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Accurate 3D Mesh Simplification
Complex 3D digital objects are used in many domains such as animation films, scientific

visualization, medical imaging and computer vision. These objects are usually represented
by triangular meshes with many triangles. The simplification of those objects in order to
keep them as close as possible to the original has received a lot of attention in the recent
years.

In this context, we propose a simplification algorithm which is focused on the accuracy of
the simplifications. The mesh simplification uses edges collapses with vertex relocation by
minimizing an error metric. Accuracy is obtained with the two error metrics we use: the
Accurate Measure of Quadratic Error (AMQE) and the Symmetric Measure of Quadratic
Error (SMQE).

AMQE is computed as the weighted sum of squared distances between the simplified mesh
and the original one. Accuracy of the measure of the geometric deviation introduced in
the mesh by an edge collapse is given by the distances between surfaces. The distances are
computed in between sample points of the simplified mesh and the faces of the original one.

SMQE is similar to the AMQE method but computed in the both, direct and reverse di-
rections, i.e. simplified to original and original to simplified meshes. The SMQE approach
is computationnaly more expensive than the AMQE but the advantage of computing the
AMQE in a reverse fashion results in the preservation of boundaries, sharp features and
isolated regions of the mesh.

For both measures we obtain better results than methods proposed in the literature.



Simplification précise de maillages 3D
Les objets numériques 3D sont utilisés dans de nombreux domaines, les films d’animations,

la visualisation scientifique, l’imagerie médicale, la vision par ordinateur.... Ces objets sont
généralement représentés par des maillages à faces triangulaires avec un nombre énorme
de triangles. La simplification de ces objets, avec préservation de la géométrie originale, a
fait l’objet de nombreux travaux durant ces dernières années.

Dans cette thèse, nous proposons un algorithme de simplification qui permet l’obtention
d’objets simplifiés de grande précision. Nous utilisons des fusions de couples de sommets
avec une relocalisation du sommet résultant qui minimise une métrique d’erreur. Nous
utilisons deux types de mesures quadratiques de l’erreur : l’une uniquement entre l’objet
simplifié et l’objet original (Accurate Measure of Quadratic Error (AMQE)) et l’autre
prend aussi en compte l’erreur entre l’objet original et l’objet simplifié ((Symmetric Mea-
sure of Quadratic Error (SMQE)) . Le coût calculatoire est plus important pour la seconde
mesure mais elle permet une préservation des arêtes vives et des régions isolées de l’objet
original par l’algorithme de simplification. Les deux mesures conduisent à des objets sim-
plifiés plus fidèles aux originaux que les méthodes actuelles de la littérature.
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Le sommet résultant est placé en un point de l’espace qui minimise la métrique connue
dans la littérature sous le nom : quadratic error metric (QEM).

QEM utilise les matrices de formes quadratiques, associées à chaque triangle de l’objet,
pour calculer l’erreur. Les sommets sont la solution d’un système d’équations linéaires.
Quand le sommet est déplacé, le coût de déplacement est considéré comme la somme des
carrés des distances du sommet aux plans tangents aux triangles adjacents.

Sur la base de cette méthode, le sommet résultat par la fusion d’arêtes est placé de manière
à minimiser cette somme. Nous utilisons cette méthode pour localiser le sommet résultant
car elle est très rapide.

La méthode de simplification utilise de manière itérative les fusions des aêtes jusqu’à
ce que la condition d’arrêt soit atteinte. Dans notre algorithme, la condition d’arrêt est le
nombre de sommets de l’objet simplifié fixé par l’utilisateur.

Pour les résultats expérimentaux nous avons utilisé les modèles suivants : Pieta, Bunny,
Octa-flower, Beethoven, Dragon, Bones, Venus, Horse.

Pour évaluer les erreurs introduites dans la simplification par nos méthodes, nous util-
isons la distance de Hausdorff et de l’erreur quadratique. Nous mesurons la distance de
Hausdorff à l’aide du logiciel Metro.

Nous avons aussi comparé les erreurs, mesurées par la distance de Hausdorff et la dis-
tance quadratique, pour nos simplifications, avec les celles obtenues avec QEM. Pour tous
les modèles, nous avons obtenu de meilleurs résultats que QEM avec la distance de Haus-
dorff et la distance quadratique.

La mesure d’erreur utilisée par QEM, pour évaluer l’écart géométrique introduit par une
fusion de couples de sommets, est la distance entre le sommet et les plans des triangles
associés au sommets. La distance calculée au plan support du triangle est différente de la
distance calculée sur les triangles. Cette différence est plus importante pour les surfaces
courbes.
Notre méthode utilise la distance entre le sommet et le triangle, elle est donc plus précise.

L’inconvénient de notre méthode est sont coût en temps d’exécution. Elle peut pren-
dre plus dún jour pour simplifier un objet avec 50 000 sommets. La complexité est générée
par PQP.

Parce ce que PQP n’est pas un structure dynamique, chaque fois que nous modifions
une petite région de l’objet, la structure doit être reconstruite. La complexité n’est pas
critique parce que nos simplifications sont obtenues hors ligne, notre objectif est d’obtenir
des simplifications caractérisé par un haut niveau de précision.
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Chapter 1

General Introduction

1.1 Introduction

3D digital objects have become more present in our lives in the last two decades.
They are widely used in many domains including medical visualisation, architectural and
industrial design, virtual reality, cartography, remote sensing. With the increasing interest
in 3D digital objects, the techniques for producing these objects have been improved and
produce nowadays digital objects with millions, even billions of elements.
Complex objects simulate the reality very well but have as disadvantages difficulty in
handling, rendering or transmitting over the internet. Moreover, the storage memory is
larger for complex objects. For these reasons, mesh simplification is desirable.
The goal of the mesh simplification algorithms is to reduce the complexity of a mesh while
preserving a high fidelity of the original during simplification.
In this context, this thesis is focused on reducing the complexity of digital objects. The
goal is to create approximations of the original object with fewer elements but maintaining
a high fidelity of the original (Figure 1.1).

1.2 Motivation

During the last few years developments in 3D acquisition techniques have permitted
the generation of digital objects with a huge number of elements. On the one hand, the
complexity means objects more realistic with a multitude of details. On the other hand,
the complexity means a lot of information which makes the interaction with the object
more difficult. In addition, these objects require more memory for storage.
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CHAPTER 1. GENERAL INTRODUCTION

Figure 1.1: A 3D object with two approximations. From left to right: The original model
with 274 196 triangles, approximation with 10 000 triangles and 2000, respectively. Kitten
model is provided courtesy of Frank ter Haar by the AIM@SHAPE Shape Repository

In certain applications complexity is not necessary and a simplified versions of these ob-
jects can be used successfuly.
For example, in animated films it is important to have more details for the objects closer
to the view point (see the characters in the Shrek animation film from Figure 1.2), while
details are completely useless for objects far away from the view point, such as trees in
the background.

In interactive applications such as video games or aircraft simulators, interactivity is more
important than the visual quality of the objects. Thus, in these applications, it is neces-
sary to reduce the complexity of the objects, as less information permits faster rendering
and interactivity.
There are some 3D acquisition techniques which create objects with redundant informa-
tion. As an example, the digital statue of Iulius Caesar (Figure 1.3) was created by a 3D
laser scanner and contains approximatively 0.4 M vertices. We can easly tell that there
are some flat regions such as the forehead or nose which can be approximated with fewer
triangles without affecting the quality of the object.
In medical visualisation, the 3D digital reconstruction of the human organs is realised by
extracting isosurfaces with marching cubes algorithms ( [Lorensen and Cline, 1987]) from
MRI (Magnetic Resonance Imaging) or CT (Computed Tomography) datasets. Marching
cubes algorithms produce meshes with redundant information (Figure 1.3 ). To improve
work with this kind of objects, simplification is required.
In cartography, elements such as rivers or roads can be represented with fewer details.

In all applications presented above, the complexity of the objects can be reduced in such
a manner as to preserve the details and characteristics of the original. Among the ad-

2 Elena OVREIU



1.2. MOTIVATION

Figure 1.2: Synthetic objects used in production of animation films. The image, taken
from the animation film Shrek, contains more details for the characters, because they are
in the foreground and fewer details for the background.

Figure 1.3: Left: The digital statue of Iulius Caesar, created by a 3D laser scanner. Right:
A brain model created using marching cubes algorithm. The both models are provided
courtesy of INRIA by the AIM@SHAPE Shape Repository.

Elena OVREIU 3



CHAPTER 1. GENERAL INTRODUCTION

vantages of reducing complexity are: a decrease in rendering time, increased rapidity of
object manipulation and less memory used for objects storage. Also, transmission over
internet is improved in terms of rapidity. Simplified objects are better adapted for different
bandwidths and can be easier rendered on any destination workstation.

1.3 Contributions

This thesis proposes two different error metrics to measure the geometric deviation
introduced by an edge collapse during simplification.

First, we propose a simplification algorithm which uses an accurately measured one-sided
quadratic error metric (AMQE).This error metric provides an accurate measure of the
geometric deviation between the mesh after an edge collapse and the original object. The
faces of the mesh are sampled and an exact distance is computed from the sample points
to the original mesh. The accurate quadratic error will be the sum of the weighted squared
distances. Because the distances from the sample points to the original mesh are accurately
computed, this error metric provides an accurate characterization of the geometric devi-
ation introduced by an edge collapse. More than that, the error metric provides a global
measurements of the geometric deviation between the simplified and original meshes.
The accurate one-sided quadratic error metric produces simplifications with a high preser-
vation of the details of the object.

We extend the geometric error metric to a symmetric measure of quadratic error met-
ric (SMQE). SMQE is the AMQE measured in the both direct and reverse directions, i.e.
simplified to original mesh and original to simplified mesh.
SMQE is more costly than AMQE in terms of computation power but the advantage of
using this error metric consists in the preservation of boundaries and sharp features.
Moreover, SMQE does not allow an island of a mesh to disappear.

For the both error metrics, we obtained simplified meshes more accurate than the simpli-
fication with other methods proposed in literature.

1.4 Overview of the dissertation

In the reminder of this thesis, we make an introduction in 3D digital objects, present
their applications and the techniques which generate them (Chapter 2).
In Chapter 3 we review the prior work in the field of mesh simplification. We describe the
methods used to simplifiy meshes with an emphasis on their advantages and disadvantages.
Our proposed simplification algorithm is presented in Chapter 4. We describe the metrics
we use to evaluate the geometric error introduced in the simplification.
Chapter 5 contains the results obtained with our method. The performance of our algo-
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rithm is evaluated. Our method is compared with other simplification methods proposed
in literature.

Elena OVREIU 5
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Chapter 2

Surface Representation

This chapter begins with an overview of 3D digital objects and presents different ac-
quisition techniques and methods to generate 3D objects.
A classification of the surface representation is made in the bellow with an emphasis on
triangular meshes.

2.1 3D Digital Objects

The last twenty years brought an increasing presence of 3D digital objects in different
domains such as movies, medicine, architecture, industrial design, engineering, cartogra-
phy, etc.
Digital objects are usually represeted with the 3D surface of the object. This kind of
objects are used in applications such as movies, aircraft simulation and industrial design.
But, there are some domains such as finite element analysis where information from the
interior of the objects is necessary. In this case, the volumetric representation of the object
is created.
There are different methods to generate digital objects depending on the application do-
main (Figure 2.1).
For example, in animation films and computer games, the objects are synthetically created
using Computer Aided Design (CAD) techniques.

In scientific visualisation, medical images, a data volume is a group of 2D slice images
acquired by CT (computed tomography) or MRI (magnetic resonance imaging) scanner.
From this volume, an isosurface is extracted using marching cubes algorithms [Lorensen

7



CHAPTER 2. SURFACE REPRESENTATION

and Cline, 1987](Figure 1.3).

In computer vision, 3D laser scanners capture points of a real object and the 3D surface
of the object is reconstructed from these points. For example, the Stanford’s 3D model
of Michelangelo’s statue of David contains about one billion polygons (see Michelangelo
Project). Among these points, some are redundant and could be removed without decreas-
ing the quality of the model.

In remote sensing, range data sets are obtained using satellite photographs. With these
data, the 3D reconstruction of some dangerous and inaccessible areas is realised and used
for geo-exploration.

In virtual reality, digital objects are used for aircraft, spacecraft, automobile simulator
or for surgery simulator, heritage and archaeology reconstruction. They are synthetically
created using CAGD techniques.

In mechanical engineering, digital objects are used for structural analysis of bridges or
for simulation of electromagnetic fields.
Moreover, they are used in cartography, in architecture and industrial design, in urban
modeling.

As we have seen, all of the acquisition techniques presented above are capable to pro-
duce 3D models with millions of even billions of elements (vertices, edges or faces) which
make it difficult to store, transmit over the internet, to render or analyse the models.
To improve these performances, simplification is necessary.
There are certain applications in which the real time rendering and the interactivity with
the objects is more important than a detailed representation. This is the case with com-
puter games or aircraft and military flight simulators. In this kind of applications, the 3D
object can be simplified to multiple level of details (LOD).
In cartography, when a map with large scale is produced there are some details which are
not necessary. For example, the rivers or roads could be represented with less details. In
this manner, the storage space and rendering time are reduced.
3D objects obtained by marching cubes algorithm or from 3D scanner contain redundant
data points. The redundant data could be removed to improve the storage memory. In an-
imation films and computer games, the objects which are further away from the viewpoint
or are small can be represented with fewer details in order to improve rendering time.

2.2 Surface Representation vs. Volumetric Representation

In computer graphics, the objects modeling can be realised using surface representation
or volumetric representation (Figure 2.2).

8 Elena OVREIU
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2.2. SURFACE REPRESENTATION VS. VOLUMETRIC REPRESENTATION

animation film (Shrek) medical visualisation

remote sensing ( Killimanjaro mountain)

architectural design

scientific visualisation ( structural analysis of a bridge)

Figure 2.1: Applications of 3D digital objects in different domains. Top left: An animation
film character (taken from the film Shrek). Top middle: 3D reconstruction of a heart,
used in medical visualisation. The image is provided courtesy of Julien Dardenne. Top
rigt: 3D surface used in architectural design. Graphisoft Desk Chair model is provided
courtesy of Graphisoft by the AIM@SHAPE Shape Repository. Bottom right: example of
surface reconstruction in remote sensing domain. Killimanjaro mountain model is provided
courtesy of Disi by the AIM@SHAPE Shape Repository. Bottom left: digital object used
in mechanical engineering, to analyse the resistance of a bridge.

Elena OVREIU 9



CHAPTER 2. SURFACE REPRESENTATION

Figure 2.2: Left: Volumetric representation of a human head. Right: The surface repre-
sentation. For volumetric representation more information is necessary than the surface
representation. Volumetric Head model provided courtesy of Julien Dardenne.

In surface representation, we represent a 3D solid object with a 2D surface and no infor-
mation about the interior of the object while in volumetric representation the interior of
the object is represented as well. For example, in Figure 2.2, the volumetric representation
(left part) provides information about the internal structure of a human head.
This kind of representation is useful for applications such as finite element analysis, where
the internal structure of the object is necessary to compute the internal stresses in the
object.
Volumetric representation is difficult to model, time consuming and costly in terms of
storage memory space.
If we are interested only in visualisation of the object, without information about the in-
ternal structure, surface representation can be successfully used. For example, for objects
in animated films, only the exterior aspect of the objects is of interest and not the interior
structure, such as muscles or fibres.

This thesis concerns only 3D surface representations and the simplification algorithm is
designed to reduce the complexity only for surfaces in 3D Euclidean space.

2.3 Surface Representation

In computer graphics, we deal with the 2D surface representation of a 3D solid object.
The 2D surface of a 3D solid object could be regarded as the physical delimitation between
the interior and the exterior of the solid.
The methods involved in 2D surface representation are divided into two main classes:
parametric representation and implicit representation. Each class has its advantages and
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Torus: orientable surface Moebius: non-orientable surface

starting point

arriving point

starting point

arriving point

Figure 2.3: Surface orientation. Left: Torus is an orientable surface. Right: Moebius strip
is a non-orientable surface.

drawbacks.
The parametric representation of an object is the mapping of a 2D domain through a
parametric function f : Ω → S with Ω ∈ <2 and S ∈ <3. The implicit representation is
actually the zero-set of a function F : <3 → <3.
In parametric surface representation, we can distinguish between polygonal surface repre-
sentation (the most popular method), spline surfaces and subdivision surfaces.

In computer graphics, a surface is most commonly defined as an orientable continuous
two-dimensional manifold embedded in R3 [Botsch et al., 2008].
A surface can be described as being orientable or non-orientable (Figure 2.3).
A surface is called orientable if we can consistently assign a clockwise rotation as we move
around. Otherwise, the surface is non-orientable.
In other words, if we assign a system of coordinates to a point on a surface (Figure 2.3)
and move the point around the surface, when the point arrives in the same position and
the system of coordinates has the same orientation, such as Torus model in Figure 2.3, the
surface is orientable.
If the system has the same orientation for y axis and invers orientation for x axis such as
the Moesbius model in Figure 2.3, the surface is non-orientable.

2.3.1 Parametric Representation

Given a plane P ⊂ <2 associated to the coordinate system (u, v) and a function f

which translates this plane into <3 domain:

f :


P ⊂ <2 → <3

(u, v)→ f(u, v)

The parametric surface S is the image of the function f in <3.

S = {t ∈ <3|∃(u, v) ∈ P, t = f(u, v)}
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v
u x

y

z

f

S

Figure 2.4: Example of mapping from <2 to <3.

The transformation from <2 domain to <3 is called mapping. The plane P is mapped
to a surface S through a transformation given by f (Figure 2.4).
For a parametric representation it is difficult to determine the position of a point regarding
a surface and moreover, it is difficult to detect self-collisions. This is one drawback of
parametric representation.
Because the parametric domain and the image surface have the same topology, when the
topology of the surface is changed parametrization should be updated. Thus, generation
of the parametrization function is complex. This is another drawback.
Among the advantages of parametrization surface representation can be enumerated the
following: sample points on the surface can be generated sampling the parameter domain
and applying the parametrization function.
The geodesic neighbourhoods are easily detected by checking their neighbourhoods in the
parametric domain.

Polygonal Representation

One of the most popular methods for representing the surface of a 3D object is the
approximation of the surface with a collection of polygons. This collection of polygons is
called a mesh. To create objects as in Figure 2.5, various attributes such as color, texture
or images are added.

A polygonal mesh has the following advantages in being used for an object represen-
tation: it is a piecewise linear approximation with an approximation error equal to O(h2)
where h is the maximum edge length; it offers an arbitrary topology, adaptive refinement
and efficient rendering.
Most hardware prefers to process a large number of simple objects rather than complex
objects, and for that reason polygonal meshes are preferred.
A mesh is a collection of polygons, edges and vertices (Figure 2.6):

M = (F , E ,V) (2.1)
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Figure 2.5: Digital objects in computer graphics. Left: The final object is the mesh from
the left image with attributes of color and texture added. Image taken from animation film
Shrek.

where
F = {f1, f2, ...fF } (2.2)

is the set of faces.
V = {v1, v2, ..., vV }, vi ∈ <3 (2.3)

represents the set of vertices and

E = {e1, e2, ..., eE} (2.4)

is the set of edges.
A triangular mesh presents the following relationship between faces, edges and vertices:
each face has three vertices and three edges, each edge has two vertices and one (if it is a
boundary edge) or two faces (if it is an interior edge). A mesh can be characterized from
a geometric point of view or from the point of view of connectivity.
The geometry of the mesh is given by the coordinates of the vertices. Each vertex vi ∈ V
has associated a set of coordinates in <3:

P = {p1, p2, ...pV } (2.5)

with

pi =


xi

yi

zi

 ∈ <3 (2.6)

The connectivity of the mesh is given by the graphM = (F , E ,V) (Figure 2.7 ).
If the faces of the mesh fi are triangles, the mesh is called a triangular mesh or a quadri-
lateral mesh if fi are quadrilaterals (Figure 2.8, right). If the quadrilaterals are planar,
the mesh is called planar. Otherwise, it is called non-planar.
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Figure 2.6: The structure of a mesh representing a car body. The red points are the vertices,
the yellow lines are the edges and green represents the faces (triangles in this example).
The Beetle model is provided courtesy of L. Kobbelt.

Figure 2.7: The geometry of a mesh.

triangular mesh quadrialateral mesh

Figure 2.8: Different mesh tesselations. Beetle models are provided courtesy of L. Kobbelt.
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Meshes with polygons having more than four edges are called n-polygonal meshes.

In computer graphics, in polygonal surface representation, the widely used primitive to
approximate a surface is the triangle. Triangles are widely supported by graphics libraries
and hardware systems and can be easily produced by 3D acquisition techniques (CT, MRI,
3D scanners, CAGD tools). For these reasons, they are the most common surface repre-
sentation primitives used.
Quadrilateral meshes are used mainly for industrial and architectural design. For example,
in architecture, the most utilised materials are planar ones such as glass and plywood and
architectural designers prefer to work with planar quads meshes.
My thesis deals only with triangular meshes. By working with triangular meshes, we avoid
the problem of unplanar faces.

Topologically, a mesh can be manifold or non-manifold.
A manifold mesh is a mesh for which the surface of every point is locally homeomorphic
to a disk or a half-disk. If the surface of a point is locally homeomorphic to a disk, the
manifold is called manifold without boundaries (the Shark in Figure 2.9). If the surface is
locally homeomorphic to a semi-disk, the surface is manifold with boundaries (the Beetle
in Figure 2.9). In other words, if an edge is shared by exactly two triangles, we deal with
manifold without boundaries and we deal with manifold with boundaries if the edges are
shared by two triangles and by one triangle, as well.
If an edge of the mesh is shared by more than two faces, or a vertex is shared by two
disconnected fans of triangles (Figure 2.10), the mesh is called non-manifold mesh.
In practice, many meshes are manifold and many algorithms are designed to simplify man-
ifold meshes, non-manifold meshes being hard to handle.
The vertex degree or valence of a vertex is the number of edges incident to that vertex
(Figure 2.7). If all vertices degrees are equal, the mesh is called regular.
A relation between the number of faces F , the number of vertices, V and the number of
edges E of a mesh is given by the Euler formula:

F − E + V = 2(1− g) (2.7)

where g is the genus of the surface (Figure 2.11). Because g is small compared to the
number of elements in the mesh, the right term of the equation is almost 0. With this
approximation, for a manifold mesh, the following approximations are considered [Botsch
et al., 2008]

• the number of faces is two times the number of vertices: F ≈ 2V

• the number of edges is three times the number of vertices: E ≈ 3V

• the number of faces around each vertex, called the valence of the vertex is on average:
≈ 6
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manifold without boundaries

non-manifold
manifold with boundaries

Figure 2.9: Example of manifolds and non-manifolds meshes. The models are provided
courtesy of AIM@Shape Repository.

non-manifold vertex non-manifold edge

Figure 2.10: Examples of non-manifolds meshes. On the right, we have a non-manifold
vertex and a non-manifold edge on the left.
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Genus 0 Genus 1 Genus 2

Figure 2.11: Objects of different genus. From left to right: a sphere of genus 0, a torus of
genus 1 and a double torus of genus 2.

For a triangular mesh, each point p inside a face f = (v1, v2, v3) can be expressed using
the face’s vertices:

p = αv1 + βv2 + γv3

with

α+ β + γ = 1

α, β, γ ≥ 0

α, β, γ are called barycentric coordinates.

Spline Surfaces

An alternative to polygonal surface representation is representing surfaces using spline
functions (Figure 2.12). Spline surfaces are generated using B-spline basis functions and
are the standard surface representation in Computer-Aided Design (CAD) systems.
Spline surfaces are created by mapping the domain [0, 1]2 into <3 using a parametrization
function

f : [0, 1]2 → <3

f(u, v) =
N∑
i=1

N∑
j=1

cijN
n
i (u)Nn

j (v)

where Nn
i (·) is the B-spline basis function with

Nn
i (·) > 0∑

i

Nn
i = 1
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Figure 2.12: Mouse created using spline representation. The Mouse model is provided
courtesy of Stephane Guillet by the AIM@SHAPE Shape Repository.

and cij are called control points. The totality of the control points determines the control
mesh for the spline surface.
Each point of the surface f(u, v) can be expressed as a convex combination of the control
points.
The image of the grid [0, 1]2 is transformed by the function f in a grid in <3. Because of
this topological constraint, to create a more complex surface using B-spline basis functions,
more small patches are created and put together in a smooth manner.
A detailed presentation of spline surfaces can be found in [Farin, 2002].
Spline representations are used to create high-quality surfaces. But this representation
offers some topological and geometric constraints. To represents complex topological sur-
faces by splines, the model should be divided into patches. After that the patches should
be connected in a smooth way to obtain high-quality objects.

Subdivision Surfaces

Subdivision surfaces is another method for creating a surface starting with a control
mesh (which is the coarsest one) and iteratively subdividing each face (Figure 2.13). The
process of subdivision can be seen as a refinement of the mesh or smoothing of the surface.
For each step of subdivision, the connectivity of the mesh is changed by subdivision of
each face.
Furthermore, the geometry of the mesh is altered because after each subdivision the posi-
tions of the new vertices and sometimes the positions of the old one are recomputed.
To subdivide a face there are various methods such as Doo-Sabin, Catmull-Clark, Loop
and Butterfly which propose different schemes for subdividing a face.
The geometry can be partially changed, a situation in which only the positions of new
vertices should be computed or can be globally changed, in which case the old vertices
change their positions, as well.
An inconvenience of the mesh subdivision is the difficulty in previewing the final smooth
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Figure 2.13: Surface subdivision. Each subdivision step increases the number of faces by
4. At each subdivision step, the edges are halved. Image taken from [Botsch et al., 2006]

Figure 2.14: Implicit surface representation. The Bohemian Dome model is provided
courtesy of INRIA by the AIM@SHAPE Shape Repository.

mesh. A coarse mesh can lead to different refinement meshes as output because of the
different subdivisions applied. And this can be inconvenient for a designer.
There are, of course, advantages to using subdivision in the generation of the surfaces. One
advantage is that subdivision can create surfaces with arbitrary topology. A subdivision
representation permits level-of-detail rendering [Zorin and Schröder, 2000].

Differing from spline representation, subdivision representation offers more topological
and geometric freedom.

2.3.2 ImplicitRepresentation

In implicit representation, the whole surface is characterized by a function. Applying
this function, each point of the embedding space <3 is classified as being inside, outside or
on the surface which delimits the solid object. In this kind of representations, the surface
of a solid object is considered to be the zero-level set of function

F : <3 → <
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f(x,y)=0 on curve

f(x,y) < 0 inside

f(x,y) > 0 outside

Figure 2.15: The function evaluation for an implicit representation of a surface. If the
function is positive, the point (x,y) is outside the object, if it is negative, the point is inside,
and the point is situated on the object surface if the function is 0.

Thus, each point (x, y) ∈ <3 is classified as belonging to the inside, outside or on the
surface of the solid, as follows ( 2.15 ):

• if F(x,y)<0 then the point (x,y) is inside the object

• if F(x,y)=0 then the point (x,y) is on the boundary of the object

• if F(x,y)>0 then the point (x,y) is outside the boundary of the object

Implicit surfaces can be seen as the level-sets of a potential function and can be success-
fully applied in constructive solid geometry (CSG).
The implicit surface representation has some drawbacks such as difficulty in rendering this
kind of surface.
The position of the points on the surface is not known directly and we can know only if
the points are inside or outside of the objects. Given a point on the surface, we do not
explicitly know its neighbours.
Furtheremore, using implicit functions does not provide any parametrization of the sur-
face.
In order to get a parametrization of the surface, a bounding box must be placed around
the object. The bounding box is subdivided into a regular grid. The parametrized repre-
sentation of the surface is done with the help of the grid’s nodes. If ni is a node of the
grid, then F (ni) will be a point of the parametrization of the implicit surface.
Because for regular grid parametrization memory consumption is very large, an adap-
tive structure [Samet, 1990], [Frisken et al., 2000], [Wu and Kobbelt, 2003a] can resolve
this problem. The sampled values are stored in a hierarchical octree and in this manner
memory is saved.

Implicit representation can be used to represent surfaces with changing topology.
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Chapter 3

State of the Art of Triangular Mesh
Simplification

The topic of polygonal mesh simplification is more than twenty years old, having its
roots in 1976 when James Clark first introduced the term level of details (LOD) [Clark,
1976]. He proposed using the LOD in the representation of a scene.
From 1976 until today many polygonal simplification algorithms have been proposed.
All these simplification algorithms have the same goal: to reduce the number of polygons
of the mesh but preserve the fidelity of the original. As we have seen above, the most used
surface representation in computer graphics is the polygonal mesh and more exactly the
triangular ones.
To capture better the details of an object, millions, even billions of triangles are used.
Almost all 3D acquisition techniques produce polygonal meshes with a lot of information
and sometimes this information is redundant. Fot this reason, the meshes are simplified,
but the details and characteristics of the original should be preserved as much as possible.

In mesh simplification algorithms, two main aspects are taken into consideration: the
operation used to simplify the mesh and the error metric used to measure the geometric
error introduced by these operations.

3.0.3 Hausdorff Distance

The Hausdorff distance is a measure of the distance between two subsets of the metric
space.
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M1

M2
d2d1

dH

Figure 3.1: Surface to Surface Distance

We call one-sided Hausdorff distance the distance between the surfacesM1 andM2:

dH1(M1,M2) = maxp∈M1minq∈M2‖p− q‖ (3.1)

where ‖ · ‖ is the Euclidean norm in <3.
Since the one-sided Hausdorff distance is non-symmetric, the Hausdorff distance is defined
as:

dH(M1,M2) = max{dH1(M1,M2), dH2(M2,M1)} (3.2)

The Hausdorff distance is the maximum of the two one-sided Hausdorff distances.

One application of the Hausdorff distance is to compare the deviation between two meshes.
For example, if we have two surfaces,M1 andM2 as in Figure 3.1, the dH1(M1,M2) = d1

and dH2(M2,M1) = d2.
Thus, the Hausdorff distance betweenM1 andM2 is dH(M1,M2) = max(d1, d2) = d2.
Because the Hausdorff distance is an efficient tool to measure the deviation between two
surfaces, it has receveid a lot of attention in recent years [Bartoň et al., 2010], [Straub,
2007], [Tang et al., 2009].

3.0.4 Quadratic Error

Another useful tool for measuring the distance between two surfaces is the quadratic
error. The Quadratic error measures the avearage of squared distances between two sur-
faces:

E(M1,M2) = 1
a1 + a2

(∫
p∈M1

d2(p,M2)dp+
∫
q∈M2

d2(q,M1)dq
)

(3.3)

where a1 and a2 are the surface areas ofM1 andM2.

The quadratic error measures the average squared distance between two surfaces and
corresponds to the L2 norm in the 2D case.

3.1 Metrics in practice for Mesh Simplification

In the simplification algorithms, the decision of simplification is made on an error metric
criterion. Thus, the error metric used to measure the geometric deviation between the
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v1 v2

v

Figure 3.2: Vertex to Vertex Distance

simplified mesh and the original one is very important in the quality of the simplification.
Bellow we present some relevant simplification algorithms from the error metrics point of
view.

3.1.1 Vertex-to-Vertex Distance

One of the papers which addresses the vertex-to-vertex error metric (Figure 3.2) is [Lue-
bke and Erikson, 1997], [Luebke, 1996].
The error introduced by collapsing vertices in a node (see Section 3.2.2) is considered to
be the maximum distance between the vertices in the same cluster.
[Rossignac and Borrell, 1992] adds to the maximum vertex-to-vertex distance the inverse of
the maximum angle between all pairs of edges incident to the candidate vertex. The second
term is added to preserve the candidates which are situated on the object’s silhouettes.

3.1.2 Vertex-to-Plane Distance

In [Schroeder et al., 1992], the geometric deviation is measured as the distance from
a vertex to the average plane through the vertices around that vertex. The geometric
deviation is computed to the simplified mesh and not to the original one. This leads to
underestimating the real error, because there is no information about the geometric error

Figure 3.3: Vertex to Plane Distance
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between the simplified mesh and original one.

In [Ronfard et al., 1996] the used error metric is based on the distance between a ver-
tex and a plane.
In this approach, each vertex of a mesh is considered as the solution of the system of
equations of the supporting planes of the triangles which surround that vertex.
When an edge is collapsed to a vertex (see 3.2.1), the resulting vertex inherits all the
faces inherited by the endpoints of the collapsed edge.
The error metric is the maximum distance from the resulting vertex to the suppporting
planes of the faces inherited by the vertex.
The algorithm using this error metric measuring the geometric deviation produces very
fast results, because of the simple computations.
The complexity of algorithm is proved to be O(n logn) [Heckbert and Garland, 1995].
Because the distance is computed between a vertex and the supporting planes of the faces
of the original mesh and not directly to the faces it results in underestimating the geomet-
ric error, especially for curved surfaces.

Inspired from [Ronfard et al., 1996], [Garland and Heckbert, 1997] proposes a new er-
ror metric to approximate the geometric deviation. Their error metric is the sum of the
squared distances from a vertex to the supporting planes of faces inherited by the vertex.
For a face of the mesh, the equation of its supporting plane can be written as:

nT v + d = 0 (3.4)

where n is the unit normal of the plane, v is a vertex belonging to the face and d is the
displacement of the plane.
If a vertex does not belong to the plane, then the value nT v + d is the distance from the
vertex to the plane.
Thus, the squared distance is

d2 = (nT v + d)2 = vTnnT v + 2dnT v + d2 (3.5)

Eqn. 3.5 can be written as:

d2 = vTAv + 2bT v + c (3.6)

with
A = nnT (3.7)

We denote by

Q = (A, b, c) (3.8)
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Figure 3.4: Sequence of simplifications with QEM. The right model has 9995 vertices. The
simplified versions have 5000, respectively 500 vertices. Squirrel model provided courtesy
of MPII by the AIM@SHAPE Shape Repository.

the symmetric quadratic matrix associated to a plane defined by (n, d).
Based on the observation that quadrics are additive, [Garland and Heckbert, 1997] compute
the squared distance from a vertex to the supporting planes of the faces inherited by the
vertex as:

E(v) = vT (
∑
i

Qi)v (3.9)

where ∑iQi is the sum of quadrics of supporting planes for the faces inherited by the
vertex.
Thus, for a pair contraction (see 3.2.1), the quadric associated to the resulting vertex is
the sum of the quadrics of each vertex which forms the pair.
In this context, the position of the resulting vertex is the one which minimizes the quadratic
error associated to that vertex. Thus, the optimal position is the solution of the system:

Ax = b (3.10)

x = −A−1b (3.11)

It is assumed that A is invertible and well-conditioned.
In this method as in the method proposed in [Ronfard et al., 1996], the geometric devia-
tion is computed as the distance from a vertex to the supporting planes of the triangles
inherited by the vertex and not directly to the triangles. This leads to a rough estimation
of the error.
Because the computation error is reduced to some additive and multiplicative operations,
the algorithm is very fast.
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[Erikson and Manocha, 1999] propose a simplification algorithm based on the quadratic
error metric, but their algorithm brings some improvements. First, they introduce an
adaptive and automatic threshold in the selection of vertices pairs (see Section 3.2.1). In
the algorithm proposed in [Garland and Heckbert, 1997], a fixed user defined threshold is
used for all simplifications. If the threshold is too small, too many pairs of vertices will be
considered as candidates and the complexity of the algorithm increases. If the threshold
is too big, many pairs of vertices are not taken into consideration as candidates and the
quality of the results is not satisfactory.
An adaptive threshold can resolve this problem. The algorithm proposed in [Erikson and
Manocha, 1999] starts with a small threshold and this is automatically increased during
simplification.
The second contribution is a triangle-area weighted quadratic error. The error associated
to each vertex is the sum of trianle-area weighted quadric matrices of the supporting planes
of the triangles inherited by the vertex divided by the sum of triangles-areas. Because the
quadratic error is multiplied by the area of the triangle, the simplification algorithm be-
comes more robust to the mesh tessellation. And that improves the fidelity for some
models, such as meshes with skinny triangles.
In addition, in this algorithm, the authors take into account the simplification of mesh
attributes such as: color, normal and texture coordinates. The algorithm is able to sim-
plify the topology and geometry of non-manifold meshes producing high-quality results in
a fast running-time.

[Garland and Heckbert, 1997] extends to meshes with material properties such as: col-
ors, texture, normals [Garland and Heckbert, 1998]. To handle the mesh attributes in the
simplification algorithm, they introduce the attributes coordinates in quadrics.
The attributes of a mesh are addressed in the paper [Hoppe, 1999].

3.1.3 Surface-to-Surface Distance

A more precise but more expensive method than those presented above is the approxi-
mation of the geometric deviation based on the estimation of the Hausdorff distance [Klein
et al., 1996]. In this algorithm, the geometric error is characterized using the Hausdorff
distance between the simplified mesh and the original one.
An exact Hausdorff distance is computed, the geometric deviation being accurately mea-
sured with the drawback of being more time consuming.
This approach is different from the approaches presented above, where no information
about the global deviation of the final simplified mesh from the original one is provided.

To reduce the computational complexity of the error, [Ciampalini et al., 1997] proposes
an one-sided Hausdorff distance approach with a number of heuristics. It supposes that
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Figure 3.5: Representation of a triangulation and its corresponding simplified version.

there are two triangulations (Figure 3.5) T the corresponding triangulation on T after
simplification.
For each face of the original triangulation, T has an associated error, denoted in Figure 3.5
by εi, i = 1 : 6. The global error of a face f in the new triangulation T ′ is computed as:

εg1(f) = maxp∈Pdist(p, T ) +maxi={1..6}εi (3.12)

where P is the set of sample points on the face f and ε.
Thus, the error for a face of the simplified triangulation, T ′ is the sum of the maximum
distance between the previous triangulation, T and the origianl mesh and the maximum
deviation between the new triangulation, T ′ and T .
Because εg1(f) provides an over-estimation of the real error, the authors introduced the
second term to compensate this over-estimation.
For the second term of the error approximation, each face in the simplified mesh has
an associated list of removed vertices from the original mesh for each of the faces which
is closest. When a vertex v is removed, v is attributed to the closest face from the
new triangulation T ′. Thus, all the removed vertices attributed to the faces in T are
redistributed to the new faces from T ′.
εg2(f) is considered to be:

εg2(f) = maxvi∈Pdist(vi, f) (3.13)

where P is the list of redistributed vertices.
Second term of the global error produces an under-estimation of the actual error.
Thus, the geometric deviation associated with a face, f in the simplified mesh is defined
as:

Υ(f) = εg1(f) + εg2(f) (3.14)

Both of the algorithms presented above take into consideration the global error between
the simplified mesh and the global one.
There are certain applications such as organs 3D reconstruction from CT data in order to
create a prosthesis [Klein et al., 1996] where knowing the global geometric deviation is
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important. Most simplification algorithms take into account only the geometric deviation
between the simplified mesh and the original to describe the quality of the simplifica-
tion [Cignoni et al., 1996].

If the goal of the simplification is to speed up rendering, a measure of the quality of
the simplification is the perceptual quality. The papers which address this measure of
quality are [Lindstrom and Turk, 2000], [Cohen et al., 1998].

[Cignoni et al., 1996] compute the Hausdorff distance in order to evaluate the geomet-
ric deviation between two meshes. For a more accuracy in the evaluation of the deviation,
the faces of the meshes are sampled. Thus, the Hausdorff distance is computed between
the sample points. This algorithm is an efficient tool to measure the deviation between
two meshes, known in literature as Metro. The drawback of Metro is that it cannot handle
very large meshes.
To resolve this drawback, [Meftah et al., 2010] proposes a method computing the distance
between two meshes on the fly.
The geometric deviation between two meshes is evaluated using the root mean square error
(RMSE) computed in the both, direct and backward directions. The largest between the
direct and backward distances is considered to be the geometric deviation between the
meshes. To compute on the fly the RMSE between the meshes a more simplified version
of one of the meshes is used.A correlation between the regions of the two meshes is made
through the faces of the simplified mesh. Thus, at a time, the distances are computed only
between the corresponding regions.
Using an out-of-core algorithm, the distance can be evaluated even for huge meshes.

Simplification Envelopes

In [Cohen et al., 1996] two envelopes are built to control the mesh simplification based
on the Hausdorff distance.
The method generates an outer and an inner envelope which bound the mesh. The envelops
guarantee that the deviation of the simplified mesh is no higher than a predefined threshold,
ε.
To build the outer envelope, each vertex in the original mesh is moved with ε on the normal
direction. The position for a vertex v′ on the outer envelope is:

v′ = v + nε

where n is the normal of the vertex v.
For the inner envelope, the vertices are displaced by −ε than their original positions.
When vertices from curved regions are displaced, self-intersections can appear on the en-
velopes. To avoid this, ε is decreased.
Using the envelopes guarantees that the simplified mesh is closer to the original than a
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predefined tollerance, that topology is preserved and the simplified mesh does not have
self-intersections.
This method requires a manifold input in order to construct the envelops. In addition, be-
cause of strict conditions regarding topology preservation and self-intersection avoidance,
sometimes, high rates of simplification cannot be obtained.

Another approach based on envelopes is proposed in [Borouchaki and Frey, 2005]. A
set of two envelopes situated at a predefined δ Hausdorff distance from the original mesh
are created. During mesh simplification, the geometric deviation should remain inside the
envelopes. The envelopes are used to ensure the geometric constraint.
Together with the geometric constraint, a smoothness constraint is also used. To ensure
the smoothness of the simplification, for each modified triangle, the product between the
normal vector of the triangle and the normal vector to a vertex of the triangle should be
lesser than a predefined value.
A simplification operator is considered to be a candidate if, for each triangle modified with
the application of this operator the following requirements are fullfiled: the Hausdorff dis-
tance between the triangle and the original mesh does not exceed δ and the deviation
between the normal of the triangle and the normal of the vertex does not exceed a prede-
fined value.
Because, computing the exact Hausdorff distance between a triangle and the original mesh
is time consuming, the following approximations are made: being T the set of triangles
before simplification and T ′ the set of simplified triangles corresponding to T .
For a triangle t′ ∈ T ′, the Hausdorff distance to the original mesh is approximated with
the sum of the Hausdorff distance between t′ and the set of triangles before simplification,
T and the Hausdorff distance between T and original mesh,Mas:

dH(t′,M) ≤ dH(t′, T ) + dH(T ,M)

which can be written as:

dH(t′,M) ≤ dH(t′, T ) +maxt∈T dH(t,M)

so
dH(t′, T ) +maxt∈T dH(t,M) ≤ δ

Only the distance dH(t′, T ) should be computed in order to determine the upper limit of
the Hausdorff distance between a triangle and the original mesh.
The one-sided Hausdorff distance from a triangle t ∈ T to the region T ′ is approximated
as follows: t is projected onto the plane of t′ ∈ T ′. We denote the projected triangle with
tT ′ . The intersection of t′ with tT ′ is a polygon noted PT ′(t):

t′ ∩ tT ′ = PT ′(t)
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t
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Pt’ (t)
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Figure 3.6: Example of the approximation of the Hausdorff distance between two triangles.S

It is supposed that the projection of T onto T ′ is restricted to T ′, that the region T ′ can
be written as:

T ′ = ∪t∈T tT ′

and each triangle in T ′ is:
t′ = ∪t∈T PT ′(t)

The one-sided Hausdorff distance between a triangle t′ ∈ T ′ and T is approximated by the
maximum Euclidean distance between the vertices of the polygon PT ′(t) and the vertices
of the projection of this polygon on the plane of triangle t ∈ T .
Thus, the Hausdorff distance between a triangle t′ and a region T is approximated to:

dH(t′, T ) = maxt∈T δ(t, t′)

where
δ(t, t′) = max(d(PT ′(t),PT ′(t)−1), d(PT (t′),PT (t′)−1))

where PT ′(t)−1 is the projection of PT ′(t) onto the plane of t.
By providing a set of two envelopes, the deviation of the simplified mesh is guaranteed to
be within this deviation. Moreover, by using smoothness constraints, the quality of the
simplified mesh is controlled.

Permission Grids

To control the geometric deviation of simplification, [Zelinka, 2002] proposes a method
called permission grid. A 3D grid is placed around the object. The faces of a mesh are
allocated of the grid’s cells. At the beginning, all 3D cells which are closer than a tolerance
ε to the original mesh have the same flag. If not, the cells are set to empty. During sim-
plification, if the simplification operation generates a triangle which intersects an empty
cell, the operation is disallowed.
This method simplifies the topology of the model as well. Being different from existing
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error-bounds methods, this algorithm takes as input arbitrary triangular meshes. The
error tolerance of the grid can be expanded during simplification and this makes possible
the level of detail representation. The size of the permission grid is independent from the
size of the input mesh. But the size is dependent on the desired tolerance. For smaller
tolerances, larger grids are required.
An important aspect of the permission grid is the resolution.
There are some classes of inputs for which the permission grid algorithm is not advanta-
geous. One of these is the class of inputs which are disjointed into different pieces.

A simplification algorithm which is able to reduce both the geometry and the scalar vari-
ables attached at each mesh’s vertex while guaranteeing the limit of error is proposed
in [Bajaj, 1996]. This simplification algorithm preserves the mesh’s topology and takes as
input an arbitrary mesh.

[Hoppe et al., 1993] proposes a global energy function to control the simplification. This
function includes three terms: a term which controls the number of vertices in the ap-
proximated mesh, a term which controls the fidelity of the simplified mesh regarding the
original one and a spring term which penalizes the long edge in the triangulation. During
the simplification, the energy function is minimized.
A user-specified number of points is spread over the original mesh and gradually the points
are moved in order to minimize the energy function introduced above. An important re-
mark is that the set of points initially spread over the mesh has to contain fewer vertices
than the original mesh.
When these points are placed in positions for which the energy function is minimum, a
triangulation is applied over the points. In this manner, a simplified mesh which is the
close to the original one in terms of the energy function is constructed.
The vertices of the simplified mesh are not a subset of vertices of the original mesh. This
can be considered an advantage, because the simplification is not sensitive to the noise in
the input.

Re-tilling Method

A re-tilling method is proposed in [Turk, 1992]. A set of points is initially spread on
the original mesh and moved away through a relaxation step in order to achieve an uniform
distribution. After that these points are introduced in the mesh triangulation. Thus, a
new triangulation of the mesh is done with the new vertices together with the old ones.
Then, the original vertices are removed from the triangulation one by one. In the end, the
simplified mesh contains only the new vertices.
The simplification is designed to preserve the topology of the input, but the algorithm
does not preserve sharp edges. An advantage is that it works on manifold as well as on
non-manifold inputs.
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Most recently, [Digne et al., 2012] proposed an algorithm which reconstructs a surface
from a set of points through surface simplification. An initial triangulation from the input
set of points is simplified.The involved error metric which classifies the candidates opera-
tors is the optimal transport from the input points to the faces of the triangulation.
To define the optimal transport, the mesh is discretized into points, called bins by the
authors. Thereafter, a vertex is its own bin, an edge is decomposed into a user-specified
number of bins and a face is decomposed by 2D Centroidal Voronoi Tessellation and the
site of each Voronoi cell is considered to be a bin.
Thus, the cost of the simplification operator is quantified using the following metric:

cost(π) = sumijmij‖pi − bj‖2 (3.15)

where π is the transport plane between points in the input set pi and points in the bins,
bj .
mij defines a set of weights with the following properties:

∀ij : mij ≥ 0 (3.16)

∀i :
∑
j

mij = mi (3.17)

∀j :
∑
i

mij = cjls(j) (3.18)

li are additional variables used to enforce the uniformity constraints.
Once the simplification is performed, the algorithm improves the position of the remaining
vertex (the vertex after the application of simplification operator). The vertex is moved to
an optimal position which minimizes the cost of the transport plan, π. After the optimal
position is found, the optimal transport plan is updated around the vertex.
More precisely, the optimal vertex position should minimize the following expression:

minv
∑
i

∑
j

mij‖pi − αjv − βjv1 − γjv2‖2 (3.19)

where v1 and v2 are the vertices of the triangle t = (v1, v2, v3), αj , βj and γj are the
barycentric coordinates of bin bj .
The optimal vertex position with respect to triangle t is then:

v∗ =
∑
i

∑
jmijαj(pi − βjv1 − γjv2)∑

imijα2
j

(3.20)

Shape Approximation

A different simplification approach is based on proxies. A proxy Pri is a plane defined
by its normal vector ni and a point which belongs to the plane, xi.
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Simplification algorithms based on proxy fitting subdivide the mesh into a set of discon-
nected patches:

M = {P1,P2, ...,PN}

with
P1 ∩ P2... ∩ PN = 0

P1 ∪ P2... ∪ PN =M

and each patch is approximated by a proxy:

Pri = (xi, ni)

The optimal shape approximation is, for a given number N of proxies, an error metric E
and an input mesh M to find a set of patches P = {P1,P2, ...,PN } and the optimal set
of proxies Pr = {Pr1,Pr2, ...,PrN} which minimize the following error metric:

E(P,Pr) =
N∑
i=1

E(Pi,Pri) (3.21)

To minimize the error metric E(P,Pr) an approach is proposed in [Cohen-Steiner et al.,
2004].
Their method, called variational shape approximation iteratively alternates between region
partitioning and proxy fitting.
In region partitioning, the regions are adapted to a set of given proxies in order to minimize
the error E(P,Pr).
In proxy fitting, the proxies are adapted to the set of given regions, in order to minimize
the error.
At the beginning, n regions are created by randomly picking n triangles form the input
mesh. The set of proxies is initialised Pri = (xi, ni) where xi is a point belonging to
the triangle ti and ni is the normal of the triangle ti. The priority of the triangle ti is
E(ti,Pri). This priority is introduced to a priority queue.
For each triangle ti, the neighbouring triangles are identified and their priorities are intro-
duced in the priority queue.
Each triangle assigned to a region is set to conquered. The pairs (ti,Pri) are pop up from
the queue and if they are not set to conquered, the triangle is assigned to the corresponded
region. The algorithm is stopped when the priority queue is empty. This phase is the
geometry fitting.
After the regions are created, proxy fitting phase is started.
The regions are kept fixed and the proxies are adjusted in order to minimize the global
error E(P,Pr).
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In [Cohen-Steiner et al., 2004], the authors propose two error metrics:

L2(Pi,Pri) =
∫
x∈Pi

(nTi x− nTi xi)dA (3.22)

The error metric is actually the squared distance from a point x to a plane Pi. For this
metric, the best proxies are the least-square fitting planes. The authors propose computing
this metric with principal component analysis.
The second error metric introduced is

L2,1(Pi,Pri) =
∫
x∈Pi

‖n(x)− ni‖2dA (3.23)

For this metric, the normal of a proxy is the area-weighted triangle normals which belong
to that proxy.
After the optimal partitioning of a mesh is done and the corresponding proxies are identi-
fied, an anisotropic remesh is started. All vertices of the original mesh which are situated
at the intersection of three or more regions are identified and projected into the corre-
sponding proxies. The average position is computed. A Delaunay triangulation over the
input mesh lead to an anisotropic remeshing.
A different approach for computing the minimum of the global error E(P,Pr) is proposed
in [Marinov and Kobbelt, 2005] and it is based on a greedy algorithm.
The algorithm uses a set of patches, P = {P1, ...,PN}, a set of proxies, Pr = {Pr1, ...,PrN}
and a set of polygonal faces, F = {F1, ...,FN}. Each face is an arbitrarly connected poly-
gon.
In the beginning, a seed triangle is set to each patch: Pi = {ti}, the proxy Pri is set to
the plane through the triangle ti: Pri = (xi, ni) and Fi = {ti}.
The goal of the algorithm is to maintain the projection of Fi on the proxy, Pri injective.
With this constraint, the degenerate faces and fold-overs are avoided. Furthermore, a
triangular mesh can be extracted with each iteration.
The patches are greedily adjusted until a predefined maximum error or a predefined num-
ber of patches is achieved. In each iteration two patches are merged into a new patch with
the constraint of preserving the injectivity: P = Pi ∪ Pj . The proxy for the new patch is
the area-weighted average of proxies Pri and Prj :

Pr = (x, n)

where
n = aini + ajnj

‖aini + ajnj‖

and
x = aixi + ajxj

ai + aj
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where ai = area(Pi).
A new face, F is computed from Fi and Fj . All boundary valence-2 vertices are removed
if they are closer to the corresponding proxy than a user predefined threshold.
For each two adjacent patches, the error metric is computed E(P,Pr) and inserted into a
priority queue. Then, the patches which produce the minimum error are merged.
The error for the new faces is computed as:

L2(F) = L2(Di,Pr) + L2(Dj ,Pr)

where Di and Dj are two sub-regions of Pi and Pj with fewer faces.
This approximation is done with the goal to speed up the algorithm.

L2,1(F) = ai‖ni − n‖2 + aj‖nj − n‖2

where ai = area(Pi).
Finally, the global error for a polygonal face is:

E(F) = (1 + L2(F))(1 + L2,1(F))

Because the mesh extraction step from [Cohen-Steiner et al., 2004] can produce degenerate
triangles and fold-overs, the algorithm proposed in [Marinov and Kobbelt, 2005] addresses
this drawback by using an injectivity constraint. Thus, a simplification operation is allowed
if the boundaries of the faces obtained after simplification are injectively projectable into
a plane.
Because of the greedy character, the algorithm can get stuck in a local optimum. However,
the variational shape approximation algorithm produces better approximations with a
lower approximation error.

3.2 Mesh Simplification Operations

Mesh simplification operations can be divided into two classes: those which perform
local modifications of the mesh and those which are successively applied in order to simplify
the mesh. The second class includes the simplification operators which simplify the mesh
globally. Those operators simplify the mesh in one step.
As regards those operations, we can distinguish between:

• iterative simplification: performs local modification on the mesh. To achieve a
global mesh simplification, iterative modifications are performed. Because of the
local modifications, this class of algorithms is accurate, producing simplifications
with a high fidelity to the original. More so, these algorithms produce level-of-detail
(LOD) representations, because of the iterative characteristic.
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• direct simplification: performs the simplification of a mesh in one step. It can
be very fast, but the quality of the results is low. These algorithms are not able to
generate LOD representations.

Next, we will detail two categories of simplification algorithms, presenting their advan-
tages and disadvantages.

3.2.1 Iterative Simplification

Algorithms based on iterative simplification are among the most used algorithms. A
polygonal mesh is simplified by iteratively applying a local operator. The basic local op-
erators are: vertex removal, face removal, edge and half-edge collapse, vertices merging or
faces merging. Besides these operators, there are operators such as vertex split and edge
split which are used together with the operators introduced above.
Because these operators perform local modifications, in order to generate higher rates of
simplifications, the local operator is applied iteratively until the desired error is achieved.
For each iteration, the candidates are classified according to the geometric deviation in-
troduced in the mesh by their application. The candidate which produces the minimum
geometric deviation is selected and applied to the mesh. The process is repeated until a
user-defined condition is achieved (the target number of elements or a pre-defined error).
Being an iterative process in which for each iteration small changes are applied to the mesh
and the candidates are re-evaluated, the algorithms produce high-quality approximations.
The weakness consists in computational complexity, which is O(nlogn) up to O(n2) in the
worst cases (especially when there is a global threshold) [Botsch et al., 2008].
In this category of simplification algorithms two aspects should be detailed: the operator
used for simplification and the error metric used to measure the geometric deviation in-
troduced by the simplification operator.

Next, some local simplification operations are detailed.

Vertex Removal

Among the first local simplification operators used in mesh simplification is vertex
removal, proposed in [Schroeder et al., 1992]. This operator removes one vertex and the
faces surrounding that vertex (Figure 3.7 ) [Ciampalini et al., 1997], [Soucy and Lauren-
deau, 1996], [Soucy and Laurendeau, 1992], [Klein et al., 1996], [El-Sana and Varshney,
1997], [Bajaj, 1996].
The resulting hole is then re-triangulated. If the valence of a vertex (the number of faces
shared by the vertex) is n, for a manifold without boundaries, after a vertex removal, the
number of faces becomes n− 2. Vertex removal reduces the complexity of a mesh by one
vertex and two faces.
With each iteration step, each vertex of the mesh is evaluated. The geometric deviation
introduced by the vertex removal is computed. After all possible candidates are simulated,
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Figure 3.7: Vertex removal. One vertex and the adjacent triangles are removed.The result-
ing hole is triangulated with fewer triangles.

Figure 3.8: Edge Collapse. One edge is collapse to a single vertex. Triangles which share
the deleted edge are deleted, too. The number of vertices is reduced by one, the number of
faces by two and the number of edges by three.

the vertices are classified according to geometric deviation.
The vertex which introduces the least geometric deviation is chosen for removal and the
remaining vertices are re-evaluated. The vertex removal operator has certain advantages
such as simplicity and speed. The complexity of the algorithm is O(n), where n is the
number of vertices on the mesh which are evaluated at each step.
The vertex removal operator is topology preserving. This characteristic is desired in cer-
tain applications, for example finite elements analysis. But the topology preservation is
not mandatory for rendering. Some small holes can be removed from the mesh without
problems. But, if there are isolated vertices, these will not be eliminated from the mesh.
An algorithm designed to reduce the mesh topology is proposed in [Schroeder, 1997]. In
this algorithms vertex removal is used together with a vertex split, operator which permits
to reduce the mesh topology.
The difference between methods which use vertex removal as a simplification operator
is the error metric used for measuring the geometric deviation introduced by the vertex
removal.

Edge Collapse

Edge collapse (Figure 3.8) is among the most common simplification operations, first
proposed in [Hoppe et al., 1993]. This operator replaces an edge by a point. We denote
the collapsed edge by: e = (v1, v2)→ v.
All the triangles connected to v1 and v2 will be now connected to the new vertex, v̄. The
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triangles which shared the deleted edge e are deleted from the mesh configuration.
Thus, the vertex removal operator simplifies the mesh with one vertex, two faces and
three edges if it is an interior edge and with one triangle, two edges and one vertex if
it is a boundary edge [Hoppe, 1996], [Wu and Kobbelt, 2003b], [Heckbert and Garland,
1999], [Garland, 1999], [Division and Guéziec, 1996], [Ronfard et al., 1996].
With each iteration, for each candidate edge, the geometric deviation created by its collapse
is computed. The edge with the minimum geometric deviation is chosen to be collapsed.
The remained edges are then re-evaluated.
An important aspect of the edge collapse operation is the location of the new vertex. The
position of the new vertex can influence the quality of the simplified mesh and this influ-
ence is more noticeable for drastic simplifications.

In [Hoppe, 1996], the concept of progressive meshes is introduced. This method is an
improvement over [Hoppe et al., 1993] in terms of speed and quality of output. The idea
is representing the original mesh with a simplified version of it together with a stream of
additional information. In this way, different LODs of the original mesh could be recon-
structed.
An original meshM is represented as:

M =M0 + {(vsi, vti, vli, vri, Ai)}, for i = 1 . . . N

whereM0 is the most simplified version of the original mesh, and {(vsi, vti, vli, vri)} is the
stream of information which permits the reconstruction of the original mesh or different
LODs of it. The simplified mesh is obtained from the original by applying succesive edge
collapses.
For the reconstruction of the original mesh from the simplified one, vertex split, the inverse
of the edge collapse is used.
For each interior edge collapse, the following information regarding the collapse is recorded:
(vs, vt, vl, vs, A) where vs is the vertex after edge collapse, vt is the vertex which, together
with vs formed the collapsed edge. vl and vr are vertices which, together with vt and vr
formed the triangles adjacent to the collapsed edge.
In A is stored the vertex attribute information.
The progressive mesh simplification approach is proposed in [Hoppe, 1997], [Hoppe and
Wa, 1998] as well.

The applications for progressive representations are progressive transmission (when data
is transmitted over the internet, at reception the quality of the mesh is gradually improved
as data is incrementally received), selective refinement (selected regions are represented in
more detailed), LOD approximation, mesh compression (memory storage is reduced).

[Schroeder, 1997] proposes another progressive representation scheme based on edge collapse-
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Figure 3.9: Half-Edge Collapse. The edge is collapsed to one of its endpoints. The number
of vertices is reduced by one, the number of faces is reduced by two and the number of
edges is reduced by three.

split and vertices collapse-split. Because the mesh simplification vertex pairs are collapsed,
the algorithm permits simplifying the topology. Another interesting property of vertex
splitting is that no base mesh is required. To start mesh reconstruction only a few vertices
are needed to initialize edge split operations.
Each vertex in the mesh has an error associated. The error metric is based on [Schroeder
et al., 1992]. When an edge is collapsed to one of its endpoints, the error of the deleted
vertex is transferred to the remaining vertex. For example, e = (v1, v2) → v1 and the
errors associated are e1 and e2 the vertex after collapse has the error e1 = e1 + e2. Dif-
fering from [Schroeder et al., 1992], here the vertex removal is realized by edge collapse.
Moreover, re-triangulation is not necessary, an edge collapse operator being used for sim-
plification. Using edge, vertex collapse-split, the algorithm is able to produce progressive
mesh representations.
Each algorithm which uses edge collapse as topological operator can be successfully applied
for progressive meshes.

Half-Edge Collapse

There are simplified operators which shrink an edge to one of its vertices (Figure3.9) [Hoppe
et al., 1993], [Ronfard et al., 1996], [Kobbelt et al., 1998]. These operators are called
half-edge collapse operators. In this category, both collapses e = (v1, v2) → v1 and
e = (v1, v2)→ v2 are considered possible candidates [Mäntylä, 1987].
The advantage of using a half-edge collapsing operator is that the vertices in the reduced
mesh are a subset of the vertices from the original mesh. This leads to a more efficient
application of the algorithm for progressive transmission.
The disadvantage is there is no freedom of choosing the new geometry. Thus, the reduced
mesh does not fit well with the original one.
Both edge collapse and half-edge collapse operators preserve the topology of the mesh.

Vertices Contraction

Differing from the edge contraction, vertex contraction permits collapsing two vertices
which are not connected through an edge but are closer to each other than a user defined
threshold distance (Figure 3.10). This operator is useful in applications where topology

Elena OVREIU 39



CHAPTER 3. STATE OF THE ART OF TRIANGULAR MESH SIMPLIFICATION

Figure 3.10: Vertex Pair Contraction. A pair of unconnected vertices are collapsed. The
number of vertices is reduced by one, the number of edges and faces remaining constant.

v1 v2 v

non-manifold vertex

Figure 3.11: Vertex Pair Contraction. If two vertices such as v1 and v2 are collapsed, their
collapsed can generate non-manifold vertices, such as veretx v.

simplification is desired.
For example, for simplifying a mesh with a large number of holes, called a mesh with sponge
topology [Botsch et al., 2008], applying only the edge contraction operator is not enough
and the simplification cannot be efficiently realized. Simplifying this type of mesh with
edge and vertices contraction does a better job. Vertex contraction reduces the number of
vertices by one, while the number of faces and edges is kept constant. There are certain
applications in which real time rendering is more important than preserving the topology
and in these situations, vertices contraction can be used.
One of the best algorithms in literature in terms of the balance between quality of the
results and speed and which uses vertex pair contraction is proposed in [Garland and
Heckbert, 1997].
A pair of vertices includes both vertices which are connected by an edge and all vertex
pairs which are not connected by an edge but are closer to each other than a user-defined
distance threshold.
A disadvantage of vertex pair contraction is that it can produce non-manifold meshes.

Generalized Pair Contraction

In [Borodin et al., 2003], the concept of vertex pair contraction is extended to more-
generalized ones: vertex-edge contraction, vertex-triangle contraction or even edge-edge
contraction.
These generalized operators do not permit geometry simplifications, but the topology
simplifications. Collapsing a vertex and an edge or a triangle closes holes or connects
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neighbouring parts of the mesh which cannot be closed using only vertex-vertex collapsing.
There are situations when a vertex from a part of the mesh is close to another part, but
far enough to a vertex on that part so that the vertex collapse is possible without causing
distortions.
For characterizing the geometric deviation generated by a pair contraction, an error metric
is employed. This error metric is the sum of two terms: a quadratic error metric which
describes the local deviation between the meshes before and after simplification and a
Hausdorff distance which describes the deviation between the original mesh and the actual
mesh (the mesh before pair contraction). In this error metric, quadric errors are not
accumulated. A candidate pair chosen to be collapsed will be collapsed only if the one-
sided Hausdorff distance does not exceed a pre-defined threshold distance. We denote here
by one-sided Hausdorff distance the maximum distance between the two meshes involved
in the computation of the Hausdorff distance.
As candidate pairs are sorted in a priority queue and the one which produces the least
geometric deviation is chosen. If the chosen pair fails certain tests, the pair is discarded
and inserted in a second priority queue.
Even if this algorithm can produce high-quality results better than the quadratic error
metric [Garland and Zhou, 2005], there is no estimation of running time.
Another algorithm based on vertices contraction that adopts the progressive representation
is proposed in [Schroeder, 1997]

Faces Merging

With the algorithms which use faces merging as the simplification operator, coplanar or
nearly coplanar faces are grouped in patches. The boundary edges of each patch are then
re-triangulated. Actually, each patch is replaced by a simpler version of it. An important
aspect how the patches are formed. In [Hinker and Hansen, 1993], faces with parallel or
nearly parallel normal vectors are grouped in the same patch. This method is inefficient
in terms of reducing complexity for curved surfaces.
In [Kalvin and Taylor, 1996] and [Division et al., 1993], all faces which are closer to their
approximated plane than an error tolerance are grouped into patches, called in the papers
superfaces.
Once patches are created, their boundary edges are simplified using Douglas-Peucker al-
gorithm [Ramer et al., 1972] and re-triangulated.
Different from the method of [Kalvin and Taylor, 1996], which creates patches based on
the normals vectors, this method is less sensitive to noise, patches being constructed based
on the distance from face to plane.

Inspired by the vertex removal operator, the triangle removal operator is proposed in [Hamann,
1994]. A weight given by the curvature of the triangle vertices is associated to each tri-
angle and for each iteration, the triangle with the lowest weight is replaced by a vertex.
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All triangles which share an edge with the replaced triangle are deleted. The Triangle
removal operator reduces the complexity of a mesh with two vertices, four faces and six
edges. This operator is unable to reduce the topology and works better on planar or nearly
planar surfaces.

The triangle removal operator is used in [Varshney et al., 1995], [Varshney, 1994] as well,
but by this approach the mesh to be simplified is bounded by two envelopes which guar-
antee the simplified mesh will be deviated by no more than a user-defined tolerance.
Vertex removal is the simplification operator used in [Hamann and Chen, 1994].

3.2.2 Direct Simplification

Direct simplification algorithms reduce the complexity of the mesh in one single step.
The simplification is achieved by grouping the mesh’s vertices into clusters. A repre-
sentative vertex for each cluster is chosen and using the representative vertices, a re-
triangulation is realised.
One of the advantages of the vertex clustering approach is speed. Only the representa-
tive vertex computation is time consuming. Furthermore, these algorithms are robust and
both manifold and non-manifold inputs can be used. The level of simplification can be
controlled by the size of the clusters.
There are certain inconveniences. One of them is that the quality of the output is not
satisfactory, and more so at low levels of details.

Direct simplification algorithms are unable to create LOD’s representations.
Another drawback of vertex clustering is that the topology is not preserved. If two geodesic
disconnected parts of a surface fall inside the same cell, they will converge to a single point,
and the topology is altered. This can be considered an advantage for simplifying meshes
with sponge-like topology where simplification by using an algorithm with topology preser-
vation is almost impossible.
In vertex clustering simplification, the global error introduced by approximation is contr-
roled by the size of the clusters.

Vertex Clustering

A classification of vertex clustering algorithms is based on how clusters are created and
how the representative vertex for each cluster is computed.
To cluster the vertices, a bounding box is placed around the mesh and uniformly subdi-
vided into three dimensional cells. Each cell in the grid must have a diameter less than
a predefined tolerance,ξ. In this manner, the vertices of the mesh are grouped into cells.
All vertices inside a cell form a cluster.
A representative vertex for each cluster is chosen, and all the vertices inside a cluster are
assigned to the representative vertex. A cluster of vertices is reduced to a single vertex. All
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triangles that fall in the same cell are degenerated into a point and all triangles of which
two of their vertices are in the same cell are degenerated into an edge. In this manner,
complexity is reduced.

The method was originally proposed in [Rossignac and Borrell, 1992]. By this approach, a
bounding box is overlaid on the mesh, and uniformly subdivided into 3D cells. A weight is
assigned to each vertex. If a vertex belongs to a large faces or to a region of high curvature,
the respective vertex has a bigger weight. And a small weight is attached to small faces
or vertices from almost flat regions.
After vertices are classified according to their weights, a representative vertex for each
cell is chosen. The representative vertex is the vertex with the maximum weight from
the respective cell. All the vertices which belong to a 3D cell will be collapsed to the
representative vertex.
Triangles which have all vertices inside the same cell are degenerated and eliminated from
the mesh. In this manner, the complexity of the mesh is reduced. Because the clusters are
uniform, there are situations when feature vertices fall inside the same cluster and conse-
quently are reduced to a single vertex. In this situation the features are not preserved and
this represents a drawback of uniform clustering.

A non-uniform clustering is proposed in [Low and Tan, 1997]. This approach is called
floating-cell clustering. The advantage of floating-cell clustering is that the positions of
the cells are controlled by the weights of the vertices. Moreover, the size of the cells is
controlled by the user.
All vertices are ordered by their weights. The vertex with the highest weight becomes the
center of a 3D cell. This cell has a user-defined size. All vertices which lie inside the same
cell are collapsed to the representative vertex and degenerated triangles are eliminated. If
a vertex is at the intersection of multiple cells, it is attributed to the cell with the closest
center.
The same steps are applied for the remaining vertices.
The weight vertices computation is improved in this algorithm, compared to [Rossignac
and Borrell, 1992], but running time is increased because of the new weight computations.
Because the clusters are non uniform, this method preserves the sharp features and ap-
pearance is improved. However, complexity is higher than in [Rossignac and Borrell, 1992].

[Valette and Chassery, 2004] proposes a simplification algorithm called Approximated Cen-
troidal Voronoi Diagram (ACVD) based on vertex clustering which involves the Centroidal
Voronoi Diagram to build the clusters. In this context, a Centroidal Voronoi region con-
tains a subset of connected triangles from the original mesh. Two adjacent clusters are
delimitated by a subset of edges, called boundary edges.
During the first step, the number of clusters is fixed and one face of the mesh is ran-
domly allocated to each cluster. Looping on all the boundary edges, all faces which share
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Figure 3.12: Mesh simplification using ACVD method. In the right part is represented the
original Bunny (36 000 vertices) with 5000 clusters. In the left part, its simplified version
with 5000 vertices. A representative vertex for each cluster was created. The triangulation
is realized using Delaunay triangulation.

a boundary edge and are not allocated to a cluster will be allocated to the cluster the
boundary edge belongs to. In this manner, all faces of the mesh are initially allocated
to clusters. The energy term which defines the distribution of the mesh’s triangles into
clusters is defined as:

E =
n−1∑
i=0

(
∑
t∈Ci

atc
2
t −
‖
∑
t∈Ci

atct‖2∑
t∈Ci

at
) (3.24)

where n is the number of clusters, t is a triangle in the cluster Ci, at is the area of the
triangle and ct is the centroid of the triangle.
To create clusters which simulate the Centroidal Voronoi Regions, a minimization energy
algorithm is iteratively applied. For each boundary edge, the energy function is computed
in three situations: when the triangles which share the boundary edge belong to two dif-
ferent clusters, when they belong to the first cluster and when they belong to the second
one.
The configuration which produces the minimum energy function is chosen. For example,
if there is a boundary edge e, which bounds two clusters, Cm and Cn, and shares the
triangles tm ∈ Cm and tn ∈ Cn, the energy function E is computed for the initial configu-
ration, for the case when both tm, tn ∈ Cm and for the case when both tm, tn ∈ Cn. When
the final configuration of the clusters is chosen, a triangulation is applied using Delaunay
triangulation. The vertices of the output are the vertices from the original mesh which
are closest to the clusters’ centroids.
Being an algorithm based on vertex clustering, the algorithm simplifies the geometry and
the topology of t mesh as well. Because in the energy term each triangle is weighted by
its area, the clusters are uniform.
Because the clusters are uniform, sharp features and flat regions are reduced as well and
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Figure 3.13: Mesh simplification using ACVDQ method. On the right part the original
Bunny (36 000 vertices) is represented with 5000 clusters. On the left part, its simplified
version with 5000 vertices. For each cluster a representative vertex was found. The
triangulation is realized with Delaunay triangulation.

the algorithm produces uniform output tessellations (see Figure 3.12).

To address this drawback, the authors of ACVD proposed a simplification algorithm
based on variable size clusters which takes into consideration the mesh curvature informa-
tion [Valette et al., 2005]. The size of the clusters varies with the density of the vertices
from the mesh. Moreover, the density of the vertices can be an indicator for the curvature
of the mesh: a region with high curvature has more vertices than a flat one.
Comparing the results from Figure 3.12 and Figure 3.13, features such as the ears are
better preserved in the simplified Bunny from Figure 3.13.

Because it is a very fast simplification algorithm, it can be successfully applied in video
games, where interactivity is more important than the accuracy of the representation.

Out-of-Core Simplification

Out-of-core simplification algorithms [Lindstrom, 2000], [Lindstrom and Silva, 2001], [Wu
and Kobbelt, 2003b] are designed to simplify meshes too big to fit entirely in the main
memory.
There are two methods for handling this type of simplification:

• to subdivide the mesh into unconnected patches and each patch is simplified inde-
pendently in-core. All simplified patches are joined together to obtain the simplified
mesh.

• to design an algorithm which uses only limited connectivity information for simpli-
fication.

Elena OVREIU 45



CHAPTER 3. STATE OF THE ART OF TRIANGULAR MESH SIMPLIFICATION

The first approach is used in [Bernardini et al., 2002]. The mesh is subdivided into uncon-
nected patches, each patch is processed in-core, but the boundaries are kept unchanged.
When all patches have been simplified, they are joined together and a new simplification
starts in order to simplify the boundaries that remained unsimplified before. Splitting and
joining together the patches after simplification is fairly expensive and makes the method
less attractive. Moreso, the artifacts are introduced along the boundaries of the patches.
Mesh cutting is the out-of-core simplification method used in [Hoppe, 1998], [Prince, 2000]
and in [Ho et al., 2001] for compression of large meshes.

One of the earliest out-of-core methods which uses limited connectivity for simplifying
a mesh is proposed in [Lindstrom, 2000].
For each face, the quadratic matrix is computed as in [Garland and Heckbert, 1997]:

Q =
(
A − b
−AT c

)

where A is the same from Egn. 3.7.
The author addresses the situations where A is not invertible (when the surface is too
flat).
To avoid these situations, the singular value decomposition of A is used.
Thus,

A = UΣV T (3.25)

with

Σ+
ij =


1
σi

if 1 ≤ i ≤ r

0 if r < i ≤ n
(3.26)

and
Σ · Σ+ = I (3.27)

σi are the eigenvalues of ATA.
If Σ is invertible, Σ+ = Σ−1.
The author uses this error metric for determining the position of the representative vertex
for a cluster (see Section 3.2.2).
The representative vertex is the vertex closest to the center of the cluster:

x = x̂+ UΣ+UT (b−Ax̂) (3.28)

where x̂ is the center of the cluster.
In order to have random access to different parts of the mesh, each triangle is represented
in the out-of-core memory as a list of its vertices’ coordinates. After the cluster grid is
constructed each triangle is fetched from the out-of-core memory and its quadric is com-
puted. A dynamic hash table maps clusters to the vertices, thus allowing a fast access.
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The quadric for each cluster is the sum of the quadrics of vertices which belong to that
cluster.
In this manner, the algorithm computes the clusters’ representative vertices using limited
connectivity information and polygons soup. However disadvantage of limited connectivity
is a lower quality of output.

[Lindstrom and Silva, 2001] proposes an algorithm which does not ask for the all sim-
plified mesh to be in the main memory but uses an external data structure where all
necessary information for computing the quadric is saved. After the clusters are created,
the information is reordered using sorting algorithm. Then, by using a single loop over
the sorted file, the clusters quadrics and representative vertices are computed. This way,
the amount of memory remains constant and is independent from the size of the input or
output.

An out-of-core approach is proposed in [Isenburg et al., 2003]. The simplification is based
on mesh processing sequences. Using mesh processing sequences, a mesh is presented as an
interleaved sequence of indexed triangles and vertices. Each edge and vertex has a status
about its visit through the main memory.
The processing sequences approach from [Lindstrom and Silva, 2001] reduces the mem-
ory necessary for clustering vertices. Moreover, the quality of the output is improved. In
this approach, the amount of active work is reduced compared to [Wu and Kobbelt, 2003b].

In the out-of-core approach proposed in [Shaffer and Garland, 2001], the mesh is densely
partitioned into uniformly grid clusters in out-of-core memory. This intermediate mesh is
used as an input for the edge-collapse simplification (see Section 3.2.1), operation which
is realized in-core.
For both cluster simplification and edge collapse, the quadratic error metric is used.

An extension of [Lindstrom and Silva, 2001] implemented on GPU (graphics process-
ing unit) is proposed in [DeCoro and Tatarchuk, 2007]. The vertex clustering method (see
Section 3.2.2) is adapted to the GPU by using a vertex shader and a geometry shader
[Blythe, 2006]. The vertex shader assigns each vertex to a cluster and computes the ver-
tex representative for each cluster. The geometric shader computes the quadric for each
triangle and assigns that value to each vertex processed by the vertex shader. The algo-
rithm allows varying sampling rates for the simplification by deforming the cluster grid
during simplification. The deformation of the cluster grid is achieved by using a non-rigid
warping function. This way, the method permits view-dependent simplification necessary
for applications where more detail is necessary in regions closer to the viewer. In addition,
region-of-interest simplification is possible with non-uniform clustering. Selected regions
rendered with greater detail than the others.
Simplifications done with the GPU approach are up to 15 times faster than with CPU
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approach, for identical models. Moreover, memory requirements are constant and lower.
The algorithm produces level-of-detail and out-of-core representation as well.
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The goal of simplification algorithms is to reduce the complexity while keeping a high
fidelity to the original mesh.
We proposed designing a simplification algorithm the main purpose of which is accuracy.
We noticed that simplification algorithms existing in literature have a lack of accuracy in
measuring the geometric deviation introduced by a simplification operator.
For example, the error is computed as the sum of the squared distances from a vertex to
the planes of the triangles inherited by that vertex as in [Garland and Heckbert, 1997].
For almost planar surfaces, this error metric can work well, but not for curved surfaces.
The distance from a vertex to the supporting plane of a triangle can be smaller than the
distance to the triangle. In this situation, the actual distance is underestimated. On the
other hand, the error metric is computed as the distance between a removed vertex and the
approximated plane of its neighboring vertices, as in [Schroeder, 1997]. This error metric
can give accurate results for planar or almost planar surfaces but faulty estimations of the
geometric error for curved surfaces. The more neighboring vertices around the removed
vertex are situated in different planes (the situation of curved surfaces), the more the error
metric is underestimated.
Moreso, in this method, the geometric error is computed by reffering to the previous mesh
geometry and not to the original one. Thus, the estimated geometric deviation is only an
approximation.
There are algorithms which use as geometric error metric the maximum distances from
the simplified surface to the original one [Ciampalini et al., 1997]. In these algorithms,
the error is accumulated after each simplification. This way, the error is reffered to the
original model. The maximum distance between two meshes is not sufficient for evaluating
the geometric deviation between them. For example, for two surfaces as in Figure 4.1, if
the geometric deviation is the maximum distance between Mo and Ms, the error is dmax,
which is not the real distance between the two surfaces. Using this measure as a criterion
for mesh simplification can lead to rough simplifications as in Figure 4.2.
The Hausdorff distance used for simplification as an error metric leads to rough approx-
imations [Klein et al., 1996]. On the other hand, this is one of the few methods which
takes into account the symmetric distance between two surfaces.
Measuring the distance between two meshes in a symmetric fashion, from the simplified
surface to the original one and from the original to the simplified is useful for boundary
preservation and preserving the creases of a mesh or some isolated islands.

Starting with the drawbacks of the methods in literature, we proposed designing a sim-
plification algorithm which works on both manifold and non-manifold meshes and which
is able to simplify the geometry of the mesh in an accurate and symmetric way. And last
but not least, to compute the geometric deviation from the original mesh.
For achieving accuracy, the error metric we use is the weighted sum of squared distances
from the points of the source surface to the destination surface faces and not to the sup-
porting or approximated planes of these.
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Mo

Ms

dmax

Figure 4.1: The representation of the maximum distance between two surfaces.

In addition, preserving bounadries and features as creases, we measure the distance be-
tween the surfaces (simplified and original) in a symmetric fashion.
The simplification operator we choose is the edge collapse. This operator works well on
both manifold and non-manifold meshes and preserves mesh topology.
Topology preservation is desirable for applications such as medical visualization or me-
chanical simulations. But topology reduction is desirable for eliminating the artefacts
presented in a mesh.
We proposed designing a simplifiction method which by disregarding running time is more
accurate. Our simplification algorithm is designed to make the simplifications off-line, be-
cause we are interested in the quality of the simplification, so, there is no time constraint.
The condition for stopping our simplification algorithm is determined by the complexity
or the output model and not by the error introduced during simplification.

Next, we will present the outline of our simplification algorithm, with a detailed description
of the error metrics chosen for describing the deviation introduced by edge collapses.

4.1 Proposed Simplification Algorithm: overview

The simplification algorithm we propose is based on an iterative edge collapse opera-
tion.

For computing the geometric deviation introduced by a possible edge collapse, we use
two measures, an Accurate Measure of Quadratic Error (AMQE) and a Symmetric Mea-
sure of Quadratic Error(SMQE).
At each step of the simplification, all possible collapses are simulated and introduced in a
priority queue. The edge which produces by its collapse the minimum geometric deviation
is chosen to be collapsed. We use the term simulation because at each step of the simpli-
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Horse7model7simplified7with7SMQEHorse7model7simplified7with7Hausdorff7distance

QE:73.18118*10
- 8
 

HD:70.7003074

-8QE:70.64894*10

HD:70.001526

Figure 4.2: The simplification of Horse model using the Hausdorff distance (right) and
SMQE (left) as error metric.
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Figure 4.3: Overview of the simplification algorithm.

fication we collapse the edges only virutally in order to obtain the geometric error they
would introduce by their collapse and afterwords, we collapse the edge which produces the
minimum deviation.

The simplification algorithm is outlined as follows:

1. On the original mesh, all possible edge collapses are simulated.

2. The edge which introduces by its collapse the minimum geometric deviation is chosen
to be collapsed.

3. The edge is collapsed to a single vertex e = (v1, v2) → v̄. The following operations
are performed:

• the position of the resulting vertex, v̄ is computed: (v1, v2 → v̄) by minimizing
the quadratic error metric between the vertex and the original mesh.

• all the faces which were connected to v1 and v2 before are now connected to v̄.

• the resulting vertex, v̄ takes the id (identification index) v1.

• the vertex v2 and the faces which shared the collapsed edge are eliminated.

• the errors are reevaluated for all edges of the simplified model.

4. All these steps are repeated until the stop condition is reached.

We choose edge collapse as the operation for reducing the mesh complexity for the follow-
ing reasons: an edge collapse performs local modifications to the mesh that permits a good
control of the error introduced by simplifications; it produces level of detail representation;
it reduces the mesh geometry while preserving its topology; it works both on manifold and
non-manifold meshes.

The error metric used for measuring the geometric deviation introduced by an edge coll-
pase has an important role to play in the quality of the simplified mesh while the goal
of simplification is reducing the complexity while keeping the simplified mesh as close as
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Figure 4.4: Interior Edge Collapse. One edge is collapse to a single vertex. Triangles
which share the deleted edge are deleted. The number of vertices is reduced by one, the
number of faces by two and the number of edges by three.

possible to the original.
In this thesis, the fidelity of the simplified mesh to the original is expressed in terms of
the geometric deviation between two meshes.
Next, we will present the geometric errors used for describing the geometric deviation
introduced by an edge collapse.

4.2 Edge Collapse Simulations

The edge collapse simulation is probably the most important part of the simplification
algorithm.
During this phase, the algorithm simulates all possible edge collapses and computes the
errors which might be introduced by the possible edge collapses.
All non-manifold edges are considered as candidate edges. After the simulation of all
possible collapses, the edge which produces the least geometric deviation is choosen to be
collapsed.
An edge collapse changes both the geometry and the compexity of the mesh. The com-
plexity of the mesh is reduced by one vertex, two faces and three edges each time when an
interior edge is collapsed (Figure 4.4). When a boundary edge is collapsed, the complexity
is reduced by one vertex, one face and two edges.
The geometry of the mesh is changed because the edge is collapsed to a new vertex, v̄.

Our simplification algorithm is quite similar to the simplification algorithm proposed
in [Garland and Heckbert, 1997], the only difference is the quadratic error metric in-
volved to evaluate the geometric deviation introduced by an edge collapse.
Next, we will present our first proposed error metric involved to evaluate the geometric
deviation introduced by an edge collapse.
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4.3 First Error Metric used: Accurately Measured Quadratic
Error

The first error metric we proposed in order to evaluate the geometric deviation intro-
duced by an edge collapse is based on the distances in one direction, from the simplified
mesh to the original one. We called this error metric: Accurate Measure of Quadratic
Error (AMQE).
The accuracy of this error metric is provided by two features: the global measurement of
the deviation between the meshes (the simplified mesh and the original one) and the use
of the original mesh as reference.

Next, we denote byMo the original mesh and byMs the simplified one.
We denoted by preKernel(e) the set of triangles which share the endpoints of the edge e
(the red patch from Figure 4.5, left).
The postKernel(e) represents the set of triangles which share the vertex resulting after
the edge e collapsed.
AMQE is defined as the triangle area weighted sum of the squared distances from the
simplified mesh to the original, as follows:

AMQE(Ms,Mo) =
∑F
i=1 d∆i∑F
i=1 a∆i

= D(Ms,Mo)
A(Ms)

(4.1)

where:

• F is the number of faces inMs

• d∆i
is the distance from the face ∆i toMo

• D(Ms,Mo) is the sum of distances from the meshMs toMo

• a∆i
is the area of the face ∆i

• A(Ms) is the area ofMs

When an edge collapse is simulated, only the faces of the preKernel(e) are virtually
modified. The rest of the faces remain unchanged. Thus, only the distances between the
modified faces and the mesh have to be recomputed. The distances for the rest of the
faces are unchanged.
Thus, the AMQE for an edge collapse is computed as follows:

AMQE(M′s,Mo) =
D(Ms,Mo)−

∑
m∈preKernel dm +∑

n∈postKernel dn

A(Ms)−
∑
m∈preKernel am +∑

n∈postKernel an
(4.2)

where:

• M′s isMs with one edge simplified.
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preKernel postKernel

Edge 
Collapse

Figure 4.5

• D(Ms,Mo) and A(Ms) taken from Eqn. 4.1.

• ∑
m∈preKernel dm is the sum of the squared distances of the triangles of preKernel

• ∑
n∈postKernel dn is the sum of the squared distances of the triangles of postKernel.

• ∑F
i=1 a∆i

is the area of the simplified mesh,Ms

• ∑
m∈preKernel am is the area of preKernel.

• ∑
n∈postKernel an is the area of postKernel.

In Eqn. 4.2, the terms D(Ms,Mo) and A(Ms) are already known from the previous step,
at each step being computed only the triangles modified by an edge collapse (the triangles
in the preKernel are modified and replaced by the triangles in the postKernel). Thus, for
each edge collapse simulation, the computation is reduced to the triangles affected by an
edge collapse.

Triangle Distance

d∆i
from Eqn. 4.1 is the sum of the weighted squared distances from a triangle ∆i of

the simplified mesh,Ms to the original mesh,Mo.
Approximating the deviation between two surfaces only taking into consideration the dis-
tances between the vertices of the simplified mesh to the original mesh, in some situations
could lead to underestimationg or overestimating of the real distance.
For example, in Figure 4.6 we want to approximate the deviation between the two curves:
Ms and Mo. If we approximate the distances between the curves, Mo and Ms taking into
consideration the distances from the vertices of Ms (the red points) to the curve Mo, the
distance is overestimated (Figure 4.6, left part) or underestimated (Figure 4.6, right part).
Therefore, in order to obtain an accurate estimation of the distance between the two
curves, we add sample points on the simplified curve (Figure 4.7).
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Mo

Ms

  overestimation               underestimation
Figure 4.6: Approximation of the distance between two curves taking into consideration
only the vertices (red points) of the simplified curve Ms

Mo

Ms

Mo

Ms

Figure 4.7: Improvement of the approximated distance between two curves by adding sample
points.

In a 3D situation, we have to add sample points over the triangles of the simplified mesh
for which we compute the distance (Figure 4.10).

Triangle Subdivision

For simplicity, we create the sample points of a triangle using 1 : 4 subdivision it-
erations. At each 1 : 4 subdivision, the triangle is divided into four identical triangles
(Figure 4.8).
The sampling of each triangle ∆ of Ms is done by iteratively 1:4 subdivisions of the
triangle. We denote the number of subdivisions by noSub.

The number of 1:4 subdivisions is selected in order to keep the proportionality between
the number of faces of the original mesh and the number of faces of the simplified one.

original triangle                        one1:4 subdivisions                   two 1:4 subdivisions 

Figure 4.8: Iterative 1:4 subdivisions of a triangle.
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Figure 4.9: Two 1:4 subdivisions of a triangle and its barycentric coordinates.
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Figure 4.10: Two 1:4 subdivisions of a triangle and its barycentric coordinates.

We denoted by Fs the number of faces on the simplified mesh and by Fo the number of
faces of the original one.
The number of 1:4 subdivisions noSub is obtained as follows:

Fs · 4noSub = Fo (4.3)

4noSub = Fo
Fs

(4.4)

noSub = floor( 1
log 4 · log Fo

Fs
) (4.5)

According to the number of subdivisions, a triangle is subdivided into 4noSub sub-triangles.
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Figure 4.11: The distance for one triangle accordingly to the number of subdivisions of the
triangle.

The number of sample points for each triangle is (see for example Figure 4.10):

n = (2noSub + 1) · (2noSub + 2)
2 (4.6)

To the vertices of each triangle we associate the following barycentric coordinates: (1,0,0),
(0,1,0) and (0,0,1) (see Figure 4.9). The position of the sample points is computed using
the barycentric coordinates. Thus, the position of each sample point will be a weigthed
sum of the triangle’s vertex coordinates, where the weight is given by the barycentric co-
ordinates associated to the point as in Figure 4.10.
We call sub-triangles all cells obtained by the subdivision of a triangle.
After subdividing the triangle, we compute the distance from the sample points to the
original mesh.
To each sub-triangle we associate a weight and a distance.

In Figure 4.11 it is shown the distance between one triangle of the simplified mesh, Ms

and the original mesh,Mo and its dependence on the number of subdivisions.
By increasing the number of subdivisions, the distance can begin to decrease (Figure 4.11)
or to increase (Figure 4.12), depending on the mesh’s geometry, leading to a stable point.
In Figure 4.11 the distance begins to stabilize after the 4th subdivisions. In this case, it is
useless increasing the number of subdivisions above 4, because the algorithm begins to be
time-consuming (Figure 4.13).

We choose to obtain the sample points by 1:4 triangle subdivisions because of its sim-
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Figure 4.12: The distance for one triangle accordingly to the number of subdivisions of the
triangle.

Figure 4.13: The running time to compute the distance for one triangle accordingly to the
number of subdivisions of the triangle.
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plicity. In this manner, the triangle is easily split into sub-triangles with the same areas.
This leads to simpler computations.

Thus, the distance of a triangle of the simplified mesh is the weighted sum of the squared
distances of its sub-triangles (or the triangles obtained after subdivision).
The weight is the area of the sub-triangles. The distance for a sub-triangle is approximated
with the median of the distances from the points of the sub-triangle to the original mesh.
More exactly, we compute the distances from all sample points of a triangle to the original
mesh and for all three sample points which form a triangle, we approximate their distance
to only one value, which is the median of these distances. We choose to use the median
from the reasons of simplicity.

Sub-triangle Distance

As we stated above, the coordinates of the points of a sub-triangle are computed using
the barycentric coordinates.
For example, if we have the vertices v1 and v2 from Figure 4.10, the coordinates of the
point which has the barycentric coordinates (0.5, 0.5, 0) are:

pijx = (v1x + v2x) · 0.5

pijy = (v1y + v2y) · 0.5

pijz = 0

Thus, the distance for a sub-triangle ∆i is computed as follows:

d(∆i,Mo) = 1
3

3∑
j=1

d(pij ,Mo) (4.7)

where:

• pij is one of the points of the sub-triangle ∆i

• d(pij ,Mo) is the least distance from the point pij to the surfaceMo

d(pij ,Mo) = minv∈V (‖pij − v‖2) (4.8)

where:

• V is the number of vertices ofMo

• v is a vertex ofMo

• ‖ · ‖ is the Euclidean distance between two points

Each sub-triangle is equivalent to a distance which is the median average of the distances
of its points.
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In order to simplify the computation, we consider the distance for a sub-triangle as being
the median average of the distances of its points.

Triangle Area

The area of a subtriangle obtained after the triangle subdivision is computed using
Euclidean geometry (Heron’s formula).
For a subtriangle ∆i with the lengths of its sides a, b and c, the area is:

area(∆i) = 1
4

√
(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c) (4.9)

Thus, the area of a triangle is approximated using the sum of the areas of its sub-triangles:

area(∆) w
4noSub∑
i=1

a∆i
(4.10)

Point-Surface Distance

As was said above, the distance between a triangle and a mesh is the sum of the squared
distances between the sample points (obtained by 1:4 subdivisions) on the triangle and
the original mesh.
d(pij ,Mo) from Eq. 4.8 is the distance from a point pij to the surfaceMo.
We denote the distance between a point and a surface as the least Euclidean distance
between that point and the surface:

d(pi,Mo) = minpi∈Ms,qj∈Mo(‖pi − qj‖) (4.11)

For computing the Euclidean distance from a point on the simplified mesh to all points
on the original mesh in order to find the least distance is time-consuming for a complex
mesh.
For a mesh with n vertices, the gross computation of the distance between a point and
that mesh has O(n) complexity.
Therefore, for improving the time for the distance between a point and a surface, we use
the modified code from the public-domain library, Proximity Query Package (PQP) [Tang
et al., 2009], [Larsen et al., 1999], [Gottschalk et al., 1996], [Larsen et al., 2000].

Proximity Query Package

The Proximity Query Package (PQP) is a library which permits distance computation,
collision detection and tolerance verification for polygonal meshes.
The main idea in computing the least distance between two objects is using a hierarchy
of volumes as data structure, each volume bounding a subset of polygons (Figure 4.14).
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BVH

Figure 4.14: The Bounding Volume Hierarchies used by PQP to compute the distance
between two objects.

The tree hierarchy is called bounding volume hierarchy (BVH) and each node is called a
bounding volume (BV) because it bounds or contains primitives of the mesh. The root
node contains the whole mesh, the leaf nodes containing, usually, one primitive.
For computing the lowest distance between two BVHs, the separation distance is initially
set to infinite and the queriy starts with the root node. Recursevely, the BV’s nodes are
compared and if the distance is larger than the separation distance, these BVs are removed
from future queries. Otherwise, the query is applied recursively to its children up to the
leaf nodes.
Within the leaf nodes, the distance between the primitives is exactly computed .
The cost for computing the distance between two objects is given by the following equation:

C = NBV × CBV +NP × CP (4.12)

where:

• NBV is the number of distance tests between BVs

• CBV is the cost for computing the distance for each BV

• NP is the number of tests for computing the distances between polygons

• CP is the cost for computing the distances between polygons

An important aspect of the distance computation queries’s performance is how the nodes
are defined.
In PQP, the authors introduce as BV the Rectangle Swept Sphere (RSS) which produces
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fast distance queries. With this approach, each node is equivalent to a 3D rectangle swept
by a sphere.
For computing the distance between two meshes using PQP, two aspects are important:
the distance between two BVs and the distance between two primitives.
Using RRSs as BVs, the advantage is efficiency in calculating the distance between two
BVs. This distance is computed as the distance between two 3D rectangles minus the sum
of the sphere’s radii.

The distance between two rectangles is determined by computing the distances between
the edges pairs.
For determining the closest points of two edges, the external Voronoi regions are used. The
external Voronoi region of an edge e1 is the space outside the rectangle, which contains
the points closer to e1 than to the other element of the rectangle.
For determining the closest points between two rectangles, 16 edge pairs are checked. Two
points a ∈ e1 and b ∈ e2 are the closest points if a is in the external Voronoi of e2 and b
is in the external Voronoi of e1.
Based on this lemma, both distances between BVs and the distances between primitives
are computed.

We use PQP in our simplification algorithm for computing the distance between a point
and a mesh. Because the inputs of PQP are polygonal models, we modify the library
and simulate a point as being a triangle with the vertices having the same coordinates,
v → (v1, v2, v3) with coordinates p1 = p2 = p3.
For computing the distance between two meshes, the PQP library uses as input the meshes
and builds the bounding volume hierarchy. Building the BVH is the most time-consuming
part of PQP.
The PQP is not a dynamic library, which means that, each time when the mesh is changed,
the BVH has to be rebuild.
This is a drawback for the PQP library.
In our simplification algorithm, the BVH for the simplified mesh has to be rebuilt after
each edge collapse simulation and this reconstruction of the BVH is time-consuming.
Moreover, for each point for which we are computing the distance, we build a BVH model.
But this one is extremly fast.

We choose to use PQP library for computing the distance from a point to a surface
because it is a public software and it is fast enough.

After the presentation of the tools which are used for computing the distance between
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a triangle and a surface, the distance for a triangle ∆ is computed as follows:

d(∆,Mo) =
4noSub∑
i=1

a∆i
· d(∆i,Mo)2 (4.13)

where:

• 4noSub is the number of sub-triangles of ∆

• a∆i
is the area of a sub-triangle computed using Eqn. 4.9.

• d∆i
is the distance for a sub-triangle, computed using Eqn. 4.7.

We choose as error metric the sum of the squared distances between two meshes and not the
maximum of the distances in order to achieve a better evaluation of the geometric deviation
between the surfaces. The evaluation is especially accurate for surfaces with features such
as creases, where the estimation of the geometric deviation with the maximum distance
leads to overestimating the real distance.
We use as weighted factor the area of the triangles. In this way, the distance of the
triangles with a large surface has a larger weight in the value of the error metric.

4.4 Second Error Metric used: Symmetric Measure of Quadratic
Error

In this section, we propose a symmetric measurement of the geometric deviation be-
tween two meshes.
The Symmetric Measure of Quadratic Error denoted by SMQE is composed by two
terms: AMQE (which is the distance from the simplified mesh to the original one) (see
Section 4.3) and a Reverse Error which is the same as AMQE but computed from the
original mesh to the simplified one. Thus, SMQE is the sum of these two distances:

SMQE = AMQE +ReverseError (4.14)

We choose a symmetric measurement for the deviation introduced by an edge collapse
because it provides a more accurate evaluation of the introduced error.
There are some situations such as in Figure 4.15 in which computing the distances only
in one direction can lead to underestimating the deviation between two meshes.

Reverse Error

The reverse error is computed using the formula from Eqn. 4.2, but in a reverse sense,
fromMo toMs. Thus, we denote the original mesh by the source mesh. The destination
mesh is the simplified mesh Ms but with the edge collapsed (the edge for which we run
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d1

d2

Ms

Mo

Figure 4.15: A 2D illustration of the symmetric distance between two surfaces. In this
example, d1 < d2. Therefore, the one-sided distance (the distance computed fromMs to
Mo ) leads to an underestimation of the distance value.

Simplified Mesh Original Mesh

AMQE

Figure 4.16: The local direct error between two meshes.In order to simulate the collapse
for the edge with highlited endpoints, the distance is computed for all the triangles which
share the endpoints (the red triangles of the Simplified Mesh). The red triangles of the
Original Mesh are the triangles which are the closest of the red triangles of the Simplified
Mesh.
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Simplified Mesh 
with an edge collapsed Original Mesh

Inverse
 Distance

Figure 4.17: The local reverse error between two meshes. The red triangles of the Original
Mesh are the triangles for which the distances to the Simplified Mesh are computed.

the simulation).
The reverse error is computed between the source mesh and the destination.
Therefore, when an edge collapse is simulated, for the computation of the reverse error,
the destination mesh is modified.
For a rigorous computation of the reverse error introduced by an edge collapse, the triangle-
area weighted sum of the squared distances has to be computed from all the triangles of
the original mesh.
This approach is undesirable because of two reasons: it is time consuming to compute the
distances between all triangles of the original mesh and the destination mesh for all edge
collapses and for each edge collapse simulation, the destination mesh (the simplified mesh
with one edge collapsed) must be recreated.
Reconstructing the destination mesh is time consuming especially for the first levels of
simplification.
Moreso, each destination mesh reconstruction requires the reconstruction of the BVH
structure in the PQP library. This reconstruction is time consuming.
In order to avoid these inconvenients, we propose some approximations.

First, we introduce the following notations:

• projectionPreKernel (see Figure 4.16) the soup of the triangles of Mo which are
closest to the triangles of preKernel(e).

• extendedPostKernel(v) (red triangles of Original Mesh from the Figure 4.17) is the

68 Elena OVREIU



4.4. SECOND ERROR METRIC USED: SYMMETRIC MEASURE OF QUADRATIC ERROR

region which contains n-rings neighbours triangles around the postKernel.

The number of rings around the postKernel is dependent on the stage of the simplifica-
tion.
For the first steps of the simplification, when the difference in terms of complexity be-
tweenMo andMs are small, the extendedPostKernel has a number of triangles similiar
to the number of triangles from the preKernel. For advanced simplifications, the number
of triangles is smaller than in the postKernel. In our algorithm, the number of rings is
empirically chosen to 4.

The first approximation we make is based on the idea that when a region of the simplified
mesh is modified (preKernel(e)→ postKernel(v)), the distance between the projectionPreKernel
and the extendedPostKernel(v) is alter to a greater degree than the distances between
other regions of the original mesh and the simplified mesh. Thus, in order to alter-
ate to compute the reverse distance, we have to recompute only the distances from the
projectionPreKernel to the extendedPostKernel(v).
Based on the obeservation, when a collapsed edge is simulated, for the modified region (all
modified triangles), the algorithm identifies the triangles of the original mesh which are
closest to the modified triangles of the simplified mesh.
In Figure 4.16, the simplified mesh has half the number of vertices of the original mesh.
Instead of recomputing the distance for all the triangles of the source mesh to the desti-
nation we only recompute the distance for the triangles of projectionPreKernel.
The distances for the rest of the triangles are considered to remain from the previous
simplification step.
Using this approximation we recompute only for several triangles (25 triangles in the Fig-
ure 4.17 instead of 1416 triangles). This way, calculation time is reduced by 56 times.

The second approximation we make is the destination mesh in the calculation of the
ReverseError. Ideally, when an edge collapse is simulated, a copy of the Ms should be
created and the edge collapsed is simulated. This is time consuming, so we make the
assumption that the destination mesh for the reverse error is the n-ring of the edge e for
which we simulate the collapse.
We can consider the destination mesh as an extended PostKernel(v). We call extendedPostKernel
a PostKernel with several rings of neighboring triangles.
Thus, we must rebuild only the extendedPostKernel, which has fewer triangles than the
whole mesh, Ms, and to recompute the distances from the projectionPreKernel to the
extendedPostKernel (Figure 4.17).

We base this approximation on the assumption that if the preKernel(e) is projected
through the direct error on a region of the original mesh, projectionPreKernel, this re-
gion is projected through the reverse error on a region no further than several rings of the
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Ms

Mo

v1

v2

v3

v4

Figure 4.18: A 2D example for application of SMQE on boundaries.

preKernel.
By using this approximation, the destination mesh for the reverse error is reduced to
several triangles. Moreover, PQP time for creating the BVH of the destination mesh is
reduced.
By using the above approximations, the differences between the error computed in one
direction and the error computed using the symmetric distance are not very sensitive in
terms of numerical results.
The advantages of using the symmetrically measured quadratic error consist in a better
preservation of boundaries and a better preservation of the features.

Boundary Preservation

In Figure 4.18, if the error is computed only in one direction, from Ms to Mo, for
the vertices on the boundaries, as v1 and v3, the distances to theMo are underestimated.
In the end, one of the boundary edges can be selected to be collapsed. Therefore, the
boundaries are not preserved using only the direct error.
When the reverse error (the distance fromMo toMs) is involved in the error estimation,
we can see the distances from the boundary vertices v2 and v4 to the simplified mesh,Ms

can be larger than the direct error. Therefore, the boundary edges are preserved.

Feature and Detail Preservation

Another advantage of using SMQE as a measure for evaluating the geometric error
introduced by an edge collapse is the preservation of features.
For example, for two meshes as in Figure 4.19, if we compute only the distances fromMs

toMo, because d1 has a small value, the crease ofMs can be eliminated. If we compute
the symmetric distance, the distance fromMo toMs, because d2 >> d1, the edges which
form the crease will not be picked for collapse.

4.5 QEM-based Vertex Optimization

When an edge is collapsed, the endpoints of the edge are merged into a single vertex:

e = (v1, v2)→ v̄ (4.15)
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Mo

Ms

d1

d2

Figure 4.19: A 2D example for importance of SMQE in the preservation of the features of
a mesh.

We call this vertex the resulting vertex.
The position of the resulting vertex, v̄ is very important in the quality of the simplified
mesh.
The position of v̄ has to be chosen so that it approximates best the original mesh.
Thus, we must define how to best place the resulting vertex, v̄.
To find the position of the resulting vertex, we follow [Garland and Heckbert, 1997].
Thus, each vertex in the original mesh is considered to be the solution of the planes of
faces surrounding it.
When an edge is collapsed to a vertex, the distance from the resulted vertex to the planes
surrounding it is considered to be the cost of the edge collapse.
In [Garland and Heckbert, 1997], each face in the original mesh has associated a quadratic
matrix, Q.
If we have a plane p = (n, d) where n = (nx, ny, nz) is the normal and d is the displacement
of the plane to the origin and a point v = (x, y, z) which belongs to the plane, the equation
of the plane is:

p : x · nx + y · ny + z · nz + d = 0 (4.16)

with
n2
x + n2

y + n2
z = 1 (4.17)

If we write p = [nx, ny, nz, d] and v = [x, y, z, 1] ,thus, the plane equation can be written
as:

v · pT = 0 (4.18)
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When v is moved away from the plane, we denote its new position by v̄, the quadratic
distance between v̄ and the plane, p is:

∆p(v̄) =(vpT )2

= (vpT ) · (pvT ) = v · (pT p) · vT

= v ·Kp · vT
(4.19)

Kp =

∣∣∣∣∣∣∣∣∣∣∣∣

n2
x nxny nxnz nxd

nxny n2
y nynz nyd

nxnz nynz n2
z nzd

nxd nyd nzd d2

∣∣∣∣∣∣∣∣∣∣∣∣
(4.20)

The sum of the quadratic distances from the point v to the set of the planes associated to
v is:

∆(v) =
∑

p∈Planes(v)
∆p(v)

=
∑

p∈Planes(v)
(v ·Kp · vT )

= v · (
∑

p∈Planes(v)
Kp) · vT

= v ·Qv · vT

(4.21)

Thus, Qv is the quadratic error associated to the vertex v. After an edge contraction,
e = (v1, v2) → v̄, the resulted vertex inherits the quadratics of the endpoints of the
collapsed edge:

Qv̄ ← Qv1 +Qv2 (4.22)

Because each resulted vertex inherits the planes surrounding the endpoints of the collapsed
edge, the original planes are preserved during the simplification. Thus, the error introduced
by an edge collapse is computed with reference to the original mesh and not to the previous
simplified mesh.
One solution for the position of the resulted vertex is one of its endpoints: v̄ = v1 or
v̄ = v2.
For each possibility, Q(v̄) is computed and the position which produces the smallest value
from Q(v1) and Q(v2) is picked.
By using this approach, the set of vertices of the simplified mesh is the subset of the
vertices of the original one (v1 or v2). For this reason, the present approach does not
produce the best approximations.
Because the sum of the squared distances from the resulting vertex to the set of planes is
quadratic, the sum has a minimum (Figure 4.20).
Therefore, the minimum of this sum is the optimal resulting vertex position, from the
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Figure 4.20: The quadratic form of the sum of squared distances from a point to its asso-
ciated set of planes.

quadratic error point of view.
The resulting vertex minimizes the sum of the squared distances from this vertex to the
set of planes surrounding it.
Thus, the resulting vertex, v̄ minimizes the sum ∆(v̄):

∂∆
∂x

= ∂∆
∂y

= ∂∆
∂z

= 0 (4.23)

The resulting vertex position is the solution to the system of linear normal equations:∣∣∣∣∣∣∣∣∣∣∣∣

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
· v =

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣
(4.24)

And

v =

∣∣∣∣∣∣∣∣∣∣∣∣

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

−1

·

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣
(4.25)

Because the distance from a point to its surrounding planes is written as:

Q(v) = vTAv + 2bT v + c (4.26)

By solving ∆Q(v) = 0, the resulting vertex position is:

v̄ = −A−1b (4.27)
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In the Eqn. 4.27, the condition for getting the vertex position is that A must be an invert-
ible matrix.
Theoretically, if A is singular, it does not have an inverse. So, the Eqn. 4.27 cannot be
solved.
A matrix is singular if its determinant, det(A) = 0.
If A is not singular, then the solution of Eqn. 4.27 will be an infinity of points which form
a line or a plane. This situation occurs when all the planes surrounding the vertex for
which we compute the positions are parallel.

In the situation that the quadratic matrix is not invertible, we follow the approach pro-
posed in [Lindstrom, 2000].
For the matrix A, the singular value decomposition is performed: A = UΣV T .
Thus, the optimal new vertex position becomes:

v̄ = v̂ + V Σ+UT (b−Av̂) (4.28)

where:

• v̂ is the midpoint of the collapsed edge: v̂ = v1+v2
2

• U , Σ, V are the matrices obtained from sigular value decomposition

When Σ+ = Σ, the Eqn. 4.28 is reduced to A−1b.

We choose to compute the position of the new vertex by using the minimization of QEM
(Eqn. 4.24) because of simplicity of computation. In order to compute the new vertex
position it is enough to compute the quadratic matrix for each vertex.
The resulting vertex is the one which minimizes the QEM between that vertex and the
planes surrounding it. This supposes the resulting vertex fits the geometry of the original
mesh.
This represents an advantage.

The disadvantage is that the quadratic error computes the distance from the resulting ver-
tex to the supporting planes of its surrounding triangles and not directly to the triangles.
For curved meshes, the real distance is underestimated and leads to a poor approximation
of the true error introduced by an edge collapse. Moreover, the position of the new vertex
is poorly computed, therefore, the simplified mesh does not fit the geometry of the original
mesh very well.
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v
vopt

d1 d2

d3d4

d1 d2

Ms

Mo

find v
sb. to: min(d1 +d2)

find vopt

sb. to: min(d1+d2+d3+d4)

Figure 4.21: The 2D representation of the vertex placement. In the left image, the new
vertex is placed to minimize the sum of quadratic errors to the planes. In the right image,
the vertex minimizes the sum of squared distances to its adjacent faces.

4.6 Volume-based Vertex Optimization

The position of the resulted vertex v̄ obtained with the Eqn. 4.28 is optimal only in
terms of the quadratic error metric. Because the quadratic distances are computed from
the resulting vertex to the planes of its surrounding faces, for curved surfaces, the resulted
vertex position is not optimal.
Thus, the new vertex can be placed on an optimal position which accurately approximates
the geometry of the original mesh.
Therefore, we introduce in the simplification algorithm a post-processing step which iter-
ativelly moves the position of the resulted vertex to an optimal one.
Therefore, the simplification algorithm has a new step:

1. On the original mesh, all possible edge collapses are simulated.

2. The edge which introduces by its collapse the least geometric deviation is chosen for
collapse.

3. The edge is collapsed to a single vertex e = (v1, v2) → v̄. The following operations
are performed:

• the position of the resulted vertex, v̄ is computed using Eqn. 4.28: (v1, v2 → v̄).

• improve the position of v̄: v̄ → v̄opt

• all the faces which previously were connected to v1 and v2 are now connected
to v̄.

• the new vertex, v̄ takes the id v1.

• the vertex v2 and degenerated faces (the faces which shared the collapsed edge)
are eliminated;

• the errors are reevaluated for all edges of the simplified model.

4. All those steps are repeated until the stop condition is reached.
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Each time when the edge collapse error is simulated, after the resulted vertex position is
computed, the improvement of the vertex position is applied.
We use an optimization algorithm which improves the position of the new vertex minimiz-
ing the volume embedded between the simplified mesh and the original one.
For simplificity, the volume is computed between the postKernel(v) andMo.
In Figure 4.21, on the left, the position of the resulting vertex is chosen in order to mini-
mize the sum of the distances to the planes of the faces of the original mesh. The distances
from the resulted vertex to the planes are not identical to the distances from the vertex
to the faces of the original mesh, as in Figure 4.21, right.
Therefore, the resulting vertex does not fit very accurately with the geometry of the orig-
inal mesh.
We propose a pre-processing step, which improves the position of the resulting vertex, and
starts with the actual position.
For this purpose, distances are computed from the sample points of the preKernel(v) to
theMo. The vertex v is moved with a displacement given by the sum of these distances.
The process is iterative, and after n iterations, the distance becomes close to 0. The re-
sulting position for v becomes the optimal position, vopt.
For expressing the volume embedded betweenMs andMo, we follow [Alliez et al., 1999]
with some modifications.
The optimal new vertex position, vopt is that which minimizes the volume embedded be-
tween the simplified mesh,Ms and the original one,Mo.
The optimal position is achieved by an iterative volume minimization process.

The most difficult part is the embbeded volume computation.

Following [Alliez et al., 1999], we define the volume embedded between two meshes Mo

andMs by:

V (Mo,Ms) =
∫ ∫

uv
~v(Mo,Ms)dσ(u, v) (4.29)

where

• ~v(Mo,Ms)dσ(u, v) is the elementary volume betweenMo andMs

• ~v(Mo,Ms) represents the distance vector fromMo toMs on the surface patch dudv

• dσ(u, v) is the patch area

The distance vector ~v takes into account the dependency of the two meshes.
The distance vector is negative if it has the same orientation as the normal n(u, v) to the
meshMs and positive if they have different orientations.
Since a mesh can be defined as a discrete set of vertices, we can rewrite Ms(u, v) as an
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interpolation between its vertices:

V (Ms,Mo) =
N∑
i=1

λi(u, v)Xi (4.30)

where:

• Xi represents the mesh vertices defined in R3

• λi denotes the shape function

For a point inside a triangle in a mesh, we consider the shape function as being the linear
interpolation of the triangle vertices. Now, we can express the volume between Mo and
Ms as:

Ms(u, v) =
N∑
i=1

∫ ∫
uv
~v(Mo,Ms)λi(u, v)vidσ(u, v) (4.31)

We discretize Eqn. 4.31 by sampling each face of the mesh. Each triangle is subdivided
into a fixed number of infinitesimal sub-triangles, and under these conditions Eqn.4.31
becomes:

V (Mo,Ms(u, v)) =
N∑
i=1

∑
c∈Cells

λi(u, v)Xi~v(Mo,Ms)dσ(u, v) (4.32)

In order to minimize the volume between the faces adjacent to that vertex and the original
mesh, and implicitly to reduce the quadratic error between the approximated mesh and
the original one, we introduce the following formula:

disp(Xi) =
∑
c∈PostKernel(Xi) λcwcd(c,Mo)∑

c∈PostKernel(Xi) λcwc
(4.33)

where

• disp(Xi) is the displacement for the vertex Xi

• Supp(Xi) denotes the adjacent faces of Xi

The direction of the displacement is given by the vectorial sum of the distances between
Ms andMo.

• if ~n~v > 0 then ~v = −sign(~v)

• else, ~v = sign(~v)

where ~n is the normal unit vector on the current face.
The magnitude of the movement is given by the sum of the distances from the sub-triangles
to the original model. The sum is scaled by the sub-triangle areas and by the shape func-
tion λc.
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Figure 4.22: The shape functions. The shape function of a point inside a face is
determined from the barycentric coordinates of the respective point.

λc is set to 1 on the Xi and decreases to 0 towards the neighbouring vertices (Figure 4.22).
For a given point inside a triangle, we deduce the value of the function shape using the
barycentric coordinates of the respective point. Thus, if the point has the barycentric
coordinates (λ1, λ2, λ3), the shape function for the respective point will be λ1.
The shape function of a sub-triangle is the arithmetic mean of the shape functions of its
vertices.

In practice, we obtain the magnitude and the direction of the distances using the PQP
library. The evolution of the vertex position, for the kth step can be written as:

Xkth

i = Xkth−1
i + disp(Xkth−1

i ) (4.34)

After each optimization step, the volume embedded between the approximated mesh and
the original one is reduced. Therefore, the quadratic error and the Hausdorff distance
between those meshes decrease (Figure 4.23).

In Figure 4.23 the goal is minimizing the volume embedded between two meshes: the
mesh represented with the red wireframe and the green mesh. The volume between the
meshes is computed using Eqn. 4.32. Using Eqn. 4.34, the vertex v is moved to the green
mesh, in order to minimize the volume between meshes. The volume minimization is an
iterative process. In the above example, after the 5th iteration, the embedded volume
becomes close to 0 (0.00312992).
The embedded volume is in the beginning 0.611 and decreases to 0 (Fig. 4.24).

Form Figure 4.24 we see that the biggest decrease (from 0.66 to 0.13) volume is after
the first iteration, the decresing growing smaller while iterations increase.
Because the embedded volume is computed by using the quadratic distances between the
sample points of the two meshes it is normal behaviour for the displacement of the target
vertex to be larger in the beginning and decrease later.
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v

Figure 4.23: Volume minimization between two meshes.

Figure 4.24: The variation of the volume embedded between two meshes with the number
of iterations.
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Chapter 5

Results

In this chapter we present the results obtained with our simplification algorithm. The
simplifications are obtained using both the AMQE and the SMQE geometric error met-
rics and are compared with the simplifications obtained using Qudratic Error Metric
(QEM) [Garland and Heckbert, 1997].
In order to evaluate the quality of the simplifications obtained using our algorithm, we use
the quadratic error metric and the Hausdorff distance. The Hausdorff distance is measured
using the Metro tool.
We will compare the results in terms of: preservation of detail, preservation of boundaries
and islands and errors introduced during simplification (the errors between the simplified
model and the original one).

5.1 Sharp Features Preservation

Pieta model
First we simplify the Pieta model with 13 940 vertices to a model with 900 vertices using
the both the SMQE (Figure 5.1) and the QEM (Figure 5.2) methods. For the Pieta
model simplified with SMQE, details such as the eyes, nose or mouth are more accurately
preserved than in the model simplified with QEM.
Moreover, the waves of the Pieta moodel’s kerchief are better preserved.
For the base of the statue, which is almost a plane surface, the SMQE method uses
less triangles than QEM. For the same budget of vertices, SMQE uses more triangles to
approximate curved regions and less for flat regions, while QEM uses more triangles for
flat regions. Therefore the curved regions (such as the face of Mary) are not well preserved
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Figure 5.1: The simplified Pieta model with 900 vertices using SMQE.

with QEM.
The quadratic error for the Pieta model simplified down to 2000 vertices with SMQE
(Figure 5.3, top) is 0.008878 while for Pieta model down to the same number of vertices
with QEM (Figure 5.3, bottom) is 0.010346. The Hausdorff distance is 3.714012 for SMQE
and 4.75883 for the model simplified with QEM.
In conclusion, both the quadratic error and the Hausdorff distance are smaller for the
model simplified with SMQE than for the model simplified with QEM.
In Figure 5.2 the base of the Pieta model simplified with SMQE has fewer triangles than
of the Pieta model simplified with QEM.
In the same figure, the leg of Jesus is better outlined for the Pieta model with 900 vertices
simplified with SMQE than for the model with the same complexity but simplified with
QEM. Moreover, the waves of Mary’s dress are better outlined for SMQE than for QEM.

In Figure 5.4 is represented the quadratic error versus the number of vertices. The
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Figure 5.2: The simplified Pieta model with 900 vertices using QEM.

Elena OVREIU 83



CHAPTER 5. RESULTS

curve of the quadratic error between the original Pieta model and the model simplified
with SMQE is always bellow the curve which represents the quadratic error introduced in
simplification by QEM.
Because the differences between the model simplified with SMQE and the one simplified
with QEM are relevant for extreme simplifications (less than 90% of to the original com-
plexity) in order to improve the simplification, we simplified the original Pieta model using
AMQE down to 5000 vertices and afterwards started simplification with SMQE.
In Figure 5.5, the geometric error introduced by simplification with SMQE and QEM is
given by the Hausdorff distance.
We notice that the Hausdorff distance between the original and the simplified model with
5000 vertices is almost identical to the Hausdorff distance between the original and the
model with 500 vertices (2.90932). This means that most geometric deviation is intro-
duced before simplifying the mesh down to 5000 vertices. All the simplifications made
from 5000 to 500 vertices do not introduce a value higher than 2.90932.
The same behaviour of the model simplified with QEM. The Hausdorff distance is 4.758183
for all simplified models between 5000 and 500 vertices.
In Figure 5.6, we display the distances between the original Pieta and the model simpli-
fied until 900 vertices using colours. The distances are computed between each vertex of
the original model to the simplified one using the library PQP.

Octa-flower model: The 7919 vertices Octa-flower model (Figure 5.7) is simplified
down to 169 and respectively 99 vertices. The model is simplified using SMQE, AMQE
and QEM error metrics.
The shape of the model is better preserved for the model simplified with SMQE.
The spirals of the Octa-flower model are better outlined for the Octa-flower with 99 vertices
simplified with both SMQE and AMQE than QEM.
The same situation is present for the model with 169 vertices.
The 99 vertices Octa-flower model is simplified with SMQE the quadratic error is 0.018293
and the Hausdorff distance is 0.78752. For the model with the same complexity but
simplified with AMQE the quadratic error is 0.0209451 and the Hausdorff distance is
1.006559 and for the model simplifed with QEM, 0.03528 and 1.347396 respectively.

The difference between the quadratic error introduced into simplifications by the SMQE
and AMQE is not so great (Figure 5.8), but is visually lower than the quadratic error in-
troduced by the QEM.
The Hausdorff distance introduced by simplifications is almost identical (0.1137) for the
models simplifed with SMQE and AMQE down to 459 vertices (see Figure 5.9). Down
to this budget of vertices, the Hausdorff distance for the model simplifed with QEM is
higher. For the models with fewer than 459 vertices, the Hausdorff distance introduced by
AMQE begins to increase until the value of 0.7676 for the model with 159 vertices, being
almost equal to the Hausdorff distance introduced by the QEM (0.747582 for the same
number of vertices).
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SMQE 2000 vertices

QEM 2000 vertices

base of Pieta

base of Pieta

Figure 5.3: The simplified Pieta model with 2000 vertices using SMQE (top) and QEM
(bottom).
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Figure 5.4: The quadratic error introduced in simplification of Pieta model.

Figure 5.5: The Hausdorff distance introduced in simplification of Pieta model.
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QE: 0. 00472
HD: 3. 64131

QE: 0. 066851
HD.: 4. 758183

Figure 5.6: The distance between the Pieta model with 13 940 vertices and its simplified
version with 900 vertices. The distance is computed between each vertex of the original
model to the simplified model by using the PQP library.
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QE: 0. 01829
HD: 0. 7875

QE: 0. 0209
HD: 1. 0065

QE: 0. 0352
HD: 1. 3473

QE: 0. 0065
HD: 0. 4913

QE: 0. 0070
HD: 0. 7676

QE: 0. 0100
HD. 0. 7475

SMQE AMQE QEM

Figure 5.7: Simplifications of Octa-flower model using SMQE, AMQE and QEM. On the
top, the simplified model has 99 vertices and 169 on the bottom.
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Figure 5.8: The quadratic error introduced in the simplification of the Octa-flower.

In Figure 5.10 the distances between the original Octa-flower model and the model sim-
plified until 169 vertices using SMQE, AMQE and QEM error metrics are displayed with
colurs.

Horse model: In Figure 5.11 is presented a sequence of simplifications for the Horse
model (with 19 851 vertices and 39698 trinagles). The model is simplified using SMQE,
AMQE and QEM. The simplified models have 801 vertices and 1595 triangles, 411 vertices
and 816 triangles and 161 vertices and 316 triangles.
From Figure 5.12 we can see that the details are better preserved by using SMQE than
with the other methods.
The ears are preserved for the 161 vertices Horse model simplified with SMQE (Figure 5.12,
first column). For the Horse with the same number of vertices but simplified with AMQE,
just one ear is preserved, both ears being simplified for the Horse model simplified with
QEM.
The muzzle of the horse is better preserved with SMQE and less well preserved with
AMQE and QEM (Figure 5.12, left column).
The left rear leg hoof (Figure 5.12, the right column) is better reproduced for Horse model
simplified with SMQE. The hoof is least preserved for the model simplified with QEM.
The fetlock and the hock are more faithful to the originals for the models simplified with
SMQE and AMQE.

Elena OVREIU 89



CHAPTER 5. RESULTS

Figure 5.9: The Hausdorff distance introduced in the simplification of the Octa-flower.
The Hausdorff distance is computed using the Metro tool.
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QEM

AMQE

SMQE

octa-flower 169 vertices

Figure 5.10: The distances between the Octa-flower with 7919 vertices and its simplified
version with 169 vertices. The distances are computed between each vertex of the original
model to the simplified model using the PQP library.
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801 vertices
1596 faces

AMQE

SMQE

161 vertices
316 faces

QEM

411 vertices
816 faces

19851 vertices
39698 faces

Figure 5.11: Sequence of simplifications for the Horse model (19 851 vertices) with 801, 411
and 161 vertices, respectively. The simplifications are realized using the SMEQ, AMQE
and QEM methods.
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On the other hand, if we examine the right front leg, its form seems better preserved
for the models simplifed with AMQE and QEM than with SMQE. The quadratic error
introduced by the simplification is smaller than for the model simplified with AMQE than
the ones simplified with SMQE and QEM (quadratic error is 2.2907 · 10−7, 2.3243 · 10−7

and 2.7302 · 10−7).
The Hausdorff distance between the simplified model and the original is smaller for the
simplification with SMQE (0.003569). For the simplifications realized with the AMQE and
QEM, the Hausdorff distance is quite similar (0.0077 for the model simplied with AMQE
and 0.0080 for the one simplified with QEM).
The values for the quadratic error can be observed in the graph from the Figure 5.13. The
quadratic error is computed for several simplified models, and for all of them, the error
introduced by QEM is higher than for the models simplified with SMQE and AMQE.
On the other hand, the quadratic errors for the models simplified with SMQE and AMQE
are almost identical.
The Hausdorff distance (Figure 5.14) is smaller for the the model obtained with SMQE.
For the model with 411 and 681 vertices, the Hausdorff distance is higher than for the
model with the same number of vertices but simplified with QEM.
The differences between the models simplified with SMQE and with AMQE are more
visible for massive simplifications (model with lesser than 10% of the original number of
vertices).
Based on this observation, in order to improve the running time of the simplification
algorithm, we simplified the Horse model down to 2000 vertices using AMQE. Starting
with this simplified model, we simplified using SMQE.

Dragon model:
For the Dragon model (1257 vertices), the features are better preserved for the model

simplified with SMQE than for the one simplified with QEM (Figure 5.16). Features
such as the tongue of the Dragon or the first left foot are closer to the original for the
simplification with SMQE than for the one with QEM.
In Figure 5.17, the curve for the quadratic error obtained with the SMQE is below that
obtained with QEM.
The Hausdorff distances are shown in Figure 5.18. The values of the Hausdorff distances
are almost equal for the models obtained using SMQE and AMQE and higher for the
models obtained using QEM.
The Hausdorff distance is 0, 003638 for the models obtained using SMQE and AMQE and
0, 008381 for the one obtained using QEM. All the simplified models have 707 vertices. The
Quadratic errors for these models are 0.1353314, 0.1355278 and 0.1795107 respectively.
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SMQE

AMQE

QEM

161 vertices 411 vertices

161 vertices

QE:       2.324338*10-7 

HD: 

QE:  2. .29074*10-7 

QE: 2.73022*10-7 
HD:

HD: 0.007794

0.008012

0.003569

Figure 5.12: Details for simplified Horse with 161 and 411 vertices.
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Figure 5.13: The quadratic error introduced in the simplification of Horse.

Figure 5.14: The Hausdorff distances introduced in the simplification of Horse. The Haus-
dorff distances are measured using the Metrol tool.
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SMQE

AMQE

QEM

Horse 411 vertices
Figure 5.15: Distances between the Horse model with 19 851 vertices and its simplified
version with 411 vertices. The distances are computed between each vertex of the original
model to the simplified model using the PQP library.
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QEMSMQE

507 vertices

1257 vertices

Figure 5.16: The simplified versions of the Dragon (1257 vertices) with 507 vertices using
the SMQE and QEM methods.
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Figure 5.17: The quadratic errors introduced in the simplification of the Dragon.

Figure 5.18: The Huasdorff errors introduced in the simplification of the Dragon.
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SMQE

QEM

Dragon with 507 vertices
Figure 5.19: The distances between Dragon (1257 vertices) and its simplified version with
507 vertices using the PQP library.
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Figure 5.20: The distances between Dragon (1257 vertices) and its simplified version with
507 vertices using PQP library.

5.2 Boundary Preservation

Bunny model:
An important advantage of using SMQE is the preservation of the islands and boundaries
of a mesh. For example, the Bunny model (35 947 vertices) has 4 holes in its base (Fig-
ure 5.21). When the model is simplified, the boundaries (red lines) are preserved for the
models simplified with SMQE while those simplified with AMQE are not so accurately
preserved.

Beethoven model:
In Figure 5.23, the Beethoven model is simplified until a model with 505 vertices using
both SMQE and AMQE error metrics. Form Figure 5.23 we can see the boundaries around
the eyes and around the face are better preserved for the model simplified with SMQE
than for the one simplified using AMQE. On the model simplified with AMQE, the faces
almost disappear.
Moreso, the quadratic errors introduced into simplification by the SMQE are lesser than
the quadratic errors introduced by AMQE which in turn are lesser than those introduced
by QEM (see Figure 5.24).
The hair waves and the details on Beethoven’s bow are better preserved for the model
simplified with AMQE. The triangles simplified on the face for the model obtained with
AMQE are used to represent the hair and the bow.
The Hausdorff distance introduced by SMQE is lower than the one introduced by AMQE
(see Figure 5.25). For example, for the Beethoven model with 405 vertices simplified with
SMQE, the Hausdorff distance is 0.24415 while for the Beethoven model simplified with
AMQE it is 1.510782. For the Beethoven model with 1405 vertices simplified with SMQE,
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SMQE

AMQE

1000 vertices
1933 faces

500 vertices
933 faces

SMQE

AMQE

35 947 vertices
69 451 faces

Figure 5.21: The base for the Bunny model (first column) and its simplified versions with
1000 vertices, respectively 500 vertices. The boundaries (red) are better preserved for the
model simplified with SMQE (top) than for the model simplified with AMQE (bottom).
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SMQE

AMQE

Bunny 500 vertices

Figure 5.22: The distances between the original Bunny (35 947 vertices) and its simplified
version with 500 vertices. The distances are computed between each vertex of the original
model to the simplified model by using the PQP library.
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AMQE

SMQE

 1505 vertices 1005 vertices 505 vertices

Figure 5.23: A sequence of simplifications for the Beethoven (2655 vertices) model with
1505, 1005 and 505 vertices. The boundaries (red lines) are better preserved for the
simplifications realized with the SMQE method than with AMQE.
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Figure 5.24: The quadratic errors introduced in the simplification of Beethoven.

Figure 5.25: The Hausdorff distances introduced in the simplification of Beethoven mea-
suread with the Metro tool.
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Beethoven 1500 vertices

Figure 5.26: The distances between the original Beethoven (2655 vertices) and its simplified
version with 1500 vertices. The distances are computed between each vertex of the original
model to the simplified model by using the PQP library.

the Hausdorff distance is 0.200734 and 0.432407 for the model with the same complexity,
but simplified with AMQE.

Venus model:
In Figure 5.27, the Venus model (8628 vertices) is simplified until 500 vertices using SMQE
and QEM error metrics. From the figure, we can see the details (such as the nose) are
better preserved for the model simplified using SMQE error metric. Details such as the
lips and the waves of the hair are better outlined. The quadratic error for the model
simplified with SMQE is 0.1189699 and the Hausdorff distance is 0.007549 while, for the
one simplified with QEM is 0.011258 and the quadratic error is 0.1561323.
For the forehead of the Venus model, which is almost flat, the QEM uses more triangles
than the SMQE. Thus, more triangles are used by the SMQE to approximate curved re-
gions such as the loop of hair of the Venus model or the waves of the hair (Figure 5.28).
As expected, the quadratic error introduced into the simplfications by SMQE is below the
quadratic error introduced by QEM (Figure 5.29). The same stands for the Hausdorff
distance (Figure 5.30).
We do not present the results for the simplifications obtained with AMQE because they
are very close to those obtained with SMQE.
Bones model:
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QEM

8268 vertices

SMQE

500 vertices1000 vertices2200 vertices

Figure 5.27: The sequence of the simplifications for the Venus model (8268) with 2200,
1000 and 500 vertices using the SMQE and QEM methods.

Figure 5.32 shows the Bones model (2154 vertices) together with its simplified versions with
444 vertices obtained with both SMQE and QEM. For early simplifications the quadratic
error metric measured for the simplifications obtained with SMQE (Figure 5.33) is lesser
than the quadratic error measured of simplifications obtained with QEM. During simplifi-
cation, QEM eliminates some details such as the triangles of the distal phalanges and uses
these triangles for other regions of the model while SMQE preserves them.
For this reason, the Quadratic Error is bigger for massive simplifications, such as for the
model with 594 vertices simplified using SMQE error metric (see Figure 5.33, the bottom
part) than for the same number of vertices model but simplified using QEM error metric.
We notice that the triangles of the medial and distal phalanges almost disappear for the
model simplified with QEM. This is not the case for the model simplified with the SMQE,
where the triangles are not simplified.
In the Bones model’s simplification, we replace the resulting vertex using Volume-based
vertex optimization (see Section 4.6).
Fandisk model:
In Figure 5.36, the Fandisk model is simplified using SMQE error metric. We can remark
from this figure, the SMQE preserves the boundaries even for a model created using CAD
(Computer Aided Design) techniques.
In conclusion, the presented results are obtained using an accurate measure (AMQE) and
a symmetric measure of the quadratic error introduced by an edge collapse. The result-
ing vertex (the vertex obtained from an edge collapse) is placed in order to minimize the
quadratic error from the QEM. The quality of our results is evaluated using the quadratic
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QEM 500 vertices

original Pieta
8628 vertices

QEM 500 vertices

QEM 500 vertices

SMQE 500 vertices

SMQE 500 vertices

SMQE 500 vertices

original Pieta
8628 vertices

original Pieta
8628 vertices

Figure 5.28: Simplified versions for the Venus model; multiple viewpoints.
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Figure 5.29: The quadratic errors introduced in the simplification of the Venus model.

108 Elena OVREIU



5.2. BOUNDARY PRESERVATION

Figure 5.30: The Hausdorff distances introduced in the simplification of the Venus model,
measured using the Metro tool.
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SMQE

QEM

Figure 5.31: The distances between the Venus model and its simplified version with 500
vertices.
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bones 2154 vertices 

SMQE 444 vertices

QEM 444 vertices

Figure 5.32: Simplifications for the Bones model.
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Figure 5.33: Quadratic Error for the Bones model vs. Number of Vertices
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Figure 5.34: Hausdorff Distance for the Bones model vs. Number of Vertices. The Haus-
dorff distance is computed using the Metro tool.

Figure 5.35: Quadratic Error for Bones model vs. Number of Vertices. SMQEvert−opt
represents the error for the model simplified with SMQE and using Volume-based vertex
optimization to locate the resulting vertex.
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Figure 5.36: The simplifications of Fandisk model obtained using SMQE error metric
(displayed from multiple points of view).
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error and the Hausdorff distance between the simplified models at different level of details
and the original model.
A drawback of our algorithm caused by the high level accuracy is the time complexity.
The running time can reach up to one day for a model with 50000 vertices. The time
complexity is not so critical because our simplifications are made offline but characterized
by high level of accuracy.
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Conclusions and perspectives

We have presented an algorithm which produces accurate approximations for trian-
gular meshes. The accuracy is given by the two geometric error measures used: AMQE
and SMQE. The results obtained with SMQE are better than those obtained with AMQE
because SMQE computes the distances between the meshes in a symmetric manner.
We compare our method with QEM, one of the references in literature. Our measurements
provide similar results compared to QEM for the early stages of simplifications, whereas
for massive simplifications (i.e. more than 90%) the quality of the results demonstrates
the advantanges of using an accurate and symmetric measure.
For meshes with boundaries, the advantage of using a symmetric measure is proven by the
boundary preservation during simplification. Compared to QEM, AMQE better preserves
the boundary edges because of the accuracy of the distance computation.
Our algorithm reduces the geometry of a mesh preserving the topology. For certain ap-
plications such as medical vizualisation, preserving the topology is desirable. While, for
topology changes caused by digitization artefacts, topology reduction is desirable.
To reduce topology complexity, the edge collapse operator can be replaced by pair vertices
contraction. The complexity of pair vertices contraction is n·(n−1) where n is the number
of vertices.
Because our error measures are computationally expensive, pair vertices contraction used
as a simplification operator would increase the complexity of the algorithm.
In conclusion, topology simplification can be necessary but is expensive.
Because the simplification operator used in our algorithm is the edge collapse, during sim-
plification, some holes in the mesh can be closed, but the topology is not changed.
Moreover, our algorithm works on both manifold and non-manifold meshes because of the
simplification operator used.

A disadvantage of our method is complexity. The complexity is caused by the construc-
tion of the bounding volume hierarchy in the PQP library. For a local modification of the
mesh, PQP has to rebuilt its bounding volume hierarchy in order to compute the distances
between the meshes.
One perspective of this work is replacing the PQP library with a dynamic one. In this
manner, a local modification of the mesh will not require the whole bounding volume hi-
erarchy to be rebuilt.
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Another perspective is improving vertex location. At this stage, the vertex obtained from
an edge collapse is placed in so as to minimize the sum of quadratic distances computed
as in the QEM algorithm. Because of approximations made by QEM in the computation
of the geometric deviation the vertex is not placed in order to fit the best the geometry
of the original mesh. In conclusion, we have to define a more accurate error metric for
replacing the vertices.
The method for faces’ subdivision could be also improved. Untill now, each face of the
simplified mesh is equally subdivided, regardless of triangle’s area. For a better approxi-
mation of the distance, one solution can be adapting the number of subdivision for a face
to the face’s area. In this manner, larger faces will more more subdivided while smaller
ones will be lesser subdivided.
To improve the computational time of our algorithm, we propose to implement the algo-
rithm on GPU.
In the future, we intend splitting the mesh into a number of unconnected regions and in-
dependently simplifying each region. The advantage of independent simplification is that
the regions can be simplified in parallel to decrease the running time. A problem with
independent simplification is the manner in which the regions are put back together. One
approach is preserving unchanged the boundaries of each region. After the regions are
reunited, the edges preserved unchanged on the boundaries are simplified.
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Abstract. Reducing the complexity of a very large data set has become an important problem in the 

last years because of the rapid evolution of the acquisition techniques. In this paper we propose a 

mesh simplification algorithm based on two-sided error. The two-sided error metric permits us an 

accurately evaluation of the geometric deviation introduced by an edge simplification for the models 

with boundaries, islands.  

Keywords: mesh simplification, two-sided error, quadratic error. 

1. Introduction  

Nowadays, meshes are presented in multiple and different areas such medical imaging, movie 

production, virtual reality, computer games. Due to the technological improvements from the recent 

years, a mesh could now have millions of elements. That means the reality could be reproduced more 

accurately with a complex mesh. The drawback of the complexity is the difficulty to manipulate this 

kind of meshes. For this reason, mesh simplification has become an extremely exploited topic in the 

last years. 

The goal of mesh simplification is to reduce the complexity but keeping as possible as high 

fidelity of the original model.  

Having this goal, a multitude of mesh simplification algorithms were developed during the time. 

For a detailed classification of those algorithms, we refer the reader to [4]. 

     In the following we will describe some methods to compute the geometric deviation introduced 

by mesh simplification. 

One of the most rapid simplification algorithms is the one proposed in [2]. The error introduced by 

one edge collapse is given by the sum of squared distances from the new vertex to its supporting 

planes. This error is called quadratic error metric (QEM). The drawback of this simplification method 

is given by the computed distance which is only an approximation. The algorithm presented in [5] is 

similar to QEM, but the error introduced by en edge collapse is considered the maximum of the 

distances from the resulted vertex to its supporting planes, and not the sum of them as in QEM. 

In [6] the edge collapse is done accordingly to a complex error which represents the sum of four 

terms: the distance from the new vertex to the original model. This term penalizes contractions which 

do not preserve the sharp edges. The third term controls the accuracy of mesh's scalar attributes. The 

last term permits the optimization to get a desirable local minimum. 
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In [7] the simplification is realized according to the Hausdorff distance. A vertex is deleted from 

triangulation only if the introduced Hausdorff distance is smaller than a predefined Hausdorff distance. 

We propose an algorithm which simplifies a mesh accordingly to a two-sided error measure. 

Using this two-sided error we can measure more accurately the deviation introduced by one edge 

collapse. 

2. Simplification Algorithm 

Our simplification algorithm reduces the mesh complexity while retaining the mesh fidelity. The 

simplification is realized using an iteratively edge collapsing.The simplification algorithm  follows  

the idea from [1].  

      The algorithm is outlined as follows:  

1. On the original model we compute the error introduced by each possible edge collapse. 

2. The edge with the minimum associated error is chosen to be collapsed. 

3. We collapse the chosen edge to a single vertex              ̅.  The following operations are 
performed: 

 the position of the resulting vertex is computed:          ̅ 

 the vertex v2 and degenerated faces are eliminated; 

 all faces connected to    are connected to   ; 

 the error is recomputed for all edges in the new simplified model. 

4. Those steps are repeated until the stop condition is achieved. 

There is a main problem: how to define the error generated by the edge to be collapsed in order to 

keep a high fidelity to the original. We detail this problem in the following subsections. 

In order to get an accurate measure of the error introduced by an edge collapse, we introduce a two 

sided quadratic error. For each possible edge contraction, we call model state the possible mesh 

configuration. That means for each possible edge collapse we get a possible model state and compute 

the quadratic error between this model and the original one and the reverse quadratic error (between 

the original model and possible model state). 

2.1 Direct Error 

We call direct error the quadratic error between the possible model state and the original model. 

We compute the distance from each face of the possible model state to the original model. The area 

weighted sum of the squared distances represents the error introduced by one edge collapse (eqn. 1). 

 ( ̂   )  
 

∑      ̂
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where  ̂  is the approximated model and     the original one. 

In order to have more accurately measurement of the distance between two meshes, we apply a 

repetitive one-to-four subdivision (1:4) for each face (Fig.2). The number of subdivisions is variable 

for each face and it is chosen as so to have a proportion between the number of faces of the simplified 

mesh and the original one. 

Thus, d(c,M) represents the distance from a cell (sub-triangle) of a subdivided triangle to the 

original mesh. 



In practice, we compute the distance from a cell to the mesh as the arithmetic mean of the distances 

from the cell's vertices to the mesh: 

       
 

 
 ∑    

    

 

   

          

Where                    ‖   ‖  is the minimum distance from the one vertex of 

subdivided cell to the closest face of  .  ‖ ‖  is the Euclidean vector length operator. 

    is a scalar weight factor which in our method is the area of a subdivided cell. 

Like in [2], we weight the quadratic error by area in order to make simplification more robust to 

irregular sampling. 

To reduce the complexity of computing the minimum Euclidean distance, we use the Proximity 

Query Package (PQP) library [3]. 

For each step of simplification, the errors for all edges are recomputed.  

For one edge collapse, only the faces around the respective edge will be modified, so we 

recompute only the distances for those faces, and the other distances are not modified. 

2.2 Reverse Error 

We call the reverse error, the error between the original model and the simplified one. This error is 

similar to the direct one (equation 1), but here    and  ̂ are interchanged. 

For each possible edge contraction, for all faces, the distance from each face of the original model 

to the possible model state is modified. Computing all those distances is very expensive. Creating a 

copy of the possible model state in order to compute distances to this model is expensive as well. To 

avoid the computation of the distances for all faces in the original model, we compute only the 

distances for the faces in the original model which are affected by an edge collapse. For those faces in 

the simplified model, we look for the vertices in the original model for which the collapsed simulated 

faces are the closest. Afterwards, we compute the distances only for the faces in the original model 

which share those vertices. In this way we determine the faces on the original mesh whose distances 

are affected by one edge collapse. 

To avoid recreating the simplified model for all possible edge collapses, we split the simplified 

model in more submodels, and we recreate only the submodel which contains the edge for which we 

compute the error.  

2.3 Two-sided Error 

The error for one edge is the sum of the direct error and the reverse one. Even if the direct error and 

the reverse one compute the distances between the same two models (possible model state and original 

one), these distances are not equal because they are computed in different directions. 

The error associated to each edge is the global symmetric error between simplified model and 

original one. We use the term global because the error is computed from all the faces of one model to 

the other one. This global symmetric error gives us better approximations of the introduced geometric 

deviation, than a one sided error. 

3. Results 

The approximations obtained with our simplification algorithm are compared with the ones 

obtained with QEM [2].  We evaluate the error of approximations using quadratic error metric.  

In Fig.1 Pieta is simplified up to 450 vertices using our simplification algorithm and QEM. We 

can see that for flat surfaces, our simplification algorithm uses fewer faces for the approximation. 



Fig. 2 represents the base for Pieta, which is a flat surface, represented with more triangles for the 

approximation done with QEM (b) and fewer by our algorithm (a). That means for the same budget of 

faces, our algorithm uses fewer faces for flat regions (as the base of Pieta) using the rest of them to 

approximate the curved regions, leading to a better approximation of the original model.  

The quadratic error between approximations produced with our simplification algorithm is always 

lower than for approximations produced with QEM (Fig. 3). For instance, for an approximation of 

Pieta with 630 vertices, the quadratic error produced with our approximation algorithm is 0.088, while 

the one produced with QEM is 0.105. This difference is higher for a reduction factor higher than 50. 

Fig. 4 represents an approximation for Octaflower model using our algorithm and QEM. We also 

compute the geometric deviations introduced by our simplification algorithm and by QEM using 

Metro tool [8]. For Octoflower model simplified up to 109 vertices (Fig.4) using our algorithm, the 

Hausdorff distance measured by Metro is 0.745652 while for the model simplified by QEM (with the 

same number of vertices), the Hausdorff distance is 1.355617. Also, the mean error is 0.0101324 

(from the simplified model to original one) and 0.00382 (from the original to the simplified) for the 

model obtained with our algorithm while for the model simplified with QEM the mean errors are 

0.130543 and 0.002525, respectively. For a drastic simplification (Octoflower with 39 vertices) we get 

the Hausdorff distance 0.215756 with our algorithm and 0.422858 with QEM. The mean errors are 

0.29203 and 0.001669, respectively 0.035 and 0.001407 for QEM. For a Pieta model with 130 

vertices, the Hausdorff distance (measured by Metro tool) is 7.288526 for the model simplified by our 

algorithm while on model simplified by QEM the Hausdorff distance is 19.107645. The mean error is 

0.981812 (from simplified model to the original) and 0.06451 (the backward) for our simplification 

and 1.12817 and 0.056734 for QEM.  

4. Conclusions 

In conclusion, we propose an iterative edge collapsing algorithm which produces high quality 

approximations. We get high quality results using a two-sided error to characterize the geometric 

deviation introduced by a possible edge collapse. As, for each possible edge collapse, we compute the 

error between the whole simplified mesh and the original one, and the reverse error, between the 

original mesh and simplified one, we are able to perform an accurate characterization of the geometric 

error introduced by an edge collapse.  

Even if we obtain better results than QEM in terms of quality of approximations, our algorithm is 

several times slower than QEM.  

The simplification algorithm proposed in this paper gives us better approximations and better 

running time than the algorithm proposed in [1]. We obtain better approximations because, after each 

edge collapse, we recompute the error for all edges in the simplified mesh, and not only for the edges 

modified after one collapse.  

 

                                                          
Fig. 1: Approximations of Pieta. From left to right: Original model with 13940 vertices (27904 

triangles), simplified models with 450 vertices using our simplification algorithm and QEM. 
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Fig 3: Geometric error vs. number of vertices for Pieta and Octoflower.  The quadratic error is computed 

between approximated mesh and original one for each step of simplification. Simplifications are made using 

QEM (red line) and our algorithm (blue line). 

Fig.4: Approximations for Octoflower model: From left to right: Original model with 1919 vertices 

(15834 triangles), simplified models with 109 vertices using our simplification algorithm and QEM. 

Fig. 2: Approximations for the base of Pieta 

model. 
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Abstract— In this paper we propose a new surface simplifica-
tion algorithm which produces high quality approximations of the
original models. The geometric simplification is based on iterative
edge contractions. To get a simplified mesh which fairly fits the
original one, we introduce an accurate measure of quadratic
error to characterize the geometric deviation introduced by edge
collapse. In addition, we propose a vertex optimization process
which moves the new vertex towards an optimized position.

I. INTRODUCTION

Reducing the complexity of geometric models has became
a hot topic today due to the rapid improvements in the
performance of acquisition techniques. The most common
methods of mesh generation are 3D scanning, CT (computed
tomography) and MRI (magnetic resonance imaging) scan-
ners.The acquired geometric data are intensively used in appli-
cations like CAD (computer aided design), Movie Production,
Computer Games, Medical Imaging, Virtual Reality. Large
meshes (containing up to several millions of polygons) may
slow the further computations done on them. Hence, between
acquisition and production of geometric data, a processing step
is necessary. It deals with approximation of a surface with
another surface with fewer elements, in order to guarantee
interactivity in 3D model rendering (the time to render a mesh
is linear with the number of polygons), to eliminate redundant
geometry for finite-element analysis or to reduce the model
size, to improve the transmission over the Internet.

In this context, in the last period, a multitude of reducing
complexity algorithms were developed. For a comparison
between well-known simplification algorithms, we refer the
reader to [4]. We will present some different methods to
compute the error introduced by simplification. In [5] the
function cost associated to a contraction is considered to be
the maximum distance from the vertex resulted from an edge
contraction to its supporting planes. Based on this method, in
[1] a quadratic error metric (QEM) is proposed to compute the
sum of squared distances from the new vertex to its planes.
Although this algorithm is very fast and supports non-manifold
models, the computed distance is an approximation of the true
error and not an accurate one. In [6] the error is computed
taking into consideration the geometric deviation introduced

by an edge collapse, sharp edges and curvature preserving.
[7] uses a more complex error criterion involving four terms:
the distance from the new vertex to the original model, a
representation term which penalizes contraction which do not
preserve the mesh’s sharp features, a metric which measures
the accuracy of mesh’s scalar attributes and a spring term
which leads the optimization to a desirable local minimum.
Computing the new position after contraction is a non-linear
problem and for this reason the algorithm could be inefficient
in practice. In [8], the priority queue is sorted accordingly to
the Hausdorff distance. A vertex is removed from triangulation
only if the deviation introduced by it is smaller than a
predefined maximum Hausdorff distance.

Our main contribution consists in choosing an accurate
quadratic error as the geometric deviation measure between
the approximated mesh and the original one. With this geo-
metric measure we build a priority queue, accordingly to the
geometric simplification is performed. Also, we introduce an
optimization process which minimizes the volume embedded
between original mesh and simplified one [3]. More exactly,
after an edge contraction (v1, v2)→ v̄ is performed, we move
the position of the new vertex v̄ so that the deviation between
faces adjacent to v̄ and original mesh is minimized.

The paper is organized as follows: Section 2 presents an
overview of the simplification algorithm, construction of the
priority queue and optimization of the position of vertex
obtained after collapsing one edge. The results are presented
in Section 3 and, in Section 4 we draw some conclusions and
future work.

II. SIMPLIFICATION ALGORITHM

A simplification algorithm takes as the input the original
mesh and produces an approximation of this with fewer
elements than the original. Also, the output should be a faithful
approximation of the input. In our method, we use as input
triangular meshes.

The simplification algorithm is based on iterative edge
collapse and uses an accurate geometric deviation. After an
edge contraction, an iterative optimal vertex placement is



Fig. 1. Edge collapse. Vertices v1 and v2 are collapsed into a single vertex
v̄. The edge e = (v1, v2) and the faces which share this edge are removed
after contraction.

performed in order to obtain the best approximation of the
original mesh. In order to permit a better characterization
of the error introduced by a possible edge contraction, the
resulted vertex should be placed in an optimal position. Thus,
we pre-position the resulted vertex and after optimize its
position. Our method is outlined as follows:

1) In the initial mesh, the cost associated to each edge
contraction is computed.

2) Edges of the model are ordered by increasing cost in a
priority queue.

3) The edge with the maximum priority is collapsed to
a single vertex e = (v1, v2) → v̄. The following
operations are performed:
• a pre-position of the resulting vertex, v̄ is computed:

(v1, v2 → v̄).
• the vertex is replaced to the optimal position.
• the vertex v2 and degenerated faces are eliminated;
• all faces connected to v2 are connected to v1;
• the priority queue is updated for all edges which

previously were connected to v1 and v2;
4) Those steps are repeated until the desired number of

vertices is achieved.
Moving the vertices v1 and v2 to a new position, the

geometry of the mesh is modified. Also, the connectivity of
the mesh is changed, connecting all edges which initially were
connected to v2, to v1. Each edge contraction removes one
vertex, three edges and two faces from the mesh. The priority
queue is built accordingly to the function cost associated
to each possible contraction. At a particular iteration, an
error is associated with every possible contraction and the
algorithm will apply the contraction with the minimum error.
In our algorithm, the optimal vertex position is considered
that position which minimizes the volume embedded between
neighbouring region of the respective vertex and the original
model. In the following we introduce the cost function used
by our algorithm to measure the amount error introduce into
approximation by each contraction.

A. Priority Queue

High quality approximations produced by a simplification
algorithm depend on how the edge contractions are selected.
In order to do this, the function cost associated to each
contraction should characterize the geometric error introduced
by that contraction as well as possible. In [1] the function

cost is considered like being the sum of squared distances
from the new vertex to its supporting planes. Computing the
distance to the triangle’s plane can underestimate the true error.
We propose to introduce an error metric which is able to
measure accurately the error introduced by an edge collapse,
computing the distances from a point to a triangle, and not to
its supporting plane.

We introduce a function cost (eq.1) which is the area-
weighted sum of squared distances between the region modi-
fied by contraction and the original mesh:

E(M,M̂) =
1∑

c∈Supp(X̂) wc

∑

c∈Supp(X̂)

(wcd
2(c,M)) + (1)

1∑
c∈T wc

∑

c∈T
(wcd

2(c, M̂))

where Supp(v̄) is the region on M̂ (approximated mesh)
adjacent to the new vertex v̄ and T represents the set of
triangles on M (original mesh) where Supp(v̄) is projected.
In order to have a more accurate measurement of the distance
between two meshes, we apply a one-to-four subdivision
(1 : 4) for each triangle (Fig.2). Thus, d(c,M) represents
the signed distance from a cell of a subdivided triangle to the
original mesh. In practice, we compute the distance from a
cell to the mesh as the arithmetic mean of the distances from
the cell’s vertices to the mesh:

d(c,M) =
1

3

3∑

i=1

(d(vi,M)) (2)

where d(v,M) = minp∈M,v∈C ‖v − p‖ is the minimum
distance from the one vertex of subdivided cell to the closest
face of M . ‖.‖ is the Euclidian vector length operator. wc

is a scalar weight factor which in our method is the area
of a subdivided cell. Like in [1], we weight the quadratic
error by area in order to achieve an error independent by
mesh tessellation. To reduce the complexity of computing
the minimum Euclidian distance, we use the Proximity Query
Package (PQP) library [2].

The number of subdivisions is computed using the following
formula:

Nsubd = floor(0.5 + log(N2/N1)/log(4.0)) (3)

where N1 and N2 represents the number of faces of the
approximated mesh, and of the original mesh. To get the
coordinates of the sampling points for each cell in the mesh,
in our implementation, we use a general subdivided triangle
which has as vertices coordinates its barycentric coordinates.
Thus, each sample point will have as coordinates its barycen-
tric coordinates. This general subdivided triangle is matched
on each mesh’s cell, and the sampling points coordinates
for the respective cell are computed as linear interpolation
between cells’s vertices and coordinates of points of the
general subdivided triangle.



B. Optimization of Vertex Position

When an edge is merged to a single vertex, (v1, v2)→ v̄ an
important aspect is to place the resulted vertex in a position
which best fits the original model. In our algorithm, we
initially place the vertex v̄ using the method proposed in [1]
and after that, we minimize the volume embedded between
simplified mesh and original one. In [1], the position for v̄ is
that which minimizes ∆(v̄), where ∆(v̄) = v̄T Q̄v̄, Q̄ being
the quadratic error metric associated to v̄. For each edge cost
computation, firstly we pre-position the vertex the respective
edge could merge to and move vertex in order to find the
local optimum. The local optimum is considered the position
for v̄ where the volume between the region surrounding v̄
and original mesh is minimized. To minimize the error, it is
necessary to define the geometric deviation between two 3D
surfaces. In our method, the geometric deviation is considered
to be the volume embedded between simplified mesh and the
original one. In order to minimize the volume between the
faces adjacent to that vertex and original mesh, and implicitly
to reduce the quadratic error between approximated mesh and
original one, we introduce the following formula:

disp(Xi) =

∑
c∈Supp(Xi)

λcwcd(c,M)
∑

c∈Supp(Xi)
λcwc

(4)

disp(Xi) is the displacement for vertex Xi and Supp(Xi)
denotes the adjacent faces of Xi. The direction of the displace-
ment is given by the vectorial sum of the distances between
M̂ and M . The magnitude of the movement is given by the
sum of the distances from the subdivided cells to the original
model. The sum is scaled by the subdivided cells areas, and by
the shape function λc. λc is set to 1 on the Xi and decreases
to 0 towards the neighbouring vertices (Fig.2). For a point in
the interior of a triangle, we deduce the value of the function
shape using barycentric coordinates of the respective point.
Thus, if the point has the barycentric coordinates (λ1, λ2, λ3),
the shape function for the respective point will be λ1. The
shape function of a cell is the arithmetic mean of the shape
functions of its vertices.

In practice, we get the magnitude and the direction of
the distances using PQP library. The evolution of the vertex
position, for the kth step can be written as:

Xkth

i = Xkth−1
i + disp(Xkth−1

i ) (5)

After each optimization step, the volume embedded between
the approximated mesh and the original one will be reduced.
Therefore, the quadratic error and the Hausdorff distance
between those meshes decreases (Fig.3)

III. RESULTS

We evaluate the quality of approximations produced by our
algorithm using the error from equation 1. Also, the quality
of our method is evaluated with the Hausdorff distance.

Comparing our algorithm with Quadratic Error Metric pro-
posed in [1] in terms of quadratic distance between approx-
imations and original models, our algorithm produces better

Fig. 2. The shape functions. The shape function of a point inside of a face
is determined from barycentric coordinates of the respective point.

Fig. 3. Quadratic Error and Hausdorff distance vs. number of opti-
mizations. The Heart model is approximated with 30 vertices. The position
of each vertex in the approximation is optimized using 20 optimization steps
.

results for a reduction bigger than 50% (Fig.4). For instance,
for an approximation with 125 vertices, the quadratic error
introduced by our algorithm is 4.88 while by QEM is 5.12.
For an approximation using 50 vertices, the error introduced
by our algorithm is 22.98 while by QEM is 32.25 or 37.98,
respectively 58.06 for an approximation with 37 vertices.
Regarding the processing time, our algorithm is slower than
[1].

Figure 5 shows a sequence of approximations using our
algorithm. We can observe that during the simplification,
the major details like horns, tail remain. They are altered
for drastic complexity reductions (simplified model with 50
vertices). Figures 5d shows the model simplified without
optimization the position of vertices while in Figure 5c during
mesh simplification, a vertex position optimization is per-
formed. For the vertex optimization process, we fixed 5 steps
of optimization. We can see that optimal vertex movement
produces well-shaped models. In Figure 6 a sphere with 2000
vertices is simplified obtaining a set of approximations with
500, 100 and 50 vertices. In Figure 7 we simplify a genus
3 model and we can observe that the topology is preserved
during the simplification using our accurate error metric.

IV. CONCLUSION AND FUTURE WORK

We have presented an iteratively edge collapsing algo-
rithm which produces high quality approximations of original
models.There were two contributions which lead to those
results: the accurate measurement of the geometric deviation
introduced by each contraction operation and the positioning
of the vertex resulted from an edge collapse. In our algorithm,
the collapsing cost is given by the area weighted sum of



Fig. 4. Geometric error vs. number of vertices. The quadratic error
is computed between approximated mesh and original one for each step
of simplification. Simplifications are made using QEM (red line) and our
algorithm (blue line) on the heart model

(a) (b)

(c) (d)

Fig. 5. A sequence of approximations using our algorithms. From left to
right:Original model with 2903 vertices (5804 triangles). Simplified models
with 1000,700,300 and respectively 50 vertices.

(a) (b)

(c) (d)

Fig. 6. Approximations of a triangulated sphere. Original model with
2000 vertices. Approximation models using 500, 100 and 50 vertices.

(a) (b)

(c) (d)

Fig. 7. Approximations of a genus 3. Original model with 2000 vertices.
Approximation models using 500, 100 and 50 vertices.

squared distances between the region surrounding the new
vertex and original model. Because we compute the distance
to the triangles of the original mesh and not to the planes
of triangles it makes this algorithm accurately. Also, our
algorithm computes the distance between two models in a
symmetric fashion: from triangles adjacent to the new vertex
to the original mesh, and from the triangles on original mesh
where the first distances are projected to the current mesh. The
computation of error is complex but the advantage is it is very
accurate. Another factor which leads to the accuracy of the
method is the optimization of the position of vertex resulted
from edge collapse. We move the vertex position in order
to minimize the volume embedded between simplified mesh
and approximated one. As future work, we intend to simplify
the computation complexity for our accurate quadratic error,
making the algorithm faster. Regarding the vertex optimization
process, we are working on finding the optimal vertex position
using fewer iterations.
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TITRE EN FRANCAIS
Simplification précise de maillages 3D
RESUME EN FRANCAIS
Les objets numériques 3D sont utilisés dans de nombreux domaines, les films d’animations, la
visualisation scientifique, l’imagerie médicale, la vision par ordinateur.... Ces objets sont
généralement représentés par des maillages à faces triangulaires avec un nombre énorme de triangles.
La simplification de ces objets, avec préservation de la géométrie originale, a fait l’objet de nombreux
travaux durant ces dernières années.

Dans cette thèse, nous proposons un algorithme de simplification qui permet l’obtention d’objets
simplifiés de grande précision. Nous utilisons des fusions de couples de sommets avec une
relocalisation du sommet résultant qui minimise une métrique d’erreur. Nous utilisons deux types de
mesures quadratiques de l’erreur : l’une uniquement entre l’objet simplifié et l’objet original
(Accurate Measure of Quadratic Error (AMQE) ) et l’autre prend aussi en compte l’erreur entre
l’objet original et l’objet simplifié ((Symmetric Measure of Quadratic Error (SMQE)) . Le coût
calculatoire est plus important pour la seconde mesure mais elle permet une préservation des arêtes
vives et des régions isolées de l’objet original par l’algorithme de simplification. Les deux mesures
conduisent à des objets simplifiés plus fidèles aux originaux que les méthodes actuelles de la
littérature.
TITRE EN ANGLAIS
Accurate 3D Mesh Simplification
RESUME EN ANGLAIS
Complex 3D digital objects are used in many domains such as animation films, scientific
visualization, medical imaging and computer vision. These objects are usually represented by
triangular meshes with many triangles. The simplification of those objects with the target to keep
them as close as possible to the original ones has received a lot of attention in the last years.

In this context, we propose a simplification algorithm which is focused on the accuracy of the
simplifications. The mesh simplification uses edges collapses with vertex relocation by minimizing an
error metric. Accuracy is obtained with the two error metrics we use: the Accurate Measure of
Quadratic Error (AMQE) and the Symmetric Measure of Quadratic Error (SMQE).

AMQE is computed as the weighted sum of squared distances between the simplified mesh and the
original one. Accuracy of the measure of the geometric deviation introduced in the mesh by an edge
collapse is given by the distances between surfaces. The distances are computed in between sample
points of the simplified mesh and the faces of the original one.

SMQE is similar to the AMQE method but computed in the both, direct and reverse directions, i.e.
simplified to original and original to simplified meshes. The SMQE approach is computationnaly
more expensive than the AMQE but the advantage of computing the AMQE in a reverse way results
in the preservation of boundaries, sharp features and isolated regions of the mesh.

For both measures we obtain better results than methods proposed in the literature.
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mesh simplification, edge collapse, accurate metric, symmetric metric, quadratic error
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