumann solution
Y (uopt, ). However this is not the case any longer when the level of noise increases.
The Dirichlet solution is much more sensitive to noisefaiman the Neumann solution is
sensitive to noise og. Therefore the optimal solution is chosen tohg; = Y (wopt, 9)-

The results are shown on Figs. 4 and 5 where the reference and recovered solutions
are shown for the three levels of noise considered. The results are excellent for the noise
free case in which the Dirichlet boundary conditieiis almost perfecty recovered (Fig.

6). The differences between,,; andu,.. s increase with the level of noise (Fig. 6 and Tab.

1). As it is often the case in this type of inverse problems the most important errors on
opt are localized close to the bounddry and vanishes as we move away from it (Fig.
7).

Tables 2 and 3 sumarize the evolution of the value$,a® , and.J. for the different
noise level. First guess valueg & 0) are also provided for comparison. Please note
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reference solution optimal solution 0%
Isovalue IsoValue
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Figure 4. First test case (TC1), ury given by Eq. (38). Top left : reference solution
UnN,ref(Uref, g). TOp right : recovered solution with no noise on the data. Bottom left :
recovered solution with a 1% noise on the data. Bottom right : recovered solution with a
5% noise.

that the regularization parameter was chosen differently from one experiment to another
depending on the noise level. This was tuned by hand. In the next section we propose to
use the L-curve method [19] to choose the value.of
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reference solution optimal solution 0%
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Figure 5. Second test case (TC2), u,.y given by Eq. (39). Top left : reference solution
UN,ref(Uref, g). TOp right : recovered solution with no noise on the data. Bottom left :
recovered solution with a 1% noise on the data. Bottom right : recovered solution with a
5% noise.
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Figure 6. u,.y and the recovered u,,: for the 3 levels of noise on the data. Left : TC1.
Right TC2.
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Figure 7. Relative error |[¢opt — Yopt|/|threr| for TC1 with 5% noise.

ARIMA



A Cauchy problem in plasma physics 53

noise level| error TC1| error TC2|

0% 0.0131 0.0055
1% 0.0659 0.0170
5% 0.1526 0.0405

. . U, — U
Tableau 1. Maximum relative error M for TC 1 and 2
Uref

J Rp Je € |
u = 0 no noise | 46.8643 0 46.8643

Uopt 1O NOise 0.0021  46.8722  0.0026 10-°
Uopt 1% noise | 1.8443  46.5553 1.8676 5 x 10~4
Uopt D% noise | 9.2180  46.5575  9.2646 1073

Tableau 2. TC1 results. Values of the error functional, the regularization term, the total
cost function and the chosen regularization parameter for the initial guess (row 1), the
optimal solutions for different noise levels (row 2, 3 and 4).

J Rp Je € |
u = 0 no noise | 30.7231 0 30.7231

Uopt 1O NOise 0.0003 30.7242  0.0006 10-°
Uopt 1% noise | 0.7300  30.7159  0.7607 1073
Uopt 5% noise | 3.6516  30.6822  3.8050 5 x 1073

Tableau 3. TC2 results. Values of the error functional, the regularization term, the total
cost function and the chosen regularization parameter for the initial guess (row 1), the
optimal solutions for different noise levels (row 2, 3 and 4).
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regularization R,

Figure 8. L-curve computed for the ITER case. The corner is located at e = 5 x 1074,

3.3. An ITER equilibrium

In this last numerical experiment we consider a real’ ITER case. Measurements of
the magnetic field are provided by the plasma equilibrium code CEDRES++ [17]. These
mesurements are interpolated to provfdandg onT'y. The regularized error functional
is then minimized to compute the optimal,;. The choice of the regularization parame-
ter ¢ is made thanks to the computation of the L-curve shown on Fig. 8. It is a plot of
(J(uopt)(€), Rp (uopt)(€)) @se varies. The corner of the L-shaped curve provides a value
ofe =5.107%.

The computed;,,; is shown on Fig. 9 and numerical values are given in Tab. 4. The
recovered poloidal flux is shown on Fig. 10. The boundary of the plasma is found to be
the isofluxyy = 16.3 which shows an X-point configuration.

J Rp J. e |
w=0]311026 0 311026
Uop | 0.8053  39.9169 0.8253 5x 1074

Tableau 4. ITER case results. Values of the error functional, the regularization term, the
total cost function and the chosen regularization parameter for the initial guess (row 1) and
the optimal solution (row 2)
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Figure 9. Optimal u.y: for the ITER case.
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Figure 10. Optimal solution for the ITER case. The plasma is in an X-point configuration
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4. Conclusion

We have presented a numerical method for the computation of the poloidal flux in
the vacuum region surrounding the plasma in a Tokamak. The algorithm is based on the
optimization of a regularized error functional. This computation enables in a second step
the identification of the plasma boundary.

Numerical experiments have been conducted. They show that the method is precise
and robust to noise on the Cauchy input data. It is fast since the optimization reduces to
the resolution of a linear system of very reasonable dimension. Successive equilibrium
reconstructions can be conducted very rapidly since the matrix of this linear system can
be completely precomputed and only the right hand side has to be updated. The L-curve
method proved to be efficient to specify the regularization parameter.
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Appendix. Proof of Proposition 1

1. We need to prove the continuity and the coercivity/of
Continuity.
The mapsv — ¥p(v) andv — ¥ (v) are continuous and linear frodi'/%(I';) to
H(Q). Moreover since)p(f) andyy(g) are inHY(Q) andry > r > rp, > 0in Q it
is shown with Cauchy Schwarz that the bilinear forsgsand sy, the linear formi and
thus.J. are continuous o/ '/2(T';).

Coercivity.
The bilinear forms , is coercive o '/2(I'; ). One obtains this from the fact thép (v) €
H}(9,Ty) and the Poincaré inequality holds, and from the continuity of the application
Yp(v) € HY(Q) = p(v)|r, =v e HY3(T).

On the contrary, since fary (v) € H'(Q2) the seminorm does not bound th&norm,
the bilinear forms is not coercive and because of the minus sige ia sp — sy we
need to prove that(v,v) > 0 to obtain the coercivity of the bilinear part of functional
J.. One can use the same type of argument as in [5] to de so.

Eventually it holds that
1 € 2
ES(U’U) + ESD(U,U) = Cel|vll3/2r,)

Using the continuity and the coercivity dt it results from [25] that problen®. admits
a unique solution. € U.

The solutionu, is characterized by the first order optimality condition which is written
as the following well-posed variational problem

(JL(ue),v) = esp(uec,v) + sp(ue,v) — sy(ue,v) —l(v) =0 Yvel (40)
which as in Eqg. (26) can be understood as an equality;on

2. The stability result is deduced from the optimality condition (40).

Let u! (resp.u?) be the solution associated t¢', g') (resp.(f?, g?)). Substracting
the two optimality conditions, choosing= ! — «2 and using the coercivity leads to

s —

Celluz — uZl[fp 2,y < (0 — 1) (uz —u?)]
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The mapf + ¥p(f) is linear and continuous frof'/2(I'y) to H'(2), and so is the
mapg — ¥ (g) from H=1/2(I'y,) to H'(Q). Using these facts and Cauchy Schwarz it
follows that

"1
rmC e

lul = 2|l gr/2 e,y < (L = L2z @y + 19" = 8 lla-1200))

3. For this point the proof of Propositioh2 in [3] can be adpated. A sketch of the
proofis as follows. Let us suppose that there existsi{ such that)p (u, f) = ¥ (u, g).
A key point is to show thatp (ue, u:) — sp(u,u) whene — 0. Then in a second step
using the optimality conditions far andu, it is shown that

sp(ue —u,ue —u) < sp(u,u) — sp(ue, ue)

which gives the result thanks to the coercivitysef in H'/2(T;).
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We present a comprehensive survey of various computational methods in
CEDRES++ (Couplage Equilibre Diffusion Reésistive pour I'Etude des Scénarios)
for finding equilibria of toroidal plasma. Our focus is on free-boundary plasma
equilibria, where either poloidal field coil currents or the temporal evolution of
voltages in poloidal field circuit systems are given data. Centered around a piecewise
linear finite element representation of the poloidal flux map, our approach allows in
large parts the use of established numerical schemes. The coupling of a finite element
method and a boundary element method gives consistent numerical solutions for
equilibrium problems in unbounded domains. We formulate a new Newton method
for the discretized nonlinear problem to tackle the various nonlinearities, including
the free plasma boundary. The Newton method guarantees fast convergence and is
the main building block for the inverse equilibrium problems that we can handle in
CEDRES++ as well. The inverse problems aim at finding either poloidal field coil
currents that ensure a desired shape and position of the plasma or at finding the
evolution of the voltages in the poloidal field circuit systems that ensure a prescribed
evolution of the plasma shape and position. We provide equilibrium simulations for
the tokamaks ITER and WEST to illustrate the performance of CEDRES++ and
its application areas.

1. Introduction

Computer codes that address the equilibrium of toroidal plasmas are central tools
in tokamak fusion science. They are essential, both for detailed simulations with
sophisticated magnetohydrodynamic (MHD) models as well as for experimenters
that need to control real tokamak reactors. Detailed MHD simulations, which
model the plasma on very short timescales, are used to study the various effects
of turbulence and instability. They rely on a given plasma equilibrium as initial
condition. Experimenters use equilibrium codes to set up discharge scenarios, to study
breakdowns and disruptions, or to design the layout of new machines. They also use
such codes, in connection with transport codes (Hinton and Hazeltine 1976; Hirshman
and Jardin 1979; Artaud et al. 2010; Coster et al. 2010; Parail et al. 2013), to design

1 Email address for correspondence: holger.heumann@inria.fr
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and validate plasma feedback controller for real tokamak machines and to verify the
feasibility of scenarios in terms of operational limits (e.g. coil currents or forces).

Hence, equilibrium codes are essential tools for tokamak scientists, and applicants
expect a certain degree of maturity and robustness. In the design of discharge scenarios
or in the validation of feedback controller, for example, a robust, fast, and automated
computation of equilibria allows to shift the focus of research towards the difficulties
of coupling with complex physics or improved control algorithms. CEDRES++ deals
with equilibrium problems that are related to a quasi-static description of plasma
evolution, which asserts balance of forces at each instant of time. A code that
treats such quasi-static free-boundary equilibrium problems needs to solve nonlinear
elliptic or parabolic problems with nonlinear source terms representing the current
density profile, that vanishes outside the unknown free boundary of the plasma. The
computational challenges in the design of free-boundary equilibrium codes are a
problem setting in an unbounded domain with a nonlinearity due the current density
profile in the unknown plasma domain and the nonlinear magnetic permeability if
the reactor has ferromagnetic structures.

The simulation on the unbounded domain can be reduced to computations on a
finite domain thanks to analytical Green’s functions (Lackner 1976). The numerical
solution on the finite interior domain is coupled through boundary conditions to the
Green’s function representation of the solution in the exterior domain. This approach
is today fairly standard in many other application areas such as electromagnetics
(Hiptmair 2003; Zhao et al. 2006) or elasticity (Costabel and Stephan 1990; Bielak
and MacCamy 1991; Stephan 1992). The boundary element method (see the review
article (Costabel 1987) or the text books (Chen and Zhou 1992; Neédélec 2001)) is the
name of this general framework. The boundary element method reduces problems
on unbounded domains to problems on boundaries that can then be coupled to any
numerical method for the interior of a bounded domain.

The nonlinearity due to the current profile in the unknown plasma domain poses the
major difficulties according to our experience. It is a peculiarity of plasma equilibrium
problems, that the domain of the plasma is an unknown. Speaking differently, the
boundary of the plasma is a free boundary, defined either by a contact with a
limiter which prevents the plasma from touching the vacuum vessel, or defined as
being a separatrix in the case of a poloidal divertor configuration. On the top
of this fairly unusual kind of nonlinearity, also the current profile in the plasma
itself 1s a nonlinear function. Moreover, in the so-called iron transformer tokamaks,
a third type of nonlinearity appears due to the nonlinear magnetic permeability.
All these nonlinearities will require some iterations towards the numerical solution.
Simple fixed-point iterations usually suffer from very slow convergence or even fail
to converge, which made researchers move towards Newton-type methods. The latter
use the information of gradients, sometimes also referred to as sensitivities, to speed
up the convergence, and they can converge in cases where fixed-point iterations do
not converge — a very important example is vertically unstable plasmas.

There are basically two different families of solution methods for axisymmetric
plasma equilibrium problems. The first family are the so-called flux or Lagrangian
coordinate methods, determining the localization of level lines that have equidistant
flux-values (DeLucia et al. 1980; Lao et al. 1981; Degtyarev and Drozdov 1985; Lao
et al. 1985; Ling and Jardin 1985; Jardin et al. 1986; Gruber et al. 1987; Degtyarev
and Drozdov 1991; Turkington et al. 1993) (see also Jardin (2010, Sec. 5.5)). A
second family of methods uses standard finite difference methods on rectangular
grids (Feneberg and Lackner 1973; Lackner 1976; Helton and Wang 1978; Johnson
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et al. 1979) or finite element methods on triangular grids (Blum et al. 1981). The
main difference between most methods of both of these families is the treatment of
the so-called fixed boundary equilibrium problem, i.e. a problem where the plasma
domain is known. The computational issues related to the unknown boundary have
received less attention.

The CEDRES++ code uses a finite element formulation for the axisymmetric
free-boundary equilibrium problem in the interior domain. This allows first, for
standard, well-established coupling methods to the boundary element formulation on
the exterior domain (Albanese et al. 1986). Second, we can derive a perfect Newton
method, that uses the information about all nonlinearities, e.g. also those related
to the free-boundary setting. We consider this to be the most distinctive feature of
CEDRES++4 among many other equilibrium codes. Up to our knowledge there is
no other equilibrium solver that uses this information to speed up the convergence.
Furthermore, accurate derivatives are vital for inverse free-boundary equilibrium
problems, which aim at finding the values of control parameters that ensure that the
plasma attains a certain desired state, i.e. shape or position. Inverse free-boundary
equilibrium problems are formulated as constrained optimization problems and only
accurately computed derivatives can guarantee that the optimization algorithms find
indeed the optimum. For the moment, CEDRES++ uses linear Lagrangian elements,
which due to the low regularity of the solution, seem to be the obvious choice. We
would like to refer to Sec. 5 for a general discussion on this topic.

CEDRES++ inherits the basic ideas of the free-boundary equilibrium codes SCED
(Blum et al. 1981) and Proteus (Albanese et al. 1987) but relies on object oriented
and modular programming principles. CEDRES++ uses well established and tested
external modules for e.g. mesh generation (Shewchuk 1996), linear algebra (Renard
and Pommier 2014) and algebraic solver (Davis 2011). The very first conception of
CEDRES++, that used the same methods as SCED and Proteus, was developed in
(Grandgirard 1999). Various simulations with this old version of CEDRES++ are
reported in Grandgirard (1999) and Hertout et al. (2011).

The current version of CEDRES++ contains a new module that, when coupled
to a transport code, simulates a quasi-statically evolving equilibrium: the classical
Grad-Shafranov equation, a nonlinear elliptic partial differential equation, is satisfied
at each instant of time. This mode assumes that the evolution of voltages in poloidal
field circuits and the nonlinearities in plasma current profile are known. The new
mode is referred to as the evolution mode as opposed to the static mode that takes
poloidal field coil currents and the current density as input. Within the new evolution
mode, we solve the full parabolic partial differential equation system. We do not have
to estimate the nonlinear mutual inductance of the plasma with the electromagnetic
reactor components as the approach in Albanese and Villone (1998) and (Ariola
and Pironti 2008, Chapter 2) would require. All the dynamics of the plasma core
related to resistive diffusion of magnetic flux and transport of particle density and
temperatures, are supposed to be treated by external tools and are not subject of this
report. We refer to Falchetto et al. (2014) for the coupling of CEDRES++ (Couplage
Equilibre Diffusion Résistive pour 'Etude des Scénarios i.e. Coupling of Equilibrium
and Resistive Diffusion for the Evaluation of Scenarios) with the transport code ETS
(Coster et al. 2010). CEDRES++ i1s also coupled to the transport code CRONOS
(Artaud et al. 2010). The evolution mode used with prescribed evolution of the
current profile is also a good practical approach for vertical stability studies, where
the timescale of interest is much shorter than the current diffusion timescale of the
plasma.
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Further, CEDRES++ can solve inverse free-boundary equilibrium problems. The
inverse problem in the static mode aims at finding poloidal field coil currents that
ensure a desired shape and position of the plasma. The inverse problem in the
evolution mode aims at finding the evolution of the voltages in the poloidal field
circuits that ensure a prescribed evolution of the plasma shape and position. We
use standard algorithms for constrained optimization to solve the inverse problems.
Therefore it will be straightforward to add in the near future further constraints, such
as constraints on the flux consumption or the currents in the coils. In Table 1 we
summarize the basic CEDRES++4 modes and their areas of application.

Previous implementations of the Newton method in SCED (Blum et al. 1981)
and Proteus (Albanese et al. 1987) relied on the discretization of a Newton method
formulated on a continuous level. It is not clear, whether this formulation remains
valid for equilibria with plasma boundaries in the case of a poloidal divertor
configuration. The distinctive new feature of CEDRES++ is a Newton method, that
solves the discretized nonlinear equations. Our new approach has more rigorous
mathematical foundations and is supposed to have slightly faster convergence.
Moreover, it is only this new approach, which guarantees that the optimization
algorithms for solving the inverse problems converge to the correct solution. Section
3 gives more explanations on that.

The users of CEDRES++ do not need to know about details of the algorithms
and the parameters. CEDRES++ is a robust, fast, and accurate and an easily
usable tool. CEDRES++ focuses for the moment on the solution of the so-called
axisymmetric free-boundary plasma equilibrium with isotropic pressure and without flow.
The assumption of perfect axial symmetry is a common model reduction in many
equilibrium applications and the treatment of 3D plasma equilibria (Hirshman and
Betancourt 1991; Park et al. 1999) requires still a lot of computational power. We are
planning to include in the near future numerical methods for plasma equilibria with
flow and plasma equilibria with anisotropic pressure (Grad 1967; Maschke and Perrin
1984; Goedbloed and Lifschitz 1997; Zwingmann et al. 2001; Guazzotto et al. 2004;
Cooper et al. 2009; Pustovitov 2010; Fitzgerald et al. 2013). Toroidal equilibria with
anisotropic pressure and flow are an active area of research that will benefit from
our contribution to the computation of free-boundary equilibria. CEDRES++ is not
considered to be used as a so-called equilibrium reconstruction code (Hofmann and
Tonetti 1988; Lao et al. 1990; Mc Carthy et al. 1999; Blum et al. 2012), which relies
on measurements during the discharge to compute the magnetic fields and estimates
of current profiles and other characteristics of plasma equilibria.

The outline of the article is the following: In the first section, we recall briefly the
basic equations that describe the free-boundary plasma equilibrium in a tokamak and
state the four main problems that can be solved with CEDRES++. The subsequent
section contains detailed descriptions of the various numerical methods that are
implemented in CEDRES-++. This is followed by a short section containing tests for
the numerical validation and various application examples.

2. Quasi-static free-boundary equilibrium of toroidal plasma

The essential equations for describing plasma equilibrium in a tokamak are force
balance, the solenoidal condition and Ampere’s law

1
gradp=JxB, divB=0, curl—-B=1J, (2.1)
n
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CEDRES++ mode

Static, direct

Static, inverse

Evolution, direct

Evolution, inverse

Functionality

Simulates plasma equilibria for
given poloidal field coil currents

Finds the poloidal field coil
currents which allow the best
match with a given plasma shape
at a fixed time

Simulates the quasi-static evolution
of plasma equilibrium for given
poloidal field circuit voltages

Finds optimal poloidal field circuit
voltages and desired evolution of

Application areas

Reference equilibria, initial condi-
tions for short timescale plasma
models

Preparation of scenarios

Coupling to transport codes,
design and test environment for
feedback controller, study of
breakdowns and disruptions.
Feedforward control for discharge
scenario optimization.

the plasma

TaBLE 1. The functionality and the application areas of the four different modes of
CEDRES++.

where p is the plasma kinetic pressure, B is the magnetic field, J is the current
density and p the magnetic permeability. In the quasi-static approximation these
static equations are augmented by Faraday’s law

—0,B = curl E, (2.2)

with E the electric field, and by Ohm’s laws in plasma, coils, and passive structures.

For the calculations in CEDRES++ we will differentiate between static problems
and evolution problems, where the keyword static indicates that the equations do
not give a time-varying solution. The static problems and the evolution problems
are treated by CEDRES++ static mode and evolution mode, respectively. Force
balance, solenoidal condition and Ampere’s law in (2.1) yield the static problem we
will introduce in detail in Sec. 2.1, while the evolution problems introduced afterwards
in Sec. 2.3, take also into account the Faraday’s and Ohm’s law in the poloidal field
coils and in the passive structures. All the dynamics due to Faraday’s and Ohm’s laws
in the plasma, as well as the dynamics related to transport of heat and particles are
supposed to be treated by external tools.

Under the common assumption of perfect axial symmetry, it is convenient to
put (2.1) and the quasi-static approximation of Maxwell’s equations in a cylindrical
coordinate system (r, ¢, z) and to consider only a meridian section of the tokamak.
Then, Faraday’s and Ampere’s laws decouple into corresponding laws in the toroidal
direction and the poloidal plane and give rise to the toroidal and poloidal Poynting
theorems:

. B, xE, 1
div ZTPZ = Jpol ) Epol + ZathZor (23)
and
. B,y X E;, 1
div —pol T Twor Jior " Eior + _atB‘%wl’ (24)

0 2u
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r '

FIGURre 1. Left: Geometric description of the tokamak in the poloidal plane. Middle and right:
Sketch for characteristic plasma shapes. The plasma boundary touches the limiter (middle) or
the plasma is enclosed by a flux line that goes through an X-point (right).

where the subscripts ,,, and ,, indicate the toroidal and poloidal components of
the fields. Poynting theorems can be used to check the conservation of energy in the
simulation of quasi-static plasma equilibria, thus providing a global control of the
accuracy.

We introduce £2,, = [0, oo] X [—o0, 0], the positive half plane, to denote the meridian
plane that contains the tokamak centered at the origin. The geometry of the tokamak
determines the various subdomains (see Fig. 1):

e the domain 2. < 2., corresponds to those parts that are made of iron; for an
air-transformer tokamak $2p. = 0;

e the domains 2, = 2., 1 <i <L, 1< j <N, correspond to the Zle N, =N
poloidal field coils. The coils are grouped into L poloidal field circuits and the ith
circuit contains N; coils. The intersection of the jth coil in the ith circuit with the
poloidal plane is £2. ., and it has n; ; wire turns, total resistance R; ; and cross-section
area o; ;,

e the domains §2,, = 2., k =1, ..., Ny corresponding to Ny passive structures
with conductivity oy;

e the domain 2 < 2., bounded by the limiter, corresponds to the domain which
is accessible by the plasma;

e the domain £2,  §2;, is the domain covered by the plasma.

The classical primal unknowns for toroidal plasma equilibria described by (2.1) are
the poloidal magnetic flux = v (r, z), the pressure p and the diamagnetic function
f. The poloidal magnetic flux ¢ := rA - e, is the scaled toroidal component of the
vector potential A, i.e. B = curl A and e, the unit vector for ¢. The diamagnetic
function f =rB-e, is the scaled toroidal component of the magnetic field. It can be
shown that both the pressure p and the diamagnetic function f are constant on
-isolines, i.e. p = p(¥) and f = f(¥). We refer to standard text books, e.g. Freidberg
(1987), Blum (1989), Wesson (2004), Goedbloed and Poedts (2004), Goedbloed et
al. (2010) and Jardin (2010) for the details and state in the following paragraphs
only the final equations describing the static and evolution problems solved in
CEDRES++.



Plasma equilibrium with CEDRES++ 7

2.1. Direct static problem

Force balance, solenoidal condition and Ampere’s law in (2.1) yield in axisymmetric
configuration the following set of equations:

) rp'(Y) + o () in 2,(9)
—V- (—rw) =q5t in 2, ;
# 0 elsewhere, (2.5)

¥(0,2)=0; lim  ¢(r,z) =0;
ll(r,2) [ >—+o00
where V is the gradient in the two dimensions (r, z), I; ; is the total current (in Ampere
turns) in the j-th coil of the ith circuit and u is a functional of ¥

2..—2 : 0
Lo elsewhere.

with po the constant magnetic permeability of vacuum and pp, the nonlinear magnetic
permeability of iron. Here again, we would like to stress that the plasma domain £2,(v)
is an unknown, which depends nonlinearly on the magnetic flux i : the plasma domain
§2,(y¥) 1s a functional of the poloidal flux . The different characteristic shapes of
§2,(y) are illustrated in Fig. 1: the boundary of £2,(v) either touches the boundary of
21 (limiter case) or the boundary contains one or more saddle points of i (divertor
configuration). The saddle points of ¥, denoted by (rx, zx)=(rx(v¥), zx(¥)), are called
X-points of . The plasma domain £2,(v/) is the largest subdomain of £2; bounded
by a closed yr-isoline in £2; and containing the magnetic axis (r.x, zax). The magnetic
axis is the point (rauy, Zax) = (rax(¥), zZax(¥)), where ¢ has its global maximum in £2;.
For convenience, we introduce also the coordinates (rpnd, Zond) = (Fond(¥), Zona(¥)) of
the point that determines the plasma boundary. (ryn4, Zond) 18 €ither an X-point of v
or the contact point with the limiter 0£2;.
The (2.5) in the plasma domain, i.e.

(i) =3 (e ) =)+ frw), )
ar \ wor Or az \ mor 0z Wor

is the celebrated Grad—Shafranov—Schliiter equation (Liist and Schliiter 1957; Grad
and Rubin 1958; Shafranov 1958). The domain of p’ and f f' is the interval [Vpnd, Vax]
with the scalar values ¥, and ¥,,q being the flux values at the magnetic axis and at
the boundary of the plasma:

Vax (V) = Y (rax(¥), zax(¥))
Vond(¥) == ¥ (rond(¥), Zond (V) -

The two functions p’ and f f’ and the currents /; ; in the coils are not determined
by the model (2.5) and have to be supplied as data. Since the domain of p’ and f f’
depends on the poloidal flux itself, it is more practical to supply those profiles as
functions of the normalized poloidal flux ¥ (7, z):

lﬁ(r’ Z) _ Wax(W)
1ﬁbnd(w) - Wax(W).

These two functions, subsequently termed S, and Sy, have, independently of v, a
fixed domain [0, 1].

(2.8)

Un(r, z) = (2.9)
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Further, in many applications, one assumes that the current profile, i.e. the function
rSy + ﬁSfff, is only known up to some scaling constant 4. In those cases the set of
equations in (2.5) has to be augmented by an additional equation that matches the
scaling with the given total plasma current /p.

Let us state the two problems that we will consider in the following.

PROBLEM 1 (DIReCT STATIC). Let S,y : [0,1] — R and Sy : [0,1] — R be two
known functions and let the currents I; ; in the coils be given. We want to find the

such that (2.5) holds with p'(y) = S, (¥n) and ff'(¥) = S (Yn).

PROBLEM 2 (DIRECT STATIC, WITH GIVEN PLASMA CURRENT Ip). Let S,y : [0, 1] = R
and S¢p : [0, 1] — R be two known functions and let the currents I; ; in the coils be
given. Additionally we assume that the total plasma current Ip is given. We want to find
Y and A such that (2.5) holds with p'(y) = A4Sy (¥n) and ff' () = AS;p(¥n) together
with

o= (rsp/(ww, )+ 8 z))) drd:. 2.10)
2,(¥) Mot

The functions S, and Sy are usually given as piecewise polynomial functions.
Another frequent a priori model is

Sp/(WN)=:%(1—w§)y, Srr(¥n) = (1= Buoro(1 —yYx)", (211)

with ry the major radius of the vacuum chamber and «, 8, y € R given parameters.
We refer to Luxon and Brown (1982) for a physical interpretation of these parameters.
The parameter g is related to the poloidal beta, whereas o and y describe the peakage
of the current profile.

2.2. Inverse static problem

The direct problem in the previous section computes a free-boundary equilibrium
for given coil currents. In many applications, in particular in the area of tokamak
operation, the inverse problem is equally relevant: What are the currents that give a
certain desired shape to the plasma? A popular approach to answer such a question
is its formulation as an optimal control problem. The currents I; in the poloidal
field coils are the control variables and the magnetic flux map  describing the
equilibrium is the controlled variable. Then we introduce a cost function for the
magnetic flux ¢ and the coil currents I; penalizing the deviation from a desired
plasma shape and position, and we minimize this cost function under the constraint
that the magnetic flux ¢ and the currents in the coils solve the equilibrium problem
(2.5). A regularization term ensures well posedness of the inverse problem. Here again,
the current profile in the plasma is supposed to be known data.

In CEDRES-++, we prescribe a plasma state by a desired plasma boundary I'.
Let Iy = $21 denote a closed line, contained in the domain £2; that is either smooth
and touches the limiter at one point or has at least one corner. The former case
prescribes a desired plasma boundary that touches the limiter. The latter case aims at
a plasma with X-point lying entirely in the interior of §2;. Further let (rgesi, Zdesi) € I desi
and (1, 21), - - - ("Ngy» TNay) € Tdesi b€ Nyesi+1 points on that line. We define a quadratic
cost functional K () that evaluates to zero if Iy is a y-isoline, i.e. if ¢ is constant



Plasma equilibrium with CEDRES++ 9

on I yei:
Ndesi

1
5 Z (lﬁ(ri, Zi) - W(rdesi, Zdesi)>2- (212)
i=1

Another quadratic cost functional, that will serve as regularization, is

K(y) =

L N;

Wi
R, dew) =) > S (2.13)

i=1 j=I

The coefficients w; ; > 0 are called regularization weights.
Let us state the two inverse problems that we will consider in the following.

PROBLEM 3 (INVERSE STATIC). Let S, : [0,1] — R and S¢p : [0,1] — R be two
known functions. We solve the following minimization problem:
min  K(Y)+ R(Iy1,...1..n,) subject to (2.5) (2.14)

Wi dL,
with p'(y) = Sy (¥n) and ff'(¥) = Syp(Yn)-

PROBLEM 4 (INVERSE STATIC, WITH GIVEN PLASMA CURRENT /Ip). Let S, : [0,1] - R
and S;p 1 [0,1] = R be two known functions and assume additionally that the total
plasma current Ip is given. We solve the following minimization problem:

min  K(Y)+ R(I11,...1.n,) subject to (2.5) and (2.10) (2.15)

VRN (RPN

with p'(yr) = A4Sy (Yn) and ff' (V) = 2S5 (¥n)-

Clearly, it is also possible to define other cost functions forcing the plasma to
have other characteristics. CEDRES++ can be easily extended in this direction.
Furthermore it is possible to add both equality and inequality constraints. We are
planning to include for example upper and lower bounds on the currents and the
forces in the coils.

Another class of inverse problems related to static equilibrium, appears in real time
tokamak control. There, it is important to reconstruct both the plasma boundary
as well as the current profile functions p’ and ff’ in the plasma from external
measurements. Frequent and fast prediction of the current state of the plasma in
the tokamak machine are essential information for feedback control system. Hence,
the computational challenges in solving these inverse problems are much different,
and lead to the development of a separate class of equilibrium codes (Hofmann and
Tonetti 1988; Lao et al. 1990; Mc Carthy et al. 1999; Blum et al. 2012).

2.3. Direct evolution problem

In contrast to the static problems, the evolution problems in CEDRES++ take also
into account the Faraday’s and Ohm’s laws in the poloidal field coils and in the
passive structures. The dynamics due to Faraday’s and Ohm’s law in the plasma, as
well as the dynamics related to transport of heat and particles are supposed to be
treated by external tools. Alternatively, one can prescribe the profiles S, and S;p
as functions of time. The Poynting Theorems (2.4) and (2.3) could provide a global
mean to check whether the coupling between CEDRES++ and such external tools
is accurate. However, due to discretization, one needs to resort to integrated versions
of the Poynting theorems for the accuracy check. Later, in Sec. 3.6, we will present
detailed formulas of such integrated Poynting theorems.



10 H. Heumann et al.

The N poloidal field coils are gathered into L poloidal field circuits which contain
in total M supplies. Each of the L poloidal field circuits contains a subset of the N
coils and a subset of the M suppliecs. We denote by I; the vector of size M; + N;
which contains the currents at the M; supplies and in the N; coils of the circuit
with index i, 1 < i < L. The circuit equations in the ith circuit can be written in
the form:

I =SV, + Ri'j’i(aﬂﬂ), (2.16)
where the matrices S; € RWMiTN)xMi and R, € RMi+N)xNi depend on the wire turns
n;., the total resistances R;. and the cross sections S;. of the poloidal field coils
in the circuit i and on the topology of the circuit. Details on the computation
of matrices S; and R; are given in Appendix (A). The vectors V; € R contain

the voltages applied to the supplies, and the vectors ¥;(y) € RY are ¥(y) =
(fQ wdrdz,...,fgc_ Vdrdz)?. In the case of a simple circuit composed of one

supply connected to the coil 2, the (2.16) writes
3,1 Vit (1) n; / oy

L=l o 0l —— drdz.
! R; 1 Ri1Si1 Ja, 0t

The free-boundary equilibrium problem on the time interval [0, 7] for the time
dependent poloidal flux ¥ = ¥ (t) = ¥ (r, z, t) is:

P ) ) i 2,(0);
v (iw) _ ]SSV RB0); in 2, 1<ES LS <N
ur — S ar n 2, ;
0 elsewhere,

v0.2,0)=0;  lm ¥y z1)=
——+400
W(’”, <, O) = 1;00(’”9 Z) s
(2.17)
The equation in the passive structures §2,, is deduced from Ohm’s law and Faraday’s
law, o} being the equivalent axi-symmetric conductivity.

PrROBLEM 5 (EVOLUTION, DIRECT). Let S, : [0,1] x [0,T] — IR and Syp
[0 1] x [O Tl — R be two known functions. Let the evolution of the voltages
Vi(t), ..., Vi(t) in the poloidal field circuits and the initial data o be given. We want
to find the evolution of Y (t) such that (2.17) holds with p'(y(t), t) = AS,(¥n(2), t) and

W), 1) = ASsp(Yn(2), 2).

PROBLEM 6 (EVOLUTION, WITH GIVEN PLASMA CURRENT [p(f), DIRECT). Let S, :
[0,1] x [0, T] = R and Ssp : [0,1] x [0,T] — R be two known functions. Let the
evolution of the voltages \71(t),..., \7L(t) in the poloidal field circuits and the initial
data o be given. Additionally we assume that the evolution of the total plasma current
Ip(t) is given. We want to find the evolution of ¥ (t) and A(t) such that (2.17) holds with

P (0), 1) = 28, (Yn(t), 1) and f/(Y(1). 1) = 28 (Yn(1). 1) together with

—j,(l)/ o) ( WN(V Z, t) l‘)‘|—LSff/(lﬂN(r Z, f) )) drdz. (218)
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To model a consistent quasi-static evolution of plasma equilibrium the equations
in (2.17) have to be augmented by the diffusion of density, temperature and magnetic
flux. In that case, both functions S, and Sy in the Problems 5 and 6 appear as
unknowns of the full system of equations.

2.4. Inverse evolution problem

The inverse evolution problem is the problem of determining external voltages such
that the evolution of the plasma has certain prescribed properties. We will state this
problem again as an optimal control problem.

Let Iyesi(r) = $21 denote the evolution of a closed line, contained in the domain
£2; that is either smooth and touches the limiter at one point or has at least one
corner. The former case prescribes a desired plasma boundary that touches the limiter.
The latter case aims at a plasma with X-point that is entirely in the interior of £2|.
Further let (rdesi(t)a Zdesi(l‘)) € Fdesi(t) and (1’1(1‘), Zl(t))7 R (rNdesi(t)’ ZNdesi(t)) € Fdesi(t)
be Ngesi + 1 points on that line. We define a quadratic functional K () that evaluates
to zero if Iyei(f) is an ¥ (t)-isoline, i.e. if ¥ (¢) is constant on [y (f):

1 T Ndesi
mew=i£(2}wmmamﬁ—wmammammﬁdn (2.19)
i=1

Another functional, that will serve as regularization, is
L W T
ROAD.... V) =5 [ i) Viwar (220)
= 2 )

It penalizes the strength of the voltages V; and represents the energetic cost in the
coil system. The coefficients w; > 0 are called regularization weights.

PROBLEM 7 (EVOLUTION, INVERSE). Let S, : [0,1] X [0, T] — R and S; : [0, 1] X
R — IR be two known functions. We solve the following minimization problem:

min _ K(y(1)) + R(Vi(t), ... V(1)) subject to (2.17) (2.21)
Y (1), Vi(2),...VL(2)

with p' (Y (1), 1) = Spy(¥n(t), 1) and ff'((t)) = Spp(¥n(2), 1).

PROBLEM 8 (EVOLUTION, WITH GIVEN PLASMA CURRENT Ip(f), INVERSE). Let S, :
[0,1] x [0,T] = R and Syp : [0,1] x R — R be two known functions. Additionally
we assume that the evolution of the total plasma current Ip(t) is given. We solve the
following minimization problem:

min  K(W(t)) + R(Vi(1), ... V(1)) subject to (2.17) and (2.18)  (2.22)
), ¥ (), Vi(t),...Ve(t)

with p'(Y (1), 1) = At)Sy(Yn(1), 1) and [/ (Y(1)) = Ae)Ssp(Yn(2), 7).

3. Computational methods and applications

The main challenges for solving the Problems 1-8 numerically are their formulation
on an infinite domain, the nonlinear right-hand side, the nonlinear permeability in
iron and the nonlinearity due to the free plasma boundary. In the following, we
will use finite element methods (Ciarlet 1978) to discretize the Problems 1-8, and
we will see that this approach is flexible enough to tackle all those challenges at
once. First, finite element methods are favored approximation methods due to their
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flexibility on domains with complex geometry. Second, they allow for a straightforward
implementation of Newton methods to handle the strong nonlinearities related to the
free boundary setting. The convergence speed of such Newton methods is superior to
the convergence speed of fixed-point approaches that are otherwise applied for such
kind of problems. As a variational formulation is the starting point for any finite
element method the section starts with the variational formulations of Problems 1,
2, 5, and 6. The subsequent paragraph on the spatial discretization, a standard finite
element method with linear Lagrangian basis functions on triangles, focuses mainly
on the special treatment of the free plasma boundary. It gives the important formulas,
required to derive the new Newton method afterwards. Having these Newton methods
at hand, it is straightforward to tackle the inverse problems. The overview on the
computational methods finishes with two paragraphs describing the interfaces of
CEDRES++ for the coupling with transport codes and presenting volume integrated
Poynting theorems.

3.1. Variational formulation on the truncated domain

We chose a semi-circle I" of radius pr surrounding the iron domain $2f., the coil
domains §2.,; and the passive structures domain 2, . The truncated domain, we use
for our computations, is the domain 2 < £2,, having the boundary 02 = I" U I,_,
where I,y := {(r,z), r = 0}. The variational formulations of Problems 1, 2, 5, and 6
use the following Sobolev space:

Vo {«p @R, [ yirdrdz <o [ (VPrardz <o = 0} alate)
2 2

(3.1)
and are obtained by multiplying equations in 1, 2, 5, and 6 by test functions £ € V
and integrating by parts over §2. They are called the variational formulations since
they are the Euler equations of the minimization of the energy. Then we define
e two mappings A : V XV — R and J, : V x V — IR that are linear in the last
argument:

1
AW, ) :=/Q AT VY -VEdrdz

1
(¥, ) = / <rp’(1p) - —ff/(lﬁ)) £drdz (3.2)
2p(¥) Hor
e two bilinear forms j»,j°: V xV - R
Nps

ips — Yk

(v, §) = Z /Q e drdz
(3.3)

ZZS,J (R'P w)) / £ drdz

i=1 j=1

e N bilinear mappings ¢; ; : R x V — R:

4 (1,8) =S8, I/ Edrdz (3.4)
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e a bilinear form ¢ : V x V — IR, accounting for the boundary conditions at
infinity (Albanese et al. 1986):

oy &) = % /F (PN (PE(PL)dS,

Yo / (W(P) — Y (P)M(P, Po)(E(P) — E(P2)dSidSs.  (3.5)
Ho JrJr

with
kp, p 2 —kp P
MP, P, = D22 2 E(k K (k
(P, P») ()} (2 2k,2,1 (kp, p,) — K(kp, p,)
11 11 .
N(PI)— +——— and &y =\/r{ +(pr £ z1)?,
5_1_ o Pr

where P; = (r;,z;) and K and E the complete elliptic integrals of first and second
kind, respectively and

I B 4rry
Pk = (rj +r)? 4+ (z; —z)*

We refer to (Grandgirard 1999, Chapter 2.4) for the details of the derivation. The
bilinear form c(, -) follows basically from the so-called uncoupling procedure in (Gatica
and Hsiao 1995) for the usual coupling of boundary integral and finite element
methods. In our case, it can be shown that for all Py, P, the integral term (y(P;) —
Y (Py))M(Py, Py)(&E(Py) — &£(P,)) remains bounded. The Green’s function that is used
in the derivation of the boundary integral method for our problem was used earlier in
finite difference methods for the Grad—Shafranov—Schliiter equations (Lackner 1976).
We derive the following variational formulations of the direct Problems 1 and 2.

VARIATIONAL FORMULATION 9 (StATIC). Let S, : [0,1] — R and S;p : [0,1] - R
be two known functions and let the currents I; ; in the coils be given. We set p'() =
Sy(Un) and ff'(¥) = Spp(¥n) in (3.2). We want to find € V such that

L N;
AW &) — o &)+ £) = Y > il &) (3.6)
i=1 j=I

holds for all £ € V.

VARIATIONAL FORMULATION 10 (STATIC, WITH GIVEN PLASMA CURRENT [p). Let S,
[0,1] — R and S¢p : [0, 1] — IR be two known functions and let the currents I; ; in
the coils be given. We set p'(¥) = Sy (¥n) and ff'(¥) = S (¥n) in (3.2). Additionally
we assume that the total plasma current Ip is given. We want to find v € V and A € R
such that

(W S)_;“ p(wg +C(‘ﬁ %-) ZZ&] l]a ’

i=1 j=1

I, —Adp(y, 1) =0

(3.7)

holds for all £ € V.

The variational formulation of the evolution Problems 5 and 6 is based on an
implicit Euler time-stepping scheme 0 :=1#y <ty + At; =t < ...t, 1+ At, =t,=T.
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Other choices are possible. Since we will anyway employ only low order spatial
discretization, the implicit Euler is the obvious choice.

VARIATIONAL FORMULATION 11 (EvOLUTION). Let S, : [0,1] x [0,T] — R and
St 1 [0,1] X [0, T] — R be two known functions. Let the evolution of the voltages

\71(t), ey ‘7L(t) in the poloidal field circuits and the initial data vy be given. We set

p'(W) = Sy(Un(t),t) and ff' () = Spp(dn(2), 1) in (3.2). We want to find y* € V
approximating (t;) such that

Aka(Wk’ S) - Atk‘-l];(wk9 g) - jpS(wk’ s) - jC(Wk7 E) + Atkc(wk’ g)
L N;
= A > > L ((SiVi(w));, &) — P &) — vt 8), (38)

i=1 j=1
WO = Yo,
holds for all & € V with J5(-, ) = Jp(", )=,

VARIATIONAL FORMULATION 12 (EVOLUTION, WITH GIVEN PLASMA CURRENT Ip(t)).
Let S,y :[0,1] x[0,T] = R and S¢p :[0,1] X [0, T] — IR be two known functions. Let
the evolution of the voltages ffl(t), ey VL(I) in the poloidal field circuits and the initial
data vy be given. We set p'(y) = Sy(¥n(t),t) and ff'(y) = Spp(¥nl(2), t) in (3.2).
Additionally we assume that the evolution of the total plasma current Ip(t) is given. We
want to find ¥* € V and * € R approximating ¥ (t;) and A(t;) such that

AtkA(wk’ S) - Atk/Ik ‘Jlf)(wk’ g) - jps(lﬁk7 %-) - J'C(l/’k, S) + Atkc(wk’ S)
L N;i
=AY > L ((SiVi(w);, &) — P &) =yt 8), (3.9)

i=1 j=1

(1) — 2 (¥ , 1) =0, y° = yo.
holds for all & € V with Ji(-,*) = Jp(-, )=

3.2. A Galerkin discretization

We use a standard linear Lagrangian finite element to discretize the nonlinear
operators in the previous section. Finite element methods are particularly well suited to
treat complex geometries, such as the one of the tokamak (plasma, passive structures,
poloidal field coils.) We refer to Sec. 5 for a general discussion on the choice of
the order of the finite element method. For this we introduce a triangulation £2, of
the domain 2 that resolves the subdomains §21, £2r, £2, ;, §2;,. The finite element
approximation v, of ¢ in the finite element space V), is an expansion in basis functions
/1,' .

Ua(r.2) =Y ¥idi(r.2) with ¥; € R. (3.10)

Each Lagrangian basis function /;(r, z) is piecewise linear and vanishes at all vertices
except one. The domain of the plasma $2,(v;,) of a finite element function v, is bounded
by a continuous, polygonal, closed line. The critical points (rpng(¥s), Zond(¥r)) and
(rax(V¥n), zax(¥r)) are the coordinates of certain vertices of the mesh. The saddle point
of a piecewise linear function vy, is some vertex (rg, zo) with the following property:
if (r1, z1), (r2, 22) ... (r4, z,), denote the counterclockwise ordered neighboring vertices
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FIGURE 2. Integration over T N $2,(y). The green dots indicate the location of the quadrature
point. The integration domain T N £2,(,) is either (a) empty, (b) the whole element 7', c) a
triangular domain or quadrilateral domain.

the sequence of discrete gradients yg — ¥y, Yo — V2 ... Yo — ¥, changes at least four
times the sign.

It remains to specify the quadrature rule that is used to approximate integrals over
triangles 7' and integrals over intersection T N £2,(y;,) of triangles with the plasma
domain

/f(r, Yn)Aidrdz  and / g(r, Yy didrdz. (3.11)
T TN2p(Vn)

The second type of integrals appears in Jp due to the fact that the mesh does not
resolve the boundary of the plasma domain §2,,. In any case we will use the centers
of gravity

by == (rr,zr) and br(¥y) = (re(¥n), 2r(¥n)) = (rTmszp(wh), ZTnfzp(w,,)) (3.12)

of the integration domains 7 or T N £2,(y,) as quadrature points. The corresponding
quadrature weights are the size of the corresponding domain |7'| and [T N £2,(¥y).
The barycenter for the second type of integrals depends itself on . Our choice of
quadrature rule introduces a consistency error of order O(h?), where 4 is the diameter
of the triangle, i.e. the quadrature is exact for linear integrands.

For a triangle T with vertex coordinates a;,a;,a; € IR? the center of gravity
corresponds to the barycenter:

1
(rr,zr) = g(ai +a; + ay). (3.13)

If the domain of integration is 7 N §£2,(v;), we have to distinguish the two cases,
where T N §2,(v;) 1s either a triangle or a quadrilateral. Without loss of generality we
assume that a;, a;, a; 1s a counterclockwise ordering of the vertex coordinates of T
and that 9£2,(y) intersects 07 at two points m; and m; at the edges opposite to the
vertices a; and a; (See Fig. 2). The barycentric coordinates of the intersecting points
m; and m; are functions of V:

_ 1ﬁbnd(‘ph) - Wi
Vi — i

and, clearly, we have A(my(v;)) = 4;(m;(¥,)) = 0.

Vond(Yn) — Vi

Aj(m () T

, Ax(m; () =

(3.14)
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If T N §2,(Yy) 1s a triangle and a; that vertex of T that is contained in 7 N £2,(v)
(See Fig. 2, left) we find:

(e ), () = 3+ S5 (m)(a, — ) + lm, ) —a)  (315)

and

1T O 25 ()| = [T'12;(m (Y )) A (M (Y5)). (3.16)
If T N $2,(¥n) is a quadrilateral and a; that vertex of T that is not contained in
T N 2,(Yr) (See Fig. 2, right) we find:

1 1 — /]%(mk(Wh))ik(mj(wh))

) 2o =+ 5 P ) )
11— 2;my () (m; ()
31— (me (V)i (m; () %) (3.17)
and
T 02,0 = 7] (1 — 2 (m () (m; (9) (3.18)

In the next paragraph we will present a Newton method for the discretized nonlinear
problems, and it is important to work out accurately all the nonlinear dependencies
on the finite element solution ¥,. Only then we can compute the correct derivatives.

For the sake of brevity we do not write down explicitly the discrete versions of the
operators from the previous paragraph, but introduce the subcript 4 to denote the
discretized nonlinear operators. A, for example is the discretized version of A. We get
fully discrete nonlinear formulations.

GALERKIN FORMULATION 13 (StATIC). Let S,y : [0,1] = R and Sy : [0,1] — R be
two known functions and let the currents I; in the coils be given. We set p'() = S, (¥n)
and ff'(¥) = Spp(Yn) in (3.2). We want to find , € V), such that

Lo
An(Wns E1) — o E0) + Cn(Wns &) = D > il j. &) (3.19)

i=1 j=1

holds for all &, € V,.

GALERKIN FORMULATION 14 (STATIC, WITH FIXED PLASMA CURRENT [p). Let S,
[0,1] = R and Ssp : [0,1] = R be two known functions and let the currents I; in the
coils be given. We set p'(y) = S, (¥n) and ff'(¥) = Sy (¥n) in (3.2). Additionally we
assume that the total plasma current Ip is given. We want to find v, € V;, and 1 € R
such that

LN
AW En) = 2 dp (s En) + Cn(Wns &) = D > il j. &),

i=1 j=1

Ip - /I‘Jp,h(wha 1) = 09

(3.20)

holds for all &, € V.

GALERKIN FORMULATION 15 (EvOLUTION). Let S,y : [0,1] X [0,T] — R and S :

[0,1] x [0, T] = R be two known functions. Let the evolution of the voltages \7,-(t) in
the poloidal field circuits and the initial data v be given. We set p'(y¥) = S, (¥n(t), 1)
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and ff'(¥) = Sp(Yn(r), 1) in (3.2). We want to find ¥y € V,, approximating v () such
that

At AW En) — A Wk &) — 10 (UE, &) — B5(WF, &) + Anc(yf, &)
L N;i
= A6 Y > L ga(SiVit)y, &) — (T &) — B (wE T &), (3.21)

i—1 j=1
i = %o
holds for all & € Vi, with J§ (-, *) = Jpi(s )=

GALERKIN FORMULATION 16 (EVOLUTION, WITH GIVEN PLASMA CURRENT Ip(t)). Let
Sy :[0,1] x [0, T] —» R and Ssp : [0,1] x [0, T] — IR be two known functions. Let
the evolution of the voltages f/,-(t) in the poloidal field circuits and the initial data vy be
given. We set p'() = Sy (¥n(t).t) and ff' (V) = Spp(¥n(2), t) in (3.2). Additionally
we assume that the evolution of the total plasma current Ip(t) is given. We want to find
Yk eV, and J* € R approximating ¥ (t;) and A(t;) such that

At AL (W, sh) Aty (W &) — i (W &) — 150k &) + Anc(¥y, &)
= Ay ZZ@ Sal(SiVi(e))j, &) =W &) =150 &), (3.22)

i=1 j=1
Ip(t) = 2 Jg (i, ) =0, ) = o,
holds for all & € Vi with J5 (-, *) = Jpu (", )=,

The Galerkin formulations assume that the function g 1s known. In practical
applications up. needs to be estimated from experimental data. We refer to Glowinski
and Marrocco (1974) and, more recently to Pechstein and Jiittler (2006), for details.

3.3. Newton’s method and the free plasma boundary

Newton’s methods for solving a nonlinear problem F(x) = 0 for x is the following
iterative scheme:

F’(x,-)(xi+1 — .X,') = —F()Ci) <> F,()Cl' )xi—l-l = F/()C,')x,' — F()C,'). (323)

If F is sufficiently smooth, standard theory for Newton methods asserts that this
iteration converges quadratically fast to the solution x. In our case the magnetic flux
Y or its finite element approximation ¥, plays the role of the unknown x. If we want
to apply this method to either our continuous nonlinear variational formulations 9,
10, 11, and 12 or the discretized versions, namely the Galerkin Formulations 13, 14,
15, and 16, we need to compute derivatives of the nonlinear operators.

For the continuous formulations we need to calculate all the directional derivatives

Dy AW, E)W), Dydp(W, E)W), DyiP(yr, £)(), Dyi®(¥, &)(¥) and Dyc(y, &)(¥). This

calculation is simple for the bilinear mappings j°, j*, e.g.,
DyiP(y, )W) = P(J,§),  Dyi*(, )W) = (¥, §), (3.24)
and the nonlinear mapping A (see (2.6)):
~ 1
DA END) = [ ViV drdz
o n(y)r
Co [ Hhllemd v
2

« Mic(| grad w|2r—2)rsv‘” VYV - VEdrdz.
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The remaining derivative of J, was given in (Blum 1989, Lemma 1.4):

~ a7,(r, 0 ~
Dy 69 = [ NN G e ara:

B /W) Jolr DIVY ™ (= P (rona (W), 2ona(¥)))E T
n / 3jp(r, Un(¥)) dYn(Y) =
2p(¥)

lﬁ(rax(lﬂ), Zax(w))é: drdz,

0PN 0V
9jp(r, Yn(¥)) 0YN(Y) ~
+/.op(1,,) YN 9V ond Y (rona(¥), 2ona(¥))§ drdz,  (3.25)

where I, is the plasma boundary 952, and

Jolr () = S, (Un(¥)) + ﬁww(w». (3.26)

The derivation involves shape calculus (Murat and Simon 1976; Delfour and Zolésio
2011) and the non-trival derivatives:

DyYrax(¥) (W) = ¥(rax(¥), zax(¥))  and  Dyvona(¥)(¥) = ¥ (rona(¥), Zona(¥)).

The formula of the derivative relies on certain smoothness assumptions on ¥. Up
to our knowledge, there is no theoretical evidence that this formula holds also for
plasma equilibria with boundaries that contain X-points. In particular the second
term on the right-hand side seems to blow up if ¢ reaches a critical point.

Also in Blum (1989), it is shown that the derivative of J,(v, §) in the direction
vanishes: Dy J, (¥, £)(¥) = 0. Then the Newton scheme for solving Problem 10 is the
following iteration: Let (y", A*) be the solution at the nth iteration. For given (v", ")
we introduce the linear form:

L N;
F'(§) = —AW". &)+ DyAW" )W) + Y > €1, €)
i=1 j=I

(3.27)

WiV [Pr—2)
=2
/.

L N
n2 n, drd £° . Ii i E).
o M%@(|V¢|2r—2)r3|vw [“Vy" - V& dr z—}—zz l’j( y 5)

i=1 j=1

and the Newton update (y"*!, /**1) is the solution of the infinite dimensional linear
system

Dy A", )W) =2 Dy dp(", E)(W™H) +c(ym !, &) —dp(y", )4 = F(§),
AanJp(wn’ 1)(wn+1) +Jp(wn’ I)AH—H — Ip

with & € V. After each iteration we need to recompute Vax (V") = V" (rax(V"), Zax(¥")),
Vond (V") = ¥ (rona(¥"), Zona(¥")) and £2,(¥"). For the computation of the initial flux
function ¥° we choose a constant permeability in iron and replace the nonlinear form
Jp(¥, &) with some linear form fgp Jinis€ drdz, where £2,, 1s a given ellipse and ji;

a given constant current density. Hence ¥ is the solution to a linear problem and
determines the plasma axis and the plasma boundary in the first Newton iteration.
The Newton iterations for the Problems 9, 11, and 12 follow likewise. The
equilibrium codes SCED (Blum et al. 1981) and Proteus (Albanese et al. 1987)
are based on discretizations of such Newton iterations. The flux functions ¥" and
Y"*! are approximated by finite weighted sums of finite element basis functions and
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the test functions & cycle over all test functions. In each Newton iteration, one has
to invert an algebraic system whose size is equal to the number of finite element
basis functions. But since it is not clear, whether the formula for the derivative of
Jp (¥, £)(¥) remains valid for plasma boundaries with X-points, these approaches are
not very trustworthy.

In CEDRES++, we prefer to use Newton methods for the Galerkin Formulations
13, 14, 15, and 16. Such Newton methods need the directional derivatives

Dy, Au(Wn. &)Wn)s Dy (Wn )W) Dy, i (W €) (). Dy, i (¥n. &)(¥)  and
Dy, ci(Yn, §)(¥n).

Here again, this is a straightforward and simple calculation for all mappings except
one: the mapping Jp; that is related to the nonlinear current profile in the plasma
domain. The mapping Jp; is given by

oW 2m) = D o u(Wns Zn) =Y 1T 0 2p(0n)] plbr (n)) Jon (b (Y1),

where jp(br(Vn)) = Jjp(rr(¥n), ¥n(Wn(br(¥n)), Yax(¥n), Yona(¥a))). The directional

derivative of Jp, (¥, 4,) In direction 4, is the partial derivative with respect to
the expansion coefficient v, :

0 0
Dy Jdp 4 (Y, 2m)(An) = WJP,h(Wha Im) = W‘JP,h (Zl Vilis /lm) .

Computing the derivative of each terms of Jp (¥, 4,) 1s a tedious application
of chain and product rules. We distinguish three different cases: 7' N £2,(y,) = O,
TN2,(Yy) =T and T N 2,(Y,) = T (see Fig. 2). With a slight abuse of notation we
identify v, and ¥, with the corresponding finite element expansion coefficient and
use the Kronecker deltas 6, png and 6§, ax.

(a) T N 2,(y) = 0:

0
MJgh(%, Im) =0

(b) TN 2,(Y) =T:

0 7 _ 1o Op(rr, Yn(br)) 99n(br)
MJP’h(wh’ )bm) = |T| a‘(lfN < aw‘h )"n(bT)
dyrn(br) dyn(br) .
+ msn,bnd + W5n,ax> Im(b7);

(c) TN82y(Yy) = T: Without loss of generality we adopt the notation from section
3.2, introducg /1’; = 2;(my) and 4] = A4(m;) use by to denote? br(y¥,). We define
AR = |T|25 if T 0 2,(Yy) is a triangle and AR = |T|(1 — 2A4) if T N 2,(¢) is a
quadrilateral. We find

%J%,h(wh, I) =AL W dmr) + CT Wi Jon) + T (P o)

with
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e the derivative related to the area |T N £2,(y)|:

AT iy =171 (22250 4 52
i A

ok ok :
+ | —L4 + A Snbnd | Jp(br) Am(br),

0 wbnd k 0 wbnd

where s = 1 if |T N §2,(y,)| is a triangle and s = —1 else.
o the derivative related to the current j,(r7, ¥n(br)):

€l i) = AR LT IO (gw inlbr) + 5 an,bnd> J(br)
# AR IO (Dsbr), | OO, Y o
+ ARajp(rTéfs(br)) (%NIST)AH(M) + %NfT)th(bT) g:’;
+ ""gNw(Z’T)wh(bT) 8‘2: an,bnd>zm(br).

e the derivative related to the test function A, (br):

ab db
T W) =AR Gyor) (Valbr) - 505+ Vitbr) - 5 b ).
OV, dYbnd
The derivatives of ¥y follow easily from the Definition (2.9). We would like
to stress that the Galerkin matrix Dy Jf (¥4, 4,)(4,) can be assembled in a fairly
standard, i.e. element wise, fashion, provided we compute in a preprocessing step
the following information for each element 7' belonging to the last case: We need
to know the barycententric coordinates of the intersection points 4;(m;) and 4;(my),
the barycenter by(y,) and the derivatives 24U 2%my) = 92um;) 9um;) - 32,(m) = 32, (m)

2 0 (me) oy > 9y OYn O OYpna 7 Y > Oy 0
0 FALLLS il o4k ) my abr abT abr BbT . : . .
T o and gt R Tr T . All this information can be easily computed for

given ¥, Ypnq and ¥, using the Formulas (3.14), (3.15), and (3.17). All the terms that
contain the Kronecker deltas &, png O 8, .x lead to non-local entries in the stiffness
matrix. They connect the coefficients y;, = Yr,ng and ¥;, = ¥, with all coefficients ;
that are associated to vertices of elements that are intersected by the plasma domain
2p(Yn)-

The size of the algebraic systems that we need to solve in each iteration corresponds
to the number of vertices of the triangulation. Even for very fine discretizations it is
today possible to use direct linear solvers such as UMFPACK (Davis 2011). As long
as the storage amount for the algebraic system does not exceed the memory, modern
direct solvers will outperform in most cases an iterative solver.

3.4. Sequential quadratic programming for the inverse problems
In CEDRES++, we use the following fully discrete reformulation of the inverse
Problems 3 and 4, to find optimal currents in the poloidal field coils.

INVERSE PROBLEM 17 (StATIC). Let S, : [0,1] — R and S;p : [0,1] — IR be two
known functions. We set p'(y) = S, (¥n) and ff' () = Sp(¥n) in (3.2). We solve the
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following minimization problem:

min  K(Y,)+ R(I11,...1.n,) subject to (3.19). (3.28)

Y1, AL N,

INVERSE PROBLEM 18 (STATIC, WITH GIVEN PLASMA CURRENT Ip). Let S, : [0, 1] = R
and Sgp 2 [0,1] — IR be two known functions and assume additionally that the total
plasma current Ip is given. We set p'(¥) = Sy (¥n) and ff'(¥) = Ssp(¥n) in (3.2). We
solve the following minimization problem:

min K(Wu)+ R(I11,...1L.n,) subject to (3.20). (3.29)

2y I 1AL Ny

The inverse Problems 17 and 18 are finite dimensional constrained optimization
problems. The sequential quadratic programming (SQP ) method is the fastest method
for finite dimensional constrained optimization problems. We refer to the text book
(Nocedal and Wright 2006, Chapter 18) for the details and explain here only the basic
idea.

Both inverse Problems 17 and 18 are optimization problems of the following type

r{lliyn %yTKy + %uTHu st B(y) = F(u), (3.30)
where the quadratic matrices H and K are the discretization of the cost functions K
and R, the state variable y is the vector of the finite element coefficients ; and the
scaling factor /A, the control variable u is the vector of the N currents /; in the poloidal
field coils and B and F the Galerkin discretizations of (3.19) or (3.20). The Lagrange
function formalism in combination with Newton-type iterations is one approach to
derive the SQP-methods: the Lagrangian for (3.30) is

1 1
L(y,u,p) = inKy + EUTHu +p"(B(y) — F(u)) (3.31)

and the solution of (3.30) is a stationary point of this Lagrangian:

Ky+ DyB’ (y)p =0,
Hu— D,F"(u)p = 0, (3.32)
B(y) — F(u) = 0.

The superscript 7 indicates the adjoint operator, which corresponds to matrix
transposition in the finite dimensional case. The second line in (3.32) corresponds
to the optimality condition for the gradient of the reduced cost functional
Ju"Hu + 1y"(u)Ky(u), where y(u) is implicitly defined by B(y(u)) = F(u). This is
the main reason for which gradient type methods for a corresponding unconstrained
optimization problem for the reduced cost function are too expensive: one evaluation
of the gradient requires the very expensive solution of the nonlinear problem in the
third line of (3.32). For the SQP-methods on the other hand, the overall computing
time in practical examples has about the same magnitude as the computing time for
solving the constraint for given control parameters.
A quasi-Newton method for solving (3.32) are iterations of the type

K 0 DyB'(Y)\ [yt —¥ Ky' + DyB'(y')p'
0 H —D,F'(u)] |u* —u | =—| Hu' — D,F"(u)p’ (3.33)
DyB(y')—D,F(u') 0 P —p B(y') — F(u')
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We call the iterative scheme (3.33) a quasi-Newton method since we omit the second
order derivatives of B and F. The quadratic convergence of Newton’s method
deteriorates to super-linear convergence. The number of control parameters is much
smaller than the number of state coefficients. Therefore the algebraic system in (3.33)
is roughly twice as large as the algebraic system of a Newton iteration of the direct
problem. Hence, as in the direct case, there is today no need to use iterative linear
solver.

This will be different for the inverse problems of evolving free-boundary equilibria.
There the size of the algebraic system increases by a factor that corresponds to the
number of time steps. We refer for Blum and Heumann (2014) for details and state
here only the finite dimensional inverse problems that are addressed in CEDRES++.
They are based on a discrete cost function K, ({yf}i_,):

Kh({wflz(}Z;I) = Z (% Z (W;/f(”i, Zi) - 1pll;(rdesi(tk)’ Zdesi(tk)))2> (334)

k=1 i=1

for the finite element approximation {yf}"_ at #, and a discrete regularization
function:

L n
w;

Ri((Vi(t)}icr. - Vet)fie) = D05 D AnVi(n) - Vi), (3.35)

i=1 7 k=1
for the coil voltages {V;(1)}1_,.

INVERSE PROBLEM 19 (EvoLuTION). Let S, : [0, 1] xR — R and S; : [0, 1] xR —
R be two known functions. We set p'(¥) = S, (¥n(t), t) and ff'(¥) = S;p(¥n(t), t) in
(3.2). We solve the following minimization problem:

min K ({Y5}io) + Ra(Vi(@)fizy, - {Ve()}iz))  subject to (3.21).
{W/];a‘/i(lk)}zzl

INVERSE PROBLEM 20 (EVOLUTION, WITH GIVEN PLASMA CURRENT Ip). Let S, :
[0,1] xR — R and Sy : [0,1] x R — IR be two known functions and assume
additionally that the total plasma current Ip is given. We set p'(¥) = Sy (¥n(t), t) and
ff'(W) = S (¥n(t), t) in (3.2). We solve the following minimization problem:

min  K,({¢FV_ ) + Ru((Vi(t))i_y, . {Vi(t)Yi_,)  subject to (3.22).

{lk,'//;,c,“/i(tk)}Za

We would like to highlight that the SQP-method relies on proper derivatives of
the nonlinear operators B and F. In our case F is affine, hence the derivative of B
remains the most difficult part. On the other hand these derivatives are exactly the
same derivatives that we used for the new Newton methods. Hence the implementation
of a SQP-method for the inverse problem uses the same main building blocks.

3.5. Flux surface averages and geometric coefficients

As for any equilibrium code numerous outputs can be extracted from the poloidal
flux map computed. These include purely geometric information on the plasma shape
(plasma boundary, geometric axis, elongation ... ), global parameters (such as total
plasma current Ip, poloidal beta f§,, internal inductance /i, ...), 1D profiles of
quantities constant on flux isolines in the plasma and 2D maps (v itself but also B,,
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B, jp, ...). All these outputs are standardized and follow the conventions of the
European Integrated Tokamak Modelling Project (Falchetto et al. 2014; ITM 2013).
We are not going to detail all of them in this paper. Let us however give some
details on the computation of some of the important 1D profiles in the plasma. For
Yn € [0, 1], Sp(¥w) = f(¥) is computed by integration of Sy

1
Se(¥n) = [(r0Bo)* — 2(Wona — Yax) | Spp(x)dx]"?, (3.36)

YN
where B, is the vacuum toroidal field at r = rq. Let us define a discretization of the
unit interval [0, 1] by S+ 1 values ¥ =0, ..., ¢¥3 = 1. These points are taken as
abscissa for all computed 1D profiles. For each v the contour line Iy is extracted
from the finite element representation of the solution as a list of N, segments between

mg’l = (rs’,l, zéyl) and mé’z = (rslyz, zé’z) with length |L!|, for I =1 to N,.

The toroidal flux coordinate is defined as p(Y¥n) = /d(¥n)/7 By where ¢(¥n) =
fﬂw [0 grdz and £2,, is the domain bounded by the line of flux I',. The

quantities ¢, and p, are computed from the discrete ¥, for all ¥ using a barycentric
quadrature rule (cf. Sec. 3.2):

Sr(¥n(br(¥n)))
" e - T ﬂ Q S| 3.37
? ; rr(¥n) | “l (337)
The profiles v, and p, being known one can compute (%)s = ¢/ using finite
differences.
In the same way the volume profile is computed as
Vol, =21 Y " rr(yn)|T N L2y (3.38)
T

and (agp"l )s = Vol using finite differences.

Following (Blum 1989) the average of a quantity A over magnetic surfaces can be

computed as
Ar ’
Al = di di | . 3.39
= (el ([ ) o

A number of 1D profiles, also called geometric coefficients, are computed as such
averages, e.g. (1/r?) or {|Vp|*/r?) . The integrals over flux contour lines involved are
approximated as follows:

N I I I I
A 1 [r, {A(m r.,A(m
/ r dl ~ Z - ( s,1 ( S,l) + s,2 ( S,Z)) ‘Ll‘" (3.40)
Iy V| — 2\ V¥l \VUizi
where 7} is the triangle which is intersected by the segment between m! ; and m!,
and m{ . = (ri’,, Z§,~) . VY] 1s constant in the triangle and computed from the 3

values at the nodes of T,

3.6. Volume integrated Poynting theorems

The subset of (2.1) and (2.2) we used in Sec. 2 to derive the evolution Problems 5
and 6 that are solved in CEDRES++, involve the poloidal Faraday and the toroidal
Ampere law. Hence, the poloidal Poynting Theorem (2.4) can be used to check the
accuracy of the solution independently of an additional treatment of the transport
equations.
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We integrate the poloidal Poynting Theorem (2.4) over a volume Vol that contains
all the plasma of a given scenario and get, by toroidal symmetry:

Vi - Vo, g

/ VI s = — / (rp/(w)+iff/(w>) S ydrdz + / YWV ha,
as Mo SN2p(¥) Hor S Hor (3.41)

where S denotes the intersection of Vol with the poloidal plane.

If we choose S to be the domain of the plasma £2p(y) then the left-hand side
of (3.41) is Vieoplp, Where Viyop 1s the plasma loop voltage. The first integral of the
right-hand side is related to the time rate of variation of the toroidal magnetic energy
and to the work done against the plasma pressure gradient. The last term of the
right-hand side is the time rate of variation of the poloidal magnetic field energy.

We would like to stress that the integrated poloidal Poynting theorem corresponds
to a variational formulation of the Grad—Shafranov—Schliiter equations on S. Using
the notation (3.2) of our variational formulation from Sec. 3, we remark that the two
integrals on the right-hand side correspond to Jy(v, xs0;v) and A(y, xs9d,%), where
xs is the characteristic function of S. Hence, it can be shown that the solutions ¥* of
the evolution Problems 15 and 16 fulfill the volume integrated Poynting theorem up
to first order accuracy in the mesh size.

The volume integrated version of the toroidal Poynting Theorem (2.3) together with
the static inverse mode was used in Ané et al. (2000) for the optimization of ITER
scenarios.

4. Tests and examples
4.1. Validation and performance

From the best of our knowledge, there does not exist analytical solutions for the free
boundary equilibrium problem considered in this paper. To provide nevertheless some
evidence for convergence of the method, we follow a common approach in engineering
and study the convergence towards a numerical solution that is computed on a very
fine mesh.

We consider a static equilibrium with a given plasma current (Problem 2) in ITER
geometry. The plasma current is 7, = 15.10 X 10°A and the current density profile is
prescribed using the model (2.11) with rp = 6.2 m o = 0.5978, g = 0.5978, y = 1.395.
With these data, we solve the Galerkin Formulation (16) on a sequence of five meshes
with increasing number of elements. The solution obtained on the mesh with the
largest number of triangular elements, is used as a reference solution and is noted
V,.r. In our case, the reference solution ,.r has 577415 number of unknowns and
the mesh consists of 1153 174 triangular elements. The reference solution is depicted
in Fig. 3. For each of the other four meshes, the numerical solution vy, 1s evaluated
at Nyoinis = 812 different points of the computational domain which are located
independently of the mesh (see Fig. 4). Then the relative error

Npoints _ 23\1/2
j— Mi re Mi
Epoints(Nukwn) — (Zz_] W’Nukw,,( ) w f( )’ ) (41)

(S [Wrer (M;)2)1 12
is used to quantify the convergence. The values in Fig. 4 demonstrate the expected
linear convergence. Similarly, in Fig. 5, we monitor convergence of the plasma
quantities total plasma volume Vols, the numerical derivative Vol. (see (3.38)) and
the geometric coefficient G, := (|Vp|*r=2), (see (3.39)) that are computed in a post-
processing step from the numerical solution ¥, with the methods from Sec. 3.5. Here
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FiGure 3. The reference solution for the ITER test problem.
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FIGURE 4. Left: the location of the points in the definition of E ;.. Right: convergence of
E point-

again (see Fig. 5) we observe approximately linear convergence in the number of
unknowns.

In Table 2 we give the overall computing time for the previous five computations on
an Intel Sandy Bridge 2.6 GHz. The computing time scales linearly with the number
of unknowns. Given the fact that we solve nonlinear problems, the computation
time is reasonably small. Application engineers can easily solve a huge amount of
different scenarios in short time to do parameter studies for example. CEDRES++ is
perfectly suitable in larger work-flow environments, such as the European Integrated
Tokamak Modelling Project (ITM 2013; Falchetto et al. 2014). One reason for such
short running times is the Newton method. The convergence history of the residuum
in Table 2 shows perfect quadratic convergence: we need only very few iterations to
find a numerical solution solving the discrete nonlinear problem within the limits of
machine precision.
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Number of triangles Number of unknowns i(r)nrgp(lllf?)g Iteration Relative residual

1 2.667473 x 10+

§§ (7)32 116 égg g 2 9.157459 x 10~

58744 29556 1 3 1781645 x 107

328693 164 887 88 4 0525234 x 107
1153174 577415 368 5 3935226 x10

TaBLE 2. Left: calculation time. Right: convergence history of the Newton iteration in the
calculation of ¥,.s.

—0— |V0ls - Volsyrefl/‘vols’reﬂ
—o— ||V0l/ - VOl{,rcfH/HVOl-/,rcf”
o G = G|/l G et

° slope=—1

1072

10* 10°
number of unknowns Ny kwn
FIGURE 5. Convergence of plasma volume Volg, the numerical derivative
Vol, = (¥Y) s =0,...5 and the geometric coefficient G, = (|[Vp|*r—2);,5s = 0,...S. The

ap
reference quantities Volg e, Vol, ..; and Gy o correspond to the quantities computed for .

s,re

4.2. Quasi-static plasma equilibrium simulations for WEST

The tungsten (W) environment in steady-state tokamak (WEST) project (Bucalossi et
al. 2011) aims at equipping Tore Supra with an actively cooled tungsten divertor. This
represents a major change in the magnetic configuration of Tore Supra, moving from
a circular limited configuration to a diverted (or X-point) configuration. CEDRES++
is one of the main modeling tools used for the preparation of WEST. It has been
employed in particular for the definition of reference equilibria, the dimensioning
of the plasma vertical position feedback system, the design of the plasma shape
controller, breakdown studies, disruption simulations, etc. We give below a few
examples of CEDRES++ simulations for WEST. Note that Tore Supra is an iron
core tokamak and that the iron is taken into account in all of these simulations. The
six return arms of the iron core are represented in CEDRES++ by an axisymmetric
equivalent model, which gives the 1/R shape of the return arms visible in Fig. 6.
We are using the experimental data for the poloidal magnetic field B,, and the
poloidal magnetizing field H,, from Table 3, do piecewise linear interpolation of
these data and reconstruct the permeability for arbitrary magnetic field values via
MFE(Biol) = |Bpol||Hpol|71-

We present in the following sections three different examples from research for
WEST that use the static direct, static evolution, and inverse static modes of
CEDRES++. First simulations with the inverse evolution mode are presented in
Blum and Heumann (2014). The inverse static mode of CEDRES++- is also extremely
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|Bpol| |Hpal‘ |Bpol| |Hpol|

0.00 0 9 1.76 7.968 x 103
0.50 3.833 x 10? 10 2.06 4.821 x 10*
0.70 3.982 x 10? 11 2.25 1.628 x 10°

0.80 4.102 x 10? 12 3.05 8.090 x 10°
0.88 4.270 x 10° 13 4.05 1.588 x 10°
1.00 4.703 x 10° 14 6.05 3.178 x 10°
1.20 6.274 x 10? 15 98.20 7.651 x 107
1.52 2.474 x 103 16 10° 7.957 x 1010

OO\ DN kAW~

TaBLE 3. The data for the poloidal magnetic field |B,,| and the poloidal magnetizing field
|H | that is used to reconstruct the magnetic permeability.

FIGURE 6. Poloidal cross section showing -isolines for a WEST typical equilibrium. Left:
global view; right: zoom on the inner vacuum vessel region. The iron is displayed in blue, the
poloidal field coils in orange and the passive structures (vacuum vessel and vertical stabilization
components) in gray. The black curve is the limiter curve, i.e. the domain accessible to the
plasma. The red curve is the plasma boundary and the red star the magnetic axis.

useful in order to define and optimize reference equilibria. We will give details for
WEST in a forthcoming publication.

4.2.1. The current-focused case: direct static mode.

Figure 6 shows a typical WEST poloidal flux map calculated by CEDRES++
in current-focused mode. The X-point is visible at the bottom of the plasma. Here,
CEDRES++ solves the direct static Problem 2 with prescribed total plasma current
Ip = 700 kA and with the parametrized current profiles S,» and Sy in (2.11), using
a=1 =15y =0.9, ryp = 2.6 m. The vacuum toroidal field is By = 3.524 T at
r =2.6 m. A few output parameters are: 8, = 1.70, i =0.93, g9s = 3.33, go = 1.17.
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FIGURE 7. Left: plasma boundary at intervals of 100 ms in a vertical instability simulation
for WEST. Right: time evolution of the vertical position of the magnetic axis z,x in a vertical
instability simulation for WEST.

4.2.2. The voltage-evolution-focused case, direct evolution mode.

Starting from the equilibrium in the previous section, we run CEDRES++ in direct
evolution mode to solve Problem 6. We keep all the input parameters fixed and we
apply a constant voltage to the coils, equal to the resistive voltage being the product
of coil resistance and current, except for the divertor coils, where we perturb the
resistive voltage with AV = 40.1 V in the lower coil and AV = —0.1 V in the upper
coil. This is in order to trigger a vertical instability (otherwise the plasma would
stay in place). The simulation is run with a time step of 20 ms. Figure 7 shows the
plasma boundary at intervals of 100 ms. The plasma moves down and the diverted
configuration is lost after a few 100 ms when the plasma comes in contact with the
baffle of the pumping system. Figure 7 shows the vertical position of the magnetic
axis z,, as a function of time. The early evolution is exponential (as one expects) with
a time constant t, = 95 ms, while the later evolution is rather linear. The error of the
integrated Poynting theorem from Sec. 3.6 is approximately 5% and decreases if the
time step size and the triangle size are refined.

4.2.3. The current-focused case, inverse static mode.

We present here an example that requires to solve an inverse free-boundary
equilibrium problem: the post-processing of CRONOS (Artaud et al. 2010)
simulations of WEST scenarios. Indeed, CRONOS simulations are typically run in
fixed-boundary equilibrium mode (using the HELENA equilibrium code (Huysmans
et al. 1991) with a prescribed boundary geometry). One may however need to know
the magnetic field outside the plasma boundary (for example in order to prepare
JOREK (Huysmans and Czarny 2007) nonlinear MHD simulations), or to assess
whether the scenario is feasible in terms of current limits in the coils for example.
These questions may be addressed by solving the inverse Problems 17 and 18, using
as desired boundary, the boundary used in the CRONOS simulation, and as current
profile those profiles S, and Sy that are calculated by CRONOS. These profiles are
shown in Fig. 8, where one can notice peaks at the edge of the plasma which are
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FIGURE 8. Left: The profile functions S,, and Syp (normalized so as to fit in the same
figure) from a CRONOS WEST scenario simulation. Right: Lines: y-isolines calculated by
CEDRES++ in inverse snapshot mode. Black dots: CRONOS plasma boundary, used as the
desired plasma boundary in CEDRES++.

characteristic for H-mode profiles, while Fig. 8 shows the result of the CEDRES++
calculation. It can be seen that the CRONOS boundary (black dots) is well matched.

5. Conclusions and perspectives

We have presented in detail the computational methods of CEDRES++. It enables
to compute quasi-static equilibrium configurations, the currents in the poloidal field
coils or the voltages applied in the circuits of the poloidal field system being prescribed.
In its inverse mode the code computes these currents and voltages that ensure a certain
prescribed plasma shape that might evolve in time.

Due to its stability and robustness, CEDRES++ is a perfect tool to be coupled
with transport codes (Hinton and Hazeltine 1976; Hirshman and Jardin 1979), so that
the evolution of plasma equilibrium is simulated at the resistive timescale consistently
with transport processes. Reciprocally the transport codes take into account the
precise geometry of the magnetic flux lines. The numerical stability of such a coupling
is challenging and subject of ongoing research. This is particularly important for the
simulation and optimization of scenarios in new generation tokamaks. CEDRES++,
when coupled to the transport codes CRONOS (Artaud et al. 2010) and ETS (Coster
et al. 2010), is in use for simulating such self-consistent plasma evolution. The
evolution mode itself, when plasma current profiles are given, is a good practical
approach for vertical stability studies where the timescale of interest is much shorter
than the current diffusion timescale of the plasma.

Furthermore, the modular and clear structure of CEDRES++ and the emphasis
on accurate Newton methods, will make CEDRES++ very useful to implement fully
automatic approaches to the optimization of scenarios. It will be easy to study and
predict operational limits, and to devise control strategies that circumvent such limits.

It is possible to extend the methods presented in this work to higher order finite
elements. Nevertheless, there are a couple of obstacles in order to obtain entirely
higher order accurate methods:

e We are solving here a nonlinear elliptic problem with discontinuous coefficients
(in the case of iron-transformer tokamaks) and discontinuous right-hand side. The
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standard convergence theory for finite elements and elliptic regularity theory does
not yield improved approximation results for polynomials of degree higher than
1. Nevertheless practical experience and the theoretical results in Feistauer and
Sobotikova (1990) for low-order approximation of nonlinear problems and in Li
et al. (2010) for high-order approximation of linear problems suggest improved
accuracy. From the regularity theory for magneto-statics, we know in the case of
iron-transformer tokamaks (such as JET or Tore Supra) that the solution lacks of
regularity in the vicinity of the iron parts, in particular close to the interfaces air/iron
and the corners of subdomains with iron. In such non-regular settings, it is required
to switch to the so-called hp-version of the finite element method (Schwab 2004), that
uses small triangles and low order polynomials in regions with non-regular solution
and large triangles and high order polynomials elsewhere.

e Moreover, the general setting suffers from a fairly large modeling error due to
the experimental permeability curve and to the axisymmetric representation of the
ferromagnetic circuit that in reality consists of an iron core and a certain number of
non-axisymmetric return limbs. It is not clear whether such modeling errors might
surpass the discretization error.

e Higher order accuracy requires also sufficiently accurate quadrature rules in
the definition of the Galerkin methods. While such higher order quadrature rules are
standard for (iso-parametric) finite elements, we foresee technical difficulties alongside
with a considerable increase of computational complexity for the integrals over the
intersection of the plasma with triangles. We need to implement sufficiently accurate
quadrature rules for polygonal domains with non-straight boundaries. On top of this,
we need to implement for the Newton method the derivatives of such quadrature
rules.

We are planning to investigate such topics in the near future and to compare with
alternative approaches. One promising alternative might be to switch after a couple of
Newton iterations to a different discretization scheme that uses separate meshes and
separate polynomial degrees for the representation of the flux in the plasma domain
and its exterior. The nonlinear coupling of the plasma and its exterior will lead to
iteration schemes that induce small variations of the two meshes from one iteration
to the next. With this, both the location of the magnetic axis and X-point are a priori
not limited to a finite set of points, as it is the case for linear Lagrangian elements
with fixed global mesh.

Any higher order method will involve more sophisticated algorithms and it is hard
to predict if the accuracy at a fixed computing time will drastically improve. If high
accuracy is required at the moment, this can still be achieved with reasonable effort
by simple mesh refinement. The running time of the current version of the code is
not yet optimized and still it is possible to do calculations with over half a million
unknowns in less than 7 min on a workstation.
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Appendix A. Circuit equations

In a tokamak, the poloidal field system is made of a number of circuits each
comprising a number of coils and power supplies (see Fig. A.1). In the following we
will present the derivation of the circuit equations for one single circuit.

Let Ny be the number of nodes, No the number of coils, and Ng the number of
supplies of one circuit. To get a model for this circuit taking into account all those
connections, the idea is to write the potential difference for each supply and each coil
of the circuit. For a supply S, we have

U—U =V, (A1)

where V is the applied voltage and U, and U, the potential at the nodes that enclose
the supply. For a coil C, the potential difference writes
T LA LU (A2)
n S Jo ot

where U; and U; are the potentials at the nodes that enclose the coil, R is the total
resistance of the coil C, S its cross section, n its number of wire turns and / the total
current (in Ampere-turns). The average of % over the coil C is an approximation
of the discrete sum of inductive terms seen by the various turns of the coil. This
approximation is perfectly valid, if one has a homogeneous distribution of turns in
the coil.

We also consider Kirchhoff’s current law at each node of the circuit adding Ny
equations to the system. To fix the potential, we suppose that U; = 0. Thus, we get a
set of N,;, = Ns + N¢ + Ny + 1 equations which can be written in the form

AU = BV +CI + DY (3,¥). (A3)

where the N first equations represent (A 1) and the following N¢ equations are (A 2).
The last equation of the system fixes the potential U;. The matrices A € IRNea*Nv,
B € RNe«*Ns C € RNa*WNstNe) and D € RNo*Ne are called potential matrix, voltage
matrix, current matrix and induction matrix, respectively. The vectors U € R,
V € RY and I € RY*™Nc contain the electric potential at the circuit nodes, the
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voltages applied at the supplies and currents at the coils and the supplies. The
components of the vector ¥ (9,4) € R are the integrals fc o, wdrdz over the
domain that is occupied by a coil C of the circuit.

For given V, I and ¥ (3, ), there is a unique U which satisfies (A 3), hence A" A is
regular. We find

U=(ATA)'ATBV + (ATA)'ATCI + (AT A) AT DY (3,9), (A4)
plug this into (A 3) and get
EI +FV +GY¥(3,y)=0, (A 5)
with
E=A(ATA)'ATCc-C
F=A(A"TA'A"B—B
G=AA"TA)'A"D - D.

The system (A 5) of N,, equations is over determined and I can be computed using
the normal equation

I =SV +R¥(5,v) (A 6)
with § = —(E"E)"'E"F and R = —(E"E)'E"G.
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Abstract

A selection of achievements and first physics results are presented of the European Integrated Tokamak Modelling Task
Force (EFDA ITM-TF) simulation framework, which aims to provide a standardized platform and an integrated modelling
suite of validated numerical codes for the simulation and prediction of a complete plasma discharge of an arbitrary
tokamak. The framework developed by the ITM-TF, based on a generic data structure including both simulated and
experimental data, allows for the development of sophisticated integrated simulations (workflows) for physics application.

2 See the appendix.

b See the appendix of Romanelli F. e al 2012 Proc. 24th IAEA Fusion Energy Conf. (San Diego, CA, 2012) (www-naweb.iaea.org/napc/physics/FEC/
FEC2012/html/proceedings.pdf).
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The equilibrium reconstruction and linear magnetohydrodynamic (MHD) stability simulation chain was applied, in
particular, to the analysis of the edge MHD stability of ASDEX Upgrade type-1 ELMy H-mode discharges and ITER
hybrid scenario, demonstrating the stabilizing effect of an increased Shafranov shift on edge modes. Interpretive
simulations of a JET hybrid discharge were performed with two electromagnetic turbulence codes within ITM
infrastructure showing the signature of trapped-electron assisted ITG turbulence. A successful benchmark among
five EC beam/ray-tracing codes was performed in the ITM framework for an ITER inductive scenario for different
launching conditions from the equatorial and upper launcher, showing good agreement of the computed absorbed
power and driven current. Selected achievements and scientific workflow applications targeting key modelling topics

and physics problems are also presented, showing the current status of the ITM-TF modelling suite.

Keywords: integrated modelling, simulation, code verification, turbulence, transport

(Some figures may appear in colour only in the online journal)

1. Introduction

The European Integrated Tokamak Modelling Task Force
(ITM-TF) [1, 2] aims at providing a standardized platform and
an integrated modelling suite of validated numerical codes for
the simulation and prediction of a complete plasma discharge
in arbitrary tokamaks. In order to address such a challenge,
the ITM-TF approach builds on a modelling infrastructure,
focusing on the development of a data and communication
ontology, i.e. standardizing the data exchange between
different codes, through a generic data structure incorporating
both simulated and experimental data. The elements of this
data structure are identified as ‘Consistent Physical Objects’,
or CPO [3]. Physics modules of various complexities can be
easily adapted to the data structure, which is code and language
agnostic.

Thanks to the standardization of I/O through CPOs,
physics modules can be seamlessly coupled into different
integrated simulations (workflows); also, modules describing
the same physics (e.g. equilibrium, transport modules, heating)
can be easily interchanged within the same workflow, so
to allow the physicist to choose and easily integrate the
more appropriate model to tackle a specific physics problem.
Moreover, in the ITM-TF framework all machine related data
are extracted into standardized machine descriptions (MD) so
that physics modules, like equilibrium reconstruction tools,
also become independent of the specific tokamak experiment.

The ITM-TF uses the open-source Kepler'® scientific
workflow manager and orchestrator tool, which allows
for a user-friendly graphical construction of the integrated
simulation. Physics modules enter as actors of a Kepler
workflow; all the data transfer among actors within a workflow
occurs via CPOs. In Kepler, semantic types can be defined
which allow one to distinguish different CPOs and therefore
verify whether a CPO output of an actor is correctly connected
to the corresponding CPO input of the subsequent actor.
Furthermore, the Kepler framework allows for interactive
steering of simulations, through its capability to pause the
simulation and alter some parameters; also, users can easily
include actors for visualizing the present state of a simulation.

The ITM-TF uses the Kepler framework for simple
run orchestration (workflows without convergence loops,

16 http://kepler-project.org.

named hereafter loosely coupled workflows) as well as more
complicated workflows, involving mutual interactions among
different codes (within loops, named hereafter tightly coupled
workflows). It has to be noted, though, that the generic data
structure (CPOs) is totally independent of the used workflow
orchestrator tool (Kepler or other), all the advantages of the
generic data structure remain if the physics modules are called
in a classic Fortran workflow, with CPOs as arguments.

The framework developed by the ITM-TF has allowed
for the development of sophisticated workflows for physics
applications. Among those, the European Transport Simulator
(ETS) [4] workflow, a leading ITM tool for both interpretive
and predictive transport simulations and scenario modelling,
incorporating a sophisticated module for synergy effects
between heating schemes, several equilibrium modules,
pellets, impurities, neutrals, sawteeth and neoclassical tearing
mode (NTM) modules, as well as a variety of neoclassical
and turbulence-transport modules of different complexity. In
this paper, selected achievements targeting key modelling
topics and physics problems are outlined, showing the present
status of the ITM-TF modelling suite. Moreover, it is worth
mentioning that the modules which can be coupled into ITM
workflows can be either centrally distributed (residing on the
common I'TM Gateway cluster) or may be supplied by the user
(in whichever programming language, including interpreted
languages like Python and Matlab, provided they are CPO
compliant independent modules).

First, we present applications of simple (loosely coupled)
workflows. Physics results on the MHD equilibrium and linear
stability of the plasma edge of ASDEX Upgrade and ITER
hybrid scenario [5] as well as interpretive studies of a JET
discharge using gyrofluid and gyrokinetic turbulence models
are reported in section 2. We conclude section 2.2, with an
illustration of tightly coupled turbulence-transport workflows
developed in the ITM framework.

The physics modules integrated into the different ITM
workflows are being cross-verified within the ITM framework,
as well as against existing integrated modelling codes to
guarantee both their interchangeability and their validation.
Results from a thorough benchmarking of electron cyclotron
heating and current drive codes [6] on an ITER H-mode
scenario for different launching conditions both from the
equatorial launcher (EL) and upper launcher (UL) are shown
in section 3.1. Section 3.2 reports the ETS successful
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Figure 1. ITM-TF Kepler workflow for MHD linear stability coupling: an initialization module (ualinit) reading experimental data,
EQUAL, HELENA and ILSA modules. A python script actor (ualpyactor) provides the visualization of the reconstructed equilibrium.
Replacing equal slice with the j-alpha module allows one to perform a parameter study by modifying pressure and plasma current.

benchmarking against leading tokamak plasma core transport
codes on a JET hybrid discharge [7]. In order to illustrate the
flexibility and wide range of use cases for scientific workflows,
section 4 focuses on other relevant examples of tightly coupled
workflows developed by the ITM-TF. Firstly, an application
of a direct coupling of the ETS core transport solver to a
two-dimensional (2D) edge transport code, demonstrated for
the particular case of steady state and multiple impurities
[8], is shown. The second example addresses the effect of
NTMs on plasma transport and confinement, incorporated in
ETS workflows via a dedicated NTM module that calculates
the island frequency, width and associated reshaping in
transport coefficients. Finally, a successful proof-of-principle
application of an ETS workflow including the coupling with a
free-boundary equilibrium (FBE) code, to the simulation of a
vertical displacement event (VDE), is presented together with
details on the coupling algorithm.

Finally, in section 5 recent results are shown of the ongoing
effort in ITM-TF to incorporate synthetic diagnostics [9] into
the modelling framework (fusion products, three-dimensional
(3D) reflectometry, motional Stark effect (MSE), neutron and
neutral particle analyser (NPA)), focusing on synthetic MSE
spectra and comparison to the experimental data.

2. Physics results

A selection of some of the first physics results produced
using the ITM-TF framework is presented in the following
subsections.

2.1. Equilibrium reconstruction and linear MHD stability

The first demonstration of the use of ITM-TF integrated
simulation workflows for physics studies on experimental
data addressed equilibrium reconstruction, refinement and
linear MHD stability calculations [5]. The corresponding
Kepler workflow is illustrated in figure 1, actors for
FBE reconstruction (e.g. EQUAL [10, 11]), high-resolution
fixed-boundary Grad—Shafranov solver (e.g. HELENA [12]
or CHEASE [13]), and linear MHD stability (e.g. ILSA
[14] or MARS-F [15]) are seamlessly integrated in the
workflow environment. The machine independent equilibrium
reconstruction code EQUAL developed within the ITM-TF has
been extensively validated (at a first stage with magnetic data
only) on JET discharges [16].

An analysis of the edge MHD stability of ASDEX
Upgrade type-I ELMy H-mode discharges was carried out,
using the stability chain coupling CLISTE, HELENA and
ILSA [5]. CLISTE is a FBE reconstruction code using
input from poloidal field (PF) coil currents, magnetic and
possibly kinetic plasma profile diagnostic measurements. The
reconstructed coarse equilibrium is then passed to the high-
resolution reconstruction code HELENA and this refined
equilibrium is used by the linear MHD stability code suite
ILSA (in the particular case addressed here the ideal MISHKA
code module of ILSA was used [13]).

Replacing the equilibrium actor with a JALPHA
actor, which reads a previously calculated fixed-boundary
equilibrium from the database, modifies the pressure profile
and/or the flux surface averaged current density and computes
the new high-resolution equilibrium, a j-o workflow is
created.  Stability diagrams can then be automatically
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Figure 2. Pedestal height (left) and width (right) study for ASDEX Upgrade obtained with the J-alpha stability workflow ([8] with kind
permission of the European Physical Journal (EPJ)). The plot shows the contours of the linear ideal MHD growth rates y (normalized to the
Alfvén frequency v, ) of the fastest growing edge modes (toroidal mode numbers are indicated by the white integers) in the plane defined by
the maximum normalized edge pressure gradient oy, and the normalized edge current density. Contours indicate the level of the
diamagnetic drift frequency separating the stable (blue) from the unstable (red) region. The crosshair indicates the experimental equilibrium

including error bars.

computed using Kepler, by wrapping the linear j—« workflow
in a double loop over the pressure and current scaling
parameters. Computation times being substantial for such
scans, the ITM-TF developed, in cooperation with the FP7
project EUFORIA [17], Kepler workflows for automatic job
submission to Grid and Cloud infrastructures.

For pedestal height studies, the pressure and current
density profiles in the edge can be scaled by a constant factor,
while the core profiles are adapted to keep the plasma energy
Wb and the total plasma current /, unchanged. For pedestal
width studies, the widths of the pressure and current density
pedestals can be scaled independently, again adjusting the core
profiles such that Wypp and I, remain the same. In this
case, the pressure at the pedestal top and the amplitude of the
bootstrap current remain constant, only the gradients change
through variation of the width. Therefore, the total current
flowing in the edge is smaller if the width is reduced.

Figure 2 shows the stability diagrams for the variation of
the pedestal height and width for ASDEX Upgrade shot #23223
att = 5.33s. The profiles were taken just before the crash of
type-I ELMs. As expected, the experimental equilibrium is
marginally unstable with a toroidal mode number (n = 5)
indicating a strong peeling component. Reducing the pedestal
width, and thereby increasing the gradients, clearly drives the
equilibrium unstable. It may also be noted (figure 2 right) that
the drive from the current density gradient (small bootstrap
current width) dominates the drive from larger edge current
(large bootstrap current width).

Core and pedestal scans of the normalized plasma beta
B (applying, respectively, a scaling factor only on the core
pressure profile or on the full profile) were also performed
using the linear MHD stability chain for the ASDEX Upgrade
type-1 ELMy shot #20116 at ¢t = 3.59s as well as for an
ITER hybrid ‘scenario 2’ (kinetic profiles of the used ITER
scenario 2, for the reference fn = 1.8, are shown in figure 3).

The most unstable mode growth rates for the two scans are
shown in figure 4. It is evident from the computed growth rates
in dashed lines that the increased Shafranov shift helps stabiliz-
ing edge modes (external kink modes of intermediate n). When

scaling the entire pressure profile (solid lines), the destabilizing
effect of the larger edge pressure gradient strongly dominates
over the stabilizing effect by the Shafranov shift, inducing the
destabilization of a (high n) ballooning mode. The ITER case
shows a slight destabilization of a (low n) pure peeling mode
for large Shafranov shifts (By > 2.75).

2.2. Turbulence simulations

A simple workflow allows conventional methods of comparing
a turbulence code’s transport results to experimental
measurements and transport analysis. Run in a double-blind
fashion, the result is almost always discrepant. Physical
insight into the problem usually depends on diagnosing these
discrepancies. A hybrid JET shot (#77922) was used as a
very interesting test-bed for radially local turbulence/transport
computations, which happen to fail due to the set of parameters
in the core-confinement region (between 0.4 and 0.7 in
normalized radius).

Discussions of the observed discrepancies among different
turbulence/transport code simulations have highlighted several
issues of provenance, namely what is used for the equilibrium
flux surface structure, and what is used to define the
dimensionless parameters of the runs (in this case, gradients).
The profiles of the case under study turned out to be
close enough to stability thresholds that small differences in
magnetic shear or in the choice of radial coordinates (e.g. pior
versus the midplane-cut minor radius) are enough to make the
difference between stability and weak turbulence.

The prescribed case was profile data from JET shot 77922
at time 47.7 s. The input data were provided by TRANSP [18]
in interpretive mode from the actual experimental data which
determine the profiles. Profiles of the electron density, electron
and ion temperatures (ions hotter), and the toroidal current and
pitch parameter ¢ are shown in figure 5.

The case is read from the database into coreprof and
equilibrium CPOs, and then fed to the rest of the workflow,
represented in figure 6. Since the equilibrium_CPO did not
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hybrid scenario (black) [9]. The dashed lines show modification of
the plasma Sy via modification of the core pressure profile while
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contain sufficient information as needed by the successive flux-
tube turbulence code modules (namely the pressure profile
and the straight-field-line coordinate metric were missing),
the workflow consisted of three actors: EQUPDATE which
constructs equilibrium profile inputs for pressure and toroidal
current from coreprof CPO, and passes the equilibrium
boundary surface, in this case the experimental separatrix, then
the fixed-boundary Grad—Shafranov solver GKMHD which
also fills the coord_sys element in the equilibrium_CPO, and
then the turbulence code GEM, a flux tube gyrofluid model
[19]. GEM actor is executed in batch on HPC-FF, running in
parallel one flux tube at each of 0.4, 0.5, 0.6 and 0.7 normalized
midplane-cut minor radii; it fills the coretransp_CPO and also
provides the standard post-process diagnostics for turbulence.

The same workflow was used replacing GEM with delta-
FEFI, a delta-f gyrokinetic turbulence code (parent model
to GEM otherwise similar in structure [20]), for direct
comparisons between the two models.

The use of the GKMHD module was needed because a
theoretical s—o model was found to be a very poor approximate
to these experimental cases which are in the shaped geometry
of a diverted tokamak.

GKMHD sets up a regular triangular grid logically
the same as placing flux surfaces onto nested hexagons.
Each iteration consists of solving —A X ¥ = po(JirR) +
wo(dp/dyr) (R? — (R?)) where () denotes flux surface average,
p and (JiorR)/Ry are the input profiles, and then moving
the grid points towards or away from the axis such that
the prescribed normalized ¥ of the surface agrees with the
new values of ¥(R,Z). Otherwise it is a conventional
Grad—Shafranov solver taking pressure and current on input.
Afterwards, the resulting equilibrium_CPO is filled with
coordinate metric information needed by flux tube models.
The midplane-cut minor radius is defined as (roumoard —
Tinboard)/2 from the equilibrium_CPO; the normalized version
is denoted as r, below.

Both GEM and delta-FEFI take the straight-field-
line coordinate metric on input and construct a field-
aligned, shifted-metric coordinate system based on Hamada
coordinates [21,22]. The fluctuations are initialized as a single
Maxwellian density structure localized at nonlinear amplitude
with Gaussian profiles to 10 ion sound gyroradii (ps) in the
drift plane and to gR, along the field lines. The finite electron
pressure launches shear-Alfvén waves and then a drift wave
field at nonlinear amplitude, and the system proceeds to fully
developed turbulence unless it is nonlinearly stable [21, 23].

Gyrofluid runs are held in saturation or decay for
4000 gyro-Bohm times (tgg = L, /cs, where L is the
steepest gradient scale length and ¢ the ion sound speed).
Gyrokinetic runs only went to 1000L ; /¢, due to the far greater
computational expense. Each flux tube is an independent run,
with its own normalized units including normalized time, tgg
being different for each case. The time step is 0.0027gp,
allowing for extreme transients which are found in the early
stages of some core-parameter cases. The domain size is 207 ps
in the radial direction, 807 p, in the drift-angle direction, and
one connection length 2w gR in the parallel direction. The
grid is 128x128x32 in these directions, respectively. The
numerical scheme is given in [19], mostly following [23].
Delta-FEFI uses the same scheme as GEM with the additional
ingredient being the phase-space parallel bracket [20].

We concentrate on the case r, = 0.6 since both
codes found stability or on-threshold behaviour at 0.7. The
normalized parameters (defined as in [24]) at r, = 0.6 are
beta-hat = 0.38, mu-hat = 0.022, C = 3 x 1074, T/ T. =
1.25, R/Ly, = 6.30, Ly;/Ly, = 0.68, L1;/L, = 0.38 and
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the text.
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coreprof_CPO are input to the turbulence actor GEMHPC which run

GEM found a weak-to-stable ITG case at r, = 0.6
(dominant £ x B/ion-gradient energetics), with ion heat flux
Q; < 0.1 in gyro-Bohm units of pecs (ps/L 1)?, whereas it
showed stability at 0.4, a very weak ITG case at 0.5 and ap-
proximately null growth at 0.7. The delta-FEFI results are
quite different: at r, = 0.4 and 0.5, the code crashed ap-
parently due to difficulty with the kinetic ballooning mode,
KBM (delta-FEFI has never managed a saturated nonlinear-
KBM case) whereas, interestingly, GEM had not found it; the
ra = 0.7 case was definitively stable and the r, = 0.6 case
produced what can be identified as a strongly trapped-electron

s in batch GEM gyrofluid flux-tube code in parallel on the HPC-FF.

enhanced ITG turbulence case, the evidence of which is worth
showing.

Figure 7 shows the velocity-space distribution of the
contributions of delta-f to the turbulent £ x B fluxes: all of
the activity in the electrons and almost all in the ions is in the
trapped domain (smaller v for finite uB). This is the clearest-
possible identifier for a role of trapped electrons despite the
ion-dominant energetics and is the basis for the named trapped-
electron assisted ITG turbulence. It has to be mentioned that
this result differs from that provided by GEM, as its gyrofluid
model does not include trapped electrons [24].
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Figure 7. Velocity-space distribution of the E x B particle (F) and heat fluxes (Q) in the electrons and ions, in a snapshot at the end of the
delta-FEFI run. The trapped zone is roughly the 60° cone centred upon the vertical axis where v = 0. Almost all of the activity in the ions,
and essentially all of it in the electrons, is in the trapped zone. These trapped-electron features together with the dominant ITG energetics
(not shown) yield the description ‘trapped-electron enhanced ITG turbulence’.

In addition to the above simple workflow used for
a transparent cross-benchmarking of turbulence modules
producing the above physics results, tightly coupled transport
workflows were developed, wherein the turbulence module
provides heat and particle diffusion coefficients to a transport
solver, similar to the strategy used by other models [25-27]. A
demonstration of ITM progress towards turbulence-transport
workflows with the ETS core transport solver is given in
[28]. A parallel effort within a different scientific workflow
framework is presented in [29].

Herein, we describe our progress in the coupling with
an equilibration model which solves a statistical steady-state
equilibrium rather than a time-dependent transport problem.
This essentially replaces the time step loop with a convergence
loop for the time-independent problem. Nevertheless, the term
‘time step’ is convenient to the generic transport workflow
structure (figure 8).

The main Kepler workflow including the time loop is
shown in figure 8, in which the ‘workflow core’ is a composite
actor representing one time/convergence step of the transport
workflow.

The sequence of operations of the workflow core, shown
in figure 9, is detailed in the following. Here, BPROFS is the
transport equilibration model, used in place of the ETS module
implemented in [28, 29].

The UALINIT actor is executed only once, at the
beginning, to read the input data from the database; it provides
the initial coreprof_CPO and equilibrium_CPO at the initial
time (for time steps after the first one, the ‘coreprof’ and
‘equilibrium’ boxes shown at the top replace the UALINIT
actor, representing the previous step’s output). At each time
step the EQUPDATE actor sets up a new equilibrium_CPO
using the pressure and current from the coreprof CPO and

DDE Director

ot0: 1
e19: 400

workflow core

output

Ramp

Boo!ea Switch
»
relation3

Expression

Figure 8. Topmost level Kepler workflow. The actor ‘ramp’
corresponds to the control of the time loop (it generates integers
from 1 to the maximum value of the time step); ‘workflow core’ is a
composite actor representing one time step of the transport
workflow.

the last closed flux surface (LCFS) boundary from the
equilibrium_CPO. This is then fed into the CHEASE actor to
calculate a new, updated equilibrium_CPO. The coreprof_CPO
and equilibrium_CPO are then used as inputs for the remaining
actors: GEM, which provides a coretransp_CPO, NEOART,
a neoclassical transport module providing a neoclassic_CPO,
and BSOURCE, a simple analytical source model which
provides a coresource_CPO. All of these are fed into the
BPROFS actor, which updates the coreprof CPO according
to a simplified profile-equilibration model using running
exponential averages [30] of the transport to relax the profiles
into a state of transport equilibrium (the aim is not a transport
simulation but a procedure to find a steady state). Review
information and detailed comparison of relaxation methods
can be found in [31].

The only parallel actor is GEMHPC, the first call to which
launches a batch job on the HPC-FF, consisting of eight flux
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Figure 9. Workflow core, representing the sequence of operations performed during one time step of the transport workflow of figure 8.

Detailed description is given in the text.

tubes on the profile, arranged as in the single-run case described
above, on 1024 cores. The HPC-FF job runs one segment
of 10tgg, returns a coretransp_CPO, and waits. Subsequent
loop steps ‘fire’ the actor again, and it sends a message to the
job containing the coreprof_CPO and equilibrium_CPO and
instructions to evolve GEM’s state for another 10tgg and return
running exponential averages of the turbulent flux profiles to
the coretransp_CPO, after which the job waits again and the
GEMHPC actor sends the coretransp_CPO on to the BPROFS
actor.

The batch job is kept running until it either crashes
or accepts a stop signal from the workflow indicating
completion—that is, the batch job needs only be submitted
and wait in the queue once.

This workflow was applied to a JET-sized case with a
model LCFS boundary for ITER (i.e. the R and Z are halved).
A power source of 10 MW for each species was specified by the
BSOURCE actor. The loop ran for 120 time steps (close to a
relaxation time for many cases). The main transport workflow
ran on the ITM Gateway cluster, while GEM’s batch job ran
on the HPC-FF on 1024 cores.

Temperature profile modifications induced by the
turbulence coefficients occurred only in the edge, producing
a fast profile steepening (the core being marginally stable and
turbulence delayed), that eventually crashed the equilibrium
reconstruction. Figure 10 shows the outcome of the python
visualization actor (see figure 9 top-right), which allows the
monitoring of the simulation at each transport time step during
the workflow.

This work is in progress, as the workflow scheme is only
mature and robust for s—« model cases actually running only
GEM and BPROFS by themselves.

3. Verification and validation

The ITM-TF framework is a valuable environment for
a rigorous cross-verification of codes describing the
same physics processes with different models, since by
interchanging those as modules within the same workflow
the possible external sources of discrepancy are minimized.
Considering the fundamentals of an integrated transport
simulator, it is essential to address the benchmarking of the
equilibrium and core profile evolution solvers as well as the
transport and turbulence or heating and current drive modules.
Equilibrium codes went through benchmarking both within
the ETS workflow [25] and independently, whereas cross-
verification of turbulence and MHD codes is ongoing on
specified test cases within dedicated workflows. In this section,
the benchmarking of standalone electron cyclotron heating and
current drive codes on an ITER scenario and the ETS validation
against existing integrated modelling transport codes on a JET
hybrid discharge are presented. It has to be mentioned that the
ETS was previously extensively verified [6, 32]. The very good
agreement achieved for the simulated quantities and applied
modules lays the foundations for the use of ETS for both
predictive and interpretative runs on present devices and ITER,
in a variety of scenarios.
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the ualpython visualization actor, see figure 9). Top and middle row, from left to right: electron density (not evolved), ion and electron
temperature, safety factor profile, parallel current (coreprof_CPO); magnetic equilibrium (equilibrium CPO). Bottom row: particle, electron

heat and ion heat diffusivities (coretransp_CPO).

Table 1. Launching conditions used in the benchmark. The poloidal
and toroidal launching angles are defined as o = tan~! (ko ./ ko r)
and 8 = sin”! (ko,/ ko), where (ko g, ko.¢, ko ;) are the cylindrical
wave vector components of the launched wave. The beam has a
Gaussian profile, with waist wy at a distance d from the launching
point. The model considered here corresponds to simple
astigmatism, when the spot ellipse and the curvature ellipse are
rotated by the same angle.

Case R, (m) z,(m) «C) B(C) wo(m) d(m)
EL25 9.27 0.62 0 25 0.030 0.00
EL40 9.27 0.62 0 40 0.030 0.00
UL 6.90 4.18 48 18 0.021 1.62

3.1. Benchmarking of electron cyclotron heating and current
drive codes on an ITER scenario

A benchmark among five European EC beam/ray-tracing codes
(C3PO [33], GRAY [34], TORAY-FOM [35], TORBEAM
[36], TRAVIS [37]) has been successfully performed [6] within
the ITM framework for a standard inductive H-mode ITER
scenario (‘Scenario 2’) at the end of burn phase, for three
different launching conditions both from the EL and UL, see
table 1.

The three cases have been selected to cover different
geometries and physics of interest in ITER: injection of
divergent beams from the EL, either absorbed in the core

at quite large 7. (EL25), or characterized by quite long
trajectories and large N (EL40), and of a highly focused
beam that drives the EC current in a narrow channel (UL).
The frequency of the launched beam is 170 GHz and the
input power is 1 MW. Figure 11 represents the used plasma
equilibrium and beam trajectories.

Among these codes, GRAY, TORBEAM and TORAY-
FOM had also participated in the benchmark exercise in [38]
that was run on the same ITER scenario using only a divergent
Gaussian beam launched from the UL. Since then, the codes
have been modified and updated to include different physics
modules as, e.g., the current drive model.

The fact that the codes run in the same ITM workflow
simplifies the verification and, at the same time, guarantees a
more detailed check of the various steps of the benchmark.
Note that any module can be switched into an ETS time-
dependent simulation since they share the same interface
through CPOs.

The steps taken in the benchmarking study consisted in
(i) an extensive check of matching between ITM’s and all
codes’ coordinate and sign conventions as well as physical
quantities definitions, to ensure that the input and output
data were correctly interpreted and written by the codes;
(ii) a comparison among the computed wave trajectories,
with particular consideration of the vacuum—plasma transition;
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Figure 11. Magnetic equilibrium of the used ITER scenario 2. The
cold resonance at 170 GHz is shown (thick vertical line), with the
beam-tracing computed by the GRAY code for the three considered
launching (from [6] with kind permission of the European Physical
Journal, EPJ).

(iii) a comparison of the power absorption and current drive
results.

Good agreement was found, with differences in total
current |§Icp/Icp| < 15%, and with peak values of power
density dP/dV and driven current density typically matching
within 10%, and the position of the profiles matching within
8p ~ 0.02 in normalized radius units (figure 12, partially taken
from [6]).

Small discrepancies can be ascribed to the different
models used for wave propagation and absorption and current
drive. The EL25 case considers a beam trajectory passing
very close to the magnetic axis, where small differences in the
interpolation of the equilibrium data or in the beam trajectory
may result in relevant changes in the flux averaged power
density dP/dV value, as can be seen in the TORAY-FOM
result at p < 0.15. In the EL40 case, Doppler broadening
dominates the effect of finite beam size in the determination
of profile width, and all the codes here agree very well. Some
differences can also be appreciated among the results for the
UL case, mainly because this case is more demanding in terms
of spatial resolution required to reconstruct the actual shape of
the absorption profile, since the focused beam considered here
produces a much narrower (full width at 1/e  Ap ~ 0.015)
absorption profile than those obtained with the EL. In this
respect, the difference of C3PO/LUKE here results from a
coarser grid considered in the calculation.

In the UL case, despite the focused beam, the profiles are
reasonably well reconstructed also by ray-tracing codes, giv-
ing results comparable to those obtained by the codes which

10

account for diffraction effects. The large edge density gradient,
and long path from boundary to absorption region, amplifies
the impact of edge refraction on beam propagation. Nonethe-
less, the influence of the observed discrepancies on computed
power and current density profiles is still moderate. Only in
the case of a strongly focused beam, as in the UL case, may
the uncertainty approach the profile width. A deeper analysis
of the discrepancies among the different codes and underly-
ing models used for wave propagation, absorption and current
drive is ongoing and will be presented in a following paper.

3.2. ETS validation

A rigorous benchmarking of the ETS against ASTRA [31]
and CRONOS [40] integrated modelling transport codes was
performed by using the parameters of JET hybrid discharge
#77922 with current overshoot, B, = 2.3 T, Iy = 1.7TMA,
high triangularity (0.38), 18 MW of NBI, n 4.8 x
10”m™3, By = 2.8. The equilibrium was reconstructed
in CRONOS and ASTRA with the solvers available within
those, respectively HELENA [12] and the three moment
equilibrium module EMEQ [35]; the latter module was also
implemented in the ETS. It is worth mentioning that the
flexibility of the ETS advantageously allows for an easy
integration of additional equilibrium codes other than those
it already supports. Evidently, ideally a rigorous benchmark
should have been required for all codes to use the same
equilibrium reconstruction.

Self-consistent evolution of electron and ion temperatures,
current diffusion and equilibrium was simulated. Spitzer
resistivity was used for the current transport, and the heat
transport coefficients were provided by a Bohm—gyro-Bohm
transport model. Neoclassical heat transport was not included.
The simulations were performed with a fixed electron density
profile measured at 7.7 s of shot #77922. Gaussian heating
and current drive profiles (centred at p = 0, half-width
Ap = 0.3), with a total heating power P = 18MW,
distributed 70/30 between ions and electrons, were used in
all codes. A beam-driven current I,,; = 0.12 MA was imposed
in all simulations while the bootstrap current was neglected.
With these assumptions, the simulations were performed for
40 s reaching a steady-state solution.

Satisfactory agreement was obtained on the temperatures
and g-profile simulated by the three codes as well as on
the computed thermal diffusivities (figure 13) [6]. The
slight differences in profiles can be attributed to the different
equilibrium solvers used within the compared integrated
modelling transport codes.

4. Tightly coupled workflows developed by ITM-TF

4.1. Core—edge coupling

Coupling codes, besides the complexity of dealing with sep-
arate codes eventually presenting mixed-language program-
ming, which is indeed overcome by the ITM-TF approach,
introduces a number of issues to be dealt with: disparity in
time-scales, different physics assumptions and scheduling the
interaction between the coupled codes.

The core—edge coupled system does introduce a disparity
in time-scales, with a characteristic time-scale for the core
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Figure 12. Power density profiles computed for the launching conditions of table 1: EL25 (left), EL40 (centre) ( [6] with kind permission of
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Figure 13. Benchmarking between ETS (blue), ASTRA (red) and CRONOS (green) integrated modelling transport codes for the conditions
of JET hybrid discharge #77922. Profiles of ion and electron temperature, safety factor, ion and electron heat diffusivity and parallel

resistivity are plotted in the steady state, after 40 s of evolution.

being an energy confinement time or longer (seconds), whereas
the scrape-off layer (SOL) typically has a time-scale of
milliseconds with some phenomena being even faster. Another
disparity is the computational complexity: transport solvers
for the core are typically one-dimensional (1D) (radial)
codes solving a set of reaction—convection—diffusion equations
evolving the density, toroidal momentum and energies for
the species considered; edge transport solvers are typically
a 2D (radial and poloidal with toroidal symmetry assumed)
or 3D code solving for the density, parallel momentum and
energies for the species considered and are thus considerably
more expensive computationally. Moreover, impurities in the
core are often split off from the main ion species and only the
density equations are solved for the various impurity charge
states. The coupling effort is significantly simplified in the
case where one is interested in finding a consistent steady-
state solution between the core and edge codes, which is the
problem addressed here.

Three approaches for core—edge coupling can be used, as
described in [41]: mediated, where the edge codes are used to

provide boundary conditions (BCs) for the core codes on the
basis of fitting coefficients to the results of a number of edge
runs; direct where the edge and core codes are directly coupled;
and avoided where the edge code is extended all the way to
the centre of the plasma. There have been several previous
independent core—edge coupling projects: [42] describes the
coupling of the core code Corsica to the edge code UEDGE;
[44] describes the coupling of JETTO, EDGE2D and SANCO.
A very similar approach describing the coupling of SOLPS and
ASTRA is described in [45,46]. An alternative approach is
that described in [41], where the coupling issue was avoided by
extending the SOLPS grid to the centre of the machine. In [47],
scaling laws were derived on the basis of SOLPS simulations
and then used for core simulations.

Here we present the direct coupling of an edge and a
core transport code via a Fortran workflow using the ITM-TF
infrastructure (i.e. CPOs) for the particular case of steady
state and multiple impurities [7]. The edge 2D transport
code (SOLPS) [43] was coupled with the 1D core main
plasma transport code ETS [4] including a core impurity
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Figure 14. Left, the combined core and edge grids for ASDEX Upgrade shot 17151. The boundary surface separating the calculation
domains between the core and edge codes is clearly visible. 7, (centre) and n. (right) for the final state of the D + He + C + Ar + Ne case [7].

All plot data are derived from CPOs.

transport code, developed within the framework of the ITM-
TF. In this work a Fortran version of the ETS workflow was
used, including the equilibrium code HELENA [12] and simple
models for particle and energy sources as well as transport
coefficients. ASDEX Upgrade shot #17151 equilibrium at
2.5 s was imported into equilibrium and limiter CPOs. These
CPOs enter the HELENA code providing equilibrium to the
core transport code and were used to create the SOLPS grid
(figure 14, left).

The location of the transition surface between the core
and edge code was chosen at 95% of the normalized poloidal
flux for the case shown below, as this is the usual stopping
point for 1D core transport and equilibrium codes, making
comparisons with existing results easier. Standalone SOLPS
runs, pertaining to the demonstration case chosen here, showed
the poloidal asymmetries to have averaged out at this depth.
More generally, at least for H-mode cases, any poloidal
asymmetries introduced by the edge physics do not penetrate
past the pedestal, as demonstrated by a comparison study
between SOLPS and ONETWO codes [48].

The two codes, ETS and SOLPS, were then called
alternately and individually run until converged, with
information about the BCs transferred from one to the other,
until convergence of the workflow is obtained.

For the most complicated test case, SOLPS treated all
of the charge states of D, He, C, Ar and Ne (including the
neutrals), a total of 42. The ETS treated D* and He?* as
main ions, and the core impurity code treated the individual
charge states of C, Ar and Ne. The core codes did not, in
this case, treat the neutrals. Electron and ion energy fluxes as
well as D* and He?* particle fluxes are passed from the core
to the edge code. Values of density and ion temperature on the
boundary are passed from SOLPS to the ETS and densities of
C, Ar and Ne charge states to the core impurity code. SOLPS
used a zero-flux BC for neutrals, all of the charge states of
C, Ar, Ne and for He!*. The fluxes are implemented in the
edge code via a feedback loop, which varies a constant density
on the boundary so that the desired flux is obtained; this avoids

Core-Edge Coupling: D+He +C+Ar+Ne
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Figure 15. Core—edge workflow convergence of the boundary
powers and temperatures with respect to iteration number.

the problem of having a poloidal variation of the density on the
boundary which would then need to be averaged in some way
before being passed back to the core code (if the flux BC is
implemented directly using a prescription of equal flux per
unit area, a strong poloidal variation for some of the impurity
densities can be found).

Convergence was obtained with five iterations, as is shown
in figure 15. To illustrate the convergence figure 16 shows the
time evolution of the electron and ion temperature profiles at
the outer midplane. The results for the steady-state electron
temperature and density are shown in figure 14 (centre, right);
densities for C, Ne and Ar charge states in figure 17.

Figure 18 shows a visualization of the core plasma
temperature (simulated in 1D by the ETS core transport solver),
the edge plasma temperature (simulated in 2D by SOLPS)
together with the 3D wall.

Recently SOLPS has been modified so that it can accom-
modate time-dependent BCs. The coupling has thus been
automated as follows: the ETS Fortran workflow calls SOLPS
just after the convergence loop, SOLPS receives as input the



Nucl. Fusion 54 (2014) 043018

G.L. Falchetto et al

1le19

300 (0)
900 (1)
901 (0)
— 9011(1)
902 (0)
902 (1)
903 (0}
903 (1)
904 (0)
304 (1)
305 (0)
905 (1)

& 2000

1500

1000

500

6
— 900
901

202 3 = —
903

204 — —
205 4

900
201
202
903
204
905
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Figure 17. Density plots in the steady state for all the charges states of C Ne (left, top bottom) and Ar (right) ( [7] with kind permission of

the European Physical Journal (EPJ)).

Figure 18. Visualization of the core—edge coupled simulation
results: 7, calculated in the core with the ETS, in the edge with
SOLPS, within the 3D defeatured first wall of ASDEX Upgrade
obtained using a ray-tracing rasterization and smoothing ( [49] with
kind permission of the European Physical Journal (EPJ)). All data
are stored in CPOs and plot with VisIT.

necessary BCs from the core CPOs, runs for one or more time-
steps and calculates new core CPOs with new BCs based on the
edge results, then the ETS continues with a new time step. The
advantage of the new automated coupling scheme goes beyond
just speeding up the calculation. The initial approach relied on
a manual coupling which required the user not to make mis-
takes in the coupling procedure, and was also limited to steady-
state scenarios. For impurities, there was also a limitation in
that only cases with net zero flux could be implemented, and
this was then done by charge state rather than the more physi-
cally correct summation over charge states. The new approach

does not require manual intervention during the run, is not lim-
ited to steady-state simulations, and removes the issue related
to zero-flux BCs for impurities at the coupling interface.

4.2. Transport simulations including NTMs

A module which simulates the time behaviour of NTMs [50]
can also be integrated in the ETS workflows. Here we present
a demonstration of the ETS workflow including the NTM
module reproducing the effect of NTMs on transport evolution.
NTMs are resistive instabilities breaking the flux surfaces
into magnetic islands at the rational surfaces ¢ = m/n (i.e.
located at radius r5). The modes are destabilized by a loss
of bootstrap current proportional to the plasma pressure. The
simulated modes grow starting from a specified onset time, up
to the saturated state. Their growth affects the local electron
and ion temperature and density by changing the perpendicular
transport coefficients around the mode location. The transport
is modified by the NTM module, which adds a Gaussian
perturbation of given amplitude and width to the unperturbed
transport coefficients [51]. The width is calculated self-
consistently by solving the modified Rutherford equation at
each simulation time step, with parameters as in [52], evaluated
in toroidal geometry, except for assuming A’ —m/rs
(effective A’ in the case of a large island, A’ being the usual
tearing parameter due to the perturbation of the equilibrium
current). This approach enables the reproduction of density
and temperature profiles very close to the experimental ones.
Figure 19 presents the temporal evolution of the electron
temperature and total perpendicular heat diffusivity profiles,
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Figure 19. Modification of the heat transport coefficient by NTMs,
assumed to be located at p,, ~0.8, and its effect on the electron
temperature profile.
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during an ETS-NTM simulation performed for typical JET
H-mode plasma conditions. The effect on these profiles of
an m/n = 2/1 magnetic island, assumed to be located at
por ~ 0.8, is shown. NCLASS [53] is used within the
ETS [33] to calculate the resistivity and bootstrap current.
The equilibrium is evolving and parameters in the modified
Rutherford equation are recalculated according to [52]. The
q-profile is thus slightly evolving, which leads to a radial
displacement of the ¢ = m/n surface and therefore a change
of location of the increased transport due to the island (peak
on ). The increase in radial transport due to the presence
of the magnetic island leads to a flattening of the temperature
profile around the 2/1 surface. The mode is predicted to grow
up to a saturated island of 8 cm width on a resistive time scale
of about 150 ms; this leads to a 16% drop in the stored energy.
Validation against experimental data will be the next step and
requires first a validation of the transport model.

4.3. FBE coupled to transport

A key feature for a tokamak simulator is the inclusion of the
PF system, i.e. the PF coils and their power supplies as well as
passive conducting structures. This allows including important
operational limits and real-time magnetic control issues in the
design of scenarios [54]. The ETS now has such a capability
thanks to the inclusion of a FBE solver, at present, either
CEDRES++ [55] or FREEBIE [56, 57]. The circuit equations
for the PF coils and passive structures are embedded in the FBE
code. A switchin the ETS workflow allows one to select one of
these solvers in place of a fixed-boundary one. Coupling a FBE
code to a 1D transport solver is not trivial [55, 58], therefore
the coupling algorithm is detailed in the following.

In order to ensure consistency between the equilibrium
and the profiles, the FBE—~transport coupling scheme relies
on a convergence loop performed at each time step, which is
represented in figure 20.

A time step starts with one transport step ¢t —
t+df. In addition to the coreprof _CPO, which contains the
profiles at time ¢, the transport solver needs as an input an
equilibrium_CPO, for two reasons: the transport equations
involve metric coefficients which depend on the equilibrium
(e.g. such as the flux surface average of 1/R) and the flux
diffusion equation (FDE) needs a BC at the edge, which has
to be provided by the equilibrium. This BC is a central point
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equiliprium coreprof
Replace everything p(x) @t
in equilibrium W(x) @t pfsystems
except .profiles_2d VPF @t+dt
.profiles_2d
Y(R.Z) @t
Transport
.profiles_1d tot+dt
Metrics @t+qt coregprof
p(x) @t+dt
W(x) @t+dt
Calculate p’ and ff’
.profiles_1d
p'(¥n) @t+dt
. ' (Wn) @t+dt
equilibrium

Free-Boundary Equilibrium
t-t+dt

equiliprium

No P ———

Yes

Next time step

Figure 20. The convergence loop performed at each time step in the
coupled FBE-ETS workflow. The labels next to the arrows
comprise, in red, the names of the transferred CPOs or CPO fields
and in blue, the names of the main variables of interest which are
contained within them.

of the FBE—transport coupling. It has to guarantee in particular
the consistency of the poloidal flux W, which is evolved both by
the FBE solver (W, ) and the transport solver (W,). The natural
choice for the BC of the FDE, Wi, ,—1 = Weq xb, Where Weq 1
is the poloidal flux at the plasma boundary provided by the
equilibrium solver at the previous iteration of the convergence
loop (or at the previous time step for the first iteration) and
x is the normalized square root of the toroidal flux, tends to
generate unphysical current sheets at the edge driven entirely
by numerical noise on Weq .. Therefore a BC of the type

dyr _ 2mpoly
dx T Gkx=1D

is used, where C, is a metric coefficient (see [54]). In order to
guarantee consistency the following expression is used:

eq,x0 — weq,xb

where subscripts x0 and xb indicate the magnetic axis and the
plasma boundary, respectively.

This expression is based on the following considerations.
A correction term A1}, is added I;‘ = I eq+ AL (I, oq indicating
the plasma current found by the FBE solver) aiming at ensuring
the consistency between Weq and Wy, which otherwise diverge
one from the other. As a measure of the distance between those

x=1

I;‘ =1Ipeq [1 + tanh ( (1)
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Figure 21. Evolution of the magnetic axis vertical position with
respect to its initial value.

AWy, = Wy xp — Weq,xb is used; therefore, AT, = AW, /L,
where L, has the dimension of an inductance and is chosen as
Ly = (Weq,x0 — Weq,xb)/Ip,eq- Finally, a tanh function is used
in order to provide a saturation of the correction term in case
the initial difference AW, would be large. Evidently, at the
end of the convergence process, AW,y is small so that the tanh
does not make a difference.

After the transport time step, in order to prepare the input
data for the FBE time step, an intermediate step is necessary
to calculate the p’(¥,) and ff’(W¥,) profiles from the new
p and W profiles and the metric coefficients. W, is the
normalized W equal to O on the magnetic axis and 1 at the
plasma boundary, f = RB, is the diamagnetic function and
the ’ denotes the derivative with respect to W. First, p’ is
calculated as p’ = (dp/dx)/(dy/dx), ff’ is then obtained
from the averaged Grad—Shafranov equation [54]. An FBE
step t — t+dt can then be made, using as inputs the p” and ff’
profiles as well as the voltages in the PF coils (at present those
are prescribed but will eventually be provided by a magnetic
controller). The FBE time step calculates a new equilibrium
at t+dt, including new metrics and a new I,. These are then
injected back into the transport solver, and the whole process
is repeated.

The convergence criterion ensures that the difference in
the averaged current density j,, = ( Jo/ R> /(1/R) (where
brackets denote a flux surface average) and Weq x, between
two iterations is smaller than a given tolerance.

It has to be noted that this algorithm works for both limited
and diverted plasmas. As a demonstration of the coupled FBE—
ETS workflow we present here a simulation of a VDE in ITER.
The initial plasma has I, = 11.8 MA, an elongation ¥ = 1.49,
and is limited on the high-field side (HFS). PF voltages are
set to 0. Figure 21 shows the behaviour of the magnetic
axis vertical position Z,. As expected, it has an exponential
behaviour. The time constant is Typg = 102 ms, which is
typical of ITER [54]. In figure 22, the toroidal current density
Jo(R,Z) is shown at two times in the simulation: 108.50 and
108.82 s (the simulation starts arbitrarily at# = 108 s, as shown
in figure 21). It can be seen that as the plasma moves down,
negative currents are induced in the passive structures (as one
may expect), in particular the triangular support (small oblique

plate on the LFS) and, to a smaller extent, the divertor inboard
rail (small vertical plate on the HFS) and the lower part of the
vacuum vessel shells (mostly the inner one). Interestingly, a
positive current sheet grows at the edge of the plasma towards
the end of the simulation. This has to be analysed in detail
but it is likely a consequence of the growth of the negative
currents in the passive structures. We note that the global
current diffusion (L/R) time of the plasma here is of several
thousands of seconds whereas the local time at the plasma
edge is of the order of a few seconds, on the spatial scale of the
observed current sheet, consistently with the simulation. As for
the previous section case, the plasma resistivity is calculated
with NCLASS within the ETS. There is no bootstrap current
spike at the edge however, because this plasma has L-mode-
like profiles.

Subsequent to this first demonstration of the FBE-
ETS workflow, a cross-benchmarking of the FBE codes
(CEDRES++ and FREEBIE) within the above detailed
workflow has been started; possibly, optimizations of the
algorithm and benchmarks with existing similar efforts are
foreseen as well.

The main following step is the implementation of
a feedback controller to allow for scenario simulations.
Preliminary work has already been performed in this direction
with the inclusion of a controller actor produced from
a TCV Simulink controller in a CEDRES++ workflow
(without coupling to the ETS, hence using prescribed p’ and
ff' profiles), which allowed reproducing a ‘yo-yo’ TCV
discharge, i.e. the plasma is moved up and down the vessel
by the magnetic controller.

5. Synthetic diagnostics integration

The ongoing efforts on synthetic diagnostic integration in the
ITM-TF platform focus on reflectometry, neutron and NPA
diagnostics and spectral MSE.

A full-wave 3D code (ERC3d) valid for both O and X-
mode polarizations has been developed, ported and tested on
the ITM platform and work is under way to enhance the kernel
to cope with high levels of turbulence and high injection angles
(Doppler reflectometry operation). A generic framework
for neutron synthetic diagnostics has been integrated which
is composed of three different modules: calculation of the
effective solid angle of the detector from small plasma volumes
(LINE21 code); a Directional RElativistic Spectrum Simulator
(DRESS) to derive the energy spectra and source rates of
particles created in fusion reactions emitted in a specified
direction and a diagnostic response function. Integration
of JET neutron camera setup is ongoing. The integration
of NPA diagnostics in the ITM platform was also carried
out using modules of the ASCOT code package [59] and
calculating the fraction of the tokamak chamber and born
neutrals (with a given pitch velocity) that are within the sight
of the NPA collimator. A spectral MSE forward model [60]
that calculates the emissivity for each MSE channel and
the resultant radiance Balmer-alpha MSE spectra as well as
the charge exchange of the plasma with the beam has been
integrated. Full, half and third beam energy components are
considered and a collisional-radiative beam—plasma model is
used to determine the coupled densities of charged states along
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Figure 23. MSE emissivity wavelength spectra for ASDEX
Upgrade shot #26320. The contribution from half and third beam
energy components, beam divergence and unshifted Do emission
are shown. An offset of ~1000 counts is added to the MSE+CX
synthetic counts to account for the characteristic background level
of the measured signal by the CCD.

the diagnostic neutral beam path. Preliminary results on the
MSE synthetic diagnostic validation on ASDEX Upgrade data
(shot #26320) are presented in figure 23, showing the simulated
and experimental emissivities.

6. Conclusions

The EU ITM-TF standardized, modular and flexible integrated
modelling framework allows building complex workflows
for physics application and is a valuable environment
to benchmark codes describing similar physics processes
with different model sophistication, by interchanging those
as modules within the same workflow. Moreover,
both the orchestration engine Kepler, and the ITM-TF
developments performed in collaboration with the FP7
EUFORIA project [16] and the HLST!, allow to run
workflows or only part of those (the main workflow residing
on the central ITM Gateway cluster) on GRID or HPC-FF,

17 www.efda-hlst.eu/.

thus rendering possible highly computationally demanding
calculations.

The first application of the ITM-TF simulation chain
coupling equilibrium reconstruction, refinement and linear
MHD stability modules addressed edge stability of ASDEX
Upgrade ELMy H-Mode and ITER hybrid
Turbulence code interpretative runs starting from given
experimental profiles of a JET hybrid discharge, challenging
case near to stability threshold conditions, were performed

scenario.

with two different electromagnetic codes, a gyrofluid and a
gyrokinetic one, within an ITM workflow. Only one radial
position (r, = 0.6 in normalized radius) was found unstable
in the gyrokinetic run, highlighting trapped-electron assisted
ITG turbulence characteristics. A benchmark among EC
beam/ray-tracing codes for a standard inductive H-mode ITER
scenario for three different launching conditions, showed good
agreement of the five EU codes even in the more demanding
test cases, like central ECCD at high temperature, and beam
focused close to the resonance region. Benchmarking of
the European Transport Simulator (ETS) against ASTRA and
CRONOS transport codes, on a JET discharge, showed very
good agreement among the simulated quantities, laying the
foundations for its usage for both predictive and interpretative
runs on present devices and ITER.

Some selected examples of ITM scientific workflow
applications have also been outlined. Automated direct
coupling of a core and edge transport code was demonstrated
for the particular case of steady state and multiple impurities.
The effect of NTMs on heat transport coefficients and
temperature profiles was reproduced via a dedicated NTM
module incorporated into the ETS. Coupling of the ETS to
a free-boundary equilibrium solver was tested on a vertical
displacement event (VDE) for an ITER scenario. Finally,
ongoing efforts on the integration and testing of synthetic
diagnostics in the ITM-TF platform have been reported,
namely, the validation of spectral MSE forward model on
ASDEX Upgrade data.
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ABSTRACT. We develop an advection-diffusion size-structured fish population
dynamics model and apply it to simulate the skipjack tuna population in the
Indian Ocean. The model is fully spatialized, and movements are parame-
terized with oceanographical and biological data; thus it naturally reacts to
environment changes. We first formulate an initial-boundary value problem
and prove existence of a unique positive solution. We then discuss the numer-
ical scheme chosen for the integration of the simulation model. In a second
step we address the parameter estimation problem for such a model. With
the help of automatic differentiation, we derive the adjoint code which is used
to compute the exact gradient of a Bayesian cost function measuring the dis-
tance between the outputs of the model and catch and length frequency data.
A sensitivity analysis shows that not all parameters can be estimated from the
data. Finally twin experiments in which pertubated parameters are recovered
from simulated data are successfully conducted.

1. Introduction. Fish population dynamics models together with parameter es-
timation techniques are essential to provide assessment of the fish abundance and
fishery exploitation level. Their use forms the basis of scientific advice for fisheries
managements. This is particularly true for tuna fisheries, which are among the
most valuable in the world and subject to increasing fishing pressure and to the
effects of climate changes.

Discrete age-structured models with crude representations of space are most of
the time used for fisheries stock assessments [1, 2]. The classical data used in fishery
science to calibrate models are fishing effort, catch and length frequency data.

Length frequency data are not straightforward to use. Fish of the same age can
exhibit very different sizes depending of their history [3, 4]. Therefore, to compare

2000 Mathematics Subject Classification. 92D25, 92D40, 86 A05, 35K15, 35K20, 35K57,
65M06, 86A22, 65K10, 93B30.

Key words and phrases. Population dynamics model, size structure, well-posed initial-
boundary value problem, statistical parameter estimation, tuna fisheries, stock-assessment.
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the outputs of age-structured models with length frequency data, a Gaussian size
distribution is generally added to each age class. However, because of non-uniform
mortality over sizes, bias on growth and mortality estimates may result from this
procedure [5].

Another point concerning tuna fisheries is that they are highly heterogeneous in
space and time. This has a significant effect on their functioning. Important mi-
grations of fish occur at various scales, so that fish movements have to be explicitly
represented using spatialized models [6].

These are some of the main problems of current stock assessment models. It is
necessary to carry on the modelling effort by proposing and testing more complex
models dealing more accurately with size distributions and spatial heterogeneity.
This paper follows this direction and its purpose is twofold.

First we describe in section 2 a model of population dynamics in which both size
and space are taken as structure variables to account for growth, movements of fish,
environmental variability and variable distribution of fishing effort. The model con-
sists of an advection-diffusion-reaction equation. Spatial advection-diffusion models
have a long history in ecology [7, 8, 9], but their use in fishery science has grown
recently, particularly for tuna population modeling purposes [10, 11, 6]. To model
tropical tuna population in the Indian Ocean realistically, our model needs to re-
flect the heterogeneous distribution and movements of the population linked to the
environment and fishing effort heterogeneity. Thus in the model fish movements
depend on oceanographical and biological data through a habitat suitability index.
Recruitment, that is to say the input of young fishes in the model, is modeled as a
source term involving a nonlocal nonlinearity. The structure of the model enables
a direct and simultaneous comparison with the two main types of data available for
tuna fisheries: catches and size frequencies.

We assess the mathematical well-posedness of the model in section 3. We for-
mulate an initial-boundary value problem, introduce a variational formulation and
show existence of a unique weak solution. As often with nonlinear problems the
proof uses a fixed-point argument. We also show the positivity of the solution.

Our second goal is to develop and test a data assimilation procedure to estimate
the parameters of the model in a realistic skipjack tuna fishing simulation. Indeed
one of the main objectives of tuna population modeling is to provide robust evalu-
ations of stocks which are hardly possible nowadays for tuna fisheries in the Indian
Ocean because of the lack of robust estimations of many biological parameters, such
as natural and fishing mortality rates or recruitment parameters. Section 4 deals
with the numerical implementation of the simulation model. Then in Section 5 we
describe the data assimilation method developed for parameter estimation as well
as the Bayesian likelihood approach used to formulate a cost function measuring
the distance between the outputs of the model and the data. The paper ends with
some numerical experiments conducted in section 6 to validate the algorithm in the
case of the Indian Ocean skipjack fishery.

2. The model. The dynamics of the population of fish is described through a
density function p(z,y, s, t), where position (z,y) €  the bounded domain repre-
senting the ocean, size or length s € (Sp,S1) and time ¢ € (0,7). The number of
fish of size between s; and s, at time ¢ and position (z,y) is given by the integral

ED
/ p(z,y, s, t)ds.
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The population density follows an advection-diffusion process in space. Let
D((L‘, y7 S? t) = dlag(Du(xV y? 87 t)? ‘D’U(ér7 y7 87 t))
be the space diffusion matrix and

V('r’ y) 87 t) = (u(x’ y) 8) t)’ ’U($7 y’ 8’ t))T

be the velocity field. The population density also follows an advection-diffusion
process in the size variable (see section 2.1 for more details). Let d(s) denote the
dispersion coefficient in size and 7(s) be the growth rate. Finally let m(s) and
F(z,y,s,t) denote the natural and fishing mortality rates, and R(x,y,s,t,p) the
recruitment source term (see sections 2.4 and 2.3). The density function p follows
the balance law,

Op = div(DVp)—div(Vp)
+05(ddsp) — 9s(vp) (1)
_(m+F)p+R(p)v in 2 x (50,51) X (O’T)a

where V and div are the usual differential operators on €.
This equation has to be completed with initial conditions

p(%y,S,O) :po(l‘,y7$)7 V(xvyas) € Qx (SO7S1) (2)
and boundary conditions
3527(90,2/,5070 = 8Sp(x,y751,t) =0, V(l’,y,t) € Qx (OvT)v (3)

and
Vp(x,y,s,t) - n(z,y) =0, indQ, ¥(s,t) € (So,S1) x (0,7T), (4)

where n(x,y) is the unit normal vector pointing outside 2. Homogeneous Neu-
mann boundary conditions at s = Sy and s = S7 express the fact that the size of
individuals can not reach values lower than Sy or larger than S;.

The parameterizations of the processes involved in the time evolution of the
population are described in detail in the following subsections.

2.1. Movements: Advection-diffusion in space. Diffusion and velocity in space
have a physical and a biological component. The biological components depend on
a habitat suitability index function, hsi(x,y,t), and its first space derivatives. The
index hsi depends on temperature, T'(x,y,t), and forage, Food(x,y,t) which are
input data for the model. The biotic affinities for these environmental factors are
defined as

fT(xvyat) = 1/(1 + e‘rp<_aT(T(‘T7yat) - TO)))7 (5)
and
fFood(xayat) = FOOd(xvyvt)/(KFOOd + FOOd(LL‘,y,t)). (6)

All parameters are given in Table 1, and Fig. 2 shows plots of fr and frooq. In its
most general form the index is defined as

hsi(z,y,t) = (fr(z,y,8)"" (frooa(w, y, t))Proor. (7)

The velocity field is computed as

V(I, Y, Svt) = ‘/phy(gjvyat) + Vhsi(x7y7 Svt)v (8)
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TABLE 1. Habitat suitability index parameters

name value unit
ar 0.35 (degree C)~!

Ty 20 degree C
Krooq 1000 J

pr 1

PFood 1

where Vpiy, = (Uphy, Vpny)T represents the physical velocity (computed by a hy-
drodynamical model) and Vi,s; = (unsi, vnsi)! represents biological velocity defined
by

Ozhsi(x,y,t) s )
khsi + |0zhsi(x,y, )| S1 " ()
knsi + |Oyhsi(z,y,t)| " S17
Vhsi is proportional to length (large fish can swim faster than small ones) and to
(1—hsi)Vhsi (the model transports the population towards the most suitable places
for fish living according to the temporal habitat index evolution). The diffusion
coeflicients are defined as follows:

uhsi(gjaya Sat) = uhsiO(l - hsz(z,y,t))(

vhsi(m; Y, s, t) = Uhsz'o(l - hS’L(I’, Y, t))(

Du(x7ya Svt) = Dmvn + (Dma'r - szn)
X(]' - hSi(xa y,t))
X(l _ |8zh51(x7'yat)| i)Q7
khsi + ‘8a:h‘%(x7ya t)' Sl (10)
Dv(x7y7s7t) = szn+(Dmaz _szn)
x (1 — hsi(z,y,t))
(1 — |8yhsz(:b,.y7t)| 1)2.
khsi + |0yhsi(x,y, )| St

The interpretation of such a parameterization is similar to the one given for Vj;
and all parameters are given in Table 2.

TABLE 2. Movements parameters

name value unit
Dopin 107 m2.s~1
Do 10° m2.s71
Upsio 10 m.s1

knsi 2.5x 1077 m!

2.2. Growth and dispersion in size. As time goes on and fish grow older, their
size or length increases with a growth rate y(s) (see Eq. (11) and Table 3). A
diffusion term in the size variable with a dispersion rate d(s) (see Eq. (12) and Table
3) is included to account for individuals having the same age but different sizes.
Indeed, in a fish population individuals of the same age can often differ markedly
in size [4]. This variability in growth can result from many mechanisms, including
genetic or behavorial traits that confer different performances to individuals, and
factors such as environmental heterogeneity and variability [3]. In fishery science,
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this variability is usually taken into account in age-structured models using a length-
at-age relation perturbed by a Gaussian noise (see, for example, [12]). The model
discussed here is size-structured and uses a diffusion term in the size variable with
dispersion rate d(s) to account for individuals having the same age but different
sizes [13, 5]. The advection-diffusion term in size can be seen as the limit of a
random walk model in which each individual grows with an average velocity but
has at each time step a small binomial probability to grow faster or slower than
this average (see [8] for more details). We consider that fish growth follows a Von
Bertalanfy curve:

35) =1 =G, (1)
d(S) =d; + dgfy’gf) (12)

TABLE 3. Parameters for growth and dispersion in size

name value unit

Y1 3.858 x 1077 m.s~!
Yo 3.858 x 1079  m.s~!
dy 3.215 x 10712 m2.s!
ds 3.215 x 10712 m?2.s7!

2.3. Recruitment. Recruitment is computed as a function of the stock spawning

biomass,
S1

B(l‘,y,t,p) = fr(s)w(s)p(a:,y,s,t)ds, (13)

Smat

where $,,4¢ is the minimum size at maturity, the fecundity rate fr(s) is given by

by

r(s) =
I = G emasts— sma)
and the weight w(s) of a fish of size s by

w(s) = s’ (15)
We use a Beverton and Holt [3] stock-recruitment relation and obtain,

boB(l’, Y, tap)

R x’ 3 S’ t7 = S S )
( y p) II'(SQ, r)( )kB"’B(x,y,t,p)

wherell g, s,y is the usual characteristics function and s, is the maximum size of
recruitment.

; (14)

(16)

2.4. Natural and fishing mortality. The mortality rate is split into size-dependent
natural mortality m(s) [14] and a fishing mortality rate F(z,y,s,t). The fishing
mortality rate is defined as the sum of the IV, fishing mortality induced by each
fleet,

Ny
F(z,y,5,t) =Y Fy(x,y,5,1). (17)
f=1

The mortality rate induced by each fleet is described by the following equation:
Ff(xvyasvt) :qf(S)Ef(x7yvt)7 (18)
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TABLE 4. Recruitment parameters

name value unit

by 0.5

ay 1 m~!
Smat 0.5 m

G 4.82 x 1076 kg.m~bw
buw 3.36

bo 0.35 x 1079 m~1l.s7!
kg 0.5x107% kg
Sy 0.5 m

where ¢y(s) is the size-dependent catchability coefficient for fleet f (that is the
probability for a fish of size s to be caught by a unit of fishing effort of fleet f), and
E¢(x,y,t) is the observed fishing effort.

3. Mathematical well-posedness. In this section we prove existence and unique-
ness of a positive weak solution to the model.

3.1. Functional spaces. Let us introduce some functional spaces. The study
is conducted on the open set Q@ = Q x (S, 51). Let T < oo be a fixed time.
The population density, p, is considered as an element of the functional space
H = L*(Q), whose Hilbert space machinery is convenient to use. H is equipped

with the scalar product
S1
(P, @) = / / pqdsdzdy,
Q So

and we denote by ||.||g the induced norm. We also consider the separable Hilbert
space defined by H! = H'(Q) and equipped with the scalar product

S1
(P, @) = /Q /S (pqg + Vp.Vq + 0,p0.q)dsdzdy.

We denote by ||.||z: the induced norm on H*.
We will also have to consider the Banch space L™ = L*(Q x (0,T)) equipped
with the norm
lIplloe = inf{M,|p(z,y,s,t)] < M a.e.in Qx (0,T)}.

L?(0,T, H) is the space of functions L? in time with values in H, equipped with
the norm,

T
ol = | / p(6)|2de)?,

and L°°(0,T, H) is the space of functions L in time with values in H, equipped
with the norm,

Pl Lo~ 0.1.1) = inf{M, [|p(t)|[z < M a.ein (0,T)}.
Similarly C([0,T], H) is the space of continuous functions on [0, 7] with values in
H. Further, C([0,T],H), L*>(0,T, H) and L?(0,T, H) are Banach spaces.
Classically H' denotes the dual of H and (H')’ the dual of H'. When H is identified
with its dual, we have the scheme

H'cH=H c (HY,
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where each space is dense in the following and the imbeddings are continuous.
Let us denote by W (H?!) the Hilbert space

W(HY) = {pe L*0,T,H"), % € L2(0,T, (H"))}.

LEMMA 3.1. Every p € W(H?') is a.e equal to a continuous function from [0,T] to
H. Moreover we have the following continuous imbedding,

W(H") c C([0,T], H).
Proof. See, for example, Dautray and Lions [15] O

3.2. Assumptions on the data and preliminary transformation of the sys-
tem. The mortality rates are assumed to satisfy

e m(s), F(z,y,s,t) >0a.ein Q@ x (0,7), m, F € L.
If we assume that the input temperature and forage fields, T'(x, y, t) and Food(x,y,t),
are positive and regular enough, it appears clearly from section 2 that

L4 Du(z7y7 S7t)’ D'U('T7y7 S7t) 2 Dmln > 07 a'e in Q >< (07 T)’ Du? DU G LOO;

o u(z,y,s,t), v(z,y,s,t) are differentiable with respect to z and y, respectively

and u, v, Jyu, Oyv € L.

It is also clear from section 2 that

e d(s) >dy >0, a.ein (Sp,S51), d e L*>;

e 7(s) is differentiable with respect to s, and ~, 95y € L*°;

e fr(s), w(s) >0a.ein (Sy,S1), fr, we L™
We also assume that the initial distribution p®(x,y, s) satisfies

o p'(z,y,s) >0aein Q p’ € H.

To prove our existence-uniqueness result, it is convenient to perform a change of
unknown function: p satisfies (1)-(4) if and only if p = e *p is a solution to the
same equations where —(m + F)p is replaced with —(m + F + A)p in Eq. (1) and
the recruitment R(x,y, s,t,p) is replaced by

A bOe_)\t'B(x7y7t7ﬁ)

R ‘,L,7 7S,t7 H :]l Sy S ~ 9 19
( Yy p) {So, ]( )kBe_At—i—B(x’y)t?ﬁ) ( )

S1
B(x, y,t,p) = fr(s)w(s)p(x,y, s, t)ds. (20)

Smat
In the remaining part of the mathematical analysis, this change of unknown is
implicitly done and we omit the p notation. The constant A will be fixed to a
convenient value below. Moreover, the possible nullification of the term kge™** +

B(z,y,t,p) invites us to define

bOei/\tB(xv Y, t,p)
kBe_)\t + ‘B(x’ Y, t7p)| ’
This formulation is being used in the following. We will show that if the initial dis-

tribution, p° is nonnegative then p > 0 a.e. in Q x (0, T); thus the two formulations
are equivalent.

R(xayv’S,tap) :H[So,sr](s) (21)

3.3. Variational formulation.
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3.3.1. The bilinear form a(t,p,q). Formally multiplying Eq. (1) by a function ¢
and integrating by parts on Q leads to the definition of the following bilinear form.
For p,q € H! let us define

a(t,p,q) /QDVqudxdyder/QV.qudxdyds

+/ d(@sp)(asq)dxdyds+/Qv(8sp)qdzdyds (22)

+ f(m + F + X+ div(V) + 9s7)pgdzdyds.
Q

LEMMA 3.2. For a.e. t € (0,T), a(t,p,q) is continuous on H' x H', and for
A large enough, a(t,p,q) is coercive on H'. There exist two constants C; > 0
and Cy > 0, depending on ||Dl|os, ||, [[tllsc; [0l [V]loc: [[0zulloo, [|0yvlloc,
105V loos || E|loos [|loos Dmin, di and A, such that

la(t,p,q)| < Cullplle gl e, Vo, q € HY, (23)
a(tvpap) ZCQHpHQHl? VpEHl (24)
Proof. The proof is classical and we omit it. O

3.3.2. The nonlinear operator R. In this section we show that the recruitment term
R(z,y,s,t,,p) (cf. Egs. (13)-(16)) allows us to define a Lipschitz continuous oper-
ator R on L?(0,T, H).

LEMMA 3.3. Let
bo(S1 = So)[|fr[lso||w]]ss .

A:
kp ’

then the application

p(x,y,s,t) = R(x,y,s,t,p)
defines a bounded nonlinear operator, R, Lipschitz continuous from L*(0,T,H) to
L?(0,T, H) with Lipschitz constant A.

boe B
Proof. Let us first notice that the application (¢, B) — h(t,B) = e 1 B
from [0,T] x R to R satisfies
bo
h(t.B)| < 2B (25)
B
Furthermore h(t, B) is Lipschitz continuous in B uniformly in ¢ € [0, T,
b
|h(t, BY) — h(t, B?)| < k—O|Bl —B?, VB',B*cR, Vte[0,T].  (26)
B

S
Since B(z,y,t,p)? = ( fr(s)w(s)p(z,y,s,t)ds)?, we obtain using Cauchy-

Smat

Schwarz
B(z,y,t,p)* < (St = So)|lfr| 3 llwllZ 1z, v, - )72 (50,5, (27)
Hence from (25) and (27) we deduce that V¢ € [0, T7,

S1
1Rp(1)| % / (s, o, () (t, Bz, t. p))Pdedyds,

<A2Hp (O

(28)
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and that R is well-posed on L?(0,T, H).
In the same way, if to p* (resp. p?) we associate B! (resp. B?), we deduce from
(26) that V¢ € [0,T],

S1
IRp! ) = RO = [ [ s (6)0(8 B 9,19
—h(t, B*(x,y,t,p%)))])*>dzdyds, (29)
< A?[lp'(t) — p* ()| %,
and thus R is Lipschitz continuous on L?(0, T, H). O

3.3.3. Weak solutions. We can now give the definition of a weak solution to system
(1)-(4).
DEFINITION 3.1. We say that p € W(H?), is a weak solution of system (1)-(4) if
dp
Yoe H', (55a)n+a(t.p,q) = (Rp,q)u, (30)
in the D'(]0,T]) sens,
and p(0) = p°.

Then we can prove the following result.

THEOREM 3.1. System (1)-(4) admits a unique non-negative weak solution.
Proof.

Existence and uniqueness. The proof consists mainly in defining a nonlinear
operator © by freezing the nonlinear term Rp and applying Banach fixed-point
theorem to ©. The fixed point is the desired solution.

Step 1. Let p be fixed in W(H!) and in Eq. (30) let us replace (Rp,q)rg by
(RP,q) . The problem becomes linear in p and admits a unique solution (e.g, [15]).
This solution defines an operator © on W (H'), ©p = p.

Step 2. Let us show that for T sufficiently small © satisfies the following
properties:

1. © leaves invariant the ball,

|||z
Br: EW 0o <T 7"2
{p (H"), lpll Lo (0,1,m) V= A2T/202))}

that is, ©B, C B,.
Taking g = p as test function in (30), integrating on [0, ¢], using the coercive-
ness of a and Cauchy-Schwarz inequality, we obtain

[ 32l + Callpodo < [ IRl

For all o > 0, Young inequality leads to

t t 1 . t
Ip()1Fs +2C2 [ o)l < [ iRoe) e+ [ allp(e) o + 5”1

and choosing a = 2C5 gives

||p()||H—20 / IRp(o)[[Frdo + |Ip°|1%-
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Then using Eq. (28) we obtain

2 AT o 0[12
POz 0,7,y < TCZHPHLOC(O,T,H) +1P" -

If |1p]| Lo 0,7, 1) < 7 then [[p]|pe0,7,H) < rfor r2—|—||p |2, < r? that is to

say r%(1 — A—T) > [|p°||%. This implies 5L < 1 which is valid for small T,
[1P°[ 7

/(1= (A?T)20%))

2. O is a strict contraction on B,., there exists 0 < k < 1 such that Vp!, p? € B,,
[[©p* — Op?|| L (0,1, 1) < Kl|p* — ?|| L0 (0,7, 1)
Let p! = ©p! and p? = ©p?. Substracting the two associated Eq. (30), taking
p! —p? as test function and again using the coerciveness of a, Cauchy-Schwarz
and Young inequality leads to

and r >

— ' () = p* ()1 < 20 S lIRDH (1) = R ()17

Since p*(0) = p%(0) = p®, we deduce

| L .
Ip'(t) — P* D)% < E/o |Rp" (o) — Rp*(0)]|3;do,

and
A%2T 9
||p —-bp HLOO(OTH) =20, Hp -D ||L°C(O,T,H)'

Then for & ﬁ < 1, © is a strict contraction.

Step 3. For T small enough, by Banach-fixed point theorem © admits a unique
fixed point which is the desired solution on (0,T). Since T does not depend on p°,
the same procedure can be applied on (7,2T), ... until a solution is found on the
desired time interval.

Positivity. Let p; > 0 be given in W(H?!), and let us define the sequence
(Pn)n>1 by ©py, = ppt1. Let us prove that py is non-negative:
Taking p, = max(0, —p2) as test function in (30) leads to

d _ _
(dtp27p2 Y +a(t,p2,py ) = (Rp1,p3 )u

and therefore to
1d 4 || 1 d
a2l = 5 g

Since p; > 0 then Rp; > 0 and —(Rp1,p; ) < 0. It results that

—p3 | +a(t,py,py) = —(Rp1,p3 )u

d, _
bz IE <0
that is,
lpz (W)11F < llpz (0)|F = 12" |IH =0,

and ps > 0. An induction then shows that p,, > 0, Vn > 1, and since the sequence
converges to the solution p, this latter is non-negative. O
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4. Numerical treatment of the model. In the approximation procedure of the
model a centered finite difference discretization is used. Equation (1) is solved
on a grid with a spatial resolution of 2 degrees, i.e. Ay = 120 nautical miles in
the latitudinal direction and Az = Agycos(d) in the longitudinal direction (0 is
the latitude angle), a discrete length step, As of 4 cm, and a discrete time step
At of one day is used. The discretization points are denoted by (z;,y;,s:,tn)
with ¢ € [1 : I], j € [1 : J] (assuming here for simplicity that the domain
is rectangular), | € [1 : L] and n € [1 : N]. In what follows, p},, denotes the
numerical approximation of p(z;,y;, si,tn).

Several difficulties arise in the computation of the solution to Eq. (1). First
the numerical scheme has to be very stable because of possible strong variations in
space and time of the advection and diffusion coefficients, u, v, D,,, D,. Moreover
the numerical solution of Eq. (1) is to be used in a numerical function minimiza-
tion procedure to obtain estimates of model parameters. Therefore the solution
algorithm must be fast because the model and its adjoint may have to be solved
hundreds of time. Moreover, the function minimization algorithm may test param-
eter values that do not necessarily guarantee numerical stability.

The selected scheme combines a splitting method [16, 17] and the use of the
MUSCL scheme for advection terms (monotonic upstream centered scheme for con-
servation laws [18]). At each time step, given an approximation p™ of p(z,y, s,t,),
the computation of p”t! from p™ is achieved through four steps. The advection-
diffusion equation in the z variable is integrated first, on [t,, tp41]:

op(x,y, s,t) = O (Dy(z,y, s,t)0:p) — Oz (ulz,y, s,t)p), (31)
p(z,y,s,t") =p".

"+1.1 Then the advection-diffusion equation in

n+1,1.

It results in a first approximation p
the y variable is integrated on [t,, t,41] starting from p

atp(xa y7 57 t) = 8y(Dv(177 y7 57 t)ayp) - 8y(v($7 y7 Sv t)p)7 (32)
p(z,y,s,t") = p"thL

It results in a second approximation p"*12. Then the advection-diffusion term in
the s variable is integrated on [t,,t,1] starting from pn*12:

(.. 5,t) = Dy (d(s)95p) = Os(1(s)p),
p(x,y,s,t") = pnth2, (33)

It results in a third approximation p"*'?. Finally mortality and recruitment are
integrated on [t,,,t,1] starting from pn+13:

p(x,y,s,t") = p" T3,

It results in the final value p"t!.

In each of the first three steps, diffusion is treated implicitly in time, and the
MUSCL scheme is used for the advection term. For example, the discretization
used to solve Eq. (31) can be written as follows:
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1 1 1
AL (Dt L+ D e

T 2AzZ \Huji—1,7, wi,j,l
At n+1 n+1 n+1 n+1
H(A+ gxer (D0 + 2005 50+ Dugie 5,005 5 (35)
At n+1 n+1 n+1
~ 9827 (Dui g T Dui 50Pi5,50
= ax i+1/2,5,0 fi—1/2,j7l)a
where
" v n n At ie,n
fr Wy (Piga + 1200 =Wy 5y i)y 3250 2 0,
i+1/2,5,0 = " . . . N -
Uy o Py — 12804 (L + Ul p 1 R5)), otherwise.
(36)

In this last equation, if (p}; ;; <P, <Py )
or if (p;l+1,j,l S TS p?—l,j,l) then

. ‘p;Q»l,j.l_p;L—l,j,ll n n
Apin = min( 2 = 2|pi+17j7l —Pij
n __ o n n .
A} = sign(piya i = Piea,0) Amins

' n
2 20pi 0 = P

AN

and otherwise,
AT =0. (38)

5. Parameter estimation. In this section we describe the data assimilation al-
gorithm developed to estimate the parameters of the model.

5.1. The outputs of the model corresponding to the data. Total catches in
weight as well as length frequencies of the catches are computed and compared to
observations to estimate the parameters of the model. In each cell (4, 5) of the grid,
where during month m (30 days), the fishing effort is nonzero, catches of fleet f are
computed as follows:

30m

L
Cijom,f = Z Z Qf,lE}L,i,j,lP:‘L,j,lwlASAxAyAta (39)
=1 n=30(m—1)+1
and length frequencies as

30m

Z ar1EY ;07 AsArAyAt
n=30(m—1)+1
Qujtm.s = 7 30m : (40)

Yo D anERi gl AsArAyAt

=1 n=30(m—1)+1

5.2. The cost function. The parameters of the model are denoted in what follows
by K € RM where N, is the number of parameters. K is being estimated in
a Bayesian context by computing the mode of the posterior density function of
the parameters knowing the data. We use the maximum of posterior distribution
method [19], which involves minimizing the sum of the negative log-likelihood of
the data plus the log of prior density functions.

We assume that the observation errors for catch data follow a log-normal distri-
bution. Therefore the contribution of total catches to the negative log-likelihood
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is
Je( 20 222> (10g(Cijm.s) = 10g(C75 1)) (41)
Clij m f
The observation errors for length frequency data are assumed to be normal and
the contribution of frequency data to the negative log-likelihood reads

JQ 20.2 Z Z Z Z Qz,_},l m,f = 7_],l m f)2 (42)
l

The negative log of prior den51ty functlons for the parameters is
Tp(K) = Z 507~ KD (13)

where KU are the reference a priori parameters given in Tables 1-4. The cost
function to be minimized is the sum of those three terms:

J(K) = Jo(K) + Jo(K) + Jp(K). (44)

The parameters have different units and orders of magnitude. To avoid any nu-
merical difficulties that might arise from this during the minimization, we adimen-
sionalize the parameter vector K, dividing each parameter K; by its first guess a
priori value K?. Let D = diag(K?) then the adimensionalized control vector is
k = D7'K. Such an adimensionalization procedure can be regarded as a precon-
ditioning for the minimization. The final cost function is

j(k) = j(D7'K) = J(K), (45)
and the a priori reference adimentionalized parameter vector is k = 1.

5.3. Optimization: Computing the gradient with the adjoint model. To
minimize the cost function j, we used the quasi-Newton algorithm implemented in
the nlgn3 Fortran subroutine of Gilbert and Lemaréchal [20]. The computation of
the gradient of j with respect to control variables is required at each step of the
minimization. This gradient results in one integration of the adjoint model. The
adjoint code was obtained using the automatic differentiation program Odyssée
[21, 22], which is an efficient tool for deriving adjoint codes since it enables the
automatic production of adjoint instructions. However, codes produced by auto-
matic differentiation do not usually use computer memory in a very efficient way.
Saving the direct model trajectory is the major problem. A differentiation pro-
gram has to follow systematic methods to provide the evaluation trajectory. Thus
Odyssée systematically uses a local calculation and storage technique for the trajec-
tory. Automatically differentiating a 3D model and using the adjoint code directly
seems impossible for the moment. Thus the code generated by Odyssée had to be
improved manually. A Taylor test was then conducted to compare the exact deriva-
tives computed by the adjoint code to a finite difference approximation. Generally
speaking, one aims at verifying that

Jj(k + edk) — j(k)
S e SR (46)
for any direction of perturbation dk. We present in Table 5 the result of such a test.
As e becomes smaller, one observes that the ratio r(e) first tends linearly towards
1 up to € = 107%, which is the optimal value for a finite difference computation.
Afterwards, the substraction of close floating-point numbers leads to a large cancel-
lation error, which dominates the truncation error coming from the computation of
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TABLE 5. Result of a Taylor test

€ r(e)

10~ 1.010756398
1072 1.001203422
1073 1.000115118
10~%  1.000015861
10~®  1.000001463
106 1.000000518
1077 0.999993143
108 0.999985731
1072 0.999847627
10710 0.997712868

the gradient by the finite difference method. A Taylor test with such a numerical
behavior of the ratio r(e) is said to be correct. It verifies that the adjoint code
provides an exact computation of the gradient.

6. Numerical results.

6.1. The simulation set-up. The standard run consists in a one-year simulation
for the Indian Ocean. The spatial numerical grid used is shown on Fig. 1. Sizes of
simulated skipjack tunas range from Sy = 0.4 m to S; = 1.2 m.

¥

FiGure 1. The 46 x 32 numerical grid used to integrate the
population dynamics model on the Indian Ocean (earth in black,
ocean in white).

Inititial conditions are chosen to be homogeneous over the space grid with a size
distribution

P°(x,y,s) = 0.1e7 05, (47)

This distribution assumes that the population is dominated by small organisms.

Using these initial conditions a spin-up run of 6 years is conducted in order to

reach an experimental and numerical fixed-point where mortality processes balance
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the recruitment process and the total biomass slowly varies around a mean value
during the year. The final distribution at the end of the spin up period provides
the initial distribution for the standard run.

Since skipjack tunas inhabit the surface layer of the ocean, the model is forced
with monthly velocity of oceanic surface currents, sea surface temperature and for-
age fields (Fig. 2). Velocity and temperature fields are outputs of the ocean general
circulation model OPA,' whereas forage fields are outputs of a size structured model
representing the energy flow in marine ecosystems from zooplankton to organisms
of the size of tuna forage [23].
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FIGURE 2. Response functions, fr and fr included in the hsi
formulation corresponding to temperature (left) and forage (right).
Frequency distributions over the whole grid and the whole year of
temperature and forage values are also plotted.

Figure 3 shows a contour plot of the index hsi for the month of march. The
strong south-north gradient of the index in the lower half of the map is typical of
the area. Low temperatures are not suitable for tuna, which stay in the upper half
of the map as shown on Fig. 4.

To test the possibility of estimating some parameters of the model from standard
fishing data, we conduct in the following section numerical experiments with a syn-
thetic data set computed by one simulation of the model. All parameters are set to
their reference a priori values. Moreover for the sake of simplicity the two mortal-
ity parameters m and g are assumed to be size-independent; that is constants with
values m = 4.2438 1078 s~ 1 [6] and ¢ = 6.43 10~® s~1. Only one fleet is considered
(Nf = 1), and the fishing effort is assumed to be constant and homogeneous during
the year on an area roughly corresponding to the real fishing areas of the purse
seine fleet in the Indian Ocean (see Fig. 5). With this configuration, a data set is
computed following Eqgs. (39) and (40).

6.2. Sensitivity analysis. We conduct a sensitivity analysis in order to identify
the most important input parameters whose changes impact the most the outputs
of the model (catches and length frequencies).

Thttp://www.lodyc.jussieu.fr/opa,/
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FiGure 4.  Contour plot of the population density function
summed over size classes at the end of the month of March.

As a measure of the outputs of the model we consider the quantities
ho(k) = Z Z(Ci,j,m)Q (48)
i,j] m

and
ho(R) =33 (Qijum)*. (49)
i, 1 m

Then the vector of relative sensitivities of these quantities to variations of the input
parameters computed at the point k are

sc(k) = thc(g;) (50)
and ik
so(k) = o(k) (51)
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FIGURE 5. Distribution of the fishing efforts used in the simula-
tions. F' = 0 in the gray area and F' =1 in the black area.

Each of these relative sensitivity vector requires the computation of a gradient
which is easily obtained with one integration of the adjoint model.

Table 6 shows the relative sensitivity vectors, sc (k) and s (k°), computed with
the initial a priori parameter vector k°. Globally the different relative sensitivities
are quite low, indicating that it may be difficult to estimate correctly all the param-
eters of the model using the two types of fishery data which are generally available.
In the remaining part of this paper we will not try to estimate parameters which
have the lowest sensitivities (1073, 1072). These parameters are

® Donin, Dyas related to diffusion in space,

e di, do, 71 and 75 related to growth,

e ay and s,,4; related to recruitment.

Interestingly the relative sensitivities sg corresponding to variations in bf, kp
and a,, (see Table 6) are exactly equal up to a sign. This comes from the formulation
of recruitment in the model, which from Eqgs. (13)-(16) can be rewritten with
obvious notations as

boB  bobja,B  byB (52)
kg +B  kp+ bfawB ks +B
bfa,w

An inconsistency in the formulation of the inverse parameter estimation problem
appears clearly. The 3 parameters, by, kp and a,, can not be determined indepen-
dently, since for example an increase in kg can also be interpreted as a decrease
in by or in a,. For this reason in our identification experiments we keep by and
aq fixed to their reference values and only try to estimate k. Moreover since the
length/weight parameters a,, and b,, are well known we also do not select b,, for
the parameter estimation formulation.

Although the 2 mortality parameters m and ¢ do not correspond to very high
sensitivities, we will try to estimate them since they really are badly known.

Finally the chosen formulation includes 11 parameters to be estimated:

e movements parameters : khsz'7 PT,PFood, AT, TO7 KFO()d7 Uhsi0
e recruitment parameters : by, kp
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e mortality parameters : m,q

TABLE 6. Relative sensitivities of catch and length frequency data

param. sc(k°) sq(kY)
Dinin 1.39 10~2 —8.21 1073
Dz 7.811072 —1.12 1072

Knsi 1.36 101 —3.59107%2 +
pr —1.54 107! 4751072 +
Prooa  —1.06 1071 1.50 1072  +
ar —1.00 3.1210° +
To 258107  —8.06 1072 +
Krooa —1.01107' 1431072 +
Uhsi0 —-1.68 10~! 4.081072 +
dy 5.53107%  —3.831072 —
day 4781078  —-3.47107%2 —
" 3.871072 —-351107' —
Y2 —4.93 1072 3.36 1072  —
bo 1.9310°% 3.02107' 4+
by —-155107t —2.49 107t —
ks 155107 249107' +
y 319107 249107t -
bu 4.16 3.24 -
af -1.22107% —2.07107% —
Smat —3.90 10_2 —6.27 10_2 —
m -9.11 1072 3421072 +
q 7471072 2491072 +

Note: In the last column, a + or — indicates whether or not the corresponding
parameter is estimated.

6.3. Identification experiments. An essential validation step to perform before
assimilation of real observed data is to conduct twin experiments. Synthetic data
are produced by the model using the first guess parameter vector k°. To fully test
the possibility of recovering the selected parameters from the synthetic data, no
penalty term is added and the cost function reduces to

i(k) = jc(k) +jq(k). (53)
The assumed variances are as follows: oc = 0.1 and og = 0.01. This provides
a good balance between the two terms of j. In the experiments conducted, the

M < €, where € is a small value fixed to 107°.

IV (RO

6.3.1. Ezperiment 1. A first numerical experiment was conducted to assess the
capacity of the parameter estimation algorithm to distinguish between low (or high)
recruitment and high (or low) mortality rates on the one hand and natural and
fishing mortality rates on the other hand. Therefore in this optimization only the
four parameters by, kg, m, and ¢ can vary, the others being fixed to their reference
a priori value used to simulate the data. Different first guesses for the parameter
vector were obtained by perturbing these four parameters within reasonable range
(up to 50% of their reference value). All the corresponding optimizations converged

convergence criterion is
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to the minimum of the cost function. The results of such an experiment are shown
in Figs. 6, 7, and 8. The convergence criterion is satisfied after 20 iterations. The
cost function value decreased from 2.9 10° to 5.1 10~7 indicating that it has reached
its global minimum and all 4 parameters have been recovered.

parameter value

0 5 10 15 20
iteration number

FIGURE 6. Convergence of the 4 selected parameters towards

their reference value (k° = 1) during the optimization experiment
1.

1.00E+05 -
1.00E+03 -
1.00E+01 -
1.00E-01 ~
1.00E-08 +
1.00E-05 +

1.00E-07 \ T ‘ ‘
0 5 10 15 20
iteration number

cost function

FIGURE 7. Evolution of the cost function j(k) during the opti-
mization experiment 1.

6.3.2. Ezperiment 2. A second numerical experiment was conducted to assess the
capacity of the parameter estimation algorithm to recover all the 11 parameters at
the same time. Therefore in this second optimization experiment all of 11 param-
eters can vary. Different first guesses for the parameter vector were obtained by
perturbing these parameters within reasonable range (up to 20% of their reference
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FIcure 8. Evolution of the gradient ||Vj(k)|| during the opti-
mization experiment 1.
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Ficure 9. Convergence of the 11 selected parameters towards
their reference value (k° = 1) during the optimization experiment
2.

value). All the corresponding optimizations converged to the minimum of the cost
function. The results of such an experiment are shown in Figs. 9, 10, and 11.

The convergence criterion is satisfied after 59 iterations. The cost function value
decreased from 6.4 10to0 2.0 107!, indicating that it has reached its global minimum
and all 11 parameters have been recovered.
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FIGURE 10. Evolution of the cost function j(k) during the opti-
mization experiment 2.
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FiGURE 11. Evolution of the gradient ||Vj(k)|| during the opti-
mization experiment 2.
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7. Conclusion. We developed an advection-diffusion size-structured fish popula-
tion dynamics model and applied it to simulate the skipjack tuna population in
the Indian Ocean. The model is fully spatialized and movements are parameter-
ized with oceanographical and biological data. Thus the model naturally reacts
to environmental and climatic changes. We have formulated an initial-boundary
value problem and proved its mathematical well-posedness. We then discussed the
numerical scheme chosen for the integration of the simulation model. From a mod-
eling point of view, this study, is to our knowledge, the first one in which space
and size structure of the population are fully taken into account and in which both
mathematical and numerical difficulties were dealt with in a rigorous manner.

In a second step we addressed the parameter estimation problem for such a
model. With the help of automatic differentiation we derived the adjoint code which
enabled us to compute the exact gradient of a Bayesian cost function measuring the
distance between the outputs of the model and catch and length frequency data.
Thanks to the size structure of the modeled population the outputs of the model can
be naturally compared to length frequency data. A sensitivity analysis showed that
not all parameters could be estimated from the data. Finally twin experiments in
which pertubated parameters were recovered from simulated data were successfully
conducted. This point is particularly crucial since one limitation of the model lies
in the choice to be made for different parameters value, or even in the choice to be
made in the type of functions of temperature or forage parameterizing the habitat.
The numerical experiments conducted demonstrate that fishing data can be used
to estimate these parameters accurately.

This study is an important first step towards the assimilation of real observed
fishing data in the model which is under progress. The mathematical and numer-
ical tools which have been developed and validated will be extended to confront
the model with tagging data which should bring more information and enable the
estimation of several supplementary parameters such as growth and movements
parameters. Developing a tool using tagging data is indeed especially timely, since
no reliable stock assessment can be conducted at present for the skipjack tuna
in the Indian Ocean and since a large-scale tuna tagging program in the Indian
Ocean (IOTTP) has recently started and an important tag-recapture data set will
be available in the coming months.
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Abstract

In this paper, we address the problem of modeling fish population movements. We first consider a description of movements at the
level of individuals. An individual-based model is formulated as a biased random walk model in which the velocity of each fish has both a
deterministic and a stochastic component. These components are function of a habitat suitability index, /, and its spatial gradient V4. We
derive an advection—diffusion partial differential equation (PDE) which approximates this individual-based model (IBM). The
approximation process enables us to obtain a mechanistic representation of the advection and diffusion coefficients which improves the
heuristic approaches of former studies. Advection and diffusion are linked and exhibit antagonistic behaviors: strong advection goes with
weak diffusion leading to a directed movement of fish. On the contrary weak advection goes with strong diffusion corresponding to a
searching behavior. Simulations are conducted for both models which are compared by computing spatial statistics. It is shown that the

PDE model is a good approximation to the IBM.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Population dynamics; Biased random walk; Individual-based model; Partial differential equation

1. Introduction

Population dynamics models are essential to help to
understand marine ecosystems dynamics and to provide
assessment of fish abundance and fishery exploitation level.
This is particularly true in the case of tuna fisheries, which
are among the most valuable in the world and subject to
increasing fishing pressure and to the effects of climate
change. Although fish are mobile, models of population
dynamics without any or with very crude representation of
space are most of the time used for fisheries stock
assessments. However, in order to understand the reasons
and consequences of resource variability, many recent
studies of ecological dynamics have emphasized the
necessity to develop and use spatially explicit approaches.

Fish population dynamics can be represented with such
partial differential equations (PDEs). Spatial advection—
diffusion models have a long history in ecology (e.g.

*Corresponding author. Tel.: +33499573227.
E-mail address: Blaise.Faugeras@mpl.ird.fr (B. Faugeras).

0022-5193/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jtbi.2007.04.012

Skellam, 1951; Okubo, 1980; Holmes et al., 1994), but their
use in fishery science has grown recently, particularly for
tuna population modeling purposes (Bertignac et al., 1998;
Maury and Gascuel, 1999; Sibert et al., 1999; Lehodey
et al.,, 2003; Faugeras and Maury, 2005). Among the
difficulties which arise with such models an important one
is the choice that has to be made to express the time and
space dependent advection and diffusion coefficients.

A first approach, used by Sibert et al. (1999), is to set
these parameters to be constant over large spatial regions
and temporal seasons and to try to estimate them by
minimizing a cost function describing the distance between
the outputs of the model and the available data. This is not
completely satisfying since the spatio-temporal variability
of advection and diffusion terms is roughly represented.

A second approach followed, for instance, by Bertignac
et al. (1998) and Faugeras and Maury (2005) is to
parameterize advection and diffusion terms as functions
of an habitat suitability index. This approach has the
advantage to fully take into account the spatio-temporal
variability of the habitat of a fish population with a small
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number of parameters. However, its main drawback is that
the expressions chosen to parameterize advection and
diffusion coefficients are arbitrary. The advection field V is
usually considered to be proportional to the spatial
gradient of the habitat suitability index 4 : V = ¢Vh. The
coefficient c is the taxis coefficient. It determines the rate of
movements of fish up gradients of the habitat suitability
index. This coefficient can be a constant (Bertignac et al.,
1998; Maury, 2000), or a simple and empirical function of /4
and V& (Faugeras and Maury, 2005). The diffusion matrix
is always supposed to be diagonal. Its diagonal elements
are cither assumed to be constant or simple arbitrary
functions of 4.

In this paper we provide a mechanistic approach to
derive an advection—diffusion fish population dynamics
model from individual fish behavior. Our approach is
based on a biased random walk model. This type of model
can also be viewed as simple individual-based models
(IBMs). Such models are useful to describe movements at
the level of individuals but cannot be easily used to treat
large populations. Instead some level of approximation has
to be made to reduce the problem to a state equation in
which the variable is the spatial density of individuals.
Related works, concerning the transformation of an
individual-based or microscopic modeling into a popula-
tion-based or macroscopic modeling, are Alt (1980) and
Griinbaum (1999) in which the authors show that the
solutions of an underlying differential-integral equation
describing the movements of animals satisfy, under suitable
assumptions, an advection—diffusion equation. One can
also be interested in Flierl et al. (1999) where the authors
analyze the processes by which organisms form groups and
discuss the transformation of IBM into continuum models.
In the present study, an advection—diffusion equation is
obtained as a truncated Kramers—Moyall cumulant expan-
sion (Risken, 1996) of the spatial density function of
individuals. The parameters of the IBM are used in the
expressions of the advection and diffusion terms.
A consistent behavior is obtained concerning the depen-
dence of these two terms on /& and VA, and the balance
between them. Advection and diffusion both are decreasing
functions of the habitat index /4. Moreover their depen-
dence on V& implies that strong advection goes with weak
diffusion leading to a directed movement of fish. On the
contrary weak advection goes with strong diffusion
corresponding to a searching behavior. This formalizes
the heuristic approach of Faugeras and Maury (2005).

The paper is structured as follows. In Section 2 we
describe the random walk model. It is viewed as a simple
IBM and simulations are conducted in Section 4. In
Section 3, starting from the random walk, a recursion
equation is formulated for the spatial density of indivi-
duals. This equation is expanded with respect to two small
parameters and finally approximated to give the advec-
tion—diffusion equation. Section 4 provides numerical
simulations of both the IBM and PDE model. Spatial
statistics are computed in order to compare the models. It

is shown that the PDE model is a good approximation of
the IBM despite of the simplifying assumptions that are
made to derive the PDE model. The paper ends with a
Conclusion section and two Appendices.

2. Individual-based model

In this section we propose an IBM describing move-
ments of n independent but identical fish. We assume that
there is no interaction between individuals and that more
than one individual can occupy a given position. Only
horizontal movements are modeled and individuals evolve
in a domain Q € R?> during a period of time [0, 7].
Oceanographic currents are not considered in this paper
where flow effects are not taken into account. The
modeling focusses on the biological processes which drive
individual movements. It is assumed that individuals assess
their environment and that the decisions they make
concerning their movements depend on an habitat suit-
ability index function

h:R*x[0,T]— [0,1].

The function / is supposed to synthesize all the informa-
tions (water temperature, forage concentration and dis-
solved oxygen concentration for example) that individuals
take into account to adjust the direction and velocity of
their displacements. Individuals are assumed to search for
and stay in regions corresponding to a high habitat
suitability index. Therefore, their movements are consid-
ered to be induced by their need to maximize /.

Each individual is characterized by its position x and has
a velocity

v = ud.

The norm, v, of the velocity is assumed to be deterministic,
whereas d is a stochastic unit-norm direction vector. An
individual trajectory follows

dx
dr
This equation is discretized using the explicit Euler method,
assuming there exists a small mean time, 7, during which
the velocity vector of an individual is constant. Therefore,
an individual positioned at x at time ¢ will move to x +
v(x, f)T at time  + 1.

The behavior of each individual is governed by the
habitat suitability index % and its gradient VA. A simple
linear relation is assumed between the norm of the velocity
and the habitat suitability index

v(x, ) = vo(1 — h(x, 1)), )
where vy is the maximum speed that a fish can reach. Hence
fish located in regions where /i is low have a higher velocity
than those in regions where / is large.

The direction vector is given by

. cosf 5
_<sin9)' )

=V.
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Fig. 1. The unit circle, Vi and Oy, €] — =, 7).

The angle 0 is a realization of a random variable @ which
follows a von Mises distribution, g defined by

010.1.00) = 5. exp(ccos(0 — 00

where [ is the modified Bessel function of the first kind
and of order 0 (see Appendix A). The distribution is
centered around the mean angle 6y = Oy, €] — w, 7] given
by the direction of the gradient V/ (see Fig. 1) and with a
concentration parameter x = o VA| proportional to the
norm of the gradient. Hence, at time ¢, the angle of
displacement of a fish located at x is drawn from the
probability density

f(ga X, t) = g(gs OCHVh(X’ t)”a QV/I(Xa Z))

|
= 20l (|| VA(X, 1)]]) exp(al| VA(x, 1)]|

x cos(0 — Oy;(x, 1))). 3)

Since the mean movement direction is given by the
direction of the gradient VA, fish tend to maximize the
habitat suitability index 4. The concentration parameter is
proportional to ||VA| and therefore high values of ||Vi||
induce direction vectors that strongly follow the direction
of the gradient, corresponding to a directed movement
behavior. On the contrary low values of ||VA| lead to less
correlation between the direction vector and ||VA|. This
corresponds to a searching behavior.

3. Approximation of the IBM: advection—diffusion equation

In this section, starting from the microscopic description
of movements given by the IBM we formally derive a
simplified macroscopic description in terms of an advec-
tion—diffusion PDE.

In order to achieve this task we have to use approximat-
ing hypothesis. The first one is to consider in a first step
that the norm v of the velocity vector for each individual is
a constant, that is to say independent of time and space. As
a consequence we can suppose that at each time step 7 an

individual moves a distance 0 in a direction 0 with a
probability which depends on space and time through the
density (0, x, t) of Eq. (3). The microscopic space and time
scale parameters, ¢ and 1, are considered to be small with
respect to the macroscopic space and time scales defined by
the dimensions of the spatial domain Q and the time
domain (0, 7).

All individuals that can possibly reach position x = (x, )
at time ¢ + 7 lie at time ¢ on a circle of radius J centered on
(x, ) (see Fig. 2). The density of individuals, p(x, y, t + 1) at
position (x, y) and time ¢ + 7 can thus be expressed with the
following recursion:

Py, t+1)
:/ p(x+dcosh,y+ osinb, i)
Xf(@+m,x+dcosh,y+ dsinb,r)do

:/ p(x —dcosf,y —dsinb, 1)

n

x f(0,x —dcosB,y —dsinb,t)do. 4)

The remaining part of the derivation of the desired
advection—diffusion equation from Eq. (4) relies on
analytical computations which are fully detailed in
Appendix B. It is based first of all on second order Taylor
expansions with respect to the space variables for the right-
hand side of Eq. (4) and with respect to the time variable
for the left-hand side. Secondly the expansions are combi-
ned using recursive substitution and truncated neglecting
high order terms. The results concerning the moments of
the von Mises distribution given in Appendix A enable us
to define a, b, ¢,d and e in the following way:

11 (]| VA(x, 1))

—————— 2~ cos Ovu(X, 1),
LoV, ) <8 P90

a =/ f(O0,x,y,t) cos0dl =

" . L@ VA D)
b:/ 0,x,y,t 0d0 = ——MM——= 0 ,0),
- JO.xy,0sin TG VG, ) S 0ot

(x+8cos0, y+dsing)

+T

T

0+m

Fig. 2. All individuals that can possibly reach position (x, y) at time ¢ + t
lie at time ¢ on a circle of radius ¢ centered on (x, ).
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c= [ f(@0,x,y,t)cos>0db

—T

1 (1 Lol Vhx, )

= ————— ~~ cos20y,(x, 1) |,
2\ LoV, o <8209 )>

d= f(,x,y,t) sinf cosdo

_ 1 L@V, Dl

= 2R UV in 20v,(x, £),
2 Io(a]| VA(x, D) wi(%. 1

e= [ f(0,x,y,1)sin’0do

—T

1 (1 L@ Vhx, 01

= 3\ Tyl Vi, iy 20V t)> '

Eventually this leads to approximate Eq. (4) by the follow-
ing advection—diffusion PDE:

LR
5’ 5
+ [ax <2T (c— az)axp) + O <2T (d— ab)@yp)
+0 .(5—2@1 — ab)d p> +0 (5—2@ —b%)0 p)] (5)
"\ 27 x "\ 27 iy

Now, as was the case in the IBM, we assume that 6 is not a
constant but satisfies

% _ o1 =)
T

and hence we also have that
P o1 )
2 E(Uo(l - h))".

Finally defining the advection velocity

a
V = (1 —h)<b>

0
PR ACINLD (COS w,> ©

Lo(||VA]) \ sin Oy,

and the diffusion matrix

D ‘c( (- c—a> d—ab
= —(D —
2 d—ab e—b?

PR bt _12(Of||Wl||)> bo
= (w1~ 1) {2<1 M (O 1
LECIAZI (Il(anwn))z

L@l VAl \Io(] VA)

cos? Oy, sin Oy, cos Oy,
x| . . (7
sin Oy, cos Oy, sin” Oy,

we obtain the final advection—diffusion equation approx-
imating the IBM:

op =V-(DVp—Vp). ®)

Note that the diffusion matrix, D has non-zero off-
diagonal terms and its elements are the centered second
order trigonometric moments of the von Mises distribu-
tion. D is also symmetric positive.

The advection velocity V is of chemotaxis type. It is
oriented in the direction of Vi and its amplitude is
modulated by I;(x||VA|)/Io(e|| VA|)) an increasing function
of | Vh||. At a given level of habitat suitability index 4, the
balance between advection and diffusion only depends on
the gradient ||VA||. Strong gradients impose strong advec-
tion and weak diffusion, whereas weak gradients induce
weak advection and strong diffusion.

4. Numerical simulations and comparisons of the models

The IBM proposed in Section 2 is approximated by an
advection—diffusion equation derived in Section 3. In this
section, we conduct numerical simulations for both models
and compute some spatial statistics in order to compare
them.

An algorithm to simulate the IBM described in Section 2
is not difficult to program. We consider a rectangular
spatial domain Q= (0,L,) x (0,L,) large enough for
individuals never to reach its boundaries during the period
of the simulation of length 7 = Kt. For the sake of
simplification we consider a time independent habitat
suitability index / defined on Q. As initial condition a set
of n = 10* individuals are positioned at the same location:
x?=x% i=1,...,n. At each time step (denoted by k), of
length 7, and for each point x¥, h(x¥) and Vi(x¥) are
computed, and an angle 0{-" is drawn from the von Mises
distribution. Each individual then moves according to

cos 0¥
X = xF 4 pp(1 — h(xf-‘))r( . )

sin 0%

All experiments were conducted with t = 107! and vy = 1.
The IBM simulation algorithm was programmed with
Matlab. In order to generate random numbers from a von
Mises distribution we used a Matlab code developed by A.
Bar-Guy and A. Podgaetsky available on Matlab central
website. It implements the method suggested in Yuan and
Kalbleisch (2000) and described in Devroye (2002).

In the approximation procedure of the PDE model a
finite difference discretization is used. Eq. (8) is solved on a
grid with a spatial resolution of Ax =Ay =10"2 and a
discrete time step Az = 1072 is used. Since Q is bounded,
boundary conditions need to be added to Eq. (8). We have
used Neumann boundary conditions. In order to be
consistent with the simulation of the IBM we consider
the following initial condition:

0 n

=—— .
AxAy X

p
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The numerical scheme implemented is based on a splitting
method (Strang, 1968; Marchuk, 1990). Diagonal diffusion
terms are treated implicitly in time, whereas off-diagonal
diffusion terms are treated explicitly. Concerning advection
terms, the MUSCL scheme (monotonic upstream centered
scheme for conservation laws (Van Leer, 1977)) is
used. The choice of the advection scheme has an
important part in the spatial statistics computed from the
solution of the PDE model. The numerical diffusion
introduced into the solution of the PDE by the use of a
simple upwind or centered difference advection scheme
leads to unreliable computed variances. The MUSCL
scheme is more complicated to implement but far less
diffusive.

In order to compare the population distributions
generated by the IBM on the one hand and by the PDE
approximating model on the other, we compute the first
three centered spatial moments as functions of time. For
the PDE model the mean x position is computed as

Joxp(x,y,1)dxdy

N 1) === 9
o) = Gy ) dxdy ®
and for the IBM model it is computed as
0=13"x0 (10)
m =- (1)
x,IBM < Xi
The variance about the mean x position is
2 Jo(x = my ppe(1)*p(x, y, ) dx dy
oy ppe(l) = (11)
fgp(xryr t) dXdy
for the PDE and
mn(t) = —— D (6i(0) = 1w (1)) (12)
i=1

18 |
16 |
14 |
12 |

0.8
06
04
02

L L L L L L L L L

02040608 1 12141618 2
X

for the IBM. Finally the third standardized centered
moment or skewness in x is computed as

Jo(x = my ppe(0)’plx, y, 1) dx dy
Gi,PDE(t) Jor(x,y,0)dxdy

(13)

Vx.ppE(l) =

for the PDE and as

by = YD VIS A = memn @)
I n=2 (X0 (it) — memm(0)?)?

Similar formulas are used to compute moments in the y
direction.

4.1. Experiments 1 and 2

Both models are run on a time interval of length T =2
and on a spatial domain Q = (0,2) x (0,2). The initial
position of all individuals is x° = (0.6,1). The habitat
suitability index function is /(x,y,f) = x/2 and therefore
the gradient is oriented along the x-axis. The only
difference between both experiments is the value of the
concentration parameter, o = 5 in experiment 1 and o = 1
in experiment 2.

Figs. 3 and 7 show the solutions of both models at
T =2. Due to the different values of the concentration
parameter individuals are more scattered in experiment 2
than in experiment 1. As a consequence, advection in the
direction of the gradient V# is stronger in experiment 1
than in experiment 2.

The mean pOSitiOl’lS, Mx PDE> Mx IBM and my ppE, My IBM
are plotted in Fig. 4 as functions of time for experiment 1.
The solution of the PDE model appears to follow closely
the solution of the IBM. This is also true for experiment 2
as shown in Fig. 8 although, because of a strongest
diffusion, the difference between mi, ppr, M. sy at final
time is highest in experiment 2 than in experiment 1.

2 —————

1.8
1.6
1.4
1.2
> 1

0.8

0.6
0.4
0.2

0 1 1 1 1 1 1 1 1 1
0 020406081 12141618 2

X

Fig. 3. Solution of the PDE model (left) and of the IBM (right) at final time 7" = 2 for experiment 1. The spatial domain is defined by Q = (0,2) x (0,2).
The habitat suitability index function is h(x, y, #) = x/2. The initial position of all individuals is x” = (0.6, 1). The concentration parameter is o« = 5.
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Fig. 4. Experiment 1. Mean position in x, m, ppg(t) for the PDE model and m, jp)/(¢) for the IBM (left) and mean position in y, m,, ppg(t) for the PDE and
my, am(t) for the IBM (right).

-3
3 x10 , , , 0.016

0.014 =
0.012 %
0.01 7

0.008 J

variance in x
variance iny

0.006 J
0.004 /

0.002

0 ' ' ' 0 ' ' '
0 05 1 15 2 0 05 1 15 2

time time
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the IBM (right).
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Fig. 6. Experiment 1. Skewness in x and y for the PDE model (left) and for the IBM (right).



The same type of conclusion, that is to say the solu-
tion of the PDE model follows closely the solution
of the IBM, remains true for the second order centered
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moments as shown in Figs. 5 and 9. This is not
surprising since in the PDE approximation of the IBM
(described in Section 3) second order derivative terms

0.2 04 0.6 08 1

X

121416 18 2

1 1 O 1 1 1 1 1 1 1 1 1
0 02040608 1 12141618 2
X

Fig. 7. Solution of the PDE model (left) and of the IBM (right) at final time 7 = 2 for experiment 2. The spatial domain is defined by Q = (0,2) x (0, 2).
The habitat suitability index function is A(x, y, #) = x/2. The initial position of all individuals is x* = (0.6, 1). The concentration parameter is o« = 1.
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the IBM (right).



844 B. Faugeras, O. Maury | Journal of Theoretical Biology 247 (2007) 837-848

0.2

0.1 Y

skewness

time

0 0.5 1 1.5 2

0.1

—x
"

skewness
\
o
w

0 0.5 1 1.5 2
time

Fig. 10. Experiment 2. Skewness in x and y for the PDE model (left) and for the IBM (right).

are taken into account (although some of them are
neglected).

As could be expected the numerical results for the third
order moments, or skewness, show much less correlation
between the PDE model and the IBM (Figs. 6 and 10) than
for the first two moments. Nevertheless some features of
the IBM still appear in the PDE solution. In probability
theory and statistics, skewness is a measure of the
asymmetry of the probability distribution of a real-valued
random variable. A distribution has positive skew (right-
skewed) if the right (higher value) tail is longer or fatter
and negative skew (left-skewed) if the left (lower value) tail
is longer or fatter. In both experiments the skewness in the
y direction, y,, is null for both the IBM and the PDE,
indicating that the distribution is symmetrical about the
x-axis. Although values are different the skewness in the x
direction, y,, is negative for both the IBM and the PDE
indicating that the distributions have a longer “left” tail.
This tail reflects the possibility for an individual not to
move at each time step in the direction of the gradient with
some probability depending on «. This probability is higher
in experiment 2 than in experiment 1 and therefore the tail
is bigger in experiment 2 than in experiment 1 (see also
Figs. 7-10).

4.2. Experiment 3

In this experiment the habitat suitability function is (see
Fig. 11)

h(x,y,1) = exp(—((x — 1.6)* + (v — 1)?)).

The initial position of all individuals is x’ = (0.6,0.6) and
the concentration parameter is o = 2. Fig. 12 shows the
time evolution of the solution for both the PDE model and
the IBM. This experiment illustrates the effect of non-zero
off-diagonal terms in the diffusion matrix. The solution of
the PDE model is not symmetrical with respect to the x- or
y-axis. Figs. 13—15 show the time evolution of the first three
moments for both the PDE model and the IBM. As for

08

06

04 r

02 r

02 04 06 08 1 12 14 16 18 2
X

Fig. 11. Experiment 3. Contour plot of the habitat suitability index
function /(x, y) = exp(—((x — 1.6)> + (v — 1))).

experiments 1 and 2 the first two moments of the solution
of the approximated PDE model closely follow those of the
IBM. Differences appear in the computation of the third
moment.

5. Conclusions

In this paper, we provide a mechanistic approach to
derive an advection—diffusion PDE modeling fish popula-
tion movements. This PDE, Egs. (6)—(8), describes the time
and space evolution of the density of individuals. This
study formalizes and improves the heuristic approaches of
former papers dedicated to fish dynamics population
modeling (Bertignac et al., 1998; Maury and Gascuel,
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Fig. 12. Solution of the PDE model (rows 1 and 3) and of the IBM (rows 2 and 4) at time 7 = 0.5, 1, 2, 3, 5 and final time 7" = 10 for experiment 3. The
spatial domain is defined by Q = (0,2) x (0, 2). The habitat suitability index function is A(x, y, #) = exp(—((x — 1.6)* + (V= 1)?)) (see Fig. 11). The initial
position of all individuals is x° = (0.6, 0.6). The concentration parameter is « = 2.

1999; Maury, 2000; Maury et al., 2001; Sibert et al., 1999;
Lehodey et al.,, 2003; Faugeras and Maury, 2005).
The obtained formulation of advection and diffusion
terms arises from a simple IBM, or biased random

walk model, including hypotheses on individual fish
movements. This formulation induces a balance between
a directed movement behavior (strong advection and
weak diffusion) and a searching behavior (weak advection
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Fig. 13. Experiment 3. Mean position in x, m, ppg(f) for the PDE model and m, ;g (?) for the IBM (left) and mean position in y, m,, ppg(t) for the PDE
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Fig. 15. Experiment 3. Skewness in x and y for the PDE model (left) and for the IBM (right).

We think that such a model, particularly thanks to the
full diffusion matrix, will be able to improve the
representation of the anisotropy of fish population move-

and strong diffusion). We show through numerical experi-
ments that the PDE model is a good approximation of
the IBM.
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ments in an inhomogeneous and variable environment.
This will be tested in an ongoing work in which a more
complete version of the model, including oceanographic
currents and a size structure of the population, will be
confronted to fishing and tag-recapture data for tuna
populations in the Indian ocean.

Appendix A. The von Mises distribution

The von Mises distribution or circular normal distribu-
tion is a continuous probability distribution describing the
distribution of a random variable with period 2zn. A
reference for directional statistics is for example Mardia
and Jupp (1999).

Its expression for an angle 6 is

0(09 a, 90) =

1
lo@ exp(acos(d — 0y)),
where I, denotes the modified Bessel function of the first
kind and order 0. /,, the modified Bessel function of the first
kind and order n>0 is defined by

T
I,(a) = L/ 0 cos 6 6.
2n J_,
The parameter 0, is the mean angle and the parameter >0
is the concentration parameter. The distribution is unim-
odal and is symmetrical about 0 = 0y. The mode is at
0 = 0. When a = 0 the von Mises distribution equals the
uniform distribution and as a — oo the distribution
becomes sharply peaked about the mean angle 6.

The moments of the von Mises distribution are usually
computed as the moments of z = ¢!’ rather than the angle 0
itself. These moments are referred to as circular moments
and read

" 1,(a) 0,
2 = Z"g(0,a,0y)d0 = ——=¢e".
= [ Fa0.00090 =21

Appendix B. Full derivation of the advection—diffusion
equation

The density of individuals at position x = (x, y) and time
t + 7 satisfies:

p(x,y,t+1) = / px+dcosb,y+ dsinb, 1)

xf(0+m,x+ dcos0,y+ osind,r)dod

= / p(x —ocosh,y—dsinb, )

T

xf(0,x —ocosB,y— dsinb, 1)do. (B.1)

A second order Taylor expansion of the integrand in Eq.
(B.1) leads to

p(x —dcosl,y —dsin0,1)f (0,x —dcosl,y — dsin0, )
= p(x,y,0f (0, x,,1)
- 5[6\(10(x9 y’ t)f(ea X, y3 [)) Cos 0

+ 0,(p(x,y, )f (0, x, y, 1)) sin 0]

2
+ 020 0/ (0, x.3. ) o™
+ 20.0,(p(x, y, )f (0, x,y,1)) sin0 cos 0

+ Op(x, y, 0f (0, x, y, 1)) sin® 0] + O(3). (B.2)

The evolution equation (B.1) becomes integrating Eq. (B.2)
over (—x, m):

px, .1+ 1) = px, p, 1) — 0[0x(ap)(x, y, 1) + Oy(bp)(x, y, 1)]

52
+ 7 [ai((’p)(x’ Y, Z) + 26)(ay(dp)(x9 Y, t)

+ 0 (ep)(x,y, D]+ O(5). (B.3)

Eq. (B.3) is a Kramers—Moyall expansion. Its left-hand side
can also be expanded to

P(X,y,t‘i‘ T) zp(xsya t) + TGtP(x;J’a [)
2

T
+ 3afp(x, 1)+ O>). (B.4)

From Eq. (B.4) and (B.3) we obtain
0
alp(xaya t) = - ; [ax(ap)(xaya t) + ay(bp)(xa Y, t)]

(SZ
+ 52 [0U(ep)(x, 3, 1) + 20,8, (dp)(x. 3, 1)
3

+ 0ep)(x, y, O] + O (5 (B.5)

T

) + O(7)

and
0
atp(x’yv t) = - ; [aX(ap)(x’yv t) + ay(bp)(xay’ t)]
2
+ L Eep)ny. ) + 20,0, )00

2 T30 ‘ 53
), 0] — SO (3, )+ @( )

T

+ 0(%). (B.6)

We now use a recursive substitution method in the
Kramers—Moyall expansion in order to rewrite the last
term of Eq. (B.6). Differencing Eq. (B.5) with respect to ¢
and multiplying by /2 leads to

0
- E [axat(ap)(x7 Vs Z) + ayat(bp)(x’ s [)]

+ 0(6%) + O(1%).

T
Sy =
(B.7)

Using identities such as 0,(uf) = u0,f + f0,u, we can
reinject Eq. (B.5) into Eq. (B.7) and obtain

T 0
50 = =5 [03a’p) + 20,0, (abp) + T(0*p)]
2

0
- Z [ax((axa)ap) + ax((aya)bp)

+ 0,((0xb)ap) + 0,((0,0)bp)]
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b
— 5[0:(p©®@) +2,(p(@:b))]

(B.8)

T

53
+ (9( ) + O(57) 4 O(6%) + O(7?).
Reinjecting Eq. (B.8) into Eq. (B.6) leads to

5
Op= — - [Ox(ap) + 0,(bp)]
2

+ 22— @)+ 20.0,((d — abyp) + Bii(e ~ )
2

0
+ 5, [0((@:a)ap) + 0:((0,a)bp) + 0,((@xD)ap)
0
+0,((0,0)bp)] + 5 [0x(p(01a)) + 0, (p(@:D))]

3
+ (9(5 ) + O(67) 4+ O(0%) + O(x%) (B.9)

T
and finally to
0
op= — ;[ax(ap) + 0,(bp)]

2
+ 2 10u(e — @0up) + 0((d — ab)oyp)

+ 0,((d — abp) + 8y((e — DI,
2
+ 2 0.(@xc — adap) + (@0 — ad,b)p)

+ 0,((0xe — bOya)p) + 0,((0yd — b0, b)p)]

B)
+3 [0x(p(0:a)) + 0,(p(3,b))]

3
+ @(i) + 0(7) + 0(6%) + O(2%). (B.10)
At this stage we use two approximations. The first one
concerns the terms of lines 4-6 in Eq. (B.10) which are
advection terms. In the following we neglect them
assuming that the derivatives 0,a, 0,b, 0xc, 0,d, Ore, Oye,
0;a and 0;b are small. As is seen from the dependence of
a,b,c,d and e on Vh, this is possible if we consider that the
function / is smooth with small second order derivatives.
The second approximation is to neglect the ((5°/7),
0(d7), 0(6%) and O(z?) terms in Eq. (B.10). This leads to

op= — [GX (gap) +0, (gbpﬂ
d & 2)d d 52d b)d
+ o (G- ) +ou(5. - )

52 52 ,
+0, (2_r (d—- ab)axp> +9, <2_'c (e—=>b )ayp>}
(B.11)
which exactly is Eq. (5) of the text.
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1. Introduction

ABSTRACT

APECOSM-E (Apex-Predator-Ecosystem-Model-Estimation) is a deterministic model that represents the
3D distribution and population dynamics of tropical tuna under the joint effect of environmental con-
ditions and exploitation by fisheries. It is a simplified version of the top predator component of the
APECOSM framework, based on a single partial differential equation. The model is structured in 3D space
and fish size and considers size dependent reproduction, growth, predation, natural mortality and fishing
mortality. Processes are time, space and size-dependent and linked to the environment through mech-
anistic bioenergetic or behavioral parameterizations. Physiological rates such as growth, reproduction
and ageing mortality are derived from the Dynamic Energy Budget (DEB) theory, while horizontal move-
ments and vertical distribution obey a mechanistically derived advection-diffusion formulation driven
by habitat gradients and oceanic currents. The effect of fishing is accounted for through the use of fleet-
specific size and depth selectivity functions and time-dependent catchability coefficients which relate
observed fishing effort to catches and size-frequencies.

In this paper we present the mathematical formulations of the physiological and behavioral compo-
nents of the model, and an application to the skipjack tuna population in the Indian Ocean. The model is
run with a daily time step on a 1° x 1° horizontal grid and considers 20 vertical layers, reaching a maximal
depth of 500 m. Results show the effects of spatial and temporal variability of environmental conditions
on tuna physiology in terms of growth, reproduction and survival. Moreover, our results suggest that
observed trends in reported catches are connected to environmental conditions by means of recruitment
dynamics. In addition, the model allows representing the horizontal and vertical distribution of skipjack
tuna and assessing the effect of accessibility of the resource to fisheries. The ability of the model to repre-
sent the distribution of biomass in accordance with the pattern given by the observed fishing activity was
evaluated by comparing the spatial distribution of the simulated biomass with the observed distribution
of commercial purse seiners and bait boats catches in the Indian Ocean.

The likelihood based method used for estimating the model parameters as well as an analysis of its
sensitivity to their values is provided in a companion paper (Dueri et al., 2012).

© 2012 Elsevier B.V. All rights reserved.

catches. In 2006 the annual catch of skipjack in the Indian Ocean
peaked at 620,000t and since then, catches have not exceeded

Skipjack tuna (Katsuwonus pelamis) is a widely distributed,
pelagic fish commonly found in tropical waters and commercially
harvested by industrial and artisanal surface fisheries using purse
seine, gillnet and bait boat. In the Indian Ocean skipjack repre-
sents almost half of the tropical tuna catches. The exploitation has
increased rapidly after the introduction of industrial purse seining
in the early 1980s and the concurrent raise of bait boat and gillnet

DOI of original article: 10.1016/j.ecolmodel.2012.02.008.
* Corresponding author. Tel.: +33 0499 57 32 53; fax: +33 0499 57 32 95.
E-mail address: sibylle.dueri@ird.fr (S. Dueri).

0304-3800/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2012.02.007

450,000t (Indian Ocean Tuna Commission, 2010). A possible expla-
nation for this trend can be found in the recent development of
the Somalian piracy, which induced a decline of the nominal effort
along the usually well exploited Somalian coast (UNOSAT, 2009).
Nevertheless, the simultaneous decrease of catches reported by
the Maldivian fishery (Adam, 2010), one of the leading skipjack
tuna fisheries in the Indian Ocean which is not subjected to pirates’
attacks, may indicate that the population is overfished.

Skipjack tuna is considered to be a highly migratory species,
which does not show clear spawning or feeding migration pat-
terns (Stéquert and Ramcharrun, 1996) but rather exhibits home
range movements within areas of good habitat. The spatial
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distribution, movements and vulnerability to fishing of skipjack are
affected by their habitat preferences, which are mostly determined
by prey availability, temperature and oxygen conditions (Barkley
et al,, 1978; Brill, 1994; Brill and Lutcavage, 2001). As a conse-
quence, the spatial distribution of fishing effort directed to skipjack
exhibits seasonal and inter-annual patterns that can be related to
environmental conditions (Mugo et al., 2010).

The current knowledge of the skipjack physiology states that
the species is characterized by a fast growth and a high spawn-
ing potential, implying that the population is likely to have a high
resilience to exploitation. However, the recently observed trend
of the Indian Ocean skipjack catches questions the resilience of
the population under present conditions and emphasizes the need
for tools capable to evaluate the state of the population and its
future evolution (Indian Ocean Tuna Commission, 2010). For this
purpose, we propose the APECOSM-E model (Apex Predator Ecosys-
tem Model-Estimation) a deterministic model that represents the
spatio-temporal variability of the population under variable envi-
ronmental and fishing conditions. Our approach integrates the
main biological, behavioral and exploitation processes in a single
mathematical framework, based on a partial differential equation
that explicitly represents 3D movements, growth and mortality
and their dependency on environmental conditions. By integrating
these processes the model allows to assess the population dynamics
and the sustainability of its exploitation.

The APECOSM-E model is a simplified version of the more gen-
eral APECOSM framework (Maury, 2010), which represents the
global flow of energy through the marine ecosystem considering
different communities of epipelagic and mesopelagic organisms.
APECOSM-E is derived from APECOSM, but is focused on a sin-
gle species and its main objective is to integrate fisheries data for
parameter estimation. It describes the physiology and behavior of
individuals in a population with a very high level of detail and rep-
resents the state of the art of our knowledge about the physiology
and behavior of skipjack tuna. In this paper we present an appli-
cation of the model to the skipjack tuna population of the Indian
Ocean and we use environmental variables to define the habitat
and constrain the physiological rates of the species and their spatio-
temporal variability. The main goal of the present application is to
investigate the joint effects of environmental variability and fish-
ing on the spatio-temporal dynamics of skipjack tunas in the Indian
Ocean and improve our understanding of environmental effects on
the physiology and behavior of this top-predator.

A likelihood method used for estimating the model parameters
related to fisheries as well as an analysis of its sensitivity to their
value is provided in a companion paper (Dueri et al., 2012).

2. The model

The dynamics of the skipjack tuna population described in the
APECOSM-E model is driven by the environment and by fisheries
exploitation. Environmental factors such as temperature, oxygen,
food and currents determine the movements of tunas and affect
their physiological rates (growth, reproduction and mortality). On
the other hand, spatialized fishing effort data determine the fishing
mortality and are used to simulate monthly catches and size fre-
quencies. A schematic overview of the model components in terms
of forcing, processes and outputs is provided (Fig. 1). Parameters
descriptions are summarized in Table 1.

2.1. Implementation of the Dynamic Energy Budget approach

In the APECOSM-E model, the main physiological processes
such as growth, reproduction and ageing mortality, are represented
using a Dynamic Energy Budget (DEB) based approach. The DEB

theory (Kooijman, 2000) relies on a mechanistic bioenergetic rep-
resentation of the organism that describes the individual in terms
of biomass and energy fluxes. In the standard DEB model the energy
ofanorganismis stored in three pools: reserve, structure and matu-
rity. Energy isintroduced into the organism through the ingestion of
food which s assimilated and stocked in the reserves compartment.
A fixed fraction « of the energy utilized from the reserve compart-
ment is allocated to growth of structure and somatic maintenance
while the remaining part (1 —«) is allocated to maturity develop-
ment and reproduction and maturity maintenance. Total biomass
can be expressed as the sum of structural biomass, reserves biomass
and biomass of the reproductive buffer.

The APECOSM-E model adds two assumptions to the DEB theory
that allow considerable simplifications:

(1) the dynamics of the reserve pool is fast compared to the dynam-
ics of structure (see Maury and Poggiale, submitted, for the
mathematical details about this assumption). This implies that,
at the time scale relevant for population dynamics, the reserve
density [E] is at or near equilibrium and equals the scaled func-
tional response to food fr times the maximum energy density
in the reserve [En; [E]* =fr[Em].

reproduction is supposed to be continuous without stocking
of energy in the reproductive buffer so that the influence of
the reproductive buffer on total biomass and energy budget is
neglected. Therefore the total weight Wy, of an organism can
be approximated as the sum of the structural biomass and the
reserves biomass:

—
N
—

Wit ~ dyV +fFV% (1)

where dy is the density [gm~3], Vis the structural volume [m3] (or
the volume of structural biomass), fr is the functional response to
food [-], [Em] the maximum energy density of reserves [J m—3] and
W is the energy content of reserves [Jkg~']. In the model, accord-
ing to the DEB theory, the representation of growth, reproduction
and ageing mortality is based on the structural volume, while the
calculation of catches is based on total weight (Eq. (1)).

Following the standard DEB model assumption, we consider that
skipjackis anisomorphic organism and keeps the same shape while
growing. This allows to link structural volume to length using a
shape coefficient. Structural volume is calculated as the cube of the
volumetric length L, V=13, and L is related to the physical length Ly,
through the shape coefficient &y, L = 8),Lw. Therefore the structural
volume can be written as

V = (8mlw)® (2)

The allometric length-weight conversion for skipjack tuna in the
Indian Ocean (Indian Ocean Tuna Commission, 2005) can be calcu-
lated using following empirical relationship:

Wior = aLb, (3)

where Ly, is the physical length and the coefficients a and b are
equal to 5.32 x 10-% and 3.34 respectively. By substituting V and
Wior in Eq. (1) we obtain the value of the shape coefficient §y,.

2.2. General model equation and boundary conditions

The tuna population is described through a biomass den-
sity function p(x,y,z,V,t) [kg m~3 m~3], where position (x,y,z) € 2, a
bounded domain representing the Indian Ocean in 3D, structural
volume Ve (V}, Vinax) with V}, being the structural volume at birth
and time te(0,T).
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Fig. 1. Diagram showing the forcing, the processes affecting the population dynamics and the outputs of the APECOSM-E model.

The biomass of fish with structural volume comprised between
V; and V; at time t in the domain €2’ c Q2 is given by the integral

%]
// p(x,y,2z,V, t) dxdydzdV (4)
Jv,

The change of the population density function p as a function of
time follows the mass balance equation below where v and div
are the usual differential operators. For technical reasons related to
time-scale assumptions (see Section 2.6 for details) we distinguish
horizontal movements from vertical movements.

0p = div(d Vp —vp) + 0,(d,9;p — vzp) — dv(gp) — (M + f)p (5)

The four terms on the right side of Eq. (5) represent: (1) horizon-
tal advection and diffusion, (2) vertical advection and diffusion,
(3) growth and (4) natural and fishing mortality. Advection and
diffusion are represented by the horizontal velocity v(x,y,zV,t)
[ms~1], the vertical velocity v,(x,y,z,V,t) [m s—1], the horizontal dif-
fusion d(x,y,z,V,t) [m2s~1] and the vertical diffusion d,(x,y,z,V,t)
[m2 s~1]. Here we assume that there is no cross-diffusion term in z.
Growth is represented as an advection of the biomass density in the
size dimension and is characterized by the growth rate g(x,y,z,V,t)
[m3 s~1], while natural and fishing mortality rates are described by
m(x,y,z,V,t) [s~1] and fix,y,z,V,t) [s~1] respectively.

Initial and boundary conditions need to be prescribed to inte-
grate Eq. (5). The initial population density distribution is given
by:

p(XsJ’a z, V,O):po(x,y, Z, V)’ V(Xsya Z, V)EQX (Vb,Vmax) (6)

The boundary conditions for the input of newborns into the systems
r(xy.zt;p) [gs1] is given by:

gp(x,y,z,Vp, t) =1(p), V(x,y,z,t)e$2 x (0, tmax) (7)

The mass conservation within the spatial domain is guaranteed by
the following Neumann boundary condition:

Vp(xvy9 z, V9 t) : n(X,% Z) = O, on a.Q, V(Vv t) G(Vmin, Vmax)

x (0, tmax) (8)

where n(x,y,z) is the unit normal vector pointing outside €2.

The parameterization of the coefficients v, v,, d, d;, g, m, fand r
and their biological and ecological basis are provided in the section
below.

2.3. Distribution of forage and selectivity

APECOSM-E considers size-structured forage distribution. This
allows accounting for the size selection of preys by predators
(in this case skipjack tuna). Size-structured forage concentration
&(V) is extrapolated from the mesozooplankton distribution of the
NEMO-PISCES simulations. The concentration of mesozooplankton
biomass [kg m~3] is set as the first size-class (V) of the prey dis-
tribution &(Vj); then for size classes between [Vy, Vmax] (V) is
calculated assuming that the decrease of forage biomass follows
a power law with a scaling exponent equal to —3 with respect to
length, in accordance with size-distributions obtained in the gen-
eral APECOSM model (Maury et al., 2007):

-3
8(V)=a-LW3=a-<V1/3> (9)

m
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Table 1

Parameter description and parameter values used in the APECOSM-E model.
Parameter Description Value Unit
K Fraction allocated to soma 0.8 -
Sm Shape coefficient 0.25 -
Linax Maximal length 1.1 m
{Dam} Surface-area specific assimilation rate 22.5 x 106 x Liax x S, Jm-2d-!
[Em] Maximum energy density of reserves 850 x 108 x Liax x S, Jm-3
[Ec] Volume-specific energetic growth cost 2800 x 106 Jm-3
[pm] Volume-specific maintenance cost 18 x 106 Jm3d-!
v Energy content of reserves 38.8 x 106 Jkg1
Wser Energy content of structures 3.86 x 106 Jkg!
Lnar Length at maturity 0.4 m
KR Fraction of reproduction energy fixed in eggs 0.95 -
) Sex ratio 0.5 -
a Ageing acceleration 5%x10°8 d—2
My Predation mortality coefficient 1 9.7x 1074 d-!
Mp2 Predation mortality coefficient 2 0.95 d-1
mr Temperature mortality coefficient —1. d-!
To Metabolic energy production/thermal capacity 0.2 °Cs™!
kr Thermic conductance/thermal capacity 0.12 ms!
Ty Arrhenius temperature 5000 K
T Lower boundary of tolerance range 299.15 K
Th Upper boundary of tolerance range 304.65 K
Ta Lower boundary Arrhenius temperature 146,000 K
Tan Upper boundary Arrhenius temperature 38,000 K
Ty Reference temperature 298.65 K
pr Weighting factor temperature 1 -
ke Half saturation constant for forage 4 x 10" kgm?
DPF Weighting factor forage 1 -
ao Steepness of oxygen limitation curve 10°
0o Half saturation constant for oxygen limitation 0.00014 mol L1
Do Weighting factor oxygen 1 -
Amay Maximal attraction factor for Maldives 0.35
Vmax Maximal horizontal speed 1 ms!
o Concentration factor coefficient 1000 -
b Maximal vertical speed 1 ms~!
a Behavioral diffusivity, vertical 0.15 m2s!
d¢ Physical diffusivity, vertical 10-° m?s!
Dpst Catchability PS1 0.015
Pps2 Catchability PS2 0.015
Dps3 Catchability PS3 0.025
Dbb Catchability BB 0.005
Aps1 Increased efficiency due to technological development, PS1 0.200
Aps2 Increased efficiency due to technological development, PS2 0.200
Aps3 Increased efficiency due to technological development, PS3 0.200
App Increased efficiency due to technological development, BB 0.100
Is pst Length selectivity, PS1 0.5 m
L5 ps2 Length selectivity, PS2 0.5 m
L5 ps3 Length selectivity, PS3 0.5 m
Lspb Length selectivity, BB 0.45 m
kips Steepness length selectivity, PS 45
Kibb Steepness length selectivity, BB 45
Zsps Depth selectivity, PS 100 m
Zspb Depth selectivity, BB 20 m
Kzps Steepness depth selectivity, PS 0.3
Kb Steepness depth selectivity, BB 0.3

where a = &(Vp)/L,>.

The function F(xy,zut) describes the biomass of forage
“ingestible” by predators of size v. It is calculated by integrating the
biomass of prey of size u, &(x,y,z,u,t) multiplied by the size depen-
dent selectivity function s(v,u) (Fig. 2) of a predator of size v on a
prey of size u, over the size classes of the prey.

Vmax
F(x,y,z,v,t)= / s(v, u)e(x,y, z, u, t)du (10)
V,

min

The selectivity function is calculated as the product of two sigmoid
functions. It considers that predation occurs if the ratio of predator
length over prey length is neither too small (prey too large to be
ingested) nor too large (prey too small to be located and kept in
the mouth). A detailed description of the selectivity function s is
provided in Maury et al. (2007).

2.4. Growth, reproduction and mortality

In the DEB approach, physiological rates depend upon food
availability and temperature (Kooijman, 2000) and the following
sections describe the relation used in the model for this purpose.

2.4.1. Functional response for temperature

Physiological rates depend on body temperature and tuna are
endothermic organisms, able to retain heat and maintain body tem-
perature above that of ambient temperature (Block and Stevens,
2001). The APECOSM-E model uses a mechanistic size-dependent
description of the body temperature as a function of external tem-
perature (Maury, 2005).

vas) T
Ty(%,y,2,V, t) = —— -2 + Ty(x,y,2,t) (11)
(SM kT
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Fig. 2. Size selectivity function of predators on preys.

where k7 represents thermic conductance over thermal capacity
and Ty is metabolic energy production over thermal capacity. The
values of kr and Ty for skipjack were estimated using data reported
in Brill et al. (1994). This equation implies that, at a given external
temperature, the steady state body temperature of a fish increases
linearly with its length. As a result, to reach the same body tem-
perature, a large fish will have to stay in cooler water than a small
one.

The effects of body temperature on physiological rates can be
represented as a product of several Arrhenius functions (Kooijman,
2000):

Jr(Tp) = ar(Tp)rr(Tp) (12)

where ar describes the changes of any physiological rate with tem-
perature:

T Ta) (13)

ar(Ty) = exp (Tl - T,
and rr describes the reduction of any physiological rates at low tem-
perature due to congelation of phospholipidic cell membranes and
subsequent inhibition of cellular metabolism and at high temper-
atures due to the loss of quaternary structure of protein catalytic
enzymes and the subsequent inactivation of metabolic reactions:

Ty T Tan  Tan\\ !
rr(Ty) = (l + exp (T%l - Tﬂ,l) + exp (Tihh - TL:)) (14)

The final physiological response to temperature is normalized and
reads

fr(1y) = 1100 (15)

Tmax

The value of the Arrhenius temperature T, was set in agreement
with previous studies (Maury et al., 2007; Van der Veer et al., 2003)
while the reference temperature T;, the temperature at the lower
and upper boundaries T, and T; and the Arrhenius temperature for
the rate of decrease at the upper and lower boundaries T,;, and
T, were determined according to reported habitat preferences of
tropical tuna in the Indian Ocean, which are constrained between
20 and 32°C (Stéquert and Marsac, 1989).

Size selectivity

Purse Seiners

08 Bait boat

06F

04

0.2f

04 06
m

Depth selectivity

08} 1

04t ]

0 50 100 150 200
m

Fig. 3. Size and depth selectivity of purse seine and bait boat.

2.4.2. Functional response to food density

Physiological rates of tunas are affected by food intake, which
in turn depends on the food availability. According to the DEB the-
ory, APECOSM-E expresses this dependence with a Holling type 2
function:

~

F

fr=——
F I<G+F

(16)
where k¢ is the half saturation constant and F is the biomass of
accessible preys. The variable F accounts for the effect of density-
dependence, so that when preys have to be shared between many
predators, they become less accessible per capita. Since the rigorous
computation of the abundance of predators sharing common preys
(Maury et al., 2007) is computationally extremely demanding, we
had to introduce an approximation. The biomass of accessible preys
is therefore obtained by dividing the “ingestible” forage (Eq. (10))
at a given spatial location by the number of skipjack in the first size
class V; at the same place.

N Vmax g(u)
Flv) = s d 17
= s Ty V)V ey 4

min

2.4.3. Growth

Assuming that the reserve compartment is at equilibrium (cf.
Section 2.1) and that heating costs are negligible in the energy
budget, we can express the growth rate as follows (Kooijman, 2000)

v _ [ etbamVED —[pulv]
8=t =T T (Bl + [Ec)

where {pam} is the surface-area specific assimilation rate
Um=2s-1], [pm] is the volume-specific maintenance cost
[Jm=3s-1] and [E¢] is the volume-specific energetic growth
cost [Jm~3] and [x]* is the function defined by.

[X]"=x if x>0

[X]"=0 if x<0O
|Eg] were derived from Kooijman (2010) and their values are given
in Table 1.

_av

(18)

The numerical values of {panm}, [Pm] and
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Following Kooijman (2000), under constant food availability
conditions, the DEB growth equation is equivalent to the von Berta-
lanffy equation L(t) =Ly, — Lo,e~"8f, where Ly, is the maximal length
and rp is the von Bertalanffy growth rate. As a consequence, rg can
be expressed as a function of DEB parameters:

o L lbnl

3 «frlEm] + [Ec]
The von Bertalanffy growth rate estimated for skipjack tuna in the
Indian Ocean (rg=0.288, Indian Ocean Tuna Commission, 2008) is
therefore used to calculate the maximum energy density of reserves
[Em], under the assumption that food and temperature conditions
are constant and close to optimum (ff=0.8 and fr=0.85).

(19)

2.4.4. New born input

According to the standard DEB scheme, (1 —«) of the energy
mobilized from the reserve pool is allocated to reproduction and
maturity maintenance. Reproduction rate is expressed using the
same energetic parameters as growth plus two additional param-
eters: the mean proportion of females in the mature population ¢
and the fraction of the energy in the gonads which is turned into
eggs kg. In our study ¢ is set at 0.5, which matches empirical obser-
vations regarding skipjack population of the Indian Ocean (Grande
et al., 2010), while « is set at 0.95 (Kooijman, 2000). In accordance
with the DEB theory the total reproductive flux of the population
r(p) [gs~ ] is calculated as:

Prr(1 —k) Vimax bl I
Y= Sy /me (p[[EG]+KfF[Em]([EG]U(V)
? +
+pml) - “’MK]#} ) v o0)

where 7 is the energy conductance equal to {pam}/[Em] (ms~1)
and Vg is the structural volume at maturity. Grande et al. (2010)
have estimated that 50% of the Indian Ocean skipjack females reach
maturity at a length of 37.81 cm, while the results of Stéquert and
Ramcharrun (1996) indicate slightly higher values of 41-42 cm.
We therefore choose a mean length of sexual maturity at 40 cm.
Moreover, we assume that reproduction occurs whenever the tem-
perature is above 24 °C (Cayré and Farrugio, 1986).

The reproductive flux of the spawning population is used to cal-
culate the size dependent population fecundity (g oocytes per kg
of female per day)

r(p(V))
Fp(V) (21)

where r(p(V)) is the size dependent reproductive flux [gs~! m~3]
and the batch fecundity (number of oocytes per kg of female per
spawning event):
Fec(V) x sf
Woocyte

Fec(V) =

BF = (22)
where sfis the spawning frequency and woocyee is the weight of an
egg. A mean weight of 0.6 mg/oocytes is calculated by combing the
mean dry weight, 0.042 mg/oocytes (Margulies et al., 2007) and the
mean water content of tuna eggs, 93% (Ortega and Mourente, 2010).

2.4.5. Mortality

2.4.5.1. Natural mortality. The total natural mortality is repre-
sented as the sum of ageing, predation, starvation and temperature
mortalities, i.e. M =Mggeing + Mpred + Mstarv + Meemp-

The DEB theory relates ageing mortality to the amount of cellu-
lar damages that increase at a rate proportional to the respiration
rate not associated to assimilation (Kooijman, 2000). As a conse-
quence, a low metabolic rate corresponds to a longer life span. For
the sake of simplicity we use the formula proposed by Maury and

Poggiale (submitted) who calculate the mean size dependent age-
ing mortality rate by replacing the food functional response by its
mean value fr. This leads to an explicit size-dependent expression
of the ageing mortality based on DEB parameters only.

ha 1 2 3 2,2 13,3
Mageing = - {a tv =< <3a detv — Ead e’ 4 §d e “‘/)

1 1 [bm]
+2 (3a2d ad2 + §d3) + Veggly + 7o [Ec] [tv

1 <3a2dectv adzezctv + idaemv) +1 (3a2d
c2 93 c

3 2,13 1/,5, 3 5, 1 3)}}
~2ad +3d)tv+cz <3a d-Jad + (23)
With
a— {bam)fr

[Pm]

(1/3)
b=V

—[bm]

~ 3(felEm] + [Ec))

d=a-b

- _ - 3
y <x{mm}fp — (elpamlf — [pmIVEY ”)([pM1/e3(KfFlEml+[Ecl>)t)
-
[bm]

ty =

~3(uflEm] + [EcD) | (

ictpamife — [pm]V1/3)
[Pm]

K Pamfr — PmIVS

where ty is the time to reach size V with a mean food density of f,
V, is the volume at birth and h, (s=2) is the ageing acceleration.
Size dependent predation mortality is described by a power law
relation with two mortality coefficients m,; and m,;; that define the
strength and the steepness of the function. Its value is maximal for
small organisms (e.g. larvae) and decreases for larger organisms:

y(1/3)\ M2
mpred = Mp1 aM (24)

The DEB theory states that the assimilated energy is used first for
the maintenance of the organism before being allocated to growth
and reproduction. If food availability is too low, the growth and
reproduction ceases, and all the available energy is allocated to
maintenance. When maintenance costs are not covered, the organ-
ism health declines and this threatens its survival. Therefore a
starvation process is introduced. As in Maury et al. (2007) starvation
mortality mg is expressed as the energy which would be needed for
maintenance but cannot be provided by the assimilation of food:

|:[Pm] K Pamife V=173

[Ec]

st = [Ec] + Kfr[Em]

1
(fF[Em]+d1/f){

[bmIVimax  felEm)([EcIV=1/3) + [pm]) ]
+a K)f{ < [Ec] + e (En] }}

(25)

Finally, we include a mortality term for organisms subject to tem-
peratures too cold or too warm for their survival. This term is
linked to the variable r7 of the Arrhenius relationship (see Eq. (14))
that describes the reduction of physiological rates at low and high
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temperatures. The temperature mortality is computed only when
physiological rates are lower than a given threshold.

Mtemp = M1 log(mT) 1fmT =0.1 (26)

where my=rr/rtmax and mry is a negative parameter.

2.4.5.2. Fishing mortality. The fishing mortality is calculated using
observed 1° x 1° monthly fishing effort for four different fleets:
French purse seiners “PS1”, Spanish purse seiners “PS2”, “World”
purse seiners “PS3” grouping the fishing data of Mauritius, Sey-
chelles and NEI-other and Maldivian bait boats “BB”. These fleets
represent the main skipjack fisheries of the Indian Ocean providing
a time series of fishing data with a spatial resolution of 1° x 1°.

Fishing mortality of fleet k is calculated as the product of the
observed fishing effort e; by the catchability p; at Tp multiplied by
an exponential function representing the increase in fishing effi-
ciency at a rate g, due to technological development in time, and
two selectivity functions, one for size and the other for depth.

1
1+ exp(—ki (V173 /) — Is))

filli, z, V, t) = e(i, t)pr exp(ait)

1
3 + exp(—k;(z — z5))

(27)

For the purse seiners the fishing effort is expressed as the amount
of time the fishermen spend at fishing while for bait boat it is
expressed as the amount of time spent at sea. Technological devel-
opment is a continuous process and includes the increase of the
size and performance of the fishing vessels, the enhancement of
the fishing gears, the progressive use of new electronic devices such
as bird radar and other remote sensing tools and the deployment
of more and more sophisticated fish aggregating devices (FADs)
(Valdemarsen, 2001). The gear specific length and depth selectiv-
ity are represented using sigmoid functions where Is and zs are the
length and depth leading to 50% selection while k; and k, charac-
terize the steepness of the sigmoid curves (Fig. 3).

2.5. Habitat and movements

Water temperature, dissolved oxygen concentration and forage
availability are the main factors affecting the physiological and
behavioral responses of tuna to the environment. In the model,
tunas are attracted to areas where the environmental conditions
are favorable to their growth, reproduction and survival. For that
purpose, structural environmental factors are translated into a syn-
thetic functional habitat variable by means of functional responses
that charaterize the habitat suitability. The spatial heterogeneity
of the modeled functional habitat creates gradients that steer the
movements of tunas.

2.5.1. Habitat suitability index

The model calculates the 3D habitat suitability index h by
considering 3 factors: temperature, food and oxygen conditions.
For each factor a functional response varying between 0 (highly
unfavorable) and 1 (highly favorable) quantifies environmental
suitability with respect to that factor (Fig. 4). The habitat suitabil-
ity index is then expressed as the product of weighted functional
responses to temperature fr, food fr and oxygen fo, with pr, pr, po
being the respective weighting factor.

h(x,y,z,V,t) = fr(x,y,2, V, T fe(x,y, 2, V, t PFfo(x, ¥, 2, V, )P0
(28)

The functional responses describing the habitat suitability in terms
of temperature and food availability are consistent with the ones
thatrepresent the change in physiological rates (Egs. (15) and (16)).
The functional response for oxygen is presented in the next section.

2.5.2. Functional response for oxygen
The functional response to oxygen fo(x,y,z,V,t) is represented
using a sigmoidal curve:

1
~ 1+ exp(ag(0—0o))

where ag is the steepness of the curve and Oy is the half satura-
tion coefficient for oxygen limitation. The value of the steepness
and half saturation coefficient have been determined according to
previous studies which estimated that skipjack tuna need oxygen
concentrations above 2 ml/L to survive (Gooding et al., 1981; Sharp,
1978) and usually prefer environments with oxygen levels higher
than 3.0-3.5 ml/L (Barkley et al., 1978; Brill, 1994).

fo (29)

2.5.3. Maldivian Island attraction

The enhancement of primary production and associated aggre-
gations of zooplankton, micronekton and fish arising in conjunction
with ocean currents impinging on abrupt topographies is a known
phenomenon and the mechanisms that drive this bio-physical pro-
cess have been described by Genin (2004). The Maldives are a
typical example of this enhanced productivity: the presence of nar-
row channels between the double chain of atolls and the mixing
of the stratified equatorial water pumps nutrient rich subsurface
water to the surface (Anderson et al., 2011). This so-called island
mass effect (IME) has been observed in different channels of the
Maldives Islands using chlorophyll-a field data of the Moderate
Resolution Imaging Spectrometer (MODIS) (Sasamal, 2006).

Given the importance of the Maldivian fisheries in terms of tuna
catches, it is essential to represent the IME in the model in order
to explain the high productivity of this area; however the small-
scale hydrodynamic and biogeochemical processes responsible for
an increased productivity around the Maldives are missing in our
model based the fact that the environmental forcing comes from an
oceanographic simulation with a resolution of 0.5° (cf. 2.6), which
is too coarse to capture the processes responsible for the enrich-
ment. Therefore it was necessary to introduce an attraction factor
B that increases the habitat quality around the Maldives. 8 can
vary between 0 and a4, (apmqy <1) and is modeled using a two
dimensional (x,y) Gaussian function centered on the islands.

— <X7deu)2+(y’ymzdv)2

ﬂ=amdv-e[ o (30)

where x,,,4, and y,,4, are the coordinates of the center of the attrac-
tion basin which is located at 4.5°N and 74.5°E. To account for the
north-south extent of the Maldives archipelago, the standard devi-
ation of the Gaussian attraction function was set to 4° along the
latitude and 2° along the longitude axis.

The Maldivian islands attraction is not supposed to be added to
the normal habitat driven movements but to replace them so that
the resulting habitat function h still varies between [0,1]:

~

h(x,y,z,t,V)=(1-8)-h(x,y,z,t,V)+ 8 31)

2.5.4. Horizontal and vertical movements

Horizontal advection and diffusion have both a physical compo-
nent due to passive transport by marine currents and a biological
component due to active movement of fish. In APECOSM-E the bio-
logical advection depends on the habitat gradient: the velocity and
direction of tuna movement are locally affected by temperature,
oxygen, forage fields and the Maldivian island attraction. Advection
is oriented in the direction of the habitat gradient and the balance
between advection and diffusion depends on the gradient inten-
sity. While strong gradients impose strong advection and weak
diffusion, weak gradients induce weak advection and strong diffu-
sion. Moreover, active swimming of the fish is assumed to decrease
when habitat quality increases so that both advection and diffusion



S. Dueri et al. / Ecological Modelling 245 (2012) 41-54

48
L ——=—10cm| ¥ L 4
0oy
50cm| iy W
08— —-80cm|¥ ¥ 1 osf 1 o8 :
o W
HEY
0.6 i W1 os} { o8} :
[T
H L
04 !lr 1 o4 { 04 ]
!
iy
0.2 i { 02 { 02 ]
yI
7
0 v - 0 - 0 —
10 20 30 0 0.5 1 1 2 3 4 5
Temperature Food density Oxygen mliL x 107

Fig. 4. Functional responses for temperature, food density and oxygen conditions.

decrease simultaneously. This implies that the better the habitat,
the lower the interest in heading toward better habitats.

Accordingly, horizontal movement in APECOSM-E are expressed
using the mechanistically derived advection-diffusion equation
presented in Faugeras and Maury (2007) which allows to conserve
the total size and habitat dependent distance traveled per time by
a fish when advection and diffusion change. The horizontal advec-
tion vector is represented as the sum of biological advection due
to swimming (left term) and physical advection due to marine cur-
rents (right term):

v/3) Ii(a|VhII) { cos Byp
v = vmax =5 (1= p h \ sin gy ) Vo0

where vy is the maximal speed that a 1 m fish can reach, « is the
concentration factor, ||vh|| is the norm of the habitat gradient, I is
the modified Bessel function at order O and 1, 6, is the angle of the
gradient and vy, is the physical velocity determined by the current
forcing field.

The horizontal diffusion matrix is given by a physical diffusion
term (Dy,i,) that is added to the behavioral term:

10\ = Va3 > |1 L(a||Vh 10
(3 1) i) {3 (-0) ()
where 7 is a small mean time during which the velocity vector of
an individual is constant. Vertical advection relies only on active
movements such as bounce-dive foraging behavior (Schaefer et al.,
2009) while passive vertical transport due to vertical marine cur-
rents is neglected. In the model the vertical advection velocity
decreases with habitat quality and is proportional to the maximal
vertical speed b, the size of the organism and the vertical gradient
of the habitat function.

(1/3)
v ) ,h

Vmax

(32)

(34)

vy = b(1 41)(

The vertical diffusion d, has two components: a behavioral and a
physical one.

v o 2/3)
d, = ah(v ) +d?

max

(35)

The first term describes the size-dependent diffusion emerging
from random foraging vertical movements. It depends on the
behavioral diffusivity coefficient a (m2s~1), the size of the organ-
isms and increases linearly with the habitat index h meaning that

the tuna spend more time randomly looking for food when the
habitat is good. The second term of the equation is a physical ver-
tical diffusivity term d® (m2 s~1) that accounts for purely physical
vertical mixing which is especially important for small organisms.

2.6. Numerical integration and forcing

In order to speed up the calculation and reduce the memory
needs, we simplify Eq. (5) using time-scale assumptions. Assum-
ing that the vertical movements are fast processes compared to
horizontal movements, mortalities and newborns input, vertical
movements can be partially decoupled from the other processes
and integrated analytically. This avoids a costly numerical solving
of the full 3D +size system and reduced the numerical procedure
to a lighter 2D +size problem. The mathematical details of this sim-
plification are provided in the Annex.

The numerical integration of APECOSM-E uses a 1° x 1° horizon-
tal grid covering the Indian Ocean (20-130° East, 40° South to 30°
North). There are 20 vertical layers from 0 to 500 m, with a 10m
interval in the first 150 m. This vertical grid allows having a good

L(@IVh)  (LeIVh))® cos? By, sinByy cos by,
To(at||VhI]) To(a||VA]]) sinfyy cosfyy,  sin’ Oyy

resolution of the water column between 0 and 150 m, which owing
to temperature and oxygen conditions corresponds to the depth
usually occupied by skipjack. Organisms considered in the model
range between 1 mm and 1 m length. In order to accurately and
effectively account for growth and predation of organism having
very different sizes, we define 83 size classes using a logarithmic
scale (see Maury et al., 2007 for details). Therefore the size interval
is very small for small organisms and becomes progressively larger.
This allows reducing the number of size classes and ensures that
all processes are considered at the proper resolution.

The non-dispersive MUSCL (monotonic upstream centered
scheme for conservation laws) is used for integrating the spatial
advection terms (Van Leer, 1977), while for diffusion we use a
three-point finite difference scheme explicit in time. A first order
upwind finite difference scheme is used to integrate the growth
term of Eq. (5). All integrals are evaluated using first order centered
approximations.

Simulations are run with a daily time step for the time period
1958-2001, with the industrial fishery exploitation starting in

(33)
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Fig. 5. Longhurst provinces in the Indian Ocean.

1984. The first 10-15 years of simulation are considered to be a
spin-up phase of the model. The environmental conditions that
determine the tuna habitat are provided by 3D temperature,
oxygen, mesozooplankton and marine current fields generated
by the NEMO-PISCES model (Aumont and Bopp, 2006), a cou-
pled physical-biogeochemical model that is run for the global
ocean. NEMO-PISCES was run at a 0.5° resolution using the ERA40
reanalysis, a re-analysis of the global atmosphere and surface con-
ditions from 1957 to 2002 performed by the European Centre
for Medium-Range Weather Forecast (ECMWEF). This environmen-
tal forcing is read by the APECOSM-E model every 10 simulated
days.

The effect of fishing activities is introduced by means of
observed effort data obtained from the Indian Ocean Tuna Com-
mission in the standardized form available on the CLIOTOP website
(http://vmmdst-proto.mpl.ird.fr/MDST/). Fishing efforts is spatially
aggregated on a 1° x 1° grid and on a monthly basis for the four
fleets considered. They are used to simulate catches and size fre-
quencies.

3. Results and discussion
3.1. Spatio-temporal variability of growth and reproductive flux

Skipjack tuna are highly mobile species and during their life
span they encounter a wide range of environmental conditions that
affect their physiological rates. While all metabolic rates are regu-
lated by temperature according to Eq. (12), the energy allocated to
growth and reproduction depends upon the food assimilation rate,
which is proportional to ingestion and which in turn is determined
by the food availability. The model allows to explicitly account for
this spatial variability of food and temperature conditions and to
represent the range of predicted growth and reproduction rates
anywhere in the Indian Ocean, from food and temperature fields.

Following Longhurst (1998), the Indian Ocean can be subdi-
vided into seven biogeochemical provinces with homogeneous
conditions for temperature and productivity (Fig. 5): Northwestern
Arabian Upwelling (ARAB), Australia-Indonesia Coastal (AUSW),
Eastern Africa Coastal (EAFR), Eastern India Coastal (INDE), Western
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Fig. 6. Yearly average of Von Bertalanffy growth function (left) and daily fecundity [oocytes per kg biomass and day] (right) for the Longhurst provinces of the Indian Ocean.
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Fig. 7. Size dependent natural fish mortality (predation and ageing) compared to
fishing mortality (simulated) as a function of time (1984-2001).

India Coastal (INDW), Indian South Subtropical Gyre (ISSG), Indian
Monsoon Gyres (MONS). Here, we use this subdivision to quantify
the spatial variability of the mean yearly growth rates and fecundity
as a function of size at the basin scale (Fig. 6).

The results point out that the provinces of the southern hemi-
sphere (ISSG, EAFR, AUSW) are characterized by a slower growth
rate and a lower fecundity, as a consequence of the lower tem-
perature and generally lower food availability in those areas. On
the contrary, the MONS and the INDW province appear to be the
ones with the most suitable conditions for growth and reproduc-
tion of the population. Moreover, the comparison of the growth
rates between provinces implies an important variability of the
size-at-age of tunas exposed to different environmental conditions.
It is important to account for this variability since environmental
conditions change in time and space following seasonal cycles and
tuna might be exposed to more or less favorable conditions dur-
ing their migration and their physiological development might be
therefore affected. By representing explicitly the spatio-temporal
variations of physiological rates and their dependency on environ-
mental conditions, the model provides a valuable tool to investigate
the complex interactions between population and environment
and explains the wide range of observed growth rates and the
dispersion of sizes at age.

The comparison of the predicted and observed reproduction
and growth rates allows us to evaluate the model’s performance.
The comparison is based on the MONS province, which covers a
large portion of the area exploited by industrial surface fisheries
and where most of the data were collected. The mean observed
batch fecundity of skipjack having a size between 40 and 60 cm
ranges from 40 to 150 oocytes per g of biomass (Grande et al., 2010;
Stéquert and Ramcharrun, 1996). These values are in the order of
magnitude of the predicted batch fecundity (Eq. (22)), which is in
the range of 10-70 oocytes per g biomass for fishes of comparable
size and considering a spawning frequency of 2 days. Growth rates
predicted by the model for the MONS province are also in good
agreement with the IOTC growth curve (Fig. 6).
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Fig. 8. Annual trends in mean temperature in the MONS (solid line), ARAB (dashed
line) and INDW (dotted line) provinces (top); computed recruitment of skipjack
in number of fishes reaching a size of 30cm (center) and reported total catches
(bottom).

3.2. Population dynamics, environmental variability and fisheries

The monthly fishing mortality applied to the stock was cal-
culated from the ratio catches/exploitable biomass, using values
of simulated catches and defining the exploitable biomass as the
biomass >30 cm. The fishing mortality was then compared to the
size-dependent natural mortality due to predation and ageing (Egs.
(23) and (24)) (Fig. 7). At the beginning of industrial fisheries com-
puted fishing mortalities were in the range of 0.003-0.005 month—!
and they have increased to 0.005-0.02 month~! between 1996 and
2001. In comparison, total natural mortality of skipjack tuna ranges
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Fig. 9. Simulated exploitable and spawning skipjack biomass, with and without the
effect of fishing mortality.
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Fig. 10. Computed vertically integrated exploitable skipjack population vs observed catches (circles) in the Indian Ocean: April 1993 (top), February 1998 (center), April
1998 (bottom).
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Fig. 11. Observed catches in the West-East transect on the Equator in April 1993 (top left), February 1998 (top center), April 1998 (top right) and corresponding computed
vertical distribution of skipjack biomass on the same transect in April 1993 (bottom left), February 1998 (bottom center), April 1998 (bottom right).

between 0.085 and 0.125 month~! for the fish sizes between 30 cm
and 80 cm, corresponding to the exploited sizes. The model thus
suggests that fishing mortality added approximately 20% of mor-
tality to the natural mortality in the period between 1996 and 2001.
Since catches have further increased in recent years this percentage
has presumably risen.

The yearly recruitment, defined as the number of surviving
fish entering the fishery, was calculated as the number of fishes
reaching the exploitable size of 30 cm. The computed temporal
dynamics of the yearly recruitment for the Indian Ocean is marked
by four periods with increased recruitment: 1988, 1993, 1996 and
1999-2000 (Fig. 8). If we compare these peaks with the mean
annual temperature in the top 100 m of the water column of the 3
biogeochemical provinces that cover most of the areas exploited by
industrial fisheries in the Indian Ocean (MONS, ARAB, and INDW),
we observe that the years with increased recruitment occur in gen-
eral with a delay of one year with respect to the periods with higher
temperature. The warmer periods accelerate the growth of larvae
and juveniles and allow them to escape more quickly the small size
domain where the predation mortality is the highest, thus improv-
ing survival and enhancing recruitment. This illustrates well how
the dynamics of the population depends on the environment. In the
model the recruitment is linked to the environmental factors by
the bioenergetic representation of growth, reproduction and sur-
vival. Furthermore, we explore the relation between the predicted
recruitment trends and the yearly total observed catches of the four
fleets considered in the model. The temporal dynamics of reported
catches shows three years of increased productivity that occur in
1989, 1995 and 1999, between 0 and 2 years after the recruitment
peaks. The model suggests a strong link between environmental
factors, recruitment and observed trends in fisheries. However, it
has to be noted that other factors influence the temporal dynam-
ics of catches such as the accessibility to the resource, which is also
affected by the environment and by the technological development
of fisheries.

In order to assess the impacts of exploitation on the population
we compare simulations with and without the effects of fisheries.
For this purpose, the model was run for the period 1958-2001
with the observed fishing effort of purse seine and bait boat fish-
eries starting after 1984. The starting year 1984 corresponds to the
year when a simultaneous and important rise in both, industrial
and artisanal fisheries begun in the Indian Ocean, leading to an

increasing level of catches. The results indicate that the exploitation
of the resource by industrial fisheries induced a marked decrease
of both exploitable and spawning biomasses (Fig. 9). Compared to
the simulation without the effect of fisheries, exploitation induces
a reduction of 30% in spawning biomass and of 25% in exploitable
biomass. Moreover the model indicates that the decrease of the
population is not steady: periods of nearly stable biomass alternate
with periods of steeper decrease. Animportant decrease is observed
between 1991 and 1999 and is followed by a stable period. This
stability is presumably induced by an increase of the recruitment
during the years 1999-2000 due to environmental factors (the 1998
El Nifio year, see next section), which have partially compensated
the loss of biomass due to fishing mortality.

3.3. Spatial dynamics of the skipjack population compared to
catches

The ability of the model to represent the spatial dynamics of
the skipjack biomass under variable environmental conditions was
also explored. Considering that the distribution of observed catches
must be linked to the distribution of the resource, we compared
the horizontal distribution of the accessible exploitable biomass
(size>30cm, depth <50 m) to the spatial distribution of observed
catches (Fig. 10). In general, most of the skipjack catches are local-
ized in the central-western part of the Indian Ocean and the main
fishery areas are spread between the Somalian upwelling, the
Mozambique Channel and the Maldivian Islands. Comparing the
vertically integrated exploitable biomass to the catches distribu-
tion shows that the model is able to represent the main features
of the horizontal distribution of the biomass at different periods of
the year and under different environmental condition.

An examination of the vertical distribution of the simulated
biomass (Fig. 11) shows that the biomass is not always located near
the surface, where it is more accessible to fishers, but that habi-
tat conditions can attract the skipjack biomass in deeper waters,
usually between 50 m and 100 m depth. This limits the ability of
the surface fleets to detect and catch the resource and implies that
skipjack tunas might be present in certain zones but not fished.

The conjunction of a dipole mode (IODM) and a strong El Nifio-
Southern Oscillation (ENSO) event in 1997-1998 lead to important
environmental anomalies in the Indian Ocean which had impor-
tant consequences on fishing activities (Marsac and Le Blanc, 1998;
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Meénard et al., 2007). The abnormal easterly wind stress along the
equator caused the reversal of the E-W thermocline slope. The
inversion of the normal thermocline E-W slope depth increased
the catchability of tropical tuna for purse seine gears in the east
and decreased it in the West where they are normally fished. This
lead to massive and very unusual movement of the fishing fleets to
the eastern area while the usual fishing grounds in the western part
of the ocean were deserted by fishers. This exceptional event was
well captured by the model as important changes in both the hori-
zontal and vertical distribution of skipjack are clearly visible in the
simulation in 1998 (Figs. 10 and 11). The simulations indicate that
a substantial part of the biomass was still present in the western
basin but since skipjack habitat was deeper than usual, the resource
likely remained in deeper waters (50-100 m) thus less detectable
and accessible to surface fisheries. On the contrary, biomass was
closer to the surface in the central and eastern parts of the basin,
therefore increasing the catchability in these sectors.

4. Conclusion

The comparison of the model and the data has reinforced the
model and has highlighted the importance of the joint effect of
environmental factors and exploitation by fisheries for the assess-
ment of population dynamics. The model allowed integrating the
spatio-temporal variability of temperature, dissolved oxygen and
food conditions and evaluating their effect on the population. It has
shown how environmental factors produce differences in growth
and reproduction at the basin scale and how this can affect the size-
at-age of skipjack tuna. Moreover the model allowed computing the
temporal dynamics of mortality and recruitment and therefore pro-
vides a means to bridge the gap between environmental variability
and observed temporal dynamics of total catches. This kind of anal-
ysis is essential to increase our understanding of the ecosystem’s
dynamics, since it allows a better interpretation of the data.

The model was also able to represent the environmentally
driven spatial variability of the skipjack tuna population in the
Indian Ocean and a good overlap of the simulated spatial dis-
tribution of biomass with observed fishing data distribution was
observed, even during the extreme ENSO event that occurred in
1997-1998. Results have highlighted the influence of the environ-
mental conditions on the horizontal and vertical distribution of
skipjack tuna, and their effect on the accessibility of the resource
to fisheries.
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Appendix

The reduced model

In this section we define characteristic quantities and use them to put the model in an
adimensional form. Through this fast and slow dynamics appear which are characterized by a

small parameter €. We then derive a reduced model passing to the limit e=0.
Adimensionalization

In what follows capital letters refer to characteristic scales (e.g. L, for the horizontal length

scale). For a variable with dimension, e.g. x, the notation X refers to the adimentionalized

variable.

Let us define the characteristic scales x=L,X and y =L,y in the horizontal dimension,

z =L 7 in vertical dimension, V=S V in the structural volume dimension, and =T7 for time.

~

Let us also define for the biomass density state variable p(x, v,z,V, t) = Pﬁ(x, v,Z, 17,7)
Concerning the different processes involved in the dynamic of the system let us define:

*Horizontal velocity: v="V,V

*Vertical velocity: v, =V,v_ = Lﬂgaj

« Horizontal diffusion: d = Dd = Lthc?
*Vertical diffusion: d_ = LZVZCZ
*Growth: g =Gg

*Mortality: m+ f = M(ﬁ + f)

*Newborn input: r( p) =R P?(;?)
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The density function » follows:

~ ~

@)~ TM(i+ 7J5,  in 6 (i - P )< (0. T )

= 5% 527, V%527 )e Ox Tin - Vinax ) (A1)
F(p) V(E5.2.7)e 0x(0, 7y )

Vb oz on(®5,2)=0, ind®, Y7.7)e Ponin > Vanax )% (0, Fax )

where V and div are the usual differential operators on Q.

L
Let us define a small parameter & = —= and make the following assumptions:

Ly
oV :ﬁ
° ¢
ol
V,
oG:g4§
T
«TM = &2
KR
G

The main evolution equation reads

~

075 = dii¥p )+ 5 0: 0.0z -%:7) (A2)
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Reduction

Multiplying both sides of Eq. (A.2) by ¢? and taking £=0 leads to

~~ BV . - _
8; ahiiziia) +d¢ a;p—b(l—h ja) agh pl=0

with 7 ( 4 j
1 = =<
Vmax

The Neuman boundary condition imposed at the surface and at the maximum boundary depth

(A.3)

~ ~ 1 ~
—b(l—h g jzéagh B —c_ -

X5 Z VT 55277 x5z 7T T ey (A4)
Where c is a constant independent of z
We assume that
85}7;,;,0,?,7 - afzx,y,zm 770 (A.5)

This assumption on h is not a necessity at this stage but is needed for the integration of Eq.

(A.2) at the end of the reduction process.

It follows that ¢=0 and

(A.6)

Integrating this first order differential equation on (0, Z ) leads to
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where we have defined
- / - 2
3 o . ~
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Let us define the reduced model state variable p- F7.T by integrating Eq. (A.7) on (O, Emax)

(A.8)

Given any variable, e.g. g, the average along the profile € can be defined as

B jgnnx §de
g o
Jom edz (A.9)

Using this notation let us integrate Eq. (A.2) over (O z ) in order to derive an evolution

> “max

equation for p

* Time derivative term:
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* Horizontal advection term:
max pytng ~ _\ Emax 5H ~
Jo= Vv (Vp?c,i,E,V,t )"Z =V o™ Vs 5z p 7
Z e
j m Yedz =
~ o N 5
:V. —p~~ NNI maxedE
z ~ xs a03V9t 0
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*Horizontal diffusion term. A difficulty arises because the diffusion matrix is not a

constant. A small computation leads to:

[im V- (aVp)dz =V (aVp)+ V- (Va -Va )p) A1)

which we approximate neglecting the new advection term

[V (@V5)dz ~ ¥ -(a¥p)

(A.13)

*Computations for growth and mortality terms, as well as for the newborn input term,

are straightforward

*Thanks to the Neuman boundary condition on 7 and to the assumption of Eq. (A.1)

the advection and diffusion terms in z vanish.

The reduced model for p finally reads

) (A.14)
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where position (¥, ¥) € @ is a bounded domain representing the Indian Ocean in 2D. One can
notice that the newborn input function 7 is kept unchanged by the averaging process. The 3D
form of the reduced state variable can be recalculated at any time by combining Eq. A.7 and

A.8, and obtain:

¥5.20.7 (A.16)

The reduced model (Eq. A.14) can be put back into dimensional form resulting in the

following model.

0,p=didvp —vp)-e*oy (gp)-e2(m + F)p. inox (Vinin + Vi )% (01 farae )

ﬁx,y,V,Ozp xyV s V(xoyoV)ea)x(Vmin Vmax)
@x,y,V. t:g2r(ﬁ), V(x,y,t)ea)x(O,tmaX)

min ?

Voryws n(03)=0,  V(,)e Vinin +Vinax )% (0. fima )

(A.15)
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Indian Ocean under the joint effect of environmental variability and fisheries exploitation. The model
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the evaluation of a cost function that combines the negative log-likelihoods of commercial catches and
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1. Introduction

Artisanal fisheries have exploited skipjack tuna (Katsuwonus
pelamis) for several centuries (Marine Research Section, 1996) in
the Indian Ocean. However, since the early 1980s the level of
exploitation has dramatically increased due to the introduction
of industrial purse seining and the concurrent raise of bait boat
and gillnet catches. Currently, the catches of this highly migratory
tropical fish represent almost half of the tropical tuna catches in
the Indian Ocean. Although skipjack tuna are considered to have
a high resilience against overfishing due to their fast growth rate
and their year round spawning, the decrease of catches recently
reported by the Maldivian fishery, one of the leading skipjack fish-
eries in the Indian Ocean, raises concern about the sustainability of
present levels of exploitation (Adam, 2010).

Mechanistic mathematical models are useful tools for the
evaluation of trends in marine ecosystems. These models
allow improving our understanding of the vulnerability and

DOI of original article: 10.1016/j.ecolmodel.2012.02.007.
* Corresponding author. Tel.: +33 0499 57 32 53; fax: +33 0499 57 32 95.
E-mail address: sibylle.dueri@ird.fr (S. Dueri).

0304-3800/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
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forecasting the ecosystem’s evolution under future scenarios of
climate change and increased exploitation. As a result, they are
a source of valuable information supporting the development of
policies for the sustainable management of marine resources. In
the field of marine science the development and validation of
such models is particularly challenging given the difficulties and
cost of obtaining direct field observations (Blackford et al., 2010).
However, given the increasing anthropogenic pressures that affect
marine ecosystems the development of reliable mathematical
models for marine ecosystems based on a mechanistic represen-
tation of processes is becoming a high priority issue (Brierley and
Kingsford, 2009; Jackson, 2010).

Ecosystems are complex and non stationary systems and recent
technological improvements in the field of computation have
supported the development of numerical models that explicitly
account for this complexity. The rigorous representation of the
important mechanisms is certainly a fundamental requisite of
every model that aims at deepening the understanding of processes
and describing the future evolution of the ecosystem. However,
increased complexity of the models is often associated with a
larger number of parameters that are difficult to constrain and this
can increase the uncertainty of the simulated results (Anderson,
2010).
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Parameters are characterised by an inherent uncertainty linked
to the paucity of comprehensive and accurate data which would
be needed to constrain the model. Assessing the effects of these
uncertainties in the model parameter values is an essential step
for model evaluation. Sensitivity analysis provides a tool for this
purpose as it allows evaluating the relative importance of the model
parameters on the response of the model. Furthermore, it can help
to investigate the way uncertainty propagates through the model to
its outputs and it allows distinguishing between factors that would
deserve better measurements in order to reduce the uncertainty
in the model outputs and factors that are less influential (Cariboni
et al., 2007).

The optimization of model parameters against available data is
essential for improving the realism of the model and identifying
the domains where it is not performing well. Optimizing the model
parameters consists in finding the parameters that allow the best
fit to the data. It can be achieved using a parameter estimation
algorithm to minimize the distance between the simulation and
the observed data. However, before starting the optimization we
have to ensure that the inverse problem is well-posed and that the
parameters can be estimated independently and accurately from
the available data. Therefore, parameter estimation has to be pre-
ceded by the assessment of the parameters identifiability.

In this paper we present the parameter estimation and the sen-
sitivity analysis of the APECOSM-E model, a deterministic model
that represents the basin scale 3D population dynamics of skip-
jack tuna under the joint effect of environmental conditions and
exploitation by fisheries (Dueri et al., 2012.). A common method-
ology based on the evaluation of the partial derivatives of the cost
function with respect to the model parameters is used for sensitiv-
ity analysis and parameter estimation. It relies on the tangent linear
code of the model derived by automatic differentiation of the direct
code. The first objective is to estimate the parameter values that
maximise the fitness of the model to the available observations.
However, the high number of model parameters makes it difficult
to estimate all the parameters at once. Since the available obser-
vations are related to fisheries (catch and size frequency data), we
estimate only the fisheries-related parameters. In a second step,
we characterize which of the non-optimized parameters are sensi-
tive and influence the model output. The comparison between the
optimized simulation and the observations allows identifying the
strengths and limitations of the model and constitutes the basis
for improvement, in view of using the model to test scenarios con-
cerning the resilience of the population and the sustainability of its
exploitation in the Indian Ocean.

2. Methodology
2.1. Model description

APECOSM-E (Apex-Predator-Ecosystem-Model - Estimation) is
adeterministic model that represents the basin scale 3D population
dynamics of skipjack tuna under the joint effect of environmental
conditions and exploitation by fisheries (Dueri et al., 2012). This
model is a simplified version of the more general APECOSM frame-
work (Maury, 2010), which represents the flow of energy through
the global marine ecosystem considering different communities
of epipelagic and mesopelagic organisms. APECOSM-E is a single-
species version devoted to parameter estimation. In the model,
temperature, oxygen, food and oceanic currents affect the physiol-
ogy of tuna (growth, reproduction and mortality), their movements
and the spatial distribution of the population. Observed spatial
fishing effort data are linked to fishing mortality and are used to
simulate monthly catches and size frequencies.

The model is structured in 3D space and fish size and considers
size dependent reproduction, growth, predation, natural mortality

and fishing mortality. It is based on a single partial differential
equation describing the change of the population density function
p as a function of time:

0tp = div(dVp — vp) + 3,(dz0zp — vzp) — dv(gp) — (M +f)p (1)

in £2 x (Wpjn, Wmax) x (0, tmax). The four terms on the right side
of Eq. (1) represent: (1) horizontal advection and diffusion, (2)
vertical advection and diffusion, (3) growth and (4) natural and
fishing mortality. Advection and diffusion are represented by the
horizontal velocity v(x, y, z, V, t) [ms~1], the vertical velocity v,(x,
¥, z, V, t) [ms~!], the horizontal diffusion d(x, y, z, V, t) [m%s~1]
and the vertical diffusion d;(x, y, z, V, t) [m? s~1]. Here we assume
that there is no cross-diffusion term in z. Growth is represented
as an advection of the biomass density in the size dimension and
is characterised by the growth rate g(x, y, z, V, t) [m3s~1], while
natural and fishing mortality rates are described by m(x, y, z, V, t)
[s~']1and fix,y,z V, t) [s~!] respectively.

Processes are all time, space and size-dependent and linked to
the environment through mechanistic bioenergetic or behavioural
parameterizations. Physiological rates such as growth, reproduc-
tion and ageing mortality are described consistently with the
Dynamic Energy Budget (DEB) theory (Kooijman, 2000). Both hor-
izontal and vertical movements are driven by habitat gradients,
oceanographic currents and physical diffusion. Horizontal pro-
cesses are modelled using the mechanistic approach developed in
Faugeras and Maury (2007) which enables to consistently relate
advection and diffusion.

The model has 48 parameters (Table 1), 18 of which are related
to fisheries and define length and depth selectivity of the fishing
gears, catchability and increasing efficiency due to technological
development of different fleets, 8 are DEB parameters describing
the kinetic of growth, reproduction and ageing mortality and 22
are ecological parameters describing the interaction between the
environment and the population.

APECOSM-E is integrated numerically on a 1° by 1° horizon-
tal grid covering the Indian Ocean and 20 vertical layers reaching
500 m depth, with a 10 minterval in the first 150 m. A more detailed
description of the model is presented in a companion paper (Dueri
etal., 2012).

2.2. Fishery data

The model requires three types of fishery time series: fishing
effort, catch and size frequency data. Observed effort data are used
to impose the effect of fishing activities on the population: spa-
tially explicit fishing effort is applied to the simulated biomass to
produce simulated catches and size frequencies. On the other hand,
observed catch and size frequency data are required for the com-
putation of the cost function that is used for parameter estimation.
These datasets are obtained from the Indian Ocean Tuna Commis-
sion in the standardized form which is available on the CLIOTOP
MDST website (http://vmmdst-proto.mpl.ird.fr/MDST/). Observed
monthly catch and effort data are spatially aggregated over a 1°
by 1° grid, while monthly size frequencies are spatially aggregated
over a 5° by 5° grid.

The model considers four different fleets: French purse sein-
ers “PS1”, Spanish purse seiners “PS2”, “World” purse seiners “PS3”
(combining the fishing data of Mauritius, Seychelles and NEI-other)
and Maldivian bait boats “BB”. These four fleets represent the main
skipjack fisheries of the Indian Ocean providing a reliable time
series of fishing data from the beginning of industrial fisheries in
1984. Other fleets, such as the gillnet fleet, had to be excluded due
to the uncertain quality of their data.
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Table 1
Model parameters.

Parameter Description Type

K Fraction allocated to soma DEB
{Pam} Surface-area specific assimilation rate DEB
[Em] Maximum energy density of reserves DEB
[Ec] Volume-specific energetic growth cost DEB
[pPM] Volume-specific maintenance cost DEB

KR Fraction reproduction energy fixed in eggs DEB
Imat Length at maturity DEB

hq Ageing acceleration DEB

a, Maximal horizontal speed Ecology
o Concentration factor coefficient Ecology
ayz Maximal speed, vertical Ecology
d* Physical diffusivity, vertical Ecology
To Metabolic energy production/thermal capacity Ecology
kr Thermic conductance/thermal capacity Ecology
T, Arrhenius temperature Ecology
T Reference temperature Ecology
T; Lower boundary of tolerance range Ecology
Th Upper boundary of tolerance range Ecology
Ta Arrhenius temperature for lower boundary Ecology
Tan Arrhenius temperature for upper boundary Ecology
ke Half saturation constant for forage Ecology
ao Steepness of oxygen limitation curve Ecology
0o Half saturation constant for oxygen limitation Ecology
pr Weighting factor temperature Ecology
Dr Weighting factor forage Ecology
Do Weighting factor oxygen Ecology
Mp1 Predation mortality coefficient 1 Ecology
Mp2 Predation mortality coefficient 2 Ecology
my Temperature mortality coefficient Ecology
Amdy Maximal attraction factor for Maldives Ecology
lips1 Length selectivity, PS1 Fishery
lsps2 Length selectivity, PS2 Fishery
Isps3 Length selectivity, PS3 Fishery
lsbb Length selectivity, BB Fishery
kips Steepness length selectivity, PS Fishery
Kibb Steepness length selectivity, BB Fishery
Zs psi Depth selectivity, PS Fishery
Zspb Depth selectivity, BB Fishery
Kzps Steepness depth selectivity, PS Fishery
Kzbb Steepness depth selectivity, BB Fishery
Ppst Catchability PS1 Fishery
Pps2 Catchability PS2 Fishery
DPps3 Catchability PS3 Fishery
Dbb Catchability BB Fishery
Apst Increased efficiency, PS1 Fishery
Aps2 Increased efficiency, PS2 Fishery
Aps3 Increased efficiency, PS3 Fishery
Qpp Increased efficiency, BB Fishery

2.3. Cost function components

The quantitative comparison of the model results with available
observations is essential for the assessment of the model strengths
and weaknesses. In the present study we used time series of catches
and size frequencies of different fishing fleets for the computation
of a cost function that quantifies the discrepancy between simu-
lated and observed data using the method developed by Faugeras
and Maury (2005).

In order to calculate the cost function, we first have to gener-
ate model outputs that are formally consistent with the available
observations, i.e. monthly 1 degree square catches and 5 degree
square size frequencies per fleet k. For this purpose, in each cell i of
the grid where the observed fishing effort is positive, we calculate
the daily catch by multiplying the size- and depth dependent fish-
ing mortality f by the corresponding total biomass density p. Total
monthly catches per 1 degree square and per fleet, Gy, are computed
by integrating daily catches over the vertical domain Az, over all
fished size classes AV and over the number of days in a month
At(m). The resulting value comes with the unit of weight and is
calculated per grid cell i and per month m.

nz nV nt(m)

- ZZka(i, z,V, t(m))

z=1V=1 t=1

p(i, z, V, t(m))AxAyAzAVAt(m) 2)

where the nz corresponds to the number of layer of the water col-
umn, nV to the number of size classes and nt(m) to the number of
days per month.

Fishing mortality exerted by given fleet k is calculated as the
product of the observed fishing effort e, by the catchability p; at
to multiplied by an exponential function representing the increase
of fishing efficiency at a rate a; due to technological development
in time, a size selectivity function and a depth selectivity func-
tion. Technological development is assumed to be continuous and
includes the raise of the size and performance of the fishing ves-
sels, the enhancement of the fishing gears, the progressive use of
new electronic devices such as bird radar and other remote sens-
ing tools and the deployment of more and more sophisticated fish
aggregating devices (FADs) (Valdemarsen, 2001). The length and
depth selectivity of the different gears are represented using two
sigmoid functions where [s and zs are the length and depth leading
to 50% selection while k; and k; define the steepness of the sigmoid
curves.

fili, z, V, t) = e(i, t)pr exp(at)
X 1 1
1+ exp(—k((V1/3 /8y — I5)) 1 + exp(kz(z — zs))

(3)

Similarly, for each cell of the grid with positive fishing effort,
size frequencies per fleet are calculated per grid cell, month and
size.

Q(i,m, V)
B S S iz V. 0pli, 2, V, ) AxAy AzAVAE
Z S ST Rliaz, V, O, 2, V, £)AXAy AZAVAE

Since the observed size frequencies are given on a 5° by 5° grid
while the model runs with a 1° by 1° grid, we need to further inte-
grate Qi in order to obtain the same level of horizontal resolution
as the data.

We now define the vector of the model parameters K and the
components of the cost function related to catch J¢(K), size frequen-
cies Jo(K) and parameters Jp(K). For estimating the parameters the
total cost is obtained by summing the three components, while
for sensitivity analysis the cost function is determined by the sum
of the first two components (excluding the priors on the parame-
ter values). The components of the cost function are expressed as
the negative log-likelihoods, which measure the distance between
observed and simulated responses. Likelihoods are then summed
over all fleets, months and horizontal grid squares. Assuming that
the observation error for catch data follows a log-normal distribu-
tion, we calculate the total cost of catches as:

Jc(K)—Z ZZ log(Ci(i, m)) — log(CP(i, m))*  (5)

where o is the fleet dependent standard deviation for catches.

Length frequencies are assumed to exhibit a normally dis-
tributed observation error. Their contribution to the cost function
is therefore expressed as:

Jalk) = Zz 7200

where o is the fleet dependant standard deviation for size fre-
quency.

Q(i, m, 1) — QP>s(i, m, 0y (6)
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The Bayesian component of the cost function accounts for the
differences between the initial values of the parameters and the
new value. This allows us to estimate the parameters in a Bayesian
context by computing the mode of the posterior density function
of the parameters knowing the data. Assuming that the a priori
distribution of parameters is normally distributed, the contribution
of the n values of the parameter vector K to the cost function is

1 042
Jo(K) = ;E(K“ —K9) (7)
where K° is the initial guess of the parameter. Since parameters
have different units and magnitude we need to adimensionalize
the vector by dividing each parameter by the corresponding initial
guess.

2.4. Parameter identifiability

Before attempting to solve an inverse problem that involves con-
straining parameters to fit observations, it is important to ensure
that the problem is well posed and that the parameters can be esti-
mated accurately and independently from the available dataset.
For this purpose, we use an approach based on the computation of
the Hessian matrix that allows assessing the identifiability of the
parameters given the conceptual representation of the phenomena
provided by the model (Thacker, 1989). This method has been suc-
cessfully implemented by Fenner et al. (2001) and Faugeras et al.
(2003) to evaluate parameter identifiability of marine ecosystem
models representing biogeochemical and plankton dynamics.

The elements that compose the Hessian matrix are the second
derivatives of the cost function with respect to the parameters. The
cost function used for identifiability comes without penalty term
and is called J° to distinguish it from the general cost function J with
penalty used for optimization (see next section). J° is composed of
two terms, the negative log-likelihood of catches and the negative
log-likelihood of size frequencies.

BK) =Je(K) +Jo(K) (8)

Near the global minimum, the matrix provides key indicators of
the convergence and uncertainty related to optimization (Thacker,
1989). The condition number of the Hessian defined as the ratio
of its largest to smallest eigenvalue, determines the rate of con-
vergence of the minimization algorithm. For large values of the
condition number the matrix is ill conditioned and nearly singu-
lar. The off-diagonal elements of the Hessian matrix correspond
to the degree of correlation of pairs of parameters. Eigenvectors
and eigenvalues provide important information on the uncertain-
ties related to parameter estimation. Small eigenvalues indicate
large uncertainties in the identification of parameters that make
a significant contribution in the related eigenvector. Furthermore,
the inverse of the Hessian matrix provides an approximation of the
covariance matrix of the model parameters.

Here, we want to estimate the model parameters related to fish-
ing activities by using the likelihood of catch and size frequency
data. To ensure that the desired parameters can be identified inde-
pendently and are sufficiently constrained by the data we compute
the Hessian matrix of the cost function without penalty term at the
global minimum. The minimum is obtained by running the model
with a known set of parameters K using simulated catch and size
frequencies time series instead of observations in the calculation
of the cost function. Running the simulation with the same param-
eter set we obtain a perfect match with the synthetic observations,
and the cost function is equal to zero. The Hessian of the cost func-
tion can then be calculated by means of a central finite difference
scheme approximation that uses the exact gradients to calculate

the second derivatives:
925 &K+ dKie) — gi(K — 6Kje)  gi(K + 8K;e) — gi(K — 0K;e)
KK, 4 * 4

(9)

where ¢ is the step size, §K is the direction of perturbation and g
is the exact gradient of the cost function provided by automatic
differentiation

B

gn(K) = K,

(10

2.5. Parameter estimation

Parameter estimation in the APECOSM-E model is based on the
simultaneous minimization of the three terms of the cost function:
the negative log-likelihood of catches, the negative log-likelihood
of length frequencies and the log of the prior density function of
the parameters.

J(K) =Jc(K) +Jo(K) +Jp(K) (11)

The minimization of the cost function is implemented using the
n1qn3 Fortran subroutine of Gilbert and Lemaréchal (1989). This
gradient-based minimization algorithm requires the calculation of
the exact gradient of the cost function with respect to the parameter
being estimated. For this purpose, we derive the tangent linear code
by means of an automatic differentiation engine, called TAPENADE
(Hascoét and Pascual, 2004), which is developed by the French
National Institute for Research in Computer Science and Control
(INRIA) and freely available on-line (http://tapenade.inria.fr).

Before using the tangent linear code generated by TAPENADE, it
is necessary to test it by comparing the exact gradient given by the
automatically differentiated code to its finite difference approxi-
mation. For this purpose, we use the Taylor test implemented by
Faugeras and Maury (2005) and compute the ratio of the finite
difference approximation of the gradient to the exact derivative.
This test ensures that the differentiated code provides the correct
derivative if for a decreasing parameter perturbation, the finite dif-
ference formulation tends to the value of the exact gradient (and
their ratio tends towards 1). A previous evaluation of the model has
shown that the lower limit of perturbation for which this is true is
10-6, which corresponds to the precision level expected from the
finite difference computation given the truncation error (Faugeras
and Maury, 2005).

The parameter estimation is performed over a temporal win-
dow of 10 years, from 1984 to 1993. This window corresponds
to a period of time for which a complete dataset of fleet-specific
monthly catches is available for all fleets. After 1993 catches of the
Maldivian bait boat are reported on a yearly basis and are therefore
less suitable for parameter estimation. This furthermore allows to
keep a large set of data (1994-2001) unused for parameter estima-
tion, to assess the model predictions.

2.6. Sensitivity analysis

The sensitivity analysis measures the reaction of the model to
small changes in the input parameters. By identifying the parame-
ters that have alarge effect on the output, it highlights the processes
that drive the system dynamics and the parameters that should be
defined accurately in order to increase the reliability of the model
and its ability to forecast the evolution of the system under chang-
ing conditions.

Among the different methods, the one based on the automatic
differentiation of the code belongs to the methods that are con-
sidered appropriate for sensitivity analysis of complex non-linear
models with a large number of parameters (Cariboni et al., 2007;
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Frey and Patil, 2002). Automatic differentiation enables to com-
pute the first order partial derivatives of the output variables with
respect to the input parameters. The value of the first derivative
indicates the local sensitivity of the model outcome with respect
to small changes in the parameter.

Here, we examine the sensitivity of the cost function without
penalty term J5 with respect to small parameter perturbations. The
relative sensitivity is defined as the derivative of the cost function
with respect to parameters, multiplied by the value of the param-
eter and divided by the value of the cost function at the evaluation
point K.

J5(K) K!
K JS(K)

We carry out the sensitivity analysis only for the parameters that
are not considered for parameter estimation. In order to test the
variability of the sensitivity over time, we split the simulated time-
frame (1984-2001) in 3 periods of 6 years (1984-1989, 1990-1995
and 1996-2001) and calculate the relative sensitivity for each sub-
set. This allows investigating the stability and robustness of the
analysis over different periods and calculating the mean and stan-
dard deviation of the sensitivity.

Local sensitivities can be either positive or negative, depending
on the sign of the derivative of Eq. (12). The absolute value of the
local sensitivity informs us about the magnitude of the sensitivity.
The relative sensitivity S is then obtained by dividing the absolute
value of the local sensitivity by the sum of all sensitivities. Finally,
we use this relative sensitivity to calculate the mean value of the
sensitivity S and the standard deviation os.

(12)

3. Results and discussion
3.1. Evaluation of parameter identifiability

In order to test the parameter identifiability, we compute the
Hessian matrix of the cost function with respect to the parameters,
at the global minimum and we calculate the condition number,
the eigenvalues and eigenvectors of the Hessian. Since the opti-
mization is based on fishing data, we assess the identifiability of
19 parameters, 18 parameters directly related to fishing activities
plus one ecological parameter describing the attraction of the Mal-
divian Islands, which is important for the Maldivian fisheries (Dueri
et al,, 2012). This configuration leads to a condition number of the
Hessian matrix equal to 4.2 x 10° indicating a poorly constrained
inverse problem formulation. By far the two smallest eigenvalues
are A1 =0.0248 and A, =0.19. Looking at the corresponding eigen-
vectors we notice that eigenvector v, has significant contribution
from k;ps while eigenvector v, has significant contribution from
k, pp (Fig. 1). These parameters represent the steepness of the depth
selectivity for purse seiners and bait boat, respectively, and the
analysis suggests that they are poorly constrained by the available
data and must be excluded from the optimization. The exclusion of

these two parameters leads to a major improvement of the condi-
tion number which decreases to 2.8 x 10%. Further exclusion of two
more parameters contributing to the second eigenvector, namely
the depth selectivity of bait boats z,},}, and the catchability of bait
boats py, produces only a minimal improvement of the condition-
ing number (1.91 x 10%), thus indicating that these two parameters
can be kept in the optimization. This outcome indicates that 17
of the 19 parameters that we initially wanted to include in the
parameter estimation can be reliably estimated with the available
data.

3.2. Parameter optimization

The parameters estimated with the minimization algorithm
include the fleet specific catchability py, the fleet specific increase
in fishing efficiency a;, the gear specific fishing length selectivity
coefficients Is and ks, the gear specific depth selectivity coefficient
zs, and the parameter representing the attraction of the Maldivian
Islands a,qy. The parameters were estimated using the likelihoods
of catch and size frequency data over a period of 10 years, from 1984
to 1993. The minimization algorithm converged after 122 itera-
tions (Fig. 2). The parameters showing the largest relative changes
in comparison to their initial values were the ones representing
the catchability increase due to technological development of the
three purse seine fleets (variations between 43% and 76%) and the
parameter describing the steepness of the length selectivity of bait
boat (43%). The parameters showing the smallest variation were
the ones related to the length selectivity of purse seiners (<3%),
indicating that these parameters were already well tuned before
optimization. Initial and final values of estimated parameters are
giveninTable 2. The depth of selectivity was considerably increased
by the optimization process for purse seiners from 100 m to 124 m,
while the selectivity of bait boats was only slightly increased from
20 to 22 m. Comparison between the optimized fleet specific catch-
ability increase due to technological development shows similar
values for the 3 purse seine fleets with a slightly higher value for
Spanish purse seiners and slightly lower values for bait boats.

3.3. Sensitivity analysis

The sensitivity analysis pointed out seven parameters having a
major impact on the cost function (Fig. 3) among which we find
four energetic parameters ({Pam}, [Pm], [Em] and k) used in the DEB
formulation and three ecological parameters (Ty,, mp and mp, ). Five
of them ({pam}, [Pm], &, Ty, and my,» ) show a considerable variability
of the local sensibility represented by the standard deviation. This
indicates that the sensitivity of these parameters varies over the
three periods considered for the analysis.

The results emphasize the important sensitivity of T, which
represents the upper boundary of the temperature tolerance
in the functional response to temperature (Dueri et al.,, 2012;
Kooijman, 2000). This function determines the changes in
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Fig. 1. Values of the elements that compose eigenvectors vy and v,, corresponding to the two smallest eigenvalues of the Hessian.
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Fig. 2. Variation of the parameters as a function of the iteration number during the minimization process. Values are normalized relatively to the optimized values.

Table 2
Optimized parameters.
Parameter name Initial value Final value Unit Description
L ps1 0.500 0.490 m Length selectivity, PS France
Isps2 0.500 0.486 m Length selectivity, PS Spain
Isps3 0.500 0.490 m Length selectivity, PS Word
Lspb 0.450 0.482 m Length selectivity, BB
Kips 45 45.7 Steepness length selectivity, PS
Kibb 45 314 Steepness length selectivity, BB
Zs ps1 100 124.8 m Depth selectivity, PS
Zspb 20 22.1 m Depth selectivity, BB
Dpst 0.015 0.016 Fishing power PS1
Dps2 0.015 0.016 Fishing power PS2
DPps3 0.025 0.030 Fishing power PS3
DPbb 0.005 0.004 Fishing power BB
Aps1 0.200 0.113 Increased efficiency, PS1
Aps2 0.200 0.139 Increased efficiency, PS2
Aps3 0.200 0.115 Increased efficiency, PS3
App 0.100 0.086 Increased efficiency, BB
Amdy 0.400 0.299 Maximal attraction factor for Maldives
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Fig. 3. Mean and standard deviation local sensitivity coefficients.
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physiological rate of an organism induced by temperature varia-
tions and defines habitat preferences in relation to temperature.
In the model this parameter was set according to reported habitat
preferences of tropical tuna in the Indian Ocean, which are con-
strained between 20 and 32 °C (Stéquert and Marsac, 1989). It is not
surprising that the parameter has such a major effect on the out-
come since it influences temperature-related migrations as well as
growth and reproduction.

The sensitivity analysis further highlights the impact of pre-
dation mortality parameters mp; and mp;. These parameters

determine the survival of the small size fishes (larvae and juve-
niles) and are therefore very important for population dynamics.
At the same time this process is characterised by a high level of
uncertainty given the difficulties in collecting observations. In
the present model the parameters were tuned. The replacement
of the empirical power law function used to represent predation
mortality by variable predation mortalities outputted from the
APECOSM model (Maury, 2010) could help to constrain these
parameters and would greatly benefit the reliability of the model
outcome.
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Fig. 4. Comparison between simulated (red) and observed (black) monthly aggregated catches of skipjack tuna for the different fleets: Results for total catches (top) and
catches on free schools (bottom). Optimisation is performed on total catches from 1984 to 1993 and the model is running freely from 1994 to 2001. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of the article.)
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The results underline the sensitivity of four DEB parameters
describing bio-energetic fluxes in the equations for growth, repro-
duction and ageing mortality of tuna. These parameters are the
surface-area specific assimilation rate {pan}, the volume-specific
maintenance cost [py] the maximum energy density of reserves
[Em], and the fixed fraction of the energy spent on growth (of struc-
ture) and somatic maintenance K. The parameterisation of {pan,}
and [py] and x were derived from Kooijman (2010) while [Ep]
was estimated from available growth curves (Dueri et al., 2012).
As these parameters have an important effect on the model out-
come it is desirable to improve the reliability of their estimation.
A possible way to achieve a better confidence in the estimation is
the assimilation of the data from the Regional Tuna Tagging Project
of the Indian Ocean (RTTP-I0). During this program 78 326 skip-
jack were tagged and released from May 2005 to August 2007 in
the western Indian ocean and so far more than 12 000 fish (>16%)
have been recovered and recorded. Thus, this remarkable dataset
is a unique source of information concerning the physiology and
movements of tunas that could contribute to improve the confi-
dence in the sensitive DEB parameters of the model by integrating
them in the parameter estimation.

3.4. Comparison between simulated and observed temporal
dynamics of catches and size frequencies (1984-2001)

In order to evaluate the model’s ability to represent the temporal
dynamics of catches and size frequencies beyond the timeframe of
optimization, we compare the simulated and the observed monthly
catches over the entire period of simulation 1984-2001.
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Fig. 5. Spearman’s correlation coefficient for observed and computed catches (only
years with significant correlations are represented).

The comparison of catches shows that while the simulation
successfully represents some of the peaks, it clearly fails to cap-
ture most of the autumn peaks observed in the time series of
the French and Spanish purse seiners. These missing peaks are
related to a specific fishing technique that exploits fish aggre-
gating devices (FAD). Tuna and especially skipjack are known
to associate with natural and artificial floating objects. Differ-
ent hypotheses have been proposed to explain this associative
behaviour (Fréon and Dagorn, 2000) and concern has been raised
regarding the possible “ecological trap” effect that could be caused
by the increased number of FADs deployed that could eventually
attract and trap tunas in areas of the ocean with low productivity
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Fig. 6. Comparison between observed and simulated length frequency for the four different fleets (1984-1993).
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Fig. 7. Observed (blue) and computed (red) temporal evolution of size frequency for the
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or second mode (dots) for Maldivian baitboats. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

(Marsac et al., 2000; Hallier and Gaertner, 2008). In the Indian
Ocean the deployment of FADs by purse seiners have consider-
ably increased since the early 1980s and nowadays 80% of catches
occurs in association with FADs (Indian Ocean Tuna Commission,
2008).

The performance of the model improves if we compare catches
of free schools (not associated to FADs). This suggests that the
model satisfactorily represents the spatio-temporal dynamics of
tuna when it is not affected by the presence of FADs (i.e. free
schools)and dominantly driven by the modelled habitat conditions,
while other factors not included in the model may intervene in the
association of tunas under FADs (Fig. 4). Further developments of
the model thataim at distinguishing explicitly FAD fishing from free
school fishing in both the model formulation and the parameter
estimation are therefore to be recommended.

In order to quantify the goodness of fit, we calculate the non-
parametric Spearman’s rank correlation coefficient of simulated
and observed catches (Fig. 5). The Spearman’s r coefficient deter-
mines how tightly two variables are linked to each other. Here
it is used to evaluate the temporal variability of the correlation
and to quantify how well the model fits overall catches versus
catches on free schools. Results from this analysis show that
despite some temporal variability, the correlation is consistently
higher for free school catches, with two exceptions in 1987 and
1995. Spearman'’s r for free schools is significant for 17 of 18
years, while for overall catches, the test is significant for 14 of 18
years.

Observed and computed length frequencies have also been
compared for the four fleets (Fig. 6). The model succeeded in repre-
senting the length frequency distribution observed in purse seine

catches, but it underestimates the presence of large individuals in
the catches of the Maldivian bait boats. Observed bait boat length
frequency around the Maldivian Islands are well known to exhibit
a marked bi-modal distribution with an under-representation of
the skipjack having a size between 50 and 60 cm. This pattern was
not captured by the model. Adam and Anderson (1996) hypoth-
esize that the missing size-class might migrate offshore, away
from the Maldives, for some unknown reasons. Possible causes of
this migration could be related to prey abundance issues. Since
in the present model formulation the size distribution of preys is
imposed by a power law, we are possibly missing a process, which
could potentially help to explain the observed phenomena. Further
improvement of the model are planned in order to implement a
more realistic representation of the preys dynamics.

The temporal dynamics of size frequencies was also compared
to the simulation (Fig. 7 ). For purse seiners, there is a generally
good overlap between simulation and observation although the
real data show a slight interannual variability that is not captured
by the model. The simulation reveals a steady decreasing trend
in the mean size frequencies, but this trend is less evident in the
observations given the aforementioned interannual variability. For
Maldivian baitboats, despite the lack of the bimodal distribution of
the size frequency, the representation of the temporal dynamics of
the mean value is satisfactory.

4. Conclusion

Optimization and sensitivity analysis were carried out on the
APECOSM-E model in order to constrain the identifiable model
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parameters using the available data and evaluate the sensitivity of
the non-estimated parameters. Despite the generally satisfactory
outcome of the model, some limitations and needs for improve-
ment have been pointed out from the comparison of the optimized
model with the observed data. To begin with, the present model
formulation does not account for the aggregating effect of fish
aggregation devices (FAD) and this limits the ability of the model
to represent properly FAD catches which constitute an important
component of the total catches. As a result, the model cannot
fully account for the effect of this fishing technique on the spatial
population dynamics. A proper comprehension of the attraction
phenomenon is presently missing, even though a growing scien-
tific effort is directed to improve its understanding (Taquet et al.,
2007, Gaertner et al., 2008; Soria et al., 2009; Dagorn et al., 2010).

Sensitivity analysis has pointed out that several DEB parameters
related to the bioenergetics of skipjack tuna should be improved in
order to increase the reliability of the model results. In the present
model, the DEB parameters are based on extrapolation from exist-
ing information on skipjack tuna physiology, but a better estimation
of the relevant parameters based on more specific experimental
testing and inclusion of other datasets (e.g. tag-recapture data), is
highly recommended in order to enhance the confidence in the
model results.
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Abstract

This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems,
based on established ecological and physiological processes and mass conservation principles. The model is based on a
nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine
ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food,
allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mor-
tality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the
dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy con-
tent per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or pre-
dation mortality.

In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model
converges toward a stationary linear log-log size-spectrum with a slope equal to —1.06, which is consistent with the values
reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution
and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the
stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of
temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper
[Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured
energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001].
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Size spectrum; Mathematical model; Predation; Bioenergetics; Dynamic energy budget (DEB) theory; Energy flow

1. Introduction

Trophic interactions between organisms are the main drivers of marine ecosystems dynamics. In particular,
they allow the transfer and the dissipation of solar energy through ecosystems, along food chains, from primary
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producers to top predators. In marine systems, many species interact within complex trophic networks where
bottom-up as well as top-down controls interfere continuously (e.g., Cury et al., 2003). Understanding how
environmental variability such as changes in primary production or temperature impacts ecosystems and ulti-
mately fish stocks and reciprocally how fishing upper trophic levels impacts lower trophic levels requires reliable
models based on realistic representations of energy fluxes through ecosystems. However, most marine ecosys-
tems are extremely diverse, heterogeneous and poorly known. Modelling their dynamics explicitly down to the
species level is challenging. Hence, most models of marine ecosystems rely on rough species and functional
groups partitioning and use fixed predation rates between groups (e.g., Polovina, 1984; Walters et al., 1997,
Pauly et al., 2000). Alternatively, aggregated approaches based on size have been undertaken, taking into
account allometric losses (respiration), predation and growth processes. In those approaches, phytoplankton
is implicitly used as the source term of size-structured continuous mass-balance equations. The marine ecosys-
tem is represented using a single aggregated state variable (e.g., a biomass) which experiences size-dependent
growth and mortality (Platt and Denman, 1978; Silvert and Platt, 1978, 1980; Dickie et al., 1987; Cushing,
1992; Platt and Denman, 1997; Arino et al., 2004; Benoit and Rochet, 2004). Those models rest on the funda-
mental assumption that size is the most structuring dimension of ecological systems along which their dynamics
can be projected. Many ecological traits (including population abundance, growth rate and productivity, spa-
tial niche, trophic, competitive and facilitative relationships between species) as well as metabolic processes are
indeed well correlated with body size (Sheldon et al., 1972; Blueweiss et al., 1978; Gillooly et al., 2001; Brown
and Gillooly, 2003; Marquet et al., 2005; West and Brown, 2005; Woodward et al., 2005). Furthermore, because
most marine organisms are highly opportunistic feeders and because prey size is limited by the allometric diam-
eter of predator’s mouth (Bone et al., 1999), predator—prey relationships are, in many marine systems, mostly
determined by size (Lundvall et al., 1999; Scharf et al., 2000; Jennings et al., 2001 and Jennings et al., 2002; Shin
and Cury, 2004). For instance, Jennings et al. (2001) showed that body mass explained 93% of the variation in
trophic level among 15 fish communities in the North Sea. Because it captures so many aspects of ecosystem
functioning, body size can therefore be used to synthesize a suite of co-varying traits into a single dimension
(Cousins, 1980; Woodward et al., 2005).

As Woodward et al. (2005) state, “the challenge now is for empiricists to produce highly resolved food webs
that are quantified in terms of population dynamics, energetics and chemical fluxes, and for theoreticians to
develop new and more realistic size-based models, so that emerging ideas can be explored and tested more
rigorously”. Furthermore, ‘“‘size-based models are easier and cheaper to parameterise than most food-web
models” (Jennings et al., 2002). In this perspective, we model environmental influences on the dynamics of
marine ecosystems with a size-spectrum approach. Primary producers are explicitly distinguished from con-
sumer organisms and a mechanistic approach allows us to take into account various ecological and physio-
logical processes supposed to be determining in the functioning of marine ecosystems:

e Size-structured opportunistic trophic interactions where producers are potential preys for consumers and
where all consumer species are considered to be potentially prey and predator at the same time (Shin
and Cury, 2004);

e Predators competition for preys;

e Allocation of energy between growth and reproduction;

e Somatic as well as maturity maintenance based on the dynamic energy budget (DEB) theory (Kooijman,
1986, 2000, 2001; Nisbet et al., 2000);

e Size-dependent nonpredatory mortality;

e Starvation mortality;

e Temperature-dependence of organism’s physiological rates.

It is expected that considering explicitly the physiological bases of metabolism, the main constraints which
control trophic interactions and the size-structured nature of those processes will help to better understand the
various modes of energy transfer through marine ecosystems and their response to environmental forcing.
Furthermore, a mass-balanced formulation is used to represent the functioning of marine ecosystems in a
quantitative way, assessing the actual energy flux from primary production to apex predators as well as the
top-down effects that upper trophic levels have on the overall ecosystem. To keep consistency with bioener-
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getic studies and to avoid the complexity of explicit stoichiometric formulations based on chemical elements,
our model is expressed in term of energy. Energy has to be understood as a currency measuring “the ability to
do work™ (Kooijman, 2000). It has to be noted that given homeostasis assumptions, all mass fluxes in organ-
isms can be deduced from energy fluxes (Kooijman, 1995; Sterner and Elser, 2002). In our approach, energy is
simply assumed to be proportional to biomass. This implies an assumption of strict homeostasis and constant
chemical stoichiometry between organisms.

After a detailed presentation of the hypothesis and formulations of our model, a sensitivity analysis is
undertaken to asses the impact of each parameter on the steady state size-spectrum. In a companion paper
(Maury et al., 2007), we present numerical simulations of our model focusing on the effects of primary pro-
duction and temperature variability on the size-spectrum of marine ecosystem.

2. The model
2.1. Notations and state variables

The main state variable we are dealing with is ¢, ,,, the distribution function of the energy content of the
marine ecosystem (J kg~' m~3) at time 7 € [0, +oo[ and weight w € [0, Wax]in 1 m® of seawater. &, 1s a density
with respect to body weight and seawater volume. It can easily be converted into the more usual “normalized
biomass size-spectrum’ using the mean energetic content of one unit of biomass i (J kg~ ') which is assumed
to be a constant parameter. Hence, the quantity of energy in the weight range [wy, w,] per m> of seawater is
given by f " Eix dx and &, 1s related to N,,,, the distribution function of the number of individuals in terms
of weight (kg 'm—3 ) at (¢,w) in 1 m? of seawater, with Cow =Y w- Ny,

The symbols u, v, w, x are continuous indices which refer all to the weight dimension. Weight is supposed to
be related to length with a fixed allometric function w = al’.

According to basic ecological theory, marine ecosystems can be schematically divided into three distinct
components using fundamentally different means to mobilize energy: producers, consumers and decomposers
(Valiela, 1995). For the sake of simplicity, the present study ignores the third component and focuses on the
two first components with a particular emphasis on the consumers group (Fig. 1). Hence, our model has two
main components:

e the primary producers (autotrophic organisms mostly composed of phytoplankton) which convert solar
energy and mineral nutrients into biomass and whose weight belongs to [0, wy];

e the consumers (heterotrophic organisms encompassing numerous taxonomic groups of zooplankton and
nekton) which gain energy solely by predation and whose weight belongs to [Wegg, Wmax). Consumers do
reproduce, their eggs have a weight wee, > 0 and their maximal weight is Wi > wy.

The distribution function of the energy content of the producer and consumer groups are noted respectively
f’w and & so that the distribution function of the energy content of the ecosystem is &, = X[o,wl]ff,w‘f‘
X wegg ] 5:w with y,, ., being the characteristic function which is equal to one in the interval [x;,x,] and to
zero elsewhere.

E.tt,w)\

N
Primary /
producers| Consumers|
7
T 1 | >
0 W1 wegg wmax Welg ht

Fig. 1. Schematic representation of the weight structured ecosystem distinguishing primary phytoplanktonic producers from predatory
consumers (log-log).
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2.2. Dynamics

To avoid an explicit modeling of phytoplankton growth and reproduction, the energy density of producer
organisms is assumed to be uniformly distributed over [0, w;]. Consequently, the size-dependent predatory
mortality applied by all consumer organisms (see Eq. (8)) is averaged over the producers size range [0, wq]
to ensure that the producers size distribution remains constant at all time. The dynamics of phytoplanktonic
organisms is then expressed as follows:

S e [T ) e
=—(I,-&, Juxdx ) — &) M Yw € [0; w] (1)

dt W1 -0

With IT, (J s~' m?) the primary energy production which enters the system at time 7, which constitutes the
only external source of energy of the whole ecosystem, M, (s~') the nonpredatory mortality rate affecting pri-
mary producers and 4, (s~!) the mortality rate due to predation at time ¢ and weight x.

The bio-ecological processes taken into account to model consumers are predation, mortality, assimilation
and use of energy for maintenance, growth and reproduction. The basic equation used to describe the energy
fluxes through the weight range of consumers combines a transport term for representing the growth process
and three sink terms for predatory, nonpredatory and starvation mortality processes. It is based on the Mc
Kendrick—Von Foerster equation which is usually used in population dynamics (e.g., Tuljapurkar and
Caswell, 1997; Kot, 2001) and which is written as follows in the interval Wege,Wmax] assuming given initial
conditions for ¢ = 0:

0w 00uéin)

6t - aw - (it,w + Zw +M?}j}rv)ézw VW e]wegg; Wmax]

Eow =G0
where y (kg s~!) is the growth rate, 4 (s~ ') is the mortality rate due to predation, Z (s~ ') is the loss of energy
from the system due to nonpredatory mortality and M**" (s™') is the starvation mortality rate. For all those
coeflicients, the subscripts ¢ and w refer to time and weight.

The input of eggs R, (Js~' m ™) into the system due to reproduction is taken into account assuming a
Dirichlet boundary condition in w = Wegy:

yt,wegg éiwegg = Rl (3)

The derivation of explicit expressions for all the coefficients of Eqgs. (2) and (3) (47,0, V10> Ry M ff'j,” and Z,,,) are
provided in the five subsections below.

(2)

2.2.1. The predation process: calculation of 1,,,

Predation can be viewed as a loss of energy for preyed weight classes and a gain of energy for predating
weight classes. In the model, predation is supposed to be opportunistic and only controlled by the ratio of sizes
between organisms. Hence, all organisms can be potentially predators and preys at the same time, depending
on their relative weight (or size) (Fig. 2).

To be able to calculate the quantity of food available to a predator, the size-based constraints on predation
have to be specified. For that purpose, the selectivity s,,,, € [0,1] is defined as the capability for a consumer
organism of weight u to eat an encountered organism of weight w. Assuming that predation can occur if
the ratio of predator length over prey length is comprised between two p; and p, extreme values (Fig. 3b),
s,.w 18 @ normalized function expressed as the product of two sigmoid functions which account for the limita-
tion of ingestion when preys are either too small or too large (Fig. 3a):

Predation energy fluxes

¥ -

0 W, W, Weight

Fig. 2. Schematic representation of weight (size) structured energy flow through the ecosystem.
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Fig. 3. (a) Limitation curves for preys too large to be ingested (black dots), preys too small to be ingested (open circles) and resulting prey

selectivity function s, ,, as a function of prey length (“) ' for a 2 m long predator (p; = 3, p, = 100, «; = 5 and o, = 0.05). (b) Selectivity
function s, versus prey length (% )1/ and predator length (¥ ) *with py =3, p» =100, o, = 5 and o, = 0.05.

Suw = (1 4t (Pl—(%)m))l <1 _ (1 +e%2(ﬂz—(ﬁ)l/3)>l> RT2 510 1] (4)

With p1, p», o1 and o, being constant positive parameters characterizing both the half saturation and the flat-
ness of the sigmoid functions.

To take into account the basic physiological processes involved in the acquisition and use of energy by bio-
logical organisms, a simplified version of the dynamic energy budget (DEB) theory is used (Kooijman, 1986,
2000, 2001; Nisbet et al., 2000). In the DEB theory, the ingested energy is assimilated by organisms and
stocked into reserves. A fixed fraction x of the energy utilized from reserves is then allocated to growth of
structural material and somatic maintenance, the remaining fraction 1 — x being devoted to gonad develop-
ment, maturity maintenance and egg formation. For the purpose of simplicity, neither the reserve dynamic
nor the gonad development is considered explicitly in the present work. The ingested energy is supposed to
be used in the same way by any organism: it is assimilated, and a fraction x is used for somatic growth
and maintenance whereas a fraction 1 — x is allocated to reproduction and gonadic maintenance (Fig. 4).
A single set of mean physiological parameters (Table 1) is used to describe the mean energy fluxes through
every consumer organisms of the ecosystem: the ecosystem is modeled as a “meta-organism’ characterized
by a mean life history.

According to the DEB theory, the maximum amount of preyed energy that can be ingested at time ¢ during
dz by a predator is supposed to be proportional to a body surface. It follows that E, ,dud? (J m ), the total
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ORGANISM
@ ingestion | assimilation
Fig. 4. Schematic representation of energy flow through organisms (simplified from Kooijman, 2000).
Table 1
Parameters used for numerical simulations (ranges are given when several studies are available)
Parameter  Designation and unit Value Source
A Shape coefficient w = al’ (kg m~>) 15 Data from Froese and Pauly (2000)
¢ Sex ratio (no dimension) 0.5 Arbitrary
M Nonpredatory mortality for /=1m (s™") 1.524x 107 See Appendix C
v Allometric coefficient of M (no dimension) —0.2995 See Appendix C
Mo Fraction of the spawned eggs which are not 0.4 Arbitrary
fecunded
v Energetic content of one unit of biomass 4x10° Daan (1975), Edwards et al. (1972), Krohn et al. (1996)
Tkg™h and Kitchell et al. (1978)
w Maximum surface-specific ingestion rate 5.459%x1077  See Appendix B
(kgkg s
K Fraction of the assimilated energy allocated to  [0.65, 0.88] Estimations from Brill et al. (1978) and van der Veer
growth and somatic maintenance (no 0.65 et al. (2003)
dimension)
ea Fraction of the ingested energy which is [0.65, 0.99] Data and estimates from Essington et al. (2001),
assimilated (no dimension) 0.8 Andersen and Riis-Vestergaard (2003), Krohn et al.
(1996), Kitchell et al. (1978) and Brett and Groves
(1979)
E, Weight specific cost of growth (Kooijman, 7% 10° van der Veer et al. (2003)
2000) (J kg™")
I Amount of energy required for the somatic 0.20949 See Appendix B
maintenance of one unit of weight during one
unit of time (Jkg™'s™!)
01 Minimum ratio of predator size over prey size 3 Floeter and Temming, 2003; Juanes, 2003 and Ménard
et al. (2006);
02 Maximum ratio of predator size over prey size 100 Floeter and Temming, 2003; Juanes, 2003 and Ménard
et al., 2006
o Shape parameter for the selectivity curve 5 (See text)
o Shape parameter for the selectivity curve 0.05 (See text)
C Holling type II half-saturation constant 117.7 Tuned
Im’s™h
b4 w” is the volume of water explored by a 0.33 Fixed so that w”* is proportional to length
predator of weight w (m?®s™")
TA Arrhenius temperature-dependent correction 2% 103, Brett and Groves (1979) and van der Veer et al. (2003)
factor (K) 16 x 10*]
8x 10°

The values are derived from the literature or from estimations detailed in Appendix.
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amount of energy potentially preyed by all predators of weight comprised in the range [u,u + du] at time ¢
during dz in 1 m?> of water, can be expressed as follows:

E,,dudt o [density of predators], ,du - {body surface}, - {functional response to preys},, - dt

°d
E,,dudt = Yo Coad w*1u(p,,)dt
y ;
5
= wéiuu_lﬂfu(pz,u)dudl ( )
Pru !
’ = Y . R"=[0:1
f(pt,u) ﬁ—i_p[’u H[ [

where o is the mean maximum surface-specific ingestion rate (kg kg_z/ 3571y and £, is the functional response
to the energy content of preys p,, (p,, = [ su.,,dv) of a weight u predator. A size-dependent Holling
type II functional response without predator interference is assumed with ¢ the half-saturation constant
(J s71). u* is the volume of water explored by a predator of weight w per unit of time (m® s~ ') which is sup-
posed to be an allometric function of predator weight (it is assumed that the volume of water explored by a
predator is proportional to its swimming speed which is proportional to its body size — Froese and Pauly, 2000
— hence y is taken equal to 0.33 cf. Table 1).

Then, according to the hypothesis of opportunistic predation (preys of a given weight are eaten in propor-
tion to their selected biomass relatively to the biomass of all possible preys), the amount of preyed energy E, /.
dudwdz (J m™>) that predators in the range [u, u + du] take from preys in the range [w, w + dw]at time ¢ during
dt is expressed as follows:

Eyupwdudwds = E,, du dtf4dw = & u L (1 5,06, ) f‘4‘”du de

Su,pGrp AU
v=0 1,08

. . v=0 (6)
= & u P —meet—— dydwdt

wmax
C y
_ulJrf:,:O Su,pCrp do

The total amount of energy preyed by all predators on preys in the range of weight [w, w + dw] at time ¢ during
df in 1 m® of water is then calculated by integration over the weight range of predators:

SupCtp dv

Wmax U=Wmax f,ﬂi 1 /3Su‘w
g

Wma
7 [0 suadido

v

Et,/w det — /

U=Wegg

E,upwdudwdt = wét’w/

U=Wegg

]du dwdt (7)

It follows that the instantaneous mortality rate exerted by all possible predators on ¢, ,, at time ¢ is given by the
following expression:

El‘ Wmax
e = =
it,w u

=Wegg

~1/3

;:.uu S“-,W
! du (8)

uc_/ + fTV:nE)aX Su‘vét,u dU

v

2.2.2. The growth process: calculation of v,,,

According to Fig. 4, growth corresponds to the use of a fraction « of the assimilated energy diminished by a
maintenance cost proportional to organism body volume and finally converted into structural material at an
energy cost proportional to growth (Kooijman, 2000). Following those simple rules for energy conservation,
the growth of a mean consumer organism is expressed as follows:

dw,, xeaE,, wu E,dw,

dt YN, ¢ Y dr ®)

where es € [0, 1]1s the mean fraction of the ingested energy which is assimilated, x € [0, 1]is the mean fraction
of this energy which is allocated to growth and somatic maintenance, (1 — x) being allocated to reproduction,
w is the mean amount of energy required for the somatic maintenance of one unit of weight during one unit of
time (J kg~ 's™') and E, is the mean weight specific cost of growth (Kooijman, 2000) (J kg™ ).

We assume that growth in length cannot be negative for most marine organisms which have an exo- or an
endo-skeleton such as vertebrates, most molluscs, crustaceans, etc. Because weight is assumed to be related to
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length with a fixed allometric function (w = al’, a>0), growth in weight cannot be negative either (see the par-
agraph on starvation mortality for the treatment of mass conservation). It follows that the instantaneous
growth rate of organisms of weight u (kg s™') can be expressed as:

N dw,, U4

yt,u - dt - w +Eg

u——u

o 1

Wma;

+

Keaw [ 07 8u0&,, dv T
N "Wmax

j + fu:O Su‘vét,v dv v

v+ E,

+
keaE,, L . v
YNy, ¥

+
KeaE, M ]

) (10)
T Y +E,

+
[KeAwfu (pt_’u)um _H u]

W

Ut E,
Where [x]" is the function defined by

K =x if x>0
K" =0 if x<0

At food saturation (when the functional response f= 1), this growth rate formulation is equivalent to a von
Bertalanffy (1969) formulation of growth where anabolism is proportional to a surface (weight at a power 2/3)
and catabolism is proportional to body weight.

2.2.3. The reproduction process: calculation of R,

According to Fig. 4, reproduction corresponds to the use of a fraction 1 — k of the assimilated energy
diminished by a maintenance cost proportional to (1 — k)/k times body weight (Kooijman, 2000). All sizes
of both sex are supposed to reproduce permanently but only female sexual products are re-injected into the
system at w = wege (according to Cury and Pauly, 2000, egg size of marine fish is remarkably constant between
species and approximately equals to 1 mm).

As for the expression of the growth rate and because the contribution of the weight class w to the total eggs
production cannot be negative, the function [J" is used to express the egg input into the system (see the par-
agraph on starvation mortality for the treatment of mass conservation):

Wmax

R= (1~ M) [em B~ N,

W=Wegg

1 —x "
uw| dw
K

(11)

Wamax 1 — w C, —1/3 [Wmax ", UdU . C, +
= (1 _Megg)¢ [( )6A ét"ww fv:O ° : ét’ - (1 K) ‘uétﬁw] dW

=+ fﬁgx Sy pdv K W
With R (J s~' m™?) being the reproductive flux (input of eggs at w = Wege), ¢ € [0,1] the mean proportion of

mature female in each size class, M., the fraction of the spawned eggs which are not fecunded (Mg, € [0;1]),
(I — x) the fraction of the assimilated energy which is allocated to reproduction and we.,, the weight of eggs.

W=Wegg

2.2.4. The starvation mortality: calculation of M2

When starvation occurs, i.e. when the food ration is not sufficient to meet organism’s needs, growth and/or
reproduction cease and structural materials of the body are lysed and used for maintaining the most important
physiological functions necessary for survival (Kooijman, 2000). The starvation process leads to a quick weak-
ening of organisms which increases mortality. At the ecosystem level, starvation is a net dissipation of energy.
To conserve the mass in a consistent way when growth and/or reproduction cease due to insufficient food
intake (cf. Egs. (10) and (11)), it is considered that the quantity of energy which is needed for maintenance
but which cannot be provided by food intake is removed from the ecosystem. In this perspective, starvation
acts as a mortality term a the level of the ecosystem and the starvation mortality coefficient can be expressed as
follows using Egs. (10) and (11):

Wmax + — Wmax +
s B ;ceAww‘l/% L sy oo do (I-x)p (1 — k)eaww /3 ["g, &, dv (12)
n W Lt [ Swelipdo Koy Lt [ swelipdo
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2.2.5. The nonpredatory mortality: calculation of Z, ,,

The mortality for other causes than predation includes diseases, parasites, ageing, etc. Since large organisms
exhibit much longer life span than small organisms (e.g., Speakman, 2005), it is simply supposed to be a
decreasing allometric function.

v/3
Z, =Ml =M (%) (13)

a
With M being the nonpredatory mortality rate for a 1 m long organism (s~'), / being body size (m), a (kg m—>)

being the coefficient linking weight to cubed length (w = al’) and v a parameter.
2.3. Conservation of energy

In our model, primary production is the only supply of energy to the system. This is appropriate in open
ocean ecosystems where phytoplankton is the only energy input at the basis of the food chain. Energy is
injected into producer size classes which do not grow. It is only transferred to consumers through predation.
The model formulation is energy conservative and losses from the system occur only through nonpredatory
mortality (M > 0), loss of male sexual products (¢ < 1) and dissipation processes such as imperfect efficiency
of the assimilation process (e5 < 1), maintenance expenditures (x> 0) and energetic cost of growth (E, > 0). If
II=p=M=E,=0 and ey = ¢ = 1, the total quantity of energy in the system is conserved and kept con-
stant (even if its distribution in the weight-spectrum changes through time).

2.4. Temperature effect on physiological rates

Due to its major importance in controlling chemical reactions, temperature strongly influences metabolic
rates of living organisms (Clarke and Johnston, 1999; Kooijman, 2000; Pértner, 2002; Clarke, 2004; Speak-
man, 2005). Despite its purely molecular basis, the description of Arrhenius (Fig. 5) based on the van’t Hoff

equation (k(7T) = kme<_%)with k a reaction rate, k., the frequency factor, E, the activation energy, R the gas
constant and 7" (K) the ambient temperature) fits well temperature effects on the physiological rates of organ-
isms at the intra-specific level (Kooijman, 2000; Clarke and Fraser, 2004). Such effects are especially important
to take into account given that most marine organisms are poikilotherms and hence their internal temperature
equals ambient water temperature which is potentially variable. The Arrhenius equation does not keep a
mechanistic meaning at the inter-specific level (Clarke, 2004; Clarke and Fraser, 2004). However, it still pro-
vides a good statistical description of temperature effects on metabolic rates at the ecosystem level, even if
purely chemical effects are altered by complex eco-evolutionary processes acting at this scale (Clarke and
Johnston, 1999; Gillooly et al., 2001, 2002; Enquist et al., 2003; Clarke, 2004; Clarke and Fraser, 2004). In
our model, the Arrhenius temperature-dependent correction factor A(7) is used to correct ingestion rate,
maintenance rate, nonpredatory mortality rate and swimming speed.

0.8

0.6

Arrhenius correction factor
-

0.4

0.2

10 15 20 25 30
Temperature (°C)

Fig. 5. Arrhenius correction factor for temperatures ranging from 10 °C to 30 °C (74 = 8000 and T =298.15K =25 °C). Each
biological rate in the model is multiplied by the Arrhenius correction factor.
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rate(T) = rate(Tr) - A(T) with A(T) = e<_7ﬁ) (14)

With T,.r (K), the reference temperature and 75, a parameter (the “Arrhenius temperature” which equals %)
Combining Eqgs. (1)-(3), (8) and (10)—(14) gives the full model which is presented in a compact form in
Appendix A.

2.5. Numerical approximation

Marine ecosystems encompass very different organisms ranging from very small organisms such as phyto-
plankton cells (107®m, 107 '® kg) to very large organisms such as adult fish predators (4 m and more than
650 kg for giant bluefin tuna or swordfish for instance). To account accurately for growth and predation pro-
cesses over such a large range of size would require numerically approximating the model with an extremely
small resolution over an extremely high number of size intervals. Alternatively, a base « log scale can be used
to ensure that processes are considered at the proper resolution whatever the size of organisms is and to keep a

limited number of weight classes. Using such a length-based log scale can be done by defining @ = In(=f)

In(x) V=
W -y <= w=a(a""+ ﬁ)3 with o and f§ being fixed parameters and w = {1, 2, 3,...,n}. To be

able to choose easily the grid characteristics, the parameters f and y are expressed in terms of /i, and /..
which are fixed so that the grid depends only on o (Fig. 6). Because the present study focuses mostly on large
consumer organisms such as fish or large meso-zooplankton ranging from 1 mm to 2 m, « is set at 1.04 which
corresponds to grid cells varying from 1.5 mm for the smallest size class to 75 mm for the largest class. An
irregular grid is derived calculating weight steps dw; so that each grid point w; is placed at the middle of its
associated grid cell (Fig. 6a). The first grid point which represents producers is placed at 1.24 x 10~* m which

L] L] L] L] L] L] L] L] L] L]
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80 2
°
=
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] £
” // H
c
]
-
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T T
1 21 41 61 81 101
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Fig. 6. (a) First 10 grid points (black dots) of the discretization used to approximate numerically the model and their associated size classes
(vertical bars) used to calculate the integrals. (b) Full length/weight grid used for numerical simulations of the model. Each point
represents the mean weight and the corresponding size of each of the 101 grid cells.
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corresponds to the J107> m, 1.56 x 107> m[ size range. This size range obviously exceeds the phytoplankton
size range (which roughly extends from 107®m to 10™*m) and covers also microzooplankton and small
meso-zooplankton sizes. However, it has to be kept in mind that our paper aims at representing the behaviour
of a generic size-spectrum model formulated independently from the size range considered. To optimize com-
putation time, the discretization used here focuses mostly on large organisms, as an illustration. Using our
model to represent specifically small organisms such as small copepods would require refining the discretiza-
tion used for small sizes. Such a grid refinement would not change the qualitative behavior of the model (but
would be more costly in terms of computing time, allowing less simulations to be made). In this perspective,
two coupled size-spectrum could profitably be used, one for small zooplankton and one for larger organisms
such as fish and large zooplankton.

The model is integrated numerically along 101 length/weight classes from Iy = 107> m t0 lpa =2 m
(Fig. 6b). Producers are assumed to occupy only the first length/weight class and consumers to range from
the second to the 101th class (no overlap between their respective ranges).

Integrals are evaluated using first order approximations. Since the growth rate cannot be negative, a usual
first order upwind finite difference scheme explicit in time is used to integrate Eq. (2). Most of the parameters
used in the model have a clear physiological or ecological significance and are well documented in the litera-
ture, in both experimental and theoretical studies. The values used for simulations are given in Table 1 with
the corresponding references of the literature. The maximum surface-specific ingestion rate w as well as the
maintenance rate u are estimated given mean von Bertalanffy (1969) parameters (growth rate K and asymp-
totic size L) of fish (cf. Appendix A). The estimation of nonpredatory mortality rate (parameters M and v) is
based on assumptions about the size-dependent mean life duration of marine organisms (Appendix B).

The value of I1,, the primary energy production which enters the system is calculated so that the stationary
concentration of phytoplankton in the reference simulations matches the value of 3144.225 J/m> of seawater
which is approximately equivalent to 10> N mol m~* and that we use as the reference concentration for pro-
ducers (multiplying the redfield ratio C:N = 106:16 by the biomass free energy which is 474.6 kJ C mol~! —
Kooijman, 2000 — gives 3,144,225 J/mol of N). This value is then divided by the weight range of producers
in the model [1.5 x 10~ '* kg, 5.72 x 10~® kg] to obtain the value for the distribution function of the energy con-
tent of the producers & = 549.10° Jkg ' m~3. This values is obtained in the reference simulation using
,=1177Jday 'm~3.

2.6. Simulation experiments

In a first set of simulations, the existence of a linear steady state is tested by running the model during 50
years. The sensitivity of the steady state to the individual value of the model parameters is then explored sys-
tematically. For that purpose, the parameters w, u, Mege, M, v, ¢, K, p1, p2, ea, E, are varied individually in a
large range around their reference values (Table 1) and the influence of their variations on the stationary size-
spectrum is considered.

3. Model behaviour
3.1. Steady state

The first set of numerical experiments was conducted using the reference values of the parameters (Table 1).
In stable environmental conditions (constant primary production and constant temperature), the distribution
of energy in the ecosystem converges from any positive initial distribution to a stationary quasi-linear size-
spectrum (Fig. 7a). Only the first point (the primary producers) departs from the linear spectrum as well as
the largest length classes for which the spectrum is slightly curved downward due to the slowdown of growth
for large sizes close to the asymptotic length.

Fig. 7b—e provides the reader with the time evolution of the functional response function, the growth coef-
ficient, the nonpredatory, predatory and starvation mortality coefficients and the egg production per size clas-
ses at steady state and during the transition phase. At steady state, the functional response increases with
organism size from the highly food-limited small sizes to the less limited large sizes (Fig. 7b). The growth rate
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Fig. 7. Simulation of the transition toward the stationary state. (a) Size spectrum, (b) functional response, (c) growth rate, (d) starvation
mortality and nonpredatory mortality (e) predatory mortality and (f) contribution of each size class to egg production. Triangles
correspond to the initial energy distribution in the ecosystem (end of day 0), dotted lines correspond to the energy spectrum every 30 days
except for starvation mortality where they are drawn every 3 days and continuous lines are drawn every 2 years after the first year. Black
circles correspond to the steady state size-spectrum (after 50 years).

(in weight) as a function of organism size is dome-shaped, reaching a maximum for intermediate to large sizes
and then decreasing down to zero for length equal to L, (Fig. 7c). The log-log predatory mortality curve at
steady state shows a quasi-linear decreasing trend for organisms between 2 mm and 20 cm (Fig. 7d) with
higher mortality rates for producers. For larger organisms, the predation mortality decreases sharply down
to zero for length above 70 cm. The log-log contribution of each size class to egg production (R,) at steady
state (Fig. 7e) exhibit a linearly decreasing trend with a downward curvature for sizes above 1.4 m, when main-
tenance processes are becoming to be non-negligible in Eq. (11).

When the reference values of the parameters (Table 1) are used, the slope of the stationary length-spectrum
equals —3.175 which is equivalent to a slope equal to —1.058 for the weight-spectrum (Fig. 8).
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Fig. 8. Stationary size-spectrum and associated regression line as a function of weight (circles) and length (triangles).

3.2. Sensitivity to the parameters

The slope of the stationary size spectrum is not sensitive to the value of the maximum surface-specific inges-
tion rate (w) but its intercept decreases when w increases (the size spectrum is translated vertically, cf. Table 2
and Fig. 9a). The stationary size spectrum is not sensitive to the value of the maintenance rate u (Table 2 and
Fig. 9b). It has to be noted, however, that for length classes close to L., (biomass is null for length greater than
L., cf. Appendix B), the stationary size-spectrum may departs from its linear shape and be curved downward.
This is the case for low w values or for high u values (Table 2 and Fig. 9a and b).

Varying the value of the fraction of the spawned eggs which are not fertilized (M,y,) does not change the
size spectrum over medium and large size classes (Table 2 and Fig. 9¢). Only small size classes are sensitive to
M.y, and depart from the linear solution when M., is smaller than 0.4. Conversely, the nonpredatory mor-
tality coefficient M only influences the large classes of the size-spectrum, leading to a spectrum curved down-
ward for high M values (Table 2 and Fig. 9d). Over the explored range, the exponent v of the nonpredatory
mortality length-dependence has almost no effect on the size-spectrum (Table 2 and Fig. 9e).

The Holling type II half-saturation constant ¢ has only a weak effect on the stationary size spectrum slope.
However it has to be noted that decreasing its value leads to lower phytoplankton and small organism biomass
which departs from the linear size spectrum. Conversely, high values of ¢ lead to smaller L., (Table 2 and
Fig. 9f).

Table 2

Qualitative summary of the sensitivity analysis of the model (slope, intercept and curvature of the stationary size spectrum) to the value of
its main parameters

Parameter Designation Slope Intercept Curvature
M Nonpredatory mortality for /=1m 0 0 ++
v Exponent of the M length-dependence 0 0 0
Mgy Fraction of the spawned eggs which are not fecunded 0 0 0
10} Maximum Surface specific ingestion rate 0 —

K Fraction of the assimilated energy allocated to growth and somatic maintenance 0 0

ea Fraction of the ingested energy which is assimilated + 0 —
E, Weight specific cost of growth — 0 +
u Maintenance rate 0 0 +
p1 and oy Minimum ratio of predator size over prey size + 0 0
p2 and o Maximum ratio of predator size over prey size + 0 0
C Holling type II half-saturation constant 0 ++ +

0 =no effects, + = positive effect and — = negative effect.
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The fraction of the assimilated energy which is allocated to growth and somatic maintenance (x) slightly
influences the curvature of the spectrum for small lengths (Table 2 and Fig. 9g). « also influences positively
the L., value (and hence the curvature of the spectrum for large lengths). For high values of k, the model pro-
duces unstable oscillations (waves propagating from small to large size classes cf. Fig. 9g). This unstable oscil-
latory phenomenon does not appear when M., is set equal to 0 (Fig. 9h).

Increasing the size of the smallest prey that can be eaten by a given predator (decreasing p, and increasing
o,) decreases substantially the slope of the stationary size-spectrum (Table 2 and Fig. 91). Increasing the size of
the largest prey that can be eaten by a given predator (increasing p; and decreasing o) increases the slope of
the stationary size-spectrum (Table 2 and Fig. 9j).

Decreasing the fraction of the ingested energy which is assimilated (e4) slightly decreases both the slope of
the size spectrum and L., (Table 2 and Fig. 9k). On the contrary, an increase of the weight specific cost of
growth E, decreases both the slope of the size spectrum and L., (Table 2 and Fig. 91).

a o+ b
o E— N O —
e e ©=0.1 Pl +E+09 1=10000
'E R +E+69 — 0=0.047 'E - — u=18100
= +E+68
e \ +E+08 —— ©=0.02 (= -+ u=25000
x. \‘\.‘ 4-E+07 x. =07
2 1 E+06 2 +E+66
2 TE+05 2 FE+05
2 E+O4 2 E+04
g N 3 +E+63
> = > \ £46;
c b \i c =0T
w U11 w +E+00 \J
+E-0) l HEOT
+E-63 B=
1.E-03 1.E-02 1.E01 1.E400 1.E+01 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
Organisms length (m) Organisms length (m)
Cc +E d HE+
A e —M_egg=0.6 o ----M=0.005
£
el E+10 ----M_egg=0.4 — =] ——m=0.002
‘E \\\ e M_egg=0.2 E FEH08T —m=0.001317
- i ——M_egg=0.0 < +E+67 M=0.0005
o \ +E+08 2 +E+06
) N +E+07 3 +E+05
> \ . > +E+04
2 \ +E+06 2 -
+E+63
2 1E+05 2 NG
) o
T +E+04 T +E*OT :
3 . TE+03 3 ..:wb\\\::
5 N 5 ot
S ) b re024
+E+01 -
£-63
+E+06 v +E-64
+-E-04 £-65
1.E-03 1.E-02 1.E-01 1.E400 1.E+01 1.E-03 1.E02 1.E-01 1.E+00 1.E+01
Organisms length (m) Organisms length (m)
e - f .
1E¥0] oo i= i
e 1.E+09 4 —v=-0.1 @& T +HE+10: —=117.7
£ - —v=-0.29954 £ SN +E+69 c=11.77
. +-E+08 . c=1.177
"o \ v=—0.05 o +E+68
= \ 1.E+07 ~ \ -
- - X HE+O7
= +E+06 ~ e
g g = +E+06
5 1.E+05 1 = \ TE+05
c c N tErod
(] 1.E+04 ) +E+04
o ° 0
S +E+63 > ~
o
] %02 | °
c c
w 1.E+01 \ w
TE00 |y
T +-E-01
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E-03 1.E-02 1.E-01 1.E+01

Organisms length (m) Organisms length (m)

Fig. 9. Systematic sensitivity analysis of the steady state to the parameters. Different values of w, u, M_egg, M, v, c, x, p2, pl, e and E,
varying in a large range around their reference values are considered respectively in (a)—(1). The sensitivity of the steady state to the
parameter x is considered in the case where M_egg = 0.4 (g) and M_egg =0 (h).
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Fig. 9 (continued)

4. Discussion
4.1. Our model in the context of previous studies

The development of continuous size spectrum models based on allometric growth and mortality processes is
a long lasting story in quantitative marine ecology (e.g., Platt and Denman, 1978; Silvert and Platt, 1978, 1980;
Dickie et al., 1987; Cushing, 1992; Duplisea and Kerr, 1995; Arino et al., 2004; Benoit and Rochet, 2004).
Models first dealt with constant growth rate. Later, Silvert and Platt (1980) assumed a constant size ratio
between a predator and its prey. More recently, Arino et al. (2004) incorporated reproduction to the model
and Benoit and Rochet (2004) linked explicitly the growth rate to the actual quantity of food being eaten
and extended the predation process to any distribution of prey selectivity. In the model of Benoit and Rochet
(2004), a given predator is supposed to eat all the potential preys swimming in a searched volume which
increases allometrically with predator size. Like previous models, their model is built on a “supply system™
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vision of the ecosystem: all the selected preys supplied in the “hunting volume™ of the predator are eaten. Con-
sequently, the growth rate of predators is not limited: if the biomass of prey tends to infinity, the growth rate
of predators will also tend to infinity. Such a characteristic is not realistic and is furthermore likely to generate
instability as reported by Benoit and Rochet (2004).

Conversely, our approach is based on a symmetrical “demand system’ vision of the ecosystem: any organ-
ism in the ecosystem targets a maximal amount of energy proportional to its squared length to meet its
growth, reproduction and maintenance needs and cannot eat more than this demand. Consequently, the
growth rate of predators is limited: if the biomass of prey tends to infinity, the growth rate of predators tends
to a maximum. Hence, in our model, a predator generates a mortality rate proportional to its maximal needs
(and related to the biomass of prey with a Holling type II functional response) which is distributed over its
prey range. Energy from prey is then shared between all their possible predators, proportionally to the mor-
tality they exert. If predator needs for growth and/or reproduction are not satisfied, a starvation mortality
coeflicient is applied, which is proportional to the maintenance needs not fulfilled by assimilated energy.
Our approach allows to take into account more biological and ecological processes (opportunistic size-struc-
tured predation, predators competition, allocation of energy between growth and reproduction, somatic and
gonadic maintenance, starvation mortality) in a rigorous mass-balanced physiologically based formulation
derived from the dynamic energy budget theory (Kooijman, 2000).

4.2. Stationary solutions

Numerical simulations show that the model produces stable solutions which do not need to be stabilized
using diffusion or complex boundary conditions. In most cases with constant environmental conditions, the
model converges toward a stationary log-log linear size-spectrum which is independent of initial conditions
(Fig. 7). Numerically, 20 years are most of the time sufficient to approximate the stationary solution with a
good precision. It is theoretically well established that size-structured predator—prey models admit a linear
log-log size-spectrum as a stationary solution (Silvert and Platt, 1980; Arino et al., 2004; Benoit and
Rochet, 2004) as far as the smallest sizes are put apart (Shin and Cury, 2004). Our simulations corroborate
previous studies and show that this important property still holds when size-dependent opportunistic pre-
dation, predator competition, energy allocation between growth and reproduction, nonpredatory mortality
and starvation mortality are explicitly taken into account as key processes governing energy flow through
marine ecosystems.

From an ecological perspective, the distributed nature of predation over a large size range multiplies the
weak links in ecosystems, and hence is likely to dampen oscillations between consumers and resources and
enhance persistence and stability (McCann et al., 1998; McCann, 2000). In other respects, the stationary state
can be considered as the “ultimate state of maturity” of an ecosystem as defined by Odum (1969). Being
always submitted to perturbations, ecosystems are actually in a never-ending transient state of “maturation”
toward their steady state “maturity”.

Using our reference set of parameters, the slope of the simulated log-log biomass spectrum equals —1.06.
This value matches fairly well with the values reported in empirical studies (e.g., Macpherson and Gordoa,
1996; Zhou and Huntley, 1997; Quinones et al., 2003; Marquet et al., 2005). For the first size class of the spec-
trum however (the size class of the producers), the model departs from the linear solution. This is likely to be
due to the poor representation of producers in the model, in particular to the lack of representation of phy-
toplankton growth and division. Furthermore, our numerical simulation grid, which focuses on consumer
dynamics, has only one size-class for representing producers which likely leads to potential irregular solutions
when approximating the integrals over small sizes. It has furthermore to be noted that for large sizes close to
L., the size spectrum is curved downward. This phenomenon corresponds in our model to the slowdown of
growth around the maximum size.

4.3. Sensitivity of the simulated size-spectrum to the parameters

The slope, intercept and curvature of the stationary size-spectrum are generally not very sensitive to the
parameters of the model, at least in the explored ranges (Table 2 and Fig. 9). The parameters can be classified
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according to their qualitative effect on the size spectrum. Some parameters, such as the size of the smallest prey
that can be eaten by a given predator (p,), act only on the slope of the spectrum (cf. Fig. 91 and j) when others,
such as the maximum surface specific ingestion rate (), act only on its intercept (Fig. 9a). Other parameters,
such as the nonpredatory mortality coefficient (M), modify the curvature of the spectrum (Fig. 9d) when some
others, such as the fraction of the spawned eggs which are not fertilized (M_egg), have only a local influence
on the very small sizes of the spectrum (Fig. 9¢). Finally, most parameters modify slightly the L., value and
hence influence the linearity of the spectrum for large sizes.

It has furthermore to be noted that, as suspected by Arino et al. (2004), for certain combinations of extreme
values of the parameters, the stationary solution becomes unstable and oscillatory solutions appear, even in
the case of stable phytoplankton production and constant temperature (Fig. 9g).

5. Conclusion

The proposed model improves previous studies by incorporating processes playing an important role in the
energy fluxes through marine systems. It is furthermore based on a “demand system’ approach which leads to
more stable solutions than previously developed “supply system” models. Despite its simple ecological
assumptions, the model seems to represent adequately the main qualitative and quantitative characteristics
of marine size-spectra which have been reported in empirical studies and enables testable insights regarding
the effect of environmental variability and changes on ecosystems. Those effects are explored through simula-
tions in a companion paper (Maury et al., 2007) which focuses on temperature and primary production effects
on the size spectrum.

However it has to be kept in mind that marine ecosystems encompass a large number of zoological
groups which exhibit very different eco-physiological and behavioral characteristics. Each zoological group
is in turn composed of a large number of species, each having various life histories (various growth rates,
longevities and sizes at maturity). Hence, in real ecosystems, small organisms comprise adults of various
small short-living species as well as juveniles of various large long-living species. Despite this obvious diver-
sity, our model assumes constant physiological parameters and rules for any consumer organisms in the eco-
system. That could constitute a limitation of our approach since biodiversity plays important functional
roles in ecosystems. This furthermore leads us to use simplified hypothesis about the reproduction process
since all size classes are supposed to contain the same proportion of mature individuals. Formalizing and
quantifying the effects of biodiversity in size-spectrum models is indeed critical and will be an important
goal of our future work.
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Appendix A. Full model equation

Combining Egs. (1), (2), (7) and (9)-13 gives the full model equation:
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where [x]" is the function defined by
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TATA
is the size-dependent selectivity function of preys of weight w by predators of weight u; and A(T) = e< ref T> is
the Arrhenius temperature-dependant correction factor.

Appendix B. Calculation of » and u as a function of the Von Bertalanffy growth parameters K and L.,

At food saturation, our growth Eq. (9) is related as follows to the Von Bertalanffy growth equation:

— Y
d ) A =S Keaw
d_w = Aw*? —Bw with { HE (18)
! 8= z//+Eg

This well known equation can be rewritten in length and integrated between / = 0 and / =/, to get /, as a func-
tion of time:

= 3al [ — Bal — = —=1 19
dr @~ Al “ & 3 3 (19)
which after integration gives:
A -1/3 B
lt = aB (1 — eTB(ZﬁO)) (20)
This expression is used to express @ and p as a function of the Von Bertalanffy growth parameters K and L_.:
L, —4a® repopa”!3 3KLoo (Y+E
B ’ = { o= (21)
_B_ __un
K=3 3(U+Ee) p=3K(y +E,)

For the numerical applications presented in the present paper, an asymptotic length L., = 2.2 m is assumed
with a corresponding growth rate K = 0.2 year ' deduced from the mean statistical relationships observed be-
tween K and L., by Froese and Pauly (2000).

Appendix C. Estimation of the mortality parameters M and v
To estimate the parameters M and v which determine the length-dependent nonpredatory mortality, five

groups of organisms having very different mean length are considered (diatoms, copepods, and three fish of
0.1 m, 0.8 m and 1.7 m). For each group an arbitrary life span is attributed and the corresponding mortality
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Table 3
Estimation of the nonpredatory mortality parameters M and v (see text)
Species Mean size Estimated life span Estimated mortality Modeled mortality MI"
Diatoms 5% 107> m 90 days 2.56x 1072 day™! 2.56x 1072 day™!
Copepods 5% 10 m 180 days 1.28x 102 day ! 1.28x 102 day ™!
Fish 0.1 m 0.1m 730 days 3.15x 107 day™! 2.63 x 1073 day™'
Fish 0.8 m 0.8 m 1825 days 1.26 x 1073 day ™! 1.41x 1073 day™!
—1 —1

Fish 1.7 m 1.7m 2555 days 9.01 x 10~* day 1.12x 1073 day

is estimated assuming that the life span corresponds to the age at which only 10% of a cohort remains (Table
3). The parameters M and v are estimated by fitting the modeled mortality curve to the estimated mortality
curve (Table 3).
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OF A DIFFUSION-DISSOLUTION/PRECIPITATION
CHEMICAL SYSTEM

BLAISE FAUGERAS, JEROME POUSIN, AND FRANCK FONTVIEILLE

ABSTRACT. A numerical scheme based on an operator splitting method and
a dense output event location algorithm is proposed to integrate a diffusion-
dissolution/precipitation chemical initial-boundary value problem with jump-
ing nonlinearities. The numerical analysis of the scheme is carried out and it
is proved to be of order 2 in time. This global order estimate is illustrated
numerically on a test case.

1. INTRODUCTION

In this article we address the problem of the numerical integration of a com-
plex diffusion-dissolution/precipitation chemical system of equations constituted
of partial differential equations and ordinary differential equations with nonlinear
discontinuous right hand side. Such systems arise in models describing the reten-
tion capacity of concrete matrices in which wastes and pollutants are embedded.
The particular model we have in mind is described and studied from a mathemat-
ical point of view in [7] and [8]. It takes into account the influence of the chemical
context evolution on the dissolution/precipitation rates and expresses the necessary
presence of solid for dissolution by an obstacle problem. The multi-species diffusion-
dissolution/precipitation model takes the form of an initial-boundary value problem
in which partial differential equations (PDEs) and ordinary differential equations
(ODEs) are coupled through nonlinear discontinuous terms. The system of equa-
tions for N; species is formulated as follows. C = (C};);=1,.. n, is the vector of

s

chemical species concentrations in liquid phase and S = (S;)i=1,...,.~, is the vector
of chemical species concentrations in solid phase. C} are nonlinear functions of C'
representing saturation concentrations, «; and D; are strictly positive constants.

The following notation is also used
Vz €R, 2z =max(z,0) and z~ =2t — 2 >0,
and
1if 2> 0,
0 otherwise.

sgnt(z) = {
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For i =1 to N, we have

(1)
9:Cy = DiAC + sgn™(S)as(C3 (C) = C)F — as(CFH(C) = C)~  in (0,T) x Q,
hS; = — sgn*(Si)ai(Ci*(C) — Ci)+ + Oél(CZ*(C) — Oi)_ in (07 T) x €,
Ci(0,2) = C2(2) >0, S;(0,z) = SP(x) >0 in Q,

Ci(t,x) =0 in (0,7) x 09.

The purpose of this article is to present an efficient numerical scheme of order 2
in time to integrate systems such as system (1.1). The scheme proposed in [7] is
based on a simple implicit Euler method and has two main drawbacks. First a large
nonlinear system has to be solved at each time step and second it is only of order
1 in time. We propose a scheme combining an operator splitting method ([13], [9])
and an event location algorithm using a dense output formula. Operator splitting
methods are known to provide cheap and high order approximations to reaction-
diffusion equations [2], [10], [6]. Therefore, they represent an interesting tool for
dealing with large chemical systems. The event location algorithm presented in
Section 3 enables us to determine the switching times at which the discontinuities
occur in the reaction terms with a desired accuracy.

Throughout this article we consider a semi-discretized system of equations. In-
deed a difficulty appears in the fully continuous case that we are not able to cope
with easily. The switching time, t4, is an unknown function of x, the space vari-
able. Dealing with the continuous case then means considering reaction-diffusion
equations defined on a noncylindrical domain. One can bring back the problem
to a cylindrical domain by rescaling the time variable but then time and space
dependent coefficients with unknown regularity appear in the equations. Thus, we
consider that the chemical system is already discretized in space, using, for exam-
ple, a finite difference or a finite element method. The system of ODEs we consider
then reads

dC

— =AC+F(C,S

dt + ( ) )7
(1~2) ﬁ——FCS

dt (C.8),

C(0) = Cy, S(0) = Sy.

C and S are vectors of RY and A is the N x N matrix resulting from the spatial
discretization of the A operator which is symmetric negative definite. The nonlinear
terms read

F(C,S) = (Fx(C,S))k=0,...N,
with

G,lc(C), if S, >0,
G2(C), if Sy, < 0.

This paper is organized as follows. In Section 2 we present the operator splitting
method and show that it can be applied to a system in which PDEs and ODEs are
coupled. Estimates of the local errors are given. Section 3 deals with the numerical
treatment of the discontinuities in the nonlinear reaction terms. We formalize the
event location algorithm suggested in [4] and give estimates of the local errors. We
then describe the scheme we propose, combining an operator splitting method and
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an adaptation of the event location algorithm, and show it is of order 2. In the
final Section 4 the effectiveness of the scheme is illustrated numerically.

2. OPERATOR. SPLITTING

The main topic of this section is to present the operator splitting method which
constitutes the first ingredient of the scheme we propose. We first concentrate on a
classical reaction-diffusion equation and give estimates of the local errors. We then
show that the method can still be applied without any order reduction ([3], [12],
[5]) if an ODE is coupled to the first equation.

2.1. Strang operator splitting. In this section we only consider the semi-discret-
ized diffusion-reaction equation for C. The problem of the switching of the non-
linear discontinuous reaction terms is also left aside. We assume that locally the
reaction term F(C,S) is given by a smooth function G(C). As in [1], G is a Lip-
schitz function with constant L of class C* such that G(0) = 0 and the first four
derivatives of G are bounded.

Let R' denote the flow (also called fundamental solution operator) of the system

dC
& _AC+G(C), t >0,
2.1) di +G(C)
C(0) = C,.
Let Y denote the flow of system (2.2),
dC,
— =G(Cy), t >0,
(2.2) dt (Cy)
C1(0) = Co1,
and X' denote the flow of system (2.3),
dC,
— =AGC,, t >0,
(2.3) dt 2
CQ(O) = COTQ.

The idea of splitting methods is to approximate R by combining the two flows X*
and Y*. Two classical approximations are given by the Strang formulas [13],

Zhpp = X'PY'X'? and  Zhpp =Y'/2X'Y?

(which we also denote by diffusion-reaction-diffusion or DRD-splitting and RDR-
splitting in the remaining part of this paper). The following result holds.

Lemma 2.1. Let Cy € RN. For t sufficently small, the local errors for the two
splitting schemes satisfy,

R!'Co — Z4 rpCo = O(t?)

R'Cy — ZL , rCo = O(t3).
Proof. This result is the particular finite dimensional case of local error estimation
results obtained by Besse et al. in [1]. It can be derived using the same tools,

essentially Taylor expansions and judicious estimations of the rest, with some minor
adaptations due to finite dimension. For the sake of completeness we give here the
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main ideas of the proof. Let us denote by ||.|| the euclidean norm on RY. We may
write a Duhamel formula for problem (2.1), which reads

t
RtC() = XtCO +/ XtiSG(RSCO)dS,
0

and express the difference between the exact solution and the splitting solution
Z'Cy (DRD or RDR) as

t
RtC() — ZtC() = / XtiS(G(RSCQ) — G(ZSCO))dS + W(t)
0

Since G is Lipschitz with constant L > 0 such that for all C;, Cy € RV
|G(C1) = G(Cy)| < L||Cy — Co].

The matrix A is negative definite. Thus for all V € RY and all ¢ > 0 the following

inequality holds for the semi-group e'4,

IX'V|| = [V < ([ V]
It follows that

t
|IR'Co — Z'Cy|| < L/ IG(R*Co) — G(Z°Co)|lds + [[W(1)]].
0

Then the estimates of Lemma 2.1 are obtained in the same way as in the proof of
Lemma 3.1 p.13 of [1] by accounting for the following changes. In Lemma 2.2.1 p.4
from [1] the L?, H?, and H* norms are replaced by the Euclidean norm || - ||, the
A-norm || ||a=||A-|| and the A%norm |- || 42=]||A? - ||, respectively . Then by using
the Gronwall Lemma (p.3 from [1]), the rest W (t) is estimated as ||[W (t)|| = O(t3)
for t small and Lemma 2.1 reduces to Lemma 3.1 from [1] with the norms previously
introduced. g

2.2. Coupling reaction-diffusion equations and ODEs. Let us now consider
the coupling of equation (2.1) with the equation for S:

dC

— =AC+G(C),
(2.4) s _

C(0) = Co, S(0) = Sy

The solution (C(t),S(t)) to (2.4) is denoted by R'(Cy, Sp) = (RLCo, R5(Co, So))-
S(t) is given explicitly by

S(t) = So - / G(C(s))ds,

which can also be written S = H(C). In such a situation Descombes and Massot [3]
show that order reduction occurs in the DRD-splitting but not in the RDR-splitting.
The problem we consider is quite similar. However, because of the particular form
of function H which should be written as

S(t) = H(t, Sy, C(.)),
no order reduction occurs as is shown in Lemma 2.2. Let us denote by

(Ci(t),81(t)) = (Y&Co,1, H(t,S0,1,Y:Co 1))
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the solution to system

dC;

dt - G(Cl)7
(2.5) sy _ _

dt - G(Cl)7

C1(0) = Cop,1, S1(0) =Sp 1.
The DRD-splitting for system (2.4) can be written as
Zprp(Co,80) = (Zbrp.cCo, Zbrp.s(Co, S0)),

with

(2.6) Zhrp.oCo = X2YEX2C,,

(2.7) Zrp.s(Co,S0) = H(t, Sy, Y X*/2Cy),
and the RDR-splitting as

(2.8) Zpr(Co0s80) = (Zrpr,cCos Zrpr,s(Cos So)),
with

(2.9) ZhproCo = Y2XY?C,

(2.10)  Zhpg.s(Co,So) = H(t/2,H(t/2,S0, Y¢.Co), Ye XY/ Cy)).
The following result holds.

Lemma 2.2. Let Cy € RY and Sy € RY. For t sufficiently small, the local errors
for the two splitting schemes satisfy

(2.11) R Co— Zphrp oCo = O(t%),
(2.12) R%(Co,S0) — Zprp,s(Co,So) = O(t?),
(2.13) R:Co — Zipr.oCo = O(t?),
(2.14) R4(Co,S0) = Zhpr.s(CosSo) = O(t?).

Proof. Equations (2.11) and (2.13) follow directly from Lemma 2.1. Let us show
(2.12) and (2.14). Using the Duhamel formula, C(t) is given explicitly by

t
C(t) =etAco+/ e=IAG(C(s))ds.
0

It follows from classical expansions that
(2.15) C(t) = Cy + t(ACy + G(Cy)) + O(t?),
and since S(t) = H(t, Sp, C(.)), we obtain

2
(216)  S(t) = So — tG(Co) — %G’(CO)(ACO +G(Cy)) + O(F).
From
Y. Cy = Cy +tG(Cy) + O(t?)
and
XtCy = e2Cy = Cy+ tAC, + O(t?),
we deduce that

t
YSXY2ACy = Cy + 5ACo + 5G(Co) + O(t?) + O(s?) + O(st)
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and
G(YsX1?AC) = G(Co)+%G’(CO)ACO—HG’(CO)G(CO)+O(t2)+0(s2)+0(st).

Eventually since
Z}rp.s(Co,So) = H(t,So, Y X'/2Cy),
we obtain
S(t) = Zprp.s(Co,So) = O(t?),
which proves (2.12).
The same type of arguments are used to prove (2.14). g

3. NUMERICAL TREATMENT OF THE DISCONTINUITIES

The purpose of this section is twofold. First we present the event location algo-
rihtm for a discontinuous ODE suggested in Hairer et al. [4] and prove that indeed
it leads to an accurate numerical method. We then combine this algorithm to a
splitting scheme and obtain a method of order 2 to integrate system (1.2).

3.1. An event location algorithm for ODEs. In this section we present a nu-
merical scheme of order p > 2 to solve a nonlinear discontinuous ODE. The main
numerical tool used is an explicit Runge-Kutta method of order p with a dense
output of order p* > 2. The reader is referred to Sections II-1 to II-6 of the book
by Hairer et al. [4] for a detailed description of these methods. We assume here
that p = p*.

Let us give some notation. An explicit Runge-Kutta method of order p to solve
the ordinary differential equation

!

y' = f(ty),
3.1
3.1) { y(to) = yo,
is represented by the increment function of the method, F'(¢,y, h). Given an initial
value (%o, yo) and a step size h, one computes a numerical solution y; approximating
y(to + h) by y1 = yo + hF(to,y0, k). The numerical solution for a point T > ¢y is
then obtained by a step-by-step procedure

Yir1 = yi + hF(ti, yi, h).
If the method is of order p, then the local error
eir1 =y(ti +h) — (y(t:) + hE(t;,y(t:), b)),

statisfies
(3:2) eir1 = O(hP™).

A Runge-Kutta method with a dense output formula provides a cheap numerical
approximation to y(¢; +6h) for the whole integration interval 0 < 6 < 1. We denote
this approximation by u;(#), and we have

(3.3) u;(0) = y(t; + 0h) + O(hPH).

Let us now concentrate on the numerical integration on a time interval [to, 7] of
the following ordinary differential equation:

y' = fi(t,y) if g(y) >0,

(3.4) Y = fa(t,y) if g(y) <0,
y(to) = yo and g(yo) > 0.
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We assume that f1, fo and g are C°° functions. The function g is called the switch-
ing function. We also assume that the solution y(t) to (3.4) crosses the surface
¥ = {y; g(y) = 0} only once, at the point y; = y(tq). Therefore, y(t) may be
written as
y(t) = y1(t) in [to, ta,
y(t) = yo(t) in [tq, T,
Y1 (ta) = y2(ta) = ya,
where g7 is the solution to
{ y/(t) = fl(ta y)a t> t07
y(to) = Yo,
and ys is the solution to
{ y/(t) = f2(t7y)7 t> td7
y(ta) = Ya-
The derivative of the solution y is, in general, discontinuous on ¥. The difficulty in
the numerical integration of such a discontinuous equation is that the point (¢4, yq)
is not known in advance but has to be detected. Moreover, in order to obtain a
method of order p, this point has to be detected with a precision of order p. The

method proposed here relies on the event location algorithm suggested in the book
by Hairer et al. [4] (Algorithm 6.4 page 195).

Algorithm 3.1.

e Using f1, define a Runge-Kutta method of order p with increment function
F17
Yir1 = Yi + hFi(ti, yi, ).
e Compute the solution step-by-step yo,y1,... until a sign change appears
between g(yn—1) and g(yn).
e Using the dense output, find 0 such that g(un—1(0)) = 0.
e Reset yp, = up—1(0) and t,, = t,,—1 + 6h.
e Using fo, define a Runge-Kutta method of order p with increment function
F27
Yir1 = Yi + hF>(ti, yi, h),
and carry on the computation from t, toty =1T.

The key point in this algorithm is that, thanks to the dense output, we are able
to compute y, = yq + O(h?*1) and t,, = tg + O(hP*1). Thus, we can show the
following technical result.

Lemma 3.1. At each time step of the scheme provided by Algorithm 3.1, the local
error satisfies

e; = O(hPTh).
Proof. From (3.2) it is clear that for i =1ton — 1,
ei =y1(t;) — (y1(tim1) + hF1(tim1, 1 (ti1), b)) = O(RPT),
and that for i =n+2 to N,
e = ya(ti) — (yo(tim1) + hF2(tio1, y2(tio1), h)) = O(RPTY).

It remains to show the result for e, and e,;;. Since we only know that ¢, =
tq + O(hPT1), there are two cases.
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o Casety_1 <tq<t, <tpy1:

The local error e,, reads

en = y2(tn) — (Y1 (tn—1) + RF1(tn—1,y1(tn-1), b))
= [y1(tn) = (W1 (tn—1) + AL (tn—1, 91 (tn—1), B))] + [y2(tn) — y1(tn)].

Moreover, we have y1 (t,,) = ya + O(h?™1), ya(tn) = ya + O(RPT), and we
can conclude that e, = O(hPT!).
Concerning the next step it is also clear that e, 1 = O(hPT1).

o Casety_1 <t, <tg<tpi1:

It is clear that e, = O(hP™1). The local error e, reads

En+l1 = yQ(tn+1) - (yl (tn) + hF2(tn> U1 (tn)7 h))

Since y1(tn) = ya + O(hPT), t, = tg + O(RP™Y), and h = (tp41 — ta) +
O(hP*1), we have that

hFQ(tm yl(tn)v h) = (tn+1 - td)FQ(tda Yd; (tn-‘rl - td)) + O(hp+1)

and

ent1 = Y2(tns1) — (Wa + (tng1 — ta) Fo(ta, ya, (o1 — ta))) + O(RPH)
= O((tny1 — ta)P*h) + O(RPH).

Therefore, e, 11 = O(hPT1).
[

The third step of Algorithm 3.1 is crucial. The computation of 6, such that
g(un—1(0)) = 0, can be done using a dichotomy method or, for example, a second
order Muller method. This latter requires that the zeros of g are separated and
might require many iterations to converge depending on the “flatness” of g between
t,_1 and t,. However, for the applications we considered the desired accuracy on
0, yn, and t,, can always be achieved.

3.2. Combining the event location algorithm and the splitting scheme.
In this section we formulate the scheme proposed to integrate system (1.2). The
method combines either the RDR-splitting or the DRD-splitting described in Sec-
tion 2 and an event location algorithm similar to Algorithm 3.1 of Section 3.1. With
those tools we construct a numerical scheme of order 2 in time for system (1.2).
Since the discontinuous nonlinear reaction terms only come up in the R-stages, it
is tempting to try to detect the switching times only during these stages. However,
this is not possible since the intermediate C or S values computed after the first
two stages of the splitting scheme are not yet in O(h?). The computed switching
time, therefore, cannot be an O(h®) approximation of the exact switching time,
and we need to construct a dense output for a whole time step including the three
stages of the splitting method. Hermite interpolation (Shampine [11]) provides an
efficient way to construct dense output formulas. Whatever the splitting is, at each

s’ ds!

time step we have two function values S° , S' and two derivatives S 5 at our

disposal and can thus do cubic polynomial interpolation. The resulting formula is
ds® ds?

uw¥(0) = (1-0)S" +6S' +-0(0 - 1) ((1 —20)(S' — 8% + (0 — Dh—- + Ghﬁ> .
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A similar formula, u® can be computed for C. Since the splitting is of order 2, we
have

u®(0) — S(to + 0h) = O(h?),
u®(0) — C(to + 0h) = O(h®).
These dense output formulas are used to detect the switching times. This detection
is performed component by component, as illustrated in the following algorithm.
Algorithm 3.2.
e Start from C° >0, S° > 0 and thus with F(C,S) = (G}.(C))k=o,... N-
o Using either the RDR-splitting or the DRD-splitting, compute the solution
step-by-step (C°,SY), (C,SY),... until a sign change appears, for a com-
ponent ki, between S"kLl_1 and Sy, .
o Using the dense output polynomial u®, find 6 such that ufl (9) = 0.
e Reset t, =t, 1+ 0h, S” =u®(0), and C" = u®(9).
e Change G,lCl to Gﬁl and carry on the computation using the new reaction
term F until a new sign change appears for another component Sk, .

We denote by
(Cn+1’ S7L+1) _ Zh(Cn, Sn) _ (chn, Zg(cn’ Sn))
the numerical scheme provided by Algorithm 3.2. Let us now state a result con-

cerning the estimation of the local errors.

Lemma 3.2. At each time step of the scheme provided by Algorithm 3.2, the local
error satisfies

(3.5) e = REC(t:) — ZEC(t:) = O(h?),
(3.6) ef = R§(C(t:),S(t:)) — Z&(C(t:), S(t:)) = O(h?).

Proof. We restrict ourselves to a time interval [0, 7] on which only one component,
Sk, , switches at time t4. Other switchings can be treated in the same way. The
exact solution, (C(t),S(t)) = R*(Co, Sp) may be written as

(C(t),8(t)) = (C1(t),S1(t)) = Ri(Co,So) = (R}cCo, Ri5(Co,So)), in [0,ta],
(C(t),8(t)) = (Ca(t),S2(t)) = R5(Ca,Sa) = (RocCa, R3s(Ca, Sa)), in [ta, T,

(Ci(ta), S1(ta)) = (C2(ta),S2(ta)) = (Ca; Sa),
where (Cq(t), S1(t)) is the solution to

dC

ds

2~ _Fl(C
dt ( )?

C(0) = Cy, S(0) = Sy,
and (Ca(t),Sa(t)) is the solution to

% = AC+F?(C), t > ty,
ds

— = -F*(C

dt ( )’

C(tq) = Cy4, S(tq) = S,
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where
F!(C) = (Gi(C))i=o,...n
and
F2(C) = (GL(C), ... G}, _1(C), G2, (C), G111 (C)...).

Before the switching, (2.13) and (2.14) (or (2.11) and (2.12)) directly show that
fori=1ton—1,

ef = 0(h%), ef = O(h?).
In the same way after the switching time we have for i = n + 2 to NV,

e¥ = 0(h?), ef = O(h3).

It remains to show that €5, €S, |, e, and e | are O(h®). Since we only know that
tn = tq+ O(h®) there are two cases.

o Case ty_1 <ty <t, <tpi1:

The local error e$ reads

eg = R(Ct«nitnfl)C(tn_l) _ Z(cfn*tnfl)c(tn_l)
= (Rig " C(ta) = 267V Clt-1))
tn—tn—1 tn—tn—1

Again, from (2.13) we know that
(Byg ™" Cltn-r) = 28777 Cltn)) = O(°).
Moreover, since
(B~ Ctnm) = By~ Cltnn)
(R~ R R0 )
= (R ™"~ Rig™")Cu,
we obtain using the same expansion as in (2.15),
(RE" ™" Ct) = RYG ™"V Clt1)) = Oltn — ta) = O(h®),
and this proves that
e = 0(n?).
The same type of manipulations enable us to show that
ed = 0(h?).

It is also clear that €&, = O(h®), and that e, = O(h3).
o Case ty_1 <tp, <tg<tpi1:

The arguments of the proof are similar to those of the previous case.
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4. GLOBAL ERROR ESTIMATE AND NUMERICAL ILLUSTRATION

Theorem 4.1. For all Cy, Sg € RY and all T > 0, there exists hg such that for
all h € 10, ho, for all n such that nh <T

(4.1) RE'Co — (Z&)"Co = O(h?),
(4.2) R¥"(Co,So) — (Z&)"(Co,So) = O(h?).
Proof. We only prove (4.1). As noticed in [2] the triangle inequality yields
n—1
(Z8)"Co — R Col| < 3 [1(Z8)" I (Z8)RE'Co — (28)" I RET"Cyl .
j=0

By using the fact that X! is unitary with respect to the Euclidean norm and that
the functions G* are Lipchitzian with constant L, we refer to [1, p.8] where, for
deriving, there exists a constant K such that for C; and Cy € RY and all t € [0,1]

1Z6C1 — ZECol| < (14 K1)]|Cy — Co|.

Therefore,

n—1
1(Z&)"Co — R Col| < Y (1+ Kh)" "' 7[|(Z8 — RE)RE' Col|.
j=0
Now from Lemma 3.2 we deduce that there exists a constant K such that for all j
such that jh < T
1(Z& = RE)RE' Col| < K1,
and eventually
n—1
1(Z8)"Co — RY'Col| < K eln=1=0ihp3,
j=0
Ke™ K (nh)h?,
< K(T)h?. O

IN

Let us illustrate this result by a numerical experiment with a simple test case.
We consider the following system of equations set on the one dimensional domain

(0,1),
8,C =AC +aC(1—C) if S> Sy,

(4.3) =AC +8C if § <8y,
’ oS = —aC(1-0C) if §> 8,
= —-BC if § <8y,

where @ = 0.5, 8 = 0.25, and Sg = 1 are constants. Initial and boundary conditions
for C are determined by the exact solution

1
1+ exp(y/Tz — 2ot)

Ct,z) = ( )?

to Fisher’s equation

0,C = AC +aC(1—C).
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Hence,

2

vy
1+exp(y/Gz)"
1 )2

C0,z) = (

C(t,0) = (1 + exp(—2at)

and
1

1+exp(\/T — 2at)

Initial conditions for S are given by
S(0,7) = 1+ exp(—(z — 1/2)?).

The diffusion operator is discretized using second order finite differences with a step
size Az = 1072, and its time integration is performed using the unconditionally
stable second order Crank-Nicolson scheme. Reaction terms are integrated with a
second order explicit Runge-Kutta scheme. A reference solution is computed for
the classical splitting method and for the method proposed in this paper with a
time step hyer = g%.

Figure 1 shows a zoom in on S(¢,x) where the discontinuity of the derivative
0¢S clearly appears when S crosses the surface S = S3 = 1.

Solutions are computed using five different time steps, h = %’—917 (2%, g%,
h = &1 For each solution the global errors

2
Ec = ||Ca(T) = Ch (T,

C(t,1) = (

(=}

1
= and

[\v}

Es = [[Sh(T) = Sh...(T]];

are computed at T = 0.1 (||.|| denoted the euclidian norm). Figure 2 shows
—log(E¢) and —log(Eg) versus —log(h) when the classical splitting method is
used to compute the solution to problem (4.3). The convergence curve is very

0 0.02 X

FIGURE 1. Zoom in on S(t,z) crossing the surface S = 1, com-
puted with the proposed scheme.
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FIGURE 2. —log(F) versus —log(h). Convergence curve for the
classical splitting (left C' and right .5).
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FIGURE 3. —log(FE) versus —log(h). Convergence curve for the
proposed scheme (left C' and right S).

perturbed and the estimated order of the scheme is less then 1. This is not sur-
prising since the method is not able to deal with the discontinuities correctly. On
the other hand Figure 3 shows —log(E¢) and —log(FEg) versus — log(h) when the
method proposed in this paper is used. The estimated order is about 2, which is in
agreement with the theoretical result.
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Segmentation of 3D cardiac images using a deformable elastic model of the heart proved
to be significantly improved by applying special boundary conditions on the elastic
model [15]. The purpose of this paper is to derive those boundary conditions by means
of a rigourous convergence result. We consider a simplified two-layer elastic shell model
and show that when the thickness £ of the thin external fibrous layer tends to 0 it can
be replaced by the above mentioned boundary conditions on the internal layer. A mixed
variational formulation of the problem in curvilinear coordinates is introduced. This
formulation is then scaled in order to be defined over an e-independent domain. Finally,
several a prior: estimations on the solution are obtained which enable us to pass to the
limit and prove our result.

Keywords: Segmentation; cardiac; elasticity; shell; mixed variational formulation;
asymptotic analysis.

Mathematics Subject Classification 2000: 74B05, 74K25, 35B40, 35B45

1. Introduction

By means of Magnetic Resonance, one can get a clinical M.R. volume dataset.
Such a volume dataset is denoted by a matrix V with X rows, Y columns
and Z slices which represents a discrete grid of volume elements (or voxels)

*Corresponding author.
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ve{l,...,X}x{1,...,Y}x{1,..., Z}. For each voxel v, we denote by I: N> — Z
the grey level function v — I(v). Data are anisotropic with equal sampling in the x
and y directions but a coarser density in the z direction. By image segmentation we
refer to processes identifying all voxels which belong together according to a homo-
geneity criterion (most often a grey level criterion). Segmentation is required for the
identification of the object (that is, the heart) in the M.R. volume data. Here, we
deal with edge-based algorithms which try to detect the borderline of a structure
(that is, the discontinuity surfaces of the “gradient” of the grey level function I).
A force field is computed from the “gradient” of the function I by using a Gradient
Vector Flow technique.

In order to address the problem of 3D automatic segmentation of cardiac M.R.
multi-slices image sequences, a strategy based on an elastic simulation of the human
heart has been proposed by Vincent et al. [16]. It can be summarized as follows: an
a priori template (object) representing the heart is immersed into the image data
and submitted to a force field which pulls the boundary of the object towards the
image edges. This method has several advantages but one drawback concerns the
regularity of the displacement field and the smoothness of the final object boundary.
As an alternative to classical geometrical curvature-based boundary regularization
techniques, Pham et al. [15] propose to add boundary constraints modeling crudely
some biomechanical properties of the heart. They consider a simplified three-layer
elastic model of the heart composed of a middle homogeneous isotropic layer and
two surrounding thin layers of myocardial fibers with a directional structure. The
aim of this model is to mimic the elastic properties of the heart resulting from the
fiber structure of the muscle oriented in the longitudinal direction. It is an efficient
tool for image segmentation but not a complete myocardium model. For a more real-
istic elastic model of the heart we refer to Caillerie et al. [6]. It is announced but not
proved in [15] that the fibrous layers can be replaced by boundary conditions on the
middle layer when the thickness of the external layers tends to 0. These conditions
increase the stiffness of the boundary and smooth the displacement field at the inter-
face of the elastic object by imposing preferential directions of deformation in the
tangent space (see Fig. 1). We are not going here to get into the details of the numer-
ical method used and refer the readers to Pham [14] and Pebay et al. [13]. However,
it is worth noticing that the use of a 3D complex geometric template is necessary
for the efficiency of the method. Therefore, we describe the thin layers with a shell-
kind model using curvilinear coordinates. The purpose of this article is to obtain the
above mentionned boundary conditions by means of a rigourous convergence result.

In order to simplify the mathematical analysis, we only consider two layers:
an internal layer of fixed thickness €; and an external layer of thickness €. These
two layers have a common side, which is a surface S of R3. Therefore, the heart is
represented by an elastic shell occupying a domain O.=0"u Qj, where Q0 is the
internal layer and Qj is the external layer. The border of QE is 8@6 = f‘: ul—u f‘lﬁ,
where T'T is the external border, I'™ is the internal border and I';. is the lateral
border (see Fig. 2).
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Fig. 1. Impact of the regularization on segmentation results for a mid-ventricular slice: without
(left) and with (right) applied boundary conditions (from Pham [14]).

fl,s = IATE U ff, lateral surface
QF, external layer
thickness €

It =Irf.uld.

)~ , internal layer }/
C external surface

thickness ¢g;

I'~, internal surface

S, “middle” surface

Fig. 2. The domain Qg = Qj u-.

We use the following classical conventions and notations throughout this work.
Greek indices and exponents (except €) belong to the set {1,2}, whereas Latin
indices belong to the set {1,2,3}. The summation convention with respect to
repeated indices and exponents is systematically used. The Euclidean scalar prod-
uct, the vector product and tensorial product of a,b € R? are denoted a-b, a x b
and a ® b, respectively; the Euclidean norm is denoted || - ||

Let (e;) be the canonical orthonormal basis of the Euclidean space R?. In carte-
sian coordinates the displacement field for any material point is represented by
1 = u;e;. The deformation is described by the Green—Lagrange strain tensor, which
is linearized under the small deformation assumption:

) = L (2, 04,
“\ =95 \01; 91 )
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If 6 denotes the stress tensor, the constitutive law or stress-strain relation for the
homogeneous isotropic internal layer takes the form:

g(a) = A trace(é(a))l + 2ué(n), (1.1)
where A and p are the Lamé constants, and [ is the identity tensor. Equivalently,
we have,

1
é(0) = EV&(ﬁ) — 2 trace(s (@)1, (1.2)

where FE is the Young modulus and v the Poisson ratio. The following classical
relations hold

v A 1+v 1
i ’ —— 1.3
E  Ap(\+p) E 20 (13)

If d is the 3D orientation vector of fibers belonging to the tangent space and g, is
the second Lamé coefficient for the external layer, the constitutive law for this layer
reads as follows [15]:

6(0) = (d-é(a)d)d ® d + 2p.cé(q). (1.4)

We will show in Sec. 3.1 that the inverse relation is well defined for all € > 0. In
the context of bonded joint with soft material, similar constitutive law models have
been proposed in [12] or in [3].

We assume that the elastic body is submitted to a volumic force field f such
that f = 0 in Qj The equilibrium state is expressed by:

(div(G(a)) +f = in Q.,
&(0) = A trace(é(n))] + 2ué(t) in Q,
6(0) = (d-é(@)d)d ©@d + 2peeé(a) nQFf, (L5)
a=0 on - UT; . UT{,, '
on =20 onI'f_,
G- =0T and 6 n=6"n on 9,

where I'7 =T'¢ _UT}_ and meas(I'{[.) # 0. 4 (respectively @™) is the restriction
of i to QF (respectively Q7). The same notation applies to &. The vector n denotes
the normal unit vector pointing outwards of Q. on f‘ﬁe and outwards of 0~ on S.

The goal of this work is to prove that when the thickness of the external layer,
e, tends to 0, the asymptotic model is given by:

div(6(a)) +f =0 in O,

o() = A trace(é(a))] + 2ué(t)  in Q* ) (1.6)
ua=20 onI'"UTI,

on = —2Uel,n — j U on S',

where f‘l_ is such that fl,e = ff’s U f‘l_, Un,n is the component of i normal to the

surface S and 1 is the tangential component.
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It is worth noticing here that fjg and fj’s disappear in the limit process.

However, if, on the one hand, one can choose meas(fj’s) = 0, it is on the other
hand necessary to have meas(f‘ﬂl"s) # 0. The Dirichlet boundary condition on f‘ﬁs
plays an important role in the proof of Theorem 6.7 at the end of the paper. It
should also be noticed that the new boundary condition on S does not depend on
the fibers direction d. If d has a non zero component in the normal direction n, the
asymptotic model will be dramatically different.

An overview of the article is as follows. In the next section we collect most of
the notation to be used in the remainder of the paper recalling basic notions on
curvilinear coordinates. Using this notation in Sec. 3, we derive some estimations
concerning the stress-strain relations in the internal layer, 27, and in the external
layer QF. In Sec. 4, we introduce the mixed variational formulation of the elasticity
problem (1.5) and show its well-posedness. The problem is then reformulated in
Sec. 5 over an e-independent domain 2. The main result of this paper is obtained
in Sec. 6, in which we first prove several a priori estimations on the solution to the
scaled problem before passing to the limit as ¢ tends to 0.

Let 2 be an open subset in R3. L(), ||-]|o.o and H*(2), ||:||1. denote the usual
Sobolev spaces of real-valued functions. Boldface lowercase letters denote vector-
valued functions and boldface uppercase letters denote matrix valued functions.

The norms are denoted in the same way as for real-valued functions. For instance,
if v € (L?(22))*, we note [[V|[§ o = 2=, [[vil[§ o-

2. Preliminaries
2.1. Curvilinear coordinates

All needed notions of differential geometry may be found, e.g., in [8]. The presen-
tation given in this section is very close to the one given in [9]. We consider a shell
described by a surface S , the thickness of which is €;+¢. We assume that the surface
Sis a bounded, two-dimensional submanifold of R®, which, for simplicity, admits
an atlas consisting of one chart only. Let @ be this chart. We are thus given once
and for all a domain w C R? and an injective mapping v € C3(w, R3), such that

S = ().

We assume that w has a Lipschitz-continuous boundary, 7. Let y = (y,) denote a
generic point in the set w and let 9, = 0/0y,. Let 1 be such that the two vectors

aq(y) = 0t (y),

are linearly independent at all points y € w. They form the covariant basis of the
tangent plane, T'(5), to the surface S at the point 9 (y). The two vectors a®(y) of
the same tangent plane defined by the relations

a®(y) - as(y) = 03,
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constitute its contravariant basis. Let us also define
a1 (y) X as(y)
lax(y) x az(y)l|’
which is a chart-independent (modulo multiplication by —1) unit normal vector to

az(y) = a’(y) =

the tangent plane. One then defines the metric tensor, (aqs) or (a®?) (in covariant
or contravariant components), the curvature tensor, (bog) or (b2) (in covariant or
mixed components), and the Christoffel symbols I'” g, of the surface S by letting

aap = A4 - A3, a®? =a® . a’, (2.1)
bag = asg - agaa, bg = aﬁabga, (2.2)
It =a’ Jpaq. (2.3)

Note the symmetries:
(aB = Ao, a®P = gf, bap = bsas Fgﬁ =17,
The area element along S is Vady, where
a = det(anp)- (2.4)
The function a is continuous on the set w and there exits a constant ag, such that
0<ap<aly), Yyew. (2.5)
For each € > 0 we define the sets:
Q. = wx] — g, ¢,
OF = wx]0, ¢,
Q7 =wx]|—¢,0],
Flfe = x [0,¢],
Iy =7 x[-&,0]
'™ =wx{—¢},
Fjl—,a = wy X {€},
I, =w, x {e},
S =w x {0},
with w = wy Uw, and meas(wy) # 0. Note that T UT; UL~ U U, = 09Q.
constitutes a partition of the boundary of the set Q. (see Fig. 3).
Let x° = (z5) denote a generic point in ., and let 97 = 0/0x5; hence x5, = y,

and 05, = J,. The initial configuration of the shell is the image of €2, by the mapping
¥: Q. — R3 defined by

U(z®) = (y) +25a3(y), Va© = (y,25) € Q.

It can then be shown (cf. [8]) that there exists €9 > 0, such that the mapping ¥ is
a C2-diffeomorphism, and the three vectors,

g; (¢°) = 9; % (x7),
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Qg‘, upper layer rr= Fﬁ’s U F;r’s, upper surface
thickness €

Q7 lower layer

thickness g; S, “middle” surface

Iy =T ury
lateral surface

'™, lower surface

Fig. 3. The domain Q. = QF UQ~.

are linearly independent at all points 2° € €. for all 0 < ¢ < eg. Therefore, we
make a geometrical assumption on the thicknesses of the two layers of the shell
heart model:

O0<e<eg <egp.

The three vectors g5 (x°) define the covariant basis at the point W(z¢). It is clear
that g5 = ag is the unit vector normal to S. We choose it to be pointing outwards
of 27 and for the remainder of this work, we use indifferently the notations n or
g5. The three vectors g"¢(x¢) defined by

g (2°) - g5 (af) = o7,

form the contravariant basis. One then defines the metric tensor (g5;) or (¢*¢) (in
covariant or contravariant components) and the Christoffel symbols of the manifold

W().) by letting (we omit the explicit dependence on x¢)

e _ € € 17,6 __ L1,E 7,€
9, =8 "8, g7 =887,

D€ __ SGDE | A €
Iij =8 0; g;-

Note the symmetries
ij,e jie Pe — 1Pe

I VAR

95 =955 9
and the relations
37 ) 1 O
e =Thy =0 in Q..

The volume element in the set ¥(€.) is y/g¢dz®, where

g° = det(g;;)- (2.6)
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2.2. Vectors and tensors in curvilinear coordinates

With all the notations defined in the preceding section, a vector field or a sec-
ond order symmetric tensor field defined on the shell may be represented in the
curvilinear system by its covariant or contravariant components:
Uisgi,s — vi’sgf,
T8 @ g =17"g; @ g5

One can relate covariant and contravariant components, thanks to the relations

,Ui,e — gik’aviy Uis — gfkvk’€7
y 1 . ) . . 1
ij,e _ — ( ik, jle jk.e il,e\, e g _ —(AE A€ e e\kle
TE = 2(9 g+ g g )T, T = 2(gikgjl + 95 95)T %,
__ (Yijkle & _ e kl,e
=G Tils = HE, ™"

Concerning the fourth-order tensors (G/*:¢) and ( iik1), the following relations
hold for each ¢ > 0

Goz,BkB,E — G333a,5 — 07

e __ 17¢
afk3 — H333a - 07
and
ijkl,e __ jikl,e __ klij,e
GYE = GY = G"E,
€ _ 17€  __ IJE
ikl = i = Hgij-

Both tensors are symmetric, positive definite, and uniform with respect to 2° € Q..
The scalar product between two vectors, u*°g$ and vSg"® can be written as

(u'g?) - (v58") = s
The second-order inner product between two tensors can be written as
(78} @ g): (058" © ) = 77707,
Using the fourth-order tensor G*7%-¢ | this expression can be transformed to

ij,e € __ (vijklie e _e
T 0y, =G Thi04j-

Let us now introduce the vectorial notation which we will use. S denotes the set
of all symmetric matrices of order 3. Any (7;;) € S can be represented by a vector
T € RS:

T = (7117\/5712,7'227\/57'13,\/57'2377'33)T-
We also note

7 = (111, V2712, 72)T, TN = (V2713, V2723, 733) T
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The fourth-order tensor G**"¢ can be represented by the 6 x 6 symmetric matrix G¢:

] o
¢ ‘(0 G?v)’

with
glleglle V2gilegl2e gl2egl2e
GS = | V2gileglze  glleg22e 4 gl2eglze | /pgl2eq22e |
gl2egl2e V2g12 6225 22225
and
gllegdde  gl2.e483e 0
GS, = | gi2egiBe  g22egB3e 0
0 0 335 g33se

Recalling that the (gi;) matrix is the inverse of the (¢%¢) matrix, we note that

(@)t = = (HT 0 )

0 Hy
with
911911 ﬁgflgfz 912912
= V2051952 951952+ 9ia0%e V295205 |
912912 \/59‘152952 952932
and
911933 912933 O
Hy = | 912953 952953 0
0 0 953933

In vectorial notation the second-order inner product between two symmetric tensors
is written
(rig; 989 (o8 @ 87°) = G,

— €. G1'ea_zs7

=75 -Gror + 1y - GYoYy.
The fact that (G¥*":) is symmetric, positive definite, and uniform with respect to
2° € Q. implies that there exists a constant ¢ > 0 depending on €2 only (thus on
the small parameter ¢), such that

T -G°T > T - T = CGTijTij, (2.7)

for all z° € Q. and all (1;;) € S.
From the continuity of 2° — G¢(2°) on Qf we also deduce that there exists a
constant Cg, such that

TG o < CglI7llla]| (2.8)
for all z° € Q. and all (1), (0i;) € S.
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It is clear that if we consider the restrictions of functions G7*-¢ to Q~, inequality
(2.7) still holds with an e-independent constant C'¢ > 0. To emphasize the fact
that the restriction to Q~ of geometrical quantities such as gf, G¥*¢ . are e-
independent, we omit the exponents € in what follows. For example, g; denotes the
restriction of g7 to 27. We then have

T -GT > cqT - T = caTijTij, (2.9)

for all ° € O~ and all (7;;) € S.

To conclude this section, let us recall that given the covariant components (u3) =
u® of an arbitrary displacement field uSg"® of the points of the shell, the covariant
components of the linearized strain tensor read

1
e53(u®) = 5(62u% + Ojug,) — Thguy,

1
i (u7) = 5 (05u5 + O5ug) — Tigup, (2.10)

e53(u) = d5u3.
Using our vectorial notation, the associated vector of R® is denoted by

e (u) = (e7(u?), ey (u%)).

3. Strain-Stress Relation

In this section the strain-stress relations in the internal and external layers are
expressed using the vectorial notation. We introduce a new basis of R? in order to
derive estimations (3.3), (3.4) and (3.7), (3.8) which are needed in the remaining
part of the paper.

3.1. Strain-stress relation in the external layer

Assume that the linearized strain tensor is described by its contravariant compo-
nents, e*"¢(u®) and that the stress tensor is described by its covariant components
of;(u®). Assume that the orientation vector of fibers is tangent to the surface S
and that it is defined by its covariant components, d,. These components are
assumed to be xs-independent, that is to say, do, = do(z1,22). We also assume
that d,, € C°(w,R) and that for all (1, x2) € w, d # 0.

Omiting the explicit dependence on u®, the constitutive law (1.4) for the external

fibrous layer then reads
o587 @ ght = (e dpd))didig™" © g
1 ‘ .
+2uee 5 (9595 + Girga)e™ "8 © 8. (3.1)

This relation can be written as

Ufj = ijklekl’ev (3.2)
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where

1
ik = didjdid; + 2pee s (951951 + 95k97)-

Note the symmetries

z‘ejkzl = B;ik:l = Blf:lz'j-
Since d3 = 0 the following relation holds

2,81:3 = 32333 = 0.
The fourth-order symmetric tensor (Bf;;;) defined by its covariant components is
known as the stiffness tensor. In order to establish the mixed variational formulation
of the problem, we need to use the inverse relation and the associated compliance
tensor (CkL€) defined by its contravariant components. Let us show that (C%*5e),
the inverse of (Bjj;, ), exists for all € > 0.

The contravariant components C%*:¢: OFf — R of the compliance tensor

(CFL€) are obtained by inverting the matrix of covariant components of the stiff-
ness tensor, B QF — R. In vectorial notation, relation (3.2) reads

o = B¢,
where
o° = (o011, \/5052,052, \/5‘7?37 \/50537053)Ta
ef = (el1F, /2612, 226 \/el8e (/228 33.5)T
B°€ is the 6 x 6 matrix defined by
B® =D + 2u.cH®,

g (Brl 0 g (HZl 0 p_ (Droy
0 [BY 0 [Hy 0 [0

(d1)* V2(di)2dy  (dr)?(da)?
Dy = | V2(d1)3d2  2(d1)%(d2)? V2d;(d2)?
(d1)?(d2)*  V2d1(d2)? (d2)*

H¢ is symmetric, positive definite and uniform with respect to 2 € Q. similar to

with

and

the fourth-order tensor (H/*.¢) is. D is symmetric and non-negative as its rank
is one and its only non-zero eigenvalue is trace(Dr) > 0. Consequently, for all
e > 0, Bf is symmetric, positive definite and therefore invertible. Moreover, as
(HS,) ™! = G5, we have

(B%)*l\ 0

(Ba)—l — Ca —

0 N

2ieE
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In order to obtain a simple expression for (BS)™! one has to notice that HE. is
symmetric, positive definite and D7 is symmetric, positive definite and uniform
with respect to z° € €).. Therefore, it follows from a classical result (see Appendix
A) on the simultaneous reduction of two quadratic forms that there exists a 3 x 3
invertible matrix P%., such that

(P7) HyP7 =1
(P%)"DyP% = S°,

with
se 0 O
S*=10 0 O
0 0 O

Note that for all € > 0 and for all z° € Q, s. > 0.

We obtain
Se + 2 0 0
(P7)"B7P% = 0 2pee 0 |,
0 0 2leE
and therefore
1 0
Se + 2
1> 1> — £ 1
(QT)T(BT) 1QT - 0 2tee 0 )
1
0
2ee

where

The columns of the matrix
Q7|0
g __
Q= ( 0 I3
define a new basis of R®. Any (7;;) € S represented by a vector

T = (11, V2719, Tog, V2113, \/57'237733)T7

in the canonical basis of RS is represented by a vector 7 in this new basis. We have
TT:Q%%T andTN:f'N.
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Since G%; is symmetric, positive definite and uniform with respect to 2 € Q.,
there exist two constants Cz, > 0 and cg > 0 depending on ()., such that

T Cor =7 (BY) lr =7 (Q)1(B) Qi

- _ _ 1
=77 (Q57) ' (B%) Q37T + ——Tn - GYTN,

2/LeE
1 -2 1 -9 1 -2 1
= T+ T + T5o + ™~ - GYTN,
Se + 2pce 1 He€ 2 2pee 22 2pee N NN
1 ~2 L I cG 2 2 2

T Se + 2uee 1 We€ 2icE 2icE

and
o Cr =0 (B) 't =6 (Q)T(B)Q°F,

=&r-(Q7)' (B7)™'Q76r +

€
O'N-GNTN,

2UcE
. - . 1 -

= ——(—0117T11 + 012712 + 029722 + on - -GyTN,

Se + 2pe€ e He€ e
< 1 . 1 _ N 1

— 11T 0127 090 T
S S T 2me 11711 o 12712 e 22792

CE
+5-5 (2075 + 2035 + 035) /22785 + 2735 + 755) /2, (3.4)

21e€

for all (7;5), (0;;) € S and all 2° € QF.

3.2. Strain-stress relation in the internal layer

In the curvilinear coordinate system, the stress-strain relation (1.2) for the homo-
geneous isotropic internal layer can be written as

eij = Aijklakl, (3.5)

where the fourth-order symmetric tensor A is represented by its contravariant
components AY*: O~ 5 R

. 1+v, .. . o v
Azykl — ik gl gk i\ 7 ag kl‘ )
—5 (9" +9"") — 5979 (3.6)

Note the symmetries
i ikl ikl Klij
A’Lj — AJ’L — A ’L.],
and the relations

AaﬂkB — Aa333 = 0.

It is classical that A is positive definite and uniform with respect to 2 € Q.
With our vectorial notation and the change of basis defined by the matrix Q, the
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following relations hold: There exist two constants C'4 > 0 and c4 > 0 depending
on {2, such that
T At =7-(Q)"AQT,
=77 (Qr)"ArQrTr + TN - ANTN,
> cA(272 + 275 + oy + 275 + 2705 + T23), (3.7)
and
o At =6 -QTAQT,
=67 (Qr)"ArQrér+on - AnTy,
< Ca(67) + 267, + 635 + 2075 + 2035 + 033) "/
X (T + 278, + 72, + 273 + 272, + 72) 12 (3.8)

for all (7;5), (0s;) € S and all 2° € Q.

4. Mixed Variational Formulation in Curvilinear Coordinates

This section aims to give the mixed variational formulation of the elasticity problem
(1.5) using the notation introduced in the preceding sections. Well-posedness is then
proved thanks to Brezzi’s theorem.

The unknowns of the mixed variational formulation of the problem expressed
in curvilinear coordinates are:

e the vector field
u® = (uf): Q. — R,

where the three functions u: . — R are the covariant components of the
displacement field of the points of the shell;
e the symmetric tensor field

0° = (05;): Qe — R?,

where the nine functions o7;: Q. — R are the covariant components of the stress
tensor.

In what follows vt (respectively v~ ) denotes the restriction of v to Q% (respectively
7). Let us introduce some functional spaces, namely

Ve = {v, v- e (HY(Q)), v* e I (92,
v=0on I~ U UTY, vi =v* on S}.

u’

Ve is the Hilbert space of admissible displacement fields compatible with the
transition condition on S. It is equipped with the norm

Vllne. = (VI g + V1T o-112.
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Also, ¢ = {7 = (7i;) € (L*(Q%))?, 7i; = 7j:} is the Hilbert space of stress tensors.
It is equipped with the norm

1/2
7o, = [ZH%‘H%,QS] -
i

We assume that the applied volumic force field is defined by its contravariant com-
ponents, f'g¢, and make the following assumption

f:(fi):()’ ian?
f e (L*(Q7))>.

From the equations of the strong formulation of the elasticity problem (1.5), one
classically deduces the mixed variational formulation expressed in terms of the

curvilinear coordinates x% of the reference configuration ¥(£2.). The unknowns u®
and o€ satisfy:

(W eVeE, ofeye,

ikl kL,
A of T4/ gda® —k/+ cv EJ,isz-j\/g_Eda:E
Q- O

! = / Gk epy (u®)7i54/gdx® + /+ GiIkLE s (u)Tii/gFda®, VT € XF,

Q¢

- Gikle,, (v)o§;+/gdx® + /Q+ GUkLeee, (v)o§\/gedat

= flvi/gdz®, Vv € VE.
O

\

Using vectorial notation, we define:

AE(U, 7') = / [&T . (QT)TATQT’%T +on- ANTN]\/gdxe
- /m 67 (Q7)"C7Q77r + on - CyTn]Vgeda®,

= / 67 - (Qr)"ArQr7r + on - AnTN]/gda"

1 L | 1 . .
+/ {—0117'11-4- 012712 + 022722
Qf [ Se + 2pee We€ 2licE
1

+2,ue€

o Gim] Ve,

Be(v,T) = /_ [&r(v) - (Qr) ' GrQr7r +en(v) - GNTN]/gda®
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+ [ ) (@) G Qi+ eh(v) - Gyl

:/ [éT(v)-‘i'T—l—eN(v)-GNTN]\/des
- (4.1)

+ [ 85() 7o+ ek(v) - GRS
Qe

L(v) = /Q flviy/gda®.
With this notation the variational mixed formulation reads
u® € Ve, o° € ¥f,
Af(o®,7) = B*(u®, 1), VT €X°,
Bf(v,0%) = L(v), Vv eV~-
and the following result holds.

Theorem 4.1. There exists a unique solution (u®,0%) to problem (4.2)—(4.4).
Moreover, there exist two positive constants, C: and C§, depending on € only
such that

[l [lo,0: < CollIfllo,o-
[u®[[1,0: < CylIf|

0,Q- -

Proof. It is a direct consequence of Brezzi’s theorem [4] (also see Babuska and
Aziz [1]). Let us first note that since o = Q°a, since 2° — Q¢(z°) is continuous
on QFf and since QF is invertible for all z° € QF, there exist two constants ¢, C¢ > 0,
such that

c“loflo.s < llofo.0s < C%lla]

0,Q¢, Vo € ¥°. (45)

Since #° — ¢°(z°) is continuous on QFf and strictly positive, there exist two con-
stants gg, g7 > 0, such that

g5 <g°<gj, VateQr. (4.6)

From (4.5), (4.6), (3.4) and (3.8), we deduce that the bilinear form A%(o,7) is
continuous on X° x X°. There exists a positive constant M§, such that

A% (o, 7)| < Mjllollo.0z[Illo.0s Vo, 7€ X5

Since z° — Fff is continuous on QF, it follows from (2.10) that there exists a
constant C*° > 0, such that

le*Wllo.. < ColIvllg., ¥v e (H'(Q))" (4.7)

We deduce from (4.5) to (4.7) and (2.8) that the bilinear form B¢ (v, 7) is continuous
on V& x ¥°.
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We deduce from (4.5), (4.6), (3.3) and (3.7) that there exists a constant m% > 0,
such that

4(0,0) > millo|3ge. Vo € 5.
Eventually, the inf-sup condition

inf sup  B(v,7) >0
veve TEXE
vl 0. =1 7llo, 0. =1

follows essentially from Korn’s inequality in curvilinear coordinates (see, for
example, [8]). There exists a constant C¢ = C*(Q., ¥, T, UT~ UT}), such that

Vl[1e. < CFlle(V)llo.0., Vv eV

This condition can be written as: there exists a constant 3¢ > 0, such that

BE
ap BE2)

T = Blvllies, Vv eVs,
rexe |[7llo,f

and one then has the classical bounds:

1 £
Il < + (1+ ;4) e

my

€ €
u® Qe S A <1+ A> f

0,27 >

0,0~ - 0

5. Formulation over a Domain Independent of ¢

Let us define the sets

Q=wx]—¢g,l],

Ot =wx]0,1],
Q_:wx]—el,O[,
I =~ x [0,1],

I' =~ x [—¢&,0],
'™ =wx{—¢}l,
Py = wa x {1},
If = w, x {1}.

Let z = (z;) denote a generic point in the set Q, and let 9; = 9/0x;. With z° € €.,
we associate the point z = (z;) € 2, defined by

Lo = xsa (:ya)7
xyg=2x5 ifz®eQ,
x3 = (25/e) if 2° € Q7.
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We thus have
0: = Oa,
85283 if z°€ Q7
05 = (03/e) if 2 € Qj
The functions
gij; gija g, FZ Qi _>]Ra

are not affected by the scaling. On the other hand, with these same functions defined
on QF,

95 9% 9%, T O - R,
we associate the functions
9ij(€), 97(e), g(e), TT;(e): QF = R,
defined for all z° € QF by
9ij(e)(x) = g5;(2%),  g¥(e)(z) = g7 (a%),
9(e)(@) = g°(a%), TY;(e)(x) =T ().

With the unknowns u®: Q. — R3 and o%: Q. — R® of problem (4.2)-(4.4), we
associate the scaled unknowns u(g): Q — R3 and o(¢): Q — R?, defined by

(5.1)

u(e)(x) =u(zf) Vit e Q.,
o (xf) Va© € Q..

With any vector field v = (v;) € H'(Q27)3, we associate the symmetric tensor
(eij(e)(v)) € (L*(Q2T)?), defined by

1
cap(e)(V) = 5(8avs + O5va) = I(e)vp,

1

1
ea3(5)(v) = 5 (8047)3 + 5837)05) - FQS(g)UP’

1
633(5)(V) = 5831)3.
Let us now introduce the functional spaces V and X:
V={v, v e (H'(Q7)) v©eH QM)
v=0on " UT,UTE, v- =vT on S}.

V is the Hilbert space of admissible displacement fields compatible with the tran-
sition condition on S. Also

2= {r = (r;) € L*(Q)°, 7; = 7;1}

is the Hilbert space of stress tensors.
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Eventually, the following notations are used in the scaled variational mixed
formulation.

A(e)(o,7) = A7 (0,7) + AT (e)(0,7),

A~ (o,7) = / 67 (Qr)"ArQr7r + on - AnTn]/gdz,

€ 1 1
At = — 01T — 19T GooT
(e)(o,7) /Q+ L(g) +2M66011T11 + Me012ﬁ2 + 2’u60227'22

+2ie oON - GN(E)TN:| Vg(e)dz,
B(e)(v,7) = B~ (v,7) + Bt (e)(v, 1),

B(v,7) = / [er(v)- 71 +en(v) - Gyrylygde,
BT (e)(v,T) = /m [eer(e)(v) - Tr +cen(e)(v) - Gn(e)Tn]V g(€) da,

L(v) = flvi/g de.

0-
The scaled unknowns u(e) and o(e) solve the scaled variational mixed formulation,
(5.2)—(5.4), now posed over the set 2, and thus over a domain which is indepen-
dent of ¢,

u(e) eV, o(e) €%, (5.2)
A(e)(o(e), ) = B(e)(u(e), ) Vrex, (5.3)
B(e)(v,o(e)) = L(v) VveV. (5.4)

In the following lemmas, we gather properties needed in the sequel concerning
the behavior of different functions as ¢ — 0. || - ||y o o+ denotes the usual norm of
the space C°(Q21). The constant ¢¢ is defined in Sec. 2.1.

Lemma 5.1. The functions gij(c), g“(c), g(e), Ty;(e) are defined as in (5.1)
and the functions a;j, a*, a, I‘fw, bag, UL are defined as in (2.1)—(2.3). All the
functions a;j,...,b° € CO(w) are identified with functions in CO(Q"). Then there
exist constants C' > 0 (all denoted by the same symbol) such that

19a8(€) — aasllo,co,0r < Cé, (5.5)
9% (e) — a®[|g 00,0+ < C, (5.6)
gis(e) = g* () = di3, (5.7)

lg(e) = allo,c0,0+ < C, (5.8)
HFZB(E) - FZB 0,00,0+ < CE, (5.9)
IT55(8) = basllo,c0,n+ < Ce, (5.10)
IT53(2) + b llo,00,0+ < Ce, (5.11)
[2.(e) =Ths(e) = 0. (5.12)
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Proof. The proof can be found in [9, Lemma 3.1] and completed in [10, Lemma
3.1]. The main argument is the fact that g, () = a, + ex3d,as and gs(e) = ag. O
Lemma 5.2. There exist constants go, g1, such that

0<go<gle)<gi, Vecl0,e, VoecOt, (5.13)
0<go<g<gq, Ve . (5.14)

Proof. (5.14) follows from the continuity of the strictly positive function g on Q.
(5.13) follows from (2.5) and (5.8). a

Let us define the 6 x 6 matrix G(0) by

a0 - (0.

where
allgll V2allal2 al2q12
Gr(0) = V2alla?  aa? +a'2a? V241222 |,
al2q12 V2412422 022422
and
allg33 12433 0
GN(O) — CL126L33 CL226L33 0
0 0 a33a33

From Lemma 5.1 we easily deduce that there exists a constant C' > 0, such that
1(G(€))ij — (G(0))ijllo,c0,0+ < Co, (5.15)
where the 6 x 6 matrix G(e) is defined in a obvious way.

Lemma 5.3. There exist two constants cc > 0 and Cg > 0 independent of €, such
that

-GN (e)T > col|T||?, Ve €[0,e0], Vo €QF, V1 e R (5.16)
T -GNT > cl|T|]?, V2 eQ, VreR® (5.17)
o -Gn(e)T < Cgllall||7]l, Ve € [0,e0], Ve QF, Vr e R (5.18)
o-GNT < Collalll|T]l, VzeQ, VreR>. (5.19)

Proof. We only detail the proof of (5.16). From (2.7) we deduce that for each
e > 0, there exists cg(e) > 0, such that
TGN ()T = calo)lITl,

for all x € Q1 and all 7 € R3.
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Gn(0) is clearly symmetric, positive definite and uniform with respect to
x € QF. Therefore, there exists a constant cgg > 0, such that

7 GN(0)T > ceol ]I,

for all z € QT and all T € R3.
The continuity of the mapping

(z,e,7) € QT x [0,60] x B— 7-G(e)(x)T,

where B = {7 € R3,||7|| = 1}, and the compacity of the domain lead to the
existence of a constant cg, such that relation (5.16) holds for 0 < e < ¢. O

Lemma 5.4. There exists a constant C' > 0, such that
|Is(e) = 5(0)[]o,00,0+ < Ce, Ve >0, (5.20)

where s(0) = trace(DrG7(0)).
There exist two constants sy and s1, such that

0<sg<s(e)<s1, VreQt, Ve>0. (5.21)

Proof. The scaled matrices Hy(g), Pr(¢),S(g) are defined in an obvious way on
QF for all € > 0. Since

s(e) = trace(S(g)) = trace(Pr ()" DrPr(e))
= trace(DrPr(e)Pr(e)T) = trace(D7Gr(¢)),

we deduce from (5.15) that

|[s(e) — trace(DTG7(0))llp 000+ < Ce.
In order to infer (5.21), it remains to show that

5(0) = trace(D7Gr(0)) >0, VxecQF.

As for G(0), H(0) is defined in an obvious way using the functions a;;. H(0) is
symmetric, positive definite and uniform with respect to x € Q. We proceed as in
Sec. 3.1. There exists an invertible matrix Py, such that

PIH7(0)Py =1,
PgDTPO = diag(so, 0, 0)7

with sg > 0, Vo € QF. Since G7(0)~! = Hr(0) = (PoPZ) 1L, it is clear that

5(0) = trace(D7G7(0)) = trace(D7PoP?) = trace(PEDrPy) = s0.
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6. Asymptotic Analysis

In this section, we establish our main result. The goal is to pass to the limit as
e — 0 in the scaled variational mixed formulation (5.2)—(5.4), in order to derive
the asymptotic formulation and obtain the announced boundary conditions on the
surface S. This is achieved in two steps. In Sec. 6.1, we obtain several a prior:
estimations on the sequences, (u(¢))e>0 and (o(€))e>0, presented in Lemma 6.1
through Lemma 6.4. All these estimations are then used in Sec. 6.2 in which we
let € — 0 to obtain the limit formulation, which is presented in Theorem 6.6.
Eventually, we show in Theorem 6.7 how the solution of the asymptotic problem
can be explicitely computed in Q% and deduce boundary conditions on S.

6.1. A priori estimations on (u(€))e>o0 and (o(€))e>o0

Lemma 6.1. Let (u(e), o(e)) be the solution to problem (5.2)—(5.4). There exist
constants Cp,Co > 0, such that for all e €]0, 0],

1/2 1/2
[ZII%& Nllp g—] ZHUaB @15 Q—] (6.1)

and

2llers(u(@)[f o + 2lle2s(u(e)|[f o + lless(u(e))l[§ o-1"2
< C22llows ()1 o- + 2llo2s(@)lF o + lloss (@)l o-1".

Proof. In (5.3), let us choose 7;; = 0 in QT and Top = €45(u(e)) in Q.

/_ &T(Z‘Z) . (QT)TATQTéT(u(E))\/adZ' = / éT(u(e)) . éT(u(s))\/gdx

Using (5.14), (3.8) and Cauchy—Schwarz’s inequality we obtain

/Q_ ar(e)  (Qr)" ArQrér(u(e)),/gdx

ZHUaB 09]1 [ZH%B ||OQ]

With (5.14) and (3.8) we have

1/2

< /31C

| eree):-s rEEN VB 2 Vi 3 as (0 o

and we conclude that the first inequality is verified.
The second inequality is proved in the same way choosing 7;3 = e;3(u(e)) in 27,
and using (5.17) and (5.19). O
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Lemma 6.2. Let (u(e), o(e)) be the solution to problem (5.2)—(5.4). There exist
positive constants Cs, Cy, C5, Cg and C7, such that for all € €]0, &¢],

|Gas(€)]lo,0- < Cs, (6.3)
l|oiz(e)]]o.0- < Cu,

4)
~ 2 €+ S
1510l < Oy T (6.5)

15az(€)llo,0+ < Cs, (6.6)
lois(€)llo,0+ < C7.

Proof. Let us choose To3 = Gap(e), Tis = di3(e) in (5.3) and v = u(e) in (5.4).
We obtain

A(e)(a(e), a(e)) = L(u(e)).
From (5.13), (5.14), (3.7) and (5.21), we deduce

A(E)(0(e), 0(e)) = @cA(Z 1505(E)I12.0-
af

+ 2||<713(€)||3 a- T 2llo2s ()5 o- + ||033(5)||3,Q>

+———/90||G i
2u66+ olla11()[[6,0+
1 - -
+2M V90 (2ll312()[5 o+ + 1|F22()I[5 0+
e
ca
+ =90 (2llo1s(@)[5 o+ + 2llo23(@)[5 o+ + lloss(@)]l5.ar)-

2
Cauchy—Schwarz’s inequality gives

1/

[ZII% e)llg Q]l/Q'

From the three-dimensional Korn inequality in curvilinear coordinates [8], we
deduce that there exists a constant C' = C(2~, ¥, I, UT'™) > 0, such that

1/2 1/2
[ZHUZ ||OQ—] ZHew ||00—] :

There exists an e-independent constant C'gp > 0 (which is a norm of matrix @
on Q7), such that

Z lesj (@)l a- < Cq Y lleas(u@)Ilf o- + 2lless(u(e))l[5 o
76
+2les(u(e))lIf o- + lless(E))I[G -

L(u(e)) < Vo [Z 1112
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and using Lemma 6.1, we obtain

ZH% Moa- < C°CTCq Y _lGas(e)llf - + C*C3[2llo13(e)lIf o-
7/8

+ 2||o23(e) |(2)7Q* + ||033(5)||3,Q—}-

This eventually leads to

[Z [Jus ()15 Q] "

< \/max(C2CCq. C2C3) [Z 1505 (3 0- + 2lo13()3 0
a?/B

1/2
+2[|o23(e)|[5 o + ||U33(5)||%,Q—] ;

which completes the proof. O

It is worth noticing here the particular form of estimate (6.5) in the preceding
lemma. This estimate is sufficient since in the limit process we will only use the
fact that \/e[|G11(€)||o.o+ is bounded as € — 0 (see the proof of Theorem 6.6 at the
end of the paper).

Lemma 6.3. Let (u(e), o(e)) be the solution to problem (5.2)—(5.4). There exist
three constants Cg,Cy and Ci9 > 0, such that

1/2 X )
5
5" [féa <Co=| (=) IBu()?
[ IEIGICGMIE Q+] < Cs <2Me€+80) 1611 ()15,

9 9 1/2
+(5) @B + (5-) ||522(€)||3,Q+] ,
(6.8)
1/2 1/2
[ZHeas HW] <Gt [ZHo—ag Hom] , (69
less(e)(Ello < Crolloss(e)lor (6.10)

Proof. In (5.3), let us choose successively:

7i; = 01n Q7, Tap = €ap(e)(u(e)) and 73 = 0 in QF,

7i; =01in Q7, 7o =0, 733 = 0 and 7,3 = en3(e)(u(e)) in Q7

7i; =01in Q7, 7o =0, Tag3 = 0 and 733 = e33(e)(u(e)) in Q. O
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Lemma 6.4. Let (u(e), o(e)) be the solution to problem (5.2)—(5.4). There exist
constants C11 and Cio > 0, such that

|05us(€)]lo,0+ < Ch1, (6.11)
|05ua(e)llo,o+ < Cra. (6.12)
Proof. Since es3(e)(u(e)) = 10sus(e), we directly deduce from estimates (6.10)
and (6.7) that
105us(e) o0+ < Cha-
The following relation holds
103 (e)|[5,0+ = ellOsugllf o -

It is possible to extend u® by 0 to the e-independent domain Q;FO and apply Korn’s
inequality in curvilinear coordinates [8]. We deduce

105ug |15 or < CZII% ||

i,j
with

[le5; (u)|[5 o = elles; () (u(e))II5 a+-
We therefore have

10sta(e)|[5 o+ < Ce > lleas(e)(u(e))l[5 o+
o,

+2C¢e? Z ||€a3(€)(u(5))“3,9+

+Ce?[less(e) (u(e)[F o »
and we conclude using Lemmas 6.3 and 6.2 in order to bound the righthand side of
the previous inequality. O

6.2. Asymptotic analysis as € — 0

Let us introduce the functional spaces V3, V* and X*:

V3(QT) = {v c L*(QH), ax e L?>(Q%), v=0onT; urj} :
Vi={v, vo e (H'(Q)), v e (7)),
v=0on T~ UT,UTL, vo =vT on S}.
V3(Q1) and V* are Hilbert spaces with the norms
ov
||U||v3(Q+) = 8—x3 OQ+’

1/2
om] '

ov;
Iy = lznfum%g v
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It is possible to define the trace vjgo- € HY2(0Q7) C L2(9Q7) of v € HY(Q™) on
the boundary 92~ of Q~. The trace on 9" of an element v € V3(Q1) can also be
defined and particularly vjg € L{ (S) (see Theorem B.2 of the Appendix B). ¥* is
the Hilbert space defined by
2 ={r = (rij), 7ij = 7ji, Ty € L*(Q) for (i,) # (1,1), i1 € L*(Q7)}.
The following notations are used in the limit scaled variational mixed formulation:
A*(o,7) = A (0,7) + A*(0,7),
1 1 1
At (o,7) = / [—0127'12 + 02T +—0nN- GN(O)’TN} Vadz,
He 2fte 2fte
v,7) = B~ (v,7) + B*" (v, 1),

V,T) = / [(05v)n - Gn(0)T ]V adz,
o+

*

B*(

B*H(
T

where the vector (O5v)y = (%83111, %831)2,33113) . In the remaining part of

this paper the arrows — and — denote strong and weak convergence as € — 0,

respectively.

Lemma 6.5. Let (u(e), o(e)) be the solution to the scaled variational mized for-
mulation (5.2)—(5.4). Then, there ezists a subsequence, still denoted by (u(e), o(c))
for convenience, and there exists (u*,0*) € V* x ¥* such that

Proof. Points (6.13)—(6.15) are direct consequences of Lemma 6.2.

Let us prove (6.16). From (6.1) and (6.3), we deduce that é,5(u(e)) is bounded
in L2(Q27). From (6.2) and (6.4), we deduce that e;3(u(e)) is bounded in L*(27).
Therefore, e;j(u(¢)) is bounded in L?(Q ™), and Korn’s inequality (see [8]) applied on
Q™ yields to the boundedness of u;(¢) in H*(27). From Lemma 6.4, we deduce that
u;(g) is bounded in V3(2T). Consequently, there exists a subsequence u;(e) — u}
in HY(Q7) U V5(QH).

Since ui(e) = 0 on ' UL, UTY, uf = 0 on I'" UT; UT{. Since
uf (e)(z1,22,0) = uj (e)(z1,22,0) in L2 _(S) and u; (¢)(z1,22,0) € H/2(S), we
have that u; ()(x1,22,0) = u (¢)(x1,72,0) in H/2(S) and therefore in L?(S).
Thus, we obtain that u;* = u}~ a.e. on S and u* € V*. O

Theorem 6.6. (u*,0*) solves the scaled mized variational problem:
u* e V' ofeX”, (6.17)
A*(c*,7) = B*(u*, 1), V1€, (6.18)
B*(v,0") = L(v), VYveV. (6.19)
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Proof. The result is obtained by passing to the limit as ¢ — 0 in (5.2)—(5.4).
(i) The terms A= (o(¢),7), B~ (u(e),7) and B~ (v,0(e)):
Using Lemma 6.5, it is clear that

(ii) The term A*(g)(o(e), T):

From (5.8) (cf. Lemma 5.1), we know that /g(¢) — +/a in C°(Q"). From
Lemma 6.2, we deduce that \/£511(g) is bounded in L?*(27) for 0 < € < gy and
since ——Y=— — 0 in CO(QF),

s(e)+2uee
g - ~
/Q+ W 1(8)7’11\/9(5) dr — 0.

2!
Then, using (6.6), (6.7) (cf. Lemma 6.2) and (5.15), we conclude that
At (e)(a(e), ) = A (%, 7).

(iii) The term B (e)(v,o(e)):

(5.9) and (5.10) (cf. Lemma 5.1) lead to

o (£)(v) = %(aavﬁ  O3va) — T4 (2)vp — %(aavg + 90a) — T%500 — bugvs

= eap(0)(v),
in L2(Q7T) for all v € (H*(Q27))3. Since /€511 (), d12(¢) and G22(g) are bounded
in L?(Q1),
/Q . eer(e)(v) - &r(e)\/g(e)dz — 0.

We recall that eas(e)(v) = 3(0avs + 105v4) — T'95(¢)v,. Using (5.11) (cf.
Lemma 5.1), we deduce that

geqs(e)(v) — %33%“
in L?(QT) for all v € (H(Q™))3. We also have
gess(€)(v) — Osvs,
in L2(Q") for all v € (H'(Q1))3. Therefore, we conclude that
/Q . cen(e)(v) - Gy(e)on(e)\/g(e)dz — . (83v)n - Gy (0)oyVadz,
and

BT (e)(v,0(e)) = B*t(v,0%).
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(iv) The term B*(g)(u(e), 7):

Let us show that ed,u;(¢) — 0 in L?(Q"). From (6.5), (6.6) (cf. Lemma 6.2)
and (6.8) (cf. Lemma 6.3), we deduce that eéng(¢)(u(e)) is bounded in L*(QT).
Therefore, ceqp(c)(u(e)) is also bounded in L*(Q7F). Since I’ 4(¢) is bounded in
C%(Q7F) and wu,(e) is bounded in L2(2F), we deduce from

ceap(e) (o)) = = (5 (Onus(€) + Oia(e)) ~ T () )

that ed1uy(e), edauz(e) and e(Drua(e) + daui(e)) are bounded in L2(QT). In the
same way,

eeas(e)(u(e)) = %(6(%%(6) + O3ua(e)) — el'G5(e)uq(e)

is bounded in L?(Q") and since Ozu;(e) (cf. Lemma 6.4) and e['25(e)uy(g) are
bounded in L?(Q7T), this implies that ed,us(e) is bounded in L*(Q"). We then
apply the classical Korn inequality to e(u) on Q% to obtain the boundedness of
edus(e) and edruq(g). To sum up, £9;u;(e) is bounded in L*(QT).

Hence cu;(g) is bounded in H!(Q7) and there exists a subsequence, still denoted
by eu;(g), which converges weakly to some v; in H'(Q"). The trace of v; on '} is
0 since the trace of u;(¢) on I'{ is 0. Moreover, e03u, — 0 in L#(227) and therefore
d3v; = 0 a.e in Q. We conclude that v; = 0 and that ed,u;(g) — 0 in L2(QT).

As a consequence ceqg(e)(u(e)) — 0 and therefore eé g(e)(u(e)) — 0,
(3 (0aus(e) —T'hs(e)uy(e)) — 0 in L2(QT). Eventually,

Bt (e)(u(e), ) — B* (u*, 7). O

Theorem 6.7. In the domain QF, the displacement field u* is given by

1

us(x1, 9, 23) = Iu—azg(acl,xg,())(xg —1), a.ein Q7 (6.20)
1

uz(x1, 2, 3) = 2—0;:3_ (r1,72,0)(z3 — 1) a.ein Q7. (6.21)

e

Proof. In (6.18), let us choose 7 = 0 in Q7, 743 = 0 in QF and 7x =
LGyN0)! [ia}"v — (3u*)n] in QF. This leads to

NG
1 2
oyn — (O3u” dr =0,
/Q+ 2,UJe N ( ° )N
that is to say,
1
u—a;?, —dsu’, =0, in L*(Q"), (6.22)
1
0%y — O3uj =0, in L*(QT). (6.23)

2t
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In (6.19), let us choose v =10 in 2~ and v € (D(27))? in Q*. Then

/Q+ [(03v)n - Gn(0)oy]Vade =0 = — (v)n - Gn(0)030 ]V adz,

[
O+

T
where the vector (v)y = (%vl, %Ug,@g) )
It follows that
(930‘7\] = 0, (6.24)

in (D'(27))? and therefore in (L2(27))3.
From (6.22)—(6.24), we deduce that 9303u; = 0 in L?(QT). Since the trace of
uf on I'f is 0, we obtain

u; (21,2, 23) = ¢i(x3 — 1), a.ein QF,
where
C;, = —Uu

(21, 22,0) = B3u; (21, T2, 73). (6.25)

From (6.22), (6.24) and (6.25), we deduce that the trace of o3 on 90" belongs
to L?(097). Also

1
Coa = —0 % (21,72,0) = —uiT (z1,72,0) in L*(S),
e
1. . .
c3 = o o (21,22,0) = —uiT(21,22,0) in L*(9).
&
*+ *

It remains to be shown that 05" = o;5 on S.

We first show that o3 = 0 on T'}.

In (6.19) let us choose v € K, such that v € (H*(Q%))3, v=0on SUTLUT;
and v = 0 in 27. We obtain using Green’s formula

B*+(V70*> =0,
= —/Q+<V)N : GN(O)((‘?go-}‘V)\/de-q-/ (V) - Gn (0)o%/adz.

ry

Using (6.24) results in
/F+ (V)n - Gy (0)ayvadz =0, Yv e (L*(T]))3,
which implies
o' =0, in (L*T]))%. (6.26)
Let us now transform Eq. (6.19),

B~ (v,0*)+ B*"(v,0*) = L(v), VveK,
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using Green’s formula (and (6.26)) and going back to cartesian coordinates. This
gives

B*t(v,0%) = / [(O5v)n - Gn(0)o ]V adz,
O+
. / (V)x - G (0)(Bsor’y )v/ada — / (V)b - G (0)aHyade, das.
O+ S

Using (6.24) results in
B (v,0%) = — [5 (W)t - G (0)oH yade, das,
and going back to cartesian coordinates
B*t(v,0%) = —/S\A/Jr -6*tnds.

Moreover, we have

B~ (v,1) = /_ er(v)-or +en(v) Gyoyl|Vydz,

Since div(6(e)) = f € (L2(Q7))3, div(6*) belongs to (L2(Q7))? and 6* belongs to
H(div,Q7) (see Appendix B). Therefore, we can define én g € H~'/2(8) and we
have Green’s formula

B_(V,T) = — [ d1V<5'*> -vdr + <5'*_n,\A’_>(H71/2(§))3’(H1/2(§))3-

Eventually, since

we obtain

—/g\A’ : 6'*+Ild8 + (6*’n, \A’>(H—1/2(5~))3’(H1/2(g))3 = O, LA (LQ(S))S

Therefore, 6* n = 6*Tn in (H1/2(5))® but since 6*tn € (L2(S))® the equal-
ity holds in (L2(S))?. In curvilinear coordinates this reads oy (z1,72,0) =
o (x1,72,0) in (L*(S))? and the proof is complete. O

To conclude, let us show that the limit displacement and stress tensor fields sat-
isfy in {2~ the equation of the elasticity problem (1.6) announced in the introduction
of the paper. The result is expressed in the cartesian coordinate system.
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Theorem 6.8. G* and 6" satisfy:

diV(a'*)‘i‘f:O a.e in Q_,

6% = X trace(é(a))] +2p8(8") aein O, (6.27)
=0 aeon I'"UT,",

6*n = —2pu.Akn — ek a.e on S.

Proof. Since u* € V* it is clear that 4* = 0 a.e on '™ U f‘l_ Choosing x3 = 0 in
(6.20) and (6.21) of Theorem 6.7, we deduce that

petsg® + 2uouig® = —0k.g® — 05,8° aeon S,

which is exactly the boundary condition expected on S expressed in curvilinear
coordinates. Let us now obtain the stress-strain compartment equation. Choosing
71 =0 in (6.18) of Theorem 6.6 leads to

A" (", 7) = B~ (u*, 7).

Going back to cartesian coordinates, this equation reads
N Ak A A ~ A K\ A A
ﬁ Aijklaleij dz = / €ij (ll )Tij dz,
Q- Q-

where
A 14w
ikl = 5
Since this holds for all 7,; = 7;; € L*(Q™), we obtain that Aijkl&,";l = &;;(0")
a.e in 2. This relation can also be written
- 1+v , v

é(ar) = z ¢ % trace(6™)1,

124
(0ikbj1 + 0jkbir) — E(Sijdkzl-

which is equivalent to
" = X trace(é(a*))I + 2uée(a™).

Eventually, in order to obtain the equilibrium equation, one may choose in (6.19) of
Theorem 6.6 v such that v =0, ve (H(Q7))? andv=0on I'" U, US. O

It should be noted that this last problem is wellposed. One can easily deduce
this by formulating a mixed variational formulation (in cartesian coordinates) and
check that assumptions of Theorem 1.2, p. 47 of the book by Brezzi and Fortin [5]
are satisfied.

Appendix A

In this first appendix, we recall a result concerning the simultaneous reduction of
two quadratic forms.

Let A be a symmetric, positive definite n X n matrix and B a symmetric n x n
matrix. Using the matrix A, one can define the scalar product (.,.)a on R™ by

(x,y)a = XTAY, Vz,yeR",
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where X and Y are the n x 1 matrices of x and y in the canonical basis. We define
the quadratic form gg by

¢s(z) = XTBX, VacR"™

There exists a unique linear operator f: R” — R", which is symmetric for the scalar
product (.,.)a, such that

gs(z) = (z, f(z))a, VzeR™
Let C be the matrix of f in the canonical basis. We have

XTBX = XTACX, VX eR"
and therefore AC = B. Since C is the matrix of a symmetric linear operator, it
is diagonalizable in a basis which is orthonormal with regard to the scalar product

(.,.)a. Hence, there exist an invertible matrix P and a diagonal matrix D, such
that

PTAP =1, (A.1)
P~ !CP =D. (A.2)

From (A.1) we deduce that A~' = PP” and replacing C by A~'B in (A.2), we
deduce that P~'PPTBP = D. To sum up, we have that

PT"AP =1, and PTBP =D.

Appendix B

In this appendix, we recall two traces theorems. Let ) be a Lipschitz continuous
open subset of R3. Let us define the Hilbert space H(div,2) by

H(div,Q) = {v € (L*(Q))?; div(v) € L*(Q)}.
Theorem B.1. The mapping v,: v — Vv - ngq s a linear continuous operator from
H(div, Q) into H=/2(09).

For a proof the reader is referred to Theorem 2.5, p. 27 of the book by Girault
and Raviart [11].

For 1 < i< 3, let a;: 2 — R be C' functions such that 2?21 0;a; is bounded.
Let us define the Hilbert space H by

3
H= {¢ €L*(Q); Y a;idi¢ € LQ(Q)} .
i=1
The following result holds.
Theorem B.2. Assume the functions a; satisfy the previous hypothesis. Then for

S C 0N a part of the boundary of positive measure, the mapping vs: ¢ — ¢|g is

. . . 2 3 .
a linear continuous operator from H into Li (S, Y ooq @ing da) , where n is the

outward normal.

For a proof the reader is referred to Bardos [2], p. 205.
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