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I

If cemetery is the area where dead people are interred,
when I will escape from the cemetery of quotidian life,
to find the meaning of the real life?

The shorebird how will migrate,
don’t care about his nest,

if the aim is departure,
a ruinous cottage is better.

Morteza Avini
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Simulations numériques d’écoulements
incompressibles interagissant avec un corps

déformable : application à la nage des poissons

Résumé

Une méthode numérique précise et efficace est proposée pour la simulation de corps déform-
ables interagissant avec un écoulement incompressible. Les équations de Navier–Stokes,
considérées dans leur formulation vorticité-fonction de courant, sont discrétisées temporelle-
ment et spatialement à l’aide respectivement d’un schéma d’ordre quatre de Runge–Kutta
et par des différences finies compactes. Grâce à l’utilisation d’un maillage uniforme, nous
proposons un nouveau solveur direct au quatrième ordre pour l’équation de Poisson, perme-
ttant de garantir la contrainte d’incompressibilité au niveau du zéro machine sur une grille
à pas d’espace optimale. L’introduction d’un corps déformable et mobile dans l’écoulement
de fluide est réalisée au moyen d’une méthode de pénalisation de volume. La déforma-
tion du corps est imposée par l’utilisation d’un maillage lagrangien structuré et mobile qui
interagit avec le fluide environnant en raison des forces hydrodynamiques et du moment
(calculés sur le maillage eulérien de référence). Une loi efficace de contrôle de la courbure
pour un poisson anguilliforme nageant vers un objectif prescrite est proposée. La loi de
contrôle de la courbure est basée sur la théorie exacte des poutres non-linéaires. Ensuite
pour augmenter l’efficacité de solveur, une analyse multiéchelle est appliquée à algorithme,
permet de réduire significativement le nombre de points de maillage. La grille se raffine au-
tomatiquement dans les régions avec un fort gradient. La stratégie d’adaptation est basée
sur la transformée en ondelettes et le seuillage des coefficients. Les résultats obtenus mon-
trent que le temps de calcul peut être réduit considérablement avec la méthode multiéchelle
tout en conservant la précision. Finalement une simulation de nage trois-dimensionnel a
été faite par méthode de pénalisation de volume appliquée au code Incompact3d qui est en
accès libre. La méthode numérique développée prouve son efficacité et précision tant dans le
cas de la nage du poisson que dans le cas d’autres problèmes d’interactions fluide–structure.

Mots-clés : Différences finies compactes - Solveurs direct et itératifs - Un corps avec défor-
mation imposée - Pénalisation de volume - Adaptation de maillage par ondelette - Théorie
exacte des poutres

Laboratoire M2P2 - UMR 7340, Ecole Centrale Marseille IMT - La Jetée, 38 rue Frédéric
Joliot-Curie, Technopôle de Château-Gombert, 13451 Marseille cedex 20 - France
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Numerical simulation of incompressible flows
interacting with forced deformable bodies:

Application to fish swimming

Abstract

We present an efficient algorithm for simulation of deformable bodies interacting with in-
compressible flows. The temporal and spatial discretizations of the Navier–Stokes equations
in vorticity-stream function formulation are based on classical fourth-order Runge–Kutta
method and compact finite differences, respectively. Using a uniform Cartesian grid we
benefit from the advantage of a new fourth-order direct solver for the Poisson equation to
ensure the incompressibility constraint down to machine zero over an optimal grid. For
introducing a deformable body in fluid flow, the volume penalization method is used. A
Lagrangian structured grid with prescribed motion covers the deformable body which is
interacting with the surrounding fluid due to the hydrodynamic forces and the torque cal-
culated on the Eulerian reference grid. An efficient law for controlling the curvature of an
anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the
geometrically exact theory of nonlinear beams and quaternions. Furthermore to reduce
the computational effort, better resolving the boundary layer and the vortical structures,
adaptation of grid is performed by using multiresolution analysis. The method is based on
Harten’s point value representation, which through nonlinear filtering of the wavelet coeffi-
cients reduces the number of active grid points significantly. Finally an extension to three
dimensional swimming is performed by adding the implicit volume penalization method to
the Incompact3d open access code, to be able to take into account the deformable bodies
interaction with incompressible flows. Validation of the developed method shows the effi-
ciency and expected accuracy of the algorithm for fish-like swimming and also for a variety
of fluid/solid interaction problems.

Keywords: Compact finite differences - Direct and iterative solvers - Fluid interaction
with moving bodies - Volume penalization method - Wavelet based grid adaptation - Geo-
metrically exact beam theory
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Notice about nomenclature

This document was produced by LATEX [95]. The attempt was to
not use duplicated symbols and superscripts for the same physical
quantities or mathematical operations, nevertheless, some prevalent
symbols are kept to prevent additional confusion, therefore we tried
to introduce each symbol in the used context.



Contents

1 Introduction 1

2 An algorithm for fluid–structure interaction in two dimensions 5
2.1 Vorticity-stream function formulation . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Volume penalization method . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Evaluation of the hydrodynamic coefficients . . . . . . . . . . . . . 14
2.1.3 Body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Compact methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Spatial discretization on uniform grids . . . . . . . . . . . . . . . . 17
2.2.2 Spatial discretization on non-uniform grids . . . . . . . . . . . . . . 18
2.2.3 Analysis of differentiation errors . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Interpolation and filtering . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Spatial discretization of the Poisson equation . . . . . . . . . . . . . . . . 28
2.3.1 An iterative method for solution of the Poisson equation . . . . . . 29
2.3.2 A high-order fast Poisson solver . . . . . . . . . . . . . . . . . . . . 34

2.4 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 The algorithm for fluid–structure interaction . . . . . . . . . . . . . . . . . 42
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Convergence study and validation of the proposed algorithm 47
3.1 Decaying Taylor vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Taylor–Couette flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Unsteady flow around a circular cylinder . . . . . . . . . . . . . . . . . . . 53

3.3.1 Hydrodynamic forces via a control volume around body . . . . . . 55
3.4 Fluid–structure interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Free sedimentation of a cylinder . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Validation of the solid dynamics with a falling ellipse . . . . . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Two-dimensional simulations of fish-like swimming 76
4.1 Physical definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Efficiency measurement . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Modeling of the swimmer shape . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Backbone deformation law for straight swimming . . . . . . . . . . 85
4.2.2 Kinematics of the fish based on curvature . . . . . . . . . . . . . . 92
4.2.3 Lagrangian structured grid covering the body . . . . . . . . . . . . 93

4.3 Validation of the algorithm for deformable bodies . . . . . . . . . . . . . . 96
4.4 Application and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VI



CONTENTS VII

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Fluid–structure interaction on adaptive grids 112
5.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Multiresolution analysis of incompressible flow . . . . . . . . . . . . . . . . 114

5.2.1 Biorthogonal wavelet transform . . . . . . . . . . . . . . . . . . . . 115
5.2.2 Filtering of wavelet coefficients . . . . . . . . . . . . . . . . . . . . 117

5.3 Dipole-wall collision with a uniform grid solver . . . . . . . . . . . . . . . . 118
5.4 Validation of the adaptive multiresolution solver . . . . . . . . . . . . . . . 122
5.5 Application to fish-like swimming . . . . . . . . . . . . . . . . . . . . . . . 122
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Three-dimensional simulations of fish-like swimming 130
6.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.1 Mathematical properties of the N-S equations . . . . . . . . . . . . 132
6.1.2 Conservation properties . . . . . . . . . . . . . . . . . . . . . . . . 132
6.1.3 Grid arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3 Incompact3d code and our modification . . . . . . . . . . . . . . . . . . . 140
6.4 Validation of the algorithm for a falling sphere . . . . . . . . . . . . . . . . 144
6.5 Three dimensional simulation of swimming fish . . . . . . . . . . . . . . . 145
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusion and perspectives 165

8 Résumé de thèse en français 168
8.1 Modèle mathématique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.2 Dynamique d’un objet mobile . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.3 Discrétisation temporelle et spatiale . . . . . . . . . . . . . . . . . . . . . . 173
8.4 Solveur de Poisson rapide . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.5 Modèle cinématique de nage anguilliforme . . . . . . . . . . . . . . . . . . 175
8.6 Algorithme d’interaction fluide–structure . . . . . . . . . . . . . . . . . . . 180
8.7 Changement de direction du poisson . . . . . . . . . . . . . . . . . . . . . 180
8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A Compact differentiation 190

B The volume penalization method 194

C The coefficient matrix of Poisson equation 196

D Fourier transforms 197

E Turbulent structure identification criteria 199

F Direct solvers for linear systems with diagonal matrix of coefficients 200

Bibliography 202



List of Figures

2.1 Domain of the solution and the immersed body, Ω = Ωf ∪ Ωp. . . . . . . . 11
2.2 (a) Smooth Dirac δ function (2.18) proposed by Lai and Peskin [76]. (b)

Comparison of the derivatives of the smoothed mask function computed
via the second-order central finite difference method and the fourth-order
compact finite difference (Padé) method with the analytical smoothed Dirac
delta function (2.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 One-dimensional stretched grid, x ∈ [0, Lx], with clustering near boundaries
via Eq. (2.38), with N = 41, Lx = 4, γx = 4 and ∆ξ = 1. . . . . . . . . . . 19

2.4 Truncation error analysis for first (c-d) and second (e-f) derivatives via a
fourth-order compact method for f(x) = sinx, x ∈ [0, 2π], on a uniform grid
(a), and g(x) = (x− 0.5)4, x ∈ [0, 1], on a clustered grid near boundaries (b)
with Eq. (2.38), where γ = 4 and β = ξmax/2. . . . . . . . . . . . . . . . . 20

2.5 Truncation error analysis for first (a) and second (b) derivatives via different
explicit and compact methods for f(x) = sinx, x ∈ [0, 2π], on a uniform grid. 21

2.6 Plots of the scaled modified wavenumber w′(w) versus the scaled wavenum-
ber w = k∆x for the first derivative with the use of different central finite
difference methods for f(x) = eikx and x ∈ [0, 2π]. . . . . . . . . . . . . . . 23

2.7 Plots of the resolution error ϵ(w) = |w
′(w)−w
w

| for the first derivative via two
pentadiagonal spectral like compact method proposed by Lele [55] and Kim
[111], with N = 210 grid points. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Plots of the scaled modified wavenumber w′′(w) versus the scaled wavenum-
ber w = k∆x for the second derivative with the use of different central finite
difference methods for f(x) = eikx and x ∈ [0, 2π]. . . . . . . . . . . . . . . 24

2.9 Plots of the resolution error ϵ(w) = |w
′′(w)−w2

w2 |, for the second derivative via
different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Transfer functions T (w) versus scaled wavenumber for different explicit and
compact tridiagonal/pentadiagonal methods for interpolation and filtering. 26

2.11 A box function χ(x) = 1 , x ∈ [4.5, 5.5] (red-solid) and a mollified box
function χ̄ (green-dashed) with Eq. (2.51). . . . . . . . . . . . . . . . . . . 28

VIII



LIST OF FIGURES IX

2.12 (a) Solution of the Poisson equation (∇2u = f) with the forcing term
f(x, y) = −2 cos(x + y), (x, y) ∈ Ω = [0, 2π]2 and Dirichlet boundary con-
ditions ub(x, y) = cos(x+ y), (x, y) on ∂Ω via an iterative fourth-order com-
pact method. (b) Corresponding error contours E(x, y) = |u(x, y)− cos(x+
y)|, (x, y) ∈ Ω in comparison with the exact solution for N = 10242 grid
points. (c) The 9-point stencil used in the fourth-order compact discretiza-
tion of the Poisson equation on a two-dimensional grid. (d) Error analysis
for Poisson solvers via the PSOR method using second and fourth order
compact discretizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 (top) The trigonometric basis functions for a complex FFT of a periodic
function. (center) The trigonometric basis functions for a sine FFT of a
function with homogeneous Dirichlet boundary conditions. (bottom) The
trigonometric basis functions for a cosine FFT of a function with homoge-
neous Neumann boundary conditions. Picture from [56]. . . . . . . . . . . 37

2.14 (a) Solution of the Poisson equation (∇2u = f) with a fourth-order compact
method, forcing term is f(x, y) = −(n2π2/L2

y+1) cos(x) sin(nπy/Ly), (x, y) ∈
Ω = [0, 2π]2 and Dirichlet boundary conditions are given by ub(x, y) = cos(x)
sin(nπy/Ly), (x, y) on ∂Ω, (n = 3). (b) The corresponding error contours
E(x, y) = |u(x, y) − uexact(x, y)|, (x, y) ∈ Ω in comparison with the exact
solution. (c) Error analysis for direct Poisson solvers computed with sec-
ond and fourth order compact methods. (d) CPU-time scaling of different
iterative (Multigrid / Point Successive Over Relaxation) and direct methods. 44

2.15 Stable regions for time integration via Adams–Bashforth and Runge–Kutta
methods on complex plan. The picture is taken from [63]. . . . . . . . . . 45

2.16 Schematic representation of the fourth-order Runge–Kutta method. In each
time step the RHS operator must be evaluated four times: once at the
initial point (marked •), twice at trial midpoints (marked ◦) and once at a
trial endpoint (marked ◦). From these derivatives the value of the function
in the next time step (marked •) can be calculated. The picture is taken
from [56]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.17 Time accuracy of explicit fourth-order Runge–Kutta method applied to the
Burgers equation over uniform grid with ν = 10−3. . . . . . . . . . . . . . 46

2.18 Flowchart of the fluid–solid interaction (FSI) algorithm. . . . . . . . . . . 46

3.1 Vorticity (a) and stream-function (b) contours for Taylor vortices, (x, y) ∈
[0, 2π] × [0, 2π] at t = 0.0001. Error analysis for vorticity (c) and stream-
function (d), computed with second and fourth order finite differences. . . 50

3.2 Setup of a Taylor–Couette flow, picture from Wikipedia. . . . . . . . . . . 51
3.3 Schematic representation of a penalized unit square domain for modeling

of Taylor–Couette flow with volume penalization method (χ = 0 represents
the fluid domain and χ = 1 the solid domains respectively). The radius of
the inner cylinder is R1 = 0.15 and that of the outer cylinder is R2 = 0.4.
The angular velocity of the inner cylinder is Ω1 = 0.2 and that of the outer
is equal to zero, ν = 0.01 and Ta ≈ 1. . . . . . . . . . . . . . . . . . . . . . 52



LIST OF FIGURES X

3.4 (a) Original and mollified mask function, comparison of computed vorticity
ω with the exact solution, using N = 128 grid points in each direction.
(b) Comparison of the computed stream-function ψ and velocity u with
the exact solution, using N = 128. (c) The L1-error of u with the spatial
resolution (N being the grid resolution in each direction). (d) The L1-error
of u versus the penalization parameter η. . . . . . . . . . . . . . . . . . . . 54

3.5 Sketch of the domain (∆X,∆Y ) ∈]1.2, 1.2[ used to compute the hydrody-
namic coefficients via control volume method (equivalent to control surface
and surrounding lines in two dimensions). . . . . . . . . . . . . . . . . . . 57

3.6 Vorticity contours around a circular cylinder (simulation 4), where Re=200,
∆x = 24

4097
, ∆y = 12

2049
, xcg = Lx/4, ycg = Ly/2, ∆t = 10−3 and η = 10−3. . . 60

3.7 Hydrodynamic forces and moment for the circular cylinder (simulation 3),
where Re=200, ∆x = 24

1025
, ∆y = 12

513
, ∆t = 2× 10−3 and η = 2× 10−3. . . 61

3.8 Vorticity contours of the flow around a circular cylinder (simulation 5)
started by an initial perturbation (u = U∞ + 0.01 × u′, v = 0.01 × v′) and
noise in the inflow (u = U∞+10−4×u′, v = 10−4×v′) where u′, v′ ∈ [0, 1] are
random numbers, Re=200, ∆x = 24

1025
, ∆y = 12

513
, xcg = Lx/4, ycg = Ly/2,

∆t = 10−3 and η = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Pressure contours of the flow around a circular cylinder (simulation 6)

started by an initial perturbation (u = U∞ + 10−3 × u′, v = 10−3 × v′)
and noise in inflow (u = U∞ + 10−4 × u′, v = 10−4 × v′) where u′, v′ ∈ [0, 1]
are random numbers, Re=200, ∆x = 24

513
, ∆y = 12

257
, xcg = Lx/4, ycg = Ly/2,

∆t = 2× 10−3 and η = 2× 10−3. . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 (a) Comparison of the hydrodynamic forces of the circular cylinder, cal-

culated via the surrounding control volume and the volume penalization
method (simulation 6), started by an initial perturbation (u = U∞+10−3×u′,
v = 10−3 × v′) and noise in inflow (u = U∞ + 10−4 × u′, v = 10−4 × v′)
where u′, v′ ∈ [0, 1] are random numbers, Re=200, ∆x = 24

513
, ∆y = 12

257
,

∆t = 2 × 10−3 and η = 2 × 10−3. (b) Components (pressure, momentum,
volume and shear) of the drag force Fx = −FxP −FxM −FxV +FxS cal-
culated by the CV method. (c) Components (pressure, momentum, volume
and shear) of the lift force Fy = −FyP − FyM − FyV + FyS calculated
by the CV method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 An example of the initial perturbation created with a hyperbolic tangent
function for trigering the transition during the sedimentation of a cylinder
u(x) = f × noise × u′, where f = 0.5(tanh y′ + 1), noise = 10−3 × Uref ,
u′ ∈ [−1, 1] are uniformly distributed random numbers, Uref = umax, y′ =
10y/Ly − 5, y′ ∈ [−5, 5], y ∈ [0, 1] and vorticity ω = vx − uy. . . . . . . . . 66

3.12 Vorticity isolines (dashed lines are used for negative values) of the falling
cylinder in fully quiescent fluid, performed by the 2nd-order solver, where
free-slip boundary conditions are imposed at the surrounding walls, g =
−9.81m/s2, ρb/ρf = 1.01, D = 0.005 m, (x, y) ∈ [0 , 0.04m]× [0 , 0.32m] =
[0 , 8D]× [0 , 64D], ∆t = 1.25× 10−4, the resolution is set to 512× 4096, the
penalization parameter η = 10−3, the filter parameter for denoising of the
hydrodynamic coefficients is δ = 0.001, ν = 8× 10−7m2/s and Re ≈ 156. . 67



LIST OF FIGURES XI

3.13 Vorticity isolines (dashed lines are used for negative values) of the falling
cylinder in a slightly perturbed fluid, performed by the 4th-order solver,
where free-slip boundary conditions are imposed at the surrounding walls,
g = −9.81m/s2, ρb/ρf = 1.01,D = 0.005m, (x, y) ∈ [0 , 0.04m]×[0 , 0.32m] =
[0 , 8D]× [0 , 64D], ∆t = 1.25× 10−4, resolution 4096×512, penalization pa-
rameter η = 5 × 10−4, ∆t = 1.25 × 10−4, δfilter = 10−3, ν = 8 × 10−7 m2/s
and Re ≈ 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 Comparison of the streamwise ustreamwise and lateral ulateral velocities of the
falling cylinder via different methods/parameters with reference simulations.
Symbols indicate the simulations performed by Gazzola et al. [144] (red
triangles) and Namkoong et al. [119] (green circles). Solid and dashed lines
represent the results with the proposed algorithm on 4096×512 grid point
with penalization parameter η = 10−3, respectively performed by, the 4th-
order solver with a perturbed IC and free-slip BC (blue solid), the 2nd-order
solver with unperturbed IC and free-slip BC (black dashed), the 2nd-order
solver with unperturbed IC and no-slip BC (purple dash-dot) and the 2nd-
order solver with perturbed IC and free-slip BC (cyan dash-dot-dot) on the
finest resolution 8192×1024 with penalization parameter η = 10−4. . . . . 69

3.15 Vorticity isolines (dashed lines are used for negative values) of the falling
ellipse in the steady regime, where resolution of the grid is Im × Jm =
513 × 2049, (x, y) ∈ [0, 5L] × [0, 20L], L = 2a = 1, J∗ = 0.16, ρs/ρf =
1.538/1.0, g = −9.81, a/b = 0.5/0.1, Xcg

0 = Lx/2, Y cg
0 = Ly − 3a, θ0 = π/4,

δfilter = 10−3, η = 10−3, ν = 0.03 and Re ≈ 15. . . . . . . . . . . . . . . . . 70
3.16 Vorticity isolines (dashed lines are used for negative values) of the falling

ellipse in the fluttering regime, where resolution of the grid is Im × Jm =
513 × 2049, (x, y) ∈ [0, 5L] × [0, 20L], L = 2a = 1, J∗ = 0.16, ρs/ρf =
1.538/1.0, g = −9.81, a/b = 0.5/0.1, Xcg

0 = Lx/2, Y cg
0 = Ly − 3a, θ0 = π/4,

δfilter = 10−3, η = 10−3, ν = 0.01 and Re ≈ 46. . . . . . . . . . . . . . . . . 70
3.17 Vorticity isolines (dashed lines are used for negative values) of the falling

ellipse in the tumbling regime, where resolution of the grid is Im × Jm =
20492, (x, y) ∈ [0, 10] × [0, 10], J∗ = 0.16, ρs/ρf = 1.538/1.0, g = −9.81,
a/b = 0.5/0.1, Xcg

0 = Lx/2, Y cg
0 = Ly−3a, θ0 = π/4, δfilter = 10−3, η = 10−3,

ν = 0.003 and Re ≈ 153. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.18 Comparisons of (cg) trajectories of the falling ellipse, obtained in the present

investigation, with those of Gazzola et al. [144]. . . . . . . . . . . . . . . . 72
3.19 Vorticity isolines (dashed lines are used for negative values) of the falling

ellipse in different regimes, where J∗ = 0.16, ρb/ρf = 1.538, g = −9.81,
a/b = 0.5/0.1, Xcg

0 = Lx/2, Y cg
0 = Ly − 3a, θ0 = π/4, δfilter = 10−3 and

η = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.20 (a) Hydrodynamic coefficients of a falling ellipse in the fluttering regime,

where J∗ = 0.16, ρb/ρf = 1.538, a/b = 1/5 and ν = 0.01 before denoising.
(b) After applying the first-order filter (2.25) with b = 0 and α = 0.2.
(c) After applying the second-order filter via Eqs. (2.25) and (2.26) with
δ = 0.001. (d) The corresponding velocity components. . . . . . . . . . . . 75

4.1 Different types of fishes. Cartilaginous fishes (c-g), pictures are taken from
[165]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Locomotion models and body types . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF FIGURES XII

4.3 Basic external anatomy of a lamprey, picture is taken from [165]. . . . . . 79
4.4 The haddock, a type of cod, is ray-finned. Pectoral fins (paired), ventral

fins (paired), dorsal fin (three), adipose fin, anal fin (two) and caudal (tail)
fin (one) are illustrated, picture is taken from [165]. . . . . . . . . . . . . . 80

4.5 Dimensions considered for a typical swimming fish: (a) side view and (b)
top view, picture is taken from Eloy [157]. . . . . . . . . . . . . . . . . . . 80

4.6 (a) Schematic view of the Bénard-von Kármán (BvK) vortex street behind a
circular cylinder. (b) The reverse BvK (rBvK) vortex street in the backside
of a swimming fish. (c) The average velocity difference u(y) from the mean
flow U in the far wake is a jet toward the cylinder. (d) In the case of
swimming u(y) is backward oriented in the center line. Both of these jets
are surrounded by a region of counterflow. In an stable configuration of
vortices each dipole creates a small jet represented by black vectors, pictures
are taken from Eloy [157] with a slight modification. . . . . . . . . . . . . 82

4.7 Schematic three-dimensional views of the (a) BvK and (b) rBvK vortex
streets, corresponding to the two-dimensional views of Fig. 4.6, picture is
taken from Eloy [157]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Sketch of the two-dimensional Joukowsky transform. (a) The original circle
in the ζ plane where rc = 1, ηc = −0.1 and θc = 0. (b) The hydrofoil shape
in the z plane. (c) The shape is rescaled to fit 0 ≤ x ≤ 1. . . . . . . . . . . 87

4.9 Backbone deformation according to Eq. (4.9) with l = 1 in one period,
λ = 0.5, a0 = 0, a1 = 0.01 and a2 = 0.09 to match the envelope used by
Bergmann and Iollo [145]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 Backbone deformation according to Eq. (4.9) with l = 1 in one period,
λ = 0.5, a0 = 0.02, a1 = −0.08 and a2 = 0.16 to match the experimental
envelope measured by Videler and Hess [41]. . . . . . . . . . . . . . . . . . 88

4.11 Backbone deformation according to Eq. (4.9) with l = 1 in one period,
λ = −0.1, a0 = 0.02, a1 = −0.08 and a2 = 0.16 to match the experimental
envelope measured by Videler and Hess [41]. . . . . . . . . . . . . . . . . . 89

4.12 Backbone deformation according to Eq. (4.9) with l = 1 in one period,
λ = −1.5, a0 = 0.02, a1 = −0.08 and a2 = 0.16 to match the experimental
envelope measured by Videler and Hess [41]. . . . . . . . . . . . . . . . . . 90

4.13 Body fitted structured grid for covering the fish. The mesh is generated by
the normal to the backbone lines. . . . . . . . . . . . . . . . . . . . . . . . 91

4.14 Shape of the fish given by Eq. (4.6) before deformation. . . . . . . . . . . 96
4.15 Left: The Lagrangian structured grid (Imb × Jmb = 121 × 19) over the

Eulerian one. Right: The Lagrangian structured grid covering the fish after
deformation and the corresponding velocity vectors of each point, colored
by absolute velocity

√
u2 + v2. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.16 Left: Interpolated mask function χ̄ from a Lagrangian grid (Imb × Jmb =
61×9) where ∆x < ∆X, as can be seen insufficient resolution in Lagrangian
grid results in χ̄ = 1 in very few points inside the fish. Right: Boundary
of the Lagrangian grid (black line) and the interpolated smoothed mask
function χ̄ (colored isolines). As can be seen the boundary of the Lagrangian
grid (Imb×Jmb = 121×19) lies between minimum and maximum values of
the mask function. The velocity components forming a jet at the tail while
the fish is turning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



LIST OF FIGURES XIII

4.17 Smooth step function proposed by Boyer et al. [106] for gradually evolving
the fish curvature in the first stroke Cr(t) = t′ − sin(2πt′)/(2π), t ∈ [ti, tf ]
with t′ = (t − ti)/(tf − ti), ti = 0, tf = 1. At t = 1 the left-and right-
hand limits are equal for the function Cr and its first Cr′ and second Cr′′
derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.18 Forward velocity U of a 2D anguilliform swimmer (λ = f = 1). Solid lines
indicate the reference simulations performed by Kern and Koumoutsakos
(green) [105] and Gazzola et al. (pink and brown) [144]. Dashed lines
represent the results with the proposed algorithm. . . . . . . . . . . . . . . 101

4.19 Snapshots of vorticity isolines obtained during a simulation in a rectangu-
lar domain (x, y) ∈ [0 , 10lfish] × [0 , 5lfish], with resolution 2048 × 1024, by
imposing a penalization parameter inside the body equal to η = 10−3 and
the time step ∆t = 10−3. The filter parameter for denoising of the hydro-
dynamic forces is δfilter = 0.005 and the Reynolds number is approximately
Re ≈ 3800. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.20 Schematic representation of the desired angle for curvature control, during
the rotation of the fish toward the goal. Here θdes = θgoal − θHead is the
difference of the angles between head direction and the line passing through
the target and the head (−π < θdes < π), picture adapted from Bergmann
and Iollo [145] with a slight modification. . . . . . . . . . . . . . . . . . . . 106

4.21 Snapshots of vorticity isolines obtained during a simulation of swimming fish
toward a predefined target which is located at (xf , yf ) = (0.9Lx, 0.5Ly). At
t = 0 the fish and the surrounding flow are at rest. After reaching the vicinity
(r = 0.5lfish) of the target the curvature of the backbone tends to zero by
Eq. (4.26). The domain of the solution is (x, y) ∈ [0 , 5lfish] × [0 , 5lfish], the
resolution of the Eulerian grid is 1024×1024, the resolution of the Lagrangian
grid (Imb × Jmb = 251× 39), the penalization parameter η = 5× 10−4 and
the kinematic viscosity is equal to ν = 1.4× 10−4. Samples of the backbone
of the fish are plotted in Fig. 4.25. . . . . . . . . . . . . . . . . . . . . . . 107

4.22 Snapshots of pressure isolines obtained during a simulation of swimming fish
(represented by black contour corresponding to χ = 0.2) toward a predefined
goal which is located at (xf , yf ) = (0.9Lx, 0.5Ly). At t = 0 the fish and
the surrounding flow are at rest. After reaching the vicinity (r = 0.5lfish)
of the target the curvature of the backbone tends to zero by Eq. (4.26).
The domain of the solution is (x, y) ∈ [0 , 5lfish] × [0 , 5lfish], the resolution
of the Eulerian grid is 1024 × 1024, the resolution of the Lagrangian grid
(Imb × Jmb = 251× 39), the penalization parameter η = 5× 10−4 and the
kinematic viscosity is equal to ν = 1.4× 10−4. . . . . . . . . . . . . . . . . 108

4.23 Saddle points are denoted by green dashed circles and vortices are denoted
by purple solid circles. The vortices forming dipoles during the rotation,
corresponding to strong jets. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.24 Stream-function ψ isolines during the rotation of the fish. Saddle points are
denoted by green dashed circles and vortices are denoted by blue (counter-
clockwise) and red (clockwise) solid circles. . . . . . . . . . . . . . . . . . . 110



LIST OF FIGURES XIV

4.25 Samples of the backbone of a swimming fish toward a predefined goal which
is located at (xf , yf ) = (0.9Lx, 0.5Ly) obtained during a simulation, t ∈
[0, 15]. After reaching the vicinity (r = 0.5lfish) of the goal the curvature
of the backbone tends to zero by Eq. (4.26). The snapshots of the corre-
sponding vorticity and pressure isolines are plotted in Figs. 4.21 and 4.22.
Starting from rest the fish performs a 180o rotation within an area of about
1.3 times its length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Sparse point representation of 1D functions, obtained by WT with cubic
interpolation (J = 10), filtered with threshold ϵ = 1× 10−3. The green dots
(marked •) show the retained grid points. Left: Gaussian function, com-
pression = 95%, L∞-Error ≤ 1× 10−4. Right: Function (5.8), Compression
= 94%, L∞-Error ≤ 5× 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 (a) Vorticity contours of dipole-wall collision at t = 0.4. (b)-(d) Comparison
of the total energy E(t), the total enstrophy Z(t) and the total palinstro-
phy P (t) between the data from Clercx and Bruneau [104] and the present
finite-difference computation with a uniform multigrid solver for Reynolds
1000 with different grid resolutions. By increasing the resolution the results
converge toward the reference simulation. . . . . . . . . . . . . . . . . . . . 121

5.3 The evolution and collision of the vortices (represented by colored isolines)
with walls (left) and the corresponding adaptive grid (right), the maximum
grid level is J = 11 in each direction, threshold ϵ = 10−3, and Reynolds 1000. 125

5.4 Comparisons of the total energy (a) and the total enstrophy (b) between
the uniform grid solver and the multiresolution computation with thresholds,
ϵ = 10−3 and ϵ = 10−4, for Reynolds number 1000 and a maximum grid level
J = 9 in each direction for all simulations. (c) Convergence study for the
total enstrophy Z(t) toward the data from Clercx and Bruneau [104] with the
uniform grid solver for 2562, 5122 and 10242 grid points and multiresolution
computations with a maximum grid level J = 11 in each direction, for
Reynolds 1000. It can be observed that coarse grid computations are too
dissipative, we anticipate that 40982 grid resolution is sufficient to reproduce
the results of Clercx and Bruneau [104]. . . . . . . . . . . . . . . . . . . . 126

5.5 Up: Forward velocity U of the anguilliform 2D swimmer (λ = f = 1). Solid
lines indicate the reference simulations performed by Kern and Koumout-
sakos (green) [105], Gazzola et al. (pink and brown) [144] and Ghaffari et al.
(red and blue) [170]. Dashed lines represent the results with the proposed
multiresolution algorithm. Down: Evolution of the number of active grid
points, significant pints (corresponding to the retained points after filtering
of wavelet coefficients), safety zone, hung and interpolated points for the
wavelet transform during the computation with the multiresolution solver,
with a maximum grid level J = 10 in each direction (10252 grid points). . . 127

5.6 Adaptive grids colored by the vorticity (left) and colored by the mask χ̄
(right) at t = 6 (zoom in, from up to down) where (x, y) ∈ [0, 8lfish]×[0, 8lfish]
by imposing the penalization parameter inside the body equal to η = 10−3,
with maximum grid level of J = 10 in each direction and the viscosity
ν = 1.4× 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



LIST OF FIGURES XV

5.7 Adaptive grids at different instances colored by the vorticity of a swimming
fish where (x, y) ∈ [0, 8lfish] × [0, 8lfish]. The penalization parameter inside
the body equals η = 10−3, with a maximum grid level of J = 10 in each
direction and the viscosity is ν = 1.4× 10−4. . . . . . . . . . . . . . . . . . 129

6.1 (a) Arrangement of velocity • and pressure ◦ grids (shifted in x and y direc-
tions by ∆x/2 and ∆y/2) in a two-dimensional half-staggered arrangement,
physical boundaries are represented by black lines (—–), ghost nods for pres-
sure are on the blue lines (◦ − ◦ − ◦), (b) Indices of velocity • and pressure
• nodes in a two-dimensional half-staggered grid. . . . . . . . . . . . . . . 136

6.2 An example of two dimensional domain decomposition using 4×3 (row ×
column) processors. For data in the X-pencils one global operation in the Z-
pencils direction needs 4 data transpositions to come back to the X-pencils,
i.e., X → Y → Z (operation) → Y → X. Pencil rotation (transpose) is
done via the MPI “ALL TO ALL” subroutine. . . . . . . . . . . . . . . . . 149

6.3 Some characteristics of the Incompact3d code in terms of scaled wavenumber
in comparison to other methods, pictures are taken from Lamballais et al.
[150]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 The Q isosurfaces of the falling sphere in a quiescent fluid, obtained with
the penalized Incompact3d solver, where g = −20, ρb/ρf = 1.041, D = 1,
(x, y, z) ∈ [0 , 12] × [0 , 4] × [0 , 4], BC (2-1-1) is imposed (see Table 6.2),
∆t = 10−4 using AB3, resolution 257 × 101 × 101, penalization parameter
η = 10−2, δfilter = 10−3, ν = 10−2 and Re ≈ 100. . . . . . . . . . . . . . . . 151

6.5 The z-mid section velocities of the falling sphere in a quiescent fluid, ob-
tained with the penalized Incompact3d solver, where g = −20, ρb/ρf =
1.041, D = 1, (x, y, z) ∈ [0 , 12] × [0 , 4] × [0 , 4], BC (2-1-1) is imposed (see
Table 6.2), ∆t = 10−4 using AB3, resolution 257 × 101 × 101, penalization
parameter η = 10−2, δfilter = 10−3, ν = 10−2 and Re ≈ 100. . . . . . . . . . 152

6.6 The z-mid section velocities (up) and streamlines colored by streamwise
velocity (down) of the falling sphere in a quiescent fluid obtained with the
penalized Incompact3d solver, where g = −20, ρb/ρf = 1.041, D = 1,
(x, y, z) ∈ [0 , 12] × [0 , 6] × [0 , 6], BC (2-1-1) is imposed (see Table 6.2),
∆t = 10−3 using AB2, resolution 257 × 101 × 101, penalization parameter
η = 10−2, δfilter = 10−3, ν = 10−2 and Re ≈ 100. . . . . . . . . . . . . . . . 153

6.7 The streamlines colored by streamwise velocity of the falling sphere in a
quiescent fluid at t = 12, obtained with the penalized Incompact3d solver,
where g = −20, ρb/ρf = 1.041, D = 1, (x, y, z) ∈ [0 , 12] × [0 , 6] × [0 , 6],
BC (2-1-1) is imposed (see Table 6.2), ∆t = 10−3 using AB2, resolution
257 × 101 × 101, penalization parameter η = 10−2, δfilter = 10−3, ν = 10−2

and Re ≈ 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.8 Comparison of the streamwise velocity Vx of the falling sphere (g = 20) using

different penalization parameters η, with the reference simulation performed
by Kern and Koumoutsakos [105] (black line). Colored lines represent the re-
sults of the present study performed with the penalized Incompact3d solver,
with ∆t = 10−4 using AB3. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.9 The corresponding streamwise force and the displacement of the falling
sphere, represented in Fig. 6.8, by imposing the penalization parameter
to η = 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



LIST OF FIGURES XVI

6.10 Backbone of the fish as a one-dimensional Cosserat medium. The iner-
tial frame is denoted by (x, y, z), the orthogonal body fitted coordinate
(d1, d2, d3) oriented along the body to be tangent in d3 direction. Picture
taken from Lazarus et al. [154]. . . . . . . . . . . . . . . . . . . . . . . . 156

6.11 Profiles of the considered fish from top and side. . . . . . . . . . . . . . . . 156
6.12 The fish is constructed by series of ellipses normal to the backbone of the

considered fish. Each ellipse is covered by a structured grid. . . . . . . . . 157
6.13 The surface of the considered fish is covered by a Lagrangian structured grid.157
6.14 The corresponding velocities, evaluated by Eq. (6.52), of the swimming fish

at the surface of the Lagrangian structured grid. . . . . . . . . . . . . . . . 158
6.15 The interpolated mask function χ and the velocity components, on the Eu-

lerian grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.16 The mask function with two different resolutions of the Lagrangian grid. . 159
6.17 Q iso-surfaces of the swimming fish obtained with the penalized Incompact3d

solver, where l = λ = f = 1, ρb = ρf , (x, y, z) ∈ [0 , 3] × [0 , 1] × [0 , 1],
BC (2-1-1) is imposed (see Table 6.2), ∆t = 2× 10−4 using AB3, resolution
257×101×101, penalization parameter η = 10−3, δfilter = 10−3, ν = 2×10−3

and Re ≈ 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.18 The streamlines colored by streamwise velocity of the swimming fish ob-

tained with the penalized Incompact3d solver, where l = λ = f = 1,
ρb = ρf , (x, y, z) ∈ [0 , 3] × [0 , 1] × [0 , 1], BC (2-1-1) is imposed (see Ta-
ble 6.2), ∆t = 2× 10−4 using AB3, resolution 257× 101× 101, penalization
parameter η = 10−3, δfilter = 10−3, ν = 2× 10−3 and Re ≈ 100. . . . . . . . 162

6.19 The z-mid velocity field of the swimming fish obtained with the penalized
Incompact3d solver, where l = λ = f = 1, ρb = ρf , (x, y, z) ∈ [0 , 3]× [0 , 1]×
[0 , 1], BC (2-1-1) is imposed (see Table 6.2), ∆t = 2 × 10−4 using AB3,
resolution 257× 101× 101, penalization parameter η = 10−3, δfilter = 10−3,
ν = 2× 10−3 and Re ≈ 100. . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.20 The forces (top-left), velocities (top-right) and the trajectories (bottom) of
the swimming fish obtained with the penalized Incompact3d solver, where
l = λ = f = 1, ρb = ρf , (x, y, z) ∈ [0 , 3] × [0 , 1] × [0 , 1], BC (2-1-1) is
imposed (see Table 6.2), ∆t = 2×10−4 using AB3, resolution 257×101×101,
penalization parameter η = 10−3, δfilter = 10−3, ν = 2× 10−3 and Re ≈ 100.
The reference point is the head. . . . . . . . . . . . . . . . . . . . . . . . . 164

8.1 Domaine de la solution et du corps immerge, Ω = Ωf ∪ Ωp. . . . . . . . . . 170
8.2 Une représentation schématique du domaine de la solution pour le solveur

rapide de l’équation de Poisson. Les opérations dans les directions x et y sont
découplées. Dans la direction x des conditions aux limites générales peuvent
être utilisées grâce aux schémas aux différences finies. Dans la direction y
des conditions aux limites d’imperméabilité et de glissement (Dirichlet ho-
mogène, i.e., ψ = ω = 0) sont imposées permettant d’utiliser la transformée
en sinus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.3 Profil du poisson donné par l’équation (8.24) avant déformation. . . . . . . 176
8.4 Modèle de déformation de la colonne vertébrale selon l’équation (8.25) pen-

dant une période avec a0 = 0.02, a1 = −0.08, a2 = 0.16, L = 1 et λ = −1.5. 177



LIST OF FIGURES XVII

8.5 (a) Étapes de constructions du maillage structuré avec les lignes normales
à la colonne vertébrale sur chaque point discret. (b) Maillages lagrangiens
structurés (mobiles et déformables) qui recouvrent le poisson nageant. . . . 178

8.6 (a) Maillage lagrangien structuré couvrant le poisson en déformation et les
vitesses correspondantes de chaque point, colorées suivant l’intensité de la
vitesse (absolue)

√
u2 + v2. (b) Maillage lagrangien structuré composé de

Imb × Jmb = 121× 19 points. . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.7 Organigramme de l’algorithme d’interaction fluide–structure. . . . . . . . . 181
8.8 (a) Fonction proposée par Boyer et al. (2006) [106] pour accroitre pro-

gressivement la courbure de la colonne vertébrale du poisson : Cr(t) =
t′ − sin(2πt′)/(2π), t ∈ [ti, tf ] avec t′ = (t− ti)/(tf − ti), ti = 0 et tf = 1. A
t = 0 et t = 1 les limites à gauche et les limites à droite sont égales pour la
fonction Cr et pour ses dérivées première Cr′ et seconde Cr′′. (b) Fonction
proposée pour estimer la courbure desirée kdes(θ) suivant l’équation (8.38)
avec kmax = π et θlimit = π/4. . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.9 Une représentation schématique de l’angle désiré pour contrôler la courbure
rajoutée koffset (le long de la colonne vertébrale) du poisson afin de le diriger
vers son objectif. Ici θdes = θobjectif − θtete est l’angle entre la direction de
la tête et la ligne reliant la tête à la position de son objectif, (−π < θdes <
π). Image adoptée d’après Bergmann et Iollo (2011) [145] avec quelques
modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.10 Champs de vorticité (a-f) et de pression (g-l) autour du poisson (représenté
par les lignes noires correspondant à χ = 0.2) nageant vers un objectif
prédéfini, situé au point (xf , yf ) = (0.9Lx, 0.5Ly). A t = 0, le poisson et
le fluide environnant sont au repos. La domaine de la solution est (x, y) ∈
[0 , 5lfish] × [0 , 5lfish], la résolution du maillage eulérien est 1024 × 1024, la
résolution du maillage lagrangien est (Imb × Jmb = 251× 39), le paramètre
de pénalisation est η = 5 × 10−4 et la viscosité cinématique est égale à
ν = 1.4× 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.11 Les points selles (entourés des cercles en pointillés verts) et centres (entourés
des cercles solides violets) dans l’écoulement séparé autour du poisson sont
successivement lâchés par le mouvement du corps. Deux tourbillons forment
un dipôle qui génère un jet localisé vers l’arrière dans l’écoulement au cours
de la nage du poisson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.12 Les positions successives du poisson matérialisées par sa colonne vertébrale
au cours de sa nage vers l’objectif prédéfini situé à (xf , yf ) = (0.9Lx, 0.5Ly)
sont représentées pour un intervalle de temps t ∈ [0, 15]. A proximité de
l’objectif (robjectif = 0.5lpoisson) la courbure de la colonne vertébrale du pois-
son, donnée par l’équation (8.37), se ramène à zéro. Les champs de vorticité
et de pression correspondants sont illustrés sur la Figure 8.10. Le poisson
initialement au repos effectue un changement de direction de 180o près du
bord gauche du domaine dans une aire qui correspond à environ 1.3 fois sa
longueur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



LIST OF FIGURES XVIII

D.1 (top) The trigonometric basis functions for a complex FFT of a periodic
function. (center) The trigonometric basis functions for a sine FFT of a
function with homogeneous Dirichlet boundary conditions. (bottom) The
trigonometric basis functions for a cosine FFT of a function with homoge-
neous Neumann boundary conditions. Picture from [56]. . . . . . . . . . . 197



List of Tables

2.1 The considered convergence criteria for the residual ||Res|| of the Poisson
solvers, for the problem (∇2u = f) presented in Fig. 2.12, using different
resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 The number of iterations of the Poisson (∇2u = f) solvers, for the problem
presented in Fig. 2.12, using different resolutions. . . . . . . . . . . . . . . 34

2.3 CPU-times (second / 100 CALL) for different (multigrid, point successive
over relaxation and direct) Poisson solvers, for the problem (∇2u = f)
presented in Fig. 2.14, using different resolutions. The processor is Intel(R)
Core(TM) i5-3230M CPU@2.6 GHz. . . . . . . . . . . . . . . . . . . . . . 38

2.4 Maximum values of modified wavenumbers for the first and second deriva-
tives via central finite difference methods. . . . . . . . . . . . . . . . . . . 41

2.5 Stability limits of some explicit methods via linear analysis [63]. . . . . . . 41

3.1 Boundary conditions for ψ and ω on a rectangular domain Ω ∈ [0, Lx]×[0, Ly]
which is used for the simulation of the flow around circular cylinder. . . . . 55

3.2 Comparison of the parameters/methods used for simulation of the unsteady
flow around circular cylinder at Re = 200. . . . . . . . . . . . . . . . . . . 56

3.3 Comparison of the results obtained from the developed code for simulation
of the unsteady flow around a circular cylinder at Re = 200 with those
of other researchers. Comparison is done for Strouhal number (determined
from the time variation of lift), hydrodynamic coefficients (lift, drag and
moment) and the transition time over the curve of the lift coefficient. . . . 58

6.1 Coefficients of the third-order Runge–Kutta method. . . . . . . . . . . . . 140
6.2 The possible boundary conditions in the Incompact3d code, (ℓ is power of

2, 3, 4, 5 and 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.1 Coefficients of explicit differentiation (α = β = 0) for the first f ′ and the
second derivative f ′′ with Eqs. (A.1) and (A.6). . . . . . . . . . . . . . . . 192

A.2 Coefficients of implicit compact differentiation (via tri-diagonal system of
equations, β = 0) for the first derivative f ′ with Eq. (A.1). . . . . . . . . . 192

A.3 Coefficients of implicit compact differentiation (via tri-diagonal system of
equations, β = 0) for the second derivative f ′′ with Eq. (A.6). . . . . . . . 192

A.4 Coefficients of spectral-like (formally fourth-order) implicit compact differ-
entiation (via five-diagonal system of equations) for the first derivative f ′

with Eq. (A.1) for inner points. . . . . . . . . . . . . . . . . . . . . . . . . 192

XIX



LIST OF TABLES XX

A.5 Coefficients of implicit compact differentiation (which leads to a pentadiag-
onal system of linear equations) for the near boundary points for evaluation
of the first derivative f ′ via Eq. (A.11). Optimised by Kim [111] to keep
the fourth-order accuracy near the boundaries. . . . . . . . . . . . . . . . . 193



Chapter 1

Introduction

Moriaty: How are you at Mathematics?
Seegoon: I speak it like a native.

Spike Milligan (The Goon Show)

During the last decades, great advances have been achieved in numerical simulation of
fluid flows. New mathematical ideas, algorithms, models, mesh generation techniques, lin-
ear system solvers, parallel processing, etc. has been developed rapidly. At the same time
revolution in hardware capacities, helped the researchers to go far from the imagination
of the CFD pioneers in terms of computation power and storage capacity. Therefore, flow
solvers have become versatile, robust and accurate thanks to the large amount of research
projects. Nowdays, the maturity of numerical algorithms makes possible the integration
and coupling of new physical phenomena to deal with more realistic problems such as: high
Reynolds turbulent flows, multi-phase flows, etc. Simulation of fluid–structure interaction
is one of these interdisciplinary fields of interest as is explained by Leroyer and Visonneau
[100] (2005). The quantification and simulation of the flow around biological swimmers is
another challenge in fluid mechanics (Sotiropoulos and Yang [167], 2014). At the same time
bio-inspired design of swimming robots are in growth (El Rafei et al. [120], 2008). The
costs of experimental studies (Belkhiri [158], 2013) lead the researchers to develop efficient
predictive numerical algorithms for hydrodynamic analyses of fish swimming. Difficulties
of numerical simulations of fish-like swimming are due to different reasons. One problem
is efficient quantification of the kinematics of different species (more than 32,000) which
seems to be far from the simple laws proposed in different studies. Efficient simulation of
incompressible flows is also an important problem, where the efficiency of the elliptic solver
is crucial. The third bottleneck in numerical simulations of swimming is the coupling of the
fluid solver with deformable, moving and rotating bodies. Fishes swim by exerting force
and torque against the surrounding water. This is normally done by the fish contracting
muscles on either side of its body in order to generate moving waves from head to tail.
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These waves generally are getting larger as they go toward the tail (Wikipedia contributers
[166], 2014). The resultant force exerted on the water by such motion generates a force
(even oscillatory) which pushes the fish forward. Most fishes generate thrust moving their
body and fins. In general these movements can be divided into undulatory and oscillatory
motions. Mechanisms of locomotion using body and fins are divided into groups that differ
in the fraction of their body that is displaced laterally (Breder [6], 1926). Anguilliform
swimmers are long and slender, in which there is little increase in the amplitude of the flex-
ion wave as it passes along the body. In carangiform swimmers, there is a more remarkable
increase in wave amplitude along the body with the vast majority of the work being done
by the rear half of the fish. In thunniform fishes almost all of the lateral movement takes
place at the tail. Ostraciiform fishes have no appreciable body wave when they employ
caudal locomotion, only the tail fin itself oscillates rapidly to create thrust. However there
are other minorities (Wikipedia contributers [166], 2014). The tail beat creates a reversed
Kármán street of vortices and generates thrust, leaving thus a momentumless wake back.
By varying the frequency and amplitude of the oscillation a variety of wakes, like classical
Kármán, two pairs (2P) (Van Rees et al. [160], 2013), two pairs plus two single (2P+2S),
etc. can be observed (Williamson and Roshko [65], 1988; Schnipper et al. [128], 2009).

Anguilliform fishes add a constant curvature to their backbone for turning, i.e., they use
their body like a rudder for torque generation. Yeo et al. [134] (2010) studied numerically
the straight swimming/cruising and sharp turning manoeuvres in two-dimensions. They
have shown that a carangiform-like swimmer execute a sharp turn through an angle of
70o from straight coasting within a space of about one body length. Gazzola et al. [155]
(2012) investigated the C-start escape patterns of a larval fish by using a remeshed vortex
particle approach and the volume penalization method. To maximize the escape distance,
the deformation of the fish based on the mid-line curvature values, is optimized via an
evolutionary strategy, developed by Hansen et al. [90] (2003). Bergmann and Iollo [145]
(2011) performed numerical simulations of fish rotation and swimming toward a prescribed
goal. They considered the average profile of the fish backbone aligns over a circle with an
estimated radius to perform a rotation. The radius of the circle tends to infinity (r → ∞)
in a forward gait. The considered fish by Bergmann and Iollo [145] (2011) is constructed
by a complex valued mapping like the Kutta–Joukowski transform superposed to the fish
backbone with prescribed undulatory motion. Here we will present a simple law for rotation
control of an anguilliform fish. Our rotation control law (Bontoux et al. [168], 2014) is
similar to that presented by Yeo et al. [134] (2010), and Bergmann and Iollo [145] (2011),
in which the feedback is based on the angle between the line-of-sight and the direction
of surge. But instead of adding a radius to the backbone, we envisage to use curvature
which seems to be more efficient. We use the method proposed by Boyer et al. [106] (2006)
which is based on quaternions for efficient description of the fish backbone kinematics. We
apply the rotation control to two-dimensional swimming. Even if due to the shape and
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deformation style of the fish-like swimmers the surrounding flow is fully three dimensional,
most of the fundamental features of swimming are included in two-dimensional analyses.

For simulation of incompressible flows the Navier–Stokes equations can be reformulated
in vorticity-velocity (Gazzola et al. [144], 2011) or vorticity stream-function (Spotz and
Carey [61], 1995) formulations. For two-dimensional problems the vorticity formulation is
reduced to a scalar valued evolution equation. Hence only the vorticity transport equation
has to be advanced in time. The choice of finite differences in the present investigation
is related to the use of an immersed boundary method where a Cartesian grid can be
used. Therefore the use of finite differences is efficient and straightforward. Among finite
difference methods high-order compact discretizations, (Hirsh [33], 1975; Lele [55], 1992),
are more advantageous in terms of accuracy and reasonable cost. We refer to Abide and
Viazzo [97] (2005) and Boersma [146] (2011) for high-order compact discretizations of the
incompressible Navier–Stokes equations in primitive variables and to Bontoux et al. [35]
(1978), Roux et al. [36] (1980), and Spotz and Carey [61] (1995) for compact high-order
solutions of the vorticity and stream-function formulation. Solving the incompressible
Navier–Stokes equations typically implies an elliptic Poisson equation which is the most
time consuming part of the algorithm. Direct methods like diagonalization or FFT based
solvers can be used. Iterative methods, namely, point successive over relaxation (PSOR)
with read-black sweeper, multigrid or Krylov subspace solvers are other alternatives. Using
high-order discretizations iterative methods are less attractive because the resulted matrices
are less sparse, thus the rates of convergence are slow. However iterative methods can cover
all types of boundary conditions, we refer to Spotz and Carey [61] (1995) for a fourth-order
compact discretization of the Poisson equation. On the other hand, in direct methods
the memory limitation is restrictive for simulations on a fine grid. Therefore decoupling
of the directions by FFT based methods can be advantageous, even if it implies some
limitations in the boundary conditions. We propose a direct fourth-order solver for the
Poisson equation which is a combination of a compact finite difference with a sine FFT
in alternative directions. The main advantages of our method are fourth-order accuracy,
efficiency, the possibility to parallelize and convergence down to zero machine precision over
an optimal grid. Other advantages and limitations of the proposed solver are discussed in
the Chapter 2.

A difficulty in numerical simulations of fish swimming is the analysis of fluid/solid
interaction, which can be handled by strong or loose coupling in accordance with implicit
or explicit time advancement, we refer to Sotiropoulos and Yang [167] (2014) for a detailed
discussion. We use the volume penalization method, known also as Darcy-Brinkmann
penalization (Brinkmann [9], 1947), proposed by Arquis and Caltagirone [40] (1984), Angot
et al. [73] (1999) and Khadra et al. [75] (2000). This method belongs to the diffuse-interface
immersed boundary methods (IBMs). It consists of modeling the immersed body as a
porous medium, thus getting rid of the Dirichlet boundary conditions by considering both
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the fluid and the body as one domain with different permeabilities. So one can consider
a rectangular solution domain in which the body is immersed and can even move. The
penalization method leads to between first and second order accuracy near the body and is
an efficient method in dealing with deformable, moving and rotating bodies immersed in a
fluid. A development to deal with rigid bodies colliding with each other in incompressible
flows is performed by Coquerelle and Cottet [123] (2008). An extension to include elasticity
of the solid interacting with fluid via the volume penalization method is done by Engels et
al. [159] (2013). We refer to the review of Mittal and Iaccarino [99] (2005) for a complete
classification and description of immersed boundary methods. One advantage of this class
of penalization schemes for fluid–structure interaction problems is that it enables the use of
time and space adaptivity via multiresolution analysis, as recently demonstrated by Gazzola
et al. [162] (2014) and Ghaffari et al. (2014). An extension of the two-dimensional solver
to be space adaptive, based on multiresolution analysis, including the penalization term,
is done in Chapter 5. In the introduction of Chapter 5 the state of the art and remaining
open problems of multiresolution analysis for incompressible flows is discussed.

In this thesis, we focus on some numerical aspects of efficient turning laws for an-
guilliform swimmers, a topic which is less studied so far. To this end the geometrically
exact theory of nonlinear beams based on quaternions (developed by Boyer et al. [106],
2006) is adapted to the backbone kinematics description. Starting by the code developed
by Sabetghadam et al. [127] (2009) we apply compact finite differences to the vortic-
ity stream-function formulation of the Navier–Stokes equations including the penalization
term. An efficient direct method is presented for solving the Poisson equation. Then dif-
ferent numerical aspects of the algorithm like accuracy in space and the error introduced
by the penalization method are examined. In Chapter 6 an extension to perform a three
dimensional simulation of swimming fish is presented. The Incompact3d open access code
developed by Laizet and Lamballais [129] (2009) is used. The code is modified to be able
to take into account the deformable bodies interaction with incompressible flows via the
implicit volume penalization method. The report is organized as follows; First in Chapter
2 our methodology including the governing equations, discretization and the algorithm for
fluid interaction with solid bodies in two-dimensions is presented. Next validation of the
algorithm is carried out via different test cases and different errors are studied in Chapter 3.
Then the algorithm for fluid interaction with forced deformable bodies in two-dimensions
and kinematics of an anguilliform swimmer is presented in Chapter 4. After validation of
the proposed algorithm, the results for swimming and rotation control are reported. An
extension to perform a multiresolution analysis of swimming fish is done in Chapter 5, by
applying the Harten’s point value data representation to the developed finite difference
solver. Further extension to three-dimensional simulation of a swimming fish is done in
Chapter 6. Finally, the results are discussed and some guides for future works are addressed
in Chapter 7. The extended summary of thesis in French is given in Chapter 8.



Chapter 2

An algorithm for fluid–structure
interaction in two dimensions

“Numerical simulation is half-way between theory
and experiment without replacing either, since the-
ory, simulation and experiment are all interrelated.”

Marie Farge [118] (2007)
The third way to study nature

This Chapter presents some fundamental concepts of discretization of the incompress-
ible Navier–Stokes equations in the presence of complex geometries, which will be used in
the present investigation. First the governing equations of incompressible flows, i.e., the
Navier–Stokes equations are recalled and then reformulated in vorticity and stream-function
form. Then the boundary conditions are reviewed in summary and the volume penaliza-
tion method is presented for simulation of flow around complex geometries. The volume
penalization method provide the hydrodynamic forces and torques in an straightforward
manner, however to cope with the fluid–structure interaction (FSI) problems denoising of
the hydrodynamic coefficients is used. By using an immersed boundary method a Carte-
sian grid can be used, therefore a high order finite-difference discretization is motivated.
Compact methods provide a general frame for construction of different implicit and explicit
formula for high-order differentiation, filtering and interpolation. Then finite-difference
discretizations in the compact form with different accuracies are examined on uniform and
stretched grids. The Poisson equation, which has an elliptic nature, is regularly encoun-
tered in the simulations of incompressible flows to insure the mass conservation. Therefore
the accuracy and efficiency of the elliptic solver has crucial importance in the performance
of the algorithm. To this end a new direct fourth-order solver for the Poisson equation
is proposed to ensure the incompressibility constraint down to machine zero on an opti-
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2.1. VORTICITY-STREAM FUNCTION FORMULATION 6

mal grid. Moreover a review to explicit time integration methods is done and finally an
algorithm for numerical simulation of fluid–structure interaction is proposed.

2.1 Vorticity-stream function formulation
The governing equations of incompressible flows are the Navier–Stokes equations (2.1) -
(2.2). Using primitive variables, the momentum equation reads

∂u

∂t
+ (u · ∇)u = − 1

ρf
∇p+ ν∇2u+ F (2.1)

and the (mass conservation) continuity equation corresponds to a divergence-free velocity
field,

∇ · u = 0 , x ∈ Ω ∈ R2 (2.2)

where Ω is the spatial domain of interest, given as an open subset of R2, which can be
bounded or unbounded in general, u(x, t) is the velocity field, p(x, t) is the pressure, ν =

µ/ρf > 0 is the kinematic viscosity of the fluid, ρf is the density of the fluid and F(x, t) is a
source term. The Navier–Stokes equations are written for unit mass of the fluid, therefore
the dimension of the terms are like acceleration, i.e., [LT−2]. For a complete description
of a particular problem, the above equations need to be complemented to describe an
initial/boundary value problem (IBVP). Hence by specifying an initial condition for the
velocity field

u(x, t0) = u0(x) with ∇ · u0 = 0

which we assume to be in C∞ and divergence free in all of Ω, and by giving boundary
conditions for velocity

u(x, t) = uBC(x, t) , x ∈ ∂Ω

one will seek the solution during time evolution. Following McDonough [114] to guarantee
existence of a solution to a given problem it is required that the boundary conditions satisfy
a consistency or compatibility condition of the form∫

∂Ω

uBC · n dA = 0

which express the global mass conservation and n is an outward pointing vector normal
to the boundary ∂Ω. The consistency condition is obvious for the case of uBC = 0 which
represents the no-slip and no-penetration (solid wall) boundary condition. The pressure
is well defined and unique up to an additive constant. Although, in general, the pressure
is time dependent only its gradient appears in the Navier–Stokes equations (2.1). Thus,
in the procedure of solution pressure does not need an initial condition. By considering
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a homogeneous Neumann boundary conditions for the pressure at inflow, free-sleep and
no-slip walls

∂p

∂n
= 0 on ∂Ω (2.3)

the Navier–Stokes equations are completed [103]. At the outflow the value of p∞ can be
fixed while the velocity components can be extrapolated. Nevertheless at the inflow the
velocity components are fixed and the pressure can be extrapolated using Eq. (2.3). With
the use of homogeneous Neumann boundary conditions at all boundaries, the value of the
pressure at one point in the solution domain must be fixed, to guarantee the existence and
convergence of the solution. By choosing respectively L, ρf and U∞ as reference length,
density and velocity for a given problem

x̃ =
x

L
, ũ =

u

U∞
, t̃ =

t

L/U∞
, p̃ =

p

ρfU2
∞
, F̃ =

F

U2
∞/L

the Navier–Stokes equations can be written in non-dimensional form in which Re = U∞L/ν

is the Reynolds number

∂ũ

∂t̃
+ (ũ · ∇̃)ũ = −∇̃p̃+ 1

Re
∇̃2ũ+ F̃ (2.4)

However, in two-dimensional problems the vorticity and stream-function formulation has
the advantage that it not only eliminates the pressure variable entirely, but also ensures
a divergence free velocity field (mass conservation), if Eq. (2.6) is properly satisfied. One
encounters two scalar quantities, i.e., ψ and ω, instead of the velocity vector and the
pressure field, thus it makes the computations more efficient. We retain this formulation
in the following, but the presented concepts are applicable also to the primitive variable
formulation. By taking the curl of the momentum Eq. (2.1), after elimination of the vortex
stretching term due to the two-dimensional assumption and elimination of the baroclinic
term due to the constant density, one obtains the vorticity transport equation

∂tω + (u · ∇)ω = ν∇2ω +∇× F , x ∈ Ω ∈ R2 (2.5)

for two-dimensional flows, where ω(x, t) = ∇ × u = vx − uy denotes the vorticity. The
vorticity transport equation (2.5) is a parabolic equation and the velocity components are
determined from u = −∇⊥ψ, i.e., (u, v) = (∂yψ,−∂xψ) with ψ being the stream function,
satisfying

−∇2ψ = ω (2.6)
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which is an elliptic1 equation for ψ. By considering proper boundary conditions Eq. (2.6)
may be solved numerically via FFT-based direct methods, iterative methods like successive
over relaxation or multigrid methods. The efficiency of the method used to solve the
elliptic part of the problem is crucial for the accuracy and efficiency of the whole algorithm.
Advantages and limitations of different elliptic solvers will be discussed later. With the use
of auxiliary relations for the velocity components it is possible to eliminate the velocity
vector from Eq. (2.5), to obtain:

∂ω

∂t
= −∂ψ

∂y

∂ω

∂x
+
∂ψ

∂x

∂ω

∂y
+ ν

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+

(
∂Fy

∂x
− ∂Fx

∂y

)
(2.7)

An equation for pressure can be derived by applying the divergence operator to momentum
equation and making use of the continuity,

∇ · (∇p) = −ρf∇ ·
[
(u · ∇)u

]
+ ρf∇ · F (2.8)

Without the forcing term in two-dimensions, we thus have

∇2p = 2ρf (uxvy − uyvx) (2.9)

the right hand side of Eq. (2.9) can also be deduced from the stream-function, i.e., we have
∇2p = 2ρ(ψxxψyy − ψ2

xy). Proper boundary conditions for pressure must be considered.

Boundary conditions

The boundary conditions for a curved boundary (s) moving tangentially to its surface with
a constant velocity Utan can be written in terms of the stream-function ψ, at each boundary
section Γi. The no-penetration boundary condition is equivalent to

∂ψ

∂τ̂

∣∣∣∣
wall

= n · u(s, t) = 0 (Neumann) ⇔ ψ|wall = Ci (Dirichlet) (2.10)

the free-slip boundary condition on the surface can be imposed easily by

ω = 0 (Dirichlet)

and the no-slip boundary condition reads,

∂ψ

∂n

∣∣∣∣
wall

= −τ̂ · u(s, t) = ±Utan (Neumann) (2.11)

1Perturbations will spread in all directions with the speed of sound which approaches to infinity in the
incompressible limit.
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where Ci is a constant for each Γi, (s) is the representing curve of the surface, τ̂ is the
direction tangent to the wall and n is the direction normal to the wall. For a wall with zero
tangential velocity we have Utan = 0. In a simply-connected domain, C0 can be taken equal
to zero (C0 = 0). As a result of the above formulation for a fixed horizontal/vertical wall
the no-penetration and no-slip boundary conditions are (v = u = 0) or (ψx = ψy = 0). In-
flow/outflow boundary conditions can be defined by ψτ̂ = U∞ , ψn = 0, respectively. In two
dimensional incompressible flows, beside the mentioned advantages of vorticity and stream-
function formulation, one can mention some disadvantages. Yet, the main difficulties in
the numerical implementation of this formulation come from the boundary conditions [84].
The majors among them are as follows:

1. The implementation of the two cited boundary conditions for the stream-function
simultaneously.

2. When the vorticity must be updated in time, there is no definite boundary condition
for vorticity.

3. Determining the constants Ci at each boundary of ‘holes’ Γi if the computational
domain is multi-connected.

However, there are several methods to update the vorticity boundary condition over a solid
boundary moving tangent to its surface with a constant velocity Utan. In the following we
cite some formulas for the vorticity at the wall, which will lead to second and fourth order
accuracy:

Thom’s [8] formula
ωi,0 =

ψi,0 − ψi,1 ± hUtan

0.5h2
+O(h2)

Jensen’s [16], Wilkes (1963), Pearson (1965) and Roache [30] formula

ωi,0 =
7ψi,0 − 8ψi,1 + ψi,2 ± 6hUtan

2h2
+O(h2)

Briley’s [29] formula

ωi,0 =
85ψi,0 − 108ψi,1 + 27ψi,2 − 4ψi,3 ± 66hUtan

18h2
+O(h4)

Other relations were proposed by Woods [11], Orszag and Israeli [32]. It is very important
to know that, the vorticity boundary condition is responsible to enforce no-slip boundary
condition. Although at the boundaries, none of these relations can force the velocity com-
ponents down to machine zero, however the accuracy of the normal to the wall component
of the velocity is two orders of magnitude larger than the tangent component. The subject
of the vorticity boundary condition has a long history, going back to Thom’s formula in



2.1. VORTICITY-STREAM FUNCTION FORMULATION 10

[8]. In a second-order scheme, Thom’s formula, Wilkes formula, or some other local for-
mulas can be selected and coupled with a centered finite difference scheme at the interior
points. The advantage of Thom’s formula lies in its simplicity and stability as only one
interior point of the stream-function is involved. Yet, it was always very confusing why
formulas like Thom’s, which seem hopelessly to be first-order by formal Taylor expansion
on the boundary, are actually second-order accurate. This mystery can be explained by
Strang-type high order expansions [57]. A review of vorticity boundary conditions can be
found in [62], [52] and [72]. In Gresho [52] the advantage of integral approach for boundary
conditions over differential approach is demonstrated.

2.1.1 Volume penalization method
For the simulation of flow in the presence of curved solid boundaries which do usually not
coincide with grid points, one can use the volume penalization method which is proposed by
Arquis and Caltagirone [40] and Angot et al. [73], [75]. It is based on the idea of modeling
solid bodies as porous media, thus getting rid of the Dirichlet boundary conditions by
considering both the fluid and the solid part as one domain with different permeabilities,
so one has a domain in which the solid is embedded. This method will lead to between
first and second order accuracy near the solid boundaries, that will be demonstrated for
the Taylor–Couette flow in Section 3.2. In the Navier–Stokes equations (2.1) in primitive
variables or the vorticity transport equation (2.5), the penalization term can be added as a
forcing term (or damping term) and thus, it is possible to introduce a solid body into the
flow field. The penalization term for unit mass of the fluid reads,

F = −η−1χ(u− uB) (2.12)

where uB(x, t) is the velocity vector of the immersed body which will be zero for fixed
bodies. The penalization parameter η is the permeability coefficient of the immersed body
with dimension [T ]. For an explicit time integration of the governing equations ∆t must be
smaller than η to ensure the stability of time integration. Typically values of permeability
ranging from η = 10−4 up to 10−2. The mask (characteristic) function χ is dimensionless
and describes the geometry of the immersed body, see Fig. 2.1

χ(x, t) =

{
1 x ∈ Ωp

0 x ∈ Ωf

(2.13)

where Ωf represents the domain of the flow and Ωp represents the immersed body in the
solution domain. The solution domain is governed by the Navier–Stokes equations in the
fluid regions and by the Darcy–Brinkmann law in the penalized regions, in the limit when
η → 0. The volume penalization method is also subjected to a stiffness problem associated
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Figure 2.1: Domain of the solution and the immersed body, Ω = Ωf ∪ Ωp.

with large variation in the values of η−1χ [99]. Therefore for stabilizing the numerical
solution and also for accuracy enhancement, filtering of the mask function χ has been
proposed by researchers. Following Forestier [79] and Minguez [122] the mask function is
mollified by the Shuman [15] filter

χ̄i,j = (2χi,j + χi+1,j + χi−1,j + χi,j+1 + χi,j−1)/6 (2.14)

which is equivalent to a raised cosine filter in Fourier space, we refer to Pasquetti et al.
[121] for more details. The following definition, which is proposed by Gazzola et al. [144]
for the mask function χ, is an alternative, where the mollification of the mask function is
included in the definition

χ(x, t) =


0 d < −ϵ
0.5(1 + d/ϵ+ 1

π
sin(πd/ϵ)) |d| ≤ ϵ

1 d > ϵ

where d is the signed distance from the surface of the body (negative outside, positive
inside) and ϵ is the mollification length. As a general rule, for moderate Reynolds num-
bers (Re < 10000), ϵ should be a small fraction (< 1%) of the characteristic length of the
geometry under study, e.g., ϵ = 2.8h, h being the grid size. Consequently, it defines the
curvature of the finest resolved features of the object [144]. It should also allow the mollified
characteristic function to span 4-5 grid points in order to have a numerically stable and
accurate normal [144] to the immersed boundary.
If unumη denotes the numerical solution of the penalized equations, for quantifying the nu-
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merical error of unumη compared to the solution of the original Navier–Stokes problem uexact,
the error can be estimated by

∥uexact − unumη ∥ ≤ ∥uexact − uη∥︸ ︷︷ ︸
O(

√
η)

+ ∥uη − unumη ∥︸ ︷︷ ︸
O(∆xp)

(2.15)

where ∥.∥ is an appropriate norm. The first term at the right-hand side is the error due
to the penalization term and the second term represents the discretization error (p being
the formal order of accuracy of the numerical method used to discretize the penalized
equation). A compromise between these two errors is to choose ∆x ≈ √

η, which will lead
to a first-order bound for the error

∥uexact − unumη ∥ ≤ O(∆x) (2.16)

As mentioned in Section 2.1 in the vorticity-stream function formulation the curl of the
force term must be added to the right hand side of the Eq. (2.5). This can be written as

∇× F =
∂Fy

∂x
− ∂Fx

∂y
= η−1

( ∂

∂y

(
χ(u− uB)

)
− ∂

∂x

(
χ(v − vB)

))
or

∇× F = η−1
( ∂

∂y

(
χ
∂ψ

∂y

)
+

∂

∂x

(
χ
∂ψ

∂x

)
− ∂

∂y
(χuB) +

∂

∂x
(χvB)

)
For points in which the complete stencil belongs to the fluid domain (χ = 0) we have
∇ × F = 0. While for points in which the complete stencil belongs to the solid domain
(χ = 1) we have ∇× F = −η−1(ω − ωB), i.e., in the time integration, we have

ωn+1 ≈ ωB = 2ΩB + ωdef

where ΩB is the angular velocity of the embedded body and ωdef is the vorticity due to
the deformation of the immersed body. The penalization term is thus responsible for the
vorticity production at the walls where the stencil of discretization belongs to both solid
and fluid domains. The volume penalization term can also be written in the following form:

∇× F = −η−1χ(ω − ωB)︸ ︷︷ ︸
Volumepenalization

+η−1χy(u− uB)− η−1χx(v − vB)︸ ︷︷ ︸
Vorticity production at the surfaces

(2.17)

Theoretically derivatives of the discontinuous mask function (2.13) corresponds to Dirac
delta function (i.e., at a discontinuity χx → ∞ or χy → ∞). However, in numerical evalu-
ations near the discontinuities the derivatives of the the mask function have limited values.
Thus the spatial derivatives of the mask function, i.e., χx and χy can be approximated
numerically or analytically. An analytical relation for the smooth Dirac delta function is



2.1. VORTICITY-STREAM FUNCTION FORMULATION 13

proposed by Lai and Peskin [76]

δ(r) =


1
8
(3− 2|r|+

√
1 + 4|r| − 4r2) |r| ≤ 1

1
8
(5− 2|r| −

√
−7 + 12|r| − 4r2) 1 < |r| ≤ 2

0 |r| > 2

(2.18)

where r = (x−XB)/∆x. Or simply the following relation

δ(r) =

{
1
4
(1 + cos(π|r|/2)) |r| ≤ 2

0 |r| > 2
(2.19)

can be used for estimation of the derivatives of characteristic function. As can be seen in
Fig. 2.2 the derivative of the filtered (smoothed) mask function χ̄x evaluated by classical
fourth-order Padé scheme, coincides exactly with the analytical functions proposed by Lai
and Peskin [76] in the context of forcing term evaluation for a diffused-interface immersed
boundary method. An over prediction in the value of derivative of the smoothed mask
function χ̄x via second-order FDM in comparison to compact fourth-order Padé scheme
can be noticed in Fig. 2.2 (b).
Although there is some criticism to put the volume penalization method in the family of
immersed boundary methods which impose a force at the near boundary nodes. But in
the review paper of Mittal and Iaccarino [99] the sentence: “In this review, we use the
term immersed boundary (IB) method to encompass all such methods that simulate viscous
flows with immersed (or embedded) boundaries on grids that do not confirm to the shape
of these boundaries.” in the introduction of the paper can help to clarify why the volume
penalization method can be classified as IBM. Moreover the volume penalization method,
introduced by Angot et al. [73] and Khadra et al. [75], which also called Brinkmann [9]
penalization, is cited in the review paper of Mittal and Iaccarino [99]. Our argument can
be completed with the following explanation. Even if the force is applied to the entire
immersed body, the main contributions are around the immersed boundaries. Considering
the forcing term in Eq. (2.17) added to the vorticity equation, the vorticity production at
the solid surfaces is evident. Moreover, numerical evaluation of the derivatives of the mask
function χx and χy is resulted in a smooth Dirac δ function, similar to that proposed by Lai
and Peskin [76], see again Fig. 2.2 (b). Finally, we conclude that the volume penalization
method is a diffuse-interface IBM in contrast to what is named sharp-interface IBM in [99].
An equation for the pressure can be derived by applying the divergence operator to the
momentum equation (with ρ =cte) and making use of the continuity,

∇ · (∇p) = −ρf∇ ·
[
(u · ∇)u

]
− ρf

η
∇ ·

[
χ(u− up)

]
(2.20)



2.1. VORTICITY-STREAM FUNCTION FORMULATION 14

r

δ

-2 -1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Peskin
Lai & Peskin

(a) Smooth Dirac δ function

X
3.2 3.25 3.3 3.35

0

20

40

60

80

100

χ x 100
Filtered (Shuman) χ x 100
χx FDM-2
χx Pade
χx Analytical smooth Dirac

(b) Differentiation of the mask function

Figure 2.2: (a) Smooth Dirac δ function (2.18) proposed by Lai and Peskin [76]. (b)
Comparison of the derivatives of the smoothed mask function computed via the second-
order central finite difference method and the fourth-order compact finite difference (Padé)
method with the analytical smoothed Dirac delta function (2.18).

2.1.2 Evaluation of the hydrodynamic coefficients
With the use of the volume penalization method, the hydrodynamic forces and the torques
acting on the body, which are usually evaluated via surface integrals of the stress tensor
σ(u, p) = µ(∇u + (∇u)T ) − p I, can be computed readily by integrating the penalized
velocity over the volume of the body (surface in two-dimensions), thus we have the force
vector expressed in Newton [126]

F⋆ =

∮
∂Ωs

σ · n dl = lim
η→0

ρf
η

∫
Ωs

χ(u− uB) ds+ ρfSpenẌref (2.21)

for unit mass (m = ρfv) of the fluid we have F = F⋆/m

F ≈ 1

ηSpen

∫
Ωs

χ(u− uB) ds+ Ẍref (2.22)

in three-dimensions Spen must be replaced by Vpen which is the volume of the immersed
body. The torque [N.m] in two-dimensions is evaluated by

Mref =

∮
∂Ωs

r× σ · n dl = lim
η→0

ρf
η

∫
Ωs

χ r× (u− uB) ds+
ρf
ρs
Izz θ̈ref (2.23)

where r = (x −Xref )
2 + (y − Yref )

2, Izz =
∫
r2dm is the moment of inertia taken around

the reference point which can be the center of the gravity (cg), n is the outward unit vector
normal to ∂Ωs, θ is the angle of rotation with respect to the reference point, dots denote
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derivation with respect to time and Spen is the surface of the penalized area.
In dealing with fluid/solid interaction problems, the oscillation of the hydrodynamic forces
and moments during successive iterations calculated from Eqs. (2.22) and (2.23) may
cause some trouble in correctly predicting the accelerations. By moving the body the
oscillations of the hydrodynamic coefficients is even more, we refer to Luo et al. [153]
for more discussion. The difficulty comes from the fact that the hydrodynamic forces and
torques acting on the body are used in the calculation of the linear and angular accelerations
which in turn has an impact on the predicted velocity and trajectory of the solid. The
oscillations are due to the nature of the penalization method, insufficient resolution, the
approximative nature of Eqs. (2.22) and (2.23). The oscillations are like a noise and lead
to invalid results and may even to the divergence of the simulations. An efficient method
to eliminate them is to apply a low-pass filter, like exponential smoothing, usually used in
denoising of data from time series

F̂ n = αF n + (1− α)F̂ n−1 , α ∈ [0, 1] , n = 2, 3, . . . (2.24)

where F̂ 1 = F 1. The filter was first suggested by Brown in 1956 [13]. Then it is used by
Kern et al. [105] to denoise the hydrodynamic forces and torques with α = 0.2. Simple
exponential smoothing is not efficient when there is a trend in the data. In such situations,
several methods were devised like second-order (double) exponential smoothing

F̂ n = αF n + (1− α)(F̂ n−1 + bn−1) , n = 3, 4, . . . (2.25)

bn = β(F̂ n − F̂ n−1) + (1− β)bn−1 , (α, β) ∈ [0, 1] (2.26)

where F̂ 1 = F 1, for n = 2 one can use Eqs (2.25) and (2.26) with α = β = 1. Then
α = 1 − (1 − δ)2 and β = δ2/α can be used in which δ is a small band. According to
our experiments, we propose δ ∈ [10−2, 10−4] for denoising of the hydrodynamic forces and
torques. However, smaller values, e.g., δ = 5 × 10−4, have a strong damping effect, larger
values, e.g., δ = 5× 10−3, have less damping effect but there is a risk of divergence in the
simulations. A sensitivity analysis must be done for each test case, see also the discussion
of the results in Section 3.4.2 and Section 4.3.

2.1.3 Body dynamics
The dynamics of an arbitrary solid or deformable body moving in a viscous incompressible
fluid is governed by Newton’s second law

Σ(FH + FG) = mẌref (2.27)
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where the applied forces have been decomposed into two components; the hydrodynamic
forces FH and the forces due to gravity FG = Vb(ρb−ρf )g. Newton’s law can be integrated
directly to give the position of the reference point (which can be the center of mass) as a
function of time. Holding F constant over the discrete physical time step (∆t) gives

∆Xref =
1

2

Fn

m
∆t2 +Vn∆t (2.28)

and V n+1 = V n + Ẍ∆t. The rotational motion is described by Euler’s equation

ΣM =
d

dt
(Izz θ̇) (2.29)

where M is the applied torque around the reference point and Izz = Jz is the moment of
inertia around the reference point which is equivalent to polar moment of inertia around
the axis passing through the reference point Jz = Ix + Iy. Time integration of Eq. (2.29)
regardless of changes in moment of inertia (Izz = cte) and M , yields the new angle of the
body with respect to a given reference

∆θ =
1

2
θ̈n∆t2 + θ̇n∆t (2.30)

where θ̈ = M/Izz and θ̇n+1 = θ̇n + θ̈∆t (the dotes represent derivation with respect to
time). Eqs (2.28) and (2.30) describing a motion with three degrees of freedom (3DOF)
for the considered body. In these equations second-order terms can be eliminated as done
by Gazzola et al. [144] but we retain these terms. Eqs. (2.22) and (2.23) provide the
fluid forces and torques necessary to integrate the system of ODEs formed by Eqs. (2.27)
and (2.29). Denoising of hydrodynamic coefficients is done by Eq. (2.25). Appropriate
initial conditions are necessary. In the present computations, we use a first-order scheme
for time integration of the dynamic equations which seems to be sufficient because of the
errors introduced by the penalization method which is also near first-order. The same time
integration method is used by Kolomenskiy and Schneider [126] and Gazzola et al. [144]
for the dynamics of the body where the penalization is also used.

2.2 Compact methods
In this section, the evaluation of spatial derivatives (discretization) on uniform and non-
uniform grids, filtering and interpolation via compact methods [55] are presented and the
introduced errors are evaluated via analytical expressions or numerical tests. Classical finite
differences are based on Lagrange interpolation. Therefore high-order approximations lead
to large stencils. In compact finite differences Hermit interpolation is used to keep high
accuracy and compact stencil.
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2.2.1 Spatial discretization on uniform grids
Given the values of a function f on a uniformly spaced mesh xi = (i− 1)h, (i = 1, . . . , N)
where h = Lx/(N − 1), the derivatives of the function can be evaluated with different
order of accuracy using the relations introduced by Lele [55]. Different explicit or implicit
schemes for the approximation of the first derivative can be constructed from the following
general relation

βf ′
i−2 + αf ′

i−1 + f ′
i + αf ′

i+1 + βf ′
i+2 = a

fi+1 − fi−1

2h
+ b

fi+2 − fi−2

4h
+ c

fi+3 − fi−3

6h
(2.31)

a similar relation for approximation of the second derivative is

βf ′′
i−2 + αf ′′

i−1 + f ′′
i + αf ′′

i+1 + βf ′′
i+2 =

a
fi+1 − 2fi + fi−1

h2
+ b

fi+2 − 2fi + fi−2

4h2
+ c

fi+3 − 2fi + fi−3

9h2
(2.32)

We refer to Appendix A for the coefficients of some prevalent methods with different orders
of accuracy and their near boundary treatments. Choosing α = β = 0 in Eqs. (2.31)
and (2.32) result in point-wise explicit methods. If β ̸= 0 and α ̸= 0 a linear system of
equations with pentadiagonal coefficient matrix is obtained. With β = 0 a linear system of
equations like (2.33) with tridiagonal coefficient matrix can be constructed. Linear system
of equations with tri or penta diagonal coefficient matrix can be solved efficiently by direct
lower-upper decomposition methods, like the Thomas algorithm (see Appendix F).

1 β 0 · · · · · · 0 0 0 0

γ 1 γ 0 · · · · · · 0 0 0

0 α 1 α 0 · · · · · · 0 0
... 0 α 1 α 0 · · · · · · 0
... . . . . . . . . . . . . . . . . . . . . . ...
0 · · · · · · 0 α 1 α 0

...
0 0 · · · · · · 0 α 1 α 0

0 0 0 · · · · · · 0 γ 1 γ

0 0 0 0 · · · · · · 0 β 1





f ′
1

f ′
2

f ′
3
...
...
...

f ′
N−2

f ′
N−1

f ′
N



=



RHS1

RHS2

RHS3

...

...

...
RHSN−2

RHSN−1

RHSN



(2.33)

Compact methods can also be cast in general matrix forms:

[P ]f ′ = R , [Q]f ′′ = V (2.34)

where [P ] and [Q] represent N×N diagonal matrices. Two direct solvers for tridiagonal and
pentadiagonal linear systems of equations are described in Appendix F. As an alternative
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[P ] and [Q] can be inverted and stored once in a preprocessing step. In that case we have

f ′ = [P ]−1R , f ′′ = [Q]−1V (2.35)

where [P ]−1 and [Q]−1 are full matrices and no more diagonal (band limited). In the later
case the matrix multiplication can be vectorized over vector processors.

2.2.2 Spatial discretization on non-uniform grids
On non-uniform grids the derivatives can be evaluated with the use of the chain rule and
mapping relations. For first derivatives we have

∂

∂x
= ξx

∂

∂ξ
,

∂

∂y
= ηy

∂

∂η

and for second derivatives
∂2

∂x2
= ξ2x

∂2

∂ξ2
+ ξxx

∂

∂ξ
(2.36)

∂2

∂y2
= η2y

∂2

∂η2
+ ηyy

∂

∂η
(2.37)

where ξx, ξxx, ηx and ηyy are the metrics of the transformation. For a uniform grid with
∆x = ∆ξ and ∆y = ∆η we have; ξx = ηy = 1 and ξxx = ηyy = 0. The distribution of grid
points with stretching near boundaries, x ∈ [0, Lx], is given by the following relation, see
Fig. 2.3 (a),

x(ξ) =
Lx

2

{
1− tanh[γ(β − ξ)]

tanh(γβ)

}
(2.38)

where Lx is the size of the domain in the x-direction and ξ represents the coordinate of the
points which are uniformly distributed in the computational domain, ξ ∈ [0, (Imax−1)∆ξ]

and β is the position of the inflection point. Therefore by choosing β = ξmax/2 a symmetric
grid will be obtained, where ξmax is the length of the computational domain. The slope
of the function at the inflection point, and thus the rate of stretching is determined by γ.
Typically γ can be chosen equal to γ = 4. A very small number leads to a uniform grid.
The metrics are given analytically

ξx =
1

xξ
=

tanh(γβ)

γLx/2

{
cosh[γ(β − ξ)]

}2

by using Eq. (2.36)

∂2x

∂x2
= ξ2x

∂2x

∂ξ2
+ ξxx

∂x

∂ξ
⇒ ξxx = −ξ2x

xξξ
xξ

= −ξ3xxξξ
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Figure 2.3: One-dimensional stretched grid, x ∈ [0, Lx], with clustering near boundaries
via Eq. (2.38), with N = 41, Lx = 4, γx = 4 and ∆ξ = 1.

ξxx = −2γ

[
tanh(γβ)

γLx/2

]2
cosh3[γ(β − ξ)]sinh[γ(β − ξ)]

See Fig. 2.3 for a stretched grid and the corresponding metrics. For two given functions a
truncation error analyses of the first and second derivatives using fourth-order differentia-
tion on uniform and clustered grids are plotted in Fig. 2.4.

2.2.3 Analysis of differentiation errors
To assess the introduced errors in the procedure of differentiation, a function f(x) =

sinx, x ∈ [0, 2π], on a uniform grid is considered. The results of the truncation error
analysis (in physical space) for the first and second derivatives via different explicit and
compact methods on uniform grids are plotted in Fig. 2.5. In comparison to high-order
differencing schemes, low-order schemes with larger numerical error would require higher
resolution to achieve the same degree of accuracy. In computational fluid dynamics spa-
tial discretization errors have two primary (coupled) components: differentiation error and
aliasing error associated with the nonlinear terms. Fourier analysis, and the concept of the
modified wavenumber is useful in quantifying the differentiation error in dealing with high
wavenumber oscillations. Error analyses in physical space do not have the possibility to
show the ability of the differentiation method to deal with high wavenumber oscillations,
which usually are present in the pressure field associated with acoustic waves or the velocity
field affected by turbulence. The ability of the differentiation method to deal with high
wavenumber oscillations, i.e., the scaled modes between w ∈ [π/2, π], is affected by the
accuracy of the numerical method which can be analyzed in Fourier space (via wavenum-
bers) over all of the possible modes w ∈ [0, π]. The results of error analyses by Fourier
modes are rather independent of the formal order of accuracy of the method obtained via
Taylor expansion. As shown in the following a formal fourth-order method proposed by
Kim [111] can perform better than a formal eight-order method (via Taylor expansion) in
dealing with high wavenumber oscillations.
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Figure 2.4: Truncation error analysis for first (c-d) and second (e-f) derivatives via a
fourth-order compact method for f(x) = sinx, x ∈ [0, 2π], on a uniform grid (a), and
g(x) = (x− 0.5)4, x ∈ [0, 1], on a clustered grid near boundaries (b) with Eq. (2.38), where
γ = 4 and β = ξmax/2.
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Figure 2.5: Truncation error analysis for first (a) and second (b) derivatives via different
explicit and compact methods for f(x) = sinx, x ∈ [0, 2π], on a uniform grid.

Consider a single Fourier mode, namely f(x) = eikx on a domain x ∈ [0, 2π] and a uniform
mesh of N points with spacing∆x = 2π/N for discretization. The analytical first derivative
of f at the jth node is f ′(xj)exact = ikeikxj . The numerically computed derivative has a form
like f ′(xj)FD = ik′eikxj , where k′ is called the modified wavenumber for the first derivative
which is a function of k and ∆x. The difference between k′ and k provides the differenti-
ation error as a function of the resolution of the wave [66]. It is convenient to introduce
a scaled wavenumber w = k∆x, where w ∈ [0, π]. Using the complex Fourier transform
(cf. Appendix D) the exact first derivative of f in the Fourier space is f̂ ′

k|exact = iwf̂k. By
applying different central finite difference schemes, it may be shown that f̂ ′

k|FD = iw′f̂k,
where the scaled modified wavenumber w′ = k′∆x is real-valued and the nature of error
is purely dispersive, i.e., central differencing schemes have no numerical diffusion (dissipa-
tion=0) for the first derivative. Spectral methods provide w′ = w for w ∈ [0, π[. For other
methods, we have

w′(w) =
−if̂ ′

k|FD
f̂k|exact

, k = 0, 1, 2, · · · , N/2

Taking the Fourier transform (cf. Appendix D) of Eq. (2.31) and through the use of Euler’s
formula (eix = cos x+ i sinx) the following equation can be derived for the scaled modified
wavenumber of the first derivative:

w′(w) =
(a) sin(w) + (b/2) sin(2w) + (c/3) sin(3w)

1 + 2α cos(w) + 2β cos(2w)
(2.39)

For the second-order central explicit finite-difference one obtains w′ = k′∆x = sin(k∆x).
Fig. 2.6 shows the modified wavenumbers obtained by applying different central explicit
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and implicit compact finite difference methods with N = 210 and N = 26 grid points.
As can be seen, an insufficient number of grid points affects the ability of the method in
dealing with high wavenumber oscillations. The corresponding resolution error for the first
derivative

ϵ(w) =
∣∣∣w′(w)− w

w

∣∣∣
is plotted in Fig. 2.7 for two pentadiagonal implicit compact methods. The error analysis
for the second derivative is similar to that of the first derivative. The exact second derivative
of the considered function generates a function with Fourier coefficients f̂ ′′

k |exact = −w2f̂k.
The numerical approximations via (2.32) correspond to f̂ ′′

k |FD = −w′′f̂k, where

w′′(w) =
(2a)

(
1− cos(w)

)
+ (b/2)

(
1− cos(2w)

)
+ (2c/9)

(
1− cos(3w)

)
1 + 2α cos(w) + 2β cos(2w)

(2.40)

is real-valued and the nature of the error is purely dissipative. The coefficients of different
methods are given in Tables A.1 - A.5 (Appendix A). For the second-order central explicit
finite-difference one obtains w′′ = 2(1 − cosw). The difference between w′′(w) and w2 is
a measure of error in the second derivative approximation. Plots of w′′(w) versus scaled
wavenumber for two explicit (second and fourth order) and two compact (tridiagonal fourth
and sixth order) methods are presented in Fig. 2.8, with N = 210 and N = 26 grid
points. A comparison of numerical estimation and analytical values given by Eq. (2.40)
shows a good agreement between analytical and numerical estimations of scaled modified
wavenumber. In addition to insufficient resolution, the forward/backward stencil used in
high-order compact methods can also create some discrepancies between numerical and
analytical analyses which are based on Fourier analysis and periodic boundary conditions.
The corresponding resolution errors for the second derivative

ϵ(w) =
∣∣∣w′′(w)− w2

w2

∣∣∣
are plotted in Fig. 2.9.

2.2.4 Interpolation and filtering
Given the values of a function f on a uniformly spaced mesh xi = (i− 1)h, (i = 1, . . . , N)
where h = Lx/(N − 1), interpolation can be performed with an approximation of the form
[55]

βf̂i−2 + αf̂i−1 + f̂i + αf̂i+1 + βf̂i+2 = a
fi+1/2 + fi−1/2

2
+ b

fi+3/2 + fi−3/2

2
+ c

fi+5/2 + fi−5/2

2
(2.41)

where f̂i represents the interpolated value at node xi, explicit and implicit schemes of
different formal accuracy may be derived by matching the Taylor series coefficients of
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Figure 2.6: Plots of the scaled modified wavenumber w′(w) versus the scaled wavenumber
w = k∆x for the first derivative with the use of different central finite difference methods
for f(x) = eikx and x ∈ [0, 2π].
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Figure 2.8: Plots of the scaled modified wavenumber w′′(w) versus the scaled wavenumber
w = k∆x for the second derivative with the use of different central finite difference methods
for f(x) = eikx and x ∈ [0, 2π].

various order. The transfer function associated with Eq. (2.41) is

T (w) =
a cos(w/2) + b cos(3w/2) + c cos(5w/2)

1 + 2α cos(w) + 2β cos(2w)
. (2.42)

Explicit methods are constructed with α = β = 0. First order interpolation can be con-
structed with (b = c = 0) and a = 1. A third-order explicit interpolation is obtained with
c = 0, a = 9/8 and b = −1/8. At the left and right boundaries forward and backward
interpolations must be used. With a 1/2 shift in the indices a third-order approximation
can be found with

f̂1/2 = (5f0 + 15f1 − 5f2 + f3)/16 (2.43)

f̂N−1/2 = (5fN + 15fN−1 − 5fN−2 + fN−3)/16 (2.44)

and a second-order approximation near boundaries can be made with

f̂1/2 = (6f0 + 12f1 − 2f2)/16 (2.45)

f̂N−1/2 = (6fN + 12fN−1 − 2fN−2)/16 (2.46)

The implicit fourth-order interpolations are defined by

a = (9 + 10α− 14β + 16c)/8 and b = (−1 + 6α + 30β − 24c)/8
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2.2. COMPACT METHODS 26

∅∅∅∅∅∅∅∅∅∅∅∅ ∅∅∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅

∅
∅

∅
∅

∅
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

w

T
(w

)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Exact interpolation
Explicit 1 st-order
Explicit 3 rd-order
Compact 3D 4 th-order
Compact 3D 6 th-order∅

(a) Interpolation

∅∅∅∅∅∅∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅

∅
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅
∅

∅
∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅∅∅∅∅∅∅

⊄⊄⊄⊄⊄ ⊄⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄
⊄

⊄
⊄

⊄
⊄

⊄

⊄

⊄

⊄

⊄

⊄

⊄

⊄

⊄

⊄
⊄

⊄
⊄

⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄ ⊄⊄⊄

w

T
(w

)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

No filter
Explicit 2 nd

Explicit 4 th

Explicit 6 th

Compact 3D 6 th

Compact 5D 8 th

Compact 5D 10 th

∅

⊄

Sharp Fourier cut-off

(b) Filtering

Figure 2.10: Transfer functions T (w) versus scaled wavenumber for different explicit and
compact tridiagonal/pentadiagonal methods for interpolation and filtering.

An implicit fourth-order approximation can be defined by α = 1/6, β = 0, a = 4/3 and
b = c = 0. A six-order approximation can be defined by α = 3/10, β = 0, a = 3/2, b = 1/10

and c = 0. Near boundaries, a forward/backward fourth-order approximation can be used
with a 1/2 shift in the index, e.g.,

f̂1/2 + f̂3/2 =
1

2

f0 + f2
2

+
3

2
f1 +O(h4) (2.47)

we refer to Lele [55] for more details. The transfer function T (w) versus modified wavenum-
ber, given by Eq. (2.42) for different explicit and compact tridiagonal methods is plotted
in Fig. 2.10 (a). As can be seen the interpolation eliminates high wavenumber oscillations
(corresponding to small scales) of the original function.

High wavenumber oscillations can be seen in the flow field due to different reasons, e.g.,
insufficient resolution, central differencing and collocated grid for the pressure and the
velocity fields. For elimination of high wavenumber oscillations in the flow variables a
common practice is low-pass filtering. Compact filtering is motivated in consistency with
compact differentiation and is done with an approximation of the form

βf̄i−2+αf̄i−1+ f̄i+αf̄i+1+βf̄i+2 = afi+b
fi+1 + fi−1

2
+c

fi+2 + fi−2

2
+d

fi+3 + fi−3

2
(2.48)

where f̂i represents the filtered values at the node xi. With adjusting the coefficients dif-
ferent filters can be constructed. The application of the filtering discussed here is removing
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short length scales in physical space. The transfer function associated with Eq. (2.48) is

T (w) =
a+ b cos(w) + c cos(2w) + d cos(3w)

1 + 2α cos(w) + 2β cos(2w)
. (2.49)

Explicit filters are constructed with α = β = 0, e.g., by choosing a = βs/(2 + βs) and
b = 2/(2 + βs) we obtain a simple filter which is known as Shuman filter [15]

f̄i =
fi−1 + βsfi + fi+1

2 + βs
(2.50)

in which 2 ≤ βs ≤ 100. This filter is typically used to mollify the mask (characteristic)
function when using the penalization method, if a high-order scheme is used to compute
derivatives of the spatial terms in the Navier–Stokes equations. By choosing βs = 2, hence
a = b = 0.5, we obtain

χ̄i =
χi−1 + 2χi + χi+1

4
(2.51)

the two-dimensional version of the Shuman filter is

χ̄ij =
2χij +

∑4
nb=1 χnb

6
(2.52)

for which T (w) = 0.5(1+cosw), usually the values of the filtered variable at the boundaries
remain unchanged in the process of filtering in physical space. Following [79] and [122] in
the present study the mask function introduced in the context of penalization is mollified
by the two-dimensional Shuman [15] filter, which is equivalent to raised cosine filter in
Fourier space. We refer to [121] for more details. The effect of smoothing with the one-
dimensional Shuman filter Eq. (2.51) is demonstrated in Fig. 2.11 for a box function
χ(x) = 1 , x ∈ [4.5, 5.5] which is represented by the red-solid line. The mollified function χ̄
is represented with the green-dashed line.
When discretizing the Navier–Stokes equations with high-order central collocated finite-
differences, due to insufficient resolution, high wavenumber oscillations can occur in the
flow field. In this case implicit high-order filters (at least two order higher than formal
accuracy of the solution itself) are used in order to filter the solution at each time-step for
stabilizing the numerical simulation. Tridiagonal implicit filters of the form

αf̄i−1 + f̄i + αf̄i+1 =
N∑

n=0

an
2
(fi+n + fi−n) (2.53)

will be used sequentially in each spatial direction, where α is a free parameter in the range
0 < |α| ≤ 0.5. Special treatment is necessary at near boundary points due to the relatively
large stencil of the filter. Two approaches can be applied near the boundary points, either,
the order of accuracy, thus the stencil, can be reduced when coming close to the boundary



2.3. SPATIAL DISCRETIZATION OF THE POISSON EQUATION 28

to a level for which a central scheme is available, or one-side forward-backward stencil with
slightly reducing the order of accuracy can be used. When the mesh is highly clustered
near the boundary, the former approach is more stable and will thus be preferred. We refer
to the original paper by Lele [55] and also the paper by Visbal and Gaitonde [85] for the
coefficients and more discussions. The transfer functions versus scaled wavenumber T (w),
given by Eq. (2.49) for different explicit and compact tridiagonal/pentadiagonal methods
are plotted in Fig. 2.10 (b). As can be seen the filtering eliminates high wavenumber
oscillations (corresponding to small scales) of the original function. Moreover, it is clear
that compact filters are sharper in Fourier space than explicit filters and with using high-
order filters the efficiency for eliminating higher wavenumbers is increased. A comparison
of compact filters with a Fourier cut-off filter shows that it is difficult to construct a sharp
filter in physical space.

X
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Figure 2.11: A box function χ(x) = 1 , x ∈ [4.5, 5.5] (red-solid) and a mollified box function
χ̄ (green-dashed) with Eq. (2.51).

2.3 Spatial discretization of the Poisson equation
In the procedure of numerical solution of the incompressible flows a Poisson equation, e.g.,
Eq. (2.6), must be solved to ensure the incompressibility constraint. This is the most time
consuming part of the algorithm due to the elliptic characteristic of the Poisson equation.
Thus an efficient approach can considerably enhance the computational efficiency. A wide
variety of methods is available in the literature which can be divided into direct and iterative
methods. We will present an iterative and a direct method for second and fourth order
discretizations of the Poisson equation. According to the boundary conditions different
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methods can be used. However FFT-based direct methods put some constraints at the
boundaries.

2.3.1 An iterative method for solution of the Poisson equation
The two dimensional Poisson equation (2.6) in Cartesian coordinates reads

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (2.54)

Using a uniform (∆x = ∆y = h) Cartesian grid like the one illustrated in Fig. 2.1, for
discretization of the solution domain and replacing the derivatives with second-order central
finite differences we have

δ2xψ + δ2yψ = −ωij (2.55)

where δ2x and δ2y are central second-order finite-difference approximations of the second
derivatives, e.g.,

δ2xψi,j =
ψi+1,j − 2ψi,j + ψi−1,j

h2
+O(h2) (2.56)

In the y-direction a same formula can be derived. With the use of Dirichlet boundary
conditions on the discrete solution domain, these algebraic equations form a linear system
of equations
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The linear system of equations can be solved via an iterative method, namely the point
successive over relaxation (PSOR) method

ψn+1
i,j = βψnew

i,j + (1− β)ψold
i,j (2.59)

where β is the over relaxation factor, β ∈ [1, 2]. Thereby we have

ψn+1
i,j = ψold

i,j + β Res(i, j) (2.60)

By the use of the Gauss-Seidel method we have

Res(i, j) = 0.25
( 4∑

nb=1

ψlast
nb − 4ψold

i,j + h2ωi,j

)
(2.61)

where h = ∆x = ∆y and nb denotes the neighbor points (by applying a red–black sweeper
always the updated values of the neighbors will be used). The norm of the residual ||Res||,
must converge below a prescribed convergence criterion, i.e.,

||Res|| ≤ max(ϵ∆xn, ϵmachine)

where n is the order of discretization (for instance, n = 2 or 4), ϵ is case dependent, e.g.,
ϵ ∈ [10−6, 10−4] and ϵmachine is the rounding2 error. See Table 2.1 for the values of residuals
and Table 2.2 for the number of iterations necessary to satisfy the convergence criterion,
with a second and fourth order elliptic solver, for the considered problem presented in Fig.
2.12.
Fourth-order approximation of the Poisson equation (2.54) can be obtained by evaluation
of each term with the following expressions:

∂2ψ

∂x2
= δ2xψ − ∆x2

12

∂4ψ

∂x4
+O(∆x4) (2.62)

∂2ψ

∂y2
= δ2yψ − ∆y2

12

∂4ψ

∂y4
+O(∆y4) (2.63)

To obtain a fourth-order finite-difference compact formulation, the correction term, i.e., the
O(∆x2,∆y2) terms in Eqs. (2.62) and (2.63) cannot be dropped and must be evaluated.
Because of the presence of ∆x2 and ∆y2 factor behind high-order derivatives, these terms
can be approximated with second-order accuracy. Hence the whole approximation scheme
yields the fourth-order accuracy. These approximation formulas are well-known and have
been analyzed by Collatz in [17] and are equivalent to the compact schemes discussed be
Lele [55]. Following Spotz et al. [61] high-order derivatives can be found by using the

2According to IEEE 754-2008 standard ϵmachine is of order 10−7 for single precision and 10−16 for double
precision computations.
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original Poisson equation (2.54) and simply successive differentiating with respect to x and
y directions,

∂4ψ

∂x4
= −(ψyyxx + ωxx) (2.64)

∂4ψ

∂y4
= −(ψxxyy + ωyy) (2.65)

where subscripts indicate partial differentiation (i.e, ψxx = ∂xxψ). By replacing the above
equations in (2.62) and (2.63) we have:

∂2ψ

∂x2
= δ2xψ +

∆x2

12
(ψyyxx + ωxx) +O(∆x4) (2.66)

∂2ψ

∂y2
= δ2yψ +

∆y2

12
(ψxxyy + ωyy) +O(∆y4) (2.67)

Substituting in the original Poisson Eq. (2.54) yields,

δ2xψ +
∆x2

12
(ψyyxx + ωxx) + δ2yψ +

∆y2

12
(ψxxyy + ωyy) = −ω (2.68)

By considering ∆x = ∆y = h we obtain:

(δ2x + δ2y +
h2

6
δ2xδ

2
y)ψ = −ω − h2

12
(δ2x + δ2y)ω (2.69)

By imposing Dirichlet boundary conditions on the discrete solution domain, these algebraic
equations form a linear system of equation of the form,

Aψ = B (2.70)

where the matrix of the coefficients A (on the left-hand side) is a nine-diagonal band matrix.
Depending on the row-wise or column-wise arrangement of the unknowns the matrix will be
slightly different. If one chooses the row-wise arrangement, a coefficient matrix of the form
illustrated in Appendix C will be obtained. This book-keeping matrix can be illustrated
in a symbolic manner via Eq. (2.77), which represents the coefficients corresponding to
stencil of a given point (i, j). Considering Fig. 2.12 (c) the coefficients of each point are:

AP = −20 (2.71)

AE = AW = AN = AS = 4 (2.72)

ANE = ANW = ASE = ASW = 1 (2.73)
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Table 2.1: The considered convergence criteria for the residual ||Res|| of the Poisson solvers,
for the problem (∇2u = f) presented in Fig. 2.12, using different resolutions.

Grid PSOR 2nd-order PSOR 4th-order
332 4× 10−7 1.5× 10−9

652 1× 10−7 9× 10−11

1292 2× 10−8 6× 10−12

2572 6× 10−9 4× 10−13

5132 1.5× 10−9 2× 10−14

10252 4× 10−10 1× 10−15

20492 1× 10−10 1× 10−15

40972 2× 10−11 1× 10−15

where P is used to represent the point (i, j), for E,W,N, S and other neighbors, we refer
again to Fig. 2.12 (c). The right hand side is given by

B = −h
2

2
(12 + h2δ2x + h2δ2y) ω (2.74)

thus in discrete form we have

Bi,j = −h
2

2
(8ωi,j + ωi+1,j + ωi−1,j + ωi,j+1 + ωi,j−1) (2.75)

The final discretized equation can be written symbolically as: 1 4 1

4 −20 4

1 4 1

ψ = −h
2

2

 0 1 0

1 8 1

0 1 0

ω (2.76)

or  ASW AS ASE

AW AP AE

ANW AN ANE

ψ = B (2.77)

The linear system of equations (2.77) can be solved using the Gauss-Seidel method Eq.
(2.60) with

Res(i, j) = 0.05
( 8∑

nb=1

ψlast
nb − 20ψold

i,j −Bi,j

)
(2.78)

See Fig. 2.12 (d) for an error analysis of the Poisson solvers via the PSOR method for
second-order and fourth-order compact discretization.
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Figure 2.12: (a) Solution of the Poisson equation (∇2u = f) with the forcing term
f(x, y) = −2 cos(x+ y), (x, y) ∈ Ω = [0, 2π]2 and Dirichlet boundary conditions ub(x, y) =
cos(x + y), (x, y) on ∂Ω via an iterative fourth-order compact method. (b) Corresponding
error contours E(x, y) = |u(x, y)− cos(x+ y)|, (x, y) ∈ Ω in comparison with the exact so-
lution for N = 10242 grid points. (c) The 9-point stencil used in the fourth-order compact
discretization of the Poisson equation on a two-dimensional grid. (d) Error analysis for
Poisson solvers via the PSOR method using second and fourth order compact discretiza-
tions.
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Table 2.2: The number of iterations of the Poisson (∇2u = f) solvers, for the problem
presented in Fig. 2.12, using different resolutions.

Grid PSOR 2nd-order PSOR 4th-order
332 618 926
652 673 1064
1292 718 1204
2572 772 1342
5132 2805 4571
10252 12017 21057
20492 48790 82042
40972 more than 100000 more than 300000

2.3.2 A high-order fast Poisson solver
In solving the incompressible Navier–Stokes equations an elliptic Poisson equation is fre-
quently encountered which is the most time consuming part of the algorithm. The common
case is the pressure Poisson equation normally used with homogeneous Neumann bound-
ary conditions, for the pressure correction in projection methods. In the vorticity-stream
function formulation, Eq. (2.6) has to be solved with Dirichlet boundary conditions for
vorticity and stream-function. Free slip boundary conditions in a closed rectangular do-
main (ω = ψ = 0 ; at all boundaries) is applied in all test cases studied in the present
investigation. Numerical tests reveal that there is no significant difference between no-slip
and free-slip boundary conditions, for fluid structure interaction problems, if the size of
solution domain is big enough in comparison to the body length, we refer to the discussion
in Section 3.4.1. In the presence of periodic boundary conditions, FFT based direct solvers
can be used to efficiently solve the Poisson equation with high accuracy. Even if the flow
is not periodic in all directions, like most of practical problems, in accordance with the
boundary conditions for the elliptic equation (homogeneous Dirichlet/Neumann) sine or
cosine FFTs can be used in one or two directions, see Fig. 2.13 and [44], [77] and [131].
Here we are presenting a new direct fourth-order solver for the Poisson equation (2.6) which
is a combination of compact finite differences with a sine FFT for alternative directions.
This method is suitable for imposing free-slip boundary condition at least in one direction.
The advantages of our method are fourth-order accuracy, convergence down to machine
zero by using an optimal grid, compact tridiagonal stencils, possibility of extension to
three dimensions, reduced arithmetics and memory usage in comparison to iterative meth-
ods. Moreover, the parallelization is straightforward because of decoupling the operations
in different directions. Nearly linear strong scaling (speed up) and efficiency is reported
by Laizet and Lamballais [131] for a direct solver by decoupling of the operators in alter-
native directions. They introduced a dual domain decomposition (or pencil) method, in
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which information along a line is accessible for a CPU by alternative decomposition of the
domain in three directions, see Fig. 6.2. The limitation of our method (in addition to the
boundary conditions) is the use of a uniform grid in the direction in which the FFT is
applied. When the solver of the parabolic part is based on finite-differences, it is a custom
to use a FDM discretization in one direction without loss of accuracy and efficiency via a
direct tridiagonal solver. The advantage of using finite differences in one direction is the
possibility of applying general boundary conditions and using a refined mesh.

For a second-order collocated discretization of the 3D Poisson equation (∇2u = f) by
applying Fourier transforms in y and z directions and by replacing second derivatives with
−k2ûi,m,n in Fourier space, we get

δ2xûi,m,n − (k2y + k2z)ûi,m,n = f̂(i,m, n) (2.79)

Usually the exact wavenumber is replaced by modified wavenumber k′ which permits to
evaluate the difference between the finite-difference and the spectral approximation of a
second derivative [77]. For a second-order explicit finite-difference discretization with the
use of Table A.1 by choosing (a = 1 and α = β = b = c = 0) and replacing in Eq. (2.40)
the modified wavenumbers of each direction can be obtained as follows:

k′2y =
2

∆y2

(
1− cos(kyπ/Jmax)

)
, k′2z =

2

∆z2

(
1− cos(kzπ/Kmax)

)
see Fig. 2.8 for modified wavenumbers of the second derivative obtained for a second-order
finite-difference discretization. The final tridiagonal system to be solved (see Appendix F)
for the solution in Fourier space for each wavenumber is [116]

ûi+1,m,n − (2 + h2k′2y + h2k′2z )ûi,m,n + ûi−1,m,n = h2f̂(i,m, n) (2.80)

where h = ∆x. More details can be found in [77].

For a compact fourth-order collocated discretization of the 2D Poisson equation −∇2ψ = ω,
over Nx ×Ny grid points, by using

∂2ψ

∂x2
= δ2xψ − ∆x2

12

∂4ψ

∂x4
+O(∆x4) (2.81)

where δ2x represents a central second-order approximation of the second derivative, for the
x-direction we obtain

(δ2x −
∆x2

12

∂4

∂x4
+ ∂yy)ψ = −ω (2.82)
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because of the presence of the ∆x2 factor behind the fourth-order derivative, this term
cannot be dropped and must be evaluated with second-order accuracy. Therefore, the whole
approximation scheme yields fourth-order accuracy. The fourth-order derivative can be
evaluated by using the original Poisson equation −∇2ψ = ω, and successive differentiation
with respect to x (i.e., ∂xx∂xxψ = −∂xx∂yyψ − ∂xxω). Replacing ∂xx by δ2x, we find

(δ2x +
∆x2

12
δ2x∂yy + ∂yy)ψ = −ω − ∆x2

12
δ2xω (2.83)

By applying a Fourier transform in y direction in Eq. (2.83) and replacing second derivatives
by −k2yψ̂ in Fourier space, we have

(δ2x −
∆x2

12
δ2xk

′2
y − k′2y )ψ̂ = −ω̂ − ∆x2

12
δ2xω̂ (2.84)

Usually the exact wavenumber is replaced by the modified wavenumber k′2y which permits
to adapt the spectral approximation of the second derivative with the considered finite
difference method [77]. For a fourth-order explicit finite difference discretization, in Table
A.1 by choosing (a = 4/3, b = −1/3 and α = β = c = 0) and replacing the coefficients
in the analytical relation (2.40) given by Lele [55], the scaled modified wavenumber of the
second derivative is given as follows:

k′2y =
1

∆y2

[
8

3

(
1− cos(

kyπ

Ny

)
)
− 1

6

(
1− cos(

2kyπ

Ny

)
)]

(2.85)

Comparison with numerical values in Fig. 2.8 (b) confirms that Eq. (2.85) is indeed
exact. The final tridiagonal system to be solved (see Appendix F) in Fourier space for each
wavenumber of ψ in the y-direction is

βψ̂i+1,m − (2β + k′2y )ψ̂i,m + βψ̂i−1,m = −(ω̂i+1,m + 10 ω̂i,m + ω̂i−1,m)/12 (2.86)

for i = 2, ..., Nx − 1, where β = ∆x−2 − k′2y /12. In summary, first a one-dimensional
direct-FFT of the forcing term ω is performed along all lines in the y-direction. Then
for each line in the x-direction the tri-diagonal system (2.86) must be solved to find the
solution ψ in wavenumber space. Next an inverse-FFT of the solution is performed line
by line in the y-direction. For real data with zero value at the boundaries (homogeneous
Dirichlet, i.e., ψ = ω = 0, corresponding to free-slip boundary conditions), the natural
Fourier transform to use is the sine transform, see Fig. 2.13 from [56]. The direction of
FDM and FFT can be changed to consider no-slip boundary condition in the y-direction.
In order to take into account inflow/outflow boundary conditions the mean flow must be
reduced from the total velocity field u = U−U∞ in the vorticity transport equation (2.5)
to impose ψ = 0 at the boundaries. This is equivalent to move the grid with U∞ and
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writing the Navier–Stokes equations in a moving reference frame for the perturbed velocity
field u, instead of a Galilean inertial frame [135].

Figure 2.13: (top) The trigonometric basis functions for a complex FFT of a periodic
function. (center) The trigonometric basis functions for a sine FFT of a function with
homogeneous Dirichlet boundary conditions. (bottom) The trigonometric basis functions
for a cosine FFT of a function with homogeneous Neumann boundary conditions. Picture
from [56].

Validation of the fast Poisson solvers

For validation of the developed second and fourth order Poisson (∇2u = f) solvers the
following analytical solution is considered

uexact(x, y) = cos(x) sin(nπy/Ly) , (x, y) ∈ Ω = [0, 2π]2

with the corresponding forcing term

f(x, y) = −(n2π2/L2
y + 1) cos(x) sin(nπy/Ly) , (x, y) ∈ Ω

and Dirichlet boundary conditions ub(x, y) = cos(x) sin(nπy/Ly), (x, y) on ∂Ω. The solu-
tion for n = 3 with N = 332 grid points, computed with the fourth order direct solver is
illustrated in Fig. 2.14 (a). The contours of solution error in comparison with the exact
solution E(x, y) = |u(x, y)− uexact(x, y)|, (x, y) ∈ Ω are illustrated in Fig. 2.14 (b). Differ-
ent errors versus spatial resolution computed with second and fourth order compact direct
solvers are illustrated in Fig. 2.14 (c). The CPU-times for different resolutions/methods are
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Table 2.3: CPU-times (second / 100 CALL) for different (multigrid, point successive over
relaxation and direct) Poisson solvers, for the problem (∇2u = f) presented in Fig. 2.14,
using different resolutions. The processor is Intel(R) Core(TM) i5-3230M CPU@2.6 GHz.

Grid PSOR 2 PSOR 4 MG 2 Direct 2 Direct 4
332 1.5 2 0.00467 0.009 0.011
652 3 4 0.014 0.028 0.030
1292 6 15 0.07 0.098 0.107
2572 25 50 0.22 0.37 0.39
5132 300 700 1.15 1.87 1.69
10252 5400 12400 6.5 9.1 9.6
20492 86800 189300 - 39.8 41.3
40972 more than 668000 - - 182 190

given in Table 2.3. The corresponding CPU-time scaling in log–log for different methods are
compared in Fig. 2.14 (d). The cost of computations (in terms of CPU-time) of direct and
multigrid methods are proportional to the number of grid points (N2 for two-dimensions),
but for iterative methods this is increasing exponentially CPUtime = 5 exp (0.01N), which
is very restrictive for computations on fine grids. Some comments are addressed as follows:

1. By optimizing the FFT the proposed direct method can be more efficient. The
resolution of the finest possible grid on the available machine is 40962.

2. The memory limitation of multigrid solver developed by Paknejad [133] is restrictive
on fine grids, the finest possible resolution is 10242 on the available machine.

3. From parallelization view point the multigrid solver is the most difficult but the
iterative methods are the easiest to parallelize. In Sachs et al. [137] a parallel imple-
mentation of global multigrid method via implicit partitioned method is presented.

4. The proposed direct method can be parallelized by the pencil rotation method as is
done in [131] for a direct method using operator splitting in alternative directions.
Nearly linear strong scaling (speed up) is reported by Laizet and Lamballais in [131].

2.4 Time integration
Because of high accuracy and straightforward parallelization, the explicit fourth-order
Runge–Kutta method is one of the best and mostly used methods for integration of ordinary
differential equations. By collecting all discretized spatial derivatives in the RHS operator
one can solve the considered partial differential equation ∂tω = RHS

(
∂x(), ∂xx(), . . .

)
as

a system of ordinary differential equation at each time step. This RK4 method is a four
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stage method including two predictor and two corrector steps, see Fig. 2.16.

First step (i = 1):
k1 = RHS(ω, ψ)n

ωi = ωn +
∆t

2
k1

−∇2ψi = ωi

Second step (i = 2):
k2 = RHS(ω, ψ)i−1

ωi = ωn +
∆t

2
k2

−∇2ψi = ωi

Third step (i = 3):
k3 = RHS(ω, ψ)i−1

ωi = ωn +∆t k3

−∇2ψi = ωi

Fourth step (i = 4):
k4 = RHS(ω, ψ)i−1

ωn+1 = ωn +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.87)

−∇2ψn+1 = ωn+1

For integration of vorticity transport equation (2.5) we have

RHS(ω, ψ)i = (−∂yψ ∂xω + ∂xψ ∂yω + ν∇2ω + ∂xFy − ∂yFx)
i (2.88)

where i = 1, 2, 3, 4. At each time step, Eq. (2.88) must be evaluated four times, in which
Eq. (2.6) must be solved to update the stream-function (−∇2ψi = ωi). For details and
technical discussions of the Runge–Kutta methods we refer to [56]. In addition to one
memory location for u, five memory locations are necessary at each grid point for the
evaluation of k1, k2, k3, k4 and u∗. However, ∆t is limited by CFL (Courant-Friedrich-
Levy) condition, which implies that

∆t ≤ CFL
∆x

U
(2.89)

where U is an advection (or a phase) velocity . In the case of nonlinear advection in space
more attention must be payed. In the presence of viscous (dissipation) term also a viscous
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constraint of the form
∆t ≤ V SL

∆x2

ν
(2.90)

must be respected. For integration via an explicit method we have

CFL =
σi
w′

max

≈ 1 , V SL =
σr
w′′

max

≈ 0.4 (2.91)

where [−σr, 0] and [−iσi,+iσi] are real and imaginary limits of the stable region of the
time integration methods in the complex plane. We refer to Fig. 2.15 and Table 2.5 for
real and imaginary limits of the stable region of different time integration methods. As
can be seen for the Runge–Kutta family in contrast to the Adams–Bashforth methods,
by increasing the precision, the stable region becomes larger. However, the evaluation of
spatial derivatives in the Adams–Bashforth methods is performed only once per time-step,
in contrast to the Runge–Kutta methods where the order of the method determines the
number of evaluations of the spatial derivatives. In general the memory usage by the
Runge–Kutta methods with the same order of accuracy is more than the Adams–Bashforth
methods. However low storage Runge–Kutta methods can be advantageous in terms of
memory allocation. Here w′

max and w′′
max represent respectively the maximum values of the

scaled modified wavenumbers for the first and second derivatives, corresponding to Eqs.
(2.39) and (2.40) which are plotted in Fig. 2.6 (a) and Fig. 2.8 (a). The values of w′

max can
be approximately extracted from Fig. 2.6 (a) for different methods to avoid the explicit
calculation of the derivative of Eq. (2.39). As can be seen, we have w′

max ∈ [1, π] for the
first derivative. For the second-derivative the maximums are located at w = π. Thus by
replacing ω = π in equation (2.40) we have

w′′
max = w′′(π) =

4a+ 4c/9

1− 2α + 2β
(2.92)

according to the Eq. (2.92), we have w′′
max ∈ [4, π2] for the second derivative. The values of

w′
max and w′′

max for different central differentiation schemes are listed in Table 2.4. Stability
limits of some explicit time integration methods, via linear analysis, are listed in Table 2.5
and are also shown in Fig. 2.15. For viscous flows (low Reynolds number) the time-step
is more restricted by V SL constraint than by CFL. Therefore an implicit integration of
viscous terms is preferable specially when the grid is stretched. In the presence of moving
bodies the displacement of the moving object must not exceed the grid spacing, i.e.,

∆t ≤ ∆x

uB

With the use of the explicit penalization method the following constraint for ∆t, must also
be respected.

∆t ≤ η



2.4. TIME INTEGRATION 41

Table 2.4: Maximum values of modified wavenumbers for the first and second derivatives
via central finite difference methods.

method w′
max w′′

max

2nd-order explicit 1.000 4.000
4th-order explicit 1.372 5.333
6th-order explicit 1.584 6.044
4th-order 3D-implicit 1.735 6.000
6th-order 3D-implicit 1.988 6.857
8th-order 3D-implicit 2.128 7.324
8th-order 5D-implicit 2.205 7.471
10th-order 5D-implicit 2.324 7.838
Spectral-like 5D-implicit 2.632 9.108
Spectral (exact) 3.14(π) 9.86(π2)

Table 2.5: Stability limits of some explicit methods via linear analysis [63].

method σi σr
Adams–Bashforth 1 0 2
Adams–Bashforth 2 0 1
Adams–Bashforth 3 0.73 0.56
Adams–Bashforth 4 0.43 0.3
Euler (RK1) 0 2
Runge–Kutta 2 0 2
Runge–Kutta 3 1.7 2.5
Runge–Kutta 4 2.8 2.8

Finally an error analysis of the time integration for the viscous Burgers equation

∂tu+ uux = νuxx

is performed to examine the accuracy of the time integration based on the fourth-order
Runge–Kutta method. The aim is to show the rate of convergence of different errors with
successive reduction of the time step. A simulation with∆tmax/16 is considered as reference
solution to compute the errors, where ∆tmax is chosen rather large, e.g., equal to 0.1, to
avoid the truncation error from falling in the range of the round-off error for ∆tmax/16. On
the other hand the spatial resolution was chosen sufficiently fine, i.e., N = 2048, to avoid
the intervention of truncation errors due to the second-order discretization of the spatial
terms. Other simulations were performed with ∆tmax/8, ∆tmax/4, ∆tmax/2 and ∆tmax,
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successively. The computations start from an initial condition

u(x, 0) = sin(x), x ∈ [0, 2π]

at t = 0 and stop at t = 1, so the time step and the number of iterations for each simulation
is different. Homogeneous Dirichlet boundary conditions are applied at x = 0 and x = 2π.
Different errors as a function of ∆tmax/∆t are compared with the theoretical slope of −4

in Fig. 2.17. A good agreement can be observed. The developed solver will also be used
for time integration of the vorticity transport equation (2.5) in two dimensional problems.
In the cases where the first-order Euler method is used for time integration, this will be
mentioned explicitly.

2.5 The algorithm for fluid–structure interaction
The summary of the algorithm for fluid–structure interaction is listed in Algorithm 1 (where
α1 = 1/2, α2 = 1/2 and α3 = 1). The flowchart is illustrated in Fig. 2.18.

2.6 Conclusion
In this Chapter an algorithm for the simulation of moving bodies interacting with two
dimensional incompressible flows was proposed. By using a uniform Cartesian grid a new
fourth-order direct solver for the solution of the Poisson equation is presented which com-
bines a compact finite difference with a FFT in alternative directions. The advantages of
our method are fourth-order accuracy, convergence down to machine zero over an optimal
grid, compact tridiagonal stencils, possibility of extension to three dimensions, reduced
arithmetics and memory usage in comparison to iterative methods. Moreover, the par-
allelization is straightforward because decoupling of the operations in different directions
is done. Nearly linear strong scaling (speed up) and efficiency is reported by Laizet and
Lamballais [131] for a similar direct solver by decoupling of the operators in alternative
directions. The efficiency and accuracy of the solver are compared with an iterative and a
multigrid method. For introducing a moving body in fluid flow, the volume penalization
method is applied to the solution of the Navier–Stokes equations as a forcing term. Fourth-
order compact finite difference discretization of the curl of volume penalization terms is
shown to be equivalent to the diffused-interface immersed body method proposed by Lai
and Peskin [76]. An advantage of the volume penalization method is that the evaluation
of the hydrodynamic coefficients is straightforward. Proper denoising of the hydrodynamic
coefficients is crucial in dealing with fluid–solid interaction problems via the volume pe-
nalization method. Extensions and validation of the proposed algorithm for a variety of
fluid–solid interaction problems, will be presented in the following Chapters.
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Algorithm 1 Fluid–structure interaction
1. Start from an initial condition

2. Body kinematics

(a) Compute the mask χ(i, j) and smooth it by Eq. (2.52)
(b) Compute the moment of inertia J around reference point
(c) Compute body velocities up(i, j), vp(i, j) in Eulerian grid (Lagrange → Euler)

3. Time integration of flow field via RK4

(a) ω0 = ωn

(b) ψ0 = ψn

For i = 1, 2, 3 (α1 = 1/2, α2 = 1/2 and α3 = 1)
(c) Compute ki(ω, ψ)i−1 from Eq. (2.88)
(d) ωi = ωn + αi ∆t ki

(e) Solve Eq. (2.6); −∇2ψi = ωi

End For
(f) Compute k4(ω, ψ)3 from Eq. (2.88)
(g) Update vorticity from Eq. (2.87); ωn+1 = ωn + ∆t

6
(k1 + 2k2 + 2k3 + k4)

(h) Solve Eq. (2.6); −∇2ψn+1 = ωn+1

4. Solve for the body dynamics

(a) Compute the hydrodynamic coefficients from Eqs. (2.22) and (2.23)
(b) Denoise the coefficients by Eq. (2.25)
(c) Compute displacements from Eq. (2.28)
(d) Compute rotation from Eq. (2.30)

5. Write necessary data to file

6. If T < Tend, Go to step 2

7. End
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Figure 2.14: (a) Solution of the Poisson equation (∇2u = f) with a fourth-order compact
method, forcing term is f(x, y) = −(n2π2/L2

y + 1) cos(x) sin(nπy/Ly), (x, y) ∈ Ω = [0, 2π]2

and Dirichlet boundary conditions are given by ub(x, y) = cos(x) sin(nπy/Ly), (x, y) on ∂Ω,
(n = 3). (b) The corresponding error contours E(x, y) = |u(x, y)−uexact(x, y)|, (x, y) ∈ Ω in
comparison with the exact solution. (c) Error analysis for direct Poisson solvers computed
with second and fourth order compact methods. (d) CPU-time scaling of different iterative
(Multigrid / Point Successive Over Relaxation) and direct methods.
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Figure 2.15: Stable regions for time integration via Adams–Bashforth and Runge–Kutta
methods on complex plan. The picture is taken from [63].

Figure 2.16: Schematic representation of the fourth-order Runge–Kutta method. In each
time step the RHS operator must be evaluated four times: once at the initial point (marked
•), twice at trial midpoints (marked ◦) and once at a trial endpoint (marked ◦). From these
derivatives the value of the function in the next time step (marked •) can be calculated.
The picture is taken from [56].
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Figure 2.17: Time accuracy of explicit fourth-order Runge–Kutta method applied to the
Burgers equation over uniform grid with ν = 10−3.

Figure 2.18: Flowchart of the fluid–solid interaction (FSI) algorithm.



Chapter 3

Convergence study and validation of
the proposed algorithm

“It seems the surge of progress began immediately after
the war has now largely spent itself .... we have got down
to the bedrock difficulty of solving non-linear PDEs [96].”

G. K. Batchlor (1953)

In this chapter, first numerical simulation of decaying Taylor vortices, which is an ex-
act solution of the Navier–Stokes equations, will be presented. The spatial errors of the
developed solver without the penalization term will be assessed. Then for examination of
the error introduced by the penalization term, the Taylor–Couette flow will be secondly
considered. Next the unsteady flow around a circular cylinder is considered for evalua-
tion of the hydrodynamic forces via two different methods. Finally, for validation of the
fluid–structure interaction, the free fall of a cylinder and an ellipse in a quiescent fluid due
to terrestrial gravity will be studied.

3.1 Decaying Taylor vortices
Taylor vortices are an analytical solution of the Navier–Stokes equations without forcing
term (F = 0) represented in Cartesian coordinates. The boundary conditions are Dirichlet
but are time varying. Following Chorin [22], Kim and Moin [44] the solution is given in
primitive variables

u(x, t) = − cos x sin y e−2νt (3.1)

v(x, t) = sin x cos y e−2νt (3.2)

p(x, t) = −ρ/2(cos2 x+ cos2 y) e−4νt + cte (3.3)

47



3.1. DECAYING TAYLOR VORTICES 48

The pressure can also be represented as follows

p(x, t) = −ρ/4(cos 2x+ cos 2y) e−4νt + cte (3.4)

By considering the Navier–Stokes equations (2.1) one can see that, the local acceleration is
equal to the viscous dissipation and the convective terms are in balance with the pressure
gradient. This vortical flow includes stagnation points, with zero velocity and maximum
pressure. The points with minimum pressure are located in the center of the vortices. In
non-dimensional form ν can be replaced by Re−1. The Poisson equation in the form of

∇2p = ρ(uxvy − uyvx)

is satisfied with vanishing normal pressure gradients (homogeneous Neumann) ∂p/∂n = 0

at the boundaries ∂Ω of a square domain (0 ≤ x & y ≤ 2π). For vorticity and stream-
function formulation we have

ω(x, t) = 2 cos x cos y e−2νt (3.5)

ψ(x, t) = cosx cos y e−2νt + cte (3.6)

where the advection terms cancel each other in the vorticity transport equation (2.5) and
the viscous terms represent the time-decay. Poisson equations in the form of −∇2ψ = ω or

∇2p = 2ρ(ψxxψyy − ψ2
xy)

are also satisfied with proper boundary conditions. An arbitrary domain of solution can
be considered, e.g., a circle or a diamond, by setting proper boundary conditions for each
variable according to the pre-cited Eqs (3.1)-(3.6). At t = 0 a divergence free initial
condition is achieved with the given relations for the velocity components. In this section
the spatial accuracy of the developed solvers are examined via an error analysis. The
methods used for discretization of the spatial terms are, an explicit second order method and
a fourth order compact method (classical Padé). Following Abide and Viazzo [97] we use
decaying Taylor vortices with ν = 0.001 for showing second and fourth order convergence
of the spatial error. The analytical solution is given by Eqs (3.1)-(3.6). The contours of
the vorticity and stream-function are shown in Fig. 3.1 (a) and (b) respectively, at the
end of the simulationm i.e., after 1000 iterations. The time step is choosed in the order
of machine zero to minimize the error introduced by time integration for all of the spatial
resolutions. In Fig. 3.1 (c) and (d) different errors for the vorticity and stream-function
versus grid resolution, via second and fourth order methods, are shown respectively. The
slopes of different errors versus grid resolution are in agreement with analytical -2 and -4
slopes. As expected, in both of the analyses a saturation of the error by round-off error on
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fine grids can be seen.

3.2 Taylor–Couette flow
Taylor–Couette flow [5] consists of a viscous fluid (with kinematic viscosity ν) confined
between two concentric cylinders with radii (R1, R2) in rotation with different angular
velocities (Ω1,Ω2), see Fig. 3.2. The Taylor number,

Ta =
R1(Ω2 − Ω1)

2(R2 −R1)
3

ν2

characterizes the importance of centrifugal or inertial forces due to rotation, relative to
viscous forces. For Ta below the critical value Tac ≈ 1708, the flow is steady and purely
azimuthal (uz = ur = 0). This state is known as circular Taylor–Couette flow and for which
we have an analytical solution which is independent of viscosity. For reason of convenience
the solution is represented in cylindrical coordinates. The azimuthal velocity is given by

uθ(r) = Ar +
B

r
, (r, θ) ∈ [R1, R2]× [0, 2π] (3.7)

where
A =

Ω2R
2
2 − Ω1R

2
1

R2
2 −R2

1

, B =
R2

1R
2
2(Ω1 − Ω2)

R2
2 −R2

1

The pressure is given by

p(r) =
A2

2
r2 + 2AB ln(r)− B2

2
r−2 (3.8)

The vorticity between two cylinders is constant (ωz = 2A). The stream-function is given
by

ψ(r) = −A
2
r2 −B ln(r) + c0 (3.9)

where c0 must be determined with respect to an arbitrary reference point. If one uses the
volume penalization method, the velocity components must be enforced in solid regions
from known angular velocities (i.e., Ω1 and Ω2),

uθ(r) = rΩ , (r, θ) ∈ [0, R1] ∪ [R2, Rmax]× [0, 2π] (3.10)

The vorticity inside the rotating regions is constant and is equal to twice of the domain
angular velocity (ωz = 2Ω) and the stream-function is given by

ψ(r) = −Ω

2
r2 + c , (r, θ) ∈ [0, R1] ∪ [R2, Rmax]× [0, 2π] (3.11)
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Figure 3.1: Vorticity (a) and stream-function (b) contours for Taylor vortices, (x, y) ∈
[0, 2π] × [0, 2π] at t = 0.0001. Error analysis for vorticity (c) and stream-function (d),
computed with second and fourth order finite differences.
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Figure 3.2: Setup of a Taylor–Couette flow, picture from Wikipedia.

where c must be determined for each domain in accordance with c0. In Cartesian coordi-
nates we have (u, v) = (−uθ sin θ, uθ cos θ). For a rigorous study of the error due to the
volume penalization term added to the Navier–Stokes equations in vorticity-stream func-
tion formulation, an exact solution is necessary. Taylor–Couette configuration is a good
choice, first and foremost, because of the known Dirichlet boundary conditions everywhere,
and secondly, because of the presence of curved walls contrary to other analytical solutions
usually represented in Cartesian domains which can coincide with the underlying Carte-
sian grid used to discretize the governing equations. That is to say although the solver is
adapted to a Cartesian domain, in this case the mask function which is the representative
of penalized area is curved (see Fig. 3.3). This configuration is similar to practical test
cases, like the flow around circular cylinder or complex geometries which will be consid-
ered in the following. A second-order finite difference method is used for discretization of
the governing equations including the curl of the penalization term ∇× F. The L1-error
∥uexact−unumη ∥ for u, which is the x component of the velocity field, is calculated for differ-
ent penalization parameters η and resolutions (N in x and y directions). The simulations
are carried out until a steady state is reached, so that the error is independent of the time
discretization. A unit square domain is considered as the solution domain, the time-step
is calculated by the constraints presented in the Section 2.4 and the kinematic viscosity
is fixed to ν = 0.01. The radii are chosen as R1 = 0.2 and R2 = 0.4, respectively. At
t = 0 the fluid domain is at rest and the inner-cylinder is set into movement with a fixed
angular velocity (Ω1 = 0.2) while the angular velocity of the outer cylinder is kept equal to
zero (Ω2 = 0). The Taylor number for this configuration (Ta = 0.64) is below the critical
value, thus the flow is purely azimuthal. The computations are stopped when the time
tend = 10 is reached. At this instant, the changes in errors are negligible (invisible), which
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Figure 3.3: Schematic representation of a penalized unit square domain for modeling of
Taylor–Couette flow with volume penalization method (χ = 0 represents the fluid domain
and χ = 1 the solid domains respectively). The radius of the inner cylinder is R1 = 0.15
and that of the outer cylinder is R2 = 0.4. The angular velocity of the inner cylinder is
Ω1 = 0.2 and that of the outer is equal to zero, ν = 0.01 and Ta ≈ 1.

indicates that a steady state has been reached. The mask is filtered (mollified), with Eq.
(2.52) presented in Section 2.2.4. Original and mollified Mask functions at the midline,
i.e., y = 0.5, are illustrated in Fig. 3.4 (a). A comparison of the computed vorticity ω,
the stream-function ψ and the velocity u with exact solutions, using N = 128 grid point
in each direction, is plotted in Fig. 3.4 (a)-(b). The convergence of the L1-error of u
versus the grid resolution, for different penalization parameters are shown in Fig. 3.4 (c),
where between first and second order convergence can be seen. Suppose unumη denotes the
numerical solution of the penalized equation, for quantifying the numerical error of unumη

compared to uexact (the solution to the original Navier-Stokes problem), the error can be
estimated by

∥uexact − unumη ∥ ≤ ∥uexact − uη∥︸ ︷︷ ︸
O(

√
η)

+ ∥uη − unumη ∥︸ ︷︷ ︸
O(∆xp)

(3.12)

where ∥ · ∥ is an appropriate norm. The first term at the right-hand side is the error due
to the penalization term and the second term represents the discretization error (p being
the formal order of accuracy of the numerical method used to discretize the equation).
According to Nguyen et al. [164] a compromise between two errors is to chose ∆x ≈
√
η, which leads the to a first-order convergence for the error ∥uexact − unumη ∥ ≤ O(∆x).

The convergence of the L1-error of u versus different penalization parameters is shown for
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different grid resolution in Fig. 3.4 (d), which is shown to be of order √
η. For these

calculations the expected formal accuracy p = 2 is found and the convergence is between
first and second order in space as a function of the resolution N , confirming the analysis
of Carbou and Fabrie [92] and Morales et al. [163]. We also observe a saturation of the
convergence error for large N , corresponding to domination of the penalization error. An
optimal resolution can be found for each η. Decreasing η leads to accuracy enhancement in
general but for an explicit time integration ∆t is also limited by η as discussed in Section
2.4. A fine grid will also need a small η as can be seen in the Fig. 3.4.

3.3 Unsteady flow around a circular cylinder
For verification of the developed solver, an incompressible flow over a circular cylinder at
Re = 200 is considered, which is one of the most thoroughly investigated unsteady flows.
A short review of the involved methods is recalled in the following. For better temporal
resolution a fourth-order Rung-Kutta method is used for time integration of the vorticity
and stream-function version of the Navier–Stokes equations in two-dimensions. The non-
dimensional physical time-step was set according to the constraints explained in Section
2.4. A Cartesian uniform grid in both directions is used on a rectangular domain. The
volume penalization method is used to introduce the cylinder in the solution domain. The
choice of η is prescribed by the error analysis done for the Taylor–Couette flow in Section
3.2. Central second-order finite differences method is used for discretization of all spatial
derivatives. Two multigrid codes developed by Paknejad [133] and by Mousavinia [161]
are used for accelerating the rate of convergence of the elliptic part of the algorithm. The
elliptic equation is the most time consuming part of the calculations and guarantees the
incompressibility constraint. A Full Multigrid (FMG) method is used in [133] and [161].
By using “V” cycles the solution starts on the coarsest grid, then advances by interpola-
tion toward the finer grids. The method uses the Gauss-Seidel iteration with red–black
sweeper as the smoothing operator. For the prolongation operator bilinear interpolation is
employed. Then half-weighting is used for the restriction operator. A grid independent
solution must be achieved, thus the resolution of the grid must be fine enough to be able to
capture the main physical phenomena like frequency of vortex shedding (Strouhal number)
or some integral quantities like hydrodynamic coefficients. However, due to the between
first and second order accuracy of the volume penalization method realization of a perfect
boundary layer near the solid surface seems to be unattainable. Nevertheless the interests
of this method in terms of efficiency and applicability for moving and deformable bodies,
which is the main subject of the present study, motivate and justify the use of the volume
penalization method. Alongside the fact that an external flow is considered for the first
time with the present method, a validation of the equations (2.21)-(2.23) for calculation of
the hydrodynamic forces and torque using the volume penalization method will be done in
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the computed stream-function ψ and velocity u with the exact solution, using N = 128. (c)
The L1-error of u with the spatial resolution (N being the grid resolution in each direction).
(d) The L1-error of u versus the penalization parameter η.
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Table 3.1: Boundary conditions for ψ and ω on a rectangular domain Ω ∈ [0, Lx]× [0, Ly]
which is used for the simulation of the flow around circular cylinder.

B. C. Right (outflow) Left (inflow) Up (inviscid wall) Down (inviscid wall)
ψ ∂xψ = 0 ∂yψ = U∞ ψ = c2 (no-penetration) ψ = c1 (no-penetration)
ω ∂tω = −u∂xω ω = 0 ω = 0 (free-slip) ω = 0 (free-slip)

the following using this test case. The simulations were started from stationary uniform
flow conditions (ω = 0, ∂yψ = U∞) and were continued until periodic shedding of vortices
occurred. Boundary conditions of the rectangular domain at the inflow is uniform flow
(u = U∞, v = 0). At the outflow v = 0 is imposed to obtain ψ,

ψN = (4ψN−1 − ψN−2)/3

then an advection condition for vorticity is considered. More complicated or simpler options
for boundary conditions at the outflow can be considered. However the results of the
presented boundary conditions are satisfactory. All boundary conditions are summarized
in Table 3.1.

3.3.1 Hydrodynamic forces via a control volume around body
Usually the hydrodynamic forces exerted by the fluid onto the body are calculated by
surface integrals F =

∮
∂Ωp

σ · ndS of the stress tensor σi,j(u, p) = −pδi,j + µSi,j. With
the use of immersed boundary methods the flow variables are usually not available at the
surface of the body and must be interpolated. As a consequence the calculated forces
may be not accurate. By using the volume penalization method, volume integration is
already presented in Section 2.1.1 to determine the forces. We present an alternative to
that method and then compare the results. Here we consider a time dependent rectangular
penetrable domain Ωcv (control volume) around the immersed body Ωp (see Fig. 3.5). The
Leibnitz-Reynolds transport theorem gives us the time derivative of the integral of a time
dependent variable (e.g. linear momentum) over a time dependent domain,

d

dt

∫
system(t)

ρu(t)dV =
∂

∂t

∫
cv

ρudV +

∮
cs

ρu(u · n)dS (3.13)

For a closed system the second law of Newton is written as F = d(mu)/dt. Therefore
the hydrodynamic forces exerted onto the body can be deduced from integral forms of the
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Table 3.2: Comparison of the parameters/methods used for simulation of the unsteady flow
around circular cylinder at Re = 200.

Simulation ∆x = Lx/nx ∆y = Ly/ny ∆t η Initial/inflow
Noise

Force eval-
uation via

2 24/2049 12/1025 2× 10−3 2× 10−3 0/0 VP
3 24/1025 12/513 2× 10−3 2× 10−3 0/0 VP
4 24/4097 12/2049 1× 10−3 1× 10−3 0/0 VP
5 24/1025 12/513 1× 10−3 1× 10−3 10−1/10−4 CV/VP
6 24/513 12/257 2× 10−3 2× 10−3 10−3/10−4 CV/VP

Navier–Stokes equations. Following Davidson [96] for the linear momentum we have:

∂

∂t

∫
cv

ρuidV = −
∮
cs

ui(ρu · n)dS+

∮
cs

σ · ndS︸ ︷︷ ︸
Surface forces

+FV
i︸ ︷︷ ︸

Volume forces

(3.14)

where i = 1, 2, 3 and the angular momentum is given by:

∂

∂t

∫
cv

ρ (r× u)idV = −
∮
cs

(r× u)i(ρu · n)dS +

∮
cs

r× (σ · n)dS +MV
i (3.15)

Thereby the forces can be evaluated by the following relation [145]:

F = − d

dt

∫
cv

ρudV︸ ︷︷ ︸
Momentumvariation rate

+

∮
cs

σ · ndS︸ ︷︷ ︸
Exerted forces by fluid

−
∮
cs

ρ(u− up)(u · n)dS︸ ︷︷ ︸
Momentumnet flux from cs

−
∮
∂Ωp

ρ(u− up)(u · n)dS︸ ︷︷ ︸
Momentumflux frombody surface

(3.16)
If no-slip boundary conditions are imposed on the body, the last term is equal to zero and
can be eliminated. The moments acting on the body (by the control volume) can be derived
by vector product of the forces with the distance vector r = x− xref from the reference
point as follows,

M = − d

dt

∫
cv

ρr× udV +

∮
cs

ρr× (σ · n)dS −
∮
cs

ρr× (u− up)(u · n)dS (3.17)

where n is the outward-pointing unit normal vector to the control surface (cs) and up

is the velocity of the immersed body which is considered equal to the velocity of the
surrounding control volume (cv). For validation of the presented methods some simulations
of the unsteady flow around a circular cylinder at Reynolds number equal to 200 (known
as von Kármán vortex shedding) are performed. The parameters used in the different
computations are given in Table 3.2. Hydrodynamic coefficients, Strouhal number and
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Figure 3.5: Sketch of the domain (∆X,∆Y ) ∈]1.2, 1.2[ used to compute the hydrodynamic
coefficients via control volume method (equivalent to control surface and surrounding lines
in two dimensions).

transition time are compared with the results presented in the literature in Table 3.3. The
lift coefficient is defined as,

Cl =
FL

1
2
ρfU∞Aref

the drag coefficient as,
Cd =

FD

1
2
ρfU∞Aref

and the moment coefficient as,

Cm =
Mz

1
2
ρfU∞ArefLref

where FL and FD are normal and parallel to the flow forces represented in [Newton], Mz

is the pithing moment in [N.m], q = 1
2
ρfU∞ is the dynamic pressure, Aref = D × 1 is the

reference area and Lref = D is the reference length. The Strouhal number is a dimensionless
frequency of vortex shedding, St = f D

V
, determined from the time variation of lift. The

transition time is also obtained from the curve of lift, i.e., it is measured between the last
instance of observing a complete symmetric wake, corresponding to the first instability in
the flow, up to the fully developed periodic vortex shedding state. The results obtained in
the present study, are compared in Table 3.3 with numerical simulations performed by other
researchers as well as with experimental measurements. Fig. 3.6 shows the snapshots of
vorticity contours obtained during a simulation, started from a motionless initial condition
up to a developed von Kármán shedding. On can see in (a)-(c) that vorticity sheets start to
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Table 3.3: Comparison of the results obtained from the developed code for simulation of
the unsteady flow around a circular cylinder at Re = 200 with those of other researchers.
Comparison is done for Strouhal number (determined from the time variation of lift),
hydrodynamic coefficients (lift, drag and moment) and the transition time over the curve
of the lift coefficient.

Reference St Cl Cd Cm Transition
start-end

Present study
Simulation 3 VP 0.193 ±0.84 1.58±0.062 ±0.23 112-210
Simulation 2 VP 0.198 ±0.78 1.49±0.054 ±0.054 105-202
Simulation 4 VP 0.201 ±0.72 1.42±0.056 ±0.025 30-145
Simulation 5 VP 0.19 ±0.8 1.58±0.07 ±0.44 1-37
Simulation 6 CV 0.19 ±0.82 1.64±0.06 - 10-50
Simulation 6 VP 0.19 ±0.86 1.7±0.07 ±0.98 10-50

Valizadeh et al. [124]
Upwind 3rd-order 0.182 ±0.75 1.32±0.05 - -
Upwind 5th-order 0.192 ±0.68 1.33±0.045 - 25-75

Tai & Zhao [93] 0.195 ±0.64 1.31±0.041 - 5-57
Rogers et al. [48]

Upwind 3rd-order 0.160 ±0.75 1.29±0.05 - -
Upwind 5th-order 0.185 ±0.65 1.23±0.05 - 24-115

Lecointe & Piquet [42]
Compact 2nd-order 0.227 ±0.7 1.46±0.04 - -
Compact 4th-order 0.194 ±0.5 1.58±0.0035 - -

Rosenfeld et al. [46] 0.211 ±0.69 1.46±0.05 - -
Linnick & Fasel [98]

λ = 0.056 0.199 ±0.70 1.37±0.046 - -
λ = 0.023 0.197 ±0.69 1.34±0.044 - -

Liu et al. [68] 0.192 ±0.69 1.31±0.049 - -
Wang & Zhang [149] 0.198 ±0.69 1.32±0.04 - -
Belov et al. [60] 0.193 ±0.64 1.19±0.042 - -
Miyake et al. [58] 0.196 ±0.67 1.34±0.043 - -
Taira et al. [117] 0.196 ±0.68 1.35 - -
Martinez [37] - - 1.27±0.0035 - -
Lin et al. [34] - - 1.17 - -
Thoman & Szewezyk [24] - - 1.17±0.005 - -
Wille [18] (experimental) - - 1.3 - -
Roshko [12] (exp.) 0.19 - - - -
Kovasznay [10] (exp.) 0.19 - - - -
Berger & Wille [31] (exp.) 0.18-0.19 - - - -
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develop with opposite signs from up and down of cylinder, then prolonged to downstream
in a symmetric manner until the amplification of small perturbations (which are present in
nature and numerical simulations). The presence of shear in the mean flow (in the wake
region) provides an appropriate ambiance for instability growth. The instability causes
distortion of the plane sheets of vorticity, to perform a wavy motion. Then because of
incompressibility constraint the wavy sheets are divided to rotational structures. Due to
stability considerations, the rotational structures are more stable in comparison to sheet-like
vorticity. Finally, vortices with opposite signs shed from up and down of the cylinder known
as Kármán vortex shedding. In the present study the maximum stable separation length
is about Lsep = 10D. Generally it depends on the numerical method, the perturbation
of the inflow and also to the initial condition. Fig. 3.7 shows the computed lift, drag
and moment on the cylinder versus non-dimensional time obtained with the present solver.
Lift and moment start from zero, pass through a transitional oscillatory state and evolve
to a perfect sinusoidal oscillation. In the work of Valizadeh [124] the drag curve shows a
minimum of about Cd = 0.9 at t = 35 before the start of the oscillation.

Considering the CPU-time necessary to obtain a fully developed periodic vortex shed-
ding, initial perturbations and noise in the inflow can help to bypass the transition state.
Initial perturbations are defined as: u = U∞ + 0.01 × u′, v = 0.01 × v′ and noise in the
inflow are defined as: u = U∞ + 10−4 × u′, v = 10−4 × v′, where u′, v′ ∈ [0, 1] are ran-
dom numbers. The results of the simulation with perturbations at the inflow and initial
condition are demonstrated in Fig. 3.8. The corresponding hydrodynamic forces are given
in Fig. 3.10. Comparison of the hydrodynamic forces and the torque, calculated via the
surrounding control volume and the volume penalization method is illustrated in Fig. 3.10
(a). Components (pressure, momentum, shear and volume) of drag and lift forces calcu-
lated by control volume method are also given in Fig. 3.10 (b) and (c), respectively.

3.4 Fluid–structure interaction

3.4.1 Free sedimentation of a cylinder
In this section we perform a simulation of a two-dimensional cylinder, falling due to the
gravity in a quiescent fluid, to validate the two-way fluid/solid interaction. We compare
our results with those of Gazzola et al. [144] and Namkoong et al. [119] which have
the same physical parameters. A rigid 2D cylinder of diameter D = 0.005 m with ρb =

1.01ρf , is released from rest in a fluid with density ρf = 996 kg/m3 and kinematic viscosity
ν = 8 × 10−7m2/s and accelerates due to gravity (g = −9.81m/s2) until it reaches its
asymptotic terminal velocity. The domain size is set to (x, y) ∈ [0 , 0.04m]× [0 , 0.32m] =

[0 , 8D] × [0 , 64D]. The spatial resolutions in our simulations are set to 512 × 4096 and
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Figure 3.6: Vorticity contours around a circular cylinder (simulation 4), where Re=200,
∆x = 24

4097
, ∆y = 12

2049
, xcg = Lx/4, ycg = Ly/2, ∆t = 10−3 and η = 10−3.
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Figure 3.7: Hydrodynamic forces and moment for the circular cylinder (simulation 3),
where Re=200, ∆x = 24

1025
, ∆y = 12

513
, ∆t = 2× 10−3 and η = 2× 10−3.

1024 × 8192, the penalization parameter η ∈ [10−4, 10−3], the time step ∆t ∈ [10−4, 10−3]

and the filter parameter for denoising the hydrodynamic coefficients is δ ∈ [0.001, 0.005].
Second and fourth order discretizations are used in the simulations. In the simulations of
Gazzola et al. [144] the resolution is 1024×8192, the penalization parameter η = 10−4 and
the Lagrangian CFL is set to 0.01.

The snapshots of the vorticity isolines generated by the falling cylinder in a fully qui-
escent and slightly perturbed fluid are illustrated in Fig. 3.12 and Fig. 3.13, respectively.
An example of the initial perturbation, created with a hyperbolic tangent function, for
trigering the transition during the sedimentation of a cylinder is illustratrd in Fig. 3.11. A
qualitative agreement with the simulations of Gazzola et al. [144] can be observed. Com-
parison of the vortical structures at t = 13 between the simulation with slightly perturbed
initial condition (u′ ≈ 0.001× randomnumber×u∞) represented in Fig. 3.13 (h) and that
of a fully quiescent initial condition represented in Fig. 3.12 (h), shows that the presence
of perturbations in the initial condition can trigger the transition in the early stage of the
fall, i.e., t ≈ 3. This is particularly important to obtain comparable results with other
simulations with different numerical methods where the added numerical dissipation is not
necessarily the same. Without adding any initial perturbations the transition can be trig-
gered (e.g., at t ≈ 10) by the numerical errors which are performing like a perturbation
(see Fig. 3.12). This kind of transition is not controlled, it depends on the grid resolution
and the numerical implementation and explains the delayed streamwise velocity overshoot
and the different transient flow fields.

Fig. 3.14 shows the time evolution of the streamwise and lateral velocities obtained
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Figure 3.8: Vorticity contours of the flow around a circular cylinder (simulation 5) started
by an initial perturbation (u = U∞ + 0.01 × u′, v = 0.01 × v′) and noise in the inflow
(u = U∞ + 10−4 × u′, v = 10−4 × v′) where u′, v′ ∈ [0, 1] are random numbers, Re=200,
∆x = 24

1025
, ∆y = 12

513
, xcg = Lx/4, ycg = Ly/2, ∆t = 10−3 and η = 10−3.
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Figure 3.9: Pressure contours of the flow around a circular cylinder (simulation 6) started
by an initial perturbation (u = U∞ + 10−3 × u′, v = 10−3 × v′) and noise in inflow (u =
U∞+10−4×u′, v = 10−4×v′) where u′, v′ ∈ [0, 1] are random numbers, Re=200, ∆x = 24
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, xcg = Lx/4, ycg = Ly/2, ∆t = 2× 10−3 and η = 2× 10−3.
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Figure 3.10: (a) Comparison of the hydrodynamic forces of the circular cylinder, calculated
via the surrounding control volume and the volume penalization method (simulation 6),
started by an initial perturbation (u = U∞ + 10−3 × u′, v = 10−3 × v′) and noise in inflow
(u = U∞ + 10−4 × u′, v = 10−4 × v′) where u′, v′ ∈ [0, 1] are random numbers, Re=200,
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, ∆t = 2 × 10−3 and η = 2 × 10−3. (b) Components (pressure,

momentum, volume and shear) of the drag force Fx = −FxP − FxM − FxV + FxS
calculated by the CV method. (c) Components (pressure, momentum, volume and shear)
of the lift force Fy = −FyP − FyM − FyV + FyS calculated by the CV method.
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with the present method and those of Namkoong et al. [119] and Gazzola et al. [144]. As
can be seen the streamwise velocity shows the same dynamics as the reference simulations.
In particular the streamwise velocity obtained in the simulation with perturbed initial con-
dition (see Fig. 3.11) overshoots above the terminal velocity and then slows down when
the vortices start shedding. It can be seen that because of 8D width of the domain size,
there is no significant difference between the streamwise velocities by imposing no-slip and
free-slip boundary conditions at the boundaries of the rectangular Cartesian grid. After
transition the amplitude of the oscillations of the lateral velocity ulateral = ±0.002 m/s is
in agreement with those of Namkoong et al. [119] and Gazzola et al. [144], but a phase
shift can be observed due to a short delay in the transition in our simulation. The terminal
streamwise velocity of the simulation with perturbed initial condition is ustreamwise = 0.024

m/s which corresponds to Reynolds number Re ≈ 150 and that of the unperturbed initial
condition is ustreamwise = 0.025 m/s which corresponds to Reynolds number Re ≈ 156. In
the former an overshoot can be observed in the streamwise velocity while in the later the
overshoot takes place in a larger time interval or it is entirely eliminated. The terminal
velocity differs less than 5% from the reference terminal velocity in the case of the per-
turbed initial condition and coincides in the case of the unperturbed initial condition. The
differences are due to different Poisson solvers which is unbounded in the simulation of
Gazzola et al. [144], the boundary conditions which are free-slip and no-penetration in our
simulations, different penalization parameters and resolutions. From the authors viewpoint
the take-home message here is that the near one relative solid/fluid density leads to a small
buoyancy where an invalid approximation of the hydrodynamic coefficients especially in
the early stages of the fall yields the simulation to a failure. To cope with this challenge
the process of denoising of the hydrodynamic coefficients with a proper filter parameter
δfilter is devised in the proposed algorithm to eliminate the non physical oscillations of the
hydrodynamic coefficients.

3.4.2 Validation of the solid dynamics with a falling ellipse
For further validation of the proposed algorithm to deal with rotating objects interacting
with incompressible flows, sedimentation of an ellipse due to terrestrial gravity field is con-
sidered in this section. According to Kolomenskiy and Schneider [140] different behaviors
like steady falling, fluttering, tumbling and chaotic motion can be observed by varying
the ellipse aspect ratio a/b, density ratio ρb/ρf and the viscosity ν of the fluid. These
parameters can be summarized in a dimensionless moment of inertia

J∗
cg = 2Jcg/(πa

4ρf ) = (a2 + b2)(b/2a3)(ρb/ρf )
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Figure 3.11: An example of the initial perturbation created with a hyperbolic tangent
function for trigering the transition during the sedimentation of a cylinder u(x) = f ×
noise × u′, where f = 0.5(tanh y′ + 1), noise = 10−3 × Uref , u′ ∈ [−1, 1] are uniformly
distributed random numbers, Uref = umax, y′ = 10y/Ly − 5, y′ ∈ [−5, 5], y ∈ [0, 1] and
vorticity ω = vx − uy.

and the Reynolds number Re = utL/ν, where ut is the sedimentation average velocity
estimated by Gazzola et al. [144] with

ut =
√

4bg(ρb/ρf − 1) (3.18)

Kolomenskiy and Schneider [126] have replaced the coefficient 4 by π in the definition of
the reference velocity Eq. (3.18). In our opinion the definition of the reference velocity by
Eq. (3.18) is questionable and needs more investigation. Using Eq. (3.18) for evaluation
of the reference velocity leads to under prediction of the Reynolds number. We think
that the average velocity ut = (Ū2

cg + V̄ 2
cg)

1/2 in the final stage of the fall would be a
better choice. Nevertheless instead of dimensionless numbers, we use the ellipse aspect
ratio, density ratio and the viscosity of the fluid as influencing parameters, to classify the
behavior of the ellipse in fall. The results of the three simulations performed by the second
order solver for the falling ellipse corresponding to steady fall, fluttering and tumbling
are reported in the following. The domain of the solution for steady fall and fluttering is
(x, y) ∈ [0 , 5L] × [0 , 20L] where L = 2a = 1 and H = 2b = 0.2 are the major and minor
diameters of the ellipse, respectively. The resolution of the grid is Nx ×Ny = 512× 2048.
For simulation of falling ellipse in the tumbling regime a larger domain and a finer grid are
needed. Therefore (x, y) ∈ [0 , 10] × [0 , 10] and Nx × Ny = 2048 × 2048 are used for the
simulation of the tumbling regime. Decreasing the kinematic viscosity from [m2/s], ν = 0.03



3.4. FLUID–STRUCTURE INTERACTION 67

(a) t = 0.2 (b) 2 (c) 4 (d) 6 (e) 8 (f) 10 (g) 12

Vor

90

40

12

7

5

3

1

0

-1

-5

-10

-12

-20

-80

g

8 D

(h) t = 13

Figure 3.12: Vorticity isolines (dashed lines are used for negative values) of the falling
cylinder in fully quiescent fluid, performed by the 2nd-order solver, where free-slip boundary
conditions are imposed at the surrounding walls, g = −9.81m/s2, ρb/ρf = 1.01, D = 0.005
m, (x, y) ∈ [0 , 0.04m]× [0 , 0.32m] = [0 , 8D]× [0 , 64D], ∆t = 1.25×10−4, the resolution is
set to 512× 4096, the penalization parameter η = 10−3, the filter parameter for denoising
of the hydrodynamic coefficients is δ = 0.001, ν = 8× 10−7 m2/s and Re ≈ 156.

to 0.003 results in different falling regimes. Snapshots of vorticity isolines of the falling
ellipse in different regimes are illustrated in Fig. 3.19. Other parameters which are used in
the simulations are described as follows: The polar moment of inertia around the center of
gravity is Jcg = 0.25πab(a2+ b2)ρb = 0.0157, the initial position (x0, y0) = (0.5Lx , Ly − 3a)

and the initial angle of the major diameter with respect to the horizon is θ0 = π/4. The
density ratio is set to ρb = 1.538ρf , the filter parameter for denoising of the hydrodynamic
coefficients δ = 0.001, the gravity in the y-direction g = −9.81m/s2 and the penalization
parameter is η = 10−3. Isolines of the vorticity and the trajectory of the center of gravity
corresponding to ellipse falling in the steady regime are illustrated in Fig. 3.15 at different
instants. Isolines of the vorticity and the trajectory of the center of gravity corresponding
to ellipse falling in the fluttering regime are illustrated in Fig. 3.16 at different instants
from t = 0.2 up to t = 25. Isolines of the vorticity and the trajectory of the center of gravity
corresponding to the falling ellipse in the tumbling regime are illustrated in Fig. 3.17 at
different instants. A qualitative agreement of the (cg) trajectories in different falling
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Figure 3.13: Vorticity isolines (dashed lines are used for negative values) of the falling
cylinder in a slightly perturbed fluid, performed by the 4th-order solver, where free-slip
boundary conditions are imposed at the surrounding walls, g = −9.81m/s2, ρb/ρf = 1.01,
D = 0.005 m, (x, y) ∈ [0 , 0.04m] × [0 , 0.32m] = [0 , 8D] × [0 , 64D], ∆t = 1.25 × 10−4,
resolution 4096×512, penalization parameter η = 5× 10−4, ∆t = 1.25× 10−4, δfilter = 10−3,
ν = 8× 10−7 m2/s and Re ≈ 150.

regimes with the simulations of Gazzola et al. [144] can be observed in Fig 3.18. The
differences in the (cg) trajectories are due to the slightly different parameters we have used
and the chaotic behavior of ellipse in the tumbling regime. The amplitude of the oscillations
in the fluttering regime is also sensitive to the used parameters. The corresponding forces
and velocity components of the falling ellipse in the fluttering regime are plotted in Fig.
3.20. A comparison of the first and second order filtering of the hydrodynamic forces is
shown in Fig. 3.20 (a) - (b) and (c). As can be seen the second-order filtering is more
efficient for denoising the hydrodynamic forces in comparison to the first-order filtering.
The hydrodynamic coefficients in the fluttering regime show an oscillatory behavior with
a principal frequency f1 ≈ 0.24. However, in the side force a harmonic frequency with
f2 = 2f1 ≈ 0.48 can be seen which is due to the shedding of the vortices. The chosen
reference point in the simulation of the falling ellipse is the center of gravity (cg) for the
calculation of the polar moment of inertia, rotation angle and the moment. This choice is
advantageous for simplification of the Euler equation (2.29), by eliminating the torque due
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Figure 3.14: Comparison of the streamwise ustreamwise and lateral ulateral velocities of the
falling cylinder via different methods/parameters with reference simulations. Symbols in-
dicate the simulations performed by Gazzola et al. [144] (red triangles) and Namkoong et
al. [119] (green circles). Solid and dashed lines represent the results with the proposed
algorithm on 4096×512 grid point with penalization parameter η = 10−3, respectively
performed by, the 4th-order solver with a perturbed IC and free-slip BC (blue solid), the
2nd-order solver with unperturbed IC and free-slip BC (black dashed), the 2nd-order solver
with unperturbed IC and no-slip BC (purple dash-dot) and the 2nd-order solver with per-
turbed IC and free-slip BC (cyan dash-dot-dot) on the finest resolution 8192×1024 with
penalization parameter η = 10−4.

to buoyancy. In Chapter 4 numerical simulation of swimming fishes will be considered. For
the simulations of the swimming fish (ρb = ρf ) the buoyancy is equal to zero. Thus without
the need for evaluation of the torque due to the body forces in Euler equation (2.29), the
reference point can move to the head, which is more suitable for the construction of the
fish geometry and its kinematics. The geometry and kinematics of the fish are calculated
by Eqs (4.10), (4.12) and (4.14), where starting by the information of the head as initial
conditions is advantageous.

3.5 Conclusion
In this chapter the ability of the proposed algorithm for simulation of solid bodies interact-
ing with two-dimensional incompressible flows is examined. For introducing a solid body
in fluid flow, the volume penalization method is applied to the Navier–Stokes equations
as a forcing term. Even if the penalization method is shown to have between first and
second order accuracy in space, an advantage of this method is that the evaluation of the
hydrodynamic coefficients is straightforward. Proper denoising of the hydrodynamic coeffi-
cients is crucial in dealing with fluid–solid interaction problems via the volume penalization
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Figure 3.15: Vorticity isolines (dashed lines are used for negative values) of the falling
ellipse in the steady regime, where resolution of the grid is Im×Jm = 513×2049, (x, y) ∈
[0, 5L] × [0, 20L], L = 2a = 1, J∗ = 0.16, ρs/ρf = 1.538/1.0, g = −9.81, a/b = 0.5/0.1,
Xcg

0 = Lx/2, Y cg
0 = Ly − 3a, θ0 = π/4, δfilter = 10−3, η = 10−3, ν = 0.03 and Re ≈ 15.
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Figure 3.16: Vorticity isolines (dashed lines are used for negative values) of the falling
ellipse in the fluttering regime, where resolution of the grid is Im × Jm = 513 × 2049,
(x, y) ∈ [0, 5L] × [0, 20L], L = 2a = 1, J∗ = 0.16, ρs/ρf = 1.538/1.0, g = −9.81, a/b =
0.5/0.1, Xcg

0 = Lx/2, Y cg
0 = Ly − 3a, θ0 = π/4, δfilter = 10−3, η = 10−3, ν = 0.01 and

Re ≈ 46.
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Figure 3.17: Vorticity isolines (dashed lines are used for negative values) of the falling
ellipse in the tumbling regime, where resolution of the grid is Im × Jm = 20492, (x, y) ∈
[0, 10] × [0, 10], J∗ = 0.16, ρs/ρf = 1.538/1.0, g = −9.81, a/b = 0.5/0.1, Xcg

0 = Lx/2,
Y cg
0 = Ly − 3a, θ0 = π/4, δfilter = 10−3, η = 10−3, ν = 0.003 and Re ≈ 153.
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(a) Picture from Gazzola et al. [144]. Coordinates are reported in
cord lengths: (green) steady falling regime (J∗ = 0.146, Re = 100,
H/L = 1/4 and ρs/ρf = 1.1), (black) fluttering regime (J∗ =
0.16, H/L = 1/5, ρs/ρf = 1.538, ν = 6.33× 10−3, ut = 1.45 and
Re = 1147, ) and (red) tumbling regime (J∗ = 0.146, Re = 1000,
H/L = 1/4 and ρs/ρf = 1.1).
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Figure 3.18: Comparisons of (cg) trajectories of the falling ellipse, obtained in the present
investigation, with those of Gazzola et al. [144].



3.5. CONCLUSION 73

method. Validation of the developed method shows the efficiency and expected accuracy
of the algorithm for a variety of fluid–solid interaction problems. Some perspectives for
future works are adding a multiresolution analysis to the algorithm for grid adaptation,
parallelization and extension to three dimensions.
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Figure 3.19: Vorticity isolines (dashed lines are used for negative values) of the falling
ellipse in different regimes, where J∗ = 0.16, ρb/ρf = 1.538, g = −9.81, a/b = 0.5/0.1,
Xcg

0 = Lx/2, Y cg
0 = Ly − 3a, θ0 = π/4, δfilter = 10−3 and η = 10−3.
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Figure 3.20: (a) Hydrodynamic coefficients of a falling ellipse in the fluttering regime, where
J∗ = 0.16, ρb/ρf = 1.538, a/b = 1/5 and ν = 0.01 before denoising. (b) After applying the
first-order filter (2.25) with b = 0 and α = 0.2. (c) After applying the second-order filter
via Eqs. (2.25) and (2.26) with δ = 0.001. (d) The corresponding velocity components.



Chapter 4

Two-dimensional simulations of
fish-like swimming

“In spite of a common fascination, even obsession, with
features, we too often forget to appreciate them in their
natural setting, gracing the wild creatures around us.”

Thor Hanson (2011) features:
The evolution of a natural miracle

First we recall a brief introduction to fishes and locomotion types from Wikipedia (the
free encyclopedia) [165]-[166]. A fish is any gill-bearing aquatic animal that lack limbs with
digits. They can be divided into bony fish (osteichthyes), cartilaginous and hagfish (lam-
preys). Fishes exhibit greater species diversity than any other group of vertebrates with
about 32,000 species [165]. Some examples are shown in Fig. 4.1. Their length ranging
from 1 cm to 18 m. Similarly to the aerodynamics of flight, swimming requires to overcome
the drag by producing thrust by the swimmer. Unlike flying, however, swimming animals
do not necessarily need to actively exert high vertical forces because the effect of buoyancy
can counter the downward pull of gravity, allowing these animals to float without much
effort. Fish swims by exerting force against the surrounding water. This is normally done
by the fish contracting muscles on either side of its body in order to generate moving waves
from head to tail, generally getting larger as they go toward the tail [166]. The resultant
force exerted on the water by such motion generates a backward force (even oscillatory)
which in turn pushes the fish forward. In straight swimming the time average of the resul-
tant lateral force is zero. Most fishes generate thrust by using lateral movements of their
body and fins. But some fishes swim mainly using their median and paired fins. The latter
group gain manoeuvrability but they cannot swim as fast as fishes using their bodies and
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caudal fins. In general these movements can be divided into undulatory and oscillatory
motions. Following Breder [6] mechanisms of swimming (locomotion), using body-caudal
fins, are divided to five groups that differ in the fraction of the body that is displaced
laterally.
Anguilliform: This mechanism can be observed in some long, slender fish-eels, where
there is little increase in the amplitude of the flexion wave as it passes along the body.
Sub-carangiform: In this case there is a more marked increase in wave amplitude along
the body with the vast majority of the work being done by the rear half of the fish. In
general, the fish body is stiffer, leading to higher speed but reduced maneuverability. The
Trout which is demonstrated in Fig. 4.1 (b) use sub-carangiform of locomotion.
Carangiform: Fishes of this group are stiffer and faster-moving than the previous groups.
The vast majority of movement is concentrated in the very rear of the body and tail.
Carangiform swimmers generally have rapidly oscillating tails.
Thunniform: The next-to-last group is reserved for the high-speed long-distance swim-
mers, like tuna. Hawkins et al. [94] show that the thunniform locomotion is an autapo-
morphy of the tunas. Here, virtually all the lateral movement is in the tail and the region
connecting the main body to the tail (the peduncle). The tail itself tends to be large and
crescent shaped.
Ostraciiform: These fishes have no appreciable body wave when they employ caudal lo-
comotion. Only the tail fin itself oscillates (often very rapidly) to create thrust. This group
includes Ostraciidae.
Median-paired fin propulsion: Not all fishes fit comfortably in the five above groups.
Ocean sunfish, for example, have a completely different locomotion system, or many small
fishes use their pectoral fins for swimming as well as for steering and dynamic lift. Fishes
with electric organs, such as those in Gymnotiformes, swim by undulating their fins while
keeping the body still, presumably so to not disturb the electric field that they generate
[166]. Some locomotion models and body types are illustrated in Fig. 4.2. Three main
parts of the body of the fishes are head, trunk and tail, an example with the external
organs is illustrated in Fig. 4.3. Different types of fins like dorsal, ventral, anal, pectoral
and caudal are shown in Fig. 4.4 for a haddock.

4.1 Physical definitions
In this section we introduce some dimensionless parameters, frequently used in the literature
to quantify the swimming of fish-like animals due to undulatory movement. The Reynolds
number is defined as

Re =
UL

ν
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(a) Eel (lamprey) (b) Trout (c) Whale

(d) Bulhead (e) Dogfis (f) Torpedo (g) Mackerel

(h) Boxfish (i) Sunfish

(j) Ray finned (k) Lobe finned

Figure 4.1: Different types of fishes. Cartilaginous fishes (c-g), pictures are taken from
[165].

where U is the average swimming speed, L is the length of the swimming fish, see Fig. 4.5
(a), and ν represents the kinematic viscosity. Lord Rayleigh [4] was the first to use the
Strouhal number, previously defined by Strouhal [2], to quantify in a proper dimensionless
fashion the frequency of vortex shedding behind a bluff body. A decade later, this definition
was eventually changed by Bénard [7] to be the inverse of Rayleigh’s suggestion:

St = f
d

U

where f is the frequency of vortex shedding, d is the diameter of the bluff body and U is
the free-stream velocity. The Strouhal number is intimately linked to the arrangements of
vortices in the wake as already pointed out by Rayleigh. Von Kármán [3] showed that two
infinite rows of point vortices are always unstable unless their spacing ratio has a particular
value b/a = 0.281 (see Fig. 4.6 (a)). In the context of swimming, the Strouhal number has
been introduced within two innovative papers by Triantafyllou et al. [51, 59]. Following
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(a) Locomotion models (b) Locomotion models

(c) Body types

Figure 4.2: Locomotion models and body types

Figure 4.3: Basic external anatomy of a lamprey, picture is taken from [165].
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Figure 4.4: The haddock, a type of cod, is ray-finned. Pectoral fins (paired), ventral
fins (paired), dorsal fin (three), adipose fin, anal fin (two) and caudal (tail) fin (one) are
illustrated, picture is taken from [165].

Figure 4.5: Dimensions considered for a typical swimming fish: (a) side view and (b) top
view, picture is taken from Eloy [157].

Eloy [157] the Strouhal number is defined as:

St = f
A

U

where f is the tail-beat frequency, A is the peak-to-peak amplitude at the tail tip and U
is the average swimming speed. The argument of Triantafyllou et al. [59, 51] relies on
the observation that the wake behind a swimming fish resembles the Bénard-von Kármán
(BvK) vortex street observed behind bluff bodies except that the sign of vortices are in-
verted, resulting in a reverse Bénard-von Kármán (rBvK) street (see Fig. 4.6 (b)). In the
BvK street, the average flow exhibits a deficit of velocity compared to the free stream U ,
indicating that longitudinal momentum has been lost and that a drag force is exerted on
the bluff body (see Fig. 4.6 (c)). However, swimming animals are self-propelled and there-
fore no net drag nor thrust is exerted on average when they swim at constant speed. The
resulting rBvK wake is therefore momentumless and exhibits on average a jet around the
centerline surrounded by a region of counterflow (see Fig. 4.6 (d)). In Fig. 4.7 a schematic
three-dimensional views of the BvK (a) and rBvK vortex streets (b), corresponding to the
two-dimensional views of Fig. 4.6 is illustrated. In the case of steady swimming, the thrust
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has to compensate the drag D on average such that

⟨T ⟩ = D

where ⟨·⟩ angle brackets denote time average. Hence, the role of viscosity being limited to
setting the drag, the only relevant parameters are the added mass at the tail tip

ma =
π

4
ρh2,

the average swimming velocity U and the drag D. Out of these three parameters, a unique
dimensionless quantity can be constructed which measures the ratio between the drag D
and the typical thrust maU

2. The resulted dimensionless number is called the Lighthill [28]
number

Li =
πD

2maU
2 =

S

h2
Cd

where S is the total surface of the fish (or wetted surface) and Cd is the drag coefficient
such that

Cd =
D

0.5ρU
2
S

In the same manner the thrust coefficient is defined as Ct = T/(0.5ρU
2
S). The only relevant

parameter to the swimming problem is Lighthill number Li which gathers informations on
the geometry of the swimming animal (through the shape ratio S/h2) and on the Reynolds
number (through the drag coefficient Cd). The optimal motion of the tail will thus be a
function of Lighthill number Li alone. This is in contrast to bluff body wakes where the
Strouhal number is a function of Re, as it has been shown by Rayleigh. Another useful
parameter in quantifying the hydrodynamic efficiency of the swimming, is the slip ratio
commonly defined as

Sr =
U

Vp
= U

k

ω

where k denotes the wavenumber, ω is the angular frequency of the oscillations and Vp =

ω/k is the velocity of the passing wave (phase speed) due to undulatory movement of the
body which is always greater than the swimming speed U , i.e., (SR < 1).
The swimming number is defined by Gazzola et al. [162] as follows:

Sw = f
AL

ν

which is resulted from multiplication of Reynolds number by Strouhal number, i.e.,

Sw = Re St
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The most interesting point in this nondimensional number is the elimination of swimming
speed Ū which is present in all previously defined numbers. In the context of swimming,
velocity is an output of the imposed kinematics on the body, which is unknown by default
before starting the simulation. In some sense, swimming number is reminiscent of the
Péclet number Pe = Re Pr defined in heat transfer, which is resulted from multiplication
of Reynolds number by Prandtl number. Then a scaling law presented by Gazzola et al.
[162] for quantification of swimming as follows:

Sw ∼

{
Re3/4 Re ≤ 2500

Re Re > 2500
(4.1)

where Rec ∈ [2000, 7000] represents the critical Reynolds that transition from laminar to
turbulent regime takes place. For turbulent swimming the Strouhal number is approximatly
constant St ≃ 0.3 but for laminar swimming they propose St ∼ Re−1/4. For more details
we refer to Gazzola et al. [162].

Figure 4.6: (a) Schematic view of the Bénard-von Kármán (BvK) vortex street behind a
circular cylinder. (b) The reverse BvK (rBvK) vortex street in the backside of a swimming
fish. (c) The average velocity difference u(y) from the mean flow U in the far wake is a jet
toward the cylinder. (d) In the case of swimming u(y) is backward oriented in the center
line. Both of these jets are surrounded by a region of counterflow. In an stable configuration
of vortices each dipole creates a small jet represented by black vectors, pictures are taken
from Eloy [157] with a slight modification.

4.1.1 Efficiency measurement
An important issue in studying the fish swimming, is to classify the hydrodynamic efficiency
of the movement. There are different definitions depending to the case and the purpose of
the study. We will cite some of them in the following. We denote by σ′

ij = µ(ui,j + uj,i)

the viscous stress tensor. Following Bergmann and Iollo [145] the power required for the
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Figure 4.7: Schematic three-dimensional views of the (a) BvK and (b) rBvK vortex streets,
corresponding to the two-dimensional views of Fig. 4.6, picture is taken from Eloy [157].

swimming is defined as:

P (t) = −
∫
∂Ωs

pu · ndS +

∫
∂Ωs

(σ′
ij · n) · udS (4.2)

Since in the present investigation the mesh is not body fitted, P (t) cannot be computed by
Eq. (4.2) in a straightforward manner. By integrating the scalar product of the momentum
equations and the velocity vector over the fluid domain Ωf , following Bergmann and Iollo
[145] the total instantaneous power delivered to the fluid can be written as:

P (t) =
∂

∂t

∫
Ωf

ρf
|u|2

2
dΩ + µ

∫
Ωf

(∂ui
∂xj

+
∂uj
∂xi

)
:
∂ui
∂xj

dΩ (4.3)

where |u|2 = u · u = u2 + v2 +w2 and Ωf denotes the spatial region occupied by the fluid.
The power required to swim is then equal to the rate of change (or temporal variation) of
the kinetic energy in the flow domain plus the power dissipated by viscosity. The required
energy for a fish to travel a given distance between t1 and t2 is

E =

∫ t2

t1

P (t)dt (4.4)

By denoting the mean power required for a considered steady periodic swimming at a
velocity U by Psps and the mean power needed to tow the same rigid body at the same
velocity U by Ptow. Following Barrett et al. [71], the propulsive index Ip is defined as,

Ip =
Ptow

Psps
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Both of the powers, i.e., Psps and Ptow, are computed from Eq. (4.3). Drag reduction can
be achieved if Ip > 1. Following Gazzola et al. [155] efficiency is defined as:

η =
Euseful

Eflow

where Euseful is the kinetic energy of the fish:

Euseful =
1

2
mU

2

in which U is the mean forward velocity of the fish during the swimming and m is the
mass of the fish. The term Eflow represents the total energy delivered to the fluid during
the swimming and can be computed by time integration of Eq. (4.3). Following Eloy [157]
another parameter to estimate the swimming performance, is the Froude efficiency:

ηfr =
⟨TU⟩

DU + ⟨E⟩
(4.5)

which expresses the ratio between the average useful power ⟨TU⟩ = DU and the total
power spent for swimming.

4.2 Modeling of the swimmer shape
A symmetric shape is the first choice to start the parameterization of the swimmer body.
A class of swimmers shape can be described by a hydrofoil. One method to parameterize
a hydrofoil shape is the Kutta–Joukowsky transform. In this transformation, a circle with
radius rc = 1 in original plane (space), defined by the complex number ζ = η + iθ, change
into an airfoil profile, defined by the complex number z = x+ iy, in the transformed plane
(see Fig. 4.8). The transform is defined as follows:

z = ζ +
λ2

ζ
, λ ∈ C

The circle must enclose the point ζ = −1 (where the derivative is zero) and intersects the
point ζ = 1. This can be achieved for any allowable center position (ηc + iθc) by varying
the radius of the circle. Since this hydrofoil presents a cusped trailing edge, following
Bergmann and Iollo [145] the Kármán-Trefftz transform can be applied to create more
realistic shapes. Even with the use of the Joukowsky transform the cusp in the trailing
edge can be eliminated by slightly thickening the trailing edge via two methods; either by
directly modifying the coordinates of the points at the body surface, or in the process of
determining the mask function χ, filtering of the mask function χ̄ can smooth the trailing
edge.
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The 4-digit NACA-00xx airfoils can also be used to produce a symmetric hydrofoil. The
formula for the thickness xx of the foil, with T=xx/100, is

yt(x) = 5T (0.2969x0.5 − 0.126x− 0.3516x2 + 0.2843x3 − 0.1036x4)

where the cord length is nondimensionalized to be in x ∈ [0, 1].
Following the works of Carling et al. [67], Kern and Koumoutsakos [105] and Gazzola et al.
[144] the geometry of a two-dimensional swimmer can be characterized by the half width
w(s) of the body along its (midline) arclength (s). In their study the half width w(s) is
defined as:

w(s) =


√
2whs− s2 0 ≤ s < sb

wh − (wh − wt)(
s−sb
st−sb

)2 sb ≤ s < st

wt
L−s
L−st

st ≤ s ≤ L

(4.6)

where L is the body length, wh = sb = 0.04L, st = 0.95L and wt = 0.01L. In Kern
and Koumoutsakos [105], the thickness reduction from head to tail is linear instead of
quadratic for the two dimensional cases. Here we implemented the same modification like
as Gazzola et al. [144]. In the present study the Joukowsky transform is used in preliminary
simulations because of its simplicity and efficiency and proper accuracy. Kármán-Trefftz
transform presented in [145] can also be used. In later simulations of the present study,
Eq. (4.6) is used to determine the shape of the swimming fish.

4.2.1 Backbone deformation law for straight swimming
To define a periodic swimming law, the idea is to deform the backbone of the straight
fish (defined by 0 ≤ x ≤ l and y = 0), see Fig. 4.8 (c), to fit a given curve y(x, t) while
keeping the backbone length fixed. Let s be the arclength over the curvilinear coordinate
of the deformed backbone (0 ≤ s ≤ l). By choosing s = 0 at the head x = x0, following
Bergmann and Iollo [145], for a given arclength s the abscissa x(s) is found by inverting
the arclength integral:

s(x) =

∫ x

x0

√
1 +

(
∂y(x′, t)

∂x′

)2

dx′ (4.7)

Therefore in discrete space, for points uniformly distributed on the backbone curve, we
have:

∆x =
∆s√

1 +
(
∂y
∂x

)2 (4.8)

where ∆s = l/(n− 1). The corresponding y(x, t) coordinate can then be computed accord-
ing to Eq. (4.9). As described by Barrett et al. [71], one of the frequently used modes of
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propulsion, imposed over the backbone of the fish in a forward gait is

y
(
x(s), t

)
= a(x) sin

(
2π(x/λ± ft)

)
(4.9)

where a(x) is the backbone envelope (see Fig. 4.9, Fig. 4.10 and Fig. 4.12). For a periodic
undulatory swimming the envelope is given by:

a(x) = a0 + a1x+ a2x
2 , x ∈ [0, lfish]

While the length of the fish is always equal to l, the Cartesian abscissa is x(l) < l, except
for the straight configuration where x(l) = l. The motion is defined by a constant phase
speed

Vp = λf =
ω

k
=
U

Sr

where λ and f denote respectively the wavelength and the frequency of the oscillations.
The wavelength λ is not necessarily equal to the body length as in Deng et al. [110]. The
wavy motion affects the swimmer from the head to the tail and can be centered at the head
of the fish, as in Deng et al. [110] or at a predefined percentage of the body length like
in Zhu et al. [83]. The parameters a0, a1 and a2 can thus be adjusted in order to impose
a maximal tail amplitude A/2 = a0 + a1 + a2, which is an important parameter for the
locomotion efficiency according to Lighthill [26]. Note that in practice for starting a wavy
motion a progressive increase takes place, during a period T from the initial straight shape
(y(x, t) = 0) to the final amplitude given by Eq. (4.9) (see Fig. 4.17). By choosing l = 1

over the backbone of the fish and fixing the position of the center of gravity as a function
of the shape, the tail and the head of the swimmer move over an 8 shape or draw a wing
of a butterfly, see Fig. 4.11 and Fig. 4.12. Another important parameter to quantify the
kinematics of the swimming fish is the incident angle at the tail (i.e., the angle between
the tail and the swimming direction), which is given in the vicinity of the tail tip by a
harmonic function

θ(t) = arctan
(dy
dx

)
= θ0 cos(ωt)

where θ0 is the maximum incident angle at the tail, see Fig. 4.5 (b).
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Figure 4.8: Sketch of the two-dimensional Joukowsky transform. (a) The original circle in
the ζ plane where rc = 1, ηc = −0.1 and θc = 0. (b) The hydrofoil shape in the z plane.
(c) The shape is rescaled to fit 0 ≤ x ≤ 1.
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Figure 4.9: Backbone deformation according to Eq. (4.9) with l = 1 in one period, λ = 0.5,
a0 = 0, a1 = 0.01 and a2 = 0.09 to match the envelope used by Bergmann and Iollo [145].
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Figure 4.10: Backbone deformation according to Eq. (4.9) with l = 1 in one period, λ = 0.5,
a0 = 0.02, a1 = −0.08 and a2 = 0.16 to match the experimental envelope measured by
Videler and Hess [41].
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Figure 4.11: Backbone deformation according to Eq. (4.9) with l = 1 in one period,
λ = −0.1, a0 = 0.02, a1 = −0.08 and a2 = 0.16 to match the experimental envelope
measured by Videler and Hess [41].
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Figure 4.12: Backbone deformation according to Eq. (4.9) with l = 1 in one period,
λ = −1.5, a0 = 0.02, a1 = −0.08 and a2 = 0.16 to match the experimental envelope
measured by Videler and Hess [41].
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Figure 4.13: Body fitted structured grid for covering the fish. The mesh is generated by
the normal to the backbone lines.
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4.2.2 Kinematics of the fish based on curvature
The swimming mechanism in the majority of anguilliform and carangiform fishes can be
modeled with a sinusoidal wave enveloped by a profile, lying over the backbone of the fish,
which moves from the head to the tail. The geometrically exact theory of nonlinear beams,
is developed by Simo [45] and extended for fish vertebral by Boyer et al. [106]. In this
theory, the beam is considered as a continuous assembly of rigid sections of infinitesimal
thickness, i.e., a one-dimensional Cosserat medium. We summarize the kinematics of the
fish backbone in three dimensions for interested readers and future developments, but all
the cases in this Chapter are limited to two dimensions. Following Boyer et al. [106], Rafei
et al. [120] and Belkhiri [158] starting with the head orientation, position and velocities
as boundary conditions, the kinematics of the backbone for anguilliform fishes can be
determined by integration along the arclength ξ ∈ [0, lfish]. The variation of the orientation
along the backbone in terms of quaternions is obtained by

∂Q

∂ξ
=

1

2
M∨(K)Q , ξ ∈ [0, lfish] (4.10)

where Q = (cos ϕ
2
, ax sin

ϕ
2
, ay sin

ϕ
2
, az sin

ϕ
2
)T are unit normalized quaternions, i.e., (q20 +

q21 + q22 + q23)
1/2 = 1, that represent the body frame orientation with respect to the inertial

frame and M∨(K) is an anti-symmetric tensor

M∨(K) =


0 −k1 −k2 −k3
k1 0 k3 −k2
k2 −k3 0 k1

k3 k2 −k1 0

 (4.11)

where k2 and k3 in K = (k1, k2, k3)
T stand for the fish backbone transversal curvature

and k1 represents the rate of rotation (twist) of the section around the backbone with the
normal aligned with the ξ-direction. The geometry R = (x, y, z)T in the Galilean reference
frame is given by

∂R

∂ξ
= Rot(Q)Γ , ξ ∈ [0, lfish] (4.12)

where Γ = (γ1, γ2, γ3)
T represents the local transversal shearing of the sections whose first

component is the stretching rate along the ξ-direction. The rotation matrix in terms of the
quaternions is then given by

Rot = 2

 q20 + q21 − 1
2

q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 q20 + q22 − 1
2

q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 q20 + q23 − 1
2

 (4.13)



4.2. MODELING OF THE SWIMMER SHAPE 93

The variations of mean linear, V = (v1, v2, v3)
T , and angular, Ω = (ω1, ω2, ω3)

T , velocities
in the local frame, i.e., the frame attached to the body are given by

∂

∂ξ

[
V

Ω

]
= −

[
K∨ Γ∨

0 K∨

][
V

Ω

]
+

[
Γ̇

K̇

]
, ξ ∈ [0, lfish] (4.14)

where superscript dot (·) represents the time derivative, (∨) stands for the anti-symmetric
matrix constructed from a given vector, e.g.,

K∨ =

 0 −k3 k2

k3 0 −k1
−k2 k1 0

 (4.15)

The accelerations can also be deduced from the time derivative of Eq. (4.14). For more
details we refer to Boyer et al. [106], Rafei et al. [120] and Belkhiri [158]. To find the
velocities in the frame attached to the body from the velocities VG in the Galilean reference
frame and vise versa,

(v1, v2, v3)
T = RotT (vx, vy, vz)

T (4.16)

can be used. By consideringN (1, ..., Npoints) discrete points on the fish backbone, equations
(4.10), (4.12) and (4.14) must be integrated simultaneously in space by a proper numerical
method (Neq = 13 in 3D). We are using a fourth-order Runge–Kutta method for integra-
tion and a comparison with a first-order Euler method shows that RK4 is more accurate,
especially when the number of points along the fish backbone is less than Npoints = 30.

4.2.3 Lagrangian structured grid covering the body
The first choice to start the parameterization of the swimmer body is a symmetric shape.
The geometry of a two-dimensional swimmer can be characterized by the half width w(ξ)
of the body along its arclength (midline) ξ ∈ [0, lfish]. Following the work of Kern and
Koumoutsakos [105] and Carling et al. [67], the half width w(ξ) is defined with Eq. (4.6).
The shape of the fish before deformation is plotted in Fig. 4.14. In the mid part of the
fish a linear function can also be used as in Gazzola et al. [144]. A structured grid formed
by normal to backbone lines with thickness given by Eq. (4.6) covers the body. Some
examples are shown in Figs. 4.13, 4.15 and 4.16. The velocity components of each point
on the Lagrangian grid Vshape with indexes (I, J), are given by

−→
V shape(I, J) =

−→
V BN(I) +

−→
ΩBN(I)× r(I, J) (4.17)

where −→
V BN and −→

ΩBN are the linear and angular velocities of the backbone respectively,
given by Eq. (4.14). The radius (r| < w) is measured over the transversal lines of the
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structured grid normal to the backbone (see Fig. 4.13). Fig. 4.15 shows an example of the
Lagrangian grid covering the fish after deformation in which the corresponding velocities of
each point are also illustrated. Deformation of the body induces a divergent velocity field
inside the body. Make sure to not add any artificial (linear and angular) momentum to the
flow due to deformation of the body. In other words, in the absence of hydrodynamic forces
and torque, displacement of gravity center and rotation around cg due to deformation (and
thus linear and angular velocities) must be zero. We refer to Bergmann and Iollo [145] for
more details.
The information of the Lagrangian structured grid covering the deformable body must be
transfered to the Eulerian–Cartesian grid by interpolation to find χ(i, j) and up(i, j). To
determine χ(i, j) on the Eulerian grid whose first point (x, y)(1,1) = (0, 0) is located at the
origin, the coordinates of each point on the Lagrangian grid Xshape(I, J) are divided by
∆x and ∆y. After applying a correction to the integer part of the results they give the
indexes (i, j) of the mask function χ on the Eulerian grid for which χ = 1 is assigned.
After determining the mask function χ(i, j) on the Eulerian grid, following Forestier [79],
Minguez [122] and Kolomenskiy and Schneider [126] the mask is mollified by the Shuman
[15] filter presented in Section 2.2.4

χ̄i,j = (2χi,j + χi+1,j + χi−1,j + χi,j+1 + χi,j−1)/6 (4.18)

which is equivalent to a raised cosine filter in Fourier space, we refer to Pasquetti et al.
[121] for more details. The effect of smoothing with Shuman filter is demonstrated in Fig.
2.11 for a one-dimensional box function χ(x) = 1 , x ∈ [4.5, 5.5]. The box function is
represented by a red-solid line and the mollified box function χ̄ is plotted with a green-
dashed line. An example of the transfered geometry χ to the Eulerian grid, after smoothing
with Shuman filter is illustrated in Fig. 4.16, where the boundary of the Lagrangian grid
is also added to the contours of the smoothed mask function χ̄. It can be seen that it
lies between the maximum and minimum values of the mask function. Smoothing of the
mask function χ̄ reduces the stiffness of the vorticity transport equation, thus larger time
steps can be used. It also increases the regularity of the pressure and the velocity field.
Moreover, in dealing with moving boundaries, when the mask functions is smooth the
oscillations of the hydrodynamic coefficients are weaker. However, even without filtering of
the mask function, by applying a central second-order finite difference method the solution
converges. But by using fourth and higher order discretizations smoothing of the mask
function becomes necessary, if not Gibbs oscillations or divergence is expected, especially
when the mask function χ is moving. Note also that the interpolated velocity field up on
the Eulerian grid is not divergence-free, we refer to Gazzola et al. [144] for a complete
theoretical and numerical discussion about this subject. In the present investigation we
do not consider this issue under the assumption that the body is slender. We use two-
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dimensional linear interpolation, to transfer the velocities of the Lagrangian grid given by
Eq. (4.17) to the Eulerian grid. By considering

f(x, y) = axy + bx+ cy + d (4.19)

and using the four nearest points of the Lagrangian grid, Eq. (4.19) leads to a 4× 4 linear
system for each point with χ̄ ̸= 0 on the Eulerian grid. To determine the unknowns, the
system is solved by a direct method, i.e., Gauss-Jordan elimination from [56]. For all points
in the interior of the fish we have χ(i, j) = 1 on the Eulerian grid. For each point of the
Eulerian grid in which χ̄ = 1 the four nearest points of the Lagrangian grid are used to
find the coefficients of the linear system formed by (4.19). In some points of the Eulerian
grid due to mollifying the mask function χ by Eq. (2.52) we have 0 < χ̄ < 1, therefore the
interpolation automatically becomes an extrapolation. Some points are completely outside
of the original Lagrangian shape. At the start and the end singularities of the Lagrangian
grid, where points are repetitive, just one of the points can be used for finding the penal-
ized velocities up over the Eulerian grid, if not the interpolation matrix will have a zero
determinant (singular). However, the start and the end points are used for determining
the mask function. An example of the interpolated velocity components on the Eulerian
grid is illustrated in Fig. 4.16.
The spacing of the grid points on the Lagrangian grid ∆X must be fine enough in compari-
son to ∆x and ∆y to represent accurately the deformation of the body on the Eulerian grid,
i.e., ∆X ≤ ∆x. However, the ratio ∆x/∆X cannot be determined exactly because ∆X is
varying even if ∆x and ∆y are fixed. Nevertheless in Figs. 4.15 and 4.16 the Lagrangian
and the Eulerian grids are schematically illustrated for a fine and coarse Lagrangian grid.
If the Lagrangian grid is very fine, the computational effort in the procedure of evolving
the mask function χ and determining the corresponding velocities up will increase. The
additional cost does not lead to considerable enhancement in the accuracy of the mask
function χ or the interpolated velocities of the body up on the Eulerian grid. However, a
very fine Lagrangian grid may lead to singular matrices in the interpolation procedure via
Eq. (4.19) because the four points chosen for interpolation will be very close. For a very
fine Lagrangian grid zero order interpolation must be used, i.e., the velocities of the nearest
point on the Lagrangian grid must be assigned to the corresponding Eulerian grid. On the
other hand if a very coarse Lagrangian grid is used the information of the body will be
lost. Especially the rotational velocity field due to the deformation of the body which has
a great importance in the accuracy of the simulations, will be missed and even divergence
of the simulations is expected. Moreover, the values of the mask function will not reach
the value one inside the fish with insufficient resolution of the Lagrangian grid, see Fig.
4.16. The geometry will not be accurate near singular points (like the tail) or boundaries
with high curvature (like the head). The hydrodynamic coefficients can also be inaccurate



4.3. VALIDATION OF THE ALGORITHM FOR DEFORMABLE BODIES 96

whenever a coarse grid is used for the Lagrangian grid. An optimal value in the sense of
accuracy and computational effort is proposed for the size of the Lagrangian grid

∆x

10
< ∆X <

∆x

2

A summary of the algorithm for the fluid interaction with a deformable body is given in

X
0 0.2 0.4 0.6 0.8 1

Figure 4.14: Shape of the fish given by Eq. (4.6) before deformation.
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Figure 4.15: Left: The Lagrangian structured grid (Imb×Jmb = 121×19) over the Eulerian
one. Right: The Lagrangian structured grid covering the fish after deformation and the
corresponding velocity vectors of each point, colored by absolute velocity

√
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Algorithm 2. The flowchart is illustrated in Fig. 2.18.

4.3 Validation of the algorithm for deformable bodies
The anguilliform swimming presented in Gazzola et al. [144] is considered for validation
of the proposed algorithm to deal with deformable bodies interacting with incompressible
flows. The considered test case is a swimming fish in a forward gait. A periodic swimming
law is defined by fitting the backbone of the fish to a given curve y(x, t) while keeping
the backbone length lfish fixed. Let ξ be the arclength over the curvilinear coordinate
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Figure 4.16: Left: Interpolated mask function χ̄ from a Lagrangian grid (Imb × Jmb =
61 × 9) where ∆x < ∆X, as can be seen insufficient resolution in Lagrangian grid results
in χ̄ = 1 in very few points inside the fish. Right: Boundary of the Lagrangian grid (black
line) and the interpolated smoothed mask function χ̄ (colored isolines). As can be seen
the boundary of the Lagrangian grid (Imb × Jmb = 121× 19) lies between minimum and
maximum values of the mask function. The velocity components forming a jet at the tail
while the fish is turning.

of the deformed backbone (0 ≤ ξ ≤ lfish). For points being uniformly distributed with
∆ξ = lfish/(N − 1) over the backbone, y is given by

y(x, t) = a(x) sin(2π(x/λ+ ft)) (4.20)

where λ is the wavelength of the imposed deformation, f represents the frequency of the
backbone undulation and the envelope a(x) is given by

a(x) = a0 + a1x+ a2x
2 (4.21)

where x is defined by inverting the arclength integral, i.e., ∆x = ∆ξ/
√

1 + (∂y/∂x)2.
The wavelength of the fish is defined in accordance with the geometry of the backbone in
the Cartesian coordinate. The pointwise curvature of the backbone is needed to use the
geometrically exact theory of nonlinear beams, described in Section 4.2.2. One must switch
from the Cartesian system to the curvature, thus the second derivative of Eq. (4.20) gives
us the propulsion curvature as follows:

kprop(ξ, t) = (2a2 − (2π/λ)2a(ξ)) sin(2π(ξ/λ+ ft))

+ (4π(a1 + 2a2ξ)/λ) cos(2π(ξ/λ+ ft)) (4.22)
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where a(ξ) = a0 + a1ξ + a2ξ
2. Using the curvature of the backbone provides a general

framework which is independent of the Cartesian coordinates (direction), this is especially
interesting to prevent the ambiguity in definition of the geometry when the fish performs a
complete rotation. The parameters used by Kern and Koumoutsakos [105] and Gazzola et
al. [144] for the kinematics of the fish are as follows; λ = 1, f = 1, a2 = 0, a1 = 0.125/(1+c),
a0 = 0.125c/(1 + c) and c = 0.03125. The profile of the fish is given by Eq. (4.6) and is
plotted in Fig. 4.14. The buoyancy is equal to zero, i.e., ρb = ρf . The viscosity of the fluid
is set to ν = 1.4 × 10−4 resulting in an approximative Reynolds number Re ≈ 3800, with
an asymptotic mean velocity Uforward ≈ 0.52.

The simulations of Gazzola et al. [144] are carried out on a rectangular domain (x, y) ∈
[0, 8lfish] × [0, 4lfish] with resolution 4096 × 2048 and a penalization parameter equal to
η = 10−4. We perform the simulations on a rectangular domain (x, y) ∈ [0, 10lfish]×[0, 5lfish]

by imposing a penalization parameter inside the body equal to η = 10−3 with resolutions of
2048× 1024 and 1024× 512 and ∆t = 10−3. The centroid of the fish is initially positioned
at xcg = 0.9Lx and ycg = 0.5Ly. Two snapshots of vorticity isolines at t = 1 and t = 9

with the aforementioned parameters are illustrated in Fig. 4.19. The forward velocities
corresponding to gravity center (cg) of the fish, computed with different methods and
parameters are compared with those of Kern and Koumoutsakos [105] and Gazzola et
al. [144] in Fig. 4.18. We impose two degrees of freedom fixing the angular velocity
of the fish around center of gravity equal to zero. But this does not result in a motion
without slaloming. Deformation of the fish in addition to the lateral displacement creates
slaloming. The simulations start with the body uP (x, 0) = 0 and fluid at rest, i.e., ω(x, 0) =
ψ(x, 0) = 0. Free-slip boundary conditions are imposed at the four surrounding walls
(ψ|∂Ω = ω|∂Ω = 0). In the reference simulations of Kern and Koumoutsakos [105] and
Gazzola et al. [144] the motion of the fish is initialized by gradually increasing the amplitude
of the backbone through a sinusoidal function (plotted in Fig. 4.17), from zero to its
designated value during the first period T . Here we do not consider this and start by
a sudden movement given by Eq. (4.20). That is the reason why a deviation from the
reference solution can be seen in the first period. This deviation will continue systematically
until the asymptotic velocity is reached at t = 7.

The reference simulation of Kern and Koumoutsakos [105] is based on a body fitted grid
with a finite volume discretization which is first-order in time and second-order in space.
The Navier–Stokes equations were solved using the commercial package STAR-CD which
uses arbitrary Lagrangian–Eulerian grids. The solution of Newton’s equations of motion
and the deformation and displacement of the Lagrangian grid are implemented in user de-
fined subroutines linked to STAR-CD. The implemented explicit coupling procedure is a
staggered integration algorithm proposed by Farhat and Lesoinne [78]. The simulation of
Gazzola et al. [144] is based on a remeshed vortex particle code coupled with Brinkman
penalization which handles arbitrarily deforming bodies and especially the divergent ve-
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locity field inside the body is considered. A projection method is used by Gazzola et al.
[144]. The resulting Poisson equations for rotational (solenoidal) and potential (divergent)
components of the velocity fields are solved in an unbounded domain, based on a method,
using FFT on a Cartesian grid. A second-order finite difference discretization in two di-
mensions and a fourth-order finite difference discretization in three dimensions are used
for all spatial derivatives. The time step is adapted by a Lagrangian CFL condition. The
difference on the final forward velocity of the fish, reported by Gazzola et al. [144] by
taking into account the divergence of the velocity field inside the fish due to deformation,
is visible in Fig. 4.18. Even though the average divergence over the fish volume is zero
(i.e. the volume is conserved), locally inside the fish the velocity field is not divergence free.
We do not deal with this issue in the present study under the assumption that the body
is slender. In our simulations a grid independent solution is obtained with 2048 × 1024

grid points. The difference of the forward velocity in two simulations with 2048×1024 and
1024× 512 grid points can be seen in Fig. 4.18. Filtering of the hydrodynamic coefficients
is necessary to prevent the simulation from divergence and non-physical results. We are
using a second-order exponential filtering (2.25) instead of the first-order filtering used by
Kern and Koumoutsakos [105] (see the discussions in Sections 2.1.2 and 3.4.2). This process
is like adding a damper to the system, therefore a proper value for δ must be chosen via
numerical tests to obtain reliable and physical results. We propose values in the range of
δ ∈ [0.0001, 0.01] for fluid–solid interaction problems. However this can also depend on the
manner of non-dimensionalization of the forces. In Fig. 4.18 the effect of filtering with two
filter parameters, i.e., δ = 0.001 and δ = 0.05, can be seen. The simulations with a smaller
filter parameter, e.g., δ = 0.001, are more stable but instead will lead to smaller amplitudes
in the oscillations of the terminal velocity. A sensitivity analysis is thus necessary.

4.4 Application and results
In this section we attempt to propose an efficient law for rotation control of an anguilliform
swimmer. Fish maneuvering to attain a predefined fixed goal is done by adding a constant
curvature koffset(t) all along the fish backbone ξ ∈ [0, lfish], to the primary propulsion mode:

k3 = kprop(ξ, t) + koffset(t) (4.23)

For the fish in forward gait koffset is set equal to zero. To perform a rotation, a desired
curvature kdes must be evaluated by the following relation,

kdes(θdes) =

{
−sgn(θdes) kmax |θdes| ≥ θlimit

−sgn(θdes) kmax ( θdes
θlimit

)2 elsewhere
(4.24)
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Figure 4.17: Smooth step function proposed by Boyer et al. [106] for gradually evolving
the fish curvature in the first stroke Cr(t) = t′ − sin(2πt′)/(2π), t ∈ [ti, tf ] with t′ =
(t − ti)/(tf − ti), ti = 0, tf = 1. At t = 1 the left-and right-hand limits are equal for the
function Cr and its first Cr′ and second Cr′′ derivatives.

where sgn represents the sign function, i.e., sgn(θdes) = θdes/|θdes|, positive and negative
values of θdes in the head frame will push the fish to turn left and right, respectively. For
a schematic representation of θdes see Fig. 4.20. The algorithm of rotation control consist
of following steps; At each time step first by considering the desired goal, according to the
position and direction of the head, a desired angle θdes should be calculated. Then using
Eq. (4.24) a desired curvature kdes must be found. After that koffset will be evaluated with
the following relation,

kn+1
offset(kdes) =


knoffset +∆k knoffset < kdesired

knoffset −∆k knoffset > kdesired

knoffset knoffset = kdesired

(4.25)

where ∆k = ∆t π/T . Then koffset must be added to the primary propulsion curvature for
performing a rotation. However, the change of the added curvature koffset given by Eq.
(4.25) must be gradually, i.e., O(∆t) to perform a physically reasonable rotation. Finally,
knowing the direction, the position and the velocities of the head, equations (4.10), (4.12)
and (4.14) must be integrated simultaneously in space to obtain the position and the
velocities of the backbone. In the case of anguilliform swimming the length of the fish is
constant, we have a stretching rate equal to one over the backbone of the fish and the local
transversal shearing is equal to zero, therefor Γ = (1, 0, 0) is used in Eq. (4.12). In two-
dimensional swimming just one curvature can be imposed, i.e., K = (0, 0, k3), the twist and
transversal curvature are equal to zero. By considering Imb = 251 discrete points on the
backbone of the fish and Jmb = 39 points in the lateral direction, a Lagrangian structured
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Figure 4.18: Forward velocity U of a 2D anguilliform swimmer (λ = f = 1). Solid lines
indicate the reference simulations performed by Kern and Koumoutsakos (green) [105] and
Gazzola et al. (pink and brown) [144]. Dashed lines represent the results with the proposed
algorithm.

grid is constructed which covers the fish. By choosing kmax = π in Eq. (4.24) the fish lies
over a semicircle when it turns with its maximum curvature. As in Bergmann and Iollo
[145] we are using θlimit = π/4. The time derivative of the curvature dk/dt is needed in Eq.
(4.14) for evaluation of the velocity and can be determined numerically. A simulation is
performed to show the performance of the proposed law for rotation control of a swimmer
toward a predefined goal. The domain size is (x, y) ∈ [0, 5lfish]× [0, 5lfish], the resolution is
set to 1024× 1024, the penalization parameter η = 10−3, the filter parameter for denoising
the hydrodynamic coefficients δ = 0.005, tail beat frequency f = 1 and the wavelength of
deformation is λ = 1. The backbone envelop is parametrized with a2 = 0, a1 = 0.125/(1+c),
a0 = 0.125c/(1+c) and c = 0.03125. The profile of the fish is given by Eq. (4.6) and plotted
in Fig. 4.14. The kinematic viscosity is ν = 1.4 × 10−4m2/s, the initial position of the
head (x0, y0) = (0.1Lx, 0.5Ly) and the initial angle of the head is θ0 = 0. Fig. 4.21 shows
snapshots of vorticity isolines, obtained during a simulation of the fish swimming toward a
predefined goal which is located at (xf , yf ) = (0.9Lx, 0.5Ly). The simulations start with the
body, uP (x, 0) = 0, and surrounding fluid at rest, u(x, 0) = 0, i.e., ω(x, 0) = ψ(x, 0) = 0.
Free-slip boundary conditions are imposed at the four surrounding walls (ψ|∂Ω = ω|∂Ω = 0).
The motion of the fish is initialized by gradually increasing the curvature of the backbone,
given by Eq. (4.23), through a sinusoidal function (plotted in Fig. 4.17), from zero to its
designated value during the first period T . After reaching the vicinity (rgoal = 0.5lfish) of
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the goal, the curvature of the backbone, given by Eq. (4.23), will tend to zero (see Fig.
4.22) by multiplying it with the following function

C(t) =
tf − t

tf − ti
+

1

2π
sin(2π

t− ti
tf − ti

) , t ∈ [ti, tf ] (4.26)

which is the mirror of the function presented in Fig. 4.17, with ti = treached, tf = treached+T

for gradually decreasing the curvature of the backbone during one period. Samples of the
backbone of the fish are plotted in Fig. 4.25. As can be seen in Fig. 4.21 the values of
the vorticity start from zero and go up very fast during the rotation, i.e., ω ∈ [−200, 220].
In the forward gait the range of the vorticity is ω ∈ [−60, 70] and finally it goes down by
stopping the stroke in the vicinity of the goal to be in the range of ω ∈ [−28, 25]. Saddle
and center points in the flow separated from the fish can successively be seen in Figs. 4.23
and 4.24. These are the common characteristics of separated flows. The pressure is not
present in the algorithm and is just computed for visualization purpose. For evaluation of
the pressure field the Poisson equation (2.20) can be simplified (ρf = 1) for the current
application as follows:

∇2p = 2(uxvy − uyvx)−∇ ·
[
η−1χ(u− up)

]
(4.27)

where Neumann boundary conditions, ∂p/∂n|∂Ω = 0, are imposed at the borders of the
rectangular domain. Using a second-order forward finite difference discretization one has

p1 = (4p2 − p3)/3

at the left boundary. Similar backward/forward relations can be derived for right, up and
down boundaries. A point successive over relaxation (PSOR) method [56] with red–black
sweeping is used for computing the pressure field once every 500 iterations. During the
iterations, the value of the pressure in the center of the cavity is fixed pcenter = cte, i.e.,

p(Nx/2, Ny/2) = 1

to avoid the singularity in solution of the Poisson equation due to imposed Neumann
boundary conditions at the borders. Snapshots of the pressure isolines are illustrated in
Fig. 4.22. High and low pressure regions on the either side of the fish can be seen. As
expected the pressure contours are normal to the boundary of the fish and the boundaries of
the computational domain. The centers of the vortices correspond to low pressure regions.
The deviation of the pressure from p∞ = 1 goes up to p ∈ [−21, 27] after starting the straight
swimming at t = 5 and goes down instantaneously when the fish reaches the vicinity of the
goal (t = 15), thus stopping the stroke. This is in clear contradiction with the vorticity field
which is very persistent even after stopping the stroke and shows the global nature of the
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pressure field against the localized nature of the vorticity field. A high pressure region is
seen between the head and the tail of the fish at t = 2.25 when it turns with the maximum
curvature k = π forming a c-shape which corresponds to what is observed by Gazzola et
al. [155]. The C-bent maneuver before fish escape, has been explained by Gazzola et al.
[155] to be effective in trapping and accelerating larger volumes of fluid. Despite the solid
objects facing a free-stream, in which the maximum pressure occurs at the stagnation point
of the front, in the swimming fish the high and low pressure regions occur on either side of
the fish alternatively. However at the final stage of the motion after stopping the stroke, a
high-pressure region at the head of the fish is observed at t = 15, which is illustrated in Fig.
4.22 (l). The smoothing of the mask function χ̄ by Eq. (2.52) results in a smooth pressure
field, there are no oscillations inside and around of the fish and the pressure distribution
is regular. With the proposed law for rotation of the fish which adds a time-dependent
curvature (constant all along the backbone) to the primary propulsion curvature, starting
from rest the fish executes a sharp 180o turn within an area of about 1.3 times its body
length.

4.5 Conclusion
In this chapter the algorithm for simulation of deformable bodies interacting with two
dimensional incompressible flows is presented and examined. The simulation of the fish
in forward gait is considered for validation of the proposed algorithm by comparing the
results with those of Gazzola et al. [144]. Even if the spatial resolution in our simulations
is half of that used by Gazzola et al. the results are in good agreement. This shows the
advantage of the structured grid used for description of the fish shape in our simulations
in comparison to immersed grid used by Gazzola et al. [144]. Proper denoising of the
hydrodynamic coefficients is crucial in dealing with fluid–solid interaction problems via
the volume penalization method. An efficient law for curvature control of an anguilliform
swimmer toward a predefined goal is proposed which is based on the geometrically exact
theory of nonlinear beams. With the proposed law the motionless fish executes a sharp
180o turn within an area of about 1.3 times its body length. Validation of the developed
method shows the efficiency and expected accuracy of the algorithm for rotation control of
an anguilliform swimmer. Some perspectives for future works are adding a multiresolution
analysis to the algorithm for grid adaptation, enhancement of rotation control law and
extension of the algorithm to three dimensions.
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Algorithm 2 Fluid interaction with a deformable body
1. Start from an initial condition

2. Body kinematics

(a) (Just for the fish) Create Eel’s backbone by integrating Eqs (4.10), (4.12) and
(4.14)

(b) (Just for the fish) Cover the shape by a Lagrangian structured grid & compute
velocities of each point with Eq. (4.17). Make sure to not add any artificial
(linear and angular) momentum to the flow.

(c) Compute the mask χ(i, j) and smooth it by Eq. (2.52)
(d) Compute the moment of inertia J around the reference point
(e) Compute the velocity components of the body up(i, j), vp(i, j) on the Eulerian

grid by interpolation (Lagrange → Euler)

3. Time integration of the flow field with RK4

(a) ω0 = ωn , ψ0 = ψn

For i = 1, 2, 3 (α1 = 1/2, α2 = 1/2 and α3 = 1)
(b) Compute ki(ω, ψ)i−1 from Eq. (2.88)
(c) ωi = ωn + αi ∆t ki

(d) Solve Eq. (2.6); −∇2ψi = ωi for updating (u, v)
End For

(e) Compute k4(ω3, ψ3) from Eq. (2.88)
(f) Update vorticity from Eq. (2.87); ωn+1 = ωn + ∆t

6
(k1 + 2k2 + 2k3 + k4)

(g) Solve Eq. (2.6); −∇2ψn+1 = ωn+1

4. Solve for the body dynamics

(a) Compute the hydrodynamic coefficients of the body from Eqs. (2.22) and (2.23)
(b) Denoise the coefficients by Eq. (2.25)
(c) Compute the displacements from Eq. (2.28)
(d) Compute the rotation from Eq. (2.30)

5. Write necessary data to file

6. If T < Tend, Go to step 2

7. End
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Figure 4.19: Snapshots of vorticity isolines obtained during a simulation in a rectangular
domain (x, y) ∈ [0 , 10lfish] × [0 , 5lfish], with resolution 2048 × 1024, by imposing a penal-
ization parameter inside the body equal to η = 10−3 and the time step ∆t = 10−3. The
filter parameter for denoising of the hydrodynamic forces is δfilter = 0.005 and the Reynolds
number is approximately Re ≈ 3800.
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Figure 4.20: Schematic representation of the desired angle for curvature control, during
the rotation of the fish toward the goal. Here θdes = θgoal − θHead is the difference of
the angles between head direction and the line passing through the target and the head
(−π < θdes < π), picture adapted from Bergmann and Iollo [145] with a slight modification.
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Figure 4.21: Snapshots of vorticity isolines obtained during a simulation of swimming fish
toward a predefined target which is located at (xf , yf ) = (0.9Lx, 0.5Ly). At t = 0 the fish
and the surrounding flow are at rest. After reaching the vicinity (r = 0.5lfish) of the target
the curvature of the backbone tends to zero by Eq. (4.26). The domain of the solution is
(x, y) ∈ [0 , 5lfish]×[0 , 5lfish], the resolution of the Eulerian grid is 1024×1024, the resolution
of the Lagrangian grid (Imb × Jmb = 251× 39), the penalization parameter η = 5× 10−4

and the kinematic viscosity is equal to ν = 1.4× 10−4. Samples of the backbone of the fish
are plotted in Fig. 4.25.
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Figure 4.22: Snapshots of pressure isolines obtained during a simulation of swimming fish
(represented by black contour corresponding to χ = 0.2) toward a predefined goal which
is located at (xf , yf ) = (0.9Lx, 0.5Ly). At t = 0 the fish and the surrounding flow are at
rest. After reaching the vicinity (r = 0.5lfish) of the target the curvature of the backbone
tends to zero by Eq. (4.26). The domain of the solution is (x, y) ∈ [0 , 5lfish] × [0 , 5lfish],
the resolution of the Eulerian grid is 1024 × 1024, the resolution of the Lagrangian grid
(Imb × Jmb = 251 × 39), the penalization parameter η = 5 × 10−4 and the kinematic
viscosity is equal to ν = 1.4× 10−4.
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Figure 4.23: Saddle points are denoted by green dashed circles and vortices are denoted
by purple solid circles. The vortices forming dipoles during the rotation, corresponding to
strong jets.
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Figure 4.25: Samples of the backbone of a swimming fish toward a predefined goal which is
located at (xf , yf ) = (0.9Lx, 0.5Ly) obtained during a simulation, t ∈ [0, 15]. After reaching
the vicinity (r = 0.5lfish) of the goal the curvature of the backbone tends to zero by Eq.
(4.26). The snapshots of the corresponding vorticity and pressure isolines are plotted in
Figs. 4.21 and 4.22. Starting from rest the fish performs a 180o rotation within an area of
about 1.3 times its length.



Chapter 5

Fluid–structure interaction on
adaptive grids

“One cannot escape the feeling that these mathematical formu-
lae have an independent existence and an intelligence of their
own, that they are wiser even than their discoverers, that we
get more out of them than was originally put into them [118].”

Heinrich Hertz

In this Chapter, a space adaptive multiresolution method is developed to solve the
incompressible two-dimensional Navier–Stokes equations in vorticity-stream function for-
mulation including the penalization term. The new method is based on a multiresolution
analysis which allows to reduce the number of active grid points significantly by refining
the grid automatically via nonlinear thresholding of the wavelet coefficients in a one-to-one
correspondence with the grid points. To assess the accuracy of the method, the dipole-
wall collision, studied by Clercx and Bruneau [104] is considered as a benchmark. A good
agreement between the results of the adaptive simulations and those obtained with the
uniform grid solver is obtained. The grid adaptation strategy uses an estimation of the
local regularity of the solution via wavelet coefficients at a given time step. An extension
to interactions with forced deformable bodies, i.e., swimming fish, is done using the volume
penalization method. A Lagrangian structured grid with prescribed motion covers the de-
formable body interacting with the surrounding fluid due to the hydrodynamic forces and
the torque calculated on an Eulerian Cartesian reference grid. The results of swimming
fish are compared with those of Gazzola et al. [144] where a uniform grid is used. The
obtained results show that the CPU-time of the adaptive simulations can be significantly
reduced with respect to simulations on a regular grid. Nevertheless the accuracy order of
the underlying numerical scheme is preserved.

112
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5.1 General introduction
The aim in this chapter is to develop a reliable self-adaptive numerical method for di-
rect simulation of incompressible flows. Conventional methods for spatial discretization of
the PDEs (e.g., finite differences, finite volumes and finite elements) have limited order of
accuracy especially near boundaries, but they are more flexible in dealing with complex
geometries over a suitable grid. On the other hand standard spectral methods which are
widespreadly used in direct numerical simulation of turbulence are limited to Cartesian
grids. Spectral elements are a compromise between the two mentioned methods. One
can recognize the poor spectral localization (good spatial localization/resolution) of the
former methods while the latter have a good spectral localization (poor spatial localiza-
tion/resolution) [70]. The limitation of the mentioned methods for problems with a wide
range of active spatial scales, has encouraged researchers to use alternative methods, e.g.,
adaptive methods, with limited accuracy but good spatial localization in regions where
steep gradients of the flow variables are present. Adaptive methods can be divided into
r-type (a fixed number of grid points are redistributed), h-type (regriding is performed
occasionally) and p-type (the degree of the polynomial representing the solution is lo-
cally increased), each one with their own advantages and disadvantages as detailed in the
literature. Among different methods for grid adaptation h-type refinement proved to be
more advantageous in terms of error control. Between different error-estimating adaptation
strategies (which most of them belong to the finite element family) wavelet-based numeri-
cal methods have proved to be an efficient tool in developing adaptive numerical methods
which control the global (usually L2) approximation error. Wavelet transforms allow to
estimate the local regularity of the solution to a given PDE, using an efficient algorithm,
and thus can define auto-adaptive discretizations with local mesh refinement [107]. Lian-
drat and Tchamitchian [49] proposed the first wavelet-based adaptive method for numerical
simulation of PDEs. The currently existing wavelet-based algorithms can be classified as
pure wavelet methods and wavelet optimized grid methods. Pure wavelet methods, em-
ploy wavelets directly for discretization of the governing equations. On the other hand,
wavelet optimized grid (WOG) methods [109] combine classical discretizations of consid-
ered equations (e.g., finite differences or finite volumes) with wavelets, which are used to
define the adaptive grid. We refer to [89] and [136] where a finite volume discretization
of the governing equations combined with a cell-averaged interpolating wavelet transform
for grid adaptation is used. For more details we refer to the review paper by Schneider
and Vasilyev [141]. In the present work the method of adaptive multiresolution analysis is
applied to the Navier–Stokes equations in the vorticity and stream-function formulation.
However, the concepts are also applicable to the primitive variable formulation. Thus simi-
lar to WOG methods the role of the wavelet transform is the adaptation of the grid and the
fast interpolation of the flow variables at newly inserted points, necessary to account for
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the flow evolution. A second-order central finite difference method with symmetric stencil
over an adaptive Cartesian grid is used for spatial discretization of the equations. The fi-
nite difference method represents a suitable combination with the multiresolution analysis
based on Harten’s point-value wavelet transform. The concept of symmetric stencils leads
to intermediate (hung) points, that their values can be interpolated accurately via the in-
verse wavelet transform, for details we refer to Durbin and Iaccarino [88]. After validation
of the developed adaptive multiresolution solver, using the results of previous studies of
dipole-wall collision, an extension to fish swimming with the volume penalization method is
presented. The volume penalization method is a sub branch of immersed boundary meth-
ods, see [99] for a complete review of these methods. As starting point in the present work
we take the two-dimensional vorticity stream-function solver developed by Sabetghadam
et al. [127] for a uniform grid and the adaptive solver developed in [143] for simulation of
the flow inside curved geometries. The code is developed in FORTRAN and is open access
[172]. This chapter is organized as follows; First a summary of the governing equations, the
multiresolution analysis, the discrete wavelet transforms and the idea of point selection by
filtering of the wavelet coefficients will be presented. After that, for validation of the solver
the results of the dipole-wall collision are compared with previous studies. Next a test case
for swimming fish will be demonstrated as application for fluid–structure interaction on
adaptive grids. Finally, the results and some perspectives will be discussed.

5.2 Multiresolution analysis of incompressible flow
The governing equations of incompressible flows in two-dimensions can be reformulated
in the vorticity ω and stream-function ψ form (see Section 2.1). Denoting by E(∆t) the
discrete time evolution operator, the global algorithm can be schematically summarized by

ωn+1 = E(∆t)

[
M−1 · S · T (ϵ) ·M

]
ωn (5.1)

where M and M−1 are the direct (WT) and inverse (IWT) wavelet transform operators.
T (ϵ) is the thresholding operator and S represents the safety zone operator. For an explicit
Euler time integration we have

E(∆t)ωn = ωn +∆t RHS(ωn). (5.2)

where the RHS operator contains all the terms (spatial derivatives) of the vorticity equa-
tion (2.7) except the time derivative. The summary of the multiresolution method is given
in Algorithm 3. Some necessary criteria that must be respected in the algorithm, are given
in the following:



5.2. MULTIRESOLUTION ANALYSIS OF INCOMPRESSIBLE FLOW 115

1. Before interpolation of the values of the independent variables via IWT (from the
coarsest level up to the finest level) in some grid points (with setting wavelet coef-
ficients equal to zero, d = 0), it is necessary to mark all the intermediate necessary
points for having a consistent WT, (from the finest level down to the coarsest level)
and adding them to the list of the points to be interpolated.

2. In the time integration step, by using multi-step schemes, e.g., the Runge–Kutta
family, before calculation of spatial derivatives at intermediate steps, the value of
u∗ at the hung points must be interpolated again from the new values of the active
points. Moreover 6-(a) and 6-(b) will be done once in each time step.

3. In the case of the two-dimensional Navier–Stokes equations in vorticity-stream func-
tion formulation, before calculation of the spatial derivatives it is necessary to solve
an elliptic equation, i.e., Eq. (2.6) for updating the stream-function. For more details
see [169].

5.2.1 Biorthogonal wavelet transform
To explain the concept of WT, we consider the case of Harten’s point values representation
[64] on uniform grids, which is well adapted for finite difference methods, in contrast to
Harten’s cell average method which is suitable for finite volume methods. By considering
a unit interval [0, 1], the hierarchy of uniform dyadic grids is obtained from

Xj = {xj,i ∈ R : xj,i = i2−j, i = 0, · · · , 2j}, j = 0, · · · , J (5.3)

with spacing 2−j, where j is the level and i represents the position index. The number of
points must always be odd (N = 2J + 1) to have a point in the middle. A given discrete
function f(x) can be represented with the use of a wavelet basis as follows

f(x) =
2J∑
i=0

f0,iΦ0,i(x) +
J∑

j=0

2J∑
i=0

dj,iΨj,i(x) (5.4)

where the bases consist of scaling functions Φj,i and wavelets Ψj,i. Interpolating wavelet
coefficients are defined as

dj,i = ⟨f,Ψj,i⟩ = fj+1,2i+1 − f̃j+1,2i+1 (5.5)

where cubic (third-order) interpolation can be used as follows,

f̃j+1,2i+1 =
−fj,i−1 + 9fj,i + 9fj,i+1 − fj,i+2

16
(5.6)
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Algorithm 3 Multiresolution analysis
1. Start from an initial condition given on a dyadic grid

2. Apply WT to the active points (from the finest level down to the coarsest level), to
compute the wavelet coefficients of the independent variable

3. Perform thresholding T (ϵ), to remove all points from the list of active points having
a magnitude of wavelet coefficients below the corresponding threshold ϵj

4. Add safety zone to the list of new active points

(a) Add neighbor points at the same level and one level above
(b) Guarantee the gradedness of the new active points (optional)
(c) Add necessary points to the current list of active points, for having a consistent

direct or inverse WT

5. Apply IWT to the new active points to compute the values of the independent vari-
ables (or interpolate the values of all newly added points via IWT with zero wavelet
coefficient d = 0)

6. Perform the time evolution of the independent variable for all the active points

(a) Search for the nearest active point to determine dist for all active points
(b) Check for the existence of all other neighbors of the active points with distance

dist, mark all the missing points as hung points
(c) Interpolate the values of the hung points via IWT with zero wavelet coefficient

d = 0

(d) Compute the spatial derivatives for the given PDE via FDM with symmetric
stencils

7. Go to step 2, if T < Tend
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Near boundaries forward/backward stencils must be used for interpolation. For the two-
dimensional transform and more details we refer to Ghaffari and Schneider [169].

5.2.2 Filtering of wavelet coefficients
Given a threshold parameter for the finest ϵJ or the coarsest level ϵ0, data compression
can be obtained, by thresholding of the detail coefficients. This procedure also called
nonlinear filtering of the wavelet coefficients. After performing the direct transform, wavelet
coefficients with magnitude smaller than the threshold are set to zero and the corresponding
points can be eliminated from the set of the points. In other words we can find the value
of that point by interpolation and the error remains bounded by the threshold value. The
thresholding defined as

dj,i =

{
0 if |dj,i| ≤ ϵj,

dj,i else
(5.7)

where ϵj = ϵJ 2D(j−J) = ϵ0 2D(j), D = 1, 2, 3 is the dimension of the problem, and J

denotes the maximum level. After nonlinear filtering in wavelet space the given function
f(x), can be reconstructed f(x), just with the significant wavelet coefficients corresponding
to the points where the function is less regular. Those points must be kept to guaranty the
boundedness of the error introduced due to filtering and eliminating non necessary points.
Following Donoho [54], it can be shown that for a sufficiently smooth function f(x), the
error is bounded by the threshold, i.e., |f(x) − f(x)| ≤ c1ϵ0, where ci is a constant. For
illustration of the idea we consider a non-periodic one-dimensional function f(x) ∈ [0, 1]

defined as follows

f(x) =


8.1e1/4e−|x−1/2| 0.0 ≤ x < 0.25

9e−|x−1/2| 0.25 ≤ x < 0.75

e−|x−1/2|(16x2 − 24x+ 18) 0.75 ≤ x ≤ 1.0

(5.8)

with a jump in value located at x = 0.25, a jump in the value of the first derivative at
x = 0.5 and a jump in the value of the second derivative at x = 0.75. We consider also
a Gaussian function, f(x) = exp(−(x − 0.5)2/δ2) where x ∈ [0, 1]. Their sparse point
representations, with the use of a cubic interpolating wavelet transform (PWT = 4), for
J = 10, filtered with a threshold ϵ = 1 × 10−3 are illustrated in Fig. 5.1 (a) and (b). A
good compression and an error bounded by the threshold can be seen, for more details see
[169].
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Figure 5.1: Sparse point representation of 1D functions, obtained by WT with cubic inter-
polation (J = 10), filtered with threshold ϵ = 1×10−3. The green dots (marked •) show the
retained grid points. Left: Gaussian function, compression = 95%, L∞-Error ≤ 1 × 10−4.
Right: Function (5.8), Compression = 94%, L∞-Error ≤ 5× 10−5.

5.3 Dipole-wall collision with a uniform grid solver
In this section we will study the classical benchmark studied by Clercx and Bruneau [104]
and Keetels et al. [112]. The flow is confined in a square domain (x, y) ∈ [0, 2]× [0, 2]. At
the four walls of the domain (x, y = 0 & x, y = 2) no-slip and no-penetration boundary con-
ditions are applied. The flow is initialized in the form of two shielded Gaussian monopolar
vortices, which their centers placed at a distance 0.2 apart. The vorticity distribution of
each monopole is given by

ω(0,xn) = ωe

(
1− r2

r20

)
exp

(
− r2

r20

)
(5.9)

where r0 is the core radius, r = ||x− xn|| with xn being the position of the vortex center.
The two isolated monopoles are located at

x1 = (1, 1.1) and x2 = (1, 0.9)

The initial vorticity field is the sum of two vorticity fields given by Eq. (5.9). The core
radius of the shielded monopoles are set to r0 = 0.1. Following Keetels et al. [112],
demanding that the root mean square (rms) velocity is initially equal to unity, yields the
amplitude of the isolated monopole ωe = ±299.528385375226. The total normalized initial
energy by considering the surface of the domain is equal to E = 2. The vorticity amplitude
in the radial direction decreases exponentially with r. As a result, the circulation of one
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isolated monopole calculated over a circular contour around the vortex origin decreases
exponentially towards zero for increasing contour radius. Hence, no boundary layers are
required at the no-slip walls when constructing the initial flow field. The integral-scale
Reynolds number for the initial field is given by Re = UrmsL/ν, where the characteristic
length scale is set to the half-height of the domain, here L = 1, and the characteristic
velocity to the initial root mean square velocity, Urms = 1. This integral Reynolds number
differs slightly from the Reynolds number Red ≈ 0.8Re based on the dipole translation
speed Ud and the dipole radius R, we refer to Kramer [113] for more details. To verify
the accuracy of the numerical method the results are compared with those reported by
Clercx and Bruneau [104] that are computed with a pseudo-spectral solver. In Clercx and
Bruneau [104] both the velocity and vorticity are expanded in a truncated series of Fourier
polynomials for the periodic-direction and in a truncated series of Chebyshev polynomials
for the non periodic-direction. In the case of dipole-wall collision the boundary conditions
are not periodic, thus Chebyshev polynomials must be used. Some invariants of the flow
in periodic or unbounded domains, i.e. total energy and enstrophy, which are conserved by
the flow dynamics for inviscid fluids (ν = 0) can be assessed in viscous flows, where they
will not be conserved, but instead varying in time, depending on the Reynolds number.
Three integral quantities in the flow field, i.e., total energy E, total enstrophy Z and total
palinstrophy are defined as:

E(t) =
1

2

∫
Ω

|u(x, t)|2dx ≈ ∆x∆y

2

Imax∑
i=1

Jmax∑
j=1

(u2i,j + v2i,j) (5.10)

Z(t) =
1

2

∫
Ω

|ω(x, t)|2dx ≈ ∆x∆y

2

Imax∑
i=1

Jmax∑
j=1

(ωi,j)
2 (5.11)

P (t) =
1

2

∫
Ω

|∇ω(x, t)|2dx ≈ ∆x∆y

2

Imax∑
i=1

Jmax∑
j=1

(
∂ωi,j

∂x

)2

+

(
∂ωi,j

∂y

)2

(5.12)

The approximations are obtained by applying the trapezoidal quadrature formula for two-
dimensions. Following Kraichnan and Montgomery [38] for any two-dimensional viscous
flow (Z > 0) the total energy E(t) decays according to

dE

dt
= −ν

∫
Ω

ω2dA = −2νZ. (5.13)

where −2νZ is the energy dissipation. Note that the decay rate is proportional to the total
enstrophy Z(t), which is a measure of the squared vorticity integrated over the domain.
Understanding the evolution of the total enstrophy is therefore of crucial importance for
explaining the energy decay. For a domain with no-slip boundaries the change in total
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enstrophy is governed by

dZ

dt
= −2νP + ν

∮
∂Ω

ω(n · ∇ω)ds (5.14)

where n denotes the outward unit normal vector with respect to ∂Ω. The first term on the
right-hand side simply states that the enstrophy decays due to vorticity gradients (palin-
strophy) that are present in the flow. The second term represents the vorticity production
at the no-slip boundaries involving the vorticity and its gradients, which will give rise to
the total palinstrophy. Note that the vorticity influx at the no-slip boundaries is equal to
(n · ∇ω). In the case of a square domain with stress-free or periodic boundary conditions
the second term on the right-hand side of Eq.(5.14) vanishes. As a result, the total en-
strophy cannot increase for a domain with stress-free or periodic boundary conditions and
is thus always bounded by its initial value and zero [113]. We refer to the discussion by
Clercx and Heijst [87] and also by Schneider and Farge [102]. For a steady flow we have:

P =
1

2

∮
∂Ω

ω(n · ∇ω)ds

Different simulations by successively increasing the number of points (2562, 5122 and 10242)
were performed to obtain a grid independent solution. The simulations were performed on
a uniform grid with a second order finite difference multi-grid solver. To have a stable
simulation the time step must be reduced according to the CFL condition. The evolution
of the total kinetic energy, total enstrophy and total palinstrophy for Re = 1000 are
compared with the computations of Clercx and Bruneau [104] in Fig. 5.2 (b), (c) and (d),
respectively. Note that the energy steadily decreases from its normalized initial value of
E = 2 towards E ≈ 0.8 at t = 1. At t ≈ 0.35 the kinetic energy decays faster, which is due
to the increased enstrophy production (dissipation) at the boundaries of the domain. The
first peak in the enstrophy curve takes place at t = 0.35, and thus coincides with the first
collision of the dipole with the right wall, see Fig. 5.2 (a). During this first collision the
boundary layers create a large amount of vorticity. The enstrophy in the boundary layers
is then the main contribution to the total enstrophy. At t ≈ 0.64 another smaller peak
is visible in the enstrophy evolution curve, which is due to the second collision of newly
generated vortices with the right wall. The results for the total energy are in reasonable
agreement with the pseudo-spectral simulations, a maximum difference in energy less than
4% can be seen. We can see a systematic deviation in enstrophy and palinstrophy curves
especially near the first peak, which is decreasing by increasing the resolution in comparison
with the reference solution of Clercx and Bruneau [104]. See also the discussion by Nguyen
et al. [151].
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Figure 5.2: (a) Vorticity contours of dipole-wall collision at t = 0.4. (b)-(d) Comparison
of the total energy E(t), the total enstrophy Z(t) and the total palinstrophy P (t) between
the data from Clercx and Bruneau [104] and the present finite-difference computation with
a uniform multigrid solver for Reynolds 1000 with different grid resolutions. By increasing
the resolution the results converge toward the reference simulation.
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5.4 Validation of the adaptive multiresolution solver
In this section the problem of dipole-wall collision studied by Clercx and Bruneau [104]
is chosen as a benchmark computation for validation of the proposed algorithm. The
time evolution of the dipole is calculated by the developed multiresolution finite difference
solver with threshold ϵ = 10−3 and a maximum grid level J = 11 for Reynolds 1000. The
evolution of the vorticity isolines and the corresponding adaptive grid starting from the
initial condition at t = 0 up to t = 1, are shown in Fig. 5.3. Comparisons of the total energy
E(t) and the total enstrophy Z(t) between the uniform grid solver and the multiresolution
computation with thresholds, ϵ = 10−3 and ϵ = 10−4, with maximum grid level J = 9

are plotted in Fig. 5.4 (a) and (b), respectively. The agreement between the uniform grid
solver and the multiresolution solver is good and the results for ϵ = 10−3 and ϵ = 10−4 are
almost identical. Therefore we will use ϵ = 10−3 for all multiresolution computations. A
convergence study for the total enstrophy Z(t) (with the uniform grid solver) for Reynolds
1000, with different grid spacings, i.e., a maximum level in each direction J = 8, 9, 10, 11,
is performed. Once again the simulation with the pseudo-spectral solver of Clercx and
Bruneau is taken as reference solution [104]. The results of the present computations are
illustrated in Fig. 5.4 (c). It can be observed that by increasing the number of grid points
the curves get closer and closer. We anticipate that the results of J = 12 will match those
of Clercx and Bruneau [104] for enstrophy.

5.5 Application to fish-like swimming
Anguilliform swimming presented in Gazzola et al. [144] is considered as application for
the proposed algorithm. Details of our fluid/solid interaction algorithm are given in [170].
A periodic swimming law is defined by fitting the backbone of the fish to a given curve
y(x, t) keeping the backbone length lfish fixed. Let ξ be the arclength of the curvilinear
coordinate of the deformed backbone (0 ≤ ξ ≤ lfish). For uniformly distributed points
∆ξ = lfish/(N − 1) over the backbone, y is given by

y(x, t) = a(x) sin(2π(x/λ+ ft)) (5.15)

where λ is the wavelength, f is the frequency of the backbone and a(x) is the enve-
lope a(x) = a0 + a1x + a2x

2 where x is defined by inverting the arclength, i.e., ∆x =

∆ξ/
√
1 + (∂y/∂x)2. The geometry of the fish is given by Eq. (4.6). The parameters

used by Gazzola et al. [144] for the kinematics of the fish are as follows: λ = 1, f = 1,
a2 = 0, a1 = 0.125/(1 + c), a0 = 0.125c/(1 + c) and c = 0.03125. The buoyancy is equal
to zero, i.e., ρb = ρf . The viscosity of the fluid is set to ν = 1.4 × 10−4 resulting in
a Reynolds number of approximately Re ≈ 3800, based on asymptotic mean velocity of
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Uforward ≈ 0.52. The simulations of Gazzola et al. [144] are carried out on a rectangular
domain (x, y) ∈ [0, 8lfish]× [0, 4lfish] with a resolution of 4096× 2048 grid points and a pe-
nalization parameter of η = 10−4. We are performing our simulations in a square domain
(x, y) ∈ [0, 8lfish]× [0, 8lfish] by imposing a penalization parameter inside the body equal to
η = 10−3 with maximum resolution of 1025 × 1025 grid points and ∆t = 5 × 10−4. The
centroid of the fish is initially positioned at xcg = 0.9Lx and ycg = 0.5Ly in our simula-
tions. We impose two degrees of freedom fixing the angular velocity equal to zero. The
simulations start with the body and fluid at rest. The forward velocities of the center of
the mass computed with different methods/parameters are compared in Fig. 5.5 (left).
The evolution of the number of active, significant (corresponding to the retained points
after thresholding the wavelet coefficients), safety zone, hung and interpolated points for
the wavelet transform during the computation with the multiresolution solver is illustrated
in Fig. 5.5 (right). The number of points used in the multiresolution analysis on the uni-
form grid results in a compression of more than 95%. Fig. 5.6 gives different views of the
adaptive grids colored by vorticity and the mask function χ at t = 6. The snapshots of the
adaptive grid obtained with the multiresolution solver during the simulations from t = 1

to 6 are illustrated in Fig. 5.7.

5.6 Conclusion
In the present investigation, a space adaptive multiresolution method was developed to
deal with two-dimensional unsteady incompressible flows. The new adaptive method is
based on a multiresolution analysis which allows to reduce the number of active grid points
significantly by refining the grid automatically via nonlinear thresholding of the wavelet
coefficients in a one-to-one correspondence with the grid points. In the present work the
concept of adaptive multiresolution technique is applied to the vorticity stream-function
formulation of the Navier–Stokes equations. A second-order central finite difference method
with symmetric stencil on an adaptive Cartesian grid is used for spatial discretization of
the equations. After validation of the proposed algorithm an extension to deal with fluid
interaction with forced deformable bodies, i.e., a swimming fish, is done using the volume
penalization method. A Lagrangian structured grid with prescribed motion covers the
deformable body interacting with the surrounding fluid due to hydrodynamic forces and
the torque calculated on an Eulerian reference Cartesian grid. The results of swimming fish
are compared with those of Gazzola et al. where a uniform grid is used. The obtained results
show that the CPU-time of the adaptive simulations can indeed be reduced with respect
to simulations on a uniform grid. The CPU-time reduction depends strongly to the flow
configuration, in general the algorithm performs better for external flows. Nevertheless
the accuracy order of the underlying numerical scheme is preserved. We state that the
multiresolution solver is adaptive in the sense that the CPU-time is reduced by excluding
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the unnecessary grid points from the computations by filtering of the wavelet coefficients.
In the present investigation there is no memory compression as a classical uniform data
structure is used. Implementation of a data-structure for memory deallocation is highly
recommended in future developments. In this regard a tree data structure, a hash table or
Hilbert type space-filling curves can be used. We refer to Roussel [89], Brix et al. [130] and
the discussion by Hejazialhosseini et al. [136]. The code is developed in FORTRAN and is
accessible for all [172].
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Figure 5.3: The evolution and collision of the vortices (represented by colored isolines) with
walls (left) and the corresponding adaptive grid (right), the maximum grid level is J = 11
in each direction, threshold ϵ = 10−3, and Reynolds 1000.
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Figure 5.4: Comparisons of the total energy (a) and the total enstrophy (b) between the
uniform grid solver and the multiresolution computation with thresholds, ϵ = 10−3 and
ϵ = 10−4, for Reynolds number 1000 and a maximum grid level J = 9 in each direction for
all simulations. (c) Convergence study for the total enstrophy Z(t) toward the data from
Clercx and Bruneau [104] with the uniform grid solver for 2562, 5122 and 10242 grid points
and multiresolution computations with a maximum grid level J = 11 in each direction,
for Reynolds 1000. It can be observed that coarse grid computations are too dissipative,
we anticipate that 40982 grid resolution is sufficient to reproduce the results of Clercx and
Bruneau [104].
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lines indicate the reference simulations performed by Kern and Koumoutsakos (green) [105],
Gazzola et al. (pink and brown) [144] and Ghaffari et al. (red and blue) [170]. Dashed lines
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Figure 5.6: Adaptive grids colored by the vorticity (left) and colored by the mask χ̄ (right)
at t = 6 (zoom in, from up to down) where (x, y) ∈ [0, 8lfish] × [0, 8lfish] by imposing the
penalization parameter inside the body equal to η = 10−3, with maximum grid level of
J = 10 in each direction and the viscosity ν = 1.4× 10−4.
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Figure 5.7: Adaptive grids at different instances colored by the vorticity of a swimming
fish where (x, y) ∈ [0, 8lfish]× [0, 8lfish]. The penalization parameter inside the body equals
η = 10−3, with a maximum grid level of J = 10 in each direction and the viscosity is
ν = 1.4× 10−4.



Chapter 6

Three-dimensional simulations of
fish-like swimming

“Turbulence is any chaotic solution to the three dimensional
Navier–Stokes equations that is sensitive to initial data and which
occurs as a result of successive instabilities of laminar flows as a
bifurcation parameter is increased through a succession of values.”

J. M. McDonough [114] (2007)

Up to now all simulations of the swimming fish performed in two dimensions. For
a simple anguilliform swimmer this simplification is logical. If the shape of the swim-
mer is complicated, i.e., by considering the appendages with independent movements,
a three dimensional swimming is inevitable. For this reason the Incompact3d open ac-
cess code, is adapted for simulation of incompressible flows interacting with deformable
bodies. In this Chapter, some mathematical properties of the three dimensional incom-
pressible Navier–Stokes equations, and then the existence and uniqueness of its numerical
(weak/strong) solutions, are reviewed. Then conservation of mass, momentum and energy
(in the discrete sense) by the Navier–Stokes equations in the inviscid limit are considered.
Advective, divergence, skew-symmetric and rotational forms of the convective acceleration
term are presented. Also the necessity, advantages and drawbacks of fully or partially
staggered grids are discussed. After that, projection method for the numerical simulation
of the unsteady incompressible Navier–Stokes equations is presented. The open source In-
compact3d code is described including the modifications we made. Finally, validation of
the penalized-incompact3d is performed by simulation of a falling sphere in a quiescent
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fluid. Last a preliminary simulation of a three dimensional swimming fish is demonstrated.
Bottlenecks and future developments are also discussed in the conclusion.

6.1 Governing equations
The governing equations of incompressible flows are the Navier–Stokes equations. For the
unit volume of the fluid, in primitive variables they read

Inertia per volume︷ ︸︸ ︷
ρf

(∂u
∂t︸ ︷︷ ︸

Local acceleration

+(u · ∇)u
)

︸ ︷︷ ︸
Convective acceleration

=

Divergence of stress tensor︷ ︸︸ ︷
−∇p︸ ︷︷ ︸

Pressure gradient

+µ∇2u︸ ︷︷ ︸
Viscous term

Body forces︷︸︸︷
+F (6.1)

and the continuity equation corresponds to

∇ · u = 0 , x ∈ Ω ∈ R3 (6.2)

where Ω is the spatial domain of interest, given as an open subset of R3, which can be
bounded or unbounded in general, u(x, t) is the velocity field, p(x, t) represents the pressure,
µ = ν/ρf is the dynamic viscosity, ρf is the density of the fluid and F(x, t) is a forcing term
for the unit volume of the fluid. Proper initial and boundary conditions must be considered
to complete the equations. By choosing respectively U∞ and L as reference velocity and
length for a given problem the Navier–Stokes equations can be written in non-dimensional
form in which Re = U∞L/ν is the Reynolds number:

∂tu+ (u · ∇)u = −∇p+Re−1∇2u+ F (6.3)

An equation for the pressure can be derived, by applying the divergence operator to the
momentum equations and making use of the continuity:

∇ · (∇p) = −ρf ∇ ·
(
(u · ∇)u

)
+∇ · F (6.4)

The following boundary conditions can be used under the assumption of high Reynolds
flow

∂p

∂n
= 0 on ∂Ω (6.5)

The Navier–Stokes equations can be expressed in tensor (Einstein’s) notation as follows:

∂ui
∂xi

= 0 (6.6)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρf

∂p

∂xi
+ ν

∂2ui
∂x2j

+ fi i = 1, 2, 3 (6.7)
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6.1.1 Mathematical properties of the N-S equations
Some mathematical aspects of the Navier–Stokes equations that have an impact on numer-
ical simulations are reviewed from [115].

1. The N-S equations are nonlinear and sensitive to initial conditions. Increasing the
Reynolds number results in successive instabilities from laminar flow to periodic, then
to quasiperiodic and finally to a chaotic flow.

2. Space (x′ = x+x0 , x0 ∈ R3) and time (t′ = t+t0 , t0 ∈ R) translations are symmetry
groups of the N-S equations, i.e., just derivatives with respect to (x, t) appear in the
N-S equations.

3. The N-S equations are Galilean invariant (x′ = x + u0 t , u
′ = u + u0 , u0 ∈ R3),

thus small scale fluid flow experiments in different parts of the world lead to the same
results.

4. The N-S equations describe a dissipative flow which is thus irreversible from thermo-
dynamics viewpoint, but the Euler equations (ν = 0) describe an isentropic reversible
flow.

5. For two dimensional flows, existence and uniqueness of weak and strong solutions to
the N-S equations have been proven for all times.

6. For three dimensional flows, long-time existence can be demonstrated for weak so-
lutions, but uniqueness has not been proven for this case. On the other hand, only
short-time existence has been proven for 3D strong solutions, but it is known that
these are unique.

With regard to the existence of strong solutions, some constraints have to be imposed
on the shape of the domain (in particular smoothness of ∂Ω), the boundary and initial
conditions, the Reynolds number (to be low) and on the body-force terms. We recall
that a weak solution is one that is not sufficiently differentiable to be substituted into the
differential form of the equations, and instead only satisfies an integral (weak) form of
the equations. A strong solution is one that is sufficiently smooth to satisfy the original
differential equation in the sense of L2.

6.1.2 Conservation properties
It is particularly important, in direct and large eddy simulations of transitional and turbu-
lent flows, that the numerical scheme preserves the conservation properties of the Navier–Stokes
equations [81]. In three dimensional flows, the energy goes from the large eddies toward the
small eddies via the vortex stretching mechanism (nonlinear convection). If the resolution
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of the grid is insufficient, short wave numerical instabilities occur, since the molecular vis-
cosity ν is not sufficient on the grid scales. In general refining the grid solves this problem,
but in three dimensions the resolution of the grid is always restricted. Thus a common
practice to eliminate the oscillations is to add a kind of numerical dissipation (by high-
order filtering or upwinding) or using staggered grids. In the inviscid limit (Re → ∞),
the Navier–Stokes equations reduce to Euler equations. Euler equations conserve mass,
linear and angular momentum, energy, circulation, vorticity in two dimensions and helic-
ity in three dimensions in the interior of the flow field. However, numerical integration
in time has a damping effect. Periodicity assumption is also necessary because the inte-
gral of these quantities over the computational domain can only be affected through the
boundaries. In this regards, most numerical schemes do not preserve all these properties.
Different representations of the convective term is also affects the conservation properties of
the Navier–Stokes equations in the discrete sense. The convective term in the momentum
equations can be cast in several ways:

Advective form:
(u · ∇)ui = u · (∇ui) i = 1, 2, 3 (6.8)

Where ∇ = ∂xî+ ∂y ĵ + ∂zk̂ is the gradient operator and (·) stands for inner product.

Divergence form:
∇ · (uiu) i = 1, 2, 3

It is obtained with the use of continuity equation and the following relations:

∇ · (ϕA) = (∇ϕ) ·A+ ϕ(∇ ·A)

(∇ϕ) ·A = A · (∇ϕ) = (A · ∇)ϕ

where A is a vector, ϕ is a scalar and ∇ · () = ∂x()+ ∂y()+ ∂z() is the divergence operator.
The divergence form can be written in the vector form as ∇ · (u⊗ u), where ⊗ is a special
case of tensor product.

Skew-symmetric form:

1

2

(
(u · ∇)ui +∇ · (uiu)

)
i = 1, 2, 3 (6.9)

This is the average of two previous forms. The term skew-symmetric is used because the
operator 1

2
((v · ∇)u+∇ · (vu)) is skew-symmetric for fixed v satisfying ∇ · v = 0.
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Rotational form:
ω × u+∇

(
|u|2

2

)
In the Navier–Stokes equations the static pressure can be replaced by the total pressure,
P = p+ |u|2

2
, to produce the customary rotational version of the momentum equation.

∂tu+ ω × u+∇P = Re−1∇2u+ F (6.10)

where ω = ∇ × u is the vorticity vector. It is shown by Morinishi et al. in [69] that, if
a typical collocated finite difference scheme is used, the advective form does not conserve
neither momentum nor energy, the divergence form conserves momentum but not energy,
the skew-symmetric and rotational forms conserve both. On the other hand, if a control-
volume approach is used, the divergence form conserves energy but the pressure-gradient
term does not. With a staggered grid and central differences the conservation properties
of the Navier–Stokes equations are preserved. Upwind schemes have undesirable effects
on the conservation properties of the method. The same artefact happens by adding ex-
plicitly some kind of artificial dissipation. For DNS and LES of incompressible flows, only
high-order upwind methods is recommended for discretization of the convective terms.
The computational cost of the advective and divergence forms are roughly the same, the
rotational form is the cheapest and the skew-symmetric form is the most expensive one.

6.1.3 Grid arrangement
Numerical simulation of unsteady incompressible flows by solving the Navier–Stokes equa-
tions requires a method that can accurately represent a wide range of spatial scales. It must
be able to produce physical pressure and velocity fields (stable) in addition to good discrete
conservation properties. One way to achieve a desired accuracy is to use high-order finite
difference schemes for spatial discretization. However, additional constraints such as dis-
crete conservation of mass, momentum and kinetic energy (in the inviscid limit) should be
considered (by keeping the time-integration error near the machine precision) if one wants
to ensure that unsteady flow simulations are both stable and free of numerical dissipation
[80]. The equation for kinetic energy is derived from the momentum equation; it is there-
fore a consequence of the discretized momentum balance rather than a separate equation.
For this reason, the conservation of kinetic energy is commonly referred to as secondary
conservation, in contrast to the primary conservation of mass and momentum. A primary
reason for probing the conservation of energy in the inviscid limit is that the kinetic energy
is a L2-norm of the velocity field. A method that conserves this property is guaranteed to
be stable against blow-up phenomena. Secondly, it is well-known that absence of artificial
dissipation leads to vastly improved accuracy in large eddy simulations where the added
sub-grid viscosity is not always positive, thus one cannot rely on the stabilizing effect of
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the subgrid model.
The discrete conservation properties of numerical methods also depend on the way flow

variables (p, u, v, w) are arranged on the grid. The first choice is the collocated grids where
all flow variables are located at the same points which is more advantageous in complex
solution domains in comparison with staggered grid in which the flow variables are shifted.
On collocated grids, however, the use of symmetric central difference operators give rise to
the problem commonly known as pressure checker-boarding. Various methods have been
proposed in the literature to overcome this problem when using collocated grids, all of
them introduce an explicit or implicit numerical dissipation via central high-order filters,
upwinding or introducing a face velocity that depends on an interpolated pressure gradient.
As a result, none of them does not conserve kinetic energy. Pressure checker-boarding is
due to the resulting wider stencil of the Laplacian in the pressure equation, in which the
nearby grid points are decoupled [138]. The discrete Poisson equation for pressure is derived
by applying the discrete divergence operator to the momentum equations and making use
of the continuity,

δ

δxi

(
δP

δxi

)
= −1

2

δ

δxi

(
δuiuj
δxj

+ uj
δui
δxj

)
+∇ · F (6.11)

In one dimension the discrete Laplacian is the product of two discrete first derivatives.
Therefore the discrete Laplacian, without the force term, by using a second order central
difference leads to

δ

δx

(
δP

δx

)
=

1

2∆x

(
Pi+2 − Pi

2∆x
− Pi − Pi−2

2∆x

)
=
Pi+2 − 2Pi + Pi−2

(2∆x)2
(6.12)

which is simply an approximation of the second derivative on a twice coarser grid (higher-
order schemes yield a similar result). This implies that its null space includes odd-even
oscillations (the π-mode) in addition to constants. In three dimensions, the null space
trivially includes all modes that are either constant or odd-even oscillations in three princi-
pal directions, i.e., (x), (y), (z) and four diagonal directions, i.e., between (x& y), (y& z),
(x& z) and (x& y& z). Therefore, the null space of the discrete three dimensional Laplace
operator is spanned by 8 modes. Elimination of these modes will result in a smooth pressure
field without affecting the discrete conservation properties of the Navier–Stokes equations.
An attempt in this regard is the work of Shashank et al. [138] in which filtering of the pres-
sure field is restricted to the null space of the Laplacian operator to construct a collocated
conservative method. They first solve the discrete Poisson equation and then modify the
pressure field by adding some combination of null space modes to produce a smooth pres-
sure field. This is not different from the standard practice in incompressible flow solvers in
which an arbitrary mean pressure can be added to the solution. It is a reflection of the fact
that the Laplacian operator with Neumann boundary conditions is singular. The method
of Shashank et al. [138] is a special kind of filtering of the pressure field, where the filtering
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is restricted to the null space of the Laplacian operator to preserve kinetic energy in an
inviscid limit. Finally, the common practice of adding dissipation to the pressure equation
can be seen as a way to modify the discrete Poisson equation, like in Rhie and Chow [39],
but these methods destroy the kinetic energy conservation property.

On staggered grids the flow variables are fully (full-staggered) or partially (half-staggered)
shifted. Discrete operators based on central differences with primary and secondary con-
servation properties have been constructed in several ways. For discretization of the in-
compressible Navier–Stokes equations over a full-staggered grid, we refer to the pioneering
work of Harlow and Welch [20] in which the marker and cell method is used for simula-
tion of incompressible flows in the presence of free surfaces. A half-staggered grid for the
pressure is used by Laizet and Lamballais [129] in conjunction with a compact high order
discretization of the incompressible Navier–Stokes equations. In Fig. 6.1 a half-staggered
grid for the pressure is demonstrated. We have developed a second-order two-dimensional
incompressible flow solver based on projection method using half staggered grid for better
understanding the difficulties of primitive variables for three dimensional extensions. But
in this report, all two dimensional simulations were performed using the vorticity-stream
function formulation instead of primitive variables. By using high order discretizations
and collocated grids, the vorticity-stream function formulation proved to be more efficient
than primitive variables. For three dimensional simulations we are using the Incompact3d
open access code developed by Laizet and Lamballais [129]. Some essential aspects of their
method will be explained in some details in the following sections.
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Figure 6.1: (a) Arrangement of velocity • and pressure ◦ grids (shifted in x and y directions
by ∆x/2 and ∆y/2) in a two-dimensional half-staggered arrangement, physical boundaries
are represented by black lines (—–), ghost nods for pressure are on the blue lines (◦−◦−◦),
(b) Indices of velocity • and pressure • nodes in a two-dimensional half-staggered grid.
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6.2 Projection method
The projection method is an efficient approach for numerically solving time-dependent
incompressible Navier–Stokes equations. It was originally introduced by Chorin [22] and
independently by Temam [23] in 1967. Afterward some improvements were introduced by
many other researchers and then commonly used in DNS and LES calculations. Another
approach is the artificial compressibility method introduced by Chorin [21], developed by
Rogers and Kwak [48] and then by Malan and Lewis [82] and others. In this approach
the incompressibility constraint is relaxed by adding the time derivative of pressure field
to the continuity equation, thus allowing for pressure correction. The main advantage
of projection method is that the computations of the velocity and the pressure fields are
decoupled. The algorithm of the projection method is based on the Helmholtz-Hodge
decomposition of any vector field into a solenoidal (divergence-free) part and an irrotational
part

u = usol + uirott = usol +∇ϕ (6.13)

where ϕ is a scalar (∇×∇ϕ = 0) potential function for the irrotational velocity uirott = ∇ϕ.
For the solenoidal velocity in two dimensional flows a stream-function ψ can be defined as
usol = −∇⊥ψ. Taking the divergence of Eq. (6.13) by considering ∇ · usol = 0, yields to a
Poisson equation (∇·u = ∇2ϕ) for the scalar function ϕ. If the vector field u is known, the
above equation can be solved for the scalar function ϕ with proper boundary conditions.
The solenoidal part of u can be extracted using the relation

usol = u−∇ϕ (6.14)

This is the essence of the projection method for solving the incompressible Navier–Stokes
equations. Typically, the algorithm consists of two stages at each time step. In the first
stage, an intermediate velocity that does not satisfy the incompressibility constraint is
computed by Burgers type equations, i.e., the momentum equation in which the pressure
gradient term is dropped. In the second stage, the updated pressure is computed by solving
the Poisson equation, in which the predicted velocity field supplies the source term. Finally
the updated pressure is used to project the intermediate velocity onto a divergence-free
velocity field. For this purpose the Navier–Stokes equations (6.3) can be written as

∂tu = −∇p−N + L+ F = −∇p+H + F = −∇p+R (6.15)

where N contains the nonlinear terms in one of the previously mentioned forms, L contains
the linear viscous term and F is the forcing term. If we assume that the variation of u
in the time integration is due to −∇p and R, the evolution of the velocity field can be
achieved in two separated steps. By defining an intermediate (provisional) velocity field,
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say û, which is not divergent-free, we have

û− un

∆t
= R (6.16)

and introducing a scalar ϕ as a pseudo pressure, we get

un+1 − û

∆t
= −∇ϕ (6.17)

The final velocity field un+1, which is divergence-free, is obtained by applying a correction
to the intermediate velocity field, using the gradient of the scalar ϕ. To find the pseudo
pressure, an elliptic equation with Neumann boundary condition must be solved. By taking
the divergence of the Eq. (6.17) and enforcing the divergence-free condition for the velocity
at time step (n+ 1) we obtain

∇ · û
∆t

= ∇ · (∇ϕ) (6.18)

The boundary condition for ϕ on the domain boundaries ∂Ω is ∇ϕ · n = 0. If u · n = 0

on ∂Ω is prescribed, then the space of divergence-free vector field will be orthogonal to the
space of irrotational vector fields, and from equation (6.17) one has

∂ϕ

∂n
= 0 on ∂Ω (6.19)

The explicit treatment of the boundary condition may be circumvented by using a staggered
grid and requiring that ∇ · un+1 vanishes at the pressure nodes that are adjacent to the
boundaries. The boundary conditions for the intermediate velocity field are a challenge,
according to Kim and Moin [44] the following relation can be used at the boundaries:

û = un+1 +∆t∇ϕ on ∂Ω (6.20)

This leads to a slip velocity for the intermadiate velocity vector at solid surfaces.
In summary the basic idea of the projection method consists in decoupling the evaluation
of the pressure from the velocity components in tree complementary steps:

1. First the system is advanced in time to a mid-time-step position, using a suitable
advection method in time. This is denoted as the predictor step:

ûi = uni +∆tRn
i (i = 1, 2, 3) (6.21)

2. Next the elliptic Poisson equation must be solved:

D ·Gϕ =
D · û
∆t

(6.22)
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3. Finally the velocity correction (Leray projection) is done:

un+1
i = ûi −∆tGϕ (6.23)

where D and G are discrete divergence and gradient operators. The pseudo pressure has
a systematic difference with the physical pressure. For the physical pressure Eq. (6.4)
must be solved. This stage is optional during the time marching if the physical pressure
is not necessary. For three-dimensional simulations we are using the Incompact3d open
access code, developed by Laizet and Lamballais [129], in which Adams–Bashforth and
Runge–Kutta methods are used for velocity projection.

Explicit Adams–Bashforth methods

The classical projection scheme is first-order accurate in time for the velocity and the
pressure field. However second-order accuracy in time for the velocity field can be achieved
by using Adams–Bashforth scheme. For this reason, the intermediate velocity prediction
(6.21) must be replaced with:

ûi = uni +∆t

{
3

2
Rn

i −
1

2
Rn−1

i

}
(6.24)

Third-order accuracy in time for the velocity field can also be obtained by using third order
Adams–Bashforth (AB3) scheme. In this case, the intermediate velocity can be predicted
with:

ûi = uni +∆t

{
23

12
Rn

i −
16

12
Rn−1

i +
5

12
Rn−2

i

}
(6.25)

In high order Adams–Bashforth methods (in contrast to Runge–Kutta methods) smaller
∆t must be used, however only one evaluation of the nonlinear convection terms is neces-
sary per time step. In low Reynolds number flows, dominated by the viscose effects, the
implicit Crank-Nicolson scheme is recommended for advancing the viscous terms L, the
Adams–Bashforth method can be used for the convective terms N . Semi-implicit schemes
can lead to second-order accuracy in time, they are indeed more robust but at the same
time more complicated. Another method proposed by Kim and Moin [44] to integrate
implicitly just normal to the wall terms, either convection or diffusion. This method lead
to a tridiagonal linear system of equations, that can be solved efficiently by direct methods
presented in Appendix F.
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Explicit third-order Runge–Kutta method

We present a low-storage third-order Runge–Kutta (RK3) time advancement scheme, where
all terms in the RHS of momentum equations are advanced explicitly:

ûki = uk−1
i +∆t{−γkHk−1

i + βkHk−2
i − αk∇pk−1 + F k

i } (6.26)

∇2ϕk =
∇ · ûk

i

αk ∆t
(6.27)

uki = ûki − αk∆t∇ϕk (6.28)

pk = pk−1 + ϕk (6.29)

where k = 1, 2, 3 is the substep index, ûki are the intermediate velocities and ϕ is the scalar
for velocity correction. Here H is a spatial operator containing the convective and viscous
terms, F k

i is the momentum forcing term. The coefficients of the third-order Runge–Kutta
method are given in Table 6.1. For more details about the projection method we refer to
Guermond et al. [108].

Table 6.1: Coefficients of the third-order Runge–Kutta method.

αk βk γk
k = 1 8/15 0 8/15
k = 2 2/15 −17/60 5/12
k = 3 1/3 −5/12 3/4

6.3 Incompact3d code and our modification
According to Laizet and Lamballais [129] Incompact3d is a powerful numerical tool for aca-
demic research. It combines the versatility of industrial codes with the accuracy of spectral
codes. It uses a Cartesian mesh which offers the opportunity to implement high-order
compact schemes for the spatial discretization while an immersed boundary method (IBM)
allows the implementation of any complex solid body inside the computational domain.
To ensure the incompressibility constraint, the Poisson equation is fully solved in spectral
space via the modified wave number formalism, no matter what the boundary conditions
are (periodic, free-slip, no-slip, inflow/outflow, etc.). The pressure grid is staggered from
the velocity grid by half grid spacing in each direction (see Fig. 6.1) to avoid spurious pres-
sure oscillations. Introducing a solid body in the solutions domain may cause additional
oscillations in the pressure field near the immersed boundaries [129]. The combination of
high-order schemes with IBM can be problematic because of the discontinuity in velocity
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derivatives, locally resulted from the forcing term. Even though, the formal order of the
solution can be reduced as a result of the IBM, the code has been demonstrated to be far
more accurate with a 6th-order scheme than with a second order scheme both in statistics
and instantaneous field realizations [125]. Incompact3d can be used on up to hundreds of
thousands computational cores to solve the incompressible Navier–Stokes equations [132].
This high level of parallelization is achieved thanks to a highly scalable two dimensional
decomposition (see Fig. 6.2) library and a distributed FFT interface [142] which is available
on-line (2DECOMP & FFT).

DNS/LES solutions are frequently based on high-order schemes free from dissipation
error through the use of a centered formulation over structured uniform grids. The advan-
tage of a 6th-order compact finite difference scheme proposed by Lele [55] over an explicit
second order method is illustrated in Fig. 6.3 (d) in terms of scaled modified wavenumber
for the first derivative. However, the lack of accuracy at small scales combined with aliasing
errors, the error in boundary conditions, failure of conservation properties at the discrete
level, using immersed boundary methods, ..., frequently lead to spurious high wavenumber
oscillations at grid spacing scales. These oscillations can be controlled by the physical dis-
sipation using a highly refined mesh, at the expense of increasing computational effort. By
using marginal resolutions to reduce the cost of the computations, various techniques are
commonly used to suppress or reduce the spurious oscillations. According to Lamballais
et al. [150] the robustness of the computational algorithm can be improved by a relevant
choice for the discretization of the governing equations, in order to ensure conservation
properties, or through the mesh arrangement (grid staggering, see Section 6.1.3). One of
the most popular methods to control the spurious oscillations is to use upwind schemes
to compute the convective terms in order to reinforce numerical dissipation near the mesh
cutoff wavenumber. The mesh cutoff wavenumber also called the π-mode is illustrated in
Fig. 6.3 (d). A similar effect can be obtained using a specific artificial damping term, or
a filtering procedure proposed by Visbal and Gaitonde in [85]. Upwinding, damping or
filtering techniques are essentially non-conservative methods that introduce explicitly some
numerical dissipation. In implicit LES, artificial dissipation can be interpreted as a subgrid
model ensured by upwinding, damping or filtering.

In the Incompact3d code, a simple scheme is used to introduce some numerical dissipa-
tion without the use of any upwinding, damping or filtering operator. The extra dissipation
is directly enclosed in the viscous terms of the Navier–Stokes equations through a manipu-
lated 6th-order compact finite difference scheme proposed by Lamballais et al. in [150] for
the computation of second derivatives. The effect of manipulation of the coefficients of the
classical 6th-order compact scheme is illustrated in Fig. 6.3 (a) - (b) in terms of the scaled
modified wavenumber beside the exact differentiation and the original 6th-order compact
scheme proposed by Lele [55]. The extra dissipation obtained at small scales for compact
schemes is used to freely adjust the level of numerical dissipation near the mesh cutoff
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wavenumber while ensuring high-accuracy, i.e., the method is almost free from any numer-
ical dissipation at large scales. The spectral property of the proposed scheme is compared
in Fig. 6.3 (e) with a previously proposed high-order upwind approach. In the context of
spectral methods, hyperviscosity can be used to artificially extend the inertial range in a
turbulent flow while ensuring numerical dissipation near the mesh cutoff. In Fig. 6.3 (f)
comparison of the proposed method with hyperviscosity is represented. In the same spirit,
the spectral vanishing viscosity method can also be viewed as an alternative LES model
which can affect the smallest scales without adding extra dissipation at large scales. The
comparison of the proposed scheme with a spectral vanishing viscosity is illustrated in Fig.
6.3 (c). For more information we refer to Lamballais et al. [150] and the cited references.
In the light of these illustrations the solutions of the Incompact3d code can be classified to
be implicit LES by using a coarse grid, rather than a DNS over a fine grid.

The possible boundary conditions in the Incompact3d code are periodic, free-slip and
Dirichlet. In Table 6.2 some necessary informations regarding the possible numbers for each
type of boundary condition are listed. In the code velocity grid resolution (nx, ny, nz), pres-
sure grid resolution (nxm, nym, nzm), column-wise and row-wise CPU numbers (prow, pcol)
for the domain decomposition must be set in the module PARAM. Other informations like
time step, time integration method, domain size, boundary conditions (nclx, ncly, nclz),
Reynold number, discretization of the convection term (skew-symmetric/rotational), ini-
tial noise and etc. are set in the Incompact3d.prm input file. We use the skew-symmetric
discretization of the convection term in all simulations.

Table 6.2: The possible boundary conditions in the Incompact3d code, (ℓ is power of 2, 3,
4, 5 and 6).

Boundary condition Periodic Free-slip Dirichlet
ncl 0 1 2

n (velocity grid resolution) 2 ℓ 2 ℓ + 1 2 ℓ + 1
nm (pressure grid resolution) n n-1 n-1

For time discretization several options are available in the code, e.g., second and third
order Adams–Bashforth (AB) and also third and fourth order Runge–Kutta (RK) methods.
For spatial discretization a 6th-order compact scheme is used. First order direct forcing is
used to insert a solid body inside the computational domain. In a direct forcing method,
the force in the RHS of the Navier–Stokes equations is defined as:

F = χ(
uP − u

∆t
+∇p+N −L) (6.30)

The first-order (in space) application of this method [129] will not give the exerted force on
the body. A second-order application via ghost cells [91] can give the exerted forces on the
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body by increasing the cost of the computations considerably. In the volume penalization
method the force in the RHS of the Navier–Stokes equations is defined as

F =
χ

η
(uP − u) (6.31)

the sum of this term over the volume gives the exerted forces on the body which is an
advantage of the volume penalization method. Therefore in the present investigation we
prefer to use the volume penalization method. Comparison of the obtained results via
explicit and implicit implementation of the volume penalization term in the time integration
reveals the advantage of implicit penalization over the explicit one. In the first step (velocity
penalization) the velocity of the body is imposed where χ ̸= 0:

u∗ − un

∆t
=
χ

η
(uP − un) (6.32)

Implicit penalization is used in this step. Then the hydrodynamic coefficients must be
evaluated from Eqs. (2.22) and (2.23) for calculation of the displacements and the rotations.
Next a velocity prediction is performed via:

u∗∗ − u∗

∆t
= −N + L (6.33)

then a Leray projection is done via:

un+1 − u∗∗

∆t
= −∇ϕ (6.34)

Finally, for the pseudo pressure the following relation is derived by the author for the
implicit penalization-projection method:

∇2ϕ = ∇ ·
[u∗∗

∆t
− χ

η
(u∗∗ − uP )

]
(6.35)

For other choices we refer to Belliarda and Fournier [139]. By setting uP = 0 and η = ∆t,
like in the direct forcing method for a fixed body, the Poisson equation proposed by Laizet
and Lamballais [129] is recovered as follows:

∇2ϕ = ∇ ·
[(1− χ)u∗∗

∆t

]
(6.36)

Setting χ = 0 leads to the Poisson equation (6.22) of the projection method. For the
physical pressure, if necessary, Eq. (6.4) must be solved.



6.4. VALIDATION OF THE ALGORITHM FOR A FALLING SPHERE 144

6.4 Validation of the algorithm for a falling sphere
In this section the ability of the penalized Incompact3d code in dealing with fluid–structure
interaction in three dimensions is examined. The considered test case is a falling sphere
due to the gravity, at Red = dU/ν = 100. A rigid sphere with ρs > ρl is released from
rest and accelerates until it reaches its asymptotic fall velocity ustreamwise ≈ 1. The sphere
diameter is set to d = 1.0 and the kinematic viscosity is chosen as ν = 0.01 to obtain an
asymptotic falling velocity ustreamwise = 1.0. In Red = 100, the drag coefficient for the flow
past a sphere CD = 1.1 is given by Johnson and Patel [74]. The gravity constant g and ρs
is determined by Kern and Koumoutsakos [105] using

Fgravity − Fbuoyancy = FD =
1

2
CDρfU

2(πd2/4)

and
ρs/ρl = 1 + CD(3U

2/4g)

By choosing g = 20, the density of the sphere must be set to ρs = 1.041. The grid used by
Kern and Koumoutsakos [105] is a body fitted O-O type with radius r = 15 and 10×40×100

cells with exponential clustering towards the wall, in accordance to the reference grid used
by Johnson and Patel [74]. The time step was set to∆t = 0.001 by Kern and Koumoutsakos
[105]. Some simulations were performed with the penalized Incompact3d solver, using third-
order Adams–Bashforth method with ∆t = 10−4. According to Kern and Koumoutsakos
[105] at time t = 20 an asymptotic falling velocity of ustreamwise = 1.006 is reached, which
reasonably matches the predicted value relevant to the chosen parameters. We had observed
after t = 10 the change in the value of the streamwise velocity is negligible. Therefore for
reduction of the domain size, iterations and thus the computational effort we are comparing
the results of different simulations up to t = 10 with that of Kern and Koumoutsakos [105].

By using different penalization parameters η, the evolution of the streamwise veloci-
ties Vx of the falling sphere, are compared with the simulation performed by Kern and
Koumoutsakos [105] in Fig. 6.8. The corresponding streamwise force and displacement
of the falling sphere for a penalization parameter η = 10−2 are given in Fig. 6.9. In the
streamwise velocity a maximum 10% difference is visible between our simulations and that
of Kern and Koumoutsakos [105]. In our opinion this is due to insufficient spatial reso-
lution. Fig. 6.4 shows snapshots of the Q isosurfaces. The z-mid section velocities and
streamlines colored by streamwise velocity at different instances are given in Figs. 6.5, 6.6
and 6.7.
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6.5 Three dimensional simulation of swimming fish
To be able to carry out a three dimensional simulation of the swimming fish, first of all
the orientation and the position of the fish must be described in proper coordinate. As
in our two-dimensional simulations we choose the orientation and the position of the head
as reference point in all calculations. To this end in three dimensions, we must use the
Euler angles beside the coordinates of the head in Cartesian system. We denote the Euler
angles by (ϕx, ϕy, ϕz) which are equivalent to roll, pitch and yaw on the body frame in
the hydrodynamic literature. Because of some ambiguities and singularities in the Euler
angles, following Boyer et al. [106] we use the quaternions for describing the orientation
of the head and also calculation of the deformation and kinematics of the backbone of the
considered fish. Quaternions were first introduced by Hamilton [1] in 1843 and were then
extensively used in many physics and geometry problems. For describing spatial rotations,
they have been used in a wide range of applications: computer graphics, optics, robotics,
applied mathematics, aerodynamics and orbital mechanics. Quaternions are a non-singular
representation of rotation, unlike the Euler angles, even if they are less intuitive than direct
angles. Moreover, for describing a rotation, quaternions are favored over trigonometric
approaches, because of their remarkably compact form. For more information we refer
to Lazarus et al. [154]. To find the quaternion of the head which will be used as initial
condition for evaluation of the geometry and kinematics of the backbone we have

q0 = c1c2c3 − s1s2s3 (6.37)

q1 = s1s2c3 + c1c2s3 (6.38)

q2 = s1c2c3 + c1s2s3 (6.39)

q3 = c1s2c3 − s1c2s3 (6.40)

where
c1 = cos(ϕy/2) , s1 = sin(ϕy/2)

c2 = cos(ϕz/2) , s2 = sin(ϕz/2)

c3 = cos(ϕx/2) , s3 = sin(ϕx/2)

The inverse transform is given by

ϕx = arctan

(
2q0q1 + 2q2q3

q20 − q21 − q22 + q23

)
(6.41)

ϕy = arcsin(2q0q2 − 2q1q3) (6.42)

ϕz = arctan

(
2q1q2 + 2q0q3

q20 + q21 − q22 − q23

)
(6.43)
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In the FORTAN implementation, atan2 is used to avoid sign and range mistakes. The
range of the rotation angles are

ϕx, ϕz ∈ [−π, π]

and
ϕy ∈ [−π

2
,
π

2
]

A correction must be applied if the range is not in the given interval. A rotational motion
of a solid body is governed by the Euler equations of motion. In the inertial frame we have

ΣMi
ref = Ii(t)α⃗ (6.44)

where Ii(t) is the moment of inertia matrix in an inertial frame which is time dependent
(to be determined with respect to the reference point). The definition of the moment of
inertia matrix is given in Appendix B. In the body frame the Euler equations are given as
follows

ΣMb
ref = Ib α⃗+ ω⃗ × Ib ω⃗ (6.45)

where Ib is the moment of inertia matrix in a body frame which is constant, to be determined
with respect to the reference point once before the simulation. The second term in the right
hand side of Eq. (6.45) is the coupling term and must be evaluated by choosing the body
frame for representation of the orientation. If the body frame coincides with the principal
axes of inertia the moment of inertia matrix will be diagonal for a symmetric shape. The
reference point can be the center of gravity. Integration of the Euler equations (6.45) in
the body frame gives the angular velocities of the body

dω⃗

dt
= I−1

b (ΣMb
ref − ω⃗ × Ib ω⃗) (6.46)

The change of the Euler angles through the Euler equations will not lead to roll, pitch and
yaw angles in a straightforward manner. With the use of the quaternions, the body frame
orientation is given by the following relation by Rafei et al. [120]

dQ

dt
=

1

2
M∨(ω⃗)Q (6.47)

where M∨(ω⃗) is an antisymmetric matrix. After determination of the head orientation,
like two-dimensions the geometry and kinematics of the backbone must be determined, see
Body kinematics in Algorithm 2. Then geometry of the fish is constructed by a series of
ellipses by given height and width normal to the backbone of the fish, see Fig. 6.10. The
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width w(s) is given by Gazzola et al. [144] as follows:

w(s) =


√
2whs− s2 0 ≤ s < sb

wh − (wh − wt)(
s−sb
st−sb

)2 sb ≤ s < st

wt
L−s
L−st

st ≤ s ≤ L

(6.48)

where L is the body length, wh = sb = 0.04L, st = 0.95L and wt = 0.01L. The height h(s)
is given by Gazzola et al. [155] as follows:

h(s) =


h1
√

1− ( s−s1
s1

)2 0 ≤ s < s1

h1 − 2(h2 − h1)(
s−s1
s2−s1

)3 + 2(h2 − h1)(
s−s1
s2−s1

)2 s1 ≤ s < s2

h2 − 2(h3 − h2)(
s−s2
s3−s2

)3 + 3(h3 − h2)(
s−s2
s3−s2

)2 s2 ≤ s < s3

h3
√

1− ( s−s3
L−s3

)2 s3 ≤ s ≤ L

(6.49)

where (s1, h1) = (0.284L, 0.072L), (s2, h2) = (0.844L, 0.041L) and (s3, h3) = (0.957L, 0.071L).
See Fig. 6.11 for the profiles of the fish. On each discrete point, describing the geometry
of the backbone, using the given height and width, an ellipse is form at the origin in the
(y − z) plane (x′ = 0) with the following parametric equations:

y′(s) = w(s) sin(t) , z′(s) = h(s) cos(t) , t ∈ [0, 2π] (6.50)

The created ellipse then must be turned and moved to the right position by a quaternion
based rotation matrix to be normal to the backbone, see Fig. 6.12 and Fig. 6.13.

(x, y, z)T = Rot(Q)(x′, y′, z′)T + (x, y, z)Tcamber (6.51)

The corresponding velocity components of each point on the Lagrangian grid Vshape with
(I, J,K) indexes are given by

Vshape(I, J,K) = VBN(I) + r(I, J,K)× ΩBN(I) (6.52)

where VBN and ΩBN are respectively the linear and angular velocities of the backbone, given
by Eq. (4.14). The radius r = (x, y, z) − (x, y, z)camber must be evaluated at each point
of the ellipses. Then with the use of vector product of r with the angular velocities in
the inertial frame, the velocity vector of each point of the Lagrangian grid is calculated by
Eq. (6.52). See Fig. 6.14 for an example of the grid covering the fish after deformation
and the corresponding velocities of each point. The information of the Lagrangian struc-
tured grid covering the deformable body must be transfered to the Eulerian–Cartesian grid
by interpolation to find χ(i, j, k) and up(i, j, k). We use a (three-dimensional) tri-linear
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interpolation

f(x, y, z) = axyz + bxy + cxz + dyz + ex+ fy + gz + h

which leads to a 8× 8 linear system to find the unknown coefficients. The linear system is
solved by the direct Gauss-Jordan elimination method from Numerical Recipes [56]. For
each point of the Eulerian grid in which χ ̸= 0 the eight nearest points of the Lagrangian
grid are used. For some points in which 0 < χ < 1 due to mollifying by Eq. (6.53), the
interpolation automatically becomes an extrapolation if the point is outside of the original
Lagrangian shape. All points in the interior of the fish have χ(i, j) = 1 on the Eulerian
grid. The mask is mollified by the Shuman [15] filter (6.53)

χ̄(i, j, k) = (2χi,j,k + χi+1,j,k + χi−1,j,k + χi,j+1,k + χi,j−1,k + χi,j,k+1 + χi,j,k−1)/8 (6.53)

The interpolated mask function (χ̄) and the velocity components over the Eulerian grid
are shown in Fig. 6.15. The numbers of grid points on the Lagrangian grid must be
fine enough in comparison to the Eulerian grid to accurately represent the deformation of
the body. With the developed algorithm, some preliminary simulations of swimming fish
are performed. A three dimensional fish with length l = 1, tail beat frequency f = 1,
wavenumber λ = 1 is swimming in a quiescent fluid. The buoyancy is equal to zero
ρb = ρf , the size of the domain is (x, y, z) ∈ [0 , 3] × [0 , 1] × [0 , 1], spatial resolution is
257 × 101 × 101 and the boundary condition according to Table 6.2 are BC (2-1-1). By
using third order Adams–Bashforth method in the penalized Incompact3d solver, the time
step ∆t = 2×10−4 is used. The penalization parameter is η = 10−3 and the filter parameter
for denoising of the hydrodynamic coefficients is δfilter = 10−3. The kinematic viscosity is set
to ν = 2× 10−3. The results of one case for swimming fish at Re ≈ 100 are reported. The
Q iso-surfaces of the swimming fish are illustrated in Fig. 6.17 at different instances. The
streamlines colored by streamwise velocity are shown in Fig. 6.18. The z-mid velocity fields
are demonstrated in Fig. 6.19. The forces, velocities and the trajectories of the swimming
fish are plotted in Fig. 6.20. As can be seen the swimming mechanism in three dimension
is more complicated than two-dimension. The essential idea is to create vortical structures
by performing a wavy motion by the body in the surrounding flow. As in two-dimensions
the created trust is oscillatory.
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(b) Y-pencils
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(c) Z-pencils

Figure 6.2: An example of two dimensional domain decomposition using 4×3 (row ×
column) processors. For data in the X-pencils one global operation in the Z-pencils direction
needs 4 data transpositions to come back to the X-pencils, i.e., X → Y → Z (operation) →
Y → X. Pencil rotation (transpose) is done via the MPI “ALL TO ALL” subroutine.
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(a) Modified wavenumber for the 2nd derivative (b) Mod. waven. for the 2nd der. (zoom)

(c) Comparison with a spectral vanishing viscosity (d) Modified wavenumber for the 1st derivative

(e) Comparison with a high-order upwind method (f) Comparison with a hyperviscosity method

Figure 6.3: Some characteristics of the Incompact3d code in terms of scaled wavenumber
in comparison to other methods, pictures are taken from Lamballais et al. [150].
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Figure 6.4: The Q isosurfaces of the falling sphere in a quiescent fluid, obtained with
the penalized Incompact3d solver, where g = −20, ρb/ρf = 1.041, D = 1, (x, y, z) ∈
[0 , 12] × [0 , 4] × [0 , 4], BC (2-1-1) is imposed (see Table 6.2), ∆t = 10−4 using AB3,
resolution 257 × 101 × 101, penalization parameter η = 10−2, δfilter = 10−3, ν = 10−2 and
Re ≈ 100.
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(c) t = 8
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(d) t = 10

Figure 6.5: The z-mid section velocities of the falling sphere in a quiescent fluid, obtained
with the penalized Incompact3d solver, where g = −20, ρb/ρf = 1.041, D = 1, (x, y, z) ∈
[0 , 12] × [0 , 4] × [0 , 4], BC (2-1-1) is imposed (see Table 6.2), ∆t = 10−4 using AB3,
resolution 257 × 101 × 101, penalization parameter η = 10−2, δfilter = 10−3, ν = 10−2 and
Re ≈ 100.
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Figure 6.6: The z-mid section velocities (up) and streamlines colored by streamwise velocity
(down) of the falling sphere in a quiescent fluid obtained with the penalized Incompact3d
solver, where g = −20, ρb/ρf = 1.041, D = 1, (x, y, z) ∈ [0 , 12]× [0 , 6]× [0 , 6], BC (2-1-1)
is imposed (see Table 6.2), ∆t = 10−3 using AB2, resolution 257× 101× 101, penalization
parameter η = 10−2, δfilter = 10−3, ν = 10−2 and Re ≈ 100.
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Figure 6.7: The streamlines colored by streamwise velocity of the falling sphere in a qui-
escent fluid at t = 12, obtained with the penalized Incompact3d solver, where g = −20,
ρb/ρf = 1.041, D = 1, (x, y, z) ∈ [0 , 12] × [0 , 6] × [0 , 6], BC (2-1-1) is imposed (see Table
6.2), ∆t = 10−3 using AB2, resolution 257 × 101 × 101, penalization parameter η = 10−2,
δfilter = 10−3, ν = 10−2 and Re ≈ 100.
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Figure 6.8: Comparison of the streamwise velocity Vx of the falling sphere (g = 20) using
different penalization parameters η, with the reference simulation performed by Kern and
Koumoutsakos [105] (black line). Colored lines represent the results of the present study
performed with the penalized Incompact3d solver, with ∆t = 10−4 using AB3.
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(b) Trajectory

Figure 6.9: The corresponding streamwise force and the displacement of the falling sphere,
represented in Fig. 6.8, by imposing the penalization parameter to η = 10−2.
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Figure 6.10: Backbone of the fish as a one-dimensional Cosserat medium. The inertial
frame is denoted by (x, y, z), the orthogonal body fitted coordinate (d1, d2, d3) oriented
along the body to be tangent in d3 direction. Picture taken from Lazarus et al. [154].
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Figure 6.11: Profiles of the considered fish from top and side.
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Figure 6.12: The fish is constructed by series of ellipses normal to the backbone of the
considered fish. Each ellipse is covered by a structured grid.
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Figure 6.13: The surface of the considered fish is covered by a Lagrangian structured grid.
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Figure 6.14: The corresponding velocities, evaluated by Eq. (6.52), of the swimming fish
at the surface of the Lagrangian structured grid.

Figure 6.15: The interpolated mask function χ and the velocity components, on the Eulerian
grid.



6.5. THREE DIMENSIONAL SIMULATION OF SWIMMING FISH 159

(a) Insufficient resolution

(b) Moderate resolution

Figure 6.16: The mask function with two different resolutions of the Lagrangian grid.
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6.6 Conclusion
In this Chapter the three dimensional incompressible Navier–Stokes equations have been
represented. Conservation of mass, momentum and energy, in discrete sense, in the invis-
cid limit are recalled. We have developed a second-order two-dimensional incompressible
flow solver based on a projection method using half staggered grid for better understand-
ing the difficulties of primitive variables for three dimensional extension. By using high
order discretization and collocated grids, vorticity-stream function formulation proved to
be more efficient than primitive variables in two dimensions. However, in three dimensions
the primitive variables are more straightforward than the vorticity-velocity formulation.
Therefore in three dimensional simulations we are using the Incompact3d open access code
developed by Laizet and Lamballais [129]. The Incompact3d code is briefly reviewed then
adapted to deal with fluid–structure interaction problems. The direct forcing is replaced
by the implicit volume penalization method to take into account deformable bodies with
imposed motion. A six degree of freedom simulator is also added to the solver. For the
proposed penalized-projection method Eq. (6.35) is derived for evaluation of the pseudo
pressure. Skew-symmetric discretization of the convective terms is used in the computa-
tions. Half staggered grid for pressure in conjunction with a high-order dissipative method
is used to perform implicit large eddy simulations. Validation of the penalized-incompact3d
is done by means of simulating a falling sphere. The results are in a satisfactory agreement
with the reference simulation. Finally, some preliminary simulations of a three dimensional
swimming fish are performed. The major bottlenecks in the computations are the resolu-
tion and the computation time. On the available machine just eight processors are optimal
for the simulations. Future developments are adaptation of the code to available clusters
to increase the number of CPUs in an efficient manner. The proposed law in Chapter 4
for rotation control of a two-dimensional swimmer must be extended to three dimensions.
Another development is increasing the order of the immersed boundary method to be at
lest second order, because despite two dimensional simulations in three dimensions the
resolution is limited. The evaluation of the hydrodynamic coefficients are crucial in three
dimensional simulations. The presented control volume law in Chapter 3, for evaluation of
the hydrodynamic coefficients must also be extended to three dimensions to examine if it
can perform better.
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Figure 6.17: Q iso-surfaces of the swimming fish obtained with the penalized Incompact3d
solver, where l = λ = f = 1, ρb = ρf , (x, y, z) ∈ [0 , 3] × [0 , 1] × [0 , 1], BC (2-1-1) is
imposed (see Table 6.2), ∆t = 2×10−4 using AB3, resolution 257×101×101, penalization
parameter η = 10−3, δfilter = 10−3, ν = 2× 10−3 and Re ≈ 100.
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Figure 6.18: The streamlines colored by streamwise velocity of the swimming fish obtained
with the penalized Incompact3d solver, where l = λ = f = 1, ρb = ρf , (x, y, z) ∈ [0 , 3] ×
[0 , 1]× [0 , 1], BC (2-1-1) is imposed (see Table 6.2), ∆t = 2× 10−4 using AB3, resolution
257×101×101, penalization parameter η = 10−3, δfilter = 10−3, ν = 2×10−3 and Re ≈ 100.
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Figure 6.19: The z-mid velocity field of the swimming fish obtained with the penalized
Incompact3d solver, where l = λ = f = 1, ρb = ρf , (x, y, z) ∈ [0 , 3] × [0 , 1] × [0 , 1], BC
(2-1-1) is imposed (see Table 6.2), ∆t = 2 × 10−4 using AB3, resolution 257 × 101 × 101,
penalization parameter η = 10−3, δfilter = 10−3, ν = 2× 10−3 and Re ≈ 100.
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Figure 6.20: The forces (top-left), velocities (top-right) and the trajectories (bottom) of
the swimming fish obtained with the penalized Incompact3d solver, where l = λ = f = 1,
ρb = ρf , (x, y, z) ∈ [0 , 3]×[0 , 1]×[0 , 1], BC (2-1-1) is imposed (see Table 6.2), ∆t = 2×10−4

using AB3, resolution 257 × 101 × 101, penalization parameter η = 10−3, δfilter = 10−3,
ν = 2× 10−3 and Re ≈ 100. The reference point is the head.



Chapter 7

Conclusion and perspectives

“It must be admitted that the principal result of
fifty years of turbulence research is the recognition
of the profound difficulties of the subject [96].”

S. A. Orszag (1970)

The subject of present investigation is the simulation of forced deformable bodies in-
teraction with an incompressible flow. As an application quantification of a swimming
fish is considered. To this end an efficient numerical algorithm have been proposed. The
incompressible Navier-Stokes equation are considered as the mathematical model. For
two-dimensional simulations the vorticity-stream function formulation proved to be more
efficient. Explicit fourth-order Rung–Kutta method is used for time integration of the
governing equations. To achieve high accuracy, compact finite differences are applied to
the spatial terms. By using a uniform Cartesian grid a new fourth-order direct solver was
presented for the solution of the Poisson equation, which combines finite differences with
FFT in alternative directions. In order to introduce a deformable body in fluid flow, the
volume penalization method is applied to the solution of the Navier–Stokes equations as a
forcing term. Even if the penalization method is shown to have between first and second
order accuracy in space, an important advantage of this method is that the evaluation
of the hydrodynamic coefficients is straightforward. However, proper denoising of the hy-
drodynamic coefficients is crucial in dealing with fluid/solid interaction problems via the
volume penalization method. Another advantage of the volume penalization method is the
possibility of flow simulation around almost arbitrary geometries with an imposed motion
by using uniform Cartesian grids. For examination of the error due to the penalization
term, the Taylor–Couette flow was considered and between first and second order accuracy
in space was proved. Then for validation of the fluid–structure interaction, falling of a
cylinder and an ellipse in a quiescent fluid (due to terrestrial gravity) was studied. Simu-

165



166

lation of the fish in forward gait is next considered for further validation of the proposed
algorithm. A Lagrangian structured grid covers exactly the fish body, which is interacting
with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the
Eulerian reference grid. Good agreement is observed with the results reported by Gazzola
et al. [144]. An efficient law for curvature control of an anguilliform fish, swimming toward
a predefined goal, is proposed which is based on geometrically exact theory of nonlinear
beams. By using the quaternions for rotation description, the exact theory of nonlinear
beams is proved to be accurate, efficient and straightforward. With the proposed rotation
control law, the motionless fish executes a sharp 180o turn within an area of about 1.3 times
its body length. Validation of the developed method shows the efficiency and expected ac-
curacy (between first and second) of the algorithm for rotation control of an anguilliform
swimmer and also for a variety of fluid/solid interaction problems. A perspective for future
works is the enhancement of the rotation control law. The FORTRAN code is open access
[171], the interested users are first encouraged to try the second-order solver over the finest
possible grid, then investigate the effect of increasing the order from second to fourth on the
same or a coarser grid. However increasing the accuracy order of the immersed boundary
method is a challenging task. For high-order IBMs implemented to finite difference solvers
we refer to Linnick and Fasel [98], Seo and Mittal [147] and Bonfigli [148].

In the Chapter 5, multiresolution analysis is applied to the algorithm to deal with
two-dimensional flows interacting with deformable bodies, on adaptive grids. This method
restricts the computational effort to the regions where high gradients of the flow variables
are present. The method is based on Harten’s [64] point value analysis which allows to
reduce the number of active grid points significantly by refining/coarsening the grid au-
tomatically. This can be done through nonlinear thresholding of the wavelet coefficients
in a one-to-one correspondence with the grid points. A second-order central finite dif-
ference method with symmetric stencil on an adaptive Cartesian grid is used for spatial
discretization of the equations. For validation of the adaptive solver, simulation of dipole
wall collision is performed by both uniform and adaptive solvers, the results are in good
agreement. After validation of the proposed algorithm an extension to deal with fluid inter-
action with forced deformable bodies, i.e., swimming of a fish, is done by implementing the
volume penalization method. The results of fish swimming in forward gait are compared
with those of Gazzola et al. [144] where a uniform grid is used. The obtained results show
that the CPU-time of the adaptive simulations can be significantly reduced with respect
to simulations on a uniform grids. Nevertheless the accuracy order of the underlying nu-
merical scheme is preserved. Implementation of a tree data-structure or a hash table for
memory deallocation is proposed as a perspective for further studies, we refer to the work
of Hejazialhosseini et al. [136]. Extending the code to include a dynamic and distributed
memory for parallel computations with message passing interface (MPI) is another subject
for future investigations.



167

For three dimensional simulations the primitive variables are more straightforward than
the vorticity-velocity formulation. Therefore in Chapter 6 a second-order two-dimensional
incompressible flow solver (based on a projection method) is developed for better under-
standing the difficulties of primitive variables and grid staggering. After that for three
dimensional simulations the Incompact3d open access code is used, which is originally de-
veloped by Laizet and Lamballais [129]. Half staggered grid for pressure in conjunction with
a high-order dissipative method are used to perform implicit large eddy simulations. Then
in the present investigation, the Incompact3d code is adapted to deal with fluid–structure
interaction problems. The direct forcing is replaced by the implicit volume penalization
method to take into account deformable bodies (with an imposed motion) interaction with
a fluid. A six degree of freedom simulator is also added to the solver. For evaluation
of the pseudo pressure in the proposed penalized-projection method, a Poisson equation
(6.35) is derived. Validation of the penalized-incompact3d solver is done by simulating
a falling sphere. Finally, some preliminary simulations of a three dimensional swimming
fish are performed. The major bottlenecks in the computations are the resolution and the
computation time. A future development is adaptation of the code to available clusters,
to use more computational cores in an efficient manner and then increasing the Reynolds
number. The proposed law in Chapter 4, for rotation control of a two-dimensional swim-
mer, must be extended to three dimensions. Another development is increasing the order
of the immersed boundary method to be at least second order, because in contrast to two
dimensional simulations in three dimensions the resolution is much more limited, we refer
to Linnick and Fasel [98], Seo and Mittal [147] and Bonfigli [148] for high-order IBMs. The
evaluation of the hydrodynamic coefficients is crucial in the simulations. The proposed
control volume law for evaluating the hydrodynamic coefficients in Chapter 3 may also
be extended to three dimensions to examine its performance. The codes are developed in
FORTRAN and are open access [171]-[172].



Chapter 8

Résumé de thèse en français

“ En Mars 1922, lors d’un dîner Paul Valéry posa la question
à Albert Einstein, Avez-vous un petit carnet où vous notez vos
idées? Einstein, avec son espièglerie habituelle mâtinée d’une
profonde sagesse, lui répondit qu’il n’a pas besoin de carnet, car
« Oh ! Vous savez, une idée, c’est si rare ! ».”

Marie Farge [152] (2011)

Dans cette étude, une méthode numérique précise et efficace est proposée pour la simu-
lation de corps déformables interagissant avec un écoulement incompressible. L’application
principale de cet algorithme concerne la simulation numérique de la nage d’un poisson. La
quantification de l’écoulement autour des animaux aquatiques est une difficulté, quant à
sa modélisation et à sa simulation, dans le domaine de la mécanique des fluides numérique.
Avec plus de 32000 espèces différentes, un des problèmes est la représentation de la cinémati-
que du poisson. La simulation de l’écoulement incompressible est aussi une problématique
où l’efficacité du solveur de Poisson devient crucial. Le troisième problème est le couplage
entre le fluide et le corps déformable et mobile. Un poisson nage en exerçant des forces
et des moments dans l’eau qui l’environne, en s’opposant à la résistance hydrodynamique,
i.e., la traînée. Dans certains cas, comme la nage anguilliforme, un mouvement ondu-
latoire du corps se développe de la tête vers la queue. L’amplitude de cette oscillation
augmente au fur et à mesure qu’elle se propage vers la queue. La majorité des poissons
nage grâce à une ondulation/oscillation de leur corps et de leurs nageoires (ailette/aileron).
Dans l’étude présente, pour répondre aux problèmes posés, les équations de Navier–Stokes,
sont considérées dans leur formulation vorticité-fonction de courant. Ensuite, elles sont dis-
crétisées temporellement et spatialement à l’aide respectivement d’un schéma d’ordre quatre
de Runge–Kutta et par des différences finies compactes d’ordre quatre. Conjointement à
l’utilisation d’un maillage uniforme, nous proposons un nouveau solveur direct au quatrième
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ordre pour l’équation de Poisson, permettant de garantir la contrainte d’incompressibilité
au niveau du zéro machine sur une grille à pas d’espace optimale. L’introduction d’un corps
déformable et mobile dans l’écoulement de fluide est réalisée au moyen d’une méthode de
pénalisation de volume. La déformation du corps est imposée par l’utilisation d’un maillage
lagrangien structuré et mobile qui interagit avec le fluide environnant en raison des forces
hydrodynamiques et du moment (calculés sur le maillage eulérien de référence). Une loi
efficace de contrôle de la courbure pour un poisson anguilliforme nageant vers un objectif
prescrit est proposée. La loi de contrôle est utilisée pour changer la direction de le nage du
poisson et elle est basée sur la théorie exacte des poutres non-linéaires.

8.1 Modèle mathématique
Les équations de Navier–Stokes gouvernent les écoulements incompressibles et newtoniens.
En utilisant les variables primitives, elles sont composées des équations de quantité de
mouvement :

∂u

∂t
+ (u · ∇)u = − 1

ρf
∇p+ ν∇2u+ F , x ∈ Ω ∈ R3 (8.1)

et de continuité :
∇ · u = 0 (8.2)

Pour les écoulements bidimensionnels, les équations de Navier–Stokes (8.1) - (8.2) sont
considérées dans leur formulation vorticité et fonction de courant :

∂tω + (u · ∇)ω = ν∇2ω +∇× F , x ∈ Ω ∈ R2 (8.3)

où ω(x, t) = ∇× u = vx − uy est la vorticité. Le champ de vitesse est donné par

u = (u, v) = (∂yψ,−∂xψ)

où ψ est la fonction de courant, satisfaisant une équation de Poisson :

−∇2ψ = ω (8.4)

qui garantit la contrainte d’incompressibilité (8.2). Dans cette étude, l’introduction d’un
corps déformable et mobile dans l’écoulement de fluide est réalisée au moyen d’une méthode
de pénalisation de volume proposée par Arquis (1984) [40], Angot et al. (1999) [73] puis
Khadra et al. (2000) [75]. Le terme de pénalisation sur la vitesse est défini par :

F = −η−1χ(u− uB) (8.5)
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Figure 8.1: Domaine de la solution et du corps immerge, Ω = Ωf ∪ Ωp.

où uB(x, t) est le champ de vitesse imposé dans le corps déformable, χ est la fonction
caractéristique de l’objet et η est le coefficient de perméabilité. La fonction caractéristique
χ est définie comme :

χ(x, t) =

{
1 x ∈ Ωp

0 x ∈ Ωf

(8.6)

où Ωf représente le domaine fluide et Ωp représente le corps solide ou déformable immergé
dans le fluide. La fonction caractéristique χ est sans dimension et décrit le corps immergé
dans le fluide, comme illustré sur la Figure 8.1. Selon Carbou et Fabrie [92] quand η → 0,
la solution numérique pénalisée u converge vers la solution exacte du problème pénalisé
uexact, avec un taux de convergence de l’ordre O(√η).
Notons par ailleurs que Pasquetti et al. (2008) [121], Minguez (2008) [122], Kolomenskiy
et Schneider (2009) [126] et quelques autres chercheurs proposent d’utiliser une fonction
caractéristique filtrée χ̄, pour stabiliser le schéma de discrétisation, qui est indispensable en
utilisant des schémas d’ordre élevé. Pasquetti et al. (2008) [121] rappellent que le filtrage
de type “raised cosine” utilisé dans la thèse de Forestier (2000) [79] (communément utilisé
dans l’espace spectral) s’écrit dans l’espace physique comme :

χ̄i,j = (2χi,j + χi+1,j + χi−1,j + χi,j+1 + χi,j−1)/6 (8.7)

Ce filtre est aussi utilisé par Shuman (1957) [15] en météorologie.
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8.2 Dynamique d’un objet mobile
Outre la possibilité de modéliser des géométries complexes sur des maillages cartésiens à
moindre coût, la méthode de pénalisation a l’avantage de donner facilement accès aux forces
et moments hydrodynamiques qui s’exercent sur le corps, sans intégration du tenseur des
contraintes σ sur la surface du corps. Angot et al. (1999) [73] montrent que les forces sont
données par:

F =

∮
∂Ωs

σ · n dl = lim
η→0

ρf
η

∫
Ωs

χ(u− uB) ds+ ρfSpenẌref (8.8)

De façon similaire le moment [N.m] appliqué est donné par :

Mref =

∮
∂Ωs

r× σ · n dl = lim
η→0

ρf
η

∫
Ωs

χ r× (u− uB) ds+
ρf
ρs
Izz θ̈ref (8.9)

où Izz =
∫
r2dm est le moment d’inertie du corps autour d’un point de référence, n est le

vecteur unitaire dirigé vers l’extérieur du corps normal à ∂Ωs, θ est l’angle de rotation par
rapport au point de référence, les points représentent la dérivée seconde temporelle et Spen

est la surface de la zone pénalisée.
Dans le cas des problèmes d’interaction fluide–structure, l’utilisation de la méthode de
pénalisation de volume avec une résolution modérée et les calculs numériques des coefficients
hydrodynamiques suivant des approximations (8.8) et (8.9), entraîne des oscillations des
coefficients hydrodynamiques au cours des processus itératifs qui perturbent la convergence
du calcul. Les oscillations produisent des bruits numériques qui peuvent provoquer la
divergence de la solution ou la convergence vers une solution imprécise. Une méthode
efficace pour éliminer ces bruits consiste à appliquer un filtre passe-bas du type lissage
exponentiel d’ordre deux introduit par Holt (1957) [14], qui est utilisé régulièrement pour
filtrer les données temporelles :

F̂ n = αF n + (1− α)(F̂ n−1 + bn−1) , n = 3, 4, . . . (8.10)

bn = β(F̂ n − F̂ n−1) + (1− β)bn−1 , (α, β) ∈ [0, 1] (8.11)

où F̂ 1 = F 1, pour n = 2 on peut utiliser les équations (8.10) et (8.11) avec α = β = 1.
Par la suite α = 1− (1− δ)2 et β = δ2/α peuvent être utilisés où le paramètre de filtrage
δ représente une gamme étroite (δ ≪ 1). Selon notre expérience δ ∈ [10−4, 10−2] peut être
utilisé pour le filtrage des coefficients hydrodynamiques. Les valeurs plus faibles ajoutent
un effet d’amortissement relativement fort sur le mouvement de corps. Néanmoins, en util-
isant des valeurs plus grandes il y a des risques de divergence dans les simulations. Une
analyse de sensibilité est alors nécessaire pour obtenir des résultats fiables.



8.2. DYNAMIQUE D’UN OBJET MOBILE 172

La dynamique d’un corps immergé dans un fluide est gouvernée par la loi de Newton:

Σ(FH + FG) = mẌref (8.12)

où les forces appliquées sont décomposées en deux composantes, i.e., les forces hydrody-
namiques FH et les forces dues à la gravité FG = Spen(ρb − ρf )g. La loi de Newton peut
directement être intégrée, pour donner les positions du centre de gravité (cg) au cours du
temps. Si l’on suppose que F est constant durant un pas de temps discret (tn, tn+1), on
obtient alors :

∆Xref =
1

2

Fn

m
∆t2 +Vn∆t (8.13)

et V n+1 = V n + Ẍ∆t. Le mouvement de rotation d’un objet est décrit par loi d’Euler :

ΣMref =
d

dt
(Jref θ̇) (8.14)

où Mref est le moment appliqué autour d’un point de référence. Si le point de référence
choisi n’est pas identique avec le centre de gravité (cg), le moment dû à la force de gravité
(flottabilité) doit être rajouté à ΣMref dans l’équation (8.14). En présence des forces
volumiques, le choix du centre de gravité (cg) comme point de référence permet de simplifier
les calculs du moment, i.e., seulement le moment dû aux forces hydrodynamiques FH doit
être intégré autour du point de référence.
Dans cette étude, le centre de gravité (cg) est utilisé comme point de référence pour les
simulations de sédimentation des objets considérés, comme la chute d’une ellipse ou d’un
cylindre dans un fluide. Cependant, pour les simulations de nage de poisson (ρb = ρf ) la
flottabilité est égale à zéro et ne joue aucun rôle. C’est pourquoi le choix de la tête du
poisson comme point de référence peut simplifier l’intégration des équations (8.28), (8.30)
et (8.32), pour obtenir la cinématique de la colonne vertébrale, sans avoir besoin du moment
dû à la flottabilité. L’intégration temporelle de l’équation (8.14) sans prendre en compte
les variations de moment d’inertie et Mref , donne le nouvel angle du corps considéré par
rapport au point de référence :

∆θ =
1

2
θ̈n∆t2 + θ̇n∆t (8.15)

où θ̈ = M/J et θ̇n+1 = θ̇n + θ̈∆t (les points représentent les dérivées temporelles). Les
équations (8.13) et (8.15) décrivent un mouvement avec trois degrés de liberté pour le
corps considéré. Les équations (8.8) et (8.9) fournissent les forces et le moment exercés
pour l’intégration du système des équations aux dérivées partielles (EDP) formé par les
équations (8.12) et (8.14). Le filtrage des coefficients hydrodynamiques doit être fait selon
l’équation (8.10). Des conditions initiales convenables sont nécessaires. Dans cette étude,
on utilise un schéma d’ordre un O(1) pour l’intégration temporelle des équations de la
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dynamique. La même méthode d’intégration est utilisée par Kolomenskiy et Schneider
(2009) [126] et Gazzola et al. (2011) [144] pour la dynamique d’un corps mobile où la
pénalisation de volume est également employée.

8.3 Discrétisation temporelle et spatiale
L’équation (8.3) est discrétisée temporellement à l’aide d’un schéma classique d’ordre quatre
de type Runge–Kutta (RK4). Pour la discrétisation spatiale, des schémas aux différences
finies compactes d’ordre deux et quatre, présentés par Lele (1992) [55], sont utilisés. La
méthode compacte d’ordre quatre est appliquée avec succès aux équations de Navier-Stokes
(8.1) avec Abide et Viazzo [97] en utilisant les variables primitives. Sur une maille uniforme
avec un pas d’espace égal à h, la dérivée première avec différents ordres de précision peut
se construire avec :

βf ′
i−2 + αf ′

i−1 + f ′
i + αf ′

i+1 + βf ′
i+2 = a

fi+1 − fi−1

2h
+ b

fi+2 − fi−2

4h
+ c

fi+3 − fi−3

6h
(8.16)

et de façon similaire pour la dérivée seconde on a :

βf ′′
i−2 + αf ′′

i−1 + f ′′
i + αf ′′

i+1 + βf ′′
i+2 =

a
fi+1 − 2fi + fi−1

h2
+ b

fi+2 − 2fi + fi−2

4h2
+ c

fi+3 − 2fi + fi−3

9h2
(8.17)

on se réfèrera à l’annexe A pour les coefficients et leurs traitements près des bords. En
choisissant α = β = 0 dans les équations (8.16) et (8.17) des schémas explicites en résultent.
Avec β ̸= 0 ou α ̸= 0 les schémas sont implicites et un système linéaire d’équations de la
forme suivante est obtenu :

[A]f ′ = R

Avec β ̸= 0 et α ̸= 0, le système linéaire d’équations possède cinq diagonales (pentadiago-
nal) pour la matrice des coefficients [A]. Avec β = 0 le système obtenu comporte trois diag-
onales (tridiagonal) pour la matrice des coefficients [A]. Les systèmes d’équations linéaires
à trois ou cinq diagonales, peuvent être résolus avec des méthodes efficaces. Deux algo-
rithmes directs de décomposition de matrice du type “inférieur-supérieur” (Lower-Upper)
sont présentés dans l’annexe F.

8.4 Solveur de Poisson rapide
Du fait de l’utilisation d’un maillage uniforme (à pas d’espace identique), nous proposons
un nouveau solveur direct au quatrième ordre pour l’équation de Poisson, permettant de
maintenir la contrainte d’incompressibilité au niveau du zéro machine sur une grille à
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Figure 8.2: Une représentation schématique du domaine de la solution pour le solveur rapide
de l’équation de Poisson. Les opérations dans les directions x et y sont découplées. Dans
la direction x des conditions aux limites générales peuvent être utilisées grâce aux schémas
aux différences finies. Dans la direction y des conditions aux limites d’imperméabilité et
de glissement (Dirichlet homogène, i.e., ψ = ω = 0) sont imposées permettant d’utiliser la
transformée en sinus.

pas d’espace optimale. Pour déduire un schéma compact d’ordre quatre, pour l’équation
de Poisson −∇2ψ = ω, sur un maillage uniforme de dimension Nx × Ny, on utilise
l’approximation suivante :

∂2ψ

∂x2
= δ2xψ − ∆x2

12

∂4ψ

∂x4
+O(∆x4) (8.18)

pour la direction x, où δ2x représente une approximation centrée d’ordre deux pour la dérivée
seconde. En remplaçant (8.18) dans l’équation de Poisson, on obtient :

(δ2x −
∆x2

12

∂4

∂x4
+ ∂yy)ψ = −ω (8.19)

En raison de la présence du coefficient ∆x2 devant la dérivée d’ordre quatre, ce terme ne
peut pas être négligé et doit être évalué au moins avec un schéma d’ordre deux. Cependant
la totalité de l’approximation correspond à une précision d’ordre quatre. La dérivée qua-
trième peut être évaluée en utilisant l’équation de Poisson originale, −∇2ψ = ω, et deux
différenciations successives par rapport à x, c’est-à-dire, ∂xx∂xxψ = −∂xx∂yyψ − ∂xxω. En
remplaçant ∂xx par δ2x, on trouve :

(δ2x +
∆x2

12
δ2x∂yy + ∂yy)ψ = −ω − ∆x2

12
δ2xω (8.20)
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En appliquant la transformée de Fourier à l’équation (8.20) dans la direction y et en rem-
plaçant la dérivée seconde par −k2yψ̂ dans l’espace de Fourier, on obtient

(δ2x −
∆x2

12
δ2xk

′2
y − k′2y )ψ̂ = −ω̂ − ∆x2

12
δ2xω̂ (8.21)

Orlandi (2000) [77] propose de remplacer le nombre d’onde exact par le nombre d’onde
modifié k′2y qui permet d’adapter l’approximation spectrale de la dérivée seconde à la méth-
ode aux différences finies considérée. Pour un schéma aux différences finies explicite d’ordre
quatre, en se référant à la Table A.1 de l’annexe A on a a = 4/3, b = −1/3 et α = β = c = 0.
Donc en remplaçant les coefficients dans la relation analytique du nombre d’onde modifié
donné par Lele (1992) [55], le nombre d’onde modifié pour la dérivée seconde considérée
est donné par la relation suivante :

k′2y =
1

∆y2

[
8

3

(
1− cos(

kyπ

Ny

)
)
− 1

6

(
1− cos(

2kyπ

Ny

)
)]

(8.22)

Le système tri-diagonal à résoudre (cf. annexe F) dans l’espace de Fourier pour chaque
nombre d’onde de ψ̂ dans la direction y est :

βψ̂i+1,m − (2β + k′2y )ψ̂i,m + βψ̂i−1,m = −(ω̂i+1,m + 10 ω̂i,m + ω̂i−1,m)/12 (8.23)

pour i = 2, ..., Nx − 1, où β = ∆x−2 − k′2y /12. Les opérations dans les directions x et y
sont découplées, voir la Figure 8.2. En résumé, on applique d’abord une FFT directe 1D
à terme de forçage ω dans la direction y. Ensuite, pour chaque ligne dans la direction x,
le système tri-diagonal (8.23) est résolu, pour trouver la solution dans l’espace de Fourier.
Finalement, pour revenir à l’espace physique, on applique une FFT inverse dans la direction
y à la solution, ligne par ligne. Pour les données réelles avec conditions aux limites nulles
sur les bords (Dirichlet homogène, i.e., ψ = ω = 0, correspondant à des conditions aux
limites d’imperméabilité et de glissement), la transformée de Fourier naturelle à utiliser est
la transformée en sinus [56], présentée dans l’annexe D.

8.5 Modèle cinématique de nage anguilliforme
Dans cette étude, la déformation du corps du poisson est imposée. Le corps est représenté
par un domaine discrétisé sur un maillage lagrangien structuré, voir la Figure 8.5. Il
interagit avec le fluide environnant en exerçant des forces hydrodynamiques et des moments,
calculés sur le maillage eulérien de référence. Suivant Carling et al. (1998) [67] la forme
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générique du poisson repose sur un profil défini par :

w(s) =


√
2whξ − ξ2 0 ≤ ξ < sb

wh − (wh − wt)(
ξ−sb
st−sb

)2 sb ≤ ξ < st

wt
L−ξ
L−st

st ≤ ξ ≤ L

(8.24)

où L est la longueur du poisson, wh = sb = 0.04L, st = 0.95L et wt = 0.01L. Le profil
générique (8.24) est illustré sur la Figure 8.3. Ce profil se déforme avec une courbure
imposée suivant sa ligne de symétrie, i.e., la colonne vertébrale du poisson. La longueur
L du poisson reste constante. La cinématique de nage pour la majorité des poissons de

X
0 0.2 0.4 0.6 0.8 1

Figure 8.3: Profil du poisson donné par l’équation (8.24) avant déformation.

type anguilliforme et carangiforme peut être modélisée par la déformation de la colonne
vertébrale suivant un mouvement sinusoïdal :

y(x, t) = a(x) sin(2π(x/λ+ ft)) (8.25)

où λ est la longueur d’onde de la déformation imposée, f représente la fréquence de bat-
tement de la colonne vertébrale et l’enveloppe a(x) est donnée dans le repère cartésien par
un polynôme du second degré :

a(x) = a0 + a1x+ a2x
2 (8.26)

Un modèle de déformation de la colonne vertébrale selon l’équation (8.25) est montré sur
la Figure 8.4. Ce mode primaire du mouvement du poisson, est considéré comme le mode
de propulsion. Dans la Section 8.7 on définira le deuxième mode de mouvement qui servira
pour changer la direction de la nage. La longueur d’onde de déformation du poisson est
définie dans le repère cartésien. Par la suite, on utilisera la théorie exacte des poutres non-
linéaires pour la quantification de la cinématique du poisson. Par conséquent à la place des
coordonnées dans le repère cartésien, la courbure ponctuelle de la colonne vertébrale est
la seule nécessaire. La dérivée seconde de l’équation (8.25) nous donne la courbure due au
mode de propulsion :

kprop(ξ, t) = (2a2 − (2π/λ)2a(ξ)) sin(2π(ξ/λ+ ft))

+ (4π(a1 + 2a2ξ)/λ) cos(2π(ξ/λ+ ft)) (8.27)
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Figure 8.4: Modèle de déformation de la colonne vertébrale selon l’équation (8.25) pendant
une période avec a0 = 0.02, a1 = −0.08, a2 = 0.16, L = 1 et λ = −1.5.

où a(ξ) = a0 + a1ξ + a2ξ
2. L’utilisation de la courbure du poisson constitue un cadre

général pour décrire le mouvement du poisson parce que la courbure est indépendante de
la direction. La technique est donc particulièrement efficace pour représenter la colonne
vertébrale du poisson lorsqu’il tourne.
La théorie exacte des poutres non-linéaires a été développée par Simo (1985) [45] et a été
prolongée pour la colonne vertébrale des poissons qui nagent, par Boyer et al. (2006) [106].
Dans cette théorie, la poutre est considérée comme un assemblage de sections rigides avec
une épaisseur infinitésimale, i.e., un milieu unidimensionnel de Cosserat. Suivant les études
de Boyer (2006) [106], Rafei et al. (2008) [120] et Belkhiri (2013) [158] en commençant par
l’état de la tête comme condition de bord, la cinématique de la colonne vertébrale peut être
déterminée par intégration sur la longueur de l’arc ξ ∈ [0, L] suivant la colonne vertébrale
du poisson. La variation de l’orientation en utilisant les quaternions, est donnée par :

∂Q

∂ξ
=

1

2
M∨(K) Q ξ ∈ [0, L] (8.28)

où Q = (cos ϕ
2
, ax sin

ϕ
2
, ay sin

ϕ
2
, az sin

ϕ
2
)T sont les vecteurs unitaires, (q20+q21+q22+q23)1/2 = 1

des quaternions qui représentent l’orientation du référentiel attaché au corps par rapport
au référentiel inertiel (galiléen) et M∨(K) est un tenseur anti-symétrique

M∨(K) =


0 −k1 −k2 −k3
k1 0 k3 −k2
k2 −k3 0 k1

k3 k2 −k1 0

 (8.29)
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Figure 8.5: (a) Étapes de constructions du maillage structuré avec les lignes normales à la
colonne vertébrale sur chaque point discret. (b) Maillages lagrangiens structurés (mobiles
et déformables) qui recouvrent le poisson nageant.

où k2 et k3 dans K = (k1, k2, k3)
T représentent la courbure transversale de la colonne

vertébrale et k1 représente le taux de rotation (twist) de la section autour de la colonne
vertébrale avec une normale alignée sur la direction ξ. La géométrie R = (x, y, z)T dans le
référentiel galiléen, le long de la colonne vertébrale est donnée par :

∂R

∂ξ
= Rot(Q) Γ ξ ∈ [0, L] (8.30)

où Γ = (γ1, γ2, γ3)
T représente le cisaillement transversal local des sections dont la première

composante γ1 est le taux d’étirement le long de la direction ξ. La matrice de rotation
Rot(Q) basée sur les quaternions est donnée par :

Rot(Q) = 2

 q20 + q21 − 1
2

q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 q20 + q22 − 1
2

q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 q20 + q23 − 1
2

 (8.31)

Les variations des vitesses linéaires V = (v1, v2, v3)
T et angulaires Ω = (ω1, ω2, ω3)

T

moyennes dans le référentiel local, i.e., le référentiel attaché au corps, sont données par:

∂

∂ξ

[
V

Ω

]
= −

[
K∨ Γ∨

0 K∨

][
V

Ω

]
+

[
Γ̇

K̇

]
ξ ∈ [0, L] (8.32)
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où Γ̇ et K̇ représentent les dérivées temporelles de Γ et K. Dans l’équation (8.32), K∨ et Γ∨

sont des matrices anti-symétriques construites à partir des vecteurs donnés, par exemple:

K∨ =

 0 −k3 k2

k3 0 −k1
−k2 k1 0

 (8.33)

L’accélération peut être déduite par dérivation temporelle de l’équation (8.32). Pour plus de
détails, on se réfèrera à Boyer (2006) [106], Rafei et al. (2008) [120] et Belkhiri (2013). Pour
trouver les vitesses dans le référentiel attaché au corps, à partir des vitesses représentées
dans le référentiel galiléen et l’inverse, on utilise :

(v1, v2, v3)
T = RotT (vx, vy, vz)

T (8.34)

Avec N (1, ..., Npoints) points discrets sur la colonne vertébrale du poisson, les équations
(8.28), (8.30) and (8.32) doivent être intégrées simultanément le long de la colonne vertébrale
par une méthode de type Runge–Kutta (en 3D on obtient Neq = 13 équations).

Après détermination de la géométrie et des vitesses de la colonne vertébrale, un maillage
lagrangien structuré se forme avec les lignes normales à la colonne vertébrale sur chaque
point discret et par l’épaisseur donnée par l’équation (8.24). Des exemples sont donnés sur
les Figure 8.6 et Figure 8.5. Les composantes des vitesses Vcorps de chaque point sur le
maillage lagrangien structuré avec les indices (I, J) sont données par

−→
V corps(I, J) =

−→
V CV(I) +

−→
ΩCV(I)× r(I, J) (8.35)

où −→
V CV et −→ΩCV sont les vitesses linéaire et angulaire de la colonne vertébrale, données par

l’équation (8.32). Il faut s’assurer de ne pas ajouter de forces et moments artificiels. Pour
cela Bergmann et Iollo (2011) [145] proposent de

1. Générer une déformation choisie.

2. Soustraire le déplacement du centre de gravité (cg).

3. Effectuer une rotation de l’opposé de l’angle induit par la déformation autour du cg.

Autrement dit en absence des forces et de moments hydrodynamiques, la déplacement du
centre de gravité (cg) et la rotation du corps autour de cg (et donc les vitesses linéaires
et angulaires) en raison de déformation du corps sont égales à zéro. Ensuite, les vitesses
évaluées sur le maillage lagrangien doivent être transférées sur le maillage eulérien par
interpolation. Dans le cadre de cette étude, on utilise une interpolation linéaire du type
uB(i, j) = axy + bx+ cy + d. Les coefficients sont déterminés en utilisant les données des
4 plus proches points de x(i, j) sur le maillage lagrangien. Il suffit d’avoir l’inverse de la
matrice de Vandermonde, pour calculer les coefficients de uB et vB.
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(


a1

b1

c1

d1

 ⊔


a2

b2

c2

d2

) =


1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4


︸ ︷︷ ︸
matrice de Vandermonde

−1

· (


U1

U2

U3

U4

 ⊔


V1

V2

V3

V4


︸ ︷︷ ︸

les vitesse du corps

) (8.36)

où ⊔ représente le choix d’un des vecteurs entre les parenthèses et (·) est le produit matriciel.
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Figure 8.6: (a) Maillage lagrangien structuré couvrant le poisson en déformation et les
vitesses correspondantes de chaque point, colorées suivant l’intensité de la vitesse (absolue)√
u2 + v2. (b) Maillage lagrangien structuré composé de Imb × Jmb = 121× 19 points.

8.6 Algorithme d’interaction fluide–structure
Dans cette étude, l’algorithme 4 est proposé pour le traitement de l’interaction fluide–structure
pour les écoulements bidimensionnels. La validation de l’algorithme a été faite dans le
Chapitre 3. L’organigramme en résumé est décrit sur la Figure 8.7.

8.7 Changement de direction du poisson
Un poisson anguilliforme peut nager vers un objectif prescrit, grâce au changement de
courbure moyenne de sa colonne vertébrale. Il utilise son corps comme un gouvernail pour
tourner. Dans le cadre de cette étude, l’objectif du poisson consiste à nager vers un objet,
situé en un point fixe qui est prédéfini dans le domaine physique. On propose une loi efficace
pour contrôler la courbure de la colonne vertébrale d’un poisson lorsque celui-ci souhaite
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Figure 8.7: Organigramme de l’algorithme d’interaction fluide–structure.

effectuer un changement de direction. Pour atteindre un objectif prédéfini, à notre modèle
il convient d’ajouter une courbure constante koffset(t) le long de la colonne vertébrale du
poisson ξ ∈ [0, lfish], sur son mode de propulsion primaire, i.e.,

k3 = kprop(ξ, t) + koffset(t) (8.37)

où kprop(ξ, t) est la courbure due au mouvement sinusoïdal donné par l’équation (8.27).
Afin d’effectuer un mouvement physiquement raisonnable, le changement ∆k de courbure
rajoutée koffset suivant l’équation (8.39) doit être intégré progressivement au cours de temps,
i.e., à l’ordre O(∆t). Pour un poisson qui nage tout droit, koffset est égal à zéro. Pour
effectuer un changement de direction, une courbure désirée kdes doit être estimée avec la
relation suivante,

kdes(θdes) =

{
−sgn(θdes) kmax |θdes| ≥ θlimit

−sgn(θdes) kmax ( θdes
θlimit

)2 sinon
(8.38)

où sgn représente la fonction signe, i.e., sgn(θdes) = θdes/|θdes|, ici θlimit est la limite de la
région de croissance hyperbolique de kdes(θdes), voir la Figure 8.8 (b). Les valeurs positives
et négatives de θdes (dans le référentiel attaché au corps) conduisent le poisson à tourner à
gauche et à droite, respectivement. Pour une représentation schématique de l’angle désiré
θdes, il convient de se reporter à la Figure 8.9.
A chaque pas de temps, l’angle désiré θdes doit être d’abord calculé selon la position et la
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direction de la tête tout en visant l’objectif. Après cela, en utilisant l’équation (8.38), une
courbure désirée kdes doit être estimée. Ensuite, koffset peut être calculé avec la relation
suivante,

kn+1
offset(kdes) =


knoffset +∆k knoffset < kdes

knoffset −∆k knoffset > kdes

knoffset knoffset = kdes

(8.39)

où ∆k = ∆t π/T . Finalement suivant l’équation (8.37), on rajoute koffset à la courbure ini-
tiale kprop de la colonne vertébrale, afin que le poisson réalise un changement de direction
pendant son déplacement. En résumé connaissant la direction, la position et les vitesses
linaire et angulaire de la tête du poisson les équations (8.28), (8.30) et (8.32) doivent être
intégrées simultanément le long du poisson pour trouver les positions et les vitesses de la
colonne vertébrale.
Dans le cas de la nage anguilliforme la longueur du poisson est constante, donc sur la
colonne vertébrale on a un taux d’étirement constant et le cisaillement local égal à zéro,
i.e., Γ = (1, 0, 0). Dans le cas de la nage bidimensionnelle on a qu’une seule courbure à
imposer, i.e., k3, le taux de rotation (twist) et la courbure transversale sont égales à zéro,
par conséquent on a K = (0, 0, k3). On considère Imb = 251 points discrets sur la colonne
vertébrale du poisson et Jmb = 39 points dans la direction latérale, pour construire le
maillage lagrangien qui couvre le poisson. En choisissant kmax = π dans l’équation (8.38)
le poisson prend la forme d’un demi-cercle quand il tourne avec sa courbure maximale.
Comme dans les études de Bergmann et Iollo (2011) [145] on utilise θlimit = π/4, voir la
Figure 8.8 (b). La dérivée temporelle de la courbure dk/dt est nécessaire dans l’équation
(8.32) pour calculer les vitesses et elle peut être estimée numériquement.
Une simulation est effectuée pour montrer la performance de l’algorithme proposé, qui
mène le poisson vers son objectif de position prédéfinie. La taille du domaine de la solution
est (x, y) ∈ [0, 5lfish] × [0, 5lfish], le maillage eulérien est composé de 1024 × 1024 points,
le paramètre de pénalisation est η = 10−3, la bande de filtrage des coefficients hydrody-
namiques est égale à δ = 0.005, la fréquence de battement du poisson est choisi égal à
f = 1 et la longueur d’onde de déformation de son corps est λ = 1. L’enveloppe de la
colonne vertébrale est paramétrée avec a2 = 0, a1 = 0.125/(1 + c), a0 = 0.125c/(1 + c) et
c = 0.03125.
Le profil du poisson est donné par l’équation (8.24) et il est illustré sur la Figure 8.3. La
viscosité cinématique utilisée est ν = 1.4 × 10−4, la position initiale de la tête située
à (x0, y0) = (0.1Lx, 0.5Ly) et l’angle initial de la tête est égal à θ0 = 0. La Figure
8.10 (a-f) montre quelques distributions instantanées des champs de vorticité, obtenus
lors de la simulation de la nage du poisson considérée vers un objectif prédéfini situé à
(xf , yf ) = (0.9Lx, 0.5Ly). La simulation commence avec le corps et le fluide environ-
nant au repos, i.e., uB(x, 0) = 0 et ω(x, 0) = ψ(x, 0) = 0. Des conditions aux limites
d’imperméabilité et de glissement (Dirichlet homogène, i.e., ψ|∂Ω = ω|∂Ω = 0) sont im-
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posées sur les bords.
Le mise en mouvement du poisson s’accompagne d’un accroissement progressif de la cour-
bure de la colonne vertébrale selon l’équation (8.37) au cours de la première période T .
Du fait de la fonction sinusoïdale modèle qui est tracée sur la Figure 8.8 (a), la cour-
bure s’accroît progressivement de zéro jusqu’à sa valeur prévue. A proximité de l’objectif
(robjectif = 0.5lpoisson), la courbure de la colonne vertébrale du poisson, donnée par l’équation
(8.37), tend vers zéro (voir les Figures 8.10 et 8.12) en la multipliant par la fonction suiv-
ante,

C(t) =
tf − t

tf − ti
+

1

2π
sin(2π

t− ti
tf − ti

) , t ∈ [ti, tf ] (8.40)

qui est l’inverse de la fonction présentée sur la Figure 8.8 (a), avec ti = tarriver, tf = tarriver+T

pour faire décroitre progressivement la courbure de la colonne vertébrale au cours d’une
période. Les positions successives du poisson représentées par sa colonne vertébrale au cours
de sa nage vers son objectif prédéfini situé à (xf , yf ) = (0.9Lx, 0.5Ly), sont représentées
pour un intervalle de temps t ∈ [0, 15] sur la Figure 8.12. On peut constater sur la Figure
8.10 (a-f) que les valeurs du champ de vorticité initialement égales à zéro (correspondant
au repos du poisson et du fluide environnant) s’accroissent rapidement ω ∈ [−200, 220] au
cours du changement de direction. Lors de la nage en ligne droite, les valeurs du champ de
vorticité oscillent dans la gamme de ω ∈ [−60, 70]. Finalement à proximité de l’objectif,
l’amplitude du battement du corps se réduit suivant l’équation (8.40), les valeurs du champ
de vorticité décroissent pour être dans la gamme de ω ∈ [−28, 25].
Un point selle dans l’écoulement correspond à une stagnation de fluide par suite de collision
de deux courants. La succession des points selles et des centres (correspondant aux centres
des tourbillons) qui se manifestent dans l’écoulement autour du poisson, est illustrée sur la
Figure 8.11. Ce sont les caractéristiques communes des écoulements séparés sur un corps.
Pour calculer le champ de pression, une équation de Poisson est extraite des équations de
quantité de mouvement (8.1) :

∇ · (∇p) = −ρf∇ ·
[
(u · ∇)u

]
− ρf∇ · F (8.41)

Pour l’algorithme proposé, elle peut se simplifier selon la forme suivante :

∇2p = 2ρf (uxvy − uyvx)− ρf∇ ·
[
η−1χ(u− up)

]
(8.42)

où les conditions aux limites de type Neumann ∂p/∂n|∂Ω = 0 sont imposées sur les bords
du domaine rectangulaire. En utilisant une méthode aux différences finies d’ordre deux,
sur la paroi gauche on a :

p1 = (4p2 − p3)/3
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Des relations similaires aux frontières vers l’arrière-aval peuvent être déduites pour les
quatre bords du domaine. L’équation de Poisson (8.42) après discrétisation conduit à un
système d’équations linéaires. On utilise la méthode de sur-relaxation successive, qui est
une variante de la méthode de Gauss-Seidel, pour résoudre le système d’équations linéaires
[56]. Grâce à un balayeur de type échiquier (rouge et noir) l’efficacité de la méthode de
Gauss-Seidel peut encore être accrue, parce que les valeurs les plus récentes sont toujours
utilisées au cours des itérations. Dans cette étude le champ de pression est calculé une fois
toutes les 500 itérations. En effet, la pression n’est plus présente dans l’algorithme et ne
servira que pour les analyses nécessaires et la visualisation. En présence des conditions aux
bords de type Neumann, les solutions de l’équation de Poisson sont singulières (multiples),
i.e., définies à une constante près. Pour éviter cela, dans les solutions de l’équation de
Poisson, au cours des itérations la valeur de la pression au centre du domaine est forcée à
une valeur constante pcentre = cte, i.e.,

p(Nx/2, Ny/2) = 1

Quelques représentations instantanées des champs de pression sont montrées sur la Figure
8.10 (g-l). Les régions de surpression et de dépression sont alternativement visibles de part
et d’autre du poisson lors de son avancement. Comme prévu, les isovaleurs de pression sont
normales à la surface du poisson. Dans l’écoulement, les centres des tourbillons correspon-
dent à des régions de dépression. La déviation du champ de pression par rapport à p∞ = 1

s’accroît à p ∈ [−21, 27] une fois que le battement commence et décroît très vite, lorsque à
t = 15 le battement s’arrête à proximité de l’objectif. Ceci est en opposition claire avec le
champ de vorticité qui perdure même après l’arrêt du poisson, ce qui démontre la nature
elliptique du champ de pression vis-à-vis de la nature parabolique du champ de vorticité.
Une région de surpression est visible entre la tête et la queue du poisson quand celui-ci
tourne en configurant un demi-cercle avec la courbure maximum rajoutée , i.e., k = π, qui
correspond également à ce qu’a constaté Gazzola et al. (2012) [155].
Comme démontré par Gazzola et al. (2012) [155], la manœuvre de retournement en fer à
cheval est un mécanisme efficace pour changer la direction de la nage et repartir en même
temps. En prenant la forme d’un demi-cercle, les larves stockent un volume considérable
de fluide qu’elles éjecteront pour accélérer et repartir. Quand des objets rigides font face
à un écoulement, comme dans le cas du transport industriel (train, avion, voiture, ...), la
pression maximum se manifeste au point de stagnation du front. Dans le cas de la nage des
poissons, contrairement au déplacement classique de corps rigides, le point de stagnation ne
se trouve plus au nez de l’objet. Lors de la nage, les régions de surpression et de dépression
se développent de part et d’autre du poisson, engendrant des points de stagnation tout
le long du profil du poisson. Dans l’étape finale de la nage après l’arrêt du battement à
t = 15, comme le montre la Figure 8.10 (l), une zone de surpression réapparaît devant la
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tête du poisson.
Le lissage de la fonction caractéristique χ̄ par l’équation (8.7), génère des champs de pres-
sion réguliers. Aucune oscillation du champ de pression à l’intérieur et à l’extérieur du
poisson n’est visible. Grâce au modèle de rotation proposé qui superpose une courbure en
fonction de temps (constant le long du poisson) sur le mode sinusoïdal de propulsion, le
poisson à l’instant du retournement effectue un changement de direction de 180o dans une
aire qui correspond à environ 1.3 fois sa longueur.

t
0 0.5 1

-6 -6

-4 -4

-2 -2

0 0

2 2

4 4

6 6Cr
Cr ’
Cr ’’

(a)

θ

K
de

s

-3.14 -1.57 0 1.57 3.14

-3.14

-1.57

0

1.57

3.14
Kmax

θlimit

(b)

Figure 8.8: (a) Fonction proposée par Boyer et al. (2006) [106] pour accroitre progres-
sivement la courbure de la colonne vertébrale du poisson : Cr(t) = t′ − sin(2πt′)/(2π),
t ∈ [ti, tf ] avec t′ = (t − ti)/(tf − ti), ti = 0 et tf = 1. A t = 0 et t = 1 les limites à
gauche et les limites à droite sont égales pour la fonction Cr et pour ses dérivées première
Cr′ et seconde Cr′′. (b) Fonction proposée pour estimer la courbure desirée kdes(θ) suivant
l’équation (8.38) avec kmax = π et θlimit = π/4.

8.8 Conclusion
Dans cette étude, une méthode numérique précise et efficace est proposée pour la simula-
tion de corps déformables interagissant avec un écoulement incompressible. Les équations
de Navier–Stokes, considérées dans leur formulation vorticité-fonction de courant, sont
discrétisées temporellement et spatialement à l’aide respectivement d’un schéma d’ordre
quatre de Runge–Kutta et par des différences finies compactes. Grâce à l’utilisation d’un
maillage uniforme, nous proposons un nouveau “solveur direct” au quatrième ordre pour
l’équation de Poisson, permettant de garantir la contrainte d’incompressibilité au niveau
du zéro machine sur une grille optimale. L’introduction d’un corps déformable et mobile
dans l’écoulement de fluide est réalisée au moyen d’une méthode de pénalisation de volume.
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Figure 8.9: Une représentation schématique de l’angle désiré pour contrôler la courbure
rajoutée koffset (le long de la colonne vertébrale) du poisson afin de le diriger vers son
objectif. Ici θdes = θobjectif − θtete est l’angle entre la direction de la tête et la ligne reliant
la tête à la position de son objectif, (−π < θdes < π). Image adoptée d’après Bergmann et
Iollo (2011) [145] avec quelques modifications.

La déformation du corps est imposée par l’utilisation d’un maillage lagrangien structuré et
mobile qui interagit avec le fluide environnant en produisant des forces hydrodynamiques
et des moments (calculés sur le maillage eulérien de référence). Une loi efficace de contrôle
de la courbure du poisson anguilliforme nageant vers son objectif prescrit, est proposée.
Grâce à ce modèle, le poisson initialement au repos commence à nager avec un changement
de direction complet dans une aire réduite correspondant à seulement 1.3 fois sa longueur.
La loi de contrôle de la courbure est basée sur la théorie exacte des poutres non-linéaires.
Ensuite pour augmenter l’efficacité de la méthode, dans le Chapitre 5 une analyse mul-
tiéchelle est appliquée à l’algorithme, permettant de réduire significativement le nombre
de points nécessaires. La grille se raffine automatiquement dans les régions présentant un
fort gradient. La stratégie d’adaptation est basée sur la transformée en ondelettes puis
le seuillage des coefficients. Les résultats obtenus montrent que le temps de calcul peut
être réduit considérablement avec la méthode multiéchelle tout en conservant la précision.
Finalement, dans le Chapitre 6, une simulation de nage tri-dimensionnelle a été réalisée
avec la méthode de pénalisation de volume appliquée au code Incompact3d, développé par
Laizet et Lambalais (2009) [129], qui est en accès libre. La méthode numérique développée
prouve son efficacité et sa précision tant dans le cas de la nage du poisson que dans le cas
d’autres problèmes d’interactions fluide–structure comme la sédimentation d’un cylindre
ou d’une ellipse. Le code est librement accessible et a été développé en FORTRAN [171].
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Algorithm 4 L’algorithme d’interaction fluide–structure

1. Introduction d’un état initial

2. Cinématique du corps

(a) (Spécifiquement pour le poisson) Construction de la colonne vertébrale du pois-
son par l’intégration des équations (8.28), (8.30) et (8.32)

(b) (Spécifiquement pour le poisson) Recouvrement du poisson par un maillage la-
grangien structuré, puis calcul des vitesses en chaque point du corps déformable
avec l’équation (8.35). S’assurer de ne pas ajouter de forces et moments artifi-
ciels.

(c) Calcul de la fonction caractéristique χ(i, j) et lissage avec l’équation (8.7)
(d) Calcul du moment d’inertie Izz autour du point de référence
(e) (Spécifiquement pour le poisson) Transformation des vitesses du corps sur le

maillage eulérien par interpolation (8.36) pour obtenir uB(i, j) et vB(i, j).
(Lagrange → Euler)

3. Intégration temporelle de l’écoulement au moyen du schéma RK4

(a) ω0 = ωn , ψ0 = ψn

Pour i = 1, 2, 3 (α1 = α2 = 1/2 et α3 = 1)
(b) Calcul ki(ω, ψ)i−1 = −∂yψ ∂xω + ∂xψ ∂yω + ν∇2ω + ∂xFy − ∂yFx

(c) ωi = ωn + αi ∆t ki

(d) Résolution de l’équation (8.4); −∇2ψi = ωi pour mise à jour des vitesses (u, v)
Fin pour i = 1, 2, 3

(e) Calcul k4(ω, ψ)3 = −∂yψ ∂xω + ∂xψ ∂yω + ν∇2ω + ∂xFy − ∂yFx

(f) Mise à jour de la vorticité ; ωn+1 = ωn + ∆t
6
(k1 + 2k2 + 2k3 + k4)

(g) Résolution de l’équation (8.4); −∇2ψn+1 = ωn+1

4. Dynamique du corps

(a) Calcul des coefficients hydrodynamiques du corps avec les équations (8.8) et
(8.9)

(b) Débruitage des coefficients hydrodynamiques avec l’équation (8.10)
(c) Calcul des déplacements avec l’équation (8.13) et les vitesses linéaires
(d) Calcul du mouvement de rotation avec l’équation (8.15) et la vitesse angulaire

5. Écriture des données nécessaires dans les fichiers

6. Si T < Tend, reprendre l’étape 2

7. Fin
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Figure 8.10: Champs de vorticité (a-f) et de pression (g-l) autour du poisson (représenté par
les lignes noires correspondant à χ = 0.2) nageant vers un objectif prédéfini, situé au point
(xf , yf ) = (0.9Lx, 0.5Ly). A t = 0, le poisson et le fluide environnant sont au repos. La
domaine de la solution est (x, y) ∈ [0 , 5lfish]×[0 , 5lfish], la résolution du maillage eulérien est
1024×1024, la résolution du maillage lagrangien est (Imb×Jmb = 251×39), le paramètre
de pénalisation est η = 5× 10−4 et la viscosité cinématique est égale à ν = 1.4× 10−4.
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Figure 8.11: Les points selles (entourés des cercles en pointillés verts) et centres (entourés
des cercles solides violets) dans l’écoulement séparé autour du poisson sont successivement
lâchés par le mouvement du corps. Deux tourbillons forment un dipôle qui génère un jet
localisé vers l’arrière dans l’écoulement au cours de la nage du poisson.
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Figure 8.12: Les positions successives du poisson matérialisées par sa colonne vertébrale au
cours de sa nage vers l’objectif prédéfini situé à (xf , yf ) = (0.9Lx, 0.5Ly) sont représentées
pour un intervalle de temps t ∈ [0, 15]. A proximité de l’objectif (robjectif = 0.5lpoisson) la
courbure de la colonne vertébrale du poisson, donnée par l’équation (8.37), se ramène à
zéro. Les champs de vorticité et de pression correspondants sont illustrés sur la Figure
8.10. Le poisson initialement au repos effectue un changement de direction de 180o près du
bord gauche du domaine dans une aire qui correspond à environ 1.3 fois sa longueur.



Appendix A

Compact differentiation

Classical finite differences are based on Lagrange interpolation. Therefore high-order ap-
proximations lead to large stencils. In compact finite differences Hermit interpolation
is used to keep high accuracy and compact stencil. For a given discrete function f , on
(i = 1, 2, . . . , N) uniformly distributed collocated grid points with spacing h = L/(N − 1),
explicit or implicit schemes with different orders of accuracy for approximation of the first
derivative f ′ are constructed by Lele [55] from the following general relation

βf ′
i−2 + αf ′

i−1 + f ′
i + αf ′

i+1 + βf ′
i+2 = a

fi+1 − fi−1

2h
+ b

fi+2 − fi−2

4h
+ c

fi+3 − fi−3

6h
(A.1)

An approximation of the first derivative with sixth-order accuracy is obtained by

1
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f ′
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f ′
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2h
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9

fi+2 − fi−2

4h
, i = 3, ..., N − 2 (A.2)

If fourth-order accuracy is desired one can use the classical Padé scheme:
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f ′
i−1 + f ′

i +
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4
f ′
i+1 =

3

2

fi+1 − fi−1

2h
, i = 2, ..., N − 1 (A.3)

near the boundaries a third-order accuracy can be achieved by

f ′
1 + 2f ′

2 = (−2.5f1 + 2f2 + 0.5f3)/h (A.4)

f ′
N + 2f ′

N−1 = −(−2.5fN + 2fN−1 + 0.5fN−2)/h (A.5)
A similar relation holds for evaluation of the second derivative f ′′

βf ′′
i−2 + αf ′′

i−1 + f ′′
i + αf ′′

i+1 + βf ′′
i+2 =

a
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h2
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fi+3 − 2fi + fi−3

9h2
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An approximation of the second derivative with sixth-order accuracy is given by
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, i = 3, ..., N−2 (A.7)

If fourth-order accuracy (classical Padé scheme) is desired the following equation can be
used
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, i = 2, ..., N − 1 (A.8)
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near the boundaries a third-order accuracy can be achieved by

f ′′
1 + 11f ′′

2 = (13f1 − 27f2 + 15f3 − f4)/h
2 (A.9)

f ′′
N + 11f ′′

N−1 = (13fN − 27fN−1 + 15fN−2 − fN−3)/h
2 (A.10)

The coefficients of some commonly used methods for approximation of the first f ′ and the
second derivative f ′′, with different orders of accuracy, are given in Tables A.1 - A.4.
An optimized spectral-like method introduced by Kim [111] for evaluation of the first
derivative. This compact formulation leads to formally fourth-order accuracy everywhere
and especially near the boundaries. The method of Kim [111] can be represented in the
following matrix form:

[P]f ′ = [Q]f (A.11)
where [P] and [Q] represent N ×N matrices. On the left-hand side, P is a pentadiagonal
band matrix of the form:

P =



1 γ01 γ02 0 · · · 0 0 0 0
γ10 1 γ12 γ13 0 . . . 0 0 0
γ20 γ21 1 γ23 γ24 0 · · · 0 0
0 β α 1 α β 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 β α 1 α β 0
0 0 · · · 0 γ24 γ23 1 γ21 γ20
0 0 0 · · · 0 γ13 γ12 1 γ10
0 0 0 0 · · · 0 γ02 γ01 1


(A.12)

On the right-hand side of (A.11), Q is not strictly band limited matrix and have a form:

Q =
1

h



b00 b01 b02 b03 b04 b05 b06 0 0 · · · 0
b10 b11 b12 b13 b14 b15 b16 0 0 · · · 0
b20 b21 b22 b23 b24 b25 b26 0 0 · · · 0

−c/6 −b/4 −a/2 0 a/2 b/4 c/6 0 0 · · · 0
0 −c/6 −b/4 −a/2 0 a/2 b/4 c/6 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 −c/6 −b/4 −a/2 0 a/2 b/4 c/6 0
0 · · · 0 0 −c/6 −b/4 −a/2 0 a/2 b/4 c/6
0 · · · 0 0 −b26 −b25 −b24 −b23 −b22 −b21 −b20
0 · · · 0 0 −b16 −b15 −b14 −b13 −b12 −b11 −b10
0 · · · 0 0 −b06 −b05 −b04 −b03 −b02 −b01 −b00


(A.13)

For the inner points the coefficients are given in Table A.4. For near boundary points the
coefficients are listed in Table A.5. This method was originally proposed in the context of
aeroacoustic by Kim [111], for evaluation of the first derivative while keeping the fourth-
order accuracy near the boundaries.
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Table A.1: Coefficients of explicit differentiation (α = β = 0) for the first f ′ and the second
derivative f ′′ with Eqs. (A.1) and (A.6).

Coefficients 2th-order 4th-order 6th-order
a 1 4/3 3/2
b 0 -1/3 -3/5
c 0 0 1/10

Table A.2: Coefficients of implicit compact differentiation (via tri-diagonal system of equa-
tions, β = 0) for the first derivative f ′ with Eq. (A.1).

Coefficients 4th-order (Padé) 6th-order (Lele) 8th-order (Lele)
α 1/4 1/3 3/8
a 3/2 14/9 25/16
b 0 1/9 1/5
c 0 0 -1/80

Table A.3: Coefficients of implicit compact differentiation (via tri-diagonal system of equa-
tions, β = 0) for the second derivative f ′′ with Eq. (A.6).

Coefficients 4th-order (Padé) 6th-order (Lele) 8th-order (Lele)
α 1/10 2/11 9/38
a 12/10 12/11 (696− 1191α)/428
b 0 3/11 (2454α− 294)/535
c 0 0 (1179α− 344)/2140

Table A.4: Coefficients of spectral-like (formally fourth-order) implicit compact differenti-
ation (via five-diagonal system of equations) for the first derivative f ′ with Eq. (A.1) for
inner points.

Coefficients 4th-order Lele [55] 4th-order Kim [111]
α 0.5771439 0.5862704032801503
β 0.0896406 0.09549533555017055
a 1.3025166 1.2862813473838312
b 0.99355 1.0344044093980264
c 0.03750245 0.04284572087878425
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Table A.5: Coefficients of implicit compact differentiation (which leads to a pentadiagonal
system of linear equations) for the near boundary points for evaluation of the first derivative
f ′ via Eq. (A.11). Optimised by Kim [111] to keep the fourth-order accuracy near the
boundaries.

Coefficients 1st-point(i = 0) 2nd-point(i = 1) 3rd-point(i = 2)
Left
γi0 1 0.08360703307833438 0.03250008295108466
γi1 5.912678614078549 1 0.3998040493524358
γi2 3.775623951744012 2.058102869495757 1
γi3 - 0.9704052014790193 0.771926127761586
γi4 - - 0.16266359312569

Right
bi0 −

∑6
j=1 bij -0.3177447290722621 -0.1219006056449124

bi1 -3.456878182643609 −
∑6

(j=0,j ̸=1) bij -0.6301651351188667
bi2 5.83904335883473 -0.02807631929593225 −

∑6
(j=0,j ̸=2) bij

bi3 1.015886726041007 1.593461635747659 0.6521195063966084
bi4 -0.2246526470654333 0.2533027046976367 0.393884355121035
bi5 0.08564940889936562 -0.03619652460174756 0.01904944407973912
bi6 -0.01836710059356763 0.004080281419108407 -0.001027260523947668



Appendix B

The volume penalization method

By using the volume penalization method for fluid interaction with deformable bodies,
some variables like gravity center, moments of inertia, hydrodynamic coeficients, etc. must
be evaluated at each time step. After definin the mask function χ(i, j, k) on the Eulerian
grid, integral variables can be approximated numerically. Some examples are given in the
following: The volume of the penalized area over a Cartesian uniform grid is determined
by the following relation

Vpen =

∫
V

χ dv ≈ ∆x∆y∆z
Kmax∑
k=1

Jmax∑
j=1

Imax∑
i=1

χijk

in two-dimensions the volume integrals must be replaced by surface integrals

Spen =

∫
Ωs

χ ds ≈ ∆x∆y
Imax∑
i=1

Jmax∑
j=1

χi,j

The geometrical moment of inertia, with dimension [ML2], about an axis through the
center of mass is given by

I = ρs

∫
V

χ r2dv

The polar moment of inertia Izz = Ix+Iy around z axis (also called Jz) is defined as follows

Izz = ρs

∫
Ωs

χ r2ds

where ρs is the density of the immersed body, Izz is given with respect to the origin of the
vector r which is arbitrary and the z axis is passing through it. For ρs = cte the polar
moment of inertia with respect to a reference point reads

Irefzz = ρs

∫
V

χ
(
(x− xref )

2 + (y − yref )
2
)
dv

in two-dimensions the volume integral must be replaced by a surface integral over Ωs In
three dimensions the moment of inertia matrix is defined as

I =

 Ixx −Ixy −Ixz
−Iyx Iyy −Ixx
−Izx −Izy Izz
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where as an example Ixy is given by:

Irefxy = Irefyx = ρs

∫
V

χ
(
(x− xref )(y − yref )

)
dv

other elements can be deduced in a similar way. The center of gravity is the point in a body
around which the resultant torque due to gravity forces vanishes. Near the surface of the
earth, where the gravity acts downwards as a parallel force field, the center of gravity and
the center of mass are the same. If the mass distribution is continuous with the density
ρs(r) within a volume V , then the integral of the weighted position coordinates of the
points in this volume relative to the center of mass xcg is zero, that is∫

V

χρs(r)(x− xcg)dv = 0

Solveing this equation, the coordinates of gravity cebter xcg is given by

xcg =
1

M

∫
V

χρs(r)xdv

where M is the total mass in the volume. In two-dimensions for ρs = cte, we get

xcg =
1

S

∫
S

χxds

If a continuous mass distribution has uniform density, which means that ρs is constant,
then the center of mass is the same as the centroid of the volume. On a uniform grid in
two-dimensions F can be numerically evaluated as

F ≈ ρf
η

∆x∆y
Imax∑
i=1

Jmax∑
j=1

χi,j︸ ︷︷ ︸
Spen

(u− uB)i,j + ρfSpenẍcg (B.1)

For a second-order discretization of the terms like ∂x(χψx) the following conservative rela-
tion can be used:

∂

∂x

(
χ
∂ψ

∂x

)∣∣∣∣
i

=
(χi+1 + χi)(ψi+1 − ψi)− (χi−1 + χi)(ψi − ψi−1)

2h2
+O(h)2 (B.2)



Appendix C

The coefficient matrix of Poisson
equation

An iterative method presented in Section 2.3.1 for high-order solution of the Poisson equa-
tion∇2ψ = −ω. A linear system of equations (2.77) is resulted from fourth-order discretiza-
tion of the Poisson equation. The 9-point stencil used for discretization, is illustrated in
Fig. 2.12 (c). The nine diagonal band matrix of the coefficients has the following structure:



. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
ASW AS ASE AW AP AE ANW AN ANE

. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
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Appendix D

Fourier transforms

Following Press et al. [56] for a continuous function of one variable f(x) ∈ L2(R), the
continuous Fourier transform is defined as

f̂(ξ) =

∫ ∞

−∞
f(x)e−i2πkxdx (D.1)

where ξ ∈ R, the inverse continuous Fourier transform is defined as

f(x) =

∫ ∞

−∞
f̂(ξ)ei2πkxdk (D.2)

Consider a complex periodic series f(n) with N samples (f0, f1, f2, ..., fN−1). The forward

Figure D.1: (top) The trigonometric basis functions for a complex FFT of a periodic func-
tion. (center) The trigonometric basis functions for a sine FFT of a function with homo-
geneous Dirichlet boundary conditions. (bottom) The trigonometric basis functions for a
cosine FFT of a function with homogeneous Neumann boundary conditions. Picture from
[56].

discrete complex Fourier transform is defined as

f̂k =
N−1∑
n=0

fne
−i2πkn/N for k = 0, 1, ..., N − 1 (D.3)
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where k ∈ Z. The trigonometric basis functions for a complex FFT of a periodic function
is illustrated in Fig. D.1 (top). The inverse discrete Fourier transform is defined as

fn =
1

N

N−1∑
k=0

f̂ke
i2πkn/N for n = 0, 1, ..., N − 1 (D.4)

For the real data with zero value at the boundaries (homogeneous Dirichlet boundary
condition), the natural discrete Fourier transform to use is the sine transform (see Fig.
D.1, center), given by

f̂k =
N−1∑
n=0

fn sin(πkn/N) for k = 0, 1, ..., N − 1 (D.5)

and the inverse sine transform is given by

fn =
2

N

N−1∑
k=0

f̂k sin(πkn/N) for n = 0, 1, ..., N − 1 (D.6)

The other common boundary condition for differential equations is that the derivative of
the function is zero at the boundaries (homogenous Neumann boundary condition). In the
case of collocated arrangement of real data the natural discrete transform is the cosine
transform (see Fig. D.1, bottom). The first form of the cosine transform uses N +1 points
:

f̂k =
f0 + (−1)kfN

2
+

N−1∑
n=1

fn cos(πkn/N) for k = 0, 1, ..., N (D.7)

the inverse cosine transform is defined as

fn =
2

N

[
f̂0 + (−1)nf̂N

2
+

N−1∑
k=1

f̂k cos(πkn/N)

]
for n = 0, 1, ..., N (D.8)

In the case of staggered arrangement of real data (with homogeneous Dirichlet boundary
conditions) the discrete cosine transform is defined as

f̂k =
N−1∑
n=0

fn+1/2 cos
[
πk(n+ 1/2)/N

]
for k = 0, 1, ..., N − 1 (D.9)

and the inverse cosine transform is defined as

fn+1/2 =
2

N

[
f̂0
2

+
N−1∑
k=1

f̂k cos
[
πk(n+ 1/2)/N)

]]
for n = 0, 1, ..., N − 1 (D.10)



Appendix E

Turbulent structure identification
criteria

Perhaps the most significant contribution of DNS to date has been the identification and
eduction of turbulent structures. Since DNS supplies the pressure and velocity fields and
velocity components gradients at each point in space and time, it allows the investigation
of the relationship between the vortical structures with other quantities. Several methods
can be used to visualize the coherent structures (eddies) in a turbulent flow. The pressure
is effective in identifying the regions of strong rotation in vortex cores in a field without
strong pressure gradient. Hunt et al. [47] proposed to use the Q criterion which is the
second invariant of the deformation (or velocity gradient) tensor,

Dij =
∂ui
∂xj

=

 ux uy uz
vx vy vz
wx wy wz

 (E.1)

Q is defined as
Q =

1

2
(ΩijΩij − SijSij) = −1

2

∂ui
∂xj

∂uj
∂xi

(E.2)

where Sij = (ui,j + uj,i)/2 is the strain rate tensor which is the symmetric part of the de-
formation tensor and Ωij = (ui,j −uj,i)/2 is the rotation tensor which is the anti-symmetric
part of the deformation tensor

Dij = Sij + Ωij. (E.3)
The expanded expression for Q is given by

Q = vywz + uxvy + uxwz − vzwy − vxuy − uzwx

In regions where Q > 0 vorticity is significant, and rotation dominates over shear. The Q
criteria for two dimensions is presented by Weiss [50]. The vorticity norm can also be used
as a criterion for coherent structure visualization. Vorticity is the curl of the velocity field

ω⃗ = ∇× u = (wy − vz )̂i+ (uz − wx)̂j+ (vx − uy)k̂

its norm is defined as
|ω⃗| =

√
ω2
x + ω2

y + ω2
z (E.4)

For more details we refer to McWilliams [43], Vincent and Meneguzzi [53] and Haller [101].

199



Appendix F

Direct solvers for linear systems with
diagonal matrix of coefficients

Linear systems of equations are commonly encountered in implicit compact methods. For
solving tridiagonal and pentadiagonal linear systems of equations, of the form; [A]X = [B],
the following algorithms can be used respectively. Both of them are direct methods based
on complete lower-upper (LU) decomposition of the coefficient matrices. This is accom-
plished by forward elimination of lower diagonals and then backward substitution for the
solution.

************************************************
SUBROUTINE TRID (ibeg, iend, a, b, c, f)
! Matrix of the coefficients has 3 bands, (a b c), with b is the main diagonal,
! a is the lower diagonal, c is the upper diagonal and f is used to store the right hand side.
! The solution vector will come back in f.
IMPLICIT NONE
INTEGER i, ibeg, iend
REAL(8) z
REAL(8), DIMENSION (ibeg:iend) :: a, b, c, f
————————————————
f(ibeg) = f(ibeg)/b(ibeg)
c(ibeg) = c(ibeg)/b(ibeg)
DO i=ibeg+1,iend-1
z = 1./(b(i) - a(i)*c(i-1))
c(i) = c(i)*z
f(i) = (f(i) - a(i)*f(i-1))*z
END DO

f(iend) = (f(iend) - a(iend)*f(iend-1))/(b(iend) - a(iend)*c(iend-1))
DO i=iend-1,ibeg,-1
f(i) = f(i) - c(i)*f(i+1)
END DO
————————————————
RETURN
END SUBROUTINE TRID
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************************************************
SUBROUTINE PENTAD (N, E, A, D, C, F, B)
! Akron University - Mathematics department
! Matrix has 5 bands, E A D C F, with D being the main diagonal,
! E and A are the lower diagonals, C and F are the upper diagonals.
! E is defined for rows i = 3:N, but in the code it is defined as E(1) to E(N-2)
! A is defined for rows i = 2:N, but in the code it is defined as A(1) to A(N-1)
! D is defined for rows i = 1:N
! C is defined for rows i = 1:N-1, but in the code the last element is not used
! F is defined for rows i = 1:N-2, but in the code the last 2 elements are not used
! B is the right-hand side
! The solution vector will come back in E
————————————————
IMPLICIT NONE
INTEGER I, N
REAL(8), DIMENSION (1:N) :: E, A, D, C, F, B
REAL(8) XMULT
————————————————
DO I = 2, N-1
XMULT = A(I-1)/D(I-1)
D(I) = D(I) - XMULT*C(I-1)
C(I) = C(I) - XMULT*F(I-1)
B(I) = B(I) - XMULT*B(I-1)
XMULT = E(I-1)/D(I-1)
A(I) = A(I) - XMULT*C(I-1)
D(I+1) = D(I+1) - XMULT*F(I-1)
B(I+1) = B(I+1) - XMULT*B(I-1)
ENDDO

XMULT = A(N-1)/D(N-1)
D(N) = D(N) - XMULT*C(N-1)
E(N ) = (B(N ) - XMULT*B(N-1))/D(N )
E(N-1) = (B(N-1) - C(N-1)*E(N)) /D(N-1)

DO I = N-2,1,-1
E(I) = (B(I) - F(I)*E(I+2) - C(I)*E(I+1)) / D(I)
ENDDO
————————————————
RETURN
END SUBROUTINE PENTAD
************************************************
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